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Abstract— This paper considers the optimal design of event-
triggered controllers under a non-traditional average-cat cri-
terion with costly observations. Determining the optimal eent-
triggering law can be cast in the dynamic programming
framework. Due to the lack of a closed form solution for
the value function associated with the dynamic program, the
methods for calculating the optimal solution suffer from the
curse of dimensionality. Based on structural properties of the
optimal solution, we develop a novel approximative method
to reduce the dimensionality of the underlying optimizatian
problem from the state dimension of the regulated process to
the number of control inputs. As processes often consist ofity
few inputs compared to the number of state variables, such
approach reduces the computational complexity significary.
It is shown that the proposed approximative event-trigger
preserves the asymptotic behavior of the closed-loop syste
A conditions is derived, when the reduced event-triggerindaw
equals the optimal solution. We propose a measure to evaluat
the approximation accuracy of the developed order reductia
method.

Numerical simulations illustrate the obtained results andvali-
date the effectiveness of the proposed model reduction meiti
compared to the optimal solution.

. INTRODUCTION

communication constraints. Brownian processes withahiti
state zero and constrained number of transmissions are an
exception and have an analytical solution [5]. Hence, one
is in general restrained to discretize the state space and
apply the standard policy or value iteration [12]. As the
number of discretized grid points grows exponentially with
the dimensionality of the state space, such methods are only
applicable in practice if the number of state variables is
small. One way to counteract tiearse of dimensionality is to
approximate the value function by a parameterized function
In the context of event-triggered control, such approach ha
been proposed in [10] using quadratic approximate value
functions. In this paper, we follow a different approacheTh
idea is to reduce the state space to the subspace that is most
relevant for the event-trigger.

This paper addresses the problem of event-triggered con-
trol design for linear stochastic systems. The goal is to find
an event-triggered controller that meets the trade-offiben
control performance and the average number of transmission
from sensor to controller. Such trade-off is reflected in an
average-cost criterion, where the per-stage cost consists
a quadratic control cost and a communication penalty. The

Recent advances in sensing, communications and embedst-function is inspired by work in [8] that derives optima

ded systems have shifted the paradigms in the design efent-triggering schemes for an estimator-based networke
distributed complex control systems. Therein, the efficiercontrol system. The main contribution of this paper is two-
utilization of communication and computational capaigit fold. Built on results in [7] for finite horizon, we first show
is one of the key factors to increase control performancehat, under mild conditions, the calculation of the optimal
Examples for such systems can be found in a variety @fvent-triggered controller for the average-cost critergan
applications, including environmental monitoring, traoga-  be separated into standard subproblems. Second, we show
tion networks and health care systems. In each of thesieat the structure of the optimal event-trigger admits an
systems, the sensing and controlling components are Bpatisapproximative model-order reduction, where the reduced-
distributed and exchange information over a resource coorder system has a dimension equal to the number of control
strained network. It has been shown by various researchéniputs. As processes often consist of only few inputs com-
that event-triggered exchange of information is more bléta pared to the number state variables, such approach reduces
than time-triggered schemes, when resource constrainés hahe computational complexity significantly. In some cases,
to be considered [1]-[4]. the reduced event-triggering law equals the optimal smtuti
The design approach for event-triggered control and est condition for this is derived and we propose a measure
mation are often posed as optimization problems [5]-[11}o evaluate the approximation accuracy of the developed
These are usually formulated in the framework of Markowrder reduction method. Furthermore, we present numerical
decision processes and solved by dynamic programming. Adxamples to evaluate the performance of our method.
though the underlying stochastic system is often assumed toThe remainder of this paper is organized into four sections.
be linear and the cost function has a quadratic form, thesvalun section I, we introduce the stochastic system model and
function associated with the dynamic program does not admitscribe the problem setting. Section 1l contains the main
a closed-form solution in general due to the non-standardsults of this paper and is divided into two subsections.
First, we derive structural properties of the optimal sSolut
and analyze the asymptotic behavior of the closed-loop
system. Second, the order-reduction method is developed. |
section 1V, numerical simulations are conducted to vaéidat
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the proposed method.

Notation. In this paper, the operatots|-] and (-)* de-
note the trace and the transpose operator, respectivedy. Th Sk
expectation operator is denoted BY] and the conditional Yk Uk Tk
expectation is denoted IBf-|-]. The null-space of a matrid ¢
is denoted bywull[A] and the range of a Matrid is denoted
by span[A]. The Euclidean norm of a vector and the matrix
norm induced by the Euclidean norm are denoted| by}s.

P
N
II. SYSTEM MODEL W

We consider the following stochastic time-invariant

discrete-time syster#® Fig. 1. System model of the networked control system witmiplR,
event-trigger€, controllerC and communication network/.

L1 = Axy + Buy + wi, 1)

where A € R"*", B ¢ R"*¢ The variables,z;, and uy
denote the state and the control input and are taking ) )
values inR" and R?, respectively, the system noise; - Asymptotic behavior
takes values iR™ and is an i.i.d. (independent identically Before studying model reduction of the proposed problem,
distributed) zero-mean Gaussian distributed sequende wihis section describes the structure of the optimal saiutio
positive definite covariance matri€’, = E[w,w{]. The that minimizes the cost/ given by (3) and analyzes its
initial state, zo is Gaussian with mearr, and covari- asymptotic behavior. Finding the optimal policies that min
ance C,, = E[(zg — Zo) (w0 — 70)T]. mize the cost function in (3) is a very hard problem. This is
System parameters and statistics are known to the evedtie to the fact that the controller and event-trigger canfbe o
trigger and controller. It is assumed that the event-tnigge a very general form just restricting them to be causal and sta
situated at the sensor side, can observe the complete sthte ionary. In addition, the different information patteris3] of
decides, whether the controllérshould be updated with the event-trigger and controller prohibit a direct use of dyimam
current state. The controller is assumed to be situatedeat throgramming. However, it is shown in [7] that minimizing
actuator side, which implies that only sensor and controlléhe cost function given by (3) for a finite horizaN can
must exchange information over the network. The systeilme divided into separate subproblems. Therein, the optimal
model is illustrated in Figure 1. The event-trigger outputontrol law is related to linear quadratic regulation and

1. MAIN RESULTS

given by the event-triggering law can be posed in the framework of
_ )1 updatez; sent dynamic programming.
=30 otherwise With the mild restriction to stationary policies, the re-

formulation techniques developed in [7] for finite horizon

Hence, the interconnection of sensor and controller can bgoplems also apply for the average-cost problem.
stated as the following measurement equation, which differ \we then have the following theorem that facilitates our

from the standard LQG formulation: subsequent analysis.
T Op=1 Theorem 1 ( Structure of the optimal controller [7]): _
Yk = 0 6 =0 (2) Let the event-trigger and controller be causal and statjona
k= Then, the optimal control law minimizing (3) is given by

wherey, is the actual observation of the controller at titne
The design objective is to find admissible control and
event-triggering policies that minimize the average-awst \yhere

up = —Li$,

terion
L=—(BYSB+R)"'BTSA
. I L= . S=AT(S—-SB(B*SB+R)"'BTS)A + Q.
= 1lz{rn—§<l>lop N : L;) Tk Qi + g R+ M|, (3) The least-squares estimat at the controller is given by
whose per-stage cost is composed of a quadratic control cost o Tk Sp =1
termz} Qzy, + u} Rux and a communication cost teridy,. Ty = {(A _BL)C, 5=

The weighting matrixQ is positive definite and? is positive

semi-definite. The positive factor can be regarded as the with ;gg =z, for 6o = 0.

weight of penalizing information exchange between sensor Using the optimal control law stated in Theorem 1 and an
and controller. We assume that the pal; B) is controllable identity presented in [14], the per-stage cost in (3) reduce
and the pai(4, Qz) is observable withQ = (Q2)TQz. In to

addition, it is assumed that the control policy and event- T T T .

triggering policy are stationary. (. — 2%) L (R+ B SB)L(zx — ) + bk



We define the matrix average-cost. The optimal policy can be computed by appli-
T T cation of value or policy iteration [12].

[=L7(R+ B SB)L ) We finish this paragraph by analyzing the stability proper-
and the estimation errog; at the controller conditioned ties of the process with state, when applying the optimal
ond, =0 controller and event-trigger. Subsequently, the notion of
stability is given in terms of bounded moment. For that
reason, we give the difference equation of the closed-loop
By definition of I" and e, the optimization problem can be system in the following rewritten form
formulated within the dynamic programming framework as
follows. Consider the discrete-time system Tpp1 = (A — BL)xy, + (1 — 7" (ex)) BLey + wy,

er = x — E[we|2F_,, 0k = 0].

ert1 = g€k, O, wi) = (1 — 0x) Aeg + wi (5) with appropriate initial condition. The stochastic pro-
cess(1 — n*(ex))BLey has a bounded support for evety
because of (7). In fact, there exists a uniform bound for
the support due to Equation (7). Therefore, the augmented
o = 7" (ex) system noisél — 7*(ey,)) BLey, + wy, has a bounded second
moment uniformly ink. As the matrix(A — BL) is Hur-

witz [14], it can be concluded that the process statdas a
bounded second moment fér— cc. The state estimate

with initial conditioneg = xg — Zy. The remaining objective
is to find the optimal event-triggering law* defined by

among all measurable mappings of the estimation estor
on {0, 1} that minimizes

P 1 gy T at the controller can be regarded as an asymptoticallyestabl
J= h]IVn_fup N E Z (1= dk)egLe +Adg | . (6) system, where the initial condition is resetap, if 6, = 1.
> k=0

Therefore, bounded moment stability ef, also implies
Remark 1: It can be observed immediately that is non-  that #$ is stable in terms of bounded moment. Since the
negative, ad" is positive semi-definite, and the minimumevolution of the overall system can be described by the two
of J¢ is upper-bounded by, as transmission on every time variablest), andz¢, we conclude that the closed-loop system
step is an admissible law yielding average-céSt= ). is bounded moment stable.
The above average-cost problem differs from the problem
statement in [8] by the fact thdt is not positive definite B. Order Reduction
if the number of inputs is less than the dimensionality of ) ) o )
the state space. In the following, we are interested in this 1€ calculation of the optimal control gaib is of mi-
particular case off < n. In this case, there exists a subspac8°" computational complexity compared to the problem of
of R”, wheree; does not contribute to the per-stage costinding the optimal event-triggering law™. Therefore, our
This subspace is spanned by the null-spac& ofs it is focus is on the numerically efficient calculation ©f. This

explained in the next subsection in more detail, the optim&€ction develops an*approach for diminishing computationa
policy 7*(e),) does not transmit information, i, is in the complexity to find7* by model order reduction. We will

null-space off". In contrast to that, the work in [8] restricts °PServe in the following that the underlying problem admits
admissible event-triggering policies to transmit an upgat@n order reduction to the number of inputs, while approxi-
whenever the norm of, exceeds an arbitrary large positiveMating the optimal solution very closely. In some situasion
constant. The restriction is a technical assumption to-gudf S €ven possible to sustain the optimal solution through
antee that the per-stage cost is bounded, which facilitages Crder reduction. _ _
analysis. In order to obtain similar results for the follagi  The main idea is based on the observation that the weight-
analysis, we modify the set of admissible policies to satisfind matrix I' is of reduced rank, il < n. Hence, only a
projected part of the estimation erreg contributes to the
m(er) =1 for |[Leyl[2 > M, (7)  per-stage cost given by (6). On the other hand, the projected

where M is a positive constant. The condition (7) ensure§ignal of e, in the null-space of” may still influence the
that the per-stage cost df defined in (6) is bounded, while €volution of the complete signal,. Our conjecture is that
allowing policies withrr(e;) = 1 for e, € null[[']. As M can the impact ofe;, in the null-space of" is negligible for most
be chosen arbitrarily large, the condition (7) does not corsYStems. . o

stitute a severe restriction on the optimal policy. Along th In order to obtain the reduced optimization problem, we
same lines as in [8], we can state that the optimal patity consider the eigenvalue decompositionlof

results from theAverage-Cost Optimality Equation [15]

r—[u, U ] A0 Ui
h(e) + JE* = min ((1—5)6TF6+)\5 %o oot |
6e{0,1}
+ E[h(g(e, 6, w))|e,5]), Where.A cpntams all.non-zero eigenvalues with corre-
sponding eigenspack; the null-space ofl" corresponds

wheree € R™ and the bounded functioh : R™ — R tospan[U.]. The matrix[U; U] is chosen to be orthonor-
is called the terminal cost. The valug” is the optimal mal.



We split up the estimation error into two componesgts Yre—1
andel, i.e. Bst. [* T
er = eif +e, Elzx|&f 1, 6x = 0]
hereei € null[l'] ande! I'T]. Only the signale! g . o
wheree;; € nu [I'] ande, € span| ]._ nly the signale, ¢ Ut -y
contributes to the per-stage cost.0f given by (6). Subse- A
guently, we propose an approximative model of the evolution 5
of ell in a lower dimensional space using orthogonal projec- F
tion. The reduced estimation error is defined as Tk Yk
et =Ujfer = Ufey
evolving according to the following dynamics Fig. 2. Structure of the reduced event-trigger with a copyhefstate esti-
mator of the controller (Est.), a one- step time-delay Unitransformation
e;ge_gl _ (1 _ 61@)Ared€;€ed + w;fd, (8) ” T and optimal event-triggering law:
with
Aweg = UT AU dynamic program by at least— d dimensions. As technical
* red I I processes often consist of only few inputs compared to the
UH W dimensionality of their state space, the underlying reidact

algorithm is able to decrease computational complexity sig
nificantly for many technical systems.
Remark 3: It should be stated that the established theory
state projection methods in model order reduction, e.g.
from [16], is of limited use in our context, because the
system given by (5) is highly non-linear with respect to
JE = H]{ZHSUPN E Z 1 —6k) (e} d) Aefed+ Aok | the decision variablé, and the system may be unstable
e k=0 9 without having stable modes. Another aspect, in which our
©) approach differs from standard methods in model order
the optimal solutionmy(el€®) minimizing (9) yields an reduction, is that asymptotic properties need not to bentake
approximative solution to our initial problem. Taking the r into account. This is reasoned by the resetting property of
striction given by Equation (7) into account, we observe thdhe underlying system, i.e. whenev&r = 1 the errore,
admissible event-triggering policieseq have to transmit an is reset bye,1 = wi. Obviously, such resetting property is
update to the controller, whenever the normeg?f‘ exceeds preserved by our order reduction.
the constantM. This implies that closed-loop stability is The next lemma gives a condition, when the reduced
preserved, although the reduced difference equation in (Bplicy recovers the optimal policy.
may give a coarse approximation of the real estimation Lemma 1 (Perfect Reduction): If the projectorP defined
errorey,. by
The structure of the reduced event-trigger is depicted in
Figure 2. It consists of a copy of the state estimator at the
controller, a one-step time-delay ufit transformation/;”  and the system matri¥ satisfy
and optimal event-triggering law, The difference be- UTPA—UTAP
tween state estimate of the controller assuming no transmis I I
sion has occurred at time and the current state is trans-then the optimal policyr* and the reduced optimal pol-
formed byU‘T to obtaine!®®. The reduced event-triggering icy w5, embedded irR™ are equivalent.
law 7%, decides whether to update the controller with the  Proof: The evolution of the projected estimation er-
current statez;, based on the current reduced estimatiomor €@ under the original dynamics given by (5) can be
error. It should be noted that the proposed scheme alsomputed as

and initial stateef = U|| (20 — To). The noise processed
is Gaussian with zero-mean and covariance méiﬁ)C Uy

Given the dynamics in (8) and the rewritten average- costf
criterion from (6)

N-1

T
P =UU

reduces the online calculation of the decision variahle red T

as the dimensionality of the search space decreaséslio 1 = U ek

contrast to that there is no benefit in memory usage, as both =(1- 5k)U||TA€k + UHka
reduced and optimal event-triggers have to store the cdeple =(1- 5k)U||TU||UHTAek + UHT“’k

state estimate of the controller. ) B )

Remark 2: We observe from the definition df in (4) that Taking the condition of above lemma into account, we have
its range coincides with the range bf, as(R+BTSB) is ered = (1 - Sp)UT AU UT ey + ULy,
invertible. Therefore, the dimensiongfan(I'] is equal to the _ _
column-rank ofZ.™, which is at mostl. This implies that the By substituting ef*® = Ujl'e,, we obtain the difference
proposed method reduces the state space associated withefaation (8). Hence, the random variab[gj is a sufficient



statistics for obtaining the initial problem minimizing)(6

under dynamics (5). This concludes the proof. [ | 0.65 0.95 0.7 2 1
Remark 4: There is an intuitive interpretation why has A= { 0.5 0.15 ] B = [ 0.7 } @ =0Qn = [ 1 2 ] ’

a rank deficiency, whenl < n. The null-space ofl" is

equivalent to the null-space df. If ej € null[l'] = null[L], [

1.5 0.5
0.5 1.5

then the current control input, does not differ, when R =10.5,C, =C,, =
an update is sent or not. Hence, the transmission can be
postponed in case of;, € null[l'] in order to yield better
state estimates at a future time step.

Remark 5: The approach of model order reduction for
event-trigger design has also been suggested in [11] featin
discrete-time systems with limited controls for the spkcia
case that the system matrix takes the ferfyinput matrix B
has full rank and the weighting matrix of the quadratic cost ¢
function is of rankl.

As commutativity of arbitrary matrices is a quite restreti
assumption, the condition given in Lemma 1 holds only for
specific systems. But it can serve as an indicator for how
well the optimal event-triggering law is approximated by
the reduced policy. In this work, we propose the following
measure to give an |nd|ca§or of the approximation accura%/g. 3. Comparison of optimal and reduced eventriggeringicy of
of the order-reduced algorithm system (11). The lines indicate the thresholds.

} .\ = 200,
(11)

optimal
reduced

UTAP ~ PA), o
AT

assuming the system matrik to be non-zero. Whed < n, 200+
the assumption ofA # 0 is already covered by the con-
trollability assumption of the tuplé A, B). Obviously, the
measurep is non-negative. The measupeis equal to0, if
and only if the condition in Lemma 1 is satisfied. This means
that we have perfect reduction fpr= 0. On the other hand, 1007
the measure is bounded byl as shown in the following

150 1

Jg

501

HUT (AP _ PA)||2 = optimal event—triggered scheduler
— e/ S oo reduced event—triggered scheduler
HAH2 00 500 1000 1500 2000 2500
_lofAP -Ultuf Al A
HAH2 Fig. 4. Performance evaluation of optimal and reduced ewiggering
HUIFIF(AP _ A)H2 policy of system (11).

[A]l2

and the reduced event-trigger obviously approximates the
U2l All2lIP — 1]l

optimal event-trigger very well. Figure 4 shows the pegsta

- [|A]l2 - cost caused by the optimal event-trigger and the reduced
event-trigger.
IV. NUMERICAL VALIDATION Figure 5 shows the same comparison for the system

0 1 0.7 2 1
In this section, we validate our results from the previous .
section by numerical simulations. Two different systemthwi

a2-dimensional state space and a scalar input are considered. 15 0.5
Figures 3 and 5 illustrate the effect of model order reductio ¥ = 0-5, Co = Cgo = [ 05 1.5 ] ;A = 100;
on the resulting event-trigger. The coordinatgsand ez (12)

are the elements of the estimation ereoif ¢ exceeds the
indicated thresholds, a state update is sent to the casmtroll There is a significant difference in the optimal event-
The system underlying Figure 3 is given by trigger and the reduced event-trigger. Figure 6 shows the



optimal
reduced

=15 -10 =5 0 5 10 15

Fig. 5. Comparison of optimal and reduced event-triggenadicy of
system (12). The lines indicate the thresholds.

60

50

40+

%30

20

10 1
= optimal event—triggered scheduler
'''''''' reduced event—triggered scheduler

0 ; ; :
0 100 200 300 400

A
Fig. 6. Performance evaluation of optimal and reduced ewiggering

policy of system (12).

per-stage costs caused by both event-triggers for various
and it is obvious that the proposed approach does not wo

very well for this system. These numerical results are also i

accordance with the proposed indicatowith respect to the
approximation quality. While system (11) yieldpaf 0.12,

which is an indicator for an accurate approximation of thel®

optimal solution, system (12) has@aof 1, which can be
regarded as the worst case setting with respegt to

The jittering of the graph fo/¢ caused by the reduced
event-trigger in Figures 4 and 6 is due to the fact tii&t

standard approaches to overcome the curse of dimensignalit
this method takes advantage of the structure within the
underlying problem. Our results show that this method seems
to be very promising, if the number of process inputs is

smaller than the dimension of states. Another benefit of
the approximative approach is that stability is preserved.
The proposed indicator for the approximation quality of the

reduced event-trigger reflects the performance decreage ve

accurately.

Future research is concerned with advanced order reduc-
tion schemes that enhance the approximation accuracy of the
reduced event-trigger and with the investigation of bowrds
the performance decrease of the approximative scheme.
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