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Introduction

W. Bloom and H. Heyer state in [7, p. 69] that the idea of hypergroups can be traced
back quite formally to the work of F. Marty and H. S. Wall in the 1930ies. Nowadays
there are three axiom schemes for hypergroups advanced independently by C. F. Dunkl
[13], R. I. Jewett [24] and R. Spector [50] during the 1970ies. We follow [7] which is based
on the commonly used axiomatic framework of Jewett.

Hypergroups generalize the class of locally compact groups. Roughly speaking, a
hypergroup is a locally compact Hausdor� space K, endowed with a probability measure-
valued convolution ω : K × K → M1(K) (generalizing the group operation) and an
involution ˜: K → K (in the group case given by the group inversion).

For example, hypergroups arise naturally as double coset spaces, spaces of conjugacy
classes or orbit spaces [24, Ch. 8]. Important examples are also given on R+

0 and N0

(with operations di�erent from the ones inherited by the group operations on R and Z)
by Sturm-Liouville and polynomial hypergroups, respectively.

Polynomial hypergroups as de�ned by R. Lasser in [29] constitute our main exam-
ples: In their de�nition linearization coe�cients derived from orthogonal polynomial sys-
tems are used to induce commutative hypergroup structures on N0 (similar to the system
(xn)n∈Z 'inducing' the group structure (Z,+)). On the one hand, polynomial hypergroups
play the role of comparatively simple examples of commutative hypergroups (like (Z,+)
for locally compact abelian groups). On the other hand, the class of polynomial hyper-
groups has proven to be a rich source of examples and counterexamples.

In this thesis we consider the Banach algebra L1(K) with respect to the Haar measure
on a commutative hypergroup K. For general hypergroups it is not clear if there always
exists a Haar measure with respect to the hypergroup translations, whereas for compact or
commutative hypergroups the existence of a Haar measure is known; cf. [24, Thm. 7.2A]
and [51]. Furthermore, polynomial hypergroups which serve as our main examples are
always commutative. For these reasons the present thesis is concerned with commutative
hypergroups only.

Still, commutative hypergroups display a number of properties not familiar from the
case of locally compact abelian groups. Examples include the facts that the translations
are in general not isometries but only contractions, the characters need not be of modulus
one and the character space rarely carries a natural dual hypergroup structure. While
there still are an inverse Fourier and Plancherel transformation, the Plancherel measure
does not have to have full support in the character space; all these facts can be found in [7].

The topic of the present thesis are structural properties as well as properties arising
from harmonic analysis of L1-algebras de�ned on a commutative hypergroup.

Properties of commutative hypergroups are discussed in Chapter 1.
Chapters 2 and 5 are concerned with some properties of L1-algebras arising from

harmonic analysis: Chapter 2 approaches questions relating to amenability of l1-algebras
on polynomial hypergroups, while Chapter 5 considers regularity of the L1-algebras on
commutative hypergroups.

Chapters 3 and 4 deal with structural properties of L1-algebras: In Chapter 3 we
have a look at embeddings and isomorphisms of l1-algebras on polynomial hypergroups.
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Chapter 4 comments on the action of the L1-algebra of a commutative hypergroup on the
corresponding Lp-spaces. The results of both sections have mostly been published, see
[34, 41].

Chapter 1 introduces commutative hypergroups: After de�ning commutative hyper-
groups we turn to basic notions in their harmonic analysis. Special attention is directed
to their dual objects. As examples we consider the class of polynomial hypergroups in
Chapter 1.2. We conclude the chapter by introducing the slightly more general notion of
signed polynomial hypergroups which we need in Chapter 3.

In Chapter 2 we are concerned with amenability and weak amenability of the l1-algebra
of a polynomial hypergroup structure on N0 and an observation on the α-amenability of
a general commutative Banach algebra A.

The de�nition of an amenable Banach algebra is motivated by Johnson's Theorem [48,
Thm. 2.1.8, Ch. 2.5], dating from the 1970ies, which characterizes the amenability of a
locally compact group G by the amenability of L1(G). M. Skantharajah already remarks
in [49, Pro. 4.9, Ex. 4.10] that Johnson's Theorem is not valid for hypergroups: For a
hypergroup the amenability of its L1-algebra is not equivalent to but only implies the
amenability of the hypergroup. For an illustration consider the family of ultraspherical
polynomial hypergroups: Each member of this family is amenable (since every commuta-
tive hypergroup is amenable [49, Ex. 3.3.(a)]) whereas only the l1-algebra induced by the
Chebyshev polynomials of the �rst kind is amenable. This has been shown by R. Lasser
in [32, Cor. 3] using a su�cient condition for the existence of an approximate diagonal
[32, Thm. 4]. More general, if the Haar weight (hn)n of a polynomial hypergroup tends
to in�nity, then l1(h) is not amenable [32, Thm. 3]; this demonstrates that there is quite
a gap between amenability of hypergroups and amenability of their L1-algebras.

Thus, for hypergroups we are led to study well known properties of Banach algebras
weaker than amenability; weak amenability has been introduced in the 1980ies by W.
Bade, P. Curtis and H. Dales (compare [48, Ch. 4.5]), whereas α-amenability was de�ned
only recently by E. Kaniuth, A. T. Lau and J. Pym in [26]. Weak amenability of the l1-
algebras of polynomial hypergroups has been studied by R. Lasser in [32]. In particular,
for the family of ultraspherical polynomial hypergroups with nonnegative parameter he
proves that the l1-algebra is not even weakly amenable [32, Cor. 1]. The α-amenability of
l1-algebras of polynomial hypergroups has been studied in [16, 33] by F. Filbir, R. Lasser
and R. Szwarc.

In Chapter 2.1 we consider amenability of l1(h) by studying the possible forms of
approximate diagonals for l1(h). Making use of a simple form with symmetric Gelfand
transforms we obtain su�cient conditions on the growth of the Haar weight (hn)n for
l1(h) to be amenable (Proposition 2.12, Corollary 2.13). In Chapter 2.2 we �rst treat weak
amenability of l1(h). We derive two characterizations of weak amenability, one of them
in a way similar to approximate diagonals characterizing amenability of l1(h) (Proposi-
tion 2.18). Unfortunately, the results on amenability and weak amenability remain rather
theoretical; we have not been able to provide examples yet. Afterwards we make an obser-
vation on α-amenability of a general commutative Banach algebra A (Proposition 2.22);
we show that α-amenability for all α ∈ ∆(A) implies that ∆(A) is discrete with respect
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to the weak topology σ(A∗, A∗∗).

In Chapter 3 we consider isomorphisms between l1-algebras of (signed) polynomial
hypergroups.

Isomorphisms of hypergroups have been studied by W. Bloom and M. Walter in [8],
their main focus lying on isometric isomorphisms. Isometric isomorphisms between l1-
algebras are quite rare since, in general, the translation operators are not unitary and the
characters are not of modulus 1; we only consider non-isometric isomorphisms. The results
are formulated for signed polynomial hypergroups which include the class of polynomial
hypergroups.

In Chapter 3.1 we derive su�cient conditions for the existence of homomorphisms and
isomorphisms between the l1-algebras of two (signed) polynomial hypergroups. Those are
conditions imposed on the connection coe�cients between the two inducing systems of
orthogonal polynomials (Theorems 3.2 and 3.8). On our way we show in Corollary 3.6
that the l1-algebra carrying the convolution structure of the semigroup N0 is continuously
embedded in the l1-algebra of every polynomial hypergroup N0.

In Chapter 3.2 we apply the constructed class of homomorphisms to transfer amenabil-
ity and related properties from one l1-algebra to another. These properties are usually
hard to verify directly, whereas the approach via inheritance under homomorphisms turns
out to be a practicable alternative. As examples we consider the Bernstein-Szeg® polyno-
mials of the �rst and the second kind, as well as the Jacobi and the Associated Legendre
polynomials. In particular, we show that all l1-algebras w.r.t. Bernstein-Szeg® polyno-
mials of the �rst and the second kind are isomorphic to the l1-algebras w.r.t. Chebyshev
polynomials of the �rst and the second kind, respectively. This in turn implies that the
l1-algebras w.r.t. Bernstein-Szeg® polynomials of the �rst kind are all amenable.

Almost all results of Chapter 3 have already been published in [34] (with the notewor-
thy exception of the Bernstein-Szeg® polynomials of the second kind).

In Chapter 4 we consider the spectra of the convolution operators

Tf = Tf,p : Lp(K)→ Lp(K), Tf (g) = f ∗ g,

for f ∈ L1(K) on commutative hypergroups K. We are interested in how, for �xed
f ∈ L1(K), the spectra σp(Tf ) of Tf,p vary with p. The starting point for our investigation
is B. Barnes' article [4] where he treats this problem for locally compact groups.

In Chapter 4.1 we obtain that, as for locally compact amenable groups [4, Pro. 3], for
any commutative hypergroup K and f ∈ L1(K), the inclusion σq(Tf ) ⊆ σp(Tf ) is true
whenever p ≤ q ≤ 2 or 2 ≤ q ≤ p (Proposition 4.6).

In Chapter 4.2 we mainly characterize those commutative hypergroups where for each
L1-convolution operator all its p-spectra coincide (Theorem 4.12). We prove that σp(Tf )
is independent of p ∈ [1,∞] for all f ∈ L1(K) exactly when the Plancherel measure is
supported on the whole character space. A reformulation of this characterization reads:
σp(Tf ) is independent of p ∈ [1,∞] for all f ∈ L1(K) exactly when L1(K) is symmetric and
for every α ∈ K̂ Reiter's condition P2 holds true. This is similar to [4, Thm. 6] where p-
independence for locally compact groups G is characterized by L1(G) being symmetric and
G being amenable. For groups, Barnes' assumption of amenability is equivalent to Reiter's
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condition P2 (in α ≡ 1) whereas for hypergroups the various properties which characterize
amenability (including the P2-condition) in the group case are not equivalent. On our way
to prove Theorem 4.12 we obtain in Corollary 4.9 that each connected component of the
character space intersects the support of the Plancherel measure (modulo L1(K) being
unital).

In Chapter 4.3 we explicitly determine the spectra σp(Tε1), p ∈ [1,∞], for the fam-
ily of Karlin-McGregor polynomial hypergroups and the generating elements ε1 of their
l1-algebras for all parameters α, β ≥ 2. These spectra turn out to equal the set of both
square roots of certain ellipses in the complex plane (Theorem 4.15). By [4, Thm. 6]
for abelian locally compact groups the spectra σp(Tf ) coincide for all p ∈ [1,∞]. Our
examples demonstrate that this is not true for commutative hypergroups since here
σq(Tε1) ( σp(Tε1) whenever q > p, q, p ∈ [1, 2], and (α, β) 6= (2, 2). This also shows
that the inclusion relation of Chapter 4.1 can not be improved for general commutative
hypergroups. Furthermore, as a byproduct we obtain the shape of the complex set where
the Karlin-McGregor polynomials are uniformly bounded; for a polynomial hypergroup
this set is the customary representation of its corresponding character space.

The results contained in this chapter have been published in [41].

In Chapter 5 we are concerned with regularity of L1(K), i.e., the question of whether
there are enough Gelfand transforms to separate points from closed subsets in the structure
space.

Regularity of a commutative Banach algebra was �rst introduced (via the notion of
the hull-kernel topology on the maximal ideal space) during the 1940ies by I. Gelfand, G.
Shilov and N. Jacobson; cf. [25, Ch. 4.9]. It is well-known that L1(G) is regular for all
locally compact abelian groups G, see [25, Thm. 4.4.14]; this is not true for commutative
hypergroups. In fact, in this chapter we �rst observe the probably well known fact that
the regularity of L1(K) implies that the Plancherel measure is supported on the whole
character space, which demonstrates that not all L1-algebras on commutative hypergroups
are regular.

Since hypergroups are in general not equipped with a natural dual convolution struc-
ture (induced by pointwise multiplication of characters), an approach to the problem
analogous to the group case is not possible. In [17, Thm. 2.1], L. Gallardo and O.
Gebuhrer show regularity of L1(K) for commutative hypergroups K whose Haar measure
is of polynomial growth. Their proof uses J. Dixmier's functional calculus based on [11,
Lem. 7] for certain Lie groups.

In this chapter we extend this functional calculus to functions in a certain Beurling
algebra on R (Theorem 5.3) which allows us to slightly improve the result of Gallardo
and Gebuhrer beyond polynomial growth of the Haar measure (Theorem 5.6).
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1 Commutative Hypergroups

Hypergroups have been de�ned independently by Dunkl [13], Jewett [24] and Spector
[50] during the 1970ies; we follow [7] which is based on the axiomatic framework of Jewett.
This thesis is only concerned with commutative hypergroups.

Commutative Hypergroups generalize the class of locally compact abelian groups
(LCAG). Roughly speaking, a commutative hypergroup is a locally compact Hausdor�
space K, endowed with a commutative, probability measure-valued convolution ω : K ×
K → M1(K) and an involution ˜ : K → K. The convolution generalizes the group
operation and the involution in the group case is given by the group inversion.

In Chapter 1.1 we de�ne commutative hypergroups and state some basic notions in
their harmonic analysis. Special attention is directed to the dual objects. As examples we
consider the rich class of polynomial hypergroups in Chapter 1.2. The scope of Chapter
1.3 is to introduce the slightly more general notion of signed polynomial hypergroups
which we need in Chapter 3.

1.1 De�nition and Basic Properties

An extensive reference for the following basics on hypergroups (as well as a guide for
our presentation) is the monograph by W. R. Bloom and H. Heyer [7]. First we de�ne
commutative hypergroups, before turning to basic notions in their harmonic analysis. In
particular detail we consider three natural dual objects of a commutative hypergroup.

In order to state the exact de�nition of a hypergroup we �rst have to lay down some no-
tation and get to know the Michael topology on the set of compact subsets of K. Let K be
a nonvoid locally compact Hausdor� space. By M b(K) we denote the complex, bounded
Radon measures on K. We refer to the probability measures by M1(K) ⊂ M b(K). For
the point measure at x ∈ K we write εx ∈ M1(K). As usual, Cc(K), C0(K) and Cb(K)
denote the spaces of continuous functions which have compact support, vanish at in�nity
or are bounded, respectively.

De�nition 1.1. Let K be a locally compact Hausdor� space. Denote by C(K) the nonvoid
compact subsets of K. The Michael topology on C(K) is the topology generated by the subba-
sis {UU,V : U, V open subsets of K}, where UU,V := {C ∈ C(K) : C∩U 6= ∅ and C ⊂ V }.

If K is metrizable then the Michael topology is stronger than the topology on C(K) which
is induced by the Hausdor� metric [7, 1.1.1].

De�nition 1.2 (Commutative Hypergroup). Let K be a nonvoid locally compact Haus-
dor� space. The triple (K, ∗,̃ ) will be called a commutative hypergroup if the following
conditions are satis�ed.

(HG1) The vector space (M b(K),+) admits a (second) operation ∗ : M b(K)×M b(K)→
M b(K) under which it is an algebra.

(HG2) For x, y ∈ K, εx ∗ εy ∈M1(K) and supp (εx ∗ εy) is compact.

(HG3) The mapping K ×K → M1(K), (x, y) 7→ εx ∗ εy, is continuous w.r.t. the weak-∗-
topology on M1(K).
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(HG4) The mapping K × K → C(K), (x, y) 7→ supp (εx ∗ εy), is continuous w.r.t. the
Michael topology on C(K).

(HG5) There exists a (necessarily unique) element e ∈ K such that εx ∗ εe = εe ∗ εx = εx
for all x ∈ K.

(HG6) There exists a (necessarily unique) involution ˜ : K → K (a homeomorphism with
the property ˜̃x = x for all x ∈ K) such that (εx∗εy )̃ (B) := (εx∗εy)(B̃) = (εỹ∗εx̃)(B)
for all x, y ∈ K and all Borel sets B ⊂ K.

(HG7) For x, y ∈ K, e ∈ supp (εx ∗ εy) if and only if x = ỹ.

(HGC) The convolution ∗ is commutative, i.e., εx ∗ εy = εy ∗ εx for all x, y ∈ K.

Since the span of the point measures is weakly-∗-dense in M b(K), it is clear that the
convolutions εx ∗ εy, x, y ∈ K, determine the entire hypergroup structure. In particular,
it is su�cient to check associativity and commutativity with respect to the point mea-
sures. We frequently consider the convolution restricted to K and write ω : K ×K →
M1(K), ω(x, y) = εx ∗ εy.

Having de�ned commutative hypergroups we now turn to their basic properties w.r.t.
harmonic analysis. For y ∈ K, the translation of a function f ∈ Cc(K) by y is given by

Lyf(x) =

∫
K

fdω(y, x) =

∫
K

fd(εx ∗ εy). (1.1)

(Compare Lyf(x) =
∫
K
fd(εxy) =

∫
K
fd(εx ∗ εy) for LCAG.) For commutative hyper-

groups, a Haar measure m corresponding to these translations exists; further it is unique
up to normalization [7, Thm. 1.3.15, 1.3.22].

For p ∈ [1,∞) we consider the spaces Lp(K) := Lp(K,m). The above translations
extend to the space Lp(K) for all p ∈ [1,∞]. But note that, contrasting the group case,
these translation operators in general are not isometric but only contractive, i.e. ‖Lyf‖p ≤
‖f‖p.

For p ∈ [1,∞] the convolution of f ∈ L1(K) and g ∈ Lp(K) is de�ned by

f ∗ g(x) =

∫
K

Lỹf(x)g(y)dm(y). (1.2)

This convolution obeys ‖f ∗ g‖p ≤ ‖f‖1‖g‖p [7, Ch. 1.4], thus turning Lp(K) into a
symmetric Banach-L1(K)-bimodule. For p = 1, L1(K) is a commutative Banach-∗-algebra
with respect to the above convolution and the isometric ∗-operation f ∗(x) = f(x̃). The
algebra L1(K) will be of particular interest to us.

Next we get to know three dual objects of the Banach-∗-algebra L1(K), namely its
structure space, ∗-structure space and the structure space of its representation as convo-
lution operators on the Hilbert space L2(K). Note that these dual objects of commutative
hypergroups rarely carry a natural hypergroup structure of their own, compare [7, Ch.
2.4, Ex. 3.3.13]. They even need not coincide, see [7, Ex. 2.2.49]. These facts contrast
the case of LCAG, where all three dual objects equal the dual group. For the following
facts on the dual objects see Chapter 2.2 in [7], in particular Thm. 2.2.4.
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The character space χb(K) is given by

χb(K) = {α ∈ Cb(K) : α(e) = 1, Lyα(x) = α(x)α(y) for all x, y ∈ K} . (1.3)

χb(K) (endowed with the compact-open topology) is homeomorphic to the structure space
∆(L1(K)) via f̂(α) =

∫
K
fαdm. Note that in contrast to the case of LCAG the characters

are in general not of modulus one; compare (1.13) and subsequent remarks. L1(K) is
semisimple.

Furthermore we de�ne the closed subset of hermitian characters K̂ of χb(K) by

K̂ =
{
α ∈ χb(K) : α(x̃) = α(x) for all x ∈ K

}
.

K̂ is homeomorphic to the ∗-structure space ∆∗(L1(K)) via the above identi�cation
f̂(α) =

∫
K
fαdm. For more information about ∗-structure spaces of Banach-∗-algebras

we refer to [44, Ch. IV.2]. An important feature of K̂ is that the space L̂1(K)|K̂ is dense
in C0(K̂) [7, Thm. 2.2.4 (ix)]; the same need not be true of χb(K).

For f ∈ L1(K) de�ne the bounded operator Tf,2 : L2(K)→ L2(K), Tf,2g = f ∗ g. A
third dual object associated with L1(K) is the structure space S of the algebra of bounded
operators Tf,2, i.e., the representation of L1(K) as convolution operators on the Hilbert
space L2(K). S can be de�ned as the following closed subset of K̂ :

S =
{
α ∈ K̂ : |f̂(α)| ≤ ‖Tf,2‖ for all f ∈ L1(K)

}
. (1.4)

Theorem 1.3 below states that S equals the support of the Plancherel measure π on K̂.
We know that K̂ = χb(K) if and only if L1(K) is symmetric, i.e., if and only if the

spectra σL1(K)(f) ⊂ R for all f = f ∗ ∈ L1(K). Moreover, S = K̂ if and only if Reiter's
condition P2 holds for every α ∈ K̂, see [15, Thm. 3.1]. A character α ∈ K̂ satis�es
the P2-condition if for each ε > 0 and every compact subset C ⊂ K there exists some
compactly supported continuous function g ∈ Cc(K) such that ‖g‖2 = 1 and

‖Lỹg − α(y)g‖2 < ε for all y ∈ C. (1.5)

All in all: S = χb(K) if and only if L1(K) is symmetric and for every α ∈ K̂ Reiter's
condition P2 holds true.

While the behavior of the dual objects contrasts the group case, the Plancherel isom-
etry and inverse Fourier transform still work analogously to the case of LCAG, see [7,
Thm. 2.2.13, 2.2.22, Prop. 2.2.19 and Thm. 2.2.32, 2.2.36]:

Theorem 1.3 (Levitan-Plancherel). Let K be a commutative hypergroup. There exists a
unique nonnegative measure π on K̂ such that∫

K

|f |2dm =

∫
K̂

|f̂ |2dπ

for all f ∈ L1(K) ∩ L2(K). Furthermore, supp π = S. The continuous extension of the
Gelfand transform f 7→ f̂ from L1(K)∩L2(K) to L2(K) is called Plancherel isomorphism.
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Theorem 1.4. Let K be a commutative hypergroup. The inverse Fourier transform ǧ ∈
C0(K) of g ∈ L1(K̂) is de�ned by

ǧ(x) =

∫
K̂

g(α)α(x)dπ(α), x ∈ K.

If f ∈ L1(K) such that f̂ ∈ L1(K̂), then f = (f̂ )̌.

The following useful fact about approximate identities for L1(K) can be found in [7,
Thm. 2.2.28].

Theorem 1.5. Let K be a commutative hypergroup with neutral element e ∈ K. The
algebra L1(K) admits a bounded approximate identity (eλ)λ satisfying eλ ∈ Cc(K), eλ ≥
0, ‖eλ‖1 = 1, limλ supp eλ = {e}, êλ ∈ L1

+(K̂) and limλ êλ = 1 uniformly on compact

subsets of K̂.

1.2 Example: The Class of Polynomial Hypergroups

In this chapter we consider the rich class of polynomial hypergroups. For their def-
inition certain orthogonal polynomial systems are used to induce hypergroup structures
on N0. On the one hand, polynomial hypergroups play the role of comparatively simple
examples of commutative hypergroups. On the other hand, they have proven to be a
rich source of examples and counterexamples. The class of polynomial hypergroups was
de�ned by R. Lasser in [29]; further references are [30] or [7, Ch. 3.2]. After stating the
de�nition we have a look at the basic notions in their harmonic analysis. We conclude
this part with the Jacobi polynomial hypergroups as an example.

First we consider a sequence {Rn}n∈N0 of real polynomials, deg Rn = n, orthogo-
nal with respect to a probability measure πR ∈ M1(R) which has compact and in�nite
support, i.e. ∫

R
RnRmdπ

R = δnmh
−1
n for m,n ∈ N0. (1.6)

Here h−1
n = ‖Rn‖2

L2(R,πR) > 0. We assume that Rn(1) 6= 0 for all n such that the normal-
ization

Rn(1) = 1 for all n ∈ N0 (1.7)

is possible. This implies a recurrence relation of the following form:

R0 = 1, R1(x) =
1

a0

(x− b0),

R1Rn = anRn+1 + bnRn + cnRn−1, for all n ∈ N, (1.8)

where an, bn, cn ∈ R and an 6= 0, cn 6= 0. This three term recurrence can be extended to
the following product formula

RmRn =
n+m∑

k=|n−m|

g(m,n, k)Rk, m, n ∈ N0, (1.9)
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where all g(m,n, k) are real. Furthermore, the orthogonality implies that g(m,n, |n −
m|) 6= 0, g(m,n, n+m) 6= 0 and because of our normalization we get

∑n+m
k=|n−m| g(m,n, k)

= 1.
If g(m,n, k) ≥ 0 for k, n,m ∈ N0, then a (commutative) polynomial hypergroup

structure is induced on N0 : Denoting by εk the point measure at k ∈ N0 we de�ne the
convolution ω : N0 × N0 →M b(N0) by letting

ω(n,m) = εn ∗ εm =
n+m∑

k=|n−m|

g(m,n, k)εk for n,m ∈ N0.

Since we assume positive linearization coe�cients, the measures εn ∗ εm are probability
measures with �nite support. The point measure ε0 is the neutral element for this con-
volution. Taking the identity mapping as involution we actually obtain a hypergroup
structure on N0.

Having de�ned polynomial hypergroups we now turn to their harmonic analysis. The
translations on the space of �nitely supported sequences l�n(N0) are given by

Tm : l�n(N0)→ l�n(N0), Tmf(n) =
∑
N0

fdω(n,m) =
n+m∑

k=|n−m|

g(m,n, k)f(k). (1.10)

The Haar measure with respect to these translations on N0 is given by the sequence
(hn)n∈N0 de�ned by hn = (‖Rn‖2

L2(R,πR))
−1. Note that the Haar measure is normalized

such that h0 = 1 and that hn ≥ 1 due to the normalization Rn(1) = 1.
Using these translations, the convolution on l1(N0, h) is given by

f ∗ g(n) =
∞∑
k=0

Tnf(k)g(k)hk. (1.11)

Since ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1, this convolution turns l1(N0, h) into a commutative Banach-
∗-algebra with unit ε0, if we de�ne f ∗ = f.

The structure space ∆(l1(N0, h)) ∼= χb(N0) of l1(N0, h) is homeomorphic to the com-
pact set D ⊂ C which can be characterized in the following two ways:

D = {z ∈ C : |Rn(z)| ≤ C for all n ∈ N0 and some C > 0}
= {z ∈ C : |Rn(z)| ≤ 1 for all n ∈ N0} . (1.12)

The homeomorphism is given by

D → χb(N0), z 7→ (Rn(z))n∈N0 . (1.13)

Note that the characters (Rn(z))n∈N0 rarely are of modulus one. Moreover note that 1 ∈ D
due to our normalization and that (Rn(1))n∈N0 = (1)n∈N0 is the constant one-character.
Under the above identi�cation, N̂0 = χb(N0) ∩ R = D ∩ R. Furthermore, the support of
the Plancherel measure S is a closed subset of D ∩ R.

The Gelfand transform is thus given by

F(f)(z) = f̂(z) =
∞∑
n=0

fnRn(z)hn, f ∈ l1(N0, h), z ∈ D. (1.14)
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Since N0 is discrete, the point measures εn have a density w.r.t. the Haar measure
(hn)n and thus lie in l1(N0, h) : They can be written as εn = δn

hn
, where δn ∈ l1(N0, h) is the

sequence δn := (δnk)k∈N0 peaking at n. Their Gelfand transform (1.14) obeys ε̂n = Rn|D.
Since the Gelfand transform is a homomorphism, A(D) := F(l1(N0, h)) is an algebra

w.r.t. pointwise multiplication. Endowed with the original norm ‖v̂‖ := ‖v‖1 this algebra
becomes a Banach algebra which is called the Wiener algebra corresponding to l1(N0, h).

The Plancherel measure is exactly the orthogonalization measure πR of the polynomial
system (Rn)n; in particular, S = supp πR. The Plancherel isomorphism is given by

ĝ =
∞∑
n=0

gnRn|Shn, g ∈ l2(N0, h).

Since l1(N0, h) ⊂ l2(N0, h), the Plancherel isomorphism extends the Gelfand transform
(1.14); we will use the same notation for both transforms.

The inverse Fourier transform L1(S, πR)→ c0(N0) is de�ned by

ǧ(n) =

∫
S

g(α)Rn(α)dπR(α).

Since S = supp πR is compact, C(S) ⊂ L1(S, πR). Thus for all f ∈ l1(N0, h), f̂ ∈ L1(S, πR)
and f = (f̂ )̌ by Theorem 1.4.

Example: Jacobi Polynomial Hypergroups. For α, β > −1 the Jacobi polyno-
mials (P

(α,β)
n )n are orthogonal with respect to the measure

dπ(α,β)(x) = C(α,β)(1− x)α(1 + x)βdx on supp π(α,β) = [−1, 1],

where C(α,β) is a constant such that π(α,β) is a probability measure. The normalization
Rn(1) = 1, n ∈ N0, is possible, see for example [2, Equ. (3)]. Let a = α+β+1, b = α−β
and

V = {(α, β) : α ≥ β > −1, a(a+ 5)(a+ 3)2 ≥ (a2 − 7a− 24)b2}. (1.15)

If (α, β) ∈ V, then all g(m,n, k) ≥ 0 in (1.9), see [18, Thm. 1]. So for (α, β) ∈ V the
Jacobi polynomials (P

(α,β)
n )n induce a polynomial hypergroup; they were among the �rst

examples of polynomial hypergroups in [29].

1.3 Excursion: The Class of Signed Polynomial Hypergroups

The scope of this part is to introduce the notion of signed polynomial hypergroups
which we need in Chapter 3. Signed hypergroups generalize the concept of hypergroups
mainly by weakening the assumption of positivity of the convolution of point measures. In
the literature several slightly di�erent de�nitions of (general) signed hypergroups coexist.
We will neither give the de�nitions nor work out the di�erences; for this the reader is
for example referred to [45], [46] or [39] and the survey [47]. Instead, we give a rather
simple de�nition restricted to the special case of signed polynomial hypergroups and note
that these signed polynomial hypergroups are signed hypergroups in the sense of all the
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de�nitions cited above. Since signed polynomial hypergroups are not the primary focus of
this thesis, we con�ne ourselves to a description of the di�erences to the case of polynomial
hypergroups and note the slightly generalized notions concerning their harmonic analysis.
Signed polynomial hypergroups have been considered in [14].

As in the case of polynomial hypergroups we begin by considering a sequence {Rn}n∈N0

of real polynomials ful�lling (1.6)-(1.8). Instead of positive linearization we assume that
the linearization coe�cients in (1.9) obey

n+m∑
k=|n−m|

|g(m,n, k)| ≤M for n,m ∈ N0 and some M > 0. (1.16)

Denoting by εk the point measure at k ∈ N0 we de�ne the convolution ω : N0 × N0 →
M b(N0) (as in the case of polynomial hypergroups) by letting

ω(n,m) = εn ∗ εm =
n+m∑

k=|n−m|

g(m,n, k)εk for n,m ∈ N0.

By (1.16), the measures εn ∗ εm are uniformly bounded measures with �nite support.
Again, the point measure ε0 is the neutral element for this convolution. We call the
set N0 (endowed with this convolution and the identity mapping as involution) a signed
polynomial hypergroup. We note that signed polynomial hypergroups are (commutative)
signed hypergroup structures on N0 for the various de�nitions in [45] and [47].

Polynomial hypergroups are signed polynomial hypergroups with bound M = 1, since
in their case

∑n+m
k=|n−m| |g(m,n, k)| =

∑n+m
k=|n−m| g(m,n, k) = 1.

Similar to the case of polynomial hypergroups, the translations are de�ned by (1.10).
Again we obtain a Haar measure by setting hn = (‖Rn‖2

L2(R,πR))
−1. It is normalized such

that h0 = 1. Note that 0 < hn < 1 is possible for signed polynomial hypergroups.
Next we endow l1(N0, h) with the norm

‖f‖1 = M ·
∞∑
n=0

|f(n)|hn.

Together with (1.16) this de�nition ensures that the convolution de�ned by (1.11) turns
l1(N0, h) into a Banach algebra. In fact,

‖f ∗ g‖1 = M ·
∞∑
n=0

∣∣∣∣∣
∞∑
k=0

Tnf(k)g(k)hk

∣∣∣∣∣hn ≤M ·
∞∑
k=0

∞∑
n=0

n+k∑
j=|n−k|

|g(n, k, j)||f(j)||g(k)|hkhn

= M ·
∞∑
k=0

|g(k)|hk ·
∞∑
j=0

k+j∑
n=|k−j|

|g(n, k, j)|hn|f(j)|

= M ·
∞∑
k=0

|g(k)|hk ·
∞∑
j=0

k+j∑
n=|k−j|

|g(j, k, n)|hj|f(j)|

≤M ·
∞∑
k=0

|g(k)|hk ·
∞∑
j=0

Mhj|f(j)| = ‖g‖1‖f‖1,
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where we used that g(n, k, j)hn = g(j, k, n)hj. l
1(N0, h) becomes a Banach-∗-algebra with

the involution f ∗ = f.
The structure space D ⊂ C of l1(N0, h) is now characterized by

D = {z ∈ C : |Rn(z)| ≤ C for all n ∈ N0 and some C > 0}
= {z ∈ C : |Rn(z)| ≤M for all n ∈ N0} .

This di�ers from (1.12) for polynomial hypergroups in M replacing 1 in the second char-
acterization.

Again, the point measures εn can be viewed as elements of l1(N0, h) : They can
be written as εn = δn

hn
, where δn ∈ l1(N0, h) is the sequence δn := (δnk)k∈N0 peaking

at n. But the norm of the point measures in l1(N0, h) need not equal one anymore:
‖εn‖1 = M · 1

hn
hn = M. In particular, the norm of the unit ε0 does not equal 1 in general.

Observe that still ε̂n = Rn|D.

Example: Jacobi Signed Polynomial Hypergroups. As in Chapter 1.2 above
we consider the Jacobi polynomials (P

(α,β)
n )n for α, β > −1. Let

W = {(α, β) : α ≥ β > −1, α ≥ −1

2
}. (1.17)

If (α, β) ∈ W, then the coe�cients in (1.9) ful�ll (1.16), see [2, Thm. 1]. So for (α, β) ∈ W
the Jacobi polynomials (P

(α,β)
n )n induce a signed polynomial hypergroup. Furthermore, if

(α, β) ∈ W \ V, V as in (1.15), then the induced signed polynomial hypergroup is not a
hypergroup, see [18, Thm. 1].
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2 Amenability of l1(h) and related properties

Amenability and weak amenability of the l1-algebras of polynomial hypergroups have
been studied in [32]. Results include that if the Haar weight tends to in�nity then l1(h)
is not amenable, as well as a su�cient condition for the existence of an approximate
diagonal. Furthermore, if the l1-algebra is induced by the Chebyshev polynomials of the
�rst kind it is amenable, if it is induced by the ultraspherical polynomials with parameter
greater than zero it is not even weakly amenable. The α-amenability of l1-algebras of
polynomial hypergroups has been studied in [16, 33]. Amenability and related properties
of Banach algebras are for example treated extensively in the monographs [48, 10].

In Chapter 2.1 we consider amenability of l1(h) by studying the possible forms of ap-
proximate diagonals for l1(h).Making use of a simple form, we obtain su�cient conditions
on the growth of the Haar weight (hn)n for l1(h) to be amenable.

In Chapter 2.2 we �rst treat weak amenability of l1(h). We give two characterizations
of weak amenability, one of them by dropping an assumption on the special approximate
diagonals characterizing amenability of l1(h) in Proposition 2.9. Afterwards we consider
the α-amenability of a general commutative Banach algebra A. We touch on the relation
of α-amenability to amenability on the one hand and to ∆(A) being discrete on the other
hand.

Unfortunately, the results on amenability and weak amenability remain rather theoret-
ical; we have not been able to provide examples yet. Methods already providing examples
are discussed in Chapter 3.2.

We start with some notions which we need in order to de�ne amenability properties
[48, 10].

De�nition 2.1. Let A be a commutative Banach algebra. A Banach space X is called
a Banach-A-bimodule if there are two bilinear maps A × X → X, (a, x) 7→ ax, and
A×X → X, (a, x) 7→ xa, such that

a(bx) = (ab)x, (xa)b = x(ab) and a(xb) = (ax)b, a, b ∈ A, x ∈ X,

and such that there is κ > 0 with

‖ax‖ ≤ κ‖a‖ ‖x‖ and ‖xa‖ ≤ κ‖a‖ ‖x‖, a ∈ A, x ∈ X.

X is called symmetric if

ax = xa, a ∈ A, x ∈ X.

X∗ with left and right module operations de�ned as follows is called a dual Banach-A-
bimodule:

〈ax∗, x〉 := 〈x∗, xa〉 and 〈x∗a, x〉 := 〈x∗, ax〉 , a ∈ A, x ∈ X, x∗ ∈ X∗.

Furthermore, a linear map D : A→ X is called a derivation if

D(ab) = a(Db) + (Da)b, a, b ∈ A.

A derivation is called inner if for some x0 ∈ X it is of the form

Dx0(a) = ax0 − x0a, a ∈ A.
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Before turning to amenability in Chapter 2.1 we set down some notation for operations
on the projective tensor product.

De�nition 2.2. Let A be a commutative Banach algebra. By A⊗̂A we denote the pro-
jective tensor product which is the completion of A ⊗ A with respect to the projective
norm

‖m‖π := inf

{
j∑
i=1

‖a(i)
1 ‖ · ‖a

(i)
2 ‖ : m =

j∑
i=1

a
(i)
1 ⊗ a

(i)
2

}
, m ∈ A⊗ A.

By · : A⊗̂A×A→ A⊗̂A we denote the left module action of the projective tensor product
which is determined by (a⊗ b) · c = a⊗ (bc). Analogously we de�ne the corresponding right
module action of the Banach-A-bimodule A⊗̂A.
By · : A⊗̂A × A⊗̂A → A⊗̂A we denote the algebra product on A⊗̂A determined by
(a⊗ b) · (c⊗ d) = (ac)⊗ (bd).
By πA we denote the bounded linear map πA : A⊗̂A→ A determined by πA(a⊗ b) := ab.

In the following we consider the case A = l1(h). We adopt an easier way of looking
at the projective tensor product l1(h)⊗̂l1(h) and the operations thereon. To that end
we note that N0 × N0 is a hypergroup in the canonical way of [7, 1.5.28]. In fact, the
convolution

ω((n,m), (k, l)) = ε(n,m) ∗ ε(k,l) := (εn ∗ εk)⊗ (εm ∗ εl)

together with the identity mapping as involution and unit (0, 0) de�nes a hypergroup
structure on N0 × N0. The Haar measure H thus is H(n,m) = h(n)h(m). In particular,
l1(N0×N0, H) is a Banach algebra with respect to the corresponding convolution with unit
ε00. The Gelfand transform restricted to the support of the Plancherel measure S×S ⊂ R2

reads l1(N0 × N0, H)→ C0(S × S),

̂∑
n,m

αnmεnm(x, y) =
∑
n,m

αnmRn(x)Rm(y), x, y ∈ S;

in particular it obeys ε̂nm(x, y) = Rn(x)Rm(y), x, y ∈ S.
In the following lemma we state the well-known fact that, as in the case of locally

compact groups, l1(N0 × N0, H) can be identi�ed with the projective tensor product
l1(h)⊗̂l1(h).

Lemma 2.3. Let N0 carry the convolution structure of a polynomial hypergroup. The
map

I : l1(h)⊗̂l1(h)→ l1(N0 × N0, H), uniquely determined by I(εn ⊗ εm) := εnm,

is an isometric isomorphism of Banach algebras.

What do the other concepts (beside the algebra product) of De�nition 2.2 look like,
if l1(h)⊗̂l1(h) is viewed as l1(N0 × N0, H)? In [32] Lasser uses, but does not state the
following simple identi�cations.



2.1 Amenability of l1(h) 15

Lemma 2.4. Let N0 carry the convolution structure of a polynomial hypergroup. Then
the following hold:

a) The induced left module action · : l1(N0 × N0, H)× l1(h)→ l1(N0 × N0, H) reads

ĝ · f(x, y) = ĝ(x, y)f̂(y), x, y ∈ S;

analogously for the right module action.

b) The induced map πl1(h) = π : l1(N0 × N0, H)→ l1(h) reads

π̂(h)(x) = ĥ(x, x), x ∈ S.

Proof. Let I be as in Lemma 2.3. For a) we calculate

εnm · εk := I
(
(I−1εnm) · εk

)
= I ((εn ⊗ εm) · εk) = I (εn ⊗ (εm ∗ εk))

= I

 m+k∑
j=|m−k|

g(m, k, j)εn ⊗ εj

 =
m+k∑

j=|m−k|

g(m, k, j)εnj

and further for x, y ∈ S :

̂εnm · εk(x, y) =
m+k∑

j=|m−k|

g(m, k, j)Rn(x)Rj(y) = Rn(x)Rm(y)Rk(y) = ε̂nm(x, y)ε̂k(y).

Since (εnm)n,m is total in l1(N0 ×N0, H) and (εk)k is total in l1(h) the statement follows.
For b) we have

π(εnm) := πI−1(εnm) = π(εn ⊗ εm) = εn ∗ εm.

Furthermore, for x ∈ S :

π̂(εnm)(x) = ε̂n ∗ εm(x) = Rn(x)Rm(x) = ε̂nm(x, x)

and (εnm)n,m is total in l1(N0 × N0, H).

2.1 Amenability of l1(h)

In this chapter we consider amenability of l1(h). First we de�ne amenability of a com-
mutative Banach algebra A and state the well-known characterization of amenability by
the existence of approximate diagonals. Thereafter we study the possible forms of ap-
proximate diagonals for l1(h). Making use of a simple form we obtain su�cient conditions
on the growth of the Haar weight (hn)n for l1(h) to be amenable.

De�nition 2.5. Let A be a (commutative) Banach algebra. A is called amenable if every
bounded derivation from A into a dual Banach-A-bimodule is inner.

An approximate diagonal for A is a bounded net (mi)i∈I in A⊗̂A such that, for each
a ∈ A, we have limi(mi · a− a ·mi) = 0 and limi πA(mi)a = a.
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The following theorem can, for example, be found in [10, Thm. 2.9.65].

Theorem 2.6. Let A be a (commutative) Banach algebra. Then the existence of an
approximate diagonal for A is equivalent to the amenability of A.

De�nition 2.7. Let N0 carry the convolution structure of a polynomial hypergroup induced
by the orthogonal polynomials (Rn)n∈N0 . For the remainder of this chapter we reserve the
symbol f for the following particular element:

f ∈ ker πl1(h) ⊂ l1(N0 × N0, H), f := ε1,0 − ε0,1,

with f̂(x, y) = R1(x)−R1(y), x, y ∈ S.

Lemma 2.8. Let N0 carry the convolution structure of a polynomial hypergroup. Let
P denote the set of inverse Fourier transforms of all polynomials on the support of the
Plancherel measure S × S ⊂ R2. Then P ∗ f is dense in ker πl1(h).

Proof. At �rst we note that by [10, (2.1.16)]

ker πl1(h) = lin{a⊗ b− ε0 ⊗ (a ∗ b) : a, b ∈ l1(h)}.

Since lin{εk : k ∈ N0} = l1(h), we obtain

ker πl1(h) = lin{εl ⊗ εk − ε0 ⊗ (εl ∗ εk) : l, k ∈ N0} which reads

ker πl1(h) = lin{εlk −
k+l∑

j=|k−l|

g(k, l, j)ε0j : l, k ∈ N0}

in our notation on l1(N0 × N0, H). Now the Gelfand transforms equal

F

εlk − k+l∑
j=|k−l|

g(k, l, j)ε0j

 = Rl(·)Rk(×)−
k+l∑

j=|k−l|

g(k, l, j)Rj(×)

= (Rl(·)−Rl(×))Rk(×)

and thus the inverse Fourier transforms of lin {(Rl(·) − Rl(×))Rk(×) : l, k ∈ N0} are
dense in ker πl1(h). Next we note that, if Rl(x) =

∑l
k=0 dkx

k, then

Rl(x)−Rl(y) =
l∑

k=0

dk(x
k − yk) =

l∑
k=1

dk

k−1∑
n=0

xnyk−1−n · (x− y)

=
l∑

k=1

dk

k−1∑
n=0

xnyk−1−na0(R1(x)−R1(y)) =: σl(x, y)(R1(x)−R1(y)).

Since now there are polynomials σl such that Rl(·)− Rl(×) = σl(·,×)(R1(·)− R1(×)) =
σl(·,×)f̂(·,×), we also know that P ∗ f is dense in ker πl1(h).

The following is similar to [32, Thm. 4]: We only switched to our notation and wrote
the second condition with an equality instead of a limit. However, a proof di�erent from
the one in [32, Thm. 4] is given which uses Lemma 2.8. In the following, Lemma 2.8 will
be the basis of our approach (also to weak amenability in the next chapter).
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Proposition 2.9. Let N0 carry the convolution structure of a polynomial hypergroup. The
Banach algebra l1(h) is amenable if and only if there is a bounded sequence (mn)n∈N0 ⊂
l1(N0 × N0, H) such that limnmn ∗ f = 0 and πl1(h)(mn) = ε0 for all n. The sequence
(mn)n then is an approximate diagonal.

Proof. Assume that l1(h) is amenable. Then by Theorem 2.6 there is a bounded net
(ui)i∈I ⊂ l1(N0×N0, H) such that, for each a ∈ l1(h), we have limi(ui · a− a · ui) = 0 and
limi πl1(h)(ui)a = a. For a = ε0 choose j ∈ I such that ‖πl1(h)(ui)− ε0‖1 < ε for i ≥ j. Let

mi := πl1(h)(ui)
−1 · ui, i ≥ j.

Then we have πl1(h)(mi) = ε0 by Lemma 2.4:

̂πl1(h)(mi)(x) = m̂i(x, x) = 1 = ε̂0(x), for all x ∈ S,

and for g ∈ l1(h) it follows from ĝ|S = 0 that g = 0, see Theorem 1.4. Using again Lemma
2.4 and Theorem 1.4 (for G ∈ l1(N0 × N0, H) it follows from Ĝ|S×S = 0 that G = 0), we
obtain that mi ∗ (ε10 − ε01) = ε1 ·mi −mi · ε1 :

F(mi ∗ (ε10 − ε01))(x, y) = m̂i(x, y)(R1(x)−R1(y)) = F(ε1 ·mi −mi · ε1)(x, y).

Furthermore, since πl1(h)(ui)
−1 → ε0 we see that

mi ∗ f = mi ∗ (ε10 − ε01) = ε1 ·mi −mi · ε1 = ε1 · (πl1(h)(ui)
−1 · ui)− (πl1(h)(ui)

−1 · ui) · ε1

= πl1(h)(ui)
−1 · (ε1 · ui − ui · ε1)→ 0.

Picking a subsequence of the net (mi)i≥j we have found a sequence (mn)n as demanded
in the statement.
Now conversely suppose that there is a sequence (mn)n as demanded in the statement;
we show that it is an approximate diagonal meeting the requirements in Theorem 2.6.
By de�nition, (mn)n is bounded and for each a ∈ l1(h), limn πl1(h)(mn)a = limn a = a.
Now let g =

∑
j∈N0

gjεj ∈ l1(h). We have to show that limn(mn · g − g ·mn) = 0. De�ne
G :=

∑
k∈N0

∑
l∈N0

gkε0k−glεl0 ∈ l1(N0×N0, H).We obtain mn ·g−g ·mn = mn ∗G since

̂mn · g − g ·mn(x, y) = m̂n(x, y)(ĝ(y)− ĝ(x)) = m̂n(x, y)Ĝ(x, y) = m̂n ∗G(x, y).

Furthermore, G ∈ ker πl1(h) because Ĝ(x, x) = ĝ(x) − ĝ(x) = 0. Let C be the uniform
bound ‖mn‖ ≤ C for all n ∈ N. Let ε > 0. By Lemma 2.8 we can choose a polynomial pG
such that ‖G − p̌G ∗ f‖ < ε

2C
. Now choose N such that ‖mn ∗ f‖ < ε

2‖p̌G‖
for all n ≥ N.

Then for all n ≥ N,

‖mn · g − g ·mn‖ = ‖mn ∗G‖ ≤ ‖mn ∗ (G− p̌G ∗ f)‖+ ‖mn ∗ p̌G ∗ f‖

≤ C · ε
2C

+ ‖p̌G‖ ·
ε

2‖p̌G‖
= ε.

So the sequence (mn)n is an approximate diagonal for l1(h).
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We look for sequences (mn)n∈N0 ⊂ l1(N0×N0, H) meeting the requirements of Propo-
sition 2.9. Clearly limi m̂i(x, y) = 0 for x 6= y ∈ S and m̂i(x, x) = 1. The following propo-
sition shows that we can choose a symmetric sequence (mn)n, i.e., m̂n(x, y) = m̂n(y, x)
for x, y ∈ S; this statement is not used in the sequel, but of independent interest.

Proposition 2.10. Let N0 carry the convolution structure of a polynomial hypergroup. If
there is an approximate diagonal for l1(h), then there also exists an approximate diagonal
(mn)n∈N0 such that m̂n is a symmetric polynomial and 1 − m̂n = pnf̂ ; here pn is an
antisymmetric polynomial, i.e., p̂n(x, y) = −p̂n(y, x) for x, y ∈ S, with πl1(h)(pn) = 0 and
p̌n(k, k) = 0 for all k ∈ N0.

Proof. Let (un)n∈N0 be an approximate diagonal for l1(h) of the form in Proposition 2.9.
Let (εn)n∈N0 be a sequence of small numbers tending to zero. Since ε00 − un ∈ ker πl1(h)

we can choose a sequence of polynomials (gn)n∈N0 such that ‖ε00 − un − ǧn ∗ f‖1 < εn for
all n ∈ N0 by Lemma 2.8. De�ne

m̂n(x, y) = 1− 1

2
(gn(x, y)− gn(y, x))(R1(x)−R1(y)) =: 1− pnf̂(x, y).

Then m̂n(x, y) = m̂n(y, x) and thus m̂n is a symmetric polynomial. Moreover, pn is an
antisymmetric polynomial with pn(x, y) = −pn(y, x), in particular pn(x, x) = 0, and

p̌n(k, k) =

∫
S

∫
S

pn(x, y)Rk(x)Rk(y)dπ(x)dπ(y)

=
1

2

∫
S

∫
S

gn(x, y)Rk(x)Rk(y)dπ(x)dπ(y)− 1

2

∫
S

∫
S

gn(y, x)Rk(x)Rk(y)dπ(x)dπ(y) = 0.

Furthermore, (mn)n∈N0 is an approximate diagonal for l1(h) by Proposition 2.9: m̂n(x, x) =
1 for all x ∈ S, n ∈ N0, which means πl1(h)(mn) = ε0 for all n ∈ N0. Concerning the second
condition we �rst de�ne the isometric linear map l1(N0×N0, H)→ l1(N0×N0, H), a 7→ aS,
by âS(x, y) = â(y, x) which means aS(k, l) = a(l, k). Then from un ∗ f → 0 it follows that
uSn ∗ f = −uSn ∗ fS = −(un ∗ f)S → 0. Furthermore, from ‖ε00 − un − ǧn ∗ f‖1 → 0 it
follows that ‖εS00 − uSn − (ǧn ∗ f)S‖1 → 0. Since (ǧn ∗ f)S = ǧSn ∗ fS = −ǧSn ∗ f we obtain
‖ε00 − uSn + ǧSn ∗ f‖1 → 0. Thus,

‖mn ∗ f‖1 = ‖(ε00 −
1

2
(ǧn − ǧSn ) ∗ f) ∗ f‖1

≤ 1

2
‖ε00 − ǧn ∗ f − un‖1‖f‖1 +

1

2
‖un ∗ f‖1 +

1

2
‖ε00 + ǧSn ∗ f − uSn‖1‖f‖1 +

1

2
‖uSn ∗ f‖1,

which tends towards zero.

In the following we look for candidates for approximate diagonals. To that end we
need the following notion: A polynomial hypergroup has property (H) if

lim
n→∞

hn∑n
k=0 hk

= 0.

This property is extensively used in the literature, see for example [33, 22]. Note that a
polynomial hypergroup ful�lling property (H) is of subexponential growth and thus the



2.1 Amenability of l1(h) 19

three dual objects coincide ([57, Pro. 2.6 and Rem 2.7] and [59, Thm. 2.17]), i.e., supp
π = D.

Now we de�ne candidates (mn)n for approximate diagonals. The reader may want
to compare mn to the elements βn used in [16, Ch. 4] in the context of x-amenability:
β̂n(y) = m̂n(x, y).

De�nition 2.11. Let N0 carry the convolution structure of a polynomial hypergroup ful-
�lling property (H) which is induced by the orthogonal polynomials (Rn)n∈N0 . For n ∈ N0

de�ne vn ∈ l1(N0 × N0, H) by

vn =

(
n∑
k=0

hk

)−1 n∑
k=0

εkkhk with v̂n(x, y) =

(
n∑
k=0

hk

)−1 n∑
k=0

Rk(x)Rk(y)hk,

and wn ∈ l1(h) by

wn =

(
n∑
k=0

hk

)−1 n∑
k=0

εk ∗ εkhk with ŵn(x) =

(
n∑
k=0

hk

)−1 n∑
k=0

Rk(x)2hk. (2.1)

Since ŵn|supp π = ŵn|D > 0, wn is invertible. We de�ne mn ∈ l1(N0 × N0, H) by

mn = vn · w−1
n with m̂n(x, y) =

v̂n(x, y)

v̂n(y, y)
. (2.2)

Considering v̂n and ŵn, we will need the Christo�el-Darboux formula [52, (3.2.3)]:

n∑
k=0

Rk(x)Rk(y)hk = a0anhn
Rn+1(y)Rn(x)−Rn(y)Rn+1(x)

R1(y)−R1(x)
. (2.3)

For the use of property (H) in the following proposition also note that by [32, Thm.
3] hn →∞ implies that l1(h) is not amenable.

Proposition 2.12. Let N0 carry the convolution structure of a polynomial hypergroup
ful�lling property (H). If the sequence (wn)n∈N0 ⊂ l1(h) de�ned in (2.1) is boundedly
invertible, then l1(h) is amenable with approximate diagonal (mn)n∈N0 de�ned in (2.2).

Proof. De�ne (mn)n∈N0 according to (2.2). We immediately see that m̂n(x, x) = 1 for
all x ∈ S and thus πl1(h)(mn) = ε0. Furthermore, ‖mn‖1 ≤ ‖vn‖1‖w−1

n ‖1 = ‖w−1
n ‖1 ≤

C is bounded for n ∈ N0. In order to apply Proposition 2.9 we still have to consider
‖mn ∗ f‖1 ≤ ‖vn ∗ f‖1‖w−1

n ‖1. By the Christo�el-Darboux formula (2.3) we know that

−v̂n · f̂(x, y) =

(
n∑
k=0

hk

)−1 n∑
k=0

Rk(x)Rk(y)hk(R1(y)−R1(x))

=

(
n∑
k=0

hk

)−1

a0anhn(Rn+1(y)Rn(x)−Rn(y)Rn+1(x)),

and thus ‖vn ∗ f‖1 ≤ (
∑n

k=0 hk)
−1 · 2a0anhn. Since the hypergroup ful�lls property (H),

‖vn ∗ f‖1 → 0.
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Corollary 2.13. Let N0 carry the convolution structure of a polynomial hypergroup ful-
�lling property (H). If for some 0 < ε < 1 we have

∑n
k=0 hk ≤

2
1+ε

(n + 1) for all but
�nitely many n ∈ N0, then l

1(h) is amenable.

Proof. We let Cn :=
∑n

k=0 hk and calculate

wn − ε0 =
1

Cn

(
n∑
k=0

ε2
khk − Cnε0

)

=
1

Cn

(
(1− Cn)ε0 +

n∑
k=1

hk

2k∑
l=0

g(k, k, l)εl

)

=
1

Cn

(1− Cn)ε0 +
2n∑
l=1

n∑
k=d l2e

g(k, k, l)εlhk +
n∑
k=1

hkg(k, k, 0)ε0


=

1

Cn

(1− Cn + n)ε0 +
2n∑
l=1

n∑
k=d l2e

g(k, k, l)εlhk

 ,

where we used h−1
k = g(k, k, 0) for the forth equality. Thus we can calculate

‖wn − ε0‖1 =
1

Cn

|1− Cn + n|+
2n∑
l=1

n∑
k=d l2e

g(k, k, l)hk


=

1

Cn

(
Cn − n− 1 +

n∑
k=1

2k∑
l=1

g(k, k, l)hk

)

=
1

Cn

(
Cn − n− 1 +

n∑
k=1

hk(1− g(k, k, 0))

)
=

1

Cn
(Cn − n− 1 + Cn − 1− n)

=
2

Cn
(Cn − n− 1)

≤ 1− ε.

Thus we can estimate ‖w−1
n ‖1 = ‖ε0 +

∑∞
k=1(ε0 − wn)k‖1 ≤ 1

1−‖wn−ε0‖1 ≤ ε−1.

The norms ‖w−1
n ‖1 in Proposition 2.12 are very hard to estimate without an explicit

inversion. In the above corollary we used the Neumann series which imposes an additional
condition ‖wn − ε0‖1 < 1 and thus does not yield a very satisfying result: Even the
hypergroup induced by the Chebyshev polynomials of the �rst kind whose Haar measure
is constant (and where amenability of its l1-algebra is already known) does not allow for
an application.
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2.2 Related properties

In this chapter we �rst treat weak amenability of l1(h) : We give two characterizations,
one of them by dropping an assumption on the special approximate diagonals character-
izing amenability of l1(h) in Proposition 2.9.

Afterwards we consider the α-amenability of a general commutative Banach algebra
A.We touch on the relation of α-amenability to amenability on the one hand and to ∆(A)
being discrete on the other hand.

De�nition 2.14. Let A be a commutative Banach algebra. A is weakly amenable if every
bounded derivation from A into the dual Banach-A-bimodule A? is inner.

Thus, amenability of A implies weak amenability. The following can be found in [10,
Thm. 2.8.73].

Proposition 2.15 (Grønbæk). Let A be a commutative, unital Banach algebra. Then
(ker πA)2 = ker πA is equivalent to the weak amenability of A.

De�nition 2.16. Let N0 carry the convolution structure of a polynomial hypergroup and
let f ∈ ker πl1(h) ⊂ l1(N0×N0, H) as in De�nition 2.7. We say that l1(h) ful�lls property
(W) if there exist approximate units for f in ker πl1(h), i.e. for all ε > 0 there is some
uε ∈ ker πl1(h) such that ‖f − uεf‖1 ≤ ε.

Proposition 2.17. Let N0 carry the convolution structure of a polynomial hypergroup.
l1(h) is weakly amenable if and only if it ful�lls property (W).

Proof. Suppose that l1(h) is weakly amenable and let ε > 0. By Proposition 2.15 we can
�nd v, w ∈ ker πl1(h) with ‖f − v ∗w‖1 <

ε
2
. Now v, w ∈ ker πl1(h) and by Lemma 2.8 we

can �nd polynomials p̂v, p̂w such that ‖v∗w−pv∗pw∗f∗f‖1 <
ε
2
. So ‖f−(pv∗pw∗f)∗f‖1 < ε

and pv ∗ pw ∗ f ∈ ker πl1(h) since f ∈ ker πl1(h).
Now suppose conversely that l1(h) ful�lls property (W). For an application of Proposition
2.15 let v ∈ ker πl1(h) and ε > 0. We use Lemma 2.8 to choose a polynomial p̂ such that
‖v− p ∗ f‖1 <

ε
2
and afterwards choose u ∈ ker πl1(h) such that ‖f −u ∗ f‖1 <

ε
2‖p‖1 . Then

p ∗ f and u are in ker πl1(h) and

‖v − (p ∗ f) ∗ u‖1 ≤ ‖v − p ∗ f‖1 + ‖p ∗ f − p ∗ u ∗ f‖1

<
ε

2
+ ‖p‖1

ε

2‖p‖1

≤ ε.

Proposition 2.15 tells us that l1(h) is weakly amenable.

Now we can characterize weak amenability in a way similar to approximate diagonals
characterizing amenability. In fact, the sequence (mn)n∈N0 in the following proposition
need not be an approximate diagonal since it is not required to be bounded; compare
Proposition 2.9.

Proposition 2.18. Let N0 carry the convolution structure of a polynomial hypergroup.
The Banach algebra l1(h) is weakly amenable if and only if there is a sequence (mn)n∈N0 ⊂
l1(N0 × N0, H) such that limn→∞mn ∗ f = 0 and πl1(h)(mn) = ε0 for all n.



2.2 Related properties 22

Proof. First we note that πl1(h)(ε00) = ε0 by Lemma 2.4:

̂πl1(h)(ε00)(x) = ε̂00(x, x) = 1 = ε̂0(x), for all x ∈ S,

and for g ∈ l1(h) it follows from ĝ|S = 0 that g = 0, see Theorem 1.4. Now suppose
that l1(h) is weakly amenable and thus ful�lls property (W). De�ning mn = ε00 − u 1

n
we

immediately obtain limn→∞mn ∗f = limn→∞ f−u 1
n
∗f = 0 and πl1(h)(mn) = πl1(h)(ε00)−

0 = ε0 for all n ∈ N0.
Conversely suppose that the sequence (mn)n∈N0 in l

1(N0×N0, H) ful�lls limn→∞mn∗f = 0
and πl1(h)(mn) = ε0 for all n. De�ning un = ε00 − mn for all n ∈ N0 we obtain an
approximate unit for f in ker πl1(h) : πl1(h)(un) = ε0−ε0 = 0 and f−unf = f−f+mn∗f →
0.

For the following proposition we proceed similar to Proposition 2.12 and obtain weaker
conditions.

Proposition 2.19. Let N0 carry the convolution structure of a polynomial hypergroup
ful�lling property (H). If the sequence (wn)n∈N0 ⊂ l1(h) de�ned in (2.1) ful�lls(

n∑
k=0

hk

)−1

anhn · ‖w−1
n ‖1 → 0 for n→∞,

then l1(h) is weakly amenable.

Proof. De�ne (mn)n∈N0 according to (2.2). As in Proposition 2.12 we immediately see
that m̂n(x, x) = 1 for all x ∈ S and thus πl1(h)(mn) = ε0. Furthermore, in order to
apply Proposition 2.18 we still have to consider ‖mn ∗ f‖1 ≤ ‖vn ∗ f‖1‖w−1

n ‖1. By the
Christo�el-Darboux formula (2.3) we know again that

−v̂n · f̂(x, y) =

(
n∑
k=0

hk

)−1 n∑
k=0

Rk(x)Rk(y)hk(R1(y)−R1(x))

=

(
n∑
k=0

hk

)−1

a0anhn(Rn+1(y)Rn(x)−Rn(y)Rn+1(x)),

and thus ‖vn ∗ f‖1 ≤ (
∑n

k=0 hk)
−1 · 2a0anhn. According to our assumptions, ‖mn ∗ f‖1 ≤

‖vn ∗ f‖1‖w−1
n ‖1 → 0.

Again we face the problem that ‖w−1
n ‖1 is very hard to estimate; the approach via the

Neumann series analogous to Corollary 2.13 would yield so weak results that we refrain
from stating them.

Now we come to an observation on α-amenability.

De�nition 2.20. Let A be a commutative Banach algebra and α ∈ ∆(A) a character.
A is α-amenable if every bounded derivation from A into a dual Banach-A-bimodule Xα

such that a · x = 〈α, a〉 · x, a ∈ A, x ∈ Xα, is inner.
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Thus amenability of A implies α-amenability. The following theorem is extracted from
[26, Pro. 2.1 and 2.2].

Theorem 2.21. Let A be a commutative Banach algebra with bounded approximate iden-
tity and let α ∈ ∆(A) be a character. Then the existence of a bounded approximate
identity for ker α is equivalent to the α-amenability of A.

In the following Proposition a) ⇒ d) is due to Gourdeau [20]; the statement has been
sharpened by Ülger to a) ⇒ c) in [55, Thm. 2.1]. We inserted point b).

Proposition 2.22. Let A be a commutative Banach algebra. We consider the following
properties:

a) A is amenable,

b) A is α-amenable for all all characters α ∈ ∆(A),

c) ∆(A) is discrete in the weak topology σ(A∗, A∗∗),

d) ∆(A) is discrete in the norm-topology of A∗.

Then a) ⇒ b) ⇒ c) ⇒ d).

Proof. a) ⇒ b) is clearly valid.
b) ⇒ c): Let α ∈ ∆(A). First we note the easy fact that for all β 6= α ∈ ∆(A) there is
gβ ∈ ker α with ĝβ(β) 6= 0 : Denote by (eλ)λ∈Λ the bounded approximate identity for
A which exists according to [37, Thm. 2.3]. Let α 6= β ∈ ∆(A) and choose f ∈ A with
f̂(α) 6= f̂(β). Let ε > 0 and choose λ ∈ Λ such that |êλ(α)− 1| < ε and |êλ(β)− 1| < ε.

Then gβ := f − f̂(α)
êλ(α)

eλ ∈ A ful�lls ĝβ(α) = 0 and for ε small enough ĝβ(β) = f̂(β) −
f̂(α) êλ(β)

êλ(α)
6= 0. Now let α ∈ ∆(A) and (ui)i∈I denote a bounded approximate identity of

ker α which exists according to Theorem 2.21. From

|ûi(β)− 1| · |ĝβ(β)| = |ûi(β)ĝβ(β)− ĝβ(β)| = |ûi ∗ gβ(β)− ĝβ(β)|

≤ ‖ui ∗ gβ − gβ‖A
i→ 0

it follows that ûi(β)
i→ 1 for all β ∈ ∆(A) \ {α}. This means that for a weak star cluster

point u ∈ A∗∗ of (ui)i∈I holds 〈u, α〉 = 0 and 〈u, β〉 = 1 for all β ∈ ∆(A) \ {α}. In
particular, {α} is open with respect to the weak topology σ(∆(A), A∗∗).
c) ⇒ d) is clearly valid.

Note that if b) is ful�lled, i.e. if A is α-amenable for all characters α ∈ ∆(A), then A
is called character amenable in [37].
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3 Homomorphisms and Isomorphisms

Isomorphisms of hypergroups have been studied by Bloom and Walter in [8], their
main focus lying on isometric isomorphisms. In this chapter we consider non-isometric
isomorphisms between l1-algebras of (signed) polynomial hypergroups; isometric isomor-
phisms between l1-algebras are quite rare, due to the fact that the translation operators
need not be unitary and the characters not of modulus 1.

The results are formulated for signed polynomial hypergroups which include the class
of polynomial hypergroups. Some basics on the l1-algebras of signed polynomial hyper-
groups are collected in Chapter 1.3.

The purpose of Chapter 3.1 is to derive su�cient conditions for the existence of ho-
momorphisms and isomorphisms between the l1-algebras of two (signed) polynomial hy-
pergroups. In Chapter 3.2 the results are applied to transfer amenability and related
properties from one l1-algebra to another. As examples the Bernstein-Szeg® polynomi-
als of the �rst and the second kind, as well as the Jacobi and the Associated Legendre
polynomials are considered. In particular, all l1-algebras w.r.t. Bernstein-Szeg® polyno-
mials of the �rst and the second kind are shown to be isomorphic to the l1-algebras w.r.t.
Chebyshev polynomials of the �rst and the second kind, respectively. Almost all of this
chapter has already been published in [34] with R. Lasser (with the noteworthy exception
of the Bernstein-Szeg® polynomials of the second kind).

This chapter is the continuation of an investigation started in the author's diploma
thesis [40]. In particular, the basic statements Lemma 3.1 and Theorem 3.2 have already
been derived there (for polynomial hypergroups). Furthermore, special cases of the results
for Bernstein-Szeg® polynomials of the �rst kind as well as Jacobi polynomials in Chapter
3.2 have also been obtained in [40] (using signi�cantly more complicated methods of
proof).

3.1 Conditions for the Existence of Homomorphisms and Isomor-

phisms

The �rst aim of this chapter is to �nd a homomorphism between l1-algebras on signed
polynomial hypergroups whose connection coe�cients ful�ll certain requirements. After-
wards we give conditions such that the constructed homomorphism is an isomorphism.

To avoid confusion we frequently write DR, hRn , ε
R
k etc. stressing the dependence on

the polynomial system {Rn}n∈N0 that induces the (signed) polynomial hypergroup.

Lemma 3.1. Let {Rn}n∈N0 and {Pn}n∈N0 be polynomial sequences inducing signed polyno-
mial hypergroups. A bounded linear map S : l1(N0, h

R)→ l1(N0, h
P ) is a homomorphism

of Banach algebras if and only if

(i) Sε0 = εP0 and

(ii) S(ε1 ∗ εn) = Sε1 ∗P Sεn for all n ∈ N0.

Proof. If S : l1(N0, h
R) → l1(N0, h

P ) is a homomorphism of Banach algebras, then (i)
and (ii) are clearly valid. We show that these conditions are su�cient. From our two
assumptions it immediately follows that S(ε0 ∗ εn) = Sεn = Sε0 ∗P Sεn and S(ε1 ∗
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εn) = Sε1 ∗P Sεn for all n ∈ N0. Let k ≥ 1 and suppose as induction hypothesis that
S(εj ∗ εn) = Sεj ∗P Sεn for all 0 ≤ j ≤ k and n ∈ N0. First we obtain

S(ε1 ∗ εk ∗ εn) = anS(εk ∗ εn+1) + bnS(εk ∗ εn) + cnS(εk ∗ εn−1)

= anSεk ∗P Sεn+1 + bnSεk ∗P Sεn + cnSεk ∗P Sεn−1

= Sεk ∗P S(ε1 ∗ εn) = Sε1 ∗P Sεk ∗P Sεn
= S(ε1 ∗ εk) ∗P Sεn

and furthermore

Sεk+1 ∗P Sεn =
1

ak
· S(ε1 ∗ εk − bkεk − ckεk−1) ∗P Sεn

=
1

ak
· S ((ε1 ∗ εk − bkεk − ckεk−1) ∗ εn) = S(εk+1 ∗ εn).

Hence we have shown that S(εk ∗ εn) = Sεk ∗P Sεn for all k, n ∈ N0. Since S is assumed
to be bounded, for v, w ∈ l1(N0, h

R), v =
∑∞

k=0 vkεk, w =
∑∞

n=0 wnεn, it follows that

S(v ∗ w) =
∞∑
k=0

∞∑
n=0

vkwnS(εk ∗ εn) =
∞∑
k=0

∞∑
n=0

vkwnSεk ∗P Sεn = Sv ∗P Sw.

Given a family of orthogonal polynomials {Pk}k∈N0 and a polynomial Rn of degree
n we consider the linear combination Rn =

∑n
k=0 cnkPk with the so-called connection

coe�cients (cnk). In all of the following we de�ne cnk = 0 for k > n which enables us to
write Rn =

∑∞
k=0 cnkPk.

The following theorem is more general than [28, Thm. 3.1], since we do not impose
conditions on the dual objects.

Theorem 3.2. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomials inducing
signed polynomial hypergroups such that Rn =

∑n
k=0 cnkPk. If there is C > 0 such that

n∑
k=0

|cnk| ≤ C for all n ∈ N0, (3.1)

then the linear operator S : l1(N0, h
R)→ l1(N0, h

P ) determined by Sεn :=
∑n

k=0 cnkε
P
k is a

continuous homomorphism of Banach algebras with dense range. Furthermore, DP ⊆ DR

and Ŝf = f̂ |DP for all f ∈ l1(N0, h
R).

Proof. Let v =
∑N

n=0 vnεn ∈ l1(N0, h
R); then ‖v‖1 = MR

∑N
n=0 |vn|, where MR is the

constant of the signed polynomial hypergroup. By

‖Sv‖ =

∥∥∥∥∥
N∑
n=0

n∑
k=0

vncnkε
P
k

∥∥∥∥∥ ≤MP

N∑
n=0

n∑
k=0

|vn||cnk| ≤
MP

MR
‖v‖1 · C

the linear map S is bounded on a dense subset of l1(N0, h
R). Thus it can be uniquely

extended to a bounded linear operator on l1(N0, h
R). Condition (3.1) implies DP ⊆ DR
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for the following reason: If z ∈ C such that |Pk(z)| ≤ MP for all k ∈ N0, we obtain
|Rn(z)| = |

∑n
k=0 cnkPk(z)| ≤

∑n
k=0 |cnk| ·MP ≤ C ·MP for all n ∈ N0. (i) in Lemma 3.1

is ful�lled since R0 = 1 = P0, which means c00 = 1 and Sε0 = εP0 . Now consider (ii) in
Lemma 3.1. For n ∈ N0 we observe that Ŝεn =

∑n
k=0 cnkε̂

P
k =

∑n
k=0 cnkPk|DP = Rn|DP .

Therefore

̂S(ε1 ∗ εn) = anŜεn+1 + bnŜεn + cnŜεn−1 = anRn+1|DP + bnRn|DP + cnRn−1|DP
= (R1 ·Rn)|DP = R1|DP ·Rn|DP = Ŝε1 · Ŝεn

and S(ε1 ∗ εn) = Sε1 ∗P Sεn for all n ∈ N0, since l1(N0, h
P ) is semisimple. Thus S

is a continuous homomorphism of Banach algebras. S has dense range since the poly-
nomials are dense in A(DP ). Finally, for f =

∑∞
k=0 fkεk ∈ l1(N0, h

R) it follows that

Ŝf = limN→∞
̂

S
(∑N

k=0 fkεk

)
= limN→∞

∑N
k=0 fkRn|DP = f̂ |DP , where the limits are

w.r.t. ‖ ‖DP ,∞.

Remark 3.3. (i) Condition (3.1) is in particular ful�lled when the connection coe�cients
are nonnegative; in this case our normalization yields that

∑n
k=0 |cnk| =

∑n
k=0 cnk =

1, n ∈ N0. The non-negativity of connection coe�cients has for example been studied by
Askey and Gasper in [1], Szwarc in [53], Trench in [54] or Wilson in [60].
(ii) If supp πR ⊂ DP , then S is injective. In fact, in this case it follows from Ŝf = f̂ |DP = 0
that f̂ |supp πR = 0. This is only possible if f = 0.

De�nition 3.4. A commutative Banach algebra A is called regular, if for every closed
subset V of ∆(A) and α ∈ ∆(A) \ V there is a ∈ A with Gelfand transform â|V = 0 and
â(α) 6= 0.

Note that l1(N0, h) is regular whenever the Haar measure h is of polynomial growth,
see [57, 2.8] or [17, Thm. 2.1].

Proposition 3.5. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomials in-
ducing signed polynomial hypergroups such that (3.1) is ful�lled. Suppose that l1(N0, h

R)
is regular. Then S in Theorem 3.2 is injective if and only if DP = DR. Furthermore
l1(N0, h

P ) is also regular.

Proof. Suppose that DP ( DR. DP is closed in DR. For all α ∈ DR \ DP there is
f ∈ l1(N0, h

R) such that f̂ |DP = 0 and f̂(α) 6= 0. Since Ŝf = f̂ |DP , this means that S
is not injective. On the other hand, S is obviously injective for DP = DR. Now take a
closed subset V ⊂ DP and α ∈ DP \ V. There is f ∈ l1(N0, h

R) such that f̂ |V = 0 and
f̂(α) 6= 0. The same is true for f̂ |DP , so l1(N0, h

P ) is also regular.

Before turning to isomorphisms let us for a moment consider the semigroup N0; we
show that for each polynomial hypergroup there is a homomorphism S : l1(N0, 1) →
l1(N0, h

P ). The induced convolution on l1(N0, 1), where 1 denotes the constant sequence
with members one, is determined by εn ∗εm = εn+m for all n,m ∈ N0. The structure space
∆(l1(N0, 1)) can be identi�ed with the closed unit disc D ⊂ C. The Gelfand transform
reads F : l1(N0, 1) → C(D), v̂(x) =

∑∞
k=0 v(k)xk|D and thus maps l1(N0, 1) onto the

space of absolutely convergent Taylor series on D [10, Example 2.1.13(v)]. In this sense
one can say that the semigroup N0 is induced by the family of polynomials {xn}n∈N0 . The
analogue of (1.8) reads x1 · xn = xn+1, i.e. an = 1 and bn = cn = 0 for all n ∈ N0.
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Corollary 3.6. Let {Pn}n∈N0 be a family of orthogonal polynomials inducing a polynomial
hypergroup. Let furthermore l1(N0, 1) carry the convolution structure of the semigroup N0.

Then S : l1(N0, 1)→ l1(N0, h
P ) determined by Ŝf = f̂ |DP is a continuous homomorphism

of Banach algebras with dense range.

Proof. Lemma 3.1 and Theorem 3.2 also hold true if one replaces {Rn}n∈N0 by {xn}n∈N0 ,
l1(N0, h

R) by l1(N0, 1) and DR by D; the proofs are exactly the same ones. The connection
coe�cients in

xn =
n∑
k=0

dnkPk (3.2)

are all nonnegative: First, we calculate the connection coe�cients of P n
1 =

∑n
k=0 cnkPk.

P 2
1 = a1P2 + b1P1 + c1P0 and using the recurrence

cn+1,0 = cn1c
P
1 , cn+1,1 = cn2c

P
2 + cn1b

P
1 + cn0,

cn+1,k = cn,k+1c
P
k+1 + cn,kb

P
k + cn,k−1a

P
k−1, 2 ≤ k ≤ n− 1,

cn+1,n = cn,nb
P
n + cn,n−1a

P
n−1, cn+1,n+1 = cnna

P
n ,

the non-negativity of cnk follows by induction. Now from P1(x) = 1
aP0

(x − bP0 ) it follows
that

xn =
n∑
l=0

(
n

l

)
(aP0 )lP1(x)l(bP0 )n−l =

n∑
k=0

n∑
l=k

(
n

l

)
(aP0 )l(bP0 )n−lclkPk(x)

and thus the connection coe�cients in (3.2) are all nonnegative. An application of Theo-
rem 3.2 concludes the proof.

Next we want to obtain su�cient conditions for S of Theorem 3.2 to be an iso-
morphism. Let us at �rst consider two families of orthogonal polynomials {Rn}n∈N0

and {Pn}n∈N0 inducing signed polynomial hypergroups with dπP = fdπR for some f ∈
L2(DR, dπR). Since both measures are probability measures, f ≥ 0 πR-a.e. For the repre-
sentation Rn =

∑n
k=0 cnkPk one gets that

cnk
hPk

= (FP )−1Rn(k) =

∫
R
PkRndπ

P =

∫
R
fPkRndπ

R = (FR)−1(f · Pk)(n)

for all k, n ∈ N0. In particular we obtain for k = 0 that the Plancherel transform f̌ ∈
l2(N0, h

R) reads f̌(n) = cn0, n ∈ N0, and thus
∑∞

n=0 |cn0|2hRn < ∞. The converse of this
observation is also true in the following sense.

Proposition 3.7. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomials in-
ducing signed polynomial hypergroups such that Rn =

∑n
k=0 cnkPk. Suppose that

∞∑
n=0

|cn0|2hRn <∞

and de�ne f ∈ l2(N0, h
R) by f(n) = cn0, n ∈ N0. Then
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(i) (FR)−1(f̂ · Pk)(n) = cnk
hPk

= (FP )−1Rn(k) for all k, n ∈ N0 and

(ii) dπP = f̂dπR. In particular, f̂ ≥ 0 πR-a.e. and supp πP ⊂ supp πR.

Proof. Note that f̂ ∈ L2(DR, dπR) ⊂ L1(DR, dπR). In order to prove the �rst statement
we have to show that cnk

hPk
=
∫
DP

PkRndπ
P =

∫
DR

f̂PkRndπ
R for all k, n ∈ N0. Fix n ∈ N0.

For k = 0 the equality holds true by de�nition of f. For k ∈ N0 we know that∫
DR

f̂RkRndπ
R =

|k+n|∑
j=|k−n|

gR(k, n, j)

∫
DR

f̂P0Rjdπ
R =

|k+n|∑
j=|k−n|

gR(k, n, j)cj0

=

|k+n|∑
j=|k−n|

gR(k, n, j)

∫
DP

P0Rjdπ
P =

∫
DP

RkRndπ
P . (3.3)

Writing Pm =
∑k

n=0 dmkRk it follows that for all m ∈ N0,∫
DR

f̂PmRndπ
R =

m∑
k=0

dmk

∫
DR

f̂RkRndπ
R =

m∑
k=0

dmk

∫
DP

RkRndπ
P

=

∫
DP

PmRndπ
P =

cnm
hPm

.

For the second statement consider the compact set supp πR∪ supp πP ⊂ R. From the
case k = 0 in (3.3) we obtain that the bounded Borel measures dπP and f̂dπR coincide
on the dense subset span ({Rn}) of C(supp πR∪ supp πP ). This means they have to be
equal.

Theorem 3.8. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomials inducing
signed polynomial hypergroups such that Rn =

∑n
k=0 cnkPk. Suppose that

(i)
∑n

k=0 |cnk| ≤ C for all n ∈ N0,

(ii)
∑∞

n=k |cnk|
hRn
hPk
≤ C̃ for all k ∈ N0,

(iii) the function f ∈ l1(N0, h
R) ⊂ l2(N0, h

R) de�ned by f(n) = cn0, n ∈ N0, ful�lls
f̂ > 0 on DR (by Proposition 3.7 we know that dπP = f̂dπR, where f̂ is continuous
and f̂ |supp πR ≥ 0).

Then the operator S : l1(N0, h
R)→ l1(N0, h

P ), uniquely determined by Sεn =
∑n

k=0 cnkε
P
k

(as in Theorem 3.2) is an isomorphism of Banach algebras. Furthermore, DP = DR and

Ŝ(g) = ĝ for all g ∈ l1(N0, h
R).

Proof. Applying Theorem 3.2 it su�ces to show that there is a constant C > 0 such that
for Pn =

∑n
k=0 dnkRk there holds

∑n
k=0 |dnk| = 1

MR‖(FR)−1Pk‖1 ≤ C for all n ∈ N0.

Since f̂ > 0, f is invertible in l1(N0, h
R) and (‖(FR)−1Pk‖1)k∈N0 is bounded if and only
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if (‖(FR)−1(f̂ ·Pk)‖1)k∈N0 is bounded. By Proposition 3.7 and our second assumption we
obtain

1

MR
‖(FR)−1(f̂ · Pk)‖1 =

∞∑
n=0

|(FR)−1(f̂ · Pk)(n)|hRn =
∞∑
n=k

|cnk|
hRn
hPk
≤ C̃ for all k ∈ N0.

In the case of hypergroups the isomorphism above is isometric if and only if f̂ = 1, i.e.
in the trivial case. In fact, it follows from [8, Thm. 4.4] that an isometric isomorphism
l1(N0, h

R) → l1(N0, h
P ) maps point measures onto point measures. For our class of

isomorphisms this is only possible if Rn = Pn for all n ∈ N0.
Let {Tn}n∈N0 be the Chebyshev polynomials of the �rst kind. There is an abun-

dance of polynomial sequences {Rn}n∈N0 such that the connection coe�cients Rn =∑n
k=0 cnkTk, n ∈ N0, are non-negative, i.e., the assumption of Theorem 3.2 and the

�rst condition of Theorem 3.8 are ful�lled. For instance, this is true for all polynomial
hypergroups where the limits a = limn→∞ an and c = limn→∞ cn of the coe�cients in (1.8)
exist with a, c > 0 (their orthogonalization measure is of Nevai class M(0, 1)), see [35,
Ch. 2].

3.2 Application to Amenability-properties

Now we apply the constructed class of homomorphisms to transfer amenability and
related properties from one l1-algebra to another. These properties are usually hard to
verify directly, whereas the approach via inheritance under homomorphisms is a practica-
ble alternative. For more references on amenability-properties, in particular with regard
to hypergroups, see Chapter 2.

Proposition 3.9. Let A and B be Banach algebras, and let θ : A→ B be a continuous
homomorphism with θ(A) = B.

(i) Suppose that A is amenable. Then B is amenable.

(ii) Suppose that A is commutative and weakly amenable. Then B is weakly amenable.

(iii) Suppose that A is commutative and let α ∈ ∆(B). Suppose further that A is θ∗α-
amenable. Then B is α-amenable.

For (i) and (ii) see for example [10, Proposition 2.8.64]. A proof of (iii) can be found
in [26, Proposition 3.5].

We can now use the homomorphism of Theorem 3.2 to apply Proposition 3.9. In
the �rst two examples we will use the isomorphism of Theorem 3.8 (and subsequently
apply Proposition 3.9). Note that for both examples we have supp πR = DR, since the
hypergroups are of polynomial growth, see [57, Pro. 2.6 and Rem 2.7] and [59, Thm.
2.17]. In [32, Cor. 3] Lasser has shown that l1(N0, h

T ) is amenable, where {Tn}n∈N0 are
the Chebyshev polynomials of the �rst kind. Up to now this was the only example of a
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polynomial hypergroup with an amenable l1(N0, h).

(i) Bernstein-Szeg® polynomials of the �rst kind: We consider a polynomial H : C→
C, H(z) =

∑r
k=0 αkz

k, of degree r ≥ 1, with real coe�cients αk, 0 ≤ k ≤ r. We assume
that H has no zero for |z| ≤ 1 and H(0) > 0. De�ne

ρ : [−1, 1]→ R, ρ(cos t) := |H(eit)|2.

ρ is strictly positive in [−1, 1]. The Bernstein-Szeg® polynomials of the �rst kind {Bρ
n}n∈N0

are de�ned as the ones orthogonal with respect to the probability measure πρ on [−1, 1],
where

dπρ := cρ · ρ(x)−1(1− x2)−
1
2dx = cρ · ρ(x)−1dπT .

The Chebyshev measure of the �rst kind πT has density c−1
ρ · ρ > 0 w.r.t. the Bernstein-

Szeg® measure of the �rst kind and thus (iii) of Theorem 3.8 is ful�lled with respect to
the Bernstein-Szeg® polynomials of the �rst kind {Bρ

n}n∈N0 . Furthermore, it is stated in
[52, Chapter 2.6], or more explicitly in [23], that

Bρ
n =

r∑
k=0

αkTn−k for n ≥ r.

So (i) of Theorem 3.8 is ful�lled. Using this representation it is shown in [14] that for every
ρ the Bernstein-Szeg® polynomials of the �rst kind {Bρ

n}n∈N0 induce a signed polynomial
hypergroup. Furthermore, hρn = const. for n ≥ r [23] and hTk = 2−1 which yields (ii) of
Theorem 3.8. Thus, we can apply Theorem 3.8. In [32, Cor. 3] it is shown that l1(N0, h

T )
is amenable, so Proposition 3.9(i) yields the following corollary.

Corollary 3.10. For every admissible ρ, l1(N0, h
Bρ) w.r.t. Bernstein-Szeg® polynomials

of the �rst kind is isomorphic to l1(N0, h
T ) w.r.t. Chebyshev polynomials of the �rst kind.

In particular, l1(N0, h
Bρ) is amenable.

Special cases of the Bernstein-Szeg® polynomials of the �rst kind for ρ(x) = 1 − µx2

are the Grinspun polynomials [29, 3.(g)(ii)].

(ii) Bernstein-Szeg® polynomials of the second kind: As for the Bernstein-Szeg® poly-
nomials of the �rst kind we consider a polynomial H : C → C, H(z) =

∑r
k=0 αkz

k, of
degree r ≥ 1, with real coe�cients αk, 0 ≤ k ≤ r. We assume that H has no zero for
|z| ≤ 1 and H(0) > 0. Again we de�ne

ρ : [−1, 1]→ R, ρ(cos t) := |H(eit)|2.

ρ is strictly positive in [−1, 1]. The Bernstein-Szeg® polynomials of the second kind
{Cρ

n}n∈N0 are de�ned as the ones orthogonal with respect to the probability measure
πρ on [−1, 1], where

dπρ := cρ · ρ(x)−1(1− x2)
1
2dx = cρ · ρ(x)−1dπS,

see [14, 52]. The Chebyshev measure of the second kind πS has density c−1
ρ · ρ > 0 w.r.t.

the Bernstein-Szeg® measure of the second kind and thus (iii) of Theorem 3.8 is ful�lled
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with respect to the Bernstein-Szeg® polynomials of the second kind {Cρ
n}n∈N0 . It is shown

in [14] that for every ρ the Bernstein-Szeg® polynomials of the second kind {Cρ
n}n∈N0

induce a signed polynomial hypergroup. Furthermore, it is stated in [14] that

Cρ
n = Mn ·

r∑
k=0

αk · (n− k + 1)Sn−k for n ≥ r, where Mn =

(
r∑

k=0

αk · (n− k + 1)

)−1

is chosen such that Cρ
n(1) = 1. We show that (i) of Theorem 3.8 is ful�lled: First note

that, since
∑r

k=0 αk 6= 0, there is a constant M > 0 such that for n large enough∣∣∣∣∣
r∑

k=0

αk · (n− k + 1)

∣∣∣∣∣ ≥
∣∣∣∣∣n
∣∣∣∣∣
r∑

k=0

αk

∣∣∣∣∣−
∣∣∣∣∣
r∑

k=0

αk(k − 1)

∣∣∣∣∣
∣∣∣∣∣ ≥ n ·M.

Let L :=
∑r

k=0 |αk|. Then
n∑
l=0

|cnl| =
∑r

k=0 |αk| · (n− k + 1)

|
∑r

k=0 αk · (n− k + 1)|
≤ (n+ 1) · L

n ·M

is uniformly bounded in n. For (ii) of Theorem 3.8 we �rst note that hρn = 2 · (cρπM2
n)−1

for n ≥ r [23] and that hSk = (k + 1)2. Since cnk = Mnαn−k(k + 1) we obtain that

∞∑
n=k

|cnk|
hρn
hSk

=
2

cρπ

1

k + 1

k+r∑
n=k

|M−1
n αn−k| =

2

cρπ

1

k + 1

k+r∑
n=k

∣∣∣∣∣
r∑
l=0

αl · (n− l + 1)

∣∣∣∣∣ |αn−k|
≤ 2

cρπ

1

k + 1

k+r∑
n=k

(n+ 1) · L · |αn−k| ≤
2

cρπ

1

k + 1
(k + r + 1) · L2

is uniformly bounded in k. Thus, we can apply Theorem 3.8. In [32, Cor. 1] l1(N0, h
S) =

l1(N0, h
P ( 12 ,

1
2 )

) has been shown to be not weakly amenable, where {P (α,α)
n }n∈N0 are ultra-

spherical polynomials. Now Proposition 3.9(i) yields the following corollary.

Corollary 3.11. For every admissible ρ, l1(N0, h
Cρ) w.r.t. Bernstein-Szeg® polynomials

of the second kind is isomorphic to l1(N0, h
S) w.r.t. Chebyshev polynomials of the second

kind. In particular, l1(N0, h
Cρ) is not weakly amenable.

By [14] special cases of Bernstein-Szeg® polynomials of the second kind for r = 2
include the Geronimus, Cartier and generalized Soardi polynomials [7, 3.3.15, 3.3.20 and
3.3.36].

(iii) Jacobi polynomials: For (α, β) ∈ W, W = {(α, β) : α ≥ β > −1, α ≥ −1
2
} as in

(1.17), the Jacobi polynomials {P (α,β)
n }n∈N0 induce a signed polynomial hypergroup.

In [32, Cor. 1] l1(N0, h
P (α,α)

) has been shown to be not weakly amenable, where
{P (α,α)

n }n∈N0 are ultraspherical polynomials and α ≥ 0. Via Theorem 3.2 we can transfer
this property to a large region of parameters of Jacobi polynomials.

Corollary 3.12. The Banach algebra l1(N0, h
P (α,β)

) w.r.t. Jacobi polynomials is not weakly
amenable whenever α ≥ 0.
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Proof. In [32, Cor. 1] it has been shown that l1(N0, h
P (α,α)

) is not weakly amenable for α ≥
0. By [5, Theorem 2] we get that the connection coe�cients in P (α,β)

n =
∑n

k=0 cnkP
(α,α)
k ful-

�ll the requirements of Theorem 3.2 for β < α. Proposition 3.9(ii) yields that l1(N0, P
(α,β))

is not weakly amenable whenever α ≥ 0, (α, β) ∈ W.

Stefan Kahler has recently shown that l1(N0, h
P (α,α)

) is weakly amenable whenever
−1

2
< α < 0; his results have not been published yet. From [32, Thm. 3] it follows that

l1(N0, h
P (α,α)

) is not amenable for those α.
In [16, Example 4.6] it is shown that l1(N0, h

P (α,α)
) is not x-amenable for x ∈ (−1, 1)

and all α > −1
2
. This property is also inherited by l1(N0, h

P (α,β)
) :

Corollary 3.13. The Banach algebra l1(N0, h
P (α,β)

) w.r.t. Jacobi polynomials is not x-
amenable for all x ∈ (−1, 1) whenever α > −1

2
.

Proof. In [16, Example 4.6] it is shown that l1(N0, h
P (α,α)

) is not x-amenable for x ∈
(−1, 1) for all α > −1

2
. By [5, Theorem 2] we get that the connection coe�cients in

P
(α,β)
n =

∑n
k=0 cnkP

(α,α)
k ful�ll the requirements of Theorem 3.2 for β < α. Proposition

3.9(iii) yields that l1(N0, P
(α,β)) is not x-amenable for all x ∈ (−1, 1), (α, β) ∈ W.

Actually, this result has already been shown in [16, Example 4.6] using di�erent tech-
niques. Notwithstanding the above, l1(N0, h

P (α,α)
) is (−1)-amenable for all α, whereas

l1(N0, h
P (α,β)

) lacks this property whenever α 6= β, see [16, Example 4.6].

(iv) Associated Legendre polynomials: The associated Legendre polynomials {P ν
n}n∈N0

are orthogonal on [−1, 1] w.r.t. dπν = |2F1(1
2
, ν; ν + 1

2
; exp(2i arccosx))|−2dx (2F1 is the

customary notation for the hypergeometric series). They de�ne polynomial hypergroups
whenever ν ≥ 0, see [30, Thm. 3.1]. For ν = 0 we obtain the classical Legendre polynomi-
als (P

(0,0)
n )n whose l1-algebra is not weakly amenable by Corollary 3.12. The connection

coe�cients in

P ν
n =

n∑
k=0

cnkP
0
n

are non-negative, see [28]. Therefore, we can apply Theorem 3.2 and Proposition 3.9(ii)
to obtain the following corollary:

Corollary 3.14. The Banach algebra l1(N0, h
P ν ) w.r.t. Associated Legendre polynomials

is not weakly amenable for all ν ≥ 0.
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4 Spectra of L1-convolution operators

In this chapter we consider the spectra of the convolution operators

Tf = Tf,p : Lp(K)→ Lp(K), Tf (g) = f ∗ g, (4.1)

for f ∈ L1(K) on commutative hypergroups K. Since ‖f ∗ g‖p ≤ ‖f‖1‖g‖p, as remarked
after (1.2), the convolution operators Tf are bounded. We are interested in how, for �xed
f ∈ L1(K), the spectra σp(Tf ) of Tf,p vary with p. The results contained in this chapter
have already been published in [41].

In Chapter 4.1 we obtain that for any commutative hypergroup K and f ∈ L1(K),
the inclusion σq(Tf ) ⊆ σp(Tf ) is true whenever p ≤ q ≤ 2 or 2 ≤ q ≤ p. Furthermore, we
show that this result is sharp in the sense that there is a commutative hypergroup and
an element f ∈ L1(K), such that σq(Tf ) ( σp(Tf ) whenever q > p, q, p ∈ [1, 2]. In fact,
in Chapter 4.3 we will calculate the spectra σp(Tε1), p ∈ [1,∞], for the family of Karlin-
McGregor polynomial hypergroups and the generating element ε1 of l1(h); these spectra
turn out to ful�ll the above strict inclusions. This once more illustrates the signi�cant
di�erence between abelian locally compact groups and commutative hypergroups: For
abelian locally compact groups the spectra σp(Tf ) coincide for all p ∈ [1,∞], which is a
consequence of the following theorem [4, Thm. 6], since abelian locally compact groups
are always amenable and symmetric.

Theorem 4.1 (Barnes). For a locally compact group G, the following are equivalent;

(i) for all f ∈ L1(G), σL1(G)(f) = σ2(Tf ).

(ii) for all f ∈ L1(G), σp(Tf ) is independent of p ∈ [1,∞].

(iii) for all f ∈ L1(G) with f = f ∗, rL1(G)(f) = r2(Tf ) (r denotes the spectral radius).

(iv) L1(G) is symmetric and G is amenable.

Although the spectra σp(Tf ) do not generally coincide for commutative hypergroups,
we can characterize those commutative hypergroups for which σp(Tf ) is independent of
p ∈ [1,∞]. In fact, in Chapter 4.2 we prove that, for a commutative hypergroup K, σp(Tf )
is independent of p ∈ [1,∞] for all f ∈ L1(K) exactly when the Plancherel measure is
supported on the whole character space χb(K), i.e., if the three dual objects χb(K), K̂
and S (see (1.3) and following) of the commutative hypergroup K coincide.

Moreover, we can formulate our characterization similar to Barnes' Theorem 4.1 above:
σp(Tf ) is independent of p ∈ [1,∞] for all f ∈ L1(K) exactly when L1(K) is symmetric
and for every α ∈ K̂ Reiter's condition P2 (de�ned in (1.5)) holds true. For groups,
Barnes' assumption of amenability is equivalent to Reiter's condition P2 (in α ≡ 1)
[42, Thm. 6.14]. For hypergroups, however, the various properties which characterize
amenability (including the P2-condition) in the group case are not equivalent, see for
example [15, 16, 32] and Chapter 2.



4.1 Inclusion relations of p-spectra of L1-convolution operators 34

4.1 Inclusion relations of p-spectra of L1-convolution operators

This chapter is mainly devoted to proving that if p ≤ q ≤ 2 or 2 ≤ q ≤ p, then
σq(Tf ) ⊆ σp(Tf ) for all f ∈ L1(K), which is formulated as Proposition 4.6. We begin with
some basic facts about L1-convolution operators.

In the following, for g ∈ Lp(K) and h ∈ Lp′(K), 1
p

+ 1
p′

= 1, we write 〈g, h〉 =
∫
K
ghdm.

The scalar product of the Hilbert space L2(K) is denoted by 〈g, h〉2 =
∫
K
ghdm.

Lemma 4.2. Let f ∈ L1(K), 1 ≤ p <∞ and 1
p

+ 1
p′

= 1. Then the adjoint operator ful�lls

T ∗f,p = Tf̃ ,p′ , where f̃ is given by f̃(x) = f(x̃). Furthermore, the Hilbert-space adjoint THf,2
obeys THf,2 = T

f̃ ,2
= Tf∗,2.

Proof. First we note that for x, y ∈ K,

Lyf̃(x̃) =

∫
K

f̃dω(y, x̃) =

∫
K

fdω(ỹ, x) = Lỹf(x).

Let g ∈ Lp(K) and h ∈ Lp′(K). Using Fubini's theorem we obtain

〈
T ∗f h, g

〉
= 〈h, Tfg〉 = 〈h, f ∗ g〉 =

∫
K

h(x)f ∗ g(x)dm(x)

=

∫
K

∫
K

h(x)Lỹf(x)g(y)dm(y)dm(x)

=

∫
K

∫
K

h(x)Lyf̃(x̃)g(y)dm(x)dm(y)

=

∫
K

f̃ ∗ h(y)g(y)dm(y) =
〈
f̃ ∗ h, g

〉
. (4.2)

Thus T ∗f,p = Tf̃ ,p′ . For the statement concerning the Hilbert-space adjoint THf , we let
g, h ∈ L2(K) and obtain

〈
THf h, g

〉
2

= 〈h, Tfg〉2 =

∫
K

h(x)f ∗ g(x)dm(x)

=

∫
K

f̃ ∗ h(y)g(y)dm(y) = 〈f ∗ ∗ h, g〉2 .

Here we used (4.2) for the third equality.

Proposition 4.3. Let 1 ≤ p < ∞ and 1
p

+ 1
p′

= 1. For f ∈ L1(K), ‖Tf‖p′ = ‖Tf‖p and

σp′(Tf ) = σp(Tf ). If either p ≤ q ≤ 2 or 2 ≤ q ≤ p, then ‖Tf‖q ≤ ‖Tf‖p.

Proof. By

f̃ ∗ h = f̃ ∗ h̃, h ∈ Lp′(K), (4.3)

it immediately follows from Lemma 4.2 that ‖Tf‖p′ = ‖Tf̃‖p′ = ‖Tf‖p, and that σp′(Tf ) =
σp′(Tf̃ ) = σp(Tf ). Since q lies between p and p′, Riesz's convexity theorem [12, VI.10.11]
yields ‖Tf‖q ≤ max(‖Tf‖p, ‖Tf‖p′), and the second statement follows.
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For our next proposition, we need some auxiliary statements. Recall that for f ∈
Lp(K), g ∈ Lp′(K), where 1 < p <∞, 1

p
+ 1

p′
= 1, the convolution is given by

f ∗ g(x) =

∫
K

Lỹf(x)g(y)dm(y).

Then f ∗ g ∈ C0(K) is a continuous function vanishing at in�nity, ful�lling ‖f ∗ g‖∞ ≤
‖f‖p‖g‖p′ .
Lemma 4.4. Let 1 < p ≤ p′ < ∞, 1

p
+ 1

p′
= 1 and h ∈ Lp(K), h′ ∈ Lp′(K). If 〈h,w〉 =

〈h′, w〉 for all w ∈ Lp(K) ∩ Lp′(K), then h = h′ m-a.e., i.e. h = h′ ∈ Lp(K) ∩ Lp′(K).

Proof. We de�ne M = {x ∈ K : |h(x)| ≥ ε} , where 1 ≥ ε > 0 is chosen such that
m(M) > 0. Since h ∈ Lp(K), we know that m(M) <∞. Let

MR,+ = {x ∈M : Re h− Re h′ ≥ 0}, MR,− = {x ∈M : Re h− Re h′ ≤ 0},
MI,+ = {x ∈M : Im h− Im h′ ≥ 0}, MI,− = {x ∈M : Im h− Im h′ ≤ 0}.

The four corresponding characteristic functions lie in Lp(K) ∩ Lp′(K), since m(M) <∞.
Denoting by χ any of these four functions, we know that 〈h− h′, χ〉 = 0. This implies
h|M = h′|M m-a.e. for the following reason: Consider χMI,− , where

0 = Im
〈
h− h′, χMI,−

〉
=
〈
Im(h− h′), χMI,−

〉
,

because m is a positive measure and χMI,− is a positive function. Since Im(h−h′) ≤ 0 on
MI,−, Im(h − h′) has to equal zero m-a.e. on MI,−. Analogously, Im(h − h′) = 0 m-a.e.
on MI,+, which means Im(h− h′) = 0 on M. In the same way, Re(h− h′) = 0 m-a.e. on
M. Using h|M = h′|M m-a.e. and p ≤ p′, we can estimate∫

K

|h|p′dm =

∫
K\M
|h|p′dm+

∫
M

|h|p′dm ≤
∫
K\M
|h|pdm+

∫
M

|h′|p′dm <∞,

and thus h ∈ Lp
′
(K). By assumption, the two elements h, h′ ∈ Lp

′
(K) ful�ll 〈h,w〉 =

〈h′, w〉 for all w ∈ Lp(K)∩Lp′(K), which is dense in Lp
′
(K) for p′ <∞. Therefore, h = h′

m-a.e.

Lemma 4.5. Let g ∈ Lp(K), 1 < p < ∞, and 1
p

+ 1
p′

= 1. Suppose that g is related to

some bounded operator Tg ∈ B(Lp(K)) via Tgw = g ∗w for all w ∈ Lp(K)∩Lp′(K). Then
its adjoint T ∗g ∈ B(Lp

′
(K)) is related to g via T ∗g v = g̃ ∗ v for all v ∈ Cc(K).

Proof. We proceed similar to the proof of Lemma 4.2. First we note that for x, y ∈ K

Lyg̃(x̃) =

∫
K

g̃dω(y, x̃) =

∫
K

gdω(ỹ, x) = Lỹg(x).

Now let v ∈ Cc(K), w ∈ Lp(K) ∩ Lp′(K). By Fubini's theorem we obtain〈
T ∗g v, w

〉
= 〈v, Tgw〉 = 〈v, g ∗ w〉 =

∫
K

v(x)g ∗ w(x)dm(x)

=

∫
K

∫
K

v(x)Lỹg(x)w(y)dm(y)dm(x)

=

∫
K

∫
K

v(x)Lyg̃(x̃)w(y)dm(x)dm(y)

=

∫
K

g̃ ∗ v(y)w(y)dm(y) = 〈g̃ ∗ v, w〉 .
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We now know that the results of testing g̃ ∗ v ∈ Lp(K) and T ∗g v ∈ Lp
′
(K) on elements of

Lp(K) ∩ Lp′(K) coincide. By Lemma 4.4 this means that g̃ ∗ v = T ∗g v m-a.e., and that
g̃ ∗ v ∈ Lp′(K) for all v ∈ Cc(K).

Proposition 4.6. Let K be a commutative hypergroup and 1 < p < ∞. Suppose that
either p ≤ q ≤ 2 or 2 ≤ q ≤ p. Then σq(Tf ) ⊆ σp(Tf ) for all f ∈ L1(K).

Proof. It su�ces to show that when I−Tf,p is invertible on Lp(K) then I−Tf,q is invertible
on Lq(K).

First assume f ∈ L1(K) ∩ L∞(K). Then f ∈ Ls(K) for all 1 ≤ s ≤ ∞. Since I − Tf,p
is invertible on Lp(K) there exists g ∈ Lp(K) such that (I − Tf,p)g = −f. Therefore, for
1
p

+ 1
p′

= 1,

(I − Tf,p)(w − g ∗ w) = w for all w ∈ Lp(K) ∩ Lp′(K).

This implies (I − Tf,p)[(I − Tf,p)−1w − (w − g ∗ w)] = 0, and since I − Tf,p is invertible,

(I − Tf,p)−1w = w − g ∗ w for all w ∈ Lp(K) ∩ Lp′(K). (4.4)

We de�ne Tg ∈ B(Lp(K)) by Tg = I− (I−Tf,p)−1. By (4.4), Tg̃ ∈ B(Lp(K)) and we know
that ‖Tg̃‖p = ‖Tg‖p. We can apply Lemma 4.5 to Tg̃. This yields

‖Tgh‖p′ = ‖(I − (I − Tf,p)−1)h‖p′ = ‖T ∗g̃ h‖p′ ≤ ‖Tg‖p · ‖h‖p′ for all h ∈ Cc(K).

Since q ∈ [p, p′] or q ∈ [p′, p], Riesz's convexity theorem [12, VI.10.11] yields that

‖(I − (I − Tf,p)−1)h‖q = ‖Tgh‖q ≤ max(‖Tg‖p, ‖Tg‖p′) · ‖h‖q = ‖Tg‖p · ‖h‖q

for all h ∈ Cc(K). Thus,

‖(I − Tf,p)−1h‖q ≤ (1 + ‖Tg‖p) · ‖h‖q ≤ (2 + ‖(I − Tf,p)−1‖p) · ‖h‖q (4.5)

for all h ∈ Cc(K). For h ∈ Lp(K) ∩ Lq(K) we choose a sequence (hn)n ⊂ Cc(K) that
approximates h simultaneously in Lp(K) and Lq(K) (this is possible, since L1(K) has
a bounded approximate identity of functions with compact support, see Theorem 1.5.
By (4.5) we obtain that (I − Tf,p)−1hn converges in Lq(K), and of course it converges to
(I−Tf,p)−1h in Lp(K). The limits have to coincidem-a.e., which means that (I−Tf,p)−1h ∈
Lp(K) ∩ Lq(K). Thus,

(I − Tf,p)−1(I − Tf,p) = (I − Tf,p)(I − Tf,p)−1 = I on Lp(K) ∩ Lq(K), (4.6)

which is dense in Lq(K). (I − Tf,q) clearly is the bounded extension of (I − Tf,p) from
Lp(K) ∩ Lq(K) to Lq(K). Therefore, the bounded extension of (I − Tf,p)

−1 on Lq(K)
(which exists according to (4.5)) has to be an inverse of (I − Tf,q) by (4.6).

Now we consider general f ∈ L1(K) and assume that I −Tf,p is invertible. We choose
a sequence (fn)n ⊂ L1(K)∩L∞(K) such that ‖fn− f‖1 → 0. Since L1(K) has a bounded
approximate identity with bound 1, ‖fn−f‖1 = ‖Tfn−Tf‖1. By Proposition 4.3 it follows
that I − Tfn → I − Tf in both B(Lp(K)) and B(Lq(K)). For large enough n, say n > n0,
I − Tfn,p is invertible. As inversion is continuous, (I − Tfn,p)

−1 → (I − Tf,p)
−1 and in
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particular ‖(I − Tfn,p)
−1‖p ≤ C, n > n0. As argued above, I − Tfn,q is invertible and

according to (4.5),

‖(I − Tfn,q)−1‖q ≤ 2 + ‖(I − Tfn,p)−1‖p ≤ 2 + C, n > n0.

Since I − Tfn,q → I − Tf,q with uniformly bounded inverses (I − Tfn,q)−1, I − Tf,q has to
be invertible as well.

The proof of Proposition 4.6 above is modeled on the proof of [4, Pro. 3], which deals
with locally compact amenable groups. However, there the statement analogous to (4.5)
is obtained by an application of [42, Pro. 18.18]. The proof of [42, Pro. 18.18] uses a
certain consequence of amenability which is only available in the group case and which
is not valid for commutative hypergroups. We obtained (4.5) by means of Lemma 4.5
instead. Notice that our result brings no news for locally compact abelian groups. This
is due to the fact that the amenability assumption in [4, Pro. 3] is automatically ful�lled
for commutative groups.

Furthermore, the result in Proposition 4.6 is sharp in the sense that there is a com-
mutative hypergroup and an element f ∈ L1(K), such that σq(Tf ) ( σp(Tf ) whenever
q > p, q, p ∈ [1, 2]. We will encounter such an example in Chapter 4.3.

For the sake of completeness let us brie�y mention that the spectra σp(Tf ) are upper
semicontinuous: For 1 < p < 2, Lp(K) is a complex interpolation space of L1(K) and
L2(K), see [6, Ch. 5]. Applying the result on interpolated operators [43, Thm. 2.7]
we note that the map (1, 2)→ C(C), p 7→ σp(Tf ), is upper semicontinuous (C(C) are the
compact subsets of C). Here a mapM : (1, 2)→ C(C) is said to be upper semicontinuous
if whenever U is open in C, the set {p ∈ (1, 2) : M(p) ⊂ U} is open in X.

4.2 p-independence of the spectrum of L1-convolution operators

In this chapter, we characterize those hypergroups where for each L1-convolution op-
erator all its p-spectra coincide. In order to prove our main result, which is Theorem 4.12,
we introduce the algebras of convolutors on Lp(K). To that end, we �rst have a look at
the unitization of L1(K).

If and only if K is discrete, L1(K) already has an identity, which is the point measure
δe at the neutral element e of K. If K is not discrete, it is still true that δe ∗ f = f
as measures for all f ∈ L1(K). We can adjoin the point measure δe to L1(K) within
the measure algebra. To unify notation, we use the symbol L1(K)e to denote either the
unitization L1(K)⊕C · δe if L1(K) is not unital, or L1(K)e = L1(K) if it is unital. Then,

σL1(K)(f) = f̂(∆(L1(K)e)), f ∈ L1(K).

If L1(K) is unital, we identify ∆(L1(K)e) with χb(K). If L1(K) is not unital, ∆(L1(K)e)
is homeomorphic to the one-point compacti�cation ∆(L1(K)) ∪ β0, where the compacti-
�cation character β0 ∈ ∆(L1(K)e) is given by

β0|L1(K) = 0, β0(δe) = 1.

Since ∆(L1(K)) is homeomorphic to χb(K), endowed with the compact-open topology,
∆(L1(K)e) is homeomorphic to the one-point compacti�cation of
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χb(K). Therefore, we identify ∆(L1(K)e) with the one-point compacti�cation χb(K)∪β0,
where we also denote the point at in�nity by β0. Furthermore, we will identify ∆∗(L1(K)e)
with K̂ or K̂ ∪ β0 depending on whether or not L1(K) is unital.

We de�ne the algebra of convolutors Cp ⊂ B(Lp(K)) as the norm-closure of L1(K)e
in B(Lp(K)), i.e.

Cp = {Tf ∈ B(Lp(K)) : f ∈ L1(K)e}
B(Lp(K))

.

This subalgebra is easier to handle than B(Lp(K)). If either p ≤ q ≤ 2 or 2 ≤ q ≤ p,
Proposition 4.3 yields ‖Tf‖q ≤ ‖Tf‖p. Hence, Cp ⊆ Cq in the sense that to every element
of T ∈ Cp there is an element of Cq which coincides with T on Cc(K).

Lemma 4.7. Cp is a commutative Banach-∗-algebra with identity.

Proof. Since δe ∗ g = g for all g ∈ Lp(K), p ∈ [1,∞], Cp has the identity Tδe = I. For
f ∈ L1(K), h ∈ Lp(K),

(f ∗ + (µδe)
∗) ∗ h(x) = (f̃ + µδe) ∗ h(x) = f ∗ h̃(x̃) + µh(x) = (f + µδe) ∗ h̃(x̃).

Thus we know that the ∗-operation in L1(K)e is also isometric with respect to the norm
of B(Lp(K)), and can be extended to a ∗-operation in Cp.

We have a look at the structure space of Cp, and at σCp(Tf ), the spectrum of Tf with
respect to the algebra Cp.

Proposition 4.8. Let K be a commutative hypergroup. For 1 ≤ p ≤ ∞ de�ne

Sp := {β ∈ ∆(L1(K)e) : | 〈β, f〉 | ≤ ‖Tf‖p for all f ∈ L1(K)e}.

Then,

(i) the mapping R : ∆(Cp) → Sp, given by 〈R(α), f〉 = 〈α, Tf〉 , is a homeomorphism,

and σCp(Tf ) = f̂(Sp). In particular, Sq ⊆ Sp and σCq(Tf ) ⊆ σCp(Tf ) for all f ∈
L1(K), whenever p ≤ q ≤ 2 or 2 ≤ q ≤ p. Furthermore, σCp(Tf∗) = σCp(Tf ),

(ii) the restriction to the set of ∗-characters R|∆∗(Cp) : ∆∗(Cp) → Sp ∩ ∆∗(L1(K)e) is

also a homeomorphism, and σ∗Cp(Tf ) = f̂(Sp ∩∆∗(L1(K)e)),

(iii) if L1(K) is not unital, the compacti�cation character β0 ∈ ∆(L1(K)e) lies in Sp for
all p ∈ [1,∞],

(iv) S1 = ∆(L1(K)e). If the Plancherel measure has full support, i.e., S = χb(K), then
S2 = S1.

Proof. (i): R restricts α ∈ ∆(Cp) to the dense subset A := {Tf ∈ B(Lp(K)) : f ∈
L1(K)e} of Cp, and identi�es A with L1(K)e. Thus R(α), α ∈ ∆(Cp), is still a multi-
plicative functional (and thus bounded) on L1(K)e. Since α is bounded on Cp, R(α) ∈ Sp
and R is one-to-one. Conversely, β ∈ Sp de�nes a bounded multiplicative functional on
the dense subset A of Cp. Thus there exists a unique bounded extension of β to ∆(Cp)
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which is easily checked to be still multiplicative. By its de�nition, R is continuous with
respect to the Gelfand topologies on ∆(Cp) and ∆(L1(K)e). Because ∆(Cp) is compact
with respect to the Gelfand topology, the bijective map R is a homeomorphism. If either
p ≤ q ≤ 2 or 2 ≤ q ≤ p, Proposition 4.3 tells us that ‖Tf‖q ≤ ‖Tf‖p. Thus Sq ⊆ Sp and
in addition σCq(Tf ) ⊆ σCp(Tf ). Since Cp is a ∗-algebra, σCp(Tf∗) = σCp(Tf ).

(ii): Since a character ϕ is a ∗-character if and only if 〈ϕ, x∗〉 = 〈ϕ, x〉 for all x, we
obtain for α ∈ ∆∗(Cp) that 〈R(α), f ∗〉 = 〈α, Tf∗〉 = 〈α, Tf〉 = 〈R(α), f〉. This in turn
means that R maps ∆∗(Cp) into Sp∩∆∗(L1(K)e). Conversely, the unique bounded exten-
sion α of β ∈ Sp ∩∆∗(L1(K)e) to ∆(Cp) ful�lls 〈α, T ∗〉 = limn

〈
α, Tf∗n

〉
= limn 〈β, f ∗n〉 =

limn 〈β, fn〉 = limn 〈α, Tfn〉 = 〈α, T 〉, which means that R|∆∗(Cp) is onto. By (i), R is
one-to-one and the statement follows.

(iii): Let f + µδe ∈ L1(K)e. Since L1(K) is not unital, K is not discrete and from
[31, Thm. 3.4] it follows that S is not compact. Because f ∈ L1(K), we know that
f̂ ∈ C0(S). Since S is not compact, for all ε > 0 we can �nd βf ∈ S such that |f̂(βf )| < ε.

Furthermore, it is well known that ‖Tf + µTδe‖2 = supβ∈S |µ+ f̂(β)|. We obtain

‖Tf + µTδe‖p ≥ ‖Tf + µTδe‖2 ≥
∣∣∣|µ| − |f̂(βf )|

∣∣∣ ≥ | 〈β0, f + µδe〉 | − ε.

For ε→ 0, the above inequality yields β0 ∈ Sp.
(iv): Since L1(K)e is unital, we obtain ‖Tf‖1 = ‖f‖1 for all f ∈ L1(K)e. Hence,

L1(K)e and C1 are isometrically isomorphic and the largest structure space S1
∼= ∆(C1)

is the whole structure space ∆(L1(K)e). Now suppose that S = χb(K). If L1(K) is unital,
then by the de�nition of S in (1.4), S = S2. Since ∆(L1(K)e) = χb(K), it follows that
S2 = S = χb(K) = S1. If L1(K) is not unital, then for γ ∈ S,

|(µδ̂e + f̂)(γ)| ≤ sup
β∈S
|(µδ̂e + f̂)(β)| = ‖Tf + µTδe‖2, for all µδe + f ∈ L1(K)e.

This means that S ⊂ S2. By (iii) we obtain

S ∪ β0 ⊆ S2 ⊆ S1 = χb(K) ∪ β0 = S ∪ β0,

and thus S2 = S1.

In the following, the preceding proposition allows us to identify ∆(Cp) with Sp ⊆
∆(L1(K)e).

Applying a result of T. J. Ransford on interpolated operators, we draw a conclusion
concerning the structure spaces Sp of the algebras Cp ⊂ B(Lp(K)).

Corollary 4.9. If either p ≤ q ≤ 2 or 2 ≤ q ≤ p, then each connected component of Sp
intersects Sq. In particular, each connected component of S1 intersects S2.

Proof. Let C be a connected component of Sp and suppose towards a contradiction that
C ∩ Sq = ∅. By Shilov's Idempotent Theorem [25, Thm. 3.5.1] there is T ∈ Cp such
that T̂ (C) = {1} and T̂ (Sq) ⊆ T̂ (Sp \ C) = {0}. Since σCp(T ) = {0, 1}, we know that
σCp(T ) = σp(T ) and thus {1} is a connected component of σp(T ).

For p0 ≤ p ≤ p1, L
p(K) is a complex interpolation space of Lp0(K) and Lp1(K), see

[6, Ch. 5]. The proof of Proposition 4.6 shows that for all f ∈ L1(K), Tf ful�lls the
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'uniqueness of resolvent condition'; compare [43, Cor. 2.2 b)]. Thus we can apply [43,
Thm. 2.8], whereby it follows that {1} ∩ σq(T ) 6= ∅. But {1} ∩ σq(T ) = {1} ∩ T̂ (Sq) =
{1} ∩ {0} = ∅, a contradiction.

Since S1 is essentially the character space χb(K) and S2 is the support of the Plancherel
measure S (except for maybe the compacti�cation character β0 ∈ ∆(L1(K)e)) we can read
the above as follows: Each connected component of χb(K) intersects S (modulo L1(K)
being unital).

In the cases p = 1 and p = 2, the spectra of Tf with respect to the di�erent algebras
coincide.

Lemma 4.10. For all f ∈ L1(K),

σC2(Tf ) = σ2(Tf ) and σL1(K)(f) = σC1(Tf ) = σ1(Tf ).

Proof. Tf is always a normal operator on the Hilbert space L2(K) and thus always
σC2(Tf ) = σ2(Tf ). We consider the 'maximal' case p = 1 : Since L1(K)e and C1 are
isometrically isomorphic, the �rst equality follows. For the second equality we have to
show that if I −Tf is invertible in B(L1(K)), then its inverse is already in C1. If I −Tf is
invertible on L1(K) there exists g ∈ L1(K) such that (I − Tf )g = −f. Therefore for any
h ∈ L1(K), (I − Tf )(h− g ∗ h) = h and thus (I − Tf )−1h = h− g ∗ h = (Tδe − Tg)h. This
argument is taken from [4, Note 2 and Note 1].

It is natural to ask if the equality σp(Tf ) = σCp(Tf ) is true for all p ∈ [1,∞], i.e., if the
algebra Cp is always inverse-closed in B(Lp(K)). This seems to be a more di�cult problem
than one would think at �rst glance; we have no solution. Clearly, always σp(Tf ) ⊆
σCp(Tf ), and equality holds for example in the special cases where σCp(Tf ) has empty
interior or where the resolvent set ρp(Tf ) is connected, see [25, Lem. 1.2.11 and Thm.
1.2.12].

We need the following version of Hulanicki's Theorem; a proof can be found in [4].

Theorem 4.11. (Hulanicki) Assume A is a Banach ∗-algebra and B is a ∗-subalgebra of
A. Let f → Tf be a faithful ∗-representation of A on a Hilbert space H. If rA(f) = ‖Tf‖
for all f = f ∗ ∈ B, then σA(f) = σ(Tf ) for all f ∈ B.

We state our main result.

Theorem 4.12. For a commutative hypergroup K, the following are equivalent;

(i) for all f ∈ L1(K), σL1(K)(f) = σ2(Tf ).

(ii) for all f ∈ L1(K), σCp(Tf ) is independent of p ∈ [1,∞].

(iii) for all f ∈ L1(K), σp(Tf ) is independent of p ∈ [1,∞].

(iv) for all f ∈ L1(K) with f = f ∗, rL1(K)(f) = r2(Tf ).

(v) for the support of the Plancherel measure S holds S = χb(K).

(vi) L1(K) is symmetric and for every α ∈ K̂ Reiter's condition P2 holds.
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Proof. (i)⇒ (ii)⇒ (iii)⇒ (iv): Lemma 4.10 implies that σC1(Tf ) = σL1(K)(f) = σ2(Tf ) =
σC2(Tf ). Using the inclusions of Cp-spectra of Proposition 4.8(i), we obtain (ii). Proposi-
tion 4.6 tells us that σ2(Tf ) ⊆ σp(Tf ) for each p ∈ [1,∞]. Hence,

σp(Tf ) ⊆ σCp(Tf ) = σC2(Tf ) = σ2(Tf ) ⊆ σp(Tf ),

which shows (iii). We use Lemma 4.10 again, and get σL1(K)(f) = σ1(Tf ) = σ2(Tf ), which
yields (iv).

(iv) ⇒ (i): According to Lemma 4.2, the map f → Tf is a faithful ∗-representation of
L1(K) on the Hilbert space L2(K). Applying Hulanicki's Theorem we obtain σL1(K)(f) =
σ2(Tf ) for all f ∈ L1(K).

(i)⇒ (v): If f ∈ L1(K) is self-adjoint, then by Lemma 4.2 Tf,2 is also self-adjoint and
therefore has real spectrum. If (i) holds true, L1(K) is thus symmetric, and we obtain

that K̂ = χb(K). Furthermore, the space L̂1(K)|K̂ is dense in C0(K̂) and S is closed in
the locally compact Hausdor� space K̂. Supposing towards a contradiction that S 6= K̂,
we choose g ∈ Cc(K̂), supp g ⊆ K̂ \ S, and f ∈ L1(K) such that ‖g − f̂‖∞,K̂ < ε. For

small enough ε > 0 then holds f̂(K̂) 6= f̂(S) and f̂(K̂) ∪ {0} 6= f̂(S) ∪ {0}. If L1(K) is
unital, it follows that σL1(K)(f) = f̂(K̂) 6= f̂(S) = σ2(Tf ). If L1(K) is not unital, Lemma
4.10 and Proposition 4.8 yield

σL1(K)(f) = σC1(Tf ) = f̂(S1) = f̂(K̂) ∪ {0} 6= f̂(S) ∪ {0} = f̂(S2) = σ2(Tf ).

In either case, we have obtained a contradiction to (i).
(v) ⇒ (i): Since S1 = S2 by Proposition 4.8(iv), Proposition 4.8(i) yields that

σC1(Tf ) = σC2(Tf ) = σ2(Tf ) for all f ∈ L1(K); again by Lemma 4.10 σC1(Tf ) = σL1(K)(f).

(v) ⇔ (vi): K̂ = χb(K) if and only if L1(K) is symmetric. Further S = K̂ if and only
if Reiter's condition P2 holds true for every α ∈ K̂, see [15, Thm. 3.1].

Theorem 4.12 is similar to Theorem 4.1 of [4, Thm. 6] for locally compact groups. We
draw a conclusion for quite a large class of commutative hypergroups.

Corollary 4.13. Let K be a commutative hypergroup whose Haar measure m is of
subexponential growth, i.e. for every compact set C ⊂ K and every k > 1 we have
m(Cn) = o(kn) as n→∞. Then for all f ∈ L1(K) and all p ∈ [1,∞],

σL1(K)(f) = σCp(Tf ) = σp(Tf ).

Proof. By M. Vogel [57, Pro. 2.6 and Rem 2.7] and M. Voit [59, Thm. 2.17] the support of
the Plancherel measure S is equal to χb(K). Then (v) of the preceding theorem is ful�lled
which implies the statement.

If the equivalent properties of Theorem 4.12 are not necessarily ful�lled, we can still
say something about the behavior of the spectra σp(Tf ) in special situations.

Proposition 4.14. Let K be a commutative hypergroup and f ∈ L1(K). If K̂ = χb(K),
or if S is countable, then

σCp(Tf ) = σp(Tf ) = σ2(Tf ) for all 1 < p <∞. (4.7)
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Proof. If K̂ = χb(K), then for all f = f ∗ ∈ L1(K), σp(Tf ) ⊆ σ1(Tf ) ⊂ R. Thus σ1(Tf )
has empty interior and connected complement; in particular, σCp(Tf ) = σp(Tf ). Now the
general result on interpolated operators [43, Cor. 3.7 b)] yields that, for 1 < p < ∞,
σCp(Tf ) = σp(Tf ) = σ2(Tf ). So rCp(Tf ) = ‖Tf‖2 for all f = f ∗ ∈ L1(K). Since L1(K)
is a ∗-subalgebra of Cp, Hulanicki's theorem yields σCp(Tf ) = σ2(Tf ) for all f ∈ L1(K).
From Proposition 4.6 we know that σ2(Tf ) ⊆ σp(Tf ). Hence, σp(Tf ) ⊆ σCp(Tf ) = σ2(Tf ) ⊆
σp(Tf ), and the statement follows. If S is countable, the statement is a direct consequence
of [43, Cor. 3.2]; since the resolvent set ρp(Tf ) is connected, σCp(Tf ) = σp(Tf ).

In view of the above proposition, note that for S to be countable it is not necessary
that K is compact; for example, S is countable for those polynomial hypergroups (which
are never compact) induced by the polynomials considered in [36, Cor. 2]. We remark
that the Haar measures of these polynomial hypergroups are of exponential growth such
that Corollary 4.13 is not applicable. We further notice that (4.7) is not true for general
commutative hypergroups: In the next chapter we give an example of f ∈ L1(K) (with
K̂ 6= χb(K)) where σq(Tf ) 6= σp(Tf ) whenever q 6= p, q, p ∈ [1, 2].

4.3 p-structure spaces of the Karlin-McGregor polynomial hyper-

groups

In this chapter, we explicitly determine the spectra σp(Tε1) and the structure spaces
Sp for the family of Karlin-McGregor polynomial hypergroups for all parameters α, β ≥ 2,
and all p ∈ [1,∞]. Note that S1 and S2 agree with the structure spaces χb(K) and S,
respectively.

Their use as an example is twofold: Firstly, for a commutative hypergroup K with
K̂ = χb(K), we have seen in Proposition 4.14 that σp(Tf ) = σ2(Tf ) for all p ∈ (1, 2]. In
contrast, Theorem 4.15 shows that σq(Tε1) ( σp(Tε1) whenever q > p, q, p ∈ [1, 2], and
(α, β) 6= (2, 2). This also shows that Proposition 4.6 is sharp in the sense that there is a
commutative hypergroup and an element f ∈ L1(K), such that σq(Tf ) ( σp(Tf ) whenever
q > p, q, p ∈ [1, 2].

Secondly, the structure spaces also ful�ll Sq ( Sp whenever q > p, q, p ∈ [1, 2], (α, β) 6=
(2, 2). This is a stark contrast to the case of abelian locally compact groups, whose
Plancherel measure always has full support and thus Sq = Sp for all q, p ∈ [1, 2].

The Karlin-McGregor polynomials (P
(α,β)
n )n∈N0 with normalization P (α,β)

n (1) = 1 are
given by the three-term-recurrence P (α,β)

0 = 1, P
(α,β)
1 (x) = 1

a0
(x− b0),

P
(α,β)
1 P (α,β)

n = anP
(α,β)
n+1 + bnP

(α,β)
n + cnP

(α,β)
n−1 , n ≥ 1,

where

a0 = 1, b0 = 0,

an =

{ α−1
α
, n is odd,

β−1
β
, n is even,

bn = 0, cn = 1− an. (4.8)
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For α = β = 2, the Karlin-McGregor polynomials are the Chebyshev polynomials of the
�rst kind.

The Karlin-McGregor polynomials (P
(α,β)
n )n∈N0 induce a (commutative and unital)

polynomial hypergroup on N0 whenever α, β ≥ 2, see [15] and [27]. From now on we
�x α, β ≥ 2. The Haar measure of the corresponding hypergroup (normalized such that
h0 = 1) is given by

hn =

{
α(α− 1)

n−1
2 (β − 1)

n−1
2 , n is odd,

β(α− 1)
n
2 (β − 1)

n−2
2 , n is even.

In the customary way for polynomial hypergroups, we identify χb(K) with the complex
subset D = {z ∈ C : |P (α,β)

n (z)| ≤ 1 for all n ∈ N0} via

f̂(z) =
∞∑
n=0

fnP
(α,β)
n (z)hn, (fn)n∈N0 ∈ l1(h).

Denote by δn the point measure at n ∈ N0. We consider the convolution operator Tε1 ,
ε1 = h−1

1 δ1 ∈ l1(h). Since ε̂1(z) = P
(α,β)
1 (z) = z, we know that ε̂1 is the identity mapping.

Thus χb(K) is identical with σC1(Tε1) and furthermore, the subsets Sp of χb(K) are
identical with σCp(Tε1) for all 1 ≤ p ≤ ∞. Under the above identi�cation, K̂ = χb(K)∩R.

The Plancherel measure π for the Karlin-McGregor polynomials is known [27] to be
supported on

S = supp π =

{
[−v,−w] ∪ [w, v], β ≥ α,

{0} ∪ [−v,−w] ∪ [w, v], β < α,
(4.9)

where

v =
(α− 1)

1
2 + (β − 1)

1
2

(αβ)
1
2

and w =
|(α− 1)

1
2 − (β − 1)

1
2 |

(αβ)
1
2

.

In particular, the support of the Plancherel measure S = S2 is identical with σC2(Tε1);
thus for p = 2 the spectrum is already known.

Writing εn = h−1
n δn and noting that anhn = cn+1hn+1 for all n ∈ N0, the convolution

operator Tε1 is given by

ε1 ∗ δ0 = ε1 ∗ ε0 = ε1 = c1δ1, (4.10)

ε1 ∗ δn = hn · ε1 ∗ εn = hn(anεn+1 + cnεn−1) = cn+1δn+1 + an−1δn−1, n ≥ 1.

In the following theorem we state the spectra σCp(Tε1) which coincide with the struc-
ture spaces Sp under the above identi�cation.

Theorem 4.15. Let 1 ≤ p ≤ ∞ and let α, β ≥ 2 be the parameters of a Karlin-McGregor
polynomial hypergroup. De�ne the positive numbers

Ap =
(α− 1)1− 1

p (β − 1)1− 1
p

αβ
,

B =
α + β − 2

αβ
,

Cp =
(α− 1)

1
p (β − 1)

1
p

αβ
,
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Figure 1: Left: For α = β = 2, the case of Chebyshev polynomials, it is well known that
S = χb(K) = [−1, 1]. Right: All structure spaces Sp consist of one connected component
if and only if β = α. Sp is depicted for p ∈ {1, 21

20
, 7

6
, 5

4
, 3

2
, 2}, α = β = 5 (p0 = 2).

and the (maybe degenerate) ellipse

Ep =

{
x+ iy ∈ C :

(x−B)2

(Cp + Ap)2
+

y2

(Cp − Ap)2
≤ 1

}
.

Then, for the structure spaces Sp and the convolution operator Tε1 : lp(h)→ lp(h), Tε1g =
ε1 ∗ g, we obtain

Sp = σCp(Tε1) = σp(Tε1) =

{
{λ ∈ C : λ2 ∈ Ep} , β ≥ α,

{0} ∪ {λ ∈ C : λ2 ∈ Ep} , β < α.

For α = β = 2, the case of Chebyshev polynomials, all ellipses Ep are degenerate, i.e.
Cp−Ap = 0. We obtain the well-known fact S = χb(K) = [−1, 1]. For all other choices of
α, β ≥ 2, the ellipses Ep are degenerate if and only if p = 2; we obtain the support of the
Plancherel measure, which has already been computed in [27].

The ellipse Ep is symmetric in α, β; the same ellipse is obtained when the roles of α
and β are interchanged. Hence the structure space Sp remains the same when the roles
of α and β are interchanged, except for the point {0}, if 0 /∈ Ep.

For p ∈ [1, 2], we obtain that Sp consists of one connected component if and only if
p ∈ [1, p0], where p0 ∈ [1, 2] is

p0 =

{
1 + ln(α−1)

ln(β−1)
, β ≥ α ≥ 2, β > 2,

1 + ln(β−1)
ln(α−1)

, 2 ≤ β ≤ α, α > 2.

If β > α, then Sp, p ∈ (p0, 2], consists of two connected components. If β < α, then Sp,
p ∈ (p0, 2], consists of three connected components. In particular, all structure spaces Sp
consist of one connected component, i.e. p0 = 2, if and only if β = α. Furthermore, only
S1 = χb(K) consists of one connected component, i.e. p0 = 1, if and only if either β = 2
or α = 2. See also the Figures 1-3 for a visualization of these di�erent cases.

In order to prove Theorem 4.15 we �rst establish three auxiliary statements.



4.3 p-structure spaces of the Karlin-McGregor polynomial hypergroups 45

Figure 2: S1 = χb(K) is the only structure space which consists of one connected compo-
nent if and only if either β = 2 or α = 2. For interchanged roles of α and β, the structure
spaces Sp remain the same except that for 2 = β < α (left: α = 5, β = 2) all Sp contain
the point 0, while for β > α = 2 (right: α = 2, β = 5) Sp contains 0 if and only if p = 1.
Sp is depicted for p ∈ {1, 21

20
, 7

6
, 5

4
, 3

2
, 2} (p0 = 1).

Figure 3: In the general case, α, β > 2 and α 6= β, the structure space Sp (p ∈ [1, 2])
consists of one connected component if and only if p ∈ [1, p0]. For interchanged roles of α
and β, the structure spaces Sp remain the same except that for β < α (left: α = 5, β = 3)
all Sp contain the point 0, while for β > α (right: α = 3, β = 5) Sp contains 0 if and only
if p ∈ [1, p0]. Sp is depicted for p ∈ {1, 20

16
, 23

16
, 3

2
, 26

16
, 2} (p0 = 3

2
).
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Lemma 4.16. Let 1 ≤ p ≤ 2 and let α, β ≥ 2 be the parameters of a Karlin-McGregor
polynomial hypergroup. If β ≥ α, the point spectrum σpoint,p(Tε1∗ε1) of the operator Tε1∗ε1 :
lp(h)→ lp(h) is empty. If β < α, then σpoint,p(Tε1∗ε1) ⊆ {0} and 0 ∈ σp(Tε1∗ε1).

Proof. Suppose that (ε1 ∗ε1−λε0)∗f = 0 for some f ∈ lp(h) ⊂ l2(h). Then its Plancherel
transform (x2− λ)f̂(x) = 0 for π-almost all x ∈ supp π. In [27] the Plancherel measure is
explicitly stated: On the intervals [−v,−w], [w, v] in (4.9), π is a density w.r.t. Lebesgue
measure. If β ≥ α, then x2 − λ 6= 0 π-a.e.; this means f̂(x) = 0 a.e. and thus f = 0.
If β < α, π({x ∈ S : x2 − λ = 0}) > 0 is only possible if λ = 0. Furthermore,
0 6= g := χ{0} ∈ L2(S) with x2g = 0. Thus ε1 ∗ ε1 ∗ ǧ = 0, where 0 6= ǧ ∈ l2(h) ⊆ lp

′
(h)

and thus 0 ∈ σp′(Tε1∗ε1) = σp(Tε1∗ε1).

The following proposition is a special case of a result of Gokhberg and Zambitskij [19]
which can be also found in [38, Pro. 2].

Proposition 4.17. Let 1 ≤ p ≤ 2 and denote by Rp, Lp the right and left shift operators
lp(N0) → lp(N0). With the constants Ap, B, Cp from Theorem 4.15, de�ne Yp = ApLp +
CpRp +BI. Then

σ(Yp) = σ(Yp) \ σpoint(Yp) = Ep,

where Ep is the ellipse from Theorem 4.15.

Lemma 4.18. Consider a `symmetric' polynomial hypergroup, i.e. bn = 0 for all n ∈ N0

in the three-term-recurrence (1.8). If λ ∈ σp(Tε1), then −λ ∈ σp(Tε1).

Proof. De�ne the isometric 'switch' isomorphisms So, Se : lp(h)→ lp(h),

Sof(k) =

{
−f(k), k odd
f(k), k even

, Sef(k) =

{
f(k), k odd
−f(k), k even

.

Tε1f(k) = akf(k + 1) + ckf(k − 1); thus one can calculate

Se(Tε1+ λI )Sof(k) =

{
−(Tε1 + λI)Sof(k), k even,

(Tε1 + λI)Sof(k), k odd,

=

{
−(akSof(k + 1) + λSof(k) + ckSof(k − 1)), k even,

akSof(k + 1) + λSof(k) + ckSof(k − 1), k odd,

= akf(k + 1)− λf(k) + ckf(k − 1) = (Tε1 − λI)f(k).

Hence,
Tε1 − λI = Se(Tε1 + λI)So,

and if Tε1 + λI is invertible on lp(h), so is Tε1 − λI.

Proof of Theorem 4.15: We show that for 1 ≤ p ≤ 2,

σp(Tε1∗ε1) =

{
Ep, β ≥ α,

{0} ∪ Ep, β < α.
(4.11)

From (4.11), the statement of the theorem then follows: If λ ∈ σp(Tε1∗ε1), then at least one
of its square roots λ1, λ2 = −λ1 lies in σp(Tε1), since Tε1∗ε1 −λI = (Tε1 −λ1) ◦ (Tε1 −λ2).
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(4.8) and Lemma 4.18 yield that both λ1, λ2 = −λ1 ∈ σp(Tε1). Furthermore, the resolvent
set ρp(Tε1) then is connected and thus σp(Tε1) = σCp(Tε1).

The convolution operator Tε1∗ε1 : lp(h) → lp(h), is easier to study than Tε1 ; since
the coe�cients an, cn alternate depending on whether n is even or odd (4.8), the values
Tε1(δn) in (4.10) (which determine the convolution operator Tε1) also are of an alternating
form. In contrast, Tε1∗ε1(δn) is of the same form for all n ≥ 3 :

Tε1∗ε1(δ0) = c1δ0 + c1c2δ2,

Tε1∗ε1(δ1) = (c1 + a1c2)δ1 + c2c3δ3,

Tε1∗ε1(δn) = an−1an−2δn−2 + (an−1cn + ancn+1)δn + cn+1cn+2δn+2, n ≥ 2.

In the next step, we �nd a representation of Tε1∗ε1 which we can compare to the
operator Yp in Proposition 4.17 whose spectrum is the desired ellipse Ep : We use the
isometric isomorphisms

Ip : lp(h)→ lp(N0), Ip(δn) = h
1
p
n δn,

Jp : lp(N0)→ lp(Z), Jp(δ2n) = δn, Jp(δ2n+1) = δ−n−1,

to de�ne
Zp : lp(Z)→ lp(Z), Zp = JpIpTε1∗ε1(Ip)

−1(Jp)
−1. (4.12)

Clearly, Zp has the same spectrum as Tε1∗ε1 . A straightforward calculation yields for
k ≥ 2 :

Zp(δ−k) =

(
h2k+1

h2k−1

) 1
p

c2kc2k+1δ−k−1 + (a2k−2c2k−1 + a2k−1c2k)δ−k

+

(
h2k−3

h2k−1

) 1
p

a2k−3a2k−2δ−k+1

= Cpδ−k−1 +Bδ−k + Apδ−k+1,

Zp(δk) =

(
h2k−2

h2k

) 1
p

a2k−2a2k−1δk−1 + (a2k−1c2k + a2kc2k+1)δk

+

(
h2k+2

h2k

) 1
p

c2k+1c2k+2δk+1

= Apδk−1 +Bδk + Cpδk+1,

Zp(δ−1) =

(
h3

h1

) 1
p

c2c3δ−2 + (c1 + a1c2)δ−1 = Cpδ−2 + (B + (αβ)−1)δ−1,

Zp(δ0) = c1δ0 + h
1
p

2 c1c2δ1 = (B − (α− 2)(αβ)−1)δ0 + Cp

(
β

β − 1

) 1
p

δ1,

Zp(δ1) =

(
1

h2

) 1
p

a1δ0 + (a1c2 + a2c3)δ1 +

(
h4

h2

) 1
p

c3c4δ2

= Ap

(
β

β − 1

)1− 1
p

δ0 +Bδ1 + Cpδ2.
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We denote by PN0 and P−N the projections of a Z-indexed sequence to its nonnegatively
indexed and negatively indexed part, respectively. Zp leaves the subspaces PN0(l

p(Z)) and
P−N(lp(Z)) of lp(Z) invariant; we access the spectrum of Zp by separately considering its
action on these two invariant subspaces. Firstly, we set

Xp := Zp|PN0 (lp(Z)) : lp(N0)→ lp(N0).

Secondly, we use the identi�cation Ĩp : lp(−N)→ lp(N0), δ−k 7→ δk−1, to de�ne

X̃p := ĨpZp|P−N(lp(Z))Ĩ
−1
p : lp(N0)→ lp(N0);

the only reason to use the identi�cation Ĩp is that we think that it is more comfortable to
use nonnegative indexing in the following. For some ρ, σ, ψ, ρ̃ ∈ R, Xp and X̃p are of the
tridiagonal form

Xp =


B + ρ Ap + σ
Cp + ψ B Ap

Cp B Ap
. . . . . . . . .

 , X̃p =

 B + ρ̃ Ap

Cp B
. . .

. . . . . .

 .

This means that both Xp and X̃p are a certain slight perturbation of Yp = ApLp+CpRp+
BI from Proposition 4.17, i.e., for all g ∈ lp(N0),

Xpg = Ypg + (ρg0 + σg1)δ0 + ψg0δ1,

X̃pg = Ypg + ρ̃g0δ0. (4.13)

Having found a connection between the operators Tε1∗ε1 and Yp, we next examine how
their spectra are related. By (4.12), σ(Zp) = σp(Tε1∗ε1), and σpoint(Zp) = σpoint,p(Tε1∗ε1).
Since Zp is the direct sum of Xp and X̃p, σ(Zp) = σ(Xp) ∪ σ(X̃p) and σpoint(Zp) =
σpoint(Xp)∪σpoint(X̃p). By (4.11), to complete the proof we have to show that for 1 ≤ p ≤ 2,

σ(Xp) ∪ σ(X̃p) =

{
Ep, β ≥ α,

{0} ∪ Ep, β < α.
(4.14)

In order to prove (4.14), we will show that, for 1 ≤ p ≤ 2,

σ(Xp) ⊆ σ(Yp) ∪ σpoint(Zp), σ(X̃p) ⊆ σ(Yp) ∪ σpoint(Zp), (4.15)

σ(Yp) ⊆ σ(Xp) ∪ σpoint(Yp), σ(Yp) ⊆ σ(X̃p) ∪ σpoint(Yp). (4.16)

If we know (4.15) and (4.16), then Proposition 4.17 yields

Ep = σ(Yp) \ σpoint(Yp) ⊆ σ(Xp) ∪ σ(X̃p) ⊆ σ(Yp) ∪ σpoint(Zp) = Ep ∪ σpoint(Zp).

Lemma 4.16 then tells us that, in case β ≥ α,

Ep ⊆ σ(Xp) ∪ σ(X̃p) ⊆ Ep.

Furthermore, in case β < α,

Ep ∪ {0} ⊆ σ(Xp) ∪ σ(X̃p) ⊆ Ep ∪ {0}.
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Hence (4.14) follows, which completes the proof.
In order to show (4.15) for Xp, suppose Yp − λI is invertible for some λ /∈ σpoint(Zp).

We have to show that Xp − λI is invertible. First we note that Xp − λI is one-to-one:
If it were not one-to-one, then Zp − λI would not be one-to-one either which contradicts
λ /∈ σpoint(Zp). We have to prove that Xp − λI is onto. Let h̃ ∈ lp(N0) and de�ne

f := (Yp − λI)−1h̃, g := (Yp − λI)−1δ0, g̃ := (Yp − λI)−1δ1.

From (4.13) we obtain for s, t ∈ C that

(Xp − λI)(f + sg + tg̃)

= (Yp − λI)(f + sg + tg̃) + (ρ(f0 + sg0 + tg̃0) + σ(f1 + sg1 + tg̃1))δ0

+ψ(f0 + sg0 + tg̃0)δ1

= h̃+ [(ρf0 + σf1) + s(1 + ρg0 + σg1) + t(ρg̃0 + σg̃1)]δ0

+[ψf0 + s · ψg0 + t(1 + ψg̃0)]δ1. (4.17)

The matrix

Q =

(
(1 + ρg0 + σg1) (ρg̃0 + σg̃1)

ψg0 (1 + ψg̃0)

)
does not depend on h̃ and f. If Q is invertible, there are (s, t) ∈ C2 such that Q(s, t)T =
(−(ρf0 + σf1),−ψf0)T . By (4.17) this means that (Xp − λI)(f + sg + tg̃) = h̃ and thus
Xp − λI is onto. Towards a contradiction we suppose that Q is not invertible and choose
0 6= (s0, t0) ∈ C2 such that Q(s0, t0)T = 0. For h̃ = 0 (and thus f = 0) (4.17) yields
(Xp−λI)(s0g+t0g̃) = 0.As shown above,Xp−λI is one-to-one, which implies s0g+t0g̃ = 0.
But Yp − λI is one-to-one and (Yp − λI)(s0g + t0g̃) = s0δ0 + t0δ1 6= 0, which implies
s0g + t0g̃ 6= 0, a contradiction.

The remaining inclusion of (4.15) as well as (4.16) are shown in an analogous but
easier way.
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5 Regularity of L1(K)

Regularity of a commutative Banach algebra was �rst introduced (via the notion of the
hull-kernel topology on the maximal ideal space) during the 1940ies by Gelfand, Shilov
and Jacobson, see [25, Ch. 4.9].

We recall De�nition 3.4.

De�nition. A commutative Banach algebra A is called regular, if for every closed subset
V of ∆(A) and α ∈ ∆(A)\V there is a ∈ A with Gelfand transform â|V = 0 and â(α) 6= 0.

For locally compact abelian groups G it is well-known that L1(G) is regular, see [25,
Thm. 4.4.14]. All proofs known to the author use the Plancherel theorem and, most no-
tably, the convolution on Ĝ. Since hypergroups are in general not equipped with a natural
dual convolution structure (induced by pointwise multiplication of characters), there is
no obvious approach to the problem for hypergroups. For so-called strong commutative
hypergroups K (those hypergroups which carry a dual convolution structure) regularity
of L1(K) is shown in [9, Thm. 2.6] using the familiar proof for locally compact abelian
groups.

We recall that the structure space of L1(K) can be identi�ed with the character space
χb(K), see (1.3). The following observation shows that in contrast to the group case not
all L1-algebras on hypergroups are regular; for an example of a hypergroup with supp
π ( K̂ ( χb(K) see for example Chapter 4.3.

Lemma 5.1. Let K be a commutative hypergroup. If L1(K) is regular, then supp π =
K̂ = χb(K).

Proof. Suppose that α ∈ χb(K) \ supp π. Since L1(K) is regular and supp π is closed
in χb(K), there is f ∈ L1(K) such that f̂ |supp π = 0 and f̂(α) 6= 0. This is impossible
because f̂ |supp π = 0 gives f̂ = 0 ∈ L1(K̂), and thus by Theorem 1.4 that f = (f̂ )̌ = 0. In
particular, f̂(α) = 0 for all α ∈ χb(K).

To the author's knowledge, until now there exist two positive results for hypergroups:
In [17, Thm. 2.1], Gallardo and Gebuhrer prove regularity of L1(K) for commutative hy-
pergroupsK whose Haar measure is of polynomial growth (they also supposed K̂ = χb(K)
which nowadays is known to be automatically ful�lled by [57, Pro. 2.6]). Their proof uses
Dixmier's functional calculus based on [11, Lem. 7]. In [58, Cor. 2.8] Vogel proves com-
plete regularity of L1(K) for central (not necessarily commutative) hypergroups K. He
�rst shows that K is always of polynomial growth which enables him to use Dixmier's
functional calculus, too.

In this chapter we extend this functional calculus of Dixmier (Theorem 5.3) which leads
to a slight improvement of Gallardo and Gebuhrer's result beyond polynomial growth
(Lemma 5.4, Theorem 5.6). We begin with some terminology and facts about Beurling
algebras on R.

As before we denote by L1(K)e the algebra L1(K) with adjoint identity δe (if L1(K)
is not unital, or equivalently, K is not discrete). ‖f‖ and r(f) denote the norm and the
spectral radius of f ∈ L1(K)e, respectively. For every f ∈ L1(K)e and t ≥ 0 we de�ne
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etf ∈ L1(K)e via the holomorphic functional calculus; this clearly yields the same as the
absolutely convergent sum

etf =
∞∑
k=0

tkf ∗k

k!
, where f ∗0 = δe.

Lemma 5.2. Let K be a commutative hypergroup and let f ∈ L1(K) have real spectrum.
De�ne the weight function ω(t) = ‖e−itf‖, t ∈ R. Then L1(R, ω) is a Beurling algebra.
Its structure space can be identi�ed with R in a way such that the Gelfand transform reads

ϕ̂(s) =

∫
R
ϕ(t)e−istdt, ϕ ∈ L1(R, ω), s ∈ R. (5.1)

Proof. Clearly ω(t + s) = ‖e−i(t+s)f‖ = ‖e−itf ∗ e−isf‖ ≤ ‖e−itf‖ · ‖e−isf‖ = ω(t)ω(s) and
further ω is continuous and thus Borel measurable. By [25, Chapter 1.3] L1(R, ω) is a
Beurling algebra. Since f ∈ L1(K) has real spectrum, we obtain in addition that

R+ := inf
t>0
{ω(t)

1
t } = inf

t>0
{‖e−itf‖

1
t } = r(e−if ) = 1 and

R− := sup
t>0
{ω(−t)−

1
t } = sup

t>0
{‖eitf‖−

1
t } =

1

inft>0{‖eitf‖
1
t }

=
1

r(eif )
= 1.

Since R+ = R− = 1 an application of [25, Lem. 2.8.6 and Pro. 2.8.7] yields that the
structure space of L1(R, ω) can be identi�ed with R in the way of (5.1).

Theorem 5.3. Let K be a commutative hypergroup and f ∈ L1(K) have real spectrum.
Let furthermore ϕ ∈ L1(R, ω) be a complex-valued Beurling function with respect to the
weight function ω(t) = ‖e−itf‖, i.e.∫

R
|ϕ(t)|‖e−itf‖dt <∞.

Then the Bochner integral

ϕ̂(f) :=

∫
R
ϕ(t)e−itfdt

exists and thus de�nes an element ϕ̂(f) ∈ L1(K)e. If ϕ̂(0) = 0 then ϕ̂(f) ∈ L1(K).
Furthermore we have

〈ϕ̂(f), α〉 = ϕ̂(〈f, α〉) for all α ∈ χb(K).

Proof. The map R → L1(K)e, t 7→ e−itf , is continuous and thus separably valued. This
implies that R → L1(K)e, t 7→ e−itfϕ(t), is also separably valued and therefore strongly
measurable. Since it is absolutely integrable, the Bochner integral exists (see for example
[21, Thm. 7.5.11]). Now suppose that ϕ̂(0) = 0. Then

∫
R ϕ(t)dt = 0 and also

∫
R δeϕ(t)dt =

δe ·
∫
R ϕ(t)dt = 0, where δe ∈ L1(K)e is the identity. Then

ϕ̂(f) =

∫
R
e−itfϕ(t)dt =

∫
R
(e−itf − δe)ϕ(t)dt.
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Since (e−its − 1) = 0 for s = 0 we know from the holomorphic functional calculus that
e−itf − δe ∈ L1(K) for all t ∈ R. Thus the integral converges to ϕ̂(f) in L1(K) which is
closed in L1(K)e. Finally, for α ∈ χb(K) we obtain

〈ϕ̂(f), α〉 =

〈∫
R
e−itfϕ(t)dt, α

〉
=

∫
R

〈
e−itf , α

〉
ϕ(t)dt

=

∫
R
e−it〈f,α〉ϕ(t)dt = ϕ̂(〈f, α〉),

where the equalities are in turn due to a property of the Bochner integral (see for example
[21, Cor. after Thm. 7.5.11]), the holomorphic functional calculus and the Gelfand
transform according to (5.1).

The above functional calculus is essentially due to Dixmier [11, Lem. 7] in the case
of certain Lie groups. However, he does not show it for all ϕ ∈ L1(R, ω), but only for ψ̂
with derivatives of 'high enough' order; his assumptions yield that ω(t) = ‖e−itf‖ is of
polynomial growth and thus ψ ∈ L1(R, ω).

Nevertheless, the idea of embedding Beurling algebras into Banach algebras in the
above way is not new; see for example [56, Lem. 2.4.3], where Beurling algebras are
embedded into the algebra of bounded linear operators on a Banach space in the context
of C0-groups of linear operators.

Lemma 5.4. Let K be a commutative hypergroup, V a closed subset of ∆(L1(K)) and
α ∈ ∆(L1(K)) \ V. Suppose that there is f ∈ L1(K) with real spectrum, f̂(V ) ⊂ [−ε, ε],
f̂(α) > ε for some ε > 0, such that

∑
n∈N0

ln ‖einf‖
1 + n2

<∞. (5.2)

Then there is g ∈ L1(K) with Gelfand transform ĝ|V = 0 and ĝ(α) = 1.

Proof. If we can show that ∫
R

ln ‖e−itf‖
1 + t2

dt <∞, (5.3)

then the statement follows; by [25, Lem. 4.7.8] the Beurling algebra L1(R, ω) with weight
function ω(t) = ‖eitf‖ is then regular, since ω is non-quasianalytic. In particular there is
a ϕ ∈ L1(R, ω) such that ϕ̂ = 0 on [−ε, ε] and ϕ̂(f̂(α)) = 1. Thus g := ϕ̂(f) ∈ L1(K)

of Theorem 5.3 ful�lls the wanted properties ̂̂ϕ(f)(V ) = ϕ̂(f̂(V )) = 0 and 〈ϕ̂(f), α〉 =
ϕ̂(〈f, α〉) = 1 6= 0.
In order to show (5.3) we �rst note that f ∈ L1(K) has real spectrum. Thus, for all
β ∈ K̂ we have

ê−itf (β) = e−itf̂(β) = eitf̂(β) = êitf (β) = (̂eitf )∗(β).
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This means e−itf = (eitf )∗ and thus ‖e−itf‖ = ‖eitf‖. Secondly we note that for t ≥ 0 we
can estimate ‖eitf‖ ≤ ‖eibtcf‖ · ‖ei(t−btc)f‖ ≤ ‖eibtcf‖ · e‖f‖. We obtain∫

R

ln ‖e−itf‖
1 + t2

dt = 2 ·
∫ ∞

0

ln ‖eitf‖
1 + t2

dt ≤ 2e‖f‖ ·
∫ ∞

0

ln ‖eibtcf‖
1 + btc2

dt

= 2e‖f‖ ·
∑
N0

ln ‖einf‖
1 + n2

<∞.

This completes the proof.

For an estimation of ‖einf‖ in (5.2) we note that the theory of strongly continuous one-
parameter-semigroups of operators makes heavy use of the connection between the growth
of the generator's resolvents and the growth of the semigroup. In particular, polynomial
growth of ‖einf‖, n → ±∞, is characterized by a certain growth of ‖(λ − f)−1‖ when λ
approaches the spectrum of f [3].

For the following well-known notions see also [7, Def. 2.5.11].

De�nition 5.5. A commutative hypergroup K is said to be of

a) subexponential growth if for every compact C ⊂ K and every k > 1 we havem(Cn) =
o(kn) as n→∞,

b) polynomial growth if for every compact C ⊂ K there exists k := k(C) ≥ 0 such that
m(Cn) = O(nk) as n→∞.

The assumption in the following theorem is more general than polynomial growth, but
not as general as subexponential growth.

Theorem 5.6. Let K be a commutative hypergroup whose Haar measure ful�lls the fol-
lowing: for every compact set C ⊂ K there are δ > 0, k > 1 and some 0 ≤ t < 1

2
such

that m(Cn) ≤ δ · k(nt) for all n ∈ N. Then L1(K) is regular.

Proof. Let V be a closed subset of ∆(L1(K)) and α ∈ ∆(L1(K)) \ V. Since the Haar
measure is of subexponential growth we know by [7, Thm. 2.5.12 and Cor. 2.5.13] that

supp π = ∆(L1(K)). Because L̂1(K)|K̂ is dense in C0(K̂) [7, Thm. 2.2.4 (ix)], we can
choose f ∈ CC(K) with real spectrum f̂(∆(L1(K))) ⊂ R, f̂(V ) ⊂ [−ε, ε], f̂(α) > ε and
‖f‖1 ≤ 1. If we can show that ∑

N0

ln ‖einf‖
1 + n2

<∞,

then the needed g ∈ L1(K) with ĝ|V = 0 and ĝ(α) 6= 0 would exist by Lemma 5.4. We �rst
observe that einf − δe =

∑∞
k=1

iknkf∗k

k!
∈ L1(K). Since f ∈ CC(K), f ∗k also has compact

support in (supp f)k. Thus,∫
K\(supp f)n2−1

|einf − δe|dm =

∫
K\(supp f)n2−1

∣∣∣∣∣
∞∑

k=n2

iknkf ∗k

k!

∣∣∣∣∣ dm ≤
∞∑

k=n2

nk‖f‖k

k!
≤

∞∑
k=n2

nk

k!

≤ nn
2
en

(n2)!
= O(nn

2

en(n2)−n
2

en
2

n−1) = O(n−n
2−1en

2+n)→ 0
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for n → ∞. Secondly we note that |eix − 1| ≤ |x|, x ∈ R, and thus |einf̂(α) − 1| ≤
n|f̂(α)|, α ∈ ∆(L1(K)). From the Plancherel isomorphism we know that einf−δe ∈ L2(K)
and ‖einf−δe‖2 ≤ n‖f‖2. The assumed growth of the Haar measure enables us to estimate∫

(supp f)n2−1

|einf − δe|dm ≤ ‖einf − δe‖2 ·m((supp f)n
2−1)

1
2 ≤ n‖f‖2 · (δ · k(n2t))

1
2 .

For large enough n ∈ N we obtain that

‖einf‖ ≤ ‖einf − δe‖1 + 1 ≤ ε̃+ n‖f‖2 · (δ · k(n2t))
1
2 + 1 ≤ 2 · n‖f‖2δ

1
2 · (k

1
2 )(n2t).

This shows (5.2) since for large enough n ∈ N we now know that

ln ‖einf‖
1 + n2

≤ ln(2‖f‖2δ
1
2 )

1 + n2
+

lnn

1 + n2
+ ln(k

1
2 ) · n2t

1 + n2

and t < 1
2
. The proof is complete.

The �rst part of our proof is modeled on the one of Gallardo and Gebuhrer [17, Thm.

2.1], namely the use of the fact that L̂1(K)|K̂ is dense in C0(K̂). In the second part they
proceed by using Dixmier's functional calculus while we used Lemma 5.4 (which is due
to our Beurling point of view). The method used to estimate ‖einf‖ in the second part of
the proof is basically the original one used by Dixmier for certain Lie groups in [11, Lem.
6].

A special case of the above theorem or the one in [17, Thm. 2.1] occurs for commutative
and compact hypergroups; herem(Cn) is bounded when the compact subsets C and n ∈ N
vary. For compact hypergroups the structure space is discrete [31]. In this case Shilov's
Idempotent Theorem [25, Thm. 3.5.1] then immediately yields regularity of L1(K).
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