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ABSTRACT

Exact 3D tracking of facial feature points is appealing for many ap-
plications in human-machine interaction. In this work a 3D Active
Shape Model (ASM) that can be shifted, scaled, and rotated is used
to track the points. The efficient Gauss-Newton method is applied to
estimate the 3D ASM, rotation, translation, and scale parameters. If
the head turns to one side, some points might be occluded but they
are still considered for the estimation of the parameters. A robust er-
ror norm that reduces (or ideally cancels) the influence of occluded
points is applied. With some algebraic transformations the computa-
tional cost per frame can be further reduced. The proposed algorithm
is evaluated on the basis of the Airplane Behavior Corpus.

Index Terms— Tracking, face recognition, minimization meth-
ods, robustness

1. INTRODUCTION

Obtaining 3D information about facial feature points from one
monocular video sequence is a challenging task, since only 2D in-
formation is available from the video. The 3D tracking is crucial
for many applications in human-machine interaction. In contrast to
2D tracking, pose independent emotion and expression recognition
can be performed [1, 2]. In this work a 3D Active Shape Model
(ASM) is employed to track the points. The efficient Gauss-Newton
method is applied to estimate the 3D ASM, rotation, translation and
scale parameters, as presented in [3]. However, a problem arises
when the head turns to one side and only a profile view is visible.
Although some points are occluded, they are still considered for the
computation of the parameters and hence corrupt the estimation. A
robust error norm that decreases (or ideally cancels) the influence of
occluded points is applied. The robust error norm is integrated into
the Gauss-Newton method and with some algebraic transformations
the computational cost per frame can be further reduced.

Most of the previous works on 3D tracking of facial feature
points from a monocular video are based on the entire texture (ap-
pearance) of the face (see e.g. [4, 5, 6, 7, 8]). However, limiting 3D
tracking on a sparse set of facial feature points has several advan-
tages. Some areas are not very distinctive, such as chin, cheeks or
forehead and thus just cost computational time. If working with a
sparse set of facial feature points, the 3D tracking can be computed
at real time and still enough computational time is left for applica-
tions that use the location of the points. Furthermore, even if real
time is required more sophisticated methods to estimate the 3D po-
sitions of the points can be applied. In [9, 2] different approaches to
track a sparse set of facial points have been presented. In [10, 11],
the application of robust estimation to statistical models is studied
for the 2D case.

The paper is organized as follows. In Sec. 2 the 3D ASM is
explained and a method to robustly estimate the 3D ASM parameters
is described in Sec. 3. Qualitative and quantitative results are given
in Sec. 4. Section 5 gives a conclusion and outlines future work.

2. 3D ACTIVE SHAPE MODEL

Following the ISO typesetting standards, matrices and vectors are
denoted by bold letters (I , x) and scalars by normal letters (I , t).
In this section the 3D ASM is explained. The 3D ASM parame-
ters determine the position of all facial feature points. In the next
section it is explained how the 3D ASM parameters are estimated
for each frame. The 3D ASM can be described analogously to the
2D ASM presented in [12]. An object is specified by N feature
points. Feature points are manually labeled in all 3D faces of a train-
ing database, an example of which is shown in Fig. 1. The 3D point
distribution model is constructed as follows. The coordinates of the
feature points are stacked into a shape vector

s =
`
x1, y1, z1, . . . , xN , yN , zN

´T
. (1)

The 3D shapes of all training images can be aligned by translat-
ing, rotating and scaling them with a Procrustes analysis [12] so
that the sum of squared distances between the positions of the fea-
ture points is minimized. The mean shape s̄ is computed and sub-
tracted from each shape vector. Subsequently, the mean-free shape
vectors are written column-wise into a matrix and principal compo-
nent analysis is applied on that matrix. The eigenvectors correspond-
ing to the Ne largest eigenvalues λj are concatenated in a matrix
U =

ˆ
u1| . . . |uNe

˜
. Thus, a shape can be approximated by only

Ne parameters:
s ≈ M (α) = s̄ + U · α, (2)

where α is a vector of Ne model parameters and s̄ is the mean shape.
We denote the 3D ASM by the 3N -dimensional vector

M (α) =

0
B@

M 1(α)
...

M N (α)

1
CA ; M i(α) =

0
@Mx,i(α)

My,i(α)
Mz,i(α)

1
A . (3)

The parameters α describe the identity of an individual and its cur-
rent facial expression. Additionally, we assume that the face is trans-
lated in x- and y-direction by tx and ty , rotated about the y- and z-
axis by θy and θz , and scaled by s. The scaling is a simplified way of
simulating a translation in z-direction, where it is assumed that the
z-axis comes out of the 2D image plane. Thus, the model we will
employ becomes

xi(μ) = sR(θy, θz)M i(α) +

„
tx

ty

«
, (4)
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Fig. 1. Multiple views of one 3D facial surface. The facial feature
points are manually labeled to build up a 3D ASM. When the facial
surface is turned aside some facial feature points are occluded.

where μ = (s, θy, θz, tx, ty, α) is the (5+Ne)-dimensional param-
eter vector and

R(θy, θz) =

„
cos θy cos θz cos θy sin θz − sin θy

− sin θy cos θz 0

«
. (5)

In the next section it is described how the parameter vector μt is
estimated for each frame.

3. ROBUST PARAMETER ESTIMATION

The 3D ASM, rotation, translation, and scale parameters determine
the position of all facial feature points and thus have to be estimated
for each new frame. A set of nonlinear equations including a robust
error norm is formed. Since the set of equations is nonlinear, it is
linearized with two first order Taylor series expansions and solved
iteratively. Some flexible constraints on the 3D ASM are also inte-
grated into the minimization.

Without loss of generality it is assumed that the first frame of a
video sequence is acquired at time t0 = 0. The brightness of a point
at position x = (x, y)T at time t is denoted by I(x, t). The position
xi(μt) of one of the N facial feature points at time t depends on the
3D ASM parameter vector μt.

The brightness constancy assumption implies that at a later time
the brightness of the point to track is the same

I(xi(μt), t) = I(xi(μ0), t0 = 0). (6)

For better readability we write Ii(μt, t) = Ii(μ0, 0). If μt is esti-
mated at time t, the residual of point i is

ri(μt) = Ii(μt, t) − Ii(μ0, 0). (7)

In order to obtain μt we need to minimize the energy function

E(μt) =
NX

i=1

ρ(ri(μt)). (8)

3.1. Robust Error Norm
In Fig. 2 the effect of a robust error norm is demonstrated for a very
simple estimation example. Assume a polynomial of second order
ax2 + bx + c = y. For a sufficient number of given (x, y)-pairs
(red circles) a, b, and c can be estimated by minimizing ρ(ax2 +
bx + x − y). For a general least-squares problem the error function
is ρ(r) = r2/2. Figure 2(a) shows some robust error norms. A
point with r greater than a certain threshold γ is an outlier, here
called occluded point, and should not influence the minimization too
much. Figure 2(b) shows the estimated polynomials of order 2 for
these error norms. Obviously the three points in the upper left corner
are occluded and should not corrupt the estimation.

This error norm can also be applied for the more complex es-
timation of the 3D ASM parameters, if some points are occluded.
For our problem it is important that occluded points influence the
minimization as little as possible and thus the Talwar function given
by

ρ(r) =

(
r2/2 if |r| ≤ γ

γ2/2 if |r| > γ
(9)

was chosen. Tests confirmed that choice.
If the energy function (Eq. 8) is convex, a global minimum can

be found by differentiating with respect to μt:

h ∂

∂μt

E(μt)
iT

=

0
BB@

∂
∂μ1

E(μt)
...

∂
∂μNp

E(μt)

1
CCA = 0, (10)

where Np is the number of parameters. Applying the chain rule
yields the set of nonlinear equationsh ∂

∂μt

I(μt, t)
iT

·ρ′(r(μt)) = JT (μt) · ρ′(r(μt)) = 0, (11)

where

J(μt) =

0
BB@

∂
∂μ1

I1(μt, t) · · · ∂
∂μNp

I1(μt, t)

...
. . .

...
∂

∂μ1
IN (μt, t) · · · ∂

∂μNp
IN (μt, t)

1
CCA (12)

is the Jacobian matrix of I(μt, t) and

ρ′(r) =
`
ρ′(r1), ρ

′(r2), . . . , ρ
′(rN )

´T
. Equation 11 has to be

solved for each frame to obtain μt .

3.2. Linearization
The preceding set of equations is nonlinear in μt. Thus the equations
are solved iteratively. In order to obtain a set of linear equations two
first order Taylor series expansions are performed.

First linearization: Suppose that μk+1
t = μk

t + Δμk. As in Eq.
6 it is assumed that

r(μk+1
t ) = I(μk+1

t , t) − I(μ0, 0) = 0. (13)

Applying the first order Taylor expansion

I(μk+1
t , t) ≈ I(μk

t , t) + J(μk
t )Δμk

(14)

yields
r(μk

t ) = −J(μk
t )Δμk, (15)

where the Jacobian matrix is defined as in Eq. 12.
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Fig. 2. (a) Plots of several robust error functions [13]. The Talwar
function reduces the influence of occluded points most. (b) The ef-
fect of these robust error norms on a estimation of a polynomial of
order 2.
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Second linearization: Equation 11 is linearized with a first order
Taylor expansion. Only because of the first linearization (Eq. 15) the
second summand can be further transformed by applying the product
rule:

JT · ρ′(r(μk
t )) +

∂

∂μ

h
JT · ρ′(r(μk

t ))
i
·Δμk

(16)

= JT · ρ′(r(μk
t )) + JT DJ · Δμk = 0, (17)

where D is a N × N diagonal matrix with Dii = ρ′′(ri(μ
k
t )). We

solve for

Δμk = −
h
JT D(r(μk

t ))J
i−1

JT · ρ′(rk
t (μk

t )). (18)

Note that for each iteration J , D, and ρ′ must be updated.

3.3. Efficient Computation
The Jacobian matrix J(μk

t ) (Eq. 12) must be recomputed at each
iteration k. The numerical computation of ∂

∂μ
I(μt, t) at each time

step is time consuming. Therefore, the derivative of the image with
respect to the parameters is decomposed via chain rule into an eas-
ily computable spatial derivative of the image and a derivative of
the parametric model with respect to the parameters which can be
solved analytically. Additionally, if, as in Eq. 6, it is assumed that
∂

∂x
Ii(μt, t) = ∂

∂x
Ii(μ0, 0), we obtain

J =

0
BB@

∂
∂x

I1(μ0, 0) ∂
∂μ

x1(μt)
...

∂
∂x

IN (μ0, 0) ∂
∂μ

xN (μt)

1
CCA . (19)

The numerical derivative ∂
∂x

Ii(μ0, 0) and the analytical derivative
∂

∂μ
xi(μt) can be computed offline. Thus, for each iteration we

compute J , D, and ρ′ and subsequently Δμk is calculated accord-
ing to Eq. 18. In comparison to numerically computing ∂

∂μ
I(μt, t),

this reduces the computation time by roughly a factor of 2. For the
threshold γ that separates visible from occluded points we apply an
annealing strategy. We start with a large γ, i.e. all points are con-
sidered for the minimization, and then decrease it for each iteration
until γmin = 0.1.

3.4. Convexity
In Eq. 10 we assumed that the energy function E is convex. In prac-
tice, this is often not the case. Thus, the starting values μ have to
be sufficiently close to the global minimum so that the method does
not converge to only a local minimum. This can be achieved by ap-
plying the widely-used coarse-to-fine refinement. A Gaussian pyra-
mid is created for each new frame. The parameters are computed
iteratively for the coarsest level. Then, the parameters are taken as
starting values for the next finer level for which the computation is
performed again, and so on.

The starting values at the lowest level are the parameters com-
puted for the last frame. For a sufficiently high frame rate usually
the parameters of two consecutive frames do not differ too much and
thus the starting values are also sufficiently close to the global mini-
mum.

3.5. Constraints
Several constraints on the parameters are added to prevent unrealis-
tic results. Solving a set of nonlinear equations with constraints is a
complex task and thus we integrate the constraints as further equa-
tions. Thereby, the constrained minimization problem is converted
into an unconstrained minimization problem which can be solved as
presented above.

Fig. 3. (a) Tracking of facial feature points with a 3D ASM with-
out robust error norm. (b) Tracking of facial feature points with a
robust error norm. White crosses depict points that are detected as
occluded. Those points are not considered for the parameter estima-
tion and thus the parameters can be computed correctly.

We require the rotation θy, θz and also the 3D ASM parameters
α not to become too large:

θy

σ2
θy

= −Δθy

σ2
θy

;
θz

σ2
θz

= −Δθz

σ2
θz

;
αj

σ2
αj

= −Δαj

σ2
αj

. (20)

We also require all parameters not to change too much from one
frame to another

Δμj

σ2
Δμj

= 0. (21)

The constraints can easily be appended at the bottom of J as further
equations that the parameters Δμ have to satisfy. In order to have
the right balance between equations and constraints, the constraints
are multiplied by the variance of the residual denoted by σ2

N . The
variances σ2

αj
have already been computed at the principal compo-

nent analysis performed for the 3D ASM and the other variances
have to be estimated.

4. RESULTS

We built the 3D ASM from the Bosphorus Database [14] where we
used 2761 3D images from 105 individuals. The images are labeled
with N = 22 facial feature points, as depicted in Fig. 1 as an ex-
ample. Four pyramid levels were employed for the Gaussian image

pyramid. On an Intel R© Core
TM

2 Quad processor and 4GB working
memory the computation of the parameters took on average 9.94 ms
per frame.

4.1. Qualitative Evaluation
It can be qualitatively confirmed that the 22 facial feature points are
tracked reliably in 2D webcam recordings with changing position,
rotation and expressions. Figure 3 illustrates the effect of the robust
error norm on the tracking results for a sample image from a webcam
recording. The information box at the top shows the computed ro-
tation and position parameters. If all feature points are equally con-
sidered for the parameter estimation, the results can be erroneous,
as depicted in Fig. 3(a). Figure 3(b) shows that with a robust er-
ror norm occluded points can be detected properly (white crosses).
Those points are not considered for the parameter estimation and
thus the parameters are computed correctly.
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4.2. Quantitative Evaluation
The proposed algorithm was evaluated on the basis of the Airplane
Behavior Corpus (ABC) that was presented in [15]. The corpus con-
tains a total of 11.5 h video. The scenes show closeup views of
different individuals having various emotions. It includes fast move-
ments, the individuals sometimes look aside so that facial feature
points are occluded and the face is occasionally covered by hectic
hand gestures. Therefore, the ABC is a suitable setting for testing
the proposed algorithm’s capability to cope with occlusions. The
PAL standard was used for the videos, i.e., an image resolution of
576× 720 pixels and 25 frames per second. Scenes of three individ-
uals having a total length of 40 min were selected from the corpus.
Every 25th frame of those scenes was manually annotated with 22
landmarks and those landmarks were used as ground truth. For each

labeled frame the pixel displacement di =
p

Δx2 + Δy2 between
the location estimated by our algorithm and the ground truth was
computed. The pixel displacement was averaged over the N = 22
facial feature points: D = 1

N

PN
i=1 di. In Table 1, the pixel dis-

placement averaged over all labeled frames of a sequence for each
individual is depicted. For comparison the simple Kanade-Lucas-
Tomasi [16] feature tracker and the method presented in [3] have
been implemented and also tested with the dataset. For all three indi-
viduals the pixel displacement could be reduced. The improvement
is most obvious for the videos of individual 3, since these contain a
considerable amount of occlusions.

The results are also comparable with the results reported re-
cently by other authors. The authors of [9] tested their multi-stage
hierarchical models on a dataset of 10 sequences with 100 frames
per sequence. Considering that their test sequences had less than
half of our image resolution their pixel displacement is similar to
ours. Also the pixel displacement that [7] reported for their testing
database of 2 challenging video sequences is comparable to ours. In
general, our method is computationally considerably cheaper than
those methods. Additionally, our approach includes the considera-
tion of completely occluded facial feature points and was also tested
on a dataset with occlusions. It is also important to notice that our 3D
ASM works with a relatively small number of facial feature points,
since the 3D faces of the Bosphorus Database are labeled with only
22 landmarks. It is expected that a 3D ASM with more points would
further improve the tracking results.

D [pixels] individual 1 individual 2 individual 3

[16] 28.07 25.45 43.34

[3] 21.32 22.98 39.75

our algorithm 19.19 18.03 19.71

Table 1. Pixel displacement averaged over all video sequences from
individual 1, 2, and 3.

5. CONCLUSION AND FUTURE WORK

A method for robust 3D tracking of facial feature points from a
monocular video sequence is presented. Facial feature points are
linked with a 3D ASM. The 3D ASM parameters are estimated with
the efficient Gauss-Newton method. It is shown that the effect of
occluded points that would normally perturb the estimation can be
canceled with a robust error norm. Quantitative results based on the
Airplane Behavior Corpus, where many occlusions occur, show that
the proposed method is able to outperform other approaches. In con-
trast to other methods published recently our system is able to cope

with completely occluded points while being computationally less
intensive.

In our ongoing research we will analyze the effect of using gradi-
ent images and Gabor filtered images to further improve the tracking
results. We have also planned to employ a second camera that could
be easily integrated into the estimation scheme.
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