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ABSTRACT
We consider the design of linear precoding filters with respect to

the minimum mean square error (MMSE) criterion for systems that

employ an additional scalar gain next to a fixed receive filter. The

precoding filter and the scalar gain are to be jointly optimized.

Currently, only the finite impulse response (FIR) solution to this

problem is known. The goal of this paper is to derive the infinite

impulse response (IIR) MMSE precoder both with and without

causality constraint, i.e., finite and infinite latency time, respec-

tively. We discuss the role of the scalar gain and its relationship to

automatic gain control (AGC). We also show that causal precoding

requires that the joint first arrival delay of channel and receive filter

is not larger than the latency time, and that the IIR-MMSE precoder

enjoys the same advantages over the FIR-MMSE precoder as the

IIR-MMSE equalizer does over the FIR-MMSE equalizer, viz.:

improved performance and no need for latency time optimization.

I. INTRODUCTION

Precoding is a well-researched method to migrate the compu-

tational burden in channel equalization from the receiver to the

transmitter. Nevertheless, in contrast to the MMSE equalizer which

is given by the classical Wiener filter, the MMSE precoder is a quite

recent development (see, e.g., the discussion in [1, VI.A]). Various

MMSE precoders have been derived for quite a few different system

models. In this paper, we consider the system model depicted in

Figure 1. The channel H and the receive filter G are considered to

be fixed and known. The transmitter employs the precoding filter P .

Additionally, we include the scalar gain α as an additional simple

receive filter. The filters P and α are to be jointly optimized subject

to a transmit power constraint. The idea to include a scalar gain at

the receiver can be traced back at least to a paper of Karimi et. al.

[2]. It offers two main advantages. The first advantage is of course

an additional degree of freedom which usually will improve the

overall system performance. The second advantage is that we can

find closed-form solutions. The FIR-MMSE precoder for the model

in Fig. 1 was derived by Choi and Murch [3] and, using a different

technique, also by Joham et. al. [1]. However, the IIR counterpart

is still unknown. In this paper, we are going to derive the IIR-

MMSE precoder, both with and without causality constraint. We

show that the IIR precoder has the same advantages compared to

the FIR precoder as in the receive filter case. First of all, the IIR

precoder is the optimal linear precoder and therefore can never be

outperformed by the FIR precoder. Second, improving the latency
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Fig. 1. System model.

time always improves the performance of an IIR precoder. This

is in contrast to FIR precoding, where the optimal latency time is

not obvious and has to be found by a costly exhaustive search or

by suboptimal approaches [4]. IIR precoders do not require such

optimization. Third, IIR precoders often outperform FIR precoders

of similar complexity.

The paper is structured as follows. We start with a brief de-

scription of the system model in Section II and give an in-depth

discussion of the role of the scalar gain at the receiver in Section

III. Then, we give the optimal IIR-MMSE precoders with and

without causality constraint in the Sections IV and V. We illustrate

our results with numerical examples, and close the paper with a

conclusion (Sections VI, VII).

Notation: The set of stable rational m × n matrices (i.e., no

poles on |z| = 1) is denoted by RLm×n
∞ and the set of stable

and causal rational m × n matrices (i.e., no poles in |z| ≥ 1) by

RHm×n
∞ . The causal part of any rational matrix A is denoted by

{A}+ and the para-hermitian by A∼(z) := A(z̄−1)∗. The two

norm of any B ∈ RLm×n
∞ is defined as ‖B‖22 := 〈B,B〉2,

where 〈C,D〉2 :=
¸
|z|=1

trace(D∼(z)C(z)) dz
2πi

for all C,D ∈
RLm×n

∞ . Finally, with G ∈ RHr×q
∞ and H ∈ RHq×p

∞ denoting

the equalizer and the channel in Figure 1, we introduce co-spectral

factorizations S∼
ξ Sξ = H∼G∼GH + ξI (i.e., Sξ, S

−1
ξ ∈ RHp×p

∞
[5]) for all ξ > 0,1 and define P̃ξ := S−1

ξ {z−LS−∼
ξ H∼G∼}+.

II. SYSTEM MODEL

Our system model is depicted in Figure 1. In formulae, we have

y(z) = H(z)P (z)s(z) + η(z)

ŝ(z) = αG(z)y(z) = αG(z)H(z)P (z)s(z) + αG(z)η(z),

where H ∈ RHq×p
∞ is the channel, G ∈ RHr×q

∞ is a fixed receive

filter, P ∈ RHp×r
∞ is the precoder, and α ≥ 0 is a scalar gain.

The signals s, y, η denote transmitted and received signals, and

noise. We assume that both s and η are mutually independent white

1The spectral factorizations always exist but are non-unique. To ensure
uniqueness, we further assume that Sξ(∞) is upper triangular.
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random sequences with zero mean and covariance matrices I and

σ2
ηI > 0, respectively. We want to minimize the mean square error2

MSE(P, α) := ‖z−LI − αGHP‖22 + α2σ2
η‖G‖22, (1)

where L ∈ N is the latency time, subject to the power constraint

‖P‖22 ≤ Etr. (2)

III. ROLE OF THE SCALAR GAIN AT THE RECEIVER
In many papers, it is claimed that the scalar gain α at the receiver

can be implemented with a simple automatic gain control (AGC).

See, e.g., [3, II] or [1, II]. An AGC rescales the input signal at the

receiver such that its average power (or some other criterion like

peak amplitude) is equal to some fixed reference value [6]. This

reference value is chosen such that the input signal at the receiver

fits the dynamic range of the analog-to-digital converter. The AGC

is automatic in the sense that no other inputs next to the actual input

signal are required. Hence, we can interpret the scaling by α as the

action of an AGC if the scaled receiver input αy is normalized in

some reasonable way. However, this is not the case in general. If all

other system parameters are fixed, the optimal gain that minimizes

MSE(P, α) = ‖z−LI‖22 − 2α�(〈z−LI,GHP 〉2)
+α2(‖GHP‖22 + σ2

η‖G‖22)
can be found with a standard calculus argument,

α� =
�(〈z−LI,GHP 〉2)
‖GHP‖22 + σ2

η‖G‖22
.

We can assume that α� ≥ 0 without loss of generality. Otherwise,

we absorb the negative sign into the precoding filter P . The

resulting average power of the scaled receiver input becomes

lim
K→∞

E

[
1

K + 1

K∑
k=0

‖α�yk‖2F
]

= α2
�(‖HP‖22 + σ2

η‖I‖22)

=
� (〈

z−LI,GHP
〉
2

)2
(‖GHP‖22 + σ2

η‖G‖22)2
(‖HP‖22 + σ2

η‖I‖22). (3)

If the noise power grows large, σ2
η → ∞, we have

lim
K→∞

E

[
1

K + 1

K∑
k=0

‖α�yk‖2F
]

≈ � (〈
z−LI,GHP

〉
2

)2 ‖I‖22
σ2
η‖G‖42

≤ Etr‖GH‖22‖I‖42
σ2
η‖G‖42

(4)

Note that the upper bound (4) is independent of the precoding

filter P . Hence, the rescaled receiver input α�y will be arbitrarily

closed to zero if the noise power grows large, σ2
η → ∞. This is

not the action of an AGC. The situation is a little bit different if

we consider the case of low noise power, σ2
η → 0. Assume that the

concatenation of the channel H and the receive filter G has a stable

and causal right-inverse with latency time L, i.e., GHX = z−LI
for some X ∈ RHp×r

∞ and that G is square. Then, the average

power of the scaled receiver input converges to a value that is

independent of the channel if optimal precoding filters and scalar

gains are employed and σ2
η → 0 (cf. Sec. IV-B). In that case,

2The stochastic interpretation of the 2-norm allows us write the MSE and
the power constraint in (1) and (2) as system norms. See, e.g., [5, 10.3.1].

the scaling can indeed be interpreted as the action of an AGC.

However, if no right inverse X exists, the average power of the

scaled receiver input depends on the channel. Again, this is not

what a AGC would do.

Hence, we can consider the scalar gain as an AGC only if

the concatenation GH of channel and receive filter is stably and

causally right-invertible with latency time L, G is square and

the noise power σ2
η is not too small. Otherwise, we may e.g.

use a preamble to let the receiver learn αopt. Alternatively, we

can employ a phase shift keying (PSK) modulation which is

independent of the amplitude.

IV. OPTIMAL CAUSAL PRECODER
A well-known issue with IIR filters is that the optimal filters

usually are non-causal and thus cannot be implemented in real-

time. Therefore, a causality constraint in form of a finite latency

time has to be incorporated explicitly. In this section, we derive

and discuss the optimal precoder with causality constraint.

IV-A. Problem statement and main result
We start with a formal statement of the causal precoding problem.

Problem 1 (Optimal causal precoder). Find P ∈ RHp×r
∞ and

α ≥ 0 such that the MSE (1) is minimized subject to (2).

The following theorem establishes a solution to Problem 1. The

proof is given in the appendix.

Theorem 2 (Optimal causal precoder). Let {z−LH∼G∼}+ �= 0,
and define ξopt := E−1

tr σ2
η‖G‖22. Then, with P̃ξ as in Section I,

Popt :=
1

αopt
P̃ξopt and αopt :=

‖P̃ξopt‖2√
Etr

(5)

are well-defined and solve Problem 1.

IV-B. Remarks and discussion
Let us give some remarks on Theorem 2.

The condition {z−LH∼G∼}+ �= 0: The condition

{z−LH∼G∼}+ �= 0 in Theorem 2 has a very simple interpretation.

Let F (z) =
∑∞

k=0 Fkz
−k denote the Laurent expansion of the

concatenation of equalizer and channel, i.e., F = GH . Then, the

condition is equivalent to that there is some 0 ≤ k0 ≤ L such that

Fk0 �= 0. Intuitively, this means that the joint first arrival delay of

channel and equalizer is not larger the latency time of the precoder.

Limiting cases ξ → 0 and ξ → ∞: The limiting cases

are similar to the FIR case [1, VI.B]. Assume that the causal

minimum-norm right-inverse of GH with latency time L, Pzf :=
argmin{‖P‖22 : P ∈ RHp×q

∞ , GHP = z−LI}, is well-defined

[7]. Then, the precoder Popt in Theorem 2 converges towards√
Etr‖Pzf‖−1

2 Pzf as ξ → 0. On the other hand, Popt converges

towards
√
Etr‖M‖−1

2 M , where M := {z−LH∼G∼}+ is the

causal matched filter, as ξ → ∞.

Power of the scaled receiver input for σ2
η → 0 : Assume that the

minimum-norm right-inverse Pzf from the previous subsection is

well-defined, G is square and we employ Popt and αopt. Then, G is

invertible with G−1 = zLHPzf . The average power (3) becomes

lim
K→∞

E

[
1

K + 1

K∑
k=0

‖αoptyk‖2F
]
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≈
Etr

‖Pzf‖22
�〈z−LI, z−LI〉22(

Etr

‖Pzf‖22
‖z−LI‖22

)2

(
Etr

‖Pzf‖22
‖HPzf‖22

)

= ‖HPzf‖22 = ‖z−LG−1‖22
if σ2

η → 0. Thus, the average power converges towards a fixed value

that is independent of the channel H . Hence, we can consider the

scaling by αopt as the action of an AGC if σ2
η is small.

IIR-FIR structure: By definition of P̃ξ, we see that the MMSE

precoder (5) decomposes into two parts: an IIR part α−1S−1
ξ and

a FIR part α−1{z−LS−∼
ξ H∼G∼}+. The filter length of FIR part

equals the latency time L, while the IIR part is independent of L.

IV-C. Further results
In this subsection, we give some further results on the IIR-MMSE

precoder. Note that the proofs have been moved to the Appendix.

Our first result addresses the question what happens if the

assumption {z−LH∼G∼}+ �= 0 in Theorem 2 fails. It is simple

to see that the solution given in the Theorem then no longer is

well-defined. Furthermore, the following Proposition shows that no

transmission becomes an optimal strategy.

Proposition 3. Suppose {z−LH∼G∼}+ = 0. Then, (P, α) =
(0, 0) solves Problem 1.

Next, we formalize the intuitive property that no FIR precoder

can outperform the IIR-MMSE precoder (if their latency times are

identical).

Proposition 4. Let P (z) =
∑N−1

n=0 Pnz
−n, ‖P‖22 ≤ Etr , denote

an arbitrary FIR precoder, and let α ≥ 0. Then, the MSE achieved
by (P, α) is lower bounded by the MSE of (5).

Finally, we consider the issue of latency time optimization.

Finding the optimal latency time L that minimizes the MSE among

the FIR-MMSE precoders of a fixed length is an intricate problem

[4]. Basically, one has to test all possible latency times. Fortunately,

this becomes a non-issue when IIR-MMSE precoders are used.

Proposition 5. The MSE of (5) decreases monotonically with L.

V. OPTIMAL NON-CAUSAL PRECODER
The optimal precoder without explicit causality constraint usually

is non-causal and therefore cannot be implemented in real-time.

Nevertheless, it still often is of theoretical interest because it con-

stitutes the limit of the optimal causal precoder as the latency time

goes to infinity. Formally, the optimal precoder without causality

constraint is the solution to the following problem.

Problem 6 (Optimal non-causal precoder). Find P ∈ LHp×r
∞ and

α ≥ 0 such that (1) is minimized for L = 0 subject to (2).

The following theorem, which can be obtained after simple

modifications of the proof of Theorem 2, gives us the optimal

precoder without causality constraint.

Theorem 7 (Optimal non-causal precoder). Let GH �= 0, and
define ξopt := E−1

tr σ2
η‖G‖22 as well as P̌ξopt := (H∼G∼GH +

ξoptI)
−1H∼G∼. Then,

Popt :=
1

αopt
P̌ξopt and αopt :=

‖P̌ξopt‖2√
Etr

are well-defined and solve Problem 6.

Fig. 2. First example. The “+” marks belong to the FIR-MMSE,

the “x” marks to the IIR-MMSE.

VI. NUMERICAL EXAMPLES
VI-A. Simulation setup

The simulation setup is as follows. Per simulation run, we created

10.000 instances of the 2× 2 FIR channel

H(z) = c0H0 + c1H1z
−1 + c2H2z

−2,

where the real and imaginary parts of the entries of each Hk are

random normally distributed variables with mean zero and variance

one, and c0, c1, c2 are fixed scalars. The equalizer used was G(z) =
I . Per channel instance, we transmitted 1.000 binary phase shift

keying (BPSK) modulated data signals, i.e., sk ∈ {−1, 1}2, at

various signal to noise ratios Etr/ση = 1/ση . We finally averaged

the resulting uncoded bit error rates per signal to noise ratio.

VI-B. Precoder design
We compare the FIR-MMSE precoder for various filter lengths

Nf with the IIR-MMSE precoder from Theorem 2. The latency

time of the FIR-MMSE precoder was chosen such that the MSE is

minimized [4]. In contrast, Proposition 5 shows us that we should

make the latency time L of the IIR precoder as large as possible.

In order to ensure a fair comparison, we chose L such that the

number KIIR of parameters necessary to describe to the resulting

IIR precoder is not larger than the number of parameters necessary

to describe the FIR precoder, i.e., KFIR = Nfqp = 4Nf . The IIR

part of the precoder, i.e., S−1
ξopt

, has the same McMillan degree

as the channel, i.e., κ = 4. Therefore, when we use a state-

space realization in block controllable companion form [8, §5.4D]

of S−1
ξopt

, κp−1 + κq + qp = 14 parameters are required to

describe it. The FIR part of the IIR-MMSE precoder has length

L. Therefore, the total number of parameters necessary in the IIR

case is KIIR = 14+Lqp = 14+4L. In our simulations, we chose

L = Nf − 4, which gives KIIR = KFIR − 2 < KFIR.

VI-C. First example: Uniform power profile
In this example, we chose an uniform power profile, i.e., c0 =

c1 = c2 = 1. We considered the filter lengths Nf ∈ {8, 12, 16}.

Fig. 2 show the simulation results. We observe that the IIR-

MMSE outperforms the FIR-MMSE for all three filter lengths with
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Fig. 3. Second example. The “+” marks belong to the FIR-MMSE,

the “x” marks to the IIR-MMSE.

improvements up to an order of magnitude in the high SNR regime.

Also note that there are error floors. The reason is that we consider

square channels. These are likely to have unstable zeros, i.e., zeros

outside the unit circle. Such channels cannot be causally inverted,

which is why there are errors no matter how high the SNR.

VI-D. Second example: Exponential power profile
We consider an exponential power profile, i.e., c0 = 1.64, c1 =

0.53, and c2 = 0.16, and filter lengths Nf ∈ {6, 8, 10}. Fig. 3

shows the simulation results. The IIR precoders outperform the

FIR precoders for the filter lengths Nf ∈ {8, 10}, but they are

outperformed by the FIR precoders for Nf = 6. (We point out that

this does not contradict Proposition 4 because the FIR precoders

may have a larger latency time than the IIR precoders.) However,

the difference in performance between the FIR and IIR precoders

in this example is small for all considered filter lengths.

VII. CONCLUSION
In this paper, we have derived the IIR-MMSE precoder with and

without causality constraint. We clarified that the usual interpreta-

tion of the scalar gain at the receiver as an AGC is valid only under

certain conditions. We also showed that the causal precoder requires

a latency time equal or greater than the joint first arrival delay of

channel and equalizer, while the non-causal precoder only requires

that the concatenation of channel and equalizer is not identically

zero. Another result was that the MSE decreases monotonously

with the latency time. Numerical examples showed that IIR-MMSE

precoders usually outperform FIR-MMSE precoders with a similar

number of parameters even if the latency time of the FIR precoders

has been optimized (which is a costly operation).
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APPENDIX

Proof: (Proof of Theorem 2) We skip the well-definedness of

Popt and αopt because of space limitations. Let us show optimality

by modification of an argument in [3]. The MMSE can be lower

bounded as follows,

MMSE

:= inf
α≥0,P∈RHp×r∞

‖P‖22≤Etr

MSE(P, α)

= inf
α≥0,P∈RHp×r∞

‖P‖22≤Etr

(‖z−LI − αGHP‖22 + α2σ2
η‖G‖22)

≥ inf
α≥0,P∈RHp×r∞

‖P‖22≤Etr

(‖z−LI − αGHP‖22 + α2σ2
η
‖P‖22
Etr

‖G‖22)

= inf
α≥0,P∈RHp×r∞

‖P‖22≤Etr

(‖z−LI −GH(αP )‖22 +
σ2
η

Etr
‖G‖22‖αP‖22)

= inf
X∈RHp×r∞

(‖z−LI −GHX‖22 +
σ2
η

Etr
‖G‖22‖X‖22).

Theorem 10.3.3 in [5] shows that P̃ = αoptPopt is the unique

minimizer of the lower bound, {P̃} = argmin
X∈RHp×r∞

(‖z−LI−
GHX‖22 + E−1

tr σ2
η‖G‖22‖X‖22). Since ‖Popt‖22 = Etr and

MSE(Popt, αopt) = ‖z−LI −GHP̃‖22 +
σ2
η

Etr
‖G‖22‖P̃‖22

by construction, we see that Popt and αopt solve Problem 1.

Proof: (of Proposition 3) Since {z−LH∼G∼}+ = 0 we can

write GH = z−(L+1)Ψ for some Ψ ∈ RHp×r
∞ . Then, by Parsevals

relation (see, e.g., [5, (10.3.4)]), the mean square error is lower

bounded as follows, MSE = ‖z−LI−αGHP‖22+α2σ2
η‖G‖22 =

‖z−LI‖22 + α2‖ΨP‖22 + α2σ2
η‖G‖22 ≥ ‖z−LI‖22. The choice

(P, α) = (0, 0) achieves this lower bound.

Proof: (of Proposition 4). The proposition follows immediately

from P ∈ RHr×p
∞ and Theorem 2.

Proof: (of Proposition 5) Let P1 ∈ RHp×r
∞ , ‖P1‖22 ≤ Etr ,

α > 0 denote any precoder with decision delay L. Then, with

P2 := z−1P1, (P2, α) is a feasible precoder with decision delay

L+ 1, and the MSE of (P2, α) equals the MSE of (P1, α).
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