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Zusammenfassung (German)

Das Hauptziel dieser Arbeit ist es, die Transporteigenschaften von Terahertz- (THz) und Mitt-Infrarot-

Quantenkaskadenlasern (QCLs) theoretisch zu untersuchen, sowie selbstkonsistent neue Effekte für

eine präzisere Beschreibung experimenteller QCLs zu modellieren und zu implementieren. Seit den

1980er Jahren werden Ensemble Monte-Carlo (EMC) Methoden zur Simulation verschiedener Halbleiter-

Nanostrukturen eingesetzt, von Festkörpern über Potentialtöpfe zu Quantendrähten hin reichend. Ins-

besondere bei THz-QCLs können die relevanten physikalischen Effekte von quantenmechanischem Tun-

neln und Kohärenz bis hin zur Streuung aufgrund von Unreinheiten oder Gitterschwingungen reichen.

All diese Effekte müssen untersucht und gemäß ihrer Relevanz für eine korrekte Modellierung in EMC

berücksichtigt werden. Streuung kann in diesen Bauelementen von verschiedenen Mechanismen stam-

men, die einen Elektronenfluss von einem Anfangs- in einen Endzustand bewirken. Deswegen diskutieren

wir die wichtigsten Streueffekte, angefangen von ihrer physikalischen Beschreibung, d.h. dem Störungs-

Hamiltonian, bis hin zur Streurate. Der Monte-Carlo-Algorithmus wird auch kurz beschrieben, sodass

die numerische Implementierung neuer Effekte später auf einem soliden Fundament vorgenommen werden

kann. Obwohl EMC schon vor Beginn dieser Arbeit für Trägertransport-Simulationen sowohl in Nanos-

trukturen als auch in QCLs eingesetzt wurde, gibt es immer noch viel in Bezug auf Näherungen und die

Miteinbeziehung vollständig quantenmechanischer Effekte zu tun. Unser Ansatz ist dreidimensional, d.h.,

wir implementieren auch selbstkonsistent den Impuls der Elektronen. Der theoretische Rahmen unserer

Monte-Carlo-Methode ist die semiklassische Boltzmanngleichung, die statistisch gelöst wird, wobei die

Streuraten in der Boltzmanngleichung durch Fermis goldene Regel einfließen.

Innerhalb dieser Arbeit wurde der EMC-Code um Legierungsstreuung als zusätzlichen Streuprozess

erweitert, zudem wurde die energetische Verbreiterung der Quantenzustände implementiert. Weiterhin

wurde eine Anpassung an das InGaAs-Materialsystem vorgenommen.

Um unsere Näherungen und unseren Ansatz für THz QCLs zu verifizieren, vergleichen wir zuerst

EMC mit einem voll quantenmechanischen Simulationstool, welches unabhängig von Tillman Kubis aus

der Gruppe um Professor Vogl entwickelt wurde. Wir sehen, dass EMC die voll quantenmechanischen

Resultate im technisch relevanten, also im Lasing-Regime, gut reproduzieren kann. Zusätzlich iden-

tifizieren wir Grenzen von EMC, und zwar bei niedrigen Spannungen sowie für Kaskadenstrukturen,

welche schwach gebundene Zustände enthalten. THz-QCLs operieren weder bei sehr niedrigen Spannun-
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Zusammenfassung (German) 8

gen, wo die Quantenzustände energetisch angeglichen sind, noch werden schwach gebundene Zustände

zum Lasern benötigt. Somit können wir bestätigen, dass EMC eine zuverlässige Methode für ihre Model-

lierung darstellt, und wir sparen dadurch große Mengen an Simulationszeit für ihre Untersuchung. Dies

wird beim systematischen Design und der Simulation von 24 THz QCLs zur Bestimmung ihrer temper-

aturabhängigen Leistung in der Region von 1-5 THz deutlich. Es stellt sich heraus, dass für QCLs mit

vertikalem Übergang die besten Ergebnisse bei ca. 3 THz erzielt werden. Die Gründe dafür sind zum

einen die durch die parasitische Injektion limitierte Leistung bei niedrigeren Frequenzen, zum anderen

die durch die Phononenemission limitierte Leistung bei hohen Frequenzen. Zusätzlich sehen wir, dass di-

agonale Lasingübergänge die temperaturabhängige Leistung nur oberhalb von 3.5 THz verbessern. Alle

Ergebnisse bezüglich der temperaturabhängigen Leistung von THz QCLs erklären ihr experimentelles

Verhalten sehr gut und können einen Einblick gewähren was ihre limitierenden Faktoren sind.

EMC wurde auch für die Simulation von mitt-infraroten QCLs erweitert, mit experimentellem Feed-

back von Simeon Katz (Gruppe um Prof. Amann). Die Relevanz von Streumechanismen wurde für einen

QCL, der bei 8μm emittiert, untersucht. Wir konnten die Wichtigkeit der Streuung an Phononen, Gren-

zschichtrauheit und Unreinheiten nachweisen, wie in der Literatur erwähnt. Die Grenzschichtrauheit

wurde für diese Bauelemente aus Lumineszenzmessungen berechnet, und die extrahierten Parameter

wurden dann für die EMC Simulation verwendet. Zudem haben wir die zunehmende Bedeutung des

Einflusses von Photonenstreuung für QCLs mit hohem Wirkungsgrad gezeigt. Diese weisen eine erhöhte

„Wall-plug“-Effizienz auf, emittieren also in einigen Fällen mehr Licht als Wärme. Wir haben herausge-

funden, dass die Emission und Absorption von Photonen nicht nur Sättigung des optischen Gewinns verur-

sacht, sondern auch direkt einen Strom durch Photon-Elektron-Streuprozesse verursacht. Dieser Kanal

ist dominant bei hohen „Wall-plug“-Effizienzen, deswegen sollte Elektronen-Photonen-Streuung für das

Sättigungsverhalten der Gewinn-Spektren und die Berechnung der Ausgangsleistung, aber auch für die

korrekten Strom-Spannungskurven berücksichtigt werden. Wir identifizieren zudem einen hochenergetis-

chen Ausläufer der Verteilungsfunktionen in mitt-infraroten QCLs, der das Resultat nicht-strahlender

Übergänge vom oberen zum unteren Laserniveau ist. Dies kann eine Quelle von Leckströmen in höhere

Leitungsband-Minima sein. Diese Arbeit möchte die vielseitige Einsetzbarkeit von EMC für die Model-

lierung und Simulation von QCLs aufzeigen, was durch den Vergleich mit anderen Simulationstools sowie

die Modellierung von experimentellen THz- und Mitt-infrarot-Strukturen erreicht wird.



Abstract (English)

The main objective of this thesis is to theoretically investigate the transport properties of terahertz (THz)

and mid-infrared quantum cascade lasers (QCLs) as well as to self-consistently model and implement new

effects for a more accurate description of experimental QCLs. Since the 1980s, ensemble Monte-Carlo

(EMC) methods have been used for the simulation of various semiconductor nanostructures, ranging

from bulk materials to quantum wells and wires. Especially for THz QCLs the relevant effects can

range from quantum mechanical tunneling and coherence to scattering due to device imperfections or

lattice vibrations. All of these effects need to be investigated and included based on their relevance in

EMC for the correct modeling of the structures. Scattering in these devices can happen due to different

mechanisms which produce an electron flow from an initial state to a final state. Therefore we review the

most relevant scattering types starting from their physical description, i.e., perturbation Hamiltonian,

and arrive at the actual rate. The Monte-Carlo algorithm is also briefly discussed so that the numerical

implementation of new effects can be later faithfully implemented. Although EMC has been used for

carrier transport simulations in nanodevices as well as QCLs before the beginning of this work, there is

still much to be done in terms of approximations and inclusion of fully-quantum mechanical effects. Our

approach is three dimensional, i.e., we also self-consistently implement the momentum of the electrons.

The theoretical framework of our Monte-Carlo method is the semiclassical Boltzmann equation, which is

statistically solved and the scattering rates enter the Boltzmann equation by Fermi’s golden rule.

Within this work, the EMC approach has been extended by including alloy scattering among the

scattering processes, additionally energetic broadening of the quantum states has been implemented.

Furthermore, an adaptation to the InGaAs material system has been performed.

For the validation of our approximations and approach on THz QCLs, we first compare EMC to a fully

quantum mechanical simulation tool developed independently by Tillmann Kubis from the Vogl group.

We find that EMC can well reproduce fully quantum mechanical results in the technically relevant, i.e.,

lasing regime. Furthermore we identify limits of EMC, namely in the low bias range of the devices as

well as for cascade structures that contain weakly bound states. THz QCLs are neither operating at very

low biases where the states are aligned, nor use weakly bound states for lasing. Thus we can affirm that

EMC is a valuable method for their modeling and we thereby save large amounts of simulation time for

their investigation. This will be shown since we systematically design and simulate 24 THz QCLs for

9
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the investigation of their temperature performance in the 1-5 THz range. It turns out that for vertical

transition QCLs the best performing devices are around 3THz. This is due to parasitic injection limited

performance on the lower frequency side as well as phonon emission limited performance on the high

frequency side. Furthermore we find that diagonal lasing transitions help the temperature performance

of QCLs only above about 3.5 THz. All the temperature results on THz QCLs explain their experimental

behavior very well and can give an insight into their limiting factors.

EMC was also extended for the simulation of mid-infrared QCLs, with the experimental feedback

of Simeon Katz from the Amann group. The relevance of scattering mechanisms was investigated for a

QCL emitting at 8μm. We have confirmed the importance of phonon, interface roughness and impurity

scattering as widely recognized by literature. The interface roughness was calculated for these devices

from luminescence measurements and we used the roughness parameters in EMC correspondingly. Fur-

thermore, we have shown the increasing importance of the influence of photon scattering processes for

high-efficiency QCLs. They have increased wall-plug efficiencies, i.e. emitting more light than heat in

some cases. We have found that stimulated emission and absorption of photons does not only induce

gain saturation in these devices, but also directly induces a current due to the photon-electron scattering

process. This current channel is dominant at high wall-plug efficiencies, thus electron-photon scattering

should be included for the saturation of the gain spectra, calculation of output power, however also for

the correct current-voltage curves. We also identify a high energy tail of the distribution function in

mid-infrared QCLs which is the result of non radiative transitions from the upper to the lower laser level.

This can be a source of leakage channels into higher valleys. The results of this thesis aim to show the

versatile nature of EMC for QCL modeling and simulation, by comparison to other simulation tools as

well as the simulation of various experimental structures.



Chapter 1

Introduction

Lasers in everyday life are established optoelectronic devices. Applications include communication de-

vices, optical recording, laser printing and supermarket scanners as well as fundamental science, spec-

troscopy and medicine. III-V semiconductor lasers, lead-salt laser diodes (PbS, PbTe, PbSe), vertical

cavity surface emitting lasers (VCSELs), difference-frequency generation of coherent light with a nonlin-

ear crystal (GaAs, GaSe, GaP, ZnTe, CdTe), free electron lasers and quantum cascade lasers (QCLs) are

only some of the many approaches possible to produce coherent light.

Up to the invention of the quantum cascade laser in Bell Labs [1], semiconductor lasers in the mid-

infrared were mainly built from diodes that emit light by the recombination of an electron-hole pair in

a quantum well. For the design of such devices, band gap engineering is used with compound semicon-

ductors, to assess different wavelengths. In spite of these techniques, the efficiency of the mid-infrared

devices is still limited due to material and growth constraints. For the generation of mid-infrared light,

the bandgap of the materials simply becomes highly temperature dependent and defects (such as traps

in the bandgap) and processing also provide difficulties.

Quantum cascade lasers (QCLs) offer an advantage in the variety of wavelengths that can be designed

by using the same material system. A quantum cascade laser is a periodic superlattice, where in each

period ideally one photon is emitted by a lasing transition between quantized states in the conduction

band, and the electron is injected into the next period. They are unipolar devices, i.e., they use only the

conduction band for the generation of light through a cascaded approach. Instead of band-gap engineering,

the design of conduction band states is performed by choice of the device layer thicknesses. This approach

circumvents the so called “bandgap-slavery” [2] and offers the advantage of designing efficient coherent

emitters from 4 to 12μm in the mid-infrared (MIR) and from 60 to 200μm in the far-infrared or terahertz

regime. Since their first demonstration in 1994 [1], MIR QCLs have shown rapid development. The first

room-temperature QCL was demonstrated in 1996 [3], the first continuous wave operation at room-

temperature was reported in 2002 [4], the continuous wave output power exceeded 1.6 W in 2008 [5], and

in 2010, QCLs emitting more light than heat were demonstrated [6, 7]. Today’s mid-infrared QCLs are

11
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efficient devices and suitable for a wide variety of applications, ranging from spectroscopy to free-space

communications and the detection of small molecule gases (CO, CO2, CH4). Mid-infrared QCLs already

operate at room temperature. The first THz QCL was demonstrated in 2002 [8], however, QCLs in the

THz regime (60μm-200μm) are still limited to cryogenic temperatures. These structures can offer 100

miliwatt-level output powers at cryogenic temperatures. In the THz region the only practical coherent

sources are THz QCLs and lasers that use frequency difference generation as well as free-electron lasers

[9]. No major alternative for lasing is offered making the effort of THz QCL design and investigation

worthwile. The thesis presents modeling of THz and MIR QCLs with the ensemble Monte-Carlo method,

focusing on the theory needed for investigating and clarifying the microscopic processes, and presenting

an analysis of various experimental designs.

For the theoretical modeling and analysis of quantum cascade lasers, various tools with different

degrees of complexity have been developed, all of them having advantages and drawbacks. We mention

these below and the interested reader can refer to our bibliography for further details and a deeper

understanding of the methods. One of the simplest approaches for laser analysis are rate-equation based

models [10]. They are a semiclassical approach and do not take into account the in-plane kinetic energy

of carriers, i.e., they are one-dimensional models. The advantage of a rate-equation QCL solver lies in

its numerical simplicity, since it can offer results within a few minutes, making it suitable for systematic

QCL design and qualitative analysis. A rate-equation based model is also very useful for QCLs that

have many energetic states in a miniband like, such as bound to continuum (BTC) QCLs. An ensemble

Monte-Carlo (EMC) approach would need large simulation times for these devices, while a rate-equation

based calculation can give fast results. EMC methods, for QCLs with a moderate number of states, have

their advantage in keeping the numerical effort manageable and allowing for the exact and self-consistent

inclusion of semiclassical scattering mechanisms. For example carrier-carrier interactions [11, 12, 13] can

be included as a two-body process while a full kinetic energy distribution of the electrons is considered.

The typical run-time for such a simulation is about one hour on an Intel Xeon E5420 server core, however

it can go up to 1-2 days for structures that have many energetic states. Theoretical limitations of EMC

are the neglected quantum mechanical effects like quantum correlation of electrons [14, 15] and the

approximation of an infinitely small linewidth of the electronic states (by Fermi’s golden rule), as well

as scattering through intermediate states, i.e., non-diagonal scattering. The most general description of

electron transport is a fully quantum mechanical simulation tool, based on the non-equilibrium Green’s

functions (NEGF) method, which includes all the effects lacking in EMC. The drawback of NEGF lies

in its elevated numerical complexity and the neglect of carrier-carrier interactions as a two body process,

which cannot be included due to its numerical complexity. For THz QCLs two main NEGF approaches

were developed over the years. The first approach neglects the in-plane kinetic energy dependence of

carriers and assumes a typical kinetic energy [16, 17, 18] and periodic boundary conditions. The second

NEGF approach uses a full spatial implementation of the QCL structure and energetic states, however
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it can only simulate limited QCL period amounts (typically 1-2) due to its numerical complexity. This

approach can use only a) quasi-periodic boundary conditions by assuming unbiased QCL periods as leads

[19, 20], or b) open boundary conditions. We have also performed simulations with the second NEGF

approach, and the typical run-time until convergence ranges from 1-2 days to several weeks on the LRZ

Linux cluster even for relatively simple QCL structures. Furthermore, density matrix methods have been

developed [21], which use a kinetic energy balance model to find a typical kinetic energy, for being able

to neglect the in-plane distribution. Having said the above, one can conceive, that there is no perfect

tool or approach for the simulation of QCLs. All methods have advantages and drawbacks and one has

to find a compromise between accuracy and numerics, which together with the uncertainty in material

and growth parameters makes the modeling of QCLs a challenging task.

The scopes of this thesis are

1. implementing different mechanisms for the electronic transport and closely comparing to experiment

and to other theoretical methods like-NEGF [14],

2. comparative analysis of THz QCLs to asses the optimum parameters for temperature performance

and understand the limitations [22],

3. adapting our method for the InGaAs material system and for mid-infrared QCLs by deriving the

alloy scattering rate, non-parabolicity and using the recently included carrier-photon interaction in EMC

[23].

The main results in this thesis are mentioned below.

• The theory needed for the semiclassical EMC simulation of quantum cascade lasers is reviewed and

derivations are shown for the scattering rates, non-parabolicity and material gain.

• Based on comparisons between EMC and NEGF methods for THz QCLs and Stark ladders, we

find good agreement of the two theories in the technically relevant regimes. This validates our

semiclassical EMC approach for THz cascade devices. For the very low bias region and for the case

of tunneling through continuum states, EMC can underestimate currents since coherent tunneling

and level-broadening are neglected. However, these effects are not relevant in the lasing regime of

QCLs.

• The relation between frequency and maximum operating temperature of vertical lasing-transition

THz QCLs is demonstrated. We identify parasitic injection into the lower laser level and thermally

excited scattering from the upper to the lower laser level as the main effects limiting the temperature

performance of the devices. Furthermore, we analyze why structures that lase at about 3 THz are

the best-performing ones.

• We investigate and understand the role of diagonal lasing transitions for state-of the art THz

QCLs in the context of temperature performance. It is found that above about 3.5 THz diagonal
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transitions lead to an improvement, while below vertical transitions are the optimum for higher

operating temperatures.

• The influence of different scattering mechanisms on the transport and optical properties of mid-

infrared InGaAs-based QCLs is investigated. It is found that the dominant scattering mechanism

is electron LO-phonon scattering in these devices. Furthermore, interface roughness and alloy

scattering can moderately influence device currents, so they should be included in the transport

calculations for these devices.

• We discuss the influence of the electron-photon interaction on the current and output power of

highly efficient QCLs. The stimulated photon processes are found to contribute significantly to the

device currents, showing that electron-photon scattering interactions are non-negligible in high wall-

plug efficiency structures. Furthermore, a high-energy tail of the distribution function is identified

at about the lasing transition energy, which can be a source of leakage to other valleys.

• Quantum corrections in the Monte-Carlo method are derived by including the broadening of the

quantized states. We replace Fermi’s golden rule by a generalization derived from the density

matrix formalism and a possible implementation into EMC is discussed. We find a good modeling

of currents in the coherent regime, i.e., at low biases. The numerical complexity of our EMC

approach remains the same, even though this quantum correction is now included.

The thesis is organized as follows:

In Chapter 2, we present the basic theoretical framework for the semiclassical EMC method. The

Boltzmann equation is presented, the Schrödinger-Poisson solver is discussed, the non-parabolicity is

considered for our QCL systems, for both the growth and in-plane directions. Fermi’s golden rule is

derived and understood by the use of perturbation theory. All the scattering mechanisms like scattering

with phonons, electrons, impurities, roughness and alloy disorder are derived from scratch as well as the

spectral gain. Furthermore, the relevant steps in the Monte-Carlo algorithm are briefly discussed.

In Chapter 3 we compare EMC as a semiclassical and NEGF as a fully quantum mechanical approach

for the calculation of device currents of Stark ladders and QCLs with THz transitions. First, we present

our comparative analysis on Stark ladders as the most elementary cascade devices. Then we also compare

the two methods for experimental QCL designs with different doping and frequency, and we show results

for the spectral gain.

After we have justified the use of the EMC method for the simulation of THz QCLs by comparing to

NEGF, we investigate the temperature performance of state of the art THz QCLs in Chapter 4. We start

by presenting a new set of QCL designs, which has been done in collaboration with Mikhail Belkin’s group.

Next we unfold the effects that favor QCL temperature performance at around 3THz for vertical lasing

transitions. We also discuss the effects of lasing transition diagonality on the temperature performance

and validate our results against interface roughness, which is a vaguely known parameter.
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Chapter 5 is concerned with the simulation of InGaAs-based mid-infrared QCLs. We discuss the

relevance of the various scattering mechanisms. Furthermore, we present the robustness of our EMC tool

in reproducing the experimental measurements for various QCLs, and show the importance of stimulated

photon processes for the electron transport. The high kinetic energy tail of the electron distribution

function in these structures is discussed.

In the last chapter we derive an alternative to Fermi’s golden rule for taking into account the lifetime

broadening of the quantum states. We show its implementation for LO-phonons and photon scattering.

The complete implementation in the EMC code, shows a correct modeling of the current in the coherent

regime, i.e., low biases. The current in the incoherent regime remains is proven to be semiclassical.
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Chapter 2

Ensemble Monte-Carlo methods for

heterostructures

Self-consistent Monte-Carlo transport simulations are well established tools for the modeling and opti-

mization of QCL devices [11]-[14],[24]-[32]. They are based on the solution of the semi-classical Boltzmann

equation which is defined in its general form as

df(R,K, t)

dt
=

∂f(R,K, t)

∂t
+ Ṙ∇Rf(R,K, t) + K̇∇Kf(R,K, t). (2.0.1)

In the ensemble Monte-Carlo method, the above equation is solved for the distribution function by

means of a statistical average over many electrons. Here t is the time variable, R is the position and K

is the wavevector of the electron. An overdot denotes a derivative with respect to t. EMC provides a

straightforward extraction of various physical observables, by solving the above equation. For example

distribution functions, current, parasitic current channels, injection efficiencies, gain spectra, electron

temperatures and output power [33] can be calculated by solving the above equation.

In Eq. (2.0.1), the last two terms represent the change of f with respect to position and wavevector.

The derivative with respect to the spatial coordinate R can be neglected, since we consider a separable

electron probability. This is defined by having wavefunctions in the z (or confined)-direction and distri-

bution functions in the planar direction. In this way every electronic state m has a wavefunction ψm

and a distribution function fm, and fm depends only on t and K. The change of f with respect to the

wavevector K is not 0; however, since we have a constant electric field in the confinement direction (z)

and no electric and magnetic fields E and B in other directions, we use the equation

�k̇ = −e0[E+ ve ×B] (2.0.2)

to find k̇ = 0. Here, ve is the electron velocity and e0 the electron charge. Since the wavefunctions do

17



Chapter 2. Ensemble Monte-Carlo methods for heterostructures 18

not change in time, k̇z = 0 and the term proportional to K̇ =
[
k̇ k̇z

]
in Eq. (2.0.1) can be neglected.

If the above approximations are applied, we arrive at the equation [30]

dfnk
dt

=
∑
mk′

∑
s

[W s
mk′nkfmk′ −W s

nkmk′fnk] . (2.0.3)

Here, W s
nkmk′ is the scattering rate between the initial state n with wavevector k and final state m

with wavevecor k′, while the index s represents the scattering type. The scattering rates are calculated

by Fermi’s golden rule and enter the above equation. For solving the above equation, many steps are

performed. First of all, a basis is defined using the wavefunctions calculated by the Schrödinger solver,

second all the scattering rates are calculated in this basis, furthermore an algorithm is used for the solution

of Eq. (2.0.3). The theory for performing these steps is found in this chapter and we now summarize its

main sections.

First we discuss the calculation of the basis of electronic states. This is performed by solving the

coupled Schrödinger and Poisson equations over five biased QCL periods, using periodic boundary condi-

tions. The Poisson equation can be straightforwardly solved after finding the charge distribution from the

wavefunctions and assuming charge neutrality with periodic boundary conditions. The implementation

of the Schrödinger solver by means of transfer matrices and the shooting method will be discussed in

detail.

For specific QCLs, the parabolic dispersion relation between kinetic energy and in-plane momentum

offers a crude approximation only, since the dispersion of the high-energy electrons is non-parabolic. For

a more accurate relation, we consider the non-parabolic case by taking the energy dependent effective

mass approach. This will be presented in Section 2.2 for both the confined and in-plane direction.

Fermi’s golden rule, which is the basic expression relating the scattering rate, perturbation poten-

tial and electron states is discussed in Section 2.3. The scattering mechanisms considered here are

electron-phonon, electron-electron, electron-interface roughness, electron-impurity, electron-alloy disor-

der and electron-photon scattering. Examples will be given for their derivation, with the exception of

photon scattering, which will be discussed in Section 6.3.

The optical properties of QCLs are quantified by the material gain which is derived in Section 2.4,

based on a Lorentzian level-broadening [12].

In Section 2.5, we discuss the main steps of the Monte-Carlo algorithm, the random choice of scattering,

initial and final states as well as the Pauli exclusion principle.

Since the implementation and improvement of today’s EMC code was performed over several years,

our results contain different effects and approximations. These are summarized in the last section in

a table, which lists the approximations and effects used for the results in the different chapters of this

thesis.
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2.1 Schrödinger solver

All our theoretical investigations are based on the electronic wavefunctions in the calculated heterostruc-

ture. For calculating the wavefunctions, we need to solve the Schrödinger and Poisson (SP) equations

iteratively. The Poisson equation accounts for space charge effects and just leads to a modified potential

profile of QCLs, since they are doped structures. Basically the doping and the electrons in the structure

produce a potential Vp(z), which needs to be added to the conduction band profile to account for the

band bending. The Poisson equation is defined as [27]

− ∂

∂z

ε(z)∂VP (z)

∂z
= e0

[
N(z)−

∑
n

n2D,nψn(z)
2

]
,

where ε(z) is the dielectric constant in the active region, e0 is the electron charge, N(z) is the donor

concentration in the structure, n2D,n is the sheet doping density and ψn is the wavefunction of the nth

state. The Poisson equation is solved on the same discretized grid where the wavefunctions are defined

and models the space-charge effects in our QCLs.

The iteration of the SP solver starts with the solution of the Schrödinger equation, then an occupation

is assumed by either solving the Boltzmann equation or by assuming a thermal electron distribution. The

former is the exact approach, however the latter is the numerically efficient approach, typically used for

the design of experimental structures. After the level occupations are known, we calculate the charge

distributions and solve the Poisson equation to get the new potential. In the following we restrict ourselves

to the discussion of the Schrödinger solver.

2.1.1 Matching conditions for the effective mass equation

In a biased periodic multi-quantum well structure, the Schrödinger equation needs to be solved. The

obtained eigenstates form the basis for the carrier transport calculations with EMC. In our program the

transfer matrix method is used, which is applied to a discretized potential profile grid. Step potentials

approximate the biased conduction band profile as shown in Fig. 2.1.1. This is practical to use, since the

band bending can be well approximated. Also the interface of a barrier/well does not require additional

points, and a uniform grid can be implemented.

The solution of the Schrödinger equation is known for the constant potential-region between two grid

points. However, we need to match all the solutions between the steps that approximate the potential

profile. This is done by first extending the Schrödinger equation to the effective mass equation

− �
2

2

∂

∂z

1

m∗
z(z)

∂

∂z
ψ(z) + V (z)ψ(z) = Ezψ(z) (2.1.1)

to account for the change of the effective mass m∗
z and keep the Hamilton operator Hermitian. In the case

of a heterojunction from two kinds of materials, the effective mass has only two values corresponding to
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Figure 2.1.1: Approximation of potential profile by step-functions.

the well and barrier materials. The wavefunction of the electron must be continuous through the material

interfaces at zj , ψ−(zj) = ψ+(zj) = ψ(zj). The matching condition for the derivative of the wavefunction

is calculated by integrating Eq. (2.1.1) over the infinitely small interval [zj − ι, zj + ι] as

− �
2

2

(
1

m∗
z(z)

∂

∂z
ψ(z)

)
|zj+ι
zj−ι =

zj+ιˆ

zj−ι

(E − V (z))ψ(z)dz = 0. (2.1.2)

The rhs. term of Eq. (2.1.2) is 0 in the limit of ι → 0, because the potential and the wave function are

all finite variables, thus an integration over an infinitely small interval gives 0. Taking the same limit for

the lhs. of Eq. (2.1.2), we get the matching conditions

ψ−(zj) = ψ+(zj),

1

m∗−(zj)
∂zψ

−(zj) =
1

m∗
+(zj)

∂zψ
+(zj). (2.1.3)

The values of m∗
−(zj) and m∗

+(zj) are the effective mass of the electron in the left and right step-function.

The above conditions can be used for matching two step-potentials in a single material as well as across

a barrier/well interface.

2.1.2 Transfer matrix method

The transfer matrix method (TMM) uses the effective mass equation (2.1.1) to find the wavefunctions

and energy levels for an arbitrary potential profile. One of the advantages of the TMM lies in the precise

consideration of the boundary between well and barrier. In Fig. 2.1.1 we see the approximation of a

potential-profile by step functions. The solution of the effective mass equation (2.1.1) for the flat part of
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Figure 2.1.2: Conduction band profile, classification of states

the jth step function can be written as

ψ(z) = C̃j−1e
−ikzj−1

(z−zj−1) + D̃j−1e
ikzj−1

(z−zj−1), zj−1 < z < zj, (2.1.4)

where we set V (z) = Vj−1 andm∗
z(z) = m∗

zj−1
in Eq. (2.1.1), and kzj−1 is given by the parabolic dispersion

relation

kzj−1 =

√
2m∗

zj−1
(Ez − Vj−1)

�
. (2.1.5)

In our Schrödinger solver, the transfer matrix method is applied over five stacks of QCL periods

biased with a predefined electric field as shown in Fig. 2.1.2. At the right boundary, the wavefunctions are

considered to be 0, since an infinitely large potential is assumed. In the forbidden zone the wavefunctions

should be 0 since they are below the conduction band. An energy interval defined equal to the voltage

drop of one QCL period is sketched by the curly bracket. In this region the TMM is applied, with the so-

called shooting method. The solver scans through the energy interval and calculates the transfer matrix

at each energy point. At the left boundary of the simulated QCL periods, we look for the minima of

the wavefunction coefficients
∣∣∣C̃N

∣∣∣ and ∣∣∣D̃N

∣∣∣ with the interval-division method, since states should decay
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in the unbound region. The solutions of the effective mass equation (2.1.1) will be the states with the

highest lifetime, i.e. the most bound states. These states are marked by the “Relevant wavefunctions”

area in Fig. 2.1.2 and are the so-called quasi-bound states. In the gray-shaded area above the conduction

band profile the wavefunctions are highly unbound. The highly unbound, or continuum states lack a

correct inclusion in EMC, as will be discussed in Section 3.1, however they seem not relevant for the

carrier transport in QCLs.

The lifetime of the energy levels that are calculated by the shooting method and the above bound-

ary conditions is now mathematically discussed. For the intervals where kzj−1 in Eq. (2.1.5) becomes

imaginary, we define kzj−1 = iκzj−1 and write Eq. (2.1.4) in terms of exponentials

ψ(z) = Ck−1e
κzj−1

(z−zj−1) +Dj−1e
−κzj−1

(z−zj−1), zj−1 < z < zj. (2.1.6)

For real kz, the wavefunctions above the conduction band or in the wells are written in terms of sine/cosine

functions

ψ(z) = Cj−1 cos
[
kzj−1(z − zj−1)

]−Dj−1 sin
[
kzj−1(z − zj−1)

]
, zj−1 < z < zj, (2.1.7)

by redefining the constants Cj−1 and Dj−1. Both Eqs. (2.1.6) and (2.1.7) contain only real variables,

thus they can be straightforwardly implemented in our numerical solver. We have four transfer matrices

for calculating the wavefunctions. These mainly depend on the two grid-points, i.e., whether the energy

Ez is above or underneath the conduction band profile. The four cases are:

1. Both grid points (j − 1) and j give an imaginary wavevector according to Eq. (2.1.5). In this case

the wavefunctions are matched based on Eq. (2.1.3), by using Eq. (2.1.6). The transfer matrix can be

written as

⎡
⎣ Cj

Dj

⎤
⎦ =

1

2

⎡
⎣ 1 1

1 −1

⎤
⎦
⎡
⎣ eκzj−1

Δz e−κzj−1
Δz

κzj−1
m∗

zj

kzj
m∗

zj−1

eκzj−1
Δz −κzj−1

m∗
zj

kzj
m∗

zj−1

e−κzj−1
Δz

⎤
⎦
⎡
⎣ Cj−1

Dj−1

⎤
⎦ . (2.1.8)

2. The wavevector is imaginary at (j − 1) and real at j, which corresponds to exponential and

sinusoidal wavefunctions at (j − 1) and j respectively. In this case the transfer matrix

⎡
⎣ Cj

Dj

⎤
⎦ =

⎡
⎣ eκzj−1

Δz e−κzj−1
Δz

κzj−1
m∗

zj

kzj
m∗

zj−1

ekzj−1
Δz −κzj−1

m∗
zj

kzj
m∗

zj−1

e−κzj−1
Δz

⎤
⎦
⎡
⎣ Cj−1

Dj−1

⎤
⎦ , (2.1.9)

is found by matching Eq. (2.1.7) with Eq. (2.1.6) at the jth grid point

3. The wavevector is real for the (j − 1)th and imaginary for the jth grid point. In this case the
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transfer matrix is calculated as

⎡
⎣ Cj

Dj

⎤
⎦ =

1

2

⎡
⎣ 1 1

1 −1

⎤
⎦
⎡
⎣ cos

(
kzj−1Δz

) − sin
(
kzj−1Δz

)
kzj−1

m∗
zj

κzj
m∗

zj−1

sin
(
kzj−1Δz

) kzj−1
m∗

zj

κzj
m∗

zj−1

cos
(
kzj−1Δz

)
⎤
⎦
⎡
⎣ Cj−1

Dj−1

⎤
⎦ . (2.1.10)

4. The wavenumber is real for the (j − 1)th and jth grid points. The transfer matrix in this case is

⎡
⎣ Cj

Dj

⎤
⎦ =

⎡
⎣ cos

(
kzj−1Δz

) − sin
(
kzj−1Δz

)
kzj−1

m∗
zj

kzj
m∗

zj−1

sin
(
kzj−1Δz

) kzj−1
m∗

zj

kzj
m∗

zj−1

cos
(
kzj−1Δz

)
⎤
⎦
⎡
⎣ Cj−1

Dj−1

⎤
⎦ . (2.1.11)

Here kzj−1 , m
∗
zj−1

and kzj , m
∗
zj are the wavevector and effective mass at the points zj−1 and zj and

Δz = zj − zj−1 is the discretization step of the grid points. For the complete wavefunction at the given

energy Ez, the Cj and Dj coefficients must be stored. The above four cases cover all the type of matching

conditions: decaying wavefunction at energies below the conduction band, wavefunction that enters the

barrier from the well, wavefunction that exits the barrier and enters the well, wavefunction that is in the

well and behaves sinusoidal. The boundary conditions are defined on an integer grid {1, N}, where each

point represents 1Å. At the right boundary, as shown in Fig. 2.1.2, we have a very large confinement

potential, thus the initial condition for the right propagating wave is C1 = 0 and for the left propagating

waveD1 = 1. We note that the individual wavefunctions are normalized at the end. Based on the transfer

matrices from Eqs. (2.1.8), (2.1.9), (2.1.10) and (2.1.11) the wavefunction can be found for a given energy

Ez . However, only a finite set of states can be considered for calculations, due to numerical reasons.

Thus we need to find the set of wavefunctions that contributes most to the transport of electrons. This

is done based on the lifetime of the states. After predefining a number of states ns, the first ns states

with the highest lifetime are considered, in the energy interval marked in Fig. 2.1.2 by the curly bracket.

The lifetimes based on the transfer matrix theory are now derived, starting from the time-dependent

Schrödinger equation

i�∂tψ = (Er
m − 0.5iΓsp

m)ψ ≈ (Er
m − 0.5iΓsp

m)(Ez − Er
m + 0.5iΓsp

m)∂EZψ(E
r
m). (2.1.12)

Here, the solution of the time-independent Schrödinger equation is assumed to be Hψ = Eti
mψ = (Er

m −
0.5iΓsp

m )ψ, and it is substituted into the time-dependent Schrödinger equation. The values Er
m and Γsp

m

are the real and imaginary parts of the eigenenergy Ez, which is allowed to be complex for the general

case of quasi-bound states. We want to minimize the change of ψ with respect to time, so that stationary

wavefunctions can be used. This is performed by minimizing the Taylor expansion around the real-

solution Er
m of the above equation, i.e., find Ez = Er

m. The full solution for the state m contains the

imaginary coefficient Γsp
m , which corresponds to the lifetime of the state m before it escapes from the

quantum wells. Here ψ is defined by Eq. (2.1.4) for z = zj−1 = zN . A minimization function h can be
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defined from the rhs. of Eq. (2.1.12) as

h(Ez) = |∂Ezψ(E
r
m)|2

[
(Ez − Er

m)
2
+ 0.25 (Γsp

m )
2
]

(2.1.13)

and the minimization problem

Er
m ∈ min

Ez

[h(Ez)] (2.1.14)

must be solved. The wavefunctions with the highest lifetimes (lowest Γsp
m ) fulfill the condition ∂tψ ≈ 0

best if we minimize h. Substituting Eq. (2.1.4) for ψ in Eq. (2.1.13) and assuming that the wave only

propagates from the right to the left, the term proportional to C̃N can be dropped and

h(Ez) =
∣∣∣∂EzD̃N (Ez)

∣∣∣2 [(Ez − Er
m)

2
+ 0.25 (Γsp

m )
2
]
. (2.1.15)

The boundary conditions assume sinusoidal functions at the lhs. of the device thus we can use the

transformation

D̃N =
CN + iDN

2
(2.1.16)

to find

CN (Ez)
2 +DN (Ez)

2 ∼ h(Ez) =
{
[∂EzCN (Er

m)]
2
+ [∂EzDN (Er

m)]
2
}[

(Ez − Er
m)

2
+ 0.25 (Γsp

m )
2
]
.

(2.1.17)

The above equation proves that the wavefunction coefficients behave as a second-order function with

a minimum around 0.25 (Γsp
m )2. Thus the numerical calculation of the minimization problem, i.e.,

Eq. (2.1.14), is performed directly by minimizing the coefficients CN (Ez)
2 + DN (Ez)

2. For this case,

the energetic solutions for the local minima give the energy of the states approximately. To find the

lifetime of the electron corresponding to the state Er
m before leaking out, we calculate the tunneling rate

Γsp
m

�
=

√
8h(Er

m)

∂2
Ez

h(Er
m)

. (2.1.18)

To summarize, the Schrödinger solver performs the following steps for the shooting method:

1. Scans through the energy interval given by the bias drop over one QCL period.

2. Calculates for every energy Ez the wavefunction, using the transfer matrix Eqs. (2.1.8), (2.1.9),

(2.1.10) and (2.1.11).

3. Uses the minimization condition of Eq. (2.1.14) and directly minimizes the coefficients CN (Ez)
2 +

DN (Ez)
2 to find the wavefunctions.

4. Sorts the wavefunctions after relevance, using the highest lifetimes based on Eq. (2.1.18).
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Figure 2.1.3: (a) h, (b) ∂Ezh and (c) lifetime as a function of the energy Ez for the case of a quantum well with 30Å
barrier.

2.1.3 Example: quasi bound states for a leaky quantum well

In this section we give an example for solving the Schrödinger equation based on the transfer matrix

method. We want to find the quasi bound states for the potential

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, z = 0

0, 0 < z < z1

V0 > 0, z1 ≤ z ≤ z2

0, z > z2

. (2.1.19)

The transfer matrices for the well, the barrier and the leakage region are defined by Eqs. (2.1.8),

(2.1.9), (2.1.10) and (2.1.11). For the boundary conditions we assume C0 = 0 and D0 = 1, since there is

no outgoing wave at z = 0, due to the infinite potential barrier. After multiplying the transfer matrices

and applying the boundary conditions, we get

⎡
⎣ C2

D2

⎤
⎦ =

⎡
⎢⎣ sin(kzwz1) cosh [kzb(z2 − z1)] + cos(kzwz1) sinh [kzb(z2 − z1)]

kzw
kzb

− cos(kzwz1) cosh [kzb(z2 − z1)]− sin(kzwz1) sinh [kzb(z2 − z1)]
kzb

kzw

⎤
⎥⎦ (2.1.20)
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Figure 2.1.4: Lifetime as a function of barrier width and example states.

where

h(Ez) = |C2|2 + |D2|2 (2.1.21)

and kzb and kzw are a function of the energy Ez as given by Eq. (2.1.5).

We now take the example of a GaAs/Al0.15Ga0.85As quantum well with uniform effective mass of

m∗
z = 0.067, barrier width of 3 nm, well width of 20 nm and a conduction band offset V0 = 135meV.

In Fig. 2.1.3 (a) h(Ez) is shown. According to Eq. (2.1.14), the minima of this function give the energy

levels of the quantum well as solutions of the Schrödinger equation. The derivative of h(Ez) is shown

in Fig. 2.1.3 (b), which has its zeros at the extrema of h. Our Schrödinger solver takes the zeros with

positive slopes, marked by the straight lines in Fig. 2.1.3 (b) at these extrema, to find the minima of h

corresponding to the energy levels. To classify the states with respect to their lifetime, the reciprocal of

Eq. (2.1.18) is shown in Fig. 2.1.3 (c) on a log-scale. The maximum values of the three peaks represent

the lifetime of the three energy states. We can see that the higher the energy, the lower the lifetime

of the states, which is not necessarily true for the case of multi-quantum well structures. There the

wavefunction localization also plays a role since states can be limited by only a few or several barriers,

thus having decreased or increased lifetimes correspondingly. For the case of our quantum well a lower
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lifetime means that tunneling out of the well to the region z > z1 occurs faster.

In Fig. 2.1.4 (a) we show the lifetime of the states as a function of barrier thickness. The linear increase

on the logarithmic scale of Fig. 2.1.4 (a) corresponds to an exponential dependence of lifetime on barrier

width. For small barrier thicknesses the picosecond order of lifetime is comparable to scattering times of

electrons with phonons, roughness, electrons or impurities, thus tunneling can be as important as those

effects. However, for a QCL structure, the leakage regions are avoided to suppress tunneling of electrons

into the continuum. The low energy states in QCLs have lifetimes on the order of 100 picoseconds at

least. The evolution of tunneling rates also highly depends on the QCL structure. In Fig. 2.1.4 (b) and

(c) we show the solutions of the Schrödinger equation as found by the transfer matrix method. The

leakage of the lowest state into the region z > 23 nm (leakage region) is negligible. State 2 has already

a slight change in the leakage region, while state 3 is highly delocalized. Comparing Fig. 2.1.4 (b) with

Fig. 2.1.4 (c) we see a stronger localization of the states as the barrier thickness is increased from 3 nm to

5 nm.

2.2 Non-parabolicity

The parabolic dispersion relation between electron kinetic energy and wavenumber given by Eq. (2.1.5)

usually breaks down for states lying high above the conduction band of the heterostructure. This is the

case for mid-infrared QCLs, where lasing transitions are on the order of 100meV, while the bandgap is

small due to the high indium content. In this case, the correct energy-momentum relations are given by

k · p methods, or an attempt to correct the parabolic dispersions by higher order terms can be performed.

The non-parabolic corrections have to be implemented for the low-bandgap materials such as InGaAs.

Our theory is inspired from the early work performed by Ekenberg [34] for implementing non-parabolicity

by the energy dependent effective mass approach. In the following we will discuss non-parabolicity for the

confined direction, for radiative and for non-radiative scattering rates. The derivations use the definition

of kinetic energy expanded to second order [34]

E(K) =
�
2

2m∗
(
k2x + k2y + k2z

)− (
�
2

2m∗

)2

α
(
k4x + k4y + k4z

)

−
(

�
2

2m∗

)2

(2α+ β)
(
k2xk

2
y + k2xk

2
z + k2yk

2
z

)
. (2.2.1)

Here α is the non-parabolicity parameter defined as (Eg +Δso/3)
−1, where Eg and Δso are the energy

gap and the difference between light hole and splitoff-hole energies respectively. The parameter β comes

from a 14-band k.p model, and was determined in GaAs to be approximately equal to α, while in InGaAs

the relation 2α+ β ≡ 1.7α was found experimentally [35].
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2.2.1 Non-parabolicity in growth direction

In the growth direction the states are confined, and the effective mass equation (2.1.1) should be solved

for finding the energy levels. The implementation of non-parabolicity assumes the effective mass m∗(z)

to be energy dependent. We start our derivation from Eq. (2.2.1). By neglecting the momentum in the

direction (kx,ky), we obtain for the kinetic energy

Ekin
z = −

(
�
2

2m∗
z

)2

αk4z +
�
2

2m∗
z

k2z . (2.2.2)

Solving for k2z , we get the new dispersion relation

k2z1,2 =
m∗

z

α�2

(
1±

√
1− 4αEkin

z (kz)

)
. (2.2.3)

Since for kz = 0 we expect Ekin
z (kz) = 0, the first solution is dropped and the above equation can be

written as

m∗
z

(
Ekin

z

)
= m∗

z

1−√
1− 4αEkin

z

2αEkin
z

, (2.2.4)

where m∗
z

(
Ekin

z

)
is the energy dependent effective mass. We note that Eq. (2.2.1) is for the kinetic energy

Ekin
z of the system. Thus, the kinetic energy in the confined direction is defined as the potential profile

subtracted from the energy of the state Ekin
z = En − V (z). Performing a second order Taylor expansion

of the square root in Eq. (2.2.4) around 0 kinetic energy, we get

m∗
z

(
Ekin

z

) ≈ m∗
z

(
1 + αEkin

z

)
. (2.2.5)

The above equation is the conventional non-parabolic expression which assumes a linear dependence of

the effective mass on energy [36, 37].

In the Schrödinger solver we implement non-parabolicity for two cases, preserving a continuous tran-

sition of the effective mass at Ekin
z = 0. For Ekin

z < 0 (for example in barriers) we use Eq. (2.2.4)

for the energy dependent effective mass to avoid mz ≤ 0 in Eq. (2.2.5). For Ekin
z ≥ 0 (wells or con-

tinuum) Eq. (2.2.5) is used for non-parabolicity. For the THz structures that are mainly based on

GaAs/Al0.15Ga0.85As, the non-parabolic corrections are negligible for the relevant levels, and have only

a slight influence on higher energy states. For InGaAs mid-infrared QCLs, however, the inclusion of

non-parabolicity for transport calculations is mandatory for consistent modeling [38].

2.2.2 In-plane non-parabolicity for non-radiative scattering

Additional non-parabolicity for the in-plane dynamics needs to be included for low wavelength mid-

infrared QCLs due to the high energetic spacing of the laser levels and the low bandgap of the material

system. We correct the scattering rates by assigning a different effective mass to each energy level and
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using parabolic dispersion relations within these levels. The scattering rates are multiplied by the effective

mass of the final level, instead of a uniform effective mass, as we will see in Sections 2.3.4, 2.3.5, 2.3.6,

2.3.7 and 2.3.8. We now derive the in-plane effective mass m|| corrected by non-parabolicity, starting

from the same equation as in the previous section. The term proportional to k4x and k4y is neglected in

Eq. (2.2.1) and we get

E(K) = −
(

�
2

2m∗

)2

αk4z +
�
2

2m∗ k
2
z +

�
2 |k|2
2m∗ − (2α+ β)

�
2 |k|2
2m∗

�
2k2z
2m∗ . (2.2.6)

Here the first two terms were defined in the previous section as Ekin
z . In the last term, �2k2z/2/m∗ can

be also approximated by Ekin
z and we get

E(K) ≈ Ekin
z +

�
2 |k|2
2m||

[
1− (2α+ β)Ekin

z

]
. (2.2.7)

The kinetic energy Ekin
z is defined in the z (confined) direction as Ekin

z = En − V (z), where V (z) is

the potential profile of the structure and En is the energy level of the nth state. We multiply both the

numerator and denominator of Eq. (2.2.7) by 1 + (2α+ β) [En − V (z)] and we get

E||
n(k) = E(K)− Ekin

z =
�
2 |k|2

2m||,n(z)

{
1− (2α+ β)2 [En − V (z)]

2
}
≈ �

2 |k|2
2m||,n(z)

, (2.2.8)

where

m||,n(z) = m|| [1 + (2α+ β) (En − V (z))] (2.2.9)

is the in-plane effective mass and E
||
n(k) is the in-plane kinetic energy. In Eq. (2.2.8), the term

(2α + β)2 [En − V (z)]
2 was neglected, since (2α + β) (En − V (z)) is already small as required by the

non-parabolic approximation. According to Eq. (2.2.9) the in-plane non-parabolicity for each state also

depends on z. For simplicity, we avoid the z-dependence in EMC and we calculate instead the ’average’

effective mass for each state

m||,n = m||

ˆ
{1 + (2α+ β) [En − V (z)]} |ψn(z)|2 dz. (2.2.10)

In this way, the conventional parabolic dispersions can be used in each level, with the non-parabolic

corrected parallel effective mass m||,n. Energy conservation has to be re-evaluated, in the case presented

above. In the Monte-Carlo solver the energy of an electron is written as

En(k) = En + E||
n(k). (2.2.11)
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Energy conservation between an initial state n and final state m for elastic scattering is written as

En − Em +
�
2 |k|2
2m||,n

− �
2 |k′|2
2m||,m

(±�ω) = 0. (2.2.12)

For the case of stimulated (photon and phonon) processes, the energy �ω should be added/subtracted

additionally in the above expression to account for emission/absorption respectively. We use Eq. (2.2.12)

to determine the final in-plane wavevector

|k′|2 =
2m||,m
�2

(En − Em) + |k| 2m||,m
m||,n

. (2.2.13)

The above relation is used for determining the final wavevector in case of non-parabolic scattering in the

EMC method. Additionally the non-radiative scattering rates are multiplied by the in-plane parabolic

effective mass of the final statem||,m instead of the conventional in-plane effective mass. For the derivation

of the scattering rates and further details of including non-parabolicity see Section 2.3.

2.2.3 In-plane non-parabolicity for optical transitions

Electrons interacting with the optical field do not change their momentum and Eq. (2.2.1) can be used

in a more exact manner for deriving non-parabolicity. The kinetic energy for the initial state n, can be

written as

E||
n(k) = E(K)− En + V (z) =

�
2 |k|2
2m∗ −

(
�
2

2m∗

)2

α
(
k4x + k4y

)

−
(

�
2

2m∗

)2

(2α+ β)k2xk
2
y −

�
2 |k|2
2m∗ (2α+ β) (En − V (z)) . (2.2.14)

For the final state m, we have the same in-plane momentum, thus

E||
m(k′) = E(K′)− Em + V (z) =

�
2 |k|2
2m∗ −

(
�
2

2m∗

)2

α
(
k4x + k4y

)

−
(

�
2

2m∗

)2

(2α+ β)k2xk
2
y −

�
2 |k|2
2m∗ (2α+ β) (Em − V (z)) . (2.2.15)

The first three terms and the terms proportional to V (z) cancel out on the rhs. of Eqs. (2.2.14) and

(2.2.15) when we invoke the energy conservation

Em − En + E||
m(k′)− E||

n(k)± �ω = 0 (2.2.16)

which simplifies to

(Em − En)

[
1− �

2 |k|2
2m∗ (2α+ β)

]
± �ω = 0. (2.2.17)
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For the implementation of lasing, only the difference of the kinetic energies in Eqs. (2.2.14) and (2.2.15)

are used and we can keep Eq. (2.2.8) for the dispersion relation, with a spatially averaged effective mass.

The advantage of using the energy conservation of Eq. (2.2.17) for lasing, instead of Eq. (2.2.12) is that

we preserve k, which can overcome spurious absorptions in the gain spectra. For further details refer to

Section 6.3.

We observe that the spatial-dependence in the growth direction cancels out. However the transitions

are changed by the non-parabolic factor in Eq. (2.2.17). We recall that En and Em are the initial and

final states, calculated from the Schrödinger-Poisson solver and they are corrected by the perpendicular

non-parabolicity. Eq. (2.2.17) is a direct result of momentum and energy conservation.

2.3 Fermi’s golden rule

The theory needed for calculating the scattering rates, i.e., Fermi’s golden rule, as well as the scattering

rates themselves are derived in this section. We define a stationary system with its basis states, given

by the solution of the Schrödinger equation. Fermi’s golden rule assumes a small perturbation on this

system, given by the Hamiltonian, or perturbation potential Hint(t). We are interested in the effect of a

small perturbation on the dynamics of the system, described by the basis states. It turns out that there

will be a rate of electron flow between these basis states, which is given by the golden rule. We will take

two special cases for the perturbation potential Hint(t) which assume a static and a harmonic behavior.

Both of these will be considered, based on time-dependent perturbation theory. The evolution equation

for the state-coefficient in the interaction picture is given by

.
am(t) = − i

�

∑
j

aj(t)e
iEm(k′)

�
t−i

Ej(k)

�
t < m|Hint(t)|j > . (2.3.1)

Here am(t) is the coefficient of the mth basis function, Em and En are the corresponding energy levels

for states m and n. Further details for finding the above equation can be found in the Appendix. We

assume that we are in the initial state n with 1 probability, i.e., a(0)n = 1, a(0)j �=n = 0 and the final state

of the quantum system is |m >. In this case it is possible to integrate Eq. (2.3.1) to get the first order

perturbation of the coefficient

a(1)m (t) = − i

�

t̂

0

(
< m|Hint(τ)|n > ei

Em(k′)−En(k)
�

τ
)
dτ. (2.3.2)

The first order perturbation will give Fermi’s golden rule, depending on the perturbation type (harmonic-

sine or static-step function).
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2.3.1 The envelope wavefunction

For our theoretical modeling of the crystal structure of semiconductors we use an envelope function given

as

Ψn(x, y, z) =< x, y, z||n >=
1√
LxLy

ψn(z)e
−ikxx−ikyy, (2.3.3)

where ψn(z) is the solution of the Schrödinger equation for the state n in growth direction. ψn is calculated

by the numerical solution of the Schrödinger equation as discussed in Section 2.1. The above function

describes electrons as plane-waves in transverse direction, with the size of the device cross section in x

and y directions Lx and Ly and the area of the cross section A = LxLy. The electron behavior in the

confinement direction is given by the function ψn while in the planar directions it can have different

crystal momenta as given by p = �k. Scattering mechanisms for static and harmonic perturbations will

be calculated in the basis of the above envelope functions, thus we treat them in three dimensions.

2.3.2 Harmonic perturbation

If we know that the system changes harmonically in time Hint(t) = 2V̂ cos(ωt), the perturbation matrix

element has the form

< m|Hint(τ)|n >= 2 cos(ωτ) < m|V̂ |n >= 2V (Em(k′), En(k)) cos(ωτ). (2.3.4)

Here V represents the amplitude of the perturbation as a function of the initial and final state energies

Em(k′) and En(k), where En(k) = En+�
2k2/2m||,n. The indices n and m represent the initial and final

state. It is assumed that the system is in its initial state n, and we want to find the probability that

the system will be in the mth state after some time τ . This is done by taking the absolute square of

the mth coefficient of the system
∣∣∣a(1)m (t)

∣∣∣2. Substituting Eq. (2.3.4) into Eq. (2.3.2) we get the first order

approximation for the mth coefficient

a(1)m (t) = − iV (Em(k′), En(k))

�

t̂

0

(
ei(ω+ωmn)τ + e−i(ω−ωmn)τ

)
dτ =

= −V (Em(k′), En(k))

�

(
ei(ω+ωmn)t − 1

ω+ωmn
− e−i(ω−ωmn)t − 1

ω−ωmn

)
, (2.3.5)

where

ωmn =
Em(k′)− En(k)

�
. (2.3.6)
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We now calculate the absolute-square of a(1)m (t), giving the probability for the final state

∣∣∣a(1)m (t)
∣∣∣2 =

|V (Em(k′), En(k))|2
�2

[
t2sinc2

(
ω + ωmn

2
t

)
+

+t2sinc2
(
ω − ωmn

2
t

)
+ 2t2 cos(ωt)sinc

(
ω + ωmn

2
t

)
sinc

(
ω − ωmn

2
t

)]
, (2.3.7)

with sinc(x) = sin(x)/x. In the above equation, sinc(at) and sinc2(at) functions can be approximated by

δ(a) functions since:

1. For large t, the sinc(at) and sinc2(at) function approach 0 everywhere except around a = 0.

2. The integrals c1 ·
∞́

−∞
sinc(at)da and c2 ·

∞́

−∞
sinc2(at)da give 1, where c1 and c2 are normalization

constants.

We assume that the frequency terms in Eq. (2.3.7) fulfill the conditions (ω + ωmn)t� 1 and

(ω − ωmn)t� 1 after a large amount of time and we can approximate the sinc2(at) and sinc2(at) terms

of Eq. (2.3.7) as

sinc2
(
ω ± ωmn

2
t

)
≈ 2π�

t
δ(Em(k′)− En(k)± �ω) (2.3.8)

and

sinc
(
ω ± ωmn

2
t

)
≈ 2π�

t
δ(Em(k′)− En(k)± �ω). (2.3.9)

Fermi’s golden rule, giving the transition rate, is found by using the approximations in Eqs. (2.3.8) and

(2.3.9) and by neglecting the last term (interference term) of Eq. (2.3.7), yielding the transition rate

Wnkmk′ =
∂

∂t

∣∣∣a(1)m (t)
∣∣∣2 ≈ 2π

�
|V (Em(k′), En(k))|2δ(Em(k′)− En(k) ± �ω). (2.3.10)

In Eq. (2.3.10), the +�ω represents the emission and −�ω represents the absorption of energy.

2.3.3 Static perturbation

Static perturbation of the system assumes a constant behavior in time. We define the perturbing Hamil-

tonian of Eq. (2.3.2) as the step function

< m|Hint(τ)|n >=

⎧⎪⎨
⎪⎩
V (Em(k′), En(k)) τ ≥ 0

0 τ < 0

. (2.3.11)

With the above, we use Eq. (2.3.2) to find the time varying coefficient in the interaction picture. The

absolute square of the variable a
(1)
m (t) gives the probability in time, that the electron is in the mth state

∣∣∣a(1)m (t)
∣∣∣2 =

|V (Em(k′), En(k))|2
�2

2− 2 cos(ωmnt)

ω2
mn

=
|V (Em(k′), En(k))|2

�2
t2sinc2

(ωmn

2
t
)
. (2.3.12)
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For large t the sinc2(at) function tends to a δ(a) function, because:

1. For large t, the sinc2(at) function approaches 0 everywhere, except around a = 0.

2. The integral c ·
∞́

−∞
sinc2(at)da gives 1, where c is a constant.

By using the same arguments for the replacement of sinc-functions by δ-functions as in Section 2.3.2, we

have

∞̂

−∞

sin2
(
ωmn

2 t
)

ω2
mn

4

d (Em(k′)− En(k)) = 2π�t⇒ sinc2
(ωmn

2
t
)
≈ 2π�

t
δ(Em(k′)− En(k)). (2.3.13)

Using the approximation from Eq. (2.3.13) in Eq. (2.3.12), Fermi’s golden rule in case of static perturba-

tions is given by

Wnkmk′ =
2π

�
|V (Em(k′), En(k))|2δ(Em(k′)− En(k)). (2.3.14)

2.3.4 LO polar phonon scattering

Longitudinal optical phonons are lattice vibrations produced by oscillating charges or atoms with different

proton numbers in polar (alloy) semiconductors. The strong oscillation of the dipole moments in the unit

cell of a crystal produce an electric field that scatters the carriers. The source of the vibrations is the

finite temperature of the lattice. We start by writing the oscillation of a two-body system, representing

the atoms that produce a single phonon. The equation of motion is derived from Newton’s law for an

ion-pair displacement u, by performing a first order Taylor expansion of the force F as

mnucl
∂2u

∂t2
=

∂F(0)

∂u
u+ F(0). (2.3.15)

Here mnucl = (m−1
1 +m−1

2 )−1 is the reduced mass of the oscillating ions with mass m1 and m2. From

the Lorentz force equation

F = q0 [Elatt + v ×B] (2.3.16)

we can write F(0) in Eq. (2.3.15), where the charge q0 is written in terms of an effective charge, eeff

times the electron charge as q0 = eeffe0 and we define
√

1
mnucl

∂F(0)
∂u as the imaginary unit, multiplied by

the transverse optical vibration frequency of the lattice iωTO. We can write Eq. (2.3.15) by using these

notations as

∂2u

∂t2
= −ω2

TOu+
eeffe0
mnucl

Elatt, (2.3.17)
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where Elatt is the electric field produced by the longitudinal lattice vibrations. The electric displacement

current D is the sum of the polarization and the electric field Elatt

D = εr,∞Elatt +Pion, (2.3.18)

where εr,∞ is the high frequency dielectric constant. The polarization is given by the oscillating dipoles

Pion = eeffe0ncellsu described by Eq. (2.3.17), where ncells denotes the number of ion pairs per unit

volume. Since phonons are lattice vibrations we can assume that the lattice displacement vector takes

the general form of

u = U0 cos(QR+ ωQt), (2.3.19)

where Q is the three dimensional wavevector of the phonon, R is its spatial position and ωQ its frequency.

It is assumed that the electric field, polarization and displacement current follow the oscillations of the

displacement vector. Hence, the derivative of the field and polarization can be defined as

∇Elatt = E0
lattQ sin(QR + ωQt) (2.3.20)

and

∇Pion = P0
ionQ sin(QR+ ωQt), (2.3.21)

which by using Eq. (2.3.18) implies that

∇D = D0Q sin(QR+ ωQt). (2.3.22)

Writing Eq. (2.3.18) by using Eqs. (2.3.20), (2.3.21) and (2.3.22) we get in terms of amplitudes

(D0 − εr,∞E0
latt +P0

ion)Q = 0. (2.3.23)

The above equation can be 0 in two cases:

1. Transverse vibrations Q⊥uT , which imply ∇Elatt = 0 from Eq. (2.3.20) and Elatt = ET = 0 in the

transverse direction.

2. Longitudinal vibrations Q ‖ uL, requiring that

Elatt = EL = −Pion

εr,∞
= −eeffe0ncells

εr,∞
uL, (2.3.24)

since the displacement current D is 0. The 0 displacement current follows from ∇D = 0, D||Q ⇒
D0 = 0⇒ D = 0.

In the above cases, the displacement vector u and the electric field Elattwas decomposed into a longitudinal



Chapter 2. Ensemble Monte-Carlo methods for heterostructures 36

and a transverse part u = uL + uT and Elatt = ET + EL. Using the argumentation (1) and (2) we can

write from Eq. (2.3.17) two equations of motion

∂2uT

∂t2
= −ω2

TOuT (2.3.25)

for transverse optical (TO) phonons and

∂2uL

∂t2
= −

(
ω2
TO +

e2effe
2
0ncells

mnuclεr,∞

)
uL (2.3.26)

for longitudinal optical phonons (LO-phonons). The displacement current in the general case can be

written as the sum of the electric field and the polarization

D = ε(ωQ)Elatt = εr,∞Elatt +Pion. (2.3.27)

For TO phonons we know that Elatt = ET = 0 and Pion = D = 0. We note that the above expression

should give 0 for LO-phonons as well. The only way for this is ε(ωLO) = 0 since the electric field Elatt �= 0.

The frequency dependent dielectric constant is then obtained from Eqs. (2.3.26), (2.3.17) and (2.3.27)

ε(ω) = εr,∞ +
(e0eeff )

2

mnucl (ω2
TO − ω2)

ncells. (2.3.28)

We can write the squared effective charge e2eff as a function of the dielectric constants at very small and

very high frequencies as

e2eff = mnucl
ε(0)− ε(∞)

ncellse20
ω2
TO, (2.3.29)

by using Eq. (2.3.28). Here ε(0) = εr,0 is the static dielectric constant of the system. Solving for ε(ω) = 0

and using Eq. (2.3.29), we get for the LO-phonon frequency

ωLO = ωTO

√
εr,0
εr,∞

. (2.3.30)

This frequency is the longitudinal solution of Eq. (2.3.17), i.e., the equation of the simple harmonic

oscillator, after assuming that the electric field only contributes to the longitudinal components of the

displacement vector u. From Eqs. (2.3.24) and (2.3.29), the electric field for the LO-phonons can be

written as

Elatt = −ωLO

√
ncellsmnucl(ε

−1
r,∞ − ε−1

r,0)u. (2.3.31)

The amplitude of the displacement vector from Eq. (2.3.19) can be calculated by applying the quantization
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condition to the effective energy of the system as

�ωQ = Vcncells
ωQ

2π

2π
ωQ̂

0

mnucl

(
∂u

∂t

)2

dt = Vcncells
1

2
mnuclω

2
Q (U0)

2
. (2.3.32)

We find the amplitude of the lattice displacements from the above equation as

|U0| =
√

2�

VcncellsmnuclωLO
. (2.3.33)

For the LO-phonon scattering rate, the perturbation potential is found by integrating the electric field

in Eq. (2.3.31), with the displacement vector definition from Eq. (2.3.19)

V̂pert = −e0
ˆ

ElattdR = iM(Q)
[
ei(QR−ωQt) − e−i(QR−ωQt)

]
, (2.3.34)

where

M(Q) =
1

2Q
e0

√
ε−1
r,∞ − ε−1

r,0

√
2�ωLO

Vc
. (2.3.35)

The displacement amplitude is parallel to the phonon wavevector (U0‖Q), thus we can write for

QU0/|Q|2 = U0/Q. The perturbation potential in Eq. (2.3.34) is used with the wavefunctions of

Eq. (2.3.3), to find the absolute square of the matrix element

∣∣V LOPh
nm

∣∣2 =
∣∣∣< m|V̂pert|n >

∣∣∣2 =

= M(Q)2

∣∣∣∣∣∣∣∣
Lx
2̂

−Lx
2

Ly
2̂

−Ly
2

Lz
2̂

−Lz
2

1

LxLy

[
ei(qzz−ωQt)+i(q−k+k′)r − e−i(qzz−ωQt)+i(−q||−k+k′)r

]
ψn(z)ψ

∗
m(z)d3R

∣∣∣∣∣∣∣∣

2

=

= M(Q)2

∣∣∣∣∣∣∣
Lz
2̂

−Lz
2

sinc(k′x − kx + qx)sinc(k′y − ky + qy)e
i(qzz−ωQt)ψn(z)ψ

∗
m(z)dz−

−
Lz
2̂

−Lz
2

sinc(k′x − kx − qx)sinc(k′y − ky − qy)e
−i(qzz−ωQt)ψn(z)ψ

∗
m(z)dz

∣∣∣∣∣∣∣
2

(2.3.36)

The squared perturbation potential represents at this point both phonon emission and absorption. Since

q cannot be equal to k − k′ and k′ − k at the same time, and we neglect interferences, i.e., terms like

sinc(qx−k′x+kx)sinc(qx−kx+k′x), we can separate the above matrix element to two different scattering

mechanisms, one for phonon emission and one for absorption. We can rewrite the two cases as

∣∣V LOPh
nm

∣∣2
e,a

=
4π2

LxLy
M(Q)2δ(k′ − k± q)

∣∣∣∣
ˆ

e±i(qzz−ωQt)ψn(z)ψ
∗
m(z)dz

∣∣∣∣
2

, (2.3.37)
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where the “sinc” functions are approximated by δ functions in Eq. (2.3.36). Performing a sum over the

phonon wavevector, and converting the sum into an integral by using
∑
Q

→ Vc

8π3

´ ´ ´
d3Q, we get the

total scattering matrix element between the electron and phonon system

〈∣∣V LOPh
nm

∣∣2
e,a

〉
Q
= e20

(
ε−1
r,∞ − ε−1

r,0

) �ωLO

4πLxLy

ˆ
1

|k− k′|2 + q2z

∣∣∣∣
ˆ

e±i(qzz−ωQt)ψn(z)ψ
∗
m(z)dz

∣∣∣∣
2

dqz =

= e20
(
ε−1
r,∞ − ε−1

r,0

) �ωLO

4πLxLy

ˆ ˆ
1

|k− k′|2 + q2z
e±iqz(z−z′)dqzψn(z)ψ

∗
n(z

′)ψ∗
m(z)ψm(z′)dzdz′ =

= e20
(
ε−1
r,∞ − ε−1

r,0

) �ωLO

4πLxLy
J(|k− k′|). (2.3.38)

Here, the in-plane phonon wavenumber is q = |k− k′| since we have used the momentum conservation in

Eq. (2.3.37). Furthermore, we have defined the quantity J , that is proportional to the electron-phonon

form factors. This quantity is numerically evaluated in EMC as

J(q) =

ˆ ˆ
π

|k− k′|e
−|k−k′||z−z′|ψn(z)ψ

∗
n(z

′)ψ∗
m(z)ψm(z′)dzdz′, (2.3.39)

for every initial state n and final state m. We now apply Fermi’s golden rule for harmonic perturbations

from Eq. (2.3.10), with the perturbation potential from Eq. (2.3.38) and sum over the final wavevectors

k′, to find the electron LO-phonon scattering rate

W e,a
nkm =

m||,me20ωLO

8π2�2

(
NPh +

1

2
± 1

2

)(
ε−1
r,∞ − ε−1

r,0

) 2π̂

0

J(q)dθ. (2.3.40)

Here the sum was converted to an integral using

∑
k′
→ LxLym||,m

4π2�2

ˆ 2π

0

ˆ ∞

Em

dEm(k′)dθ, (2.3.41)

and q is defined as

q(θ) = |k− k′| =
√√√√k2

(
1 +

m||,m
m||,n

)
− 2k

√
m||,m
m||,n

k2 +
2m||,m
�2

(En − Em ∓ �ωLO) cos(θ)+

+
2m||,m
�2

(En − Em ∓ �ωLO).

(2.3.42)

In the above expression, the scattering angle between electron initial and final wavevectors is given by

θ. The spatial integral terms in Eq. (2.3.39) are the so-called LO-phonon form factors, while the integral

over the angle in Eq. (2.3.40) is called the theta-integral. The theta integral is a common numerical

integral that has to be evaluated for most of the scattering rates. In EMC the rates are tabulated with

respect to n, m and k, where in each tabulation, the theta-integral is stored. NPh + 1 and NPh stand

for the number of LO-phonons emitted and absorbed which multiply the rates for phonon emission and
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absorption to account for scattering with all the phonons and

NPh =

[
exp

(
�ωLO

kBT

)
− 1

]−1

(2.3.43)

is given by the Bose-Einstein distribution. The +1 in the case of NPh + 1 , accounts for spontaneous

emission.

2.3.5 Impurity scattering

In doped semiconductors, the transport electrons interact with the donors through the conduction band

bending and through Coulomb forces. The doping is taken into account by the Poisson equation which

produces conduction band bending and thus can modify the alignment of the states. In the planar

direction, ionized donors can also contribute to the dynamics of electron transport. We implement the

impurity scattering in this section to account for the complete treatment of the donor-related effects in

EMC. The perturbation potential produced by a single ionized impurity at the position of zimp is given

by the Coulomb potential,

V imp
pert (r) =

e20

4πε
√
r2 + |z − zimp|2

. (2.3.44)

Our wavefunctions provided by the Schrödinger solver in Section 2.1 are extended in transverse direction

as shown in Eq. (2.3.3), giving the three dimensional wavefunctions of the system. We need to calculate

the matrix element in the basis of these functions for applying Fermi’s golden rule. For an initial state n

and a final state m we calculate the matrix element as

V imp
nm = A−1

ˆ ˆ
V imp
pert e

−iqrd2rψ∗
m (z)ψn (z)dz, (2.3.45)

where q = k− k′. Switching to polar coordinates and integrating in the planar directions, we get

V imp
nm =

e20
4πεA

ˆ ∞̂

0

2π̂

0

re−iqr cos(θ)√
r2 + |z − zimp|2

dθdrψ∗
m (z)ψn (z)dz =

=
e20
2εA

ˆ ∞̂

0

rJ0(qr)√
r2 + |z − zimp|2

drψ∗
m (z)ψn (z)dz =

=
e20

2Aεq

ˆ
ψ∗
m (z)ψn (z) e

−q|z−zimp|dz. (2.3.46)

Here we observe that the inner integral in Eq. (2.3.45) is the same as taking the Fourier transform of

Eq. (2.3.44). In the above equation, J0(qr) stands for the Bessel function of the first kind. The relevant

part of the above equation is the end result giving the matrix element V imp
mn . The square of V imp

mn is

needed for calculating the scattering rate by the use of Fermi’s golden rule. For finding the interaction of
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the electron with the potential provided by all the impurities, we sum over the position of the impurities

zimp ∣∣V imp,total
nm

∣∣2 =
1

A

(
e20
2εq

)2

f imp
mn , (2.3.47)

where the electron-impurity form factors between an initial state n and a final state m in the EMC solver

are defined as

f imp
nm =

ˆ [ˆ
ψ∗
m (z)ψn (z) e

−q|z−z′|dz
]2

N(z′)dz′. (2.3.48)

The function N(z) is the volume density of the donors if z is in the doped region and 0 otherwise. In

Eq. (2.3.47), the summation over impurities was converted to an integral using the integral definition∑
f(zi)Δz ≈ ´ f(z)dz. Furthermore instead of A2, we have A in the denominator since the average

distance Δz between two impurities is given by Δzimp = A−1N−1(z). We now apply Fermi’s golden rule

for static perturbations from Eq. (2.3.14) to find the scattering rate

Wnkmk′ =
2π

�

1

A

(
e20
2εq

)2

f imp
mn δ (Em(k′)− En(k)) . (2.3.49)

Finally to find the scattering rate from an initial state n and initial wavevector k to a final state m, we

need to sum Eq. (2.3.49) over k′ and convert the sum to an integral using Eq. (2.3.41) to get

Wnkm =
2π

�

1

A

(
e20
2ε

)2

f imp
mn

∑
k′

1

q2
f imp
mn δ

(
Em − En +

�
2 |k′|2
2m||,m

− �
2 |k|2
2m||,n

)
=

=
m||,me40
8πε2�3

ˆ 2π

0

f imp
mn (q(θ))

q2(θ)
dθ. (2.3.50)

The effective masses m||,n and m||,m are for the initial and final state and they were introduced in

Section 2.2.2. The above scattering rate is used in EMC for impurity scattering, where q is defined by

Eq. (2.3.42), with ωLO = 0.

2.3.6 Interface roughness scattering

The interface between two materials in a heterostructure is not flat. The layers penetrate into each other

forming islands with a mean height and a correlation length. The correlation length is related to the size

of the islands, and the mean height to their deviation from the flat interface. The treatment of interface

roughness is fully empirical [39, 40]. For deriving the interface roughness scattering rate, we start by

defining a position dependent deviation Δ(r) from the flat interface, where its autocorrelation function

is empirically defined as a Gaussian

〈Δ(r)Δ (r+ d)〉 = 1

A

ˆ
Δ(r)Δ (r+ d) d2r = Δ2e−

|d|2
Λ2 . (2.3.51)
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Furthermore, we assume that we have the interface at z = z0. The perturbation potential is then the

change of the barriers and wells by the amount Δ(r) defined as

V int
pert = V0 [H (z − z0)−H (z − z0 −Δ(r))] , (2.3.52)

where V0 is the band offset and H(z) is the Heaviside function. Using Eq. (2.3.3), we calculate the matrix

element between an initial state n and a final state m as

V int
mn (z0) =

V0

A
ψn (z0)ψ

∗
m (z0)

ˆ
Δ(r) exp (iqr) d2r. (2.3.53)

Here we have used, that ψn(z0) ≈ ψn(z0 +Δ(r)). The total interface roughness squared matrix element

is given by

∣∣V int,total
nm

∣∣2 =
V0

2

A2

∑
z0

|ψn (z0)ψ
∗
m (z0)|2

ˆ ˆ
Δ(r)Δ (r+ d) d2reiqdd2(r+ d) =

=
V0

2

A

∑
z0

|ψn (z0)ψ
∗
m (z0)|2 Δ2

ˆ ˆ
re−

d2

Λ2 +iqdCos(θ)dθdd =

=
2πV0

2

A

∑
z0

|ψn (z0)ψ
∗
m (z0)|2 Δ2

ˆ
re−

d2

Λ2 Jo(qd)dd =

=
πV0

2

A

∑
z0

|ψn (z0)ψ
∗
m (z0)|2 Δ2Λ2e−

1
4Λ

2q2 . (2.3.54)

The last term in the above equation is now used in Fermi’s golden rule for static perturbations, i.e.,

Eq. (2.3.14) for deriving the scattering rate

Wnkm =
2π2

�

V0
2

A

∑
z0

|ψn (z0)ψ
∗
m (z0)|2 Δ2Λ2

∑
k′

e−
1
4Λ

2q2δ

(
Em − En +

�
2 |k′|2
2m||,m

− �
2 |k|2
2m||,n

)
. (2.3.55)

Using Eq. (2.3.41), we get the scattering rate from an initial state nk to a final state m

Wnkm =
m||,m
2�3

∑
z0

|ψn (z0)ψm (z0)|2 V0
2Δ2Λ2

ˆ 2π

0

e−
1
4Λ

2q(θ)2dθ, (2.3.56)

where q is defined by Eq. (2.3.42), with ωLO = 0.

2.3.7 Alloy scattering

In the case of ternary materials like InGaAs, InAlAs or AlGaAs, the lattice has not exactly a zinc-blende

shape. Electrons interacting with the lattice are propagating in a distorted potential, which we want

to include in this section. This is done by defining a ternary alloy system AxB1−xC, from the binary

materials AC and BC, where x represents the concentration of material A on a scale from 0 to 1. The
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potential in case of an alloy material can be defined as [41]

u(r) =

#A atoms∑
τ

UA(r− τ) +

#B atoms∑
τ

UB(r− τ), (2.3.57)

where UA and UB are the potentials of the binary materials AC and BC and τ is the position of the

atomic sites. The above potential, u, is constructed as the sum of the potential of the two alloys [41]. We

divide u into two parts U1 and U2. The first is the potential profile, where we define our basis solutions

[41]

U1(r) = x

#A atoms∑
τ

UA(r − τ) + (1− x)

#B atoms∑
τ

UB(r− τ) (2.3.58)

and the second component is the perturbation potential which will give the alloy scattering

U2(r) = (1− x)

#A atoms∑
UA(r− τ) + x

#B atoms∑
τ

UB(r− τ). (2.3.59)

We define the potential of a single atomic site as a δ-function multiplied by a constant lattice volume Ω0

and the potential of materials AC or BC

UA,B(r− τ) = δ(r−RA,B)Ω0UA,B. (2.3.60)

Here Ω0 = a3/4 is the volume of the Wiegner-Seitz cell and a is the lattice constant. The choice of the

0-energy point is arbitrary, thus it is taken at

UA + UB = 0. (2.3.61)

Substituting Eq. (2.3.60) into Eq. (2.3.59) we get for the difference-potential

U2(r) = Ω0(1− x)UA

∑
RA

δ(r−RA) + Ω0xUB

∑
RB

δ(r−RB). (2.3.62)

Defining the conduction band offset as V0 = UA = −UB, we get the alloy scattering potential defined as

[42]

δVeff (r) = Ω0V0

[∑
RA

(1 − x)δ(r−RA)−
∑
RB

xδ(r−RB)

]
. (2.3.63)

The above potential was found by replacing the “difference potential” in [41] with δ-functions. We now

calculate the matrix element for the potential in Eq. (2.3.63), with the envelope functions Eq. (2.3.3)

where Lx and Ly are the planar dimensions of the alloy material, and ψn,m is normalized to 1. The
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scattering matrix element is found to be [42]

V a
nm =

Ω0V0

LxLy

[
(1− x)

∑
RA

ψ∗
m(zA)ψn(zA)e

iq||R
||
A − x

∑
RB

ψ∗
m(zB)ψn(zB)e

iq||R
||
B

]
. (2.3.64)

According to Fermi’s golden rule in Eq. (2.3.14), the absolute-square of the matrix element V a
nm must be

calculated. The lattice vectors of the disorder sites RA and RB are defined as random variables if we

model the alloys as a random material containing material A with x probability and material B with

1 − x probability. The number of A material sites is NA, the number of B material sites NB and the

absolute square for the above matrix element in terms of Kronecker deltas is

|V a
nm|2 =

(
Ω0V0

LxLy

)2∑
R

∑
R′

ψ∗
m(z)ψn(z)ψm(z′)ψ∗

n(z
′)eiq||(R||−R′||)

⎡
⎣(1− x)2

∑
RA

δR,RA

∑
R

A
′

δR′,RA′

+x2
∑
RB

δR,RB

∑
R

B
′

δR′,RB′ − (1 − x)x
∑
RA

δR,RA

∑
RB

δR′,RB − x(1 − x)
∑
RA

δR′,RA

∑
RB

δR,RB

⎤
⎦ . (2.3.65)

In random alloy scattering the lattice sites are uncorrelated. This means that the expectation value of

an atomic position can be written as

ER∗ER = E |R|2 , (2.3.66)

where

ER =
1

n

n∑
i=1

Ri. (2.3.67)

The total number of lattice sites N fulfills the relations

N = NA +NB = NxNyNz. (2.3.68)

Using the properties of uncorrelated random variables from Eq. (2.3.66) and the definition of the expec-

tation value of samples from Eq. (2.3.67), we can reduce the terms of Eq. (2.3.65) to find

|V a
nm|2 = x(1− x)

(
Ω0V0

LxLy

)2∑
R

∑
R′

ψ∗
m(z)ψn(z)ψm(z′)ψ∗

n(z
′)eiq||(R||−R′||)

[
NB

∑
RA

δR,RAδR′,RA

+NA

∑
RB

δR,RBδR′,RB −
∑
RA

δR,RA

∑
RB

δR′,RB −
∑
RA

δR′,RA

∑
RB

δR,RB

]
. (2.3.69)

Here we used that NA/N ≈ x and NB/N ≈ 1−x [43]. Since in III-V semiconductors the lattice constants

have usually similar lengths, setting RA = RB yields a good approximation and we have for the number
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of random terms in the infinite limit

lim
N→∞

N(1− x)δR,R′
∑
RA

δR,RA +NxδR,R′
∑
RB

δR,RB −
∑
RA

∑
RB

δR,RAδR′,RB −
∑
RA

∑
RB

δR,RBδR′,RA

N
= δR,R′ .

(2.3.70)

Replacing the above expression in Eq. (2.3.69), we get the average scattering potential [42]

〈
|Vnm|2

〉
average

≈ x(1 − x)
Ω0V0

LxLy

Lz

Nz

∑
z

|ψn(z)|2 |ψm(z)|2 . (2.3.71)

We now recall Fermi’s golden rule for static perturbations, Eq. (2.3.14), and apply it to the scattering

potential from Eq. (2.3.71). The alloy scattering rate is then

Wnkmk′ =
2π

�
|Vnm|2 δ (Em(k′)− En(k)) = Cδ (Em(k′)− En(k)) , (2.3.72)

where

C = x(1 − x)
Ω0V

2
0

LxLy

ˆ

alloy

|ψn(z)|2 |ψm(z)|2 dz. (2.3.73)

We integrate over the final k′ state, to get the scattering rate from nk to m [42], yielding

Wnkm =
LxLy

4π2

2π

�
C

ˆ ˆ
δ

(
Em − En +

�
2k′

2m||,m
− �

2k

2m||,n

)
dk′ =

= C
LxLy

2π

m||,m
�3

ˆ ˆ
δ

(
Em − En + t− �

2kn

2mn

)
dtdθ = LxLy

mm

�3
C =

= m||,m
Ω0

�3
V 2
0 x(1 − x)

ˆ

alloy

|ψn(z)|2 |ψm(z)|2 dz. (2.3.74)

The above scattering rate can be generalized for quantum cascade lasers to

Wnkm = m||,m

ˆ
Ω0(z)

�3
V0(z)

2x(z)[1− x(z)] |ψn(z)|2 |ψm(z)|2 dz. (2.3.75)

Here we took all the variables into the integral, since they change with the different type of layers in

the heterostructure. In the current EMC implementation, we use Eq. (2.3.75) for calculating the alloy

scattering rate.

2.3.8 Electron-electron scattering

In addition to different scattering mechanisms related to the lattice or growth of the structures, electrons

also scatter with other electrons. Electron-electron scattering is the main mechanism responsible for

thermalization within the subbands. In the EMC simulation, e-e scattering is implemented as a two-

body process [44, 45]. An electron in an initial state |nk〉, i.e., subband n and in-plane wavevector k,

scatters to a final state |mk′〉, accompanied by a transition of a second electron from a state |ik0〉 to
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|jk′
0〉. We derive e-e scattering by defining the perturbation [46, 45, 47] given by the Coulomb potential

of an electron

V ee
pert =

e20
4πεA

e−i(k0r
′+k′

0r
′)√

|r− r′|2 + (z − z′)2
ψ∗
j (z

′)ψi(z
′). (2.3.76)

The perturbation potential in Eq. (2.3.76) is given by the wavefunction of Eq. (2.3.3) for the initial and fi-

nal state of the electron multiplied by the Coulomb potential. The perturbation potential from Eq. (2.3.76)

has to be taken in the basis of the other electron to find the matrix element

V ee
nimj =

e20
4πεA2

∞̂

−∞

∞̂

−∞

ˆ ˆ
e−i(kr+k0r

′−k′r−k′
0r

′)√
|r− r′|2 + (z − z′)2

ψn(z)ψi(z
′)ψ∗

m(z)ψ∗
j (z

′)drdr′dzdz′ (2.3.77)

We use the substitutions d = r− r′, q = k − k′ and q0 = k0 − k0
′ in Eq. (2.3.77) and calculate the

matrix element V ee
nimj as

V ee
nimj =

e20
4πεA2

∞̂

−∞

∞̂

−∞
ψ∗
m(z)ψn(z)ψ

∗
j (z

′)ψi(z
′)
ˆ

e−ir′(q+q0)dr′
ˆ

e−iqd√
|d|2 + (z − z′)2

dddzdz′ =

=
e20

2εA2q
Fnimj(q)

ˆ
e−ir′(q+q0)dr′ =

e2

2εAq
Fnimj(q), (2.3.78)

where Fnimj(q) represents the e-e scattering form factor defined by

Fnimj(q) =

∞̂

−∞

∞̂

−∞
ψn(z)ψi(z

′)ψ∗
m(z)ψ∗

j (z
′)e−g|z−z′|dzdz′, (2.3.79)

which is tabulated in our EMC tool and g = |k0 − k|. The square of the perturbation potential of

Eq. (2.3.78) is ∣∣V ee
nimj

∣∣2 =
e40π

2

ε2A3q2
δ(k + k0 − k′ − k′

0) |Fnimj(q)|2 , (2.3.80)

where we kept the conservation of momentum in a δ-function form. We now apply Fermi’s golden rule

for static perturbations from Eq. (2.3.14) and get the scattering rate

Wnkmk′ik0jk′
0
=

e402π
3

�ε2A3q2
δ(k + k0 − k′ − k′

0)δ(Etot) |Fijmn(q)|2 , (2.3.81)

where

Etot =
�
2 (k′)2

2m||,m
− �

2 (k)
2

2m||,n
+

�
2 (k′

0)
2

2m||,j
− �

2 (k0)
2

2m||,i
+ Em − En + Ej − Ei. (2.3.82)

We sum Eq. (2.3.81) over all the initial and final states of the second electron weighted by the distribution

function of the initial state [11],

Wnkmk′k′
0
=

∑
i,j,k0

f(k0)Wnkmk′ik0jk′
0
. (2.3.83)
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Summing over the final wavevector k′
0 of Eq. (2.3.83) and converting the sum to an integral, we get

Wnkmk′ =
e40π

2�ε2A2q2

∑
i,j,k0

fi(k0)δ(Etot) |Fnimj(q)|2 . (2.3.84)

A further simplification of the above scattering rate cannot be performed analytically in the case of

non-parabolic bands due to the different effective masses corresponding to the states m, n, j and i in

Eq. (2.3.82). Furthermore the consideration of screening and spin would further complicate the derivation

of the non-parabolic scattering rate. We will now discuss the case of e-e scattering for parabolic bands.

2.3.8.1 Scattering rate for parabolic band structure

Electron-electron scattering in case of parabolic bands assumes the same effective mass for each of the

states. The energy conservation requires Etot = 0 where Etot defined by Eq. (2.3.82) simplifies to its

parabolic case Ep
tot given by

Ep
tot =

�
2

2m||

[
(k′)2 − k2 + (k′

0)
2 − k0

2
]
+ Em − En + Ej − Ei. (2.3.85)

By using the substitutions g = k0 − k and g′ = k′
0 − k′and k+k0−k′−k′

0 = 0 we can rewrite the above

equation as

Ep,s
tot =

�
2

4m||

[
g2 − (g′)2 + g0

2
]
, (2.3.86)

where g2
0 = (Em − En + Ej − Ei)4m||/�2. By writing the initial and final electron wavevectors in terms

of g and g′, we transform the energy conservation Ep
tot = 0 to the energy conservation containing the

above substitutions Ep,s
tot = 0.

We find the scattering rate of the first electron from its initial state n and wavevector k to the final

state m by summing Eq. (2.3.84) over k′ and converting the sum to an integral,

Wnkm =
e40π

2�ε2A2q2

∑
i,j,k0,k′

fi(k0)δ(E
p
tot) |Fnimj(q)|2

=
e40

8π�ε2A

∑
i,j,k0

fi(k0)

ˆ |Fnimj(q)|2
q2

δ(Ep
tot)dk

′. (2.3.87)

By using Eq. (2.3.86) and g = k0 − k, g′ = k′
0 − k′ and k+ k0 − k′ − k′

0 = 0 the substitutions −dk′
0 =

dk′ = dg′xdg
′
y/4 and g − g′ = 2q can be made, and we can we rewrite Eq. (2.3.87) as

Wnkm =
e40

32πA�ε2

∑
i,j,k0

fi (k0)

ˆ |Fnimj(q)|2
q2

δ (Ep,s
tot ) dg

′ =
e40m||

16πA�3ε2

∑
i,j,k0

fi (k0)

ˆ 2π

0

|Fnimj(q)|2
q2

dθ,

(2.3.88)

where

q =
1

2

[
2g2 − 2g

√
g2 + g20 cos(θ) + g20

]1/2
. (2.3.89)
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The above scattering rate does not include screening of electrons and their exchange interaction. For

their modeling, Eq. (2.3.88) needs to be generalized [11] to

Wnkm =
m||

4πA�3

∑
i,j,k0

fi (k0)

ˆ 2π

0

|Mnimj (q)|2 dθ. (2.3.90)

Different approaches with varying degrees of complexity exist to compute the transition matrix element

Mnimj from the bare Coulomb matrix elements in Eq. (2.3.78). First, the screened Coulomb matrix

elements V ee,s
mnji(q) are obtained from V ee

mnji (q) by applying a more or less sophisticated screening model.

In the random phase approximation (RPA), they are found by solving the equation system [48]

V ee,s
nimj = V ee

nimj +
∑
ab

V ee
nambΠabV

ee,s
aibj . (2.3.91)

Here, Πab (q) is the polarizability tensor, given in the long wavelength limit (q → 0) by

Πab =

⎧⎨
⎩

n2D,a−n2D,b

Ea−Eb
, a �= b,

−m||
π�2 fa (0) , a = b.

(2.3.92)

Here n2D,a is the sheet doping density for the state a. For collisions of electrons with parallel spin,

interference occurs between V ee,s
nimj and the ’exchange’ matrix element V ee,s

nijm [49]. Accounting for this

exchange effect, the magnitude squared of the transition matrix element Mnimj is then given by [45, 49]

|Mnimj |2 =
pa
2

[∣∣V ee,s
nimj (q)

∣∣2 + ∣∣V ee,s
nijm (q′)

∣∣2]
+

pp
2

∣∣V ee,s
nimj (q)− V ee,s

nijm (q′)
∣∣2 , (2.3.93)

where pa = pp = 1/2 are the probabilities for antiparallel and parallel spin collisions, respectively, and

q′ =
1

2

[
2g2 + g20 + 2g

(
g2 + g20

)1/2
cos(θ)

]1/2
, (2.3.94)

with g = |g|.
Commonly, simplified screening models are used to avoid the numerical load associated with solving

Eq. (2.3.91) [31, 50]. Furthermore, often the exchange effect is neglected when calculating Mnimj [49].

2.3.8.2 Non-parabolic band structure

Electron-electron interaction in EMC is implemented with the inclusion of non-parabolic bands. Its

inclusion is based on the work of Bonno and Thobel [47]. They derive non-parabolicity for the case

of two body processes, based on the non-parabolic density of states. Generally, the determination of

the electron final wavevector from the scattering rate Eq. (2.3.84) and energy conservation Eq. (2.3.82)
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is possible only numerically. If one assumes that the states have different effective masses, however a

constant effective mass within a subband, we can a derive an analytical solution. The derivation of e-e

scattering rates in this case requires several transformations and is quite lengthy, thus we restrict ourselves

to the discussion of the energy conservation, which requires that

x = kix + knx,

y = kiy + kny,

(g′)2 =
4

1
m||,j

+ 1
m||,m

[
2

�2
(Ei + En − Ej − Em) +

1

m||,i
k2i +

1

m||,n
k2n

]
− x2 − y2, (2.3.95)

where g′ was defined in Section 2.3.8.1. We can observe, that by setting the effective masses equal, we get

back the parabolic case of Eq. (2.3.86). The new definition of energy conservation can be used to derive

the non-parabolic scattering rates using the same notations as in Section 2.3.8.1. The determination of

the final wavevector g′ is based on

g′x =
gy
g
hx +

gx
g
hy,

g′y = −gx
g
hx +

gy
g
hy, (2.3.96)

where hx = hx(kn,ki), hy = hy(kn,ki) are functions of the initial wavevectors for the first and second

electron and were determined analytically.

2.4 Material gain

For analyzing the lasing performance, the material gain is an important quantity and will be derived in

this section. The gain spectrum of the simulated QCLs can be compared to luminescence measurements

and can give an estimate for the efficiency of the devices. QCLs are usually stacked structures, with layer

thicknesses in the few nm range where the alternating barriers and wells are grown. Since the wavelengths

are much smaller than the barrier and well thicknesses in our superlattice structures, a uniform dielectric

constant within the material can be assumed [51]. The QCL operates in TM mode [52]. For this case,

the effective dielectric constant εm in the gain medium is given by [51, 53]

1

εm
=

tb/εb + tw/εw
tb + tw

. (2.4.1)

Here, the tb and tw are the total thickness of the barriers and wells in one period, respectively. The εw

and εb stand for the dielectric constants in the wells and barriers. For our simulations, we have used the

effective values provided by the corresponding experimental groups.

For GaAs-based QCLs in this thesis we have used an effective refractive index n0 =
√
εm = 3.8,
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measured from the mode spacing of the TM modes in the laser resonator [25, 54]. This value practically

does not change for the different THz QCL designs considered in this thesis, since they are all based on

metal-metal waveguides with a 10 μm thick active region. Furthermore, the refractive indices of GaAs

and Al0.15Ga0.85As have very similar values. The frequency dependence of the dielectric constants can

be interpolated by combining Eqs. (2.3.28) and (2.3.29). Using the corresponding material parameters,

it is then found that the refractive indices for GaAs and Al0.15Ga0.85As differ only by 3-4% throughout

the THz regime.

Furthermore, in this thesis two types of mid-infrared InGaAs-based structures are investigated. For

the high power QCL [7], an effective refractive index value of n0 = 3.24 has been used, which contains

the influence of both the active region and the InP claddings [55]. For the short-injector QCL emitting

at 8μm [56], the same value has been taken [57].

The relations for the generalized optical power per unit volume in case of a gain medium [58] are

PV = (nnW a
nm − nmW e

nm)�ωq, (2.4.2)

where W a
nm is the stimulated single-electron absorption rate from the initial state n to the final state m

and W e
nm is the stimulated single-electron emission rate from the initial state n to the final state m. The

mode frequency is denoted by ωl while nn and nm are the volume densities of the population in states

n and m. The volume densities generally are not in steady state, but change in time, as the gain gets

saturated. Fermi’s golden rule can be used to determine the absorption and emission rates [58]

W a
mn =

2π

�

∣∣∣∣ e0m∗
z

Al
0 〈p̂〉nm

∣∣∣∣
2

δ(Em − En + �ωl)

W e
mn =

2π

�

∣∣∣∣ e0m∗
z

Al
0 〈p̂〉nm

∣∣∣∣
2

δ(En − Em − �ωl). (2.4.3)

Here Al
0 is the vector potential of the optical field in the lth mode and 〈p̂〉nm is the momentum of the

electron. We can also see from Eq. (2.4.3), that the stimulated emission and absorption rates are equal.

Usually in a rectangular cavity we have multiple propagating modes, represented here by the modal index

l. We now proceed by deriving the spectral gain for a single mode and drop the mode index l. The wave

function of the electron for the total system in Eq. (2.3.3) is used here and the propagation direction is

assumed to be z. For finding the stimulated emission rate, we must first find the matrix element for the

momentum operator p̂nm = −i�∇ using Eq. (2.3.3) for the basis functions

〈p̂〉nm =

⎡
⎢⎢⎢⎣

δnx,mxδny,myδnz,mz�knx

δnx,mxδny,myδnz,mz�kny

δnx,mxδny,myp
z
nz ,mz

⎤
⎥⎥⎥⎦ . (2.4.4)

Here, δnz,mz is the Kronecker symbol and follows from the orthogonality of the wavefunctions, while nx,
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ny and nz are the initial state in the x, y and z directions, respectively. The rates from Eq. (2.4.3), i.e.,

the stimulated absorption and emission rates are equal for a single electron so it is enough to calculate

the stimulated emission rate, which is written as

W e
mn =

2π

�

(
e

m∗
z

)2

δxn,xmδyn,ym

[
A0

x�knxδnz,mz +A0
y�knyδnz,mz +A0

zp
z
nz,mz

]2
δ(En−Em+�ω). (2.4.5)

Due to interaction with photons, the initial and final state of the electron is never the same, so we always

have the case of nz �= mz and Eq. (2.4.5) simplifies to

W e
mn =

2π

�

∣∣∣∣ e

m∗
z

A0
zp

z
nz ,mz

∣∣∣∣
2

δnx,mxδny,myδ(Em − En + �ω). (2.4.6)

We use Eq. (2.4.2) together with the above equation to determine the dissipated (or gained) power per

unit volume

PV = 2π(nn − nm)ω

∣∣∣∣ e

m∗
z

A0
zp

z
nz,mz

∣∣∣∣
2

δnx,mxδny,myδ(Em − En + �ω). (2.4.7)

The time-averaged dissipated power per unit volume (effective power) in case of a monochromatic field

can be additionally determined with the expression [59]

PV = 2σ
(−A0

zω
)2

, (2.4.8)

which is a direct consequence of Maxwell’s equations. Here σ is the conductivity of the medium. Usually

Eq. (2.4.8) is used to calculate the power dissipation of an electromagnetic wave in a passive medium. If

we have positive gain, then we have a negative conductivity, meaning that g(ω) = −σZ, where Z is the

waveimpedance in the material. Now we can calculate the gain as

g(ω) = − PV

2 (−A0
zω)

2Z = π(nm − nn)
1

ω

∣∣∣∣ e

m∗
z

pznz,mz

∣∣∣∣
2

Zδnx,mxδny,myδ(Em − En + �ω). (2.4.9)

The oscillator strength

fo
mn =

2

m∗
zω�

∣∣pznz,mz

∣∣2 (2.4.10)

can be used to simplify our formula and Eq. (2.4.9) is rewritten as

g(ω) =
π

2m∗
z

(nm − nn)e2Zfo
mnδnx,mxδny,myδ(ωmn − ω). (2.4.11)

Because of dissipative processes, the stimulated-emission rate always has a finite linewidth, so the δ-

function is replaced by a Lorentzian-line [12]

δ(ωmn − ω) �→ ρ(ω) =
1

2π

Δω

(ω − ωmn)
2 +

(
Δω
2

)2 . (2.4.12)
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The Lorentzian linewidth can be related to the spontaneous emission time, and to the dissipation times

of the initial and final states, as [52]

Δω =
1

Tn
+

1

Tm
+

2

Tdephasing
. (2.4.13)

Here T−1
n and T−1

m are the out-scattering rates from the initial and final state, while T−1
dephasing is the

broadening due to non-diagonal effects, that are neglected in EMC. We use in our framework the phe-

nomenology of the finite linewidth to calculate the gain and we also assume that nx = mx, ny = my, i.e.,

momentum is conserved (neglecting the momentum of the photon). For this case, we get the material

gain

g(ω) =
πfo

mn

2m∗
z

(nm − nn)e20Zρ(ω), (2.4.14)

which is also used in a slightly different form in our EMC method for calculating gain spectra. The peak

gain is

g(ωnzmz) =
fo
mn

m||,m
(nm − nn)e20

Z

Δω
. (2.4.15)

We note, that in EMC, we use a generalized form of the scattering rates in Eq. (2.4.3) and sum over the

Lorentzians to account for several transitions contributing to the spectral gain. For further details of the

photon scattering rates in EMC, we refer to Section 6.3.

2.5 Monte-Carlo algorithm

The EMC algorithm provides the solution of the Boltzmann transport Eq. (2.0.3) by means of a statistical

average over carriers to find the distribution function. EMC can provide a straightforward modeling for

various mechanisms like

• scattering rate between levels

• phonon distribution

• current density

• parasitic current between levels

• electroluminescence

• gain and gain bandwidth

• inversion

• injection efficiency

• output power
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• electron temperature

• dwell time

• occupations

• electron distribution

• influence of various scattering rates on all the above.

Our solver considers a predefined number of electrons (a standard of 10000), and calculates the path of

each electron through the device in time. The microscopic nature of this approach offers the straightfor-

ward extraction and implementation of new effects.

We now have all the ingredients to discuss the algorithm for solving the Boltzmann equation. The

EMC program is based on the basis functions in the pre-defined heterostructure, which are found by the

Schrödinger solver discussed in Section 2.1, coupled to a Poisson solver, to account for the redistribution

of charges given by the doping in the structure. For solving the Poisson equation, one must know the

occupations of the different levels, however at the first run this is not possible, thus we must assume

some occupations. If the band-bending is small, this assumption can be accurate enough, like in the

case of resonant phonon depopulation THz QCLs, or short injector mid-infrared structures. However,

for bound-to continuum QCLs shown in the next section, so called self-self consistent simulations should

be performed since the doping in these structures highly influences the tilt of the conduction band.

For bound-to continuum QCLs, after running EMC, the occupations are used in the Poisson solver to

calculate again the band bending. This is done until the conduction band profile does not change. Such

self-self consistent simulations are critical for finding the correct alignment of the states, since those are

influenced by the change of the conduction band profile which largely affects the whole dynamics in these

structures. For moderately doped structures, however, avoiding self-self consistent approaches can save a

lot of simulation time while results are still accurate enough. In this case we assume a Fermi distribution

[27] for the occupation of the states or sometimes we can even assume equal occupations for each state.

The use of a Fermi distribution is favorable for calculating thermally occupied subbands for QCLs with

low doping. We have also used equal occupations in the states, and especially in resonant phonon

depopulation structures, where the doping is very small, the band bending was described well-enough by

this approach.

The next step after finding the wavefunctions by the SP solver is to execute the EMC program. The

algorithm starts by importing the structural parameters like amount and position of the doping, barrier-

well interface coordinates, temperature, material types and their concentration in the wells and barriers

(for alloy scattering), band offset, dielectric constants and roughness parameters. These are all needed for

the evaluation of the scattering rates. Additionally, the wavefunctions and non-parabolic average in-plane

effective masses for the different levels, which are read in from the SP output files. The EMC program has
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electron-electron scattering 1
LO-phonon absorption 2
LO-phonon emission 3

spontaneous photon emission 4
alloy disorder 5

acoustic phonons 6
impurities 7

interface roughness 8
stimulated photon emission/absorption 9

Table 2.1: Scattering rate indices in the code

also built-in material constants like the lattice constant, phonon energy, sound velocity, material density

and alloy scattering potential of the different materials (GaAs, SiGe, or InGaAs).

The calculation of the different form factors is the next step. All the scattering mechanisms have

form factor calculating routines which are needed for the evaluation of the scattering rates. The most

time consuming evaluation is the calculation of the electron-electron form factors, since there we have

to integrate over the wavefunctions of the initial and final state of the first and second electron. The

form factors are written in files for their later evaluation if needed or for a second run if we want to
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Figure 2.5.1: The schematic diagram of the Monte-Carlo algorithm
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see the results with different parameters that do not change the wavefunctions. The scattering rates

are calculated based on the form factors and stored. The tabulation is performed for each initial state,

initial wavevector and final state. Each scattering rate has an index in the EMC code shown in Table 2.1.

For stimulated photon processes we need only one index, since we can distinguish between emission and

absorption by comparing the energies of the initial and final states. If the initial level is higher in energy

than the final one we have emission, otherwise absorption. A three dimensional matrix is used to store

the scattering rates as a function of the initial and final state, and the scattering type of the transition.

The corresponding matrix element is incremented for each scattering event occurring. After convergence

this matrix will contain the count of the scattering events of a specific type, between two given levels

evaluated on a random basis.

Since we are interested in a steady state solution, the simulation time has to be chosen in such a

way that the carrier distributions do not change much towards the end of the simulation. Furthermore

the carrier distributions should be initialized in a manner which is not very improbable. Hence, the

carriers are initialized by assuming a Fermi distribution in the case of the first run. If self-self consistent

simulations are performed, the carrier distributions are read in from the previous run.

The Monte-Carlo algorithm has three basic loops. The external loop is for the predefined time step

which divides the simulation into time-subintervals. The second loop, which is inside the time loop is the

electron loop, which goes from the first to the last simulated electron out of the 10000 simulated electrons.

The innermost loop is the scattering and free-flight loop. These are illustrated in the schematic of the

EMC algorithm in Fig. 2.5.1.

The program computes the solution as follows. After the initializations and calculations of the scat-

tering rates, the time-dependent simulation starts. In each time-interval we take the carriers sequentially

and each carrier undergoes a free flight and then scattering. The scattering type and final state of each

electron are chosen completely random, based on the tabulated scattering rates. After the choice of the

scattering type and final state, the scattering angle, i.e., the angle ∠k,k′ is chosen again randomly, to

determine the complete final wavevector, k′ of the electron. Once the wavevector is determined we apply

the Pauli exclusion principle, to check if the final state is available based on its occupation probability.

If the scattering mechanism is rejected, a new free flight is performed and we choose a new scattering

process as illustrated in Fig. 2.5.1. We do this for every particle until we reach the last one. Then we are

in the outer loop again and we can average and statistically extract the current and carrier distribution.

The program does not stop when these have converged, it only stops when it has reached the end the of

the pre-defined simulation time. Hence, the simulation time must be long enough to reach a stationary

state. After the steady state solution has been reached we can postprocess our data and extract the

required observables like current, carrier distributions, gain etc.
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Figure 2.5.2: Scattering rate tabulation, for choosing the final state and scattering type.

2.5.1 Choice of the scattering mechanism and final state

The choice of scattering from the initial electron state to a final state as well as the type of scatter-

ing mechanism are randomly performed in EMC. The probability for scattering is calculated based on

the scattering rates in Sections 2.3.4, 2.3.5, 2.3.6 and 2.3.8. We calculate scattering rates of the form

W j
nkm, where j is the scattering type index defined in Table 2.1, n the initial state, k the initial in-plane

wavevector and m the final state. These rates will define an interval in Fig. 2.5.2 (b) which is propor-

tional to the probability of the scattering event. All the transition rates from the initial state nk are

stored and calculated based on the flowchart in Fig. 2.5.2 (a). The random choice of the scattering type is

based on the interval shown in Fig. 2.5.2 (b), which is generated by the flowchart that uses the expression

Γj
nkm =

m−1∑
m1=1

9∑
j1=1

W j1
nkm1

+
j∑

j1=1

W j1
nkm for every j and m. In EMC we also define a global maximum of

the scattering rates Γmax = max
n,k

Γ9
nkN which is needed for the random choice of scattering type and final

state. We observe that all the scattering in the device must be smaller then Γmax. Furthermore, the

choice is performed as follows:

• We generate a random number r on the (0, 1) interval and from this a random scattering rate rΓmax
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• If rΓmax < W 9
nkN then we look for the caseW j

nkm < rΓmax by incrementing m and j monotonically.

If we find the case when for a given j and m W j
nkm < rΓmax, however either W j+1

nkm > rΓmax or

W 1
nkm+1 > rΓmax then the scattering type will be j and the final state will be m.

• If rΓmax ≥W 9
nkN , then self scattering occurs, i.e., the electron keeps its initial state and momentum.

In summary the random variable rΓmax either points into the interval shown in Fig. 2.5.2 (b), hence we

know the scattering type and final state, or points outside this interval, and then self-scattering occurs,

i.e., the state and momentum of the electron does not change.

Even when the choice of the scattering type and final state was performed, self scattering can still

arise from rejection of a configuration involving an initial state and wavevector nk, a final state m and a

scattering mechanism. This can happen since there can be configurations when the transition of nk→ m

is not allowed due to energy conservation, screening or Pauli’s exclusion principle. Energy cannot be

conserved for example in the case of LO-phonons when the level spacing is too small for a phonon

emission, or in the case of impurities when the initial state energy is lower than the final state energy etc.

2.5.2 Choice of the final angle after scattering

We have discussed the choice of the scattering mechanism and the final state based on their probabilities.

After scattering occurs from the initial state and wavevector nk to the final state m, we need to choose

the scattering angle of the electron. This is needed for finding its complete final wavevector. The electron

kinetic energy after scattering is already known due to energy conservation, thus by determining the

scattering angle its full wavevector can be computed. The scattering angle is chosen randomly, based

on the form-factors of the given scattering mechanism. We discuss the choice of the scattering angle

for LO-phonon scattering. For the other mechanisms the choice is done in a similar manner. Energy

conservation for each scattering mechanism, requires that Eq. (2.3.42) holds (for static perturbations, e.g.,

impurity, alloy, interface roughness scattering, ωLO = 0). Thus we can relate a randomly chosen angle

0 ≤ θr ≤ 2π to a momentum exchange of the amount q(θr). If the q-dependent terms in the scattering

rates, for example J(q(θr)) in Eq. (2.3.39) are larger than r1×max {J(q)}, where r1 is a random number

between 0 and 1, then this randomly chosen scattering angle is accepted. Otherwise a new scattering

angle is generated and a new random number r1. After the scattering angle is calculated, we have the

complete information on the final state wavevector.

2.5.3 Pauli’s exclusion principle

Electrons that scatter go from an initial state n and wavevector k to a final state m. If the final state is

unoccupied, as in most of the cases with low carrier concentrations, the scattering can take place. For

higher carrier densities, however, there is a considerable probability that in the final state there is an

electron, meaning that the exclusion principle should be taken into account. If we denote the number of
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simulated electrons in EMC as Ns, then we can define an effective area Aeff = Ns/n2D where n2D is the

sheet density, which is known from the amount of doping. The next step is to define a kinetic energy grid

with grid spacing Δkx and Δky. Every cell can contain at most nc = AeffΔkxΔky/4π
2 electrons from

the total number of Ns. After each scattering event, both kx and ky change for the scattered electron.

This means that if we define a 2D grid with Δkx and Δky grid spacing, we can count the number of

electrons in each cell and subtract an electron from the cell corresponding to the initial state nk in the

grid and add this electron to the cell of the final state mk′ in the grid. Here, k is the wavevector before

scattering, and k′ is the final wavevector. However, there is a probability that the final cell is occupied,

especially if n2D is high. The exclusion principle is implemented as follows. The variable that counts

the electrons over the kinetic grid discussed above is fe
d(kx, ky, n), where n represents the state of the

electron.

After a scattering mechanism is chosen and the corresponding final state and scattering angle is

determined, we must test if the final state is unoccupied. This is done by randomly generating a number

r between 0 and 1 and testing the inequality fe
d(k

′
x, k

′
y,m)/nc < r. If it holds, the number of electrons is

increased by one in the final state (fe
d (k

′
x, k

′
y, n)→ fe

d(k
′
x, k

′
y,m) + 1) and decreased by one in the initial

state (fe
d (kx, ky, n) → fe

d(kx, ky, n)− 1). If the inequality does not hold, then it means that the state is

already occupied and we reject the transition to the final state m, and self-scattering occurs.

2.6 Electron-electron scattering and space-charge effects in quan-

tum cascade lasers

We present some examples for the use of the theory presented in Section 2.3.8, namely for the influence of

e-e scattering and space-charge effects on bound to continuum (BTC) and resonant-phonon depopulation

quantum cascade lasers. For the case of e-e scattering, screening as well as exchange effects will be

discussed. However, we first present some typical quantum cascade designs and briefly explain their

working principles.

2.6.1 Quantum cascade lasers

Quantum cascade lasers are typically built from the InxGa1−xAs/InyAl1−yAs material system, mainly

for the mid-infrared, or GaAs/AlxGa1−xAs material system for the THz regime. They are composed of

a repeated sequence of alternating epitaxial layers grown by molecular beam epitaxy (MBE) or metal-

organic chemical vapor deposition (MOCVD). The alternating layer materials have different bandgaps,

thus they form quantum wells and barriers in the conduction band. The layer thicknesses and material

composition should be designed in such a way, at a so-called design bias, that population inversion occurs

between two levels which will be the upper and the lower laser level. We present two different design

approaches to reach population inversion in a quantum cascade laser:
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• Resonant phonon (RP) depopulation structures, see Fig. 2.5.3 (a). These QCLs are designed in such

a way, that they have an upper and lower laser level, marked by the bold solid lines, and one or

several upper and lower phonon levels which have a spacing of one LO-phonon energy (36meV in

GaAs). In these structures, the lower laser level is aligned with the upper phonon level for a fast

extraction of the electrons by means of LO-phonon scattering to the lower phonon level and from

there electrons get re-injected into the upper laser level of the next period. In other words, the

lower laser level gets depopulated by LO-phonon scattering and inversion is achieved. An example

for a resonant phonon depopulation QCLs can be found in Fig. 2.5.3 (a).

• Bound to continuum (BTC) transitions, in Fig. 2.5.3 (b). In these designs, the lasing transition

occurs from an upper laser level (bold solid line) to the miniband below. The miniband, or ’con-

tinuum’ is formed by many closely spaced energetic states. These structures have several quantum

wells in a period, since the miniband must be formed from many states. The lower laser level is

the highest state of the miniband in the energy period, which contains only a few electrons. This

level gets depleted due to the closely lying states in the miniband, which are strongly coupled. Te
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Figure 2.5.3: (a) Resonant phonon depopulation and (b) bound to continuum quantum cascade lasers.
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Figure 2.6.1: (a) Conduction band profile and squared wavefunctions, obtained for thermally occupied subbands (dashed
lines) and self-self consistent simulations (solid lines).The conduction band profile without space charge effects included is
also displayed as a reference (dotted line). (b) Simulated spectral gain versus frequency for the three cases of accounting
space charge effects, shown above.

and

depletion of the lower laser state leads to the filling of the upper laser state (lowest state in the

miniband) and in this way population inversion is reached between the upper laser level and the

lower laser level of the next miniband.

In the material systems of today’s QCLs, the main scattering mechanism that governs the dynamics and

performance of the structures is the electron-phonon scattering. The depletion of the lower laser level is

mainly governed by LO-phonon scattering. After the depletion of the lower laser level, electrons should

be efficiently carried into the upper laser level of the next period. This is done by the injector levels,

which are usually to some degree overlapped with the upper laser level for an efficient electron injection.

In this thesis we will mainly focus on bound to continuum and resonant phonon depopulation structures,

both in the THz and infrared regime.
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2.6.2 Space charge effects

We present simulations for a 3.5THz BTC design [60] to demonstrate the importance of e-e interactions

and space-charge effects on the transport and material gain in such structures. In particular, the validity

of neglecting the exchange effect in Section 2.3.8.1 and employing simplified screening models for the

evaluation of e-e scattering is investigated. Also the importance of self-self consistent simulations for

a proper inclusion of space charge effects is discussed. All scattering mechanisms are evaluated self-

consistently in our EMC simulation tool. Interface roughness (IR), however, whose parameters are

hard to measure and depend critically on the growth conditions, has to be described in terms of a

phenomenological model [12, 61]. We have used the typical values of Λ = 10 nm for the correlation length

and Δ = 0.12 nm for the mean height of interface roughness in theses structures [12, 62].

In Fig. 2.6.1, the simulated conduction band states as well as the spectral gain of the investigated

BTC QCL is shown for a lattice temperature TL = 10K at the design bias of 2.5 kV/cm, where the

maximum gain is obtained in the simulation. Solid lines indicate the fully self-self consistent result, i.e.,

Schrödinger-Poisson (SP) and EMC simulations are carried out iteratively until convergence is reached.

The dashed lines are results obtained by solving the SP system once in the beginning assuming a thermal

carrier distribution [27] and then performing a self-consistent EMC simulation, which is a quite common

approach [30, 31, 24, 63]. For comparison, also the conduction band profile and spectral gain is shown as

obtained with deactivated Poisson solver (dotted lines), i.e., when no band bending is taken into account

as a result of space charge effects. In all the three cases, carrier-carrier scattering is evaluated taking into

account the exchange interactions as well as screening considered in random phase approximation (RPA).

RPA is implemented by repeatedly solving Eq. (2.3.91) to account for changes in the carrier distribution

during the EMC simulation.

Based on the results shown in Fig. 2.6.1 we affirm that the proper inclusion of space charge effects

largely affects the simulation outcome for the investigated BTC structure. A significant tilt of the

conduction band is observed when taking the Poisson equation into account for the modeling of space

charge effects (solid and dashed lines in Fig. 2.6.1 (a)), which change the subband eigenenergies and wave

functions. By comparing our results to experimental data we can confirm that only the simulation results

with space charge effects included are in line with experiment. The gain profile obtained without the

Poisson solver is exceedingly reduced and broadened, see Fig. 2.6.1 (b) (dotted curve). The low peak gain

of around 9 cm−1 at 4.2THz contradicts the experimentally observed lasing of the QCL at 3.5THz [60].

The large gain bandwidth also disagrees with electroluminescence measurements, that yield full width at

half maximum (FWHM) widths of clearly below 1THz [60]. The inclusion of space charge effects results

a realistic gain profile which is centered around 3.5THz and it is in good agreement with experiment.

The FWHM widths of 0.65THz (solid curve) and 0.66THz (dashed curve) agree qualitatively with the

linewidth extracted from electroluminescence measurements (0.85THz at 10K) [60]. Still, the two gain

profiles are different to some degree, having peak gain values of 24.2 cm−1 for the self-self consistent and
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Figure 2.6.2: Simulated gain spectra vs frequency, obtained by fully taking into account (solid curves) and ignoring the
exchange effect (dotted curves), and by ignoring parallel (dashed curves) spin collisions. As a reference, the result obtained
without e-e scattering is also shown (dash-dotted curves). The simulation results are shown for a lattice temperature of (a)
10K and (b) 90K.

21.2 cm−1 for the self-consistent approach. This gives an insight into the importance of self-self consistent

EMC simulations for terahertz BTC designs, where space charge effects tend to play a pronounced role

in contrast to equivalent RP structures.

2.6.3 Exchange effect

There are two standard approaches to account for e-e scattering without considering the actual spin

dependence. The first method tends to overestimate the exchange effect by completely neglecting the

parallel spin collisions [44, 49], implying pa = 1/2, pp = 0 in Eq. (2.3.93). The second approach ignores

the spin dependence of electrons. In this way two electrons colliding with parallel and antiparallel spin

are treated in the same way [49], which corresponds to pa = 1, pp = 0 in Eq. (2.3.93). In RP structures,

where a moderate amount of doping is used, at elevated temperatures the carrier transport is dominated

by LO-phonon scattering and the contribution of the exchange effect is usually negligible. In BTC

designs, however, where minibands are formed by closely spaced energy levels, e-e scattering plays a more

pronounced role [12].

Fig. 2.6.2 contains the self-self consistent gain spectra at TL = 10K and TL = 90K, with the self-

consistent inclusion of screening, i.e., taking into account screening in the RPA. Results are shown for

pa = pp = 1/2 (solid curve), pa = 1, pp = 0 (dotted curve), pa = 1/2, pp = 0 (dashed curve), and

pa = pp = 0 (dash-dotted curve). The dash-dotted curves yield very narrow gain spikes around 2.8 and

3.6THz, largely deviating from the experimental electroluminescence measurements [60]. This is a direct

proof of the importance of e-e scattering for such QCLs. As discussed in Section 2.6.2, for TL = 10K the

full simulation with the included exchange effect yields a realistic gain profile, as shown by the solid curve

in Fig. 2.6.2 (a). Ignoring the exchange effect (dotted curve) leads to an overestimation of e-e scattering,

resulting in a peak gain reduction by 8%, and an increase of the full width at half maximum (FWHM)
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gain bandwidth by 11%. Completely neglecting parallel spin collisions (dashed curve), however, leads to

a gain bandwidth reduction of 24%, and an increase of the peak gain by 15%. For a lattice temperature

TL = 90K, Fig. 2.6.2 (b) shows the reduction and broadening of the gain due to the increase of temperature

which is in good agreement with experiment [60, 12]; also for this temperature, ignoring the parallel spin

collisions or exchange effect has the same effects on the simulated gain profile as for the case of TL = 10K.

In Fig. 2.6.3, the electron temperatures and the relative occupations of the different states within

the miniband are shown at TL = 10K (compare Fig. 2.6.1 (a)). We perform a least square fit of the

electron distribution functions provided by EMC to a Maxwellian to find the electron temperatures.

While the occupations of the different subbands slightly depend on the implementation of the exchange

effect, the electron temperatures show a stronger dependence. For example, the extracted temperature

for the 8th level (at 39.3meV) varies from 121.6K to 146.7K, depending on the implementation of

the spin dependence. The pronounced dependence of the spectral gain and electron temperature on

the implementation, and the reduced sensitivity of the occupations, becomes clear by looking at the

average dwell time of an electron in a given subband, which is the inverse of the out-scattering rate from

this subband. In Fig. 2.6.4, the dwell time is shown for the eight energy levels, characterized by their

eigenenergies. For the case when scattering is low, the dwell time is high, corresponding to the case

when parallel spin collisions are ignored in the simulation (dashed curve). This is consistent with the

increased peak-gain and reduced linewidth values of the corresponding gain profile in Fig. 2.6.2 (a), which

are closely related to the out-scattering rate [12]. The electron dwell time, on the other hand, increases

by a similar factor for all the subbands which explains the relative insensitivity of subband occupations

to the chosen implementation of Eq. (2.3.93).
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Figure 2.6.3: (a) Subband occupations and (b) subband temperatures extracted from our EMC simulations, by fully taking
into account (x-marks, solid curves) and ignoring the exchange effect (plus signs, dotted curves), and by ignoring parallel
spin collisions (circles, dashed curves). The lines are guide to the eye.
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Figure 2.6.4: Electron dwell times, simulated by our EMC method, by fully taking into account (x-marks, solid curves) and
ignoring the exchange effect (plus signs, dotted curves), and by ignoring parallel spin collisions (circles, dashed curves). The
lines are guide to the eye.

2.6.4 Screening

Screening is commonly taken into account using simplified models rather than solving Eq. (2.3.91) directly,

since the computational effort involved in the RPA is increased. For instance, we can account for screening

by defining a wavenumber qs in Eq. (2.3.78), i.e., replacing the pre-factor e20/ (2εq) by e20/ [2ε (q + qs)].

In single subband models, the screening wavenumber qs is obtained from Eq. (2.3.91) by assuming that

screening is caused only by a single subband, e.g., the ground state [31, 50]. For RP structures, the

modified single subband model [50] for screening of e-e interactions has been shown to yield improved

results, with

qs =
e20
2ε

m||
π�2

∑
i

fi (k = 0) , (2.6.1)

where i sums over the subbands in one period.

In Fig. 2.6.5, the intrasubband Coulomb matrix elements V1111 (Fig. 2.6.5 (a)) and V1212

(Fig. 2.6.5 (b)), as well as the intersubband element V1122 (Fig. 2.6.5 (c)) are shown as a function of

the wavenumber q. Here, 1 and 2 denote the upper laser level at 22.2meV and the level directly above at

23.4meV, see Fig. 2.6.1 (a). Displayed are the screened matrix elements based on the RPA (solid lines)

and the simplified model according to Eq. (2.6.1) with qs = 0.0237 nm−1 (dashed lines), as well as the bare

matrix elements defined in Eq. (2.3.78) (dotted lines). In the simplified screening model the intersubband

elements approach zero for small wavenumbers, as shown in Fig. 2.6.5 (c), in contrast to the exact imple-

mentation of the RPA. A more accurate result is obtained by taking the simplified screening model only

for the intrasubband matrix elements, and by treating intersubband scattering without screening [64].

The self-self consistently calculated gain spectra at TL = 10K and TL = 90K are shown in Fig. 2.6.6.

Here, the exchange effect is included, but different screening models are used, in contrast to Fig. 2.6.2.
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Figure 2.6.5: Coulomb matrix elements, as obtained with different types of screening models for the structure shown in
Fig. 2.6.1(a). (a) V1111; (b) V1212; (c) V1122.

The exact evaluation of the RPA (solid curves), which we consider as the reference curve, agrees well with

experiment, as shown in Section 2.6.2. We find an overestimation of the screening of the intersubband

elements by applying the simplified screening model to all matrix elements, as shown in Fig. 2.6.5 (c), and

thus a resulting underestimation of scattering. The resulting spectral gain profile at 10K (dashed curve
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Figure 2.6.6: Spectral gain as a function of frequency, obtained by our EMC method. The three cases shown account for
screening in the RPA (solid curves), in the modified single subband model for all matrix elements (dashed curves) or in the
modified single subband model for the intrasubband elements only (dotted curves), i.e., treating intersubband elements as
unscreened. (a) TL = 10K; (b) TL = 90K.
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Figure 2.6.7: (a) Relative subband occupations and (b) subband temperatures, as obtained by our EMC method where for
the screening we have used the RPA (x-marks, solid curves) and the modified single subband model for all matrix elements
(circles, dashed curves) or for the intrasubband elements only (plus signs, dotted curves). The lines are guide to the eye.

in Fig. 2.6.6 (a)) features a 25% enhanced gain peak and a very narrow spectral bandwidth (FWHM)

of 0.43THz, as compared to an experimental value of 0.85THz. On the other hand, by completely

ignoring the screening effect for the intersubband matrix elements, we overestimate the intersubband

scattering, thus resulting in a lowered and broadened gain profile (dotted curves). As can be seen from

Fig. 2.6.6 (b), the simulation results at TL = 90K are affected in a similar way by using the above discussed

approximations.

In Fig. 2.6.7, we compare the relative subband occupations and electron temperatures at TL = 10K for

the different screening models. In spite of the fact that the spectral gain in Fig. 2.6.6 greatly depends on

0.4 0.6 0.8 1 1.2 1.4
20

25

30

35

40

Dwell time [ps]

En
er

gy
 [m

eV
]

Figure 2.6.8: Electron dwell times, extracted from our EMC simulations which were obtained by taking into account
screening in the RPA (x-marks, solid curves), and using the modified single subband model for all matrix elements (circles,
dashed curves) or for the intrasubband elements only (plus signs, dotted curves). The lines are guide to the eye.
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the applied screening model, the occupations of the miniband levels in Fig. 2.6.7 (a) are quite insensitive to

the chosen implementation. This is similar to the behavior in Fig. 2.6.3, which is consistent with the fact

that the average dwell time of an electron in a level strongly depends on the chosen screening model, but

is changed by a similar factor for all subbands as shown in Fig. 2.6.8. We attribute this to the structure

of the minibands, which are quasi-continuous in BTC QCLs. In contrast, the energetic separation of the

levels greatly varies for RP QCLs, and simple approaches like the single subband screening model have

been shown to significantly affect the level occupations [31, 50]. For this case, only a single subband which

is usually the ground level, is considered [50]. However, it should be noted that also for the analyzed

BTC QCL, this method would provide somewhat less accurate results than using Eq. (2.6.1), as done in

our simulations. The electron distribution as a function of kinetic energy within each subband can be

represented by fitted electron temperatures in Fig. 2.6.7 (b) and these show a moderate dependence on

the screening model. As an example, the calculated temperatures in the 8th state (at 39.3meV) range

from 127.9K to 139.0K for the different types of screening. Here once again, more relevant deviations

from the RPA calculation would arise by implementing a single subband screening model rather than

Eq. (2.6.1), i.e., the modified single subband model.

2.7 Summary

We have derived the basic theory for the treatment of carrier transport in quantum cascade lasers by

means of EMC methods. Starting from the Schrödinger equation, the transfer matrix method for finding

the wavefunctions was discussed. An example was shown for the application of the transfer matrix method

to find the wavefunctions in a leaky quantum well. Non-parabolicity was introduced both in the confined

and in the planar direction of the structures, which is particularly important for mid infrared QCLs due to

their large laser level spacing. Fermi’s golden rule was derived from time-dependent perturbation theory

chapter/section 2.6 3.1, 3.3 3.2 4 5.1 5.1.3 5.2
non-parabolicity (in plane) × × × × × × √
non-parabolicity (in growth direction) × × × × √ √ √
electron-electron scattering (parabolic)

√ √ √ √ √ √ ×
phonon scattering (parabolic)

√ √ √ √ √ √ ×
impurity scattering (parabolic)

√ √ × √ √ √ ×
interface roughness scattering (parabolic)

√ √ √ √ √ √ ×
alloy scattering (parabolic) × × × × √ √ ×
electron-electron scattering (non-parabolic) × × × × × × √
phonon scattering (non-parabolic) × × × × × × √
impurity scattering (non-parabolic) × × × × × × √
interface roughness scattering (non-parabolic) × × × × × × √
alloy scattering (non-parabolic) × × × × × × √
photon scattering (parabolic) × × × × × √ ×
photon scattering (non-parabolic) × × × × × × √

Table 2.2: Scattering mechanisms and approximations used in the thesis.
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for the case of static and harmonic perturbations. The non-parabolic scattering mechanisms were derived

from scratch by starting from the physical interpretation of each mechanism, arriving at its perturbation

Hamiltonian and using Fermi’s golden rule to find the scattering rate. Based on the scattering rates,

the structure of the Monte-Carlo algorithm was discussed, furthermore examples for its application to

device analysis were presented. These examples illustrate the influence of electron-electron scattering on

the transport and optical properties of bound to continuum quantum cascade lasers. Particularly the

importance of the correct screening model as well as the influence of the exchange effect for electron spin

modeling was shown.

The implementation of the different mechanisms in this chapter was performed gradually. Hence we

give in Table 2.2 the approximations and effects that are included in each of the sections in this thesis.
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Chapter 3

Comparison of EMC and NEGF

methods for cascade structures

A detailed analysis of quantum transport theory can offer a good understanding of the microscopic

processes in quantum cascade structures such as QCLs and Stark ladders with THz transitions. In

typical THz QCLs, the level spacing and lasing transitions are much smaller than for the case of mid-

infrared QCLs. Coherent tunneling of electrons between quantum wells could play an important role

in these structures. Furthermore, accurate transport models are required to identify the detrimental

effects [24, 65, 27, 66] that decrease the occupation inversion and the optical gain in state of the art THz

quantum cascade lasers (QCLs). Two intensely used theories for modeling of transport in QCLs are the

non-equilibrium Green’s function method (NEGF) and the Ensemble Monte Carlo method (EMC).

The non-equilibrium Green’s function method (NEGF) [16] is a frequently implemented quantum

transport model, while our EMC method is considered to be semiclassical [25, 12]. NEGF is a very general

scheme to treat quantum effects such as particle correlations, carrier confinement and interferences, as

well as energy and momentum relaxation and phase breaking scattering events self-consistently [19].

The NEGF method requires the self-consistent solution of the Keldysh and the Dyson equation and

the scattering self-energies of every implemented scattering mechanism. These expressions have been

implemented in a real space basis. The choice of the basis increases the numerical load significantly but

allows for the consideration of electrons confined in quantum wells, as well as propagating electrons in the

continuum. We have to solve a system of four coupled partial differential equations in order to determine

the Green’s functions and self-energies. In this way, the scattering states, the transition probabilities

between them and their occupations are calculated self-consistently. We emphasize that the solution

of the four coupled differential equations is numerically very demanding. Once the Green’s functions

have been computed, observables such as the current and the electron density can be straightforwardly

calculated [19, 67]. They automatically include all coherent and incoherent effects that are represented by

69
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the system’s Hamilton operator and the scattering self-energies. Further details of the NEGF model can

be found in [19] and the references therein. Exact inclusion of higher order many particle interactions such

as the inelastic electron-electron scattering is typically unfeasible in NEGF. Furthermore it is common

to either simulate a limited amount of QCL periods or to approximate the in-plane momentum by a

typical single value due to numerical restrictions. Simulating only a limited amount (1-2) of QCL periods

with an exact NEGF approach without e-e scattering, can take from a few days to weeks. For these

reasons, numerically more efficient models are frequently implemented in literature which imply different

approximations.

One example for numerically effective methods is our EMC method based on the solution of the semi-

classical Boltzmann equation in a subset of the eigenfunctions of the device Hamilton operator. This

subset is restricted to low eigenenergies and the Boltzmann equation is solved to determine the occupancies

of the device states through distribution functions and scattering rates. Except for the solution of the

Poisson equation, no further iterations enter the EMC method which gives a major numerical advantage.

However, the device electrons in this method are represented in an incomplete basis which misses the

continuum states. In addition, these basis functions have an infinite lifetime which is known to yield

artificially sharp resonances in the charge transport. This is in particular problematic for the calculation

of the optical gain. For this reason, the common EMC method was extended to calculate the optical gain

assuming a Lorentzian level broadening according to the intersubband out-scattering rates [12]. EMC

also neglects non-diagonal scattering [17, 18], i.e., scattering with perturbation potentials in the form

VmmVnn and VmiVjn which is implemented in NEGF. Furthermore, the semiclassical nature of the EMC

method may lead to a significant overestimation of the current density in the presence of degenerate

device states and an underestimation of coherent transport. However, the reduction of numerical load

makes it well suited for systematic variations of a large number of device parameters.

We show in this chapter that the EMC and NEGF results agree well in regimes where coherent trans-

port plays a minor role. Since the threshold current of typical resonant phonon depopulation structures

lies in the incoherent regime (or lasing regime) [68], the EMC method is a well suited method for modeling

transport. In particular, the numerical efficiency of EMC allows for the systematic improvement of future

THz-QCL designs [22].

3.1 Stark ladders

The most elementary quantum cascade structures are Stark ladders [69]. They are favorable, since an

interpretation of the obtained simulation results is facilitated by the relatively small number of states

per period. Additionally, the short period length of the Stark ladders is numerically advantageous for

our NEGF simulations. We compare the EMC and NEGF theories based on the obtained current-

voltage (IV) characteristics and optical gain for the simulated Stark ladders. All parameters of both
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Figure 3.1.1: Conduction band profile and absolute square of the wavefunctions for the investigated Stark ladder [69], biased
at 10 kV/cm. It consists of 40Å Al0.1Ga0.9As barriers and 240Å wells. The doping in the well is 1010 cm−2.

methods are either well established material parameters or taken from literature. Both transport models

in this section take into account the incoherent scattering of electrons with longitudinal polar optical

phonons (LO-phonons), acoustic phonons, charged impurities and rough interfaces, and the electron-

electron interaction is considered in the Hartree approximation.

We apply the EMC and the NEGF method on electronic transport in two types of Stark ladders, i.e.,

240Å wells with 20Å barriers and 240Å wells with 40Å barriers [69]. The Stark ladders for the second

case are shown in Fig. 3.1.1, where we see a moderate extension of the states in the adjacent wells. This

delocalization is even stronger when the barriers are halved. The lattice temperature and sheet doping

density were taken as 100K and 1010 cm−2. The doping was reduced to a factor of 10 smaller than in the

original design [69] for using the approximate sheet doping in resonant phonon depopulation THz QCLs.

The current-voltage characteristics are compared in Fig. 3.1.2 (a) for the 20Å barrier case and in

Fig. 3.1.2 (b) for the 40Å barrier case, showing a good agreement. For Stark ladders as for resonant

phonon depopulation THz QCLs, the current is mainly carried by LO-phonon scattering while Coulomb

scattering plays only a secondary role. We identify a leakage region for the Stark ladder with 20Å

barriers, where conduction of electrons through continuum states is identified by NEGF. The NEGF

approach implements electronic states in real-space self-consistently, thus is able to take into account

the continuum states adaptively. EMC, however, underestimates the current in the leakage region due

to the limited number of higher lying states that it can use with periodic boundary conditions. The

absorption for the 20Å barrier case does not agree between the two methods (not shown), indicating
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Figure 3.1.2: Calculated IV-characteristics of the GaAs/Al0.1Ga0.9As Stark ladders operating in the THz regime. The wells
are 240Å. Barrier widths are 20 Åin (a) and 40Å in (b) respectively. Results of the EMC method are depicted by the solid
line and agree in a large bias range with NEGF calculations (dash-dotted).

that EMC in this regime starts to become unreliable. We note, however, that barriers contain only 10%

of aluminum and they are very thin compared to the wells, which gives almost the bulk limit. For this

case the states become highly unbound and, as discussed in Section 2.1.3, the quasi-bound approximation

becomes invalid, i.e., EMC fails to predict the current. At low bias fields, where several barriers still limit

the coupling of the states to the continuum this does not happen. When the field is increased, however,

the leakage into the state continuum sets in, and the EMC method underestimates the current density.

This leakage is efficiently suppressed for increased barrier widths too, as shown in Fig. 3.1.2 (b) for the

Stark ladder having 40Å barriers. The onset of the leakage into the state continuum is shifted towards

higher applied electric fields here and the results of both methods agree in a larger bias range. We also

observe a factor of 6 increase in the maximum currents by halving the barriers, showing the sensitivity

to the barrier thickness.

It is worth mentioning that a coherent transport regime is not present for the Stark ladders, as shown

in Fig. 3.1.2. In the coherent transport regime, where scattering is suppressed due to the misalignment of

the levels, EMC can also underestimate the current as we will see for THz QCLs. As shown in Fig. 3.1.3,

the obtained spectral loss of the Stark ladder agrees well for the two methods. The spectral loss, however,

can still disagree for some bias points even for the Stark ladder with 40 barriers. We attribute this to the

remaining unbound nature of the states even for this barrier thickness, as well as the different boundary

conditions of EMC and NEGF. While EMC used periodic boundary conditions, in NEGF three wells and



73 3.2. Quantum cascade laser emitting at 2.75 THz

2.5 3 3.5 4 4.5 5 5.5 6
−80

−60

−40

−20

0

Frequency [THz]

G
ai

n 
[1

/c
m

]

Figure 3.1.3: Theoretically predicted absorption for the Stark ladder with 40Å barriers at 10 kV/cm, designed to operate at
a frequency of 4.9THz. Results of the EMC method (solid) nicely agree with results of the NEGF method (dash-dotted).

field-free periodic leads were used to ’approximate’ the cascade periodicity.

We see a good agreement for the absorptions calculated by NEGF and EMC in Fig. 3.1.3. We mention,

however, that we had to integrate the spatially resolved absorption coefficient in NEGF, which had some

uncertainties in choosing the actual interval where the results are not influenced by the leads.

3.2 Quantum cascade laser emitting at 2.75 THz

We apply the EMC and NEGF method on stationary transport in the THz-QCL structure of [70] at a

lattice temperature of 40 K and a sheet doping density of 1.95 ×1010 cm−2. A single period of this QCL

consists of a sequence of GaAs and Al0.15Ga0.85As layers of the widths (30) 92 (55) 80 (27) 66 (41) 155 Å,

with the Al0.15Ga0.85As barriers given in parenthesis. The underlined well contains homogeneous doping.

In both methods, we take electron-phonon and interface roughness [61] scattering into account. Electron-

electron interaction is implemented in the Hartree approximation by a Poisson solver. In addition, we

also account for inelastic electron-electron scattering in the EMC method. In order to illustrate the

typical confinement energies and resonant laser states, Fig. 3.2.1 shows the magnitude squared of the

wavefunctions used in the EMC method. The upper and lower laser levels are marked by solid lines.

States of adjacent periods are separated by the energy of an LO-phonon (36meV). Thus, electrons

traverse between the states of adjacent periods by the resonant emission of an LO-phonon. Thereby, the

lower laser level gets emptied [71, 72]. The EMC method models electronic transport with eigenfunctions

of the Hermitian Hamilton operator of the QCL structure. Incoherent scattering mechanisms that limit

the electronic lifetime are not included in the determination of the QCL states. Thus, the electronic

states in Fig. 3.2.1 are given as discrete levels. In EMC, elastic and inelastic scattering is only included

in the calculation of the state occupancy. In contrast, the resonant energies, the state linewidth and state

occupancies are self-consistently determined in the NEGF method.

In spite of this discrepancy, both models reproduce the experimental current-voltage (IV) character-
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Figure 3.2.1: Energy levels and squared wavefunctions of the QCL at the peak-gain bias of 54.16 mV per period given by
the EMC method.

istics for bias voltages above 30 mV per period, as shown in Fig. 3.2.2 (a). For bias voltages below 30

mV per period, however, the EMC method yields a very small current density. The energy separation

of the electronic states simply does not allow efficient scattering of the electrons by LO-phonons for

producing a current. We name this the coherent regime, since NEGF can still reproduce the experi-

mental curve at these bias points. For this QCL, the dominant transport mechanism in this regime is

the coherent multi-barrier tunneling [19]. We illustrate this in more detail in Fig. 3.2.2 (b), which shows

IV-characteristics resulting from a ballistic NEGF calculation when all incoherent scattering mechanisms

are neglected (* dashed line). At low bias voltages, results of the ballistic calculations agree with results

of NEGF calculations including incoherent scattering (+ dashed line) which indicates the coherent nature

of transport in this regime. Since coherent transport is neglected in EMC (× solid line in Fig. 3.2.2 (a)),

the current density is very small in exactly that bias range which the NEGF formalism identifies as the

coherent regime.

For voltages above 30 mV per period, the incoherent regime sets in. Here, incoherent scattering

significantly enhances the current density in both methods. This is illustrated in Fig. 3.2.2 (b) for the

example of interface roughness scattering. Calculations ignoring rough interfaces yield in the NEGF

formalism (* dashed) and in the EMC method (• solid) a significantly smaller current density than the

respective calculations including this effect (+ dashed for NEGF, × solid for EMC). Although the two

methods require different interface roughness parameters (slightly larger interface roughness step height)

to fit the experimental current, EMC can reproduce results of fully quantum mechanical calculations in
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Figure 3.2.2: (a) Comparison of the simulated currents to experimental results. (b) Different cases of transport, which are
shown to illustrate the contribution of the varying scattering and transport mechanisms.

the incoherent regime.

A well known issue arises when the discrete sharp energy levels in the EMC method get aligned

[25]. Any narrow anticrossing of discrete states yields highly delocalized wavefunctions. Thus, the EMC

method tends to overestimate the form factor and accordingly the scattering rate when discrete states are

aligned. In this situation, the overestimation of scattering in the EMC method causes artificial current

spikes [24] and often unreliable gain. Hence, bias voltages that correspond to aligned discrete states are

commonly avoided in EMC calculations [25].

In contrast to the IV-characteristics, the optical gain is sensitive to the linewidth of the resonant

states for every bias voltage. Therefore, the EMC method was augmented by a procedure that generates

a spectrum of resonant QCL states with finite lifetime [12]. In this procedure, the discrete energy

spectrum in Fig. 3.2.1 is multiplied by Lorentzian functions of widths that correspond to the calculated

out-scattering rates. In order to show that this procedure gives consistent results, we compare in Fig. 3.2.3

the local density of states (LDOS) of the EMC (a) and the NEGF method (b).

We see a reasonable agreement between the resulting LDOS of both methods. The only significant

difference is the missing resonance #4 in the NEGF calculation. State #4 in the EMC method originates

from an alignment of state #5 with a state of the preceding QCL period (see Fig. 3.2.1 and Fig. 3.2.3 (a)).

We model in our NEGF implementation only one QCL period with field free leads [73]. Therefore, the

states of the preceding period lie at slightly different energies and this state anticrossing with state #5

is absent in the NEGF model (compare Fig. 3.2.3 (b) with (a)).
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Figure 3.2.3: (a) EMC and (b) NEGF local density of
states of the simulated QCL at the peak-gain bias of
54.16 mV per period. We observe similar linewidth and
the missing level #4 in case of NEGF.
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Figure 3.2.4: The optical gain in EMC (solid) and
NEGF (dashed) at a bias of 54.16 mV per period. We
get quantitative agreement. The slight asymmetry in
EMC is explained in the text.

For the calculation of the gain in the EMC method we use the same procedure as for the LDOS, but

here the Lorentzian are weighted with the occupation inversion [12]. Optical gain in the NEGF method

is calculated in linear response [19], taking into account the occupation inversion and the finite linewidth.

The qualitative agreement in the LDOS of both models (see Fig. 3.2.3) explains the good agreement of

the predicted gain spectra shown in Fig. 3.2.4. We find the small discrepancy for photon frequencies

below approximately 2 THz to originate from the missing resonance #4 in the NEGF calculation, (see

Fig. 3.2.3 (a)).

3.3 Quantum cascade laser emitting at 3.4 THz

We investigate a resonant phonon THz-QCL [25] at a lattice temperature of 25K. The conduction band

profile and the relevant states in a single period of this QCL at a bias of 13.4 kV/cm are depicted in

Fig. 3.3.1. The structure has a larger doping and lasing frequency than the previously investigated QCL.

The upper and lower laser levels are marked by solid lines (4) and (2), while the upper and lower LO-

phonon depopulation levels (1) and (5) are dashed. A resonant phonon-depopulation structure is based

on the depletion of the lower laser level (2) through the upper phonon level (1) to the lower phonon level

(5). Aftewards, electrons are re-injected into the upper laser level of the next period through the injection

level (3). Note that the energy separation of the lower laser level (2) and state (5) of the next period

approximately equals the LO-phonon energy.

The current-voltage characteristics for the 3.4 THz structure are compared to experiment in Fig. 3.3.2.

Overall, the results of both methods agree well with experiments. However, we identify the same transport

regimes as for the 2.75THz QCL and find that the agreement of both methods depends on the respective

regime. The coherent regime discussed in the previous section, is also identified for the 3.4 THz QCL.

For low bias fields, the transport is typically dominated by coherent multi-barrier tunneling. For this
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Figure 3.3.1: Conduction band profile and wavefunctions squared for the investigated QCL. The wavefunctions serve as
input for the semiclassical EMC simulation. The modeled THz QCL (biased at 13.4 kV/cm) [25], consists of Al0.15Ga0.85As
barriers and GaAs wells with layer thicknesses (given inÅ): (38) 64 (24) 78 (54) 94 (24) 148, where the values in the
brackets represent the barriers. The underlined well contains a uniform sheet doping of 2.8 ×1010 cm−2.

structure, however, as we see from the ballistic curves, coherent multibarrier tunneling does not increase

the current in the coherent regime. We believe that the current is mainly carried here by the broadening of

the levels, which still allow scattering transitions in contrast to sharp energy levels in EMC. We conclude

that in the coherent regime, a realistic model requires the self-consistent inclusion of the level broadening

and/or coherent multibarrier tunneling.

When the state alignment in this kind of QCL allows for the resonant emission of LO-phonons, a major

fraction of the charge transport is controlled by incoherent scattering. This is the incoherent regime as

illustrated in Fig. 3.3.2. The ballistic NEGF calculation (dotted), which ignores any kind of incoherent

scattering, strongly deviates from the experimental data (dashed) for bias fields above 7 kV/cm. The

bias of 7 kV/cm marks the borderline between the coherent and incoherent transport regimes. Since the

EMC method does not include the finite linewidth of the resonant states, it notoriously underestimates

the coherent tunneling at low bias fields. For this reason, the EMC method fails to predict transport in

the coherent regime.

The 3.4THz QCL exhibits large current spikes in the EMC simulation. These artifacts occur due

to the narrow anticrossing of the device states especially between 7-10 kV/cm. Typically an anticrossing

below 2 meV causes the wavefunctions to overlap considerably. Furthermore the energy conservation

also gets fulfilled more easily due to the small level spacing. The large overlap and close level spacing

favorizes scattering between these two levels, which is overestimated, leading to the overestimation of
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Figure 3.3.2: Calculated and experimental current-voltage characteristics of the THz-QCL in Ref. [25]. The ballistic
NEGF calculation (dotted) ignores any incoherent scattering and yields much smaller current densities than results of
NEGF calculations including all relevant scattering mechanisms (dash-dotted). Results of the EMC method (solid) agree
quantitatively with NEGF calculations and experimental data (dashed) for bias fields above 10 kV/cm.

currents in the device. The current spike of the EMC method (solid in Fig. 3.3.2) at approximately

8.3 kV/cm originates from the alignment of the QCL states 1 and 3 (see Fig. 3.3.2). Current spikes,

however usually do not occur in the region where the maximum gain is observed in THz QCLs. This is

also the case for the 3.4 THz QCL, where EMC agrees well to the experiment above 10 kV/cm.

In Fig. 3.3.3 we compare the spectral gain profile for the two methods at the bias field of 13.4 kV/cm.

We see a qualitative agreement, which confirms that in the incoherent regime transport is mainly semi-

classical and the NEGF gain can be reproduced by EMC. We mention, however, that we consider the

above results qualitative and the complete understanding of the nature of spectral gain in QCLs would
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Figure 3.3.3: Spectral gain profile for the 3.4 THz QCL calculated by EMC and NEGF.
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require further investigations.

3.4 Summary

We have compared results of the semi-classical EMC and the fully quantum mechanical NEGF method

for stationary charge transport in quantum cascade lasers and Stark ladders. We find in the incoherent

transport regime that the semi-classical EMC transport model nicely agrees in the predicted current

density and optical gain with results of the fully quantum mechanical NEGF method. In particular,

both models reproduce experimental results. For bias voltages significantly below threshold, coherent

multi-barrier tunneling dominates the transport. Since EMC does not include this type of transport, it

underestimates the current density in this regime. Nevertheless, the optimization of QCL designs requires

reliable predictions close to and above threshold. Therefore, we have shown that for the purpose of design

optimization, the numerical load of a detailed NEGF calculation can be avoided and the numerically

efficient EMC method is appropriate.

For Stark ladders that have weakly confined states, we have found that tunneling in the continuum

states above the structure can play a considerable role in transport, which is not reproducible by EMC.

The results for the 2.75THz and 3.4THz QCL prove also that every QCL has different amounts of ballistic

transport, however when all the scattering rates are included, the transport in the incoherent regime is

semiclassical.
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Chapter 4

Temperature performance of THz QCLs

Quantum cascade lasers offer a compact approach to coherent generation in the THz regime [9]. The fre-

quency range of 1-10THz is important for linking optics and electronics as well as many new applications

could arise from compact laser sources in this range. For example THz imaging for biological, medical

or security applications. Furthermore quality control for drug manufacturing, remote sensing of earth’s

atmosphere and study of star and galaxy formation as well as detection of concealed drugs explosives or

weapons. A good summary of the work that has been done for covering the ’THz gap’ has been recently

published [9].

One alternative for generating coherent THz radiation are terahertz quantum cascade lasers (QCLs),

which since 2001 have been subject to continuous optimization with respect to temperature perfor-

mance and output power. Particularly, room temperature operation in the terahertz regime has been

a long-standing goal. Progress has been made by introducing resonant phonon depopulation (RP) de-

signs [71, 74], reducing the number of wells per device period [75], and by applying copper metal-metal

waveguides [74]. Optimizations with respect to the diagonality of the lasing transition resulted in a

3.9 THz QCL operating at a record temperature of 186K [66]. However, efforts in improving the tem-

perature performance of a similar vertical 3.2 THz structure by introducing some degree of diagonality

failed [76]. The goal of this chapter is to clarify these apparently contradicting results and to investi-

gate the role of lasing transition diagonality for the optimization of RP terahertz QCLs with respect to

temperature operation.

4.1 Design of THz QCLs

We have designed and analyzed three-quantum-well terahertz QCLs with different degrees of diagonality

and frequencies between 1.8 and 4.8THz. For the self-consistent modeling of QCLs, we have used our

81
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Table 4.1: Overview of the designed THz QCLs. All layer thicknesses are given in angstrom, and bold numbers indicate
barriers. The underlined wells are doped with a sheet density of 2.7×1010 cm−2 in their 55Å-wide middle region.

Freq. 0% diagonal 30% diagonal 50% diagonal 70% diagonal
1.8 THz 46/98/31/76/43/161 49/94/35/78/47/161 51/92/39/80/48/161 52/91/48/80/49/161
2.3 THz 48/95/27/73/42/157 51/90/31/77/46/158 52/89/35/80/47/159 52/88/42/81/48/160
2.8 THz 48/94/24/72/42/157 51/89/28/78/46/159 52/87/32/80/47/159 53/86/39/81/48/159
3.2 THz 48/96/20/74/42/161 51/90/24/81/46/163 52/88/29/84/47/163 52/87/36/86/48/163
4.1 THz 47/99/15/73/40/164 51/88/19/83/44/164 52/86/23/87/45/164 53/85/32/89/47/164
4.8 THz 49/98/12/71/39/163 52/86/15/84/42/164 53/83/20/89/44/164 54/82/29/92/45/164

semiclassical ensemble Monte Carlo (EMC) simulation tool [28, 25, 31] which we compared to full quan-

tum transport methods [28, 62] in the previous chapter. As discussed in the previous chapters, the EMC

simulation tool has been specifically developed for the analysis of QCLs [12, 27], self-consistently includ-

ing the scattering mechanisms, namely, electron-electron (e-e), electron-longitudinal optical and acoustic

phonon, and electron-impurity scattering. Since interface roughness highly depends on the growth process

and its exact parameters are difficult to measure, this scattering mechanism is included phenomenologi-

cally using typical parameter values [12, 62]. For the design of GaAs/Al0.15Ga0.85As THz QCLs, barrier

heights between 135-150 meV are commonly used [71, 74, 75, 66, 76]. For our simulations we assumed

a barrier height of 165meV, corresponding to 72% conduction band offset [77]. This larger value was

utilized to avoid sharp anticrossing of the lower laser level with weakly-bound upper states in the second

downstream injector, arising in some of the investigated designs and leading to well-known simulation

artifacts [25]. Effective electron masses of 0.067 in the wells and 0.076 in the barriers are assumed. We

verified that the observed trends are robust with respect to the assumed barrier heights and interface

roughness values.

For our analysis, we have designed QCLs with different degrees of diagonality at various operating

frequencies. The degree of transition diagonality between upper and lower laser states is quantified in

terms of the oscillator strength fosc, normalized to the value for the corresponding vertical design fvert
osc .

Thus, for the vertical structures we have fosc/fvert
osc = 1, corresponding to a 0% diagonal design. A design

with fosc/f
vert
osc = 0.7 is referred to as a 30% diagonal structure, etc. In order to make the simulation results

comparable, a special effort was made to keep laser designs very similar. In particular, the upper and lower

laser level anticrossing energies with injector states (for injection and extraction, respectively) were kept

in the range 1.5-1.6meV and 3.3-3.6meV, respectively. If we assume the Al0.15Ga0.85As barrier height

to be 135meV, these injection/extraction anticrossing energies become 1.95-2.0meV for the injection

anticrossing and 4.25-4.6meV for the extraction anticrossing, which is in line with the injection/extraction

anticrossing values used in current state-of-the-art devices [74, 75, 66, 76]. The energy separations between

the upper and lower injector states were kept in the range 37-39meV in all laser designs. These parameters

combined with the desired laser operating frequency and diagonality of the laser transition uniquely define

the layer sequence for the structure [75]. The layer thicknesses of the designed structures are summarized

in Table 4. Experimentally, the 0% diagonal structures were tested for the 2.3 THz, 3.2 THz, and 4.1THz
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Figure 4.2.1: Occupation of the upper and lower laser level (solid lines), injection level (dashed lines) and ground level
(dotted lines) for the a) 2.3, b) 3.2 and c) 4.1 THz structure. Furthermore, the temperature dependence of the d) injection
efficiency into the upper laser level, e) parasitic injection efficiency into the lower laser level, and f) gain for the 2.3, 3.2
and 4.1 THz structure is shown. The inset contains a close-up of the gain in the technically relevant temperature range of
150-200 K, clearly showing the superior performance of the 3.2 THz QCL in this temperature range.

designs [76]. Also copper double-metal 3.2 THz QCLs with an active region based on a 30% diagonal

transition were tested experimentally. The devices operated up to 174K [76]. which is lower than the

maximum operating temperature of 178K for similar devices based on a vertical 3.2 THz design [76].

4.2 Temperature performance and frequency

We present simulation results for the structures from Table 4 with 0% diagonality at the frequencies of

2.3, 3.2 and 4.1THz. The best performing device was operating up to about 174K at a frequency of

3.2 THz [76, 22]. The three well design THz QCLs discussed in this chapter have four relevant energy

states: the upper and lower laser level and the upper and lower phonon depopulation level in the injector

well (the underlined wells in Table 4.

In Fig. 4.2.1 (a), (b) and (c), the temperature dependent occupations are shown for these levels.
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Solid lines represent the upper and lower laser level, respectively, while the most occupied is the lower

LO-phonon depopulation state. At elevated temperatures, all three structures exhibit a reduced upper

laser level population and an increased lower laser level occupation, giving rise to a reduced inversion.

Notably, the 2.3 THz structure features the lowest degradation with temperature, but also the smallest

initial population difference. In contrast, the 4.1 THz QCL has the highest occupation inversion at low

temperatures, but the degradation with temperature is also large. The 3.2 THz QCL is between these

two cases, explaining the superior THz QCL performance at this frequency.

For a more detailed analysis, we have determined the injection efficiency into the upper laser level and

the parasitic injection into the lower laser level, shown in Fig. 4.2.1 (d) and (e). The least efficient injection

into the upper laser level and the strongest parasitic injection into the lower laser level is observed for the

2.3 THz QCL. This is a direct result of the close level spacing (reduced lasing frequency), which increases

the parasitic coupling between injector and lower laser level. The increased initial population and its

strong degradation with temperature for the 4.1 THz QCL is explained by the increased level spacing

that favorizes LO-phonon scattering from the upper to the lower laser level. The thermally activated

LO-phonon scattering is visible also in the decrease of injection efficiencies for the 4.1 THz structure

between 150 and 250K, while for lower frequency structures the decrease is moderate.

In terms of injection efficiencies, the devices operating at 3.2 and 4.1THz have similar values, however

the 3.2 THz structure has a slightly higher transition dipole (6.1 nm, while the 4.1 THz QCL has 5.8 nm)

giving a higher overall gain. These small deviations result in an increase of the maximum operating tem-

perature by a few Kelvins, which is observable experimentally. In Fig. 4.2.1 (f) we show the unsaturated

spectral gain for the three structures, where the best performing device is the 3.2 THz QCL, as observed

experimentally. The inset shows the technically relevant operating temperature regime between 150 and

200K.

In summary, low frequency devices are limited by increased parasitic injection into the lower laser

level due to the decrease of level spacing. High frequency devices are limited by thermally activated

LO-phonon scattering from the upper to the lower laser level due to increased level spacing, which is now

closer to the LO-phonon energy for these structures. There is an optimum frequency of around 3THz,

where the tradeoff between parasitic injection and thermal activation is optimum, making these THz

QCLs the devices with the best temperature performance in the case of vertical lasing transitions.

4.3 Temperature performance and diagonality

As we go from 0% diagonal to 70% diagonal structures, the wavefunctions get more localized in a single

well as shown in Fig. 4.3.1 for the 3.2 THz structure. From the basic perspectives of THz QCL design, the

diagonal laser transition is expected to help improve the electron injection efficiency into the upper laser

state, suppress electron leakage from the upper laser state to the downstream injector, and reduce the
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Figure 4.3.1: Conduction band diagram for the 3.2THz QCL with (a) 0% diagonality and (b) 70% diagonality. Upper and
lower laser levels are marked by red and black bold solid lines.

nonradiative electron scattering rate from the upper laser state; however, the diagonal laser transition

results in smaller transition dipole moment compared to a vertical transition [66, 76]. One may expect

that THz QCL structures based on vertical design may provide higher gain at lower operating temper-

atures, when electron injection into the upper laser state is efficient and the LO-phonon scattering of

thermally excited electrons in the upper laser state [78] is suppressed. However, diagonal transitions may

have advantages at higher operating temperatures. Because the parameters of the electron transport (in-

jection efficiencies and lifetimes in various laser states) are difficult to estimate analytically, we use EMC

simulations to compare the peak gain of devices with various diagonalities at different temperatures.

Fig. 4.3.2 shows the temperature dependent peak gain for the designed structures in Table 4, as ob-

tained by our EMC simulations. As expected, for increased diagonality, we observe a decreased gain at

low temperatures, but also a smaller gain degradation with temperature. At laser lattice temperatures

around 150-200K, representing the currently relevant range for temperature performance optimizations,

diagonality does not offer an advantage for the low frequency structures that we studied. Specifically, in

case of the 3.2 THz design we see no improvement of the temperature performance for the 30% diagonal

as compared to the 0% diagonal structure, which is consistent with experimental observations [76]. For

higher lasing frequencies, diagonal designs offer clear advantages. The reason is that when the energy

spacing between upper and lower laser level increases towards the LO-phonon energy (36meV in GaAs),

scattering of thermally excited electrons in the upper laser level becomes very strong even at modest

temperatures [78], resulting in reduced population inversion and thus a strongly decreased peak gain.

This detrimental mechanism is suppressed in diagonal designs, which for high operating temperatures

maintain increased population difference outweighing their reduced oscillator strength. For low frequency

structures, where LO-phonon scattering of thermally excited electrons between the laser levels is less pro-

nounced, diagonal designs offer an advantage only at higher operating temperatures, where the thermal

activation of LO-phonons is stronger. Thus, for the currently reached operating temperatures [76, 66],
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we find improvements in peak gain only for designs operating above approximately 3.5 THz.

For additional details on our simulation results, we show in Fig. 4.3.3 the population inversion Δn

between the upper and lower laser level and gain bandwidthΔf (full width at half maximum) at maximum

gain, for 2.3 THz and 4.1THz structures of different diagonalities. We note that the peak gain scales with

foscΔn/Δf . Overall, the 2.3 THz structures (Fig. 4.3.3 (a)) exhibit a higher Δf in our simulations than

the 4.1 THz designs (Fig. 4.3.3 (b)), which is mainly due to increased Coulomb scattering as well as IR
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temperatures of 150 and 200K, respectively. The bias is chosen as to maximize the peak gain.

scattering for these structures. Higher Δn and, to a lesser extent, smaller Δf of more diagonal designs

overcompensate the reduction of fosc in case of the 4.1 THz structures, however not for the 2.3 THz QCLs.

For both structures, a decrease of Δf with increasing diagonality is observed. The gain broadening is

related to scattering events involving the laser levels. For diagonal lasing transitions, all the contributions

get reduced except for IR scattering, which may go up or down. Furthermore, we observe an increase of

Δf with temperature, which is due to enhanced LO-phonon scattering.

The effect of diagonality d is further investigated by introducing the relative quantities Δnrel =

Δn(d)/Δn(0%) and Δf rel = Δf(d)/Δf(0%). In Fig. 4.3.4 we plot Δnrel and Δf−1
rel as a function of

temperature for d = 30% (Fig. 4.3.4 (a)) and d = 50% (Fig. 4.3.4 (b)). Comparing Fig. 4.3.4 (a) to (b),

we find that Δnrel increases with temperature. This trend is most pronounced for 4.1 THz devices with

50% diagonality. Very little change of Δf−1
rel in the temperature range shown in Fig. 4.3.4 indicates that

diagonal structures at elevated temperatures mainly profit from improved inversion. Finally, Fig. 4.3.4

clearly shows that diagonal designs offer a much stronger improvement in inversion for the 4.1 THz QCLs

than for the 2.3 THz structures.

To investigate the robustness of our results, simulations with a fixed lasing transition linewidth (of
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1THz) were performed (not shown). They confirm the previously obtained trend of the spectral peak

gains for the different structures. We find that for the case of a fixed linewidth, the gain improvement

for diagonal designs is only slightly reduced.

4.4 Robustness with respect to interface roughness

We have doubled the interface roughness mean height from 1.2 to 2.4 Å, to check the generality of our

results with respect to different material quality. We find the same message to be valid for increased

interface roughness, as shown in Fig. 4.4.1. Here we see a reduction of gain with the increase of interface

roughness (top figures). Furthermore, the optimum amount of diagonality for high frequency structures

changes with interface roughness, thus it must be chosen carefully. For higher interface roughness,

diagonality should be somewhat decreased to suppress the interface roughness scattering. All in all

the curves are relatively close, meaning that these optimizations would change the maximum operating

temperature only by a few Kelvin.

4.5 Summary

We have designed three-quantum-well THz QCLs at various frequencies featuring different degrees of

diagonality, and analyzed the benefits of diagonal laser transitions for high temperature operation. The
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relatively good performance of vertical transition (0% diagonal) QCLs around 3THz is explained by

an interplay between parasitic injection in the lower laser level and LO-phonon emission between the

lasing states. The former limits low frequency structures, while the latter gives a limit for high frequency

QCLs. We find that the main advantage of diagonal structures is the considerably increased inversion;

additionally, the reduced gain bandwidth of diagonal transitions is beneficial. These effects can outweigh

the reduced oscillator strength and provide advantage in QCL temperature performance when diagonality

is considered. For designs operating above approximately 3.5 THz, we find that diagonal structures offer

advantages at operating temperatures already below 200K. For lower frequencies the advantages offered
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by diagonal designs become relevant only at operating temperatures of 200-250K or higher. These

simulation results provide a basis for a further optimization of the temperature performance of terahertz

QCLs.



Chapter 5

Modeling of mid-infrared quantum

cascade lasers

We have specifically adapted the material parameters and the EMC code for the simulation of InGaAs-

based mid-infrared (MIR) QCLs in this thesis. Since MIR QCL structures often reach a considerable

wall-plug efficiency (WPE) and output power, we investigate the effects of the stimulated electronic

processes on transport as well as the influence of the various scattering mechanisms. Furthermore we

show that at various wavelengths EMC can well reproduce experimental results. The validation of our

EMC solver against THz QCLs in Chapter 3 and Chapter 4 and infrared QCLs in this chapter will offer

the possibility to model complex structures. One example would be difference-frequency generation of

terahertz radiation which is a long standing goal.

5.1 Short injector QCL operating at 8μm

In the following, we employ our self-consistent EMC simulation tool for the analysis of a short-injector

mid-IR In0.6Ga0.4As/In0.365Al0.635As QCL [56]. Such short injector and injectorless indium-based MIR

QCLs are among the most efficient structures up to date, having high wall-plug efficiencies, emitting more

light than heat in special cases [7] and easily providing watt level output powers at room temperature [79].

We discuss the role of the various scattering mechanisms and investigate the influence of non-parabolicity

for the calculation of the subband energies and wave functions. We also model the carrier-light coupling in

the structure and self-consistently calculate the QCL output power [33], and identify mechanisms which

limit the obtainable output power. Our EMC simulation tool has proven of value for the simulation of

THz QCLs [24, 12], and has been extended to account for effects relevant in MIR structures.

91
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5.1.1 Effects included in the simulation

Scattering mechanisms included are electron (e)-longitudinal optical phonon interactions including hot

phonons, as well as e-acoustic phonon, e-impurity, e-interface roughness, e-e and e-alloy scattering. All

scattering mechanisms are self-consistently implemented, only using established material parameters [80]

with scattering rates given by Fermi’s golden rule. Since the exact values of the interface roughness

parameters are not well known and depend on the growth conditions, we have measured the interface

roughness indirectly from photoluminescence measurements at liquid nitrogen temperature and found a

related scattering lifetime of 60 fs. In our simulations we used the interface roughness parameter values

of Δ=0.06 nm and Λ=17 nm to explicitly reproduce this measured value and account for the product of

ΔΛ ≈ 1 nm2 given in [81, 82]. The EMC tool is coupled to a Schrödinger-Poisson solver which delivers the

subband energies and wave functions [27]. Band non-parabolicity has been included to correctly account

for the energetic level separation in the device, which is needed for the accurate calculation of the current-

voltage (I-V) curves. Non-parabolicity is known to change the higher lying states in a heterostructure. For

an appropriate implementation, we also corrected the non-parabolicity parameter by the split-off energy

[37]. In our implementation, the temperature dependence of the non-parabolicity parameter enters via

the temperature dependent bandgap. To account for alloy scattering in the investigated material system,

we have added e-alloy scattering in the random alloy approximation [42] as derived in Section 2.3.7. The

used scattering potentials were 420meV and 500meV in the wells and barriers respectively [83], which

only depend on the type of the alloy materials but not their concentrations. For LO-phonon scattering,

we took into account only InAs-like phonons, since the GaAs- and InAs-like LO-phonon energies (33meV

and 29meV, respectively) are relatively close together [84].

5.1.2 Role of the scattering mechanisms

Room temperature results are shown for the short injector In0.6Ga0.4As/In0.365Al0.635As mid-IR structure

emitting at 8μm [56]. The QCL consists of 64 periods in the active region; both facets are uncoated.

Measurements were performed in pulsed mode.

Current-voltage curves for the present QCL were explicitly measured by growing the device without

active region to account for the voltage drop at the contacts. We have performed EMC simulations

for different bias points and have compared the obtained current-voltage characteristics and the optical

output power to experiment. First we assess the importance of the different scattering mechanisms for

the investigated structure. We evaluate their contributions to the current by switching off one type of

scattering at a time in our simulations. LO-phonon scattering, which governs the carrier transport in the

simulated QCL, is always taken into account. As shown in Fig. 5.1.1, interface roughness scattering plays

an important role for the current, and a moderate influence of alloy scattering is also observed. Alloy

scattering is found to be more important at higher biases, especially in the lasing region. Interestingly,

Coulomb interactions, i.e., e-e and impurity scattering, practically do not contribute to the current, in
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Figure 5.1.1: EMC simulation results for the current-voltage characteristics. We observe a large effect of interface roughness
and also an influence of alloy scattering on the total current, while e-e scattering and impurity scattering can be practically
neglected. A comparison to experiment is shown in the inset, where we find qualitative agreement between EMC and the
experimental result.

contrast to GaAs/Al0.15Ga0.85As THz QCLs [29]. As shown in the inset of Fig. 5.1.1, we find good

agreement for the EMC and experimental currents, however these simulations were done without taking

into account carrier-light coupling. We note that stimulated photon emission and absorption events

lead to an increased current in the lasing region as discussed further below [33], which can exceed the

experimentally measured value. On the other hand, preliminary simulations indicate that an inclusion of

lifetime broadening of the energy levels in EMC carrier transport simulations would result in a somewhat

reduced current, counteracting this effect.

In Fig. 5.1.2, the influence of the various scattering mechanisms on the unsaturated spectral gain profile

is investigated, i.e., carrier-light coupling is neglected here. We choose a bias of 60 kV/cm, yielding the

maximum gain in our simulations. Also the experimental measurements indicate that this is close to

the optimum bias, since the onset of the negative differential region occurs slightly above this point (see

Fig. 5.1.1). Again we switch off one of the scattering mechanisms at a time and compare the result to the

reference gain profile, obtained by the full EMC simulation. As shown in Fig. 5.1.2, interface roughness

scattering is very important, significantly reducing the peak gain and increasing the gain bandwidth.
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Figure 5.1.2: Influence of the different scattering mechanisms on the spectral gain profile. The result of the full EMC
simulation is indicated by the bold solid line. The narrow solid, dashed, dotted and dash-dotted lines corresponds to
the cases where we switch off alloy, interface roughness, impurity and e-e scattering, respectively. We see that interface
roughness scattering leads to a significant reduction of the gain.

Surprisingly the influence of alloy scattering on the spectral gain, as shown by the narrow solid line, is

much smaller than on the current. The influence of e-e and impurity scattering on the gain is moderate.

We conclude that gain broadening is mainly due to LO-phonon scattering as the dominant scattering

mechanism and interface roughness scattering, while impurity and e-e scattering have secondary effects.

Alloy scattering mainly gives rise to parasitic effects which get stronger above the threshold current,

however it has no direct influence on the gain spectra for the present device. We observe a slight

discrepancy (0.4μm) between the position of our gain maximum and the measured lasing wavelength.

This might be partially due to the uncertainty of the parameters used in our simulations or the effective

mass approach which is not as accurate as a full k·p analysis.

5.1.3 Carrier-light coupling

We have also performed coupled carrier-field simulations, allowing us to calculate the output power. The

results are compared to experiment, as shown in Fig. 5.1.3. Simulations have been performed by fixing

the lasing frequency to 8.04μm, as experimentally measured [56]. The waveguide and mirror loss is

15.6 cm−1 and 3.2 cm−1, respectively, and the confinement factor is 65%; for the refractive index, we use

the value 3.22. As shown in Fig. 5.1.3, we get good agreement for the output power as a function of the

applied bias. The discrepancies at higher biases can be explained by the uncertainties of the exact device

parameters as well the onset of the negative differential region. Above 60 kV/cm, we observe relatively
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Figure 5.1.3: Output power calculated from the EMC method and compared to experiment. Simulations were performed
by fixing the lasing frequency to 8.04μm. We observe a good agreement for the output power at various bias points.

high output powers in the simulation, as shown in Fig. 5.1.3. However, such high bias values are already

close to the onset of the negative differential resistance regime (see inset of Fig. 5.1.1), which is electrically

unstable in experiment.

In Fig. 5.1.4, we show the influence of photon-induced scattering on the current density. Here we clearly

observe an increase of the current above threshold, since photon-induced scattering events contribute

significantly to the total current in the device. The high current density value above 60 kV/cm for

carrier-light coupling included is a consequence of the high output powers obtained in the simulation (see

Fig. 5.1.3), and are not relevant for the comparison with the experiment as discussed above.

5.2 High wall-plug efficiency QCL operating at 5 μm

Recently QCLs with wall-plug efficiencies (WPEs) of around 50% were reported for the first time [6, 7]. In

such structures, light emission and absorption are not only relevant with respect to the generated optical

power, but also strongly affect the carrier transport in the devices. In fact, for the low temperatures

where these high efficiencies are reached, the photon-induced processes dominate over the other scattering

mechanisms. Thus, to adequately model the operation of these lasers, the optical cavity field has to be

considered in the simulation. While this is routinely done in one-dimensional simulations [85, 86, 87, 88],

the cavity field is usually neglected in fully three-dimensional (3-D) approaches like the ensemble Monte-

Carlo (EMC) [30], non-equilibrium Green’s functions (NEGF) [17, 19] or 3-D density matrix [89, 90]
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Figure 5.1.4: Current-voltage characteristics with (dashed line) and without (solid line) electron-photon scattering events
included.

method. However, such 3-D simulations, where the in-plane carrier dynamics is explicitly considered,

do not only yield level occupations, but also the kinetic carrier distributions within these levels. Here,

we employ the EMC method, which has been intensely used to investigate the carrier transport in both

MIR [30, 32, 64, 91, 92, 93] and THz [94, 25, 31, 24, 95, 22] QCLs. EMC uses self-consistent coupled

simulations of the carrier transport and the optical cavity field [33]. The EMC method is a semiclassical

approach, i.e., quantum correlations are neglected in contrast to NEGF as discussed in Chapter 3.

The goal of this section is to analyze the carrier transport and lasing operation in MIR QCLs [7],

with a particular focus on the influence of photon-induced scattering. Specifically, we show that the

inclusion of light emission and absorption in the simulation is crucial to obtain a realistic description

of such devices. Furthermore, our analysis provides insight into the carrier dynamics on a microscopic

level, for example the kinetic electron distributions in the upper and lower laser level which are hardly

accessible to experimental observation.

5.2.1 Effects included in the simulation

All the relevant mechanisms like electron (e)-longitudinal optical (LO) and acoustic phonon, e-interface

roughness, e-impurity and e-e scattering are routinely considered in our simulation tool [12, 11]. Moreover,

various effects relevant for MIR QCLs based on the InGaAs/InAlAs material system have been added. We

have included random alloy scattering [96], with a scattering potential of 0.3 eV reported for high indium

content InGaAs [97]. Furthermore, we account for InAs- and GaAs-like phonons, using their composition
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dependent values for the phonon energy [84]. The scattering rates are weighted by the concentration

of the individual materials (InAs and GaAs). The influence of the AlAs-like branch is believed to be

negligible in QCL structures [98]. Here, the bulk phonon approximation is adopted, which was shown to

be a valid approach for the simulation of such QCL structures [92].

The (parallel and perpendicular) effective masses have been implemented considering strain [99] and

non-parabolicity. Our implementation of non-parabolicity is based on the approach developed by Eken-

berg. Non-parabolicity parameters were determined from the material bandgap [37], using temperature

dependent values [80]. In the InGaAs material system, the parallel non-parabolicity is enhanced by a

factor of 1.7 as compared to the perpendicular value [100]. The perpendicular effective mass affects the

subband energies and wavefunctions, as considered in our Schrödinger-Poisson solver [27]. The parallel

effective mass is accounted for by assigning a different value to each subband, affecting the scattering rates

in the EMC solver. Here we focus on simulations at a lattice temperature of 40K where the investigated

structure operates with a record wall-plug efficiency of above 50% [7]. At such low temperatures, the

kinetic electron energies are still moderate, whereas for room temperature operation, a more complex im-

plementation of non-parabolicity might be required, e.g., based on k·p theory [64, 91, 92]. Furthermore,

at low temperatures, the electron leakage into indirect valleys, not considered in our simulations, is very

small [64, 91].

The interface roughness is typically described by a mean height Δ and a correlation length Λ. In

contrast to the well-known bulk material parameters, this quantity is hardly accessible to experimental

measurement and depends critically on the growth conditions. Thus, there is an uncertainty regarding the

values ofΔ and Λ [101, 12]. However, experimental data indicate thatΔΛ ≈ 1 nm2 for the InGaAs/InAlAs

structures [81, 82], reducing the uncertainty to a single parameter value. We choose Δ = 0.06 nm, which

yields the best agreement with the experimental results and which was also used in the previous section

for the QCL emitting at 8μm. This value is somewhat lower than previously used values for strain-free

lattice-matched structures [81, 102]. However, we note that vertical correlations, which are not considered

in our simulations, can reduce the effect of interface roughness for strained (e.g., strain-balanced) quantum

cascade lasers [81], as considered here.

Lasing is implemented based on a recently published approach, treating the photon dynamics in

terms of classical intensity evolution equations and accounting for photon-induced scattering in the EMC

solver [33, 103]. In this way we can self-consistently describe the coupled carrier-light dynamics due to

absorption as well as stimulated and spontaneous emission. For the investigated design operating at 5μm

[7], the mirror loss, which amounts to 6.4 cm−1 for a 2mm long structure, dominates the waveguide loss,

which is about 0.5 cm−1 for such cavities [55]. The confinement factor was chosen to be 0.8 as found for

a similar design [55]. For our simulation, we use 1200 longitudinal modes in the frequency range between

50 and 80THz, corresponding to a Fabry-Perot mode spacing of 25GHz.
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Figure 5.2.1: Current-voltage characteristics. The EMC simulation results with (X marks) and without (crosses) lasing
included are compared to available experimental data [7] (solid curve). The electric current is governed by stimulated
photon emission and absorption processes, as has to be expected for a WPE as high as 50%.

5.2.2 Wall-plug efficiency, output power, IV curves: comparison to experi-

ment

Results are presented for a recently fabricated high efficiency QCL operating at 5μm. The simulations

were performed at a lattice temperature of 40K, where the record WPE of 53% was observed [7].

In Fig. 5.2.1, we compare the current-voltage characteristics provided by EMC simulations to experi-

ment. The simulations were performed at biases ranging from 115 kV/cm to 145 kV/cm. For comparison

to experiment, these were converted to the voltage points in Fig. 5.2.1, by considering 80 stages with a

thickness of 22.1 nm each [7]. Above threshold, good agreement is found if lasing is included, while the

current due to non-radiative processes (EMC without lasing) is lower by a factor of almost 3 than the

experimentally measured current. This shows that stimulated processes become more and more impor-

tant for a correct description of the carrier transport as the WPE of QCLs is improved. On the other

hand, the spontaneous photon emission rates in our simulation are far too low to affect the carrier trans-

port, which is in agreement with theoretical considerations [104]. The onset of the negative differential

resistance (NDR) regime agrees well, occurring at 25.1V for the EMC with lasing included and 25.6V

in the experiment. For low fields where the energy levels are not aligned, the simulation underestimates

the experimentally observed current. Here, the scattering-induced transport is not efficient, and the

remaining current can likely be attributed to coherent low-field transport which is not included in the



99 5.2. High wall-plug efficiency QCL operating at 5μm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10
20
30
40
50
60

Current [A]

W
al

l−
pl

ug
 e

ffi
ci

en
cy

 [%
] 0

2
4
6
8

10

O
pt

ic
al

 p
ow

er
 [W

]
Exp.
EMC

(a)

(b)

Figure 5.2.2: (a) Current-optical power and (b) current-WPE characteristics. The EMC simulation results with lasing
included (X marks) are compared to available experimental data[7] (solid curve).

EMC simulation [14] as discussed in Chapter 3. For design optimization with respect to the WPE, the

parasitic channels should be suppressed and the stimulated emission into the lasing modes maximized.

Such a task can only be performed with an approach taking into account the optical cavity field.

In Fig. 5.2.2 (a) and (b) we compare the simulated and experimental current-output power and current-

WPE characteristics. In the EMC simulation, the bias dependent WPE ηWPE is computed as ηWPE =

Popt/Pel. Here, Popt is the simulated optical power emitted through both facets as in the experiment

[7], and the electric power Pel is the product of the applied voltage and the simulated electric current.

The simulated and experimental current-output power characteristics in Fig. 5.2.2 (a) show excellent

qualitative and quantitative agreement. The maximum emitted optical power is about 10W, which is in

both cases obtained around the onset of NDR, where the current reaches its maximum value of 0.8A. For

higher biases, i.e., in the NDR regime, the simulated optical power and electric current get reduced again.

The simulated threshold current is lower than the experimental value since we believe that transport is

coherent in the given region. Also the simulated and experimental current-WPE characteristics shown

in Fig. 5.2.2 (b) agree well. Particularly, the maximum simulated WPE of 49% below the onset of NDR

compares very well to the experimental value of 53%. The simulated high WPE value of 53.5% around

the onset of NDR is not observed in the experiment, which we attribute to the fact that the operation in

the NDR region is unstable due to domain formation [105, 106].
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Figure 5.2.3: (a) Simulated kinetic electron distribution f (E) in the upper and lower laser level with and without lasing
included. (b) Energy resolved electron density without lasing included; (c) energy resolved electron density with lasing
included. The upper laser levels are marked by solid rectangles, and the lower laser level is marked by dashed rectangles.

5.2.3 Kinetic carrier distribution

Full k-space three-dimensional simulation approaches like EMC can yield information on the microscopic

level, which is hardly accessible to experimental observation. In the following, we investigate the intra-

subband kinetic carrier distributions. These can be characterized by corresponding electron temperatures

only in the case of quasi-thermal equilibrium within the subbands, corresponding to a Maxwellian dis-

tribution for low doping. The kinetic electron distribution in the upper and lower laser level is shown in

Fig. 5.2.3 (a). The bias is 25.1V, where the simulated current and output power reach their maximum
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values. We note that for this bias, optical transitions from two upper levels contribute significantly to

lasing. For simplicity, we restrict our discussion to one of these states, since the kinetic electron distri-

bution function is found to be similar for the other level. The carrier distributions in the laser levels

change significantly by taking lasing into account (solid curves), as compared to the case without lasing

(dashed curves). The lasing action leads to a depletion of the upper laser levels and a filling of the

lower laser level, corresponding to the effect of gain saturation. In the inset of Fig. 5.2.3 (a), the electron

distribution in the lower laser level without lasing is shown on a logarithmic scale, i.e., a Maxwellian

distribution would produce a straight line. The distribution is highly non-Maxwellian with an additional

peak at around 250meV, corresponding to the energy spacing between upper and lower laser level. This

bump stems from nonradiative transitions from the upper laser level, mainly LO-phonon scattering as

the dominant nonradiative mechanism. The energetic extension of the bump is partly due to the kinetic

electron distribution in the upper laser level and the finite phonon energies of 29.5meV and 32.2meV

for the two LO-phonon branches considered here. E-e scattering, which is the predominant intrasubband

scattering mechanism, is unable to thermalize the intrasubband carrier distribution strongly enough to

suppress the bump [30, 63]. The inclusion of lasing action leads not only to a filling of the lower laser

level, but also to a more thermalized kinetic electron distribution, while the bump at around 250meV

still persists. A least square fit produces an electron temperature of Te = 314K (upper laser level) and

Te = 344K (lower laser level) with lasing included. This is consistent with the observation that in strain

compensated structures the electronic temperature is clearly above the lattice temperature [107, 87].

In Fig. 5.2.3 (b) and (c), the energy resolved electron density (normalized to its maximum value) is

shown without and with lasing included, again for a bias of 25.1V. For the two quantum wells located

between 6 nm and 18 nm, the upper laser level is omitted, so that the high-energy bump discussed in the

previous paragraph, here located at around 1.9 eV, is clearly visible. By comparing Fig. 5.2.3 (b) and (c),

we can observe the changes in the energy resolved electron density for the laser levels without and with

lasing included. The high-energy tails of the kinetic electron distributions remain basically unaffected.

In particular, the additional high-energy peak for the lower laser level appears also if lasing is accounted

for.

We have also successfully tested our approach for a different high efficiency QCL design [6] using the

same material parameters, again finding good agreement with experiment.

5.3 Summary

We have closely compared current-voltage and output power results of a semiclassical EMC method to

experimental measurements and found qualitative agreement for two different MIR QCL. We identify the

importance of LO-phonon, interface roughness and alloy scattering for the carrier transport and gain of

MIR QCLs. The qualitative agreement of our simulations to the experimental measurements suggests
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that self-consistent EMC methods are valuable for the optimization of InGaAs-based MIR QCLs close to

the lattice match point of the InP substrate.

Based on a self-consistent EMC carrier transport simulation including the optical cavity field, we

have analyzed the effect of photon emission and absorption on the carrier transport in a high WPE

quantum cascade laser. In the regime where efficient lasing is obtained, we find that the inclusion of

photon-induced scattering is crucial for the correct calculation of the device current. Furthermore, a

comparison to experimental data yields very good agreement for the optical output power and WPE. An

analysis of those quantities, as also needed for design optimization, is only possible with an approach

which includes both the carrier transport and the optical cavity field. The EMC method also enables

us to investigate microscopic quantities such as the intrasubband kinetic carrier distributions, hardly

accessible to experiment. We observe strong deviations from an equilibrium distribution especially for

the lower laser level, where a high-energy peak in the electron distribution is found, caused by parasitic

transitions from the upper laser level. The upper and lower laser level carrier distributions are strongly

affected by the lasing action and approach each other, corresponding to gain saturation. Our results

show that the chosen method is well suited to model high efficiency MIR QCLs on a qualitative and

quantitative level, and to analyze the laser operation on a microscopic level which is hardly accessible to

experimental observations.



Chapter 6

Quantum corrections in EMC

In Chapter 3, we have compared semiclassical and fully quantum mechanical theories and found minor

deviations. In the ’conventional’ EMC method, Fermi’s golden rule is used for evaluating the scattering

rates, where we have no broadening of the initial and final energetic levels. Here, we would like to

extend our EMC method to account to some degree for quantum mechanical effects. This is performed

by applying a correction, so that we include the finite linewidth for the initial and final energies in the

evaluation of scattering rates. A full quantum mechanical simulator also considers this effect, since there

the energy levels have a finite and self-consistently calculated linewidth resulting from the scattering in

the device. As a first step towards a full quantum mechanical treatment, we implement the broadening

of the states, i.e., collisional-broadening in EMC, by replacing Fermi’s golden rule by a more general

expression. We will generalize only intersubband scattering, i.e., the case when the initial and final states

are not the same (n �= m) and we will apply the broadening to the energetic states. For the intrasubband

scattering, Fermi’s golden rule will be kept since it is believed that the effective intrasubband broadening

is largely reduced due to quantum coherence effects [12]. The starting point for deriving the correction

is the density-matrix theory for two-dimensional systems, with a general perturbation potential. After

generalizing Fermi’s golden rule, we also derive e-photon and e-LO phonon scattering in this chapter,

which then will contain the effect of collisional broadening. The other scattering mechanisms can be

derived in a similar manner. Furthermore we find that our quantum-corrected EMC approach, that now

accounts for collisional broadening, reproduces currents in the coherent regime, where the semiclassical

EMC method failed. The current in the incoherent regime remains practically unchanged, since transport

there is mainly semiclassical, as it was shown in Chapter 3.

6.1 Sinusoidal time dependence of the potential

As done for Fermi’s golden rule in Section 2.3 we derive a general scattering rule for the case of sinusoidal

potentials (harmonic perturbation), but now using the density matrix formalism instead of time dependent

103
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perturbation theory, The starting point is the Liouville-von Neumann equation for the time evolution of

the density matrix ρ,

i�
d

dt
ρ = [H, ρ] = Hρ− ρH. (6.1.1)

Here, Ĥ is the total Hamiltonian operator, i.e., the sum of the unperturbed system Hamiltonian and

the perturbation Hamiltonian. We define the Hamiltonian matrix in case of a time varying harmonic

perturbation in terms of its matrix elements
〈
m|Ĥ |n

〉
. Here the unperturbed system Hamiltonian Ĥ0

yields elements
〈
m|Ĥ |n

〉
= Enδmn. For the perturbation we make the ansatz V e−iωt + V ∗eiωt and we

obtain

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1 V12e
−iωt + V ∗

12e
iωt . .

V21e
−iωt + V ∗

21e
iωt E2

. .

. .

⎤
⎥⎥⎥⎥⎥⎥⎦
. (6.1.2)

Here, the eigenstates of the unperturbed Hamiltonian form the diagonal elements, while the perturbation

potentials are given by the off-diagonal terms. The diagonal perturbation elements were neglected, since

we derive the scattering rule for the intersubband case, and we will keep the calculation of intrasubband

scattering based on Fermi’s golden rule. We note that in the case, when H represents the interaction of

radiation with matter, V12 would be proportional to the applied field times the transition dipole of the

system [108]. In the general case, however, Vnm can represent any applied harmonic perturbation of the

system (for example phonon emission/absorption as well as photon emission/absorption). In analogy to

Eq. (6.1.2), we define the density matrix for the system as

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ11 ρ12 . .

ρ21 ρ22

. .

. .

⎤
⎥⎥⎥⎥⎥⎥⎦
. (6.1.3)

The diagonal elements correspond to the state occupations, while the off-diagonal terms represent their

coherent interaction. Using Eq. (6.1.1), we get the evolution equation for the first diagonal density matrix

element

i�ρ̇11 =
[
ρ11E1 + ρ21

(
V12e

−iωt + V ∗
12e

iωt
)
+ ρ31

(
V13e

−iωt + V ∗
13e

iωt
)
+ ...

]−[
ρ11E1 + ρ12

(
V21e

−iωt + V ∗
21e

iωt
)
+ ρ13

(
V31e

−iωt + V ∗
31e

iωt
)
+ ...

]
= (6.1.4)

=
∑
b

[
ρb1

(
V1be

−iωt + V ∗
1be

iωt
)− ρ1b

(
Vb1e

−iωt + V ∗
b1e

iωt
)]
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and for the first off-diagonal element

i�ρ̇12 =
[
ρ12E1 + ρ22

(
V12e

−iωt + V ∗
12e

iωt
)
+ ρ32

(
V13e

−iωt + V ∗
13e

iωt
)
+ ...

]−[
ρ11

(
V12e

−iωt + V ∗
12e

iωt
)
+ ρ12E2 + ρ13

(
V32e

−iωt + V ∗
32e

iωt
)
+ ...

]
= (6.1.5)

= (E1 − E2)ρ12 +
∑
b

[
ρb2

(
V1be

−iωt + V ∗
1be

iωt
)− ρ1b

(
Vb2e

−iωt + V ∗
b2e

iωt
)]

.

We can generalize the above equations for the time evolution of an arbitrary diagonal element

i�ρ̇nn =
∑
m

[
ρmn

(
Vnme−iωt + V ∗

nmeiωt
)− ρnm

(
Vmne

−iωt + V ∗
mne

iωt
)]

(6.1.6)

and off-diagonal element

i�ρ̇nm = (En − Em)ρnm +
∑
b

[
ρbm

(
Vnbe

−iωt + V ∗
nbe

iωt
)− ρnb

(
Vbme−iωt + V ∗

bmeiωt
)]

. (6.1.7)

The form of the above equations is still too complex to get an analytical expression for the scattering

rate from the initial state n to the final state m, i.e. ρ̇mm. We proceed by applying the substitution

ρnm ↔ ρnme−isign(n−m)ωt, (6.1.8)

to transform the system into the rotating-frame. This is useful for later performing the so-called rotating-

wave approximation [108]. Furthermore we assume that transitions involve only two levels, i.e., we neglect

non-diagonal transitions [109, 18]. Using the above approximation, ρnm depends only on the matrix

elements involving levels n and m (the initial and final state). The sum can be dropped and the resulting

equations are

i�ρ̇nn = ρmn

{
Vnme−i[1+sign(m−n)]ωt + V ∗

nmei[1−sign(m−n)]ωt
}
−

ρnm

{
Vmne

−i[sign(n−m)+1]ωt + V ∗
mne

i[1−sign(n−m)]ωt
}
− iγnnρnn + iΓn, (6.1.9)

for the diagonal and

i�ρ̇nm = [En − Em − sign(n−m)�ω] ρnm+

(ρmm − ρnn)
{
Vnme−i[1−sign(n−m)]ωt + V ∗

nmei[1+sign(n−m)]ωt
}
− iγnmρnm (6.1.10)

for the off-diagonal density matrix elements, where Γn contains the level filling due to the levels outside

of the considered two-level system. Here we have added the damping terms γnm, which we will calculate

self-consistently from the out-scattering rates. Due to the dephasing γmn, the off-diagonal terms reach

steady-state at some point corresponding to ρ̇nm = 0. In this case we can rewrite the off-diagonal
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evolution Eq. (6.1.10) as

0 = [En − Em − sign(n−m)�ω] ρnm+

(ρmm − ρnn)
{
Vnme−i[1−sign(n−m)]ωt + V ∗

nmei[1+sign(n−m)]ωt
}
− iγnmρnm, (6.1.11)

from which the off-diagonal elements can be calculated in equilibrium as

ρnm = (ρnn − ρmm)
Vnme−i[1−sign(n−m)]ωt + V ∗

nmei[1+sign(n−m)]ωt

(En − Em − sign(n−m)�ω)− iγnm
. (6.1.12)

The above formulation of the quantum coherence terms in steady-state contains emission (eiωt) and

absorption (e−iωt). Substituting Eq. (6.1.12) into Eq. (6.1.9) we find the time-evolution for the diagonal

density matrix element n, i.e., the occupation

i�ρ̇nn = (ρnn − ρmm)
−2iγnm
Δ2 + γ2

nm

[
Vmne

−i[1+sign(n−m)]ωt + V ∗
mne

i[1−sign(n−m)]ωt
]
·

·
[
Vnme−i[1−sign(n−m)]ωt + V ∗

nmei[1+sign(n−m)]ωt
]
− iγnnρnn + iΓn, (6.1.13)

where Δ = En−Em− sign(n−m)�ω is the detuning of the system. We write the expression for the case

of n−m > 0 (meaning En > Em) and apply the rotating wave approximation (RWA). The RWA assumes

that the dynamics of the occupations are described by a slowly varying time-dependent behavior, thus

terms proportional to e−2iωt average out, i.e., they are neglected. Hence Eq. (6.1.13) is simplified to

i�ρ̇nn = (ρnn − ρmm)
−2iγnm

(En − Em − �ω)2 + γ2
nm

V 2
nm − iγnnρnn + iΓn. (6.1.14)

The terms proportional to γnn and Γn are evaluated separately in the EMC simulation. Furthermore,

we assume that the considered electron is in state n with probability 1. In this case the scattering rate

from state n to m is

W em,abs
nm =

2

�
V 2
nm

γnm

[En(k) − Em(k′)∓ �ω]
2
+ γ2

nm

. (6.1.15)

Here we have also added the case of the absorption (+ sign for the frequency), which can be derived

analogously, except that we assume En < Em and n < m. Furthermore, we assumed W em
nm = ρ̇mm =

−ρ̇nn, where n is the initial state and m is the final state of the electron. The above result generalizes

Fermi’s golden rule, however it is very similar to it. If we consider γmn → 0, i.e, replace the Lorentzian

function in Eq. (6.1.15) by a δ-function multiplied by π, we get back Fermi’s golden rule for a harmonic

perturbation, i.e., Eq. (2.3.10). The broadening term is given by 2γnm = γnn + γmm, where γnn is the

total out-scattering rate from state n multiplied by the reduced Planck constant. The value of the out-

scattering rates can be calculated after the first run of our EMC method which is performed without

level broadening of the states.
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6.2 Time-constant potential

For deriving other scattering mechanisms that have a static (time-independent) perturbation potential,

V̂ we need to extend Fermi’s golden rule also for this case. The derivation is performed similarly as in

the previous section. We start by defining the Hamiltonian for our system

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1 V12 . .

V21 E2

. .

. .

⎤
⎥⎥⎥⎥⎥⎥⎦
. (6.2.1)

where the matrix contains the perturbation potentials Vnm between the different levels. The density

matrix is defined by Eq. (6.1.3) and we use the Liouville equation (6.1.1) for deriving the evolution equation

of the density matrix for static perturbations. For the first diagonal element we get the expression

i�ρ̇11 = ρ11E1 +
∑
b

(ρb1V1b − ρ1bVb1) (6.2.2)

while the first off-diagonal element is

i�ρ̇12 = (E1 − E2)ρ12 +
∑
b

(ρb2V1b − ρ1bVb2) . (6.2.3)

We now add the damping terms and write the above equations generally as

i�ρ̇nn =
∑
m

(ρmnVnm − ρnmVmn)− iγnnρnn + iΓn (6.2.4)

and

i�ρ̇nm = (En − Em)ρnm +
∑
b

(ρbmVnb − ρnbVbm)− iγnmρnm. (6.2.5)

We assume that the off-diagonal terms reach the steady state at some point, thus ρ̇nm = 0, and consider

scattering between two levels, thus ρnm depends only on levels n and m. In this case we can calculate

the value of the non-diagonal terms

ρnm =
(ρnn − ρmm)Vnm

En − Em − iγnm
. (6.2.6)

The diagonal terms will give the scattering rate and are written as a function of the non-diagonal terms.

They involve only scattering between two levels, thus the sum can be dropped and the diagonal element
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is

i�ρ̇nn = ρmnVnm − ρnmVmn − iγnnρnn + iΓn =

= −(ρnn − ρmm)VnmVmn
2iγmn

(Em − En)
2
+ γ2

mn

− iγnnρnn + iΓn (6.2.7)

The terms proportional to γnn and Γn are evaluated separately in the EMC simulation. Assuming that

the electron is in state n with probability 1, the above expression changes to

ρ̇nn = − 2

�
VnmVmn(ρnn − ρmm)

γmn

(Em − En)
2
+ γ2

mn

, (6.2.8)

and the scattering rate from state n to state m is

Wnm =
2

�
V 2
nm

γnm

[En(k)− Em(k′)]2 + γ2
nm

. (6.2.9)

We note here that by setting ω = 0 in Eq. (6.1.15) we also get the above expression, i.e., a transition rule

for static perturbations. The above equation can be applied for the calculation of scattering rates for

impurities, interface roughness, acoustic phonons, etc. We also note that the RWA applied for harmonic

perturbations in the previous section is not needed here.

In summary, the scattering rates for static and harmonic perturbations are formally obtained

from Fermi’s golden rule by replacing the delta function with a Lorentzian function defined as

γnm/
[
π [En(k)− Em(k′)]2 + πγ2

nm

]
. This observation is useful for changing the EMC code to account

for collisional broadening of the various scattering mechanisms.

6.3 Scattering with photons

Fermi’s golden rule is not sufficient to model the gain saturation and scattering with photons self consis-

tently. The present version of the EMC code already contains the collisional broadening of electron-photon

scattering due to this reason [33]. We now derive the scattering with photons based on the results in

Section 6.1. The form factor for photon emission and absorption is the transition dipole of the system,

dnm = e0

ˆ
ψ∗
m(z)zψn(z)dz. (6.3.1)

The perturbation potential can be written in the form

Vnm =
1

2
Eldnm, (6.3.2)

where El is the electric field amplitude of the lth mode. The choice of the above perturbation potential

was made to fulfill Vnmeiωt + V ∗
nme−iωt = Eldnm cos(ωt) in case of real electric field amplitudes and



109 6.4. Broadening for LO-phonons

transition dipoles. We proceed by using Eq. (6.1.14) to calculate the rate of scattering with photons,

ρ̇nn = (ρmm − ρnn)
E2

l d
2
nm

2�

γnm

(En − Em − �ω)
2
+ γ2

nm

. (6.3.3)

The transition rate from an initial state n to a final state m is given by ρ̇mm similarly to Section 2.3, where

the coefficient ∂t |am(t)|2 gave the transition rate Wnkmk′ = ∂
∂t

∣∣∣a(1)m (t)
∣∣∣2. Writing the above equation in

terms of Wnkmk′ = ρ̇mm = −ρ̇nn and taking into account the different resonator modes with frequency

ωl, we get [33]

W phot
nkmk′ = (fnk − fmk′)

Z0d
2
nm

n0�

∑
l

Il
γnm

[En(k) − Em(k′)− �ωl]
2
+ γ2

nm

.

Here n0 is the refractive index of the active region, Z0 is the vacuum impedance and Il is the optical

intensity of the lth mode. The occupation probabilities ρmm and ρnn in Eq. 6.3.3 were replaced by

the distribution functions fmk′ and fnk and the squared electric field E2
l was replaced with the optical

intensity of the mode Il. The scattering rate used in EMC needs to be summed over the final wavevector,

k′. Since momentum is conserved, i.e., k = k′, the sum has a single term. Furthermore, we assume again,

that the considered electron is in the initial state, i.e., fnk = 1. For the case when the in-plane scattering

is parabolic, we then obtain

W phot
nkmk′ = (1− fmk′)

Z0d
2
nm

n0�

∑
l

Il
γnm

[En(k) − Em(k′)− �ωl]
2
+ γ2

nm

. (6.3.4)

In the case of non-parabolic scattering, the En(k) − Em(k′) − �ωl expression, was calculated in

Section 2.2.3 to only depend on k, thus the sum over the final wavevector k′ can also be performed for

the non-parabolic case, and we get the same expression as Eq. (6.3.4), however En(k) − Em(k′) − �ωl

changes to (En − Em)
[
1− �

2|k|2
2m∗ (2α+ β)

]
−�ω.We also observe that the electron-photon scattering rate

does not contain the electron effective mass in the parallel direction, m||.

6.4 Broadening for LO-phonons

The matrix element for electron-phonon interaction was determined in Section 2.3.4. We proceed by using

Eq. (6.1.15) instead of Fermi’s golden rule, with the square matrix element of LO-phonon scattering from

Eq. (2.3.38). Furthermore, we use the notations in Section 2.3.4. The scattering rate from nk to mk′ is

then

W phon
nkmk′ =

e2ωLO

2πAε0

(
NPh +

1

2
± 1

2

)(
1

εr,∞
− 1

εr,0

)
J(
∣∣k−k′∣∣) γif

[En(k)− Em(k′)± �ωLO]
2
+ γ2

if

. (6.4.1)
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We need to integrate the above rate over the final wavevector k′. In the EMC code that contains collisional

broadening of the initial and final states, we use for parabolic bands

W phon
nkm =

e20ωLO

2πAε0

(
NPh +

1

2
± 1

2

)(
1

εr,∞
− 1

εr,0

)ˆ ˆ
Pdθk′dk′, (6.4.2)

where

P = J(
∣∣k−k′∣∣) γif

[En(k) − Em(k′)± �ωLO]
2
+ γ2

if

. (6.4.3)

P/
´ ´

Pdθk′dk′ gives the probability distribution for the final state energy, thus energy conservation is

not necessarily fulfilled. Instead, it must be fulfilled statistically, i.e., the energy of the scattered electrons

should have its mean value at En(k)−Em(k′)±�ω0. The complexity of the EMC code does not increase

significantly, if we include the above corrected scattering rates. The calculation time of the integrals of

P are comparable to the time needed to tabulate the electron-electron form factors. Furthermore, the

so-called theta-integral in Eq. (6.4.2) is performed by using the substitution

∣∣k−k′∣∣ = √
k2 + (k′)2 − 2kk′ cos θ. (6.4.4)

The rest of the scattering mechanisms can be implemented in an analogous manner as shown for the

LO-phonons, without further difficulties. The numerical implementation includes a tabulation of P for

the initial and final states and wavevectors. Furthermore the scattering rates are tabulated as before,

and the choice of the final wavevector after scattering is based on the probability distribution function

P = Pnkmk′ .

6.5 Effects of quantum corrections on the transport properties of

the EMC method

We have included the broadening of the energetic states in EMC by using Eq. (6.4.2) for LO-phonon

scattering, derived in Section 6.3. Furthermore, we have used Eq. (6.2.9) for the derivation of quantum-

corrected e-interface roughness, e-impurity and e-acoustic phonon scattering. The derivation was per-

formed by using the same steps as in Section 6.4. We have included the quantum corrected rates in EMC,

while we have kept the e-e scattering rate semiclassical.

In Fig. 6.5.1, we show the current-voltage characteristics for the 2.75THz QCL, discussed in

Section 3.2. The artificial current spikes which arise for level anticrossing below 2meVwere avoided

by choosing the bias point adequately. We observe a better agreement of the quantum-corrected EMC

results with experiment, especially for low biases. As it has been discussed in Chapter 3, NEGF could

reproduce the experimental currents in the coherent regime while the semiclassical EMC method failed.

This is not the case for the quantum corrected EMC, which now correctly models the current for the low



111 6.5. Effects of quantum corrections on the transport properties of the EMC method

4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bias [kV/cm]

C
ur

re
nt

 d
en

si
ty

 [k
A

/c
m

2 ]
Quantum corrected EMC
Semiclassical EMC
Experiment

Figure 6.5.1: Effects of collisional broadening on the QCL discussed in Section 3.2. We observe an increase in the coherent
regime of the EMC current when we include the broadening, which facilitates the scattering with phonons especially for
lower biases. Furthermore, the relative increase of the current in the lasing regime is small.

biases, i.e., in the coherent regime. This can be confirmed by comparing the semiclassical and quantum

corrected curves to experiment in the bias range of 4-5 kV/cm in Fig. 6.5.1. Furthermore, there is also

a good agreement to experiment in the incoherent regime, where the relative increase of the current for

the case of quantum corrections is small.

The present results provide an outlook for the inclusion of quantum corrections in EMC methods.

Based on the framework of this chapter, further effects such as quantum coherence could be investi-

gated, which we believe can reduce the artificial current spikes of the semiclassical EMC approach. The

Lorentzian function introduced for level broadening can also contain additional effects besides broadening

due to the calculated scattering rates in EMC. For example, states that are highly unbound have lifetimes

comparable to the inverse scattering rates, as discussed in Section 2.1.3 and their broadening can also

be included in our approach. The broadening of the higher lying states could be included for a more

accurate modeling of transport in the continuum states, which has proven to lack a consistent description

within a Monte-Carlo framework.
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6.6 Summary

We have implemented quantum corrections for the energetic level broadening in our EMC method. Based

on a consistent derivation of a Lorentzian rule from the density matrix formalism we have replaced Fermi’s

golden rule and derived the electron-photon and electron-phonon scattering rates.

All the scattering mechanisms, except e-e scattering, were corrected for the broadening of the energetic

states and self-consistently included in EMC. We observe corrected current-voltage curves, which now

agree to experiment in the coherent regime, in contrast to Sections 3.2 and 3.3. In the incoherent regime,

we have observed a small relative change of the currents as compared to the semiclassical result, which

proves the largely semiclassical nature of transport in this regime.



Appendix

The theory of our ensemble Monte-Carlo method is based on Fermi’s golden rule, which will be derived

using time-dependent perturbation analysis presented in this appendix. We start from a set of known

basis functions, which are in our case solutions of the time-independent Hamiltonian H0. The time-

dependent part of the Hamiltonian is represented by Hint(t) and considered as a perturbation that is

added to time-independent part:

H = H0 +Hint(t) (6.6.1)

The wavefunctions are quasi-bound in the growth direction, while they have plane-wave solutions in the

in-plane direction. We will define these by

Ψm(x, y, z) =< x, y, z||m >=
1√
LxLy

ψm(z)eik
′x. (6.6.2)

The solution ψm(z) for the unperturbed case, was discussed in Section 2.1, and can be written using

Eq. (6.6.2) in the form

|ψ〉 = c1|1 > +c2|2 > +c3|3 > +..., (6.6.3)

where |m > are time-independent. The time dependence is contained in the constants c1, c2..., for

small perturbations, that only slightly change the potential profile of the heterostructure. Probability is

conserved by

〈ψ| |ψ〉 = c∗1c1 + c∗2c2 + ... = 1, (6.6.4)

in case of a dissipationless system. These coefficients are written in the Schrödinger picture, thus they

change in time and the basis functions remain constant. The solution of the perturbed case has the form

ψ(t) =
∑
m

cm(t)|m >, (6.6.5)

and the new time-dependent Schrödinger equation is

[H0 +Hint(t)]
∑
n

cn(t)|n >= i�
∑
n

ċn(t)|n > . (6.6.6)

113
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Multiplying by the conjugate basis function < m|, we get for the coefficients in the Schrödinger picture

i�
.
cm(t) = Emcm(t) +

∑
n

cn(t) < m|Hint(t)|n > . (6.6.7)

If we make the substitution

am(t) = cm(t)ei
Em
�

t, (6.6.8)

we change the basis from the Schrödinger picture to the interaction picture, and rewrite Eq. (6.6.7) using

Eq. (6.6.8)
.
am(t) = − i

�

∑
n

an(t)e
iEm

�
t−iEn

�
t < m|Hint(t)|n > . (6.6.9)

This is a key result in deriving Fermi’s golden rule.



Nomenclature

Acronyms

BTC bound to continuum

EMC ensemble Monte-Carlo

FWHM full width at half maximum

IR interface roughness

lhs. left hand side

LDOS local density of states

LO-phonon longitudinal optical phonon

MBE molecular beam epitaxy

MIR mid-infrared

MOCVD metal-organic chemical vapor deposition

NDR negative differential resistance

NEGF non-equilibrium Green’s functions

QCL quantum cascade laser

rhs. right hand side

RP resonant phonon

RPA random phase approximation

RWA rotating wave approximation

SP Schrödinger-Poisson

THz terahertz

TMM transfer matrix method

TO-phonon transverse optical phonon

WPE wall-plug efficiency
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Greek symbols

α factor of non-parabolicity

γnm broadening of the transition from state n to state m

Γsp
m imaginary part of the eigensolution m of the Schrödinger equation for

a biased multi-quantum well structure

Γn level broadening due to transitions outside the two level system

Γnkm scattering rate Wnkm, defined on an interval, for the random choice of

scattering type and final state

Δ detuning in the density matrix theory, or the mean height of the interface

penetrations in context of interface roughness

Δ(r) roughness of the material interface as a function of the in-plane position r

Δso difference between splitoff hole and light hole bands

Δn(d) population inversion in function of diagonality d

Δnrel relative change of population inversion

Δf(d) spectral linewidth of the QCL as a function of diagonality d

Δfrel relative change of the FWHM spectral linewidth

Δz discretization step

ε static dielectric constant

ε(ω) frequency dependent dielectric constant

εb dielectric constant in barrier

εw dielectric constant in well

εm uniform dielectric constant

εr,0 static dielectric constant

εr,∞ high frequency dielectric constant

ηWPE wall-plug efficiency, i.e., ratio of optical and electric power

ι infinitely small value in the vicinity of zj

κz iκz is the wavevector component in the z direction for

energies smaller than the conduction band profile at the jth grid point

Λ correlation length

Πab polarizability tensor

ρ density matrix

σ electrical conductivity

ψ wavefunction

ψ+(zj) lim
z→zj ,z>zj

ψ(z)

ψ−(zj) lim
z→zj ,z<zj

ψ(z)
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ψm wavefunction in the confined direction, corresponding to the state m

Ψn(x, y, z) 3D wavefunction of the system

ωLO LO-phonon frequency

ωmn frequency, corresponding to the energetic difference between states Em(k′)

and En(k)

ωQ frequency of the vibration, corresponding to the 3D phonon wavevector Q

ωTO transverse optical phonon frequency

Ω0 volume of the Wiegner-Seitz cell, given by a3/4

Latin symbols

a lattice constant

am(t) coefficient describing the time-evolution of state m in the

interaction picture

A cross section area A = LxLy

Aq
0 vector potential for the mode q

Aeff area defined by the number of simulated electrons

in EMC (when the sheet density is known)

B magnetic field

Cj coefficient of the wavefunctions defined in the TMM

CN wavefunction coefficient, at the end of the simulated region

(see Transfer matrix method)

C̃N transformed TMM coefficient at the end of the simulation interval

dnm transition dipole

D electric displacement current

D0 amplitude of the displacement current

Dj coefficient of the wavefunctions defined in the TMM

D̃N transformed TMM coefficient at the end of the simulation interval

e0 electron charge

eeff effective charge, produced by the ion-pair, in case of

LO-phonon scattering

E energy

E electric field (only in bold, otherwise energy)

E(K) 3D kinetic energy of the system

Eg bandgap

El |El|
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El electric field amplitude for the lth mode

Elatt electric field due to phonons (lattice vibrations)

E0
latt amplitude of the electric field

Em energy level for the mth state

Em(k) sum of the kinetic and confinement energy for the state m

E
||
m(k) kinetic energy of the mth state

Er
m real part of the eigensolution m of the Schrödinger equation for

a biased multi-quantum well structure

Eti
m energetic solution of the time-independent Schrödinger equation,

for a biased multi-quantum well structure (complex energy)

Etot the sum of the energy exchange of the two electrons

(should be 0 due to energy conservation)

Ep
tot see Etot, here the p denotes the parabolic case

Ep,s
tot see Ep

tot, but with the substituted momentum

given in Section 2.3.8.1

Ez energy in the confined direction

Ekin
z kinetic energy in the confined direction

EL longitudinal electric field

ET transverse electric field (0)

f distribution function (general)

fe
d function that gives the number of simulated electrons, for

a given state n and wavevector k

fm distribution function of the mth state

f imp
mn impurity form factors

fo
mn oscillator strength between states n and m

fnk distribution function for the state n at wavevector k

fosc oscillator strength of the lasing transition

fver
osc oscillator strength of the vertical transition QCL design

F force

Fnimj(q) e-e form factor

h minimization function, where its local minima give the energetic states

H Hamiltonian

Hint interaction Hamiltonian of the electron with a scattering process,

defined as a (static or harmonic) perturbation on the electronic system

Il optical intensity of the lth mode

k wavevector (k = [kx, ky]) in the in-plane direction
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kx wavevector in the x direction

ky wavevector in th y direction

kz wavevector in the confined direction

kz1,2 solutions for the wavevector in the z-direction, based on the kinetic energy Ekin
z

kzb wavevector in the confined direction for the barrier

kzj wavevector in the confined direction at grid point j

kzw wavevector in the confined direction for the well

K three dimensional momentum of the electron

Lx cross section length in the x direction

Ly cross section length in the y direction

m∗ effective mass

m∗
+(zj) lim

z→zj ,z>zj
m∗

z(z)

m∗
−(zj) lim

z→zj ,z<zj
m∗

z(z)

m|| in-plane effective mass

m||,m in-plane effective mass for the state m

mnucl reduced effective mass, in the case of an oscillating ion-pair

m∗
z(z) effective mass in the confinement direction

mzj effective mass in the confined direction, at the grid point j

Mnimj matrix element in case of e-e scattering

M(Q) amplitude of the LO-phonon perturbation potential

n0 refractive index

n2D sheet doping density

nm volume density of the population in state m

nc maximum number of simulation electrons in EMC, for a given state

n and wavevector k

ncells number of ion-pairs per unit volume

ns predefined number of states that the SP solver finds

NA number of type A disorder sites

NB number of type B disorder sites

NPh number of LO-phonons

Ns number of simulated electrons in EMC

N(z) volume doping of the structure

pa probability for antiparallel spin collisions

pp probability for parallel spin collisions

p̂nm momentum operator

Pion polarization induced by the oscillating dipole u
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P0
ion amplitude of the polarization

PV dissipated power per unit volume

q q = |k− k′|, wavenumber corresponding to momentum exchange

(q = |k− k′ + k0 − k′
0| in case of e-e scattering)

q0 charge

qz LO-phonon wavevector in the confinement direction

Q 3D wavevector of the phonon

R position of the electron

RA lattice vector of the disorder site A

t time

Tm lifetime of state m

TL lattice temperature

u lattice displacement vector

u1(r) potential profile, in case of an alloy material

u2(r) alloy perturbation potential in terms of atomic positions

uT transverse part of the lattice displacement vector

uL longitudinal part of the lattice displacement vector

U0 amplitude of the lattice displacement (vibration)

UA potential of material type AC

ve electron velocity

V̂ perturbation operator

V0 conduction band offset between two materials or within an alloy

Vc volume of the crystal

Vj potential at the grid point j

V ee,s
mnji screened e-e scattering matrix element

V int
mn interface roughness matrix element

V imp
mn impurity matrix element for the sates n and m

Vnm perturbation potential of the transition between state n and m

V a
nm alloy perturbation potential matrix element

V ee
nimj matrix element of the e-e perturbation potential

VP Poisson potential produced by the electrons in the device

V̂pert perturbation potential energy operator

V ee
pert e-e scattering perturbation potential

V imp
pert impurity perturbation potential

V LOPh
mn LO-phonon matrix element between initial state n and final state m

V (z) conduction band profile (including band bending)
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V (Em(k), En(k
′))

zimp position of the impurity

zj jth position on the discretized spatial grid, where we solve the Schrödinger equation

Z impedance in the active region

Z0 vacuum impedance
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