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Abstract

In this thesis, location determination algorithms for cellular mobile radio systems employing or-

thogonal frequency division multiplexing (OFDM) are investigated. For location estimation, usu-

ally timing measurements between the base stations and the mobile station are performed, where

suitable algorithms for OFDM and corresponding performance bounds are derived. The timing

estimation process is faced with different effects, e.g., limited number of pilot symbols or inter-

cell interference, that decrease the accuracy of timing estimates, and hence, location estimates.

Therefore, a feedback of decided data symbols is proposed, where particularly data-aided timing

estimation and interference cancelation are considered. Simulation results for a Long Term Evolu-

tion (LTE) system show the ability of these approaches to improve the accuracy and reliability of

location estimates for static and dynamic mobile stations.





Kurzzusammenfassung

In dieser Arbeit werden Algorithmen zur Positionsbestimmung in zellularen Mobilfunksystemen,

die Orthogonal Frequency Division Multiplexing (OFDM) verwenden, untersucht. Zur Posi-

tionsschätzung werden üblicherweise Zeitmessungen zwischen den Basisstationen und der Mo-

bilstation durchgeführt, wobei geeignete Algorithmen für OFDM und entsprechende Schranken

hergeleitet werden. Verschiedene Effekte reduzieren dabei die Leistungsfähigkeit der Zeit- und

damit Positionsschätzung, insbesondere die limitierte Anzahl von Pilotsymbolen und interzellu-

lare Interferenz. Deshalb werden Ansätze mit Datenrückkopplung vorgeschlagen, die Verfahren

für datenbasierte Zeitschätzung und Interferenzbeseitigung ermöglichen. Simulationsergebnisse

für ein Long Term Evolution (LTE) System zeigen, daß diese Verfahren die Genauigkeit und Zu-

verlässigkeit der Positionsschätzung für statische und dynamische Mobilstationen verbessern.





Contents

1 Introduction 11

1.1 Location determination in mobile radio systems . . . . . . . . . . . . . . . . . . . 11

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Location estimation principles 15

2.1 Propagation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Angle of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Received signal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Further approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Timing estimation for location determination in OFDM 25

3.1 OFDM system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Pilot-aided synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Receiver imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Synchronization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Cramer-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Non-pilot-aided synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Data-aided synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Synchronization with estimated data . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Synchronization with interference cancelation . . . . . . . . . . . . . . . . 58

3.4.3 Iterative synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Static location estimation with timing information 65

4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Estimation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Geometric approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Further approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9



10 Contents

4.4 Cramer-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Dynamic location estimation with timing information 85

5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Estimation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Estimation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.4 Further approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Data fusion with GNSS signals 101

7 Conclusions 103

A Appendix 105

A.1 Channel models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Jacobian matrices for static location estimation . . . . . . . . . . . . . . . . . . . 107

A.3 Jacobian matrices for dynamic location estimation . . . . . . . . . . . . . . . . . . 107

List of acronyms 109

Bibliography 113



1 Introduction

1.1 Location determination in mobile radio systems

Provision and exploitation of location information became very important features of mobile radio

systems in recent years [1]. Moreover, services and applications based on accurate knowledge of

the mobile station (MS) location will play a fundamental role in future wireless systems. Point-to-

point navigation, fraud detection, or automated billing are well-known examples for these location

based services on the user side [2]. Additionally, applications on the system side, e.g., location

based mobility or radio resource management [3], can be further enablers for high precise posi-

tioning. Finally, regulatory requirements force service providers to implement location estimation

enhancements in their network deployments. For instance, the United States Federal Communica-

tions Commission (FCC) has stated accuracy requirements on the location estimation process of

enhanced 911 (E911) emergency callers [4]. Corresponding requirements for Europe are currently

under development [5].

Global navigation satellite systems (GNSSs) like the Global Positioning System (GPS) [6]

or the upcoming European Galileo system [7] are well-suited to meet such requirements. They

deliver accurate location estimates under optimum conditions, where — in general — GNSS based

location estimation needs access to at least four satellites. However, especially in case of severe

multipath propagation or blocking of the line of sight (LOS) access to satellites, the performance

loss can be unacceptable high [8]. Techniques like assisted GNSS (AGNSS) [9] can provide a faster

and more reliable access to GNSS services and reduce the — still critical — power consumption.

Nevertheless, a seamless outdoor and indoor coverage can not be realized by pure GNSS receivers

today.

Therefore, it is reasonable to exploit an already available communications infrastructure for

the estimation of the MS location [1]. Base stations (BSs) of mobile radio systems provide a

high coverage especially in GNSS-critical environments like urban canyons or inside buildings.

They can be used to provide location information as supplementation to GNSS or as stand-alone

solution. As depicted in Figure 1.1, this location determination process is usually implemented in a

location

estimationestimation

Location determination

Parameter Location
Received

signal
Estimated

Figure 1.1: Two-step location determination process
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12 1 Introduction

two-step procedure (e.g., [2, 10]). In a first step, location dependent parameters are extracted from

the received signal. In a second step — by using these estimates — the location is determined.

The choice of suitable location dependent parameters is a trade-off between desired accuracy

and permitted complexity of the location enabling system. Some commonly used examples are

parameters based on measurements in terms of time of arrival (TOA), time difference of arrival

(TDOA), received signal strength (RSS), or angle of arrival (AOA) [10, 11]. They can be provided

either by the MS in the downlink mode, using signals transmitted from the BSs exploited at the

MS, or by the network in the uplink mode, using signals received from the MS.

TOA uses measurements of the signal propagation delay in order to calculate the distance be-

tween the BSs and the MS. It requires that all devices are synchronized or share the same clock. If

MS and BSs have different clocks, which is usually the case for mobile radio systems or GNSSs,

the unknown time offset between the clocks has to be estimated as additional parameter. In TDOA,

time differences of arrival are estimated. Compared to TOA, the timing offset between MS and

BSs is eliminated by a difference operation. Both TOA and TDOA require that the BSs are syn-

chronized or the timing offsets between the BSs are known. With RSS measurements the estimated

received power level is compared with the transmit power to derive distance information using ad-

equate path loss models. AOA measurements require multiple antenna elements at BS or MS to

obtain angle information about the incident waves.

From a theoretical point of view, timing based approaches — which are closely related to

the timing synchronization problem — provide the most accurate location estimates. The corre-

sponding Cramer-Rao lower bound (CRLB) for the estimation error [12] solely depends on the

signal-to-noise ratio (SNR) at the receiver and the transmission bandwidth of the signal [10]. Nev-

ertheless, in practical systems various propagation and system effects make it difficult to achieve

this bound with computational efficient signal processing techniques. Well-known performance

limiting factors in the context of location estimation are, e.g., multipath or non line of sight (NLOS)

propagation. Timing estimates are affected with a bias under these conditions. Furthermore, com-

munications networks are designed in a way that only one serving BS should be received with

sufficient quality due to spectral efficiency demands. All other BSs are interfering the desired

signal. Contrary to that, for location determination more than one BS has to be received with suffi-

cient quality, e.g., for timing based approaches at least three BSs are required. Hence, aspects like

pilot design and frequency re-use have a direct impact on the location estimation performance.

Timing based location estimation is part of several standards. In particular, TDOA methods

are included in the standards for 2nd generation (2G) and 3rd generation (3G) systems [9, 13].

Nevertheless, the parameters of these systems were originally designed for communications pur-

poses. Location functionalities were not inherently included in that process. However, it turned

out that the communications design was not sufficient for providing an acceptable location accu-

racy or coverage. Hence, additional features were added to the standards afterwards to improve

the location estimation performance. One example is the extension of the 3G standards with idle

periods (cf. [13]). They allow a better reception of other BSs especially close to the serving cell

yielding an improved overall reception, and hence, increased location estimation quality.

Currently, TDOA methods are in the standardization process for beyond 3G systems like 3rd

Generation Partnership Project (3GPP) Long-Term Evolution (LTE) [14] and under investigation

for future 4th generation (4G) systems as proposed, e.g., by the project Wireless World Initiative

New Radio (WINNER) [15]. These systems will employ orthogonal frequency division multiplex-

ing (OFDM). OFDM is well analyzed and understood for communications (e.g., [16]), whereas

this field is rather new for location estimation purposes, especially in the cellular context of mobile
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radio systems. First investigations in LTE have shown that the standard’s communications signals

do not allow precise location estimation with state-of-the-art approaches [17] — similar as ob-

served for 3G systems some years ago. In particular LTE’s targeted frequency re-use of one limits

the performance due to inter-cell interference. Hence, also here an extension of the standard for

more precise location estimation will be realized as optional feature. A second opportunity is the

development of enhanced receiver algorithms to cope with performance limiting effects.

Once the location dependent parameters are available (e.g., TDOAs), the location of the MS

can be estimated (cf. Figure 1.1). We distinguish between static and dynamic location estima-

tion. In static location estimation no further a priori information about previous estimates is avail-

able, hence, it is a snap-shot approach using only the parameters available at a specific time in-

stance. Besides the location dependent parameters, also their reliability and other side-information

(e.g., LOS/NLOS status) can be provided to the location estimation entity. Several approaches

exist to solve the underlying problem which belongs to the class of non-linear optimization prob-

lems (e.g., [18]). For its solution standard numerical optimization algorithms can straightforwardly

be applied, taking into account solely the resulting cost function. Other approaches exploit specif-

ically the geometric aspects of the problem.

If information about previous estimates is available, dynamic location estimation can be ap-

plied. In this approach, it is assumed that the MS follows a certain path and can not jump over

an arbitrary distance in limited time. These constraints can be integrated directly in the estimation

problem in terms of movement or mobility models. Well-known methods for the solution of this

estimation problem are based on Kalman [19, 12] or particle [20] filtering.

A further extension is the fusion of estimates from different sources. Besides mobile radio sys-

tems as discussed before, also GNSSs or short-range systems based on ultra-wideband (UWB) [21]

or radio frequency identification (RFID) [22] can provide location dependent parameters. Another

source are sensors like inertial sensors, magnetometers, or barometers, that can provide informa-

tion about acceleration, orientation, or height (e.g., [23, 24]). Finally, context-aware information

can be integrated in the location estimation process. Especially the knowledge of map information

can be beneficial for resolving ambiguous location estimates (e.g., [25, 26]).

1.2 Contributions

In this thesis, we will analyze location determination in the context of cellular OFDM based mo-

bile radio systems and assess the performance with realistic parameters considering LTE systems.

Chapter 2 presents an introductory overview of general location estimation principles for cellular

mobile radio systems. Since the focus will be on timing based approaches, in Chapter 3 syn-

chronization and timing estimation algorithms for cellular OFDM systems will be analyzed. In

particular, we will

• Derive multi-link synchronization algorithms for timing estimation in cellular OFDM sys-

tems taking into account receiver imperfections.

• Propose extensions of classical synchronization approaches in the location estimation con-

text.

• Propose new data-aided synchronization algorithms including schemes with interference

cancelation enabling iterative location estimation techniques.
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• Derive performance bounds for timing estimation in cellular OFDM systems.

• Assess the timing estimation performance under realistic system and channel environments.

In Chapter 4 the gained timing estimates are used to estimate the location of the MS in the static

case. In particular, we will

• Describe numerical methods and geometric approaches to solve the static location estimation

problem and corresponding performance bounds.

• Assess the static location estimation performance with generic models and under realistic

system and channel environments.

Chapter 5 will include a priori information from previous location estimates to improve the perfor-

mance by using tracking algorithms and mobility models. In particular, we will

• Describe Bayesian approaches for tracking algorithms to solve the dynamic location estima-

tion problem and corresponding performance bounds.

• Assess the dynamic location estimation performance with generic models and under realistic

system, channel, and mobility models.

Finally, Chapter 6 shows as application scenario the fusion of measurements from mobile radio

systems with measurements from GPS. In particular, we will

• Propose a fusion process for location estimation as extension of the algorithms from the

previous chapters.

• Assess the location estimation performance using GPS and LTE.

Note that parts of these topics have already been investigated by the author in [27, 28, 29, 30, 31, 32,

33, 34, 35] concerning Chapter 3, in [36, 37, 38, 39] concerning Chapter 4, and in [17, 40, 41, 42]

concerning Chapter 5 and Chapter 6.

1.3 Notation

Throughout this thesis, vectors and matrices are denoted by lower and upper case bold letters. The

matrix In is the n × n identity matrix, the matrix 0n×m is the n × m matrix with zeros, and the

matrix 1n×m is the n × m matrix with ones. The operation ⊗ denotes the Kronecker product,

(·)∗ conjugate, (·)T transpose, (·)H Hermitian, E {·} expectation, ‖·‖2 the Euclidean norm, and ⌊·⌋
rounding towards minus infinity. The modulo operation between n and m is denoted as amod b.
With

[

A
]

n,m
we denote the element in the n-th row and m-th column of matrix A.



2 Location estimation principles

In this chapter, we will describe commonly used location estimation principles and their advan-

tages and constraints. We will start with timing based approaches measuring the propagation time

between BS and MS. From that parameters simply distance or range information can be derived.

Another discussed method will consider signal strength measurements of the received signals re-

sulting in distance or range information by application of adequate pathloss models. Angle infor-

mation is an additional relevant location dependent parameter, however, multiple antenna elements

are required at BS or MS. A comprehensive overview of these principles can also be found in

[10], [11], and [18].

Generally, the location dependent parameters can be estimated at BS or MS resulting in net-

work based or MS based location determination, respectively (cf. [43]). In network based location

determination solely uplink measurements from the MS to the BSs are exploited for deriving lo-

cation information. In MS based location determination downlink measurements from the BSs to

the MS will be used to determine its location. Additionally, side information (e.g., locations of the

BSs) have to be further communicated in this mode. Moreover, a combination of both approaches

is possible, where the relevant parameters are estimated at the MS. Then, this information is com-

municated to the network, where finally the location is determined. This is usually denoted as MS

assisted location determination.

System capabilities and constraints will usually not allow a deployment of all modes in the

individual systems. For instance, broadcasting systems like Digital Video Broadcasting (DVB)

or Digital Audio Broadcasting (DAB) are unidirectional. Therefore, they can only support MS

based approaches, where the MS receives information in the downlink. Also GNSSs belong to

this class of systems as there is no uplink connection from the MS to the satellites. Classical

mobile radio systems like Global System for Mobile Communications (GSM), Universal Mobile

Telecommunications System (UMTS), or LTE are bidirectional, and hence, signals are transmitted

between BSs and MS in both directions, i.e., in downlink and uplink. Therefore, in these systems

also network oriented approaches can be integrated.

The subsequently presented location estimation principles will hold in general for all three

modes (MS based, network based, MS assisted), independently of the entity, where the location of

the MS is finally determined.

2.1 Propagation time

Electromagnetic waves propagate with the speed of light c0 in free space. Therefore, the propaga-

tion time is a useful metric with a linear relation between the propagation time of the signal and the

distance between BS and MS. The type of synchronization in the overall network — usually, not

15
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Figure 2.1: TOA location estimation principle

all entities share the same clock — requires a different processing of the resulting timing estimates.

This will be outlined in the following subsections.

Time of arrival

TOA uses estimates of the signal propagation time to obtain the distance between BSs and MS. We

denote the distance or range between BS µ located at (xµ, yµ, zµ) and the MS located at (x, y, z)
as

dµ =
√

(x− xµ)2 + (y − yµ)2 + (z − zµ)2. (2.1)

With the known transmission time of a signal at BS µ as τµ,0 and the arrival time of this signal at

the MS as τµ, we easily obtain the relation

dµ = c0 (τµ − τµ,0) , µ = 1, 2, . . . , NBS, (2.2)

for the considered NBS BSs. If the BSs are perfectly synchronized and they are transmitting the

relevant signals at the same time instance τ0, this simplifies to

dµ = c0 (τµ − τ0) , µ = 1, 2, . . . , NBS. (2.3)

Assuming LOS propagation, the distance dµ determines points of equal distance from BS µ to

MS. In the two-dimensional case this defines a circle around BS µ with radius dµ. In the three-

dimensional case it defines a sphere. For obtaining a unique location estimate, the distances to

several BSs have to be determined. The intersection of the corresponding circles or spheres pro-

vides a unique location estimate of the MS. In Figure 2.1 the TOA principle for a two-dimensional

example is shown. The intersection of two circles yields two possible solutions. Distance infor-

mation to a third BS can resolve that ambiguity. Note that due to the geometric interpretation the

TOA principle is often denoted as circular or spherical location estimation. Also the term range or

distance based location estimation can be used.
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With the NBS TOA or distance estimates τµ we can form a system of NBS non-linear equations

with the unknown values (x, y, z) according to

√

(x− x1)2 + (y − y1)2 + (z − z1)2 = c0(τ1 − τ0)
√

(x− x2)2 + (y − y2)2 + (z − z2)2 = c0(τ2 − τ0)

...
√

(x− xNBS
)2 + (y − yNBS

)2 + (z − zNBS
)2 = c0(τNBS

− τ0),

(2.4)

where we assume that the locations of the BSs (xµ, yµ, zµ) and the transmission time τ0 are exactly

known.

As already can be observed from the geometric interpretation of the TOA principle in Fig-

ure 2.1, the non-linear relation between the unknown values and the estimated TOAs results in the

fact that more equations than unknown values are required to resolve ambiguous solutions. For

two-dimensional processing at least three linear independent equations are required, whereas for

three-dimensional processing we need at least four linear independent equations to get a unique lo-

cation estimate. Furthermore, in practical systems the estimates of the TOAs or distances are noisy

in general, i.e., the circles as depicted in Figure 2.1 do not intersect in one unique point. Therefore,

the equation system (2.4) will not be suitable for providing a solution. Instead, the error εµ due

to noisy estimates is included in the location determination process as object for minimization.

Hence, it is a common procedure that in the restructured system of equations

(x− xµ)
2 + (y − yµ)

2 + (z − zµ)
2 − c0(τµ − τ0) = ε2µ, µ = 1, 2, . . . , NBS, (2.5)

the overall quadratic error will be minimized, i.e., with

(x̂, ŷ, ẑ) = argmin
(x,y,z)

NBS
∑

µ=1

ε2µ (2.6)

the location estimates are computed according to the least squares criterion (e.g., [12]).

The noise can be caused by manifold effects in the system and transmission chain. Thermal

noise is usually modeled as a zero-mean additive white Gaussian distributed random process re-

sulting in unbiased estimates of the TOA or distance measurements. Multipath propagation, where

— besides the LOS path — reflected, refracted, or diffracted paths are received at the MS, results

in biased estimates. Furthermore, if the LOS path is totally blocked, we measure a propagation

time which is always larger than that of the direct LOS path. Hence, under NLOS propagation

conditions the additional bias is always positive.

In Chapter 3 we will show in detail, how timing information can be gained in OFDM based

mobile radio systems. Chapter 4 will then describe suitable algorithms for location estimation, i.e.,

approaches for solving the non-linear estimation problem in (2.6).

Time of arrival with unknown time offset

In TOA, the distances dµ are calculated from the corresponding signal propagation times τµ − τ0,

i.e., the time basis in all the BSs and in the MS must be the same. This requirement is hard to be met

in practical systems. Certainly, on the network side the BSs can be synchronized by the network

itself using wired connections or by integrating external entities like GPS receivers providing a
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common time basis. Even if the network is not totally synchronized the asynchronism can be

estimated and taken into account for the location estimation. For instance, in UMTS location

measurement units (LMUs) are standardized for providing such information [44]. Nevertheless,

the problem to have the same time basis for the MS still remains.

Therefore, a commonly used approach is to handle the time offset between the synchronized

BS clocks and the MS clock as additional unknown value in the system of equations. We obtain

√

(x− x1)2 + (y − y1)2 + (z − z1)2 − c0bclock = c0τ1
√

(x− x2)2 + (y − y2)2 + (z − z2)2 − c0bclock = c0τ2
...

√

(x− xNBS
)2 + (y − yNBS

)2 + (z − zNBS
)2 − c0bclock = c0τNBS

,

(2.7)

but now, contrary to (2.4), the transmission time τ0 is no longer assumed to be known and intro-

duces an unknown clock offset or clock bias bclock to all TOA measurements. This is the typical

case in GNSSs, where the satellites are precisely synchronized by atomic clocks, whereas the time

offset between satellites and MS has to be estimated explicitly. Hence, one more unknown has to

be determined using an additional timing estimate. In general, for two-dimensional processing at

least four linear independent equations are required, for three-dimensional processing we need at

least five linear independent equations. These requirements can be weakened for certain systems

or environments. For instance, in GNSSs the fact is exploited that the MS location is usually on the

surface of the earth or at least close to it. With that side information unambiguous solutions can be

resolved by only four available equations. Due to the clock offset or clock bias the measured prop-

agation times do no longer reflect distance or ranges. Therefore, this method — especially in the

GNSS community — is often denoted as location estimation with pseudo-ranges. Also the term

circular (two-dimensional) or spherical (three-dimensional) location estimation with time offset or

time bias can be used. The resulting optimization problem is similar to that for TOA and will be

analyzed in detail in Chapter 4.

Time difference of arrival

Another method in systems, where BSs and MS do not share the same clock, relies on propagation

time differences. Assuming that two signals are transmitted from two BSs µ = 1, 2, . . . , NBS, and

ν = 1, 2, . . . , NBS, at the same time instant τ0 assuming µ 6= ν. These signals arrive at the MS at

the time instants τµ and τν . Hence, the corresponding distance difference can directly be obtained

from the TDOA

τµ,ν = τµ − τν (2.8)

according to

dµ,ν = dµ − dν = c0(τµ − τ0)− c0(τν − τ0) = c0(τµ − τν) = c0τµ,ν . (2.9)

We observe, that the TDOAs are no longer depending on the absolute transmission time τ0 and the

only relevant time basis is that of the MS.

Contrary to TOA, where the propagation delays define circles around the BSs, a TDOA or

distance difference estimate represents points of equal distance differences to the considered BSs.

This defines a hyperbola in the two-dimensional case or a hyperboloid in the three-dimensional
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Figure 2.2: TDOA location estimation principle

case. Therefore, this method is often denoted as hyperbolic location estimation. Also the term

range difference based or distance difference based location estimation is commonly used.

Figure 2.2 depicts the principle of TDOA based location estimation for a two-dimensional

example. Two hyperbola branches (using the TDOAs τ2,1 and τ3,1) with foci at the locations of

the involved BSs define points of equal distance difference to those BSs. The intersection of

different hyperbola branches yields the MS location. A third possible hyperbola branch — using

the TDOA τ3,2 = τ3− τ2 = (τ3− τ1)− (τ2− τ1) — would directly be obtained from the other two

measurements, and hence, would not provide any additional information. Usually, all TDOAs are

computed with respect to one reference BS (without loss of any generality we choose BS 1). This

provides NBS − 1 linear independent TDOAs or distance differences for NBS available BSs. The

resulting system of equations can be written as

√

(x− x2)2 + (y − y2)2 + (z − z2)2−
√

(x− x1)2 + (y − y1)2 + (z − z1)2 = c0τ2,1
√

(x− x3)2 + (y − y3)2 + (z − z3)2−
√

(x− x1)2 + (y − y1)2 + (z − z1)2 = c0τ3,1
...

√

(x− xNBS
)2 + (y − yNBS

)2 + (z − zNBS
)2−

√

(x− x1)2 + (y − y1)2 + (z − z1)2 = c0τNBS,1.

(2.10)

It is obvious that TDOA is closely related to the principle of TOA with unknown time offset and

under certain assumptions (as it will be discussed in Chapter 4) both approaches yield the same

results from the location estimation point of view. Nevertheless, in mobile radio systems usually

the TDOA principle is favored. Under noisy estimates the resulting equation system can be solved

using a least squares approach similar as shown for TOA before.

Round-trip time of arrival

The round-trip time of arrival (RTTOA) principle is sometimes also denoted as two-way ranging.

The basic idea is, that the MS transmits a signal to a BS which acknowledges the reception by
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transmitting another signal back to the MS. The overall round-trip time is estimated by the MS.

Note that also the BS can trigger the overall process. It is obvious that — contrary to the approaches

described before — measurements in both uplink and downlink have to be performed.

We assume that the RTTOA process between the MS and BS µ is initiated by the MS at time

instance τinit,µ, where this is determined according to the internal time scale τMS of the MS. The

signal is received at BS µ at time instance τrec,µ. The internal time scales τMS and τBS,µ of the MS

and BS µ are assumed to have a constant difference. The signal propagation distance between the

MS and the BS can then be computed as

dMS,µ = c0 ((τrec,µ + τBS,µ − τMS)− τinit,µ) , (2.11)

where τrec,µ+τBS,µ−τMS is the time instance τrec,µ relative to the time scale of the MS. As next step,

an acknowledgment signal is transmitted back from BS µ to the MS at time instance τack,µ relative

to the time scale of BS µ. The acknowledgment signal is received at the MS at time τrec, ack,µ. The

resulting propagation distance is

dµ,MS = c0 (τrec,ack,µ − (τack,µ + τBS,µ − τMS)) . (2.12)

Since we assume a reciprocal channel between MS and the BSs — this also includes that the

geometry does not change during the processing time — both estimates have to be equal, i.e.,

dMS,µ = dµ,MS. Therefore, we can compute the estimated distance applying the RTTOA principle

as

dµ =
dMS,µ + dµ,MS

2
=

1

2
c0 (τprop,µ − τproc,µ) . (2.13)

Hence, the estimated distance depends on the propagation time τprop,µ = τrec,ack,µ−τinit,µ and is cal-

culated at the MS with respect to its internal time basis. The processing time τproc,µ = τack,µ − τrec,µ

is calculated at BS µ with respect to its internal time basis and has to be communicated to the MS.

Therefore, the estimated propagation distance does not depend on an unknown time basis differ-

ence τBS,µ − τMS. In general, this time basis can not assumed to be constant over time and effects

like clock drift or clock jitter have to be considered in a suitable way [45]. A popular example for

RTTOA based location estimation is the ranging approach in the IEEE standard 802.15.4 for UWB

systems (cf. [46]).

As resulting system of equations for computing the unknown values (x, y, z) we obtain

√

(x− x1)2 + (y − y1)2 + (z − z1)2 =
1

2
c0 (τprop,1 − τproc,1)

√

(x− x2)2 + (y − y2)2 + (z − z2)2 =
1

2
c0 (τprop,2 − τproc,2)

...
√

(x− xNBS
)2 + (y − yNBS

)2 + (z − zNBS
)2 =

1

2
c0 (τprop,NBS

− τproc,NBS
) .

(2.14)

It is obvious, that the RTTOA approach results in the same geometric structure as TOA. Therefore,

the solution strategies — at least on the level of location estimation — are identical. Since RTTOA

approaches require measurements in both uplink and downlink, only dedicated location estimation

systems like short-range systems based on UWB technology exploit them.
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Figure 2.3: AOA location estimation principle

2.2 Angle of arrival

Another parameter depending on the location is the direction or angle from which a signal is

arriving at the MS or BS. This results in AOA based location estimation suitable for uplink and

downlink processing.

Assuming the two-dimensional case, the estimate of the azimuth angle or direction αµ of the

received signal and the BS location (xµ, yµ) determines a line with possible locations of the MS

(cf. Figure 2.3). For an arbitrary BS µ we obtain the relations

x− xµ = dµ cos (αµ)

y − yµ = dµ sin (αµ) .
(2.15)

This can be simplified to

y − yµ = tan (αµ) (x− xµ) , (2.16)

i.e., the relation is no longer depending on the distance dµ between MS and BS µ. Hence, we can

setup the system of equations with the unknown values (x, y) according to

y − y1 =tan (α1) (x− x1)

y − y2 =tan (α2) (x− x2)

...

y − yNBS
=tan (αNBS

) (x− xNBS
)

(2.17)

assuming NBS involved BSs. Since the equations are linear with respect to the location of the

MS, for two-dimensional processing two linear independent equations are sufficient for obtain-

ing a unique solution. In the three-dimensional case additionally the elevation angle needs to be

available, however, measurements with two BSs are sufficient.

Clearly, the determination of the angles requires multiple well synchronized and calibrated

antenna elements at MS or BS. Furthermore, especially in urban canyons and indoor environments
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NLOS and multipath propagation make a reasonable estimation of these angles very challenging.

Therefore, AOA is currently not used in mobile radio systems for location estimation.

2.3 Received signal strength

Another principle is based on estimating the signal strength of the received signal. In general, it

can be observed that the average received power or RSS is depending inversely on the distance

dµ between BS µ and MS. For instance, in free space the RSS is reciprocally proportional to the

square of that distance. However, discontinuities in the propagation medium cause changes in the

propagation direction of electromagnetic waves. Such discontinuities, e.g., reflection, refraction,

diffraction, or scattering, are omnipresent in typical mobile radio environments and cause multipath

and NLOS propagation.

Commonly used channel models describe the relevant dependency as path loss. The propor-

tionality of the received power PRX,µ is usually described as

PRX,µ ∼ PTX,µGTX,µGRX

(

dµ
dref

)−βµ

, (2.18)

where βµ is denoted as decay factor and depends strongly on the environment. Its value is 2 in case

of free space propagation and greater than 2 for general multipath propagation environments. The

variables PTX,µ, GTX,µ, GRX, and dref describe the transmitted power, the antenna gains of trans-

mitter and receiver, and a normalization constant. They all have to be known in order to determine

absolute values of the RSS. Note that this dependency is empirical and describes solely an average.

Nevertheless, this principle allows at least a rough estimation of the distance dµ between MS and

BS µ.

To determine a location estimate of the MS, several RSS values from measurements between

BSs and the MS have to be obtained. The resulting geometric situation and the location estimation

problem is the same as for the TOA principle. Note that — similar to AOA — RSS based location

estimation is not part of the standards for current mobile radio systems like GSM, UMTS, or LTE.

2.4 Further approaches

The cell identity (e.g., [13]) is a commonly used location estimation principle. It derives MS

location information from the locations of the available BSs and — if available — their coverage.

Clearly, especially for systems with large cell sizes (e.g., GSM allows cell radii up to 35 km)

the obtained location information is not very accurate. Nevertheless, this principle is included

in all state-of-the-art communications standards (e.g., GSM, UMTS, or LTE) and is used if other

methods (based on, e.g., TDOA or AGNSS) fail. In addition, the sector identity can be provided if

the considered BS serves several sectors by multiple antennas. The intersection of several cell or

sector identities can further refine the location estimate.

The classical location estimation principles described in the previous sections usually require

that several BSs are incorporated. Fingerprinting or pattern matching approaches have the advan-

tage that unique location information can already be obtained with only one BS. The basic idea

is the creation of a data-base, where location depending information is stored. Besides classical

parameters like (TOAs, TDOAs, RSSs, etc.) the data-base could also include measured channel

impulse responses or derived metrics like delay spread or angular spread. In the setup or calibra-

tion phase for the data-base, accurate location information of the positions, where the reference
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measurements were taken, is required. In the measurement phase, the data-base can be exploited

to compare actual measurements with the information stored in the data-base to retrieve location

information of the MS. It is obvious that in practical systems it might be difficult to keep the

data-base up-to-date in changing environments. Furthermore, the granularity of the data-base has

a direct impact on the achievable location estimation accuracy. Examples how fingerprinting is

used for location estimation of GSM devices can be found in [47]. A wireless local area network

(WLAN) location estimation scheme using fingerprints is described in [25].

Besides location estimation principles that require a certain infrastructure (e.g., a cellular net-

work with BSs) also sensors that deliver location dependent information integrated into the MS can

be used. This class includes, e.g., inertial sensors, magnetometers, or barometers, yielding local

location information about acceleration, orientation, or height directly to the MS (e.g., [23, 24]).

In addition to that, also context-aware information — even not suitable for a stand-alone solu-

tion — can support the described principles. For instance, map information can help in the lo-

cation determination process to resolve ambiguities or adding constraints in the estimation pro-

cess (e.g., [25, 26]).





3 Timing estimation for location determination in OFDM

In this chapter, we will investigate timing estimation algorithms in OFDM based mobile radio

systems as part of the location determination process depicted in Figure 3.1. We start with a de-

scription of the considered OFDM system model in Section 3.1, including transmitter, channel,

and receiver. Since timing estimation is closely related to the MS synchronization task performed

in cellular mobile radio systems, we outline general pilot-aided synchronization techniques in Sec-

tion 3.2. They usually cope with receiver imperfections like timing offsets or carrier frequency

offsets and allow the initial access to the system. These algorithms will be assessed and extended

to provide reasonable timing estimates for the location determination process. Additionally, cor-

responding performance bounds will be derived. As simulations will show, a reduced number of

available pilot symbols and inter-cell interference limit the timing estimation performance. There-

fore, after a brief discussion about non-pilot-aided synchronization schemes in Section 3.3, the

idea of data-aided synchronization in the context of location determination will be introduced in

Section 3.4. In that manner, we propose to aid synchronization with estimated data symbols that

are used as additional pilot symbols for more accurate timing estimation. Another derived scheme

is based on inter-cell interference cancelation to allow a better reception of several BSs in interfer-

ence limited networks which is essential for reliable location estimates. Both approaches pave the

way for new iterative timing estimation schemes.

3.1 OFDM system model

3.1.1 Transmitter

We consider a general mobile radio system based on bit-interleaved coded modulation (BICM) [48]

and OFDM [16]. The notation in this section was adapted from [49]. Figure 3.2 shows a general

block diagram of the transmitter for one BS of a cellular system. According to the principle of

BICM, a bit interleaver decouples the encoder and mapper at the transmitter side. The data bits

bη ∈ {0, 1} from a binary source are encoded by, e.g., a convolutional encoder. Other coding

schemes as like turbo or low-density parity-check codes could be employed if appropriate. The

τ̂

estimationestimation

Location determination

Timing x̂r Location

Figure 3.1: Two-step location determination process: timing estimation

25
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Figure 3.2: BICM-OFDM transmitter

code bits c′ν are bit-wise interleaved by the interleaver (Π). The interleaved code bits cν are then

mapped onto a discrete complex-valued symbol alphabet according to

Sl = fmapper (cν , cν+1, . . . , cν+ξ−1) ∈ S, (3.1)

where the function fmapper (cν , cν+1, . . . , cν+ξ−1) denotes the mapping of a sequence of ξ bits to

one of the 2ξ complex-valued symbols from the alphabet S . The serial-to-parallel (S/P) converter

orders the symbols Sl to Nu used subcarriers and Ns OFDM symbols to form the OFDM frame

yielding

Sn,k = Slmod(Nu+⌊(Nu−1)/2⌋),⌊l/Nu⌋,

n = ⌊− (Nu − 1) /2⌋, ⌊− (Nu − 1) /2⌋+ 1, . . . , ⌊(Nu − 1) /2⌋,
k = 0, 1, . . . , Ns − 1.

(3.2)

The spacing between two neighboring subcarriers is given as

Fs =
1

Ts

, (3.3)

where Ts is the duration of one OFDM symbol. Therefore, the corresponding bandwidth occupied

by the OFDM transmit signal can be computed as

B = NuFs. (3.4)

The frequency domain symbols are then transformed into the time domain by application of an

inverse discrete Fourier transform (IDFT)

su,k =
1√
NFFT

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

Sn,k e
 2πnu
NFFT , u = 0, 1, . . . , NFFT − 1, k = 0, 1, . . . , Ns − 1, (3.5)

where in practical systems the IDFT size is often chosen as a power of 2, resulting in an inverse

fast Fourier transform (IFFT) of size NFFT. For pure frequency domain investigations of OFDM

communications systems, the classical definition with a summation index n = 0, 1, . . . , Nu − 1,

would have been sufficient due to the cyclic properties of OFDM. In our definition the summa-

tion index is symmetrically distributed around zero. As we later will see in the derivation of the

timing synchronization algorithms (cf. Section 3.2), this choice is of fundamental importance.

After parallel-to-serial (P/S) conversion to su+kNFFT
, a cyclic prefix (CP) of NCP samples is pe-

riodically inserted between NFFT consecutive samples belonging to one OFDM symbol. Hence,

inter-symbol interference between consecutive OFDM symbols will be avoided if the length of the

CP TCP = NCPTsamp, with the sampling time Tsamp = Ts/NFFT, is larger than the maximum excess
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delay of the channel. The resulting signal is

sm = sNCP+i+k(NFFT+NCP) =
1√
NFFT

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

Sn,k e
 2πni
NFFT ,

i = −NCP,−NCP + 1, . . . , NFFT − 1,

k = 0, 1, . . . , Ns − 1.

(3.6)

Thus, one OFDM symbol is of duration T ′
s = Ts + TCP and the complete OFDM frame is of

duration Tframe = NsT
′
s . With a digital-to-analog converter (DAC) the discrete-time signal sm is

transformed to the continuous-time signal s (t), where the waveform of a continuous-time pulse in

OFDM is a rectangular pulse. Therefore, the DAC output is

s (t) =

∞
∑

m=−∞

sm rect

(

t−mTsamp − Tsamp/2

Tsamp

)

, (3.7)

using

rect (x) =







1, for − 1

2
≤ x ≤ 1

2
,

0, otherwise.
(3.8)

Finally, the continuous-time signal s (t) is up-converted by the radio frequency (RF) frontend (FE)

to the RF transmission band and is sent via the antenna of the transmitter (TX) over the mobile

radio channel.

For compact notation, we introduce

sFD
k =

[

S⌊−(Nu−1)/2⌋,k, S⌊−(Nu−1)/2⌋+1,k, . . . , S⌊(Nu−1)/2⌋,k

]T ∈ C
Nu , k = 0, 1, . . . , Ns − 1, (3.9)

as vectors composed of the Nu transmitted frequency domain symbols for the Ns OFDM symbols

in the frame. The corresponding transmitted OFDM frame in the frequency domain is defined as

SFD =
[

sFD
0 , sFD

1 , . . . , sFD
Ns−1

]

∈ C
Nu×Ns . (3.10)

Figure 3.3 depicts a general OFDM frame according to the previous definitions. With the Fourier

matrix FFourier ∈ CNu×NFFT according to

[

FFourier

]

n,u
=

1√
NFFT

e
 2πun
NFFT (3.11)

we can represent the time domain signal after the IFFT as

sTD
k = F H

Fouriers
FD
k ∈ C

NFFT , k = 0, 1, . . . , Ns − 1, (3.12)

and the corresponding OFDM frame as

STD =
[

sTD
0 , sTD

1 , . . . , sTD
Ns−1

]

∈ C
NFFT×Ns . (3.13)
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Figure 3.3: OFDM frame

3.1.2 Channel

After transmission over the mobile radio channel with the time-variant channel impulse response

h (τ, t) and down-conversion into the baseband by the RF FE, the continuous-time baseband signal

at the receiver (RX) can be written as

r (t) =

∞
∫

τ=−∞

h (τ, t) s (t− τ) dτ + z (t) . (3.14)

The signal z (t) denotes complex-valued zero-mean additive white Gaussian noise (AWGN) of

variance σ2
z , where real and imaginary parts are independent and identically distributed. An equiv-

alent frequency domain representation of the continuous-time baseband signal is

r (t) =

∞
∫

f=−∞

H (f, t)S (f) e2πft df + z (t) , (3.15)

where the time-variant channel transfer function

H (f, t) =

∞
∫

τ=−∞

h (τ, t) e−2πfτ dτ (3.16)

is the Fourier transform of the time-variant channel impulse response, and

S (f) =

∞
∫

τ=−∞

s (τ) e−2πfτ dτ (3.17)

is the Fourier transform of s (t).
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Figure 3.4: BICM-OFDM receiver

The samples of the channel impulse response for the OFDM frame are given as

hl,k = h (lTsamp, kT
′
s) , l = 0, 1, . . . , L− 1, k = 0, 1, . . . , Ns − 1, (3.18)

where it is assumed that the channel is constant during one OFDM symbol and L < NCP defines

the considered length of the channel impulse response in terms of samples. With that we compose

the channel vector

hTD
k =

[

h0,k, h1,k, . . . , hL−1,k

]T ∈ C
L, k = 0, 1, . . . , Ns − 1, (3.19)

for the OFDM symbols, and the matrix

HTD =
[

hTD
0 ,hTD

1 , . . . ,hTD
Ns−1

]

∈ C
L×Ns (3.20)

for the OFDM frame. Using the samples of the channel transfer function for the OFDM frame

according to

Hn,k = H (nFs, kT
′
s) ,

n = ⌊− (Nu − 1) /2⌋, ⌊− (Nu − 1) /2⌋+ 1, . . . , ⌊(Nu − 1) /2⌋,
k = 0, 1, . . . , Ns − 1,

(3.21)

we introduce

hFD
k =

[

H⌊−(Nu−1)/2⌋,k, H⌊−(Nu−1)/2⌋+1,k, . . . , H⌊(Nu−1)/2⌋,k

]T ∈ C
Nu, k = 0, 1, . . . , Ns − 1,

(3.22)

as vector composed of the Nu samples of the channel transfer function for the Ns OFDM symbols

in the frame. The corresponding samples for the OFDM frame are arranged in the matrix

HFD =
[

hFD
0 ,hFD

1 , . . . ,hFD
Ns−1

]

∈ C
Nu×Ns . (3.23)

For the frequency domain noise contributions Zn,k, zFD
k , and ZFD, we assume an equivalent defi-

nition as in (3.21), (3.22), and (3.23).

3.1.3 Receiver

The discrete-time received signal (cf. Figure 3.4) is obtained as

rm = r (t)|t=mTsamp
=

∞
∑

m=−∞

r (t) δ (t−mTsamp) (3.24)

with the Dirac delta function δ (t). Timing and frequency synchronization take care that receiver

imperfections as like timing and carrier frequency offsets between transmitted and received signals

are compensated. This will be further discussed in Section 3.2. The NCP samples from the CP are

removed and the S/P converted remaining signal stream is

ru,k = ru+NCP+k(NFFT+NCP), u = 0, 1, . . . , NFFT − 1, k = 0, 1, . . . , Ns − 1. (3.25)
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Next, with an fast fourier transform (FFT) the time domain signal ru,k is transformed into the

frequency domain resulting in the received frame (cf. Figure 3.3)

Rn,k =
1√
NFFT

NFFT−1
∑

u=0

ru,k e
− 2πun

NFFT ,

n = ⌊− (Nu − 1) /2⌋, ⌊− (Nu − 1) /2⌋+ 1, . . . , ⌊(Nu − 1) /2⌋,
k = 0, 1, . . . , Ns − 1.

(3.26)

If the subcarrier spacing Fs is much smaller than the coherence bandwidth of the channel and

the duration of the CP TCP is smaller than the maximum excess delay of the channel, there is

frequency flat fading on each subcarrier and no inter-symbol interference between consecutive

OFDM symbols is present. If further the duration of one OFDM symbol Ts is much smaller than

the coherence time of the channel, there is no inter-carrier interference on the received signal.

Then, the frequency domain received signal can simply be described as

Rn,k = Hn,kSn,k + Zn,k,

n = ⌊− (Nu − 1) /2⌋, ⌊− (Nu − 1) /2⌋+ 1, . . . , ⌊(Nu − 1) /2⌋,
k = 0, 1, . . . , Ns − 1.

(3.27)

This frame is P/S converted according to

Rl = RlmodNu,⌊l/Nu⌋, l = 0, 1, . . . , NuNs − 1. (3.28)

As final step of the receiver chain a BICM receiver is employed. The demapper computes hard

decision or soft estimates ĉν of the transmitted bits cν . Channel state information (CSI) is either

taken into account by applying a one-tap frequency equalizer before the demapper or by directly

including this information in the demapper. After deinterleaving the hard decision or soft estimates

ĉ′ν are decoded resulting in the estimated bits b̂η.

At the receiver side, we denote

rTD
k =

[

r0,k, r1,k, . . . , rNFFT−1,k

]T ∈ C
NFFT , k = 0, 1, . . . , Ns − 1, (3.29)

as vector composed of the NFFT time domain symbols for the Ns OFDM symbols, and

RTD =
[

rTD
0 , rTD

1 , . . . , rTD
Ns−1

]

∈ C
NFFT×Ns (3.30)

as the corresponding OFDM frame. After the IFFT, the resulting frequency domain symbols can

be represented as

rFD
k = FFourierr

TD
k ∈ C

Nu, k = 0, 1, . . . , Ns − 1, (3.31)

and the corresponding OFDM frame as

RFD =
[

rFD
0 , rFD

1 , . . . , rFD
Ns−1

]

∈ C
Nu×Ns . (3.32)

Since the OFDM properties allow a simple computation of the received frequency domain symbols

(cf. (3.27)), we can calculate them according to

rFD
k = HFD

k sFD
k + zFD

k , k = 0, 1, . . . , Ns − 1, (3.33)

using the diagonal channel matrix

HFD
k = INu

hFD
k ∈ C

Nu×Nu. (3.34)
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3.2 Pilot-aided synchronization

3.2.1 Receiver imperfections

Receivers are affected by imperfections which disturb the transmitted signal in addition to channel

effects and noise. Thus, synchronization tasks are required in the receiver processing chain to

estimate and compensate these effects for a reliable detection of the transmitted data [50, 51, 52].

In the following, we discuss the impact of timing offset and carrier frequency offset (CFO) on the

received signal. We assume that there are no further RF FE related effects like non-linear power

amplification or phase noise, and assume a quantizer in the ADC with an arbitrary floating point

precision.

Timing offset

Processing time within the transmission chain and the propagation over the mobile radio channel

introduce a timing offset in the received signal. Since transmitter and receiver usually do not share

the same clock in mobile radio systems, the receiver needs to recover timing information about the

received signal stream before the data can be processed. This includes symbol as well as frame

timing information. The symbol timing is used to adjust the FFT window to an appropriate place.

The frame timing is used to extract the correct OFDM symbols from the overall frame. Even if

timing recovery or timing offset estimation is an important task for communications systems as

part of the initial access, the requirements on the accuracy are comparatively relaxed. The OFDM

system design allows, that the FFT window can start in the inter-symbol interference free region

of the received samples, i.e., there are NCP − L possible samples, where the FFT window can

be placed, without reducing the performance [53, 54]. Clearly, for location determination much

more accurate timing estimates are required as it will be discussed during the description of the

respective algorithms.

An arbitrary timing offset τ0 can be modeled by including it in the channel according to

h (τ, t) = δ (t− τ0) . (3.35)

This timing offset can represent, e.g., a propagation delay or the start of a synchronization symbol

relative to the internal MS clock. Hence, following (3.14), the received continuous-time signal can

be written as

r (t) = s (t− τ0) + z (t) . (3.36)

The corresponding sampled discrete-time version of the signal according to (3.24) is then

rm = s (mTsamp − τ0) + z (mTsamp) , (3.37)

or in a more compact notation

rm = sm (τ0) + zm. (3.38)

The index m denotes the samples with respect to the internal receiver sampling clock. Note that at

this stage no frame or symbol timing is available. Due to the timing offset τ0, the samples are no
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Figure 3.5: BICM-OFDM transmitter with MUX for pilot and data symbols

longer on the sampling grid and according to

sm (τ0) =
1√
NFFT

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

Sn,k e
2πnFs(mTsamp−τ0)

=
1√
NFFT

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

e−2πnFsτ0 Sn,k e
 2πnm
NFFT

(3.39)

the timing offset introduces a linear phase shift in the frequency domain signal.

Carrier frequency offset

Due to different oscillator properties on transmitter and receiver side, a CFO occurs in the received

signal. The CFO introduces a linear phase shift in the time domain signal. This results in a loss of

the mutual orthogonality among the subcarriers, i.e., inter-carrier interference occurs (e.g., [53])

which reduces the performance. Contrary to the timing offset, OFDM is very sensitive with respect

to CFOs. They directly have an impact on the achievable transmission performance (e.g., [55]).

We assume an arbitrary CFO φ0 which is normalized to the subcarrier spacing Fs. Then, the

received sampled discrete-time signal can be represented as

r̃m = e

2πφ0m+φs

NFFT rm

= e

2πφ0m+φs

NFFT (sm (τ0) + zm) ,
(3.40)

including timing offset, CFO, and an arbitrary carrier phase φs.

3.2.2 Synchronization algorithms

To estimate timing offset and CFO at the MS of a mobile radio system, synchronization algorithms

are employed. In pilot-aided synchronization, these algorithms rely on pilot or synchronization

symbols that are included in the transmitted signal stream. These symbols — or at least their

structure — have to be known at the MS. Usually, these pilot symbols Sp

n,k are combined by a

multiplexer (MUX) with the data symbols Sd
n,k in frequency domain to form the transmitted frame

Sn,k (cf. (3.2) and Figure 3.5).

At the receiver side, the synchronization signals are exploited to recover timing information

and to estimate the CFO (cf. Figure 3.6). The CFO is usually directly compensated on the received

time domain signal. The timing information is used to adjust the FFT window to an appropriate

place and to remove the CP. In the following, we describe commonly used OFDM synchronization

strategies and discuss them with respect to their suitability to provide precise timing information

for location determination in cellular mobile radio systems. For the derivation of the algorithms,

we currently assume, that there is one OFDM symbol in the frame dedicated to synchronization
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Figure 3.6: BICM-OFDM receiver with timing and CFO estimation

purposes. Information about this symbol has to be available at the receiver. This can either be

the knowledge of the complete transmitted signal or only its structure. Latter one is usually used

for differential correlation based synchronization being robust with respect to CFOs. These ap-

proaches allow timing and CFO synchronization without the explicit knowledge of the transmitted

synchronization signal.

Synchronization using differential correlation

The idea of OFDM synchronization using differential correlation (DC) was introduced by Schmidl

and Cox [56]. The approach requires a specific synchronization signal consisting of two identical

halves in the time domain. Without loss of any generality, this synchronization signal

s (τ0 + kTsamp) = s

(

τ0 +

(

k +
NFFT

2

)

Tsamp

)

, k = 0, 1, . . . ,
NFFT

2
− 1, (3.41)

starts at τ0 — relative to the MS clock — and has a length of NFFT samples. Such a signal with

a repetitive structure in the time domain can easily be generated in frequency domain by solely

occupying the even subcarriers and setting the odd subcarriers to zero.

To detect the starting point of the synchronization signal designed according to (3.41), a DC

operation on the received signal is required, where for the first we assume that there is no CFO

present. According to [56], the receiver computes the metric

CDC
m =

NFFT
2

−1
∑

k=0

rm+kr
∗
m+k+NFFT/2

NFFT
2

−1
∑

k=0

∣

∣rm+k+NFFT/2

∣

∣

2

, (3.42)

where the nominator is the correlation function using the sampled discrete-time received signal for

all available samples m and the denominator is a normalization term. Practically, this operation

will be implemented in terms of a sliding window operation. Even though the metric in (3.42)

lacks of a theoretical justification, it provides reliable estimates [56]. A comparison with other

metrics can be found in [57, 53]. A search for the correlation peak results in the estimated sample

for the start of the synchronization symbol and the corresponding timing estimate, i.e.,

m̂DC, coh.
0 = argmax

m
ℜ
{

CDC
m

}

τ̂DC, coh.
0 = argmax

m
ℜ
{

CDC
m Tsamp

}

.
(3.43)
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As the phase information is still available by this approach, we denote it as coherent timing esti-

mation. If the received signal is affected by a CFO, the DC results in

C̃DC
m =

NFFT
2

−1
∑

k=0

r̃m+kr̃
∗
m+k+NFFT/2

NFFT
2

−1
∑

k=0

∣

∣r̃m+k+NFFT/2

∣

∣

2

=

NFFT
2

−1
∑

k=0

e

2πφ0(m+k)+φs

NFFT rm+k e
−

2πφ0(m+k+NFFT/2)+φs

NFFT r∗m+k+NFFT/2

NFFT
2

−1
∑

k=0

∣

∣

∣

∣

e

2πφ0(m+k+NFFT/2)+φs

NFFT rm+k+NFFT/2

∣

∣

∣

∣

2

= e−πφ0 CDC
m .

(3.44)

Hence, it includes a constant phase rotation due to the CFO. For timing estimation, this can be

eliminated by taking the absolute value before searching for the maximum of the correlation metric,

i.e.,

m̂DC, non-coh.
0 = argmax

m

∣

∣

∣
C̃DC

m

∣

∣

∣
= argmax

m

∣

∣CDC
m

∣

∣

τ̂DC, non-coh.
0 = argmax

m

∣

∣

∣
C̃DC

m Tsamp

∣

∣

∣
= argmax

m

∣

∣CDC
m Tsamp

∣

∣ .
(3.45)

Due to the absolute value operation which eliminates the phase information, we denote this ap-

proach as non-coherent timing estimation contrary to the coherent technique in (3.43). Clearly,

also in channels affected by multipath fading the non-coherent timing estimation can provide a

more robust approach.

It is obvious, that the repetitive synchronization sequence is suitable for CFO estimation as

well. Observing (3.44) suggests that the CFO can be estimated by

φ̂0

DC
=

∠C̃DC
m̂0

π
, (3.46)

i.e., it is the normalized argument of the correlation metric at the estimated sample of the timing

offset. The properties of the complex exponential function limit the unambiguous range for the

possible CFOs to −1 < φ0 ≤ 1, i.e., for |φ0| > 1 solely the fractional part of the CFO can

be estimated. For an estimation of the integer part a second synchronization symbol would be

required (cf. [56]).

To be conform with all the other OFDM symbols in the frame, also the synchronization symbol

usually includes a CP. This has the effect, that instead of a correlation peak a plateau with the

length of the CP will be the outcome of the DC process. Hence, for estimating the start of the

synchronization symbol the end of this plateau needs to be determined. This can be done, e.g.,

with the 90%-method [56].

Figure 3.9 depicts the real and absolute value of the correlation function over the sampling

index, where it is assumed that the synchronization symbols starts at τ0 = 0 and neither noise nor

CFO are present. For the generation of the synchronization sequences, LTE-specific parameters
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Figure 3.7: Correlation functions using differential correlation based synchronization

are employed, including an FFT length of NFFT = 2048, CP length of NCP = 144, and Nu = 62
occupied subcarriers [58]. Figure 3.9 shows clearly the plateau with the length of the CP. It is

obvious that the detection of the end of this plateau — especially under noisy conditions — will be

very challenging. Therefore, high accurate timing estimation, and hence, location determination

cannot be expected with synchronization using DC. We further observe that there are no major

differences between the real and absolute values of the correlation function, hence, coherent and

non-coherent processing will almost give the same results for this setup.

For communications, where it is solely required to place the FFT window at an appropriate

place of the received signal, DC is a suitable approach. The remaining phase shift in frequency

domain due to an incorrect timing estimate will anyhow be compensated by a suitable channel

estimation. Nevertheless, the DC method can be adapted to avoid the plateau in the correlation

function for obtaining a clear correlation peak. This can be realized by increasing the number

of signal repetitions in the synchronization signal as it is proposed in [59] and [60]. In [61] this

approach is extended to enhance CFO estimation capabilities and to integrate channel estimation.

In [62] and [63] further variations of repetitive structures for OFDM synchronization are studied.

A dedicated application of DC to location determination purposes and extensions for performance

improvements are investigated in [35].

Synchronization using reverse differential correlation

Another approach that overcomes the plateau-like output of the correlation function results in

synchronization using reverse differential correlation (RDC) [64]. It is based on a reverse repetitive
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structure of the synchronization signal according to

s (τ0 + kTsamp) = s∗ (τ0 + (NFFT − k − 1)Tsamp) , k = 0, 1, . . . ,
NFFT

2
− 1. (3.47)

Thus, the second half of the synchronization symbol is the conjugate mirrored part of the first

half. These sequences can easily be generated in the frequency domain by using solely real-valued

symbols. To obtain timing information with such kind of sequences, RDC has to be applied, i.e., a

reasonable metric is

CRDC
m =

NFFT
2

−1
∑

k=1

rm+krNFFT−k+m

NFFT
2

−1
∑

k=1

|rNFFT−k+m|2
. (3.48)

As the conjugate operation is already included in the signal design in (3.47), it is not part of the

calculation of the correlation sum. The estimation process for RDC is similar to that for DC, hence,

with
m̂RDC, coh.

0 = argmax
m

ℜ
{

CRDC
m

}

τ̂RDC, coh.
0 = argmax

m
ℜ
{

CRDC
m Tsamp

} (3.49)

the sample index and timing for the start of the synchronization symbol is determined.

If a CFO is present in the signal, the resulting RDC gives

C̃RDC
m =

NFFT
2

−1
∑

k=1

r̃m+kr̃NFFT−k+m

NFFT
2

−1
∑

k=1

|r̃NFFT−k+m|2

=

NFFT
2

−1
∑

k=1

e

2πφ0(m+k)+φs

NFFT rm+k e

2πφ0(NFFT−k+m)+φs

NFFT rNFFT−k+m

NFFT
2

−1
∑

k=1

∣

∣

∣

∣

e

2πφ0(NFFT−k+m)+φs

NFFT rNFFT−k+m

∣

∣

∣

∣

2

= e

2πφ0NFFT(2m+NFFT)+2φs

NFFT Cm.

(3.50)

Compared to DC, the resulting correlation sum for RDC similarly depends on the carrier phase

offset. Nevertheless, by taking the absolute value this dependency can be eliminated and we obtain

for the non-coherent estimation

m̂RDC, non-coh.
0 = argmax

m

∣

∣

∣
C̃RDC

m

∣

∣

∣
= argmax

m

∣

∣CRDC
m

∣

∣

τ̂RDC, non-coh.
0 = argmax

m

∣

∣

∣
C̃RDC

m Tsamp

∣

∣

∣
= argmax

m

∣

∣CRDC
m Tsamp

∣

∣ .
(3.51)

Figure 3.9 shows in addition to DC also the correlation functions for RDC. We observe the clear

peak making a timing estimation, and hence, location estimation much more reliable compared to

DC.
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Synchronization using cross-correlation

Even if the differential based methods (DC and RDC) discussed before can provide information

about the signal timing, they have certain constraints and limitations that should briefly be outlined.

First of all, for cellular mobile radio systems like LTE it is desired that all BSs transmit in the same

frequency band (frequency re-use of one) due to spectral efficiency reasons. This has the effect,

that the signals from all BSs superpose and have to be processed jointly at the MS. With the

differential based approaches it is certainly possible to detect different synchronization sequences

in the received signal stream. However, as the structure of these sequences is the same for all

BSs, it can not be distinguished at the MS, which correlation peak belongs to which BS. For

communications purposes it is usually sufficient to solely detect the overall highest peak for the

overall strongest BS. Since for location determination timing estimation with least three BSs has to

be performed, the (R)DC methods are not suitable to provide such side information. Furthermore,

the differential based approaches usually work on the sampling grid which restricts the resolution

even if interpolation techniques can be applied afterwards.

Therefore, in this section cross-correlation (CC) approaches will be discussed. Compared to the

differential methods outlined before, for CC explicit knowledge of the transmitted synchronization

symbol is necessary. In a practical system, this approach would be applied after a coarse timing

estimation with the classical differential correlation techniques. Without loss of generality, we

assume that the relevant synchronization symbol is still transmitted at τ0 and NFFT consecutive

received samples

r =
[

r0, r1, . . . , rNFFT−1

]

C
NFFT (3.52)

according to (3.38) are available. The target is to estimate τ0 exploiting the received signal. Opti-

mization criterion for this approach is the a posteriori probability

p (τ0|r) =
p (r|τ0) p (τ0)

p (r)
(3.53)

for τ0 given the received signal r. For maximizing this probability we obtain the maximum a

posteriori (MAP) estimate [12, 65]

τ̂0 = argmax
τ0

p (τ0|r) = argmax
τ0

p (r|τ0) p (τ0) . (3.54)

Since the a priori probability p (τ0) is not always known, we assume it to be uniform. This results

in the well-known maximum likelihood (ML) estimate [12, 65]

τ̂0 = argmax
τ0

p (r|τ0) . (3.55)

Considering (3.38), the likelihood function can be represented as

p (r|τ0) =
1

(πσ2
z)

NFFT
e
− 1

σ2
z

∑NFFT−1
m=0 |rm−sm(τ0)|

2

. (3.56)
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Hence, the ML estimate can be computed as

τ̂0 = argmax
τ0

p (r|τ0)

= argmax
τ0

1

(πσ2
z)

NFFT
e
− 1

σ2
z

∑NFFT−1
m=0 |rm−sm(τ0)|

2

= argmax
τ0

ln
1

(πσ2
z)

NFFT
e
− 1

σ2
z

∑NFFT−1
m=0 |rm−sm(τ0)|

2

= argmin
τ0

NFFT−1
∑

m=0

|rm − sm (τ0)|2

= argmin
τ0

NFFT−1
∑

m=0

|rm|2 + |sm (τ0)|2 − 2ℜ{r∗msm (τ0)} .

(3.57)

Since |rm|2 does not depend on τ0 and we further assume that |sm (τ0)|2 is constant with respect to

τ0, the ML estimate can be obtained by maximizing the real part of the CC

CCC (τ0) =

NFFT−1
∑

m=0

r∗msm (τ0) , (3.58)

i.e., we compute

τ̂CC, coh.
0 = argmax

τ0

ℜ
{

CCC (τ0)
}

. (3.59)

Since the phase information is still included in this approach, we denote it as synchronization using

coherent CC, similar as for the differential synchronization algorithms.

If a CFO is present in the signal, the CC is replaced by

C̃CC (τ0) =

NFFT−1
∑

m=0

e
−

2πφ0m+φs
NFFT r∗msm (τ0)

= e
− φs

NFFT

NFFT−1
∑

m=0

e
−

2πφ0m
NFFT r∗msm (τ0) .

(3.60)

We observe, that the dependency of the CFO is still inside the summation, and hence, CC is not

robust against CFOs. Therefore, it has to be ensured that the CFO is estimated in advance, e.g., by

differential correlation techniques, before applying CC. Nevertheless, taking the absolute value of

the correlation sum results in the non-coherent estimate

τ̂CC, non-coh.
0 = argmax

τ0

∣

∣CCC (τ0)
∣

∣ . (3.61)

Synchronization using cross-correlation in frequency domain

Obviously, the CC approach as presented before is limited for estimation of timing offsets on the

sampling grid. However, a simple CC on the sampling grid between the received signal and the

transmitted signal will at least give a rough estimate. Subsequent interpolation techniques can

refine this result. Since in OFDM most of the signal processing steps are applied in the frequency
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domain, also this interpolation can be very efficiently realized using the OFDM properties. Hence,

with

CCC, FD (τ0) =

NFFT−1
∑

m=0

r∗msm (τ0)

=

NFFT−1
∑

m=0





1√
NFFT

⌊(Nu−1)/2⌋
∑

n′=⌊−(Nu−1)/2⌋

R∗
n′ e

− 2πn′m
NFFT









1√
NFFT

⌊(Nu−1)/2⌋
∑

n′′=⌊−(Nu−1)/2⌋

e−2πn′′Fsτ0 Sn′′ e
 2πn′′m

NFFT





=
1

NFFT

⌊(Nu−1)/2⌋
∑

n′=⌊−(Nu−1)/2⌋

⌊(Nu−1)/2⌋
∑

n′′=⌊−(Nu−1)/2⌋

e−2πn′′Fsτ0 R∗
n′Sn′′

NFFT−1
∑

m=0

e

2π(n′′−n′)m

NFFT

=
1

NFFT

⌊(Nu−1)/2⌋
∑

n′=⌊−(Nu−1)/2⌋

⌊(Nu−1)/2⌋
∑

n′′=⌊−(Nu−1)/2⌋

e−2πn′′Fsτ0 R∗
n′Sn′′NFFTδ (n

′′ − n′)

=

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

e−2πnFsτ0 R∗
nSn

(3.62)

we obtain a frequency domain representation of the correlation function depending on the trans-

mitted and received symbols in frequency domain. Contrary to the correlation function in time

domain as discussed before, here the timing offset is not limited to the sampling grid allowing a

timing estimation with higher resolution. The coherent timing estimation in the frequency domain

can then be computed according to

τ̂CC, FD, coh.
0 = argmax

τ0

ℜ
{

CCC, FD (τ0)
}

. (3.63)

In case of a present CFO, the correlation function is

C̃CC, FD (τ0) = e
− φs

NFFT

NFFT−1
∑

m=0

r∗msm (τ0)

=
e
− φs

NFFT

NFFT

⌊(Nu−1)/2⌋
∑

n′=⌊−(Nu−1)/2⌋

⌊(Nu−1)/2⌋
∑

n′′=⌊−(Nu−1)/2⌋

e−2πn′′Fsτ0 R∗
n′Sn′′

NFFT−1
∑

m=0

e

2π(n′′−n′−φ0)m

NFFT

=
e
− φs

NFFT

NFFT

⌊(Nu−1)/2⌋
∑

n′=⌊−(Nu−1)/2⌋

⌊(Nu−1)/2⌋
∑

n′′=⌊−(Nu−1)/2⌋

e−2πn′′Fsτ0 R∗
n′Sn′′NFFTδ (n

′′ − n′ − φ0)

(3.64)

and the corresponding non-coherent timing estimation yields

τ̂CC, FD, non-coh.
0 = argmax

τ0

∣

∣CCC, FD (τ0)
∣

∣ . (3.65)

Obviously, the orthogonality among the subcarriers is destroyed by the CFO and, hence, inter-

carrier interference is introduced.
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Figure 3.8: Correlation functions using cross-correlation based synchronization

Figure 3.8 depicts the correlation functions for CC, where different numbers of used subcarriers

Nu are occupied. The LTE synchronization signals occupy 63 subcarriers corresponding to a band-

width of 945 kHz. In LTE’s 5MHz-mode 301 subcarriers are occupied and in the 20MHz-mode

1201 subcarriers [58]. Note that in LTE the zero subcarrier at n = 0 is not occupied. We assume

that one complete symbol is known to the receiver, and hence, CC with the described approaches

can be applied. As expected, the higher the number of subcarriers, and hence the bandwidth,

the sharper the correlation peak resulting in more accurate timing estimates. We clearly observe

the difference between coherent and non-coherent processing. Finally, we can identify side-peaks

which can cause outliers under noise.

The application of OFDM timing estimation using cross-correlation for LTE systems is also

discussed in [27]. An analysis of this topic in the context of location determination for GNSSs can

be found in [66]. In [67] the focus is on range estimation in multi-user WLAN systems.

Initial access and cell search in LTE

In this section, we briefly outline the initial access of the MS to an LTE system by exploiting the

included synchronization signals. Figure 3.9 depicts a typical OFDM frame consisting of pilot

symbols for synchronization and channel estimation as well as data symbols. In LTE the so-

called primary synchronization signal (PSS) and the secondary synchronization signal (SSS) are

specified [58] as deterministic signals exploited for synchronization and initial access [68]. They

appear twice per frame and occupy the inner 63 subcarriers. Note that the zero subcarrier at n = 0
is not occupied by any data or control symbol in LTE. In this example, the data symbols occupy

181 subcarriers, where as a maximum up to 1201 subcarriers are specified in LTE. Reason for
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Figure 3.9: LTE frame including pilot and data symbols

the limited bandwidth of the synchronization signals is the flexible bandwidth support by LTE. In

that manner, six different spectrum modes are specified in LTE (from 1.4MHz to 20MHz) with

the same configuration of the synchronization signals. This allows a flexible exploitation of the

available spectrum. Note that for simplification we do not distinguish between information data

and control data in Figure 3.9. It is obvious, that in practical mobile radio systems — besides

information data symbols dedicated to the user — also control data symbols will be transmitted

within the frame. The reference signal (RS) in Figure 3.9 consists of pilot symbols for channel

estimation scattered over the whole frame in time and frequency.

The SSS in LTE has a reverse repetitive structure, and thus, can be detected by RDC techniques

as discussed before or by non-pilot-aided synchronization algorithms as shown in Section 3.3. In

LTE 504 different SSS sequences are specified, i.e., 504 different cell identities are supported. The

SSSs consist of so-called Zadoff-Chu sequences with reasonably good auto- and cross-correlation

properties. For the generation of the individual sequences we refer to [58]. After the rough tim-

ing estimation, e.g., with RDC, the PSS is exploited [64, 69]. For the PSS only three different

sequences are specified. On the one hand, the PSS is applied to determine the CFO which is com-

pensated on the time domain signal. On the other hand, with a CC in the frequency domain, the

transmitted PSS sequence can be determined. This yields the so-called cell identity group in LTE.

With that knowledge, the number of possible SSS sequences reduces to 504/3 = 168 and by CC

in the frequency domain the transmitted SSS can be determined providing the cell identity. Hence,

cell identity, frame and symbol timing as well as CFO information is available which concludes

the initial access or cell search in LTE.
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3.2.3 Cramer-Rao lower bound

The CRLB is the fundamental lower bound on the variance of any estimator [12, 65]. For a scalar

parameter τ0, it states that the variance of any estimator for τ0 has the lower bound

Ξ (τ0) ≤ var (τ̂0) = E
{

(E {τ̂0} − τ̂0)
2} . (3.66)

The CRLB can be calculated as

Ξ (τ0) =

(

1 +
∂b (τ0)

∂τ0

)2

E

{

(

∂ ln p (r|τ0)
∂τ0

)2
} , (3.67)

where b (τ0) is a bias function depending on τ0 and p (r|τ0) is a probability density function (PDF)

for the received samples r conditioned on τ0. Note that the CRLB is solely a function of the

parameter of interest τ0 and not of its estimate τ̂0. For unbiased estimation the CRLB simplifies to

Ξ (τ0) =
1

E

{

(

∂ ln p (r|τ0)
∂τ0

)2
} =

1

−E

{(

∂2 ln p (r|τ0)
∂2τ0

)} . (3.68)

In the following, we will compute the CRLB for the considered timing estimation problem

(cf. [27]) resulting in a performance bound for the derived synchronization algorithms in Sec-

tion 3.2. Other contributions discuss this derivation in the context of UWB systems [70] and for

a comparison between OFDM and pseudo-noise based transmission systems [71]. As we can ob-

serve from (3.68), we need to calculate the derivative of the natural logarithm of the conditioned

PDF — which is the likelihood function as given in (3.56) — with respect to the delay τ0, i.e.,

∂

∂τ0
ln p (r|τ0) =

∂

∂τ0
ln

1

(πσ2
z)
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e
− 1
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z
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sm (τ0)
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sm (τ0)
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∂
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∂
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(3.69)
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Squaring this equation and taking the expectation with respect to the noise yields
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(3.70)

Using this result in (3.68) gives the CRLB for timing estimation

Ξ (τ0) =
σ2
z

2

NFFT−1
∑

m=0

∣

∣

∣

∣

∂

∂τ0
sm (τ0)

∣

∣

∣

∣

2
. (3.71)

This expression includes the squared derivative of the time domain signal in the denominator.

Hence, the CRLB will decrease for signals with higher frequency components or bandwidths. For

an efficient calculation of this CRLB we can apply the OFDM properties — similar as for the

CC algorithm in frequency domain described in Section 3.2. We start with the frequency domain

representation of the delayed signal as defined in (3.39). Its derivative with respect to the timing

offset τ0 can simply be computed as

∂

∂τ0
sm (τ0) =

∂

∂τ0

1√
NFFT

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

e−2πnFsτ0 Sn e
 2πnm
NFFT

=
1√
NFFT

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

−2πnFs e
−2πnFsτ0 Sn e

 2πnm
NFFT .

(3.72)
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Squaring this expression and a summation over NFFT available consecutive samples yields
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(3.73)

Combining this result with (3.71) gives the CRLB for timing estimation in frequency domain

representation

Ξ (τ0) =
σ2
z

8π2F 2
s

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

n2 |Sn|2
. (3.74)

Note that the dependency of the CRLB on the timing offset τ0 is implicitly included in the subcar-

rier contributions Sn. This is consistent as a timing offset directly relates to a linear phase shift in

the frequency domain signal according to the FFT operation.

Observing (3.74), several interesting conclusions can be drawn as follows:

• If we define the mean subcarrier SNR as

γ =

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

|Sn|2

Nuσ2
z

(3.75)

and the normalized mean squared bandwidth as

β2 =

F 2
s

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

n2 |Sn|2

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

|Sn|2
, (3.76)

the CRLB can be rewritten as

Ξ (τ0) =
1

8π2Nuγ β2
. (3.77)
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Hence, the derived CRLB decreases linearly with the SNR and quadratically with the oc-

cupied bandwidth of the signal. This is in line with the results from other investigations

(e.g., [10, 12]).

• For the definition of the OFDM system model in Section 3.1 and for the derivation of the

CRLB it was explicitly assumed, that the occupied subcarriers are symmetrically distributed

around the zero subcarrier at n = 0. For communications tasks in the frequency domain, very

often the circular OFDM properties are exploited. This has the effect, that — mainly due to

notational convenience — the relevant subcarriers can be shifted to the positive domain, i.e.,

to n = 0, 1, . . . , Nu − 1, without loss of any generality. However, for the targeted synchro-

nization problem and the calculation of the CRLB this symmetry around the zero subcarrier

is of fundamental importance. In a practical realization it ensures that the received signal

can be downconverted to the baseband within the dedicated receiver bandwidth. A shift to

the positive domain would require a receiver with around a doubled bandwidth (cf. [72, 73]).

• If the symbols have equal energy in the frequency domain (|Sn| = |S|), e.g., for phase shift

keying modulation schemes, the CRLB simplifies to

Ξ (τ0) =















3σ2
z

2π2F 2
s |S|2Nu (N2

u − 1)
, for Nu odd,

3σ2
z

2π2F 2
s |S|2Nu (N2

u + 2)
, for Nu even.

(3.78)

This results in the fact, that all synchronization signals in LTE provide the same CRLB since

all synchronization symbols have the same energy in the frequency domain. Hence, the

CRLB is independent of the chosen synchronization signal. Note that this does not neces-

sarily yield the same timing estimation results if synchronization algorithms are applied. As

the CRLB provides only a local performance bound, effects like converging to side-lobes of

the correlation function are not considered in its calculation.

• The zero subcarrier at n = 0 does not contribute to the CRLB. This is not surprising, since

timing estimation with a constant signal would not produce any useful results.

• The spectral properties have a direct impact on the CRLB. Not only the number of used

subcarriers, also their individual power and distribution affects the CRLB. The more power

is available at the band edges, the smaller the CRLB will be. Hence, from a timing estimation

point of view, it is beneficial to distribute the power to the band edges as much as possible.

This was also part of the investigations in [72], where this distribution was optimized under

power constraints.

• The result in (3.74) for the AWGN channel can easily be extended to arbitrary channels.

To do so, the channel coefficients in frequency domain Hn can simply be multiplied with

the transmitted symbols on each subcarrier, and hence, change the spectral properties of the

transmitted signal. We obtain

Ξ (τ0) =
σ2
z

8π2F 2
s

⌊(Nu−1)/2⌋
∑

n=⌊−(Nu−1)/2⌋

n2 |HnSn|2
. (3.79)
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Figure 3.10: CRLB over bandwidth for different SNRs

• So far, we assumed that the subcarriers are allocated contiguously as a block in the spectrum.

Beyond that, the result in (3.74) also holds for non-contiguously allocated subcarriers, e.g.,

for the scattered pilot symbols used for channel estimation in LTE.

In Figure 3.10 the CRLB is plotted over the occupied bandwidth B as defined in (3.4) for dif-

ferent SNR values between−20 dB and 20 dB. For convenience and without loss of any generality,

we define the CRLB in meters as the square root of (3.74) multiplied with the speed of light c0,
i.e.,

CRLB = c0
√

Ξ (τ0), (3.80)

since location estimation is the target process. As discussed before, LTE’s synchronization signals

occupy 63 subcarriers, and hence, have a bandwidth of 945 kHz. This results in a CRLB of around

4.3m for 10 dB and of around 1.5m for 20 dB. Therefore, for reasonable SNRs the achievable

location estimation accuracy is in the order of a few meters. If a complete OFDM symbol is

known in the 20MHz-mode of LTE, this accuracy improves to an order of a few centimeters.

3.2.4 Simulation results

Single-link synchronization

In the following, we investigate the single-link synchronization performance in different scenarios

for LTE-conform parameters. We assume a downlink transmission from BS to MS of Ns = 140
symbols per frame, where the symbols are OFDM modulated with an FFT length of NFFT = 2048.

For the CP NCP = 144 samples are used. As mentioned before, the synchronization channels
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Parameter name Parameter symbol Value

FFT length NFFT 2048
Maximum number of used subcarriers for data N d

u 1201
Number of used subcarriers for PSS/SSS N p

u 63
Number of samples for CP NCP 144
Number of symbols per frame Ns 140
Subcarrier spacing Fs 15 kHz

Convolutional code G {(171)8, (133)8}
Interleaver Π Random

Modulation alphabet S QPSK
Table 3.1: LTE parameters

occupy N p
u = 63 subcarriers, whereas the data symbols occupy N d

u = 1201 subcarriers. The

subcarrier spacing is 15 kHz. For the generation of the data symbols we apply convolutional coding

with the generator polynomial G = {(171)8, (133)8} in octal representation, random interleaving,

and quadrature phase shift keying (QPSK) modulation. These LTE core parameters are concluded

in Table 3.1. For synchronization with the algorithms derived in Section 3.2.2 we exploit the SSS as

it provides 504 different sequences, and hence, will also be suited for later investigated multi-link

approaches which are required for location estimation. Note that for DC based synchronization we

flipped the second half of the SSS in time domain to obtain the required repetitive structure. As

performance metric we choose the root mean squared error (RMSE)

RMSE = c0

√

E
{

(τ0 − τ̂0)
2} ≥ CRLB, (3.81)

which is a measure for the average synchronization or timing estimation error given in meters,

where it was averaged over several noise realizations, timing offsets, and different synchronization

sequences. Performance bound for the RMSE is the CRLB as computed in Section 3.2.3.

Figure 3.11 shows the RMSE over SNR for the different synchronization schemes as outlined

in Section 3.2.2 using an AWGN channel and no CFO for the simulations. We further assumed a

search space in the interval of [−NCP, NCP] samples around the timing offset. This reduced search

space is reasonable as for an established communication an initial timing estimate inside the CP is

required anyhow. We observe the following:

• The DC synchronization algorithms (coherent and non-coherent) are not suitable for precise

timing, and hence, location estimation. There is an error floor for high SNRs at around 150m

which corresponds to around 15 samples in the considered LTE setup. For communications

purposes this accuracy is usually acceptable, however, for location estimation even for high

SNRs the DC based estimates are not useful. Furthermore, we observe that there is no

major difference between coherent and non-coherent processing. Main reason for the limited

performance of DC is the difficult detection of the end of the correlation function’s plateau.

• For low SNR values, the estimates for RDC, CC, and CC in frequency domain are uniformly

distributed in the interval determined by the search space resulting in

RMSE|γ→−∞ =
1√
3

c0NCP

NFFTFs

≈ 811.34m. (3.82)
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Figure 3.11: RMSE over SNR using different synchronization algorithms, AWGN channel

• For high SNR values, the RMSE of RDC and CC is limited by the sampling time as a

resolution of sub-sample timing offsets is not possible with these algorithms. Hence, the

residual error is given as the square root of the variance for a uniform distribution of the

length of one sample, i.e.,

RMSE|γ→∞ =
1√
12

c0
NFFTFs

≈ 2.82m. (3.83)

• As RDC provides a clear correlation peak compared to the plateau of DC (cf. Figure 3.7) it is

the more accurate differential correlation algorithm. For an SNR smaller than 0 dB no precise

timing estimation is possible. Between 0 dB and 6 dB there is a waterfall region, where the

coherent approach outperforms the non-coherent approach by around 1 dB. For higher SNRs

up to 30 dB there still is a gap of around 12 dB between the achieved performance and the

CRLB.

• For the CC approaches in time domain the overall performance improves by around 10 dB

compared to RDC, however, here the complete synchronization sequence has to be known

in advance. We observe a similar behavior in the waterfall region (coherent outperforms

non-coherent estimation). For SNRs between −5 dB and 5 dB the RMSE is very close to the

CRLB, however, as time domain CC is similarly restricted to the sampling grid, also here an

error floor is present.

• In case of CC in the frequency domain, the restriction of estimates on the sampling grid can

be overcome. With this approach the CRLB can be achieved for SNRs larger than −5 dB
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Figure 3.12: RMSE over CFO using different synchronization algorithms at SNR of 10 dB, AWGN channel

and, hence, it is efficient as expected for this ML based algorithm. For SNRs smaller than

−5 dB, the performance corresponds to the CC approach in time domain.

• The correlation functions as shown in Figure 3.8 have clear side lobes besides the main lobe

depending on, e.g., bandwidth and processing type (coherent or non-coherent). Therefore,

for reasonably low SNR values it is possible to run into the side lobes during the maximum

search. Hence, in the threshold or waterfall region between low and high SNR (between

−5 dB and −20 dB for CC in frequency domain) the CRLB is no longer a reasonably good

performance bound as CRLB solely holds locally around the main lobe. Better approxima-

tions or bounds for this region can be found in [74, 75, 76].

• The side lobes of the correlation function for non-coherent processing are higher and closer

to the main lobe compared to coherent processing (cf. Figures 3.7 and 3.8). Therefore,

for a reasonably low SNR the probability to run into these side lobes is higher, and hence,

coherent processing outperforms non-coherent processing in this region. The performance

for high SNR is equal as the correlation function is nearly identical around the main lobe of

the correlation function for both procedures.

• The limited search space has the effect that a priori knowledge is introduced in the estimation

process. Therefore, for low SNR values the RMSE can outperform the CRLB. To include

this a priori information, the posterior CRLB or Bayesian CRLB could be applied [65].
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Figure 3.13: RMSE over SNR using different synchronization algorithms, multipath LOS channel

Next, we investigate the performance of the different synchronization algorithms under CFOs

at an SNR of 10 dB. Figure 3.12 depicts the RMSE over the maximum CFO, i.e., the CFO is

uniformly distributed within the interval [−φ0/Fs, φ0/Fs]. First of all, we observe that the non-

coherent differential approaches for DC and RDC are — as expected — not depending on the

CFO, and hence, are well suited for initial timing estimation. We further observe, that also the CC

approaches are suitable, if the residual CFO is not too large. For coherent processing a normalized

CFO of 0.1 is still acceptable, whereas for non-coherent processing a CFO of 0.6 still allows rea-

sonable timing estimates. Since for communications purposes (especially for channel estimation)

a residual CFO of around 0.02 is targeted, the consideration of CFO effects is no longer in the main

focus of this thesis. Therefore, in the following we assume that the CFO is perfectly compensated

or the residual CFO is in a range, where CC approaches are not affected.

The AWGN channel considered so far gives a performance limit for the synchronization algo-

rithms. For a realistic performance evaluation, we include more realistic multipath channel models

in the simulation chain. We choose a LOS and a NLOS version of the WINNER channel models

for urban scenarios (C2) as specified in [77]. The main parameters for these models can also be

found in Appendix A.1. Figure 3.13 depicts the RMSE over SNR for different synchronization

algorithms if the signal is transmitted over the LOS channel. First of all, we observe that the tim-

ing estimates are biased if the channel is not known. This results in an overall performance loss

compared to the AWGN channel. We further can see that the non-coherent approaches outperform

the coherent approaches for reasonably high SNRs, i.e., they are more robust against multipath

fading channels. The coherent approaches exploit the real part of the correlation function which

requires a matched phase relation between the received signal (affected by channel and noise) and
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Figure 3.14: RMSE over SNR using different synchronization algorithms, multipath NLOS channel

the transmitted signal. If the channel is not known, the non-coherent approaches exploiting the

absolute value of the correlation function yield more reliable results. Nevertheless, as the constant

direct path in the LOS channel is comparatively strong (compared to the multipath components),

the LOS channel is quite close to the AWGN channel. This has the effect that the performance loss

of coherent processing is limited — at least for the CC algorithms. For high SNRs, non-coherent

RDC and CC result in an average error of around 11m. For the coherent approach, 18m can be

achieved by CC and 70m for RDC. The performance of CC in time and frequency domain is nearly

the same as a sub-sample resolution is not relevant for this setup. Comparing the CRLBs between

the LOS channel and AWGN, we observe that for the LOS channel a 2 dB performance loss must

be accepted.

Figure 3.14 depicts the corresponding curves for the NLOS channel model. Here, the perfor-

mance losses compared to AWGN are even higher. With non-coherent synchronization algorithms

an average error of around 100m can be achieved for high SNRs. For coherent processing with an

error of around 400m no useful information for location estimation can be gained. Compared to

AWGN, the CRLB for the NLOS channel shifts by around 4 dB.

Finally, Figure 3.15 depicts the RMSE performance over SNR for different channels, if perfect

channel knowledge is available. In that case, the synchronization algorithms can be matched to

the channel by a convolution of the transmitted signal with the channel impulse response (for time

domain processing) or by multiplying the transmitted symbols with the samples of the channel

transfer function (for frequency domain processing). Here, we consider coherent CC in the fre-

quency domain. We observe, that also for the LOS and NLOS channels the CRLB can be achieved

if appropriate channel knowledge is available.
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Parameter name Value

Carrier frequency 2GHz

Cell layout Hexagonal, inter-BS distance of 750m

BS transmit power 43 dBm

BS antenna model Three sectors, 3 dB-beamwidth of 70 degree, 14 dBi

MS antenna model Omnidirectional, 0 dBi

MS noise figure 7 dB

Doppler frequency According to MS speed of 2m/s
Table 3.2: Cellular system parameters

Multi-link synchronization

Considering single-link synchronization as shown before allows a comprehensive study of the

various timing estimation algorithms and absolute performance bounds for different SNR values.

For the targeted location determination process simultaneous timing estimation with at least three

BSs has to be performed at the MS. Therefore, the geometric relation between MS and BS locations

has to be taken into account to derive realistic values of the relevant parameters like SNRs or

relative time offsets. To do so, in this section we investigate the performance of the OFDM timing

estimation algorithms in a multi-link cellular environment. We assume a two-dimensional cell

layout with a distance between the BSs of 750m and a hexagonal structure of the cells. The BSs

transmit with a transmit power of 43 dBm at a carrier frequency of 2GHz. Each BS has three

antenna elements with a 3 dB-beamwidth of 70 degree and an overall antenna gain of 14 dBi, i.e.,

three individual cells are served per BS. The MS has an omnidirectional antenna with 0 dBi, a noise

figure of 7 dB, and moves with a speed of 2m/s. This is a typical value for pedestrian applications.

The described cellular system parameters are concluded in Table 3.2. The small scale and large

scale channel parameters for AWGN, LOS, and NLOS conditions are outlined in Appendix A.1.

They make use of the WINNER channel models for urban scenarios (C2) as specified in [77].

Figure 3.16 shows a geometric overview of the cellular network. We investigate the links

between the BSs of interest (BS 1, BS 2, and BS 3) and the MS, where different locations of the

MS are considered as depicted. Since all BSs can transmit in the same frequency band, a strong

inter-cell interference is present in the network. A measure for the interference is the signal-to-

interference-and-noise ratio (SINR) defined as

γµ =
Pµ

σ2
z +

3NBS
∑

ν=1
ν 6=µ

Pν

, µ = 1, 2, . . . , 3NBS, (3.84)

where three cells per BS are assumed. The received power from a BS with cell µ (including

transmit power, transmit antenna gain, and large scale channel effects as defined in Table 3.2 and

Appendix A.1) is denoted as Pµ. The noise power σ2
z is determined by the noise figure of the MS

and the sampling time Tsamp.

Figure 3.17 shows the resulting SINR for the AWGN channel over the individual MS locations

as depicted in Figure 3.16. These locations are determined by the distance between MS and BS 1.

Note that we always choose the strongest cell of a specific BS as the desired signal. BS 1 as the

overall strongest BS will be the serving BS of the MS in this setup. First of all, we can observe
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the dependency of the SINR from the various MS locations in the network. For instance, the SINR

difference between a MS location close to BS 1 (distance of 50m) and at the cell edge (distance of

500m) is around 18 dB for considering the serving BS 1. The synchronization channel of this BS

can be received with an SINR between 16 dB and −2 dB which should allow a reasonably good

timing estimation. The reception of BS 2 and BS 3 will be more challenging as the interference

from the serving BS makes a reasonably good timing estimation with the out-of-cell BSs difficult.

Especially close to the serving BS, the SINR can be below −30 dB for BS 3, making a detection

of this BS with the described methods impossible. At the cell edge (distance of 500m) the SINR

values of the three considered BSs have — as expected — a similar level. Additionally depicted

in Figure 3.17 are the corresponding SNR values, i.e., the interference-free situation assuming that

all BSs transmit in different frequency bands. Here, the overall signal level is much higher and,

e.g., BS 1 can be received with an SNR between 77 dB and 57 dB. Also the out-of-cell reception

of BS 2 and BS 3 is possible with SNR values higher than 40 dB. Hence, the network is strongly

interference-limited and only the serving BS can be received with sufficient quality for the desired

LTE setup with a frequency reuse of one.

In Figure 3.18 the corresponding RMSE of the timing estimation is depicted over the distance

between MS and BS 1 for transmission over an AWGN channel. As synchronization algorithm the

coherent cross-correlation approach in the frequency domain was exploited. For timing estimation

with BS 1 an acceptable performance can be achieved. The resulting RMSE is around 2m close

to BS 1 and around 20m at the cell edge. Additionally, the corresponding CRLB is plotted. For

computing the CRLB, the SNR γ in (3.77) was replaced by the SINR γµ as defined in (3.84).

Instead of AWGN, the impairment in the considered cellular network also includes a superposition
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channel

of synchronization signals as interference. Even though the requirement for the CRLB computation

on AWGN is not met here, the replacement of the SNR by the SINR gives a reliable approximation.

Furthermore, we can observe that timing estimation with BS 2 and BS 3 is not possible with a

reasonable accuracy. For instance, close to BS 1 solely an RMSE of several hundred meters is

possible. This is in the order of the inter-BS distance, and hence, these estimates are not useful for

a reliable location estimation. We further can observe that the CRLB deviates significantly from

the RMSE for BS 2 and BS 3. This is due to the fact that the corresponding SINRs are smaller

than around −5 dB, where according to Figure 3.11 the CRLB is no longer a good approximation

for the RMSE. Only at the cell edge (distance of 400m to 500m) the timing estimates with three

BSs give useful results for location estimation.

Figure 3.19 shows the corresponding results for an interference-free network, i.e., all BSs trans-

mit in different frequency bands. Since the SNRs for the AWGN channel are comparatively high,

the timing estimation performance is very accurate, i.e., in the order of centimeters even for the

out-of-cell BSs. Furthermore, we observe that the CRLB is achieved over the complete range.

Hence, we can conclude that the interference limits the overall performance in the network.

Even for an AWGN channel no accurate timing estimation with three BSs can be achieved to allow

precise location estimation. In an interference-free network the timing estimates are of sufficiently

high quality. A deeper analysis for the multipath LOS and NLOS channels is not presented here,

as already the performance in AWGN is not acceptable for location determination purposes.



3.3 Non-pilot-aided synchronization 57

3.3 Non-pilot-aided synchronization

The pilot-aided synchronization algorithms as discussed in the previous section exploit dedicated

signals for timing and CFO estimation. The required pilot symbols or there structure need to be

known a priori at the MS. Another class of synchronization algorithms denoted as non-pilot-aided

or blind synchronization does not require these specific signals. The respective algorithms exploit

the signal itself by application of certain OFDM properties.

A practical example for non-pilot-aided synchronization can be found in [78]. It exploits the

CP of the OFDM system and correlates the CP with the respective part of the symbol to derive tim-

ing information. Also the CFO can be estimated by observing the phase of the correlation function

at the estimated timing sample. This is similar to the differential correlation approaches discussed

in Section 3.2.2, however, here every received symbol can be used for synchronization as long as

the CP and symbol lengths do not change. This approach is not well suited for location determi-

nation as a multi-link synchronization in a cellular network with frequency re-use of one is not a

simple task. Since CP and symbol lengths will usually be identical for signals transmitted from

different BSs, besides timing and CFO also the transmitting BS would need to be identified from

the received signal. Nevertheless, due to its low computational complexity the CP based synchro-

nization algorithm is of high interest for hardware-oriented implementations as discussed in [79]

or to aid more sophisticated synchronization algorithms by exclude ambiguous estimates [80].

The approach proposed in [81] exploits the cyclostationarity of OFDM signals. It can pro-

vide timing estimates with a higher resolution than the sampling grid and is as well suited for

CFO estimation. The timing estimation algorithm proposed in [82] exploits interference from the

loss of orthogonality between subcarriers in case of incorrect timing information. Also these two

approaches can not directly be applied for multi-link synchronization in cellular environments.

3.4 Data-aided synchronization

As we have seen in Section 3.2.4, the performance of the timing estimation algorithms is mainly

limited by the reduced number of available pilot symbols (compared to the complete transmission

bandwidth) and by inter-cell interference. In the following, we will outline new concepts to cope

with the aforementioned problems based on data feedback. Note that the effects of multipath

and NLOS propagation and respective mitigation algorithms are not directly studied in this thesis.

They will further reduce the overall performance in a practical implementation. Hence, we assume

a reasonably good channel estimation to compensate these effects.

3.4.1 Synchronization with estimated data

Synchronization with estimated data is a well-studied topic in the context of mobile communica-

tions algorithms. Sometimes denoted as turbo synchronization, a feedback of already estimated

and decided data back to the synchronization entity allows a refined estimation of the desired pa-

rameters in an iterative way. A comprehensive overview about the general principle and various

frameworks can be found in [83]. It includes a discussion of the concept proposed in [84], where

the ML synchronization problem is iteratively solved by application of the expectation maximiza-

tion (EM) algorithm, the approach in [85], where for the same problem the sum-product algorithm

is exploited, and the gradient based method for iterative synchronization derived in [86].

In the context of OFDM based communications systems, the focus of the proposed iterative

synchronization algorithms is mainly on improving the CFO estimation performance. This is rea-
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Figure 3.20: BICM-OFDM receiver for synchronization with estimated data

sonable, since the required timing estimation accuracy is comparatively small (as discussed in

Section 3.2.2, the timing estimation solely has to ensure that the FFT window starts in the region

of the CP without inter-symbol interference). Therefore, in a communications system the tim-

ing estimation is not that critical and the main focus is on iterative estimation of the CFO. For

instance, in [87] a suitable EM based ML estimator is proposed for improving the bit error rate

(BER). A similar approach is discussed in [88]. In [89], a joint data-aided estimation of CFO and

sampling clock frequency offset is derived. Nevertheless, all described techniques do not consider

an improved timing estimation by using estimated data.

Therefore, we propose to exploit already estimated data for an improved data-aided timing

estimation as depicted in Figure 3.20 (cf. [30]). In the considered LTE system the synchroniza-

tion symbols solely occupy 63 subcarriers, i.e., a bandwidth of 945MHz, whereas the maximum

number of subcarriers for the data symbols is 1201 in the 20MHz mode. According to the CRLB

investigation in Figure 3.10 large performance gains would be possible by increasing the available

bandwidth with the proposed method.

To do so, the complete signal stream from the serving BS is demodulated and decoded at the

MS. In a first step, the dedicated data symbols for this MS are determined as required anyhow for

communications, i.e., they are OFDM demodulated and the bit stream is estimated and decided

by the BICM receiver. These bits can then be used for further processing in the communications

part. Here, we feed this bit stream back and reconstruct an estimate of the transmitted signal.

This includes BICM resulting in the reconstructed data stream Ŝd
n,k after S/P conversion. For the

pilot part we can use the a priori known pilot symbols Sp

n,k in the OFDM frame. The overall

reconstructed frame Ŝn,k is then OFDM modulated. Instead of the limited number of pilot signals

in the original approach, now the complete estimated and reconstructed frame — or at least parts of

it — is used for performing an improved timing estimation with respect to the serving BS. This can

especially improve the estimates close to the serving BS, i.e., when near-optimum reconstruction

is possible. At the cell edge the performance gains are limited due to an increased BER.

3.4.2 Synchronization with interference cancelation

Synchronization with estimated data as discussed before can be very useful for improving the

performance of the timing estimates obtained from synchronization with the serving cell. Never-

theless, the inter-cell interference as liming factor remains (cf. Figure 3.18). Therefore, we outline

principles to enhance timing estimation algorithms by including approaches that are aware of the

interference.

The first idea is the complete avoidance of interference for the dedicated signals. This could

be realized, e.g., by applying classical re-use partitioning schemes. This has the effect that —
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at least — neighboring BSs transmit on different frequency bands resulting in an effective situa-

tion without inter-cell interference. Since LTE and other upcoming mobile radio systems target a

frequency re-use of one, this is not a feasible approach as all BSs are desired to transmit in the

same frequency band due to spectral efficiency demands. Nevertheless, the OFDM concept allows

a smart partitioning on the subcarrier basis. This ensures that neighboring cells are coordinated

in a way that inter-cell interference for the data symbols is avoided. A comprehensive overview

about these principles can be found in [90, 91, 92, 93]. In a similar context the discussion in LTE

on a so-called positioning reference signal could be seen [58]. This should consist of additional

pilot symbols for improved location determination and further includes idle periods of neighboring

BSs to reduce or even avoid the inter-cell interference on these pilot symbols. First investigations

with these signals can be found in [94], however, these dedicated signals would certainly cause a

signaling overhead in the OFDM frame.

The interference avoidance principles can not be used for the investigated setup as in LTE the

synchronization and pilot signals are time and frequency aligned, i.e., on these signals inter-cell

interference can not be avoided. The idea to reduce the interference by averaging over several

frames is also not a reasonable solution as the synchronization and pilot signals usually do not

change over time. Therefore, interference cancelation approaches need to be applied to reduce the

interference on the desired signal. In communications systems inter-cell interference cancelation

is especially applied to improve the system performance at the cell edge. At the cell edge it is

difficult to estimate the data symbols from the serving BS as the interference from the other BS

is comparatively high. Close to the serving BS, the received power is usually strong enough that

the interference from other BS can be neglected. This is the major difference to the considered

location determination application, where it is required to obtain timing information from at least

three BSs. This is especially problematic close to the serving BS, where a reception of the out-

of-cell BSs is very difficult as simulation results have already shown in Figure 3.19. Contrary to

that, at the cell edge we have a beneficial situation for location determination, as there the received

power from various BSs is similar.

Therefore, we propose to cancel the interference of the (strongest) serving BS before timing

estimation with the out-of-cell BSs is performed. Figure 3.21 shows the resulting overview for

data-aided synchronization with interference cancelation (cf. [31]). A similar approach was in-

vestigated for UMTS in [95]. As we can see, the complete signal stream from the serving BS is

demodulated and decoded at the MS — in the same way as for synchronization with estimated

data described before. Then, these estimated bits are used for obtaining the reconstructed frame

S̃n,k. This frame is OFDM modulated and pre-distorted with the estimated channel. Finally, the

reconstructed time-domain samples are subtracted from the received samples at the respective time

index which is determined by the timing estimate for BS 1. After canceling the interference, the

timing estimates for the out-of-cell BSs are determined by pilot-aided synchronization algorithms.

In case of perfect reconstruction the complete interference from the serving BS is eliminated

and only a superposition of the signals from the out-of-cell BSs is present at the receiver. However,

in a real system detection and estimation errors will degrade the performance of this approach.

Nevertheless, especially in situations which are critical for location determination, i.e., close to a

BS, we have a favorable situation for communications. In these situations, the signal can usually be

reconstructed near optimum, and hence, interference cancelation is very beneficial for the overall

location determination.
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Figure 3.21: BICM-OFDM receiver for synchronization with interference cancelation

3.4.3 Iterative synchronization

So far, we just have considered a one-step iteration for the data-aided synchronization and syn-

chronization with interference cancelation. Clearly, the highest performance gain can be obtained

for considering the strongest BS which is the serving BS. In data-aided synchronization it allows

a good estimation of the data symbols, and hence, a good reconstruction of the signal for an im-

proved timing estimation. This holds in a similarly way for interference cancelation approaches,

since the cancelation of this BS will be nearly ideal, especially in the most interesting case close

to the serving BS. Nevertheless, after a cancelation of the serving BS this concept can be ap-

plied again for data-aided synchronization and synchronization with interference cancelation for

the second-strongest BS and so on in an iterative way.

3.4.4 Simulation results

Figure 3.22 depicts the RMSE over SNR for data-aided synchronization with estimated data. For

simplicity, only one active BS is considered so far. As synchronization algorithm we exploit the

coherent cross-correlation approach in frequency domain according to Section 3.2.2. For pilot-

aided (PA) synchronization we can achieve the CRLB for SNRs higher than −5 dB, however,

the performance is limited by the reduced bandwidth of the synchronization signal. For data-aided

(DA) synchronization with estimated data (ED), we assume that we exploit one OFDM symbol that

includes 1201 subcarriers, i.e., over the maximum transmission bandwidth of LTE. The respective

CRLB shows a performance gain of around 20 dB for the data-aided approach. We further can see

that we can achieve this CRLB for SNRs higher than around 4 dB. Note that for SNRs smaller than

around −3 dB the pilot-aided approach outperforms the data-aided approach since a reasonably

reconstruction can not be ensured at these low SNR values, and hence, the overall performance

decreases. We further observe that we loose around 10 dB with the data-aided synchronization

with estimated data compared to the curve with perfect reconstruction. For reasonable SNR values

we then can achieve RMSEs in the sub-meter region.

Figure 3.23 shows the RMSE performance in the cellular network according to Figure 3.16

under interference at the respective MS locations. Compared to the pilot-aided approach which

yields RMSEs between around 2m and 22m, the performance can be improved to RMSEs between

20 cm and 18m for the data-aided synchronization with estimated data. The comparison with the

curve for perfect reconstruction shows that the estimated reconstruction performs near optimum.

This is in line with the expectations for timing estimation with the reasonably strong serving BS.

In Figure 3.24 the RMSE performance in the cellular network is evaluated for applied data-

aided synchronization with interference-cancelation (IC), i.e., the interference from BS 1 is can-

celed before (pilot-aided) timing estimation with the out-of-cell BSs is performed. We observe a
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remarkable performance improvement especially for BS 2 if the MS is close to BS 1. In some

situations the RMSE can be reduced from several hundred meters to below 30m. At the cell edge,

the performance improvement is not that drastically, however, still beneficial compared to the stan-

dard pilot-aided approach. The performance improvement for BS 3 is not that high as BS 2 (as

second-strongest BS at the respective MS locations) introduces interference which limits the tim-

ing estimation accuracy with BS 3. At the cell edge, we further observe a performance reduction

compared to perfect interference cancelation. As the reconstruction is near optimum (as could be

seen in Figure 3.23), reason for this deviation is the incorrect timing estimate for BS 1 and the

resulting non-ideal interference cancelation.

Interesting in this context is also an assessment of the resulting SINR in the cellular network.

Figure 3.25 depicts the cumulative distribution function (CDF) for the SINR

CDF (xSINR) = P (SINR < xSINR) , (3.85)

i.e., the probability that the SINR is smaller than the value of the abscissae xSINR, averaged over

all MS locations in the network. We can see that for BS 1 in nearly all situations we obtain

an SINR higher than −5 dB, i.e., in nearly all situations we achieve the CRLB with the timing

synchronization algorithm according to Figure 3.11. For the out-of-cell BSs an SINR higher than

−5 dB is obtained in around 35% of the situations for BS 2 and in around 2% of the situations for

BS 3. In case that BS 1 is not present in the system (perfect interference cancelation) these values

can be increased to around 99% for BS 2 and 70% for BS 3.

Finally, Figure 3.26 depicts the performance for all considered pilot-aided and data-aided ap-

proaches. This includes also the iterative procedures, where synchronization with estimated data
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or interference cancelation is applied a second time. Here, after the interference cancelation of

BS 1 a synchronization with estimated data was performed for BS 2 (IC, ED). We observe that the

additional synchronization reduces the overall performance due to the fact that in the considered

situation the reconstruction is not optimum. Additionally, before timing estimation with BS 3 is

performed, the interference from BS 1 and BS 2 is canceled (IC, IC). This results in a high perfor-

mance gain compared to a single interference cancelation of only BS 1. We can achieve RMSEs

between 65m and 20m at MS locations at a distance from BS 1 between 100m and 400m.



4 Static location estimation with timing information

In Chapter 3 it was discussed, how timing information of signals from various BSs can be obtained

at the MS. In this chapter, we investigate how this timing information can be exploited to estimate

the location of the MS. This process has to be seen in the context of the two-step location deter-

mination approach shown in Figure 4.1. Section 4.1 introduces the system model considered in

this chapter. In Section 4.2, relevant estimation criteria for location estimation are described and

discussed. It turns out that the underlying estimation problem results in a non-linear optimization

problem. Therefore, Section 4.3 outlines suitable optimization algorithms for its solution, where it

is distinguished between general numerical methods and dedicated approaches taking into account

the geometric structure of the location estimation problem. The fundamental performance bound

for these techniques is given by the CRLB being presented in Section 4.4. Finally, simulation

results evaluate the performance of the algorithms in Section 4.5.

4.1 System model

For static location estimation it is assumed that the MS is at a constant location during the estima-

tion process and no a priori information about this location is available. Hence, the location of the

MS is a constant and deterministic parameter. The available timing information is given in terms

of the timing estimates obtained from NBS BSs, i.e.,

τ̂ = [τ̂0,1, τ̂0,2, . . . , τ̂0,NBS
]T ∈ R

NBS , (4.1)

where τ̂0,µ, µ = 1, 2, . . . , NBS, can be provided by the respective timing estimation algorithms

discussed in Chapter 3.

The processing of this information strongly depends on the structure of the network as de-

scribed in Section 2.1. If BSs and MS share the same clock or do not depend on a synchronized

network, i.e., if knowledge of the absolute signal transmit time is available, the timing estimates

τ̂ directly include absolute propagation time information between BSs and MS (cf. TOA and RT-

TOA principles). Due to the underlying geometric structure we refer to this procedure as spherical

τ̂

estimationestimation

Location determination

Timing x̂r Location

Figure 4.1: Two-step location determination process: static location estimation

65
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approach. If there is a time offset between BSs and MS clock, the timing estimates τ̂ still con-

tain propagation time information between BSs and MS, however, biased by the constant offset

between BSs and MS clocks. This clock offset can be treated as additional parameter that has to

be estimated besides the MS location (cf. TOA with unknown time offset principle). We refer to

this class as spherical with unknown time offset in the following. A third option is the use of dif-

ference operations between various timing estimates which eliminate the clock offset (cf. TDOA

principle). This will be denoted as hyperbolic approach. This is the typical procedure to process

timing estimates in a cellular network. Note that we further assume either synchronized BSs or

knowledge of their asynchronism which can be taken into account when generating τ̂ . Therefore,

we can base our analysis on three different classifications [96, 97]:

• Spherical with knowledge of the time offset between BSs and MS clocks (SPH).

• Spherical without knowledge of the time offset between BSs and MS clocks (SPHT).

• Hyperbolic (HYP).

Note that we focus on timing estimates in this thesis. Since time and range are related to each

other by the speed of light, time and range information can be considered as an equivalent source of

information. Hence, range information gained from RSS estimates could also be used for location

estimation with the methods derived in this chapter. Furthermore, all presented approaches can be

applied for both MS and network based techniques, even though the analysis will be in the context

of timing estimation at the MS side as implied by Chapter 3.

We assume that the MS is located at

x = [x, y, z]T ∈ R
3, (4.2)

where we presume a three-dimensional cartesian coordinate system. The BSs in the cellular net-

work that are included in the location determination process are located at

xµ = [xµ, yµ, zµ]
T ∈ R

3, µ = 1, 2, . . . , NBS. (4.3)

Hence, the distances between the BSs and the MS are given as

d = [d1, d2, . . . , dNBS
]T ∈ R

NBS , (4.4)

with

dµ = ‖xµ − x‖2 =
√

(xµ − x)2 + (yµ − y)2 + (zµ − z)2, µ = 1, 2, . . . , NBS. (4.5)

We assume that the propagation speed is constant, and hence, the distance or range is proportional

to the propagation time with a constant propagation factor. For the considered scenarios this is

the speed of light c0. Thus, the corresponding propagation times between the BSs and the MS are

given as

τ = [τ1, τ2, . . . , τNBS
]T ∈ R

NBS , (4.6)

with

τµ =
dµ
c0
, µ = 1, 2, . . . , NBS. (4.7)
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Classification

Parameter symbol SPH SPHT HYP

Nobs NBS NBS NBS − 1

f̂ τ̂ τ̂ Dτ̂

Npar 3 4 3

p x
[

xT, bclock

]T
x

f (p) τ (x) τ (x) + bclock1NBS×1 Dτ (x)
nf nτ nτ Dnτ

Σnf
Σnτ Σnτ DΣnτD

T

Table 4.1: Mappings to generalized parameters for location estimation with timing information

In case of spherical processing, the parameter vector that has to be estimated is x, i.e., the

three-dimensional location of the MS. The timing estimates are modeled according to

τ̂ = τ (x) + nτ , (4.8)

where

nτ = [nτ,1, nτ,2, . . . , nτ,NBS
]T ∈ R

NBS (4.9)

denotes noise with the PDF p (nτ ). Note that the dependency of the propagation time τ on the

deterministic location x is explicitly denoted in (4.8).

In case of spherical processing with unknown time offset, the parameter vector has to be ex-

tended by the time offset bclock between the clocks of BSs and MS, i.e., to
[

xT, bclock

]T
. The timing

estimates are then modeled according to

τ̂ = τ (x) + bclock1NBS×1 + nτ , (4.10)

with the same noise properties of nτ as for spherical processing.

In case of hyperbolic processing, the time offset bclock is removed by processing suitable time

differences. Hence, the timing estimates are modeled according to

Dτ̂ = D (τ (x) + bclock1NBS×1) +Dnτ , (4.11)

where the matrix D is a full rank matrix ensuring that the dependency on bclock is eliminated. A

common definition, e.g., for TDOA positioning is

D =
[

−1(NBS−1)×1 INBS−1

]

∈ R
(NBS−1)×NBS , (4.12)

where the reference BS for the time differences is chosen as BS 1.

To allow a generalized derivation of the optimization algorithms, we choose a system model

according to

f̂ = f (p) + nf ∈ R
Nobs , (4.13)

where all corresponding mappings for SPH, SPHT, and HYP, to the generalized parameters are

concluded in Table 4.1. Hence, the estimation problem is to determine the Npar parameters of the

parameter vector p by using an observation vector f̂ of dimension Nobs under the system model

given in (4.13).
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4.2 Estimation criteria

Obviously, the system model generalized in (4.13) is non-linear with respect to the parameter

vector p due to the non-linear relation between the location and the timing or range information.

If no a priori information about the noise is available, a straightforward criterion for the solution

of the resulting estimation problem is based on non-linear least squares optimization (e.g., [12]),

where the squared differences between the observations and all possible parameter sets for the

given system model are minimized, i.e.,

p̂ = argmin
p

(

f̂ − f (p)
)T (

f̂ − f (p)
)

. (4.14)

It is the optimum approach if the noise is Gaussian distributed according to nf ∼ N
(

µnf
,Σnf

)

with mean µnf
= 0Nobs×1 and covariance matrix Σnf

= σ2
nf
INobs

, i.e., zero-mean with a scaled

identity matrix as covariance matrix. In this case, the non-linear least squares estimation criterion

is identical to ML estimation [12]. The ML estimator is defined as the value that maximizes the

likelihood function p
(

f̂ ;p
)

over the allowed domain of p.

If a priori information about the noise properties is available, the weighted non-linear least

squares criterion yields a more appropriate approach. Assuming zero-mean Gaussian distributed

noise with covariance matrix Σnf
, the optimum estimator results in

p̂ = argmin
p

(

f̂ − f (p)
)T

Σ−1
nf

(

f̂ − f (p)
)

. (4.15)

In this approach, the covariance matrix Σnf
includes reliability and correlation information of the

estimates. For the location estimation problem with timing information, this matrix is identical

to Σnt for both spherical approaches. For hyperbolic processing it results in Σnf
= DΣntD

T,

hence, the estimates used for location determination are correlated (cf. Table 4.1). Under the given

constraints, the weighted non-linear least squares estimation criterion is identical to ML estimation.

4.3 Optimization algorithms

The weighted non-linear least squares approach is commonly used in the context of location esti-

mation applications (e.g., [18, 21]), and hence, it will be the baseline during the following deriva-

tion of the optimization algorithms. The underlying estimation problem given in (4.15) usually

does not have any closed-form solution. Therefore, we consider two different approaches for the

solution of such kind of estimation problem. In Section 4.3.1, classical numerical algorithms for

non-linear optimization problems are described. They certainly can solve the underlying location

estimation problem by generally minimizing a given cost function. Nevertheless, they usually

do not take into account the respective structure of the problem explicitly. Contrary to that, in

Section 4.3.2 dedicated location estimation algorithms are introduced. They exploit, e.g., the geo-

metric structure of the problem or specific location estimation constraints.

4.3.1 Numerical methods

With the system model introduced in Section 4.1 and following the weighted non-linear least

squares approach, the target is to minimize the resulting cost function

ε (p) =
(

f̂ − f (p)
)T

Σ−1
nf

(

f̂ − f (p)
)

(4.16)
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with respect to the unknown parameter vector p, yielding

p̂ = argmin
p

ε (p) . (4.17)

Note that contrary to linear least squares, the considered non-linear least squares cost function

ε (p) is in general non-convex.

In the following, we outline iterative optimization techniques to find a suitable estimate

(e.g., [98]). Iterative in this sense means that from a starting or initial value p0 the methods produce

a series of estimates p1,p2, . . . , that should converge to a local minimizer

p̂ = lim
k→∞

pk (4.18)

of the cost function ε (p). Hence, the iterations can be written as

pk+1 = pk +∆pk, (4.19)

where ∆pk is the correction term at iteration step k.

A necessary condition for a value p̂ to be a local minimum, maximum, or inflection point, for

an — for the considered case differentiable — function ε (p), is that the gradient of this function

evaluated at p̂ vanishes, i.e.,

∇pε (p̂) = 0Npar×1, (4.20)

where the gradient of a scalar-valued function ε (p) provides the local direction of steepest ascent

and

∇p =

[

∂

∂p1
,
∂

∂p2
, . . . ,

∂

∂pNpar

]T

∈ R
Npar (4.21)

includes the partial derivatives with respect to the elements of the parameter vector p. For the

particular weighted non-linear least squares cost function in (4.16), the gradient can be calculated

as

∇pε (p) = −Φ (p)T Σ−1
nf

(

f̂ − f (p)
)

, (4.22)

using the Jacobian matrix

Φ (p) = ∇T
p
⊗ f (p) ∈ R

Nobs×Npar. (4.23)

The respective Jacobian matrices for SPH, SPHT, and HYP are shown in Appendix A.2. Hence,

the necessary condition for a local minimum, maximum, or inflection point can be written as

−Φ (p̂)T Σ−1
nf

(

f̂ − f (p̂)
)

= 0Npar×1. (4.24)

The sufficient condition for p̂ to be a local minimum for the function ε (p) additionally requires

that the Hessian matrix of ε (p) is positive definite at p̂, i.e.,

H (p̂) > 0Npar×Npar
, (4.25)

where the Hessian matrix is defined as

H (p) = ∇p∇T
p
ε (p) ∈ R

Npar×Npar . (4.26)

Both necessary and sufficient conditions indicate that a local optimum is found.

Since there are available numerous references for iterative solutions for non-linear least squares

problems (e.g., [98]), we focus here on outlining a set of suitable and commonly used algorithms

in the context of location estimation (cf. [18, 11]).
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Steepest descent algorithm

An intuitive choice for a correction term ∆pk in (4.19) is based on the gradient at the estimate of

the current iteration step (e.g., [98, 99, 11]). Often, the resulting search direction is weighted by

a scalar parameter αk > 0 in order to guarantee stability and convergence of this method. The

resulting algorithm can then be written as

pk+1 = pk + αkΦ
T (pk)Σ

−1
nf

(

f̂ − f (pk)
)

. (4.27)

The parameter αk can either be determined by line-search methods [98] in each iteration step or

set to a constant. This approach is denoted as gradient or steepest descent method. The choice of

the descent direction is locally optimum, however, the final convergence is linear and can be very

slow.

Newton algorithm

The Newton algorithm (e.g., [98]) is based on minimizing the quadratic approximation of the cost

function around the current estimate pk which is given as

ε (p) ≈ ε (pk) +∇pε (pk) (p− pk) +
1

2
(p− pk)

T
H (pk) (p− pk) . (4.28)

The solution of the necessary condition in (4.20) with this approximation yields

∆pk = H−1 (pk)Φ
T (pk)Σ

−1
nf

(

f̂ − f (pk)
)

(4.29)

as correction term of iteration step k. The iterated solution can then be written as

pk+1 = pk + αkH
−1 (pk)Φ

T (pk)Σ
−1
nf

(

f̂ − f (pk)
)

. (4.30)

Similar as for the steepest descent algorithm, the parameter αk can be used to control the con-

vergence of the algorithm. However, in the classical Newton algorithm this parameter is set to

αk = α = 1. Even though this technique can be applied to general cost functions, the method is

usually difficult to implement since the construction of the Hessian matrix and its inversion in each

iteration step is computational complex. Nevertheless, the Newton algorithm has robust and fast

convergence properties.

Gauss-Newton algorithm

The Gauss-Newton algorithm [12, 100, 11] linearizes the non-linear term f (p) in the system

model (4.13) around the current estimate pk yielding

f (p) ≈ f (pk) +Φ (pk) (p− pk) . (4.31)

Using this linearization, the cost function in (4.16) can be rewritten as

ε (p) ≈
(

f̂ − f (pk)−Φ (pk) (p− pk)
)T

Σ−1
nf

(

f̂ − f (pk)−Φ (pk) (p− pk)
)

, (4.32)
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i.e., it is only linear with respect to p. Hence, the respective optimization problem can be solved

by classical linear least squares techniques [12]. The resulting correction term at iteration step k is

∆pk =
(

ΦT (pk)Σ
−1
nf

Φ (pk)
)−1

ΦT (pk)Σ
−1
nf

(

f̂ − f (pk)
)

. (4.33)

It can be used for the iterated solution

pk+1 = pk + αk

(

ΦT (pk)Σ
−1
nf

Φ (pk)
)−1

ΦT (pk)Σ
−1
nf

(

f̂ − f (pk)
)

. (4.34)

Again, a parameter αk can be used to control the convergence of the algorithm, where in the

classical Gauss-Newton algorithm this parameter is set to αk = α = 1. Compared to the Newton

algorithm, where the derivative of the cost function is linearized about the current estimate, in

the Gauss-Newton algorithm the system model is linearized directly with a following application

of linear least squares. Another interpretation when comparing the results in (4.30) and (4.34)

is that the Gauss-Newton algorithm can be seen as an approximation of the Newton algorithm

without using the second-order terms. From a computational complexity point of view the Gauss-

Newton algorithm avoids the calculation of the Hessian matrix compared to the Newton algorithm,

nevertheless, a matrix inversion is required in each iteration step. The convergence is similar to

the Newton algorithm, however, much better compared to the — computational less complex —

steepest descent algorithm.

Levenberg-Marquardt algorithm

Levenberg [101] and Marquardt [102] proposed to use a so-called damped Gauss-Newton method

for the solution of non-linear least squares problems. Basic idea is to modify the correction term

of the Gauss-Newton algorithm to

∆pk =
(

ΦT (pk)Σ
−1
nf

Φ (pk) + βkINpar

)−1

ΦT (pk)Σ
−1
nf

(

f̂ − f (pk)
)

, (4.35)

where βk is denoted as damping parameter. This damping parameter has several effects on the

algorithm: first of all, with βk > 0 the coefficient matrix can be kept positive definite which ensures

that ∆pk is a descent direction. Furthermore, for large values of βk the correction step results in

the correction step of the steepest descent algorithm which is favorable if the current estimate is

far from the optimum. If βk is very small, the correction step results in the correction step of

the Gauss-Newton algorithm which is favorable in the final stages of iteration, when the current

estimate is close to the optimum. The Levenberg-Marquardt algorithm can be extended by implicit

line-search procedures (e.g., [103]). The resulting algorithm is concluded in Algorithm 4.1.

4.3.2 Geometric approaches

The previously presented numerical methods provide a solution for (4.15) without consideration

of the underlying location estimation problem. This is done in an iterative way by starting from

an initial value. As simulation results will show in Section 4.5, they can provide reliable and

accurate estimates. Nevertheless, there were developed numerous closed-form solutions for this

problem that exploit the geometric structure of the problem by taking into account, e.g., spherical

or hyperbolical properties or constraints derived from realistic environments. The performance of

these closed-form algorithms was extensively investigated in [104] and compared with iterative
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Algorithm 4.1 Levenberg-Marquardt algorithm

ν ← 2
A0 ← ΦT (p0)Σ

−1
nf

Φ (p0)

g0 ← ΦT (p0)Σ
−1
nf

(

f̂ − f (p0)
)

β0 ← max
{

[A0]i,i

}

k ← 0
repeat

k ← k + 1
hk−1 ← −

(

Ak−1 + βk−1INpar

)−1
gk−1

pk ← pk−1 + hk−1

ρ← ε (pk−1)− ε (pk)

hT
k−1 (βk−1hk−1 + gk−1)

if ρ > 0 then

Ak ← ΦT (pk)Σ
−1
nf

Φ (pk)

gk ← ΦT (pk)Σ
−1
nf

(

f̂ − f (pk)
)

βk ← βk−1max
{

1
3
, 1− (2ρ− 1)3

}

ν ← 2
else

βk ← βk−1ν
ν ← 2ν

end if

until convergence
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approaches for the spherical class. The outcome of this analysis was, that properly designed iter-

ative approaches are more robust and accurate than respective closed-form solutions at a similar

computational complexity. The investigation in [39] came to a similar conclusion for hyperbolic

approaches.

Nevertheless, to have a benchmark for closed-form estimators, in the following we present a

competing technique to derive location information from timing estimates in a non-iterative way.

We limit a detailed presentation to the algorithm developed by Chan and Ho [105, 106] providing

a closed-form solution for hyperbolic location estimation. Note that at this stage we focus on

a hyperbolic estimator, as the structure of the obtained timing estimates (cf. Chapter 3) in the

cellular network implies hyperbolic processing.

Chan-Ho algorithm

In the Chan-Ho algorithm [105, 106] it was shown that the system model for hyperbolic location

estimation (4.11) — assuming the difference operations defined in (4.12) — can be rewritten as

linear equation system

Gaxa + ha = na (4.36)

for the unknown vector

xa =

[

x

d1

]

∈ R
4, (4.37)

using the matrix

Ga = −











x2 − x1 y2 − y1 z2 − z1 c0 (τ̂2 − τ̂1)
x3 − x1 y3 − y1 z3 − z1 c0 (τ̂3 − τ̂1)

...
...

...
...

xNBS
− x1 yNBS

− y1 zNBS
− z1 c0 (τ̂NBS

− τ̂1)











∈ R
(NBS−1)×4 (4.38)

and the vector

ha =
1

2











c20 (τ̂2 − τ̂1)
2 − x2

2 − y22 − z22 + x2
1 + y21 + z21

c20 (τ̂3 − τ̂1)
2 − x2

3 − y23 − z23 + x2
1 + y21 + z21

...

c20 (τ̂NBS
− τ̂1)

2 − x2
NBS
− y2NBS

− z2NBS
+ x2

1 + y21 + z21











∈ R
NBS−1. (4.39)

The noise term in (4.36) can be computed as

na =











c0d2 (nτ,2 − nτ,1) +
1
2
c20 (nτ,2 − nτ,1)

2

c0d3 (nτ,3 − nτ,1) +
1
2
c20 (nτ,3 − nτ,1)

2

...

c0dNBS
(nτ,NBS

− nτ,1) +
1
2
c20 (nτ,NBS

− nτ,1)
2











∈ R
NBS−1, (4.40)

with covariance matrix

Σna
= c20BaΣnτBa ∈ R

(NBS−1)×(NBS−1), (4.41)

using

Ba =











d2
d3

. . .

dNBS−1











∈ R
(NBS−1)×(NBS−1). (4.42)
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It is obvious that the equation system (4.36) is still non-linear in x, y, and z, since the components

of the unknown vector (4.37) are non-linearly constraint according to (4.5). Nevertheless, for the

ongoing derivation independency is assumed. Therefore, the system of equations (4.36) can simply

be solved by applying standard least squares techniques resulting in

x̂a =









x̂a,1

x̂a,2

x̂a,3

x̂a,4









=
(

GT
a Σ

−1
na

Ga

)−1
GT

a Σ
−1
na

ha. (4.43)

Note that Σna
is not exactly known since (4.42) depends on the true distances between MS and

BSs. Therefore, an appropriate approximation based on intermediate estimates of x̂a has to be

applied [105, 106].

In a second step of the Chan-Ho algorithm the dependency between the variables in xa is taken

into account by solving

Gbxb + hb = nb (4.44)

for the unknown vector

xb =





(x− x1)
2

(y − y1)
2

(z − z1)
2



 ∈ R
3, (4.45)

using the matrix

Gb =









1 0 0
0 1 0
0 0 1
1 1 1









∈ R
4×3 (4.46)

and the vector

hb =









(x̂a,1 − x1)
2

(x̂a,2 − y1)
2

(x̂a,3 − z1)
2

x̂2
a,4









∈ R
4. (4.47)

It results in the linear least squares solution

x̂b =





x̂b,1

x̂b,2

x̂b,3



 =
(

GT
b Σ

−1
nb

Gb

)−1
GT

b Σ
−1
nb

hb, (4.48)

however, also here appropriate approximations to obtain the covariance matrix Σnb
of the noise

vector nb are required [105, 106].

In a third step, the final location estimate can be computed from the intermediate estimate x̂b

according to

x̂ = ±





√

x̂b,1
√

x̂b,2
√

x̂b,3



+





x1

y1
z1



 . (4.49)

The appropriate solution can be found by choosing the location estimate in the region of inter-

est [105, 106]. In case of negative arguments of the square roots, the resulting imaginary parts

should be set to zero. It was further shown in [105, 106] that the this method can achieve the

CRLB for reasonably low noise values.
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Fallback approach

A fallback approach can use — as very simple location estimate — the geometric mean value of

the locations of all involved BSs, i.e.

x̂ =
1

NBS

NBS
∑

µ=1

xµ. (4.50)

This estimate will also be used as initial value for the numerical methods presented in Section 4.3.1

and might be used as fallback solution if no reliable timing information is available.

4.3.3 Further approaches

In the following, we briefly outline other concepts of location estimation with a focus on hyperbolic

processing of timing estimates as the most relevant case in this thesis.

Spherical intersection based approaches

The basic concept of the Chan-Ho algorithm, i.e., the reorganization of the non-linear optimization

problem into a simpler linear optimization problem by introducing a dependent intermediate vari-

able according to (4.37), was already assessed in [107]. This method — later denoted as spherical

intersection algorithm — can simply be derived from the more sophisticated Chan-Ho algorithm

by skipping its second and third steps. The spherical intersection method was further extended by

the spherical interpolation method [108, 109, 110] which takes the dependency of the intermedi-

ate variable into account by appropriate weighting functions. Spherical intersection and spherical

interpolation methods, and also the closed-form solution developed for three available BSs ac-

cording to [111], can be seen as special cases of the Chan-Ho algorithm with reduced accuracy

and less complexity. Other variations of this approach can be found in [112], [113], and [114],

where the principle of Lagrangian multipliers is exploited to obtain appropriate correction terms

for considering the constraints introduced by the dependent intermediate variable.

Squared differences based approaches

The concept of processing squared timing differences instead of hyperbolic timing differences was

proposed in [115, 116] and extensively discussed in [117, 118]. The basic idea of this approach

is that by squaring the time differences the non-convex optimization problem can be turned into

a convex optimization problem. Also here, a dependency of the introduced intermediate variables

due to the squaring operation limits the performance.

Factor graphs based approaches

In [119, 120, 121] a factor graph based location estimation approach was proposed for spheri-

cal location estimation. According to the sum-product algorithm, mean values and variances of

intermediate estimates were passed between the respective factor and variable nodes. In the fac-

tor nodes the various estimates are then processed and combined with each other by reflecting

the spherical properties in (4.5). In [36], this approach was extended for supporting hyperbolic

location estimation.
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Bias mitigation approaches

The class of bias mitigation approaches includes algorithms that limit the influence of biased tim-

ing estimates coming from, e.g., NLOS or multipath propagation conditions. If it is not possible

to mitigate these influences inside the timing estimation algorithms (e.g., by appropriate channel

estimation algorithms), the resulting timing estimates have a positive or negative bias for multipath

propagation and might have an additional positive bias under NLOS conditions. Two principles

can be identified to cope with this problem. In the first, a priori knowledge of the bias statistics

is required. This might also include the knowledge of the LOS/NLOS condition of the individual

links between MS and BSs. It allows an appropriate weighting or setting of constraints to improve

the overall location estimate [122, 123, 124]. A second idea is the exploitation of redundancy

inside the available measurements. If more timing estimates are available than required, interme-

diate location estimates using only a subset of the available timing estimates can be computed.

These intermediate estimates can then be combined to drop out outliers and to identify biased

links [125, 126]. Note that this concept is denoted as receiver autonomous integrity monitoring

(RAIM) in the context of GNSS (e.g., [6]). Even though the outlined approaches are developed for

spherical location estimation, an extension to hyperbolic approaches should be straightforward. A

comprehensive overview about this topic can be found in [127].

Direct location estimation

The basic problem of the discussed classical location estimation techniques is the requirement

that timing information from at least three BSs is needed. Direct location estimation techniques

rely solely on estimates obtained from a single BS. To do so, usually accurate knowledge about

the propagation channel is required. The received signals are then directly processed to obtain

a location estimate, without the intermediate estimate using an appropriate location dependent

parameter like timing information. The concept was generally introduced in [128]. A concise

evaluation of the direct location estimation concept and the extension to multiple antenna systems

can be found in [129, 130].

Extension of iterative least squares approaches

Certainly, also the numerical methods described in Section 4.3.1 can be extended and improved

for dedicated scenarios. Mentioned at this point should be the contribution in [131], where the

Hessian matrix in the Newton algorithm is approximated by a less complex pseudo-Jacobian ma-

trix, the contribution in [132], where semi-definite programming is applied to solve the non-linear

optimization problem taking into account location constraints for the MS determined by the BS lo-

cations, and the approach discussed in [133, 134], where a total least squares approach is proposed

to improve the performance in ill-conditioned geometric situations.

4.4 Cramer-Rao lower bound

The achievable accuracy for static location estimation depends on the geometric relation between

MS and BSs as well as the quality of the timing estimates. The geometric relation is included

in the Jacobian matrix Φ (p) that — according to (4.23) and Appendix A.2 — solely depends on

the locations of MS and BSs. The quality of the timing estimates is included in the covariance

matrix Σnf
(cf. Table 4.1). The resulting CRLB for the parameter vector p can then be computed
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(cf. [12]) as the matrix

Ξ (p) =
(

ΦT (p)Σ−1
nf
Φ (p)

)−1

∈ R
Npar×Npar, (4.51)

where the diagonal elements of Ξ (p) includes the achievable accuracy of the individual compo-

nents of p. It was shown in [96, 97] that the CRLBs for spherical processing with unknown time

offset and hyperbolic processing are related by

ΞHYP (p) =
[

I3 03×1

]

ΞSPHT (p)

[

I3

01×3

]

. (4.52)

Hence, there is no difference in the x-, y-, and z-component of the CRLB for both classifications,

i.e., the location estimation accuracy is identical for spherical processing with unknown time offset

and hyperbolic processing. This is in line with the expectations as both approaches are based on

the same timing information. Contrary to that, the achievable accuracy for spherical processing is

always higher than the accuracy for hyperbolic processing as the time offset between MS and BS

clocks is known for spherical processing, i.e., a priori knowledge is available [96, 97]. Therefore,

in the following we solely focus on spherical and hyperbolic processing. A suitable performance

bound for the absolute location estimation error in meters is then the definition

CRLB = c0

√

trace

(

(

ΦT (p)Σ−1
nf
Φ (p)

)−1
)

. (4.53)

Figure 4.2 shows the CRLB for two-dimensional spherical location estimation exploiting tim-

ing information obtained from the nearest NBS = 3 BSs. The chosen scenario corresponds to

the introduced cellular network according to Figure 3.16. For simplification, we assume that the

noise on the timing estimates on each MS-BS-link corresponds to a standard deviation of 50m,

i.e., Σnτ = σ2
nτ
I3 with σnτ = 50m/c0. Figure 4.2 clearly shows the dependency of the achievable

location estimation accuracy on the location of the MS in the network. At the cell edge the CRLB

is much smaller compared to the situation close to a BS. Furthermore, we observe that the optimum

at the cell edge (around 55m) is smaller than the noise standard deviation corresponding to 50m,

i.e., a dilution of precision by the geometric constellation takes place.

Figure 4.3 shows the resulting CRLB for two-dimensional hyperbolic location estimation. We

observe that the overall achievable accuracy in all possible locations in the network is smaller

compared to spherical location estimation as already shown in [96, 97]. More investigations on

the difference between spherical and hyperbolic processing under geometric aspects can be found

in [135, 136, 137, 138].

4.5 Simulation results

We start with an investigation of the convergence behavior for the numerical methods as described

in Section 4.3.1. As simplified simulation model for the timing estimates we use a fixed standard

deviation of the noise according to σnτ = 50m/c0 (cf. Section 4.4). As initial estimate, i.e.,

starting point for the iterations, we use the fallback approach yielding the geometric mean value

of the NBS = 3 considered nearest BSs. Performance criterion is the RMSE of the static location

estimate, i.e.,

RMSE =
√

‖x− x̂‖2 ≥ CRLB (4.54)
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Figure 4.2: CRLB for spherical location estimation
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Figure 4.3: CRLB for hyperbolic location estimation
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Figure 4.4: RMSE over number of iterations for different numerical methods, spherical location estimation

Figure 4.4 shows the RMSE over the number of iterations for two-dimensional spherical lo-

cation estimation, where it was averaged over several noise realizations. The MS was located at

the cell edge (x = 500m) and close to BS 1 (x = 50m), corresponding to the cellular network

depicted in Figure 3.16. For a MS location at the cell edge, Newton (NE), Gauss-Newton (GN),

and Levenberg-Marquardt (LM) methods converge after around 3 iterations, where the CRLB can

be achieved. The steepest descent (SD) method shows a much slower convergence and it achieves

CRLB after around 14 iterations. Contrary to that, close to BS 1 a more diverse behavior of the

methods can be observed, however, also here all methods achieve the CRLB. We further can ob-

serve the difference in the achievable performance at the two considered MS locations as already

investigated in Section 4.4.

Figure 4.5 depicts the corresponding curves for two-dimensional hyperbolic location estima-

tion. Here, the different convergence behavior becomes much more obvious. At the cell edge, all

methods achieve CRLB after a certain number of iterations, however, in average more iterations

compared to spherical processing are required. Close to BS 1 we have the situation that in the

Gauss-Newton algorithm the matrix to be inverted becomes close to singular resulting in numer-

ical instabilities, and hence, no reliable location estimates for certain noise realizations. In such

a situation the final location estimate is set to the initial value which results in a deviation from

the CRLB using the Gauss-Newton method. Hence, the Gauss-Newton method — even though

exploited in many practical implementations — is not a robust approach especially in geometric

ill-conditioned situations (e.g., close to a BS). The other algorithms outperform Gauss-Newton in

such situation. Note that the algorithm developed by Chan and Ho (not shown here for the sake of

clarity) achieves the CRLB at the cell edge and achieves an RMSE of around 98m close to BS 1.
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Figure 4.5: RMSE over number of iterations for different numerical methods, hyperbolic location estimation

In the following we investigate the average performance of the different algorithms at MS

locations in the whole network, i.e., we average over all MS locations in the grey shaded area

depicted in Figure 3.16 and determine the CDF of the location estimation error

CDF (xerror) = P (‖x̂− x‖2 < xerror) . (4.55)

Hence, this CDF is the probability that the location estimation error is smaller than the value of

the abscissae xerror. For spherical processing the results are shown in Figure 4.6, where still a fixed

standard deviation of the noise according to σnτ = 50m/c0 is used. We observe no fundamental

difference between the different algorithms and all are very close to the CRLB. This is in line

with the results of the convergence behavior in Figure 4.4, where all algorithms converge to the

CRLB. In around 92% of the situations we have a location estimation error of 100m or less. For

comparison, also the results for the fallback (FB) solution are depicted. It is obvious that this

approach can not be used for accurate location estimates.

Figure 4.7 shows the corresponding results for hyperbolic processing. Here, we can observe

a small degradation compared to spherical processing and only in around 90% of the situations a

location estimation error smaller than 100m can be achieved. We can see that steepest descent,

Newton, and Levenberg-Marquardt algorithm perform very similar for this setup and are very

close to the CRLB. The Gauss-Newton algorithm shows a small degradation (around 15m for the

90%-error) and is even outperformed by the closed-form approach by Chan-Ho.

In the following, we assess the location estimation performance with the synchronization algo-

rithms as studied in Chapter 3 for hyperbolic processing of the timing estimates. In that manner,

the cellular network according to Figure 3.16 was simulated at the respective MS locations and the



4.5 Simulation results 81

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

 

 

xerror [m]

C
D

F
(x

e
rr

o
r
)

SD
NE
GN
LM
FB
CRLB

Figure 4.6: CDF of spherical location estimation error, different numerical methods
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Figure 4.7: CDF of hyperbolic location estimation error, different numerical methods
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average location RMSE was determined depending on the different synchronization approaches

(cf. Figure 3.26) under AWGN and exploiting Levenberg-Marquardt as static location estimation

approach. Note that from now on hyperbolic processing and Levenberg-Marquardt as solution

for the static location estimation problem will be the baseline approaches in the rest of this the-

sis. As expected, we see that with the standard pilot-aided synchronization (using coherent cross-

correlation in the frequency domain) only at the cell edge reliable location estimates are possible

(around 60m). Close to BS 1 the location error is higher than 300m. This performance can slightly

be improved if data-aided synchronization using estimated data (ED) is applied for timing estima-

tion with BS 1. Nevertheless, no more than 10m of performance improvement can be achieved by

this method. A much higher performance gain can be obtained by application of data-aided syn-

chronization with interference cancelation (IC) and a combination of both approaches (ED+IC).

Whereas the RMSE close to BS 1 is still higher than 100m the overall error in the cell core could

be reduced remarkably. When applying data-aided interference cancelation in an iterative (IT) way

another performance improvement of up to 50m is possible.

For the results in Figure 4.9 we averaged over several MS locations in the network and deter-

mined the location estimation error CDF. As channel model we used a combination of the multi-

path LOS and NLOS channel models, where a distance dependent LOS probability was assumed

(cf. Appendix A.1). For pilot-aided synchronization, the 90%-error is higher than 300m in the

considered setup. For the same algorithm, in 40% of the situations a location error smaller than

50m could be achieved. The performance improvement by data-aided synchronization with esti-

mated data is only negligible small. When we apply data-aided synchronization with interference

cancelation of BS 1, in 62% of the situations the error is smaller than 50m. For a combination
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Figure 4.9: CDF of static hyperbolic location estimation error, multipath LOS/NLOS channel

of estimated data and interference cancelation this can slightly be improved. For a subsequent

interference cancelation in an iterative manner this can finally be improved to 80%. For compari-

son, also the interference-free situation was simulated. The resulting error is always smaller than

around 10m. We further can see, that all CDFs do not achieve 100%, i.e., in some situations (even

for the best approach the gap is around 10%) the location estimation error is higher than 300m.

Reason for that are mainly outliers of the timing and/or location estimation process. They can be

compensated by the application of suitable dynamic location estimation algorithms as discussed in

the next chapter.





5 Dynamic location estimation with timing information

The location estimation techniques presented in the previous chapter consider a static solution. It

was assumed, that the MS is not moving during the location estimation process, and therefore, the

MS location was treated as a deterministic parameter. In practical systems, the MS locations are

usually correlated over time. For instance — considering a pedestrian user or a driving car — cer-

tain information about the actual location can be derived by exploiting the history of past estimates

and suitable movement or mobility models. This especially includes a restricted movement behav-

ior of the MS, e.g., a MS belonging to a pedestrian can not jump from one location to another in

limited time or a MS belonging to a car can change its direction only smoothly. This behavior can

be used as side-information for location tracking algorithms. The overall approach has to be seen

in the context of the two-step location determination approach as shown in Figure 4.1. Section 5.1

introduces the system model applied for dynamic location estimation in this chapter. In Section 5.2

suitable estimation criteria are presented. Section 5.3 derives the respective tracking algorithms,

in particular the Kalman filter, the extended Kalman filter, and the particle filter are discussed with

a focus on dynamic location estimation. Simulation results evaluate the overall performance in

Section 5.4.

5.1 System model

For the derivation of the algorithms, we assume that the time axis is divided in discrete time

intervals. Further, we presume a causal system, i.e., future states (e.g., defined by location or

velocity) can not impact current and past estimates. However, since the past states can impact the

current and future states, this property has to be reflected in the chosen model. A commonly used

model in the considered dynamic location estimation or location tracking context is a first order

hidden Markov model.

Figure 5.2 depicts such a Markov model (e.g., [139]) with unknown states sk ∈ R
Ns that have

to be estimated in each time-step k ∈ N. It is a hidden Markov model since the states can only

be observed implicitly in terms of the available observations or measurements. The estimation

τ̂k

estimationestimation

Location determination

Timing x̂krk Location

Figure 5.1: Two-step location determination process: dynamic location estimation

85
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sk = fk−1 (sk−1, vk−1)

yk−1

sk−1

yk yk+1

sk sk+1

yk = gk (sk, nk)

Figure 5.2: First order hidden Markov model

process takes into account these observations yk ∈ RNy in each time-step k in addition to the

model parameters.

According to Figure 5.2, the observations yk depend only on the state vector sk at the current

time-step. This dependency is defined by the so-called observation model

yk = gk (sk,nk) . (5.1)

The function

gk : R
Ns × R

Nn → R
Ny (5.2)

is a possibly non-linear function of the state sk and the observation noise nk ∈ RNn (cf. [140]).

The properties of the observation noise nk define the observation uncertainties. Another equivalent

representation of the observation model is based on the conditioned PDF of the observations given

the states, i.e., p (yk|sk).
The state model defines a relation between the previous state sk−1 and the current state sk. It

is given as

sk = fk−1 (sk−1,vk−1) , (5.3)

where the function

fk−1 : R
Ns × R

Nv → R
Ns (5.4)

is a possibly non-linear function of the state sk−1 and the state process noise vk−1 ∈ RNv

(cf. [140]). The properties of the state process noise vk−1 define how correlated the state changes

can be. The equivalent representation of the state model is based on the conditioned PDF

p (sk|sk−1). In the location estimation context the state vector can include information about

the MS location or its velocity. The corresponding state model is determined by the mobility or

movement behavior of the MS. Therefore, it is often denoted as mobility model.

Following the Bayesian approach (e.g., [12, 20, 140]), it is required that the PDF of the cur-

rent state is estimated by considering all previous and the current observations, i.e., the PDF

p (sk|y1,y2, . . . ,yk) has to be constructed. This is done recursively by assuming that the a priori

distribution of the state s0 is known. To do so, in the first step of Bayesian estimation the state

model is used to obtain the a priori PDF of the state at time-step k by

p (sk|y1,y2, . . . ,yk−1) =

∫

sk−1

p (sk|sk−1) p (sk−1|y1,y2, . . . ,yk−1) dsk−1. (5.5)

The state PDF p (sk|sk−1) is defined by the state equation and the known statistics of the state

noise vk−1. This step is denoted as prediction step since the new state is estimated as a prediction

of the old state. At this stage the current observations are not yet used.
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Figure 5.3: Recursive Bayesian estimation

For the second step it is required that at time-step k the observations yk become available. They

can be used to update the a priori PDF by the Bayesian rule resulting in a normalized product of

the likelihood PDF p (yk|sk) and the a priori PDF, i.e.,

p (sk|y1,y2, . . . ,yk) =
p (yk|sk) p (sk|y1,y2, . . . ,yk−1)

p (yk|y1,y2, . . . ,yk−1)
, (5.6)

with the normalization constant

p (yk|y1,y2, . . . ,yk−1) =

∫

sk

p (yk|sk) p (sk|y1,y2, . . . ,yk−1) dsk. (5.7)

Therefore, the a posteriori PDF can be calculated by applying the observation model and the known

statistics of the observation noise nk. Since the observations of time-step k are used to modify the

a priori PDF for obtaining the a posteriori PDF, this step is called update step. The complete

principle of the recursive Bayesian estimation is concluded in Figure 5.3 (cf. [139]).

5.2 Estimation criteria

The solution that maximizes the a posteriori PDF is the MAP estimator

ŝMAP,k = argmax
sk

p (sk|y1,y2, . . . ,yk) . (5.8)

Contrary to that, the minimum mean squared error (MMSE) estimator computes the expectation

of the PDF, i.e.,

ŝMMSE,k =

∫

sk

sk p (sk|y1,y2, . . . ,yk) dsk, (5.9)

where for Gaussian noise distributions both estimators yield the same result.
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Generally, there is no closed-form representation of the required PDFs in Bayesian estima-

tion [140]. One option to cope with this problem are certain assumptions for the models or ap-

proximations: the classical Kalman filter approach presumes linear models and Gaussian noise

distributions. It is described in Section 5.3.1. The extended Kalman filter approximates non-linear

models in a linearization step which will be shown in Section 5.3.2. Another option to compute the

PDFs is numerical integration. An approximate solution by Monte-Carlo methods is the particle

filter being described in Section 5.3.3. All filters will be examined with a special focus on dynamic

location estimation or location tracking applications.

5.3 Estimation algorithms

5.3.1 Kalman filter

The Kalman filter (cf. [19, 12]) is one of the most widely used implementations of Bayesian filters.

It is a generalization of the Wiener filter, where the restriction that signal and noise have to be

stationary is no longer necessary. It is a Bayesian sequential MMSE estimator of a signal embedded

in noise, where the signal is characterized by a state model. For that model we focus on the

first order hidden Markov model described before. One of the main advantages of Kalman filters

is the computational efficiency in the implementation and its inherent robustness against model

inaccuracies.

To perform optimum, the following assumptions must hold for the state model in (5.3) and the

observation model in (5.1):

• State process noise vk ∼ N (0Ns ,Qk) and observation noise nk ∼ N
(

0Ny ,Ck

)

are drawn

from a zero-mean Gaussian distribution with known covariances. Note that for a general

derivation it would not even be required that the noise is zero-mean (e.g., [12]), however,

this is assumed here for simplification.

• Function fk−1 (sk−1,vk−1) is a known linear function of sk−1 and vk−1.

• Function gk (sk,nk) is a known linear function of sk and nk.

If these requirements are met, the Kalman filter is the optimum MMSE estimator [12]. If these

assumptions do not hold, it is still the optimum linear MMSE estimator.

For the fulfilled assumptions, we can rewrite (5.3) and (5.1) as

sk = Fk−1sk−1 + vk−1 (5.10)

and

yk = Gksk + nk. (5.11)

The matrix Fk ∈ RNs×Ns is denoted as state matrix and includes the linear dependencies between

the states of time-steps k and k − 1. The observation matrix Gk ∈ RNy×Ns reflects the linear

relation between the observations and the state at time-step k. In general, all matrices can be time-

variant. In the context of location estimation applications this could reflect, e.g., changing mobility

models over time or a changing number of available observations. Since all PDFs (including a

priori, a posteriori, and likelihood) are Gaussian, they can be represented by mean values and

covariance matrices. This allows a simple derivation of the estimates in terms of matrix-vector

notation. The optimum filter equations can then be written as follows (cf. [12]):
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In a first step (prediction) the state of the current time-step is calculated taking into account the

state of the previous time-step and the knowledge of the state matrix Fk−1. Then, the estimate of

the state after prediction is

ŝk|k−1 = Fk−1ŝk−1|k−1, (5.12)

with the estimate of the previous time-step ŝk−1|k−1. Additionally, the corresponding MMSE or

covariance matrix after that prediction step can be calculated as

Mk|k−1 = Fk−1Mk−1|k−1F
T
k−1 +Qk ∈ R

Ns×Ns , (5.13)

where Mk−1|k−1 is the MMSE matrix of the previous time-step. From the Bayesian PDF point of

view, the a priori PDF in (5.5) can be represented as a Gaussian distribution according to

p (sk|y1,y2, . . . ,yk−1) ∼ N
(

ŝk|k−1,Mk|k−1

)

. (5.14)

The Kalman gain matrix includes a weighting between the predicted estimate and the current

observations. It is given as

Kk = Mk|k−1G
T
k

(

Ck +GkMk|k−1G
T
k

)−1 ∈ R
Ns×Ny . (5.15)

Finally, the correction step combines the predicted estimates with the current observations

weighted with the Kalman gain matrix. This results in the final estimate of the state vector

ŝk|k = ŝk|k−1 +Kk

(

yk −Gkŝk|k−1

)

. (5.16)

The corresponding MMSE or covariance matrix after the correction step is obtained as

Mk|k = (INs −KkGk)Mk|k−1. (5.17)

The resulting a posteriori PDF can then be written as Gaussian distribution according to

p (sk|y1,y2, . . . ,yk) ∼ N
(

ŝk|k,Mk|k

)

. (5.18)

The Kalman filter is initialized with s0|0 and M0|0 determined by the a priori distribution of the

initial state. We observe that the MMSE matrix can be computed independently of the state es-

timates. Furthermore, it only depends on model parameters and not on the actual observations.

Hence, it can be calculated in advance or off-line and provides the expected accuracy for the state

estimates over time without processing the observations.

In the following, we apply the Kalman filter described before explicitly for dynamic location

estimation. To do so, we assume that the state vector that has to be estimated consists of the

three-dimensional location and velocity of the MS at time-step k, i.e.,

sk =
[

xk, yk, zk, vx,k, vy,k, vz,k
]T

. (5.19)

As mobility model, we choose an approach corresponding to random force [141]. For that, the

resulting state matrix is given as

Fk = F =

[

I3 Tsamp, dynI3

03 I3

]

. (5.20)
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The sampling time Tsamp, dyn highly depends on the application and describes the update rate of

the filter. This includes the observation period as well as the provision of location estimates. For

pedestrian applications sampling times of around 1 s are usually sufficient. The covariance matrix

of the state noise is the diagonal matrix

Qk = Q = σ2
Q

[(

T 2
samp, dyn/2

)

I3 03

03 T 2
samp, dynI3

]

. (5.21)

It includes the variance of the mobility (process drift) in x-, y-, and z-direction for location and

velocity. This model implies that the change of the MS location is controlled by state noise with a

certain variance σ2
Q. This mobility model is often applied because of its simplicity. Nevertheless,

it is inadequate to reflect MSs with high mobility, i.e., MSs with rapidly changing directions or

velocities. A comprehensive overview of more sophisticated state mobility models can be found

in [141].

For the observation model, we assume that in every time-step a location estimate is available.

This could be realized by the algorithms for static location estimation as derived in Chapter 4.

Hence, the observations are given in terms of location estimates and have a linear dependency with

respect to the state vector which is reflected in the observation matrix

Gk = G =
[

I3 03

]

. (5.22)

We do not have available any velocity estimates as the algorithms in Chapter 4 solely provide

location estimates. Therefore, the velocity is handled as hidden state and is estimated implicitly

in the filter equations without using any direct velocity estimates. Finally, the covariance matrix

of the observation noise Ck consists of the variance of the static location estimates and can be

approximated by exploiting the static CRLB as described in Section 4.4.

5.3.2 Extended Kalman filter

The performance of the Kalman filter is optimum if the conditions on Gaussianity and linearity are

fulfilled completely. However, simulation results for static location estimation (e.g., in Figure 4.5)

have shown, that in certain situations (e.g., if the MS is close to a BS) the performance is limited.

Further, the Kalman filter requires that the underlying entity which provides the static location

estimates performs optimum, i.e., in every time-step reasonably good timing estimates have to be

available and the resulting estimates have further to fulfill the Gaussian assumption. Especially in

critical location estimation situations (e.g., in an urban canyon or indoor) it may happen quite often

that only less then the required number of timing estimates are available for a certain time. Then,

the Kalman filter would totally fail since the static solution can not provide any reliable estimate.

The extended Kalman filter (e.g., [142, 12]) is a much more flexible tool being able to handle

directly non-linear models. We assume that the state model is given as

sk = fk−1 (sk−1) + vk−1 (5.23)

and the observation model can be written as

yk = gk (sk) + nk. (5.24)

Basic idea of the extended Kalman filter is a linearization of fk−1 (sk−1) around the estimate

of sk−1. We obtain

fk−1 (sk−1) ≈ fk−1

(

ŝk−1|k−1

)

+ Fk−1

(

sk−1 − ŝk−1|k−1

)

, (5.25)
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with the Jacobian matrix

Fk−1 =
∂fk−1 (sk−1)

∂sk−1

∣

∣

∣

∣

sk−1=ŝk−1|k−1

∈ R
Ns×Ns. (5.26)

Equivalently, we linearize gk (sk) about the estimate of sk, i.e.,

gk (sk) ≈ gk

(

ŝk|k−1

)

+Gk

(

sk − ŝk|k−1

)

, (5.27)

with the Jacobian matrix

Gk =
∂gk (sk)

∂sk

∣

∣

∣

∣

sk=ŝk|k−1

∈ R
Ny×Ns . (5.28)

Obviously, the Jacobian matrices have to be re-calculated in every time-step since they depend on

the estimates of the previous time-steps. However, the resulting structure of the extended Kalman

filter as pointed out in the following is very similar to the Kalman filter solution [12]:

It starts with the prediction, where knowledge of the state model is applied to obtain

ŝk|k−1 = fk

(

ŝk−1|k−1

)

, (5.29)

with the estimate of the previous time-step ŝk−1|k−1. Similarly, the corresponding MMSE or co-

variance matrix after that prediction step is

Mk|k−1 = Fk−1Mk−1|k−1F
T
k−1 +Qk. (5.30)

Due to the linearization step the resulting estimated a priori PDF in the Bayesian sense is a Gaus-

sian approximation of the true a priori PDF. Hence, the estimated a priori PDF is given as

p (sk|y1,y2, . . . ,yk−1) ≈ N
(

ŝk|k−1,Mk|k−1

)

. (5.31)

The Kalman gain matrix can be obtained by

Kk = Mk|k−1G
T
k

(

Ck +GkMk|k−1G
T
k

)−1
, (5.32)

Finally, the correction step combines the predicted estimates with the current observations

weighted with the Kalman gain matrix. This results in the final estimate of the state vector be-

ing computed as

ŝk|k = ŝk|k−1 +Kk

(

yk − gk

(

ŝk|k−1

))

. (5.33)

The corresponding MMSE or covariance matrix after correction is obtained as

Mk|k = (INs −KkGk)Mk|k−1. (5.34)

Also the resulting a posteriori PDF is a Gaussian distribution of the true a posteriori PDF. It is

given as

p (sk|y1,y2, . . . ,yk) ≈ N
(

ŝk|k,Mk|k

)

. (5.35)

Since the MMSE matrix depends on the Jacobian matrices (we perform a dynamic linearization

for the extended Kalman filter), an off-line calculation similar as for the Kalman filter is no longer

possible. Further, the extended Kalman filter has no optimality properties, i.e., its accuracy depends
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on the actual quality of the linearization. Nevertheless, the extended Kalman filter turns out to be

a flexible and robust approach widely used for dynamic location estimation applications.

Considering the location estimation example (as started for the Kalman filter in Section 5.3.1),

the state vector sk is defined in the same way for spherical and hyperbolic processing. For spheri-

cal processing with unknown time offset it is defined as
[

xk, yk, zk, vx,k, vy,k, vz,k, bclock

]T
since the

time offset needs to be estimated as an additional parameter. Further, we assume the same state

model, i.e., a linearization of the state equation is not necessary. Therefore, the prediction step

is the same for extended Kalman filter and Kalman filter. As observation we process directly the

timing estimates — contrary to the Kalman filter, where these timing estimates were processed be-

forehand by a static location estimation. Since the timing estimates are non-linear with respect to

the location, for the update step a linearization of the observation model is necessary. The resulting

Jacobian matrices that are required for the extended Kalman filter computation are concluded in

Appendix A.3. Note that these Jacobian matrices can be seen as time-variant versions of the Jaco-

bian matrices for the static location estimation. Finally, the covariance matrix of the observation

noise Ck consists of the variance of the timing estimates and can be approximated by exploiting

the respective CRLB as described in Section 3.2.3.

5.3.3 Particle filter

Another important class of Bayesian filters is based on approximation of integrals by numerical in-

tegration. These methods are commonly denoted as particle filters (PFs) [20, 140, 143] and became

quite popular for location tracking applications (e.g., [144, 145]). PFs are based on a sequential

Monte-Carlo methodology (cf. [146]) and calculate recursively the relevant PDFs by importance

sampling and approximation of PDFs with discrete random measures. The basic principle of par-

ticle filtering is the representation of the state PDF by a defined number of hypotheses, hence, it

does not implement an analytical function. The PF approximates the optimum solution numeri-

cally based on the state model, rather than applying an optimum filter to an approximate model as it

can be seen for the Kalman filter. Compared to Kalman filters the PFs have usually a much higher

complexity depending on the number of particles that have to be generated to model the PDF.

In addition, they can suffer from phenomena like sample degeneracy or sample impoverishment

causing unstable behavior.

In PFs (cf. [145]), the a posteriori PDF is represented as the weighted sum

p (sk|y1,y2, . . . ,yk) =

Np
∑

i=1

wi
kδ

(

sk − sik
)

, (5.36)

where each particle consists of a state sik and a weight wi
k. The particles are drawn according to

the principle of importance sampling from a proposal density q (sk|sik,yk). The corresponding

weights can then be calculated by

wi
k ∼ wi

k−1

p (yk|sik) p
(

sik|sik−1

)

q (sk|sik,yk)
. (5.37)

The generic PF applies the optimum proposal density which in practice is difficult to deter-

mine. Therefore, often the so-called sampling importance resampling PF (SIR-PF) is implemented

(cf. [147, 20, 140]). It only requires that the state and observation functions fk (·) and gk (·) are

known, and that sampling of realizations from the state noise distribution of vk−1 as well as the
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a priori distribution is possible. In addition, the likelihood function p (sk|yk) has to be available

for pointwise evaluation. Hence, compared to the generic PF it can be said that for the SIR-PF the

proposal density is chosen to be the a priori density according to p
(

sk|sik−1

)

.

In the first step of SIR-PF, for each particle i = 1, 2, . . . , Np, a sample from the proposal density

has to be drawn, i.e.,

sik ∼ p
(

sk|sik−1

)

. (5.38)

This can be realized by generating a state noise sample vi
k−1 with the corresponding PDF p (vk−1)

and setting

sik = fk−1

(

sik−1,v
i
k−1

)

. (5.39)

In a second step, for each particle the weights have to be calculated. With the chosen proposal

density, this step reduces to

wi
k = p

(

yk|sik
)

. (5.40)

Finally, all weights have to be normalized by

wi
k =

wi
k

W
, (5.41)

using

W =

Np
∑

i=1

wi
k. (5.42)

A crucial problem of the PF is the degeneracy phenomenon [20, 140]. It points out that af-

ter a few iterations, all but one particle will have weights very close to zero. It was shown that

the variance of the weights can only increase over time, and hence, it is not possible to avoid the

degeneracy problem. One approach to reduce this effect is simply to use a very large number of

particles. However, this is often too inefficient from a computational complexity point of view. A

much smarter method is the application of resampling where degeneracy can be reduced remark-

ably. Idea is an elimination of particles with low weights to concentrate on particles having large

weights. In this manner, a new set of states s̃ik, i = 1, 2, . . . , Np, is created by resampling Np times

from an approximate discrete representation of

p (sk|y1,y2, . . . ,yk) ∼
Np
∑

i=1

wi
kδ

(

sk − sik
)

. (5.43)

Given

P
(

s̃
j
k = sik

)

= wj
k, (5.44)

the resulting sample is an independent and identically distributed sample from the discrete den-

sity. Even though the degeneracy can be reduced by resampling, another effect denoted as sample

impoverishment is introduced in practical implementations. Besides the problem of limited par-

allelization due to the fact that the particles have to be combined, particles with large weights are

statistically selected much more often then the other particles. So the diversity among the particles

is reduced since the resulting sample will contain many repeated points. Especially for systems

with small state noise the sample impoverishment can be a serious problems and all particles can

be concentrated to a single state after a few iterations.

In addition to the SIR-PF, there exist several other PF approaches. Briefly mentioned at this

point should be the auxiliary sampling importance resampling PF (ASIR-PF) [148, 140]. It can
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be seen as an implementation of the SIR-PF with resampling at the previous time-step, i.e., the

ASIR-PF generates points from the samples at time-step k − 1. They are usually much closer to

the true state if conditioned on the current observations. Compared to the SIR-PF, the ASIR-PF is

not so sensitive against outliers if the state noise is small. Further, the weights are distributed more

evenly. However, for large state noise the performance of the ASIR-PF can be worse compared to

the SIR-PF.

Another PF implementation is the regularized PF (R-PF) [149, 140]. Compared to the SIR-

PF, the R-PF has a different resampling stage. Whereas in the SIR-PF the resampling is done

based on a discrete approximation, the R-PF resamples from a continuous approximation of the a

posteriori PDF where a Kernel approach is applied. The R-PF outperforms the SIR-PF particularly

in situations where sample impoverishment limits the performance. This could be situations with,

e.g., low state noise.

5.3.4 Further approaches

Grid based methods

If the state space is discrete, and hence, does only include a finite number of states, grid based

approaches can provide the optimum solution [140, 20]. Assuming that the state vector at time-step

k − 1 consists of Ng states sik−1, i = 1, 2, . . . , Ng. Then, the a posteriori PDF can be represented

as a weighted sum of the discrete states, i.e.,

p (sk−1|y1,y2, . . . ,yk−1) =

Ng
∑

i=1

wi
k−1|k−1δ

(

sk−1 − sik−1

)

. (5.45)

Using (5.45) with (5.5), the prediction equation can be written as

p (sk|y1,y2, . . . ,yk−1) =

Ng
∑

i=1

wi
k|k−1δ

(

sk − sik
)

, (5.46)

with the predicted weights

wi
k|k−1 =

Ng
∑

j=1

wj
k−1|k−1 p

(

sik|sjk−1

)

. (5.47)

Substituting (5.45) into (5.6), the update equation is given as

p (sk|y1,y2, . . . ,yk) =

Ng
∑

i=1

wi
k|kδ

(

sk − sik
)

, (5.48)

with the updated weights

wi
k|k =

Ng
∑

j=1

wj
k|k−1 p

(

yk|sjk
)

wi
k|k−1 p (yk|sik)

. (5.49)
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Second order extended Kalman filter

The extended Kalman filter does only take into account a linearization around the current state

estimate. To approximate the non-linearities in a better way, besides the Jacobian matrices also

Hessian matrices including the second derivatives can be included. These filters are denoted as

second order extended Kalman filters or modified Gaussian second order filters. Derivations in the

context of dynamic location estimation applications can be found in [141] and [150]. Even more

sophisticated approaches including robust extended Kalman filtering are proposed in [151].

Unscented Kalman filter

The extended Kalman filter has two important drawbacks [152]. On the one hand, the derivation of

the Jacobian matrices, i.e., the linear approximations of the non-linear functions, may be complex

and can cause implementation difficulties. On the other hand, these linearizations can lead to filter

instabilities if the time-step intervals are not sufficiently small, especially in highly non-linear en-

vironments. To address these limitations the unscented Kalman filter can be an alternative [153].

The philosophy of the unscented Kalman filter is that it uses the premise, that it is easier to approx-

imate a Gaussian distribution than it is to approximate an arbitrary non-linear function. Hence,

instead of linearizing the system by Jacobian matrices the unscented Kalman filter uses a deter-

ministic sampling approach to capture the mean and covariance estimates with a minimum set of

sample points (minimum but sufficient). These points are chosen that their mean, covariance, and

possibly also higher order moments, match the corresponding Gaussian random variables.

The idea of unscented Kalman filter is based on the unscented transform that was proposed

in [154] with the approach, that the non-linear function is applied to a set of points and the statistics

of the transformed points can be used to estimate the transformed mean and covariance. Contrary

to PFs the chosen points are not drawn randomly. These so-called sigma points are chosen deter-

ministically with respect to certain given mean and covariance properties. These sigma points are

then propagated through the non-linearities determined by the state or observation model. After-

wards, the sigma-points are weighted and finally recombined to produce the estimated mean and

covariance. Different approaches to obtain a valid set of sigma points are provided in [155].

Gaussian mixture filter

Gaussian mixture filters or Gaussian sum filters approximate a priori and a posteriori PDFs by

Gaussian mixtures which is a convex combination of Gaussian PDFs. It can be seen as an ex-

tension or generalization of the Kalman filtering approach. Limiting factor of Gaussian mixture

filters is the number of included PDFs (similar as the number of particles in PF approaches). A

comprehensive overview in the context of dynamic location estimation can be found in [141].

Rao-Blackwellization

With increasing number of states that have to be estimated, also the number of required parti-

cles needs to be increased. For instance, a state vector in inertial navigation requires a very high

number of particles. The idea of Rao-Blackwellization (cf. [156]) which is sometimes denoted as

marginalization is to reduce the number of particles by using a Kalman filter for the part of the

system model that is linear. The non-linear part of the system model is still be treated by a PF.

Therefore, we split the state vector into a linear and a non-linear part according to

sk = [sl,k, snl,k]
T . (5.50)
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Then, the Rao-Blackwellized PF factorizes the a posteriori PDF into

p (sl,k, snl,k|y1,y2, . . . ,yk) = p (sl|snl,y1,y2, . . . ,yk) p (snl|y1,y2, . . . ,yk) , (5.51)

where each of the conditional PDFs is handled by different filters. For the example of linear and

non-linear separation this could be a Kalman filter and PF. But this is not a limitation of the Rao-

Blackwellized filter since it allows arbitrary combinations of filters (e.g., Kalman filter and un-

scented Kalman filter as analyzed in [157]). It can be shown that for a Rao-Blackwellized PF with

a fixed number of particles the performance is always better than for a standard PF. Also nested

combinations handling more than two different sub-states are possible. For instance, in [158] an

implementation that combines Kalman filter, PF, and grid based methods is investigated.

Map matching

In the context of particle filtering often map matching is discussed. The idea of map matching is

to use map information as additional or side information in the filtering algorithms. For instance,

if a street map is available it can be easily included in car tracking algorithms. Since it is usually

only allowed to drive on the streets, hypotheses or estimates being off-road can be dropped out. In

the same way, floor plans of buildings can be used to improve pedestrian tracking. In this context,

it is used that pedestrians can not go through walls which can be considered in the algorithms.

One straightforward approach can be implemented in a PF. For instance, particles that proceed

through walls can be weighted quite low or even dropped out. Also for extended Kalman filter

implementations map matching solutions are proposed [159].

5.4 Simulation results

In the following, we evaluate Kalman filter, extended Kalman filter, and particle filter in the dy-

namic location estimation context. As scenario we exploit the cellular network situation as depicted

in Figure 5.4. Here, the MS is moving along a track with a constant speed of 2m/s. For the timing

information we use the same parameters as already used for static location estimation described in

Section 4.5. With the NBS = 3 nearest BSs timing estimation is performed, where the timing esti-

mates are impacted by AWGN with a fixed standard deviation according to σnτ = 50m/c0. For the

static location estimation we exploit the Levenberg-Marquardt algorithm. The (linear) Kalman fil-

ter approach then smoothes the static location estimates by considering the mobility model, where

we assume σ2
Q = 0.1 for the covariance matrix of the state model according to (5.21). This param-

eter controls, how much we trust the mobility model, i.e., it controls how new observations can

lead to a deviation from the current track. The extended Kalman filter exploits directly the timing

information — without intermediate step of static location estimation. For the particle filter we

implemented the SIR-PF with Np = 1000 particles. This is computational much more complex

compared to Kalman and extended Kalman filter, however, will give us a performance bound for

the considered setup.

Figure 5.5 shows the time-variant RMSE for hyperbolic processing over the time-step k for

the simulated track, where it was averaged over several noise realizations. First of all, we observe

that there is a high dependency of the static solution on the actual location within the cellular

network. For instance, close to BS 1 (around time-steps 200 to 300) there is a high performance

loss compared to the other locations and the resulting RMSE is higher than 100m. When these

static location estimates are smoothed by the Kalman filter (KF), the overall performance can
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Figure 5.4: Cellular network with MS track

be improved to around 20m. Nevertheless, also here a slight performance degradation around

BS 1 can be observed. The extended Kalman filter (EKF) slightly outperforms the Kalman filter,

especially close to BS 1. The particle filter (PF) gives no further performance improvement, hence,

for the considered scenario the extended Kalman filter is a reasonably reliable approach.

The resulting CDF of the dynamic location estimation error is depicted in Figure 5.6. For these

simulations random tracks with a duration of 100 seconds were generated within the grey depicted

area of Figure 5.4. For static location estimation we can achieve a location estimation error which

is smaller than 50m in around 45% of the situations. With a Kalman filter this can be improved to

around 92%. For the application of an extended Kalman filter we achieve around 99%, however,

also here no further performance improvement can be realized with a particle filter.

Finally, we evaluate the CDF performance when the timing estimation algorithms according to

Chapter 3 are applied (cf. Figure 5.7). We focus here on the best-performing iterative timing esti-

mation approach under a combined multipath LOS/NLOS channel model (cf. Appendix A.1). As

already could be seen in Figure 4.9, with static location estimation in 80% of the situations an er-

ror smaller than 50m was possible. For comparison also the results for the pilot-aided approach is

depicted which solely achieved 40%. With the Kalman filter the overall performance could be im-

proved to around 90% and with the extended Kalman filter — which shows a similar performance

compared to the particle filter — to around 97%. Even more impressive is the gained coverage by

application of dynamic location estimation. Whereas for the static approach there still was a gap

of the CDF to 100%, i.e., there were location estimation errors higher than 300m in around 10%
of the situations, this could be reduced to only a few outliers (below 1%) when applying extended

Kalman filter or particle filter. This is a remarkable improvement compared to the state-of-the-art

approaches.
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6 Data fusion with GNSS signals

As a final step we will show that the derived timing estimation and location estimation algorithms

are suited for data fusion as well. As application scenario, we will assess the fusion process of

signals received from GNSS and LTE. For GNSS we are choosing GPS, where a critical location

estimation environment is assumed. As mentioned already in Chapter 1.1, LOS access to at least

four satellites is required to get reliable location estimates. However, in critical environments like

urban canyons or indoor this can not be guaranteed. In these situations we propose the exploitation

of LTE to support GPS, i.e., missing GPS satellites should be compensated by timing estimates

derived from LTE BSs.

The GPS constellation depends on the location of the MS on earth and on the time. Fig-

ure 6.1a shows an example of such a constellation by depicting a so-called skyplot. Here, eight

GPS satellites can be observed at different azimuth and elevation angles with respect to the actual

MS location. Certainly, the satellites change their location over time, however, for the considered

setup we assume them to be constant for the duration of one simulated MS track.

To simulate a critical environment for location estimation, we emulate an urban canyon sit-

uation. To do so, we assume that not all satellites are visible during the MS track by applying

the satellite visibility as depicted in Figure 6.1b. We observe, that at the begin of the MS track

all eight satellites are visible. When the MS enters the urban canyon, more and more satellites

are dropped out (e.g., due to blocking of the LOS signal by buildings) until — for a period of 10
seconds no satellite is visible. Then, more and more satellites can be detected again. We further
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Figure 6.2: CDF of dynamic location estimation error for data fusion of GPS and LTE

assume that only the satellites with the highest elevations can be detected according to Figure 6.1a.

This reflects the reality considering a typical urban canyon situation.

The timing estimates of the satellite links are assumed to be impacted by AWGN with a fixed

standard deviation according to σnτ = 10m/c0. As discussed already in Section 4.1, GNSS,

i.e., also GPS, requires a spherical processing of the timing estimates with unknown time offset.

However, as we have seen in Section 4.4, an equivalent hyperbolic processing is possible without

loss of any generality. This makes the data fusion process between GPS and LTE very simple,

since the LTE based timing estimates are also processed in a hyperbolic way. Therefore, there is

no difference if the timing estimates are obtained by GPS or LTE, i.e., the respective observations

can simply be combined. The overall estimation process (e.g., using a static or dynamic solution)

is then the same as for separated processing.

Figure 6.2 shows finally the CDF results for dynamic location estimation using an extended

Kalman filter for data fusion of GPS and LTE under the assumptions as outlined before. For the

LTE system we apply the best-performing iterative approach and assume a combined multipath

LOS/NLOS channel model according to Appendix A.1. For stand-alone LTE, we observe that the

depicted location estimation CDF results in an estimation error smaller than 10m in around 63%
of the situations. For stand-alone GPS, we apply the urban canyon situation as described before

and additionally average over several locations on earth for obtaining various satellite constella-

tions. The resulting CDF is at around 65% for location estimation errors smaller than 10m, i.e.,

only slightly better compared to stand-alone LTE. If we combine both approaches we can achieve

around 90%. For comparison also the optimum GPS performance is depicted, where it is assumed

that access to all satellites is possible. Hence, we observe that — at least partly — missing satel-

lites can be compensated by timing estimates coming from an LTE system and improve the overall

performance. The extension to more fusion sources is straightforward, e.g., in [17] additionally

the European Galileo system is fused with GPS and LTE.



7 Conclusions

In this thesis, location determination techniques were proposed and assessed. A focus has been

set to OFDM based mobile radio systems and to processing of timing information which is the

most accurate location dependent parameter in the context of location determination approaches.

In Chapter 3, timing estimation algorithms for OFDM were investigated and assessed. By an

analysis of the system parameters it could be shown, that OFDM is in general suitable to provide

reliable timing estimates. For instance, for the considered LTE system at a bandwidth of 20MHz

the achievable accuracy is in the centimeter-region if one OFDM symbol is exploited for timing

estimation. Pilot-aided synchronization algorithms were investigated and assessed with respect to

their timing estimation capabilities and the corresponding CRLB was derived. This absolute per-

formance bound is difficult to achieve in practical systems. Besides the well-known performance

limiting factors like multipath and NLOS propagation (which are not explicitly studied in this the-

sis), in a cellular LTE system other effects limit the performance. As simulations have shown, one

limiting factor is the reduced number of pilots and synchronization symbols in an OFDM frame

that can be exploited for timing estimation. From a communications point of view the number

of pilots should be as small as possible for an increased spectral efficiency, however, for timing

estimation, and hence, location estimation, as many pilots as possible should be available in an

OFDM frame. Therefore, a data-aided approach was proposed that exploit already decided data as

pilot symbols for an improved timing estimation. With this technique especially the performance

of the serving BS could be improved. A second limiting factor is inter-cell interference, that limits

the performance close to BSs. To overcome this problem, an interference cancelation procedure

was proposed to reduce the interference of the strongest (serving) cell in the network for a better

reception of the out-of-cell BSs. With that idea, the performance can be improved remarkably.

Both approaches can be combined and extended by applying them in an iterative way. With this

procedure a performance improvement of the timing estimation RMSE of nearly one magnitude

could be realized.

The timing estimates were then processed by a static location estimation technique that was dis-

cussed in Chapter 4. Several approaches for processing these estimates were considered, including

general numerical approaches as well as procedures that take into account the geometric properties

of the location estimation problem. It turned out, that the Levenberg-Marquardt algorithm provides

the most reliable and computational efficient estimates in the considered context and was chosen

as the baseline approach during this thesis. The assessment of the different algorithms was per-

formed by using a simplified noise model with a fixed standard deviation. Then, the performance

of location determination using the timing estimates obtained with the algorithms in Chapter 3 was

analyzed. With the proposed best-performing iterative timing estimation approach, e.g., a location
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estimation error smaller than 50m could be realized in 80% of the situations, whereas with the

state-of-the-art pilot-aided approach solely 40% could be achieved.

To further include the mobility of the MS, dynamic location estimation schemes were analyzed

in Chapter 5. The focus of these investigations was on Bayesian approaches, where especially the

Kalman filter, the extended Kalman filter and the particle filter were part of the simulations. It

turned out, that — although not the optimum approach for the considered scenario — the extended

Kalman filter provided a robust, reliable, and computational efficient solution outperforming the

linear Kalman filter and close to the near-optimum Particle filter. With the extended Kalman filter,

the performance could be improved in a way, that in 97% of the situations a location estimation

error smaller than 50m was achieved.

Finally, in Chapter 6 it was shown that the general framework presented in this thesis allows a

simple extension of the proposed algorithms to fuse timing estimates from a mobile radio systems

also with observations from other sources. As example the fusion of LTE and GPS was evaluated.

It was shown that timing estimates from a mobile radio system can compensate missing satellites

in critical location estimation situations like urban canyons.



A Appendix

A.1 Channel models

The channel models are represented in terms of their small scale parameters defined by the average

power delay profile including the path index l, the average path power E
{

|hl|2
}

, and the fading

type of the path defined as constant (C) or Jakes (J). The number of sub-paths for each fading path

is 20. The large scale parameters include models for path loss and shadow fading. The multipath

LOS and NLOS channel models are adapted from the WINNER C2 channel models for urban

scenarios [77] and are computed assuming a height of the BS of 25m and a height of the MS of

1.5m as well as the parameters included in Tables 3.1 and 3.2. Tables A.1.1 to A.1.6 describe the

small and large scale parameters for the AWGN, LOS, and NLOS channel models as used in this

thesis, Figure A.1.1 shows the corresponding visualization for LOS and NLOS. In case of a mixed

LOS/NLOS channel model, the LOS probability [77] depends on the distance between MS and BS

and is computed according to

PLOS,µ = min (18, dµ)
(

1− edµ/63
)

+ edµ/63, µ = 1, 2, . . . , NBS. (A.1.1)

AWGN

l 0

E
{

|hl|2
}

1

Path type C
Table A.1.1: Power delay profile for AWGN channel model

Path loss model 20 log10(dµ/1m) dB + 38.44 dB

Shadow fading model Not applicable
Table A.1.2: Large scale parameters for AWGN channel model

105



106 A Appendix

LOS

l 0 0 1 3 4 5 7

E
{

|hl|2
}

0.846 0.041 0.025 0.018 0.026 0.038 0.004

Path type C J J J J J J
Table A.1.3: Power delay profile for LOS channel model

Path loss model 26 log10(dµ/1m) dB + 31.04 dB

Shadow fading model Log normal fading, 4 dB standard deviation
Table A.1.4: Large scale parameters for LOS channel model

NLOS

l 0 2 4 5 6 7 10 11 13

E
{

|hl|2
}

0.041 0.194 0.178 0.115 0.082 0.163 0.062 0.030 0.030

Path type J J J J J J J J J

16 21 22 23 25 29 31 34 37 57

0.021 0.011 0.025 0.009 0.014 0.002 0.006 0.012 0.003 0.004

J J J J J J J J J J
Table A.1.5: Power delay profile for NLOS channel model

Path loss model 35.74 log10(dµ/1m) dB + 33.46 dB

Shadow fading model Log normal fading, 8 dB standard deviation
Table A.1.6: Large scale parameters for NLOS channel model
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Figure A.1.1: Average power delay profiles for LOS and NLOS channel models
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A.2 Jacobian matrices for static location estimation

This section includes the Jacobian matrices for static location estimation using spherical process-

ing, spherical processing with unknown time offset, and hyperbolic processing.

SPH

ΦSPH (p) = ΦSPH (x) =



















x− x1

d1

y − y1
d1

z − z1
d1

x− x2

d2

y − y2
d2

z − z2
d2

...
...

...
x− xNBS

dNBS

y − yNBS

dNBS

z − zNBS

dNBS



















∈ R
(NBS×3) (A.2.1)

SPHT

ΦSPHT (p) = ΦSPHT
(

[

xT, bclock

]T
)

=



















x− x1

d1

y − y1
d1

z − z1
d1

1

x− x2

d2

y − y2
d2

z − z2
d2

1

...
...

...
...

x− xNBS
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y − yNBS

dNBS

z − zNBS

dNBS

1



















∈ R
(NBS×4)

(A.2.2)

HYP

ΦHYP (p) = ΦHYP (x) = DΦSPH (x) ∈ R
((NBS−1)×3) (A.2.3)

A.3 Jacobian matrices for dynamic location estimation

This section includes the Jacobian matrices for dynamic location estimation using spherical pro-

cessing, spherical processing with unknown time offset, and hyperbolic processing.

SPH

GSPH
k (sk) =





















xk − x1,k

d1,k

yk − y1,k
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zk − z1,k
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0 0 0

xk − x2,k
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0 0 0
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











∈ R
(NBS×6) (A.3.1)
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SPHT

GSPHT
k (sk) =














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



xk − x1,k

d1,k
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0 0 0 1
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0 0 0 1

...
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0 0 0 1
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
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∈ R
(NBS×7) (A.3.2)

HYP

GHYP
k (sk) = DGSPH

k (sk) ∈ R
((NBS−1)×6) (A.3.3)



List of acronyms

2G 2nd generation

3G 3rd generation

3GPP 3rd Generation Partnership Project

4G 4th generation

AGNSS Assisted global navigation satellite system

AOA Angle of arrival

ASIR Auxiliary sampling importance resampling

AWGN Additive white Gaussian noise

BER Bit error rate

BICM Bit-interleaved coded modulation

BS Base station

CC Cross-correlation

CDF Cumulative distribution function

CFO Carrier frequency offset

CH Chan-Ho

CP Cyclic prefix

CRLB Cramer-Rao lower bound

CSI Channel state information

DA Data-aided

DAC Digital-to-analog converter

DC Differential correlation

DVB Digital Video Broadcasting

DAB Digital Audio Broadcasting

E911 Enhanced 911

ED Estimated data

EKF Extended Kalman filter

EM Expectation maximization

FB Fallback
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FCC Federal Communications Commission

FD Frequency domain

FE Frontend

FFT Fast Fourier transform

GN Gauss-Newton

GNSS Global navigation satellite system

GPS Global Positioning System

GSM Global System for Mobile Communications

HYP Hyperbolic

IC Interference cancelation

IDFT Inverse discrete Fourier transform

IFFT Inverse fast Fourier transform

IT Iterative

KF Kalman filter

LM Levenberg-Marquardt

LMU Location measurement unit

LOS Line-of-sight

LTE Long Term Evolution

MAP Maximum a posteriori

ML Maximum likelihood

MMSE Minimum mean squared error

MS Mobile station

MSE Mean squared error

MUX Multiplexer

NE Newton

NLOS Non-line-of-sight

OFDM Orthogonal frequency division multiplexing

PA Pilot-aided

PDF Probability density function

PF Particle filter

P/S Parallel-to-serial

PSS Primary synchronization signal

QPSK Quadrature phase shift keying

R Regularized

RAIM Receiver autonomous integrity monitoring

RDC Reverse differential correlation

RF Radio frequency

RFID Radio frequency identification
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RMSE Root mean squared error

RS Reference signal

RSS Received signal strength

RTTOA Round-trip time of arrival

RX Receiver

SD Steepest descent

SIR Sampling importance resampling

SINR Signal-to-interference-and-noise ratio

SNR Signal-to-noise ratio

S/P Serial-to-parallel

SPH Spherical

SPHT Spherical with unknown time offset

SSS Secondary synchronization signal

TD Time domain

TDOA Time difference of arrival

TOA Time of arrival

TX Transmitter

UMTS Universal Mobile Telecommunications System

UWB Ultra-wideband

WINNER Wireless World Initiative New Radio

WLAN Wireless local area network
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