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Abstract

The accurate and robust detection and tracking of objects in different kinds
of imaging data is a fundamental task in computer vision. A possible way
of achieving these goals is to use active contours, i.e. contours which aim at
finding or tracking the boundary of an object by minimizing an energy defined
on the given image data. Since their introduction in the late 1980s, a lot of im-
provements have been made in order to make this technique applicable also to
non-photometric imaging data and more robust with respect to noise, varying
lighting conditions, intensity inhomogeneities, background clutter, etc. It turns
out that several of these improvements are closely related to the question of
how variational problems can be regularized. A quite recent regularization
strategy consists in solving the corresponding energy minimization problem in
Sobolev spaces. The main contribution of this thesis consists in the application
of this regularization technique to polar active contours, i.e. a sub-class of
active contours which can only describe star-shaped objects. Inspired by recent
work on regularization strategies based on Sobolev spaces, we define a Sobolev
space for polar active contours and endow it with a metric that allows the user
to weight translations, scale-changes, and smooth deformations of the curve
differently. The resulting polar active contours enjoy several properties, e.g.
an increased robustness to noise, which are particularly desirable for medical
applications such as the segmentation of abdominal aortic aneurysms from
computed tomography angiography data or the tracking of the left ventricular
cavity acquired by magnetic resonance imaging. Another advantage of this
regularization strategy is that the computational overhead is only of linear
complexity. When generalizing these ideas to active surfaces, however, one
has to solve a partial differential equation (PDE) in every iteration step. The
second contribution of this thesis is therefore the development of efficient
numerical techniques for solving this PDE, where we do not restrict ourselves
to star-shaped objects anymore. Further, we compare the resulting numerical
schemes to the ones arising from other regularization strategies.
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Zusammenfassung

Die genaue und zuverlässige Objekterkennung und -Verfolgung in ver-
schiedenen Bildgebungsmodalitäten ist eine wichtige Aufgabe im Bereich des
maschinellen Sehens. Eine Möglichkeit um diese Ziele zu erreichen stellen
so genannte aktive Konturen dar, welche den Rand eines Objektes finden
und verfolgen indem sie eine Energie minimieren welche von den gegebe-
nen Bilddaten abhängt. Seit ihrer Einführung in den späten 1980er Jahren
wurden eine Reihe von Verbesserungen vorgeschlagen, welche die Anwend-
barkeit auf nicht photometrische Bilddaten sowie die Robustheit in Bezug auf
Bildrauschen, variierende Beleuchtungsbedingungen, Inhomogenitäten bzgl..
der Bildintensitäten, inhomogene Hintergründe, usw. zum Ziel haben. Es stellt
sich heraus, dass viele dieser Verbesserungen mit der Frage zu tun haben wie
variationelle Probleme regularisiert werden können. Eine kürzlich vorgestellte
Regularisierungsmethode besteht darin die entsprechenden Energieminimie-
rungsprobleme in Sobolevräumen zu lösen. Der hauptsächliche Beitrag dieser
Dissertation besteht in der Anwendung dieser Regularisierungsstrategie auf
polare aktive Konturen, also aktive Konturen welche nur sternförmige Objekte
beschreiben können. Inspiriert von kürzlich vorgestellten Arbeiten zur Regula-
risierung mit Sobolev Räumen definieren wir einen Sobolevraum für polare
aktive Kurven und statten ihn mit einer Metrik aus, welche es dem Benutzer
ermöglicht Translationen, Skalierungen sowie glatte Deformationen der Kurve
unterschiedlich zu gewichten. Die resultierenden polaren aktiven Konturen wei-
sen viele Eigenschaften, wie zum Beispiel eine größere Robustheit gegenüber
Bildrauschen, auf, welche besonders für medizinische Anwendungen, wie zum
Beispiel die Segmentierung von abdominellen Aortenaneurysmen in computer-
tomographischen Angiographiedaten oder die Verfolgung der Wand der linken
Herzkammer in Magneresonanztomographiedaten, von Vorteil ist. Ein weiterer
Vorteil der vorgeschlagenen Regularisierungsmethode ist, dass der rechnerische
Mehraufwand nur von linearer Komplexität ist. Will man diese Ideen jedoch
auf aktive Oberflächen anwenden, muss eine partielle Differentialgleichung
in jedem Iterationsschritt gelöst werden. Der zweite Beitrag dieser Arbeit ist
deshalb die Entwicklung von effizienten numerischen Verfahren um diese Dif-
ferentialgleichung zu lösen, wobei wir uns nicht mehr auf sternförmige Objekte
beschränken. Des weiteren vergleichen wir die vorgeschlagenen Verfahren mit
denen die aus der Anwendung anderer Regularisierungsverfahren resultieren.
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Andreas Keil, Ahmad Ahmadi, Stefan Hinterstoisser, Petra Kleiner, Olivier
Pauly, Jakob Vogel, Selen Atasoy, Stefanie Demirci, Hauke Heibel, Nicola Brieu,
and Loren Schwarz. In particular, I would like to mention Viktoria Kindzierski
for believing in me and brightening up my life.

My Favorite Research Fellow.

vii





Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Importance of Being Smooth . . . . . . . . . . . . . . . . . . 4
1.3 Peculiarities of Medical Image Segmentation . . . . . . . . . . . 15
1.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . 21

2 Active Contours 23
2.1 Chronological Overview . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Taxonomies for Active Contours . . . . . . . . . . . . . . . . . . 28

3 Variational Level Set Methods 35
3.1 The Non-geometric Case . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Generalizing Variational Level Set Methods . . . . . . . 38
3.1.2 Implicit Regularization Strategies . . . . . . . . . . . . . 40
3.1.3 Explicit Regularization . . . . . . . . . . . . . . . . . . . . 46
3.1.4 Numerical Schemes for Tikhonov-type Regularizations . 47

3.2 The Almost Geometric Case . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 The Classical L2 Framework . . . . . . . . . . . . . . . . 56
3.2.2 Sobolev Spaces on Implicit Surfaces . . . . . . . . . . . . 57
3.2.3 Computing Sobolev Gradients . . . . . . . . . . . . . . . 58
3.2.4 Numerical Treatment . . . . . . . . . . . . . . . . . . . . . 59

ix



4 Polar Active Contours 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Polar Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Variational Active Contours . . . . . . . . . . . . . . . . . 65
4.2.2 The Polar Space L . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 The Polar Space H . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Computation of ∇L2 E . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Choosing λ and γ . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Choosing the Origin . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4 Solving the ODE . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.5 Deriving a First Order Correction for φ . . . . . . . . . . 73

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Comparing Different Flows . . . . . . . . . . . . . . . . . 75
4.4.2 Coarse-to-Fine Behavior . . . . . . . . . . . . . . . . . . . 77
4.4.3 Comparison to Classical Sobolev Active Contours . . . . 77
4.4.4 Visual Tracking Applications . . . . . . . . . . . . . . . . 78
4.4.5 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion 85

Appendix 86

A Sobolev Spaces 87

B Other Contributions 91
B.1 Stent Graft Removal for Improving 2D-3D Registration . . . . . . 91
B.2 Monocular Deformable Model-to-Image Registration of Vascular

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.3 Generalization of Deformable Registration in Riemannian Sobolev

Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.4 A General Preconditioning Scheme for Difference Measures in

Deformable Registration . . . . . . . . . . . . . . . . . . . . . . . 94
B.5 Midbrain Segmentation in Transcranial 3D Ultrasound for Parkin-

son Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.6 3D Stent Recovery from One X-ray Projection . . . . . . . . . . . 96

x



1
Introduction

1.1 Objective

The detection and tracking of objects in various kinds of image data are
fundamental tasks in computer vision. It is quite common to formulate these
tasks as optimization or variational problems and a particular class of such
approaches are active contours, which have been introduced by Kass, Witkin,
and Terzopoulos in [54]. The concept of active contours involves the following
three ideas:

1. An object is described by a contour delineating its boundary.

2. The desired configuration of the contour is modeled as a local minimum
of an energy defined on the image data.

3. Starting from an (user-defined) initial configuration the contour mini-
mizes the energy and thus evolves towards the boundary of the object of
interest, cf. Fig. 1.1.

It is important to notice that active contours are designed to provide solutions
to low-level vision tasks, i.e. the detection of lines, edges, and subjective
contours. Thus, they need to be combined with high-level mechanisms which
”can interact with the contour model by pushing it toward an appropriate
local minimum” [54]. In the absence of such a high-level mechanism the user
himself has to interact with the contour by defining its initial configuration and
possibly some additional constraints. Unfortunately, active contours are often
too local, in the sense that they are too much depending on the initialization
or require too many constraints. A typical example for this behavior can be
seen in Fig. 1.1a, where the knife is almost able to prevent the contour from
segmenting the lime. As a consequence, a lot of research has been carried out
in order to make active contours more global. Possible approaches are:

1. Integrating more descriptive cues such as gray value information, color,
texture, or motion, e.g. [20, 28, 33, 82, 119].
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Chapter 1: Introduction

(a) (b)

Figure 1.1: Regularizing Active Contours: Starting from an initial configu-
ration, drawn in red, two active contours evolve towards the boundary of a
lime. Several intermediate configurations are drawn in gray while the final
configuration is drawn in red again. Note that the classical (polar) active
contour gets almost distracted by the knife (a), which is not the case for for the
proposed method (b).

2. Integrating prior shape and appearance information, e.g. [27, 26, 25, 61,
118].

3. Making the variational formulation convex in order to find a global
solution, e.g. [76, 13, 29].

4. Developing high level mechanisms which provide a good initialization,
e.g. [43].

5. Regularize the curve evolution by splitting off rigid components and
making it smoother, e.g. [110, 108, 109, 107, 21].

The contributions of this dissertation are related to the latter approach. In-
spired by [110, 21] and especially [107] we develop a regularization strategy
for polar active contours, i.e. active contours which are based on a polar ob-
ject representation. Polar active contours are particularly useful for several
medical applications such as the segmentation of the left ventricular cavity
from sequential ultrasound (US) data or magnetic resonance imaging (MRI)
[104, 39, 37, 38, 31, 65], the slice-wise segmentation of aortic aneurysms from
US or computed tomography angiography (CTA) data [92, 12, 4], the seg-
mentation of kidneys in sequential US data [36], and the segmentation and
tracking of individual cells [93, 50]. As demonstrated in Fig. 1.1b, the proposed
approach is far less sensitive to undesired local minima and it allows the user
to adjust how much translations and scale changes of the curve are favored
over smooth deformations.

We shall see in Sec. 1.2 that the choice of a particular regularization strategy
has also an impact on the choice of the numerical methods. Thus, a second
contribution of this thesis is the comparison and development of numerical
techniques for the regularization strategies proposed by [21] and [110], but we
do not restrict ourselves to polar descriptions anymore.

2



1.1 Objective

Achieving smoothness is, however, not only a main component of the pro-
posed regularization strategy. In fact, it is a much more general regularization
concept and for this reason we devote Sec. 1.2 to the explanation why achieving
smoothness is so important. As the applications for the methods proposed in
this dissertation are mainly medical, we will also discuss some peculiarities
of medical image segmentation in Sec. 1.3. In Sec. 1.4 we finally explain the
contributions of this thesis in detail, before we proceed with the discussion of
the related work in chapter 2.
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Chapter 1: Introduction

Figure 1.2: The Barber Pole Illusion: The diagonal stripes of a horizontally
rotating pole appear to move upwards when looking at the pole from the front.
Thus, the perceived motion differs from the actual motion of the stripes.

1.2 The Importance of Being Smooth

The continuous improvement of computer vision systems is not only of practi-
cal value, e.g. for the development of image understanding systems, but it also
helps us to understand how the human visual system might work. A good
example is the so-called barber pole illusion, cf. Fig. 1.2, which occurs when a
diagonally striped pole is rotating around its vertical axis. For most people the
stripes appear to be moving vertically rather than horizontally. Interestingly,
standard algorithms for the computation of optical flow are trapped in a similar
way, cf. [89]. The reason for this illusion is that there are multiple motions
explaining the same visual perception making the determination of the optical
flow an ill-posed problem. While humans can use their experience in order to
decide for a particular solution, algorithms require a priori information. Perhaps
the most common a priori assumption is piecewise continuity or smoothness and
we shall now see why.

Avoiding a discussion on how or if the development of computer vision
systems and the research on human vision should influence each other, we
hope that most people will agree that building a computer vision system could
be subdivided in the following way. At first, one usually makes simplifying
assumptions about the world leading to stable descriptions [11], where stable
means that these descriptions should be invariant to lighting conditions, optical
distortions, etc. Often, these stable descriptions are modeled as the solution
to a minimization problem which is finally discretized in order to compute a
numerical solution as depicted in Fig. 1.3. We shall see now that continuity and
smoothness play a crucial role in all these steps1.

1At this point we do not want to make a precise mathematical distinction between continuity
and smoothness.
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1.2 The Importance of Being Smooth

minu E(u)

physical object minimization problem numerical solution

simplifying assumptions mathematical modeling discretization

stable description

process of vision

understanding

Figure 1.3: Modeling Vision: Building a computer vision system involves
the creation of stable descriptions, the mathematical modeling of them, and
finally their numerical computation. The whole process can help to understand
the human visual system as well as the understanding of human vision can
influence the development of computer vision systems.

Simplifying Assumptions and Stable Descriptions

An important part of computer vision consists in implementing so-called early
vision processes, i.e. processes which recover physical properties of the sur-
rounding visible surfaces from two-dimensional intensity data [89]. Typical
early vision processes are edge detection, spatio-temporal interpolation and
approximation, optical flow computation, etc. The output of such processes, as
well as the raw intensity data itself, can be considered as visual data and can
be used for what Blake and Zisserman [11] call visual reconstruction, i.e. the
process of reducing visual data to stable and unambiguous descriptions, where
stable means that these descriptions should be invariant to lighting conditions,
optical blurring and distortion, sampling grain, sensor noise, etc. These two
demands are a consequence of the fact that early vision can be regarded as
inverse optics [89]. In contrast to classical optics or computer graphics, which
are concerned with the generation of images from three dimensional objects
[89], early vision suffers from a loss of information during the imaging process.
This loss of information is due to the technical limitations of the image for-
mation process described above, but also due to the loss of three dimensional
information as a consequence of the projection. In order to compensate for this
loss of information one often incorporates prior assumptions on the surround-
ing world and the perhaps most popular prior is the continuity of surfaces or
along curves [11]. The reason why continuity constraints actually make sense
is that they yield physically plausible solutions due to the coherence of matter,
which gives rise to smoothly varying intrinsic scene characteristics [113]; such

5



Chapter 1: Introduction

(a) (b)

Figure 1.4: Scale Dependency of Continuity Assumptions: The cloth appears
to be continuous at a coarse scale, but at a finer scale its fabrics become
visible and appear as continuous objects themselves (image courtesy of José
Gardiazabal).

assumptions are, of course, depending on the scale, cf. Fig. 1.4.
As noted in [113, 11], global continuity constraints are, however, not always

appropriate, because they fail to model sudden changes in a scene, e.g. in
the case of occlusions. For this reason Terzopolous proposed to use so-called
controlled-continuity constraints [113] which allow for piecewise continuous solu-
tions. It should be noted, however, that in contrast to the pure mathematical
definition of piecewise continuity the enforcement of this property is usually
accompanied by the expectation that ”the fewer pieces the better” [11].

Mathematical Modeling and Variational Problems

As explained in the last paragraph, early vision processes can be regarded
as inverse optics or, put more mathematically, as inverse problems, which are
typically ill-posed. Ill-posedness according to Hadamard [45] means that for a
given mathematical problem at least one of the following conditions is violated:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

Obviously, the requirement for unambiguous solutions directly translates to
the second condition, but also the third condition might be violated in early
vision as in the case of edge detection [89]. In order to render ill-posed early
vision problems well-posed one can incorporate a priori knowledge. This a
priori information enters the arena either in a deterministic or in a probabilistic
way [89], which in most cases leads to either variational or graphical models,
e.g. Markov Random Fields. A connection between these two approaches is
given by a simplified version of Boltzmann’s law [11]. If we formulate an early
vision problem, e.g. the computation of optical flow, in a variational manner,
we typically want to minimize an energy E. If we further denote the solution

6



1.2 The Importance of Being Smooth

to this problem, i.e. the flow field, by u and the probability for the occurrence
of u by Π(u), we have that

Π(u) ∝ e−E(u). (1.1)

Besides this relationship one needs, of course, a way to translate the continuous
energy into discrete clique potentials for instance. This is usually done by
considering finite element discretizations of the variational formulation [112,
100]. In this dissertation, however, we will focus on variational models and
refer the interested reader to recent literature on graphical models such as
[10, 77].

An early vision task rendered in a variational manner usually results in a
minimization problem of the form

min
u∈F

E(u, I), (1.2)

where E is an energy (cost function, potential, data term, etc.), which measures
how well the solution u explains a certain aspect of the acquired image data I,
and F is some function space. In order to simplify the notation, we will omit
the dependency on I in the following. Now, there are mainly two possibilities
of regularizing this problem:

1. Explicit Regularization. The idea of explicit regularization is to consider
an additional energy R, called regularizer, which becomes minimal, if the
computed solution perfectly resembles the a priori assumption modeled
by R. Such a regularizer can now be incorporated in two different ways
[89]. The first possibility is to treat the original energy as a constraint and
solve the following minimization problem:

min
u∈F

R(u), subject to E(u) ≤ ε, (1.3)

where ε > 0 is a user-defined tolerance often depending on the estimated
or expected amount of noise. For this type of regularization one requires
E to be non-negative, which is, however, not a tremendous restriction. The
second possibility, which is often used in the area of image segmentation
and optical flow estimation, is to minimize a linear combination of the
original energy and the regularizer:

min
u∈F

E(u) + λR(u), (1.4)

where the regularization parameter λ > 0 allows the user to control the
compromise between regularization and closeness to the data [89].

2. Implicit Regularization. In contrast to explicit regularization, the incor-
poration of a priori information is achieved by seeking the solution to the
original problem in a subset or subspace S ⊂ F yielding the minimization
problem

min
u∈S⊂F

E(u). (1.5)

The delusive beauty of implicit regularization lies in the fact that there is
no parameter, such as ε or λ as in the case of explicit regularization, but
the choice of a suitable subset or subspace can be very difficult, too.

7



Chapter 1: Introduction

(a) (b)

Figure 1.5: Continuous Functions: Two continuous functions (upper row) with
(a) and without (b) continuous derivative (lower row).

Of course, one can combine an explicit with an implicit regularization in
order to weave in different kinds of a priori information, e.g. S could be chosen
as a space spanned by some statistically trained basis functions and R could
enforce the sparsity of the solution with respect to this basis. However, a
discussion of all kinds of prior information and how they are connected to
the choice of S and R is far beyond the scope of this introduction. As also
the methods presented in this dissertation are closely related to the generic
assumption of smoothness, we will focus on smoothness priors in the following.

In order to design regularizers and function spaces which allow to control
the smoothness of the solution we need a precise mathematical definition of
smoothness and a way to measure it. The key observation to be made is that the
smoothness of a function can be assessed by considering its derivatives as well
as the continuity of them. If we consider the two functions in Fig. 1.5, we can
observe that the function with a continuous derivative has no kinks in contrast
to the function without2. This consideration can be iterated and leads to the
well known concept of Ck functions, where k ∈N indicates that the function is
k-times differentiable and all derivatives are continuous. Obviously, the higher
the k the smoother the function, but how do we compare two functions of the
same class? The fact that such a comparison is necessary becomes visible in
Fig. 1.6. Following our intuition we would consider the function in Fig. 1.6a as
smoother than the function in Fig. 1.6b, although both functions are members
of the same Ck class, i.e. spline curves of the same degree. A good idea for

2The function depicted in Fig. 1.5b is only differentiable in the distributional sense, but this is
not of importance here.

8



1.2 The Importance of Being Smooth

(a) (b)

Figure 1.6: Smooth Functions: Although both functions are members of the
same Ck class everyone would intuitively consider the function in (a) to be
smoother.

distinguishing these two functions is to consider the expression∫
Ω

∣∣u′(x)
∣∣ dx, (1.6)

where Ω is the domain on which u is defined. Functionals of this type can now
be used as (explicit) regularizers and popular choices are for instance the

• total variation
R(u) =

∫
Ω
|∇u(x)| dx (1.7)

which has been introduced in computer vision for denoising purposes
[97], or the

• first order Tikhonov regularizer [115]

R(u) =
1
2

∫
Ω
|∇u(x)|2 dx. (1.8)

At first sight, these definitions only make sense for differentiable functions,
but they can be well generalized to weaker types of differentiability. For the
mathematical details of these generalizations we refer the interested reader to
[35, 101] and focus on providing the geometrical and mechanical, respectively,
interpretation of these regularizers.

Let A be a closed subset of R2 and u : R2 → {0, 1} be the characteristic
function of A:

u(x) =

{
1, x ∈ A,
0, x /∈ A.

(1.9)

Then the total variation of u is exactly the length of the boundary ∂A of A [13].
If u is for instance the output of a binary segmentation problem, the usage of
the total variation as an explicit regularizer would serve as a penalty on the
length of the boundary of the segmentation result.

In contrast to this geometric interpretation of the total variation, the first
order Tikhonov regularizer has a mechanical one. If we consider a thin soap
film attached to a wire frame and neglect the gravity acting on it, the position

9



Chapter 1: Introduction

Figure 1.7: Soap Film: The position of the soap film is well approximated by
the solution of the Poisson equation, the Dirichlet-type boundary condition
corresponds to the position of the wire frame.

of the film at each point above the ground can then be well approximated by
the solution to the variational problemminu

1
2

∫
Ω
|∇u(x)|2 dx, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(1.10)

where g : ∂Ω → R models the position of the wire frame and Ω ⊂ R2 is the
open subset below the wire frame, cf. Fig. 1.7. In other words, the equilibrium
configuration of the sheet approximately minimizes the elastic energy given by
the Tikhonov regularizer [11].

The minimization problem in (1.10) obviously lacks the specification of the
function space in which the solution is supposed to be sought. In the case of
the above discussed minimization problem a minimum requirement on the
function space should be that the energy to be minimized is well-defined, i.e.∫

Ω
|∇u(x)|2 dx < ∞ (1.11)

should hold for all members of this function space. Thus, a proper function
space might be given by the so-called Sobolev space

H1(Ω) =

{
u ∈ L2(Ω) :

∫
Ω
|∇u(x)|2 dx < ∞

}
. (1.12)

For a more mathematical introduction to Sobolev spaces we refer the interested
reader to appendix A or to the excellent book of Evans [35]. The reason why
this Sobolev space is based on L2 is simply due to the fact that L2 is a Hilbert
space and H1 becomes a sub-Hilbert space of L2 by endowing it with the inner
product

〈u, v〉H1 =
∫

Ω
u(x)v(x) dx +

∫
Ω
∇u(x) · ∇v(x) dx (1.13)

= 〈u, v〉L2 + 〈∇u,∇v〉L2 , (1.14)

10



1.2 The Importance of Being Smooth

which is based on the L2 inner product. A Hilbert space framework is very
desirable, because it provides us with several important tools such as the Riesz
representation theorem [35], which we shall use later in order to compute the
gradient of an energy with respect to the employed inner product.

An interesting observation is that the usage of a particular explicit regular-
ization often even enforces that the solution is an element of a certain function
space. If we assume that

‖u‖2
L2 ≤ CE(u) (1.15)

holds for some constant C > 0 and any u ∈ L2(Ω), we may conclude that for
any solution u∗ of the Tikhonov regularized problem the following inequality
holds:

‖u∗‖2
L2 +

∫
Ω
|∇u∗(x)|2 dx ≤ max

{
C,

2
λ

}(
E(u∗) +

λ

2

∫
Ω
|∇u∗(x)|2 dx

)
.

(1.16)
As a solution has, of course, a finite (regularized) energy, we may conclude
that u∗ ∈ H1(Ω). A similar consideration yields that any solution, with finite
regularized energy again, to a problem regularized by the total variation is an
element of the space of functions of bounded variation, i.e. BV(Ω).

Now, one may wonder, if there are any differences between an explicit
regularization using the Tikhonov regularizer and an implicit one with S =
H1(Ω) ⊂ L2(Ω) = F. In fact, there are and in order to get a first impression
we consider the numerical methods for computing a solution, because each
regularization strategy has its own peculiarities on the computational level.

Discretization and Numerical Solutions

At first, we consider the explicit Tikhonov regularized problem

min
u∈L2(Ω)

E(u) + λR(u), (1.17)

where R is the Tikhonov regularizer defined in (1.8). In order to compute a
necessary condition for a minimizer of (1.17) we compute the first variation
F(E + λR, v) of the regularized energy. We choose v ∈ L2(Ω) arbitrarily and
evaluate the regularized energy on the line u + sv, cf. Fig. 1.8. If we assume
that u is already a local minimizer, the following condition must hold:

F(E + λR, v) =
d
ds

[
E(u + sv) +

λ

2

∫
Ω
|∇(u + sv)|2 dx

]∣∣∣∣
s=0

= 0. (1.18)

Thus, the first variation can be considered as a generalized directional derivative.
After some manipulations we usually end up with an expression of the form

F(E + λR, v) =
∫

Ω
(∇E(u)− λ∆u) v dx = 〈∇E(u)− λ∆u, v〉L2 = 0, (1.19)

where ∇E(u) is the gradient of the energy E and −λ∆u is the gradient of the
Tikhonov regularizer. As v was chosen arbitrarily the fundamental lemma of
variational calculus [35] tells us that

∇E(u)− λ∆u = 0, (1.20)
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u

u+ sv

s
s = 0

E(u+ sv)

F

E

Figure 1.8: Computing the First Variation: Evaluating the regularized energy
on the line u + sv leads to a one dimensional function, which has a local
minimum, and thus a vanishing derivative, at s = 0.

which is called the Euler-Lagrange equation of the regularized problem.
By setting v = −∇E(u) + λ∆u in (1.19) we verify that the negative gradient

is the direction in which the (regularized) energy decreases the most:

F(E + λR,−∇E(u) + λ∆u) = −‖∇E(u)− λ∆u‖2
L2 < 0. (1.21)

Thus, we can use the continuous gradient descent

∂tu = −∇E(u) + λ∆u (1.22)

in order to minimize (1.17). Starting with an initial guess u0 one possibility for
solving this evolution equation is to iteratively update the current solution ut

according to
ut+τ = ut − τ

(
∇E(ut)− λ∆ut) , (1.23)

which corresponds to a forward Euler time discretization. Unfortunately, the
usage of the Tikhonov regularizer introduces a severe restriction on the choice
of the step size τ in order to guarantee numerical stability. This restriction
is known as Courant-Friedrichs-Lewy (CFL) condition and reads for the above
described scenario

τ ≤ 1
2dλ

, (1.24)

where d is the dimension of the domain Ω on which u is defined [123]. As
a consequence, the more regularity we enforce by increasing λ, the smaller
we have to choose the step size in order to compute the solution. In order to
overcome this issue one can use a semi-implicit time discretization:

ut+τ = ut − τ
(
∇E(ut)− λ∆ut+τ

)
(1.25)

leading to the update equation

ut+τ = (I − τλ∆)−1 (ut − τ∇E(ut)
)

, (1.26)

12
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which allows for larger time steps.
Next, we consider the implicit H1 regularized problem

min
u∈H1(Ω)

E(u). (1.27)

Similar to the Tikhonov regularized problem we can compute the first variation
in order to obtain the gradient of the energy. As indicated in (1.19), the
computation of the first variation, and thus the computation of the gradient of
the energy, depends on the employed Hilbert space or, more precisely, on the
employed inner product. For this reason the first variation reads

F(E, v) = 〈∇H1 E(u), v〉H1 = 0 (1.28)

leading to the continuous gradient descent

∂tu = −∇H1 E(u). (1.29)

As a consequence, it is incorrect to refer to ∇E(u) in (1.19) as the gradient. Thus,
we call ∇E(u) the L2 gradient of E and write ∇L2 E(u) in the following.

The obvious question is now how to obtain the Sobolev gradient ∇H1 E(u)?
Fortunately, we are in a Hilbert space framework which allows us to use the
Riesz representation theorem, cf. appendix A or [35], which tells us that

F(E, v) = 〈∇H1 E(u), v〉H1 = 〈∇L2 E(u), v〉L2 , (1.30)

because any linear functional such as the first variation has a unique represen-
tation with respect to the used inner product. Using the definition of the H1

inner product and applying integration by parts we obtain

〈(I − ∆)∇H1 E(u)−∇L2 E(u), v〉L2 = 0 (1.31)

and since v was chosen arbitrarily we end up with

(I − ∆)∇H1 E(u)−∇L2 E(u) = 0 ⇒ ∇H1 E(u) = (I − ∆)−1∇L2 E(u), (1.32)

where (I − ∆)−1 can be interpreted as a smoothing operator or projector
mapping ∇L2 E(u) into the Sobolev space H1. Applying a forward Euler time
discretization in (1.29) we end up with the update equation

ut+τ = ut − τ (I − ∆)−1∇L2 E(ut). (1.33)

Setting τ = λ = 1 in (1.26) we can now compare the explicit Tikhonov
regularization with the implicit H1 regularization as follows:

• Applying (I − ∆)−1 to the update ∇L2 E(ut) corresponds to the H1 regu-
larization.

• Applying (I − ∆)−1 to the whole right hand side ut −∇L2 E(ut) corre-
sponds to the Tikhonov regularization.

13



Chapter 1: Introduction

L2 gradient H1 gradient

Figure 1.9: Different Gradients: We compare the L2 gradient and the H1 gra-
dient, which are visualized in the narrow band of a function which represents
the evolving curve (red) by its zero level set. Note that the Sobolev gradient is
much more regular than the L2 gradient. (The image data taken from [2].)

In other words, the H1 regularization ensures that only the computed update is
smooth while the Tikhonov regularization ensures that the solution is smooth.
This assertion can be generalized to many other explicit and, if S is a vector
space, also to many other implicit regularization strategies, cf. Sec. 3.1.4.

Before we proceed with the peculiarities of medical image segmentation in
Sec. 1.3 we wish to point at another important property of H1 regularization.
Consider (1.33) in the frequency domain:

ût+τ(l) = ût(l)− τ

1 + (2πl)2
̂∇L2 E(ut)(l), l ∈ Z, (1.34)

where ·̂ (l) denotes the l-th Fourier coefficient of the corresponding quantity,
cf. [108]. Obviously, the higher the frequency is the larger is the penalty
on it. A consequence of this weighting is the so-called coarse-to-fine behavior
being typical for Sobolev-type implicit regularization strategies. If u is for
instance a function whose zero level set encodes the boundary of an object,
low frequency components of u correspond to the coarse shape of the object
while high frequency components are needed to approximate finer structures.
As the step size for coarser shapes is greater than for finer ones, cf. (1.34), we
observe that the iteratively computed segmentation first converges towards
something one would consider as a rough guess of the shape before adapting to
the finer details of it. This way, the very local behavior of the image is far less
inherited by the gradient of the energy leading to an increased robustness to
undesired local minima, cf. Fig. 1.9. In addition to this coarse-to-fine behavior
an implicit H1 regularization has even more beneficial numerical properties
such as a stable gradient ascent for the backward heat equation [110] or a
preconditioning effect [94].

Summing up, we have seen that there are mainly two possibilities of
translating the abstract a priori assumption of smoothness into mathematical
models, i.e. explicit and implicit regularization, and we got a first impression
on how the choice of such a regularization strategy influences the numerical
techniques to be used for computing a solution.
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1.3 Peculiarities of Medical Image Segmentation

(a) (b)

Figure 1.10: Partial Volume Effect: Due to the coarse sampling (indicated by
the red dots in (a)) the resulting image shows several partial volume effects at
the boundary of the white object. The reason is that both tissue types (black
and white) contribute to the intensity value of the generated image (b) due to
the relatively large influence area of each pixel (gray square in (a)).

1.3 Peculiarities of Medical Image Segmentation

A crucial step in the design of any computer vision algorithm consists in
understanding the image formation process as well as the limitations of the
employed imaging modalities, because these considerations give often a very
good hint which energies and which type(s) of regularization should be chosen.
We will discuss several modality specific limitations which are common in
medical imaging in the following, where we focus on anatomical rather than
functional imaging modalities. Moreover, we will explain how the regulariza-
tion strategies presented in Sec. 1.2 can help to deal with these limitations, if
appropriate. In addition to the modality specific limitations that have to be
taken into account we will also comment on other aspects which should be
considered when designing a segmentation system for medical purposes, such
as interaction, reproducibility, runtime, and evaluation.

Noise The term noise can be traced back to Walter Schottky who made current
fluctuations in electrical circuits audible in 1918 [103]. More generally, any
random and unwanted signal variation is considered as noise, but it is, of
course, far beyond the scope of this introduction to discuss all possible physical
sources of noise. At this point, we shall only note that, first of all, noise is
unavoidable, since any electronic system is at least affected by John-Nyquist
noise due to the thermal agitation of electric charge in conductors [53, 78].
Secondly, the noise model to be used depends significantly on the imaging
modality: While additive Gaussian or Poisson noise models can be used for
photometric imaging, a multiplicative Rayleigh noise model is for instance
used for US imaging, cf. [58].

From a numerical point of view, noise may cause an active contour evolution
to get stuck in an undesired local minimum. The reason is that an active contour
gradient without regularization usually inherits the very local behavior of
the image to be segmented. It can be seen in Fig. 1.9 that an implicit H1

regularization causes the gradient to be more regular and less dependent on
the local behavior of the image. Also explicit regularizations help to avoid
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(a) (b)

Figure 1.11: Image Artifacts: CT image taken from [1] showing streak artifacts
caused by metal implants (a) and T1-weighted MRI image taken from [69]
showing susceptibility artifacts caused by iron oxide particles suspended in
the beeswax dressing in the hair of the patient (b).

getting stuck in an undesired local minimum. Instead of curing symptoms, i.e.
regularizing the gradient, it is, of course, also possible to fight the root of all
evil and regularize or smooth the image itself. It is thus no surprise that the
Tikhonov regularizer and the total variation are also used for variational image
restoration and denoising, e.g. [74, 97].

Partial Volume Effects occur when several tissue types contribute to the
intensity value(s) of a single voxel which results in blurred tissue boundaries
[88], which is illustrated in Fig. 1.10. Partial volume effects become less severe
by increasing the spatial resolution, but even today the inter-slice resolution of
many CT and MRI systems is still significantly worse than the achieved in-slice
resolution.

Intensity Inhomogeneities typically occur in MR imaging, where they are
caused by inhomogeneities and distortions of the magnetic field [88, 124].
As a consequence, voxels of one tissue class may have significantly different
intensity values across the entire image or volume. This hampers the usage
of segmentation methods which assume a constant intensity value per region
such as the well known piecewise constant Mumford-Shah model [74]. A
good strategy of dealing with these artifacts turns out to be the computation
of a so-called bias field along with the segmentation in order to correct the
intensity values and eventually enable the usage of piece wise constant models
again [62]. Interestingly, such methods perform also well on other imaging
modalities such as radiography or US, cf. [62].

Anisotropic Resolution When dealing with two dimensional photometric
image data one often neglects the true image resolution and assumes a unit
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B0(T) WM cGM Caudate Thalamus Putamen Globus pallidus

0.20 361(±17) 635(±54) 555(±19) 522(±44) 524(±19) 411(±20)

1.0 555(±20) 1036(±19) 898(±45) 807(±47) 815(±16) 625(±14)

1.5 656(±16) 1188(±69) 1083(±52) 972(±32) 981(±13) 746(±20)

4.0 1010(±19) 1723(±93) 1509(±53) 1452(±87) 1446(±32) 1143(±27)

7.0 1220(±36) 2132(±103) 1745(±64) 1656(±84) 1700(±66) 1347(±52)

Table 1.1: T1 Relaxation Times: T1 relaxation times of different brain tissues
for varying magnetic field strengths (B0(T)), cf. [95].

pixel spacing. In contrast to this, more care has to be taken when medical
image data has to be processed, because CT and MRI scans often exhibit a
much coarser resolution in one direction. A good example is for instance a
(dynamic) MRI acquisition of short axis slices of the left ventricle which may
have an intra-slice resolution of 1.3mm and an inter-slice resolution of 8mm
[91]. Such differences in the spatial resolution have, of course, to be considered
when PDEs need to be discretized by finite differences which is quite common
in many segmentation and registration algorithms. It should be noted that
the problem of anisotropic resolution is far less pronounced in image data
acquired with modern scanners, such as stat-of-the-art multi slice CT devices.
However, there are still application areas where more attention has to be paid,
e.g. in the case of compounded US sweeps [14].

Imaging Artifacts can have many reasons and depend, of course, on the used
imaging modality. As in the case of noise it would be far beyond the scope
of this introduction to discuss all possible types of imaging artifacts, but the
images in Fig. 1.11 may serve as good examples in order to show how severe
such artifacts can be. It might be possible to deal with such artifacts - at least
to a certain extend - by incorporating prior shape information, but the success
of this strategy depends significantly on the type of the artifacts.

The Leakage Problem occurs when the organ to be segmented is surrounded
by tissue which has the same physical properties. A first example is provided
in Tab. 1.1, where experimentally determined T1 relaxation times of different
brain tissues are given. Obviously, different tissue types can have similar
physical properties, i.e. relaxation times, and thus similar intensity values. As
a consequence, an organ may hardly be distinguishable from the surrounding
tissue, cf. 1.12, and a segmentation algorithm which is guided by intensity
information alone might thus leak into adjacent tissue. Sometimes, the leakage
problem can be overcome by incorporating prior shape information, but the
morphological variability can often limit the applicability of such approaches.

Morphological Variability The difficulties described above often prohibit
the usage of generic segmentation techniques, or more precisely of generic
regularization techniques, which only ensure the smoothness of the solution
for instance. A typical example is the leakage problem described in Fig.

17



Chapter 1: Introduction

(a) (b)

Figure 1.12: The Leakage Problem: The thrombus in the wall of abdominal
aortic aneurysms is often is hard to distinguish from the surrounding tissue.

1.12, because also a smooth curve may leak into adjacent tissue. In order to
overcome such problems one often tries to learn a shape model from a set of
manually segmented instances as suggested by Cootes [27] for instance. Such a
training results in a set of basis functions describing the mean shape and higher
moments of variation for instance, and the function space formed by these basis
functions can then be used for an implicit regularization. A drawback of this
approach is that, if the morphological variability is very high, many training
samples are necessary. In order to demonstrate how huge this variability can
be, we show a collection of abdominal aortic aneurysms in Fig. 1.13.

Interaction There are at least two reasons why fully automatic segmentation
systems would be very desirable for clinical applications. Firstly, generating
manual segmentations from high resolution 3D or even 3D+t data is very time
consuming and often even for diagnostic purposes impracticable, although the
time constraints are less tight than in an interventional scenario. Secondly, the
possibilities for any interaction in an interventional scenario are very limited
due to the fact that the hands of the physicians as well as their assistants
are occupied most of the time. Additionally, any interaction in the operating
room requires a sterile (or at least sterilizable) interaction device or some kind
of gesture or speech recognition system, but even the latter approach might
disturb the work flow too much. On the other hand, it is questionable, if
fully automatic segmentation systems are the ultimate goal for any kind of
application and this question is also closely related to the reproducibility of the
system. A typical scenario would be the segmentation and counting of cells
in histological data sets, which may consist of several gigabyte of data. If the
reproducibility of the result or at least provable bounds for its specificity and
sensitivity can be guaranteed, a diagnostic decision based on a fully automatic
processing might be acceptable.

A different example would be treatment planning for radiation therapy,
where a precise delineation of the tumor(s) is essential in order to protect the
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1.3 Peculiarities of Medical Image Segmentation

Figure 1.13: Morphological Variability: A collection of abdominal aortic
aneurysms acquired with PET-CT and colored by FDG-18 uptake values (image
courtesy of Andreas Maier).

surrounding tissue as best as possible. Thus, radiation therapy without the
possibility of interaction is hard to justify - not only from a legal, but also from
an ethical perspective. Moreover, it should be noted that many physicians
feel more comfortable when having possibilities for interaction. Concisely
put, the ultimate goal is maybe to reduce the amount of user interaction as
much as possible while providing intelligent and comfortable user interfaces
at the same time. As variational methods, which typically involve several
parameters, are of particular interest in this dissertation, we wish to conclude
our considerations regarding the interaction by a simple paradigm: Numerical
parameters, such as the step size for a gradient descent, should always be
chosen by an expert and hidden from the user, whereas model parameters,
such as regularization parameters, should have an intuitive meaning making
them easy to understand and adjust.

Reproducibility is, of course, closely related to the question of interaction,
but we wish to briefly elaborate on the mathematical aspect of reproducibility
here. The result of a segmentation system is, of course, fully reproducible, if
it does not depend on the initialization. Focusing on the scenario described
in the last section, full reproducibility can be guaranteed, if the energy to be
minimized is (strictly) convex. Indeed, a lot of research on convexification has
been carried out during the last six years , but there are cases where such
approaches are not useful as we shall see in Sec. 4.1. Moreover, it is important
to notice that the pose estimation problem cannot be made convex - at least not
with the mathematical tools available so far [29]. A simple example for this fact
is given in Fig. 1.14. Let us assume that the two circles in 1.14a are two organs
and we are interested in just one of them. Even if we are given the perfect
shape model in advance, i.e. a circle, an energy encoding this segmentation
problem is likely to have two distinct local minima and thus cannot be convex.

Runtime The total runtime is, of course, related to the amount of required
user interaction and it depends highly on the number of parameters to be
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(a) (b) (c)

Figure 1.14: Non-convexity of the Pose Estimation Problem: An energy for
segmenting just one of the circles in (a) is likely to have two distinct local
minima - (b) and (c) - and thus cannot be convex.

tuned and on how well the operator can interact with the system via the user
interface. As mentioned above, the time constraints may be less restrictive
in a diagnostic scenario than in an interventional one, where the result of an
algorithm should be available in or close to real time. However, this does not
mean that long computation times are acceptable for diagnostic segmentation
systems. It might be acceptable, if only an initialization is required and the
execution of a segmentation algorithm takes several minutes or even hours,
but, if continuous user interaction is needed, long processing times are hardly
tolerable. For this reason, the development of efficient numerical schemes is
very important, which is also part of this dissertation, cf. Sec. 1.4.

Validation The validation of segmentation algorithms can be performed us-
ing manually segmented ground truth data or either physical or computational
phantoms [88]. Physical phantoms have the advantage that the image acqui-
sition process can be reproduced realistically, but they might have been built
based on simplifying anatomical assumptions. In contrast to this, computa-
tional phantoms may have a realistic anatomy, but may include simplifying
assumptions regarding the image formation process. Manually segmented
ground truth data does not have these disadvantages, but the results are hardly
reproducible due to inter- and intra observer variabilities [18]. As discussed
before, the large anatomical variability of some organs is, of course, another
problem requiring a lot of ground truth data sets to be generated which is very
cumbersome and time-consuming process. A good strategy in order to deal
with all these problems seems to be the automatic combination of multiple
expert and algorithm segmentations in order to obtain better ground truth
segmentations, e.g. [122]. In the future, large data bases, e.g. the cardiac atlas
project (www.cardiacatlas.org), and segmentation challenges, e.g. the MICCAI
grand challenges (www.grand-challenge.org), might become more and more
important. The benefits of such data bases and challenges are that researches
can evaluate their algorithms in a controlled and more objective environment
and the submitted results can be used to improve the ground truth data.
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1.4 Contributions and Outline

The contributions of this dissertation are related to active contour and vari-
ational level set methods as well as their efficient implementation and their
applications to medical image segmentation.

Chapter 2 - Active Contours:
Advertising the Regularization Strategy as a Taxonomy

Most active contour methods solve a minimization problem of the form

min
u∈S⊂F

E(u) + λR(u), (1.35)

where F is a function space providing important mathematical structures, e.g.
a metric, S is a subset or even a subspace of more regular or smooth functions,
and R is a regularizer. We will refer to the choice of S as implicit regularization
strategy and to the choice of R as explicit regularization strategy, cf. Sec. 1.2.
However, active contour methods are often classified with respect to their
contour representation (Lagrangian or Eulerian) or with respect to the features
guiding them towards the desired boundaries (edge-based or region-based),
cf. [62]. As a minor contribution of this dissertation we wish to advertise the
usage of the regularization strategy as an additional taxonomy, because

• the curve representation reflects only the way of solving (1.35) numeri-
cally and

• a feature-based taxonomy does not reveal any information about the a
priori information represented by implicit and explicit regularization.

Besides discussing possible taxonomies we are also going to present a brief
history of active contour methods in chapter 2. Finally, we conclude with
an overview over most articles cited in this thesis, where we classify each
approach based in the taxonomies introduced before.

Chapter 3 - Variational Level Set Methods:
Efficient Methods for H1- and Tikhonov-type Regularized Variational Level
Set Methods

The usage of a regularization strategy, be explicit or implicit, always causes
additional computational complexity. As each type of regularization has its
own peculiarities, the development of efficient numerical techniques is very
important. The contributions proposed in chapter 3 are related to variational
level set methods in general and to the development and comparison of the
efficient numerical techniques for H1- and first order Tikhonov-type regulariza-
tion strategies. Most of the ideas presented in chapter 3 have been published
in the following articles:

• M. Baust, D. Zikic, N. Navab. Diffusion-based Regularisation Strategies for
Variational Level Set Segmentation. Proceedings of the 21st British Machine
Vision Conference (BMVC), Aberystwyth, United Kingdom, 2010.
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• M. Baust, N. Navab. A Fully Implicit Framework for Sobolev Active Contours
and Surfaces. Proceedings of the 33rd Annual Symposium of the German
Association for Pattern Recognition, Frankfurt am Main, Germany, 2011.

Chapter 4 - Polar Active Contours:
Translation, Scale, and Deformation Weighted Polar Active Contours

Chapter 4 contains the main contribution of this dissertation. We translate
the concept of Sobolev active contours [110] to polar active contours and
endow the resulting Sobolev space with a metric which allows the user to
weight translations, scale changes, and smooth deformations of the curve
differently. The proposed method has several medical applications such as the
segmentation and tracking of abdominal aortic aneurysms or the left ventricular
cavity. The ideas presented in chapter 4 can be found in the following articles:

• M. Baust, N. Navab. A Spherical Harmonics Shape Model for Level Set
Segmentation. Proceedings of the 11th European Conference on Computer
Vision (ECCV), Crete, Greece, 2010.

• M. Baust, A. Yezzi, G. Unal, N. Navab. A Sobolev-type Metric for Polar
Active Contours. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Colorado Springs, USA, 2011.

• M. Baust, A. Yezzi, G. Unal, N. Navab. Translation, Scale, and Deformation
Weighted Polar Active Contours. Journal of Mathematical Imaging and
Vision (submitted).

Additionally, we hope that the ideas and results presented in chapter 4 convince
the gentle reader that the careful design of implicit regularization strategies
is a powerful alternative to the convexification of active contour approaches in
order to make active contours more global, cf. Sec. 1.1.

Chapter 5 - Conclusion

In chapter 5 we sum up our findings and discuss several possible directions
for further research.

Appendix

As the ideas presented in this thesis rely heavily on the concept of Sobolev
spaces, we present a brief but more mathematical introduction to Sobolev
spaces along with some important theorems in appendix A. Finally, all contri-
butions which are not covered by this thesis are listed in appendix B.
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2
Active Contours

In this chapter we wish to give an overview over the vast body of literature
on active contours. However, it is needless to say that this overview cannot be
exhaustive as there are over 10 000 citations1 of the original work of Kass et al.
[54]. As a consequence, we aim at providing a rough impression of the historical
as well as the methodological developments in the field of active contours
during the last decades. We start by discussing some important influences from
other research areas such as front propagation methods, shape modeling, or
variational image restoration in Sec. 2.1. Next, we present possible taxonomies
for active contour methods in Sec. 2.2 and employ them for classifying a
selection of related works. Thereby, We hope to convince the reader that
regularization is a very useful taxonomy.

2.1 Chronological Overview

Many advances in the area of active contours are due to influences from
other research areas such as front propagation methods, shape modeling, edge
detection, variational image restoration, and graphical models. For this reason,
the history of active contour methods cannot be fitted into a single time line.
For a first impression on how diversified the connections to other research areas
are, we refer to Fig. 2.1. Of course, Fig. 2.1 highlights only a few connections to
other areas, but these will be enough to explain why they actually exist.

1According to Google Scholar, August 2011.
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Sundaramoorthi et al.
and Charpiat et al.
Sobolev active contours

Figure 2.1: Some Important Influences from Other Research Areas: Some assignments such as the one of active shape models to the
area of shape modeling might, of course, be subject for debate, but we want to emphasize that the main goal of this illustration is to give
an impression rather than providing a sharp differentiation.
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2.1 Chronological Overview

Shape Modeling and Edge Detection

As indicated in Fig. 2.1, some roots of active contours can be found in the
areas of shape modeling and edge detection. The general principle of active
contours, i.e. the optimization of an error-measure or cost, which can be
regarded as an energy, over a set of basis functions, can already be identified in
the rubber mask technique of Widrow [125, 126] from 1973. Rubber masks are
deformable templates which have been proposed for automatic chromosome
analysis and classification. While this technique is somewhere in between
model-based registration and segmentation, there is a closer ancestor of active
contours proposed by Schudy who developed a method for locating the moving
endocardial surface from US data in 1981 [104]. Schudy [104] uses already
an implicit regularization, i.e. a spherical harmonics parametrization, and
minimizes a cost function. In contrast to this, active contours only use a
different cost function, e.g. based on ideas of Marr and Hildreth [68], a different
implicit regularization, i.e. splines, and an additional explicit Tikhonov-type
regularization.

Active contours again influenced the area of shape modeling by the well
known active shape models proposed by Cootes [27] which employ an im-
plicit regularization by a set of basis functions computed from a collection
of training shapes. Often, this set of basis functions is obtained by princi-
pal component analysis of the coefficients of the employed parametrization.
Typical parametrizations are splines [26], (spherical) harmonics [106, 111, 55],
wavelets [75], signed distance functions [61, 118], or logarithm of odds based
representations [90]. These efforts led, however, to more fundamental questions
such as how to compute an average shape in a correct manner [129], because
computing statistics in flat parameter spaces might not always lead to mean-
ingful shapes as noted in [86] and illustrated in Fig. 2.2. As a consequence,
one always has to perform such computations with respect to the underlying
manifold and the metric defined on it. The role of the metric should not be
underestimated which has for instance been demonstrated by Michor and
Mumford [71] who found that it makes no sense to measure distances between
two curves using the classical L2 metric. Such considerations again led to a
much deeper understanding of active contours and eventually to Sobolev active
contours, cf. Sundaramoorthi et al. [107, 108, 109, 110] and Charpiat et al. [21],
which are also the basis for many ideas presented in this dissertation.

Level Set Methods

The level set method introduced by Osher and Sethian in [81] was originally
developed for tracking fronts whose speed depends on the local curvature,
which is the case for crystal growth and flame propagation for instance, but
soon after their introduction it has been used as an alternative implementation
for active contours. Representing the evolving contour as the zero level set
of an embedding function and evolving this function instead has two main
advantages. Firstly, topological changes can be handled naturally. Secondly, no
thought about the parametrization of the curve has to be wasted, because the
parametrization of the curve, i.e. the zero level set, is automatically intrinsic.
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Chapter 2: Active Contours

Figure 2.2: Computing Statistics on Manifolds: Computing the mean value
of the black points with respect to their two dimensional coordinates yields
a different result (red square) than computing it with respect to the dashed
manifold (red point).

As the necessity for removing the dependency on the parametrization of active
contours and the convenient handling of topological changes became obvious
in [15, 66] the level set method entered the arena of active contours. Soon after
its introduction it also smoothed the way for the well-known geodesic active
contours [16, 56].

Several years later, a variant of the level set method the so-called variational
level set method [130] became famous by the work of Chan and Vese [20] who
used this method for modeling and minimizing a two phase piecewise constant
variant of the Mumford-Shah model [74]. The advantage of the variational level
set method is that the evolution equation for the embedding function is derived
from an energy which is defined for the embedding function itself. In contrast
to this, most approaches which are based on the original level set method
derived a so-called speed function from an energy defined on the contour and
used this speed function for advecting the embedding function, which requires
the extension of this speed function to (at least) a narrow band around the
zero level set. Besides this obsolete extension step, the main advantage of the
variational level set method is that the design of energies using smeared-out
approximations of the Heaviside and Dirac distribution is very convenient. On
the other hand, it should be noted that such Eulerian techniques are always a
bit less geometric in the sense that the evolution of the zero level set might be
different from the evolution of the curve it represents.

Graphical Models and Variational Image Restoration

Graphical models are graph-based probabilistic models, where the nodes repre-
sent (groups of) random variables and the edges the probabilistic relationship
between them [10]. The way of decomposing the joint distribution over all of
these random variables into a product of factors which depend only on subsets
of these variables is then captured by the connectivity relationships modeled
by the graph. Depending on whether this graph is directed or not, we call the
graphical model either Bayesian network or Markov random field (MRF) [10]. Such
a MRF formulation for image restoration has been proposed by Geman and
Geman in 1984 [40] which is also closely related to the spatially continuous and
variational formulation of Mumford and Shah [74]. As visualized in Fig. 2.1,
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2.1 Chronological Overview

these two models had a significant influence on active contour methods. The
reason for this development lies in the nature of active contours itself. Active
contours are designed for interactive image interpretation and the solution of
low-level vision problems such as the detection of edges, lines, and subjective
contours by means of energy minimization. The focus is thereby on ”energy
functions whose local minima comprise the set of alternative solutions available
to higher-level processes” [54]. In other words, active contours are local on
purpose and designed to depend on the initialization. For some applications,
however, their very local behavior as well as their strong dependency on the
initialization might not be desired. A first hint on how active contours can be
globalized is provided by the observation that there are in two possible ways
of describing an object, cf. [57]. One possible way is to describe it by the prop-
erties of the boundary, e.g. a high magnitude of the image gradient. Another
possibility consists in finding one or more features, e.g. object color or texture,
by which the object region itself can be distinguished from the background.
In the simplest case, the object can be described by a different gray value
leading immediately to the piecewise constant Mumford-Shah model [74]. Vice
versa, the class of piecewise constant images is very easy to segment by active
contours making it even more comprehensible why incorporating ideas from
variational image restoration have been used for globalizing active contours.
One of the first approaches on the way to region based active contours can be
seen in the region competition approach of Zhu and Yuille [131], but a more
direct application of the ideas presented in [74] was however presented by Tsai
et al. [119] as well as Chan and Vese [20]. The combination of [20] with ideas
from total variation based denoising [97] and convex optimization [76] finally
led to the first convex active contour models, e.g. [13].

27



Chapter 2: Active Contours

2.2 Taxonomies for Active Contours

Besides regularization, there are several other possibilities of classifying ac-
tive contour methods such as the way they are implemented, the question of
convexity, and the features they employ. In Tab. 2.1 we tried to classify most
of the cited articles in this thesis based on these taxonomies. The selection of
the presented articles is, of course, biased due to the fact that this dissertation
mainly focuses on Sobolev-type implicit regularizations and medical applica-
tions. For this reason, we put less emphasis on convex approaches, e.g. [13],
various ways of integrating color, texture, and motion information, e.g. [82, 83],
or shape and appearance models [26, 25], but we still hope that the reader gets
a good impression on the diversity of the vast literature on (generalized) active
contour methods. Further, we hope that the presented overview convinces the
reader that regularization is a very distinctive taxonomy. Before that, however,
we want to briefly recall the above mentioned criteria.

Implementation

There are several ways of implementing a curve or surface evolution:

• The Lagrangian approach aims at tracking each (infinitesimal or dis-
cretized) surface element as it evolves through space and time. A typical
example would be the discretization of a curve by splines [54].

• The level set method (LSM), cf. [81], corresponds to the Eulerian way
of evolving a curve or surface by discretizing the surrounding space,
representing the surface by the zero level set of a so-called embedding
function, and evolving this embedding function instead of discretizing
and evolving the curve or surface itself.

• The variational level set method (VLSM), cf. [130], is also often used
for curve and surface evolution as it allows for flexible modeling as well
as the direct derivation of the evolution equation for the embedding
function, cf. Sec. 2.1 and chapter 3.

• In order to include convexified active contour methods, e.g. [13], we also
consider labeling functions, i.e. functions taking values in the range from
0 to 1. As these methods evolved from the variational level set method
we term them convex variational level set methods (cVLSMs).

The categories given above lead, however, to the wrong conclusion that a
clear distinction between a Lagrangian and an Eulerian approaches is always
possible. In fact, it may happen that an (Eulerian) approach based on the level
set method, requires a (Lagrangian) polygon representation for re-initializing
the embedding function to a signed distance function, e.g. [15]. Vice versa,
even with a polygon representation at hand it might be better to compute
quantities such as the curvature using a level set representation, cf. [110].
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2.2 Taxonomies for Active Contours

Convexity

Another important classification criterion is whether the minimized energy
is convex or not. Although the answer to this question is a binary one, the
following aspects should be considered:

• Minimizing a convex energy one usually expects to find a global min-
imum, but it should be noted that the convexified version of the well-
known Chan-vese model [20] for instance, which is discussed in [13], is
only convex but not strictly convex, cf. Sec. 3.1. Moreover, convexity
is often achieved by so-called relaxation techniques, which means that
one actually computes a soft segmentation, i.e. a function taking values in
[0, 1]. As a consequence, there are several global minimizers which can
be obtained by thresholding this soft segmentation [76, 13]. In practice,
however, it turns out the that computed soft segmentation is often almost
binary making the selection of the threshold a negligible issue.

• Active contours are meant to be local, because the original intention of
active contours is to find local solutions to the edge detection problem.
In [54] it is mentioned that some high level mechanism could interact
with the contour model by ”pushing it toward an appropriate local
minimum”. The most obvious high level mechanism is, of course, the
user itself and for this reason, the original approach contained also an
energy modeling user constraints. The current efforts for convexifying
variational approaches in computer vision are for sure important and
interesting, but convex approaches might not always provide us with
meaningful results as it is demonstrated in Sec. 4.1. Another important
aspect is that there is - at least so far - no way to convexify the pose
estimation problem, even if prior shape information is available, cf. [29].
Besides making the above mentioned high level mechanism obsolete
by means of convexification, the intelligent design of such high level
mechanisms might be another promising research direction. An excellent
example is given by the the work of Grbić et al. [43], where the initial
position of a complex shape model of the heart is found in a very elegant
and robust way based on state of the art machine learning algorithms.

However, it should be noted again that we consider convexified approaches
only in order to complete the picture rather than providing an exhaustive
overview on them.

Driving Features

A relatively common taxonomy are the features by which the evolution of
the contour or surface is driven. One typically distinguishes between edge-
based and region-based approaches. Edge-based features are the gradient
magnitude for instance, or any other response of an edge detector. Possible
region-based features could be gray value, color, or texture; for a good overview
we refer to [28]. If both kinds of information are used, we call the approach
hybrid. In addition to these categories we introduce the category generic
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Chapter 2: Active Contours

in order to indicate that an approach focuses on a certain optimization or
regularization strategy rather than on the usage of certain features or on a
particular application.

As in the case of implementation, a clear distinction is sometimes not
possible as it is shown by the following example. Denoting the evolving contour
or surface by S , one could argue to the incorporation of region information
often involves the minimization of the weighted area integral∫

intS
f dx, (2.1)

where f : Ω→ [0, ∞) is a function encoding this information and intS denotes
the region enclosed by S . The simplest choice f ≡ 1, however, leads to the
balloon force proposed by Cohen and Cohen [23], but this model is used in
several approaches such as the geodesic active contours [16, 56] which are often
considered as edge-based. Such considerations might be pedantic, because the
region information is only generic, but we want to avoid the impression that
the classifications in Tab. 2.1 are considered as unalterable.

Regularization

Most of the approaches in Tab. 2.1 are related to a minimization problem of
the form

min
u∈S⊂F

E(u) + λR(u), (2.2)

where u is either an Eulerian or Lagrangian representation of the curve or
surface, S is a subset of a function space F, and R is an explicit regularizer.
The distinction between S and F is needed, because as in the case of level set
methods, the restriction to the set of signed distance functions comprises an
implicit regularization, but this set is not a function space. Thus, structural
properties, such as a vector space structure or a metric, have to be provided
by a function space containing this subset, e.g. L2. Often, S is chosen as a
subspace of F spanned by a finite number of basis functions, such as (spherical
harmonics), wavelets, or eigenmodes with respect to some parametrization,
but also infinite dimensional choices, such as H1 or C∞, are possible2. As
far as explicit regularizers are concerned we can distinguish between regu-
larizers based on derivatives of u, such as Tikhonov-type regularizers [113],
total variation based regularizers, signed distance regularizers (cf. [63, 64]),
curvature based regularizers, or the curve length3, and regularizers based on
the coefficients of some parametrization of u. A typical example for the latter
case are regularizers which encode assumptions on the distribution of the
trained basis functions, e.g. [29].

2Of course, when implementing an algorithm one always ends up with a finite dimensional
representation, but we want to indicate the conceptual difference at this point.

3The derivative is often hidden in the definition of the arc-length.
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approach year implementation convex driving features explicit regularization implicit regularization

Widrow [125, 126] 1973 deformable pat-
tern matching

- region-based thresholds on parameters parametrized stereotypes

Schudy [104] 1981 Lagrangian - region-based - (spherical) harmonics

Terzopoulos [113] 1986 Lagrangian - generic Tikhonov-type splines

Kass et al. [54] 1988 Lagrangian - edge-based Tikhonov-type
& user constraints

splines

Friedland et al. [39] 1989 Lagrangian - edge-based finite difference based
smoothness regularizer

MRF-parametrized
polar description

Terzopoulos & Metaxas
[114]

1991 Lagrangian - generic Tikhonov-type super-quadrics

Cootes et al. [27] 1992 Lagrangian - edge-based coefficient regularizer set of trained
basis functions

Figueiredo [37] 1992 Lagrangian - region-based finite difference based
smoothness regularizer

MRF-parametrized
polar description

Caselles et al. [15] 1993 LSM - edge-based curve length signed distance functions
Chohen & Cohen [23] 1993 Lagrangian - edge-based Tikhonov-type finite elements
Pentland [87] 1993 Lagrangian - n/a n/a eigenmodes
Vemuri et al. [121] 1993 Lagrangian - edge-based Tikhonov-type wavelets

Malladi et al. [66] 1994 LSM - edge-based curve length signed distance functions

Caselles et al. [16] 1995 LSM - edge-base weighted
curve length

signed distance functions

Kichenassamy [56] 1995 LSM - edge-based weighted
curve length

signed distance functions

Malladi et al. [67] 1995 LSM - edge-based curve-length signed distance functions

Dias et al. [31] 1996 Lagrangian - region-based finite difference based
smoothness regularizer &
additional constraints

MRF-parametrized
polar description31
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Floreby et al. [38] 1996 Lagrangian - edge-based Tikhonov-type polar description
Staib & Duncan [106] 1996 Lagrangian - edge-based coefficient regularizer harmonics
Szekely et al. [111] 1996 Lagrangian - edge-based curvature-based eigenmodes based on

spherical harmonics
parametrization

Zhao et al. [130] 1996 VLSM - generic n/a signed distance functions

Caselles et al. [17] 1997 LSM - edge-base weighted
curve length

signed distance functions

Xu & Prince [127] 1997 Lagrangian - edge-based Tikhonov-type splines
Yezzi et al. [128] 1997 LSM - edge-based weighted curve length signed distance functions

Schnörr [102] 1998 cVLSM X region-based total variation BV

Denzler & Niemann [30] 1999 Lagrangian - edge-based Tikhonov-type polar description
Gomes & Faugerás [41] 1999 LSM n/a generic n/a signed distance functions

with additional PDE con-
straints

Kelemen et al. [55] 1999 Lagrangian - edge-based coefficient regularizer eigenmodes based on
spherical harmonics
parametrization

Leventon et al. [61] 2000 LSM - hybrid coefficient regularizer eigenmodes based on
signed distance functions

Tsai et al. [119] 2000 Lagrangian - hybrid curve length signed distance functions

Chan & Vese [20] 2001 VLSM - region-based weighted curve length signed distance functions

Paragios & Deriche [83] 2002 LSM - hybrid weighted curve length signed distance functions
Tsagaan et al. [117] 2002 Lagrangian - edge-based shape-regularizer Non-Uniform Rational

B-Spline

Tsai et al. [118] 2004 VLSM - generic - eigenmodes based on
signed distance functions

Chambolle [19] 2004 cVLSM n/a generic total variation n/a
Fernandez [36] 2004 Lagrangian - region-based finite difference based

smoothness regularizer
MRF-parametrized
polar description
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Hintermüller & Ring [47] 2004 VLSM - hybrid Tikhonov-type preconditioner could be
considered as projector
into a certain subspace

Hu et al. [50] 2004 Lagrangian - edge-based Tikhonov-type polar description
Ray et al. [93] 2004 Lagrangian - region-based curve length polar description

Ho et al. [48] 2005 LSM n/a generic - unstructured point cloud
Li et al. [63] 2005 VLSM n/a generic signed distance regularizer L2

Morse et al. [72] 2005 LSM - edge-based curve length radial basis functions
Yezzi & Mennuci [129] 2005 LSM n/a generic - L2, but endowed

with conformal metric

Nikolova et al. [76] 2006 cVLSM X generic total variation labeling functions
normalized to [0, 1]

Charpiat et al. [21] 2007 LSM n/a generic n/a H1 & C∞

Bresson et al. [13] 2007 cVLSM X hybrid total variation labeling functions
normalized to [0, 1]

Eckstein et al. [34] 2007 Lagrangian n/a generic n/a H1

Nain et al. [75] 2007 Lagrangian - region-based - eigenmodes based on
spherical wavelets
parametrization

Slabaugh et al. [105] 2007 VLSM - region-based curve length anisotropic radial
basis functions

Sundaramoorthi et al.
[110]

2007 LSM n/a generic n/a Sobolev spaces in general,
H1 in particular

Cremers et al. [29] 2008 cVLSM X(only shape) generic coefficient regularizer trained labeling functions
normalized to [0, 1]

Gooya et al. [42] 2008 VLSM - hybrid - signed distance functions
Huang et al. [52] 2008 VLSM - hybrid - signed distance functions &

free form deformations
Lankton et al. [59] 2008 VLSM - hybrid - signed distance functions
Li et al. [62] 2008 VLSM - region-based signed distance regularizer

& curve length
L2
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Liang et al. [65] 2008 Lagrangian - edge-based Tikhonov-type & shape reg-
ularizer

polar representation

Paragios et al. [84] 2008 VLSM - generic shape regularizer signed distance functions
Sundaramoorthi et al.
[108]

2008 LSM - generic - H1

Sundaramoorthi et al.
[109]

2008 LSM - generic - H1

Bar et al. [3] 2009 VLSM - generic - H1 & C∞

Benoit et al. [73] 2009 VLSM - generic - non-Euclidean image-
adaptive
radial basis functions

Bernard et al. [8] 2009 VLSM - generic - B-splines
Collewet et al. [24] 2009 Lagrangian - area-based Tikhonov-type spherical harmonics

Li [64] 2010 VLSM - generic signed distance regularizer L2

Baust & Navab [4] 2010 VLSM - generic coefficient regularizer spherical harmonics
Baust et al. [7] 2010 VLSM - generic Tikhonov-type L2

Chen et al. [22] 2010 LSM - generic - signed distance functions
including an elegant velocity
projection

Sundaramoorthi et al.
[107]

2010 LSM - generic - H1

Baust et al. [6] 2011 Lagrangian - generic - H1 & polar description
Baust et al. [5] 2011 VLSM - generic - signed distance functions &

H1 for zero level set

Table 2.1: Related Work on Active Contours: Approaches in red are closely related to this dissertation.
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3
Variational Level Set

Methods

The core idea of active contours [54] is to evolve a curve c towards the desired
object boundaries via the evolution equation

∂tc = Fn, (3.1)

where F is a speed function depending on the image and n denotes the unit
outward normal of c. A possible way of implementing this evolution is the
level set method [81, 79, 80] which relies on an implicit representation of the
evolving curve c or surface S . In order to simplify the notation we will denote
any curve or surface by S ⊂ Ω ⊂ Rd (d = 2, 3) throughout the rest of this
chapter. Now, we can represent S as the zero level set of a signed distance
function φ : Ω ⊂ Rd → R defined as

φ(x) =


−d(x,S), if x is inside S ,
0, if x is on S ,
+d(x,S), if x is outside S ,

(3.2)

where d(x,S) denotes the (Euclidean) distance to the surface at x, cf. Fig. 3.1.
The two main advantages of the level set approach are that topological changes
during the evolution are handled automatically and that no care about the
parametrization of the surface has to be taken.

Instead of directly evolving the curve or surface we then evolve the embed-
ding function φ by solving the advection equation

∂tφ = Fn · ∇φ = F
∇φ

|∇φ| · ∇φ = F |∇φ| , (3.3)

where we have used the fact that the unit outward normal of S is given by
n = ∇φ/ |∇φ|. At first sight, this Eulerian approach to curve evolution seems
to be very convenient, but the gained advantages are not for free and the
following aspects should be considered:
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Figure 3.1: Signed Distance Representation: A circle (red) is implicitly repre-
sented by a signed distance function.

1. Using an n + 1 dimensional embedding function in order to store an
n dimensional surface is not very efficient from a computational point
of view. In order to achieve a memory footprint which is comparable
to the one of Lagrangian approaches one has to restrict the embedding
function to a narrow band storing only the function values which are in a
small vicinity of the zero level set. It is, however, not trivial to find an
efficient data structure for storing the narrow band and a lot of research
has been carried out in this area. For a more recent article on this topic
we recommend the paper of Houston et al. [49].

2. The speed function F is usually derived for the evolving curve or surface
and thus only defined on the zero level set. As a consequence, F has to
be extended to the narrow band mentioned above [79, 80].

3. The numerical solution of (3.3) requires the usage of upwind schemes,
i.e. special finite difference schemes which adapt to the direction of
information propagation, in order to guarantee numerical stability, cf.
[79]. In addition to this, the embedding function usually deviates from
being a signed distance function during the evolution making periodic
re-initialization or the usage of additional regularizers necessary [85, 63].

A popular variant of the level set method has later been proposed by Zhao
et al. which is called the variational level set method [130] and a well-known
application of the variational level set method to image segmentation is the
work of Chan and Vese [20]. The main difference to the classical level set
method is that the evolution equation is derived for the embedding function
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itself. In contrast to this, the evolution equation for the classical level set method
is just a plain advection equation where the speed function has been extended
to the narrow band, cf (3.3).

It is important to note though that the variational level set method is not
geometric, cf. [22]. The reason is that computing the first variation with respect
to the embedding function is different from computing the first variation with
respect to the curve or surface itself, because the set of curves for instance is
a manifold, cf. [70], while the space of corresponding embedding functions is
usually treated as a flat function space1. As a consequence, also the evolution
of the zero level set of φ may be different from the evolution of S .

Nevertheless, the variational level set method has been used extensively
for image segmentation purposes during the last decade and this success
has mainly two reasons. Firstly, for plain segmentation purposes only the
final configuration of the zero level set may be of interest and not the way of
getting there. The situation is, however, very different for tracking applications,
cf. [108], where the object in the subsequent frame may only be found by a
geometrically meaningful evolution. Secondly, the variational level set method
can be summarized by a flexible and simple recipe:

1. Use approximations of the Heaviside function and its distributional
derivative, such as the C2 continuous and compactly supported functions

H2,ε(φ) =


0, φ < ε,
1
2 + φ

2ε +
1

2π sin(πφ
ε ), |φ| ≤ ε,

1, ε < φ,

(3.4)

δ2,ε(φ) =

{
1
2ε +

1
2ε cos(πφ

ε ), |φ| ≤ ε,
0, |φ| > ε,

(3.5)

as described in [79], in order to design an energy E such that the desired
configuration of φ is at least a local minimum of

min
φ∈SSDF⊂L2

E(φ), (3.6)

where SSDF denotes the set of signed distance functions.

2. Apply the calculus of variations in order to obtain ∇L2 E(φ):

d
ds

E(φ + sψ)

∣∣∣∣
s=0

=
∫

Ω
∇L2 E(φ) · ψ dx = 〈∇L2 E(φ), ψ〉L2 = 0. (3.7)

3. Solve (3.6) via gradient descent, which leads to the continuous evolution
equation

∂tφ = −∇L2 E(φ) (3.8)

1One may argue that the set of valid embedding functions, i.e. the set of all embedding
functions which correspond to a shape, is also a manifold. However, in most articles on variational
level set methods this fact is largely ignored and the first variation is computed with respect to the
flat function space L2(Ω) = {u : Ω→ R : ‖u‖L2 < ∞}.
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and the discrete update equation obtained by a forward Euler discretiza-
tion of ∂tφ:

φt+τ = φt − τ∇L2 E(φt). (3.9)

Thereby, we have to re-initialize φt from time to time in order to guarantee
that φt ∈ SSDF.

As already indicated in (3.7), the recipe described above assumes a standard
L2 framework leading to a L2 gradient descent. Unfortunately, the L2 gradient
is, to put it simply, too local and therefore prone to lead into an undesired
local minimum (cf. [21, 110] or Fig. 1.9). Thus, either explicit or implicit
regularization strategies are necessary.

In the remainder of this chapter we shall consider explicit Tikhonov-type
as well as implicit H1-type regularization strategies for variational level set
methods. We will shine a light on the connection between these two strategies
in the non-geometric case in Sec. 3.1 and we will try to develop an almost
geometric H1-regularized variational level set method in Sec. 3.2.

3.1 The Non-geometric Case

In this section we discuss possible explicit and implicit regularization strategies
for variational level set methods in the non-geometric case with particular
emphasis on H1-regularization and first-order Tikhonov-type regularizations.
By non-geometric we mean that not only the first variation is computed with
respect to the flat function space L2(Ω), but also that the assumption of φ
being a signed distance function may be completely dropped. A consequence
of this relaxation is that the support of the smeared-out Heaviside and Dirac
distributions is then depending on the slope of the embedding function. This
might seem suspicious at first sight, but we will present a general framework
for variational level set methods now, which will help us to understand the
implications of this relaxation much better.

3.1.1 Generalizing Variational Level Set Methods

We are going to present a general framework which will allow us to classify
not only variational level set approaches, but also convexified approaches such
as the one presented in [13]. As a byproduct, we gain a deeper insight into the
problem of convexifying active contour methods and the associated problems.

Considering variational level set methods from a very abstract point of view
one can identify the following ingredients:

• A function space F which is at least endowed with a metric, such as a
Banach or Hilbert space, e.g. F = L2(Ω),

• a subset S ⊂ F of this function space which actually contains the embed-
ding functions and allows us to weave in an implicit regularization, e.g.
the set of signed distance functions,

• an explicit regularizer R : F → R, e.g. a Tikhonov-type regularizer,
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3.1 The Non-geometric Case

• a differentiable binarization operator B : R → [0, 1], e.g. B = H2,ε in
(3.4), which allows us to formulate weighted area integrals∫

Ω
B(±φ) f dx, (3.10)

and a weighted surface integral∫
Ω

B′(φ)∇φ · ∇φ

|∇φ| g dx =
∫

Ω
B′(φ) |∇φ| g dx, (3.11)

where f , g : Ω→ R can depend on the embedding function φ as well as
the image data to be segmented, and finally

• a reprojection operator P : F → S which can be used to project iteratively
computed solutions back into the set S, e.g. the re-initialization of a
function to a signed distance function.

Putting everything together we might end up with a minimization problem of
the form

min
φ∈S⊂F

E(φ) + λR(φ), (3.12)

where E is for instance given by

E(φ) =
∫

Ω
B(φ) f dx + γ

∫
Ω

B′(φ)g |∇φ| dx. (3.13)

Depending on the function space F as well as the structure of minimization
problem in (3.12) we can choose different algorithms for computing the solution
to (3.12), but during the following considerations we will rely on gradient
descent. In order to be able to compute gradients, a Hilbert space framework
would be desirable and so we assume that F = L2(Ω) in the following. This
allows us to formulate a generic optimization strategy for solving (3.12):

1. Compute the first variation of the regularized energy

d
ds

[E(φ + sψ) + λR(φ + sψ)]

∣∣∣∣
s=0

= 〈∇L2 E(φ) + λ∇L2 R(φ), ψ〉L2 = 0.

(3.14)

2. Perform a gradient descent

φt+τ = φt − τ
[
∇L2 E(φt) + λ∇L2 R(φt)

]
. (3.15)

3. Use the reprojection operator P in order to guarantee that the updated
solution φt+τ is still an element of S, if necessary. If the subset S has a vec-
tor space structure, it is only necessary to project ∇L2 E(φt) + λ∇L2 R(φt)
onto S before applying the update step in (3.15). In the case of signed
distance functions this is for instance not the case and thus one has to
re-initialize the updated solution φt+τ .

Based on these very general considerations we will now review several
implicit and explicit regularization strategies.
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Chapter 3: Variational Level Set Methods

3.1.2 Implicit Regularization Strategies

As discussed in Sec. 1.2 it is, of course, possible to combine an implicit with an
explicit regularization, but in order to simplify the following considerations
we will assume w.l.o.g. that no explicit regularization is used.

Signed Distance Functions

An implicit regularization corresponds to the choice of S in (3.12) and the most
common example for such an implicit regularization is probably the restriction
of φ to the set of signed distance functions. Unfortunately, signed distance
functions do not form a function space in the mathematical sense as the sum
of two signed distance functions is not a signed distance function for instance.
As a consequence, we need to periodically re-initialize the computed updates
φt+τ , cf. [67, 20, 130]. This also determines the re-projection operator P, but
we will avoid a discussion on how to implement this re-initialization and refer
the interested reader to [85] and [79] instead. Finally, it should be mentioned
that Chen et al. recently proposed a technique for converting level set gradients
to shape gradients [22]. This technique tries to modify the computed update
such that the resulting function is again a signed distance function, but it is
unfortunately only applicable in two dimensions - at least so far.

The choice of the set S is closely related to the choice of the binarization
operator. One possibility in the case of signed distance functions is B = H2,ε,
cf. (3.4), but we will see now why this is perhaps not the best choice. If we
assume that E has the generic form described in (3.13) and that there is no
explicit regularization, the gradient descent step in (3.15) can be written as

φt+τ = φt − τB′(φt)U(φt), (3.16)

where U(φ) =
[

f − γdiv
(

g ∇φ
|∇φ|

)]
. Having a closer look at (3.16) we observe

that the velocity of the level sets

φt
c =

{
x ∈ Ω : φt(x) = c ∈ R

}
(3.17)

is not only depending on the step size τ, but also on the derivative of the
binarization operator B′(φt), which is also visualized in Fig. 3.2a. We observe
that for the choice B(φ) = H2,ε(φ), cf. (3.4), only the level sets for c ∈ (−ε,+ε)
are evolving. This restricts the evolution to a narrow band

Nε = {x ∈ Ω : δ2,ε(φ) > 0} (3.18)

around the zero level set, cf. Fig. 3.2.
In contrast to this, Chan and Vese [20] proposed to use the C∞ continuous

and non-compactly supported approximation of the Heaviside function

Hε(φ) =
1
2

(
1 +

2
π

arctan(
φ

ε
)

)
(3.19)

causing all level sets to evolve. Although E in (3.13) is in general not convex,
Chan and Vese argue that by using a non-compactly supported approximation
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+ε

−ε

B′(φ)φ

(a)

{x ∈ Ω : φ(x) = 0}

Nε = {x ∈ Ω : |φ(x)| ≤ ε}

φ(x) > 0

φ(x) < 0

(b)

Figure 3.2: Evolving Level Sets: The velocity of the level sets of φ, drawn as
gray and white layers in (a), is depending on B′(φt). We depict the situation
for φ being a signed distance function and B = H2,ε. The level sets drawn
in gray evolve with positive speed while the ones drawn in white stagnate
as B′(φt

c) = 0 for all c ∈ R\(−ε,+ε). This restricts the evolution to a narrow
band Nε around the zero level set (b).

such as (3.19) the algorithm would have a ”tendency to compute a global
minimizer” and one could, ”in practice, [. . . ] obtain a global minimizer,
independently of the position of the initial curve” [20]. A few years later, these
considerations led to the development of fully convex approaches based on
labeling functions which will be described now.

Labeling Functions

The usage of labeling functions, i.e. functions which take values in the closed
interval [0, 1], comprises no real regularization, but it is rather a consequence of
turning (3.12) into a convex optimization problem, cf. [13]. The identification
of the components making (3.12) either convex or non-convex is thereby a
crucial step:

1. We need a convex subset S, because the set of signed distance functions
is not convex. A natural choice is the set of all functions which take
values in the interval [0, 1]:

S = {u : Ω→ [0, 1]} , (3.20)

where we postpone a discussion on the regularity of these functions for a
moment.

2. We need a convex binarization operator and Bresson et al. propose to
use

B(φ) = φ (3.21)

which causes all level sets to evolve with equal velocity [13].

3. We need a reprojection operator and a suitable choice is

P[φ](x) = min(max(φ(x), 0), 1), x ∈ Ω. (3.22)
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Chapter 3: Variational Level Set Methods

At first sight, these choices might appear unmotivated, but they become clear
by inspecting (3.16) again. A key observation is that we will always obtain
the same steady state solution, if we only assume that B′ is strictly positive
such that all level sets of φ are evolving. As there is no obvious reason why
some level sets should evolve faster or slower than others we can use the
same velocity for all of them. This leads almost inevitably to the binarization
operator B(φ) = φ, because it is convex and B′(φ) = 1. However, this specific
choice of B causes U(φ) to be homogeneous of degree one [13], and thus we
have to prevent φ from blowing up during the evolution by enforcing that
it takes only values in a bounded interval. Together with the demand for a
convex set S as well as the requirement that B(φ) should only take values in
[0, 1] we end up with the above made choice of S and P. However, we want to
make the following remarks:

• The surface integral (3.11) in the convexified case becomes the so-called
weighted total variation∫

Ω
B′(φ) |∇φ| g dx =

∫
Ω
|∇φ| g dx (3.23)

acting as an explicit regularizer. This observation gives rise to the question
why we did not choose F = BV(Ω) in (3.12). However, the space of
functions of bounded variation BV(Ω) is not a Hilbert space and in order
to discuss the choice of the metric for the computation of the gradient
we need a Hilbert space framework, but there are, of course, other
optimization methods which do not require a Hilbert space framework,
e.g. splitting techniques for the weighted total variation [13].

• Finally, the binarization operator B(φ) = φ deserves some attention. First
of all B is not a binarization operator anymore, because the binarization
is implicitly included in the choice of S. This leads to the question, if it
would be possible to use a set of non-bounded functions, e.g. S = L2(Ω),
and a binarization operator taking values in [0, 1] instead? In fact, this is
not possible, because a convex function with positive derivative cannot
be bounded, cf. Fig. 3.3. However, there is still the possibility of choosing
other (degenerate) binarization operators, which is maybe an interesting
direction for further research.

We want to emphasize that it depends highly on the application whether a
convex or a non-convex formulation should be used. In fact, we will demon-
strate in chapter 4 that non-convex approaches can be very useful, especially
for medical purposes.

Parametrizations and Shape Models

Another implicit regularization strategy can be seen in the usage of parametriza-
tions leading to finite dimensional function spaces spanned by smooth basis
functions. A typical example are radial basis functions which have been used
by Ho et al. [48], Morse et al. [72], Slabaugh et al. [105], and Benoit et al. [73]
for instance. Approaches using splines, such as the MetaMorphs framework
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⊂ epi( f )

x∗
f (x∗)

C

Figure 3.3: On the Convexity of Bounded Binarization Operators: Let f :
R→ R be continuously differentiable and convex. If f ′(x) > 0 for all x ∈ R,
f cannot be bounded. Proof: If f would be bounded, i.e. ∃ C > 0 : | f (x)| ≤
C ∀x ∈ R, the half space

{
(x, λ) ∈ R2 : λ > C

}
would be a subset of the

epigraph of f . Due to the convexity of f , however, the epigraph of f has to lie
above all tangents of f , which is clearly a contradiction.

of Huang et al. [51], the variational B-spline framework of Bernard et al. [8],
or the spherical harmonics shape model proposed by Baust and Navab [4] are
also related to this strategy. Further, it is also possible to generate application
specific basis functions, i.e. shape models, as proposed by Leventon et al. [61]
or Tsai et al. [118] for instance. Of course, there are many more possibilities
for learning such function spaces, but we restrict ourselves to the mentioned
examples and refer the interested reader to the excellent overview of Heimann
and Meinzer [46].

In most cases, the used binarization operator is either H2,ε or H∞,ε. If φ is
not a signed distance function, it may happen in the case of H2,ε that the width
of the narrow band Nε (cf. Fig. 3.2b) depends not only on ε, but also on the
slope of φ, but this is in general not very problematic.

In contrast to the binarization operator, the re-projection operator does
usually not appear explicitly in the approaches discussed above. It is rather
implicitly contained in the gradient descent which can be explained as follows.
Assume that the representation of the embedding function φ with respect to S
is given by

φ =
n

∑
i=1

αiψi, (3.24)

where ψ1, . . . , ψn form a (L2-orthonormal) basis of S and α1, . . . , αn ∈ R denote
the corresponding coefficients. A gradient descent for the parameter vector
α = (α1, . . . , αn)T ∈ Rn is then given by

αt+τ
i = αt

i − τ〈∇L2 E(φt), ψi〉L2 . (3.25)
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Chapter 3: Variational Level Set Methods

Now, we can turn (3.25) easily into a gradient descent for φ:

φt+τ =
n

∑
i=1

αt+τ
i ψi (3.26)

=
n

∑
i=1

(
αt

i − τ〈∇L2 E(φt), ψi〉L2
)

ψi (3.27)

=
n

∑
i=1

αt
i ψi − τ

n

∑
i=1
〈∇L2 E(φt), ψi〉L2 ψi (3.28)

= φt − τ
n

∑
i=1
〈∇L2 E(φt), ψi〉L2 ψi (3.29)

= φt − τP
[
∇L2 E(φt)

]
, (3.30)

where the re-projection operator is given by

P [φ] =
n

∑
i=1
〈φ, ψi〉L2 ψi. (3.31)

This also confirms the above made assertion that only the gradient has to be
projected, if S has a vector space structure.

Infinite Dimensional and Smooth Function Spaces

Function spaces related to a parametrizations and shape models are usually
finite dimensional. In contrast to this, Charpiat et al. [21] as well as Sun-
daramoorthi et al. [110] suggested the usage of infinite dimensional function
spaces, such as C∞ or the Sobolev space H1. Two years later, C∞ was also
used by Bar and Sapiro in [3], but based on a slightly different mathematical
justification. As these spaces also have a vector space structure the gradient
descent corresponding to these regularizations also reads

φt+τ = φt − τP
[
∇L2 E(φt)

]
(3.32)

and we will show an interesting connection between these implicit regular-
ization strategies and first-order Tikhonov-type regularizers in Sec. 3.1.4. It
deserves credit, that regularization strategies of this kind have been used much
earlier in the registration community (e.g. Trouvé in 1998 [116]) than in the
segmentation community. Moreover, it should be noted that [21] and [110]
introduced these regularization strategies in a more geometric way and not
for the variational level set method, but we will see in Sec. 3.1.4 that they also
work in the non-geometric case. Finally, we wish to conclude this section on
implicit regularization strategies with the overview presented in Tab. 3.1.
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approach classical variational
level set method,
e.g. [130, 79, 80]

Chan and Vese [20] convexified, e.g. [13] parametrized, e.g.
[48, 72, 105, 73, 51,
8, 4, 61, 118]

H1, cf. Sec.
3.1.4

C∞, cf. Sec.
3.1.4

F L2(Ω) L2(Ω) L2(Ω)* L2(Ω) H1(Ω) L2(Ω)

S signed distance
functions

signed distance
functions

{u : Ω→ [0, 1]}
∩BV(Ω) ∩ L2(Ω)*

{φ = ∑n
i=1 αiψi} H1(Ω) C∞

B H2,ε H∞,ε φ 7→ φ H2,ε or H∞,ε H2,ε H2,ε

P re-initialization re-initialization min(max(φ(x), 0), 1) ∑n
i=1〈·, ψi〉L2 ψi (I − ∆)−1 Gσ ∗ ·

*The original choice is S = F = BV(Ω), but we chose F and S in this particular way, because we need a Hilbert space framework here.

Table 3.1: Variational Level Set Approaches with Implicit Regularization.
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3.1.3 Explicit Regularization

Although we shall later focus on Tikhonov-type regularizers, cf. Sec. 3.1.4, we
briefly discuss several other explicit regularization strategies now.

Coefficient Regularizers

An explicit regularizer which does not directly depend on the embedding
function, but on a vector of coefficients, e.g. in the case of a finite dimensional
implicit regularization by a set of basis functions, is called coefficient regularizer.
There are two main applications for such regularizers. A natural scenario is the
incorporation of shape distributions into the segmentation framework. Using a
plain shape model, i.e. an implicit regularization based on a set of trained basis
functions, one implicitly assumes a uniform distribution. If this assumption
is not justified, one might want to model other distributions of shape, e.g. a
Gaussian distribution, cf. [28]. Another important application scenario could
be to enforce sparsity with respect to a certain basis, cf. [101]. Our focus is,
however, not on coefficient regularizers and we thus mention them only for
the sake of completeness and refer the interested reader to [28] and [101].

Signed Distance Regularizers

In [63] Li et al. established a novel class of explicit regularizers which enforce
locally the shape of a signed distance function. A well-known property of
any signed distance function is |∇φ(x)| = 1 and a natural choice for such a
regularizer is thus given by

R(φ) =
∫

Ω

(
|∇φ|2 − 1

)2
dx (3.33)

which penalizes the deviation of φ from this property. The L2 gradient of this
regularizer is

∇L2 R(φ) = −div
((

1− 1
|∇φ|

)
∇φ

)
. (3.34)

Unfortunately, the diffusivity 1− 1/ |∇φ| is non-linear and enforces a backward
diffusion, if |∇φ| < 1, which has to be taken into account for the numerical
treatment. For this reason an improved version of this regularizer, which has
slightly better numerical properties, has recently been presented in [64].

It is important to mention that Gomes and Faugerás also introduced a
kind of signed distance regularization, but unlike Li et al. [63] they directly
regularize the evolution equation and not the energy.

Total Variation

Similar to the first order Tikhonov regularizer the total variation regularizer

R(φ) =
∫

Ω
|∇φ| dx, (3.35)

comprises a penalty on the gradient magnitude, but it also has a geometrical
interpretation for characteristic functions as explained in Sec. 1.2. As a
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consequence, the (weighted) total variation, cf. (3.23), appears quite naturally
when using labeling functions which can be considered as relaxed characteristic
functions. However, energies regularized with the total variation should not be
optimized via gradient descent, because its L2 gradient

∇L2 R(φ) = −div
( ∇φ

|∇φ|

)
(3.36)

is non-linear in φ and the diffusivity 1/ |∇φ| is not defined, if |∇φ| = 0, which
has be be considered for the numerical treatment. In fact, there are faster
techniques, such as the ones presented in [19, 13], which do not employ the
L2-gradient.

Tikhonov-type Regularization

A classical type of regularization are first-order Tikhonov-type regularizers. In
Sec. 3.1.4 we will, however, consider the more general form

R(φ) =
∫

Ω
(∇φ)T g∇φ dx, (3.37)

where the weight function g solely depends on the image function I (and not
on φ) causing the resulting L2 gradient

∇L2 R(φ) = −div (g∇φ) (3.38)

to be linear with respect to φ. We will show in Sec. 3.1.4 that such regularizers
can lead to update equations of the form

φt+τ = P
[
φt − τ∇L2 E(φt)

]
, (3.39)

where the re-projection operator is same as in the case of an implicit H1 or C∞

regularization.

3.1.4 Numerical Schemes for Tikhonov-type Regularizations

The goal of this subsection is to consider the following highly non-geometric
and non-convex variational level set scenario:

• F = L2(Ω),

• S = F,

• R(φ) =
∫

Ω(∇φ)T g∇φ dx,

• B = H2,ε, and

• P = Id.

As already mentioned before, we will show that the resulting update equations
can be related to the implicit regularization strategies proposed in [21, 110, 3],
but before that we have to discuss some theoretical implications first.
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Theoretical Considerations

A necessary theoretical assumption is the ellipticity condition

g ≥ c, (3.40)

for some c > 0. Provided (3.40) holds, the resulting continuous gradient
descent

∂tφ = −∇L2 E(φ) + λdiv (g∇φ) (3.41)

is a parabolic partial differential equation modeling a diffusion process. A
parabolic equation has the nice property that information is spread with
infinite speed and we can hope that this results in an improved convergence
rate. However, it might be a good idea, to limit the amount of information,
which is spread across edges. Thus, we will investigate not only the isotropic
case g ≡ 1, but also

g(x) =
1

1 + |∇I(x)|2 /β
, β > 0, (3.42)

which is clearly anisotropic.
Due to the usage of the compactly supported binarization operator H2,ε we

obtain a splitting of Ω into two domains with different behavior:

• A competitive domain, i.e. the narrow band Nε in (3.18), corresponding
to δε(φ) 6= 0 and indicated by gray color in Fig. 3.4a and 3.4b, where
the evolution is governed by the competition between div (g∇φ) and
∇L2 E(φ). As a result, the slope of φ in this area can be controlled by
adjusting the regularization parameter λ, cf. Fig. 3.4d.

• A diffusion dominated domain, i.e. Ω\Nε, corresponding to δε(φ) = 0
and indicated by gray stripes in Fig. 3.4a and 3.4b, where the evolution
is completely governed by div (g∇φ). Imposing Neumann boundary
conditions we will observe that in the diffusion dominated domain

|φ| → ε (3.43)

as t→ ∞.

Forward Euler Discretization

A forward Euler time discretization of (3.41) results in

φt+τ = φt − τ∇L2 E(φt) + τλdiv
(

g∇φt) . (3.44)

Provided powerful alternatives are available, which is the case here, one should
not use a forward Euler scheme, because, even in the simplest case g(I) ≡ 1,
it suffers from the severe CFL-condition τ ≤ 1/(2dλ), where d denotes the
number of spatial dimensions. Thus, we now derive more efficient numerical
schemes for solving (3.41).
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δε

+ε

−ε

0

φ

(a) broader support of δε

δε

+ε

−ε

0

φ

(b) narrower support of δε

(c) initialization (d) 1D cut of stationary state

Figure 3.4: Width of the Narrow Band: The width of the narrow band Nε

(gray) clearly depends of the slope of φ. The steeper φ the smaller the width of
Nε and vice versa, cf. (a) and (b). The slope of φ again depends on the choice
of λ, because it controls the trade-off between data fidelity and regularization
in the competitive domain (gray area in (a) and (b)). The higher the value of λ
the smaller the slope of φ and vise versa as demonstrated experimentally in (c)
and (d) (we set g ≡ 1). The black line in (c) indicates the position of the one
dimensional cut shown in (d) and the red curve indicates the initial position of
the zero level set. As predicted, φ → ±ε in the diffusion dominated domain
(gray stripes in (a) and (b)) as verified in (d).

Semi-Implicit Discretization

In order to avoid severe time step constraints we can use the semi-implicit
scheme

φt+τ = φt − τ∇L2 E(φt) + τλdiv
(

g∇φt+τ
)

, (3.45)

leading to the update equation

φt+τ = (I − τλdiv (g∇))−1(φt − τ∇L2 E(φt)). (3.46)

Fortunately, the resulting equation system has to be assembled only once and
we can use efficient numerical techniques for the inversion, which can be found
in [123] or the book of Saad [98] for instance.

Duhamel’s Principle

If g ≡ 1, there is another possibility for solving (3.41) based on Duhamel’s
principle [35, chapter 2]. The main idea is to split an initial value problem of
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the form {
∂tu(x, t) = f (x, t) + λ∆u(x, t),
u(x, 0) = g(x),

(3.47)

into two problems. One with the correct initial condition, but without source-
term

(i)

{
∂tui(x, t) = λ∆ui(x, t),
ui(x, 0) = g(x),

(3.48)

and one including the source term, but with homogeneous initial condition

(s)

{
∂tus(x, t) = λ∆us(x, t) + f (x, t),
us(x, 0) = 0.

(3.49)

The superposition u = ui + us eventually solves the whole problem, because

∂tu(x, t) = [∂tui + ∂tus](x, t) = [λ∆ui + λ∆us + f ](x, t) = f (x, t) + λ∆u(x, t)
(3.50)

and

u(x, 0) = ui(x, 0) + us(x, 0) = g(x) + 0 = g(x). (3.51)

Denoting the fundamental solution by

Φ(x, t) =

(4πλt)−
d
2 exp

(
− ‖x‖

2
2

4λt

)
, t > 0,

0, t ≤ 0,
(3.52)

where d denotes the spatial dimension, the solution to (i) can be written as

ui(x, t) = (Φ ∗ g)(x, t), (3.53)

if t > 0. The solution to (s) can be obtained using Duhamel’s principle:

us(x, t) =
∫ t

0

∫
Rn

Φ(x− y, t− s) f (y, s) dyds. (3.54)

Approximating the integral with respect to s we obtain

us(x, t) ≈ t
∫

Rn
Φ(x− y, t− 0) f (y, 0) dy = t(Φ ∗ f (·, 0))(x, t), (3.55)

if t > 0. Thus we can construct an iterative scheme for (3.41) as follows. At
time t we set φt(x) = g(x) as well as −∇L2 E(φt(x)) = f (x, 0) and compute
φt+τ via

φt+τ = G2
√

τλ ∗ φt − τG2
√

τλ ∗ ∇L2 E(φt) (3.56)

= G2
√

τλ ∗
(
φt − τ∇L2 E(φt)

)
, (3.57)

where
G2
√

τλ(x) = Φ
(

x, 2
√

τλ
)

(3.58)

is nothing else than a Gaussian kernel with standard deviation 2
√

τλ.
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Regularization Paradigms

We want to compare the schemes obtained by the semi-implicit time discretiza-
tion and by Duhamel’s principle to the numerical schemes which correspond
to the implicit regularization strategies proposed in [21, 110, 3]. In order to
simplify the following considerations, we define three projection operators, which
can be considered as low-pass filters or smoothing operators:

1. The Gaussian projector
PG(σ)[ψ] = Gσ ∗ ψ, (3.59)

where Gσ is a Gaussian kernel with standard deviation σ,

2. the isotropic Sobolev projector

PS(α)[ψ] = (I − α∆)−1 ψ, (3.60)

where α > 0, and

3. the anisotropic Sobolev projector

PA(α)[ψ] = (I − αdiv (g∇))−1 ψ, (3.61)

where again α > 0.

This allows to rewrite the derived schemes as follows:

φt+τ =


PG(2

√
τσ)

[
φt − τ∇L2 E(φt)

]
, Duhamel’s principle for g ≡ 1,

PS(τλ)
[
φt − τ∇L2 E(φt)

]
, semi-implicit scheme for g ≡ 1,

PA(τλ)
[
φt − τ∇L2 E(φt)

]
, semi-implicit scheme for general g.

(3.62)
If we forget about the model we want to solve and consider these schemes
as plain update equations, we might wonder, whether it would be possible
to regularize only the update ∇L2 E(φt). Indeed, it is and this leads us to
the implicit regularization strategies suggested by Charpiat et al. [21] and
Sundaramoorthi et al. . [110]:

1. Choosing S = C∞ in (3.12), cf. [21, 3], leads to a gradient descent of the
form

φt+τ = φt − τPG(σ)
[
∇L2 E(φt)

]
. (3.63)

2. Choosing S = H1 in (3.12), cf. [110, 21], leads to a gradient descent of the
form

φt+τ = φt − τPS(α)
[
∇L2 E(φt)

]
. (3.64)

3. Finally, the gradient descent

φt+τ = φt − τPA(α)
[
∇L2 E(φt)

]
, (3.65)

corresponds to the choice S = H1 as well, but in this case H1 is endowed
with the inner product

〈φ, ψ〉L2 + α〈∇φ, g∇ψ〉L2 . (3.66)

Interestingly, this regularization has not been used for variational level
set segmentation so far.
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applied to ∇L2 E(φt) φt − τ∇L2 E(φt)

PG(σ) [21] and [3] isotropic diffusion (σ = 2
√

λτ)

PS(α) [21] and [110] isotropic diffusion (α = λτ)

PA(α) weighted Sobolev space anisotropic diffusion (α = λτ)

Table 3.2: Regularization Paradigms and Update Equations.

In summary, we can observe two regularization paradigms here. We can
apply the projectors PG, PS, and PA either to the whole right-hand side φt −
τ∇L2 E(φt) (rhs), or only to the update given by ∇L2 E(φt), cf. Tab. 3.2. The
computational complexity is exactly the same in both cases and it depends
only on the used projector and the way we want to implement it (operator
splitting, convolution, etc.).

At this point we wish to draw a connection to the principle of cooperativity
which is an algorithmic concept discussed in [11]. Let us imagine that the result
of applying one of the projectors defined above is computed by a network of
individual processing cells which are connected to just a few neighbors. Then
the process of computing the solution for all points is a so-called cooperative
process, i.e. ”a computation performed in parallel by a network of independent
processing cells” [11], which have to exchange information with each other
in order to compute the solution. The neighborhood relationships of all cells
are thus modeled by the off-diagonal entries of the matrices discretizing the
projectors PS and PA or by the entries of the filter mask discretizing PG

2.
Loosely speaking, we could say that regularization in the sense of enforcing a
continuous or even smooth, and thus unambiguous solution, cf. Sec. 1.2, can
only be achieved by tying together all involved processing cells.

In order to compare the two regularization paradigms derived above, we
segmented three images from [2] (see Fig. 3.5) based on a standard Chan-Vese
model [20]. In order to keep the application of the regularization operators
corresponding to the implicit strategies of [21, 110, 3] comparable we used
σ = 2

√
τλ = 2 for PG and α = τλ = 1 for PS and PA. As expected, the

application of a regularization operator to the whole right-hand side, which
corresponds to an explicit Tikhonov-type regularization, results in an increased
convergence rate (c.f. Fig. 3.5c, 3.5f, and 3.5i) and a smoother embedding
function in all three cases. Comparing the three projectors with each other,
it turns out that the results provided by PS(α) and PA(α) are visually more
satisfying.

2The discretized Gaussian kernel has, of course, only a compact support which resembles the
connections between the processing cells only up to a certain distance.
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3.1 The Non-geometric Case

(a) initialization (b) ground truth (c) convergence rates

(d) initialization (e) ground truth (f) convergence rates

(g) initialization (h) ground truth (i) convergence rates

Figure 3.5: Convergence Rates of Different Regularization Paradigms: The
explicit Tikhonov-type regularization paradigm shows an increased conver-
gence rate.
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PG
[
∇L2 E(φt)

]
PS
[
∇L2 E(φt)

]
PA
[
∇L2 E(φt)

]
PG
[
φt − τ∇L2 E(φt)

]
PS
[
φt − τ∇L2 E(φt)

]
PA
[
φt − τ∇L2 E(φt)

]
Figure 3.6: Qualitative Comparison of Different Regularization Paradigms: Segmentation results (first row), close-ups of the results
(second row), the corresponding contour plots (third row), and the corresponding surface plots (bottom row).
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3.2 The Almost Geometric Case

The H1-type implicit regularization considered in the last section was totally
non-geometric due to the following three reasons:

1. The embedding function was not a signed distance function making the
width of the narrow band depending on the slope of the embedding
function.

2. Regularizing the embedding function is different from regularizing the
evolving curve.

3. The variational level set method itself is non-geometric in the sense that
the evolution equation is derived with respect to the embedding function
and not the curve itself.

The goal of this section is now, to derive an almost geometric variational
level set method with an implicit H1-regularization in the sense that we try
to solve the first two issues while tolerating the third. The first issue can be
solved easily by using signed distance functions again, but the solution of the
second problem is a bit more involved. The reason is that we will have to
deal with function spaces defined on the evolving surface S itself (and not the
embedding space). As a consequence, the projection of the computed gradient
requires the solution of an elliptic partial differential equation on the implicitly
defined surface S . Interestingly, the computation of Sobolev gradients for
contours can be achieved in linear complexity [110], but the computation for
surfaces cannot due to the elliptic character of the problem. Although it has
been demonstrated by [21] and [34] that Sobolev type surface evolutions are
computationally feasible, the presented approach is slightly different:

1. In contrast to related approaches for surface evolutions [21, 34], we will
employ a geometrically motivated Sobolev-type inner product, which
allows the user to weight the translational and the deformational compo-
nent of the computed gradient. This inner product is closely related to
the ones that have been proposed for active contours by [110, 107].

2. All previous approaches for Sobolev-type curve and surface evolutions
use either no implicit surface representation at all, or an implicit surface
representation only for projecting the gradient [34, 21, 110]. In contrast
to this, we use an implicit representation on purpose yielding a unified
framework for Sobolev-type curve and surface evolutions.

3. In order to solve the projection step in a computationally efficient manner,
we propose to turn the resulting elliptic PDE into a parabolic one, which
corresponds to a continuous gradient descent. Inspired by [96] we further
split the elliptic operator in such a way that a standard semi-implicit
time discretization can be used. If desired, one can even use operator
splitting techniques, e.g. [123], in order to obtain an approximative
Sobolev gradient in linear complexity.
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Chapter 3: Variational Level Set Methods

Before we explain the theory of Sobolev spaces on implicit surfaces in Sec.
3.2.2 and 3.2.3, we briefly review the classical L2 framework for variational
level set methods in Sec. 3.2.1 in order to better explain the differences of the
presented approach. In Sec. 3.2.4 we derive the proposed numerical scheme
and verify the expected properties experimentally.

3.2.1 The Classical L2 Framework

As the following considerations are based on a signed distance representation
of the evolving curve or surface S ⊂ Ω ⊂ Rd (d = 2, 3) we will use the
well-known property |∇φ| = 1 in order to simplify the notation whenever
appropriate.

Again we assume that our segmentation problem is modeled as a minimiza-
tion problem of the form

min
φ

E(φ). (3.67)

In order to make the following derivations more illustrative, we further assume
that E is of the form

E(φ) =
1
|S|

∫
Ω

H2,ε(−φ) f dx +
γ

|S|
∫

Ω
δ2,ε(φ)g |∇φ| dx. (3.68)

Note that this energy is made scale-invariant by normalizing it with the surface
area |S|. Computing the first variation F(E, ψ) of E yields

F(E, ψ) =
d
dt

E(φ + tψ)
∣∣∣∣
t=0

= − 1
|S|

∫
Ω

δ2,ε(φ) [ f + αdiv (g∇φ)]ψ dx = 0,

(3.69)
where we replaced ∇φ/ |∇φ| by ∇φ due to the above mentioned property of
signed distance functions. It has been noted in [22] that computing the first
variation with respect to the embedding function, as done in (3.69), is different
to computing the first variation of E with respect to the surface itself. The
technique presented in [22] for converting level set gradients to shape gradients
is, however, only available in two dimensions. If a similar technique becomes
available for three dimensions, it would also make the proposed framework
more geometric, but until then we rely on computing the first variation with
respect to φ.

As a compromise, we will define the L2 gradient of E as

∇L2 E = − ( f + αdiv (g∇φ)) . (3.70)

and the L2 inner product as

〈u, v〉L2 =
1
|S|

∫
Ω

δ2,ε(φ)uv dx, (3.71)

which is slightly different to the usual convention of defining 〈u, v〉L2 =∫
Ω uv dx and ∇L2 E = −δ2,ε(φ)

[
f + αdiv(g∇φ)

]
. This way, the inner prod-

uct defined in (3.71) can be interpreted as an approximation to the L2 inner
product for functions defined on S rather than functions defined on Ω. Thus,
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3.2 The Almost Geometric Case

∇L2 E as it is defined in (3.70) shall be interpreted as a function defined on S .
This interpretation would, of course, give rise to the question of how ∇L2 E
has to be extended to the support of δ2,ε, but since the definition of ∇L2 E
makes sense for all points in Ω this extension is naturally given. Finally, the
continuous gradient descent is now of the form

∂tφ = −δ2,ε(φ)∇L2 E (3.72)

and this notation clearly reveals that the evolution is localized to a small vicinity
of S as it would be in the case of a Lagrangian implementation.

3.2.2 Sobolev Spaces on Implicit Surfaces

We will now discuss two possible surface Sobolev spaces.

The Classical Sobolev Space H1

In [21, 34] a Sobolev space of the following type has been used for obtaining
more regular gradients:

H1(S) =
{

u ∈ L2(S) : ‖u‖H1 < ∞
}

, (3.73)

where ‖u‖2
H1 = 〈u, u〉H1 and

〈u, v〉H1 = λ〈u, v〉L2 +
1
|S|

∫
Ω

δε(φ)∇Su · ∇Sv dx, λ > 0. (3.74)

Noting that the unit outward normal is given by η = ∇φ we can write the
intrinsic surface gradient as

∇Su = (I − η ⊗ η)∇u, (3.75)

which is a projection of ∇u onto S , cf. [9]. In contrast to [21, 34] we decided
to weight the zero order component of 〈·, ·〉H1 by λ (and not the first order
component), because we want to avoid an unnecessary coupling of the model
parameter λ and the step size parameter τ in Sec. 3.2.4.

The Geometrically Motivated Sobolev Space Ĥ1

The reason why we propose to use a different Sobolev space is that the zero
order component 〈u, v〉L2 of H1 has no geometric interpretation. Inspired by
[110] we propose the following Sobolev space

Ĥ1(S) =
{

u ∈ L2(S) : ‖u‖Ĥ1 < ∞
}

, (3.76)

where ‖u‖2
Ĥ1 = 〈u, u〉Ĥ1 ,

〈u, v〉Ĥ1 = λū · v̄ +
1
|S|

∫
Ω

δ2,ε(φ)∇Su · ∇Sv dx, λ > 0, (3.77)
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Chapter 3: Variational Level Set Methods

and
ū =

1
|S|

∫
Ω

δ2,ε(φ)uη dx. (3.78)

The benefit of this Sobolev space is that the zero oder component of the inner
product has a geometric interpretation, because ū is the portion of u which
corresponds to a translation of the zero level set, cf. also [110]. This geometric
meaning can also be observed experimentally in Sec. 3.2.4.

3.2.3 Computing Sobolev Gradients

Fortunately, Sobolev gradients can be computed easily from the standard
L2 gradient by employing the Riesz representation theorem [35]. We define
u = ∇H1 E, û = ∇Ĥ1 E, and w = ∇L2 E as well as

−
∫

Ω
· dx =

1
|S|

∫
Ω

δ2,ε(φ) · dx (3.79)

in order to simplify the notation in the following computations.

Computing ∇H1 E

Applying the representation theorem we obtain:

〈w, v〉L2 = −
∫

Ω
wv dx = −

∫
Ω
[λuv +∇Su · ∇Sv] dx = 〈u, v〉H1 , (3.80)

where v is chosen arbitrarily. Noting that S is a closed surface and applying
integration by parts we obtain

−
∫

Ω
wv dx = −

∫
Ω
[λu− ∆Su] v dx, (3.81)

where
∆Su = div ((I − η ⊗ η)∇u) (3.82)

is the intrinsic surface Laplacian, i.e. the Laplace-Beltrami operator, cf. [9].
Applying the fundamental lemma of calculus of variations we obtain

w = (λI − ∆S ) u. (3.83)

In order to solve this surface PDE we impose homogeneous Dirichlet boundary
conditions u|Γε

= 0, where Γε = ∂Nε denotes the boundary of the narrow
band Nε, cf. (3.18).

Computing ∇Ĥ1 E

Again, we apply the representation theorem:

〈w, v〉L2 = −
∫

Ω
wv dx = λū · v̄ +−

∫
Ω
∇Su · ∇Sv dx = 〈u, v〉Ĥ1 . (3.84)

Inserting the definition of v̄ yields

−
∫

Ω
wv dx = −

∫
Ω
[λū · (vη) +∇Su · ∇Sv] dx. (3.85)
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Integrating by parts and using the fundamental lemma we end up with

w = λū · η − ∆Su. (3.86)

As w̄ = ū, we finally have

w− λw̄ · η = −∆Su, (3.87)

where we impose homogeneous Dirichlet boundary conditions on Γε again.

3.2.4 Numerical Treatment

Once we have computed ∇H1 E or ∇Ĥ1 E numerically, we can use it to evolve
the embedding function by

∂tφ = −δ2,ε(φ)∇H1 E, or ∂tφ = −δ2,ε(φ)∇Ĥ1 E, (3.88)

respectively, where we use ε = 1.5, as suggested in [80]. We approximate the
time derivative with a standard forward Euler discretization and interleave
this evolution with a few iteration steps for reinitializing the signed distance
function, where we use the method of Peng et al. [85] in our experiments. A
more geometric way of maintaining a signed distance representation would, of
course, be given by the method of Chen et al. [22], which is unfortunately only
available for two dimensional problems.

The only question remaining is how to compute ∇H1 E = u or ∇Ĥ1 = û
numerically, if ∇L2 E = w is given. Our strategy will be to turn the stationary
PDEs (3.83) and (3.87) into time dependent ones and split the elliptic operators
in such a way that a standard semi-implicit time discretization for parabolic
problems can be used. A stability analysis of similar splitting techniques can
be found in [96].

Computing ∇H1 E Numerically

At first we note that (3.83) may be interpreted as the gradient of the energy

1
2

∫
Nε

|∇Su|2 + λu2 − 2uw dx. (3.89)

A continuous gradient descent for this energy yields the parabolic problem

∂tu = ∆Su− λu + w. (3.90)

Next we split ∆S which yields:

∂tu = ∆u− div (η ⊗ η∇u)− λu + w. (3.91)

Finally, we employ a semi-implicit time discretization leading to

(I − τ∆) ut+τ = ut − τ
[
div

(
η ⊗ η∇ut)+ λut − w

]
. (3.92)
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Figure 3.7: Beneficial Properties of Sobolev Gradients: In contrast to the
curve evolution based on L2 gradient (upper row), the evolution based on Ĥ1

gradients is much smoother, even in the case of topological changes.

Computing ∇Ĥ1 E Numerically

Similar to the previous considerations, we note that (3.87) may be interpreted
as the gradient of the energy

1
2

∫
Nε

|∇Su|2 − 2(w− λw̄ · η)u dx. (3.93)

The corresponding continuous gradient descent then reads

∂tû = ∆S û + (w− λw̄ · η), (3.94)

and after splitting ∆S we obtain

∂tû = ∆û− div (η ⊗ η∇û) + (w− λw̄ · η). (3.95)

Finally, we employ again a semi-implicit time discretization:

(I − τ∆) ût+τ = ût − τ
[
div

(
η ⊗ η∇ût)− (w− λw̄ · η)

]
. (3.96)

Remarks

The presented numerical schemes allow us to use comparatively large step
sizes in order to compute the Sobolev gradients. In all our experiments
five iteration steps with τ = 2 were sufficient in order to obtain a good
approximation. Finally, we want to mention that weighting the first order
component −

∫
Ω∇Su · ∇Sv dx by λ > 0 would have led to operators of the form

(I − λτ∆) and thus an unnecessary coupling of the discretization parameter τ
and the model parameter λ.

Discussion of the Experiments

The main advantage of Sobolev gradients is that the corresponding curve and
surface evolutions are much smoother than the ones based on classical L2
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step 20 step 120 step 240 step 360 converged

Figure 3.8: Comparison of H1 and Ĥ1: The H1 driven curve (upper row) is
less eager to capture the object by translation than the Ĥ1 driven curve, which
reaches the object much earlier (compare step 240 and 360).

gradients. In order to demonstrate that the Sobolev gradient obtained with
the proposed numerical scheme have the same advantageous properties we
compare the Ĥ1 evolution to a classical L2 evolution in Fig. 3.7 by minimiz-
ing the standard Chan-Vese model without penalizing the curve length [20].
As expected, the Ĥ1 evolution is much smoother than the one based on L2

gradients.
In Fig. 3.8 we illustrate the difference between the H1 evolution and the

Ĥ1 evolution by minimizing the same energy. In both cases we chose λ = 0.5
and used the same step size for the curve evolution. We can see that the curve
evolved by the Ĥ1 gradient (lower row) moves much earlier to the object than
the curve evolved by the H1 gradient, which is only able to capture the object
by deformation.

Our last experiment in Fig. 3.9 shows the applicability of our framework to
real world problems. We track the left ventricular cavity acquired by 3D+t MRI
[91] by taking the segmentation result from one volume as the initialization
for the following one. Again we use the Chan-Vese model without length
penalty and apart from that we employ no regularizer which ensures that the
subsequent segmentation result is somehow close to the previous one.
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(a) volume 1 (b) volume 2 (c) volume 4 (d) volume 6 (e) volume 8

(f) volume 12 (g) volume 14 (h) volume 16 (i) volume 18 (j) volume 20

Figure 3.9: Tracking Example: Tracking of the left ventricular cavity acquired by 3D+t MRI (data set taken from [91]).
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4
Polar Active Contours

4.1 Introduction

Polar curve or surface representations have proven to be a useful shape model
for numerous medical segmentation tasks. Popular application scenarios are
for instance the segmentation of the left ventricular cavity from sequential
ultrasound (US) data or magnetic resonance imaging (MRI) [104, 39, 37, 38,
31, 65], the slice-wise segmentation of aortic aneurysms from US or computed
tomography angiography (CTA) data [92, 12, 4], the segmentation of kidneys
in sequential US data [36], and the segmentation and tracking of individual
cells [93, 50]. Additionally, polar descriptions have been proposed for tracking
humans or objects [30, 24] and for interactive image segmentation [120].

In almost all of the above cited approaches the polar representation is used
in an active contour framework. This means that starting from an initial contour
one aims at finding the desired object boundary by iteratively minimizing an
energy, which characterizes the optimal position of the contour. However, there
are two main issues, which have to be considered.

Firstly, the global optimum may not correspond to the desired segmentation,
cf. Fig. 4.1, and a polar representation can be considered as a geometric implicit
regularization, which may help to obtain the desired local minimum.

Secondly, even a polar representation might not provide enough regular-
ity to prevent the curve evolution from getting stuck in an undesired local
minimum. Thus one often augments the energy with an additional explicit
regularizer, e.g. the curve length [93], or restricts the solution space to a finite
set of smooth basis functions, e.g. spherical harmonics [4], in order to obtain
satisfying segmentation results. As a consequence, one is either forced to
minimize a different energy or restricted to a finite dimensional representation,
which may not always be desired.

Recently, Sundaramoorthi et al. [110] as well as Charpiat et al. [21] proposed
to employ smooth but infinite dimensional function spaces, i.e. Sobolev spaces.
The advantage of this regularization strategy is that one can directly minimize
the desired energy while not being restricted to a finite dimensional function
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Figure 4.1: Global versus Local: Sometimes a global minimum (left) is not
useful for medical applications. If a polar object description can be used, as in
the case of the left ventricle, it introduces a meaningful geometric regularization
(right). Note that a restriction to convex objects cannot be applied here. (The
image is taken from [91] and the result in (a) is computed with [13].)

space. Another advantage of curve evolutions in Sobolev spaces is that they are
far less sensitive to local minima [108]. Moreover, it is possible to endow these
function spaces with metrics that allow the user to weight rigid and non-rigid
deformation components [21].

In this chapter we develop a Sobolev-type function space for polar active
contours, which is endowed with a metric that allows the user to favor trans-
lations and scale changes over smooth deformations. We achieve this goal by
two steps in Sec. 4.2:

1. We define a suitable structure for such a function space, in the following
called polar space, by analyzing how the standard recipe for variational
active contours changes when we restrict ourselves to a polar curve rep-
resentation. This will lead to a basic polar space, where only translations
can be favored.

2. We extend this basic polar space, in such a way that it contains smoother
functions. Additionally, the metric in this space will allow us to weight
not only translations, but also scale changes.

After giving some details on the implementation in Sec. 4.3, we compare our
method to existing approaches and demonstrate its applicability to a variety of
medical examples in Sec. 4.4.
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4.2 Polar Spaces

We consider curves which can be represented by polar coordinates, i.e. an
origin co ∈ R2 and a radius function cr : [0, 2π]→ (0, ∞):

c = co + crs, (4.1)

where s = (cos(θ), sin(θ))T and θ ∈ [0, 2π]. This definition already implies a
certain parametrization of c and although this parametrization seems to be
natural for polar curves we want to switch to an arc length parametrization.
Denoting the derivative of c with respect to θ by c′, the arc length s is defined
as

s(θ) =
∫ θ

0

∣∣c′∣∣ dp (4.2)

and thus the length of c is L = s(2π). In order to avoid the curve length L
to be confused with the symbol for the function space L2, we will denote the
space of square integrable functions by L2 and the Sobolev space by H1 in the
remainder of this chapter.

Our goal is now to derive function spaces, which we will term polar spaces,
that reflect and also exploit the possibility of decomposing any polar curve
into a finite dimensional component co and an infinite dimensional component cr.

4.2.1 Variational Active Contours

Before we start to derive the concept of polar spaces, we briefly revisit the
standard recipe for variational active contour methods and recall where the
choice of the function space comes into play. The standard recipe reads:

1. Define an energy E, which gets (at least locally) minimized by the desired
configuration of the curve. Thereby, we focus on geometric energies, which
are defined with respect to the arc length of c.

2. Consider a time-varying family of geometric curves c(s, t) such that the first
variation F(E, c) of E vanishes:

F(E, c) =
d
dt

E(c(s, t))
∣∣∣∣
t=0

=
∫ L

0
∇E · ct ds = 0, (4.3)

where ct denotes the partial derivative of c(s, t) with respect to t.

3. Evolve the curve under the gradient flow (continuous gradient descent)

ct = −∇E(c), (4.4)

since plugging (4.4) into (4.3) yields

F(E, c) = −
∫ L

0
(∇E(c))2 ds < 0. (4.5)
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It has been pointed out by Michor and Mumford [71] as well as Yezzi and
Menucci [129] that (4.3) contains the implicit assumption of using an L2(0, L)
framework, since ∫ L

0
∇E · ct ds = 〈∇E, ct〉L2 . (4.6)

Thus, the generalized form of (4.3) reads

F(E, c) =
d
dt

E(c(s, t))
∣∣∣∣
t=0

= 〈∇FE, ct〉F = 0, (4.7)

where F can be any Hilbert space accompanied by the inner product 〈·, ·〉F. As
indicated in (4.7), the gradient of E depends on the choice of the Hilbert space
or more precisely on the metric induced by its inner product. By choosing
function spaces beyond L2 and constructing intelligent metrics in these spaces
one can obtain gradient flows

ct = −∇FE(c) (4.8)

with favorable properties for segmentation and tracking, cf. [110, 21, 108].
The choice of a suitable function space for polar curves, called polar space in

the following, is the main goal of this section. As a first step, we will study
(4.7), if c has the form (4.1).

4.2.2 The Polar Space L
In order to identify the structure of a polar space, we assume that c has a polar
representation, cf. (4.1), and that F = L2 is equipped with the scale invariant
inner product

〈h, k〉L2 =
1
L

∫ L

0
h(s) · k(s) ds, (4.9)

where h, k : [0, L]→ R2. Then, the first variation (4.7) reads:

F(E, c) = 〈∇L2 E, co
t 〉L2 + 〈∇L2 E, cr

t s〉L2 (4.10)

= ∇L2 E · co
t +

1
L

∫ L

0
(∇L2 E · s)cr

t ds, (4.11)

where · denotes the mean value, which is defined as

h =
1
L

∫ L

0
h ds. (4.12)

As a consequence, we obtain the evolution equations

co
t = −∇L2 E(c) and cr

t = −∇L2 E(c) · s. (4.13)

From a more formal point of view, we can interpret the tuple(
∇L2 E(c),∇L2 E(c) · s

)
∈ R2 ×L2(0, L) (4.14)

as the L2 projection of ∇L2 E onto the subspace of polar curves, which means
that the evolution of any polar curve according to (4.13) always stays in this
subspace. This interpretation motivates the following definition.
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4.2 Polar Spaces

Definition 4.1 (Polar Space L) We define the polar space L as

L = R2 ×L2(0, L). (4.15)

This space becomes a Hilbert space with the inner product

〈h, k〉L = ho · ko +
λ

L

∫ L

0
hrkr ds, (4.16)

where h = (ho, hr), k = (ko, kr) ∈ L, and λ > 0. Note that hr, kr : [0, L]→ R.

The polar space L enjoys two desirable features:

1. Origin components and radial components are orthogonal to each other.

2. The additional parameter λ allows us to weight the influence of the
infinite dimensional component. Since the gradient of E with respect to
L reads

∇LE =
(
∇L2 E, (∇L2 E · s)/λ

)
, (4.17)

∇LE becomes a pure translation of the origin as λ→ ∞. This way, we can
favor translations of the origin over deformations of the radius function.

Although the possibility of weighting translations over radial deformations
is useful for image segmentation purposes, L suffers from the fact that it is
based on the function space L2, which contains nearly arbitrary functions. As
a consequence, the curve evolution is very sensitive to noise because all parts
of the curve can move independently from each other. This is demonstrated in
Fig. 4.2 as well as in Sec. 4.4. In order to prevent the curve from getting stuck
in an undesired local minimum, a penalty on the curve length is often added
to the energy. This causes the curve evolution to be smoother, but results in the
minimization of a different energy, which may not always be desired. Instead
of regularizing the energy, one can choose smooth but infinite-dimensional
function spaces, which allows the user to directly minimize the desired energy
[110]. Inspired by these approaches, we want to find a polar space which
contains smooth radial components. Moreover, we will go one step further and
endow this polar space with a metric that allows the user to weight translations,
scale changes and (smooth) deformations differently.

4.2.3 The Polar Space H
Now, we want to design a polar space which contains smoother radial com-
ponents than L and whose inner product allows us to favor translations and
scale changes over smooth deformations. We will see that the following polar
space has all these advantageous properties.

Definition 4.2 (Polar Space H) We define the Sobolev-type polar space

H = R2 ×H1(0, L), (4.18)

where
H1(0, L) = {hr ∈ L2(0, L) : ‖hr‖H1 < ∞} (4.19)
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standard Active contour

gradient ∇L2 E on c

∇LEs on c ∇HEs on c

Figure 4.2: Different Gradients: A standard active contour gradient in normal
direction is shown on the left. The projection of this gradient onto s is drawn
in the middle, while its smoothed version, i.e. the radial component of the H
gradient, is shown on the right. Note that this vector field generates a smoother
and more global deformation of the curve.

and ‖·‖H1 is induced by the inner product

〈hr, kr〉H1 = hr kr + γL
∫ L

0
hr

skr
s ds. (4.20)

H becomes a Hilbert space with the inner product

〈h, k〉H = ho · ko + λ

(
hr kr + γL

∫ L

0
hr

skr
s ds

)
, (4.21)

where h = (ho, hr), k = (ko, kr) ∈ H.

Note that the scale is exactly captured by the average value of the radial
component hr. Before we discuss the properties of H and 〈·, ·〉H in detail, we
will explain how ∇HE can be computed from ∇LE. Therefore, we suppose
that ∇LE = h = (ho, hr)T and ∇HE = k = (ko, kr)T . Applying the Riesz
representation theorem [60] we obtain 〈h, l〉L = 〈k, l〉H. Since origin and radial
components are orthogonal, we have ko = ho and

λ

L

∫ L

0
hrlr ds = λ

(
kr lr + γL

∫ L

0
kr

slr
s ds

)
. (4.22)

Using the definition of lr and applying integration by parts as well as the
fundamental lemma of variational calculus we obtain

hr = kr − γL2kr
ss. (4.23)

Since hr = kr we end up with the ordinary differential equation

kr
ss =

1
γL2

(
hr − hr

)
. (4.24)

The the solution to (4.24) can be written as (cf. Sec. 4.3.4 and [110])

kr = Kγ ∗ hr, (4.25)
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where

Kγ(s) =
1
L

(
1 +

(s/L)2 − (s/L) + 1/6
2γ

)
(4.26)

and s ∈ [0, L]. In fact, Kγ can be interpreted as a smoothing kernel, which
is also illustrated in Fig. 4.2. However, kr can still be computed in linear
complexity by

kr(s) = kr(0) + skr
s(0)−

1
γL2

∫ s

0
(s− ŝ)(kr(ŝ)− kr) dŝ, (4.27)

where

kr
s(0) = −

1
γL3

∫ L

0
s(kr(s)− kr) ds (4.28)

and

kr(0) =
∫ L

0
Kγ(s)hr(s) ds, (4.29)

as shown in [110] and appendix 4.3.4.
The polar space H enjoys the following properties:

1. Origin and radial components are orthogonal with respect to 〈·, ·〉H.

2. As λ→ ∞ gradients computed with respect to 〈·, ·〉H converge towards
pure translations of the origin.

3. As γ→ ∞ we can deduce from (4.26) that Kγ → 1/L and thus the radial
component of the H gradient becomes a pure rescaling of the curve.

Adjusting λ and γ we can now favor translations of the origin over radial
deformations as well as scale changes over smooth deformations. We will see
in Sec. 4.4 that these properties are beneficial for a lot of applications. Before
that, however, we discuss some implementation details.
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4.3 Implementation

Since ∇L2 E is necessary to compute the L gradient as well as the H gradient,
we will explain how the computation of ∇L2 E can be implemented, cf. Sec.
4.3.1. In Sec. 4.3.2 we will briefly comment on the choice of the parameters λ
and γ. As our method employs no additional strategy for placing the origin
we are also going to discuss several strategies used in other approaches in Sec.
4.3.3. Further, we shall explain in Sec. 4.3.4 how the convolution kernel in
(4.26) can be derived. Finally, we derive a first order accurate implicit curve
representation in Sec. 4.3.5.

4.3.1 Computation of ∇L2 E

In order to explain how ∇L2 E is computed, we consider the following linear
combination of a region-based and a boundary-based energy

E(c) =
∫

int c
f dx + α

∫ L

0
g ds, (4.30)

where int c denotes the region which is bounded by c. The L2 gradient of E,
assuming the scale invariant scalar product (4.9), reads

∇L2 E(c) = L f n + αL (∇g · n− gκ) n, (4.31)

where n denotes the normal of c and κ its curvature. Note that quantities
like n and κ can be computed from a polygon representation of c, but a more
accurate way is to compute them from an implicit representation as suggested
in [110]. Besides using a signed distance function it is also possible to use the
embedding function

φ(x) =

{
|x− co| − cr(θ(x)), x 6= 0,
infx 6=0 φ(x), x = 0,

(4.32)

for representing polar curves implicitly [4]. Of course, this function is not a
signed distance function, but we only need a correct position of the zero level
set. In practice, this requirement is usually satisfied, if the position of c is two
or three pixels away from the singularity at x = 0.

If, however, a signed-distance representation is needed, in order to compute
geometric quantities in the neighborhood of the zero level set for instance, we
suggest to employ the first-order accurate correction

φ̂(x) = [s(θ(x) · n(θ(x)))] φ(x), (4.33)

which is derived in Sec. 4.3.5.

4.3.2 Choosing λ and γ

Choosing λ and γ is quite easy because both parameters have a geometric
interpretation. At first, we note that the range of the image intensities is not
important in the following considerations, because it only affects the step size
of the gradient descent scheme. Now, λ and γ should be chosen as follows:
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(a) (b)

Figure 4.3: Evolution of the Origin: If the object is not convex (a), the origin
converges to a position within the kernel (white). If the object is convex (b), the
center stays in the kernel, which consists of the whole object. The initialization
is drawn in blue.

• If origin translations are preferred, one should choose λ > 1, e.g. λ ∈
(1, 10]. If scale changes and radial deformations are preferred, one should
choose λ < 1, e.g. λ ∈ [0.6, 0.9].

• Meaningful values for γ turned out to be between 0.042 and 1, where
higher values correspond to a stronger preference of scale changes. The
lower bound for γ is 1/24 because it ensures that Kγ is positive [110].

In general, we recommend to start with λ = 1 and γ = 0.042 as this yields
satisfying results in most cases.

4.3.3 Choosing the Origin

In our framework the evolution of the origin co is only governed by the
evolution equation co

t = −∇L2 E. However, there are several approaches of
choosing co explicitly or influencing its evolution. Thus, we want to quickly
discuss their advantages and disadvantages:

1. User-defined position: In [120], for instance, a fixed origin is chosen by
the user. This choice seems to be useful for interactive segmentation
tasks, but if the object has, however, a more complicated boundary, it
may require some time to select a good origin point.

2. Center of mass: It is also possible to choose the origin as the center of
mass of the curve (cf. [30]). This choice works well for most applications,
but from a purely theoretical point of view it is not always guaranteed
that the center of mass lies within the object.

3. Regularization: In [4] a penalization of the L2 norm of the radius func-
tion is suggested in order to force the origin to converge towards a
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position near the center of mass. However, over-regularization may lead
to more convex segmentations or even a shrinking-bias.

4. Geometrically correct: From a mathematical point of view it may seem
tempting to choose a point within the set of points from which the whole
boundary can be seen. This set is called the kernel of an object. The main
drawback of this strategy is that the kernel is not very stable under small
perturbations of the curve, as it is defined by the intersection of all half
spaces generated by the tangent of the curve.

For certain applications it may be advantageous to use one of these strategies.
However, our experience shows that such an additional step is not necessary,
since co automatically converges to a position within the kernel, cf. Fig. 4.3.

4.3.4 Solving the ODE

The computation of the gradient ∇EH requires the solution of the following
ordinary differential equation, cf. also [110]:

g′′(s) =
1

λL2 ( f (s)− f̄ ), g(0) = g(L), g′(0) = g′(L), (4.34)

where we set g = kr and f = hr in order to keep the notation simple. Further,
we denote the differentiation with respect to s by ·′. At first, we integrate twice
and obtain:

g(s) = g(0) + sg′(0) +
1

λL2

∫ s

0

∫ ŝ

0
f (ξ)− f̄ dξ dŝ. (4.35)

Second, we perform integration by parts for the rightmost term:∫ s

0

∫ ŝ

0
f (ξ)− f̄ dξ dŝ = (4.36)∫ s

0

d
dŝ

[
(ŝ− s)

∫ ŝ

0
f (ξ)− f̄ dξ

]
− (ŝ− s)( f (ŝ)− f̄ ) dŝ = (4.37)

(ŝ− s)
∫ ŝ

0
f (ξ)− f̄ dξ

∣∣∣∣s
0
+
∫ s

0
(s− ŝ)( f (ŝ)− f̄ ) dŝ = (4.38)∫ s

0
(s− ŝ)( f (ŝ)− f̄ ) dŝ. (4.39)

Thus, we end up with

g(s) = g(0) + sg′(0) +
1

λL2

∫ s

0
(s− ŝ)( f (ŝ)− f̄ ) dŝ. (4.40)

Setting s = L and using the boundary condition g(0) = g(L) we obtain

g′(0) =
1

λL3

∫ L

0
(L− ŝ)( f (ŝ)− f̄ ) dŝ (4.41)

=
1

λL3

∫ L

0
L( f (ŝ)− f̄ ) dŝ− 1

λL3

∫ L

0
ŝ( f (ŝ)− f̄ ) dŝ (4.42)

= − 1
λL3

∫ L

0
ŝ( f (ŝ)− f̄ ) dŝ, (4.43)
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c0 + τn, where τ < 0.

c = c0

φ(x) = |x− co| − cr(θ(x))

true distance |τ |

wrong distance given by

co

Figure 4.4: True and Wrong Distance: The wrong distance to the curve (or the
zero level set, respectively) is given by φ(x). The true distance is given by |τ|.

due to the definition of f̄ . Changing ŝ to s eventually yields

g′(0) = − 1
λL3

∫ L

0
s( f (s)− f̄ ) ds. (4.44)

Plugging this formula into (4.40), integrating both sides from 0 to L, and using
again that ḡ = f̄ we finally obtain

g(0) =
1
L

∫ L

0
f (s)

(
1 +

(s/L)2 − (s/L) + 1/6
2γ

)
ds =

∫ L

0
f (s)Kγ(s) ds,

(4.45)
where Kγ(s) is the kernel defined in (4.26). Since the definition of the arc
length allows us to choose the starting point arbitrarily we can conclude from
(4.45) that g may also be obtained by g = Kγ ∗ f .

4.3.5 Deriving a First Order Correction for φ

Now, we want to derive a first-order accurate correction ψ such that φ̂(x) =
ψ(x)φ(x), where φ defined in (4.32), is close to a signed distance representation
of c, which we denote by Φ(x). At first, we note that the level lines of a signed
distance representation of c are solutions to ct = n. Supposing that ε ∈ R is
sufficiently small one might say that the level line Lε = {x ∈ Ω : Φ(x) = ε}
can be approximated by evolving c with a forward Euler discretization of the
flow ct = n:

c0+τ = c0 + τn, (4.46)

where c0 = c and τ = ε. As we are only interested in the geometry of c we can
add a tangential component to the flow ct = n:

ct = n +
s · t
s · n t =

s · n
s · n n +

s · t
s · n t =

1
s · n s, (4.47)

since t and n are an orthonormal basis. From this we may conclude that the
flows ct = n and ct = 1/(s · n)s yield the same geometric curve. This means
that the level line Lε can also be approximated by performing a forward Euler
step of the flow ct = 1/(s · n)s:

c0+τ = c0 +
τ

s · n s, (4.48)
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where again c0 = c and τ = ε. As φ(x) gives us the signed distance ε/(s · n),
see Fig. 4.4, we thus know that the correction ψ is given by

ψ(x) = s(θ(x)) · n(θ(x)). (4.49)

Of course, this correction is only first-order accurate in ε, because we derived
it via forward Euler discretizations.
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4.4 Experiments

In order to illustrate the advantages of the polar space H we performed several
experiments on synthetic as well as real data. Besides standard segmentation
experiments (cf. Fig. 4.5 and Fig. 4.6) we performed also visual tracking
experiments, where the segmentation of a whole image sequence is achieved
by taking the result of the current frame as the initialization for the following
frame (cf. Fig. 4.7 and Fig. 4.9).

4.4.1 Comparing Different Flows

In Fig. 4.5 we segment a noisy square by minimizing the Chan-Vese model [20].
We can observe that the L flow is not stable and gets stuck in a local minimum
due to the fact that all parts of the curve can move independently from each
other, which is indicated by the spiky boundary. This is also true when we
penalize the deformation component more. Increasing λ and employing a
length regularization we can stabilize the L flow. A similar result can be
achieved by using the spherical harmonics (SPHARM) shape model, which we
have proposed in an earlier work [4]. It is important to note that the regularized
L flow as well as the SPHARM model do not minimize the original energy. The
first uses a length regularization and the latter employs a penalty on the norm
of the radial component which causes a bias towards convex objects and may
lead to a shrinking contour in the case of over-regularization. In contrast to
this, the standard Sobolev active contour minimizes the original energy while
showing its typical coarse to fine behavior [110, 108]. The same is, of course,
true for the H flow and we can see that the evolution of both flows is quite
similar. The careful observer, however, might already see that the H flow first
translates the shape, then adapts the scale of the shape, and finally deforms it.
Being typical for Sobolev-type flows [108], this behavior is extremely valuable
for medical applications, where images often suffer from a relatively high
amount of noise. Please note that this experiment also demonstrates that
classical and polar Sobolev active contours are able to segment objects with
corners, because we only ensure smoothness of the flow and not of the result
itself. In fact, first order Sobolev spaces, such as the ones employed here, are
the correct spaces for representing corners, because elements of them have a
continuous representative, but not necessarily a continuous derivative, such as
the function f (x) = |x| for instance [35].
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Figure 4.5: Behavior of Different Flows: The L flow and the translation weighted L flow (i.e. λ = 10) get stuck in a local minimum
because all parts of the curve can move independently from each other (the initialization is drawn in blue). The weighted and regularized
L flow and the SPHARM model [4] segment the lumen successfully, but still adapt to local features immediately. In contrast to this, the
standard Sobolev active contours [110] as well as the H flow capture the coarse shape first and adapt to local structures much later.
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SPHARM H

Figure 4.6: Coarse-to-Fine Behavior: During the evolution of the SPHARM
model (left) all frequencies become active right at the beginning, which is
shown by the amplitude plots of the first 15 frequencies in the second row
(the initialization is drawn in blue). The resulting sensitivity to local minima
causes the contour to get stuck in a local minimum. In contrast to this, the
coarse-to-fine behavior of the H flow makes the contour very robust to local
minima. Note that the origin is fixed in this experiment in order to compare
the frequencies.

4.4.2 Coarse-to-Fine Behavior

In order to illustrate the coarse-to-fine nature of the H flow a bit further we
segment a coronary artery acquired by optical coherence tomography, cf. Fig.
4.6. Again we minimize the Chan-Vese model without length regularization.
In order to compare the amplitudes of the first 15 frequencies of cr we fixed
the origin in this experiment. During the evolution of the SPHARM model,
which is restricted to 20 frequencies, high frequencies appear to become active
right at the beginning, which is not the case for the H flow. The reason for this
coarse to fine behavior of the H flow is exactly the weighting of the frequency
components discussed already in (1.34) in Sec. 1.2, which eventually leads to
frequency dependent step sizes during the gradient descent. This makes the H
flow very robust to local minima, although H contains an infinite number of
frequency components.

4.4.3 Comparison to Classical Sobolev Active Contours

While the coarse-to-fine behavior is typical for Sobolev-type flows in general,
the H flow is endowed with a metric that allows us to favor origin translations
and scale changes over smooth deformations. These properties make the
H flow extremely suitable for visual tracking applications, where an image
sequence is segmented in a frame-wise manner by using the segmentation
of one frame as the initialization for the subsequent one. It is important to
note that we employ no regularization which ensures that the contours of
consecutive frames are close or similar.

In Fig. 4.7 we compare theH flow to a standard Sobolev active contour [110],
which allows only to weight translations as well as deformations including scale
changes. In this experiment we segment an ellipse whose scale is increasing
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Figure 4.7: Comparison to Sobolev Active Contours: In this artificial tracking
experiment, we can observe that the classical Sobolev Active contours (upper
row) only allow to weight translations and deformations: if we allow for scale
changes we also allow for deformations. In contrast to this, the H flow (lower
row) allows the user to penalize scale changes differently than deformations
and it is thus able to maintain the shape.

such that it is occluded by the bar on the right hand side. We can see that, if we
want the classical Sobolev active contour to be able to adapt to scale changes
we also have to allow deformations, which causes the Sobolev active contour
to leak. In contrast to this, the H flow allows to weight scale changes and
deformations differently. This leads to an increased robustness with respect to
occlusions or background clutter.

4.4.4 Visual Tracking Applications

In Fig. 4.9 we give several examples for visual tracking applications ranging
from spatial and temporal aneurysm segmentation (first and second row) to
left ventricle and cell tracking (third and fourth row).

In the first row of Fig. 4.9 we segment the inner wall (yellow) and the outer
wall (blue) of an abdominal aortic aneurysm from CTA data by minimizing
the coupled Chan-Vese model for aneurysm analysis proposed in [4]. The
background in this scenario is highly cluttered due to the high intensities of the
neighboring vertebrae, but the H flow successfully tracks the aneurysm over
68 slices. The segmented aneurysm can be seen in Fig. 4.8. Please note that
the inner and outer walls are smooth although we employed no regularization
ensuring that segmentations in neighboring slices are somehow close or similar.

Combining the coupled Chan-Vese model of [4] with our framework can
also be used for temporal aneurysm analysis. In the second row of Fig. 4.9 we
segment an image sequence of one slice of an aortic aneurysm acquired with
4D MRI. The image quality in this example is rather poor and the neighboring
vertebrae have almost the same image intensities as the thrombus, but the H
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Figure 4.8: Aneurysm Segmented by H flow: The inner wall is drawn in
yellow and the outer wall is drawn in blue. Note that, although we employed
no regularization ensuring that segmentations of neighboring slices are similar,
both surfaces are continuous and smooth.

flow shows almost no leakage into surrounding objects.
In the third row of of Fig. 4.9 we track one slice of a left ventricular cavity

acquired by 4D MRI. Although the image intensities are varying spatially and
temporally the H flow is able to segment the ventricular cavity by minimizing
a standard piecewise constant model [20]. The image data was taken from [91].

In the forth row of Fig. 4.9 we finally track a Leukocyte chasing a bacterium
in order to demonstrate the applicability of method to cell segmentation. The
image sequence was taken from [99].

79



C
h

a
p

t
e

r
4:P

o
l

a
r

A
c

t
i
v

e
C

o
n

t
o

u
r

s

slice 1 slice 15 slice 20 slice 40 slice 68

frame 1 frame 2 frame 4 frame 6 frame 8

frame 1 frame 5 frame 11 frame 16 frame 20

frame 1 frame 5 frame 10 frame 15 frame 20

Figure 4.9: Application Examples: Spatial tracking of an abdominal aortic aneurysm from CTA (first row), temporal tracking of another
aneurysm in one slice of 4D MRI (second row), temporal tracking of a cross-section of the left ventricular cavity in 4D MRI (third row),
and tracking of a leukocyte chasing a bacterium (fourth row).
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Figure 4.10: Examples of Excluded Slices.

4.4.5 Quantitative Evaluation

We also performed a quantitative evaluation on the evaluation data set of
the 2009 MICCAI left ventricle segmentation challenge [91]. One task of
this challenge was the automatic or semi-automatic delineation of the cavity
boarder on 260 slices from 15 subjects. The goal of the presented experiments
based on this data set is to show that the proposed method can be applied to
real world challenges without tremendous methodological modifications or
extensive parameter tuning. For this reason we designed a simple MATLAB
segmentation tool which only requires the selection of a filename and the
definition of an initial circle by two diametral points. We used the localized
Chan-Vese model of Lankton et al. [59] as an energy, where the diameter of
the localization sphere was set to five pixels, and kept the standard parameter
settings, i.e. λ = 1 and γ = 0.024, for all experiments. An aspect which makes
this segmentation task challenging is the fact that the intensity values of the
papillary muscles, which are located inside the ventricular cavity, are quite
similar to the ones of the myocardium. As the papillary muscles can only be
approximated by higher frequencies of the contour we restricted the number of
frequencies to five. This way, the model can be distracted far less by these fine
scale structures, but it is still flexible enough to segment the cavity boarder.

After performing the experiments, we used the original evaluation frame-
work provided by [91], which consists of a set of expert segmentations as well
as an evaluation software, for generating the results presented in Tab. 4.1 and
Fig 4.11. The provided framework calculates the following quality measures:

• the number and the percentage of detected contours,

• the average perpendicular distance from the automatically segmented
contour to the corresponding manually drawn expert contour,

• the DICE metric, i.e. a measure of contour overlap based on the areas of
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patient # automatic # manual % detected % ”good” ∅ dist. (mm) ∅ DICE

SC-HF-I-01 18 18 100.00 72.22 2.62 0.8860
SC-HF-I-02 18 18 100.00 94.44 2.73 0.8745
SC-HF-I-04 20 20 100.00 95.00 2.96 0.8834
SC-HF-I-40 18 18 100.00 94.44 2.47 0.8671

SC-HF-NI-03 20 20 100.00 65.00 4.09 0.8638
SC-HF-NI-04 20 20 100.00 90.00 3.12 0.8856
SC-HF-NI-34 20 20 100.00 90.00 2.06 0.9012
SC-HF-NI-36 18 18 100.00 94.44 2.47 0.9113
SC-HYP-01 11 12 91.67 75.00 2.38 0.8661
SC-HYP-03 13 13 100.00 84.62 3.02 0.7902
SC-HYP-38 14 18 77.78 61.11 3.14 0.7872
SC-HYP-40 15 18 83.33 55.56 4.18 0.7565

SC-N-02 17 17 100.00 82.35 2.55 0.8366
SC-N-03 15 17 88.24 82.35 2.40 0.8758
SC-N-40 13 13 100.00 76.92 3.07 0.7855

overall 250 260 96.15 80.90 2.88 0.8514

Table 4.1: Results of the Quantitative Evaluation.

the automatically and manually segmented contours1, and finally

• the percentage of ”good” contours, i.e. the percentage of contours whose
average perpendicular distance is less than 5mm.

Of course, one would expect that the detection rate of a semi-automatic ap-
proach is 100%, but we had to exclude apical 10 slices where the left ventricular
cavity consisted of only one to three pixels, cf. Fig. 4.10. In general, how-
ever, the obtained results are well comparable to the ones achieved by other
approaches which participated in this challenge, cf. corresponding issue of
the MIDAS journal. This is even more remarkable as several other methods
require training data or more user interaction. While the presented method
works quite well as far as the robustness with respect to the papillary muscles
is concerned, it is quite susceptible in the case of very fuzzy boundaries, espe-
cially in the case of apical slices, cf. Fig. 4.11. These problems might arise from
the fixed size of the localization sphere, but as mentioned above we wanted to
present an approach which does not require extensive parameter tuning.

1The DICE metric takes values in [0, 1], where higher values indicating a better match.
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5
Conclusion

We finally wish to sum up the contributions presented in this dissertation and
discuss some interesting questions and directions for further research.

In Sec. 1.2 we have introduced the concepts of implicit and explicit reg-
ularization and showed that these concepts comprise powerful classification
taxonomies, cf. chapter 2. Although many explicit and implicit regularization
strategies have been proposed we believe that this topic has been fading from
the spotlight too much and should be considered from a more general point of
view again, as it is done in the articles of Terzopoulos [113] and Poggio et al.
[89] for instance. In particular, we think that the following question should be
answered from a more general point of view:

Given a particular application, which regularization strategy should be chosen?

We hope that the considerations and generalizations presented in this thesis
help to reinforce future research with respect to this as well as related questions.

In Sec. 3.1.1 we have generalized several non-geometric variational level
set methods. In particular, we have seen that convex active contour models
exhibit a (hidden) degree of freedom - namely the choice of a (degenerate)
binarization operator. A possible direction for further research could thus be
the following question:

Are there other (degenerate) convex binarization operators, which allow for a strictly
convex formulation for instance?

In Sec. 3.1.4 we have compared numerical techniques for H1- and Tikhonov-
type regularized variational level set formulations in the non-geometric case.
We have seen that these regularization strategies can lead to update equa-
tions of the same computational complexity while revealing the fundamental
differences of explicit and implicit regularization strategies.

In Sec. 3.2 we have presented a convenient and efficient framework for
Sobolev active contours and surfaces, which is derived in a fully implicit
manner. In contrast to previous approaches [21, 34], we have proposed a
geometrically motivated Sobolev-type inner product. The performed exper-
iments clearly show that the Sobolev gradients obtained with the proposed
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numerical scheme lead to smooth curve and surface evolutions. If desired, one
can even use operator splitting techniques, e.g. [123], in order to compute an
approximate Sobolev gradient in linear complexity. Future work might include
the usage of more sophisticated inner products, such as the ones described in
[107], or the incorporation of the ideas presented in [22].

In chapter 4 we have proposed a framework for polar active contours, which
allows the user to weight translations, scale changes and smooth deformations
of the curve differently. Our framework inherits the robustness to local minima
from Sobolev active contours and it allows the user to directly minimize the
desired energy without the need for additional regularizers. The application
examples show that the H flow for polar active contours is a powerful and
efficient extension of standard polar active contours. The performed quantita-
tive evaluation hopefully convinces the reader that the design of geometrically
motivated implicit regularization strategies is a powerful alternative to the
convexification of active contour approaches, in order to make active contours
more global. We believe that further improvements could be achieved by incor-
porating geometric priors on the isoperimetric ratio or the boundary length as
demonstrated in [109].
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A
Sobolev Spaces

The concept of Sobolev spaces in essential in this dissertation and when dealing
with them we often take several non-trivial facts, such as the possibilities of
selecting a continuous representative or evaluating them on the boundary
of a domain, for granted. For this reason we wish to provide a brief but
mathematically correct definition along with some important tools here. The
presented concepts can be found in many books on partial differential equations
and functional analysis and we refer the interested reader to [35, 60, 32, 101].

At first, we need to introduce the well-known Lp spaces.

Definition A.1 (The Function space Lp(Ω)) Let Ω ⊂ Rd (be a measurable set).
For p ∈ [1, ∞), the space Lp(Ω) consists of all (measurable) functions for which∫

Ω
|u|p dx < ∞ (A.1)

holds1.

Besides the standard Lp spaces we need the space of locally integrable
functions.

Definition A.2 (The Space of Locally Integrable Functions L1
loc(Ω)) Let Ω ⊂

Rd. The function space L1
loc(Ω) consists of all functions u for which

u ∈ L1(Ω0) (A.2)

holds for any open subset Ω0 ⊂⊂ Ω.

The function spaces Lp(Ω) are Banach spaces.

Theorem A.1 (Lp is a Banach Space) Endowed with the norm

‖u‖Lp =

(∫
Ω
|u|p dx

) 1
p

(A.3)

the function space Lp(Ω) becomes a Banach space.
1It should be note that dx has to be understood in the sense of the Lebesgue-measure and not

in the Riemannian sense.
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The space L2, however, has even more structure than other Lp spaces.

Theorem A.2 (The Hilbert space L2(Ω)) Endowed with the inner product

〈u, v〉L2 =
∫

Ω
uv dx (A.4)

the function space L2(Ω) becomes a Hilbert space.

Now, we are in the position to formulate the fundamental lemma of varia-
tional calculus which helps us to derive the Euler-Lagrange equation(s) and to
compute the Sobolev gradients.

Theorem A.3 (Fundamental Lemma of Variational Calculus) Let Ω ⊂ Rd and
u ∈ L1

loc(Ω). If ∫
Ω

uv dx = 0 (A.5)

for all v ∈ C∞
0 , then u(x) = 0 almost everywhere in Ω.

Before, we can proceed with the introduction of the Sobolev spaces we have
to introduce some notation.

Definition A.3 (Multi-index) A multi-index is a vector α = (α1, . . . , αn) ∈ Nn
0 .

We define

|α| =
n

∑
i=1

αi, xα = xα1
1 · · · xαn

n , Dαu =
∂|α|

∂xα1
1 · · · ∂xαn

n
u. (A.6)

This allows us to define weak derivatives.

Definition A.4 (Weak Derivative) Let u ∈ L1
loc(Ω). If there exists a function

uα ∈ L1
loc(Ω) such that ∫

Ω
uDαv dx = (−1)|α|

∫
Ω

uαv dx (A.7)

for all v ∈ C∞
0 (Ω), we call uα α-weak derivative.

Now, we can finally define the Sobolev spaces Hm.

Definition A.5 (The Sobolev Space Hm(Ω)) Let m ∈ N0. The Sobolev space
Hm(Ω) consists of all functions u ∈ L2(Ω) for which uα, |α| ≤ m, is an element of
L2(Ω).

Fortunately, Hm is a Hilbert space.

Theorem A.4 (Hm(Ω) is a Hilbert Space) Endowed with the inner product

〈u, v〉Hm = ∑
|α|≤m

∫
Ω

DαuDαv dx (A.8)

Hm(Ω) becomes a Hilbert space.
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In Hilbert spaces, we have powerful tools available to us. An important
example is the Riesz representation theorem which helps us to express Sobolev
gradients via standard L2 gradients.

Theorem A.5 (Riesz Representation Theorem) Let H be a Hilbert space and F :
H → R a linear functional which is bounded, i.e.

|F(u)| ≤ C ‖u‖H (A.9)

holds for some constant C > 0. Then, there exists a uniquely determined element
v ∈ H such that

F(u) = 〈u, v〉H (A.10)

for all u ∈ H.

The following theorem is very important, if we want to know, if an element
of a Sobolev space is continuous in the classical sense.

Theorem A.6 (Continuous Embedding) If Ω ⊂ Rd is a Lipschitz domain, i.e. a
domain whose boundary can be locally described by a Lipschitz continuous function,
and m− d

2 > k, there exists a continuous embedding

Hm(Ω) ↪→ Ck(Ω). (A.11)

In other words, if m− d
2 > 0 for instance, we can find a continuous representa-

tive for any u ∈ Hm(Ω).
The evaluation of a function u ∈ Hm(Ω) ⊂ H1(Ω) (m ≥ 1) at the boundary

of a domain Ω is tricky, because the boundary ∂Ω has Lebesgue measure zero.
Fortunately, there is a theorem which helps us.

Theorem A.7 (Trace Theorem) If Ω ⊂ Rd is a Lipschitz domain, there exists a
bounded linear operator T : H1(Ω)→ L2(∂Ω) such that

Tu = u|∂Ω , (A.12)

where u ∈ H1 ∩ C(Ω).
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B
Other Contributions

B.1 Stent Graft Removal for Improving 2D-3D Reg-
istration

Figure B.1: An example for stent graft removal on a real interventional angiog-
raphy. The original image is presented on the left and the reconstructed image
is given on the right. Note that the borders of the vertebrae, which contain
meaningful anatomical information, are well preserved while in contrast to
this the stent graft and the catheter are hardly visible anymore.

Maximilian Baust, Stefanie Demirci, Nassir Navab Being performed un-
der extensive radiation exposure, endovascular stent graft placements would
greatly benefit from a reliable navigation solution. A successful implemen-
tation of such a system requires an accurate 2D-3D registration. Since the
stent graft is only visible in the radiograph, registration algorithms can easily
be attracted to wrong structures. In this paper, we address this problem by
presenting a fast algorithm for removing the stent graft which meets real-time
constraints. Based on Poisson editing, our method is easy to implement and
extremely user-friendly as it requires neither parameter adjustment nor precise
presegmentation. Moreover, we prove the significance of our algorithm by a
realistic ground truth study.
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B.2 Monocular Deformable Model-to-Image Regis-
tration of Vascular Structures

Figure B.2: Two synthetic data sets. The white spheres represent the input
vascular model, the gray spheres show the deformed input model (the ground
truth) from which the projection image has been generated. The lower right
sub-images visualize the enhanced projection images, where green disks are
drawn at all projected centerline points at the beginning of the registration.

Martin Groher, Maximilian Baust, Darko Zikic, Nassir Navab The registra-
tion of 3D vasculature to 2D projections is the key for providing advanced
systems for image-based navigation and guidance. In areas with non-rigid
patient motion, however, it is very difficult to accurately perform the registra-
tion if only one 2D view is available. We propose a method for deformable
registration of a 3D vascular model extracted from an angiographic scan to
a single 2D Digitally Subtracted Angiogram (DSA). Different to existing ap-
proaches, our method does not require a segmentation of 2D vasculature. In
consequence, our method can be used without manual interaction during med-
ical treatment. Formulated as an energy minimization problem, our approach
combines a novel data term with the length regularization proposed in [44]
which removes the ill-posedness of this monocular scenario. Besides attracting
projected 3D centerline points to locations with high vessel probability the
proposed data term ensures an injective projection of the centerline points.
Due to our novel image-based data term, we achieve a considerable gain in
performance compared to feature-based approaches.

Accuracy, robustness to outliers, as well as performance issues are analyzed
through tests on synthetic and real data within a controlled environment.
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Spaces

B.3 Generalization of Deformable Registration in
Riemannian Sobolev Spaces
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Figure B.3: Random convergence study in a mono-modal setting with
SSD. Results in (e) are the mean of 100 trials, and w.r.t. actual com-
putation time. Displacements in (b)-(d) are color-coded, c.f. (a) and
http://vision.middlebury.edu/flow/. Bumps in (e) are due to transitions
between resolution level. The proposed method clearly outperforms the semi-
implicit L2 flow in terms in speed and accuracy.

Darko Zikic, Maximilian Baust, Ali Kamen, Nassir Navab In this work we
discuss the generalized treatment of the deformable registration problem in
Sobolev spaces. To this end, we extend previous approaches in two points:
1) by employing a general energy model consisting of a similarity measure
and a regularization term, and 2) by changing the notion of distance in the
Sobolev space by problem-dependent Riemannian metrics. The actual choice
of the metric is such that it has a preconditioning effect on the problem.
The preconditioning strategy is applicable to arbitrary similarity measures
and features a simple implementation. Our experiments demonstrate an
improvement in speed by several orders of magnitude in comparison to semi-
implicit gradient flows in L2, as well as increased accuracy. Furthermore, the
proposed generalization establishes a theoretical link between gradient flow in
Sobolev spaces and elastic registration methods.
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B.4 A General Preconditioning Scheme for Differ-
ence Measures in Deformable Registration

Figure B.4: From left to right: Source image, point-wise gradient vectors of the
difference measure, normalized point-wise gradient vectors, and values of the
preconditioner.

Darko Zikic, Maximilian Baust, Ali Kamen, Nassir Navab We present a
preconditioning scheme for improving the efficiency of optimization of arbi-
trary difference measures in deformable registration problems. The proposed
scheme is simple and computationally efficient: it performs an approximate
normalization of the point-wise vectors of the difference gradient to unit length.
The major contribution of this work is a theoretical analysis which demon-
strates the improvement of the condition by our approach, which is shown to
be an approximation to the optimal preconditioning for the analyzed model.
The proposed approach is of particular interest for high-dimensional registra-
tion problems with statistical difference measures such as MI, and especially
for the demons method, since in these cases the range of applicable standard
optimization methods is limited. Because of the simplicity of the proposed
scheme, its application improves the convergence speed with negligible added
cost. The theoretical findings are confirmed by a series of experiments on 3D
brain data.
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Figure B.5: Exemplary Segmentation Results: Rows: data from three subjects.
Columns: sample slice through volume with midbrain visible (left), segmen-
tation result without data term localization (middle left), segmentation result
with localization (middle right), mesh surface distance map between result and
ground truth (colorbar in mm).

Seyed-Ahmad Ahmadi, Maximilian Baust, Athanasios Karamalis, Annika
Plate, Kai Boetzel, Tassilo Klein, Nassir Navab Ultrasound examination of
the human brain through the temporal bone window, also called transcranial
ultrasound (TC-US), is a completely non-invasive and cost-efficient technique,
which has established itself for differential diagnosis of Parkinson’s Disease
(PD) in the past decade. The method requires spatial analysis of ultrasound
hyper-echogenicities produced by pathological changes within the Substantia
Nigra (SN), which belongs to the basal ganglia within the midbrain. Related
work on computer aided PD diagnosis shows the urgent need for an accu-
rate and robust segmentation of the midbrain from 3D TC-US, which is an
extremely difficult task due to poor image quality of TC-US. In contrast to
2D segmentations within earlier approaches, we develop the first method for
semi-automatic midbrain segmentation from 3D TC-US and demonstrate its
potential benefit on a database of 11 diagnosed Parkinson patients and 11
healthy controls.
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B.6 3D Stent Recovery from One X-ray Projection

(a) (b) (c)

Figure B.6: Real experiment: (a)-(b) detection results (white) overlayed onto
interventional images acquired from two different views, (c) 3D recovery of
both stent shapes (green,red) after applying a common scale to all green
segments

Stefanie Demirci, Ali Bigdelou, Lejing Wang, Christian Wachinger, Maxim-
ilian Baust, Radhika Tibrewal, Reza Ghotbi, Hans-Henning Eckstein, Nas-
sir Navab In the current clinical work flow of endovascular abdominal aortic
repairs (EVAR) a stent graft is inserted into the aneurysmatic aorta under 2D
angiographic imaging. Due to the missing depth information in the X-ray
visualization, it is highly difficult in particular for junior physicians to place the
stent graft in the preoperatively defined position within the aorta. Therefore,
advanced 3D visualization of stent grafts is highly required. In this paper,
we present a novel algorithm to automatically match a 3D model of the stent
graft to an intraoperative 2D image showing the device. By automatic prepro-
cessing and a global-to-local registration approach, we are able to abandon
user interaction and still meet the desired robustness. The complexity of our
registration scheme is reduced by a semi-simultaneous optimization strategy
incorporating constraints that correspond to the geometric model of the stent
graft. Via experiments on synthetic, phantom, and real interventional data, we
are able to show that the presented method matches the stent graft model to
the 2D image data with good accuracy.
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