
Technische Universität München

Lehrstuhl für Bildverstehen und
wissensbasierte Systeme

Everyday Perception for Mobile Manipulation
in Human Environments

Ulrich Friedrich Klank

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Darius Burschka

Prüfer der Dissertation: 1. Univ.-Prof. Michael Beetz, Ph.D.

2. Ao. Prof. Dr. Markus Vincze
Technische Universität Wien / Österreich

Die Dissertation wurde am 29.06.2011 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 20.02.2012 angenommen.





Contents

I. Preface v

Abstract vii

Zusammenfassung viii

Acknowledgement ix

II. Everyday Perception for Mobile Manipulation 1

1. Introduction 3

1.1. Manipulation in Domestic Environments . . . . . . . . . . . . . . . . . . . . . 3
1.2. Perception in Domestic Environments . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. Human Capabilities as a Performance Measure . . . . . . . . . . . . . . . . . . 7
1.4. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1. Example Scenario 1: Pick and Place . . . . . . . . . . . . . . . . . . . . 8
1.4.2. Example Scenario 2: Simple Meal Preparation . . . . . . . . . . . . . . 9

1.5. Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6. System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.1. TUM-Rosie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.2. TUM James, PR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.3. Perception System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.4. Embedding Perception in Robotic Control . . . . . . . . . . . . . . . . 13
1.6.5. Perception Guided Manipulation . . . . . . . . . . . . . . . . . . . . . . 15

1.7. Outline of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. COP - A Robotic Perception System 17

2.1. The Structure of COP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2. Object Models and the Semantic Bridge . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1. Model Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2. Automatic Model Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3. Uninformed Object Analysis . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. Algorithm Selection Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1. Rule-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2. Experience-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Position-based Result Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5. Feedback Loop in a Perception System . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1. Type of Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



Contents

2.5.2. Cascade of Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Robotic Hardware for Perception 31

3.1. Sensors for Autonomous Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1. Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2. Stereo Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3. LASER Range Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4. Time of Flight Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.5. Structured Light Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.6. Sensor Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2. Current Robots for Perception in Human Environments . . . . . . . . . . . . . 36
3.2.1. Stanford - STAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2. HERB - Intel Research and Carnegie Mellon University . . . . . . . . . 37
3.2.3. DLR Justin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4. KIT - ARMAR III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.5. Tokyo Univ. HRP-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.6. IPA Care-O-Bot 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.7. LAAS - Jido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.8. PR2 of Willogarage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Perception Tasks in Domestic Environments 43

4. Detection and Reconstruction 45

4.1. Perceiving Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2. Scene Localization and Tracking . . . . . . . . . . . . . . . . . . . . . . 46

4.2. Detecting Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1. Point Cloud Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2. Intensity Based Segmentation Methods . . . . . . . . . . . . . . . . . . 50

4.3. Detecting Features of Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1. Symbolic Tool Representation . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2. Visual Tool Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4. Transparent Object Detection and Reconstruction . . . . . . . . . . . . . . . . . 57
4.4.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2. Absorption based Inconsistency Analysis . . . . . . . . . . . . . . . . . 60
4.4.3. Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.4. Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.5. Inconsistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. Object Recognition and Categorization 73

5.1. Rigid Object localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



Contents

5.1.2. CAD matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.3. Planar Shape Model Matching . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.4. Surface Based Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2. Rigid Textured Object Classification . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2. Bag-of-Visual-Words-based Classification . . . . . . . . . . . . . . . . . 82
5.2.3. Randomized-Fern-based Classification . . . . . . . . . . . . . . . . . . 84

5.3. Rigid Textured Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2. Descriptor 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6. Learning Perceptual Models in Domestic Environments 97

6.1. Simple Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.2. Any to Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.3. Any to Planar Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.4. Segment in 3D to Surface Model . . . . . . . . . . . . . . . . . . . . . . 100

6.2. Acquisition of CAD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.1. Semantic-aware Selection of CAD Models . . . . . . . . . . . . . . . . . 102
6.2.2. Model Selection with a Shape Distribution Function . . . . . . . . . . . 109
6.2.3. Morphing between CAD Models . . . . . . . . . . . . . . . . . . . . . . 111
6.2.4. Selection by Best Match . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3. Texturing of Object Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2. Acquisition of Training Data . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.3. Conflict Resolution via Bundle Adjustment . . . . . . . . . . . . . . . . 116
6.3.4. Reconstructing the Texture . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

IV. Applications of COP 121

7. Perception Guided Robotic Manipulation 123

7.1. Accuracy and Robotic Manipulation . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1.1. Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.2. Hand Eye Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2. Dealing with Uncertainty in a Robot System . . . . . . . . . . . . . . . . . . . 127
7.2.1. Covariance Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.2. Located Object Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3. Grasp Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.2. Grasp Pose Optimization on a Gaussian Point Distribution . . . . . . . 134
7.3.3. Detection of Collisions in the Fingers . . . . . . . . . . . . . . . . . . . 138
7.3.4. Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8. Results 143

iii



Contents

8.1. Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.1.1. Planar Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.1.2. CAD Based Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.1.3. Descriptor Based Matching . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1.4. Transparent Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.2. Robotic Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2.1. Unmodeled object Grasping . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2.2. Online Tool Calibration for Complex Tasks . . . . . . . . . . . . . . . . 159

8.3. System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3.1. Offline Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3.2. Online Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9. Conclusion 169

9.1. Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.2. Hardware Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

V. Appendix 173

A. Table of Sensor Properties 175

B. List of Implemented ROS Packages and their References in this Work 179

B.1. cogntive_perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
B.2. cop_halcon_plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
B.3. cop_cad_plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.4. cop_ros_plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.5. cop_sr4_plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.6. cop_transparent_objects_plugins . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.7. cop_barcode_plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.8. cop_odu_plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.9. cop_tool_plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 183

Index 196

iv



Part I.

Preface

v





Abstract

This work describes a modular perception system for mobile robotic manipulation which

improves over time. The two key features of this system are the automatic adaption to its

environment and the large set of available perception methods. In order to adapt to a chang-

ing environment, the system learns success statistics over executed perception tasks and ac-

quires new perceptual models. The perception system can handle different perceptual tasks

which are processed by an automatically selected triple of sensor, model and method. This

triple is selected based on logical restrictions and the success statistics.

For the challenging scenario of a robotic platform in a domestic environment, the system

is equipped with a large set of methods, which enable the perception system to process all

relevant tasks. Examples for such tasks are the transformation of semantic descriptions into

perceptual models or the detection of objects that are transparent to the sensors or to localize

objects that were not seen before. Several methods to address such and similar problems

were newly developed and are presented and evaluated in this work.

The system can autonomously infer new models by connecting known models with new

sensor data, which is enabled by a set of state of the art methods that were embedded into

the perception system. The system has a high degree of abstraction to be easily accessible by

a highlevel system, while allowing dynamic reconfigurations of methods and models and

providing full insight into the applied methods and the resulting data. The system sup-

ports spatial reasoning by a high-level system by allowing the setting of 6D search spaces.

Alternatively, those search spaces can be generated automatically and task dependent.

The performance of the system will be evaluated in the context of general object localization,

pick and place of unmodeled objects and in the context of a food preparation scenario.

vii



Zusammenfassung

Diese Arbeit beschreibt ein Perzeptionssystem für mobile Roboter, mit der Fähigkeit sich

an einen Einsatzort anzupassen. Die entscheidende Neuheit des präsentierten Systems ist

neben der Fähigkeit sich automatisch an eine Umgebung anzupassen die große Anzahl an

vorhandenen Methoden die spezielle Perzeptionsaufgaben lösen können.

Die Anpassung an eine Umgebung erfolgt mittels zwei Mechanismen: Erstens werden alle

Ergebnisse bisher erledigter Aufgaben bewertet, um bei zukünftigen Aufgaben eine bessere

Wahl der Methode treffen zu können. Zweitens können neue Objektbeschreibungen au-

tomatisch gelernt oder von außen hinzugefügt werden.

Die Bewertung von erledigten Aufgaben erfolgt basierend auf Tripeln bestehend aus der

Methode und auch dem verwendeten Sensor und dem zugrunde liegenden Objektmodell.

Für eine neu erteilte Aufgabe, wählt das Perzeptionssystem ein solches Tripel basierend auf

den bisherigen Erfolg dieses Tripels aus, gibt es kein bisher erfolgreiches Tripel werden neue

Tripel gebildet.

Das Perzeptionssystem ist vor allem für einen Einsatz in einem Haushalt mit vielen Metho-

den ausgestattet, die dort alltägliche Aufgaben der Wahrnehmung erledigen können. Beispiele

für solche Aufgaben kann z.B. die Detektion von transparenten Objekten sein oder die Hand-

habung von bisher unbekannten Objekten. Solche und ähnliche Aufgaben werden von den

Methoden angegangen, die in dieser Arbeit beschrieben sind. Außerdem kann das System

aus Sensordaten bestehende Modelle erweitern oder neue Modelle erzeugen.

Das vorgestellte System ist in eine Softwarearchitektur mit einem sogenannten Highlevel

System eingebunden, für die ein abstraktes Interface entwickelt wurde, das sowohl seman-

tische Annotationen als auch räumliches Schlussfolgern zulässt. Zusätzlich erlaubt es dem

kontrollierenden Highlevel System auch vollen Einblick in Daten und Ausführung.

Das System wird anhand von Anwendungen im Bereich Objekterkennung, Pick-and-Place

von unbekannten Objekten und in einem Küchenszenario mit Essenszubereitung evaluiert.
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1. Introduction

The robotic butler that helps in our households not only is a dream of the authors of Hol-

lywood movies, but it also became recently a realistic research target. Due to recent devel-

opments and with a human tele-operating, a state of the art robot may perform nearly any

assignment in a domestic environment. Still, there are only few applications which can be

performed nowadays by autonomous machines, even if the task itself of can be executed

using only the available hardware for manipulation. This raises the question why capable

machines like state of the art robots are not able to help in any complex manipulation task in

a kitchen or a living room, while already working completely autonomous 24/7 in factories

around the world. The tasks are on the one hand solvable, but on the other hand they require

very exact control as well as the complete understanding of the observed environment and

an understanding of the limitations of the robotic hardware.

The understanding of the observed environment is one of the crucial key competences that

autonomous systems still lack nowadays. This problem was not yet solved even with the

state of the art in computer vision and 3D perception that provide methods to detect most of

the relevant events and objects in a controlled environment. Obviously, the domestic envi-

ronment cannot be seen as a controlled environment. This raises challenges like the presence

of sensory noise or cluttered scenes. Driven by the requirements that a realistic domestic en-

vironment imposes, this work presents a perception system that allows autonomous robots

to perceive objects and events in a household. The system allows recognizing and localizing

all objects which are relevant for tasks like by tidying up and even preparing meals. It has

mechanisms to improve its performance over time by automatic learning of context and new

objects. All those mechanisms are targeted on the manipulation of the environment.

1.1. Manipulation in Domestic Environments

This work focuses on the perception for manipulation which will be discussed starting with

the challenges for manipulation in such a scenario.

To enable robots to interact with an unstructured environment inhabited and influenced by

humans, they require the capability to manipulate objects safely. The range of possible tasks

3



1. Introduction

may include the pick-up of objects as well as the usage of objects as tools or more general, in

may include an application of force to the object.

How complex this task is, may be seen by looking at the requirement "safely" mentioned

before. This requirement can be split up into the requirements of not harming any human in

the process of manipulating the object and not destroying the robotic hardware itself as well

as not producing any unwanted effect to the environment which is irreversible for the robot.

By approximating the world to be momentarily stable and the hardware of the robot by

being indestructible by the robot itself, the manipulation task still has to be performed under

the constraint of not producing any unwanted effect is still not solved yet for unstructured

environments. Even if there are methods for collision free motion planning (e.g. see [53]),

the limitations of those methods are insufficiencies of the sensors reacting to objects made of

metal or glass as well as the necessary calculation time and missing guaranteed convergence

of the methods.

What will be discussed in this work are the detection of difficult obstacles and the fast mod-

eling of obstacles for simple object manipulations. Additionally, in order to manipulate the

right object, the identity of objects has to be observable.

Any motion of a robot requires not only an accurate modeling of the endangered environ-

ment but as well of the robots position and its target object. The target has to be known in

as high precision as possible to allow complex interaction. Constraints on motions must be

extractable from the task and the object to handle. Such constraints may be e.g. the require-

ment to uprightly carry a filled glass or transport any food on a plate. Such manipulation

with this kind of constraints and targets depends partially on capabilities to perceive and

observe the environment in different ways. The kind of perception needed will be analyzed

more precisely in the following section.

1.2. Perception in Domestic Environments

Coming from the view of just the discussed requirements on mobile manipulation, percep-

tion tasks can be classified using the scheme also depicted in Figure 1.1: First, a detection of

present objects in order to separately handle them, second, a reconstruction of objects in or-

der to avoid or move them, third, the recognition and localization of objects that are already

known to the system, fourth, a categorization of objects to create a semantic context and last,

the autonomous extraction of recognizable properties in order to be able to identify those

objects at a later point in time.
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Detection

Reconstruction Recognition Categorization

Model Learning

Perception Tasks

Figure 1.1.: Five classes of perception tasks, visualized by the results on a scene on a kitchen
table.

• Detection of objects and obstacles and with it the generation of of the best object hy-

pothesis is directly derived from the requirement to avoid any obstacle in manipula-

tion. But it is required as well to reduce computation time in other following perception

tasks by being able to reduce certain calculation to special classes of detections.

• Reconstruction of objects should complete missing sensor information. This would

then allow simpler manipulation as well as more accurate handling of those objects.

The reconstruction of missing sensors data can also lead to better models. In this con-

text it is necessary to have knowledge about problems in sensors and be able to profit

from any structuring of the current environment.

• Recognition of objects connects previous available data with a current instance of a

specific object, which allows the accurate localization in space and time of a certain

object.

• Categorization is a more general way to connect an object hypothesis with a certain
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1. Introduction

kind of category or class of objects. This allows any knowledge driven system further

inferences over the scene and the current world state.

• Model learning as last step prepares the recognition of future occurrences of objects

and allows the robot to detect changes in the environment.

All those tasks have to be solved under the constraints that are imposed by being executed

on a mobile platform in a domestic environment [52]. The solutions for all or at least for

some of them demand of the tasks to:

• be robust against sensor noise,

• perform under time constraints to be able to interact with a dynamic world,

• generalize over as many certain parameters as possible to reduce the number of re-

quired specialized solutions,

• produce interim results that are helpful for other systems on the robot.

Additionally, there are many situations in a domestic environment, which have to fulfill still

more requirements.

The detection of objects and obstacles is the basis for any safe behavior of a robot. If the robot

cannot perceive the existence of its surrounding, it cannot act safely. Additionally, by identi-

fying connections and separations in its environment, it simplifies the remaining perception

problem, by introducing a degree of dependence or independence to the identified object

hypotheses. As soon as it comes to the interaction with an object, the knowledge about the

presence might not be enough, so a reconstruction of occluded or invisible parts will be nec-

essary for a direct interaction. Without having a good approximation of the outer shape of an

object, any grasp or the usage of an object will be difficult to impossible. If the robot is con-

fronted with difficulties or good experiences in such manipulation processes, the necessity

appears that the robot should be capable of recognizing similar situations which the robot

interacted before. For any object that was manipulated or seen before it will be important to

be able to identify it later again. This process of recognition combined with model learning

should run completely autonomous. If this model learning is performed supervised or it is

executed from an annotated database, the recognition can be paired with a categorization of

the seen object. This allows the establishment of bridges to a semantic level, which we see as

an important step to allow highlevel control of robots. Highlevel control can then allow the

robot to act such that a human can understand its behavior and also can judge the quality of

the robots performance by comparing it with other human’s performance.
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1.3. Human Capabilities as a Performance Measure

If we look at pick-and-place tasks, a human can still outperform most robots, especially in

scenarios with dynamic obstacles and new objects. All tasks in a household are usually

performed by humans and most humans are able to easily realize them, believing the tasks

they are performing are easy to learn and understand. All those tasks are designed for

humans and can be robustly solved by a human even in another home, given the necessary

information where the eventually required tools are and what the target is.

Especially all perceptions tasks in domestic environment, like the detection of transparent

objects, seem trivial to most humans, while many of them can be considered as real chal-

lenges for robotic perception systems. In order to reach this performance on a robot in a

varying environment, a robotic system needs to gain experiences and collect knowledge in

order to perform similarly well than a human.

The list of perception tasks, in that humans outperform any robot so far, is long, and this list

contains tasks like scene segmentation, categorization of previously unknown objects. The

basis for this performance is the experience of decades of living in such domestic environ-

ments combined with the strong knowledge exchange between humans. While this kind of

experience is not completely applicable to the standard idea of delivering a ready-to-work

household robot, the possibility must be given to teach the robot before its delivery as much

information as possible. A new help in a household can make minor mistakes on the first

day in a new home, but the requirements are not low.

This comparison of the capabilities of a human with a potential robot shows the necessity

of pushing the state of the art on the technical level as well as on the semantically-driven

learning level. And this is what this work is all about.

1.4. Motivation

This work presents and discusses a perception system that it is capable to work under the

complications introduced by running on a mobile platform in a domestic environment. It

provides a large set of methods capable of performing all five tasks mentioned before. In

order to explain the challenges and the necessary tasks to solve, two example scenarios are

introduced here: First, tidying up with a robotic platform and second, the preparation of a

pancake.
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1. Introduction

(a) TUM-Rosie manipulates
an object.

(b) TUM-James manipulates an object.

Figure 1.2.: Tidy-up scenarios.

1.4.1. Example Scenario 1: Pick and Place

Let us discuss the situation depicted in Figure 1.2(a): A mobile robot with a set of sensors

mounted on its head picks up an object that is lying on a table among other objects. The

presented perception system provides solutions for the following tasks required to clean up

in this scenario:

The objects on the table have to be recognized and segmented, as well as reorganized by

pick-and-place actions. It is also required to distinguish objects that have to be moved away

or that should stay in place. While the recognition of the objects basically can be solved by

segmentation and a successful classification of an object, any manipulation requires addi-

tionally a reference to 3D space. This can be achieved by measuring 3D coordinates of the

object’s center or by reconstruction of its shape. With a measured position or a direction in

space, the robot can be ordered to move towards the object and try to grasp it. This move-

ment must avoid all obstacles nearby and should avoid any collision with the object itself

before finally grasping. Even with the best planning of this action, this attempt may fail and

the attempt better should be supervised by the robot. This supervision might be difficult

with a head mounted sensor that suffers from occlusions of the object by the robot. Addi-

tionally, the avoidance of the obstacles or the planning of the contact with the object depends

heavily on knowing the geometry of the objects in the scene. However, in a domestic envi-

ronment a robot will be confronted with objects that were never seen before. Nevertheless,

the capability to manipulate so-called unmodeled objects is crucial for a task like tidying up.

The distinction of objects can be achieved by the implemented capabilities to learn models

to recognize objects that were once shown to the robot, as well as by the capabilities to use

external sources for new models.

8



1.4. Motivation

Another crucial capability of the presented system is the recognition of transparent objects.

Those objects have properties that result in ambiguous readings in all light and laser based

sensors. Looking at the data which is used for geometric segmentation in Figure 1.3 and

comparing the reading from the opaque objects and the answer of the semitransparent bottle,

it can be easily seen that a completely different method will be required to reconstruct the

real 3D structure of the transparent object.

(a) A view of a table with two opaque objects
on the sides and a semi transparent object in
the middle.

(b) The frontal structures of the two opaque
objects are visible in the 3D data, while the
transparent parts of the centered object do
not appear.

Figure 1.3.: The differences of opaque and transparent objects in depth measurements.

1.4.2. Example Scenario 2: Simple Meal Preparation

If the task is extended to something more complex, like the preparation of a pancake, it

is necessary that the perception system can detect state changes in the environment and is

able to handle tools. Descriptions for such kind of tasks are so complex that they might

include name of objects which are unknown to the system. In the pancake scenario, the

object of interest is a Pancake-Mix which is considered as an unknown object. Figure 1.4

shows the robots handling a spatula which is used to flip a pancake. This spatula is grasped

and calibrated in the pancake preparation scenario, based on mechanisms of the presented

perception system.

Figure 1.4.: Calibration of the spatula for flipping pancakes.
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1. Introduction

For the usage of an object as a tool, the requirements regarding accuracy increase. In our

system this is implemented by a post-grasp evaluation of the visible parts of an object in

order to find out the position in relation to the prior end effector of the robot. In order to

evaluate state changes, the different methods are required than used for object localization:

To detect if a pancake is ready, the necessary specialization of the model is higher than for

rigid objects. The pancake is localized in this scenario by using a model of the underlying

pan and segmenting parts that are inside the pan based on color cues distinct from the pan

itself. The case of the pancake shows that it is of interest to model not only the object but its

effects on the environment which implies different methods of perception. Those methods

must be able to compare a model with the current world state in a robust manner.

1.5. Contributions of this Work

The two exemplary scenarios include tasks which are addressed by the presented robotic

perception system. As a system running on our hardware platforms, this work presents

here Cognitive Perception (COP): A robotic perception system which is capable to apply

various perception methods to different perceptual tasks. This functionality is provided

over an abstract interface that integrates well into highlevel control mechanisms. Most of

the necessary model-knowledge can be acquired automatically by COP.

The main novelties which are implemented in the system itself are:

• Perception results from various methods are provided to highlevel systems.

• Automatic selection of the method improves the performance for previously performed

task.

For selecting different methods and solving different tasks over a simple interface, a lot of

automatic calculations and internal knowledge are necessary. Internal robot properties and

also world knowledge are required to decide what is meant and what are the best method to

solve the perception task and the correct perception result. With the capability to learn over

time to use the implicit structure in its environment and allowing all parts of the system to

be replaced or extended, COP is suited for the challenge to work in a dynamically chang-

ing environment. The autonomous learning capabilities based on the World Wide Web and

system intrinsic feedback provide the possibility to work with new objects.

Additionally, the system contains contributions on the algorithmic level which are novelties

regarding the following key points:

• Access to data sources in the World Wide Web is provided to acquire new models
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• Methods to detect most kind of objects, including transparent objects, are presented

• Algorithm improvements are shown for several state of the art methods for object

recognition

While on the algorithmic level a lot of research is done and solutions for many special prob-

lems are provided, the combination of those methods in order to provide a computational

model for generic perceptual tasks is shown the first time in COP in a scale tackling a do-

mestic setup.

How COP works inside a robotic system will be described in the following sections.

1.6. System Architecture

Ian Horswill [48] has proposed the specialization of visual routines to tasks and environ-

ments as a promising method to transform perception methods to environment- and task-

specific routines. After such a transformation, the methods can outperform the general rou-

tines in terms of reliability as well as efficiency as long as the modeled properties of the

respective tasks and environments are satisfied.

In addition, COP improves itself over time, both in terms of reliability and efficiency, based

on experiences in performing the visual tasks of the respective robotic application and thereby

specializes itself to the task, robot, and environment at hand. The robot system has a redun-

dant set of perception methods, multiple sensors with similar as well as different capabili-

ties, and the system is able to form different task-specific models of detected objects in the

environment. With this design and various inspection interfaces, COP was integrated into

a robotic system. The internal representations and the integration into the highlevel and

action system will be described after the description of the two hardware platforms.

1.6.1. TUM-Rosie

The main platform used for testing is TUM-Rosie. This robot hardware is depicted in Figure

1.5(a). The robot drives on a mobile platform with omni-directional wheels that enable the

robot to drive and turn freely in all directions. For manipulation it has two DLR/HIT hands

each mounted on a KUKA LWR III. The hands have two torque sensors in each finger and

are controlled using impedance control. The arms are compliantly controlled using force

measurements in all joints as feedback. This allows safe working within the range of the

robot. The sensor setup used for perception consists of two RGB cameras eco274 of SVS Vis-

tek, a Swissranger 4k and a tilting Hokuyo UTM-30LX Laser. Most sensors are mounted on
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KUKA Light Weight
 Robot III

KUKA Omnidirectional
 Platform

Powercube Pan-Tilt 
Unit

Hokuyo URG-04LX 
2.5D Laser

DLR/HIT  
Hand by 
Schunk

SVS Vistek eco274
Swissranger 4k

Videre STOC

Hokuyo UTM-30LX 
2.5D Laser
Powercube element 
for tilting

      Rosie

(a) TUM-Rosie (b) TUM James

Figure 1.5.: Robotic platforms of the Intelligent Autonomous Systems(IAS) group at Technis-
che Universität München (TUM).

the head assuming that this position allows observing the robot’s actions while interacting in

scenarios with elevated supporting planes like tables. For collision avoidance the platform

has two Hokuyo URG-04LX Laser at approximately knee height. Those lasers are the major

source for localization in known environments.

Thanks to the KUKA LWR arms and the sensor equipment, this robot is considered as a lead-

ing edge platform in 2009, while it lacks a bit the reliability provided by standard platforms

like HRP2 or PR2. The over sized design causes some limitation for small human-scale ob-

jects like cutlery. Those objects are just too small to fit into the large hands. Additionally this

platform cannot manipulate directly on the floor, since it lacks a mobile torso.

1.6.2. TUM James, PR2

The PR2 has less problems with human-scale objects: TUM James was granted by Willow-

garage to the Intelligent Autonomous Systems group in order to implement CRAM, a pro-

posal about a Cognitive Robot Abstract Machine. It is a Personal Robot, version 2, which has

an extendable spine and simple grippers, to name the most significant hardware differences

to TUM Rosie. Also the arms are gravity compensated by a spring system instead of the

software approach provided by KUKA for the LWR arms.

The sensor setup provides additionally a structured light stereo system, while it lacks a ToF
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Camera (see 3.1.6). The gripper is equipped with a sensitive tactile sensor and a reactive

planner using those. The robot has an integrated trigger system to use all cameras, with and

without its projected structured light synchronously. It is shipped with a complete modeling

and an automated calibration procedure.

1.6.3. Perception System

The basic data structure of COP is the mapping of visual tasks onto a success statistics,

wherein the visual task is represented as a combination of a method, a model, and a sensor

configuration in space:

vis-task × 〈 method,model,sensor 〉 −→ success statistics

where each method is applicable only to a subset of model types and specific sensor config-

urations. The statistics for these method, model, sensor combinations form the basis for the

selection of a task specific method, model, sensor combination. The acquisition of the success

statistics is supervised by the highlevel control system of the robot that provides feedback to

COP. This feedback contains information about whether or not a perceptual task has been

solved successfully. For example, the highlevel controller might specify in the context of a

pick-up task that the localization of an object was successful if the robot did successfully

grasp the object; otherwise the success of the visual task is unknown, since a grasp failure

could have been caused by the grasp execution as well as by the perception routine.

The presented COP system essentially learns in two ways. First, it infers from detected object

candidates new models for objects and thus increases the set of applicable 〈 method, model,

sensor 〉 triples. Second, it learns the decision rules for selecting the appropriate method/-

model/sensor combination by continually collecting the results of their application when-

ever they have been applied in the context of problem-solving.

The results will show how using this autonomous specialization through this learning pro-

cess, can substantially improve the performance of the robot perception system by special-

izing to the tasks and the environment.

1.6.4. Embedding Perception in Robotic Control

Fig. 1.6 shows the embedding of COP into the robot control system, which is described

more detailed in [9]. In a nutshell, the control system consists of the perception component

COP, the action module that translates action specifications into control signals, monitors
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Figure 1.6.: The integration of the executive with the perceptual system and the actuation
system.

the action execution and provides feedback about the execution of an action to the highlevel

control system.

The highlevel control system specifies how the robot has to respond to perceptual input, to

failures and to known context of the current situations in terms of parameterizing the task.

The highlevel system has a set of plans that describe necessary action to achieve certain

goals. If a new goal for the robot appears, by command or reactively as a subgoal of a larger

goal, the respective plan is executed.

For the example of the preparation of a pancake, the information flow is sketched in 1.7. The

system has to react to new tasks given from the outside, as well as information that can be

acquired from non-static resources like the World Wide Web, it has to process sensor data

and should observe the reaction of the environment to actions of the robot.

In order to provide the information needed for execution of an action, the highlevel system

queries COP which will answer these visual tasks. The current capabilities of COP can be

queried and adapted online in automatic or supervised ways. The highlevel control has to

be aware of three main capabilities: scene segmentation, object localization and model re-

finement. Those three actions are triggered accordingly to the current goals of the highlevel

system. The required parametrization of those actions can contain as much relevant infor-
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Figure 1.7.: A Cognition-Perception-Action loop for the example of pancake preparation.

mation as available regarding locations and models applicable to this task. The refinement

of models contains all actions which learn new models or categorize object candidates and

also all non-trivial reconstruction methods.

1.6.5. Perception Guided Manipulation

In robotics the most important application for object perception is manipulation of those

objects. In order to enable manipulation given a certain perceptual result, the accuracy of

the result must be known. How much does the result say about the shape and how accurate

the position is estimated are crucial questions for manipulation. This is influenced by the

choice of perception method and the entire accuracy of the actuation system. The accuracy

of the system can be increased by a careful system calibration. Being aware of the actual and

potential errors and uncertainties allows a manipulation system to act more adequately to a

situation.
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1.7. Outline of this Work

The core system COP will be presented in Chapter 2, which focuses first on details in the

internal representation of models and the semantics in Section 2.2. This is followed by the

selection mechanisms for methods in Section 2.3 and the position aware result evaluation

in Section 2.4. The feedback system required for the Cognitive Loop is described in Section

2.5. The related work also contains systems with similar intents to enable robotic vision and

compares them with the COP in Section 2.6.

In Chapter 3, an overview over the field of service robotics is given. This starts with an

overview over current sensor techniques in Section 3.1 and other robotic platforms with

their capabilities and problems described in Section 3.2.

Leaving the general system architecture, the Chapters 4, 5 and 6 explain the tasks and the

proposed solutions for perception problems. The topics are ordered from first detection

mechanisms, over localization methods for different object properties to automatic model-

ing and model acquisition. Chapters 4 goes over detection mechanism for environmental

properties in general and more specialized for opaque and transparent objects. Chapters 5

describes the model based localizations and recognition methods based on e.g. CAD models

or image templates. The Chapter 6 discusses solutions to several interesting problems for

the perception tasks detection and reconstruction, categorization including CAD model in-

ference and transparent object detection, which are part of the contributions of this work.

Continuing the data flow from the perceptual result to the execution of an action, Chapter 7

discusses the special challenges introduced by manipulation. Providing the presented per-

ception mechanisms and proposing solution for robotic setup and calibration, the internal

representation of results in 3D are discussed under consideration of uncertainty and a simple

mechanism for grasp planning is described using this uncertainty representation.

Chapter 8 summarizes all results for the newly introduced techniques focusing on single

perception tasks and the manipulation system. Additionally, interesting applications of the

system will be shown in the context of simple meal preparation.

A conclusion and an outlook on possible future developments will be given in Chapter 9.

There, the solutions and the open research questions regarding the presented perceptual

system will be summarized.
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In this chapter the core of COP is presented and the most essential components of the system

are explained. We will explain in detail the mechanisms for including semantics, the learning

system and the feedback mechanism. After a look at all important features, other perception

frameworks and systems will be introduced in order to work out the novelties of COP.

2.1. The Structure of COP

The structure of the COP can be visualized using three components containing different

levels of data which are connected online to maximize the chance of getting a valid percept

as result. The data contained in the system is on the one hand a model that describes a

certain object and semantic object types and on the other hand data describing the robot’s

relevant hardware setup and the methods available to the system.

The models are representing the bridge to the highlevel, they can be queried and added

or annotated over services the system provides. All models have a certain type, e.g. CAD

models or color distributions, and they are annotated with a name representing its class,

which is connected with a semantic concept. This method will be explained more detailed

in the following section 2.2.

The system requires the information of the relative location of sensors and their field of view

and a list of methods that it can be applied to those sensor data. Additionally, the basic

requirements and conditions of those methods have to be modeled. Positional constraints

will be formalized in section 2.4.

The most important step inside of COP is to establish the connection between models, meth-

ods and their results. This step will be analyzed in section 2.3.

COP can be seen as a functional component that takes semantic object descriptions and re-

turns a probable position with respect to a model that was connected with the given descrip-

tion. Fig. 2.1 shows the data flow between the components of the system. The first step is to

look up all semantic description in the model database (on the left side of the figure), which

checks for already assigned models. The next step groups all found models to a collection
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Figure 2.1.: The task to locate any object as precise as possible is formulated by giving the
system object related information. This information may be already connected
with model information (e.g. learned features). The available model information
leads to the selection of a method and a sensor.

which is passed to the selection process for methods. Any previously unknown concept will

be stored for model inferences, see section 6.1.

This collection can influence the search space which can be created by mechanisms of COP(see

section 4.2.1) or is inferred from environmental knowledge and the current world believe

state, which will not be discussed in this work.

The search space might be seen only from some of the sensors, which restricts the set of

usable sensors. The model collection and the sensor collection make it possible to predict the

probability of different methods that might work out. Many vision algorithms have models

as preconditions and only work on a certain image type, those constraints are hard-coded in

the respective method and are checked in this phase. Additionally, the collected experience

is considered here, which consists of previous successes or failures of certain methods and

certain model-method combinations. This final selection of model, method and sensor is

a perception primitive. All model-method combinations selected here will be evaluated, if
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there is a feedback provided in some manner. An unexpected failure of the search would

be an immediate feedback, any result must be judged by an additional component, like the

success of a grasping action or a contradicting physical simulation (to detect false-positive

object detections).

After the system will be described in detail, an overview over the current literature will be

provided. We will discuss robotic vision systems at other leading research institutes.

2.2. Object Models and the Semantic Bridge

The most important task for COP is to create a belief state over the environment. Therefore

it provides the possibility to query the positions of objects. Objects are represented in the

highlevel system as a semantic concept that usually has a name or identifier. Semantic con-

cepts will appear in the interaction with a human or by interpreting task descriptions which

are generated by a human.

This term will be passed to COP to create a mapping between term and perceptual model.

This mapping can be either provided manually for all models, or it can be generated auto-

matically. As a format for exchange of those semantic concepts, WordNet is used to represent

the name of the concept and to pass it between different system components.

2.2.1. Model Annotation

To give objects names is a human habit, even if those names are not unique or task relevant.

Given such a name and a known context and with common experiences, a name can be

interpreted correctly by another human. Transferring this fact to a system that runs on a

service robot, three capabilities are required: First, it has to be able to couple objects with

their names. Second, those names have to be context sensitive and third they may alter

given a new source of interaction with a new counterpart.

In the implementation covered by this work, only the first two capabilities are addressed.

WordNet is implementing those capabilities, so it was a intuitive choice to build up on the

WordNet taxonomy, which is already large and contains nearly all English words. It contains

many words which are used in common naming of objects that also covers context in certain

meanings.
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WordNet

WordNet was initiated by Miller et al. ([72]) in order to provide an online lexical database.

It orders English vocabulary into groups of synonyms, so called synsets, and a hierarchi-

cal structure of those synsets. This hierarchy can be used to distinguish between different

meaning of one word and similar meanings of several words. This is important in an auto-

matic annotation process, which is based on communication with humans or human written

information sources (like most parts of the Internet).

Figure 2.2.: The word spatula and two different meanings visualized on the left and the right,
and the WordNet graph connecting the two meaning in the middle.

To compare words and annotations in Internet-based databases via distance measures, Word-

Net provides a set of methods. It provides several similarity and relatedness measures be-

tween synsets, which will be discussed later in the context of annotations of CAD models in

Section 6.2. Thus, the concept of a synset can be used to identify objects by relating them via

such a distance or relatedness measure with a concept in a database. For example, such a

similarity can help to resolve ambiguity visualized in Figure 2.2, representing two possible

results of the image search of Google for spatula. On the right 1 there is a tool that is used

for crafting and on the left there is the tool that is used in a kitchen which might be the one

we were looking for.

2.2.2. Automatic Model Acquisition

This synset allows improved communication with Internet databases that require no further

interfaces for the usage by a robot. Most common Internet databases that contain useful

information can be explored via natural language search-terms with certain techniques spe-

cialized to different databases and data types (see e.g. Sections 6.2 or 5.2.2). We can acquire

new models from these databases, even under the polysemy of a certain word.

1Courtesy to http://www.stuccoitaliano.it/images/stucco-tools/spatula-woodhandle-big.jpg, 2011
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2.2.3. Uninformed Object Analysis

With a distinct approach, coming from the percept, we want to gather as much knowledge

as we can in order to understand previously unseen objects. While a geometric and visual

description is enough for internal recognition, the communication with a human cannot

easily be solved. However, for internal tasks like obstacle avoidance or moving a group of

objects, a semantic analysis is not necessary.

Internal Uninformed Object Representations

Internal names like “Transparent Object” or “Cluster” describe such instances of unidenti-

fied objects with certain properties. Also descriptions which only help for debugging pur-

poses like “Texture123” or “ColorModel321” can be interpreted by a human only partially,

but still can be used analogous like the terms with a WordNet specification.

Elevation to Known Concepts

The same interface can be used to expand the internal representation by connecting a de-

tect object candidate with a semantic concept. This could be done in an interactive way by

the user or over a reasoning process that derives the identity or usage of an object. This

information can be simply passed to COP.

2.3. Algorithm Selection Mechanism

In order to select the right perception primitive COP combines static rules with experience.

The system holds a list of available models per semantic concept M and a list of methods A

(=Algorithms). Both can change online and are initially evaluated with a certain quality. It

also holds the list of currently available sensors S. For any method, there exist static rules

regarding possible combinations with sensors and models. All methods, models, and model-

methods combinations are evaluated in case they are executed.

We build a simple ontology for all methods, their prerequisites and results. The ontology

reflects also relations between values in the results, regarding the meaning of equality and

inequality. A snapshot of the current ontology listing the available methods without pre-

requisites can be found in Figure 2.3. The available models are depicted in Figure 2.4. The

figures show all methods and model types that are currently implemented. The theory be-

hind most of them will be described in later chapters. What we can take from it now is the

variety of different methods from that the system can choose. Many of the model types are
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2. COP - A Robotic Perception System

so specialized that they will only work with a single localization method. The refinement

methods can convert different model types into others.

2.3.1. Rule-based

The possibility to combine a certain methods with a model can be evaluated for every

method. We can represent this information as a binary matrix Ba for every method a ∈ A

expressing the possibility to combine it with a certain model. Similarly, the second rule that

restricts methods to certain sensor types is expressed as another binary vector bs for every

method collected in Bs. Those vectors limit the possible combinations to meaningful combi-

nation, since e.g. a CAD matching cannot be applied using a color model, while the shape

model inference could.

For the search space, a different decision criterion is applied. We distinguish two types of

search spaces: the current view as primary search space and a certain position with a spatial

distribution as secondary search space (see Section 4.2.1). All methods can support both or

only one of the search space types. That means, on the one hand, that certain search spaces

forbid methods, if the respective search space is outside of the view of all sensors combinable

with the method. On the other hand, secondary search spaces also limit the results of those

methods that would be applied otherwise to the complete scene.

2.3.2. Experience-based

To evaluate a certain combination, a vector containing the scores is calculated for a model-

method-sensor combination. We have three types of experiences stored in the vectors eM,

eA and the matrix EMA, which represent the evaluation of the models, the methods and the

combinations of models and methods.

For a certain semantic type the evaluation for all methods e is calculated with the following

formula, given the binary vector, that represents available model types connected with the

queried concept bM:

e =
(

(bM · eM)T (Ba ·EMA)
)T

· eA · (b
T
s Bs)

T (2.1)

The operator · denotes element-wise multiplication, and bs denote if a sensors sees the cur-

rent search space. The highest entry in e selects the method, which will then pick the relevant

sensors and all necessary models, which can be more than one.
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Internal Reward Structure

Positive answers are increasing all evaluation values of the selected method and models.

Exceptions during the execution of the method with a certain model will set the evaluation

of a model-method combination to zero.

2.4. Position-based Result Evaluation

In order to handle areas in the environment that are badly responding to sensors or algo-

rithms, COP also contains an a-posteriori evaluation of result which is based on positions.

Examples for such areas can be a Ceran stove or a steel sink, which gives bad reading for

a ToF camera. Other examples are corners in a room with e.g. cables which challenges any

edge-based computer vision algorithm.

To learn that results from a certain algorithm in such areas are less reliable than in areas with

good preconditions, every verified or disproved result is stored in a kd-tree of positions with

result qualities. This allows searching for a any new result if there were earlier results in the

close environment. All results are stored in map coordinates with their evaluation (from

0=disproved to 1.0=verified) assigned to the algorithm they were acquired with.

The final evaluation is then calculated based on the current evaluation vnow and the n next re-

sults with increasing distances d1,d2, ...,dn and the corresponding saved evaluations v1,v2, ...,vn:

v f inal =
1

2



vnow +
1

∑
n
i=1 div j

(

1−‖ 1

1+e−di
‖
)





This final evaluation is used to prioritize lists of results and to filter out improbable results.

2.5. Feedback Loop in a Perception System

The possible errors that could occur in a system are manifold, while the points an error can

be detected are limited. Inside a perception system a “second opinion” might be the only

way to detect something is going wrong. Regarding the means of a perception system, this

might be a different method applied on the same sensor data, the usage of the same method

on different sensor data or integration over time or point of view.

All those methods are tediously better performing with the result of the earlier tries as initial-

ization, which also lowers the probability of obvious contradictions. Anyways, an internal
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2. COP - A Robotic Perception System

detection of false readings is only possible if there are methods with different error patterns

for different conditions. But the initial problem, how to find out which methods have which

error pattern without extensive design of those properties is pretty difficult to elicit.

Without external feedback, the proposed unsupervised learning tends to favor solutions

with a relatively high false-positive rate. But false-positive matching can be handled eas-

ier by a highlevel system than false negatives. This is managed by allowing feedback on

search results: Any hint for wrong perceptual results is reported back, so evaluation of the

respective model-method combination can be corrected. Also all successful manipulations

of perceived objects are reported as a success which will amplify the earlier reward for the

detection and also to the cascade of previous perception primitives that created the models

involved in the successfully fulfilled task.

2.5.1. Type of Feedback

The next level after the intrinsic error awareness is a reasoning level in the highlevel. There

are several possibilities to compare a certain percept with physical, temporal, or even self-

including models.

Depending on the used perception mechanism a highlevel system should be able to react in

a specific way to different kinds of errors. An object can be missed, it can be hallucinated

(false positive) or the result can be not accurate enough for a certain task. All three problems

can lead to a failure of tasks, but are difficult to distinguish from observing only the success

of execution.

Discussing at first grasping actions as the most relevant task for this work more detailed, a

highlevel system can distinguish the three kinds of perceptual error:

• Any unpredicted collision far from the target object are a good hint for an object that

was not detected even if it was there.

• Any collision in the direct neighborhood of the target object is a good hint that the

perception of the target object was not accurate enough.

• On the other hand, if there is no collision at all even when the hand closes around the

predicted position of the target object, this occurrence is most probably a false positive

detection.

This reasoning of course assumes a perfect detection of collisions, which is unfortunately

also based on a noisy perception. Luckily, this perception is made usually with a different

kind of sensor, so that the reasons for erroneous percepts are different: Collision detection
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2.5. Feedback Loop in a Perception System

is mostly based on forces that are applied on the actuators. This again is depending on the

mass of the colliding object.

Another method besides the collision detection in the robots actuation would be a second

glance at the scene best from a significant different point of view. This requires of course

highlevel planning, to make sure there are no other known objects in the sight line, the scene

and the lighting did not change significantly in the meantime and the model which were

applied work for the new point of view or there are additional models which do.

The result can either verify the first percept or it will contradict, which is the fourth de-

tectable error, which can be reported to COP.

Overall, COP supports five types of feedback: First and most important: the task succeeded,

which means there was no detectable error. All others are errors: An undetected obstacle, an

inaccurate localization, a hallucination and contradicting perceptions.

2.5.2. Cascade of Feedback

A common action pattern in an object manipulation process is the detection of object can-

didates, their verification or refinement, a pick and a place back, and a verification of the

placed objects position.

In this scenario the internal process, which happens inside COP can be explained regarding

the feedback. A perception primitive for detection creates a set of object candidates and will

after execution wait for an evaluation. This is not possible until any action which can fail is

executed. A detection for example usually does not fail, it either reports objects or no objects

regardless if this result is correct. There is no possibility to judge this result.

Assuming, that the pickup action fails, a feedback will be given for one of the objects in-

forming about the negative result. This feedback will contain the information which of the

multiple detected objects was selected. The feedback will cause an evaluation of the model

resulting from the refinement as well as of the initial model triggering the detection and to

the methods used for detection and refinement. If the grasp fails without contact with an

object, the position at which the object was detected gets a bad reward, too. Suppositional

the manipulation succeeds and only the re-detection fails; only the models involved in the

re-detection get a decreased evaluation.

25



2. COP - A Robotic Perception System

2.6. Related Work

We present here a perception system for robotic manipulation. Similar objectives can be

found in the following systems: A perception system for indoor environments is presented

in [16]. It uses a two step combination of color saliency with a boosted image classifier

in order to enable a robot platform to perform environment aware manipulation. These

techniques are applicable to a special scenario and do not include a learning step.

The work of Kragic et al. [61] proposes a system that distinguishes between different visual

modalities (monocular CCH requiring a CAD model, and a SIFT-based matching) and han-

dles known and unknown objects. The system segments first using a combination of 3D and

2D information which can be seen in a typical example in Figure 2.5 on the left side, and then

uses SIFT and the CAD information for a final and more accurate pose estimation, which can

be seen on the right side of Figure 2.5.

The framework presented recently in [4, 37, 36] coordinates sensing with learning over time

based on color segmentations, SIFT-based object localization, and CAD based object local-

ization. This framework is tailored for real time self localization and uses different sensor

types like force sensors and vision. An example how to use this system is depicted in Fig-

ure 2.6(a) showing ARMAR-IIIa picking up an object detected and tracked with a method

combining a CAD model and color information.

This system was recently extended with the capabilities to explore new objects using active

vision [141]. The new capability allowed the robot to capture a partial textured 3D model of

objects in his hand.

Another system that is context and target aware can be found in [86] . It requires a completely

modeled world including a 3D model for all handled objects and world modalities. Images

from the cameras on a HRP2 can be seen in Figure 2.6(b), which shows possible matching on

the top and the interpretations achieved by this system.

A system for manipulation of unknown objects was presented by [116]. This system relies

on the visual recognition of grasping points which would require a large labeled database of

objects to be handled. The work was continued by incorporating 3D data into the segmen-

tation which precedes the classification step. The results were surprisingly good, while the

possible generalization can be doubted.

Trujillo and Devy in [27] present a vision framework for the recognition of objects on a

robotic platform. This framework uses several vision modalities to be robust for a large

set of different objects. Unfortunately, the system requires a long modeling phase , and re-

quires the acquisition of a large set of images which implies active movements of the robotic

system.
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2.7. Summary

After seeing the other state of the art systems, the properties of COP differ from the dis-

cussed related systems in the following points: COP is capable to learn in an abstract way

independent from implemented methods, and it is transparently interfacing any underlying

mechanism to a highlevel system over the semantic bridge. The internal selection mecha-

nisms can provide performance and robustness at the same time.

Due to these properties, it can support a large list of specialized methods. A subset of the

implemented methods will be discussed in the Chapters 4, 5 and 6. Those methods integrate

well into the same framework while they have different interfaces and result types and se-

mantics, but still can be used without knowledge about those differences on the point of

view of a high-level system. Additionally, COP supports different kinds of sensors and also

integrates well with different robotic platforms. The state of the art for supported sensors

and what other robotic platforms are existing and what are the limitations of those systems

will be discussed in Chapter 3.
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Figure 2.3.: An overview of the currently implemented methods in COP.
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Figure 2.5.: An segmentation and three iterations of a monocular CCH to a final fitting of the
object, taken from [61].

(a) Grasp execution with the humanoid robot
ARMAR-IIIa using the developed object recogni-
tion and pose estimation system [4]

(b) The perception framework of the
Tokio university uses CAD models
[86]

Figure 2.6.: Vision systems from KIT and Tokio University
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Capabilities of robots are nowadays various enough to fulfill complex tasks, but they are still

not general enough to be capable of solving generic tasks. Grounded in current sensors and

manipulation hardware, the limitations to the capabilities are overcome by domain and task

restrictions, or hardware multiplication. How sensors and robotic hardware are applied in

the current development of service robots is discussed in this chapter.

3.1. Sensors for Autonomous Robots

For gaining autonomy, a robot must be capable of perceiving its world. In the developmen-

tal robotics, a large variety of sensors is in application. From a theoretical point of view, the

sensor development is advanced enough to provide all information which is required in the

setup of a household assistant robot. Practically, the sensor answers are still very context de-

pendent, which leaves space for new developments in the sensor and their interpretation.

The most popular sensor types used in robotics are CCD based cameras for visible light,

followed by active LASER or infrared based time of flight measurement techniques. A newly

spreading sensor is the Microsoft Kinect sensor, which is a combination of a structured light

sensor and a camera. We will discuss the properties of those sensors as far as they affect the

usability in the household assistant scenario.

Additionally, there are other sensors used for pressure, force and torque measurements or

just internal position measurements, which will be used at some points in this work for

world perception. Those sensor types will not be discussed here, but it should be mentioned

that they are complementary and well combinable with the visual sensors discussed here.

3.1.1. Cameras

A standard camera for visible light is relatively cheap, and creates images that a human

can usually understand immediately. This is especially useful for developers working with

this kind of camera and it also allows a human-like experience. Additionally, for this kind

of images, the research in object and scene recognition methods is relatively advanced. In
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theory the results propose that the available methods are already capable of most of the

atomic perception problems that have to be considered in this scenario.

Problematic for the visible light cameras is, that they have a limited dynamic and depend

heavily on additional light sources. The perceived colors depend on external light sources,

and the differences of the same perceived scene in full spectrum of daylight and limited

spectrum of halogen office light is immense. The differences can be seen in Figure 3.1 which

contains a similar shot from a robots camera of the same table once in daylight and once in

halogen light.

(a) Scene in daylight. (b) Scene in halogen light.

Figure 3.1.: The two pictures above show the impact of the environment lighting on readings
of a RGB camera.

Usually the affordable cameras are restricted to a 3-byte intensity resolution with different

filtering being able to receive all light with wavelengths in the spectrum visible for humans.

Usually those cameras return their image separately in red, green and blue (RGB) channels.

Unfortunately, in human life glass and other transparent materials play an important role

which will not reflect much visible light. This implies that a robot also needs to be capable

to perceive such objects, which is very challenging given only standard RGB cameras. If the

objects are not transparent, but unicolor or textured, this color allows an easy identification

of those objects. Although, the effects of different light sources shown before makes the

identification by color challenging again. The third important clue humans use to identify

objects or their functionality is the shape of the object or the shape of important subparts.

In RGB images shadows or illumination changes appear on objects, on which they creates

edges without geometric grounding. In order to allow the analysis of edges and surfaces by

this clues, first the problem of distinction between geometric and shadow or texture edges

has to be considered.
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3.1.2. Stereo Setups

Especially the last effect of texture-imposed edges versus geometric edges can be overcome

with a stereo setup. With a careful calibration of the relative position between at least two

cameras, the depth in an image can be estimated. The depth estimation depends usually

on a search of correspondences on epipolar lines. This calculation is theoretically relatively

simple, but requires a lot of computation. The simple versions of the stereo calibration can

be parallelized and can be implemented on FPGAs as it is done on Stereo-on-Chip-Cameras,

like the STOC previously mentioned on TUM-Rosie.

The problems of this technique on the other hand appear on surfaces without any texture:

the matching along the epipolar line is ambiguous, since there is no definite optimum for

the matching of two points on such surfaces. Additionally, this technique suffers from struc-

tural defects at geometric edges which might be the most interesting information in the re-

constructed 3D. The data on the edges is either smoothed by the process or there is a gap

around the edges in the data.

3.1.3. LASER Range Scanner

LASER range scanners use a sweeping LASER beam to measure the time until the reflection

of the beam returns to the sensor. This leads to several properties that are useful for percep-

tion: Generally those LASER range scanner return the most accurate distance measurement

currently available. Unfortunately, there is only one measurement at a time per sensor. This

means, to obtain scans of a greater volume, a significant amount of time is required in that

the sensor must be moved in order to see the complete volume (sweeping/tilting movement

or similar). This makes it difficult to deal with changing environments. Additionally the

LASER beam is often colored red or even inferred light, which causes glass and some sorts

of plastic to be invisible, while metal and other reflective materials disturb the measurements

significantly.

3.1.4. Time of Flight Camera

Similar problems apply to the so-called Time-of-Flight (ToF) cameras, since they work with

similar wavelengths to produce the flash that is used for distance measurement here. A

flash is emitted and the passed time of the reflection is approximated on an area sensor by

measuring the phase shift of the returning wave. This gives low resolution images, that have

besides intensity also depth information. Unfortunately, this depth information is of lower

quality compared to the LASER range sensors working with a single LASER beam.
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Since this sensor will be used for many experiments in this work in the following, a detailed

analysis of the properties of the camera Swissranger 4000 (SR4k,[84]) is shown to analyze

noise in the measurement of different surfaces in a domestic environment.

Estimate Noise Level in Range Data

Figure 3.2.: One of the sample scenes with the manual segmentation used to estimate the
noise level. The inclination of the sensor to the table plane was approximately
45◦.

In this discussion we want to estimate two types of noise: First, the intrinsic white noise and

second the structural miss-readings depending on geometric structures and surfaces.

Measured with a SR4k, Table 3.1 shows the influence of different materials on the devia-

tion of subsequent observations of a static scene. The experiment took scenes like displayed

in Figure 3.2. The data contains approximately 1000 observations with an observation fre-

quency of 1 Hz. A hand-made segmentation allowed the distinct measurements for the

objects. The deviation per pixel as well as the mean of the pixel-wise deviations for one

segment can be found in the table.

The data shows that given a good segmentation of the table and enough valid measurements,

the height of the table can be estimated up to accuracy below a centimeter. On the other

hand, there are several problematic materials that might influence also the depth estimation

of a table. Glass, for example, appears flat on the table, so it would be classified as part of

the table. Still by the view through the glass the noise level changes significantly and too
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Object Deviation Mean z Dev. in Mean
in z (in m) (in m) Intensity Intensity

wooden table (white paint) 0.0039 1.154 69.47 7262.29
Chinaware, mug 0.0048 1.279 115.54 7555.18
Paperboard, box 0.0050 1.138 114.35 7463.31

Paperboard, cylinder 0.0051 1.225 115.87 7639.08
Metal cup 0.0140 1.309 341.80 5665.42

Metal spray (printed) 0.0124 1.331 261.49 5752.84
Glass 0.0105 1.381 261.48 5474.76

Thick Plastic, wine glass 0.0075 1.421 137.70 5387.81
Thin Plastic, bottle 0.0105 1.379 236.55 5597.33

Table 3.1.: Intrinsic deviation for average pixel-wise noise for an inclination of the sensor
toward the major plane of the objects of 45◦ and 1000 subsequent readings of the
SR4k on a stable scene.

many of those objects will have negative influence on the accuracy of the height estimation

of a table.

Additionally, the data shows a significantly worse behavior of the measurements for metal

and glass in intensity and depth.

3.1.5. Structured Light Stereo

The low resolution can be tackled by replacing the complex time of flight measurement with

the previously mentioned stereo camera setup, given there was texture on the objects. The

fact of texture on the objects can be simply enforced by projecting patterns on the scene. This

combination of projection of a static pattern with a stereo setup delivers similar quality like

a ToF sensor with a significantly higher resolution. Unfortunately, also this technique has

some drawbacks, like structural measurement errors on geometric edges and no measure-

ments in areas one of the two cameras is not seeing.

Microsoft Kinect Sensor

A very exciting example for a structured light sensor is the Microsoft Kinect Sensor. In

this case the structured light is produced by a LASER lighting through an optical lattice

[115], which provides a multi-resolution pattern with sharp dots at various depth. This effect

allows this sensor to be faster and more accurate than most available sensors for a fraction

of the usual price. With this technique one camera is enough to estimate the depth, since the

pattern projected by the LASER can be well predicted and detected dots can be identified

directly.
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3.1.6. Sensor Combinations

The best performance can be achieved by combinations of different methods. E.g. we can get

the accuracy of a tilting LASER range sensor, if we additionally use a ToF camera to be able

to deal with a changing environment faster. Additionally we can overcome the resolution

problems of a ToF camera if we mount a set of stereo cameras next to it. These are the

reasons for the sensor setup of TUM-Rosie, which serves quite well for the purpose of object

recognition. Other examples for successful sensor combination are the DLR 3D Modeller or

the PR2 Sensor Head of Willowgarage (also on TUM James).

PR2 Sensor Head

The collection inside a PR2 sensor head contains 5 cameras and one projector. The projector

can be used to illuminate the area in front of the robot with a static pattern, which allows

robust depth estimation using stereo. This so-called structured light stereo can be performed

with two different pairs of cameras inside the sensor head: the foveal narrow stereo cameras

and the wide angle stereo pair. Additionally the sensor head contains a high resolution

camera with approximately 5 Megapixel resolution that allows the analysis of texture of

objects and any kind of image processing that requires high resolution.

3.2. Current Robots for Perception in Human Environments

The capabilities of robots can be best surveyed by an introduction of the state of the art plat-

forms used for service robotic research. The list of robotic platforms is restricted to such

projects that perform research in object recognition. Namely, we will go over the following

platforms to STAIR of Stanford University, as well as HERB of Intel Research and the CMU

robotics institute, the DLR robot Justin, the AMAAR project at Karlsruhe Institute of Tech-

nology, the research with HRP2 at the Inaba Laboratory at Tokyo University, the robots at

LAAS-CRNS in Toulouse and the Care-O-bot of the Fraunhofer Institut IPA in Stuttgart.

Generally, all current robotic platforms have limited motion capabilities and are equipped

with a limited sensor set including in most cases 3D sensing. The limitations in the motion

capabilities express themselves often in the tasks which are addressed in the published work.

This implies that often lack of generality in the proposed solutions results from hardware

limitations.
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3.2.1. Stanford - STAIR

STAIR is a project to implement a robotic platform capable to fetch and deliver items, tidy up

or prepare a meal in a normal kitchen. The research focus lays on perception mechanisms for

manipulation. The hardware platform consists of a wheeled base with a vertically mounted

arm with a gripper and a set of sensors on top of a longer fixed arm.

(a) STAIR opening a door. [101] (b) HERB from the Robotics In-
stitute of Intel Research and
Carnegie Mellon University.

Figure 3.3.: Robotic platforms from Stanford and Pittsburgh.

One of the achievements reached with STAIR is autonomously opening of doors, see Figure

3.3(a), which is part of a larger task to go around in office buildings and find all objects of a

certain type.

Another example for results from this project is a method for automatic grasp point selec-

tion based on images even for previously unknown objects based on features learned from

annotated objects [116]. Given enough annotations and similar enough objects, it seems an

interesting way for grasp point selection. The platform is limited to manipulate on desk

height and a bit below, and addresses also major problems in the working place desktop

setup. The most famous demo which was presented by the group of Andrew Ng was to

search in a room for a stapler and deliver it to a predefined place [81]. Interaction with

humans as well as laser based sensing is not a research focus.

3.2.2. HERB - Intel Research and Carnegie Mellon University

Hardware wise similar to the STAIR project, HERB is the home exploring robotic butler

of Intel Research and the Carnegie Mellon University presented in [123]. It is capable of

grasping textured objects and navigates safely using Visual SLAM through its environment.
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It consists of an omnidirectional platform for movement and has a 6dof arm mounted on top

of this with a Barett hand for manipulation. The work done in object recognition [106] as

the works in grasping are showing how little hardware is required to achieve good results

[19].

3.2.3. DLR Justin

(a) ARMAR III opening a fridge. (b) Rolling Justin from DLR [144].

Figure 3.4.: KIT and DLR robots.

The DLR has the robotic platform that was provided to the Desire project also in house with

the name Justin. The enormous capabilities of this platform were demonstrated in several

occasions: The arms are fast enough to catch a ball in the air [6], and the entire platform

is accurate enough to pour liquids, even active liquids like wheat beer. The integration to a

more complex system was not pushed here at DLR directly, since the hardware development

and space application are more in focus than household activities. This was emphasized

more at the Desire project, which uses parts of Justins hardware.

Desire Project

The desire project was meant to combine the research on service robotics from a large set of

institutions and companies. The participating institutions are among others Kuka, Schunk,

Siemens, Universität Freiburg , UniversitätBielefeld, the DLR and the Frauenhofer Instituts

IAIS and IPA.

38



3.2. Current Robots for Perception in Human Environments

(a) The service robot used in the Desire project.
[21]

(b) A view of a cluttered scene that was
used to evaluate the perception mecha-
nism of the robot.

Figure 3.5.: The Desire robot and a sample scene from a demonstration.

Regarding perception they presented a well integrated vision system for known object based

on texture features (SIFT) located via stereo cameras making use of 3D segmentation tech-

niques. The latest advances contain work in active perception [21]. Using a database of 100

exhaustively modeled objects it was shown that even cluttered scenes could be reliably re-

constructed. The robot named Desire can be seen in Figure 3.5(a). Figure 3.5(b) show a scene

from the point of view of the robot. This scene can be analyzed at once by identifying their

histograms of SIFT features.

3.2.4. KIT - ARMAR III

The ARMAR project at the Karlsruhe Institute of Technology tries to build a robot with hu-

man like capabilities. The project targets on the construction as well as on highlevel control

of the robot. Figure 3.4(a) shows ARMAR III during a demonstration showing the capability

of opening a fridge and getting items out of the fridge. During the opening, the hand and the

fridge’s door are tracked visually and the forces applied to the handle are controlled using

the visual feedback as well as the force measurements in the arm. The robot localized itself

visually; see Gonzales et al. [35]. The robot relies for object recognition mainly on fast SIFT

implementations.

3.2.5. Tokyo Univ. HRP-2

Figure 3.6(b) show the HRP-2W that was enabled by the researcher of the Inaba-Lab at the

Tokyo University to wash dishes or fold towels. The robotic hardware allows dexterous ma-

nipulation and is controlled by Lisp program, which allows failure recovery and dynamic

replanning. Thanks to this controller the robot is able to show complete demonstration ac-

tion sequences, like pouring liquid in a vessel, checking for eventually caused messes with
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3. Robotic Hardware for Perception

(a) A daily assistive robot, presented in [145] (b) The HRP-2W, the wheeled version
of the HRP-2 with its sensor set [51].

Figure 3.6.: Selected robots at the Tokyo University

the liquid and cleaning any produced mess. The perception capabilities are based mostly

on stereo vision, and include matching of projected contours of 3D objects using a method

based on particle filtering. An even more advanced sequence of action was shown by the re-

searchers in Tokyo with the robot shown in Figure 3.6(a), which cleaned up a room including

picking up clothes, putting them into a washing machine and wiping the floor.

3.2.6. IPA Care-O-Bot 3

(a) The Care-O-bot 3 and its hardware setup. (b) Jido, a robot designed and
used at LAAS in Toulouse.

Figure 3.7.: Robots at the IPA and LAAS.

Thought to be a ready-to-sell robot butler, the Care-O-Bot 3 can be seen without casing in

Figure 3.7(a). It is with only one arm less human like, than some of the other mentioned
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platforms, but is composed of industrial proved parts and can be counted as a reliable hard-

ware platform. The software currently enables the robot to pick up drinks and serve them to

people avoiding meanwhile other moving persons. The sensor setup contains a stereo setup,

a LASER range sensors and a ToF camera.

The tasks which are performed are mostly preprogrammed, including the map and the ob-

ject knowledge. This allows on the one hand the robust behavior, but imposes additional

complexity on extending the capabilities of the Care-O-Bot. Currently the robotic middle-

ware is replaced by ROS, which might help to extend the capabilities.

3.2.7. LAAS - Jido

Mainly developed for human-robot interaction, Jido is a robot that is used for passing objects

to humans, see Figure 3.7(b). The perception on this robot is implemented by an outside-in

tracking system installed in the laboratory. The research that is done on this platform is

focused on navigation and action in the presence of humans, e.g. [121].

3.2.8. PR2 of Willogarage

The robotic research platform PR2 was developed by Willowgarage in order to provide a

common research platform for robotic software development. The target is to speed up re-

search to reach the breakthrough in personal robotics faster. In order to achieve this, a robust

robot was developed that has already a large set of drivers, controllers and perceptual func-

tionality to perform a bunch of basic tasks out of the box. Willow garage also granted PR2s to

Stanford, Freiburg, Berkley, Tokyo, BOSCH Research, Leuven, Gorgia Tech, MIT,University

of Pennsylvania and the University of Southern California.

3.3. Summary

This chapter showed an overview of the research in the last years towards service robotics

and perception systems. By going over these systems, the most interesting challenges and

hardware imposed difficulties are shown. The variability of the appearance of robotic plat-

form is very high. Also the different applications they are made for vary a lot as do the

capabilities regarding manipulation and perception of the platforms. It can be additionally

stated, that TUM-Rosie and TUM-James are relatively highly developed platforms, which

also have competitive sensor setup.
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3. Robotic Hardware for Perception

Based on this conclusion, the next chapter will give details for the implementation of per-

ception methods on such high-end platforms.
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Part III.

Perception Tasks in Domestic

Environments
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4. Detection and Reconstruction

A robot in a human living environment is confronted with a large set of moving and chang-

ing subjects, objects and scenes. In this work several challenges are pointed out in this sce-

nario and solutions are proposed for some of them. This chapter starts with the task of

localizing a camera or a robot in space in a known environment, continues with the task of

detecting objects, and ends with the task of 3D reconstruction. We want to show methods

for different kinds of objects, depending on material properties like transparency.

4.1. Perceiving Environment

The first step of a robot in an environment is the self localization: Even if for most service-

robots this task is in most cases only a three dimensional problem, since the height from the

floor is mostly known like the rotation of the sensors against the floor plane, we still want

to focus on a full 6D approach. Before we will go into detail of our approach, which we

tested on a mobile camera wear by a human on his head, we want to give an overview over

the field of visual synchronous localization and mapping (SLAM) and localization in video

sequences.

(a) The world origin for this example. (b) An exemplary model of a significant
kitchen part.

Figure 4.1.: Even in much distorted images, an absolute 3D localization is possible, even
without having any prior about the cameras position and calibration.
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4.1.1. Related Work

Robots that localize themselves often use Monte Carlo Localization, usually variants of the

so-called Adaptive Monte Carlo Localization (AMCL). This method was described in [129]

and methods based on this early work are the state of the art in robotic self localization.

Usually, the sensor measurement used for this method is a static LASER sensor mounted

near the floor on the robotic platform. The localization hypotheses that are necessary to

make use of the Monte Carlo Localization are based on a map that usually was generating

before. The most common approach for this is GMapping [38].

The general idea behind map building and localization in a static map can be extended to

a visual approach, the so-called Visual SLAM, which is a widely discussed topic, improved

lately by works like [58]. Most such approaches use local features, which require a rich

texture at walls of rooms to work reliable. In the kitchen scenario most textured objects in

our environment are the movable objects. So any completely autonomous approach would

have to work in an empty kitchen. This assumption of having an empty kitchen is too strong

to be applied to this work.

More interesting for the service robot is the 3D Mapping , e.g. presented by Rusu et al. in

[112]. This technique can abstract easier from the movable objects, since the mobility cor-

relates heavily with the size of the objects, which is in 3D information the most reliable.

Anyways, in order to locate a camera in respect to a 3D structure an edge template can also

answer this question.

4.1.2. Scene Localization and Tracking

Beside general Visual SLAM, if the problem is reduced to a known and non-changing envi-

ronment, the selection of landmarks can be reduced to a few distinctive points that can be

seen often. This fact can be used in a setup without a robot but with a head mounted camera

with a gaze tracker to localize the camera’s positions.

The same idea can help the robot to localize itself relative to very specific landmarks with

over-average accuracy. Or with a controlled environment even a calibration with the envi-

ronment is thinkable.

The technique we use to localize landmarks in an indoor environment is restricted to pla-

nar parts which might be in a kitchen e.g. walls or working surfaces. It does not require

distinctive texture but builds a complete model of all edges visible in a certain area that are

assumed to be planar. One camera image might be enough to learn the model.
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The basic algorithm we use was introduced by Hofhauser et al. in [45]. We wrapped this

algorithm into a system selecting the adequate template depending on the robots position

estimated over odometry and AMCL applied on laser scans, which give already localization

accurate up to several centimeters. In order to extract such a landmark, we first need planar

substructures in the world. This was applied in [126].

Plane recognition

Given a point cloud acquired by a sensor like the ToF camera SR4k of a tilting LASER range

sensor we can detect planes in the environment. In order to estimate planes we can distin-

guish four different methods, which apply to different situations:

• A Sample Consensus approach over full 4D plane equations

• A Sample Consensus with normal restrictions (e.g. extract walls by using points with

normals that are orthogonal to the floor)

• A maximum search on a histogram containing the height (e.g. extract tables and floor

candidates)

• A filtering by a local normal that is estimated by calculating the SVD on the covariance

matrix of the distance vectors to the mean of the point cloud

Depending on the size of the relevant data set and the expected result, a certain technique

should be favored. If we can extract such a plane in a scene, we can learn a template for this

plane and register it later on with the current camera view. Examples for this technique will

be additionally presented in the next Chapter in Section 6.1.3. For table detection we use the

third method, the maximum search on the height histogram, since it is the fastest method,

which is also robust against noise due to the restrictive model.

4.2. Detecting Objects

In order to explore a scene or to find a special object, a mobile robot might need to generate

hypotheses were to start looking. Provided that a highlevel system already localized the

robot well, a direction to look at is granted. A query from the highlevel system to the per-

ception system is then posed regarding a known volume like on a table, in a cupboard or on

the floor. This allows us to apply several methods, e.g. the following:
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Point cloud

Prerequisites

Plane detection, 
segmentation

Calculation Result

Position and 
size of clusters

Figure 4.2.: Prerequisites, Calculation and Result of point cloud clustering.

4.2.1. Point Cloud Clustering

In a 3D point cloud we can detect and subtract known substructures like tables or the floor or

parts of a cupboard, mostly by extracting planar or other known parts. All remaining points

in the volume of interest can be clustered into object hypotheses. Those object hypotheses

can be compactly represented by a point probability distribution, or by all points in the

cluster. See Figure 4.3 for an example of a scene segmented with this method. The volume

described by the distribution of the point of the objects serves as secondary search space.

Especially over planes like tables or a shelf this method works well. See Section 4.1.2 for the

detection of object hypotheses. Even without having a structural map, a horizontal plane

can be easily detected and used as a supporting plane to segment object standing on top of

it.

There are several critical parameters involved in this clustering: When a cluster must be

split, what a significant size is and what are the thresholds to consider a sensor reading as an

object and not noise. With enough context knowledge, those parameters can be calculated

or estimated online given the current task. In current literature, those parameters are mostly

hard coded for a certain scenario and can be maximally adapted on failure in interactive way

[96].

Approximate Minimal Height

An object can be recognized if it sticks out of the table significantly more than the usual noise

in depth measured on a table. In this case, all points can be selected to be part of the table or

of object in linear time. Usually the noise of a table depends highly on the material and on

the angle of observations. Sensors like LASER range sensors and ToF Cameras tend to have

more noise on steep views. Given a certain table which we know the internal noise level, (see
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4.2. Detecting Objects

Figure 4.3.: An image of a ToF camera with an initial segmentation shown by the large co-
ordinate systems, and approximations of the point distribution displayed with
small coordinate systems.

Table 3.1) the minimal height that can be robustly detected is usually twice the deviation in

the depth measurement for the table material. The angle of observation depends mainly on

the height and the range of the robot and can be considered constant for one platform.

Initial Segmentation

For most 3D data it can be assumed that the local neighborhood of the voxels is known.

This allows the usage of a so-called range image, which we can use to identify connected

components. If a threshold is applied to the z component of all points in the 3D data the

rest is tested for connections. This test just creates regions of all the voxels, which have a

neighbor and also are selected as being above the table.

Each connected component is an initial segmentation candidate and its mean and deviation

is calculated. Those values are passed to the following pre-selection method.
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Pre-selecting Object Candidates

An object candidate has to fulfill several conditions before the splitting process:

• It contains at least 0.25 % of the initial points

• It needs at least a certain amount of particles per m3

If a candidate passes the pre-selection it is checked for the possibility to be split. A valid

minimal density was measured at five million measurements per m3 for SR4k and Kinect.

Splitting Object Candidates

The mechanism requires a dimension along which the splitting will be performed. This

dimension can be ideally calculated by a PCA on the points that result in the dimensions

with the highest entropy. Alternatively, all coordinate axes can be chosen, to simplify the

selection of this dimension.

The values of the distances of all points in this dimension to a center are put into a histogram.

This histogram is smoothed as long as the number of points in the histogram allows it or until

the number of significant maxima is reduced to a low enough number. All of those maxima

are considered as a potential mean value for a new candidate and the initial candidate is

split under one condition: Two neighbored maxima have at least a distance over the noise

level of the sensor (see 4.2.1). If two neighbored maxima do not fulfill this, they are not split

and the weighted mean of them is compared with the next maximum.

Merging Object Candidates

The condition to merge two clusters is that the Mahalanobis Distance [42] is smaller than 1%

or the final distance is smaller than the threshold for splitting. This is tested for all object

candidates. All other objects are returned and sorted by their size in voxels as a quality

measure.

4.2.2. Intensity Based Segmentation Methods

Supposed that an unstructured object is in a known or predictable environment, it can be

recognized using intensity or color cues. An example for such a task is the detection of a

newly generated pancake in a pan. Given the assumption the pancake is in the pan, it has a

significantly different color than the pan. The only exception might be a burned pancake in

a black pan.
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Color specification, 
plane as search 

space

Prerequisites

Selection of best 
region 

Calculation Result

Position of a 
color blob on 

the plane
Figure 4.4.: Prerequisites, Calculation and Result of the intensity based segmentation

methods.

In this example, all non-pan like colors can be segmented if the position of the pan is well-

known. The position of any structure that differs from the pan can then be determined in

relation to the pan. For segmentation a dynamic threshold is used that distinguishes dark

and bright area in relation to the local neighborhood inside the known region of interest.

As extension of this informed segmentation, a color classification based on [140] can be ap-

plied on a previously segmented object in order to create a histogram of colors that can be

compared to a stored or predicted set of colors. This can be used to recognize objects based

on human descriptions of colors like ”red“, ”green“ or ”blue“.

4.3. Detecting Features of Tools

Point cloud
and Image

Prerequisites

Plane, concavity,
line and hole

detection

Calculation Result

Position and 
sizes of tool

features
Figure 4.5.: Prerequisites, Calculation and Result of detection of tool features.

More specialized than the detection of present objects is the detection of certain features. If a
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geometric part of an object like a plane, which was discussed before, bears functionality, the

extraction of features that stand for such parts can lead to implications to possible usage.

4.3.1. Symbolic Tool Representation

Figure 4.6.: The set of tools we analyze here, the two tools on the left side were used by
TUM-Rosie for food preparation.

The features SharpEdge, FlatSurface, Concavity and Hole were chosen based on the re-

quirements we found for tools used by TUM-Rosie for food preparation. We additionally

define the feature Handle, which the robot already has in the hand. We can describe the tools

which we consider in this paper using mainly the transitive predicates properPhysicalParts

taken from the KNOWROB system [127]. Additionally we use simplification for numeric re-

lations like min and max to express a quantification that requires more than e.g. exists

or for all quantifier. By the features and the predicates we can describe the tools we use

here (see Figure 4.6) in the following way:

# D e f i n i t i o n s :
Class : HandTool

properPhys ica lPar t s min 1 Handle
Class : Blade

properPhys ica lPar t s min 1 SharpEdge
properPhys ica lPar t s min 1 F l a t S u r f a c e

# Tools used in t h i s paper :
Class : Spatula

SubClassOf : HandTool
properPhys ica lPar t s min 1 Blade

Class : Spoon
SubClassOf : HandTool
properPhys ica lPar t s min 1 Concavity
properPhys ica lPar t s max 0 Hole

Class : Skimmer
SubClassOf : HandTool
properPhys ica lPar t s min 1 Concavity
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properPhys ica lPar t s min 1 Hole

This ontology specifies how to relate tool names to sub-parts of the tool. To enable a robot

to autonomously perform actions with such tools, some additional knowledge is required,

which describes the subtasks in terms of the detected features or parts. In combination with

this ontology, we can then derive actions from statements in natural language like the fol-

lowing: ’align the blade with the pan’ or ’push the spatula down on the pan’. Such an

explanation can be transformed into a control rule given we know what is the blade of a

spatula. So it is required to extract features that can localize the features blade and concav-

ity, to be able to understand such an explanation. These features might be able to express

more tools than those three, but we had enough examples to evaluate the method on those

three classes.

4.3.2. Visual Tool Analysis

We use in this context a Microsoft Kinect sensor as a 3D sensor From this sensor we just take

all points which are sticking out of the hand and are not the robots hand. These points form

the first hypothesis for the shape of the object. Then we try to fit a plane to it and analyze

the structure of the distances of the points to the major plane. In this step we can distinguish

planes from concavities and we get an estimation of the 3D position of the border points

which we can use to integrate with extracted lines.

Sensors like the Kinect have problems with shiny objects, so we avoid them in the test, as-

suming that these problems can be overcome by future sensors or software for 3D recon-

struction. Most current 3D sensors have additionally problems with geometric edges so we

use additionally a camera with higher resolution, which is calibrated to the Kinect and the

robot. We extract edges in the images of this camera and fit lines to them given they are

nearby the borders of the 3D body. We project the start and end points of 2D edges onto the

plane which was extracted in the 3D data.

With an object in the hand, the robot can control the background as well as the observation

angles. So, in this work we assume both to be already optimal and we work only on this

optimal frame. Optimality in the observation angles can be based on the largest visible area

of the tool, which can be easily achieved automatically given a 3D sensor that can measure

the tool.
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Flat Surface Extraction

In order to fit a plane, we perform first a simple thresh-holding in space to get points that

belong most probably to the tool. The thresholds are known since we approximately known

the relation of the potential tool to the robots hand.

(a) Perspective view of the data. (b) View point aligned with the plane.

Figure 4.7.: A point cloud acquired with the Kinect sensor with a coordinate system showing
the orientation of the extracted plane. The blue z-Axis represents the normal of
the plane.

We take all points in the object and perform a SVD on the matrix containing all points as

rows in the matrix in order to use the resulting first eigenvector as plane normal. This simple

analysis resulted for all tools in a reasonable approximation of a plane that at least intersects

the tool at a relevant position. For planar tools the detected plane is additionally very close

to the actual surface.

In order to distinguish from a non-planar or an object with a concavity we perform then the

analysis described in the following section. This analysis gives us a height map encoding

how close the plane is approximating the actual point cloud. Given we classify the object as

non-concave, we can use this distance in order to optimize the plane to fit better by adjusting

the orientation by fitting a plane into the height map. A result for a final plane fitting can be

found in Figure 4.7.

Concavity Detection

In order to detect a concavity, we have to find a point on the tool that is lower than the border

around it. Therefore, we create an image that contains the averaged distances of a certain

volume over the extracted plane. This image is a height map, which look like the images

depicted in Figure 4.8.

The image that results plotting the distances to the plane should form a minimum in the

center and an elevation on the borders to form a concavity. We consider a convexity as a
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(a) A height map for a spoon. (b) A height map for a spatula.

Figure 4.8.: Height maps of a tool with concavity in (a) and without in (b).

back-side view of a concavity, which just flips the sign of the comparison for concavities and

will be treated as if we would have found a concavity on the other side.

To find the most probable point of a concavity, we search for the position and a radius of the

two concentric circles that have the highest difference in their mean values under their bor-

der in the image we extracted. The circles are depicted in Figure 4.9(a), which also depict the

three dimensions which are searched in order to maximize the difference in height between

center and outer circle. This search can be done very fast because of the low resolution of

our height map.

X

Y
Radius

(a) The three degrees of freedom for lo-
cating the center of the cavity using two
concentric circles as a filter.

(b) A large skimmer in the hand of the robot in
the Kinect’s data with a concavity visualized with
a coordinate system.

Figure 4.9.: Concavity Detection.

The position and radius with the highest difference is then analyzed if it is a real concavity:

It must have a derivative in height from the outer to the inner circle in the same direction.

This is done by comparing the maximal height in the center with the minimal height under

the outer circle. This gives us a good measure if an object has a concavity, for a convexity the

inner minimum has to be compared with the outer maximum. This comparison allows some
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outliers in the outer circle, given the thickness of the outer circle is higher than the number

of outliers.

The position in space is then on the former plane surface at the new center of the concavity

with the z-Axis pointing into the concavity. An example for this representation can be seen

in Figure 4.9(b).

Edge Extraction and Hole Detection

(a) The spatula in the RGB-View. (b) The edges extracted from the spatula.

(c) Segments of edges. (d) Fitted lines on the edges.

Figure 4.10.: The Line fitting.

In order to find sharp edges at the tool we search for straight edges of a certain length. The

steps of the edge extraction are visualized in Figure 4.10. We use a standard sub-pixel canny-

edge filter, which avoids additional forks at edge intersections, visible in Figure 4.10(b).

These edges we split into connected segments. We merge two of those segments if their edge

direction is similar enough and the closest points on the two segments are close enough. The

contours we split again based on collinearity, meaning if the direction along such a contour

varies too much, it is split again. The resulting segments are shown in Figure 4.10(c). On

all remaining segments of a reasonable size we fit a line by a robust least square regression,

depicted as black lines in Figure 4.10(d).
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All resulting lines can be intersected with the plane we extracted in the 3D data. In order

to get a position in space, we can project the start and the end of a line onto this plane. The

resulting 3D points define the line and its extreme points in 3D space.

By simple morphology and blob analysis we extract holes in the tool.

(a) The holes in a spatula. (b) The edges (green cylinders) in relation to
the plane extracted for this spatula.

Figure 4.11.: Examples for results of hole detection and edge extraction.

The holes which we detect for the spatula can be seen in Figure 4.11(a). All lines around

holes are not reported as results. The existence of holes is reported as a result as well as the

position and length of the edges in space. Only Edges of a significant length are reported,

which are in case of the exemplary spatula the three visible in Figure 4.11(b).

4.4. Transparent Object Detection and Reconstruction

The challenges that transparency implies to common sensors and algorithms seem simple

[109]. Nevertheless, no general solution could be found [139]. Laser beams, e.g. emitted by

LIDAR-Sensors, are usually partly reflected and refracted several times before they hit any

surface, which leads to false or no 3D information at all [22, 146]. For normal camera systems

transparent objects are almost invisible except for specularities that can be used to deduce

shape information if well-defined preconditions are met [63, 64]. A 3D reconstruction using

common stereo-vision approaches is difficult due to the lack of stable features on transparent

objects [1, 11]. Tests with structured light [40] that were carried out at the beginning of our

work showed only poor results on objects like drinking glasses or plastic bottles. On the

other hand, some of the reconstructions were good enough to fit a 3D shape model into the

point cloud. But the success of these approaches is still heavily depending on various factors

such as lighting environment and object shape. Decent results could only be obtained under

very constrained conditions. Therefore, recent studies concentrate on the development of

algorithms which consider the special properties of translucent objects [50, 1]. Additionally,
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research into various sensors is being done, to maybe obtain more useful measurements

[74, 92].

The approach presented here provides a foundation to expand available object recognition

systems by transparency, leading to more robustness in the robot’s environment perception.

Apart from that, we took the household-robot as the use case for the actual system. Accord-

ingly, our method is supposed to enable a robot not only to detect but also to manipulate

transparent objects, which requires a reconstruction.

4.4.1. Related Work

A great deal of effort has been put into the modeling and detection of transparent objects in

the past. Accordingly, there is a variety of publications that offer many different approaches.

[50] offers a detailed overview on automated detection of transparency for various types of

sensors. The authors conclude that many of the methods are promising but postulate certain

constraints to environment, structure or object shape. In a household environment, how-

ever, we have to deal with random objects within arbitrary environments which is a reason

for our novel approach. Nevertheless we want to present the research that contributed to

this work. As an example, transparent objects were not considered in [109]. The reason for

this is explained by Ezra and Nayar in [11]. Transparent obstacles lack stable features and

therefore remain invisible for usual image processing algorithms. In this paper, Ezra and Na-

yar tried to perceive transparency by tracking features in digital images that were part of the

environment and got reflected by the transparent object. The movement of the features on

the surface of the object when the camera position was changed revealed information about

the object’s shape. Unfortunately, everyday objects like drinking glasses will not refract an

image of the scene to the camera due to their complex shape and the less ideal material.

Wallace and Csakany proposed in [139] to newly interpret the photon detections in a time-

of-flight system. They show that in a detection-number over distance histogram a peak oc-

curred for every surface in the system’s field of view. The peak for an opaque obstacle was

just more intense than the peak for a transparent one because the emitted light was not en-

tirely reflected but also transmitted and refracted. Depending on the object, multiple peaks

would occur if the light had to pass several transparent surfaces, whereas an opaque surface

resulted in only one distinct peak. Even multiple layers of transparent surfaces can be re-

solved with the proposed single-photon-counting but this method requires special sensors

and access to the electronics in order to perform this kind of counting. However it shows

that there is some kind of response to TOF sensors.

Another way to estimate the shape of a transparent object is presented in [22]. An object is

heated with a Laser which is adapted to a wavelength that lies within an absorption maxi-

58



4.4. Transparent Object Detection and Reconstruction

mum of glass. After the heating the thermal radiation of the surface is being observed with

a thermal-camera. Through the heating the transparent object becomes quasi-opaque to the

thermal camera and the shape can be reconstructed. Although this method is not suitable for

household applications, the publication offers important information about the absorption

maxima of glass in infrared and ultra-violet wavelengths. As a matter of fact the SR4000

uses infrared light with a wavelength covered by the IR absorption maximum [40], so the

response to glass that we discovered in the intensity images is reasonable.

The problems transparency poses for laser-range-sensors are depicted in [146] by Yang and

Wang. They tried to overcome these drawbacks by adding ultra-sonic-sensors what made

their robot capable of navigating in areas with windows and mirrors. Yet they showed that

mere laser sensors are not sufficient.

The insufficiency of laser-sensor data when digitalizing transparent objects is also described

in [63] by Steger and Kutulakos. This work proposes a method which reconstructs a shape

by triangulating the light path between feature points in the environment and their mirror

image in a transparent object which is seen by a camera. Here the object has to be shaped in a

way that it reflects these features. Additionally the position of the features in 3D-space has to

be known for which reason they used projected-light to create artificial features with known

positions respective to the camera. However, the requirements for this method cannot be

met by an arbitrary household scene.

The approach described in [64] uses specular reflection to optimize position estimates of

objects. The method derives a light-map from specular reflections> that move over shiny

surfaces when the camera pose is altered. The displacement of the specular reflections is

thereby significantly higher than the change in the texture seen by the camera. By iteratively

comparing different views under consideration of the light-map the initial pose estimation is

being refined. Despite its possible application to transparent object recognition this method

is unsuitable because we cannot say for sure whether an object is shiny enough and whether

there are sufficient light sources.

An adaption to the optical flow equations is specified in [1]. The equations are altered in

a way that the shape of a translucent obstacle can be derived from the movement of the

scene behind the object. In a household environment we sometimes have to deal with very

homogeneous backgrounds such as monochrome tables or counter tops. Feature points are

rare on these surfaces and therefore pose a big problem for this method.

[74] makes use of the polarization of refracted and reflected light rays for a shape recov-

ery of translucent obstacles. Placed inside a spherical device the object is observed by a

CCD camera through a polarization filter. When moving the filter the intensities of the light

change in a certain way that enables this method to estimate surface normals. Due to the
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need for complicated devices this procedure is not viable for object recognition performed

by a robot.

Hata et al. [40] reconstruct the shapes of translucent paste on a flat surface by projecting light

patterns onto it and observing variations within the structure of the pattern. Unfortunately,

the tests with structured light that were carried out at the beginning of our work showed

only poor results on objects like drinking glasses or plastic bottles.

At large none of the available methods offers a solution to our use-case. Specularities and

feature points are too dependent on the environment structure. Laser scanners and struc-

tured light do not grant valuable results. Nevertheless, the absorption of infrared and ultra-

violet light lead us to the fact that the response of the SR4k ToF camera to transparency is

viable and forms a basis for a novel approach.

4.4.2. Absorption based Inconsistency Analysis

Prerequisites

Transparent 
Objects

Inconsistency 
Analyse, Matching,

Triangulation

Calculation

Reconstructed 
Point Cloud

Result

Figure 4.12.: Prerequisites, Calculation and result of Absorption based Inconsistency
Analysis.

The method which is presented here is also described in [54]. The inputs we use for our

method is the SR4k point cloud data which is also converted into a distance and an inten-

sity map of the size 176x144. The system itself is divided into two steps with the robot’s

movement in between. In the first step the data from the SR4k is read, the obtained in-

tensity images are optimized in their contrasts [34] and are segmented by extracting darker

areas with an enhanced thresholding [82]. This procedure yields possible candidate areas for

transparent objects, since darker areas can be caused by absorptions by transparent material.

These candidates support not only 2D intensities but also 3D information corresponding to

every image point. The defined candidate areas are then returned to the operating system

together with the corresponding distance and intensity image as well as the 3D point cloud

data.
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4.4. Transparent Object Detection and Reconstruction

In the second step the robot performs a movement within a certain range which provides

pose parameters that can be used for a 3D point transformation between the first and the

second view on the scene. These parameters are acquired from the operating system ROS

by comparing the two robot positions for each view which originate from an AMCL driven

self-localization supported by two laser sensors. To ensure that the candidates remain in the

field of view of the ToF camera, every candidate has an approximated world coordinate pose

attached to it such that the platform can focus this pose and run the last step.

Now a second view is generated as well as a second segmentation with the same procedure

as in the first step. The inputs are then complemented by the 3D transformation data and the

ToF data from the first view. The method then processes every candidate and checks whether

it has the characteristic of a transparent object when comparing the two views. In order to

perform this check, we first establish 2D image correspondences by applying a perspectively

invariant matching in the intensity channels [46] for the respective candidate. In the next

step the algorithm ascertains whether a candidate is a transparent object or not by checking

for inconsistencies in its 2D and 3D points when comparing the two views. If the check

is positive, a 3D reconstruction is carried out and the new 3D points are transformed into

a suitable form for later grasping or path planning algorithms. More detailed information

about each of the mentioned steps will be provided in the following sections.

Problem Discussion

To begin with, the available data will be described briefly. As shown in Figure 4.13(a) a

transparent object can be seen in a usual camera image if the light environment fulfills certain

conditions. Here we have no direct light from above and a distinct amount of ambient light

coming from our ToF sensor. Figure 4.13(b) shows the same camera image where bright

light is illuminating the scene from above. The translucent object is barely recognizable with

human eyes. As a result, common stereovision approaches fail to even perceive the object.

(a) Barely illuminated by ambient light from the side
and Sr4k light.

(b) Highly illuminated with bright light coming from
above.

Figure 4.13.: Camera Images of the same scene with different illuminations.
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Accordingly a sensor to perceive those objects should be mostly invariant to the light en-

vironment. Here we propose the use of a SR4k ToF camera, which is mostly invariant to

ambient light and therefore fulfills our demands. When a transparent object is positioned

in the view of a ToF camera absorption of the IR-light is measurable in the intensity chan-

nel. Yet it provides improper 3D data for non-opaque objects. Figure 4.14(a) and 4.14(b)

show two point clouds with the intensity values associated to each point that was generated

by the SR4k while observing the same scenes with changing light environment described

above. The scene shows a table with several opaque objects and two transparent objects in

the middle and on the left.

(a) A scarcely illuminated scene. (b) A highly illuminated scene.

Figure 4.14.: ToF point cloud colored with intensities showing different, yet not distinguish-
able, illuminations

These views seem to show a decent measurement of the transparent objects, which are

marked with red crosses. As one can see, the glass’s shape is perceivable as a darker area on

the table. The reason for this is that the infrared light emitted by the SR4000 camera is partly

absorbed by the glass [22]. The surrounding table surface on the other hand yields much

higher intensities because the infrared light is reflected strongly. A very striking fact can be

seen when observing the point clouds from a different angle. The 3D points of the glass are

as flat as the table’s surface on which the object was placed. This effect is illustrated in the

Figures 4.15(a) and 4.15(b).

Moving the camera leads to a shadow-like behavior of the transparent objects, what means

that the wrongly estimated 3D positions fall away from the light source that illuminates the

scene onto the next surface which is the table in our setup. According to the results in [139]

we suspect that one part of the infrared light is reflected because the intensity images contain

specularities as well. After the light has propagated through the object it supposedly hits the

first opaque surface, which is the table, and is reflected back to the camera. Since the light

was mainly reflected by the table, the distance estimation of the ToF camera is in accordance

to the surface behind the glass, explaining the flattened 3D estimation. The following set of
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4.4. Transparent Object Detection and Reconstruction

(a) from front left (b) from front right

Figure 4.15.: The red crosses mark transparent objects that are as flat as the surface because
the ToF camera cannot measure the shape correctly

images in Figures 4.16(a) and 4.16(b) depict the shadow-like behavior. The robot moves to

the right and the point clouds of the transparent objects move into the opposed direction.

(a) ToF camera in first position (b) ToF camera in second position

Figure 4.16.: Observed from a fixed point of view the transparent objects (marked with
red cross) are moving like a shadow over the surface when the ToF camera is
moved. The blue axes indicate the shadow-like movement.

All the objects in the Figures 4.16(a) and 4.16(b) are marked with red crosses to illustrate

their alignment. The point of view is stable as well as the table on which the objects are

placed. The only movement is performed by our platform such that the ToF camera position

changes. The blue axes indicate that the opaque objects on the bottom and on the right keep

their alignment whereas the two transparent objects in the middle and middle left of the

picture perform a twist to the left. The aforementioned effects are taken into consideration

by our method to distinguish between opaque and non-opaque objects. If a transparent

object is found, the real 3D shape has to be recovered to enable our platform to manipulate

it.
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4.4.3. Segmentation

In order to avoid calculating a complete image to image correspondence we apply segmen-

tation as a preprocessing step. A complete image to image correspondence would lead to too

many ambiguities in the matching since the features observed in the SR4k are usually weak.

Fortunately, transparent objects absorb enough light of the ToF camera’s emitted flash, that

they appear darker than their background except from some specularities which are signifi-

cantly brighter. Objects with a proper 3D response in the camera could be segmented using

geometric cues [109] but this method is not functional for translucent obstacles. Accordingly

our method performs segmentation in 2D in order to find areas with possible inaccuracies

that have to be restored by a reconstruction procedure to support the reliability of platform

functions such as grasp-position planning.

Intensity-based Initial Segmentation

In order to generate candidate regions that our method can focus on, the lowered intensities

have to be found. First, we enhance the contrasts [34] between environment and transparent

object which leads to emphasized boundaries between objects and background. The high

contrasts allow the usage of an optimized threshold [82] which, applied to the intensity

image of the ToF camera, extracts pixel-areas that represent lower intensities.

This extraction is carried out on a higher pyramid level as well, and after that, the results of

both levels are combined what removes most of the false candidates. This leads to a better

separation of the regions because thin structures in the environment do not appear anymore.

The extracted regions are then refined with morphing operators to remove noise, separate

areas and obtain solid regions.

Automatic Dark Background Adaption

In the course of the development we also considered a dark gray table as a surface. The

segmentation procedure partly failed here because the table did not reflect as much of the

IR-light anymore. The specularities actually seem to overcome the reflections of the table

back through the objects which may originate from the heavily lowered reflectivity. How-

ever if the infrared light only passes one transparent layer the intensities keep their attribute

of being darker than the table’s surface. For two layers we have to deal with higher inten-

sities now, as the specularities are brighter than the background. Nevertheless our segmen-

tation adapts to darker backgrounds by assuming that the average image intensity complies

with the background intensity. The average intensity is then interpreted as a dark or bright

background.
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Splitting and Merging

Occasionally, we found the regions of non-opaque objects still connected with opaque ones

due to distinct ways of scene setups and view angles. As this leads to problems in the

later matching phase, we added a second segmentation step that splits these regions. By

generating a histogram that assigns column or row values to occurrences. After a smoothing

procedure the function representing this histogram is derived for the dimensions of row

and column to extract local maxima. Each maximum represents a new centroid for splitting

candidates. All split candidates are tested against nearby candidates for a possible merge to

avoid over-segmentation.

Candidate Omission

The resulting candidates are then evaluated based on their region convexity. If this factor is

above a certain threshold, we calculate the deviations in x, y and z direction for the associ-

ated 3D points. We use the deviations as an approximation of the volume that is occupied

by the candidate. From the number of points and this volume we may now calculate the

point density. Applying this procedure we are able to omit candidates that do not yield a

solid region or high density. Especially noise that occurs at the edges of the view has very

low density.

The results of the initial segmentation are exemplarily displayed in Figure 4.17(a). The re-

finement of this segmentation using the splitting, merging and omitting steps is shown in

Figure 4.17(b). Both images show regions overlaid over the intensity image in different col-

ors for the each segment.

(a) Initial segmentation. (b) After splitting and omission.

Figure 4.17.: Result of the whole segmentation phase with a solid transparent object in the
middle.
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4.4.4. Matching

The matching procedure is crucial to find out where the candidate region moved to in the

second view in order to be able to triangulate between the two views. We solve this corre-

spondence question by introducing a planarity assumption for the images we observe. We

assume the objects to be shadows, or more precisely projections of an object onto a flat sur-

face. This assumption allows us to match the objects with a perspective invariant matching

while introducing errors that are discussed later.

Initial Planar Matching

Thus, we use a perspective invariant matching, which is robust against noise and local de-

formations, presented by Hofhauser et al. in [46]. This matching builds a candidate based

on a gray-value template and returns a planar homography for the best match from the first

to the second view. The distance measure used for the matching score is based on corre-

sponding image derivatives in direction. A prerequisite for the method is planarity of the

template region. However, the matching is robust enough even if the background behind

the transparent object is not planar. We use the candidate regions gathered by the segmen-

tation in the first view as template images. The search is then applied to all parts of the

second view that were found by the same segmentation step that are close enough to the

predicted position. The prediction contains estimates of the maximal expected rotations

and perspective distortions. On success, the matching results in a 2D homography which

is applied to the candidate’s image points. By transforming a region we get another re-

gion in the second view that covers the candidate’s match, which leads directly to an initial

point to point correspondence in 2D as well as 3D. In order to visualize this correspondence

we introduce the following symbols: the segments in the first view will be represented by

S1 = [s0,s1, . . . ,sn], the segments of the second view are S2 = [s′0,s
′
1, . . . ,s

′
m], each consisting of

a set of measured points with a 2D coordinate p, a 3D coordinate q and an intensity value v:

si = [Qi,0,Qi,1, . . .Qi,r], Qi, j =
[

pi, j = [x,y]T ,qi, j = [X ,Y,Z]T ,vi j

]

. We estimate a planar homog-

raphy H between the two views for each segment si and its resulting correspondence in the

second view s′k.

The best discrete pixel correspondence C defined by the indices j and l between the first

and the second segment is then just the closest pixel to the transformed point using the

homography:

C =

[

(0, l0), . . . ,(r, lr)‖ argmin
l j

‖pi, j −H p′k,l j
‖

]

(4.1)

pi, j ∈ Qi, j ∈ si, p′k,l j
∈ Q′

k,l j
∈ s′k
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4.4. Transparent Object Detection and Reconstruction

Figures 4.18(a) and 4.18(b) visualize this relation.

(a) Candidate region in first view (b) Matched and transformed region in sec-
ond view

Figure 4.18.: The planar matching provides a perspective 2D homography that defines the
pixel to pixel matching.

Introduced Errors by Planarity Assumption

Object
perspective 
and top view

Shadow visible 
in view 1

Shadow visible 
in view 2

Silhuette inducing 
shadow in view 1

Silhuette inducing 
shadow in view 2

Resulting 
reconstruction under 
planar assumption

e

emove

object

Figure 4.19.: Visualization of the errors introduced by the planarity assumption, left is a per-
spective view of the scene and on the right a top view of the object with two
kinds of errors: eob ject introduced by the planarity assumption, and emove intro-
duced by the changing silhouette due to the cameras movement.
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[46] also discusses prerequisites for this type of matching. Clearly, our method has to deal

with a certain error as the transparent objects are not planar. Our results show that the tri-

angulation of the center of the region is a valid approximation of the center of mass of the

transparent object. Figure 4.19 shows the effect of the planarity assumptions: using the cor-

respondences given by Eq. 4.1 a plane in space can be reconstructed (right part of the picture

in blue). This plane approximates a mean plane of the two silhouettes observed in the two

views as shadows on the table. Therefore, every correspondence bears an error emove de-

pending on the distance to the center of the reconstruction. Additionally, we underestimate

the depth of the object with the planar assumption by eob ject .

4.4.5. Inconsistency Check

The characteristics which we expect to distinguish transparent from opaque objects or dark

patches on a flat surface are inconsistencies in their ToF 3D data to the 2D image data. To

begin with, we depict the 2D related checks. Using the known 3D transformation P and

the projection K, which consists of the known internal camera parameters, we predict the

position of the set S1 in the second view making it comparable to the set S2. Given a correct

3D measurement, the transformed 3D data should result in the same points q̂i, j = [X ,Y,Z]T ∈

si ∈ S2 found by the matching procedure if the object is opaque. Then the transformed points

q̂i, j =Pqi, j are projected into the image plane by applying K. The resulting 2D points p̂ should

also be consistent with the 2D points p′ of the candidate’s match in the second view if the

object is opaque. Here, we perform the first check that estimates the extent of offset within

the 2D data which should be higher for transparent objects.

∑
∀( j,l)∈C

‖p̂ j − p′l‖ (4.2)

This offset in 2D can be derived from the twist that a transparent object undergoes which

was illustrated in 4.16(a) and 4.16(b). This twist not only causes an offset but also a rota-

tion between the reprojected and the matched candidate region what leads to the second

check that determines whether this rotation is above a defined magnitude. From the corre-

spondence between p′ and p̂ we deduce a similarity transformation in R2 with 5 degrees of

freedom (dof): the rotation R (2 dof), the translation t (2 dof) and the scaling s. s.

argmin
R,t,s

∑
∀( j,l)∈C

p′l
T
(

sR t

)

p̂ j (4.3)

This similarity should result in an identity for correct 3D data. Otherwise the sheering intro-

duced by the shadow effect can be measured in the R component. We can define a threshold
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depending on the movement performed by the camera between the two views which has to

be exceeded by a transparent object. If the candidate data passes the threshold, the 3D data

is tested for inconsistencies to further assure transparency. Given again the 2D point to point

correspondence C, we can triangulate the actual 3D position of a point r in space. For the 3D

rays given by the two image points q,q′ and the camera movement P, the best triangulation

can be expressed by the following minimization:

argmin
m1,m2

(m1qi, j)
T

P
(

m2q′k,l
)

(4.4)

where m1,m2 > 0 are scalar factors. From this optimization a new 3D point can be calculated

using the gained factors m1 and m2:

q′triangulated =
(m1qi, j)+P

(

m2q′k,l
)

2
(4.5)

The greater the difference of the two factors m1 and m2 from 1, the more likely there is an in-

consistency between the triangulation and the 3D measurement. If we triangulate all points

in the segments we approximately get a planar structure in 3D which is in correspondence

with the measured 3D points, as already shown in Figure 4.19.

The planar body has certain attributes that are correlated to the scalar factors m1 and m2

which our first 3D related checks are based on. First the position of the triangulated points

is analyzed which should be between the camera and the measured 3D points.

qi, j −q′triangulated,i, j > 0 (4.6)

The second property is that the planar reconstruction should be nearly orthogonal to the

flat shadow of a transparent object. We reassess this fact by fitting a plane into both the

measured and the reconstructed points and calculate the angle α between.

α = arccos

(

nT ·n′

| n | | n′ |

)

(4.7)

with the normals n and n′:

n = argmin
a,b,c,d

(qi, j)
T
(

a b c d

)T

(4.8)

n′ = argmin
a′,b′,c′,d′

(

q′triangulated,i, j

)T
(

a′ b′ c′ d′
)T

(4.9)
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After the shadow-like behavior was checked by means of its 2D inconsistency and its pla-

narity, a last procedure checks whether the mentioned 3D movement of the shadow actually

took place. As the movement should be determined by a rotation of the planar candidate

point cloud, we identify its screw parameters by estimating the 3D transformation param-

eters that align the points q and Pq′. In order to obtain this information our method makes

use of a single step of the ICP-algorithm [2] applying a least-squares-minimization to the

following:

argmin
RicpTicp

∑
∀( j,l)∈C

qT
j RicpTicpPq′l (4.10)

As a matter of fact the angles of rotation around the three axes are much bigger for the

translucent obstacles than for opaque ones. From the rotation matrix Ricp we can deduce

the 3D twist that the respective candidate has undergone. The overall magnitude of rotation

between the point clouds q and Pq′ indicates a transparent object with a high value and an

opaque object with a very low value even if the measurement is erroneous. All together our

method compares the two views of each candidate by means of image point distance and

twist between the object’s point clouds to determine whether an observed low intensity area

is caused by an opaque or a translucent object.

Reconstruction

To finally be able to manipulate a transparent object, its real 3D occurrence must be recov-

ered. As explained above, the initially reconstructed 3D points are located in a plane. Al-

though the reconstruction mentioned in Section 4.4.5 is closer to an object standing upright

it does not describe the real volumetric shape well enough to form a point cloud.

Based on the errors introduced in Figure 4.19, we can compensate for the error eob ject and

emove by appending a set of additional possible intersections inside the object to the triangu-

lation. The correct triangulation should occur in a set of reconstructions between qk,k and

P · q′k,i with k being a fixed number and i running from the first to the last column of the

image row p′k,i that corresponds to qk,i and q′k,i.

q′triangulated,i =
(m1qk,k)+P

(

m2q′k,i
)

2
(4.11)

Figure 4.20 illustrates such a triangulation performed on one horizontal slice of the objects

shadow. The circle in figure 4.20 indicates a transparent object. The points r and r′ satisfy the

planar matching error explained in section 4.4.4 which also leads to the planar reconstruction

displayed by the blue line and the red dots. In order to compensate this error we triangulate
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Figure 4.20.: The possible intersection points when triangulating between one image point
of view 2 and all image points in view 1 that are located on a single image row.

new points shown as green dots using the matched points qk,k and q′k,k as well as the points

in q′k,i that yield a point qtriangulated,k,i that is closer to the second view position than the planar

reconstruction. Yet the method does not intersect qk,k with all points q′k,i of the respective

image row. The last point used fulfills the following:

| i |= 0.5· | pk,i | (4.12)

This approach yields a 3D blob shaped like the 2D region p′i, j that embodies an average point

qtriangulated,i, j and the deviations around it which closely approximate the real position of the

transparent object. The quality of this approach will be evaluated in the following section.

4.5. Summary

We proposed solutions to the problem of segmentation which can be applied to basic scenar-

ios in a domestic environment. We can create object hypotheses and avoid obstacles without

complete world knowledge. This enables a robot to act even before completely exploring
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its environment, which is a good base to continue with the recognition and categorization

of objects. We also have described the problems in segmentation, and pointed out the chal-

lenges that occur in top down segmentation and reconstruction. The color based approaches

are combinable with the 3D cluster based approaches. On the other hand, the method for

transparent objects cannot directly combined with the other methods, since it already re-

lies on certain properties of the intensity and 3D answers of specific objects, which partially

contradict the assumption made in the other methods.
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Assumed that the highlevel control has some valid object candidates for a semantic concept

and wants to exactly localize a certain object in order to grasp it, the visual task can be seen

as object recognition. All methods discussed here the recognition is either done by a local-

ization of a model in 3D Space or by a classification of a segment in space. The approaches

using classifications can be seen as a categorization, while the localization is more a recog-

nition with an implicit categorization. We will start with approaches for general rigid and

untextured objects. Then we continue to explore then the possibilities of texture on objects

is giving us with feature-based approaches.

5.1. Rigid Object localization

If we have a model for an object it usually can be identified well. We present here meth-

ods for rigid objects that work under a planar assumption or assuming a CAD model being

available. The property of an object to be rigid fits to a lot of objects in a kitchen environ-

ment: nearly all kinds of cutlery and dishes and tools are rigid, while they usually have little

texture. So they are perfect candidates for the methods presented here.

5.1.1. Related Work

We are aiming on localizing a specific but previously unseen object in order to interact with

it, which is a challenging task. A possibility to learn relevant information for grasping is

to automatically estimate grasping points like it was proposed by Saxena et al. in[116] or

to simply approximate an object by a primitive before grasping it [71]. Those approaches

are limited by automatic segmentation which is still a problem, especially in range images,

see [114]. Another approach is active vision that allows learning of shape or appearance of

any object by automatic usage of the action capabilities of the robot for further inspection

[60, 133, 30]. This approach involves necessarily changes in the environment, which is not

always desirable.
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A database of 3D objects enables a large set of new possibilities like highlevel motion plan-

ning [86, 76]. One possibility is to learn a specialized database; another is to select knowledge

from a large database that was specified beforehand by humans, mostly available through

Internet. Automatically using an Internet databases was already proposed in [28], but only

using 2D-information, namely images. We are extracting 3D models from Internet-based

databases. The selection of relevant objects is performed using clustering techniques based

on the shape distribution function proposed by [87] and the distance measurement tested in

[138] to find out the major cluster of the resulting models. Using a simple k-means algorithm,

we are able to select inliers.

For calculating the most probable alignment in the world of such objects and if necessary

to generate with morphing new models we align the models using a new Iterative Closest

Point(ICP)-based algorithm which we called Volumetric ICP. The original version was intro-

duced by [12]. We improved this ICP variant for our purposes. In literature, there are several

morphing techniques most of them only applicable to closed meshes and are computation-

ally very time consuming. Several of them are discussed in [65].

The last step for our problem is to match many 3D objects in 2D images. This problem was

solved before and there are many different state of the art methods like for example [47]

which is based on many views of a 3D object. We are using a state of the art 3D shape model

matching technique, which is described in [143]. This method matches 3D-CAD-models in

an image by simulating the 2D appearance in a model building phase. A range of position

relative to the camera must be specified, which can only be done if information about the

scene is available. In our kitchen scenario this is given, since we assume all static parts to be

approximately known by earlier 3D-Laser scans or similar techniques and are semantically

labeled via methods like [112].

5.1.2. CAD matching

One of the methods for localization in the system is the CAD matching, which allows to

search through a complete position space for the best corresponding projection in an image.

Several details of this method were published in already in [57] and [56], and the description

here summarizes the methods described in those papers and describes newer extensions

made after the publications. Given the CAD model describes the object exactly this matching

results in an accurate pose estimation. The method we are using [143, 134] builds offline a

search tree in scale space and finds online the best match of the projected CAD model and

the current view’s edges.
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CAD Model,
Search space

Prerequisites

Calculation of edges 
in possible views of 
the search space

Calculation Result

Localization of the 
object inside the 
search space

Figure 5.1.: Prerequisites, Calculation and Result of CAD matching.

(a) A partially occluded mug. (b) Mug in a heavily cluttered scene.

Figure 5.2.: Matching of a mug.

Search Space Calculation

Before propagating the point cloud data to the visual system we want to represent the search

space in a compact form. Therefore, we describe the clusters C using their center points and

their maximal extensions and possible rotations along the xyz coordinate axes. The extents

are then converted to a 6×6 diagonal matrix, representing the estimated uncertainty of the

cluster poses.

The matrix representation can be efficiently propagated through the different coordinate

systems, to the final extents in the camera based spherical and image coordinates which we

use to set up the search space for the CAD matching step. In our experiments we did not

encounter any drawbacks from this compression scheme, since we have to overestimate the

visual search space anyways because of a relatively large baseline between the RGB and the

TOF cameras.
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Figure 5.3.: Four different objects matched in a cluttered table setting. The projection of the
matched CAD models is displayed in green.

3D Points to Search Space

Given that we have a point with its orientation in a 3D space, we interpret this point as an

object to camera relation. To include such a point in the RGB camera search space we have

to add its projection into a Region of Interest (RoI) image and transform it into the spherical

coordinates. The latter enables modeling of the RGB camera image on a sphere with a radius

r at a pose described by 3 angles: the longitude α , latitude β and camera roll γ . Given an

already defined search space with 〈αmin, αmax, βmin, βmax, γmin, γmax, rmin and rmax〉, we have to

adapt it as soon as the point falls outside the RoI. For each point found in the adjacency of an

already existing RoI, we extend the respective region to include the point by modifying its

outer dimensions. Figure 5.4 shows an example of the 3D clusters estimated using e.g. the

method presented in Section 4.2.1, here back-projected into the RGB camera image.

Finding the CAD Model

The CAD models of the objects that we want to localize are usually acquired as an a-priori

step using precise laser sensors followed by a number of geometric processing steps (some-
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Figure 5.4.: Back-projection examples of the 3D clusters estimated using the methods in Sec-
tion 4.2.1 into the RGB camera image.

times involving manual labor to clean the models), or can be alternatively downloaded

from the Internet, see Section 6.2 and [57]. Most household objects available in the Inter-

net databases can be found lying on supporting xy-planes in the 3D model coordinates. This

is of course an assumption we do not rely completely upon, but we assume that the majority

of the models are aligned in such a way. Since we additionally also align all selected inlier

models to each other, we obtain the major “upright” direction. Following this we can as-

sume that given a supporting plane we only have to account for one of the three rotational

degrees of freedom. This constraint can be avoided by the highlevel system by specifying a

larger search space in rotational space in order to detect also non-upright objects

This shape matching approach requires significant preprocessing of the given 3D model,

whose complexity is polynomially increasing with the number of faces in the model and

linearly with the number of views that have to be generated to get a complete search. The

number of views in our application depends mainly on the given search space in the spher-

ical coordinates system. Thus the constrained regions of interest reduce the search phase

significantly.

To obtain fast results, we build a tree containing the projection of the model in different res-

olutions (image pyramids), with all leafs similar to their parents but at a higher resolution.

The similarity of a match is measured in the 2D appearance of the projection. The informa-

tion resulted from the segmentation step in the point cloud data gives a significant reduction

in r (the distance to the camera) while α , β are only slightly affected by our search space re-

strictions. This is due to the search for the same classes of possible orientation on the table.

If it was possible to reduce the RoI and the search range of γ , this would only affect the

calculation time in the search phase. A very rough approximation of the estimated model

calculation time is given as follows:
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Figure 5.5.: A matched object on a table. The red polygons show the transitive hulls of the
3D clusters, while the projection of the CAD model is displayed in green. This
search space is reduced to all clusters on the table.

step ∼

(

max(xi
r,y

i
r)
)

rmin
(5.1)

tmodel ∼ Nv
f step(αmax −αmin)(βmax −βmin)(rmax − rmin) (5.2)

where xi
r and yi

r represent the resolution of the image and Nv
f is the number of visible faces.

Similarly, we can approximate the expected calculation time for the search phase by:

tsearch ∼ step(γmax − γmin)N
1
cand (5.3)

where N1
cand is the number of candidate matches on the highest pyramid level, which corre-

sponds directly to the size of the regions of interest used.

Figure 5.5 show an example the search space projected into the camera and a best match of

CAD model of mug.
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5.1. Rigid Object localization

Figure 5.6.: An object matched using its shape model- The left part shows the matched shape
template on the image and the right shows the resulting pose estimate in a 3D
view of the same scene.

5.1.3. Planar Shape Model Matching

Planar Shape 
Template 

Prerequisites

Full search  for 
maximal shape 
correspondence

Calculation Result

Full 6D 
Localization of 
the template 

Figure 5.7.: Prerequisites, Calculation and Results of Shape matching.

Similar to the CAD based method, a shape model inferred from an earlier view of an object

can serve to localize such an object. The distance measure used is similar to the method used

for the CAD matching. Given a template image, we can calculate a homography estimating

the best 2D-2D hypothesis between to a new image, [45].

This method is especially interesting due to the fact that it can return a 6D pose given the

model is calibrated and the necessary models can be easily generated automatically, see

Section 6.1.3. Those two facts allow this method to be easily applied to various scenarios

like the detection of a pancake maker or the online calibration of tools.

Unfortunately, such a localization can result in the general case in a higher residual error,

since in order to be able to describe a 6D displacement by a 2D-2D homography the template

has to be planar. If this assumption holds we still get a lower accuracy in viewing direction

79



5. Object Recognition and Categorization

of the relevant sensor (similar to stereo measurements) and low accuracy in two of three

rotational components. We performed a detailed error analysis for this method in the Results

Chapter in Section 8.1.1.

Figure 5.6 shows such a shape model that is matched in an image. The better the assumption

of the plane that was used for training was, the better we can derive the 3D orientation of

the object from the result.

5.1.4. Surface Based Matching

Position

Prerequisites

Voting Scheme

Calculation Result

Surface Model
Figure 5.8.: Prerequisites, Calculation and Results of Shape matching, parts of the image are

taken from [20].

Assuming the surface of the object is distinctive, we can extract from a segment of a depth

image or a CAD model a surface model describing this object using the relations of normals

on the surface. The relation of two identified points and their normals is already sufficient to

estimate a pose of the object. By performing a voting in a new depth image about positions

in space, the method presented in [20] can relocate the template again in further images, see

Figure 5.9.

The pose winning the voting is refined with an ICP between the model points and the new

depth image. The voting is performed in a discretized 4D space representing the possible

locations the object can be located at, given a selected model point is at a certain position with

a known normal. Such a point is called seed point and all other points of a sub-sampled

version of the current scene are voting for a position with orientation in this space. After

several seed points are tested, there should be a strong maximum for several of the seed

points that corresponds to the best match in the image. This method will probably find a

present object, given the sampling in the scene is dense enough and it has a unique shape

regarding the background and clutter.

The execution time of this method scales with the 3D space that has to be searched, and

comes to near real-time performance in our setup, if we reduce the search space in the depth

image to the current working volume without known furniture.
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5.2. Rigid Textured Object Classification

(a) A point cloud segment used for building a sur-
face model.

(b) A point cloud segment used for building a sur-
face model.

(c) A match and the transformed segment at a new
position.

(d) The same match with a colored point cloud.

Figure 5.9.: Surface model for localization of Objects.

5.2. Rigid Textured Object Classification

The methods from the previous section allow of course the application to textured objects

as well, but they suffer from drawbacks that are not necessary if it is known that an object

is textured. The assumption if an object is textured can be easily tested, given a view of the

object. But also the pure assumption is valid that most consumable products that can be

acquired in packages in the supermarket are textured. This means that the class of textured

object is important for many objects in a human environment besides tools and furniture.

Generally a good idea to distinguish textured objects is to count occurrences of typical such

key points. This is the most common method to deal with identifying textured objects.
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5.2.1. Related Work

The classification of objects is a field that is strongly influenced by the Pascal challenge,

which is renewed yearly, see e.g. [23, 24, 25]. These challenges provide a database with

a large set of annotated training and testing images, which include one or several objects.

Those objects are annotated for each the image by a class name and the ROI of the object.

The usual task is to localize the objects in the image and return the correct class. This chal-

lenge gives a good idea, what are the interests and the possibilities of the current techniques.

For example we can name the work of Philbin et al. [95] which nearly solves one of the

challenges ([23]). Examples of objects included into the newest data set ([25]) are music

instruments, bikes or tools.

The standard approach to solve this task is to compute statistics over features in the ROI for

the training objects and compare histograms over occurrences of those features. The best

results are gained with techniques based on rotation invariant statistics based on the image

gradients, like SURF [8] or traditional SIFT [68]. New developments presented in these areas

are e.g. the so-called Nister-Tree presented in [83], which allow the usage of many different

classes in the training data, while still being able to distinguish fast and relatively robust

between the classes in the test phase.

An extension to this idea of the image classification is the information retrieval from Internet

sources instead of annotated training data. Examples for such information retrieval can be

found in [122] which uses patches from a frame of a video to search for more occurrences

of the marked object in this and other videos. In a later work [119] proposes to use Internet

databases with images to acquire training data for object classification. Performing this un-

supervised allows the usage of a huge amount of data while forcing the approach to be able

to handle wrong or wrongly annotated images in the databases.

5.2.2. Bag-of-Visual-Words-based Classification

In cooperation with J. Peters and K. Gleissenthal, [93, 136], a method was developed to dis-

tinguish object classes based on training images from an Internet image search, some parts

of this work were presented in [128]. With this training data, SIFT feature for interest points

were extracted, clustered them into so-called visual words and used a set of different clas-

sification techniques to compare the histogram of an image taken with the robot to the his-

tograms generated from the Internet images. The method to train the classifier is separated

into three steps which are discussed in the following.
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Segment of an 
image

Prerequisites

Distance to 
web images

Calculation Result

Classification

"Pfanner"

Figure 5.10.: Prerequisites, Calculation and Results of Bag-of-Visual-Words-based
Classification.

Feature Extraction

The SIFT-vector is calculated from a histogram of gradient in the local neighborhood of point

with high gradient changes (corners). Those histograms can be used to identify point in

image, robust against different kinds of distortions. Different quantifications can be applied

already on histogram level, so that a feature has a certain size, or it is extracted in different

scale spaces.

This requires that this quantification in direction and scale are chosen carefully. Using images

from an Internet search, the scale of the objects in the picture or the blur and noise level can

only be guessed but not exactly estimated.

To overcome this restriction, we performed a search for optimal parameters regarding the

possibility to distinct classes of objects by those features. The parameters which could be

adapted for the feature extraction are basically the threshold how strong a corner has to be,

the length of the SIFT-vector and the height of the scale space.

In tests with three classes as training data, we could achieve good results with a fixed pa-

rameter set. It seemed that this choice of parameters was also acceptable for new Internet

searches for semantically similar objects. In the tests we used classes like ’Coke Can’ or

’Volvic’ or other brand names.

Quantification

A set of training images, which shows only a certain scenario, will most probably not cover

the full space of SIFT vectors. In order to be able to have a compact and still dense represen-

tation, we try to extract local clusters of SIFT-vectors, which appear in the training set.
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To perform this clustering fast enough on many classes, we took a k-means clustering ap-

plied on the set of features extracted from the images found for only one class. The resulting

clusters are merged with the other classes using an approximated nearest neighbor search

over all clusters for all classes. Two clusters were merged by using a distance threshold that

is based on the in-cluster distribution. The resulting merged clusters define the so-called

codebook.

Classification

The fused codebook is then used to create a histogram, how often an extracted SIFT fea-

tures fall into a category of the codebook. A new SIFT-vector is sorted into the codebook by

searching for the closest centroid in the codebook. As distance measurement we opted for

the Euclidean distance, which is a valid but probably a non-optimal choice. This compari-

son with the centroids can be done in a tree-like structure and can be considered as relatively

fast. The histograms are used as the feature to train a Support Vector Machine.

We used a ν-SVC [118] by estimating the best parameters using again a subset of the training.

The best set of parameters is chosen based on the best result on the rest of the training data

and verified using a 10-fold cross validation.

Online Application

The resulting SVM with the selected parameters then can be applied online to segments of

images:

We extract the SIFT features of this image and find the closest cluster in the codebook for

each of them and build up a histogram that we can feed to the trained classifier. The resulting

class and evaluation can then be used to identify of a certain object class.

Tests have shown that it is possible to distinguish a large number of classes given a good

enough quality of the test images. It turned out to be difficult to create valid test data on

TUM-Rosie, which is using lenses on its cameras with a too wide field of view to achieve the

optimal resolution on an object. Some of the performed tests, which lead to the conclusions

above, can be found in [93].

5.2.3. Randomized-Fern-based Classification

A descriptor of an interest point can be a statistical model instead of the normalized feature

vector as for example SIFT or SURF. An example for such a descriptor was introduced by
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Segment of an 
image

Prerequisites Calculation Result

Classification

"Pfanner_1"

Histogram of 
point classifications

Figure 5.11.: Prerequisites, Calculation and Results of Randomized-Fern-based
Classification.

Lepetit et al. in [66] and it is a classification using a simple decision tree to distinguish be-

tween classes of key points. Originally, this approach was used for wide base line matching,

but with some modification it can work similarly on a bag of visual word approach as an

object classifier.

Figure 5.12 shows an image and a zoom to a patch around a key point detected with the

Harris key point detector [41]. This figure displays also how the feature is computed: For a

list of randomly selected pixel an intensity comparison is calculated and the event is stored

in a bit of a 2h long variable u. h designates in this context the height of the classification tree.

In a training phase a set of decision trees is randomly created and an a posteriori distribution

is learned for each of them for a set of distinct key points. The learning of the distribution is

performed by saving for every outcome of u how often a certain key point had this specific

outcome under different views. The a posteriori distribution for all leafs is stored and used

for classifying a new key point to be similar to one of the training key points.

Instead of a decision tree a decision fern gives the same results and is smaller to be stored

[88]. A subsequent clustering of the distributions for the different classes of points gives

information about similar patches, and allows reducing the number of points. The number

of different distributions depends highly on the repetitiveness of the samples given.

Training Step

Independent of the samples, which were used to create the distribution, this classifier can be

used to count occurrences of point classes in previously unseen objects. To create a recogniz-

able object we observe the object in as many positions as we can and calculate statistics how

often which point is classified as which of the previously trained classes. The training step

uses then this histogram, usually normalized, how often which classes appears to reflect a
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Figure 5.12.: A randomized fern descriptor

point on the surface of the object. Depending on the time which is available for training and

matching, this can be extended by storing the information which interest points appear on

the object and which are their most probable classification results.

Online Key Point Classification

Online we can apply then the same principle to create a similar vector again in order to create

a comparable feature. This requires a similar segmentation as was used for the previous

training step. The final classification uses then the previously learned classifier, e.g. a SVM,

and returns the most probable class. False positives are rejected using the feature count and

the classifier score, if existing.

Tests have shown, that it is possible without any long training to perform well enough to

distinguish classes, with a tendency to false positives. The requirements on the quality of

the images is a bit lower than in the bag of visual word approach, while also the number of

distinguishable classes is lower.

5.3. Rigid Textured Object Localization

A well studied problem in computer vision is the localization of textured object using only

one camera. The common assumptions in most of the work are that it is possible to find in
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the texture of the object significant key points. Recognizing those key points and deriving

information from this recognition is per se not reliable and requires consistency checks.

We propose here a method to localize 3D objects based on an interest point classification.

This method has several new features compared to the existing work.

5.3.1. Related Work

Current solutions for detection of textured objects mostly rely on Gradient features like SIFT

([68]). Alternatively, they rely on statistical methods like the randomized fern approaches

based on [66]. Both approaches build a set of Point to Point correspondences, either 2D to

2D, or 2D to 3D.

The problem to estimate movements and poses out of those correspondences was addressed

in works about pose estimation like [120, 79]. But all those pose estimation methods are sen-

sitive to outliers in the set of Point correspondences which required new techniques for the

most popular outliers suppression method the Random Sampling Consensus (RANSAC). A

comprehensive summary of current solutions for a RANSAC for this pose estimation prob-

lem can be found in [103]. Problematic with RANSAC solutions is, that starting from a cer-

tain outliers-ratio, tests to verify if a sampling produces and inlier are not stable anymore. So

most approaches building on RANSAC can only support high quality data, which prevents

it being applied to a large set of applications.

Alternatives for the robust estimation by RANSAC are the Natural 3D Markers proposed by

[44]. Extending the ideas of which kind of errors might occur, besides wrongly annotated

background are misclassified points on the object. This problem can be addressed given a

good analysis of the expected error probabilities [49] and modeling the discriminativity of

all tracked features.

The original techniques of SIFT by Lowe was improved by many different publications,

e.g. its now possible to be used in real time on a mobile phone [137]. Some reformulations of

the descriptor are simply faster to compute like e.g. the variants SURF and DAISY [7, 130].

Anyways, those solutions cannot provide significantly more stability in general applications

[132], since they base on the same assumption about the repeatability of key points. All

variants bear problems in representing text and repetitive patterns. Their major advantage

on being computed locally is also their biggest problems. Some of those problems can be

avoided by using different image scales [83], but not all objects which humans are consid-

ering as textured can be used with SIFT-based or SIFT-similar-based approaches. Still those

methods have a speed advantage with a relatively short global search phase caused by the

locally limited matching.
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The range of application is as rich as the research on the methods: robotic manipulation

based on SIFT-like features was done by several groups [106, 61, 5, 39]. It is often used to

localize the camera in respect to to a world that is assumed to be fixed, mostly in the context

of Visual SLAM [100, 98, 59, 124]. Similar to Visual SLAM, [90], build 3D meshes of objects

observed over time in real time.

5.3.2. Descriptor 3D

Textured 3D 
model

Prerequesites

Training of 
descriptor 3D, N3M 
based localization

Calculation Result

Localization of 
the object

Figure 5.13.: Prerequisites, Calculation and result for Detection by Descriptor 3D.

Beginning with the methods introduced in Section 5.2.3 we can extend this approach to lo-

calize 3D Objects. Starting from a textured 3D model of an object, we can simulate all its

views which helps to extends the ideas of the classification to a direct localization. By ex-

tracting and training key points from the simulated views, a model can be build that is able

to detect the object in cluttered scenes. A method which does acquire textured models can

be found in Section 6.3.

Model Simulation

A fast way is to render a textured model is using OpenGL on a graphics card. This also al-

lows rendering additional information in eventually unused color channels like face indices.

Such information can be used to speed up processes of the selection of key points or the

training of descriptors for those key points.

Keypoint Selection

The selection of a key point should result in the most repeatable points on the object from

different viewing directions. Usually, Harris Points are relatively well repeatable, unless an
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detected corner is geometrically caused.

In order to find out the most stable and repeatable key points, a large number of different

view of the model is rendered. For every view the key point detector is applied and a re-

projection of all points is performed back on the 3D model. On the model, the points can be

easily compared with earlier points, and if a newly detected Harris point falls on the same

3D point on the model, this point gets an increased score. Finally, a limited number of points

is selected based on their measured re-occurrences. Points, which are in neighborhoods with

few other stable points, are kept preferred.

Additionally, the modeling we performed bears the risk of having inaccuracies nearby face

borders. Since the reconstruction of the model is done face-wise, on borders of faces, inten-

sity differences can occur based on fusion of differently lighted view serving for the texture

of two neighbored faces. This leads to especially strong Harris Points on such model edges,

which might be purely artificially introduced. So we exclude all feature point if they are too

close to a corner point of the CAD model. This limitation is only applied to models with

relatively large faces compared to the camera resolution. To determine this parameter, we

estimate the average face size in pixel of the model in the mean training distance. From this

we can estimate how much of the area will be removed, how close a point have to be to a 3D

model corners to be removed.

Key Point Training

The training is performed by simulating the new object in all rotations and all allowed dis-

tances. For some viewpoints, the training data does not contain enough information. This

is often the case, when the model was created by putting an object on a table and moving a

camera around it.

The rendered views are sampled in 4 dimensions: Depth, and all three Rotations. In every

view we project the selected key points from the model in the scene and test their visibility. If

they are visible we the outcome of all randomized trees is calculated. Every Tree accumulates

an a posteriori distribution to connect the tree outcome with the index of the key point on

the model.

The visibility test contains two elements: The projection must be on the same face as it was

trained (prevent to learn self occlusions) and the point must look relatively frontal to the

camera.
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Clique Calculation

The training finally results in an a posteriori distribution of the random fern. We estimate an

algebraic distance between the estimated a posteriori distributions for all classes. If two of

those distributions are too similar, the classes are fused into a clique.

This clique has the effect, that if a candidate point is classified as a member of this clique, all

others appear as possible classification result as well. The a posteriori distributions Di, i =

0...‖Points‖ resulting from the training are compared using the algebraic distance:

d(Di,D j) =
N

∑
a=0

‖Di[a]−D j[a]‖1
(5.4)

The distances between all i and j are used to estimate a normal distribution over the distance.

Any pair of points is checked whether its distance varies from the mean distance mean
∀i, j

more

than three times the covariance σ
∀i, j

:

d(Di,D j)> mean
∀i, j

(d(Di,D j))−3 σ
∀i, j

(d(Di,D j)) (5.5)

In the case this distance is lower, the class j will be assumed as part of the clique of the

class i and vice versa. We keep the list for every class that contains all classes that are close

enough. This will be necessary for the fast lookup in the online phase, whether a class, which

is resulting from am applied randomized tree, is significant or not, and if other classes have

to be considered, too.

N3M Selection

An N3M is following to Hinterstoisser et al. [44] a Natural 3D Marker, that consists of 3 or

4 key points defining a marker and one additional checker point that can be used to verify a

matching of the marker points. This is a concept allows to create a verified hypothesis of an

objects position.

We want to demonstrate here the case of a 4-key-points marker, since the planar case is well

described in [44]. In the non-planar case we need to select 5 key points, which are relatively

close together. Of those five points, four are describing a marker and one is the checker

point. This checker point pc is predicted as using the measurement of the other points in

linear combination:

pch = p0 + c1v1 + c2v2 + c3v3 (5.6)
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where pi are the marker points in 3D space and vi their difference of pi and the first marker

point p0:

vi = pi − p0 =







vix

viy

viz






(5.7)

p0 =







px

py

pz






(5.8)

Eq. 5.3.2 is only valid if the four point are not coplanar, which would mean that they can be

used as a 3-key point marker. Solving this equation for the parameters c1,c2 and c3 results in

the following and can be calculated while learning the descriptor:

c1 =−
−v2x pyv2z + v2xv3y pz + v3xv2z py − v3x pzv2y + pxv2yv3z − pxv3yv2z

−v1xv2yv3z + v1xv3yv2z + v2xv1yv3z − v2xv3yv1z + v3xv1zv2y − v3xv2zv1y

(5.9)

c2 =
−v2xv1z py − pxv3yv1z − v1x pyv3z − v3x pzv1y + pxv1yv3z + v1xv3y pz

−v1xv2yv3z + v1xv3yv2z + v2xv1yv3z − v2xv3yv1z + v3xv1zv2y − v3xv2zv1y

(5.10)

c3 =−
−v1y pzv2x + v1y pxv2z − v1zv2y px+ v2xv1z py − v2z pyv1x + v1xv2y pz

−v1xv2yv3z + v1xv3yv2z + v2xv1yv3z − v2xv3yv1z + v3xv1zv2y − v3xv2zv1y

(5.11)

Those parameters can be applied directly on a frontal parallel projection of the 5 points

to predict the position with the same Equation just replacing all 3D points by 2D points.

Assuming that we can create circumstances to have a projection of our object of interest and

a possibility to localize the 5 points in this image of the projection, we can measure an error

telling if the prediction about the location of the 5th point is correct regarding the relative

position to the others. This can be expressed by the following equation using p′i, p′ch as the

projection of the points and v′i as the differences of the projected points from p′0:

ε = ‖p′ch −
(

p′0 + c′1v′1 + c′2v′2 + c′3v′3
)

‖2 (5.12)

with:

v1 = (1,0,0)T (5.13)

θ1 =
p2 − p0

‖p2 − p0‖

˙p1 − p0

‖p1 − p0‖
(5.14)
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θ2 =
p3 − p0

‖p3 − p0‖

˙p1 − p0

‖p1 − p0‖
(5.15)

θ3 =
p3 − p0

‖p3 − p0‖

˙p2 − p0

‖p2 − p0‖
(5.16)

v2 = (sin(θ1),cos(θ1),0) (5.17)

v3 = (sin(θ2)cos(θ3),sin(θ2)sin(θ3),cos(θ2)) (5.18)

In a real camera we have of course not a frontal parallel projection but more an approximated

pinhole camera projection.

This allows us to approximate the error introduced by the assumption of a frontal parallel

camera, which is contradicting the camera matrix C, under the relative position of the object

in the camera P and a projection of the model point:

p′i =CPpi (5.19)

δε =
(

p′0 + c1v′1 + c2v′2 + c3v′3
)

− (C (Pp0 +P(c1v1 + c2v2 + c3v3))) ; (5.20)

First we can eliminate the single appearance of p0 using Eq. 5.3.2 and replace all projected

points with it:

δε =
(

p′0 + c1 p′1 − c1 p′0 + c2 p′2 − c2 p′0 + c3 p′3 − c3 p′0
)

−(C (P(p0 + c1 p1 − c1 p0 + c2 p2 − c2 p0 + c3 p3 − c3 p0)))) ;

(5.21)

If we replace all 2D points with 3D points, we come to the following equation:

δε = (c1CPp0 + c1CPp1 − c1CPp0 + c2CPp2 − c2CPp0 + c3CPp3 − c3CPp0) (5.22)

−(C (P(p0 + c1 p1 − c1 p0 + c2 p2 − c2 p0 + c3 p3 − c3 p0)))) ;

Without loss of generality we can assume that P contains already the translation induced by

p0 that we can set p0 = (0,0,0)T :

δε =
(

(1− (c1+ c2+ c3))CP(0,0,0)T + c1CPp1 + c2CPp2 + c3CPp3

)

(5.23)
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−(C (P(c1 p1 + c2 p2 + c3 p3)))) ;

If we consider now P as an Euclidean transformation matrix parameterized with three an-

gles α,βγ and a translation vector (tx, ty, tz)T , we can write Pp as (by using abbreviations for

sin(α) = sα , cos(α) = cα , sin(β ) = sbeta, cos(β ) = cβ , sin(γ) = sγ , cos(γ) = cγ):

pt = Pp =







cβ cγ px − cβ sγ py + sβ pz + tx

(sαsβ cγ + cαsγ)px − (sαsβ sγ + cαcγ)py − (sαcβ )pz + ty

−(cαsβ cγ + sαsγ)px +(cαsβ sγ + sαcγ)py +(cαcβ )pz + tz






(5.24)

If we additionally take advantage of the fact, that for a pinhole camera the distance to the

camera has a linear correlation with the observed error in row and column. Or more math-

ematically, we can replace tz by 1 in this matrix and multiply the resulting instance with

1/tz. Speaking more intuitively: the error of the N3M prediction (or any observed distance)

correlates linear in both dimensions with the distance of the object with the camera. The

distance of the camera can be assumed as larger than zero, to allow the camera to see the

object. This allows us to define the translation vector in the camera as (tx, ty,1)T given we are

only interested in a relative comparison of the errors regarding different N3Ms.

pt = Pp =







(cβ cγ)px − (cβ sγ)py + sβ pz + tx

(sαsβ cγ + cαsγ)px − (sαsβ sγ + cαcγ)py − (sαcβ )pz + ty

−(cαsβ cγ + sαsγ)px +(cαsβ sγ + sαcγ)py +(cαcβ )pz +1






(5.25)

If we assume now that we have a simple pinhole camera with an exactly quadratic sensor

size we can additionally eliminate ty and all terms with cos(γ). This is usually not exactly

true, but can be simulated given a good camera calibration. For calculating good thresholds,

we also have to consider discretization errors, which are not relevant for the error approx-

imation. Intuitively spoken, with a rotation around the cameras principal axis, we do not

change any distance in the image plane. This allows us to rotate the virtual camera frame as

long as the component ty of the object’s position becomes 0 and define this new position as

γ = 0. This simplification results for a single transformation in:

pt = Pp =







cβ px + sβ pz + tx

sαsβ px − cα py − sαcβ pz

−cαsβ px + cα py + cαcβ pz +1






(5.26)
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If we stick to the pinhole assumption with a quadratic sensor size depending on the camera

constant f we can replace Cpi with:

Cp =

(

− f px

pz
− f py

pz

)

(5.27)

If we combine those simplifications and substitute them in Eq. 5.3.2 we get the following

term:

δε

f tz
=























(1− c1− c2− c3))(−tx)+ c1
−(cβ p1,x+sβ p1,z+tx)

−cα sβ p1,x+cα p1,y+cα cβ p1,z+1
+

c2
−(cβ p2,x+sβ p2,z+tx)

−cα sβ p2,x+cα p2,y+cα cβ p2,z+1
+ c3

−(cβ p3,x+sβ p3,z+tx)
−cα sβ p3,x+cα p3,y+cα cβ p3,z+1

c1
−(sα sβ p1,x−cα p1,y−sα cβ p1,z)
−cα sβ p1,x+cα p1,y+cα cβ p1,z+1

+ c2
−(sα sβ p2,x−cα p2,y−sα cβ p2,z)
−cα sβ p2,x+cα p2,y+cα cβ p2,z+1

+

c3
−(sα sβ p3,x−cα p3,y−sα cβ p3,z)
−cα sβ p3,x+cα p3,y+cα cβ p3,z+1























− (5.28)











−(cβ (c1 p1,x+c2 p2,x+c3 p3,x)+sβ (c1 p1,z+c2 p2,z+c3 p3,z)+tx)
−cα sβ (c1 p1,x+c2 p2,x+c3 p3,x)+cα(c1 p1,y+c2 p2,y+c3 p3,y)+cα cβ (c1 p1,z+c2 p2,z+c3 p3,z)+1

−(sα sβ (c1 p1,x+c2 p2,x+c3 p3,x)−cα(c1 p1,y+c2 p2,y+c3 p3,y)−sα cβ (c1 p1,z+c2 p2,z+c3 p3,z))
−cα sβ (c1 p1,x+c2 p2,x+c3 p3,x)+cα(c1 p1,y+c2 p2,y+c3 p3,y)+cα cβ (c1 p1,z+c2 p2,z+c3 p3,z)+1











The final error measurement can now be sampled using this formula out the possible occur-

rences of this N3M on the model and the average error we get gives a very good approx-

imation of the quality of this N3M. The quality can be used to select stable N3Ms in favor

of unstable, which results in a significant quality boost in the N3M selection. Just taking a

the absolute distances of the points and their relative location following the idea of Hinter-

stoisser et al. resulted in the 3D case in far too few or too many N3Ms, with a large number

of unstable N3Ms.

N3M Detection and Evaluation

Online, a Boolean matrix for all detected Harris is calculated to decide later in a fast manner,

if two candidates can be part of the same N3M. This can be efficiently done since the decision

is based on a hierarchy of comparisons that requires usually no calculation. The preliminary

classification into model points has to be calculated before.

The first step in this hierarchy is a minimal and maximal distance in pixel can be defined

that allow two points being part of the same N3M or not. This is directly derived from the

selection mechanism described before 5.3.2, that does only allow non-collinear and nearby
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points. The same threshold can be projected into the camera, which gives a constant maximal

and minimal distance, which serves as a simple decision criteria for a possible N3M.

The next decision is a look up in the neighborhood table, which was calculated in the model

generation phase in order to select possible N3M candidates. This table contains for every

class a list of other classes that were initially close enough. This calculation is done after the

unrolling into clique members, so all ambiguities by cliques are supported.

The last criterion tests, if the range of possible projections of the point and the specific neigh-

bor contains the measured pixel distance. This test is only calculated a few times, so this two

values are not pre-computed to save memory (requires two doubles per n2
classes).

Pose Refinement

Figure 5.14.: Matched positions of a yogurt cup.
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The pose refinement is based on an iterative approach using the pose estimation presented

in [120]. The pose estimation uses first the five N3M points and then iteratively adds all

points that have a projection of a model point close enough to a corresponding classification

of a candidate point.

If the process produces enough inliers, also all Harris points are compared with predictions

of model points. In case the prediction of a model point is close enough to any Harris point,

this point is additionally used for a final guided matching.

This process is done until either a stable candidate is derived or the maximal allowed num-

ber of tests on N3Ms is performed. Figure 5.14 shows a textured object that was matched in

a simple scene. Results of tests using this method can be found in the Results Chapter in the

Section 8.1.3.

5.4. Summary

We described in this chapter methods that are capable to recognize certain properties or po-

sitions of known objects, which can lead to a more precise world belief state. We discussed

visual properties that lead to clues that can be used to get more reliable results with a spe-

cialized method.

Strong geometric distinctness or certain texture properties can be used to describe objects in

a way that they are either recognizable in a cluttered environment or that they can at least

classified as a part of a certain class of objects. Some of the methods are more sensitive than

others to environment changes, like changing outside light sources or another sensors setup

than others. We have developed here a set which allows a robot to robustly find this object,

by just providing the right model.

Unfortunately, creating and giving the perception system the right models is the biggest

problem here. All of the yet presented methods require training data or a model in order to

be able to recognize something. The so far remaining question for those approaches is how

to create those models. This is discussed in the next chapter.
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Environments

Most of the discussed localization methods require some model information. An example

for required information is a CAD model. If this kind of information is not present in the

robotic system, some localization methods are not applicable. In order to be able to profit

from the variety, we present here a list of methods to infer further models.

Starting from a segmentation, we can learn color and shape models. From a cad model we

can learn a texture model, or other visual representations. Additionally we present here

methods which acquire models from the World Wide Web.

6.1. Simple Model Inference

After a successful object localization, a new task can be triggered that returns instead of a

new pose a new model that will be connected with the semantics that were used for the

search. Examples for actually implemented methods for deriving new models are for exam-

ple the learning of an color model, or a template learning of the texture and shape for planar

patches. Using such simple approaches, it is easy to create examples for certain objects and

object classes in an semiautomatic way.

6.1.1. Related Work

This modeling of objects by examples is a widely discussed problem and is often done semi-

autonomously in order to achieve better performance. There are currently several challenges

setup in this area, which are interesting to compare with the problem we impose here. E.g.

the “Solutions In Perception Challenge” was proposed and discussed in a recent IROS Work-

shop [14]. It asks to be able to recognize objects in cluttered scenes. In difference to the

presented approach here, the data which is provided of objects are assumed to be well seg-

mented, rigid, textured and lambertian and views are available from all directions.
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Similar to this challenge, but less applicable to our scenario, while already releasing the

assumption of texture, is the widely known PASCAL Visual Object Classes challenge [26],

which trains classes of objects, but also gives a lot of training data beforehand for one ob-

ject class to be recognized. In another direction goes the Semantic Robot Vision Challenge 1,

which requires a semantic description instead of an object instance to start from. Such data,

fulfilling the above assumptions, cannot always be provided in an unstructured environ-

ment. Less assumptions are taken in the work presented in [142], which only expects that a

robot has an object in its hands in order learn a textured 3D-model. Unsupervised Learning

3D Models, [108], assumes segmentation and validation over multiple views, which results

on nice 3D models, but unfortunately requiring a static world. A bit different is the ap-

proach proposed in [75] which derives parameters for predefined model that are applied on

movable objects to extract basic properties. This approach requires a model to explain all

possible effects, and need also means to measure those effects, which both is not intrinsically

verifiable.

6.1.2. Any to Color

Search space, 
color 
histogram

Prerequisites

Multi Layer 
Perceptron 

Calculation Result

Recognition of 
the same color 
distribution

=

Figure 6.1.: Prerequisites, Calculation and result for Color Classification.

Given we have a context aware (illumination state: sun, artificial or indirect sun plus artificial

illumination) pixel wise color classification, we can find out the most significant color class

(we use currently only few like: red, green, blue, yellow, white, black). The precondition is

that we can segment an object of interest in a color image, this we do usually by projecting a

3D cluster to the image. Even a point distribution like we get in from the candidate detection

is enough for this purpose, if we only take the region covered by points inside σ instead of

2σ , which is our usual measure for search space sizes. For color classification we use a

multilayer perceptron ([107], MLP) that was trained for several examples on images from

1Website: http://www.semantic-robot-vision-challenge.org/.
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6.1. Simple Model Inference

(a) The contour which is projected on the as-
sumed plane.

(b) The same contour from a side view to see
the difference between object and assumed
plane.

(c) A contour for another object, frontal view. (d) A contour for another object, side view.

Figure 6.2.: Planar Shape model for localization of Objects.

all periods of the day. The annotation of colors was done manually, for simpler semantic

connection.

This color classification can be applied to any geometric segmentation and a comparison

with the learned color model by a distance over the small histogram of classified colors.

This helps to distinguish objects without difficult matching or type resolution.

6.1.3. Any to Planar Shape Model

If we assume partial planarity of an object with sufficient size, we can learn a shape model of

the object. It is helpful if this area has texture, but a prominent contour can be enough for a

good recall. By saving a 3D position of the estimated planar substructure and image regions

centroid, this template can be re-localized in 3D, see Figure 6.2. For extracting the main

planar substructure we just calculate the SVD of segmented 3D points, and use the cross

product of the first two Eigenvectors as a plane normal through the object’s center. To get

more a more robust segmentation of the object into different planes, methods like presented

by [99] or [111] will result in better assumption.
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Partially planar 
Segment

Prerequisites

Plane & Contour 
extraction

Calculation Result

Surface Model

Figure 6.3.: Prerequisites, Calculation and result for Planar Shape Model Extraction.

A shape model, which is inferred from an earlier view of an object, serves to re-localize such

an object. With such a template we can calculate a homography estimating the best 2D-2D

hypothesis between the training image and the final image, using the method described in

more detail in Section 5.1.3 which is based on [45].

6.1.4. Segment in 3D to Surface Model

Point Cloud 
Segment

Prerequisites

Normal 
Relations

Calculation Result

Surface Model

Figure 6.4.: Prerequisites, Calculation and result for Surface Model Extraction, parts of the
images are taken from [20].

In order to automatically generate surface models that can be matched with the method

described in Section 5.1.4, we have to extract a clean and smooth segment of a point cloud,

from one or several views. The combination of views will not be discussed here, but it is

possible to efficiently and robustly align several segment of point clouds to a nice description

of an object, see [108] or [110].

If we have such a good segment with the normals on top of it we could directly learn a

surface model representation. Unfortunately, the data is often too noisy to create really nice

models. Smoothing of the normals helps sometimes, but the degree of smoothing has to be

carefully adapted. Currently the implemented version only supports a fixed smoothing on
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[h!]

Unbound Class / 
WordNet Entry

Prerequisites

Download from 
Google Sketchup, 
semantic selection

Calculation Result

CAD Models

"mug"
=mug#n#0

Figure 6.5.: Prerequisites, Calculation and result for acquisition of CAD models from Google
3D warehouse.

the points, which is tuned to the sensor noise in the expected working distance. The auto-

matic estimation of such smoothing parameters is future work. Additionally, it is important

to avoid the inclusion of supporting planes and background into the model.

6.2. Acquisition of CAD models

The deployment of service robots into human living environments imposes great challenges

on their object recognition capabilities. Such robots will know abstractly which objects they

have to manipulate namely cups, plates, bowls, pots, etc. But because the appearance of

these objects varies substantially it will not know how they look. Also, in case of long-

term operations, it will be inevitably for a robot to be confronted with situations in which

it has to manipulate new kinds of objects. Moreover, since the robot’s task does not end

with the detection of the objects’ existence but rather its purpose is manipulating them, in

particular to pick them up and place them, having fairly accurate geometric models of them

is a valuable resource for reliable and efficient robot operation. The main purposes of such

models is the accurate localization of objects in world models, guessing their weight and

center of mass, and determining appropriate grasp points for the objects. This vision method

was presented in a first version in [57] operates as follows.

1. Given abstract instructions for the tasks the robot is to perform, all types of objects that

the task refers to can be extracted, such as cups, plates, etc.

2. For each object type it looks up a library of geometric 3D object models (in this work

we use Google 3D warehouse for this purpose) and retrieves prototypical 3D models

for these object types.
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3. Given the prototypical 3D object models, which will only match the objects in the en-

vironment to a certain degree and typically lack accurate size specifications, the robot

looks for objects in the environment that sufficiently match these 3D models.

4. The vision system then matches the object model to the image in order to select one of

the prototypical models as an accurate one for the objects in the environment.

Figure 6.6.: A scene in that a model from Internet was found. The lower right corner zooms
in on the match. In the left corner the model from the Internet that is used to
calculate the shape model on the right.

This method is especially interesting for a learning phase after deployment of a service robot

in a new environment. The method uses also a morphing algorithm that generates models

that better fits variations of objects found in the environment. We show that the specialized

models allow state-of-the-art shape matching algorithms with the additional use of some

physical and semantic constraints in a known environment to efficiently detect and localize

those objects. Fig. 6.6 shows a “cooking pot” that was found on a known counter in a kitchen

environment.

6.2.1. Semantic-aware Selection of CAD Models

Query results from Google 3D warehouse will not always contain models with the intended

content. This can have various reasons: First, the database might be annotated wrongly,

which we can assume to happen not too often. More often, annotations are inaccurate or too

general or ambiguous. A simple example would be results for the search term ’cup’, which

might point to coffee cups as well as to trophies.

The more information we have on the search context, the easier it is to overcome such prob-

lems in the query’s results. Given we have a WordNet synset as the search term, which

we can assume inside COP, see Section 2.2.1, we can use the complete set of annotations,

which Google 3D warehouse provides with the resulting model (the so-called tags), to in-

fer a likelihood for a model in the results that it fits to the search term as it was meant. This
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method for the selection based on those tags was implemented and tested by Pavel Mihailov

in his Diploma Thesis [70] based on the previous version of the selection process presented

in [57].

Distance Measurement

We base the likelihood on WordNet using different distance measurements. Those measure-

ments are based on the relations defined for WordNet which were introduced by [91]. Most

of those distance metrics are based on the is-a relation, which basically relates all nouns on

WordNet on the basis of one entry being a specialization of another.

Such a distance measurement of two words can be applied on the search term’s synset and

all existing synsets for tags and titles of the model found on Google 3D warehouse. The

smallest value distance is then a measurement approximating the relevance.

This assumption is supported by the results of an inquiry performed with 10 subjects asking

them for relation between kitchen words. This results were put into correspondences with

the results of the different distance measurements available for WordNet. The usage of such

an inquiry to measure correlations of words was proposed by [73] and set into correlation

with distance measurements on an early WordNet corpus by [104]. The results of the inquiry

can be found in Tables 6.1 to 6.5.

Table 6.1 shows the results from [73] and a reproduction of the results asking the 10 subjects.

It also contains the six distance measurements from WordNet for comparison. Tables 6.1(a)

and 6.1(b) contain the correlations of the human judgments with the distance measurements

of WordNet. They show that the several of those distances measurement correlate strongly

with the human judgment.

This experiment was then applied to words from the kitchen domain, to find the distance

measurement that is most valid for the domain we are interested in. The results from the

inquiry are stated in Tables 6.3 and 6.4, and the correlation of the results with the WordNet

distances are shown in Table 6.5. It turned out that there are at least three candidates which

have a relatively high correlation with the collection human judgment. The definitions of

the distance measurements can be found in [70].

The results were convincing, so that given the tag is correlated with model, a correlated tag

will make the correlation of the model with the search term more probably then an uncorre-

lated tag. This leads to the conclusion, that it is helpful to use the tags and the distances to

the search term.

Unfortunately the measurements themselves will not give a valid conclusion if the tags we

are using are correlated with the search term or not. First the distance is only helpful in a
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Word 1 Word2 Miller Repl. res jcn lin lesk vec hso
Charles means

means(0-4) (0-4) (0-11,77) (0-inf) (0-1) (0-inf) (0-1) (0-16)
car automobile 3.92 3.75 7,0 inf 1 3576 1 16
gem jewel 3.84 3.25 9.82 inf 1 816 1 16
journey voyage 3.84 3.5 7.46 0.35 0.83 41 0.8 4
boy lad 3.76 3.25 6.74 0.29 0.8 50 0.79 5
coast shore 3.7 3.5 8.1 1.62 0.96 51 0.64 4
asylum madhouse 3.61 3.5 10.67 2.47 0.98 42 0.77 4
magician wizard 3.5 3.75 11.07 inf 1 145 1 16
midday noon 3.42 3.75 9.57 inf 1 46 1 16
furnace stove 3.11 3 2.49 0.06 0.23 52 0.58 5
food fruit 3.08 1.25 1.78 0.09 0.16 34 0.3 0
bird cock 3.05 0.75 6.94 0.27 0.79 115 0.66 6
bird crane 2.97 0.5 6.94 0 0 18 0.36 5
tool implement 2.95 3 6.31 0.85 0.91 125 0.36 4
brother monk 2.82 1.25 10.16 0.07 0.21 147 0.43 4
crane implement 1.68 0 3.45 0.08 0.33 6 0.16 3
lad brother 1.66 0.5 1.9 0.08 0.24 10 0.42 3
journey car 1.16 0.5 0 0.07 0 19 0.39 0
monk oracle 1.1 0 1.9 0.06 0.18 4 0.13 0
food rooster 0.89 0.25 0.06 0.07 0.08 8 0.12 0
coast hill 0.87 0 6.14 0.22 0.73 11 0.23 4
forest graveyard 0.84 0 1.17 0.06 0.11 7 0.09 0
monk slave 0.55 0 1.9 0.07 0.2 13 0.25 3
coast forest 0.42 0 1.17 0.06 0.12 10 0.16 2
lad wizard 0.42 0 1.9 0.08 0.22 2 0.05 3
chord smile 0.13 0 3.07 0.08 0.33 1 0.08 0
glass magician 0.11 0 1.87 0.06 0.14 3 0.07 0
noon string 0.08 0 0.78 0.07 0.09 2 0.09 0
rooster voyage 0.08 0 0 0.05 0 1 0.03 0

Table 6.1.: Results from [73], [104] and a reproduction of the results.
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(a) Experiment of Miller and Charles [73]

Distance Measurement Correlation
res 0.8
jcn 0.46
lin 0.73
lesk 0.34
vector 0.89
hso 0.66

(b) Reproduction by Mihailov [70]

Distance Measurement Correlation
res 0.8
jcn 0.46
lin 0.34
lesk 0.34
vector 0.89
hso 0.66

Table 6.2.: The resulting correlation of the inquiry and the WordNet relatedness
measurements

relative way, meaning only a comparison is a tag is more correlated than another to the same

word will help. But if a word is in WordNet in a more connected clique than others, is will

have the significantly different distance measurements. This means we have to introduce

some kind of normalization to the values we get from the distance measurement.

Here it is helpful, that we get a relatively large variety of objects from Google 3D warehouse

for the kind of queries we are interested in. E.g. searching for "‘cup"’ resulted in 2593 at 01

December 2010. For most of them we get a set of tags and at least a title. So we have far over

2593 candidates of words which we can use to estimate the random guess for.

So we estimate the intrinsic deviation σ for the current search term. This per se is not yet

a normalization factor, and does not suffice the requirements we have to a normalization

term.

Threshold Learning

In order to get the relation between the deviation of the similarity measurement for a word

and a judgment, if a term is part of our inlier set or not, we try to estimate this relation by

manually annotating several examples.

For queries for knife, mug and spoon, a manual annotation has been performed. This results

in the a posteriori distribution visualized in Figure 6.7 for the res similarity measurement.

This helps to visualize the best value of the res similarity to decide if a tag is consistent

with the search term or not. The graphics on the right side of the Figure show that there are

different optimal decisions for different search terms. The optimum is visualized with the

crossing of the red and the blue line. The first two rows show an optimal decision between

values of 0.4 and 0.6 for the res similarity measurement, while the last rows would have the

optimal threshold be between 0.6 and 0.8.
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Word1 Word2 Human res jcn lin lesk vec hso
Judgments
means (0-4) (0-11,77) (0-inf) (0-1) (0-inf) (0-1) (0-1)

spoon architecture 0 2.49 0.06 0.22 46 0.06 0
cup art 0.25 2.49 0.09 0.32 71 0.14 2
spoon art 0.25 2.49 0.07 0.27 67 0.09 0
mug beer 0.25 0.61 0.05 0.06 32 0.25 0
cup beer 0.25 0.61 0.06 0.07 52 0.25 0
mug beverage 0.5 0.61 0.06 0.07 45 0.39 0
cup beverage 0.25 0.61 0.07 0.08 83 0.39 0
cup breakfast 0.25 0.61 0.06 0.07 42 0.29 0
mug breakfast 0.25 0.61 0.05 0.06 22 0.29 0
cup car 2 5.32 0.19 0.67 151 0.14 4
spoon car 0 5.32 0.12 0.57 160 0.25 0
cup coffee 0.25 1.37 0.06 0.07 88 0.4 0
mug coffee 0.5 1.37 0.05 0.06 52 0.4 0
cup coffee cup 3.25 8.99 0.48 0.9 231 0.49 16
mug coffee mug 3.5 11.77 0 0 67 0.61 16
mug cup 2.75 5.32 0.1 0.51 55 1.0 3
mug dishes 1.5 5.32 0.1 0.51 66 0.19 3
cup dishes 0.75 8.43 0.71 0.92 978 0.19 5
cup food 0 0.61 0.08 0.08 116 0.2 0
mug food 0 0.61 0.06 0.07 52 0.2 0
cup glass 2.25 8.1 0.13 0.59 937 0.35 5
mug glass 1.5 5.32 0.1 0.51 58 0.35 3
cup handle 0.25 1.17 0.06 0.13 252 0.38 0
mug handle 0.5 1.17 0.05 0.11 404 0.38 4
cup kitchen 0.25 2.49 0.08 0.29 24 0.06 0
mug kitchen 0.25 2.49 0.07 0.25 20 0.06 0
spoon kitchen 0.5 2.49 0.07 0.25 24 0.07 0
frying pan kitchen 1.0 2.49 0 0 18 0.07 0
cup logo 0 0 0 0 11 0.04 0
mug logo 0 0 0 0 12 0.03 0

Table 6.3.: An inquiry capturing semantic relation of kitchen objects, Part I, [70].
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Word1 Word2 Human res jcn lin lesk vec hso
Judgments
means (0-4) (0-11,77) (0-inf) (0-1) (0-inf) (0-1) (0-1)

cup metal 0.25 0.61 0.07 0.08 111 0.13 0
mug metal 0 0.61 0.06 0.07 56 0.13 0
spoon metal 0.25 0.61 0.06 0.07 129 0.24 0
frying pan metal 0.25 0.61 0 0 57 0.24 0
cup plate 0.5 8.1 0.29 0.82 77 0.25 4
spoon plate 0.75 8.1 0.16 0.72 81 0.16 0
cup plastic 0.25 0.61 0.05 0.06 98 0.09 0
spoon plastic 0.25 0.61 0.05 0.05 93 0.23 0
cup racing 0.75 0 0.05 0 20 0.03 0
spoon racing 0 0 0.04 0 16 0.03 0
cup soup 1.0 0.61 0.06 0.06 68 0.14 0
spoon soup 0.5 0.61 0.05 0.06 94 0.1 0
cup tea 0.5 1.37 0.06 0.06 74 0.39 0
mug tea 0.25 1.37 0.05 0.06 41 0.39 0
spoon tea 0.5 1.37 0.05 0.06 71 0.08 0
cup utensil 1.25 3.45 0.1 0.4 58 0.06 3
cup warm 0.25 0 0 0 0 0 0
mug water 0 2.49 0.06 0.22 67 0.13 0
knife hunt 0.5 1.37 0.05 0 77 0.09 0
knife car 0.25 3.45 0.1 0.41 270 0.18 0
knife dagger 2.5 3.45 0.07 0.32 239 0.37 5
knife sword 1 3.45 0.08 0.36 489 0.27 5
knife weapon 2 3.45 0.11 0.44 216 0.19 0
knife blade 2.25 8.43 0.08 0.36 786 0.35 6
knife handle 0.25 1.17 0.06 0.12 629 0.35 6
knife dinner 0.25 0.61 0.06 0.07 23 0.06 0
knife food 0 0.61 0.07 0.08 141 0.26 0
knife fork 0.25 7.49 0.15 0.69 85 0.34 3
knife plastic 0.25 0.61 0.05 0.06 123 0.13 0
knife tool 0.5 7.49 0.4 0.86 253 0.19 5

Table 6.4.: An inquiry capturing semantic relation of kitchen objects, Part II,[70]

Distance Measurement Correlation
res 0.5984
jcn 0.2777
lin 0.3583
lesk 0.2543
vector 0.5745
hso 0.66

Table 6.5.: The Correlation of the inquiry results with WordNet distance measurements, [70].
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Figure 6.7.: The res-similarity given a related (t0) or an unrelated term (t1), p(X | t). the a
posteriori distribution of the relatedness given the res-similarity, p(t | X). The
first line shows the data for knife, the second for mug and the last for spoon [70].

The graph was generated the following way: any value returned from res was normalized

and sorted into N = 5 buckets representing the values from [0.0−0.2,0.2−0.4, . . . ,0.8−1.0].

For all tags found a res similarities to the search term was calculated and a class was an-

notated, t0 for an inconsistent tag or t1 for a consistent tag. This allows the representation

shown in Figure 6.7 to visualize the probability density of the res similarities given a class

p(X | t) and the density of a class given a res similarity p(t | X). If we introduce a threshold

d we can estimate the expected error with the following equation
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E[d] =
N

∑
n=1

{

p(Xn | t0) if Xn < d

2p(Xn | t1) if Xn > d
(6.1)

If we want to get a threshold which is optimal for more than one search term, we applied a

minimization for the following term for all search terms in the set W :

argmin
d

∑
w∈W

E[d] (6.2)

This results in a decision criterion d, which generalizes better for further search terms.

6.2.2. Model Selection with a Shape Distribution Function

Besides the semantic selection of models, we apply a selection mechanism for relevant mod-

els by performing a clustering techniques based on the shape distribution function proposed

by [87]. On the shaped distribution we apply a distance measurement tested in [138] to find

out the major cluster of the resulting models. Using a simple k-means algorithm, we are able

to select inliers.

Assuming that there are more inliers than outliers in the results we want to select the largest

cluster as inliers. To find similarities between 3D models we use the shape distribution

function. This feature is calculated by randomly selecting points on faces of a model and

describes the shape of the model. We are using k-means introduced by [29] for clustering.

Caused by the outliers ratio we use k = 4 clusters, since we expect maximally 3 types of

outliers. This step is also performed unsupervised and results in a set of 4-9 models.

The results from the World Wide Web search normally contain 20-40 percent outliers. We

want to recognize them, before starting any further post-processing, or at least group the

models in order not to align to different models. Actually, there are three different types of

outliers in the results. First, ambiguities of the search string that result in different objects

than meant. For example “cup” could mean a trophy or a liquid container. Second, as-

sembled scenes containing the right object, for example an oven with a “cooking pot” on it.

And third, wrongly labeled objects or semantically close models additionally showed by the

search engine if there were no better matches. An example for this is a fork found searching

for “spoon”.

Figure 6.8 visualizes shape distribution for several classes of objects to show the interclass

differences in this measurement and the intra class similarities.
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Figure 6.8.: Shape distribution histograms for 10 objects for the search terms cup (a) mug (b)
and fork. All figures show histograms with 1024 bins with a sub-sampling of
the objects using 4096 points. The left side is normalized using the maximum the
right side using the mean. The image was taken from [70].
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(a) Score = 0.486 (b) Score = 0.802 (c) Score = 0.683 (d) Score = 0.750

Figure 6.9.: Two real cups in our kitchen which better match one of the in-between models
(t = 0.25) in Fig. 6.10, as compared to the original model (t = 0).

6.2.3. Morphing between CAD Models

Often we do not get enough models to perform a successful matching in a scene. Thus

we create new models from the ones we already possess, for which we utilize morphing

between models, and choose in-between models. This method was previously published in

[147] and is summarized here.

Alignment of Models

Morphing process usually requires the presence of a human operator to perform an appro-

priate scaling, and alignment to make both models of same size and aligned[65]. We use

the technique presented by [87] to form a histogram of distances between randomly selected

points on the model-surface, and then pick the most commonly occurring distance (actually

the middle point of the most frequent bin) and scale that distance to a constant value and

the whole model is scaled isotropically. A similar technique is used for finding a statistical

centroid and translating both the models so that the centroid lies at their origin.

Next we need to register the models against each other before we can start the morphing

process. For this, one technique of interest is the Iterative Closest Point Algorithm (ICP) [12].

However, ICP works for only dense point-clouds; while the 3D models have only vertices

(of the triangulated faces) which can be directly used for ICP. These vertices are densely

packed at places where a high curvature is present in the model; and very few of these are

present for comparatively flat surfaces. Thus, even if the curved surface has a small area, its

alignment is given more weight by the ordinary ICP, as compared to a more planar surface

with large area - which should not be the case. Thus, we used the technique presented by

[87] to form such a dense point-cloud which has a distribution of points proportional to the

surface area of the faces. This enables us to run a ICP with equivalent weight to all parts of

the object.
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Table 6.6.: Morphing Algorithm
Step 1: Translate along z-axis and scale making the extent on
both side equal.
Step 2: For every vertex in the source model, find the nearest
point on the surface of the destination model.
Step 3: Introduce this nearest point as a new vertex in the
triangulated model, and divide the triangle containing the
vertex into three triangles.
Step 4: Store this as a mapping from the vertex in source model
to the new vertex in destination model.
Step 5: Repeat step 2-4 reversing the two models.
Step 6: All vertices in both models now have an one-to-one mapping
between them, and they are equal in number.
Step 7: Interpolate between the corresponding pairs of points
using linear interpolation based on the parameter t.

Morphing

Figure 6.10.: A Morphing sequence - the first and the last models are obtained from Google
3D Warehouse.

Morphing is a technique that finds common use in computer animation. It involves trans-

forming from one image or 3D model to another controlled by a parameter t going from 0 to

1. At t = 0, the resulting model is the same as the initial source model, while at t = 1 the re-

sulting model is the same as the original destination model; whereas at values of 0< t < 1, we

have a resulting model that is visually “in-between" the source and the destination model.

Thus it is different from the original models, while maintain similar basic geometry in case

the morphing is performed between objects of similar shape (which is the case of interest to

us). We exploit this technique to generate new models when we fail to obtain models that fit

the objects in the scene well enough.

Our approach yields particularly good results when the models have rotational symmetry

around a line (detecting symmetry in 3D models is a well-studied problem [125]). Many of

the models that we find useful for our kitchen environment have such a geometry that we
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may assume the z-axis to be the principle axis of the models. In the following therefore, we

assume that the axis of symmetry is the z-axis. The extent of both models is made equal

on both sides of the x-y plane by translating and scaling slightly. In the following, we refer

to one of the two models (between whom we perform the morphing) as the source model

(corresponding to the morphing parameter t = 0) and the other model as the destination

model (corresponding to t = 1). For each vertex in the source model, we take the x-y plane

on which it lies, and intersect the triangles in the destination model with this plane, to obtain

the nearest point on the surface of the destination model to the current vertex of the source

model (we choose the nearest point out of the nearest points contributed by each plane).

This is done by finding the intersection points of the x-y plane on the edges using Plücker

lines [43]. The reason behind this major step is that the source and destination models will

usually have different levels of detail. If we have two vertices A and B which form an edge,

the edge is represented by L; and p represents in homogeneous coordinates the x-y plane on

which the source vertex s lies, then

L =













0 AxBy −BxAy AxBz −BxAz Ax −Bx

AyBx −ByAx 0 AyBz −ByAz Ay −By

AzBx −BzAx AzBy −BzAy 0 Az −Bz

Bx −Ax By −Ay Bz −Az 0













p =
[

0 0 1 −sz

]T

.

Then the point of intersection u is given by u = Lp, and with another intersection point v

on another edge of this face, we can find the nearest point on this line segment from the

source vertex using parameter θ (obtained by taking equating the derivative of the distance

to zero). If the points u, v, and p are represented in non-homogeneous coordinates, then c

gives the desired closest point.

θ =
(u− p)(u− v)

| uv |

c = u+θv

This nearest point is introduced into the mesh of the destination model as a vertex by di-

viding the triangle that contains it into three (one new vertex in destination model for each

original vertex of source model). We repeat this procedure, reversing the roles of the source

and destination model; and store this one-to-one mapping. The introduction of new points

into the models can be thought of as increasing the degrees of freedom of the model to take

the shape of the other model and still looking pleasant. The last step is to perform a linear

113



6. Learning Perceptual Models in Domestic Environments

interpolation of the vertices from their position in source model to a their final position in

the destination model. The complete algorithm is summarized in Table 6.6.

6.2.4. Selection by Best Match

Applying the method already presented in Section 5.1.2 to the image using several models

we can use the score to compare the resulting score of different CAD models on the same

part of the scene.

This gives a good approximation of the correspondence of a CAD model and the real object.

The less cluttered the current scene is, the better this will work.

6.3. Texturing of Object Models

Training 
images, CAD 
model

Prerequisites

Optimization  of 
relative poses and 
image consistency

Calculation Result

Textured 3D 
model

Figure 6.11.: Prerequisites, Calculation and result for texturing of 3D CAD models.

Given a known pose for several views we can create a texture models. A simplified setup,

which does not necessarily have to take place on a robotic platform is depicted with some

sample images in Figure6.12.

The assumption to have a CAD model will be used here for simplification of the explanation.

The approach was also tested on reconstructed 3D data, and does bring results in similar

quality, given the reconstruction is good enough.

6.3.1. Related Work

Reconstruction including texture was already tackled by [90] in the attempt to build with

a single camera a globally consistent model. If uses image to images correspondences to
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Figure 6.12.: Training images of a yogurt cup.

triangulate in an affine context points that are connected with triangles unless there is evi-

dence that the occupied area is an overestimation. In contrast, we try to avoid the if possible

the reconstruction step, given a CAD model is already available. Different approaches were

presented by [15], [89] or [97], which all have in common, that they do not create a mesh but

try to stay on a point cloud level while trying to reconstruct a full scene. A more accurate

textured mesh is extracted by the work of [67] as well as [31] which tries to create a complete

triangulation of a compact scene visible from several cameras.

6.3.2. Acquisition of Training Data

Knowing the positions of the images and the position of the object in at least one of them is

necessary to get get a good texturing of the CAD model. This information can be acquired

using either a manual adaption of the position of the object or use a method like the edge
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Figure 6.13.: Simulated views of a yogurt cup.

based CAD matching to get a good initial alignment of the images with the objects.

6.3.3. Conflict Resolution via Bundle Adjustment

From all training images, the interest points on the model can be extracted. For all those

interest points in one image correspondences can be appear in all other images, given the

face the points are most probably on is visible in this image, too. The visibility is checked

using a usual OpenGL rendering of the CAD model at the known position with the camera

parameters of the real camera. Instead of a texture, the face id is rendered coded in the

color. This gives for every pixel the most probable face given the initial pose estimate is

good enough. Note that this might fail, if the faces get too small.
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Interest Point Comparison using NCC

Two interest points can form a correspondence if they are on the same face in two different

images. Additionally their NCC on the simulated front view of their face in both image

around the interest point must be high enough. The NCC ε for two image f and t is defined

as follows:

ε =
1

n−1
∑
x,y

( f (x,y)− f )(t(x,y)− t)

σ f σt

with f and t being the mean intensity of the patches and σ f and σt being the intra-variances

of the patches.

The front view can be calculated using a perspective transformation warping the image part

covered by the face to a quadratic patch of higher resolution. The area around the face is

transformed also using the same transformation, in order to have a valid border treatment.

Calculating the Optimal Position

The optimization of the pose is performed with a Levenberg-Marquardt algorithm [78] on a

the problem of finding the best positions for the objects in the cameras and the best position

of the correspondences on the model.

All positions have 6 degrees of freedom and they depend on all correspondences that de-

pend on one Harris point that was extracted in this image. The Harris points are considered

as stable and are not recalculated immediately. The correspondences have two degrees of

freedom each, and provide one error measurement per image point. This means that only

correspondences with more than three image points introduce additional information and

the minimal number of correspondences is at least 6 per image.

To evaluate the consistency of a correspondence regarding an underlying CAD model we

need to reproject a point in an image to the Model to get its coordinates on the model. The

position and orientation of the objects center is denoted with Hn. The faces of the CAD

model defined by three points are denoted with F, fi ∈ F, fi = [p1, p2, p3]. For any face f we

can calculate the transformation from the model origin to a virtual coordinate frame having

z pointing along the normal and having X oriented along the first edge p1 → p2, which will

be denoted as H f .

Given an image point [r,c] on the object visible at Hn the relative coordinates to the first point

p1 on the correct surface fi is:
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t =







X

Y

0






= H−1

f P0 +
−(P0 ◦ p1 p2 × p1 p3 +d)

Hn







f x

f y

f






◦ p1 p2 × p1 p3

(6.3)

The correct surface can be estimated by rendering the model at the specific position using

the known camera parameters using instead of a texture the face index. Alternatively the

point can be checked for a being inside a triangle, which is usually more costly if there are

many points to test.

Formalizing the minimization which is performed using the correspondences C consisting

of the structure c ∈ C : [pi, p j, ..., pk] with a point of one image pi ∈ Pn1
and the other points

p j ∈ Pn2
with n2 6= n1 and pk ∈ Pn3

with n3 6= n2 6= n1 in different images. for image t.

ε = ∑
c∈C

∑
pn∈c

‖KHnH fc
tc − pn‖2

(6.4)

While Hn is parameterized with six parameters, which corresponds to the number of degrees

of freedom for a Transformation in space.

The resulting tc give the positions of the interest points on the model and are not used later

on. The transformations Hn give a more exact measurement were the object is located in the

image. This information is exact enough to reconstruct the texture, given the CAD model is

exact.

6.3.4. Reconstructing the Texture

For getting the final texture, we choose for every side of each face of the CAD model an

optimal texture. This is decided calculating the NCC between all occurrences of a face in an

image being visible. The one image patch with highest NCC multiplied with the minimal

size of the two patches that are compared with the other patches is selected as the optimal

texture. If there is more than one possible candidate with a similar score, the two images are

fused.

The resulting images parts are stored as a texture and can be displayed using OpenGL or

can be exported to formats like *.obj format for further usage.
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6.4. Summary

In this chapter we presented methods that either can be used to model objects online or

to use web resources to build a model that allows to localize and categorize objects. We

also discussed the preconditions that have to be fulfilled, in order to be able to learn certain

models, which are either given by the objects appearance or already available models which

are required to build a more precise one.

Our perception system is capable to autonomously acquire new knowledge of objects and

can so adapt online to new tasks. With the feedback mechanism described earlier in Section

2.5 it can even test on not fulfilled preconditions which cannot be measured on model cre-

ation like the uniqueness of a shape or a texture. Results for this capability can be found in

Section 8.3.2.
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7. Perception Guided Robotic Manipulation

Most of the perception mechanisms which were discussed earlier in this work are meant to

enable robotic manipulation. The most critical part in a perception-cognition-action loop,

which we want to implement, is the actual action. This part is invasive to the world and it

anyhow contains much more potential dangers and problems to the outside than perception

or cognition. Any invasive action can be considered as potentially dangerous, since most

unwanted effects are much more difficult to undo than to do.

Perceptual mechanism cannot influence any other robotic system besides taking cpu time

and perhaps heating up the environment. On the other hand the manipulation mechanism

can easily interfere with the perceptual mechanism by adding motion and additional clutter

to the scene. This system requires a very careful design and high accuracy and predictable

behavior.

7.1. Accuracy and Robotic Manipulation

Accuracy in the sensor data and the robot model is required for several obvious reasons.

First, any sensor data must be accurately localized in respect to the robot, as soon as it should

result in any action of the robot. Second, even if this localization is done, the accuracy should

be persistent with any movement of the robot. And if it is not persistent, the implied inaccu-

racy should be trackable. Third, any internal world representation of the robot should be as

close as possible to the reality.

In order to achieve the necessary accuracy, several calibration steps are required. Depend-

ing on the sensor set and the actuators of a robot, a calibration procedure can be achieved

autonomously or not. E.g. a robot like the PR2 can see its actuators well enough to get an

internal calibration of the cameras in the head and the arms. Meanwhile, it can be a problem

to calibrate the base laser with the other sensors, since they have only a small overlapping

field of view.

The calibration procedure we developed for TUM Rosie will be described here, which in-

cludes additional requirements for the SR4k calibration.
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7.1.1. Camera Calibration

Camera calibration is necessary or at least very helpful to gather any kind of 2D-3D relation

from images. This work just uses state of the art calibration methods in order to be able

to use cameras in 3D manipulation setups. This section tries to give useful hints regarding

potential problems for camera calibration, which is in robotics still an issue, even if a modern

robotic platform like the PR2 are coming with a (nearly) complete auto calibration, including

.

7.1.2. Hand Eye Calibration

Fast and reliable manipulation requires a system with the minimum amount possible of sys-

tematic errors in the position estimations. In the real world there will be always uncertainty

in sensing and acting, but it makes sense to minimize the error on the variables that are un-

der control of the robot developer. This starts with the kinematic description of our robot.

With this goal, we employ a method to calibrate all the kinematic chains involved: from the

camera to the hand of the robot.

For the setup on TUM-Rosie, it is especially important to know the pose of the 3D sensors

as exactly as possible. A direct hand-eye calibration is not feasible, since the measurements

of e.g. a ToF camera are not reliable enough to get the necessary data in a good quality. An

easier way is to use a RGB-camera mounted on the same pan-tilt unit. But this approach

imposes another problem regarding the underactuated pan-tilt unit, while solving the issue

of inaccuracy of the calibration. The task of calibrating the 3D position of a ToF using a

camera is relatively simple. Calibration of the camera to the hand has also been investigated

by other researchers in the past, but usually in a way that does not allow segmenting the

actuated chain into parts.

Also, since the pan-tilt unit only has two degrees of freedom, it cannot produce all the data

that is normally needed and we had to tackle this separately.

From Camera to Hand

We can describe the transformation hand (h) to object (o) Hh→o with the following transfor-

mation chain:

Hh→o = Ho→cHc→pttHptt→ptbHptb→abHab→h

All H describe here transformations between the single parts of our system. The abbrevia-

tions besides h and o mean: c is the camera, ptt the mounting of the head on top of the pan
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Figure 7.1.: A model of the robot including the frames involved in the calibration. Red
dashed lines are perceived, the solid black lines are known and dotted blue lines
are calibrated frames. The calibration object, represented by the bigger axes, was
mounted on the flange of the arm, but it was drawn in front of the robot for
clarity.

tilt unit, ptb the mounting of the pan tilt unit on the robot platform, ab the mounting of the

arm on the platform. All of those frames are labeled in the model in Figure 7.1.

Of those transformations, some can be assumed to be known, given certain conditions. We

can assume that we have an accurate forward kinematic for the arm as well as for the pan-

tilt unit, which will give us Hptt→ptb and Hab→h depending on the current joint angle state.

Inaccuracies in the mounting to the next part are considered in the respective next transfor-

mation.

Given we have a known object, namely a calibration body, we can also estimate very accu-

rately the internal calibration of the camera and synchronously the relative position of the

object to the camera ( Ho→c), given we have different views of the object. This leaves us with

three unknown transformations Hc→ptt , Hptb→ab and Hh→o.

If the robot’s hand grasps the calibration body we can assume all those offsets to be static.

This enables us to measure several joint transformations using state of the art hand eye cal-

ibration techniques. By moving the arm in the 6 dof of space and measuring the 6 dof of
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the objects to camera we get 12 dof observations what enables us to estimate also two 6

dof offsets in the system.

By keeping the pan-tilt unit stable and moving the arm with the calibration body in space

to K positions, we can solve while calibrating also for H1 = Hc→pttHptt→ptbHptb→ab and H2 =

H−1
h→o:

err = argmin
H1,H2

K

∑
k=1

f (k,H1,H2);

f (k,H1H2) =
|X |

∑
n=0

‖xnH1Hab→h,kH2H−1
o→c,k − xn;‖

where X is the set of known points on the calibration body. Hab→h,k and Ho→c,k are the mea-

surement of the forward kinematic and the calibration body localization after the k-th move-

ment. If we use here a nonlinear optimization (e.g. the Levenberg-Marquardt algorithm), we

come easily to the transformation H2 which can be used to define a new virtual end effector:

Given the calibration body is well formed and its we placed its frame at a position that is

well placed inside of the robots hand we can directly use H2 as the new end effector offset.

H1 contains still the pan tilt offset (Hptt→ptb) and two unknown offsets Hc→ptt , Hptb→ab.

From Camera to Shoulder

If we now solve for those two remaining unknowns we could theoretically the same process

with a stable arm and a moving pan tilt unit. Unfortunately, our pan tilt unit has both

rotational axes in the same point which moves the camera on a sphere with an fixed radius.

This means this process could result in a manifold of correct solutions while distributing one

orientation and two offsets randomly between before and after the actuated elements. But

in our case we also want to calibrate the ToF to the hand we have to solve this ambiguity,

too. This means that a nonlinear optimization like the one applied for the arm is here not

applicable for the full search for H ′
1 and H ′

2 which would be in this case H ′
1 = Hc→ptt and

H ′
2 = Hptb→abH2 If we reduce the problem by inserting the already acquired information from

the last step, we only have to solve H ′
1

H ′
2 = H1H ′−1

1 H−1
ptt→ptb

If we assume that we have a good approximation for the rotations of the camera on the

pan tilt unit and we modeled it already in the transformation Hptt→ptb we can optimize the

translation of the camera on the pan tilt top x0,y0,z0:

err = argmin
x0,y0,z0

X ptb
n − (Xk

n − (x0,y0,z0,1)
T )Hptt→ptb
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where X
ptb
n is the n-th points on the calibration body in pan-tilt base coordinates while Xk

n is

the same points in Camera coordinates after the k-th movement of the pan-tilt unit.

(a) (b)

Figure 7.2.: Visual evaluation of the calibration: Overlay of ToF data and the robot model on
the left. The model does not include the robot hand, but it is visible in the sensor
data at the correct place. Please compare with the photo on the right of the same
scene.

This leads to solution that ignores three rotational degrees of freedom, but given metal plate

supporting our sensor head, those rotation are small and are compensated partially by the

inverse error that is then contained in H ′
2. It is eliminated completely in the pan-tilt position

used for the initial calibration state with only the arm moving. With a good choice of this

pan-tilt state in the center of the actual working space, this proposed simplification has the

smallest error. The accuracy of the process is very well illustrated in the Figure 7.2 (left),

where we depict the robot arm using the kinematic robot model, and the hand is seen in the

3D sensor data. Notice that the hand pose accurately reflects the picture on the right, which

shows the correct calibration. All frames in figure 7.1 are involved.

7.2. Dealing with Uncertainty in a Robot System

A robotic system is even with a very good calibration not perfect. But for most of the systems

there exists an estimation about the uncertainty which is introduced by this system. Self lo-

calization or calibration are good examples for procedures that are aware of the intrinsic

residuals. We want to have a robotic system can approximate and model its own imperfec-

tions. So we want to introduce a system that monitors the positions of all parts of the robot

and of all perceived elements with the respective uncertainties between all systems. In the-

ory the propagation of errors is important for relevant control. The standard procedure was

described in [13].
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7.2.1. Covariance Propagation

An error in position space SE3 can be expressed by a covariance matrix describing an Gaus-

sian approximation of the uncertainty of a position. This matrix has than 6 times 6 entries

which describe the distribution in which the real position is much likely to be expected.

The uncertainty in position is quite easy to display and understand while the uncertainty in

lacks good means to display it and so lacks also intuition to be understood. So we want here

to give a simple example to explain the understanding and the visualization used in this

work: Given an detection of an object which was done in a 2D RGB data has a very accurate

localization of an object in the row-column plane of the camera, while it has only a rough

idea about the distance of the object from the camera. This gives us an estimation of errors

in the single axis which we can represent in a 3x3 covariance matrix Cpos with the errors in

ex,ey (row-column) and ez (distance):

Cpos =







ex 0 0

0 ey 0

0 0 ez






(7.1)

If we only fill the diagonal we assume an independent error with a Gaussian distribution for

each dimension. if we want to express this error estimate in terms of the robotic hand for ex-

ample which might look in the same direction like the camera but has a different inclination

which can be represented by a rotation around the cameras y-axis we would get an influence

of the error in x and the error in z.

Chand =







e′x 0 e′xz

0 ey 0

e′xz 0 e′z






(7.2)

with a possible calculation of e′xz,e
′
x,e

′
z given the rotation.

e′xz =
(cos(α)ex sin(α)ez)+(sin(α)ex cos(α)ez)

2
(7.3)

e′x = cos(α)ex sin(α)ez (7.4)

e′z = sin(α)ex cos(α)ez (7.5)

Which is just makes use of the simple case of the covariance transformation in 3D space

which can be displayed by:

Cpos =
(

c1 c2 c3

)

(7.6)
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Chand =

√

3

∑
i=0

(

H
pos
handci

)(

H
pos
handci

)T (7.7)

with H
pos
hand representing the transformation necessary to come from the coordinate system of

the camera into the coordinate system of the hand.

This system allows to express positional error in another frame. If we extend the problem

to errors in rotational space, we get a slightly different formulation of an error in six dimen-

sions:

C =























ex 0 0 0 0 0

0 ey 0 0 0 0

0 0 ez 0 0 0

0 0 0 eα 0 0

0 0 0 0 eβ 0

0 0 0 0 0 eγ























(7.8)

In order to transform this covariance by a full 6D pose to express the uncertainty in another

frame, we need to decide on a valid representation of the rotations.

7.2.2. Located Object Tree

Expanding this problem to the representation of a perceived object, the error we want to

calculate is usually in hand coordinates and should include a robotic movement before. This

movement can only be measured under uncertainty, which also can be modeled. This im-

plies that we have a chain of transformation from the object to the former robot position to

the new position continued to the hand where we have at least two transformations which

bear significant errors. To represent this, we need a tree of transformations from all located

events to all others with the error which will be introduced to express the one in the other

frame.

Located Objects

We consider the perceived object as a frame in space, which represents the orientation and

position relative to the perceiving sensor at the position when the respective image was

taken. This position represents an orientation and position of the respective sensor relative

to the position of the robot at this point in time when the image was taken. Both of them have

additionally a distribution stored which represents the Gaussian distribution. See 7.3.
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Figure 7.3.: A frame in space and the major components of an attached covariance displayed
by the samples from the distribution that are displaying an approximation of
possible samples of this distribution.
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Event versus Time as Synchronization measure

In order to synchronize global position information over a system, there a different paradigms

possible: The Located Object framework chose to use an event that changes a motor or mea-

sures a new position to be applied as soon as this event is reported to a central service.

Alternatively, the information can be distributed, given a global information measurement,

like synchronous time.

The moment the information arrives at the Located Object server decides on the time it is

applied. This might be problematic in systems which have a high delay to communicate

with the server. On the other hand it relaxes the requirement on synchronous clocks, like it

is e.g. necessary for the usage of the tf framework 1.

Additionally, the service based approach reduces the communication requirements to a min-

imum, given the assumption that the measurement of movements are happening more often

than the consumption of this information. This is usually true as soon as there is an abstrac-

tion from the real time control loops.

Interpolation Scheme

For getting positions that were measured in the past, both paradigms proposed in Section

7.2.2 have troubles. While the event based will lose all data which is not connected with an

event, the time-based method can only store a certain period of the history.

For the event based scheme, the solution is to create an event for all relevant actions to

avoid losing necessary information. This is especially interesting for the moment when a

camera image is taken or similar events of sensor captures. With such an event created, even

processing of sensor data which requires a long time (e.g. over 20s) will result in a result

that is in a valid reference frame. This reference frame can be even used in a local context.

This mechanism assumes a constant interpolation in time, implying that no incoming events

mean no movement (static world assumption). Alternatively, with a time-based synchro-

nization, there will be a previous and a following measurement to any point in time in the

near past, which can be used to interpolate the position at a certain point in time. This as-

sumes the measurement of the position to be well derivable at any point in time. Usually,

this assumption does not hold for direct and not filtered encode measurements. So this in-

terpolation scheme has to be applied carefully, especially for non regular events.

1http://www.ros.org/wiki/tf

131



7. Perception Guided Robotic Manipulation

7.3. Grasp Planning

Our goal is to build a general and competent control system for mobile manipulation robots

performing pick-and-place tasks in human environments. We can expect to have informa-

tion and detailed models of many of the objects present, and this should be employed to the

greatest possible advantage; but in any open environment the robot will certainly encounter

unknown objects, or due to sensor uncertainty, it might fail to recognize known ones.

To deal with these issues we are developing a pick-and-place control system that employs

two general classes of grasping strategies: (1) informed grasping strategies that use models

of the objects to plan or infer adequate grasping actions using the model as an information

resource and (2) general methods that can grasp objects successfully without having model

information and just relying on single view sensor data.

In this paper we investigate the second class of grasping strategies, the ones applicable with-

out having prior models information. An overview of this grasping strategy is shown in

Figure 7.4: The robot is ordered to grasp an object on a table, so it moves its time-of-flight

camera and obtains a point-cloud of the table and the object. The object of interest is seg-

mented from the point cloud, and a Gaussian point distribution representation is calculated

(Sec. 4.2.1). This is the simplest model that can represent the position, size and orientation

of the object including the perceptual uncertainty. We then use a simplified model (Fig. 7.6)

of our robotic hand to find a good hand orientation and approach vector considering obsta-

cles.

The grasp action consists of: (1) Moving the hand to the approach position/orientation while

avoiding obstacles (2) Move to the grasp-pose while detecting collisions with the object and

adjust the grasp accordingly. (3) Execute a 3-finger-pinch that holds the object using the

robotic hand. (4) Detect problems (if the object slipped out of the hand). (5) Lift the object

from the table.

The main contributions of this paper are: (1) A perception system based on time-of-flight

range data that represents objects as Gaussian point distributions. (2) A grasp pose op-

timization algorithm. (3) A method to incorporate torque sensors in the fingers to detect

collisions and improve grasping. A correct hand-eye (robot hand/cameras) calibration is

an important pre-requisite, so we explain the used method in section 7.1.2. Briefly said, we

present a working system that uses 3D perception with a time of flight (ToF) camera and

torque sensors in the fingers to reliably manipulate a large set of unmodeled objects.
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7.3. Grasp Planning

Figure 7.4.: Overview of the proposed system.

7.3.1. Related Work

The dexterous ARMAR-III platform [3] showed planned manipulation with a five-fingered

hand for everyday objects in [77]. While this work still relies on objects being marked with

colors or significant textures, other work extended the perception modalities (like the work

with STAIR in [94]) to perception by touching for manipulation of unknown objects. Also

demonstrated on the same platform were grasp point estimation for a bipedal manipulator

and manipulation of unknown objects based on vision in [116].

An example for 3D sensor based object localization and manipulation was presented on a

PR-2 in [113], which could also be done with our sensors. We currently also use the robotic

middleware ROS of Willowgarage [102].

Natale et al [80] present a system that deals with great uncertainty in the position of the

manipulator by using tactile feedback to explore the objects. This is inspiring work for in-

corporating sensors in the robot’s hand. We calibrate our robot to be able to act quickly

and accurately when the sensors allow it, and follow the same idea of exploration when the

estimates of position and/or size were not precise. Another very interesting work shows

manipulation of textured objects based on a single view [105]. A very advanced system was

presented on a HRP-2 in [85]: it additionally includes the verification of a manipulation task

by vision in daily life environments, this system also uses previously known objects and

visual modalities and a simple hand, while it uses the full body for manipulation.
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Saxena et al describe an advanced system to grasp novel objects using visual [117] and ToF

[116] information. One important difference is that our system does not need training data

and that it uses the torque sensors from the hand to monitor and improve the grasp.

A simple grasp planning was shown by Vahedi and Stappen presented in [135] for a three

fingered hand could encage a polygonal region, and could approximate a grasp in a com-

putationally complexity in O(n3) (n = length of Polygon). In contrast we present here a fast

probabilistic encaging of an unmodeled object including a set of unmodeled obstacles.

The work of Geidenstam et al. [32] has shown grasp planning of previously unmodeled

objects, which unfortunately requires on the one hand high quality input measurements and

on the other hand relatively high computation time. Geometrical-simulation grasp planners

like GraspIt [33] require object meshes or CAD models to work, or at least point clouds with

approximated faces and normals. Both are not necessary for our approach.

A simple grasp planning was shown by Vahedi and Stappen presented in [135] for a three

fingered hand could encage a polygonal region, and could approximate a grasp in a com-

putationally complexity in O(n3) (n = length of Polygon). In contrast we present here a fast

probabilistic encaging of an unmodeled object including a set of unmodeled obstacles.

The work of Geidenstam et al. [32] have shown grasp planning of previously unmodeled

objects, which unfortunately requires on the one hand high quality input measurements and

on the other hand relatively high computation time. Physical-simulation grasp planners

like OpenRave [18] or GraspIt [33] require object meshes or CAD models to work, or at least

point clouds with approximated faces and normals. Both are not necessary for our approach.

For our experiments we calibrated our system using hand eye calibration. This technique

was introduced by [131] and improved by [17] and solved for two unknown offsets in an

robotic system. We show in this work a pragmatical extension to calibrate another unknown

component in our specific system.

7.3.2. Grasp Pose Optimization on a Gaussian Point Distribution

Given our simple representation of the position and shape of the object, our grasp planner

has to find an appropriate pose where the robot can execute a general force-closure grasp,

like a 3-finger-pinch.

Our strategy is to find a hand pose that brings the center of the palm as close as possible to

the object, while avoiding collisions by maximizing the distance of the object to the points

representing the fingers.
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7.3. Grasp Planning

Figure 7.5.: We parameterize the grasp with three values: α influences the steepness of the
grasp, β influences the direction of the grasp, δ defines the final distance between
hand center and the object center.

These contradicting goals can be jointly solved using our representation of measurements of

unknown objects as a point distribution: We model all objects as a Gaussian distribution of

material around the estimated object center µ with a covariance Σ, see section 4.2.1.

We can approximate the probability of a collision of a finger tip position P = [x,y,z]T with the

object at Q = [µx,µy,µz]
T by

d(P,Q) = [x−µx,y−µy,z−µz]
T (7.9)

f (P,Q,Σ) =
1

c
√

det(Σ)
exp

(

−
1

2
d(P,Q)Σ−1d(P,Q)T

)

(7.10)

based on the standard Gaussian probability density function for joint random variables with

c = (2π)3/2. The random variables are here the three components of Q. Those components

are not independent since we measure the end effector position in terms of the arm, while

measuring the objects in terms of the camera.

Given this function f we can now evaluate a certain grasp and we can calculate an optimal

grasp regarding this criterion. Figure 7.5 shows how we parameterize the position of the

hand with the angle out of the x-y plane α (approaching angle, defined positive) and one

angle around the z-axis β (hand rotation) we get the following function for calculating a

Point Pi
δ = [xi,yi,zi]

T on the approaching phase toward Q at distance δ :
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Pi
δ (α,β ,Q) = Q+







(δ − z)cαsβ + cβxi − sαsβyi

(δ − z)cαcβ + sβxi + sαcβyi

(δ − z)sα + cαyi






, (7.11)

where cα denotes cos(α) and sα denotes sin(α). If we introduce now a special distribution

case of objects, that have a clean major axis along the robot’s Z axis (equal to the table’s

normal), we get this special case for the covariance:

Σz =







sx c 0

c sy 0

0 0 sz






(7.12)

This special Σ allows a general minimization for an optimal α . Which can be expressed by

argmin
α

f (Pδ (α,β ),Q,Σ) (7.13)

This minimum can be estimated by set the derivative of f equal to zero, while setting Q =

[0,0,0]T without loss of generality:

∆ f (Pδ (α), [0,0,0]T ,Σz)

∆α
= 0, (7.14)

which results in two solutions solving for α independent from all other parameters: α1 =

0,α2 = π
2

. The result is intuitive: if an object is placed upright on a table, we only have to

evaluate if we better grasp from the top or from the side. This does not hold for any inclined

objects or any objects placed on a ramp, but it is valid for most household items and all our

test objects.

Figure 7.6.: Simplified hand model. Red circles indicate the points used in the kinematic
model. The yellow circle shows the origin of the hand reference frame. The left
hand is shown.

In order to characterize the hand properties we define a set of points P0..9
δ

. They are shown
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in Fig. 7.6. P0
δ

and P1
δ describe the connection between thumb and the other fingers, which

is a critical collision point. P1..9
δ

are the positions of the other fingers. All Pi
δ are just defined

like Pδ with a constant offset in hand coordinates, which can be easily derived from Q, α and

β . We defined the z-axis of the hand so that it starts at P0
δ

, and it points towards the object at

Q. This axis is controlled by the two parameters α and β while the palm is along the y-axis,

which is normal to the plane described by the z-axis of the object and the hand. Basically, the

hand-model is a kinematic tree representing the fingertips and internal points of the palm.

The simplified error function for a point under the given assumptions is then:

fs = min( f (Pi
δ (0,β ,Q),Q,Σ), f (Pi

δ (
π

2
,β ,Q),Q,Σ)) (7.15)

Which leads to the best configuration for an object floating in free space:

[β ,α] = argmin
β ,α

9

∑
i=0

fs(i,δ ,β ,Q,Σ) (7.16)

where β is, due to the symmetry of our point distribution, a value between −π
2

and π
2

and

α = 0 or π
2

. The choice of δ which is a value between min(sx,sy,sz) and (max(sx,sy,sz) +

f ingerlength) not only depends on this collision probability, but also on the enclosure prob-

ability, which is inversely correlated with δ . Then it requires an additional optimization for

this parameter.

Incorporating the table leads to further reduction of the parameter space in α and δ for small

objects:
µz − ztable <

palmwidth
2

⇒ α = π
2

⇒ δ > ztable + f ingerlength
(7.17)

Further objects on the table at position Q j = [µ j
x ,µ

j
y ,µ

j
z ] must be considered if they conflict

with the arm trajectory. This only is the case, if the two following conditions hold:

µz −µ j
z < s j

z (7.18)

√

(

µx −µ
j

x

)2

+
(

µy −µ
j

y

)2

> f ingerlength (7.19)

All relevant obstacles are collected in O = [Q,Q1,Q2..QN ] and S = [Σ,Σ1,Σ2..ΣN ]. Both vari-

ables contain as a first element the object to grasp, and subsequently all detected obstacles.

Eq. 7.15 can be generalized for an obstacle:

f j
s = min( f (Pi

δ (0,Q),Q jΣ j), f (Pi
δ (

π

2
,Q),Q j,Σ j)) (7.20)

137



7. Perception Guided Robotic Manipulation

This adaption can be incorporated into Eq. 7.16, which now can calculate the desired grasp

configuration in our setup in a few iterations over δ and β . The optimization process should

best start at a β corresponding to the smallest extension of the object and at the smallest

possible distance δ , searching for the first local minimum.

This adaption of Eq. 7.16 follows:

[β ,α] = argmin
β ,α

N

∑
j=0

9

∑
i=0

f j
s (i,δ ,β ,Q,Q j,Σ j)−aδ (7.21)

where N denotes the number of obstacles which can be adapted during the grasp in case of

unexpected collisions of the hand with the target object. aδ is a factor charging for a further

delta depending on the number of finger points and δ . The added Q j would be the finger

position at the time of collision and Σ j will be the uncertainty of the hand obstacle relation

at this time, which we assumed constant. If a collision is detected during the execution of

the approach and grasp movement, the hand is moved back and a new calculation of the

optimal grasping pose is done.

To conclude this section, we have shown a simple error measurement that allows search-

ing on only three variables for a good grasping pose taking into account possible obstacles

during the approach to the grasp position.

7.3.3. Detection of Collisions in the Fingers

As was seen at the end of Section 4.2.1, it is possible that the perception system underes-

timates the size of the object of interest due to occlusion, or measures the object’s position

inaccurately due to sensor uncertainty. We summarize here the system designed and de-

veloped for [69] for the sake of completeness, while this part was primarily done by Alexis

Maldonado.

Since we suffer from self-occlusions, we will have to execute a partially ’blind’ grasp. Execut-

ing a such a ’blind’ or sensor-less grasp procedure will not be reliable due to the important

effect caused by small errors in the pose estimation or calibration.

The best place to get information about the object being manipulated are the fingers them-

selves since they are the closest and most reliable source of contact information. With any

kind of sensors integrated to the gripper or the fingers we can decrease the grasping risks by

a lot.

E.g. the DLR-HIT hand of TUM-Rosieis equipped with three torque sensors on each finger,

placed near each joint. Our hand controller reads torque data constantly from the fingers,

and uses it to detect collisions with the object during the approach phase. A similar approach
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(a) A scene seen by the robot’s RGB camera. (b) Scene data from the ToF camera. Calculated grasp
poses are shown.

(c) Resulting grasp position on the ice tea box(top
view).

(d) Resulting grasp position on the ice tea box (side
view).

Figure 7.7.: Visualization of selected grasps in a scene.
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(a) Approach, collision, pull-back, grasping using the corrected pose.

(b) Base torque data for the middle finger.

Figure 7.8.: The collision with the object can clearly be detected based on the torque data.
The finger was in contact with the object for 0.3 seconds, [69].

is used at TUM-James, which is equipped with a touch sensor array at each gripper side. In

case of TUM-Rosie, a collision can simply be detected by applying a threshold on the filtered

torque streams, as can be seen in Fig. 7.8(b).

Sensing and positioning of the arm will always have uncertainties, so we employ a haptic

approach to make the grasping more robust: A detected collision event on any finger indi-

cates that our estimation of the object’s shape and/or position was wrong, but we can use

the position of the collision to improve the estimation, so the system can locally correct the

grasp. See Eq. 7.21 where the results are taken into account. Basically, the hand is moved

back, the position where the crash was detected is put back into the grasp planner as a pos-

sible obstacle, and a new grasp pose can be calculated. The system also checks if the new

desired position is reachable by the hand using a position-inverse-kinematics algorithm, and

can look for other grasp positions until it finds an appropriate one.

Since this algorithm is designed to put the fingers around the object as closely as possible,
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all that is needed is a simple enveloping grasp. We chose a 3-finger pinch on our DLR-HIT

hands, but the same algorithm would work with a parallel-finger manipulator (with torque

sensors installed to detect crashes on the fingers).

7.3.4. Motion Control

In order to guide the motion of the arm and the hand for manipulation, we employ a system

based on vector fields [10], where it is possible to create point attractors, as well as planar and

spherical repellers. We can easily encode the available information from the environment:

the desired pose of the end effector, and all the detected obstacles.

The KUKA LWR-4 arms are being operated in Joint-Impedance mode, with a low stiffness set

for each joint for safety. The arm could be pushed by a person or have a collision at any time,

and the motion controller should deal with this gracefully and continue toward the desired

pose while avoiding obstacles. For this reason, we do not pre-calculate any trajectories.

Our current implementation has an on-the-fly reconfigurable vector field that decides the

direction in which the end effector of the arm should move, and it feeds this to a damped

least squares inverse kinematics algorithm for finding the joint velocities. This loop runs

in real time (currently 240Hz). The vector field also observes additional constraints, like the

distance of each joint to its limits, or the distance of the whole arm posture to a preferred one,

and influences the inverse kinematics algorithm by changing constantly the joint-weights

(affect the relative movement of the joints), or task-weights (affects how much importance is

given to position or orientation in Cartesian space).

For the experiments described in this paper, we used a relatively simple high-level controller

that: (1) moves the hand and the arm out of the view of the sensors in the head. (2) asks

the visual perception system for positions of objects and obstacles. (3) calculates approach

and grasp poses using the grasp pose optimizer. (4) configures the vector field accordingly,

moves the arm, deals with collisions. (5) executes a 3-finger pinch on the hand. (6) lifts the

object, and evaluates the grasp. (7) drops the object at a pre-defined location.

Errors can be detected during each step of the procedure, and the controller takes corrective

action, e.g. moving the hand out of the way, and detecting objects again if the grasp was not

successful.
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8. Results

For showing the performance of COP, we evaluate first the most important methods on

their applications to object localization and recognition in the following Section 8.1. Since

the grasping system is an important precondition for understanding the system evaluation,

we will show results of grasping detected clusters in Section 8.2. Finally, experiments will

be presented to evaluate the learning of models, and the integration of model learning into

robotic actions in Section 8.3.

8.1. Object Localization

In order to show the capabilities of COP in object localization and recognition, we will have

a closer look at four different methods for object localization. First, an analysis will evaluate

the performance and robustness of the planar shape matching with stereo cameras. Second,

we will analyze how the CAD matching combined with the search space reduction performs.

Third, we will have a short look at the descriptor based matching for 3D objects. And last,

we will show the transparent object detection and reconstruction. This last task is the most

challenging regarding the data quality.

8.1.1. Planar Matching

First, the planar shape matching is analyzed, which is explained in Section 5.1.3. This tech-

nique requires the fewest knowledge about the scene compared to the following. The rele-

vant aspects to focus on, are accuracy and generality as well as the applicability to robotic,

which is not intuitive, since the assumption of planarity seems not to hold often. This as-

sumption introduces only small errors for compact objects, which makes it applicable for the

average object which is considered here.

In the second experiment regarding robustness, we explore online learning and tracking of

everyday objects on a kitchen service robot that is equipped with a pan-tilt unit. In the third

experiment, manipulation using an industrial robot arm is shown. It is based on a monocular

camera setup and shows 3D pick-and-place.
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Method Norm 3D Rotation
error error

Match shape left, pose 0.0041 0.22◦

Match shape right, pose 0.0042 0.20◦

Left and right, best of two 0.0038 0.19◦

Left and right, triangulated 0.0053 0.24◦

Min. ground truth error 0.0013 0.11◦

Table 8.1.: Measurement errors with ground truth for the stereo setup.

Accuracy

To test the accuracy, we used an additional stereo setup with a more controlled setup than we

usually can provide on a robot. We are particularly interested in the stereo setup, because the

errors from stereo calibration, model generation and detection accumulate. Table 8.1 shows

the results of different test runs. Here stereo-based initialization is compared to the result

of a marker-based approach. For this experiment we calibrated the stereo setup that had a

baseline of 6.37 cm, the object was on average 26 cm far away. We used an image sequence

of 150 frames.

We compare the our pose estimation with a state of the art camera calibration system. We

build up a model using the stereo setup and infer the position in space first from the left

image (fist line), and then estimating this pose again from the right image (second line). Then

the better match from both images is taken to estimate a final pose (third line). The selection

of the better pose is based on the matching score. Alternatively, two 2D-homographies can be

taken to triangulate the 3D position (fourth line). This method turned out to be less accurate

than the averaged monocular estimation.

For ground truth we use the estimated marker’s positions as it is known that they can be

extracted with a very high accuracy. However, they are still erroneous, so we cross check the

markers position in the two stereo images for consistency. The inconsistency for the marker

based approach can be found in the last line of Table 8.1 named minimal ground truth error.

It describes the minimal error, which is very close to the true error value, but gives only a

lower bound, since it is the observed inconsistency regarding the position estimates of the

markers.

The first column describes the normalized translation error which is defined as translational

error divided by the camera-object distance. The rotation error in the second column is based

on the length of the axis-angle representation of the rotation, or stated otherwise the angle

that is needed to bring the ground truth rotation to the measured rotation.

The result is that online usage of two cameras does increase the accuracy and the robustness,
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8.1. Object Localization

while the usage of the stereo calibration directly to triangulate the position does not. This

proposes, that a calibrated monocular setup can replace often a stereo setup, if there is at

least a consistency check with a second camera. This conclusion is an argument in favor the

independent treatment of different cameras in an architectures like COP. The error in the

best method matching the object independently in both images was as expected not much

higher than twice the ground truth error imposed by the marker-based approach.

Generality

To show interactive usage of the approach, a robot-mounted pan-tilt unit follows an object

under 3D motion. The model is learned as soon as the robot sees a new object inserted into

a predefined ROI. Next, the shape model is learned from this ROI and tracked directly. The

pan-tilt unit was directed to the object after every detection to avoid loosing track.

Fig. 8.1 shows 8 objects to give an impression of the variety of objects that the approach

can track. Half of them are planar the other have only planar substructures. For these and

16 further objects we measured an average time for searching of 1.277s (full rotation and

scale range of 0.5−1.5) and for the tracking update step an average time of 0.076s. For this

experiment we tracked each object for about 60 seconds. The images have a size of 695x519

and we are using one processor of a AMD Athlon(tm) 64 X2 Dual Core Processor 3800+. All

objects were tracked robustly, except the spaghetti (Fig. 8.1(k)) and the napkin (Fig. 8.1(m))

caused problems due to their structural deformations, that are not modeled. Still, even those

objects could be found and tracked for a while. This test was done with a stereo on a robot,

which is similar to the stereo cameras mounted on TUM-Rosie, only using lower resolution

cameras and less wide-angle lens setup.

Monocular Object Detection for 3D Pick-and-Place Applications

The experiment described in the following was executed in cooperation with Andreas Hofhauser.

Commercial solutions for pick-and-place applications typically assume that the objects are

located on a plane like a conveyor belt and the camera is fixed exactly perpendicular, such

that object detection reduces to a 2D search problem. These systems fail if the object of inter-

est is surrounded by clutter or is inside a complicated 3D object configuration that leads to

an unpredictable 3D displacement of the object.

In our test scenario we attached a calibrated camera and a strainer to an industrial robot arm.

We performed a hand-eye calibration and a calibration of the robot flange to the strainer.

Then we acquired a contour model that contains the outer structure and parts of the label

on the clamp. After model generation we measured the 3D size of the model by acquiring
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(a) Cookbook (b) Model of cookbook 1 (c) Cookbook 2 (d) Model of cookbook 2

(e) Crushed tomato (f) Model of crushed
tomato

(g) Metal part (h) Model of metal part

(i) Oven (j) Model of oven (k) Spaghetti (l) Model of spaghetti

(m) Napkin (n) Model of napkin (o) Plate (p) Model of plate

Figure 8.1.: A Selection of trackable objects. The objects 8.1(a),8.1(c),8.1(e) and 8.1(g) are pla-
nar, the other four (8.1(i), 8.1(k), 8.1(m), 8.1(o)) have only planar substructures.

two image: An image with a calibration plate on the fuse and another one without while

the camera object relation was kept fixed. To have a sufficient field of view the robot drives

to a surveying position from which a single image is grabbed and processed with the pro-

posed algorithm. After a successful estimation of the 3D pose of the model, we convert the

pose into driving commands for the robot gripper. After successful gripping the object can

be further processed. For the grasping an accuracy of less then 5mm is typically needed,

resulting in less than 0.01 normalized translational error (see Section 8.1.1 for a definition of

the errors).
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8.1. Object Localization

(a) with clutter (b) with clutter (c) Scene (d) Close up

Figure 8.2.: Picture from Pick-and-Place Scenario. The complete setup can be seen in the
accompanying video. The found model and the estimated 3D pose are depicted
in typical search images.

8.1.2. CAD Based Matching

For the sake of completeness, we briefly review some of the results which were published

in [57] in order to introduce the improvements which were introduced in [56]. The major

problems that we faced using shape based monocular CAD matching, concern the missing

robustness against clutter and the high calculation time of the model generation phase. The

following sections demonstrate significant improvements in terms of computation time and

detection robustness in cluttered scenes, by embedding the CAD matching into COP. The

observed improvements are caused by the automatically refined search spaces and verifica-

tions using a stereo setup described in Section 5.1.2.

Computational Efficiency

To demonstrate the computational advantages obtained by incorporating the 3D clustering

information into search spaces, we performed several tests for different objects located in

various cluttered scenes. In each experiment, we recorded the calculation time that was

necessary to generate the model and the to perform a search in the scene. Since the four

tested objects have a large variety in the number of faces in their respective CAD models,

the overall calculation times can vary significantly. The four objects were chosen to represent

the usual distribution over the number of faces for CAD models for kitchen objects.

The experiments include a comparison between the results obtained using the entire search

space of the full table versus the one automatically generated by the clustering. Figure 8.5(a)

shows the resultant calculation times for the model generation phase. As presented, the

highest relative gain in calculation time is obtained when a number of faces in the object is

high as well. Additionally, the relative size of the cluster with respect to the initial search

space influences the calculation time. The smaller the segmented clusters are, the higher is

the gain. This can be seen by comparing the calculation times for large and small clusters.
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Figure 8.3.: Successful located objects in cluttered scenes. THE CAD models of an ice tea box
and a tea box are overlaid in the camera image.

Figure 8.4.: Successful fitting object models in cluttered scenes. Several mugs are matched
here.

An example of a large cluster is an ice tea box, while a small cluster can be caused by an

appearance of the mug, as seen for example in Figure 8.6.

The time needed for the clustering added up to ≈ 50ms per frame and is omitted in Fig-

ures 8.5(a) and 8.5(b). The model generation can be skipped for new search spaces if there

was another model generated before, that contains the current search space completely. Fig-

ure 8.5(b) shows the calculation times for the search phase. Again, the graph compares the

calculation time with and without the segmentation. This experiment included the assump-

tion of the object standing upright on the table having an arbitrary orientation. All measure-

ments were done on a AMD Athlon(tm) 64 X2 Dual Core Processor 3800+, which constitutes

one of the two stock computers of our mobile manipulation platform.
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8.1. Object Localization

(a) The bars show the calculation time
needed for generating the model for a
given search space for several objects with
various number of faces.

(b) The bars show the calculation time
needed for searching in the search region
for an object.

Figure 8.5.: The gained speed up by using clusters instead of the full table (about 30000cm3).
For a better overview of the effects of our approach, we divided the clusters into
big (>= 750cm3) and small (< 750cm3) clusters.

Robustness through Search Space Segmentation

To show that this approach increases the robustness of the system we compared the search

of several objects in more complex scenes.

Figure 8.6.: An example of a single model search in a cluttered scene, using the entire search
space (left), and using several regions of interest from the 3D processing module
(right). Notice that the multiple RoI approach is robust against false positives,
while in the full search space, the model of the mug is matched incorrectly.

An example is shown in Figure 8.6, in which the robustness of the localization framework

was greatly improved by using the resultant 3D clusters from the point cloud data. In con-

trast, the approach using a full search over the entire space can return erroneous results, due
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8. Results

Figure 8.7.: A mismatch example with a wrong distance in the full search space (left), solved
by using the multiple RoI approach(right). The model to be localized is repre-
sented by a mug.

Tea IceTea Mug Plate All
Single Object 0.5 1.0 1.0 0.75 0.88
–with segmentation 0.75 1.0. 1.0 0.75 0.88
Partial Occlusions 1.0 0.75 1.0 1.0 0.94
–with segmentation 1.0 0.75 0.75 1.0 0.88
Cluttered Scene 0.2 0.75 0.6 0.2 0.44

–with segmentation 0.6 0.6 0.75 0.75 0.68

Overall 0.54 0.66 0.76 0.75 0.72
–with segmentation 0.76 0.84 0.84 0.83 0.82

Table 8.2.: The results for tests on 37 different scenes, including both approaches: with and
without segmentation. The numbers are a ratio of good detected objects against
present objects.

to problems with false positive matches. This can be observed particularly in scenes that

contain similar or highly textured objects. Those views can easily produce hallucinations of

degenerated views of an object. By a degenerated view we refer to situations that several

projected 3D edges fall on the same 2D line. A similar problem can be seen in Figure 8.7,

showing another object’s shape matches the projection of a mug model. These problems are

overcome by segmenting the search space, which leads to a higher number of search spaces

that have to be performed. This can result in case of many new search spaces in an increased

computational time, but it allows a higher degree of parallelization.

We compared the earlier approach from [57] and the new pre-segmentation in three steps:

i) first we let the algorithm run on simple scenes containing only one of the four object we

were searching for, ii) then two objects that are partially occluding each other and iii) finally

we built the scenes of ten and more objects and queried for all four objects.
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8.1. Object Localization

(a) A box. (b) A can.

(c) A cup. (d) A bottle.

Figure 8.8.: The test objects for the descriptor based matching.

Table 8.2 shows the final results we obtained. For the simple scenes with one or two ob-

jects we got comparable robustness for both approaches, but when looking at the densely

clustered scene the added value of the segmentation in 3D is significant and boosts up the

robustness of the matching. The most interesting fact is the improvement we achieved on

cluttered scenes. The ratio of well detected objects to all present objects was increased by

more than 20%.

8.1.3. Descriptor Based Matching

We show here a short evaluation of the descriptor based matching. This approach is tested

the following way: 10 - 16 images of the object are taken and are combined with a known
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8. Results

Figure 8.9.: Virtual views of three of the test objects.

Figure 8.10.: Two objects matched based on descriptor points in cluttered scenes.

Figure 8.11.: An object matched based on descriptor points in a cluttered scene and the re-
construction of it.
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Figure 8.12.: Testing the localization error and rates of a yogurt cup in simulated images
under white noise.

CAD model, in order to build a scaled 3D model. The positions of those images are ap-

proximately measured by a marker visible in all images, which could be replaced by the self

localization of the robot. This was avoided in this test, in order to make the results easier

comparable. We tested four objects, which can be seen in Figure 8.8. For those objects we

could build textured 3D models which are visualized in Figure 6.13 and 8.9. For a challeng-

ing object regarding the texture is the object depicted in Figure 8.8(b). The drink label is the

only feature with substantial size, while the rest are only letters which are not very discrimi-

native in terms of the proposed method or any other feature point based method. Anyways,

in Figure 8.10 and 8.11 we show situation in which we can localize the object well. In Figure

8.11 we additionally show the virtual view of the extracted position to visualize the accu-

racy of the method. A more formal test we want to present for the cone depicted in Figure

8.8(c): For simulated data we tested the localization method under the influence of white

noise to the localization. The model is projected using the same technique as for training, so

the task is much easier as for a real example. The run time for this graph per localization was

about 300 ms. The graph in Figure 8.12 shows that the method works for data that is similar

enough to the training images works perfectly, with a very low localization error and nearly

no false or missed detection. Adding noise to the scene introduces new interest points and

decreases the correct classification rate of those points, which results in a significantly higher

localization error and missed detection.

This observation generalizes to the real scenes, the higher the lighting differences and the

differences between the CAD model and the real shape are, the higher error rates can be
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observed.

To summarize, the descriptor based matching in 3D has high calculation and acquisition

costs for the generation of the model, while it provides a fast method for recognition and

localization of a certain object from all direction in a relatively large depth variance. The ro-

bustness and the degree of generalization from the training data is only mediocre compared

to other evaluated methods, while it is very robust against false positives.

8.1.4. Transparent Objects

To demonstrate the performance of our system on transparent objects, we want to focus on

two facts: First, does the system detect transparent objects without false positive detections.

Especially, the system should not label any colors in the background or even opaque objects

as transparent. Second, we want to show that the 3D reconstruction is good enough to try a

grasp of this object without further modeling. Those results are also published in [54].

Testing Environments

To rate the performance of our approach, we tested our methods on a set of different objects

shown in figure 8.13(a) and 8.13(b).

(a) Camera image of the objects illuminated
by laboratory light with a high proportion
of green.

(b) ToF point cloud of the objects.

Figure 8.13.: Objects that defined the testing environments.

The transparent objects are a plastic mug, a plastic wine glass, a drinking glass, a glass made

of red plastic and a glass made of yellow plastic which appeared to be transparent for the

SR4k. The opaque objects consisted of an ice tea container, a package of tea bags, a textured

cup, a white cup, a white plastic cup, a light blue cup and a black thermos jug. We applied
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8.1. Object Localization

our procedure to every object individually having it placed on a dark gray kitchen table. The

positions on the table altered in a way that the respective object was positioned in the middle

or close to one of the edges of the table. The dark gray table represents the more challenging

scenario compared to a wooden or a white table, which is discussed in Section 4.4.3.

Accuracy and Grasping

How accurate our method performed overall on the test setup can bee seen in table 8.3.

classified as
type count transparent no transparent object

transparent 105 55.24% 44.76%
opaque 44 0.00% 100.0%

grasp success 24/58 -

Table 8.3.: Reconstructed transparent objects in the test with up to three objects in a scene.

We tested every mentioned object five times at different relative positions to the robot on a

table. For the test we used a dark table, since it was a newly installed kitchen in our lab and

it represents the most challenging scenario for our approach: It is striking that we had no

false positive detection implying that our method did not try to reconstruct any object with a

decent response in the ToF-camera. Accordingly, all the opaque candidates were omitted by

the inconsistency checks. On the other hand, we achieved a higher amount of false negatives

showing that our thresholds were immoderate at times. Yet we successfully reconstructed

58 out of 105 transparent objects and grasped 41% in a way that our platform confirmed its

capability to further manipulate, relocate or retrieve the reconstructed object.

Our grasping method first executes a probabilistic encaging and applies corrections by re-

actively repositioning the hand in case of collisions which are detected with force feedback

sensors. The failed grasping attempts in our tests arouse from slight reconstruction errors

that either overestimated the height of the object such that the grasping position was too high

or introduced an inaccurate position estimation what lead to collisions between the grasper

and the object. Those collision could eventually cause wrong corrections of the hand or they

could be missed by the sensors in case of light objects like the plastic glasses, which would

move the object out of the expected position.

This test includes objects solely on the table and three objects at the same time nearby not

affecting the test performance which was for the single experiments all about approximately

53% - 58%. The following figure 8.14 denotes which stage of our checks principally con-

tributed to candidates being omitted.
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Figure 8.14.: Candidates remaining after a certain stage of the inconsistency checks.

As one can see, the candidates corresponding to opaque objects are mostly filtered by our

segmentation method which originates from our initial idea of transparent objects yielding

darker intensities through the doubled absorption. Our method filters further false positives

in the matching phase in that the transparent object might not be found in the second view

because it was omitted in the previous segmentation which of course has to be applied again

to the second view data. The remaining opaque objects then get discarded because they do

not bear the twist a transparent object creates. The amount of wrong negatives can be tracked

in figure 8.14 as well. We only lost 3 positive candidates in our segmentation due to heavy

occlusion but a fair amount due to unsuccessful matching expectedly. The loss occurring

during the check of the 3D twist was identified to be an inconsistency in the calculations of

our ICP method. Nevertheless, the method did not reject candidates wrongly for the rest

of our checks. The segmentation results for bright background improve the entire system.

Preliminary tests show that on a white table, 8 of 10 objects could successfully be detected

and grasped being in presence of opaque clutter 1.

1see video http://www.youtube.com/watch?v=QLzZtj9hqxQ
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8.2. Robotic Manipulation

8.2. Robotic Manipulation

In robotic manipulation we consider here two challenges: the grasping of unmodeled objects

and a visual guided manipulation. The first method is a general approach to grasp objects,

given a minimal amount of sensor data and interpretation of sensor data. The second part

deals with the problem of tool calibration and tool usage for a certain task, which is not a

general solution, but still an interesting problem to discuss here.

8.2.1. Unmodeled object Grasping

The following experiments show the robustness of the proposed grasping system for un-

modeled objects, as well as the entire system accuracy. TUM-Rosie tries to pick up and set

back objects that are only perceived as a cluster by selecting a grasp based on the minimal

collision probability described in Section 7.3.2.

Handling Different Objects

Figure 8.15.: The household items used for testing. Results in Table 8.4.

The test set contains 15 objects which can be seen in Figure 8.15. We consider a grasp attempt

successful if the object was lifted from the table, and held in the hand for at least 10 seconds.

The statistics about successful grasps can be found in Table 8.4. The robot grasped correctly

the majority of the random kitchen objects. The overall success was approx. 80 percent, de-

creasing mostly due to one object (“Nivea shower gel”), that was so slim that the large had of

TUM-Rosie could not encage it. Since the system can recognize failed grasp attempts, it can

repeat the action (including perception), and this would improve the reliability. Anyways,

the tests recorded here did not allow a second attempt.
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Object Size(WxHxD in cm) Success/Trials
Tape roll 5x5x4 2 / 4
White Porceilain cup 6x6x4 4 / 4
Blue Porcelain cup 6x6x4 3 / 4
Melitta Coffee Filters Small 2x5x7 2 / 2
Paper Towel 28x7x7 4 / 4
Melitta Coffee Filters Big 4x8x20 4 / 4
Assam-Blend Tea box 7x10x17 4 / 4
Can of Peas 11x7x7 4 / 4
Soup Box (Heisse Tasse) 11x7x7 4 / 4
Green Teapot 22x17x12 1 / 1
Peppermint Tea box 16x7x6 4 / 4
Nivea Shower gel 17x8x3 1 / 8
Iced Tea 27x10x10 4 / 4
Leibniz cookies 22x7x4 4 / 4
Paper cup 6x6x4 3 / 4

Total 48 / 59

Table 8.4.: Results of the grasping experiments on household items.

Cleaning up a Cluttered Scene

Another experimental setup can be seen in Fig. 8.16, in which the task is to clear the table by

picking up the objects on it. The robot successfully picked up all objects one after the other.

Here we used the description of point distributions as obstacles for a reactive vector field

controller. The simple distributions allowed safe navigation through the scene from and

to the object. The grasps were selected with the same method as before, with the collision

minimization metric including obstacles.

Handling Obstacles

This problem gets more complex if the trajectory of the object is not out of the scene but

through the scene. Such a scenario can be seen in Figure 8.17. This scenario shows TUM-

Rosie picking up a box and bringing it to the commanded position on the right. The target

was set on the same height as the starting point. Still it can be seen, that the simple obstacle

modeling allows the robot to safely navigate the arm with the object around.
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Figure 8.16.: Grasping all the objects from a cluttered scene.

(a) Grasping (b) Lifting (c) Avoiding an obstacle (d) Dropping

Figure 8.17.: This sequence illustrates a transport task using collision avoidance.

8.2.2. Online Tool Calibration for Complex Tasks

Given a robot has to address a problem like the flipping of a pancake, we will need a special

tool for it. Also assumed we have here our general purpose platform and not a specialized

robot, we first have to pick up the tool. Principally, this is not a harder challenge than grasp-

ing an unmodeled object, but afterwards we need the exact location of our tool parts. Even if

we model the tool exactly and plan the grasp accordingly to our purpose, the final position

to the hand will essentially vary from time to time. This is especially the case, when the tool

is placed randomly in the scenario. In order to compensate this lack of accuracy, an online

inspection of the new tool has to be performed. These results are also published in [62].
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(a) The tool frame that has to be cali-
brated.

(b) The planar shape template that was used as
model of the spatula.

Figure 8.18.: The tool that has to be calibrated in the pancake preparation scenario with
TUM-Rosie.

One solution is the scenario of pancake preparation with TUM-RosieȦs tool we had to use a

spatula, which can be seen in Figure 8.18(a), which was modeled manually. In a more general

test setup, the tools are in the hand of the robot, such that their position is approximately

known (search space 15cmx15cmx15cm). We classify the concavity and extract the lines and

holes. Table 8.5 show the results we got for several trials for each of the tools. If there was

variation in the results the minimal and maximal numbers of results are printed. The results

show, that we can in the setup on the robot robustly detect the features we are interested in.

Visualizations for some selected results can be found in Figure 8.19. Only one of the spoons,

namely the wooden spoon, could not be classified correctly. Its concavity was to small to be

detected with the Kinect sensor. The measured maximal difference between the two circles

was beyond the sensor noise of the Kinect. Big holes are detected completely accurate, while

the number of small holes is not estimated accurately, but the existence of holes is detected

correctly. Depending on the positioning of the tool in the search space, additional edges

may be detected from the end of the tool-head towards the handle. Those edges created

the variation in the number of detected edges, this is also not considered as an error, if the

relevant edges were detected correctly, too.

With our simple ontology we could come from the features to a robust classification, which

only fails for features that are smaller than the sensor resolution. The combination of a

semantic model and the features we propose here turns out to be valid for the class of tools

we investigate here.
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Tool Concavity/PlaneNum
Edges

Num
Holes

Resulting
Tooltype

Concavity 6 81 Skimmer

Plane 3 3 Spatula

Concavity 2-3 0 Spoon

Concavity 0-1 0 Spoon

Concavity 4-6 22-35 Skimmer

Plane 2 0 Spatula

Plane 0 0 HandTool

Plane 3-4 15 Spatula

Table 8.5.: The visual exploration results for the set of tools, errors are marked in red.

8.3. System Evaluation

In order to show the performance of our systems we present several experiments which are

executed on recorded scenarios. Additionally we will present an online task which requires

all capabilities of this system. In this context, the observed behavior of the system will be

discussed.
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(a) Holes. (b) Edges of a skimmer. (c) Edges of a spatula.

Figure 8.19.: Visualization of several results: First the small holes which could only be par-
tially detected, then two examples for extracted edges.

8.3.1. Offline Evaluation

First we want to show the capabilities of COP in a simple setup: the learning over time of un-

modeled objects in three steps, under the precondition that good feedback is provided. First,

we show the capabilities of recognize previously seen objects, then we show the capabilities

to understand a full scene and finally show the converged values of method evaluation for

an object.

Recognize Unmodeled Objects

The first experiment evaluates localization of objects in different scenes, without prior mod-

eling of the objects or their types. Here we use the object candidate detection followed by

learning the shape and a color model. The setup has no assumption about passed time or

movement between the scenes and positions. In Table 8.6 the present objects can be seen,

with the information when they appeared and from what positions they can be seen. The

table contains the current belief state of objects position which is coded as follows: Belief

state which correspond to the actual scene are “1”, “out” and “new”, while “out” means a

previously seen model is currently not in the scene, “new” means there was a previously

unseen model newly appearing in the scene and “1” says a previously seen model is still

in the scene. Not or wrongly detected world states are labeled with “0”, “-” or “err”, while

“-” means an existing object was not seen previously and is not in the scene (not an error),

“0” depicts objects in the scene, modeled before but not detected, and “err” labels an object

that was interpreted as a new object while it was seen and modeled before. The scenes are

depicted in Fig. 8.20.

Concluding the results, most of the objects that appear in the object candidate detection are

detected well. Objects like a plate, is often not detected in the ToF data and was not detected

at all in this test. The bottle is semitransparent and lacks also of a reliable response in all
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Object Scene 1 Scene 2 Scene 3 Scene 4

at P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Teabox new 1 1 0 1 1 out out out out out out

Bottle new 1 1 1 0 0 1 1 1 1 1 0

Mug - - - new 1 1 out out out out out out

Iced tea new 1 1 1 1 0 out out out err 1 1

Coffee - - - - - - new 1 1 1 1 1

Jug - - - - - - new 1 1 out out out

Plate - - - - - - 0 0 0 0 0 0

Table 8.6.: The list of recognized object over four scenes from different view points. It shows
if the system’s belief state differs from the actual scene. The errors are encoded
with (0, err) and success is labeled with (1, out, new), please find a precise defini-
tion in the text.

sensors, and also has major problems. The last problem can be seen in for the iced tea which

appears once in a frontal view and once in a back side view. This two appearances could not

be merged. Besides those problems, the system can keep track of the other objects, given it

has at least two views of a scene.

(a) First scene from first pose (P1 in Ta-
ble 8.6).

(b) Second scene at the second pose (P2) with the
relocated mug

Figure 8.20.: Two of the scenes used for the evaluation.

Recognize Modeled Objects

Now, we allow the system to prepare itself for this task by training it on one additional scene

containing all objects and annotating the object with a semantic concept that allows also the

usage of available CAD models for the objects. This leads to far better results which can be

found in Table 8.7. In this experiment we can see, that only the bottle was not detected twice

and the system hallucinated one Plate, while all other states (if an object is in the scene or

not) are detected correctly. In this experiment the training phase was supervised and not

autonomous, but it shows that the system is able to use additional information to improve
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Object Scene 1 Scene 2 Scene 3 Scene 4

at P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Teabox new 1 1 1 1 1 out out out out out out

Bottle new 1 1 1 0 0 1 1 1 1 1 1

Mug out out out new 1 1 out out out out out out

Iced tea new 1 1 1 1 1 out out out 1 1 1

Coffee out out out out out out new 1 1 1 1 1

Jug out out out out out out new 1 1 out out out

Plate out out out err out out 1 1 1 1 1 1

Table 8.7.: The system’s belief state against the Errors are again encoded by (0, err) and suc-
cess by (1, out, new), definitions see text.

the robustness. Fig. 8.21(a) and 8.21(b) show CAD matching of the two critical objects in the

last experiment.

(a) Matched iced tea model. (b) Matched Plate model.

Figure 8.21.: Scene three from third pose (P3).

8.3.2. Online Evaluation

In order to show the performance of the system in a direct world interaction, the outcome

of two experiments os described in the following sections. First, we will show the success

rate of one-shot learning in order to recognize a previously unseen object again. Second, we

want to evaluate how the system can autonomously test if a segmentation was successful

or not, by using the one-shot learning mechanism and the grasping of unmodeled objects.

Those results were also summarized in [55].
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Shape Model Surface Model Learning
Boxes 69.6% 55.0% 76.3%

Texture-less 51.9% 62.5% 83.5%
Diverse 62.1% 60.0% 76.0%

All 67.9% 59.2 % 78.2%

‖Measurements‖ 125 240 239

Table 8.8.: Comparison of the two methods and the learning process over the methods for
different object scenarios.

Evaluation of Model Selection

To get an intuition how often one-shot learning will succeed and return a valid model we

made the following experiment: We let the robot learn several objects in a scene from one

view, and let the robot to a set of points inside a region of about 2 square meters. From all

points the robot gets a glance to the scene and tries to localize the newly learned objects in

the scene. For this localization task, the search space is restricted to “on the table” and the

assumption of the previously known location is dropped internally to prevent favoring of a

similar location. This experiment should show first, how different methods handle this task

and how the learning internal mechanism of COPwork.

(a) One of the ’diverse’ scenes. (b) One of the ’boxes only’ scenes.

Figure 8.22.: Examples of scenes that were used to evaluate COP’s model selection.

We extracted from a repetition of this experiment several key parameters of our system

which are summarized in Table 8.8: For the average object in our kitchen the planar shape

model performs slightly better than the surface based model. But this result can be heav-

ily influenced by the selection of special subsets. When a subset with texture-less objects

is selected, the surface model is clearly favored. On the other hand, if a subset is selected

including different object of similar shape like boxes, the shape model will be performing

better. Nevertheless, if the perception system is allowed to decide which model to use, the

performance is far better, namely 78.2% correct detection within the localization error of
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the robot compared to 59% and 68% for constantly favoring one method. This requires, of

course, that after every trial, feedback about the success is provided to the system. The learn-

ing switched in average 2 - 3, maximally 5 times between the two models until the learning

process converged for a static scene. E.g. in the Boxes scenario with several equal boxes

and one distinct box, all but the distinct box converged to the shape model. This shows the

high context awareness of the method, while never executing two methods at once in order

to avoid additional execution time.

Evaluation of the Pick and Place Plan

In short, we execute the following plan on the robot to execute the following standard pick

and place task in order to evaluate our system in regards to capabilities to check the segmen-

tation, which is crucial for several of the model building procedures:

• Segment the scene

• Learn models for all objects

• Try to grasp one of them

• Place the object into another context

• Validate the predicted position with models

More interesting than this short description are the possibilities to detect and recover from

errors in this plan: If the models are learned and one of the objects is selected, for this object,

the model can be preliminary validated by moving the robot in order to grasp the object and

using the new model to localize the object again before grasping it. If this fails, the robot will

retry which might already cause the use of another model in the hierarchy. While grasping,

the hand’s torque parameters are observed to detect any unpredicted collisions, which can

give information about unseen objects or an inaccurate position estimation of the target. This

information might already indicate that the robot has moved the object and in case nothing

is grasped the object has to be localized again. If the robot grasped something, is decided

based on the joint angles of the hand after the grasp. When they correspond more to a fully

closed hand than to a hand holding an object, the grasp is considered a failure.

If the object is put down to an empty spot on the table, the near environment of the put-down

location is scanned for the object again. If it appears to be close enough to the predicted

position, the entire process is considered as success. The model should even be able to

localize the object if it was not put down carefully enough to stand upright.

The high-level control program executes this simple pick-and-place plan and observes the

different errors that can occur. For instance, if the object is not reachable, the vision system
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Segmentable Not Segmentable
Error in pickup phase 30% 50%

Error in put down phase 0% 10%
Model failed post move eval. 0% 20%

Plan Succeeded 70% 20%
|Trials| 30 10

Table 8.9.: Statistics of result states of the plan for test scenes.

is most probable not responsible for it but the executive’s choice to reach the object was bad.

On the other hand, if the manipulation system does not detect the object in the gripper, the

perceived object location was most probably bad and the perception system is sent a negative

evaluation value. Other errors that occur include that the object could not be re-detected

which indicates that the learned object model does not fit under the current environment

configuration and location of the robot. Such errors are handled locally by moving the robot

to a different location and trying to perceive and pick up the object from there. If the robot

could successfully pick up the object, the system puts it down at a different location and then

searches for it again at the put down location. Since the robots places the object at a defined

location, is have a rather good knowledge about the location of the object. The highlevel

system therefore can measure the distance between a new detection of the object and the

put-down pose. If the object is close to the desired pose, the perception system receives a

reward. A re-detection of the object that is not close to the put-down pose indicates a false-

positive and the currently learned model for that object receives a negative

The segmentation is a crucial precondition for a new object candidate in nearly all current

methods as well in the tow methods we used in this experiment. In order to validate the

segmentation and with the segmentation also the quality of the model we want to perform

the following test: The robot will only be capable to move the object away from its position

when the segmentation was correct, otherwise, it will only move parts of the object or it

will fail initially. We will apply the previously mentioned action2.) to a scene which was

setup with one of two modes: first, easily segmentable meaning objects have a distance over

5 centimeter to each other and second, not segmentable in 3D space, meaning no distance

between at least two objects.

The results we collected can be seen in Table 8.9 and can be interpreted as follows: In case of

a successful segmentation, the objects could be always localized correctly using the learned

models, which were used at least twice before. In both cases, in the segmentable scenes as

well as in the not segmentable scenes our grasping system had some problems, in various

cases caused by a bad model, which was not giving an accurate enough localization. Ex-

2High quality video of the task, in cooperation with A. Maldonado, L. Mösenlechner:
http://www.youtube.com/watch?v=9nwyUmdDIQ4
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(a) A setup for the pick and place which is well
segmentable. task.

(b) A view of the verification step in Rviz, an ob-
ject at a new position. task.

Figure 8.23.: Snapshots from the experiment, used to evaluate the segmentation and model
building.

(a) A view in Rviz from the model learning step
with a filed segmentation.

(b) The subsequent grasp, that pick up one of the
objects.

Figure 8.24.: The border case, when the grasping works even with wrongly segmented ob-
jects, has to be recognized.

amples for segmentable scenes can be found in Figure 8.23. In case of the not segmentable

scenes we observed four times the trickier case which is when the robot moves part of the

objects in the selected segment. Figure 8.24(a) shows such a segment and Figure 8.24(b)

shows a grasp that was considered as successful while only lifting the left object, this object

was then rejected due to low correlation of the placed object and the learned model. The

bold numbers in Table 8.9 are the cases which successfully generated information that could

be passed to the perception system. Only in two tests in which the plan was considered

successful in the not segmentable scenes, the information led to a wrong believe state of the

system about the quality of the model.
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This work gives an insight in a perception system that is running on a mobile manipulation

platform. We formalized context awareness in a perceptual system based on model-method-

sensor selection and showed examples for the system’s performance. COP addresses a large

set of perceptual tasks and is well accessible for a highlevel system, while providing results

with a sufficient accuracy for manipulation.

Combining the internal evaluation of triples, consisting of model, method and sensor, to im-

prove the method selection process, enabled us to easily adapt a complex perception system

to specific situations like specific backgrounds, kinds of textures or model quality. Espe-

cially in a well known environment, we observed a good performance, while also observing

automatic adaptation to new scenarios.

Additionally, this work describes a large set of methods which were made applicable to

the specified scenario on a mobile platform. Those methods were tested and evaluated to

serve the intended purpose and have shown good performances in all tests as well as in live

demonstrations. Especially the detection of transparent objects and the fast 3D localization

of textured 3D objects had to be newly developed and specialized to the scenario of a mobile

manipulation platform in a domestic environment.

Observing the evolution of the robot’s behavior using the presented system showed a great

advance of the capabilities of the robot. The abstraction of the basic perception system, from

sensors and the platforms capabilities turned out to be of great use and allowed the fast

integration with new hardware.

9.1. Summary of Results

To be more specific, we came to a conclusion regarding state of the art object localization

and recognition methods: Not all objects can be recognized by a single method with optimal

performance, but we could find a method which will recognize any specific object. Unfortu-

nately, we cannot use all available methods, which are applicable to an object. This it would

exceed our anyways relatively soft real time requirements, which are imposed by the prob-

lems we wanted to solve, e.g. finding the pancake before it burns. We showed on the one
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hand how simple 2D methods with very low preconditions on the modeling. On the other

hand, we showed that also nearly perfect modeling of the object may have strength and

weaknesses in certain setups. We discussed the using of 3D information and the advantages

as well as the risks regarding transparent objects which do not appear in a usual 3D sensor.

In this context we also showed interesting results on how we could anyways reconstruct

transparent objects and interact safely with them.

This variety of methods and applicability is why we proposed the solution of online learning

of the best applicable method, which turned out to give better results even in the learning

phase, without increasing the calculation time used to recognize an object.

We opted for such a system, since we needed a solution which could be executed embedded

on the robotic platform. In a realistic setup we still would need more computation power

to reduce the maximal reaction time of the current system which is up to several seconds

for the analysis of a complex scene. As reaction time of our system we measured currently

an average under half a second using an automatically learned model. This measurements

were done for a specific task, which did not require only the analysis of a single object.

9.2. Hardware Challenges

Not only the restriction of computation power but also the limitations of the rest of the hard-

ware caused many of the challenges faced in this work. A mobile platform is never as mobile

as a human, if it runs on wheels. Especially in the case of TUM-Rosieor the TUM-James, the

base size limited the application to large rooms and kept the platforms and their sensors

away from the objects of interest. The same applies to most available grippers, they are

for many tasks either too large or too small and underpowered. Developments in the men-

tioned and other areas in robotic hardware will nearly automatically open new application

scenarios and allow robots to solve more tasks.

Like we discussed earlier in this work, also the sensors available on the market are not per-

fect for the application which were tackled in this work. Higher resolution in cameras and in

3D sensors will boost most of the proposed algorithms to higher accuracy and robustness.

9.3. Future Work

An open issue in current research is the clean integration and modeling of motion and mov-

ing object. Both things are only partially tackled here: If the necessary method to detect
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an object is not fast enough, the used static prediction model will not be sufficient satisfac-

tory. Several problems like motion blur, motion prediction, delays in camera images are not

modeled or considered yet. The integration of specialized systems or a deep integration of a

position extrapolation could help here.

Another open issue is the observation of scenes in which humans also interact with. The de-

tection of a human and the its possible influences on the environment should be considered

in the system. Until now, we did only few work on detecting human faces with standard

methods inside this framework and had a look in obstacle awareness. The perception mech-

anisms which are necessary to interact with a human are definitely different compared with

the requirements of a human inhabited environment without a real interaction. This topic

might profit from the capabilities of the Kinect sensor, which might give easy access to ob-

servation of humans.

The potential of robots to act safely and smartly in a domestic environment is very high. The

range of possible applications was extended by this work. So we improved the handling of

unknown or previously undetectable objects, as well as we enabled the autonomous training

of robotic systems in recognizing new objects. These interesting capabilities are easily acces-

sible for an automatic highlevel control instance. But those capabilities are definitely not yet

enough to enable already today a robot to act sufficient safely in any domestic environment.

This safe acting would be an important requirement for a ready-to-use service robot and it

requires further research.
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A. Table of Sensor Properties

Sensor Properties Example Picture

RGB
Camera

• High resolution

• Perceives Color

• Fast

• No 3D

SVS Vistek eco 274

Stereo
Cameras

• Low resolution

• Perceives Color

• Fast

• Little 3D

Videre STOC

LASER
range
sensor

• Medium resolution

• Perceives Intensities

• Slow

• Accurate 3D

Hokuyo UTM-
30LX Laser

Time of
Flight
Sensor

• Low resolution

• Perceives Intensities

• Fast

• Rough 3D

Swissranger 4000

Table A.1.: Discussed sensors with their properties and one example of a sensor with an
example of its data output. Part I.
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Structured
Ligth
Stereo

• Medium resolution

• Perceives Intensities

• Fast

• Rough 3D

Willowgarage
PR2 Head

Optical
Lattice
Monoc-
ular
Depth

• Medium resolution

• Perceives Intensities

• Fast

• Good 3D

Kinect

Table A.2.: Discussed sensors with their properties and one example of a sensor with an
example of its data output. Part II.
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B. List of Implemented ROS Packages and

their References in this Work

B.1. cogntive_perception

The central package is ‘cognitive_perception’. Most methods explained in this work are

implemented as plugins for this package, which can be loaded during running the cognitive

perception server ‘cop_srv’. The architecture is explained in Chapter 2 and reflects also the

way it should be integrated into any system. The documentation can be found in the wiki

ros.org under in the section for cop.

B.2. cop_halcon_plugins

The package ’cop_halcon_plugins’ depends on the Machine Vision library HALCON of

MVTec. The methods contained in this packages are partially explained in this work. The

package cop_halcon_plugins contains:

• TwoInOneAlg

• IntersectTwoRuns

• CheckColorClass

• DeformShapeBasedAlg, Section 5.1.3

• FindCalTab

• HClusterDetector , Section 4.2.1

• RFAColorByShape

• ShapeModelDownloader, Section 6.2

• RFAClassByDPs

• PanCakeDetector
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• DetectPlate

• RFADeformByCluster, Section 6.1.3

B.3. cop_cad_plugins

The package ’cop_cad_plugins’ depends on the Machine Vision library HALCON of MVTec.

The package cop_cad_plugins contains:

• SurfaceDetection

• ShapeBased3DAlg, Section 5.1.2

B.4. cop_ros_plugins

The package ’cop_ros_plugins’ contains:

• FaceDetection

B.5. cop_sr4_plugins

The package ’cop_sr4_plugins’ contains:

• ClusterDetector, Section 4.2.1

B.6. cop_transparent_objects_plugins

The package ‘cop_transparent_objects_plugins’ depends on the Machine Vision library HAL-

CON of MVTec. The package cop_transparent_objects_plugins contains:

• DetectTransparentObjectCandidate, Section 4.4

• DetectTransparentObject, Section 4.4
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B.7. cop_barcode_plugin

B.7. cop_barcode_plugin

The package ’cop_barcode_plugins’ depends on the Machine Vision library HALCON of

MVTec. The package cop_barcode_plugin contains:

• FindBarCode

B.8. cop_odu_plugin

The pacakge ’cop_odu_plugin’ contains:

• CopOduRefine

B.9. cop_tool_plugin

The package ’cop_tool_plugins’ depends on the Machine Vision library HALCON of MVTec.

The pacakge cop_tool_plugin contains:

• FindPlanes, Section 4.3

• FindLines, Section 4.3

• FindConcavity, Section 4.3
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