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ABSTRACT

This paper proposes a novel system for robust keyword detection
in continuous speech. Our decoder is composed of a bidirectional
Long Short-Term Memory recurrent neural network using a Connec-
tionist Temporal Classification (CTC) output layer, and a Dynamic
Bayesian Network (DBN). The CTC network exploits bidirectional
context information to reliably identify phonemes, whereas the DBN
is able to discriminate between keywords and arbitrary speech while
explicitly modeling substitutions, deletions, and insertions in the
CTC phoneme output string. Our technique is vocabulary indepen-
dent and does not require an explicit garbage model. Experiments
show that our system architecture prevails over a standard Hidden
Markov Model approach.

Index Terms— Spoken Term Detection, Keyword Spotting, Dy-
namic Bayesian Networks, Connectionist Temporal Classification

1. INTRODUCTION

Keyword spotting aims at picking out several predefined keywords
from continuous speech signals. In recent years it has found many
applications, including voice command detection, information re-
trieval, and embodied conversational agents.

At present the most popular methodology for keyword spotting
is using Hidden Markov Models (HMM) [1]. A major difficulty with
HMM based systems is that they are forced to model the garbage
(i. e. non-keyword) parts of the signal as well as the keywords them-
selves. However, a structure flexible enough to model all possible
garbage words is likely to be able to model the keywords as well.
For example, if phoneme level models are used, then garbage parts
can be accurately captured by a model that connects all possible
phonemes; however, such a model will also fit the keywords. One
solution is to use whole word models for both, garbage and key-
words, but this requires that all the keywords occur many times in
the training corpus, and also means that new keywords cannot be
added without training new models.

The architecture introduced in this paper overcomes these draw-
backs by using a phoneme based recognition system with no explicit
garbage model. The architecture is robust to phoneme recognition
errors, and unlike methods based on large vocabulary speech rec-
ognizers, it does not require a language model: only the keyword
phonemizations are needed.

Our system thereby consists of two major components: a bidi-
rectional Long Short-Term Memory (BLSTM) recurrent neural net
[2] and a Dynamic Bayesian Network (DBN). The BLSTM network
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can access long-range context information along both input direc-
tions and uses a Connectionist Temporal Classification (CTC) out-
put layer [3] to localize and classify the phonemes. BLSTM has
been proven to outperform standard methods of modeling context
such as triphone HMMs [2], while CTC allows the network to be
trained on data that has not been presegmented into phonemes. In
the DBN layer of our hybrid model architecture the phoneme string
detected by the CTC network is decoded so that keywords can be ro-
bustly recognized even if the pronunciation differs from the keyword
phonemizations in the dictionary. The DBN uses hidden variables as
well as the concept of switching parents [4] to discriminate between
keywords and arbitrary speech and to explicitly learn and model typ-
ical phoneme confusions, deletions, and insertions that occur in the
CTC layer.

DBNs (and other graphical models) offer a flexible statistical
framework that is increasingly applied to speech recognition tasks
[4]. Hybrid or Tandem architectures that combine discriminatively
trained neural networks with Gaussian mixture modeling are widely
used for speech recognition [5, 6]. However, BLSTM is a relatively
new architecture that has so far been applied to keyword spotting in
only three works: in [7] and [8] the framewise phoneme predictions
of BLSTM (without CTC) were shown to enhance keyword spotting
performance of discriminative and generative models, respectively;
and in [9] a keyword spotter using only BLSTM-CTC was intro-
duced. The disadvantage of the latter method is that it has a separate
output unit for each keyword, which requires excessive amounts of
training data for large vocabularies, and also means the network must
be retrained when new keywords are added. The aim of this work is
to combine the high-level flexibility of graphical models with the
low-level signal processing power of BLSTM-CTC – without gener-
ative Gaussian mixture modeling.

The rest of the paper is structured as follows: Sections 2 and 3
briefly reviews the principle bidirectional Long Short-Term Mem-
ory networks and Connectionist Temporal Classification. Section 4
explains the DBN architecture of our hybrid keyword spotter, while
experimental results on the TIMIT database are shown in Section 5.
Concluding remarks are given in Section 6.

2. BIDIRECTIONAL LONG SHORT-TERM MEMORY

Analysis of the error flow in conventional recurrent neural nets led
to the finding that long range context is inaccessible to standard
RNNs since the backpropagated error either blows up or decays over
time (vanishing gradient problem). This led to the introduction of
Long Short-Term Memory (LSTM) RNNs [10]. An LSTM layer is
composed of recurrently connected memory blocks, each of which
contains one or more memory cells, along with three multiplica-
tive ‘gate’ units: the input, output, and forget gates. The gates per-

5274978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



form functions analogous to read, write, and reset operations. More
specifically, the cell input is multiplied by the activation of the input
gate, the cell output by that of the output gate, and the previous cell
values by the forget gate. The overall effect is to allow the network
to store and retrieve information over long periods of time, thereby
overcoming the vanishing gradient problem.

Another problem with standard RNNs is that they have access to
past but not future context. This can be overcome by using bidirec-
tional RNNs [11], where two separate recurrent hidden layers scan
the input sequences in opposite directions. The two hidden layers
are connected to the same output layer, which therefore has access
to context information in both directions. The amount of context in-
formation that the network actually uses is learned during training,
and does not have to be specified beforehand.

Combining bidirectional networks with LSTM gives bidirec-
tional LSTM, which has demonstrated excellent performance in
phoneme recognition [2], keyword spotting [9], and emotion recog-
nition from speech [12].

3. CONNECTIONIST TEMPORAL CLASSIFICATION

A major problem with the standard objective functions for RNNs
is that they require individual targets for each point in the data se-
quence, which in turn requires the boundaries between segments
with different labels (e.g. the phoneme boundaries in speech) to be
pre-determined. The Connectionist Temporal Classification output
layer [3] solves this problem by allowing the network to choose the
location as well as the class of each label. By summing up over all
sets of label locations that yield the same label sequence, CTC deter-
mines a probability distribution over possible labelings, conditioned
on the input sequence.

A CTC layer has as many output units as there are distinct labels
for a task, plus an extra blank unit for no label. The activations of
the outputs at each timestep are normalized and interpreted as the
probability of observing the corresponding label (or no label) at that
point in the sequence. Because these probabilities are conditionally
independent given the input sequence, the total probability of a given
(framewise) sequence lfr

1:F of blanks and labels is

p(lfr
1:F |x1:F ) =

FY

f=1

o
l
fr
f

f , (1)

where x1:F is a length F input sequence and ok
f is the activation of

output unit k at time f . In order to sum over all the output sequences
corresponding to a particular labeling (regardless of the location of
the labels) we define an operator B(·) that removes first the repeated
labels and then the blanks from the output sequence, so that e.g.
B(AA − −BBB − B) = B(AAAB − BB) = ABB. The total
probability of the length T labeling l1:T , where T ≤ F , is then

p(l1:T |x1:F ) =
X

l
fr
1:F :B(l

fr
1:F )=l1:T

p(lfr
1:F |x1:F ) (2)

A naive calculation of (2) is unfeasible, because the number of lfr
1:F

terms corresponding to each labeling increases exponentially with
the sequence length. However, p(l1:T |x1:F ) can be efficiently calcu-
lated with a dynamic programming algorithm similar to the forward-
backward algorithm for HMMs (see [3]).

The CTC objective function OCTC is defined as the negative log
likelihood of the training set S

OCTC = −
X

(x1:F ,l1:T )∈S

ln p(l1:T |x1:F ) (3)

An RNN with a CTC output layer can be trained with gradient de-
scent by backpropagating through time the following partial deriva-
tives of OCTC with respect to the output activations:

∂OCTC

∂ok
f

=
−1

p(l1:T |x1:F )ok
f

X

t∈lab(l1:T ,k)

αf (t)βf (t), (4)

where lab(l1:T , k) is the set of positions in l1:T where the label k
occurs. αf (t) and βf (t) denote the forward and backward variables
as defined in [3].

4. DYNAMIC BAYESIAN NETWORK ARCHITECTURE

This section introduces the Dynamic Bayesian Network that pro-
cesses the CTC output phoneme label strings l1:T in order to detect
keywords. Figure 1 shows the DBN model architecture that is used
during training. The grey-shaded box represents the BLSTM-CTC
layer which is composed of an input layer int , two hidden layers
hf

t and hb
t (forward and backward direction), and an output layer

on
t . In the DBN layer hidden variables are displayed as circles and

observed variables are represented as squares. Straight lines cor-
respond to deterministic conditional probability functions (CPFs)
while zig-zagged lines denote random CPFs. Note that even though
the BLSTM network produces an output activation for every fea-
ture frame index f , only the non-blank labels (synchronized with
time index t) are forwarded to the DBN. The variables xt denote
the acoustic feature vectors. Within the DBN layer the following
random variables are additionally defined for every time step t: qt

is the current phoneme index corresponding to the phoneme annota-
tion of the training sequence, qc

t is a simple count variable containing
the current position within the ground truth phoneme string, and the
binary variables dt and it indicate deletions and insertions, respec-
tively. Assuming a CTC output phoneme sequence of length T , the
DBN structure in Figure 1 specifies the factorization

p(l1:T , q1:T , qc
1:T , d1:T , i1:T ) =

TY

t=1

p(lt|qt)f(qt|qc
t )p(dt)p(it)f(qc

1|d1, i1)
TY

t=2

f(qc
t |qc

t−1, dt, it)

(5)

with p(·) denoting random conditional probability functions and
f(·) describing deterministic CPFs. The probability of the observed
label sequence l1:T can then be computed by summing over all
hidden variables. The CPF f(qc

t |qc
t−1, dt, it) defines that the count

variable qc
t is incremented by one at every time step in case dt and

it are equal to zero. Otherwise, if there is a deletion (dt = 1), qc
t

is incremented by two. On the other hand, an insertion implies that
qc

t = qc
t−1. Thus, apart from training the CTC network, the goal of

the training phase is to learn the CPFs p(lt|qt), p(dt), and p(it) (i. e.
to learn substitution, deletion, and insertion probabilities).

Figure 2 shows the DBN decoding architecture for keyword
spotting. Dotted lines within the DBN layer represent so-called
switching parent dependencies which allow a variable’s parents to
change conditioned on the current value of the switching parent.
Thereby a switching parent can not only change the set of parents
but also the implementation (i. e. the CPF) of a parent. The DBN for
decoding contains five additional hidden variables: wt denotes the
identity of the current word, wps

t is the position within the word, wtr

indicates a word transition, ct represents a ‘cut’ variable that is equal
to one as soon as there is a deletion at the end of a keyword, and a
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Fig. 1. Hybrid CTC-DBN architecture for training

hidden garbage variable gt indicates whether the current word is a
keyword or not. The DBN structure corresponds to the factorization

p(l1:T , q1:T , w1:T , wps
1:T , wtr

1:T , d1:T , i1:T , c1:T , g1:T ) =

TY

t=1

p(lt|qt)f(wtr
t |wt, w

ps
t )f(ct|wt, w

ps
t )f(gt|wt)p(dt|gt)

p(it|gt)p(w1)f(wps
1 |d1, i1)p(q1|w1, w

ps
1 , g1, c1, i1)

TY

t=2

p(wt|wt−1, w
tr
t−1)f(wps

t |wps
t−1, w

tr
t−1, dt, it)

p(qt|qt−1, wt, w
ps
t , gt, ct, it)

(6)

The hidden variable wt can take values in the range 0...K with K
being the number of different keywords in the vocabulary. When
wt = 0 the model is in the garbage state which means that no
keyword is uttered at that time. The variable gt is then equal to
one. wtr

t−1 is a switching parent of wt: if no word transition is indi-
cated, wt is equal to wt−1. Otherwise a word bigram specifies the
CPF p(wt|wt−1, w

tr
t−1 = 1). In our experiments we simplified the

word bigram to a zerogram which makes all keywords equally likely.
However, we introduced differing a priori likelihoods for keywords
and garbage phonemes in order to be able to adjust the trade-off be-
tween true positives and false positives. A word transition occurs
whenever wps = P , whereas P is the number of phonemes con-
tained in wt. If the model is in the garbage state, wtr

t is always
equal to one, meaning that ‘garbage words’ are assumed to consist
of only one phoneme. In case a keyword is detected, qt is a deter-
ministic function of wt and wps

t . Otherwise, if garbage speech is
observed, a trained phoneme bigram specifies the conditional proba-
bility p(qt|qt−1). The same holds for the case when an insertion oc-
curs while a keyword is decoded (it = 1), or when the last phoneme
of a keyword is deleted (dt = 1 and ct = 1). Similar to the variable
qc

t in the DBN for training, the increment of wps
t is controlled by the

insertion and the deletion variable. The ‘cut’ variable ct is equal to

one if wps
t exceeds P , meaning that the last phoneme of a keyword

has been deleted.
Note that the DBN decoder can not only potentially toler-

ate phoneme substitutions, deletions, and insertions – the CPF
p(qt|qt−1, wt, w

ps
t , gt, ct, it) also strongly biases the DBN to

choose gt = 0 (i. e. detect a keyword) when a phoneme sequence
corresponding to a keyword is observed. Decoding such an obser-
vation while in the garbage state gt = 1 would lead to ‘phoneme
transition penalties’ since the phoneme bigram p(qt|qt−1) contains
probabilities less than one. By contrast, p(qt|wt, w

ps
t , gt = 0)

is deterministic, introducing no likelihood penalties at phoneme
borders.

Fig. 2. Hybrid CTC-DBN architecture for keyword spotting

5. EXPERIMENTS AND RESULTS

Our hybrid CTC-DBN keyword spotter was trained and evaluated on
the TIMIT speech corpus. The feature vectors consisted of cepstral
mean normalized MFCC coefficients 1 to 12, log. energy, as well
as first and second order delta coefficients. For the training of the
BLSTM-CTC network, 200 utterances of the TIMIT training split
were used as validation set while the net was trained on the remain-
ing training sequences. The BLSTM input layer had a size of 39
(one for each MFCC feature) and the size of the output layer was
40 since we used the reduced set of 39 TIMIT phonemes plus one
blank label. The network consisted of three hidden layers per input
direction: a backpropagation layer composed of 78 hidden cells and
two hidden LSTM layers containing 128 and 80 memory blocks re-
spectively. Each memory block thereby consisted of one cell. To
improve generalization, zero mean Gaussian noise with standard de-
viation 0.6 was added to the inputs during training. The network was
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Fig. 3. Part of the ROC curve using the CTC-DBN, HMMs, and a
simple string search on the CTC phoneme output

trained with online gradient descent, using a learning rate of 10−4

and a momentum of 0.9. We randomly chose 60 keywords from
the TIMIT corpus to evaluate the keyword spotter. The dictionary
thereby allowed for multiple pronunciations.

For comparison, a phoneme based keyword spotter using con-
ventional (maximum likelihood) HMM modeling was trained and
evaluated on the same task. Each phoneme was represented by
three states (left-to-right HMMs) with up to 32 Gaussian mixtures.
Thereby we used cross-word triphone models in order to account for
contextual information. All phoneme HMMs were retrained using
embedded training. For keyword detection we defined a set of key-
word models and a garbage model. The keyword models estimate
the likelihood of a feature vector sequence, given that it corresponds
to the keyword phoneme sequence. The garbage model is composed
of phoneme HMMs that are fully connected to each others, meaning
that it can model any phoneme sequence. Via Viterbi decoding the
best path through all models is found and a keyword is detected as
soon as the path passes through the corresponding keyword HMM.
In order to be able to adjust the operating point on the Receiver
Operating Characteristics (ROC) curve, we used different a priori
likelihoods for keyword and garbage HMMs, corresponding to the
word zerogram used for the DBN.

Moreover we evaluated the benefit of the DBN decoder in com-
parison to a trivial phoneme string search on the raw CTC output.
Figure 3 shows a part of the ROC curve for our CTC-DBN keyword
spotter, the HMM based keyword spotter as well as for a simple
string matching approach, tolerating a Levenshtein distance of 1 and
2 respectively. Note that due to the design of the decoder, the full
ROC curve – ending at an operating point tpr=1 and fpr=1 – cannot
be determined, since the model does not include a confidence thresh-
old that can be set to an arbitrarily low value. It can be seen that the
hybrid CTC-DBN decoder not only prevails over CTC string match-
ing but also outperforms the HMM approach by up to 7 % (at a false
positive rate of 0.4 %). Conducting the McNemar’s test revealed that
the performance difference between the CTC-DBN and the HMM is
statistically significant at a common significance level of 0.01. For
higher a priori keyword likelihoods the performance gap becomes
smaller as more phoneme confusions are tolerated when seeking for
keywords.

6. CONCLUSION AND OUTLOOK

We proposed a novel decoder for robust vocabulary independent key-
word spotting. It combines a BLSTM recurrent neural network for
context sensitive phoneme prediction with a Dynamic Bayesian Net-
work designed to reliably detect keywords without requiring an ex-
plicit garbage model. Due to the CTC output layer, the system can
be trained on data that has not been presegmented into phonemes.
Our hybrid CTC-DBN recognizer was thereby shown to outperform
a conventional HMM based approach. Future works on keyword de-
tection might investigate the combination of triphone and BLSTM-
CTC modeling.
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