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Abstract— This paper considers the optimal design of event-
triggered controllers under a non-traditional average-cost cri-
terion with costly observations. Determining the optimal event-
triggering law can be cast in the dynamic programming
framework. Due to the lack of a closed form solution for
the value function associated with the dynamic program, the
methods for calculating the optimal solution suffer from the
curse of dimensionality. Based on structural properties of the
optimal solution, we develop a novel approximative method
to reduce the dimensionality of the underlying optimization
problem from the state dimension of the regulated process to
the number of control inputs. As processes often consist of only
few inputs compared to the number of state variables, such
approach reduces the computational complexity significantly.
It is shown that the proposed approximative event-trigger
preserves the asymptotic behavior of the closed-loop system.
A conditions is derived, when the reduced event-triggeringlaw
equals the optimal solution. We propose a measure to evaluate
the approximation accuracy of the developed order reduction
method.
Numerical simulations illustrate the obtained results andvali-
date the effectiveness of the proposed model reduction method
compared to the optimal solution.

I. INTRODUCTION

Recent advances in sensing, communications and embed-
ded systems have shifted the paradigms in the design of
distributed complex control systems. Therein, the efficient
utilization of communication and computational capabilities
is one of the key factors to increase control performance.
Examples for such systems can be found in a variety of
applications, including environmental monitoring, transporta-
tion networks and health care systems. In each of these
systems, the sensing and controlling components are spatially
distributed and exchange information over a resource con-
strained network. It has been shown by various researchers
that event-triggered exchange of information is more suitable
than time-triggered schemes, when resource constraints have
to be considered [1]–[4].

The design approach for event-triggered control and esti-
mation are often posed as optimization problems [5]–[11].
These are usually formulated in the framework of Markov
decision processes and solved by dynamic programming. Al-
though the underlying stochastic system is often assumed to
be linear and the cost function has a quadratic form, the value
function associated with the dynamic program does not admit
a closed-form solution in general due to the non-standard
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communication constraints. Brownian processes with initial
state zero and constrained number of transmissions are an
exception and have an analytical solution [5]. Hence, one
is in general restrained to discretize the state space and
apply the standard policy or value iteration [12]. As the
number of discretized grid points grows exponentially with
the dimensionality of the state space, such methods are only
applicable in practice if the number of state variables is
small. One way to counteract thecurse of dimensionality is to
approximate the value function by a parameterized function.
In the context of event-triggered control, such approach has
been proposed in [10] using quadratic approximate value
functions. In this paper, we follow a different approach. The
idea is to reduce the state space to the subspace that is most
relevant for the event-trigger.

This paper addresses the problem of event-triggered con-
trol design for linear stochastic systems. The goal is to find
an event-triggered controller that meets the trade-off between
control performance and the average number of transmissions
from sensor to controller. Such trade-off is reflected in an
average-cost criterion, where the per-stage cost consistsof
a quadratic control cost and a communication penalty. The
cost-function is inspired by work in [8] that derives optimal
event-triggering schemes for an estimator-based networked
control system. The main contribution of this paper is two-
fold. Built on results in [7] for finite horizon, we first show
that, under mild conditions, the calculation of the optimal
event-triggered controller for the average-cost criterion can
be separated into standard subproblems. Second, we show
that the structure of the optimal event-trigger admits an
approximative model-order reduction, where the reduced-
order system has a dimension equal to the number of control
inputs. As processes often consist of only few inputs com-
pared to the number state variables, such approach reduces
the computational complexity significantly. In some cases,
the reduced event-triggering law equals the optimal solution.
A condition for this is derived and we propose a measure
to evaluate the approximation accuracy of the developed
order reduction method. Furthermore, we present numerical
examples to evaluate the performance of our method.

The remainder of this paper is organized into four sections.
In section II, we introduce the stochastic system model and
describe the problem setting. Section III contains the main
results of this paper and is divided into two subsections.
First, we derive structural properties of the optimal solution
and analyze the asymptotic behavior of the closed-loop
system. Second, the order-reduction method is developed. In
section IV, numerical simulations are conducted to validate



the proposed method.
Notation. In this paper, the operatorstr[·] and (·)T de-

note the trace and the transpose operator, respectively. The
expectation operator is denoted byE[·] and the conditional
expectation is denoted byE[·|·]. The null-space of a matrixA
is denoted bynull[A] and the range of a MatrixA is denoted
by span[A]. The Euclidean norm of a vector and the matrix
norm induced by the Euclidean norm are denoted by‖ · ‖2.

II. SYSTEM MODEL

We consider the following stochastic time-invariant
discrete-time systemP

xk+1 = Axk +Buk + wk, (1)

where A ∈ R
n×n, B ∈ R

n×d. The variables,xk and uk

denote the state and the control input and are taking
values in R

n and R
d, respectively, the system noisewk

takes values inRn and is an i.i.d. (independent identically
distributed) zero-mean Gaussian distributed sequence with
positive definite covariance matrixCw = E[wkw

T
k ]. The

initial state, x0 is Gaussian with mean̄x0 and covari-
ance Cx0

= E[(x0 − x̄0)(x0 − x̄0)
T].

System parameters and statistics are known to the event-
trigger and controller. It is assumed that the event-trigger E ,
situated at the sensor side, can observe the complete state and
decides, whether the controllerC should be updated with the
current state. The controller is assumed to be situated at the
actuator side, which implies that only sensor and controller
must exchange information over the network. The system
model is illustrated in Figure 1. The event-trigger output
given by

δk =

{

1 updatexk sent

0 otherwise

Hence, the interconnection of sensor and controller can be
stated as the following measurement equation, which differs
from the standard LQG formulation:

yk =

{

xk δk = 1

∅ δk = 0
(2)

whereyk is the actual observation of the controller at timek.
The design objective is to find admissible control and

event-triggering policies that minimize the average-costcri-
terion

J = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

xT
kQxk + uT

kRuk + λδk

]

, (3)

whose per-stage cost is composed of a quadratic control cost
termxT

kQxk + uT
kRuk and a communication cost termλδk.

The weighting matrixQ is positive definite andR is positive
semi-definite. The positive factorλ can be regarded as the
weight of penalizing information exchange between sensor
and controller. We assume that the pair(A,B) is controllable
and the pair(A,Q

1

2 ) is observable withQ = (Q
1

2 )TQ
1

2 . In
addition, it is assumed that the control policy and event-
triggering policy are stationary.

PC

N

E

yk xkuk

δk

Fig. 1. System model of the networked control system with plant P ,
event-triggerE , controllerC and communication networkN .

III. MAIN RESULTS

A. Asymptotic behavior

Before studying model reduction of the proposed problem,
this section describes the structure of the optimal solution
that minimizes the costJ given by (3) and analyzes its
asymptotic behavior. Finding the optimal policies that mini-
mize the cost function in (3) is a very hard problem. This is
due to the fact that the controller and event-trigger can be of
a very general form just restricting them to be causal and sta-
tionary. In addition, the different information patterns [13] of
event-trigger and controller prohibit a direct use of dynamic
programming. However, it is shown in [7] that minimizing
the cost function given by (3) for a finite horizonN can
be divided into separate subproblems. Therein, the optimal
control law is related to linear quadratic regulation and
the event-triggering law can be posed in the framework of
dynamic programming.

With the mild restriction to stationary policies, the re-
formulation techniques developed in [7] for finite horizon
problems also apply for the average-cost problem.

We then have the following theorem that facilitates our
subsequent analysis.

Theorem 1 ( Structure of the optimal controller [7]):
Let the event-trigger and controller be causal and stationary.
Then, the optimal control law minimizing (3) is given by

uk = −Lx̂C
k ,

where

L = −(BTSB +R)−1BTSA

S = AT(S − SB(BTSB +R)−1BTS)A+Q.

The least-squares estimatex̂C
k at the controller is given by

x̂C
k =

{

xk δk = 1

(A−BL)x̂C
k−1 δk = 0

with x̂C
0 = x̄0 for δ0 = 0.

Using the optimal control law stated in Theorem 1 and an
identity presented in [14], the per-stage cost in (3) reduces
to

(xk − x̂C
k)

TLT(R+BTSB)L(xk − x̂C
k) + λδk.



We define the matrix

Γ = LT(R +BTSB)L (4)

and the estimation errorek at the controller conditioned
on δk = 0

ek = xk − E[xk|x̂
C
k−1, δk = 0].

By definition ofΓ andek, the optimization problem can be
formulated within the dynamic programming framework as
follows. Consider the discrete-time system

ek+1 = g(ek, δk, wk) = (1 − δk)Aek + wk (5)

with initial conditione0 = x0− x̄0. The remaining objective
is to find the optimal event-triggering lawπ∗ defined by

δk = π∗(ek)

among all measurable mappings of the estimation errorek
on {0, 1} that minimizes

JE = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(1− δk)e
T
k Γek + λδk

]

. (6)

Remark 1: It can be observed immediately thatJE is non-
negative, asΓ is positive semi-definite, and the minimum
of JE is upper-bounded byλ, as transmission on every time
step is an admissible law yielding average-costJE = λ.

The above average-cost problem differs from the problem
statement in [8] by the fact thatΓ is not positive definite
if the number of inputs is less than the dimensionality of
the state space. In the following, we are interested in this
particular case ofd < n. In this case, there exists a subspace
of Rn, whereek does not contribute to the per-stage cost.
This subspace is spanned by the null-space ofΓ. As it is
explained in the next subsection in more detail, the optimal
policy π∗(ek) does not transmit information, ifek is in the
null-space ofΓ. In contrast to that, the work in [8] restricts
admissible event-triggering policies to transmit an update,
whenever the norm ofek exceeds an arbitrary large positive
constant. The restriction is a technical assumption to guar-
antee that the per-stage cost is bounded, which facilitatesthe
analysis. In order to obtain similar results for the following
analysis, we modify the set of admissible policies to satisfy

π(ek) = 1 for ‖Lek‖2 ≥ M, (7)

whereM is a positive constant. The condition (7) ensures
that the per-stage cost ofJE defined in (6) is bounded, while
allowing policies withπ(ek) = 1 for ek ∈ null[Γ]. AsM can
be chosen arbitrarily large, the condition (7) does not con-
stitute a severe restriction on the optimal policy. Along the
same lines as in [8], we can state that the optimal policyπ∗

results from theAverage-Cost Optimality Equation [15]

h(e) + JE∗
= min

δ∈{0,1}

(

(1− δ)eTΓe+ λδ

+ E[h(g(e, δ, w))|e, δ]
)

,

where e ∈ R
n and the bounded functionh : R

n → R

is called the terminal cost. The valueJE∗
is the optimal

average-cost. The optimal policy can be computed by appli-
cation of value or policy iteration [12].

We finish this paragraph by analyzing the stability proper-
ties of the process with statexk when applying the optimal
controller and event-trigger. Subsequently, the notion of
stability is given in terms of bounded moment. For that
reason, we give the difference equation of the closed-loop
system in the following rewritten form

xk+1 = (A−BL)xk + (1− π∗(ek))BLek + wk

with appropriate initial condition. The stochastic pro-
cess(1− π∗(ek))BLek has a bounded support for everyk
because of (7). In fact, there exists a uniform bound for
the support due to Equation (7). Therefore, the augmented
system noise(1− π∗(ek))BLek + wk has a bounded second
moment uniformly ink. As the matrix(A − BL) is Hur-
witz [14], it can be concluded that the process statexk has a
bounded second moment fork → ∞. The state estimatêxC

k

at the controller can be regarded as an asymptotically stable
system, where the initial condition is reset toxk, if δk = 1.
Therefore, bounded moment stability ofxk also implies
that x̂C

k is stable in terms of bounded moment. Since the
evolution of the overall system can be described by the two
variablesxk andx̂C

k , we conclude that the closed-loop system
is bounded moment stable.

B. Order Reduction

The calculation of the optimal control gainL is of mi-
nor computational complexity compared to the problem of
finding the optimal event-triggering lawπ∗. Therefore, our
focus is on the numerically efficient calculation ofπ∗. This
section develops an approach for diminishing computational
complexity to findπ∗ by model order reduction. We will
observe in the following that the underlying problem admits
an order reduction to the number of inputs, while approxi-
mating the optimal solution very closely. In some situations,
it is even possible to sustain the optimal solution through
order reduction.

The main idea is based on the observation that the weight-
ing matrix Γ is of reduced rank, ifd < n. Hence, only a
projected part of the estimation errorek contributes to the
per-stage cost given by (6). On the other hand, the projected
signal of ek in the null-space ofΓ may still influence the
evolution of the complete signalek. Our conjecture is that
the impact ofek in the null-space ofΓ is negligible for most
systems.

In order to obtain the reduced optimization problem, we
consider the eigenvalue decomposition ofΓ

Γ =
[

U‖ U⊥

]

[

∆ 0
0 0

] [

UT
‖

UT
⊥

]

,

where ∆ contains all non-zero eigenvalues with corre-
sponding eigenspaceU‖; the null-space ofΓ corresponds
to span[U⊥]. The matrix[U‖ U⊥] is chosen to be orthonor-
mal.



We split up the estimation error into two componentse⊥k
ande‖k, i.e.

ek = e⊥k + e
‖
k,

wheree⊥k ∈ null[Γ] and e
‖
k ∈ span[ΓT]. Only the signale‖k

contributes to the per-stage cost ofJE given by (6). Subse-
quently, we propose an approximative model of the evolution
of e‖k in a lower dimensional space using orthogonal projec-
tion. The reduced estimation error is defined as

ered
k = UT

‖ ek = UT
‖ e

‖
k

evolving according to the following dynamics

ered
k+1 = (1 − δk)Arede

red
k + wred

k , (8)

with

Ared = UT
‖ AU‖,

wred
k = UT

‖ wk

and initial stateered
0 = UT

‖ (x0 − x̄0). The noise processwred
k

is Gaussian with zero-mean and covariance matrixUT
‖ CwU‖.

Given the dynamics in (8) and the rewritten average-cost
criterion from (6)

JE = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(1− δk)
(

ered
k

)T
∆ered

k + λδk

]

,

(9)

the optimal solutionπ∗
red(e

red
k ) minimizing (9) yields an

approximative solution to our initial problem. Taking the re-
striction given by Equation (7) into account, we observe that
admissible event-triggering policiesπred have to transmit an
update to the controller, whenever the norm ofered

k exceeds
the constantM . This implies that closed-loop stability is
preserved, although the reduced difference equation in (8)
may give a coarse approximation of the real estimation
error ek.

The structure of the reduced event-trigger is depicted in
Figure 2. It consists of a copy of the state estimator at the
controller, a one-step time-delay unitT, transformationUT

‖

and optimal event-triggering lawπ∗
red. The difference be-

tween state estimate of the controller assuming no transmis-
sion has occurred at timek and the current state is trans-
formed byUT

‖ to obtainered
k . The reduced event-triggering

law π∗
red decides whether to update the controller with the

current statexk based on the current reduced estimation
error. It should be noted that the proposed scheme also
reduces the online calculation of the decision variableδk,
as the dimensionality of the search space decreases tod. In
contrast to that there is no benefit in memory usage, as both
reduced and optimal event-triggers have to store the complete
state estimate of the controller.

Remark 2: We observe from the definition ofΓ in (4) that
its range coincides with the range ofLT, as(R+BTSB) is
invertible. Therefore, the dimension ofspan[Γ] is equal to the
column-rank ofLT, which is at mostd. This implies that the
proposed method reduces the state space associated with the

T

UT

‖

Est.

π∗
red

E[xk|x̂
C
k−1, δk = 0]

ykxk

ered
k

δk

yk−1

Fig. 2. Structure of the reduced event-trigger with a copy ofthe state esti-
mator of the controller (Est.), a one-step time-delay unitT, transformation
U

T

‖
and optimal event-triggering lawπ∗

red.

dynamic program by at leastn−d dimensions. As technical
processes often consist of only few inputs compared to the
dimensionality of their state space, the underlying reduction
algorithm is able to decrease computational complexity sig-
nificantly for many technical systems.

Remark 3: It should be stated that the established theory
of state projection methods in model order reduction, e.g.
from [16], is of limited use in our context, because the
system given by (5) is highly non-linear with respect to
the decision variableδk and the system may be unstable
without having stable modes. Another aspect, in which our
approach differs from standard methods in model order
reduction, is that asymptotic properties need not to be taken
into account. This is reasoned by the resetting property of
the underlying system, i.e. wheneverδk = 1 the errorek
is reset byek+1 = wk. Obviously, such resetting property is
preserved by our order reduction.

The next lemma gives a condition, when the reduced
policy recovers the optimal policy.

Lemma 1 (Perfect Reduction): If the projectorP defined
by

P = U‖U
T
‖

and the system matrixA satisfy

UT
‖ PA = UT

‖ AP,

then the optimal policyπ∗ and the reduced optimal pol-
icy π∗

red embedded inRn are equivalent.
Proof: The evolution of the projected estimation er-

ror ered
k under the original dynamics given by (5) can be

computed as

ered
k+1 = UT

‖ ek+1

= (1 − δk)U
T
‖ Aek + UT

‖ wk

= (1 − δk)U
T
‖ U‖U

T
‖ Aek + UT

‖ wk

Taking the condition of above lemma into account, we have

ered
k+1 = (1− δk)U

T
‖ AU‖U

T
‖ ek + UT

‖ wk,

By substituting ered
k = UT

‖ ek, we obtain the difference
equation (8). Hence, the random variableered

k is a sufficient



statistics for obtaining the initial problem minimizing (6)
under dynamics (5). This concludes the proof.

Remark 4: There is an intuitive interpretation whyΓ has
a rank deficiency, whend < n. The null-space ofΓ is
equivalent to the null-space ofL. If ek ∈ null[Γ] = null[L],
then the current control inputuk does not differ, when
an update is sent or not. Hence, the transmission can be
postponed in case ofek ∈ null[Γ] in order to yield better
state estimates at a future time step.

Remark 5: The approach of model order reduction for
event-trigger design has also been suggested in [11] for linear
discrete-time systems with limited controls for the special
case that the system matrix takes the formαI, input matrixB
has full rank and the weighting matrix of the quadratic cost
function is of rank1.

As commutativity of arbitrary matrices is a quite restrictive
assumption, the condition given in Lemma 1 holds only for
specific systems. But it can serve as an indicator for how
well the optimal event-triggering law is approximated by
the reduced policy. In this work, we propose the following
measure to give an indicator of the approximation accuracy
of the order-reduced algorithm

ρ =
‖UT

‖ (AP − PA)‖2

‖A‖2
(10)

assuming the system matrixA to be non-zero. Whend < n,
the assumption ofA 6= 0 is already covered by the con-
trollability assumption of the tuple(A,B). Obviously, the
measureρ is non-negative. The measureρ is equal to0, if
and only if the condition in Lemma 1 is satisfied. This means
that we have perfect reduction forρ = 0. On the other hand,
the measureρ is bounded by1 as shown in the following

ρ =
‖UT

‖ (AP − PA)‖2

‖A‖2

=
‖UT

‖ AP − UT
‖ U‖U

T
‖ A)‖2

‖A‖2

=
‖UT

‖ (AP −A)‖2

‖A‖2

≤
‖UT

‖ ‖2‖A‖2‖P − I‖2

‖A‖2
= 1.

IV. NUMERICAL VALIDATION

In this section, we validate our results from the previous
section by numerical simulations. Two different systems with
a2-dimensional state space and a scalar input are considered.
Figures 3 and 5 illustrate the effect of model order reduction
on the resulting event-trigger. The coordinatese1 and e2
are the elements of the estimation errore. If e exceeds the
indicated thresholds, a state update is sent to the controller.
The system underlying Figure 3 is given by

A =

[

0.65 0.95
0.5 0.15

]

, B =

[

0.7
0.7

]

, Q = QN =

[

2 1
1 2

]

,

R = 0.5, Cω = Cx0
=

[

1.5 0.5
0.5 1.5

]

, λ = 200,

(11)
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Fig. 3. Comparison of optimal and reduced event-triggeringpolicy of
system (11). The lines indicate the thresholds.

0 500 1000 1500 2000 2500
0

50

100

150

200

250

 

 

optimal event−triggered scheduler

reduced event−triggered scheduler

J
E

λ

Fig. 4. Performance evaluation of optimal and reduced event-triggering
policy of system (11).

and the reduced event-trigger obviously approximates the
optimal event-trigger very well. Figure 4 shows the per-stage
cost caused by the optimal event-trigger and the reduced
event-trigger.

Figure 5 shows the same comparison for the system

A =

[

0 −1
1 0

]

, B =

[

0.7
0.7

]

, Q = QN =

[

2 1
1 2

]

,

R = 0.5, Cω = Cx0
=

[

1.5 0.5
0.5 1.5

]

, λ = 100;

(12)

There is a significant difference in the optimal event-
trigger and the reduced event-trigger. Figure 6 shows the
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Fig. 6. Performance evaluation of optimal and reduced event-triggering
policy of system (12).

per-stage costs caused by both event-triggers for variousλ

and it is obvious that the proposed approach does not work
very well for this system. These numerical results are also in
accordance with the proposed indicatorρ with respect to the
approximation quality. While system (11) yields aρ of 0.12,
which is an indicator for an accurate approximation of the
optimal solution, system (12) has aρ of 1, which can be
regarded as the worst case setting with respect toρ.

The jittering of the graph forJE caused by the reduced
event-trigger in Figures 4 and 6 is due to the fact thatJE

is determined with a Monte Carlo experiment for this event-
trigger.

It should be stated that a series of simulations with
randomly generated systems has been conducted to validate
the presented approach. Most of these systems show similar
approximation accuracy as given for system (11), whereas
the resulting approximation quality of system (12) is ob-
served only sparsely.

V. CONCLUSIONS

This paper derives a novel method for the approximative
design of optimal event-triggered controllers. In contrast to

standard approaches to overcome the curse of dimensionality,
this method takes advantage of the structure within the
underlying problem. Our results show that this method seems
to be very promising, if the number of process inputs is
smaller than the dimension of states. Another benefit of
the approximative approach is that stability is preserved.
The proposed indicator for the approximation quality of the
reduced event-trigger reflects the performance decrease very
accurately.

Future research is concerned with advanced order reduc-
tion schemes that enhance the approximation accuracy of the
reduced event-trigger and with the investigation of boundson
the performance decrease of the approximative scheme.
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