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Abstract—Many existing optimization approaches for parallel
multiple-input multiple-output (MIMO) broadcast channels with
linear transceivers make the assumption that encoding and
decoding is performed separately on each carrier. However,
unlike in the case of optimal non-linear dirty paper coding,
such a carrier-noncooperative transmission was shown to be
potentially suboptimal if linear precoding is used. A possible way
to design carrier-cooperative transmit strategies is to perform the
optimization in an equivalent single-carrier MIMO broadcast
channel. In this paper, we show that the careless application of
commonly used optimization tools nevertheless leads to carrier-
noncooperative solutions, and we demonstrate that a notable gain
can be achieved by modifying the algorithms such that they can
converge to more general carrier-cooperative strategies.

I. INTRODUCTION

A communication system with a set of orthogonal resources

(e.g., carriers) can perform precoding either separately on each

resource, or joint precoding across the orthogonal resources

can be allowed. Adopting the nomenclature of [1], we call

these two types of transmit strategies carrier-noncooperative

and carrier-cooperative transmission, respectively. Note that

carrier-cooperative transmission also includes the case where

joint precoding is allowed, but not applied. Therefore, it is the

more general scheme and includes the other one as a special

case: carrier-noncooperative strategies are also valid carrier-

cooperative strategies. A mathematical definition of both types

of strategies is given along with the system model in Section II.

We study a set of parallel multiple-input multiple-output

(MIMO) broadcast channels, i.e., a base station with multiple

antennas uses a set of orthogonal carriers to transmit individual

data streams to a set of multi-antenna receivers. Though less

general, carrier-noncooperative transmission is optimal in this

setting, as long as capacity-achieving dirty paper coding (DPC)

is applied (e.g., [2]). As DPC is difficult to implement in

practice, many researchers have focused on the optimization of

linear transceivers. In this case, carrier-noncooperative trans-

mission is no longer optimal, as was shown in our previous

works [3], [4]—a property that is often ignored when transmit

strategies for linear transceivers are designed (e.g., [5]–[10]).

In this paper, we discuss how carrier-cooperative strategies

for parallel MIMO broadcast channels with linear transceivers

can be optimized by introducing an equivalent single-carrier

MIMO system (cf. Section II). A similar approach was pursued

for the single-user case in [1].

The contributions of this paper are threefold. First, we

reveal that existing optimization algorithms tend to produce

carrier-noncooperative strategies when applied to the equiva-

lent single-carrier system. Second, we discuss that initializing

iterative optimization algorithms with random filters is a way

to find carrier-cooperative solutions. Finally, by demonstrating

a notable gain in numerical simulations, we show that the

suboptimality of carrier-noncooperative transmission shown in

[3], [4] is not only a theoretic issue, but can have an impact

in practice.

Notation: We use •∗ for complex conjugate, •T for trans-

pose, and •H for conjugate transpose. The matrix IL is the

identity matrix of size L, 0 is the zero vector, and ei is the

i-th canonical unit vector, which has a one as the i-th entry

and zeros elsewhere. | • | is used for the cardinality of a set.

II. SYSTEM MODEL AND PROBLEM FORMULATION

An M -antenna base station serves K receivers using orthog-

onal carriers c ∈ {1, . . . , C}. The frequency flat channel on

carrier c between the M transmit antennas and the Nk receive

antennas of user k can be described by a matrix H
(c),H
k ∈

C
Nk×M , and the corresponding additive Gaussian noise η

(c)
k

is characterized by the covariance matrix C
η

(c)
k

∈ C
Nk×Nk .

If we restrict the system to perform carrier-noncooperative

transmission, the data intended for user k has to be split into

up to C streams of data vectors x
(c)
k ∼ CN (0, I

S
(c)
k

) with

S
(c)
k ≤ min{Nk,M}. The transmission is then described by

y
(c)
k = H

(c),H
k

K
∑

k′=1

B
(c)
k′ x

(c)
k′ + η

(c)
k , (1)

where the matrices B
(c)
k ∈ C

M×S
(c)
k are the beamforming

matrices (transmit filters), and the vectors y
(c)
k ∈ C

Nk are the

received signals. In this case, the only coupling between the

carriers is that each receiver achieves a data rate

rk =

C
∑

c=1

log det
(

INk
+R

(c),−1
k H

(c),H
k B

(c)
k B

(c),H
k H

(c)
k

)

(2)

with R
(c)
k = C

η
(c)
k

+
∑

j 6=k

H
(c),H
k B

(c)
j B

(c),H
j H

(c)
k , (3)

which is the sum of its rates r
(c)
k on each carrier, and the total

transmit power p is the sum of per-carrier powers p(c):

p =

C
∑

c=1

K
∑

k=1

trace
[

B
(c)
k B

(c),H
k

]

. (4)



To allow carrier-cooperation, we introduce an equivalent

single-carrier broadcast channel with block-diagonal channels

HH
k = blkdiag

(

H
(1),H
k , . . . ,H

(C),H
k

)

∈ C
NkC×MC (5)

and block-diagonal noise covariance matrices

Cηk
= blkdiag

(

C(1)
ηk

, . . . ,C(C)
ηk

)

∈ C
NkC×NkC (6)

(cf., e.g., [1]). In this setting, each user has only one stream

of data vectors xk ∼ CN (0, ISk
) with Sk ≤ Cmin {Nk,M},

and the data transmission can be described by the equation

yk = HH
k

K
∑

k′=1

Bk′xk′ + ηk (7)

with yk ∈ C
NkC and Bk ∈ C

MC×Sk . The rate of user k is

rk = log det
(

INkC +R−1
k HH

k BkB
H
k Hk

)

(8)

with Rk = Cηk
+

∑

j 6=k

HH
k BjB

H
j Hk, (9)

and the total power is given by

p =

K
∑

k=1

trace
[

BkB
H
k

]

. (10)

If the beamforming matrices Bk have no special struc-

ture, the signals corresponding to the components xk,s, s ∈
{1, . . . , Sk} of the transmit symbol vector xk may be spread

across several carriers, i.e., when partitioning the received sig-

nal yk into per-carrier signals y
(c)
k , an influence of xk,s can be

found in the received vectors y
(c)
k of several carriers. However,

if all beamforming matrices match the block-diagonal structure

of the channel matrices and the noise covariance matrices, i.e.,

Bk = blkdiag
(

B
(1)
k , . . . ,B

(C)
k

)

∈ C
MC×Sk , (11)

the sum in (10) can be decomposed as in (4), and the

determinant in (8) factorizes such that the rates rk can be

computed as in (2). In this case, each component of xk is

transmitted only across a certain carrier. Consequently, as

was discussed for single-user systems in [1], transmission

with block-diagonal beamforming matrices is equivalent to the

carrier-noncooperative transmission in (1).1

Optimization algorithms for single-carrier MIMO broadcast

channels (e.g., weighted sum rate maximization, power mini-

mization, etc.) can be applied to the equivalent single-carrier

system, and the possibility of carrier-cooperation is exploited

whenever the structure of the resulting transmit filter matrices

differs from the block-diagonal structure of the channels. As

the globally optimal solution might require carrier-cooperation

(a formal proof of this statement is given in [4]), generating

1Transmission is mathematically equivalent to carrier-noncooperative trans-
mission if the transmit covariance matrices BkB

H

k
are block-diagonal,

even if the beamforming matrices Bk are not. However, we define carrier-
noncooperative transmission in terms of the transmit filters as in [1] since this
allows the interpretation that data symbols are not spread across carriers. The
results in this paper equivalently hold when defining carrier-noncooperative
transmission in terms of block-diagonal transmit covariance matrices.

such solutions makes sense—even though we cannot expect

the algorithms to converge to the globally optimal solution

due to the non-convexity of the optimization problems. How-

ever, we will observe in the following sections that in many

cases, existing optimization algorithms yield block-diagonal

beamforming matrices, i.e., carrier-noncooperative solutions.

In the remainder of the paper, we assume that Cηk
= INkC

for all users k. This is without loss of generality since in

any other case covered by (6), a whitening filter C
− 1

2
ηk

could

be applied at the receiver yielding a block-diagonal effective

channel ĤH
k = C

− 1
2

ηk
HH

k with white noise. Furthermore, we

make use of a dual uplink formulation [11] with uplink channel

matrices Hk, an uplink noise covariance IMC , uplink rates

Rk = log det
(

IMC +X−1
k HkTkT

H
k HH

k

)

(12)

with Xk = IMC +
∑

j 6=k

HjTjT
H
j HH

j , (13)

and uplink transmit power

P =
K
∑

k=1

trace
[

TkT
H
k

]

, (14)

where Tk ∈ C
NkC×Sk are the uplink beamforming matrices.

According to [11], the rates rk = Rk are achievable in

the downlink with a sum transmit power p = P . Thus,

many optimization problems can also be treated in the dual

uplink. The downlink beamforming matrices Bk can be related

to linear receive filters V H
k in the uplink as described in

Section III-B and [11], and the beamformers Tk of the dual

uplink can be related to receive filters GH
k that are applied to

the received downlink signals yk [11].

For block-diagonal uplink transmit filters Tk, (12) and (14)

can be decomposed into per-carrier equations in a similar man-

ner as their counterparts in the downlink. Thus, the discussion

of carrier-cooperative and carrier-noncooperative transmission

can be performed in the uplink similarly as in the downlink.

III. ITERATIVE UPDATE METHODS

In this section, we study iterative methods like gradient-

based algorithms and alternating filter updates with respect to

their potential to exploit the possibility of carrier-cooperation.

A. Gradient Based Filter Update

Gradient ascent or descent methods are common methods

to find suboptimal solutions of non-convex maximization or

minimizations problems, respectively. For example, algorithms

involving gradient-projection updates of the uplink transmit

filters were proposed in [9], [12] for (weighted) sum rate

maximization. If the optimization is performed in the dual

uplink, the gradient matrices are given by

∂
∑K

k′=1 wk′Rk′

∂T ∗
k

= AkTk, (15)

where the scalars wk′ are constant weighting factors,

Ak =
1

ln 2
HH

k





K
∑

k′=1

wk′X−1 −
∑

k′ 6=k

wk′X−1
k′



Hk, (16)



Xk′ is defined as in (13), and

X = IMC +

K
∑

k=1

HkTkT
H
k HH

k . (17)

Obviously, all matrices Ak match the block-diagonal structure

of the channels if all uplink transmit filter matrices Tk do so.

However, if at least one of the transmit filters is not block-

diagonal, Ak may have an arbitrary structure for all k.

The gradient-projection update is performed by setting

each beamforming matrix Tk to a linear combination of the

respective old beamforming matrix and the gradient, i.e.,

Tk ← (akINkC + bkAk)Tk, (18)

where the scaling factors ak and bk are chosen according to a

step size rule and subject to a sum power constraint [9], [12].

Due to the aforementioned behavior of the matrices Ak, the

update in (18) preserves block-diagonality of the beamforming

matrices Tk. Thus, the new beamforming matrices after the

gradient-projection step correspond to carrier-noncooperative

transmission if all old beamforming matrices do so.

B. Alternating Filter Updates

Updating the uplink and downlink receive filters in an

alternating manner is another iterative technique. It has been

applied to a wide variety of optimization problems such

as weighted sum rate maximization [13], [14], sum MSE

minimization [13], and power minimization [13]–[15].

For given uplink beamforming matrices, the optimal uplink

receive filters in the MMSE sense V H
k = TH

k HH
k X−1 ∈

C
Sk×MC are computed, where X is defined in (17). Then, an

uplink-to-downlink transformation is applied, i.e., the down-

link beamforming matrices are chosen according to Bk ←
diag {αk,i}VkWk, where the scalars αk,i ∈ R are chosen as

in [11] and the unitary matrix Wk ∈ C
Sk×Sk contains the

eigenvectors of V H
k HkTk [11]. As can be easily verified, all

updated downlink beamforming matrices Bk match the block-

diagonal structure of the channels if all uplink beamformers Tk

do so. The same observation holds in the other direction when

computing the optimal downlink receivers and performing the

downlink-to-uplink transformation from [11].

In many optimization algorithms, these two updates are al-

ternately repeated until convergence. Usually, additional steps

that only affect the transmit powers of the data streams, i.e.,

the norms of the columns of Bk or Tk, are performed in each

iteration. As scaling does not destroy block-diagonality, al-

ternating optimization preserves carrier-noncooperative strate-

gies: if a carrier-noncooperative strategy is used in a certain

iteration, the same is true for all subsequent iterations.

IV. COMMON INITIALIZATIONS

The two iterative update methods studied in the last sec-

tion were shown to preserve carrier-noncooperative strategies.

However, if the initial strategy exploits carrier-cooperation, the

same might be true for the strategy obtained after convergence,

and numerical simulations confirm that this is indeed what

happens. Therefore, we now briefly discuss initial choices

for the beamforming matrices, which are commonly used in

iterative algorithms. For simplicity, we discuss each initializa-

tion either in the uplink or in the downlink, but the results

accordingly hold in the respectively other domain.

A. Scaled and Truncated Identity Matrices

A quite simple initialization is using (possibly scaled) iden-

tity matrices and truncating them to the required rectangular

shape of Bk (e.g., [9], [12], [15]). Obviously, this corresponds

to a carrier-noncooperative strategy.

B. Singular Value Decomposition

Another possibility is to initialize the columns of the uplink

beamforming matrices Tk with the right singular vectors of

the uplink channels Hk, (e.g., [14]). For block-diagonal Hk,

each of the singular vectors has non-zero entries only in

components corresponding to one of the blocks. This is carrier-

noncooperative as the transmit filters Tk can be brought to

block-diagonal form by reindexing the data streams appropri-

ately (i.e., by changing the order of the singular vectors).

C. Initialization based on Zero-Forcing

Zero-forcing, i.e., complete suppression of inter-user in-

terference, is a popular method to derive simple suboptimal

solutions that perform quite well in many cases (e.g., [7],

[10], [16]–[19]). Therefore, zero-forcing solutions can also

serve as good initializations for iterative algorithms (e.g., [13],

[15]). A possible way to find such zero-forcing solutions in

a MIMO system is block-diagonalization [19]. As it is based

on a singular value decomposition, the resulting beamformers

match the block-diagonal structure of the channels. The same

holds for the method proposed in [13], where a Gram-Schmidt

orthogonalization was applied to the set of dominant right sin-

gular vectors of the channels. Another possibility to find initial

zero-forcing strategies is successive allocation, cf. Section V.

D. Random Initialization

Choosing the initial beamforming matrices randomly was

proposed, e.g., in [13], [15]. For instance, the entries can be

chosen to be i.i.d. circularly symmetric complex Gaussian, or,

if it is desired that the Sk columns of each initial beamforming

matrix are orthogonal to each other, we can use a (possibly

truncated) eigenbasis of Y Y H, where Y is a square random

matrix with i.i.d. Gaussian elements [20]. In both cases, the

resulting strategy exploits carrier-cooperation almost surely.

Among the initializations discussed in this paper, the random

initialization is the only one that is not carrier-noncooperative.

V. SUCCESSIVE ALLOCATION ALGORITHMS

A popular way to design zero-forcing strategies (as ini-

tialization or to directly apply them for data transmission) is

successive allocation (e.g., [16]–[18]). Successive techniques

are applicable even if block-diagonalization [19] is impossible

due to a total number of receive antennas that exceeds the

number of transmit antennas. The methods described in this

section choose transmit and receive filters in the downlink in

a way that the resulting data streams are interference-free.



In [16] and [17], it was proposed to apply the left singular

vectors of the downlink channels as receive filters, yielding

an equivalent setting with virtual single-antenna users, whose

channels are row vectors. Then, data streams are successively

allocated to these virtual users. As the receive filters are the

singular vectors of the channels, they match the block-diagonal

structure and so do the resulting zero-forcing transmit filters.

The method proposed in [18] computes not only the

transmit, but also the receive filters in a successive man-

ner. The receive filter gH
1 of the first allocated data

stream is again a left singular vector of HH
k(1), where

k(i) is the user corresponding to the i-th data stream.

However, for i > 1, the receive filter gH
i of the i-th

data stream is computed as generalized eigenvector of the

pair of matrices HH
k(i)

(

IMC −QiQ
H
i

)

Hk(i) and INk(i)C +

HH
k(i)QiL

−1
i L−H

i QH
i Hk(i), where Li and Qi result from the

QR decomposition QiL
H
i =

[

Hk(1)g1, . . . ,Hk(i−1)gi−1

]

. As

the first receive filter gH
1 matches the block-diagonal structure

of the channels, the same is true for the matrices Q2 and L2

and, consequently, for the second filter gH
2 . This reasoning can

be continued successively, revealing that also with this method,

all receive filters are chosen in a way that the resulting strategy

is carrier-noncooperative.

VI. EXAMPLE: POWER MINIMIZATION

In the following, we exemplarily study the application of an

algorithm for MIMO broadcast channels with linear precoding

to find carrier-cooperative solutions in parallel broadcast chan-

nels, and we demonstrate that a notable gain can be achieved.

To this end, we consider the power minimization problem

min
B1,...,BK

p s.t.: rk ≥ ρk ∀k (19)

in parallel vector broadcast channels, i.e., in the case where

the receivers have only Nk = 1 antenna.2 We assume that the

rate requirements ρk are feasible both for carrier-cooperative

and for carrier-noncooperative transmission (cf. [3]).

In this setting, the matrices H
(c),H
k are reduced to row

vectors h
(c),H
k and instead of the noise covariance matrices

C
η

(c)
k

, we have scalar variances σ
(c),2
k . However, in the equiv-

alent single-carrier system, we still have channel matrices Hk

and noise covariance matrices Cηk
. To this equivalent MIMO

system, we apply the power minimization algorithm from [15].

The essential steps of this algorithm can be summarized

as follows: Each rate requirement ρk is divided into per-

stream rate targets ρk,s, each corresponding to a component

xk,s of the transmit symbol vector of user k.3 Then, for

given spatial directions of the columns of the uplink transmit

beamforming matrices, the optimal per-stream transmit powers

are computed, i.e., the columns are scaled, such that each

stream achieves its target rate. To further reduce the transmit

2Note that the theoretical parts of this work do not assume any restrictions
on Nk .

3As there is no mapping between streams and carriers in the case of
carrier-cooperative transmission, we introduce the stream index s. For carrier-
noncooperative transmission, s and the carrier index c are interchangeable.

power, the division of the rate requirements into per-stream

rate targets is updated with a gradient-projection step. Up to

this point, no update of the directions of the filter vectors has

been performed, but this is done subsequently by performing

one iteration of the alternating filter update method described

in Subsection III-B. With the obtained new uplink beamform-

ing matrices, the algorithm proceeds as before by computing

new transmit powers and so on.

The algorithm is initialized with a unit norm uplink beam-

forming vector and a per-stream rate target for each data

stream. Note that the initial per-stream rate targets have to be

chosen such that a feasible solution for the transmit powers

exists with the given directions of the beamforming vectors

[15]. In particular, feasibility might be impaired if the uplink

beamformers are chosen such that the effective uplink channels

h̃k,s = Hk
Tkes√

eT
s
TH

k
Tkes

violate the regularity condition [3]

rank
[

H̃H

]

=min(|H|,MC) ∀H ⊆ {h̃1,1, . . . , h̃k,Sk
}, (20)

where H̃H ∈ C
MC×|H| has the vectors in H as columns.

To obtain a general carrier-cooperative solution, we choose

random orthogonal vectors as initial beamformers as discussed

in Subsection IV-D, and we set the per-stream rate targets to

ρk,1 = ρk for the first stream of each user k and to ρk,s = 0
for all other streams, which is a feasible initialization of the

rate targets [3], [15]. The sum transmit power of the obtained

carrier-cooperative strategy is plotted in Fig. 1 (“carrier-

coop”), where the rate requirements are ρk = 2ρ0 for half of

the users and ρk = ρ0 for the remaining users. The simulation

results are averaged4 over 1000 channel realizations, and the

channel vectors h
(c)
k have i.i.d. circularly symmetric complex

Gaussian entries with zero mean and unit variance.

On the other hand, with truncated identity matrices as

initial beamforming matrices, the alternating filter updates

preserve the block-diagonal structure, and the algorithm con-

verges to a carrier-noncooperative solution. This is equivalent

to the suboptimal solution that was obtained in [8] by an

algorithm without filter updates, and—as discussed therein—

the performance strongly depends on the initial per-stream

rate targets. The initial choice for ρk,s used above might no

longer be feasible as the effective channels h̃k,s = Hkes do

not satisfy the regularity condition (20) in general [3]. Just

like in [8], the algorithm proposed in [3] could be used to

find a feasible initialization (“carrier-noncoop, basic init”).

Another possibility is to use the per-stream rates resulting

from any other heuristic power minimization algorithm as

initial per-stream rate targets. For instance, the greedy zero-

forcing scheme from [10] could be used to find such initial

rate targets (“carrier-noncoop, ZF init”). Note that only the

per-stream rates achieved by the zero-forcing scheme are used

as initialization here, but not the zero-forcing filters. As can

be seen in Fig. 1 and 2, both solutions are outperformed by

the carrier-cooperative solution with random initialization of

the filters.

4We use the arithmetic mean in the dB-domain, which is more robust
against outliers as it corresponds to the geometric mean in linear scale.
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Fig. 1. Average transmit power for different per-user rate requirements.
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Fig. 2. This plot for a single channel realization shows that there are cases
where the gain is significantly larger than on average.

VII. CONCLUSION

Carrier-noncooperative transmission can be suboptimal in

parallel MIMO broadcast channels with linear transceivers [4].

To design carrier-cooperative strategies, we have introduced an

equivalent single-carrier MIMO system, and we have studied

the application of commonly used optimization techniques

to this particular scenario. It turned out that the considered

iterative methods lead to carrier-noncooperative solutions if

any intermediate result is carrier-noncooperative. Therefore, if

a solution that exploits carrier-cooperation is desired, the initial

beamforming matrices need to correspond to such a strategy,

too. However, this is not fulfilled by most initializations pro-

posed in the literature. If successive allocation is used instead

of iterative optimization, the state-of-the-art algorithms also

have an inherent restriction to carrier-noncooperative solutions.

These observations reveal a possible reason why carrier-

cooperative transmission has not attracted considerable interest

in the context of broadcast channels so far: by thoughtlessly

applying existing algorithms to a block-diagonal model, solu-

tions that exploit carrier-cooperation are not created by chance.

However, by using random beamforming matrices as the ini-

tialization of an iterative optimization algorithm, it is possible

to find good carrier-cooperative solutions. Doing so, we were

able to present an example where carrier-cooperative transmis-

sion indeed outperforms carrier-noncooperative transmission

in numerical simulations with random channels (and not only

in a constructed channel realization as in [4]).

As random initialization is not completely satisfying from

a theoretical point of view, and as the performance of iterative

methods might strongly depend on the initialization, deter-

ministic carrier-cooperative initializations that lead to good

solutions are an interesting topic for future research. Another

open question is how to design successive allocation methods

that are able to find good carrier-cooperative solutions.
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