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ABSTRACT

We introduce a novel approach for noise-robust feature extraction
in speech recognition, based on non-negative matrix factorization
(NMF). While NMF has previously been used for speech denoising
and speaker separation, we directly extract time-varying features from
the NMF output. To this end we extend basic unsupervised NMF to
a hybrid supervised/unsupervised algorithm. We present a Dynamic
Bayesian Network (DBN) architecture that can exploit these features
in a Tandem manner together with the maximum likelihood phoneme
estimate of a bidirectional long short-term memory (BLSTM) re-
current neural network. We show that addition of NMF features to
spelling recognition systems can increase word accuracy by up to 7 %
absolute in a noisy car environment.

Index Terms— Non-Negative Matrix Factorization, Speech
recognition, Noise robustness, Dynamic Bayesian Networks, Long
Short-Term Memory

1. INTRODUCTION

Non-negative matrix factorization (NMF) and its extensions have
been successfully used in areas related to speech recognition, in-
cluding speech denoising and speaker separation [1–7]. The basic
principle of NMF-based audio processing is to find a locally opti-
mal factorization of a short-time magnitude spectrogram into two
factors, of which the first one represents the spectra of the events
occurring in the signal and the second one their time-varying gains.
The mathematical background of NMF is explained in Sec. 2.

Previous works in NMF-based speech processing either aim for
best separation quality or use NMF as a preprocessing step for con-
ventional speech recognition procedures. In contrast, we propose
to use the NMF algorithm as a data-based feature extractor. While
a data-based NMF feature extraction process for sound classifica-
tion has been described in [8], we aim at using NMF features as
an addition to noise-robust speech recognition architectures. As an
application scenario we chose in-car spelling recognition, where auto-
matic speech recognition is especially useful as a hands-free intuitive
human-machine interface. Here the speech recognition engine typi-
cally has to deal with negative signal-to-noise ratio (SNR) levels as
well as similarly sounding utterances such as the letters “b” and “d”
which are often hard to discriminate even for humans [9].

Our previous work in this area [10] has shown that a Tandem
approach incorporating Dynamic Bayesian Networks (DBN) and the
maximum likelihood phoneme index predicted by a bidirectional

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement No. 211486 (SEMAINE).

long short-term memory recurrent neural network (BLSTM) [11]
performs well on this task. DBN-based architectures cannot only
process features from the continous domain like the commonly used
Mel frequency cepstral coefficients (MFCCs), but also discrete, value-
restricted features such as the named index of the most likely phoneme
per time frame. In this paper, we introduce another type of discrete
feature based on NMF, which can accordingly be integrated into
a DBN. To this end, we performed a supervised NMF variant with
spectra that were pre-computed from spoken letter utterances to obtain
the index of the component that contributes the most to the spectrum
of each time frame.

The paper is structured as follows: first, we introduce the mathe-
matical background of NMF and its usage for blind source separation
in Sec. 2. Second, we describe our feature extraction procedure based
on NMF in Sec. 3. Third, we describe the architecture of the Tandem
DBN speech recognizer used to evaluate NMF feature extraction in
Sec. 4. Finally, we show the results of our experiments with spelling
sequences overlaid by in-car noise in Sec. 5 before concluding in
Sec. 6.

2. NON-NEGATIVE MATRIX FACTORIZATION

2.1. Definition

Given a matrix V ∈ R
n×m
+ and a constant r ∈ N, non-negative

matrix factorization (NMF) computes two matrices W ∈ R
n×r
+ and

H ∈ R
r×m
+ , such that

V ≈ WH (1)

Usually one chooses r � n, m, so that NMF performs informa-
tion reduction.

2.2. NMF in Signal Processing

NMF in signal processing is usually applied to magnitude spectra. Ba-
sic NMF approaches assume a linear signal model, i. e. that the short-
time magnitude spectra of a monophonic signal can be expressed
as linear combinations of spectra of several distinct components.
Thereby the coefficients are restricted to be non-negative.

Considering Eq. 1, one can interpret the columns of W as spectral
components and the corresponding rows of H as their time-varying
gains. Assiging the spectral components to sources, this principle can
be directly exploited for blind source separation.

In contrast, our work focuses on the extraction of features from
the temporal structure revealed in the H matrix, and their usage for
noise-robust automatic speech recognition.
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2.3. Factorization Algorithm

Factorization is usually achieved by iterative minimization of cost-
functions. For our work, we choose the following function:

cd(W,H) =
X
ij

„
Vij log

Vij

(WH)ij
− (V − WH)ij

«
(2)

The function cd(W,H) has turned out to yield perceptually good
results at a reasonable computational cost [12, 13], and it is the basis
for several recent NMF-based techniques in speech processing [4–7].

While it can be extended to increase the perceived audio quality
of components, this was of minor relevance for our work, which
focuses on investigating whether NMF can be exploited for noise-
robust feature extraction.

For minimization of (2), we implement Lee and Seung’s algo-
rithm [14] which iteratively modifies the matrices W and H using a
‘multiplicative update’. It can be shown that throughout execution of
this algorithm, the cost function (2) is non-increasing [14].

While H is initialized randomly, for W we use a ‘targeted ini-
tialization’ approach which will be explained in the next section.

3. NMF FEATURE EXTRACTION

3.1. Supervised Variant of NMF

It is characteristic for speech-related tasks that prior knowledge about
the events in the signal is available, thus a matrix W can be prede-
fined. For example, for our spelling recognition scenario, we com-
pute a matrix W whose columns contain spectra of spelled letters.
Throughout the iteration W is kept constant whereas H is updated
iteratively.

This variant of NMF is a supervised algorithm that finds a repre-
sentation of the signal using the columns in W as basis vectors. The
computed matrix H can be interpreted as time-dependent values of r
different features of the signal that can be used as input for a dynamic
classifier, e. g. a DBN or recurrent neural net.

The calculation of a W matrix for supervised NMF can be sum-
marized as follows: for each event (e. g. letter) e ∈ {1, . . . , E}:

1. Concatenate the corresponding training samples

2. Compute the magnitude spectrogram Ve by short-time Fourier
transformation

3. From Ve obtain matrices We, He by NMF

Note that each We contains ‘characteristic’ spectra of event e,
i. e. the spectra that model all of the training samples with the least
overall error. From the We we build the matrix W by column-wise
concatenation:

W := W1|W2| · · · |WE ,

A similar technique has been used in [4, 5], aiming at separation of
speech and noise, and in [1, 2] for speaker separation.

3.2. Hybrid Supervised / Unsupervised Approach

For scenarios where events in the signal are overlaid with unknown
noise, we combine the supervised NMF variant introduced in the
previous section with the conventional NMF algorithm [14]. To this
end, we enhance the W matrix containing pre-computed spectra
with one or more randomly initialized ‘noise’ columns. Only these
columns are updated in each iteration step, using the W update rule
from [14].

Intuitively speaking, this algorithm finds a signal representation
using fixed basis vectors, putting everything that cannot be described
with these vectors into a noise component. In our work, the gains of
this component were considered irrelevant for the recognition task.

3.3. Reduction of the Feature Space

The aforementioned methods generate a large number of highly cor-
related features. It is therefore advisable to reduce the feature space.
While this could be achieved by methods like PCA or LDA that aim
at preservation of all original feature information, we found that the
information contained in the component with the highest gain was
sufficient for our purpose.

Thus, for each time frame t we calculate the discrete feature gt:

gt = arg max
i

(Hit), i ∈ {1, . . . , R} (3)

where R is the number of NMF components with pre-initialized spec-
tra. This feature will subsequently be referred to as ‘NMF maximum
gain component index’.

4. DBN DECODERS WITH BLSTM AND NMF FEATURES

The DBN architecture processing BLSTM and NMF features is de-
picted in Fig. 1. The lower, grey-shaded part of the figure shows the
basic neural network architecture of the BLSTM net, consisting of
an input it, an output ot, and a hidden node ht for each time step.
Details on the principle of Long Short-Term Memory [15] networks
can be found in [11] or [10]. The upper part of Fig. 1 shows the
explicit DBN representation of a Hidden Markov Model following
the DBN structure as introduced in [16].

Similarly to [16] or [10], for every time step, the following ran-
dom variables are defined: wt represents the current word, wps

t de-
notes the position within the word, wtr

t is a binary indicator variable
for a word transition, and st is the HMM state with str

t indicating
a state transition. The variable xt denotes the observed acoustic
features. bt and gt respectively contain the phoneme prediction of
the BLSTM (as in [10]) and the index of the NMF component with
the highest gain (Eq. 3) as additional discrete observations. The size
of the BLSTM input layer it corresponds to the dimensionality of
the acoustic feature vector xt whereas the vector ot contains one
probability score for each of the P different phonemes at each time
step. bt is the index of the maximum likelihood phoneme:

bt = arg max
j

(ot,j), j ∈ {1, . . . , P} (4)

The DBN structure in Fig. 1 displays hidden variables as circles and
observed variables as squares. Straight lines represent determinis-
tic conditional probability functions (CPFs) whereas random CPFs
correspond to zig-zagged lines. Dotted lines refer to so-called switch-
ing parents which in our case switch between two different CPFs as
in [16]. The CPFs p(bt|st), p(gt|st) and p(str

t |st) are probability
tables that are learnt via EM training.

An alternative architecture is shown in Fig. 2. Here the acoustic
feature vector is modelled by a CPF p(xt|st) which is described by a
Gaussian mixture as common in an HMM system. One could also
consider a combination of these approaches, i. e. let the model in
Fig. 1 also process the MFCC acoustic features. However, in our
experiments this did not produce significantly better results.
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Fig. 1. Architecture of a DBN processing the BLSTM maximum
likelihood phoneme index bt and NMF maximum gain component
index gt. Note that the MFCC acoustic features xt are not directly
used by the DBN, but rather given as input to the BLSTM.

Fig. 2. Architecture of a DBN with MFCC features xt and NMF
maximum gain component index gt. Note that here the vector xt is
directly processed by the DBN.

5. EXPERIMENTS

For the evaluation of the NMF feature extraction, we chose the task of
noise-robust in-car spelling recognition. We used the letter utterances
from “a” to “z” from the TI 46 Speaker Dependent Isolated Word
Corpus to generate a large set of spelling sequences. A detailed
description of the database can be found in [10]. Out of the clean
spelling utterances, noisy sequences were generated by superposing
the speech signal with different in-car noise types as used e. g. in [9].

Since the road surface has a strong influence on the characteristics
of in-car noise, three different surfaces in combination with typical
velocities have been considered: driving on a smooth city road (CTY),

driving on a highway (HWY), and driving on cobbles (COB). The
resulting SNR histogram of the noisy speech utterances correspond
to the one shown in [10].

We considered the speech recognition architectures depicted in
Fig. 1 and 2, both with and without the NMF maximum gain com-
ponent index gt. MFCC feature extraction, as well as the letter
HMMs and the BLSTM network correspond exactly to the experi-
ments in [10].
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Fig. 3. NMF gains over time for the spoken letter sequence “u r o”. 3
exemplary components are shown for the clean (top) and COB noise
(bottom) cases. Notably, the shape of the gains is similar in the clean
and noisy cases.

NMF maximum gain component indices were computed as fol-
lows: for every letter from “a” to “z” we created 26 signals by
concatenating the utterances from all speakers in the original TI46
training set. We computed the short-time Fourier spectrograms of
these signals, using a Hamming window, 10 ms frame rate and 25 ms
window size. Then we applied three-component NMF to the spectro-
grams, yielding 26 × 3 = 78 spectra.

We used the 78 component spectra to perform supervised NMF
with 78 components on each of the clean signals in the training and
test set of our database. NMF on the noisy sequences (training and
test sets) was performed using the hybrid supervised/unsupervised
approach, using one additional noise component, thus 79 components
in total. Best results were achieved when the noisy sequences were
not pre-filtered before NMF. For each time frame the index of the
component with the highest gain was computed, neglecting the 79th

(noise) component for the noisy sequences.
Fig. 3 shows the ‘raw’ gains (i. e. entries of H) over time for three

exemplary components, computed by applying the aforementioned
supervised NMF procedure to the letter sequence “u r o”, spoken by
male speaker 8 from the TI46 database. This sequence is pronounced
[Y UW . AA R . OW] in CMU notation. As can be determined em-
pirically, the shown components roughly correspond to the phonemes
[Y] (component from the letter “u”), [AA] (from letter “r”), and
[AO] ” (letter “o”).

Comparing the upper plot (clean case) and the lower plot (noisy
case), one notices a small difference in scaling. Because in the noisy
case an additional component was introduced, the NMF can not only
model noise with it, but also differences in the letter spectra between
training and test set. Thus the pre-defined component spectra receive
a smaller share of the total gain. Note that scaling has no influence on
the maximum gains component index. Furthermore, due to the noise,
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some components have non-zero gains during the silence between
letters. Apart from that, the shapes of the graphs look rather similar.

model test cond. M M+N B B+N
clean clean 98.19 98.52 92.14 96.39
CTY CTY 92.64 94.57 90.33 96.14
HWY HWY 84.06 88.77 87.61 91.57
COB COB 81.65 86.79 87.91 92.69

CTY HWY 60.50 80.62 82.28 95.50
CTY COB 64.38 72.96 80.64 95.48
HWY CTY 54.25 56.38 87.80 91.51
HWY COB 59.09 58.63 84.65 92.03
COB CTY 79.07 71.72 86.43 92.70
COB HWY 74.32 80.06 85.08 92.42

mean 74.82 78.90 86.70 93.64

Table 1. Spelling recognition word accuracies in percent for DBN
with MFCC features (M), MFCCs and NMF feature (M+N), BLSTM
feature (B) and BLSTM+NMF features (B+N), matched and mis-
matched condition

Tab. 1 shows the word accuracies (WA) for a DBN with 39 MFCC
features as described above (M), a DBN with MFCC features plus
NMF maximum gain component index gt (M+N, as depicted in Fig.
2), a DBN with the BLSTM maximum likelihood phoneme index bt

(B) and a DBN with both bt and gt (B+N, see Fig. 1). Going from left
to right the improvement of the mean WA is statistically significant
at a level of 10−3 throughout using a one-tailed t-test. The upper
half contains the ‘matched condition’, the lower half the ‘mismatched
condition’ cases. Note that a model trained on perfectly clean data
fails in noisy test conditions since the silence model will tolerate no
signal variance at all, which would lead to permanent insertion errors.
In clean conditions performance is only slightly enhanced by the NMF
component index. As soon as the speech signal is corrupted by noise,
performance decreases whereas in the matched condition case the
NMF component index increases performance by up to 5 % absolute.
For the mismatched condition case, the greatest improvement can be
observed for a model trained on a smooth inner city road (CTY) and
tested on the highway (HWY). There, the NMF component index
can increase word accuracy by over 20 % absolute. However, for the
model trained on a cobble road (COB) and tested on a smooth inner
city road (CTY), a decrease in performance by about 7 % absolute is
observed.

Yet, although the DBN with BLSTM maximum likelihood
phoneme index already performs very well in terms of word accuracy,
addition of the NMF maximum gain component index yields a further
improvement of up to 15 % absolute (in the CTY model / COB test
case), and by 7 % absolute on average over all test conditions.

6. CONCLUSION

We introduced a novel type of feature for speech recognition based
on the results of supervised NMF. We showed that on the one hand,
this feature can significantly improve the recognition rate of a DBN
that uses traditional acoustic features. On the other hand, a DBN com-
bining the NMF feature with the phoneme prediction of a BLSTM
recurrent neural net produced the best results in terms of word accu-
racy, which is raised over 93 %.

Future work will investigate whether the variety of enhanced
NMF algorithms that improve source separation quality can also be
exploited for better NMF feature extraction. Also, we want to investi-
gate usefulness of the proposed NMF feature extraction metaphor in

related audio, speech, and music processing tasks, especially large-
vocabulary ASR.
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