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Abstract

As in many areas of life also in medical domains, the volume and complexity of data
collected and stored is growing at a rapid pace. In the medical field, this includes besides
information obtained in clinical studies also secondary data from patient records, images,
and test results. Even though this information is valuable for diagnosis and therapy, it
is rarely ever used after the actual treatment and the release of the patient. Based on a
more comprehensive analysis of such data, it may be possible to both come up with new
medical hypotheses and find statistical evidence for existing hypotheses. This approach
should partially overcome the limitations of traditional medical studies and trials with
a fixed hypothesis to be confirmed or refuted, and a small number of subjects.

In this thesis, we propose new techniques for test selection, subgroup discovery, and
constrained clustering for the improved diagnosis in two medical domains, breast cancer
and Alzheimer’s disease. For the domain of breast cancer diagnosis, we mainly focus
on the task of test selection. For the domain of Alzheimer’s disease we focus on the
correlation of image and non-image data.

We propose two approaches to test selection, one based on information maximization
and one on subgroup discovery. In the first approach, we use the concept of conditional
mutual information (CMI) to select test variables for medical diagnosis. Computing
CMI requires estimates of joint distributions over collections of background variables.
However, computing accurate joint distributions conditioned on a large set of variables is
expensive in terms of data and computing power. Therefore, we propose a data-efficient
approach that enables conditioning on all background variables at once by making some
conditional independence assumptions. In the second approach, test selection is based
on the discovery of subgroups of patients sharing the same optimal test. Subgroups are
defined in terms of background information about the patient. We present an algorithm
that determines the top subgroups a patient belongs to, and decide for the test proposed
by their majority. In experiments, we show that significant parts of the search space can
be pruned due to favorable properties of the scoring function.

While we developed a subgroup discovery algorithm for test selection for the breast
cancer domain, we investigated its use in the context of clustering and correlating image
and non-image data in the dementia domain. Here, the goal is to start with the images
and explain the differences and commonalities in terms of the other non-image variables.
After clustering PET scans of patients to form groups sharing similar features in brain
metabolism, we explain the clusters by relating them to non-image variables, using an
algorithm for relational subgroup discovery. Experimental results hint at differences
in brain metabolism in terms of demographic and clinical variables. Another possible
approach to correlate image and non-image data is to apply methods for constraint-
based clustering. In contrast to the previous approach, in which image clusters were



determined without constraints and subsequently explained by non-image data, here
the image clusters are constrained by conditions on non-image data in the first place.
Frequent itemsets on non-image data describe candidate clusters, which still have to be
combined into an overall clustering. This combination can be controlled by a variety
of user-defined constraints. The constraints may concern the type of clustering (e.g.,
complete clusterings, overlapping or encompassing clusters) and the composition of clus-
terings (e.g., certain clusters excluding others). We show that these constraints can be
translated into integer linear programs, which can be solved by standard optimization
packages. In our experiments with dementia data we show the trade-offs involved in
balancing various kinds of constraints.
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Zusammenfassung

Wie in den meisten Lebensbereichen nehmen auch im medizinischen Umfeld das Vol-
umen und die Komplexität der gesammelten und gespeicherten Daten immer schneller
zu. Neben Daten, die in klinischen Studien explizit erhoben werden, gibt es eine Fülle
medizinischer Sekundärdaten aus Patientenakten, Bildern und Testergebnissen. Obwohl
diese Daten wertvolle Informationen für Diagnose und Therapie bergen, werden sie nur
selten auch nach der Behandlung und Entlassung des Patienten eingesetzt. Eine um-
fassendere Analyse dieser Daten kann dazu beitragen, sowohl neue medizinische Hy-
pothesen aufzustellen, als auch vorhandene Hypothesen statistisch zu belegen. Mit
diesem Ansatz kann man die Defizite herkömmlicher medizinischer Studien überwinden,
in denen eine feste Hypothese anhand einer kleinen Versuchspersonenzahl bestätigt oder
widerlegt wird.

In der vorliegenden Dissertation stellen wir neue Techniken für Test Selection, Sub-
group Discovery und Constrained Clustering vor, um die Diagnose in zwei medizinischen
Domänen, Brustkrebs und Alzheimer, zu verbessern. Im Bereich Brustkrebsdiagnose
liegt unser Schwerpunkt auf Test Selection. Im Bereich Alzheimer besteht unser Haupt-
interesse in der Korrelation von Bilddaten und strukturierten Daten.

Wir stellen zwei Methoden zur Test Selection vor. Eine basiert auf der Maximierung
von Information, die andere auf Subroup Discovery. Im ersten Ansatz verwenden wir das
Konzept der Conditional Mutual Information (CMI) zur Auswahl der geeigneten Test-
variablen. Zur Berechnung der CMI muss man die Verbundwahrscheinlichkeiten über
alle Hintergrundvariablen abschätzen, was bei einer hohen Zahl von Hintergrundvari-
ablen teuer hinsichtlich Daten und Rechenleistung ist. Deshalb stellen wir einen daten-
effizienten Ansatz vor, der alle Hintergrundvariablen einbeziehen kann, indem einige
bedingte Unabhängigkeitsannahmen getroffen werden. Der zweite Ansatz zur Test Se-
lection basiert auf der Entdeckung von Untergruppen von Patienten, die denselben op-
timalen Test haben. Untergruppen sind dabei über Hintergrundinformationen der Pa-
tienten definiert. Wir präsentieren einen Algorithmus, der die besten Untergruppen, in
die ein Patient gehört, bestimmt und sich dann für den Test entscheidet, der von der
Mehrheit der Gruppen vorgeschlagen wird. In Experimenten zeigen wir, dass grosse
Teile des Suchraums aufgrund günstiger Eigenschaften der Scoring Funktion ausgelassen
werden können. Nachdem wir einen Subgroup Discovery Algorithmus zur Test Selection
in der Brustkrebs Domäne präsentieren, untersuchen wir seine Verwendung im Kontext
von Clustering und der Korrelation von Bilddaten und strukturierten Daten von Demen-
zpatienten. Hier ist das Ziel, von den Bildern auszugehen und dann die Unterschiede und
Gemeinsamkeiten mit anderen Daten zu erklären. Zunächst clustern wir PET Scans, um
Gruppen von Patienten mit ähnlichen Gehirnaktivitätseigenschaften zu erhalten. Dann
beschreiben wir die Cluster durch strukturierte Daten mit den Ergebnissen eines Algo-



rithmus für Relational Subgroup Discovery. Unsere experimentellen Ergebnisse weisen
darauf hin, dass es Unterschiede in der Gehirnaktivität gibt hinsichtlich der demographis-
chen und klinischen Variablen.

Eine weitere Möglichkeit, um Bilddaten und strukturierte Daten zu korrelieren, ist
der Einsatz von Methoden des Constrained Clusterings. Im Gegensatz zum vorheri-
gen Ansatz, in welchem Bilder ohne Vorbedingungen geclustert und anschließend durch
strukturierte Daten erklärt wurden, wird hier das Clustern der Bilder durch Vorbe-
dingungen auf den strukturierten Daten eingeschränkt. Frequent Itemsets beschreiben
die Kandidatencluster, die noch zu einem Gesamtclustering kombiniert werden müssen.
Diese Kombination kann durch eine Vielzahl von benutzerdefinierten Bedingungen ge-
steuert werden. Die Bedingungen können das Clustering und die Konstruktion des Clus-
terings betreffen. Wir zeigen, dass man diese Bedingungen in ganzzahlige lineare Pro-
gramme übersetzen kann, welche durch Standardoptimierungspakete gelöst werden kön-
nen. In unseren Experimenten auf den Demenzdaten zeigen wir, wie die verschiedenen
Bedingungen das Ergebnis steuern.
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1 Introduction

In almost all areas of life, the volume and complexity of data collected and stored are
growing at a rapid pace. In the medical domain, hospitals are storing patient records,
images, and test results on a regular basis. Even though this information is valuable
for diagnosis and therapy, it is rarely ever used after the actual treatment and the
release of the patient. In particular, it is rarely used for the extraction of information
beyond individual cases, as for the improvement of medical procedures. Based on a more
comprehensive analysis of such data, it may be possible to come up with new medical
hypotheses as well as to find statistical evidence for existing hypotheses. This should
partially overcome the limitations of traditional medical studies and trials with a small
number of subjects and a fixed hypothesis to be confirmed or refuted. Overall, these
new insights can help us to understand which factors may increase the risk of getting
a disease, which tests provide valuable information for the status of disease, or which
treatment or therapy works best for a particular patient. This knowledge can support
health care workers in therapy planning or diagnosis. Powerful methods from machine
learning and data mining are particularly useful for these tasks, yet need to be refined
and adapted to the specific demands of medical domains.

In this thesis, we investigate techniques for test selection, subgroup discovery, and
constrained clustering for the improved diagnosis in two medical domains, breast cancer
and Alzheimer’s disease. For the domain of breast cancer diagnosis, we mainly focus
on methods for the task of test selection. This clinical task addresses the fundamental
question of how to select an optimal (or near optimal) test for a patient given some
background information (as demographic information or information on the patient’s
medical history) in order to achieve an accurate diagnosis. Or more generally, the ques-
tion is how to select variables that can efficiently reduce uncertainty. This is particularly
helpful to physicians who are not yet able to look back on a wealth of experience.

We introduce an approach that uses the information-theoretic concept of information
maximization to guide test selection for medical diagnosis [69]. This approach yields a
data-efficient method for test selection which works even on small datasets. We validate
this approach on a dataset that originates from a breast cancer study of the Hospital of
the University of Pennsylvania (HUP).

Since test selection may be possible just for subgroups of patients (and not all of
them) as in the case of the HUP data, we investigate the use of subgroup discovery
methods for this task [70]. Subgroup discovery is a data mining technique which finds
the subgroups of a population that are statistically most interesting with respect to a
specified property of interest. In contrast to standard applications of subgroup discovery,
in the given application the property of interest is not a single variable but the relation
between two variables: the outcome of a test and the actual state of disease. We tackle
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1 Introduction

this by defining a so-called prediction quality function that expresses the benefit of a test
(i.e., an imaging modality) for the prediction of the“correct”diagnosis (as determined by
a biopsy). We propose the subgroup discovery algorithm SD4TS that finds subgroups
of patients that share the same optimal test. Then, for a new patient, it is possible to
determine the best subgroups the patient belongs to and decide for the test proposed by
their majority.

The second part of the thesis deals with the domain of Alzheimer’s disease. Here,
we analyze a dataset that originates from Klinikum Rechts der Isar, TU München. It
consists of two different types of data: images that show the brain metabolism, and
structured data, such as neuropsychologic test results or patient information. Here, the
challenge lies in the combination of these diverse types of data.

We provide a method for subgroup discovery on complex outputs [46]. The method
offers the possibility to correlate information from images and from structured data. In
this setting, the target of subgroup discovery is not a single variable, but complex output
in the form of image information. To simplify the task, we first cluster the normalized
and standardized image data (PET scans), and subsequently explain the clusters in
terms of psychological features using subgroup discovery. This method is applied and
validated on data from patients with Alzheimer’s disease or other forms of dementia.
Our experiments indicate differences in brain metabolism in terms of demographic and
clinical variables.

Another possible approach to correlate image and non-image data is to apply methods
for constraint-based clustering [68]. In contrast to the previous approach, in which image
clusters were determined without constraints and subsequently explained by non-image
data, here the image clusters are constrained by conditions on non-image data in the
first place. Frequent itemsets on non-image data describe candidate clusters, which still
have to be combined into an overall clustering. This combination can be controlled by a
variety of user-defined constraints. The constraints may concern the type of clustering
(e.g., complete clusterings, overlapping or encompassing clusters) and the composition of
clusterings (e.g., certain clusters excluding others). We show that these constraints can
be translated into integer linear programs, which can be solved by standard optimization
packages.

Overview

This document is structured in the following way:

Chapter 2 gives a brief introduction into the two medical fields of breast cancer
diagnosis and dementia research. It presents the available datasets, the clinical tasks,
and a preliminary analysis of the datasets.

Chapter 3 introduces the data mining methods test selection, subgroup discovery,
and constrained clustering.

2



Chapter 4 presents our first approach on test selection which is based on information
maximization. This approach is validated on the HUP dataset on breast cancer diagnosis.

Chapter 5 shows how to use subgroup discovery for test selection with the algorithm
SD4TS. This algorithm is validated on the HUP dataset

Chapter 6 compares the performance of the two test selection methods introduced
in Chapter 4 and 5.

Chapter 7 presents how to do subgroup discovery on clustering on the dementia
dataset. This approach uses the workflow that starts with clustering images and then
describes the images with non-image data of the patients.

Chapter 8 introduces an alternative workflow for the correlation on image and non-
image data that starts with frequent itemsets on non-image data and evaluates these
sets with image data. We also provide a method for constrained clustering and show
how to translate a variety of user-defined constraints into an interger-linear program.

Chapter 9 provides a summary and an outlook to possible directions for future work.

3
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2 Introduction to Medical Datasets

The main part of our experiments is performed on two datasets that were provided to us
by two large university hospitals. The first one is a data set on breast cancer diagnosis
and the second one is a data set of dementia and Alzheimer’s patients. In this chapter,
we give a brief introduction into the two medical fields and present the stucture and
some preliminary statistics of the available datasets.

2.1 Breast Cancer Diagnosis

Breast cancer is the most common type of cancerous disease among women of the western
world. Approximately every tenth woman will suffer from it in her lifetime, half of
whom will not survive. Even though breast cancer is such a severe disease, chances of a
successful treatment and therapy are high if it is detected at an early stage. Therefore,
in many countries nationwide screening1 programs have been established. That means
that every woman above a certain age is annually or biannually examined no matter if
she belongs to a particular risk group or not. However, the benefit of these screening
programs is controversial. Institutions like the American Cancer Society or the Deutsche
Krebsforschungszentrum recommend the screening because it enables an earlier detection
of cancer and therefore a more successful treatment [4, 55]. Other experts [41, 50], in
contrast, investigate the disadvantages of the screening and contest its benefit: For every
2000 women invited for screening throughout 10 years, one will have her life prolonged.
In addition, 10 healthy women, who would not have been diagnosed if there had not been
screening, will be diagnosed as breast cancer patients and will be treated unnecessarily.
Furthermore, more than 200 women will experience important psychological distress for
many months because of false positive findings. It is thus not clear whether screening
does more good than harm.[41]

Both for women that take part in a screening program and for women that require
the further investigation of a suspicious finding, an accurate diagnosis is crucial in order
to save lives. Besides the physical examination of the breast, there is a variety of image
modalities that can help to detect cancer. In Section 2.1.1 we give a short introduction to
imaging modalities for breast cancer diagnosis. The Hospital of the University of Penn-
sylvania designed a study specifically to investigate the performance of these modalities.
In Section 2.1.2 we describe the data collected in this study and show a preliminary
analysis of the data collected in this study. We introduce the clinical tasks in Section
2.1.3 and present some brief ideas for solutions in Section 2.1.4. We then address the
clinical tasks of test selection in more detail in Chapters 4 - 5.

1Screening is an examination of patients with no signs or symptoms of the disease.
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2 Introduction to Medical Datasets

2.1.1 Imaging Modalities for Breast Cancer Diagnosis

A number of imaging modalities have been developed for breast cancer diagnosis. They
include Film Mammography (FMAM), Digital Mammography (DMAM), Ultrasound
(USND), and Magnetic Resonance Imaging (MRI), among others. Each has its own
general weaknesses and strengths:

Film Mammography

Film mammography (FMAM) is the imaging modality most commonly used for breast
cancer screening and diagnosis. FMAM is an X-ray examination of the breast. X-rays
are sent through the breast causing a film on the other side to be blackened based on the
densities of the tissue. This technique enables the visualization of the tissue contrasts
within the breast. In general, two different projections of each breast are performed (see
Figure 2.1). The craniocaudal (CC) view is taken from above a horizontally-compressed
breast and the mediolateral-oblique (MLO) is taken from the side and at an angle of a
diagonally-compressed breast. Due to its very high resolution, FMAM is able to detect
micro-calcifications which are tiny deposits of calcium that can be an indicator for the
presence of cancer.

Figure 2.1: Mammogram in MLO projection (from the side) and CC projection (from
top to bottom) [47].
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2.1 Breast Cancer Diagnosis

Digital Mammography

In recent years, digital mammography (DMAM) has become more popular. Just like
FMAM this technique is based on X-rays that are sent through the breast. The dif-
ference here is that the recording is done digitally and not with a film. This has the
advantage of an immediate access of the image at the monitor. Also, it enables the digital
postprocessing of the images (e.g, correcting the brightness or optimizing the contrast).
Furthermore, DMAM provides logistic benefits, i.e., the digital image is easy to copy
and distribute between different health care workers. However, the DMAM-devices are
still very expensive and far less spread than FMAM-devices.

Magnetic Resonance Imaging

An radiation-free alternative to the mammographical examinations is Magnetic Reso-
nance Imaging (MRI). Sometimes, the term Magnetic Resonance Tomography (MRT) is
used because it produces two-dimensional slice images that can be composed to a three-
dimensional image. For this procedure the patient gets exposed to a strong magnetic
field which aligns the hydrogen atoms in the body. Then, radio waves are sent upon the
protons. After switching the radio waves off, the protons reflect the obtained energy in
the form of weaker radio waves. These signals are measured and then computationally
transformed into an image (see Figure 2.2).

This modality especially pictures soft tissues which are high in protons. Bones, on the
other hand, consist of less protons and are not visible in an MRI. In general, it is best
suited for non-calcified tissue. Regions with different hydrogen-concentrations appear in
different levels of gray. A discrimination between benign and malignant tissue is often
possible due to the different concentration of protons. MRI provides information about
the location and enhancement of a lesion. In breast cancer diagnosis, often a contrast
enhanced MRI is performed. A contrast medium is injected after a native MRI scan has
been done. Further scans are taken in 1-2 minutes intervals after the injection. Then
it is possible to observe how the contrast medium spreads out in the tissue. To assess
the difference between two scans, the radiologists make a subtraction of two scans. (The
MRI scan in Figure 2.2 is an substraction). This yields a dynamic image of the breast,
making it possible to judge the size and enhancement of a lesion and if it is malignant
or benign.

Ultrasound

The sonography (USND) is an ultrasound-based imaging technique that can picture
regions of different tissue densities in the body. For this examination, high-frequency
sound waves are sent into the body. These waves are reflected or absorbed by different
tissue types. The reflected sound waves are then measured and used to compute an
image. The different levels of gray represent different levels of densities of the tissues
(see Figure 2.2). In breast cancer diagnosis, USND is (after FMAM) the second most
important modality. USND is especially useful for the detection and diagnosis of cysts
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2 Introduction to Medical Datasets

Figure 2.2: Examples for an MRI scan (left) and an USND image (right) [47]. Both
images show a lesion. The white, oval, smoothly marginated enrichment
in the MRI is a Fibroadenoma, which is a benign (not cancerous) breast
tumor. The dark, oval, smoothly marginated lesion in the USND is a benign
phyllodes tumor.

and the exclusion of carcinomas. Furthermore, it is used for patients with palpable
findings that could not be visualized in FMAM due to dense tissue.

Positron Emission Tomography

Positron emission tomography (PET) is a nuclear imaging technique. This modality is
especially adapted to visualize the functional processes in the body. For example, it can
illustrate the metabolism activity of different body regions. For this reason, it is used
for the visualization of brain activity (see Chapter 7). Chapter 7 gives a more detailed
discussion of the PET functionality.

PET is a very sensitive examination which is able to visualize metabolism. Further-
more, it is not easy to anatomically map regions in PET images. Therefore, they are not
used for the diagnosis of breast cancer, where it is crucial to precisely locate each lesion.
However, PET is used for the staging of patients that had breast cancer. For example,
it is deployed to analyze the development of lymph nodes.

2.1.2 Available Dataset

We have introduced the standard imaging modalities for breast cancer diagnosis. How-
ever, when a specific patient is under scrutiny for breast cancer, it is not clear which
of these modalities is best suited to answer the basic question whether the patient has
or does not have cancer. Deciding which modality to use for a particular case usually
requires considerable experience of the health care professionals [47].

In 2002, the Hospital of the University of Pennsylvania (HUP) started a study to find
out which imaging modalities are best suited for each patient. The study consists of
three main projects:
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2.1 Breast Cancer Diagnosis

• Project 1 investigates the first screening of patients. The participants were chosen
when they belong to a risk group for breast cancer (e.g., some relatives had breast
cancer).

• Project 2 focuses on the process of diagnosis. A patient may participate in project
2, if she had suspicious findings before.

• Project 3 considers the staging of a patient, who was assessed to have breast
cancer and has been treated recently.

Project 1 Project 2 Project3 Project 1&2
Screening Diagnosis Staging

Patients 285 149 225 424
Lesions 715 360 629 1042

Lesions with Biopsy 139 94 211 225
Malignant 97 40 148 134
Atypia 3 6 7 9
Benign 39 48 56 82

Table 2.1: Number of available data of the different projects

The study continues until 1,000 patients have participated. Some patients take part in
more than one project. We had access to the study data collected between 2002 and
2005. Table 2.1 gives an overview of the number of these cases. Since a patient can
have multiple lesions, we distinguish between the number of patients and the number of
lesions.

Work flow of the study

The participants underwent several examinations using five modalities: FMAM, DMAM,
MRI, USND, and PET. Since PET serves only for staging project, and not for the other
two projects, it is not considered in the following. Figure 2.3 illustrates the general
structure of the study.

After an imaging modality examination for a patient is completed, the resulting images
are assessed by an expert. The expert fills out a lesion form for each detected lesion. In
the form, the lesion is characterized by several attributes like shape, size, and likelihood
of malignancy. This first assessment is called blinded. In the data set, this information
is stored in the attribute rectype. The blinded assessment is denoted by a ’B’.

After the blinded assessment, the experts meet and present their assessments to each
other. After this information exchange, each expert fills out a new lesion form for each
identified lesion. This step is called unblinded and denoted by an ’U’.

Following this assessment, they evaluate the results of the single modalities and fill
out a lesion form for each lesion identified by the modality. This form is called consensus
and denoted by a ’C’.
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2 Introduction to Medical Datasets

Finally, they collaborate to fill out one consensus lesion form (CLF) per lesion summing
up the information provided by the single examinations. In addition to the description
of the lesion, the consensus decides if the patient should be reassessed in a follow-up
examination (usually six month later) or sent to a biopsy. They also provide a recom-
mendation on the specific modality which should be used as the guiding modality for
the biopsy.

A biopsy has to be performed to get evidence of the initial assessments. That means
removing a tissue sample for microscope analysis. A pathologic examination of the tissue
determines whether the lesion is benign or malignant. Since biopsy is costly in terms
of risks for the patient and in terms of money, it should only be performed if necessary.
That is why usually only the suspicious or controversial lesions are subject to biopsy. As
this study analyzes the performance of diagnosis, it is necessary to check other lesions
as well, including those that are unanimously assessed as benign. Therefore, at least the
index lesion of a patient is subject to biopsy. The index lesion is the lesion that was
found to be suspicious in a pre-screening and brought the patient into the study. Some
patients get another biopsy for further lesions.
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Figure 2.3: Work flow of the study
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Structure of the data

The structure of the collected data is presented in the Entity Relationship diagram
in Figure 2.4. We distinguish between data about the patient (Demography, Medical
History, Breast Cancer Risk Summary), data that describes the lesions, and data about
the examination plus their assessments.
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Lesion indexing Each physician indexes the lesions found in the blinded assessment
step. This index is called Blinded Lesion Index. The consensus indexes the lesions by a
Consensus Lesion Number common to all modalities. Therefore, one is able to refer to
a certain lesion unambiguously.
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Multiplicity of the data The data tables covering the examinations contain a row for
each (patient, lesion, crfdate, projection number, rectype) tuple:

• The projection number is necessary because there are up to three images per
modality, each differing in the Qualbrst attribute, which takes one of the values
{Left, Right, Both}.

• The rectype attribute takes one of the values {B, U, C} and indicates in which
step (Blinded, Unblinded or Consensus) the assessment was made.

• crfdate is necessary, since a patient sometimes has a second or third examination
a few months later.

Most important attributes

The diagnosis is described with two attributes in the lesion form. One is Likelihood
of Malignancy (LOM) and the other is Overall Assessment (OA). LOM gives a value
between 0 and 100. Higher values indicate a greater possibility of the lesion being
malignant. Since the physicians tend to be conservative, they consider a lesion likely
to be malignant when it has a LOM > 2. Usually, a biopsy is performed for all lesions
greater than this LOM.

In addition to the LOM, each lesion gets an OA-value, which is known as the BI-RADS
score (Breast Imaging Reporting and Data System) [5]. It ranges from 0 to 6 with each
value having the following meaning:2

• 0: Incomplete: Needs additional imaging evaluation and/or prior mammograms
for comparison.

• 1: Negative: There is nothing to comment on.

• 2: Benign Findings: Description of findings, but no mammographic evidence of
malignancy.

• 3: Probably benign: Initial short-interval follow-up suggested. Should have a
less than 2% risk of malignancy. It is not suspected to change over the follow-up
interval but the radiologist would prefer to establish its stability.

• 4: Suspicious Abnormality: Biopsy should be considered. Findings that do not
have the typical appearance of malignancy, but have a wide range of probability
of malignancy that is greater than those in Category 3.

• 5: Highly Suggestive of Malignancy: Appropriate action should be taken (al-
most certainly malignant). These lesions have a high probability (≥ 95%) of being
cancerous. This category contains lesions for which one-stage surgical treatment
could be considered without preliminary biopsy.

2Note: The HUP study considers only values from 0 to 5, because the BI-RADS score of 6 can only be
given after a biopsy.
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2 Introduction to Medical Datasets

• 6: Known Biopsy - Proven malignancy: appropriate action should be taken.

Preliminary analysis

Before discussing the clinical tasks in Section 2.1.3, we want to obtain an overview of
the data (compare Table 2.1) and answer some preliminary questions:

1. How accurate is the overall assessment of the CLF compared to the biopsy findings?
Figure 2.5 shows a histogram of the cases with the different BI-RADS scores along
the x-axis. The colors indicate the biopsy result. What we expect is that all
cases the CLF decides to be malignant, i.e., that have a BI-RADS of 5, are proven
to be malignant in a biopsy. Vice versa, cases that are said to be benign, i.e,
BI-RADS <4, are benign. The diagram shows that the majority of lesions were
judged correctly. However, some of the lesions that were assessed with a BI-RADS
<4 are actually malignant. This indicates that the CLF does not provide a perfect
assessment.
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Figure 2.5: Biopsy result versus BI-RADS assessment of CLF
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Table 2.2: Accuracy of BI-RADS assessments (x-axis) of single modalities (DMAM,
FMAM, MRI and USND). The y-axis gives the number of cases of a cer-
tain x-value. The shading of the columns represents the share of lesions with
the same biopsy result.

2. How accurate is the overall assessment of a modality compared to the biopsy find-
ings?
We now reconsider the above question for the single modality assessments. Again,
we compare the BI-RADS against the actual biopsy outcome. Table 2.2 shows
the resulting diagrams. It stands out that the distribution differs among the four
modalities. Only FMAM and DMAM give a BI-RADS score of 0 (meaning incom-
plete). Also, FMAM and DMAM do not assess many lesions with a BI-RADS of 2
or 3. In MRI and USND these scores appear more often, even though the majority
of those lesions turn out to be malignant. However, it is not easy to decide which
modality outperforms the others. Moreover, it seems that there is no modality
that does perfect for every lesion.

3. What is the difference between the four steps of assessments (Blinded, Unblinded,
Consensus to CLF)? Do the Overall Assessments of the different modalities change
from Blinded through Unblinded and Consensus to CLF?
Each column of Table 2.3 presents one of these assessment steps and the rows
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2 Introduction to Medical Datasets

represent the different modalities. It is easy to see that the Blinded and Consensus
assessment result in very similar plots. Therefore, we do not consider the Consensus
assessment for the following analysis.

4. Are there lesions that are assessed differently depending on the modality?

Data considered in our computations

In this thesis we focus on the problem of optimal test selection for diagnosis. Therefore
we work with the data collected from the Screening and Diagnosis project. We do not
use the data from the Staging project because this data can refer to patients that had
their primary cancer removed after film mammography but before the other modalities.
Furthermore, since we are interested in the information originating from single imaging
modalities, we consider only the blinded assessments and do not take into account un-
blinded and consensus assessments. Our preliminary analysis showed that Likelihood
of Malignancy is a very imprecise measure. Therefore, we consider the Overall Assess-
ment attribute to contain the actual diagnosis. For all our experiments we consider only
lesions with biopsy results, which we use as the true disease status.

Missing values For some lesions we have no entries in the submitted .csv-file (CRF
Lesion Form). It is not clear if the lesion was not detected by the examination or if the
examination was not completed for the patient. If a lesion l of a patient p is recorded
in the lesion form of modality A, and not recorded in the lesion form of modality B, we
distinguish two different cases:

1. There is a lesion l2 of patient p recorded in the lesion form of B, or

2. modality B has no recordings of lesions of patient p.

In the first case, we know that the examination B was done for patient p. Therefore,
we can conclude that the lesion l was not detected by the modality, and can assume
BI-RADS=1 (no findings). (Of course, it could also be the case that the data of lesion
l was just not entered into the database or was entered, but not submitted to us yet.)
In the second case, we have no evidence that the examination B was done for patient p,
and we therefore assume that the examination was not done or that we do not yet know
its result. In this case, we consider the BI-RADS score of B for lesion l as missing.

2.1.3 Clinical Tasks

The physicians are interested in answers to the following:

1. Determine for a given lesion or patient which modality performs best. This task
is needed for two scenarios. In the first scenario we have only knowledge about
the patient and her medical history. In the second scenario we additionally have
knowledge about the outcome of a previously performed test. In the latter case,
the task is to determine which modality to choose next, or rather if we have to
consider further modalities at all.
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Table 2.3: Difference between the three stages Blinded, Unblinded, Consensus Assess-
ment of the four modalities: Accuracy of BI-RADS assessments (x-axis) of
single modalities (DMAM, FMAM, MRI and USND). The y-axis gives the
number of cases of a certain x-value. The color of the columns represents the
share of lesions with the same biopsy result.
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2. For each situation determine which of the following is best:

• do nothing (lesion is benign),

• do a biopsy (lesion is malignant), or

• do another test (MRI, USND, DMAM or FMAM).

3. Is the concept of a CLF adapted for the diagnosing process? Are there better
ways to combine data from different tests? Prof. Mitch Schnall has an interest in
finding better ways to combine data from different modalities. Today, the standard
approach is based on a simple consensus of physicians. However, it is not clear
whether this procedure is most effective for diagnosis.

4. Given a new case, find similar (useful) cases treated in the past. Knowing their
diagnosis and staging data could help diagnosing new cases more accurately.

In this thesis, we set the focus on solving the first task. In chapter 4 and 5 we introduce
two methods how to approach the task of optimal test selection, present the results, and
discuss their performance. Ideas how to solve the remaining clinical tasks are presented
in the following section.
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2.1 Breast Cancer Diagnosis

2.1.4 Brief Ideas for Approaching the Clinical Tasks

We briefly sketch some ideas how to solve the clinical tasks 2-4 based on the given data
set. The implementation of these ideas is beyond the scope of this thesis.

Decision algorithm

The approaches to test selection presented in chapter 4 and 5 can be extended to a
decision algorithm that can determine, for a given situation, which of the following
actions has to be taken:

• do nothing (benign),

• do a biopsy (malignant), or

• do another test (MRI, USND, DMAM or FMAM).

The basic idea is to start with an initial set of lesions S. For each lesion s ∈ S
we attempt to learn the best diagnostic pathway, i.e., to determine the modalities that
should be applied in order to arrive at an accurate diagnosis. After the training, we can
determine an optimal diagnostic pathway for the new lesion s′ /∈ S.

Since there is no globally optimal modality for the complete set of examples, we
consider different diagnostic pathways for different lesions. We need a partition of the
lesion set in a way that all lesions in a subgroup follow the same diagnostic pathway.
The simplest way to determine a partition is to select an attribute Z and divide the
given set S into n subgroups Sz1

, ...Szn , where Szi
is the subset of S for which the picked

attribute Z has the value zi. Let Xj be a modality with j ∈ {DMAM, FMAM, MRI,
USND}, S′ ⊆ S and G(Xj |S′) be an arbitrary function, that expresses the benefit for the
accurate diagnosis of the lesion set S′ provided by applying modality Xj . Examples for
function G are mutual information (see Section 3.1.1) or prediction quality (see Section
5.2.1). An attribute Z is suitable to split the set S if one of the following holds:

a) The choice of the best modality depends on Z:
argmax

j
G(Xj |Sz1

) 6= argmax
j

G(Xj |Sz2
)

b) The partition leads to a better modality performance:

– or in general: 1
|Z| ·

∑

zi∈Z

max
j

G(Xj |Szi
) > max

j
G(Xj |S)

– or for a particular attribute value:
1
|Z| ·max

zi∈Z
max

j
G(Xj |Szi

) > max
j

G(Xj |S)

c) We can optimize the maximum (or average) of G over the four modalities to de-
termine the best splitting attribute Z∗.

– Z∗ = argmax
Z

∑

zi∈Z

max
j

G(Xj |Szi
)
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– Z∗ = argmax
Z

max
zi∈Z

max
j

G(Xj |Szi
)

The stopping criterion of the algorithm is reached when either one of the modali-
ties performs well enough, i.e., max

j
G(Xj |S) > c for a user-defined c, or one modality

performs significantly better than the others. The algorithm will return this modality.

Combination of information from multiple sources - learning the CLF

The CLF (Consensus Lesion Form) is the final conclusion of the four physicians after
having discussed the outcome of all four examinations. For each lesion, they describe its
position (e.g., radial location, distance from nipple at skin, depth from skin at tangent).
Then, they agree upon a LOM and an OA assessment. Furthermore, they can give a
recommendation to do a follow-up examination or a biopsy. In the latter case, they
name the best guiding modality.

The preliminary results (Section 2.1.2) showed that the CLF OA differs from the
biopsy findings. Therefore, we cannot consider it as ground truth. Since every lesion
has a CLF assessment whereas only few have a proven biopsy, there is a big interest
in learning the rationale of the CLF assessment. Especially, it is helpful to learn to
predict the CLF assessment by combining the assessments of the different modalities.
In a second step we could improve its accuracy regarding the biopsy findings. Then, we
obtain a ground truth label for all lesions with an CLF assessment. Thus, we can use a
larger number of data points for the clinical tasks investigated above.

One approach for this task is to learn the final diagnosis (CLF OA) given the OA
and LOM of all other exams and some background attributes about the patient and the
lesion. Knowing how the CLF OA is determined can help finding better assessments.
At least, it will be possible to show if a certain modality has a stronger influence on the
choice of CLF OA than it should have.

Further steps will include an analysis of the performance of CLF OA compared to the
biopsy and of the outcome of the learned classifier compared to the biopsy. The analysis
results can be used to restrict the training set for the classifier to the examples that
have a good CLF OA value regarding the biopsy. This classifier will then be applied to
predict the examples with an worst CLF OA. This could lead to a general improvement
of the CLF OA accuracy.

A further approach could be to skip the CLF and combine the information obtained
in the single modalities directly to infer an assessment, which should be close to the
findings of the biopsy.

Another option is to learn which guiding modality is selected given breast density,
calcification and the four Overall Assessments (plus the CLF data). There is no proof
for the performance of that choice. The task of interest would be to determine the actual
decision criteria of physicians.

Furthermore, an aim is to investigate the location of a lesion. It is interesting to see
if the description of the location varies between the different modalities. It might be
possible to determine reasons for variations.
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Case-based reasoning

Physicians often relate new cases to be diagnosed to cases seen in the past. Case-based
reasoning approaches and systems attempt to mimic this form of reasoning, partially on
the basis of similarity or dissimilarity (distance) measures. Baumeister et al. present an
inductive approach to learn similarities for case-based reasoning in the field of medical
diagnosis [14]. For a more general intoduction to case-based reasoning refer to Aamodt
et al. [1] or Watson et al. [89].

The definition of a suitable similarity measure in the context of the HUP study raises a
couple of questions: Are two lesions similar if they have the same modality performance
(the same modality performs best for both), or are they similar if they have the same
lesion- or patient-based features (e.g, same size, shape, location, or same breast density,
medical history, demographic features)? The same biopsy finding could define similarity
as well.

Distance matrices as similarity function The difficulty is to develop a similarity func-
tion without preprocessing the data. If we have a list of given cases y1, y2, . . . , yn and
a new case x arrives, we want to select the most similar yis of the given cases. Let us
assume we have a distance m×m-matrix W and the vector yi = (a1, . . . , am) with m the
number of attributes of a case. Then, we obtain the most similar case as arg min

i
xWyi.

W should be chosen in order to maximize the similarity between cases with the same
biopsy outcome and minimize the similarity between cases with different biopsy results.

W ∗ = arg min
W

∑

i,jBioi=Bioj

yiWyj −
∑

i,jBioi 6=Bioj

yiWyj

We can simplify the equation by defining a matrix B =

{

1 if yi = yj

−1 otherwise
and obtain:

W ∗ = arg min
W

∑

i,j

yi ·B ·W ·B · yj

To find the minimum, we first need to define the derivative and than find its null.

Use of Unlabeled Data

The biopsy outcome provides the ground truth of the lesions malignancy (labels). Most
clinical tasks refer to this ground truth. However, the majority (about two thirds) of the
lesions does not get evidence through biopsy. It is an open question how this unlabeled
data (i.e., data without biopsy) can be incorporated into our approaches. In order to
solve this, we need to discuss the following questions. Is the selection of which lesion gets
a biopsy a random selection? Is there a reason why the unlabeled lesions do not have
a biopsy? For instance a possible reason for not getting a biopsy is that the physicians
are sure about their results, or an adjacent lesion of the patient already gets a biopsy.
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Surprisingly, 26% of the lesions without biopsy got a recommendation in the CLF to do
a biopsy, and only 60% of the lesions that got a recommendation for doing a biopsy, de
facto got a biopsy.

Depending on the answers to the previous questions, different approaches could be
taken: One where a random distribution of labeled and unlabeled data is assumed, and
another where the index lesion is assumed to be the one with the highest probability of
being malignant, and the extra lesions with biopsy are selected because they are likely
to be malignant as well.

If the biopsy result is not used as a target variable, standard approaches for missing
values from machine learning and data mining could be applied. If the biopsy result
is used as a target variable, however, methods could benefit from the unlabeled data
as well. For instance, statistical approaches could use the unlabeled data to obtain a
more realistic joint probability distribution of the variables of interest. Alternatively,
one could apply methods from semi-supervised learning [22, 95, 96].

In this context, open questions include the following: Can you include information of
neighboring lesions, if multiple lesions exist in order to determine their label? Can we
assume that the overall assessment of the CLF is accurate enough in order to obtain the
actual status of disease for the unlabeled data?
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2.2 Alzheimer’s Disease

Every year 4.6 million people are diagnosed worldwide with some type of dementia,
200,000 alone in Germany [3, 12]. Due to the “aging society”, this figure is expected
to increase continuously over the next decades. So experts estimate the number of 30
million dementia patients in 2008 to raise to a number of 100 million patients in 2050.
Even though 98% dementia patients are 65 years and older, younger people are indirectly
affected when they have relatives with dementia. Above an age of 85, almost every fourth
person suffers from dementia (compare Table 2.4).

Age Annual incidence per 100 Prevalence (%)
Group Males Females Males Females

60-64 0.2 0.2 0.4 0.4

65-69 0.2 0.3 1.6 1.0

70-74 0.6 0.5 2.9 3.1

75-79 1.4 1.8 5.6 6.0

80-84 2.8 3.4 11.0 12.6

85-89 3.9 5.4 12.8 20.2

90+ 4.0 8.2 22.1 30.8

Table 2.4: Incidence and prevalence rates of dementia from the EURODEM meta-
analysis carried out in the 1990s in eight different European countries [60].
Prevalence is an estimate of the proportion of individuals in a population that
have a disease at one point in time. The annual incidence rate gives an esti-
mate of the number of individuals that are diagnosed with a disease within a
year.

Dementia is the name for diseases that are based on the loss of mental abilities, such
as memory, learning, reasoning, language, and orientation. Eventually, dementia makes
it impossible for the patient to manage every day life independently . There are many
causes for dementia. Alzheimer’s disease (or Morbus Alzheimer) is the most common
one being responsible for 60% of the dementia cases. Other forms of dementia include
dementia with Lewy bodies, vascular dementia, frontotemporal dementia, or dementia
as a secondary disease of diseases like Parkinson’s or Pick’s disease. Many patients
are affected by a combination of different types of dementia. Although some forms of
dementia like Alzheimer’s disease are well-known and characterized for one hundred years
now, the underlying mechanisms are still not sufficiently understood. Therefore, there
is great interest in expanding our knowledge of various forms of dementia, including
Alzheimer’s disease.

The first case of Alzheimer’s disease (AD) was described by the German neurologist
Alois Alzheimer in 1906. By this time, persons showing symptoms of dementia were
considered to be insane. Alzheimer was the first to examine the brain of those patients
post-mortem. This let him discover, that the psychological changes of the patient were
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Figure 2.6: Healthy brain versus brain with Alzheimer’s disease [71].

caused by an actual degeneration of the brain. From this time, dementia was accepted
as an actual disease.

Figure 2.6 shows how a brain of an Alzheimer’s patient looks compared to a healthy
brain. The cerebral cortex as well as the hippocampus show a strong shrinkage compared
to the healthy brain. Furthermore the ventricles are enlarged.

Causes

Even today, more than one hundred years after the first discovery of the disease, the
causes of Alzheimer’s are not completely understood. The main theory is that the
symptoms of Alzheimer’s disease are caused by the deposition of pathological proteins in
the form of intracellular tangles and extracellular plaques. This deposition is followed by
neuron death and deficits in neurotransmitter systems. Furthermore, deficits in glucose
metabolism occur.

Therapy

Till now it is not possible to treat the causes of the disease and completely cure the
patient. It is still a terminal disease and there is still no way to stop the process of
degeneration. So most forms of therapies aim for a slow-down of the process of degen-
eration. Which means that the patients can manage their daily lifes for a longer time.
Types of medications that were proposed for this purpose include acetylcholinesterase
inhibitors, memantine and atypical neuroleptics. However, the effect of these medica-
tions is controversial. Since there are both studies that show that they do and do not
significantly slow down the course of disease. Another way of therapy is of psychosocial
nature. For instance, it is known that patients benefit from a structured day and a
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simplified environment.

2.2.1 Methods for Diagnosis

When a person shows symptoms of dementia, at first a general neurological and phys-
ical examination is performed. Furthermore, relatives of the patient are questioned to
describe the patient’s behavior in every day situations. This is a valuable source of in-
formation for the diagnosis since many patients cannot judge themselves appropriately
anymore. Those patients that have suspicious test results, additionally, undergo radi-
ological examinations that make the actual degeneration of the brain visible. After all
examinations the physicians diagnose the patient. The diagnosis is indicated with a ICD
code [90] (compare Table 2.5). The diagnosis posed by the physicians is the basis for
therapy and treatment of the patients. However, a definite diagnosis of AD can only
be given by a post-mortem examination of the brain. Of course, this is too late for
proposing a therapy or treatment. Therefore, in recent years a lot of dementia research
focused on determining biomarkers that are indicative for different types of dementia.
This will help gaining a higher certainty of the diagnosis.

Disease ICD code

Mild cognitive disorder F06.7
Alzheimer’s disease F00.0, F00.1, F00.2
Depression F32.X, F33.X
Other forms of dementia F00.X - F09.X

Table 2.5: Categories of ICD codes for dementia

In the following we will introduce the most common examinations.

Neuropsychological Tests

We start with a description of three common neuropsychological tests, CERAD, CDR
and clock test.

The standard examination to judge the cognitive impairment of a patient is called
CERAD (Consortium to establish a registry for Alzheimer’s disease) [67]. Since its es-
tablishment in 1986 by the National Institute on Aging, it is widely used to evaluate
and diagnose patients with AD. CERAD provides a standardized way to judge the men-
tal functionalities that can be affected by dementia: semantic memory, word finding,
visual cognition, orientation, concentration, direct retentiveness, visuo-construction and
delayed retentiveness The different functionalities are addressed in eight subtests and
the achievable scores in parentheses:

1. Mini-Mental State Examination (MMSE) (0 - 30)

2. Verbal fluency (0 - ∞)
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3. Modified Boston Naming Test (MBNT) (0 - 15)

4. Construction praxis (0 - 11)

5. Learning of word lists (0 - 30)

6. Recall of word lists (0 - 10)

7. Recognition of word lists (0 - 20)

8. Constructional praxis recall (0 - 11)

The healthier a person, the more points are expected. It is possible to calculate a score
(0 - 100) over all CERAD subtests [21]. Depending of the severity of dementia, it takes
between 30 and 50 minutes to complete the CERAD test battery. In some scenarios, it is
sufficient to only do the MMSE since it provides already a broad survey of the cognitive
impairment. For instance, the MMSE is often used for a quick follow-up examination of
previously diagnosed patients.

The Clinical Dementia Rating test (CDR) [48, 66] is used to judge how well the patient
can handle the daily life. The CDR is an interview of the patient or a relative of the
patient and refers to the following subcategories:

1. Memory

2. Orientation

3. Judgement

4. Social

5. Hobbies

6. Personal

For each category the scores range from 0 (no deficits) to 3 (severe deficits). Furthermore,
a CDR global score is determined by an algorithm that combines the scores of the
subcategories.

The third test that is performed in the clock drawing test. Here, the patient is asked
to draw a clock (including the clock face) that shows ten past eleven. This simple task
requires complex skills as orientation, construction ability, concentration, and short term
memory. Therefore, the results provide a valuable information on how severe the patient
is affected by dementia. The clocks are graded in a range from one to six depending on
how well the clock is drawn, and if it shows the correct time. A score of one reflects the
perfect clock and a score of three and above is an indicator for dementia. Figure 2.7
shows the clocks drawn by different patients.
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Figure 2.7: Results of the clock test with scores from 1 (very well) to 6 (poorly)

Radiologic examinations

To evaluate the degeneration of the brain it is often necessary to illustrate the brain with
the help of imaging modalities. Most commonly used are MRI, CT, and PET. In this
thesis we mainly focus on PET scans.

PET is a non-invasive medical imaging procedure that has been used for diagnostics
of dementia since the early eighties. It displays a three-dimensional map of the glucose
metabolism of the body and is based on the decay of radioactive markers, which are
injected into the patient. A scanner records the cell activation, and a computer calcu-
lates the three-dimensional image of the metabolism. The recorded PETs indicate the
metabolism of the brain, i.e., the transformation of glucose. This reflects the activity of
neural cells. The brain of patients suffering from dementia contains regions, where the
metabolism is clearly lowered. In Alzheimer’s disease, the pattern of hypometabolism
starts at the hippocampus and spreads over the entire cortex as the disease progresses,
sparing few areas such as the motor and primary visual cortices.

2.2.2 Available Dataset

The data was provided by the psychiatry and nuclear medicine departments of Klinikum
rechts der Isar of Technische Universität München. It consists of demographic informa-
tion, clinical data, including neuropsychological test results, and PET scans showing the
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patient’s cerebral glucose metabolism. We had access to clinical and demographic data
of 4,037 patient visits and 454 PET scans that have been collected between 1995 and
2006.

To increase the quality of the data, we revised the existing psychological data of the
1,100 visits of patients having a corresponding PET or cerebrospinal fluid examination
(test for certain protein levels). Our revision included the correction of typing errors
and the completion of electronically available test results. For some patients with PET,
a revision was not possible due to missing patient records. 257 PETs belong to patients
with revised psychological and demographic values. The overall effort for revising the
data was approximately four person months.

Demographic Data

We had access to demographic data of 4,037 patient visits (751 with revised data). The
data covers gender, age, years of education, type of graduation and profession.

Neuropsychological Data

The clinical data for each patient consists of both psychological test results and informa-
tion about which of the other tests (e.g., MRI, CT, SPECT and EEG) were completed
during a hospital visit. Additionally, the diagnosis for each visit is provided in the form
of ICD-10 codes [90].

The assessment instruments are the standard tests to diagnose dementia: Consortium
to Establish a Registry for Alzheimer’s Disease Neuropsychological Assessment Battery
(CERAD), Clinical Dementia Rating (CDR), and the clock drawing test CDT. These
tests are optionally done at each patient visit at the physician’s discretion.

Preprocessing of PET Scans

Before physicians can actually use the PET scans, the images have to be processed by
a sequence of transformation steps. The image preprocessing pipeline of our study is
illustrated in the upper left-hand part of Figure 7.1. Due to measurement irregularities
and the motion of patients during the recording of the images, each image has to be
rotated and translated, such that they all fit into the same template. This is achieved
by SPM53. Subsequently, the images are forwarded to (X)MedCon4, which transforms
the data into raw ASCII files representing the intensity of each voxel as a real value.
The last step is the normalization by dividing each voxel value by the mean voxel value
of the image. At the end of the preprocessing, each file consists of 69 matrices of 79
rows and 96 columns, summing up to 523,296 voxels. Each of the 69 layers reflects a
horizontal cut through the brain, presenting a two dimensional image of the layer with
voxels displaying the intensity of metabolism of the corresponding region.

In order to visualize a group of scans, we computed a mean image using SPM5. In a
mean image, each voxel contains the mean voxel value at that position. The mean image

3SPM5 release 12/01/2005, based on Matlab 7.3, see http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
4XMedcon 0.9.9.3, http://xmedcon.sourceforge.net/
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Figure 2.8: Mean image of 20 healthy controls.

has the advantage of showing the overall properties of a group. Note that each mean
image shown in this thesis displays only one layer of the three-dimensional mean image.
We always choose the same layer (layer 32) to facilitate a comparison of the images.
However, for the evaluation of clusters, we take into account all 69 layers.

Figure 2.8 shows the mean image of 20 healthy controls. The “north” displays the
frontal region of the brain from an top-down view. The lighter the spots, the more active
is the underlying tissue. Both sides of the brain are symmetric in their metabolism. The
lateral regions have an increased metabolism, while the center has lower metabolism.
This is due to the fact that the brain cells are residing in the outer areas of the brain,
whereas the brain center mostly consists of dendrites.

2.2.3 Clinical Task

One of the goals of medical research in the area of dementia is to correlate images of the
brain with the clinical test results. We address this problem in the chapters 7 and 8 and
introduce two approaches that provide a correlation.
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In this chapter we introduce the data mining methods used in this thesis. These are test
selection, subgroup discovery, and constrained clustering.

3.1 Test Selection

Test selection is the task of determining an optimal test for a given situation. In this
thesis we focus on test selection in the context of medical diagnosis. During patient
care, health care workers are constantly faced with the problem of arriving at a diagnosis
decision or action plan for diagnosis at multiple time instances, such as after observing
symptoms of a patient or after gathering new clinical findings from laboratory tests or
other sources. These decisions are critical when assigning a proper treatment to a patient.
However, in most cases, there is no unique and clear diagnosis or obvious action plan.
Even after patient history has been gathered and some tests performed, for many cases
there can still be considerable uncertainty about the correct diagnosis. More generally,
at any point in the diagnosis process the clinician is faced with numerous questions or
options regarding what the best course of action should be in order to properly arrive
to the correct diagnosis with efficient use of resources; alternatively, to determine that
sufficient information has been collected so that a reliable diagnosis can be rendered.
Note that the physician faces the same challenges while making decisions about therapy
(for example, whether the therapy should be picked now, or more information should be
collected).

More generally, diagnosis is the art or act of identifying a disease from its signs and
symptoms. This implies that the more information is available about a patient, the
easier it is to pose an accurate diagnosis. Information can be obtained by a variety of
tests including questioning the patient, physical examinations, imaging modalities, or
laboratory tests. However, due to costs, time, and risks or discomfort for the patient,
in clinical routine it is often preferable for patients to undergo as few tests as needed.
Consequently, there is a trade-off between the costs (and number) of tests and the
accuracy of the diagnosis. Therefore, optimal test selection plays a key role in diagnosis.

From an abstract point of view, the situation is similar to many machine learning
applications in practice, where only a fraction of the data is available for processing,
while (potentially useful) additional data can be gathered on a limited basis. A key
question in these applications is how to best decide what data should be gathered or
observed. Considering the medical domain again, data collection may involve exposing
the patient to high-risk procedures or tests, and thus it seems reasonable to assess the
medical value of such procedures beforehand for the particular patient.
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Test selection has been investigated extensively in the medical and the statistical
literature [7, 33, 40, 80, 93]. In the following, we will present some of the existing
approaches. The two most established measures for the evaluation of tests are Shannon
entropy and Gini index.

3.1.1 Shannon Entropy - Mutual Information

The first measure originates from the area information theory and was introduced in
1948 by the mathematician Claude Shannon [83]. In order to describe the concept, we
first introduce our nomenclature: Let Y be the diagnostic variable modeling the status
of disease. The possible values of Y are denoted y1, . . . , yn. Let Xj be the test variables
with j ∈ {1, . . . , m} and the results of test Xj denoted xjk with k ∈ {1, . . . , mj} and
mj ≥ 2.

The Shannon entropy H(Y ) is the expected amount (in bits) of information required
to determine the value of Y with certainty. The entropy is thus a measure of uncertainty.
It is defined as:

H(Y ) = −
n

∑

i=1

P (yi) · log2 P (yi)

For varying probability distributions of a binary variable of interest Y , the entropy is
illustrated in Figure 3.1.

Let us assume that a test Xj has been performed yielding the result xjk. This ad-
ditional information will change the probability distribution over Y to the posterior
distribution given Xj = xjk. The Shannon entropy will then change to the conditional
entropy:

H(Y |Xj = xjk) = −
n

∑

i=1

P (yi|Xj = xjk) · log2 P (yi|Xj = xjk)

Since we do not know the outcome of test Xj prior to performing it, each possible result
xjk is yielded with a probability P (xjk). Therefore, the expected entropy of the posterior
probability is:

H(Y |Xj) =

mj
∑

k=1

P (xjk) ·H(Y |Xj = xjk)

If we consider now a particular test Xj , we want to know to what degree the test result
is expected to decrease the uncertainty about Y . This value is expressed by the mutual
information (MI) of Xj and Y : I(Xj , Y ). Mutual information is also called information
gain, since it is nothing else than the reduction of the entropy H of the distribution over
Y .

I(Xj , Y ) = H(Y )−
mj
∑

k=1

P (xjk) ·H(Y |Xj = xjk)

= H(Y )−H(Y |Xj)

In other words the MI describes the amount of information that a test variable Xj pro-
vides about the variable Y . It determines how well Xj splits the set of examples S in
order to determine the outcome of a target attribute Y like the status of disease. MI
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Figure 3.1: Shannon entropy and Gini index for a binary variable of interest Y . The
x-axis shows the probability of P (Y = y1).

indicates the number of binary questions that can be answered about Y from observ-
ing Xj . The definition of mutual information is based on the joint distribution of the
variables in question:

I(Xj , Y ) =

mj
∑

k=1

n
∑

i=1

P (xjk, yi) · log2

P (xjk, yi)

P (xjk) · P (yi)

The optimal test is thus the test X∗ that is expected to yield the highest gain of
information:

X∗ = arg max
X

I(X, Y ).

3.1.2 Gini Index

A second measure for test selection is called Gini index. It was introduced in 1912 by
the statistician Corrado Gini as a measure of inequality or dispersion [39]. The Gini
index of the probability distribution over Y is defined as:

G(Y ) = 1−
n

∑

i=1

P (yi)
2

For a binary variable of interest the Gini index is illustrated in Figure 3.1.
Similarly to the conditional entropy, the conditional Gini index after performing test

Xj and yielding the test outcome xjk is defined as:

G(Y |Xj = xjk) = 1−
n

∑

i=1

P (yi|Xj = xjk)
2

The expected Gini index after performing test Xj is defined as:

G(Y |Xj) =

mj
∑

k=1

G(Y |Xj = xjk) · P (xjk)
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The optimal test is here the test that maximizes the Gini gain G(Y )−G(Y |Xj).

Sent and van der Gaag [80] investigated the behavior of these two information measures
for test selection. To illustrate the differences of the measures Figure 3.1 shows the
Shannon entropy and the Gini index for a binary variable of interest Y . The x-axis
shows the probability of P (Y = y1). We see that the Shannon entropy reaches higher
values than the Gini index. However, for the purpose of test selection we are not so
much interested in the precise value of the measures. We are rather interested in how
the measures value a shift in the distribution of Y that is induced by the observation
of a test result. For a binary variable of interest Y , Sent and van der Gaag observe
that for probability distributions P (Y = y1) ∈ [0.37, 0.63] a shift is valued similarly
by the Shannon entropy and the Gini index. However, for more extreme distributions
the Shannon entropy values a shift higher than the Gini index. Thus, the measures are
expected to occasionally select different tests. Nevertheless, the authors conclude that
despite the possible differences in behavior both, Shannon entropy and Gini index are
both well suited measures for test selection.

3.1.3 Incorporation of Costs

Glasziou and Hilden [40] criticize the above described approaches to test selection since
the approaches disregard any type of costs of a test. They discuss how costs can be incor-
porated and introduce four test selection measures that handle costs. For the evaluation
of the test selection measures, they choose five criteria:

1. If two tests are equal in information content, the selection measure should prefer
that with the lower cost.

2. If the costs of two tests are equal, select the more informative one.

3. As the cost of a test with positive information content tends to zero, the selection
measure should tend to a universal maximum. In other words, if a test is free of
cost (neither time, money, or risks), it should always be performed before using
more costly tests.

4. If the cost of a test exceeds the expected value of perfect information, the selection
measure should indicate that the test is not worth doing.

5. Do not distinguish between diseases if they have identical conditional prognoses.

Both, information gain and Gini gain only satisfy the second criterion since they disre-
gard costs. Glasziou and Hilden present four new test selection measures that attempt to
satisfy more of these criteria. Each measure has its benefits and drawbacks. Therefore,
the authors conclude that there is no optimal measure for all situations and recommend
to rather choose an appropriate measure depending on the given situation.
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Figure 3.2: Graphical solution for test selection. The figure shows a sample solution
for two tests T1 and T2. The graphs of the expected gain in utility (EGU)
of Q, W , T ∗

1 and T ∗
2 are drawn together. For each value p of the prior

probability distribution, the best approach is the one whose graph is highest
at p. v1, v2, v3 are the values of the prior probability at which the best
approach changes. [33]

3.1.4 Incorporation of Utility

Further approaches to test selection discuss the definition of an utility function, that
weights the expected benefits of an test against its costs and risks.

Doubilet [33] offers a mathematical approach to test selection for settings in which
the presence or absence of a single disease is in question. The approach addresses three
questions:

1. Should a test be done?

2. Which test (if any) should be performed if two or more are available?

3. If a test that can take on more than two values is performed, what is the correct
cutoff point that determines how to proceed?

For each situation Doubilet considers two possible actions: W , a workup for the disease
(treatment), or Q, do nothing or a less invasive treatment to W . Furthermore, it is
assumed that the prior probability of a patient having the disease is known. The prior
probability can depend on the available background information about the patient, as
demographical data or information on previous test results. Moreover, the approach
requires the definition of the expected utility of each possible action. The expected
utility of an action is introduced as a function of the prior probability p. The expected
gain in utility (EGU) is the difference between the expected utility and the expected
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utility of doing Q. An example for the solution to the problem which test to choose
among two available tests T1 and T2 is illustrated in Figure 3.2. The graphs of the
EGU of Q, W , T ∗

1 and T ∗
2 are plotted over the prior probability distribution of having a

disease. For each prior probability p the highest graph indicates the appropriate course
of action. In the given example, Q is the optimal approach for p ∈ [0, v1], T1 is the
optimal test for p ∈ [v1, v2], and so on.

Andreassen [7] suggests to use an utility function as well. His approach is based on
causal probability networks (CPN) that model medical domains. The nodes of the CPN
represent possible tests, test results, symptoms, status of disease, and possible therapies.
Here, the CPN is expanded with a number of utility nodes, meaning that some nodes
have utilities associated with their states. The utility function then calculates for each
of these nodes its contribution to the total utility. Doing so, it is possible to model the
total utility by specifying multiple utility nodes rather than one utility that is a function
of many nodes. The latter one is more difficult to specify in most applications. Having
defined an utility function, test selection is performed by simply selecting the test X∗

that maximizes the expected utility:

X∗ = arg max
Xi

U(Xi)− U(X0), (3.1)

where U(X0) is the expected utility of doing no test and U(Xi) is the expected utility
of doing test Xi. Andreassen’s approach is adapted for scenarios where sufficient expert
knowledge is available in order to define the CPN and specify its associated utilities.

In this thesis, we approach test selection in the context of breast cancer diagnosis.
Chapter 4 shows how to make use of mutual information in a data-efficient way. Chapter
5 introduces a new test selection method based on subgroup discovery, the data mining
technique that is introduced in the following Section.
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3.2 Subgroup Discovery

The task of subgroup discovery (SD) has been defined by Klösgen [54] and Wrobel [91]
as: “Given a population of individuals and a property of those individuals that we
are interested in, find population subgroups that are statistically ‘most interesting’, for
example, are as large as possible and have the most unusual statistical (distributional)
characteristics with respect to the property of interest.”

Consider, for instance, a population described by general demographic attributes and
a target variable (property/attribute of interest) representing a disease status (disease,
non-disease). Then, an subgroup discovery algorithm might come up with a subgroup
identified by a conjunction of two conditions (age > 75 ∧ gender = female). Here, the
subgroup description consists of two attribute-value tests, and it selects a set of persons
with a particularly high prevalence of the disease (85% compared to 43% in the entire
population). Figure 3.3 presents a visualization of this subgroup as a pie chart.
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Figure 3.3: The nested cake diagram visualizes a subgroup S. The outer circle displays
the distribution of classes (”Disease” and ”Non-Disease”) over the entire pop-
ulation. The inner circle displays their distribution over S. The radius of
the inner circle represents the size of S (number of examples covered by S).
S can be called an interesting subgroup, as its distribution differs strongly
from the one of the entire population.

Subgroups represent a subset of individuals of a population. In contrast to clusters
obtained by clustering algorithms (see Section 3.3), each subset is describable by a sub-
group description, e.g., a conjunction of attribute-value pairs selected from the features
of the training set. In general, subgroups have the form Class ← Cond, where Class
is the property of interest and Cond is the subgroup description. Thus, subgroups can
also be interpreted as rules: if Cond then Class.

Subgroup Discovery is considered as a hybrid of predictive and descriptive methods.
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The discovered rules offer a descriptive survey of interesting patterns in the data. And if
Class refers to the actual class label of the data, the rules can be interpreted as classifica-
tion rules that enable a classification of unseen examples. However, subgroup discovery
differs from classification rule learning because it aims for a descriptive exploration of
the entire population. Classification rule learners, on the other hand, aim for an accurate
classification. A further requirement for subgroups is that their description should be
easily understandable by the users. Therefore, one tries to keep the description short.

3.2.1 Subgroup Discovery Algorithms

During the last years a variety of algorithms have been developed to solve this tasks.
Most ideas originate from established predictive or descriptive methods that are modified
to discover subgroups. Well known SD algorithms include EXPLORA [54], MIDOS [91],
APRIORI-SD [53], CN2-SD [56], RSD [57], and SD-MAP [9]. For each algorithm one
has to define:

1. the subgroup description language (e.g., conjunctions of attribute-value pairs),

2. the target variable (e.g., nominal or numerical),

3. the quality function (see Section 3.2.2), and

4. the search strategy (e.g., exhaustive or with search heuristic).

MIDOS

Wrobel et al. [91] proposed MIDOS, an algorithm that can discover subgroups in multi-
relational databases. MIDOS is a top-down algorithm that uses frequency pruning and
an additional pruning by incorporating an optimistic quality estimate function.

APRIORI-SD

APRIORI-SD [53] is an adaptation of the association rule learning algorithm APRIORI
[2] to subgroup discovery. APRIORI-SD starts with generating subgroups described by
a single attribute-value pair. Subsequently, it generates subgroups with longer (and thus
more specific) descriptions. Subgroups are only kept if they contain more examples than
minsupport. All smaller subgroups are pruned, and no subgroups more specific than
these are generated.

CN2-SD

CN2-SD [56] is a modification of the CN2 rule learner [25], which uses a covering heuristic
to provide a descriptive exploration of the entire population. The difficulty of applying a
common rule learner to this task is that its covering algorithm is not designed for finding
subgroups. It does not take into account examples as soon as they are covered by a rule.
This implies that rules discovered in a later iteration are built on a smaller and thus
biased subset of examples. Therefore, only the first few rules found by a rule learner
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are appropriate for subgroup discovery, i.e., they have a sufficiently large coverage. To
overcome this problem, CN2-SD assigns the weight 1

i+1 to each example, where i is the
number of rules (subgroup descriptions) covering the example. Initially, the weight of
each example is set to one. Whenever a rule is found, the weight is decreased for each
covered example.1 To find large and interesting rules even in later iterations, CN2-SD
uses the weighted relative accuracy (WRAcc) heuristic. For a subgroup with description
Cond and target variable Class, it is defined as:

WRAcc(Class← Cond) =
n′(Cond)

N ′
· (n

′(Class.Cond)

n′(Cond)
− n′(Class)

N
) (3.2)

where N is the number of examples, n′(Class) is the sum of weights of examples
in Class, N ′ is the sum of weights of all examples, n′(Cond) is the sum of weights
of examples covered by the subgroup, and n′(Class.Cond) is the sum of weights of
examples that are covered by the subgroup and actually fall into the class. The algorithm
iteratively adds the rule with the highest WRAcc measure. WRAcc tends to find rules for
examples that are least frequently covered by previously discovered rules. Furthermore,
WRAcc ensures a balance between generality and relative accuracy. This results in
shorter rules which are thus easier to comprehend compared to the outcome of a rule
induction algorithm.

RSD

The RSD (relational subgroup discovery) algorithm [57] is very similar to CN2-SD algo-
rithm. It differs from CN2-SD in the fact that it can discover subgroups in a relational
dataset. This is achieved with a propositionalization step that generates first-order fea-
tures. Representing the data through these features enables the application of the CN2-
SD algorithm. A further improvement of RSD is its modified weighted relative accuracy
(mWRAcc) heuristic

mWRAcc(Class← Cond) =
n′(Cond)

N ′
· (n

′(Class.Cond)

n′(Cond)
− n(Class)

N
) (3.3)

which computes the prior probability computed with n(Class)
N

instead of n′(Class)
N

, where
n(Class) is the number of examples in Class. This leaves the prior probability unaffected
by modifications of example weights. RSD also introduces a further pruning step that
allows to stop specifying subgroups whose covered examples fall into the same class.
Furthermore, subgroups with an mWRAcc below a user-defined threshold are pruned,
because no specialization can yield a higher mWRAcc measure.

SD-MAP

In 2006, Atzmüller et al. introduced the algorithm SD-MAP [9]. While the previously
introduced approaches feature a heuristic search, SD-MAP features an exhaustive search,

1Instead of the additive weight, CN2-SD also works with a multiplicative weight γi with 0 < γ < 1.
The parameter γ has to be set in advance. Its default is 0.9.
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which guarantees the identification of all interesting subgroups contained in the data.
This can be efficiently implemented by using the FP-growth algorithm, which is an
efficient algorithm for association rule mining developed by Han et al. [45]. Furthermore,
the use of an FP-tree as the underlying data structure enables the computation of the
subgroup quality immediatly during the generation process of the frequent patterns.
Moreover, SD-MAP can handle missing values and disjunctions of attribute-value pairs in
the subgroup description. Atzmüller et al. showed SD-MAP to be faster than APRIORI-
SD.

Further Variants of SD Algorithms

Most SD algorithms are designed for nominal attributes. This means that numerical
attributes have to be discretized which can yield suboptimal results. Grosskreutz et
al. [43] investigate how this can be circumvented by allowing numerical values in the
subgroup description. The handling of numerical target variables is discussed by Klösgen
et al. [54] and Atzmüller et al. [8].

Whereas many existing SD algorithms quite often only offer pruning according to
frequency [53], in recent years more and more other pruning constraints are investigated,
for instance, optimistic estimate pruning [91, 42]). In Chapter 5 we will introduce the
algorithm SD4TS that enables pruning of subgroups that can not yield a reasonable
quality.

In order to avoid the discovery of redundant subgroups, Boley et al. [17] proposed
to search for equivalence classes of descriptions. These equivalence classes have unique
maximal representatives that form a closure system. They show that the search space
and the number of output subgroups can be significantly reduced by using the concept
of equivalence classes. For the same problem Atzmueller et al. [10] proposed to do
a clustering of subgroups based on their similarity regarding the set of instances they
cover. Similarity is measured by the Jaccard index. Two subgroups are merged if their
similarity is above a user-defined threshold. This enables a surpressing of irrelevant
subgroups which saves time for the user that has to assess the resulting subgroups.

3.2.2 Interestingness of a Subgroup

Several criteria can be considered for the evaluation of an individual subgroup of the form
Class← Cond in a population of the size N . These include size, support, coverage, and
significance. For the denotion of parameters refer to Table 3.1 that summarizes the
denotion of several authors.

• The size of a subgroup is simply the number of examples n(Cond) that are covered
by the subgroup.

• The coverage of a subgroup is the percentage of examples covered: n(Cond)
N

.

• The support of a subgroup is the percentage of examples covered by the subgroup
that actually share the Class value: n(Class.Cond)

N
.
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SD-MAP CN2-SD, RSD Meaning

N N size of population
n n(Cond) size of subgroup
TP n(Class) size of target class
FP N − n(Class) size of non-target class
tp n(Class.Cond) number of true positive examples
fp n(Cond)− n(Class.Cond) number of false positive examples

p0
n(Class)

N
relative frequency of the target class
in the population

p n(Class.Cond)
n(Cond) relative frequency of the target class

in the subgroup

Table 3.1: Denotion of subgroup parameters in different subgroup discovery algorithms.

• To determine the significance of a subgroup, we use the likelihood ratio [51]:

Sig(Class← Cond) = 2 ·
k

∑

j=1

n(Classj .Cond) · log n(Classj .Cond)

n(Classj) · p(Cond)
(3.4)

It shows how significantly different the class distribution in a subgroup is from
the prior class distribution by incorporating both the size of a subgroup and the
unusualness of the subgroup given its distribution of the target attribute. The
significance can be used to estimate the p-value, which indicates the statistical
significance of the rule. It is calculated from the χ2-distribution with k−1 degrees
of freedom (k=number of classes). As usual, a subgroup is considered significant,
if its p-value is below 0.05.

• For binary target variables, the following quality function aims for possible large
subgroups with an unusual target distribution.

qBT =
(p− p0) ·

√
n

√

p0 · (1− p0)
·
√

N

N − n
(3.5)

• The following quality function evaluates again the distributional unusualness of
a subgroup regarding the binary target variable. qRG measures only the relative
gain between the target share of the subgroup and the target share of the total
population. It hence prefers subgroups that are different from the original target
distribution.

qRG =
p− p0

p0 · (1− p0)
(3.6)
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3.2.3 Related Approaches

Kralj et al. [73] intoduce supervised descriptive rule discovery as a framework that com-
prises subgroup mining as well as contrast set mining, and emerging pattern mining.
These are three areas that basically address the same task, although they use a differ-
ent terminology. Kralj et al. thus show that algorithms, heuristics, and visualizations
developed for one of the areas can be translated to solve tasks of the other two areas.
They also give a survey of different visualization techniques for the discovered rules.

A further approach related to subgroup discovery is exceptional model mining [58],
which enables the discovery of subgroups with a more complex target concept: a model
and its fitting to a subgroup. It performs a level-wise beam search and explores the best
t subgroups of each level.

The last related approach, we are specifying here, is bump hunting or patient rule
induction (PRIM) introduced by Friedman and Fisher [36]. The aim of bump hunting is
the identification of subgroups with a high or low average value of a given target variable.
Moreover, these subgroups should be describable by rules on the patient attributes.
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3.3 Constrained Clustering

The third data mining technique we investigate in this thesis is constrained clustering.
Clustering is one of the most popular data mining technique since it enables the user
to get an overview of the structure of the data and to identify major patterns or trends
without any supervisory information such as class labels. Thus, it belongs to the unsu-
pervised data mining methods. In general, clustering provides a partitioning of a data
set into groups (clusters), in such a way that data points within the same group are as
similar as possible to each other and as different as possible to data points from other
groups. These groups can be interpreted as meaningful subpopulations, similar to sub-
groups. Of course, one of the main prerequisites of an effective clustering is an adapted
definition of similarity. This has to be achieved by defining a similarity or distance
function. This function computes for each pair of data points of the given domain how
similar they are to each other based on their attributes. One of the most commonly used
distances is the Euclidean distance. A discussion of further distance functions can be
found in an article by Jain et al. [49].

Moreover, clustering can be considered as a search for an optimal solution. Since there
are various opinions about optimality, various clustering algorithms have been developed,
each pursuing different search heuristics or different scoring functions, which define the
quality of a given clustering. Kaufman and Rousseeuw [52] and Berkhin [15] describe the
majority of these algorithms in detail. The variety of clustering algorithms can be divided
into partion-based and hierarchical algorithms. Partition-based algorithms start with a
specified number k of clusters the clustering has to consist of. The resulting clustering is
then the definition of the k clusters. The most prominent example for these algorithms is
k-means [52]. Hierarchical clusterings, in contrast, provide a complete cluster structure,
which enables the user to compare solutions for different k. The results of a hierarchi-
cal clustering is often graphically displayed as a dendrogram. Hierarchical clustering
algorithms can be divided into agglomerative and divisive algorithms. Agglomerative
algorithms start form a clustering where each cluster constains exactly one data point.
Then, the algorithm iteratively merges the closest pair of clusters until the clustering
consists one single cluster containing all data points. Agglomerative algorithms vary in
the definition of distance of clusters. Prominent examples are single-linkage, complete-
linkage, average-linkage, or Ward’s method of minimum variance. Divisive algorithms
work contrariwise and start with a clustering consisting of one cluster that contains all
data points. In each step of the algorithm, the most heterogeneous cluster is divided into
two clusters until the clustering consists of clusters that contain only one data point.
Prominent examples for divisive clustering algorithms are DIANA [52] or Bisecting-k -
means [84]. Further variants of clustering include probabilistic clustering, where the
result is not a definite assignment of each point to a cluster but rather probabilties for
a point to belong to the clusters, and density based clustering like DBSCAN [35].
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Figure 3.4: Example: Clustering (k=2) with hard pairwise constraints. Must-link con-
straints are indicated with solid lines, and cannot-link constraints are indi-
cated with dashed lines [13].

3.3.1 Incorporation of Constraints

In many settings, the user has domain knowledge or additional information about the
data and thus previous knowledge about the possible clusters that can be retrieved from
the data. This domain knowledge or user preferences can be incorporated into the process
of clustering in the form of constraints. In this case we speak of constrained clustering
which belongs to the field of constraint-based mining [19]. The subject of constrained
clustering has been addressed by many researchers in recent years. The current state
of the art is thoroughly presented in the book “Constrained Clustering: Advances in
Algorithms, Theory, and Applications“ by Basu et al. [13].

Basically, there are three types of constraints: constraints on the instances, constraints
on the clusters, and constraints on the clusterings. Instance-level constraints are pairwise
constraints on cluster membership. These are divided into must-link constraints, meaning
that two particular instances have to be put into the same clusters, and cannot-link
constraints, meaning that two particular instances have to be put into two different
clusters. Figure 3.4 illustrates an example of two-dimensional data points. In this
example, there are two reasonable ways of partitioning the data into two groups: by
weight (a) or by height (b). An unsupervised clustering method will result in one of them.
However, if the user is only interested in clusters by height, then she can express this
by specifying constraints as the two must-link constraints between pairs of points with
similar height and a cannot-link constraint between two points with different heights.
This results in the clustering in Figure 3.4 (b).

The second type of constraints refers to the clusters that can be combined into a
clustering. These constraints can restrict the size of the clusters, e.g., minimum cluster
size constraints or maximum cluster size constraints, which can be adopted in order to
avoid solutions with empty or singleton clusters [32]. Moreover, it is possible to formulate
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balancing constraints which yield clusterings consisting of clusters of comparable size
[11]. Constraints about the clusters can also relate to their descriptiveness. Itemset
constraints [82], for instance, require that each cluster can be described by an itemset,
i.e., a conjunction of attribute-value pairs of the instances contained in the cluster.

The third type of constraints are constraints on entire clusterings: Set-level constraints
control the clusters that can go into a clustering depending on other clusters, for instance,
certain cluster can require or exclude other clusters. Clustering constraints determine
the form of a clustering, for instance, whether the clusters are allowed to overlap or even
encompass other clusters and whether the clustering has to be complete. Optimization
constraints determine the scoring function to evaluate the quality of a clustering. In this
thesis we address the latter type of constraints and show how they can be translated
into linear constraints. This enables us to find an optimal clustering by solving integer
linear problems (see Chapter 8).

3.3.2 Constrained Clustering Algorithms

One of the first algorithms developed for constrained clustering is COP-KMEANS [87],
proposed by Wagstaff et al. in 2001. This approach incorporates pairwise constraints
into k-means. Similar to k-means, COP-KMEANS starts with k initial cluster centers
µ1, . . . , µk. In a second step, each instance x is assigned to the cluster i with the minimal
distance between x and µi. However, in contrast to k-means in COP-KMEANS each
instance is assigned to a cluster only if it dos not violate any of the given pairwise
constraints. Otherwise it is assigned to the next closest cluster if no constraint is violated
by the assignment, and so on. The third step of COP-KMEANS is again similar to k-
means the update of cluster centers followed by the iteration of step two and step three
until the assignment remains stable. A drawback of COP-KMEANS is that it may fail
to find a satisfying solution, even when there exists one. This is caused by the greedy
way of assigning instances without allowing any type of backtracking. In this approach
constraints are considered to be hard constraints, meaning that each solution has to
satisfy all constraints. Since domain knowledge is often more heuristic than exact, it is
often useful to consider constraints as soft constrains, meaning that a solution is possible
that satisfy only a subset of the constraints. Algorithms on soft constraints thus aim to
satisfy as many constraints as possible.

In order to handle soft constraints, Davidson and Ravi [30] introduce a new deriva-
tive of k-means. They introduce a new error function for the cluster assignment: the
constrained vector quantization error (CVQE). This error is the sum of the constrained
vector quantization errors of the individual clusters. For a cluster, this error consists
of three parts: the sum of the distances of each instance in the cluster to the cluster
center (regular distortion), a term for all violated must-link constraints and a term for
all violated cannot-link constraints. If a must-link constraint is violated then the cost
is equal to the distance between the cluster centroids containing the two instances that
should have been in the same cluster. Similarly, if a cannot-link constraint is violated the
cost is the distance between the cluster centroid both instances are in and the nearest
cluster centroid to one of the instances. Both violation costs are in units of distance, as

45



3 Introduction to Data Mining Methods

minimize
n
∑

i=1

k
∑

h=1

Ti,h · (1
2 ||xi − µh||2)

T

subject to (i)
n
∑

i=1
Ti,h ≥ τh ∀h ∈ {1, . . . , k}

(ii)
k
∑

h=1

Ti,h = 1 ∀i ∈ {1, . . . , n}

(iii) Ti,h ≥ 0 ∀i ∈ {1, . . . , n} h ∈ {1, . . . , k}

Table 3.2: Cluster Assignment Step of Constrained k-means by Demiriz et al. [32]. Ti,h =
1 if the data point xi is closest to the cluster center µh, and it is 0 otherwise.

is the regular distortion.

In the first step of the constrained k-means algorithm the CVQE is minimized. This is
achieved by assigning instances such that they minimize the introduced error term. For
instances that are not part of constraints, this involves as in regular k-means, assigning
the instance to the cluster with the closest cluster center. For pairs of instances in a
constraint, for each possible combination of cluster assignments, the CVQE is calculated
and the instances are assigned to the clusters that minimally increases the CVQE. In the
second step the cluster centers are updated. This is done in such a way that if a must-link
constraint is violated, the cluster centroid is moved towards the other cluster containing
the other point. If a cannot-link constraint is violated the cluster centroid containing
both constrained instances should be moved to the nearest cluster centroid so that one
of the instances eventually gets assigned to it, thereby satisfying the constraint. With
this algorithm constraints are satisfied unless it is less costly to violate it, e.g., if two
instances in a must-link constraint are very distant according to the distance function.

Demiriz et al. [32] tackle constraints on the clusters, in particular, the constraint on
a minimum cluster size. Their approach is presented as a linear optimization problem.
The objective is similar to the objective of k-means to minimize the sum of the distances
of each instance xi to the cluster center µh of the cluster h it is assigned to. They
introduce k additional constraints requiring that each cluster h has at least a minimum
number of τh points (see constraint (i) in Table 3.2). Note that the constraints (ii) and
(iii) ensure that each data point is assigned to exactly one cluster. The optimization is
divided into two steps. The first step optimizes the cluster assignment of the instances
where the k cluster centers remain fix (see Table 3.2). The second step is the update
of the k cluster centers where the cluster assignment of the instances to the clusters
remains fix. The two steps are iterated until no cluster centers are updated anymore in
the update step.

In Chapter 8 we tackle constraints on clusterings. We provide a framework that shows
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how these constraints can be translated into linear programs and then be solved by
optimization packages. We show how this method performs on two medical data sets.

47



3 Introduction to Data Mining Methods

48
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Many real-world applications, where data gathering and analysis play a central role,
are faced with the fundamental question of how to select variables (to be instantiated or
measured) that can efficiently reduce uncertainty. Here, we use the concept of conditional
mutual information to approach problems involving the selection of variable observations
in the area of medical diagnosis. Computing mutual information requires estimates of
joint distributions over collections of variables. However, in general computing accurate
joint distributions conditioned on a large set of variables is expensive in terms of data and
computing power. Therefore, one must seek alternative ways to calculate the relevant
quantities and still use all the available observations. We describe and compare a basic
approach consisting of averaging mutual information estimates conditioned on individual
observations and another approach where it is possible to condition on all observations
at once by making some conditional independence assumptions (while the first approach
does not require making any data modeling assumptions). This yields a data-efficient
variant of information maximization for test selection. We present experimental results
on public heart disease data (our test domain) and data from a controlled study in the
area of breast cancer diagnosis (our main application).

4.1 Motivation

In this chapter, we present an information-theoretic solution to the problem, which is
able to take into account background knowledge about patients, and gives relatively
accurate results without requiring excessively large datasets. We assume a number of
i.i.d. data points that are observed partially or fully (some components or dimensions
are observed while others are not). We would like to use these observations, so that for
a given data point, we are able to determine which components should be observed or
queried to gain the most information about a variable of interest (e.g., class label).

In this setting, joint probability estimates are built from the available data. When
a new partially observed data point is given, we use the above estimates to determine
what unobserved portion should be tested or queried to gain the most information about
the quantity of interest. Two common problems with information-based methods are
that they require computing joint distributions among a large number of variables and
conditional distributions conditioned also on many variables. This, in general, creates
data requirements that are difficult to satisfy in standard real world applications (more
data is required in order to build accurate estimates to probability functions). Using very
limited amounts of data, we experimentally show how simple conditional independence
assumptions can be used to address the problem at hand.
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The chapter is organized as follows. Section 4.2 introduces our application on breast
cancer diagnosis. In Section 4.3 we describe the general problem of test selection and
in Section 4.4 we propose two approaches to solve this problem. We tested and applied
the approach on data from a study on breast cancer diagnosis and, as a test domain, on
heart disease data from the UCI machine learning repository and present the empirical
results in Section 4.5. Section 4.6 surveys related work.

4.2 Application: Breast Cancer Screening and Diagnosis

In Section 2.1.1 we introduced imaging modalities that are used for breast cancer di-
agnosis. They include Film Mammography, Digital Mammography, Ultrasound, and
Magnetic Resonance Imaging. When a specific patient is under scrutiny for breast can-
cer, it is not clear which of these modalities is best suited to answer the basic question
to whether the patient has or does not have cancer. Deciding which modality to use
for a particular case, usually requires considerable experience of the health care workers
[47]. For this particular problem we use the dataset collected in the HUP study which
is described in Section 2.1.

Assuming we would like the patient to be exposed to the least number of examinations
(modalities in this case), we now want to find a way to determine for each lesion the
modality that provides the most information. In this context, our system automatically
learns from previous patient records and at the time of diagnosis, taking into account
the specifics of the patient in consideration, it suggests one or several suitable (clinical)
courses of actions to efficiently arrive at a diagnosis with as high certainty as possible.
The method works by iteratively reducing the uncertainty about the variable of interest
(in our example, the occurrence of cancer) by making locally optimal suggestions of what
variable to investigate (observe) next.

4.3 Method

Consider a collection of patient records containing data generally indicative of various
clinical aspects associated to the patient, e.g., patient demographics, reported symptoms,
results from laboratory or other tests, and patient disease/condition. Let us define
each single element (source) of patient data as a random variable Vm, e.g., patient
age (demographics), presence of headache (symptom), blood pressure (test result), or
occurrence of diabetes (disease).

In this work, we consider the set of variables V = {V1, . . . , VM} and we assume each
variable to be discrete with a finite domain. For a given patient, a few of these variables
may have been observed while others may have not. In some cases, we know such values
of the variables with some probability.

Let us now consider the time when a diagnosis needs to be made for a specific patient,
for which some of these variables have been observed, denoted as background attributes
Zi ∈ V , for i ∈ {1, ..., k}; e.g., demographic information and patient symptoms. The
remaining M − k variables denoted Xj have not been observed yet; e.g., the result of
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a lab test. Finally, for the patient, let Y denote a variable in which we are ultimately
interested, but that we have not observed, such as the occurrence of cancer. This variable
may not be observable directly or it may be observable at a high cost. Thus, we prefer
to rely on other sources of information and try to infer the value of this variable.

Preliminary analysis of the data presented in Chapter 2.1 showed that the four modali-
ties perform differently and none of them performs perfectly for all lesions (Section 2.1.2).
Thus, we now want to find a way to determine for each lesion the modality that provides
the best performance. Of course, there can be several modalities that perform equally
well for a lesion and there can be lesions that are assessed poorly by all modalities.

The goal is now to take into consideration all information available about a patient,
and then determine the optimal modality. We focus on a solution by applying mu-
tual information to determine the modality that maximizes the information about the
condition of the patient (biopsy result).

4.3.1 Formalization

For the introduced application, we have the following variables.

• Y = Biopsy result; Domain(Y ) = {malignant, atypia benign, benign}

• Xj = Tests j ∈ {DMAM, FMAM, MRI, USND};
Domain(Xj) = {0, 1, . . . , 5} (BI-RADS Assessment of Test)

• Z1, . . . , Zk = Attributes about patients and lesions. Discrete values and different
domain sizes.

4.3.2 Basic Methodology

Formally we are interested in optimizing,

X∗ = argmax
j

I(Xj , Y |Z1 = z1, . . . , Zk = zk) (4.1)

where the quantity I is the mutual information between our variable of interest Y and
the variables whose values we could potentially obtain Xj , conditioned on the fact that
we already know Z1 = z1, . . . , Zk = zk. Using the definition of mutual information (see
Section 3.1.1) and the shorthand z = (z1, . . . , zk) to denote the assignment of multiple
variables we have that the function of interest is:

I(Xj , Y |z) =
∑

xj

∑

y

P (xj , y|z) · log
P (xj , y|z)

P (xj |z) · P (y|z) (4.2)

The set of variables Xj is finite. Assuming the variables follow a multinomial joint
probability distribution that can be reliably estimated, this problem can be solved by
testing each of the potential candidate variables individually to see which provides the
most information.
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In order to arrive at a diagnosis with high certainty, one observation may not be
enough. In some cases we may be allowed to observe more than one variable. Thus, this
process can be repeated iteratively until a user-defined precision or confidence level is
achieved. For example, this limit can be defined in terms of the amount of information
that is left in the variable of interest (entropy).

Once a variable has been tested and observed, it can be incorporated as part of the
background knowledge. Specifically, let us say that Xi was observed, we can now solve
the following refined problem:

argmax
j 6=i

I(Xj , Y |xi, z) (4.3)

that is the maximization problem needs to be updated once a test (generating an ob-
servation) has been performed. Another extension of this approach includes optimizing
over two variables at once.

Ideally, the quantity to optimize is the mutual information conditioned on all available
data or observed variables . However, in practice this may be difficult because in general
the conditional joint probabilities P (xj , y|z1, z2, . . . , zk) cannot be properly estimated
from limited data for large k. The data required to properly estimate the conditional
joints may grow exponentially with k. In addition, the number of unobserved variables
plays an important role in terms of computational complexity (which can also grow
exponentially with the number of unobserved variables).

4.3.3 Feature Selection

We consider only significant background attributes Zi. To determine the significance
of an attribute X for another attribute Y we calculate signif(X, Y ) = I(X, Y ) −
(|X|−1)·(|Y |−1)

#lesions
. An attribute X is significant if signif(X, Y ) > 0, otherwise it is discarded

from our calculation. Table 4.1 shows the available attributes X, their information gain
about the biopsy result Y , and their signif -value. The table also displays for how many
lesions no attribute value is known (missing value). The highest information gain results
for the attributes that represent a direct test result. Of course, these attributes are
unknown before the examination is done. Therefore, we can not include them into our
calculation. We therefore select the fifteen other attributes with positive signif -value
as z; these are the attributes between the two horizontal lines in the table.

4.4 Combining all Available Background Information

Since with limited data our estimate of P (xj , y|z1, z2, . . . , zk) will not be accurate, we
seek a data-efficient method (one whose data requirements do not grow exponentially
with k) to compute or approximate the above quantity and thus be able to use all
available background information to make decisions over what test should be chosen.
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X I(X,Y) signif(X, Y ) #missing values

Biopsy result 1.160 1.140 0 ( 0.0 %)
CLF BI-RADS 0.369 0.325 0 ( 0.0 %)
USND BI-RADS 0.286 0.242 29 ( 12.8 %)
MRI BI-RADS 0.284 0.240 16 ( 7.0 %)
FMAM BI-RADS 0.259 0.214 48 ( 21.1 %)
DMAM BI-RADS 0.228 0.183 30 ( 13.2 %)

Gail Model Lifetime Risk 0.133 0.116 180 ( 79.2 %)
Gail Model 5 Year Risk 0.121 0.103 180 ( 79.2 %)
has child 0.093 0.084 180 ( 79.2 %)
Claus Model lifetime risk at age 79 0.086 0.068 180 ( 79.2 %)
age at menarche 0.094 0.068 180 ( 79.2 %)
calcification 0.060 0.051 68 ( 29.9 %)
has diagnositc MAM 0.024 0.015 12 ( 5.3 %)
1st degree relative with BC 0.021 0.012 8 ( 3.5 %)
age 0.027 0.010 8 ( 3.5 %)
has last MAM 0.014 0.005 8 ( 3.5 %)
Educational level 0.030 0.003 9 ( 4.0 %)
currently use of oral contraceptives 0.011 0.002 9 ( 4.0 %)
ethnic group 0.019 0.002 8 ( 3.5 %)
has breast USND 0.010 0.001 11 ( 4.8 %)
menopausal status 0.018 0.000 9 ( 4.0 %)

has suspicious MAM 0.008 -0.001 11 ( 4.8 %)
relatives with bc 0.008 -0.001 8 ( 3.5 %)
has breast MRI 0.006 -0.003 10 ( 4.4 %)
breast density 0.005 -0.004 9 ( 4.0 %)
number of 2nd degree relatives 0.005 -0.004 5 ( 2.2 %)
curr. estrogen repl. or oral contrac. 0.003 -0.006 18 ( 7.9 %)
curr. estrogen repl. therapy 0.003 -0.006 8 ( 3.5 %)
Annual family income 0.003 -0.006 39 ( 17.2 %)
marital status 0.003 -0.015 9 ( 4.0 %)
Insurance plan 0.003 -0.015 8 ( 3.5 %)

Table 4.1: How much information provides a single attribute X about the biopsy result?
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X

Z1 Z Zk2
......

Y

Figure 4.1: Bayes network: Background attributes Zi depend only on the test result of Test Xj

and the Biopsy outcome Y

4.4.1 Information Averaging

A simple heuristic consists on averaging the information conditioned on each background
variable Zi separately,

I(Xj , Y |z) ≈
1

k
·

k
∑

i=1

∑

zi

α(zi)I(Xj , Y |zi), (4.4)

where α(zi) is equal to the prior P (zi) if zi is not observed and α(zi) = 1(zi) if observed1.
We will use this as our baseline method.

One way to think about this heuristic is to consider k independent models involving
Y, Xj , Zi of the form P (y, xj , zi) = P (zi|xj , y)P (xj , y). Mutual information can be com-
puted for each model separately given the observed data. Similar to model averaging, the
mutual information of Xj about Y can be found by averaging the individual information
values, giving rise to the above equation.

4.4.2 Exploiting Conditional Independence Assumptions

We have so far assumed a very general model of the data, specifically a full multino-
mial distribution with a large number of degrees of freedom. However, if we relax this
assumption, it turns out that we can find a family of models for which computing the
mutual information of interest is computationally and data-efficient.

Our general approach is to find good models that make stronger conditional inde-
pendence assumptions (simpler joint models), so that when the zi’s are observed, the
computation of I(Xj , Y |z) does not have large data requirements.

We consider the Bayes net in Figure 4.1, where the background information Zi depends
on the test result Xj and the biopsy outcome Y . This network should not be looked at
as depicting causality, but simply as a statistical model. We obtain a new probability

11(zi) is equal to one if zi is the observed value for Zi and zero otherwise
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distribution Q:

Q(xj , y, z) = P (xj , y) ·
k

∏

i=1

P (Zi = zi|xj , y). (4.5)

When using this model, we obtain the following expression for the conditional mutual
information:

I(Xj , Y |z) =
∑

x∈Xj

∑

y∈Y

Q(x, y|z) log
Q(x, y|z)

Q(x|z) ·Q(y|z) (4.6)

The above Bayes network defines another multinomial model. This has the particular
advantage that it only requires computing joint distributions of at most three variables
for the mutual information computations above. This holds even if we do not know what
variables Zi will be observed beforehand which is beneficial since we indeed do not know
what variables will be observed for a particular case (patient).

Learning and Inference in the New Model

For learning the model, we are interested in finding P (zi|xj , y)∀i ∈ {1, ..., k} and P (xj , y)
since these distributions fully define the model. Using the maximum likelihood criterion,
we can see that:

P (zi|xj , y) =
count(Zi = zi, Xj = xj , Y = y)

count(Xj = xj , Y = y)
(4.7)

P (xj , y) =
count(Xj = xj , Y = y)

count(Xj = any, Y = any)
. (4.8)

Inference can be performed efficiently also. Denoting Zo as the background variables
observed, and Zu those unobserved2, we have the following expression for the posterior
probability over the domain of Y :

P (y|xj , zo) =

∑

zu
P (xj , y)

∏

i P (zi|xj , y)
∑

zu

∑

y P (xj , y)
∏

i P (zi|xj , y)
, (4.9)

where i indexes all (observed and unobserved) variables. This expression can be easily
obtained from the definition of the joint distribution implied by the model.

In summary, we have found a method that allows us to use all the available background
information for deciding what test to perform. For this we have relaxed the model
assumptions and use a class of models whose data requirements are more practical.
Inference and learning are computationally efficient in these models as well.

2So far we have assumed that all of the Zi variables are observed since they are considered background
information. A more general assumption can be made by letting some of the background variables
be unobserved.
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Averaging Joint Model (Q)

P (y|xj , z)
1
k
·

k
∑

i=1
P (y|xj , zi)

P (x,y)·
Qk

i=1
P (zi|x,y)

P

y∈Y P (x,y)·
Qk

i=1
P (zi|x,y)

H(Y |xj , z)
1
k

k
∑

i=1
HP (Y |xj , zi) HQ(Y |xj , z)

Table 4.2: Approximations of the probability distribution and entropy given k back-
ground attributes (z = (z1, . . . , zk))

4.5 Validation and Results

First, we test our approaches on public heart disease data consisting of 920 patients and
14 attributes (two background attributes, 11 observable test attributes, and one binary
class attribute).3 On this dataset each patient is an instance. The variable of interest
Y expresses if the patient has heart disease (411 patients) or not (509 patients). In a
second step, we perform experiments on the breast cancer diagnosis data introduced in
Chapter 2.1 (15 background attributes, 4 observable test attributes, and one binary class
attribute). For our experiments on the breast cancer data, we use lesions as instances.
We only consider lesions that were subject to biopsy: from 132 patients we analyze 216
biopsied lesions, 134 malignant and 82 benign. We use the biopsy result as the variable
of interest Y . Note that the number of data points is small given the dimensionality of
the data, which is quite common in controlled medical studies where the cost of data
gathering is usually high.

We validate the two approaches considered above for each instance in a leave-one-
out validation.4 First, we determine for each instance which test X∗ maximizes the
information given the patient specific attributes z. After observing the selected test
X∗ = xj , we decide for the most likely diagnosis y∗ = arg max

y∈Y
P (y|xj , z). We say the

instance is correctly assessed, if y∗ equals the actual state of disease of the instance, and
incorrectly assessed, if the diagnosis was different. This accuracy measure could be easily
improved by training a classifier on the features {Xj , Z1, · · ·Zk} and predicting Y for
each test instance.

The two approaches provide two different estimations of I(X, Y |z). Our validation cri-
teria (correctness and certainty) additionally requires the computation of P (y|xj , z1, . . . , zk)
and H(Y |xj , z1, . . . , zk). The discussion in section 4.4 showed that it is not possible to
compute this for large k. Therefore, we use the approximations shown in Table 4.2. HP

(HQ) denotes the entropy of the probability distribution P (Q). To get a better grading
of the results of our approaches, we compare it to two different ways of selecting a test.

We evaluate:

3http://archive.ics.uci.edu/ml/datasets/Heart+Disease
4We only consider instances with complete information on the test attributes as test instances (278 for

heart disease and 138 for breast cancer) because it is not possible to evaluate the cases where the
result value of the selected test is missing.
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Ratio of correctly assessed instances

Heart Disease Breast Cancer

prop. best rand. prop. best rand.

Av. 0.781 0.996 0.681 0.657 0.846 0.696
J.M. 0.745 0.989 0.665 0.748 0.944 0.691

Table 4.3: Ratio of correctly assessed instances. The values in the columns differ in the
way the test was chosen: proposed by information maximization, best possible
(knowing the performance beforehand), or randomly selected. Note that ran-
dom and best differ for each approach because of the different approximations
of P (y|xj , z) (see. Table 4.2) used for the prediction.
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Figure 4.2: Ratio of correctly assessed instances when iterating the test selection. The
graphs show the results of the two proposed approaches on the heart disease
data.

• selecting a test proposed by information maximization

• selecting one of the possible tests at random (which is equal to averaging over all
possible tests) against

• selecting the best test: we determine the performances of all tests beforehand and
select the test with the best performance.

Because of the different approximations, the performance of the random and best methods
differs for each approach.

Correctness Table 4.3 compares the ratio of instances that were assessed correctly: On
both data sets holds, if we select an examination at random, in two thirds of the cases
the decision about the status of disease is correct. On the heart disease data, selecting
a test by information maximization leads to an improvement of about one tenth.
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H(Y |xj , z)
Heart Disease

proposed best random

correct Av. 0.733 ±0.15 0.613 ±0.14 0.862 ±0.07
J.M. 0.615 ±0.24 0.418 ±0.21 0.801 ±0.13

incorrect Av. 0.775 ±0.14 0.997 ±0.01 0.922 ±0.07
J.M. 0.695 ±0.27 0.947 ±0.09 0.801 ±0.13

Breast Cancer

proposed best random

correct Av. 0.669 ±0.52 0.346 ±0.48 0.564 ±0.52
J.M. 0.223 ±0.37 0.194 ±0.39 0.269 ±0.42

incorrect Av. 0.731 ±0.58 1.258 ±0.14 0.591 ±0.59
J.M. 0.499 ±0.43 0.786 ±0.51 0.599 ±0.44

Table 4.4: Mean value and standard deviation of entropy H(Y |xj , z). The lower the
values the higher the certainty of the decision. The upper part of the table
shows the average over correct assessed instances, the lower part over the
incorrect assessed ones.

On the breast cancer data, selecting a modality by information maximization leads to
an improvement in the second approach where we assume a simple joint model. Hence,
the latter appears to give a more useful estimate of I(X, Y |z). The difference of the two
approaches on the heart disease data only shows when iterating the test selection process
and adding the previous obtained test results as background knowledge. (Note: otherwise
we have only two background attributes). The results are displayed in Figure 4.2. The
second approach performs more stable and mostly outperforms the first approach.

Certainty of Decision To evaluate the certainty of the decision we evaluate the entropy
H(Y ) of the distribution Y after a decision was made and an observation obtained. Table
4.4 shows the certainty of the decision split into the cases that were correctly classified
(upper part of the table) and the incorrectly classified cases. On both data sets, we
see that the certainty for the correct classified lesions is higher (lower entropy) than for
the incorrect classified lesions. On the breast cancer data, the difference is large for the
joint model approach, but for model averaging these quantities are very similar. This
indicates that the proposed joint model is better suited at modeling the information
content in the test/decision variables.

Actual Information Gain We compare the entropy of P (Y |z) before performing a test
with the entropy of P (Y |xj , z) after observing the test result Xj = xj (see Table 4.5).
Comparing both approaches to random, the joint model approach achieves a better result
than the baseline approach.
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Actual information gain

Heart Disease Breast Cancer

Averaging Joint Model Averaging Joint Model

proposed 0.206 ±0.14 0.275 ±0.24 0.468 ±0.53 0.549 ±0.41
best 0.330 ±0.15 0.460 ±0.21 1.030 ±0.31 0.660 ±0.37
random 0.077 ±0.05 0.109 ±0.08 0.586 ±0.29 0.327 ±0.33

Table 4.5: Mean value and standard deviation of the actual information gain of observing
test Xj = xj : H(Y |z)−H(Y |xj , z).

4.6 Related Work

In machine learning it is generally the case that learning can be made more efficient
by appropriately choosing data points (from an available finite set); i.e., those data
points that allow an algorithm to learn as much as possible [61]. The selection of new
observations according to some criteria of interest can be thought of as form of active
learning, also referred to as optimal experiment design or sequential design (e.g., [26, 61,
59]). In the active learning literature multiple applications and numerous criteria have
been proposed to address the problem of selection of new observations. However, active
learning focuses on selecting entire instances that should be labeled and then added to
the training set in order to improve the learned model. In this chapter, we are concerned
about single feature values that should be observed for a new instance.

In contrast to active learning, active feature-value selection [64, 94] addresses the
situation when having incomplete but labeled instances in the training set. The task is
to select which instance should be completed to increase the performance of the model.
Melville et al. [64] select instances that are missclassified by the current model and
observe all missing values and relearn the model on the updated training set.

Gunter et al. [44] study how to select variables that actually influence the decision
which action to take. Instead of ranking variables only due to predictive criteria, like in
standard feature selection, they incorporate prescriptive criteria based on interaction of
the variable with the action and the proportion of the population where the choice of
decision depends on the variable.

Test selection has been investigated extensively in the medical and the statistical lit-
erature [7, 33, 40, 80, 93]. Doubilet [33] offers a mathematical approach to test selection,
however, it assumes that prior probabilities can be computed or estimated, which is
problematic for small training sets. Furthermore it is not clear how background knowl-
edge can be incorporated. Andreassen [7] proposes to use causal probability networks
(CPN) with utility nodes for test selection where the test is selected that increases the
expected utility. However, this requires defining a CPN and utility functions. Glasziou
and Hilden [40] discuss a variety of test selection measures and introduce some that
incorporate costs. Sent and van der Gaag [80] investigate the behavior of several infor-
mation measures for test selection and conclude that both, Shannon entropy and Gini
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index are well suited measures.
Our approach is based on the maximization of mutual information, a purely informa-

tion theoretic criterion [83, 28]. In this context, several forms of experimental design
have been studied dating back to [59] and more recently in [40, 61, 80], among oth-
ers. Our approach is an application of these concepts. More specifically, we apply the
concept of information maximization to select which random variable, among a finite
set of variables, should be observed to maximize the expected information gain about
another variable of interest. Since some variables are usually observed, we maximize the
conditional mutual information instead.

4.7 Conclusion

We have employed the concept of mutual information to address the problem of choos-
ing tests efficiently. We applied this to a problem in medical diagnosis. While mutual
information is a well understood concept, in practice however, small datasets and un-
derlying computational complexity make it difficult to calculate accurately for general
probability models. We have experimentally shown how certain model assumptions can
help circumventing these problems. Making these assumptions, we obtain a compara-
tively data-efficient variant of test selection based on information maximization. One
limitation of this approach is that these models are build manually (not automatically),
although model selection strategies and structure learning algorithms may be used. Our
experimental results show that there is an advantage on conditioning on all the available
observations even when conditional independence assumptions need to be made. Results
indicate that the proposed joint model outperforms the information averaging approach
by comparing the performance of each approach relative to a random and a best selection.
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In this chapter, we propose a new approach to test selection based on the discovery of
subgroups of patients sharing the same optimal test, and present its application to breast
cancer diagnosis. Subgroups are defined in terms of background information about the
patient. We automatically determine the best t subgroups a patient belongs to, and
decide for the test proposed by their majority. We introduce the concept of prediction
quality to measure how accurate the test outcome (in our case, the assessment of an
imaging modality) is regarding the disease status (in our case, the biopsy). The quality
of a subgroup is then the best mean prediction quality of its members (choosing the
same test for all). Incorporating the quality computation in the search heuristic enables
a significant reduction of the search space. We evaluate the approach on the data set
of breast cancer diagnosis presented in Chapter 2.1. From a clinical point of view,
our experiments show that the proposed approach provides valuable help at proposing
optimal tests. From a computational point of view, our approach is faster than the
baseline algorithm APRIORI-SD while preserving its accuracy.

5.1 Introduction

The goal of this work is to find the optimal set of tests to choose for a patient in a
given situation, where the definition of optimality is provided in Section 5.2.1. Existing
work on test selection [7, 33] mostly addresses the problem of finding global solutions
for all patients. However, it is not likely that for each patient the same test is the most
informative one. Therefore, we believe that it is a better approach to concentrate on
the task of identifying subgroups of patients for which the optimal test is the same.
Here, we present a novel solution to this problem based on subgroup discovery (SD)
(see Chapter 3.2). Subgroup discovery methods compute all subgroups of a population
that are statistically most interesting with respect to a specified property of interest.
Standard SD approaches are designed for a single target variable. However, in the
setting of test selection, a single variable seems not sufficient. In fact, we want to target
the relation between two variables: the outcome of a test and the actual state of disease.
Therefore, the quality of a subgroup should correspond to the value of the result of a
selected test with respect to the actual state of disease, e.g., a biopsy result. To quantify
the value of a test result, we define a so-called prediction quality function in Section 5.2.1.
The function gives high scores to a pair of a subgroup and a test if the result is close to
the actual state of disease, and therefore leads to an accurate diagnosis. Since standard
SD does not take into account complex scenarios like this, including benefits or costs
of subgroups, we developed a new, cost-sensitive variant.Throughout the thesis, we will
use the term prediction quality, which corresponds to the benefits of a prediction rather
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than to its costs. However, as it is easy to transform one into the other, we can also
speak of cost-sensitive subgroup discovery. The algorithm outputs subgroup descriptions
consisting of background information about the patients. The overall goal is to compute
an optimal test selection for a new patient. More precisely, our proposed solution is
to identify subgroups of the data for which the same test is the optimal selection, to
arrive at a correct diagnosis. In a second step, analyzing the subgroups will help to find
out which features determine the performance of the tests. Hence, it will be possible to
decide for a new patient, given its features, which test is the best to choose. We apply
and validate this approach on a data set from breast cancer diagnosis, where for each
patient four different tests are possible. The chapter is organized as follows: Section
5.2 recalls the setting of breast cancer diagnosis and the data set. The algorithm for
cost-based SD is described in Section 5.3. The test selection procedure is evaluated in
leave-one-out cross-validation. The results are described in Section 5.3.2. Section 5.4
discusses limitations of the data set. In Section 5.5, an overview of related work is given,
and Section 5.6 concludes the chapter.

5.2 Background and Data

Our study was conducted in the area of breast cancer diagnosis. In breast cancer diag-
nosis, different imaging modalities are used routinely (see Section 2.1.1). Each modality
has its own specific characteristics. When a patient is under scrutiny for breast cancer,
it is often not clear which of these modalities is best suited to answer the basic question
to whether the patient has or does not have cancer. The choice of a modality usually
requires considerable experience of the health care workers. In this work, we show how
to support the optimal test selection for a new patient by retrospectively analyzing the
performance of the tests on subgroups of previously examined patients with similar fea-
tures. The basis of our work is the dataset collected in a breast cancer study introduced
in Section 2.1. It comprises patients that had a suspicious finding in a screening. The
study gathers patient specific information like medical history, demographic information,
and a breast cancer risk summary. Each patient in the study underwent all four above
mentioned modality tests. Each of these tests was independently analyzed by the appro-
priate specialist to judge for the occurrence of breast cancer. For each lesion detected,
the specialist determines in which category it falls. The categories are called BIRADS
score and range from 0 to 5: The higher the BIRADS, the higher the probability (as-
sessed by the medical expert) for the lesion to be malignant. (0 = incomplete, i.e., needs
additional imaging evaluation, 1 = no finding, 2 = benign finding, 3 = probably benign,
4 = suspicious abnormality, 5 = highly suggestive of malignancy) [5]. To obtain evidence
of the initial assessments, a biopsy has to be performed. A pathologic examination of
a biopsy determines whether the lesion is benign, atypia benign, or malignant. In this
study at least one lesion for each patient is subject to biopsy.
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pscr OAm

0 1 2 3 4 5

Malignant 75 0 0 25 100 100
BIO Atypia 75 75 90 90 90 75

Benign 75 100 100 100 75 50

Table 5.1: Prediction score for agreement between the overall assessment (OAm = BI-
RADS) of a modality m and the biopsy finding BIO

5.2.1 Definition of Prediction Quality

To quantify the accuracy of a diagnosis, we propose a measure of prediction quality. Each
test m results for each lesion l in an overall assessment OAm(l) of the physician. This
is defined by the BIRADS score (see above). Each lesion has a biopsy BIO(l) proving
the status of the lesion (malignant, benign or atypia benign). The prediction quality
expresses how close the assessment comes to the biopsy finding. Therefore, we define a
prediction score pscr that evaluates the performance of a test for a single lesion. Table
5.1 gives the pscr for each pair (Overall Assessment, Biopsy). The higher the prediction
score, the more accurate is the prediction. The values in the table were proposed by a
domain expert in the field of breast cancer diagnosis. However, they are certainly not the
only possible values for the prediction score. For instance, as not all types of malignant
findings are equally harmful, it might be more accurate to distinguish between invasive
and non-invasive types of cancer.

Having defined pscr for a single lesion l, we can easily obtain the prediction quality
pq(S, m) of a modality m for an example set S by averaging over the prediction scores
of m and all lesions in S:

pq(S, m) =
1

|S|
∑

l∈S

· pscr(OAm(l), BIO(l))

test DMAM FMAM MRI USND

pq 77.9 78.0 78.4 80.2

Table 5.2: Prediction qualities of the modalities over all lesions

In our data set we have 138 lesions (of 72 patients) with biopsy and four modalities
(Digital Mammography (DMAM), Film Mammography (FMAM), Magnet Resonance
Imaging (MRI), and Ultrasound (USND)) to choose from. The prediction quality for
the entire dataset separated for each modality is presented in Table 5.2. It shows that
the prediction qualities of the different modalities over all lesions are quite similar (En-
tropy = 1.999 bits of a maximum 2 bits), with USND performing slightly better. By
considering subgroups of patients we expect to increase the prediction quality for at least
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one modality per subgroup. Then, we apply this modality to all lesions in the subgroup
to obtain the most accurate diagnosis.

5.3 Method

The general idea is to determine subgroups of lesions with an unusual modality per-
formance. Let X be a training set of observed examples and n the number of tests
{m1, . . . , mn} that can be performed. For each group1 of lesions S ⊆ X we consider
the prediction qualities pq(S, mi) of the possible modalities and decide for the modality
m∗(S) with the highest pq-value2:

m∗(S) = argmax
m

pq(S, m) (5.1)

The optimal prediction quality of S is then defined as pq∗(S) = maxm pq(S, m).
We introduce an algorithm called SD4TS (Subgroup Discovery for Test Selection).

The task of the algorithm is defined in the following way:
Given: X, n, minsupport (the minimal number of examples that have to be covered
by a subgroup description), t (the number of best subgroups we want to obtain from the
algorithm), and a set of pq-values {pscr(s, mi)|s ∈ X, mi ∈ tests} (in a more general
setting a set of cost/benefit values).
Find: The t subgroups with the highest pq∗ values (best costs/benefit) and at least
minsupport examples.

We base our algorithm on APRIORI-SD [53], an adaptation of the association rule
learning algorithm APRIORI [2] to subgroup discovery (see Chapter 3.2). APRIORI-
SD starts with generating subgroups described by a single attribute-value-pair. Subse-
quently, it generates subgroups with longer (and thus more specific) descriptions. Sub-
groups are only kept if they contain more examples than minsupport. All smaller sub-
groups are pruned, and no subgroups more specific than these are generated. For our
task, we are interested in the t subgroups that are cost-efficient for at least one modality.
Therefore, we can prune the search space even further, namely in a way that only the
promising subgroups are kept. That means, during the generation of subgroups, candi-
dates are immediately evaluated and checked whether they have the potential to lead to
improved costs.

5.3.1 Quality Pruning

Pruning is possible when a subgroup and all specializations of the subgroup will not
outperform the quality of the already discovered subgroups. Specialization of a subgroup
sg means adding an attribute-value pair to the subgroup description of sg. This can cause

1As in other SD algorithms we consider only groups that can be described by a conjunction of attribute-
value pairs

2In a more general setting, instead of pq we can assume any types of costs (where max should be
replaced by min) or benefits that rate the performance of the tests.
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pq

1

0.5

0

core_group(sg)

Figure 5.1: Simple pruning fails. All dots are examples in sg. The black dots are also
covered by sgnew. The y-direction corresponds to the pq-value of each exam-
ple.

changes of both the size and the quality of the subgroup. The size can never increase.
The defined quality, however, can change in both directions.

The example in Figure 5.1 demonstrates the discussed characteristics. The seven dots
represent the generated subgroup sg, with pq(sg) = 0.5. Assume we have generated
already a subgroup sgbest with pq(sgbest) = 0.6. In this case, sg has a worse pq value
and seems to be not promising. However, pruning sg will inhibit finding an optimal
subgroup sgnew (the four black dots) contained in sg with pq(sgnew) = 0.625.

The critical point is hence to recognize when the quality of subgroup sg can not
outperform at least one of the best t subgroups found so far. Thus, it is not enough to
consider the actual pq(sg) to determine if sg can be pruned. Furthermore, it is necessary
to consider what we call the coreGroup of sg. The coreGroup is a group consisting of the
minsupport examples covered by sg with the highest quality. The cost of the coreGroup
upperbounds the costs of all possible specializations of sg, because the overall score is
defined as an average of the elements of the group.

Considering the pq-value of the coreGroup of sg will circumvent this mistake by provid-
ing the upper bound of the pq-values of any specialization of sg: For the given example,
we assume a minsupport of 3. Then pq(coreGroup(sg)) = 1. Since pq(coreGroup(sg)) >
pq(sgbest), sg is not pruned and keeps the option of generating the improved subgroup
sgnew in a later iteration of the algorithm.

5.3.2 The SD4TS algorithm

The pseudo-code of the algorithm is shown in Algorithm 1. SD4TS starts with generat-
ing 1-itemset candidates (described by one attribute-value-pair). Candidates are pruned
if they are not frequent or if they can not outperform (not even through specializa-
tion) one of the the best t subgroups generated so far. All remaining candidates are
stored in optimizableCandidates. The best t subgroups are stored in topCandidates.
For efficiency, we store all created subgroups (including the list of transactions that are
covered, costs, bestPossibleCosts, support and a list still2test of 1-itemsets that have
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5 Subgroup Discovery for Test Selection

not been tested yet to specialize the subgroup) in an array allSubgroups in the order
they were created. The sorted lists topCandidates and optimizableCandidates contain
only pointers (the indices of the array) to the subgroups stored in allSubgroups. The
list topCandidates is sorted according to the actual costs of the subgroups. This facil-
itates removing the worst subgroup, whenever a newly generated subgroup has better
costs. The list optimizableCandidates is sorted according to the bestPossibleCosts a

Algorithm 1 SD4TS (subgroup discovery for test selection)
Input: Training set, set of costs, minsupport, number t of best subgroups to be produced
Output: list of topCandidates, including the proposed test(s) for each candidate

1: C ={c|c frequent subgroup defined by 1 attribute-value-pair};
2: topC = {c|c belongs to the t best candidates in C};
3: minpq = worst quality of topC;
4: remove all c from C with c.bestPossibleQ < minpq
5: while C not empty do

6: c1 = C.removeFirst();
7: for all c2 ∈ c1.still2test do

8: cnew = generate new candidates(c1, c2);
9: if cnew frequent and (cnew.bestPossibleQ > minpq or |topC| < t) then

10: add cnew to C
11: if cnew better than minpq or |topC| < t then

12: add cnew to topC
13: if size(topC) > t then

14: remove worst c of topC
15: end if

16: minpq = worst quality of topC;
17: remove all c from C with c.bestPossibleQ < minpq
18: end if

19: end if

20: end for

21: end while

22: return topC

coreGroup can achieve. In that way, we explore always the subgroup with the highest
potential first. That means specializing this subgroup is likely to lead to a subgroup
that falls into the top t candidates and therefore raises minpq which reduces the search
space.

Safe pruning A new subgroup candidate sgnew is only accepted if sgnew is frequent and
at least one of the following holds:

1. there are less than t subgroups stored in topCandidates, or

2. sgnew has a better performance than the worst subgroup of topCandidates, or
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3. at least one frequent subset of examples in sgnew (i.e., coreGroup(sgnew)) leads to a
better performance than the worst subgroup of topCandidates. This can be tested
in O(n∗|sgnew| log |sgnew|): For each test m determine the set CGm of minsupport
examples covered by sgnew that have the best costs. sgnew.BestPossibleCosts =
max

m
pq(CGm, m)

In all cases we add the candidate to optimizableCandidates. In case 1 and 2 we also add
the candidate to topCandidates. In the second case we additionally remove the worst
stored subgroup from topCandidates.

Eliminating duplicates Subgroup discovery algorithms often produce duplicate sub-
groups, that is, subgroups covering the same examples and differing only in the sub-
group description. This arises mostly due to specializations of a subgroup s: Adding an
attribute-value pair inew to the description will create a new subgroup snew, even if the
covered examples are the same. SD4TS eliminates duplicates. After each specialization
it checks if the set of covered examples has changed (is smaller). If not, snew will not be
stored and only the description of s will be updated by flagging inew as optional.

5.3.3 Different Subgroup Qualities

In this section, we introduce alternative scoring functions for subgroups that can be used
in the pruning step of the algorithm. Let us compare two subgroups sg1 and sg2 of size
n1 resp. n2, and the prediction qualities
p1 = (pq(sg1, DMAM), pq(sg1, FMAM), pq(sg1, MRI), pq(sg1, USND)) and
p2 = (pq(sg2, DMAM), pq(sg2, FMAM), pq(sg2, MRI), pq(sg2, USND)).
Then, possible meaningful scoring functions include:

1. Prediction quality of the best modality pq(sg1, BEST1) > pq(sg2, BEST2)

2. Relevance =
√

n2 ∗
√

n1

n1−n2
;

if n1 = n2: Relevance =
√

n2

3. Information gain regarding choice of modality: entropy(p1)− entropy(p2)

4. New preferred modality, if (arg max
p1

6= arg max
p2

);

5. General improvement of prediction quality:
∑

p2 −
∑

p1

In the implemented approach, we used the first criterion. However, for other scenarioes
it might be useful to also test some of the other criteria, and modify the algorithm to
prune according to other types of quality functions.
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5 Subgroup Discovery for Test Selection

5.3.4 Analysis of Runtime and Search Space

Figure 5.2 shows how the search space (i.e., the number of search nodes) depends on the
parameters minsupport and t. The higher minsupport, the smaller the search space.
This is caused by the frequency pruning. We also see that a low t-value results in a small
search space, which is the expected effect of quality pruning. For small values of t fewer
subgroups are kept in topCandidates, which increases the threshold of costs below which
subgroups are pruned. The right diagram in Figure 5.2 displays the runtime of the two
algorithms. For minsupport values below 25, SD4TS is faster than APRIORI-SD, as
frequency pruning is only effective for larger minsupport values.
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Figure 5.2: The left (right) diagram shows how the search space (runtime) depends on
minsupport (x-axis) for different t-values. In comparison, the black solid line
shows the search space of APRIORI-SD.

5.4 Validation and Results

To evaluate the approach, we tested it in a predictive setting3, more specifically, in a
leave-one-out cross-validation. For each test lesion l, we generate only subgroups with
attribute-value pairs contained in l. Table 5.3 shows the best t = 5 subgroups for 3
example lesions.

From the resulting best t subgroups, we decide for the test proposed by the majority
of the identified subgroups (for test lesion 9 it is USND). A test is proposed if it has the
best costs averaged over all examples in the subgroup (for subgroup S1 it is USND). If
more than one test has optimal costs, all of them are proposed (for subgroup S9 it is
DMAM and USND). If more than one test is proposed most often by the subgroups, the
cost for the test lesion l is determined by the mean of their costs.

3Note that prediction is not our main goal. Additionally, we are interested in the discovery of new
medical knowledge. Therefore, we prefer subgroup discovery over standard classifiers.
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subgr.
top 5 subgroups for selected test lesions size DMAM FMAM MRI USND

test lesion 9 0 0 0 100

S1 Highschool or less + has past Mammo 17 76.5 76.5 57.4 98.5

S2 Highschool or less + has past Mammo
+ no relatives with cancer 16 75.0 75.0 56.3 98.4

S3 Highschool or less + has past Mammo
+ has past breast USND 14 85.7 78.6 62.5 98.2

S4 Highschool or less + has past Mammo
+ ethnic group = white 14 85.7 78.6 66.1 98.2

S5 age 40-59 + no relatives with cancer
+ pre menopausal + ethnic group = white 28 76.8 72.3 76.8 93.8

test lesion 19 75 100 100 100

S6 Graduate School after college + age 40-59
+ no relatives with cancer + ethnic group=white 14 76.8 75.0 98.2 82.1

S7 Graduate School after college + has no
breast USND + no relatives with cancer 21 94.1 82.1 92.9 96.4

S8 Graduate School after college + has no
breast USND + no relatives with cancer
+ ethnic group = white 19 93.4 80.3 92.1 96.1

S9 Graduate School after college + age 40-59
+ no relatives with cancer + has no
breast USND 18 95.8 81.9 91.7 95.8

S10 Graduate School after college + has no
breast USND+ no relatives with cancer
+ ethnic group = white + age 40-59 16 95.3 79.7 90.6 95.3

test lesion 23 100 100 75 100

S11 no relatives with cancer + age ≥60 14 94.6 87.5 87.5 76.8

S12 Graduated from College
+ post menopausal status 16 78.1 82.8 93.8 70.3

S13 post menopausal status + age ≥ 60 15 93.3 86.7 86.7 76.7

S14 age ≥60 15 93.3 86.7 86.7 76.7

S15 Graduated form College + no relatives
with cancer + post menopausal status 15 76.7 81.7 93.3 70.0

Table 5.3: Example of best 5 subgroups for 3 selected input test lesions. The shaded
rows indicate the actual prediction scores of the modalities for the current
input test lesion. The bold prediction qualities indicate the imaging modality
proposed by SD4TS. For example, test lesion 9 will be assessed best by USND
(pscr =100), the other three modalities fail to assess the lesion correctly (pscr
= 0).
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#best # # specific #
tests cases code cases code cases

4 or 0 40 (29%) 1111 40 1111 40
1114 10 Set 1

3 45 (33%) 1114 45 1141 19
1411 7
4111 9
1133 2
1313 4

1133 16 1331 1
3131 1
3311 8 Set 2

2 21 (18%) 1134 1
1431 1

1134 5 3411 1
4113 1
4311 1
1222 2

1222 27 2122 6
2212 11

1 32 (23%) 2221 8 Set 3
1224 3 2124 2

2241 1
1234 2 2431 2

Table 5.4: Distribution of lesions according to the ranking of modality performances.
One modality outperforming three other equal modalities is encoded by 1222,
etc. The first digit represents DMAM, the s second FMAM, the third MRI,
and the last USND. The first column summarizes the codes according to how
many modalities achieve the best performance.

5.4.1 Analysis of Performance Compared to Random Selection

For each lesion l, a vector of prediction qualities is given by
−→pq(l) = (pq(l, FMAM), pq(l, DMAM), pq(l, MRI), pq(l, USND)).

This can be interpreted as a ranking of the modalities for each lesion. For instance,
−→pq(l) = (0.8, 0.7, 0.9, 0.8) leads to the ranking MRI > USND = DMAM > FMAM .
We encode this ranking as 1224. There is one modality ranked first, followed by two
modalities ranked second, and one modality ranked fourth. In total, there are seven
possible encodings: from 1111 (all modalities have the same prediction quality) to 1234
(all modalities have different prediction qualities). Additionally, we can encode in a
more specific code which modality is best: The first digit refers to FMAM, the second
to DMAM, the third to MRI and the last to USND.
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5.4 Validation and Results

costs Set 1 Set 2 Set 3

SD4TS 82.8 76.0 51.6

Best 99.45 99.49 99.22
Random 78.6 70.22 40.63

Worst 58.03 41.33 16.41

DMAM 77.92 69.13 30.47
FMAM 78.1 69.39 41.41
MRI 78.28 69.9 44.53
USND 80.11 72.45 46.09

Table 5.5: Prediction qualities for different test selection methods. SD4TS shows the
results for the best parameter settings (see Table 5.6). Compare this to always
picking the modality with the best costs, the worst costs, picking a modality at
random, or always picking the same modality (always DMAM, always FMAM,
always MRI, or always USND).

Table 5.4 shows the distribution of codes of our dataset. It is remarkable that in
29% of the cases all modalities perform equally well. This implies that for those cases a
random choice is as effective as a more informed choice. To have fairer conditions, we
additionally validated the algorithm on two restricted subsets of test lesions (results are
shown in Table 5.6). Set 1 consists of all 138 lesions. Set 2 is a subset of Set 1 containing
only the 98 lesions whose costs are not the same over all modalities (all codes except
1111). Set 3 comprises 32 lesions, where one modality outperforms the other modalities
(code 1222, 1224, and 1234). Note that the differences between the best and the worst,
and between the best and the random choice improve significantly from Set 1 to Set 3.

5.4.2 Results

We evaluated SD4TS for different parameter settings. Results are shown in Table 5.6. It
shows that the best parameter settings are low minsupport and high t values (considering
even small subgroups), or, vice versa, high minsupport (50) and low t values (few large
subgroups). Comparing the results in column Set 1 of Table 5.6 with Table 5.5 shows
that the algorithm achieves in general better costs than picking a modality at random
or picking always the same modality. In general, the choice of parameters is good, if the
prediction quality is higher than for a random selection. The results on the restricted sets
Set 2 and Set 3 show that the improvement compared to a random selection increases
from Set 1 to Set 3.

We further validate the overall coverage of the lesions by the generated t subgroups.
Figure 5.3a shows the percentage of lesions that are covered by at least one subgroup.
With an increasing number of generated subgroups t, the coverage increases and the
average quality (Figure 5.3b) decreases. It also shows that a higher minsupport induces
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5 Subgroup Discovery for Test Selection

a higher coverage, even for low values of t. Also for those cases the quality decreases.
Figure 5.3c shows the behavior of the proportion of lesions covered by a subgroup when
introducing a threshold, which has to be overcome by the prediction quality of the
subgroups. Subgroups with lower prediction qualities are ignored in this setting. Of
course with raising the threshold the number of uncovered lesions increases. Small
minsupport allows more lesions to be covered. The average quality increases with a
higher threshold for low minsupport and decreases for high minsupport and a higher
threshold. The larger subgroups seem to be not specific enough.
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Figure 5.3: a) Percentage of lesions that are covered by at least one subgroup for different
values of t (x-axis) and minsupport. b) Average costs (prediction quality) of
lesions when choosing the modality proposed by the best subgroup ignoring
lesions that are not covered by any subgroup. c) Percentage of lesions covered
by at least one subgroup with pq above a certain threshold (x-axis). d)
Average quality of lesions when choosing modality proposed by the majority
of the (maximal 10) best subgroups above the threshold. Lesions covered by
no subgroup above the threshold are ignored.
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5.5 Related Work

Test selection has been investigated extensively in the medical and the statistical litera-
ture (see Section 3.1). However, none of the approaches allows identifying all subgroups
with optimal costs. Other subgroup discovery algorithms [53, 9, 54, 56, 91] mostly focus
on finding subgroups that are interesting or unusual with respect to a single target vari-
able (mostly class membership; for numerical variables see [54]). In our problem setting
we need a more complex target variable that expresses the relation between the test
outcome and the biopsy. Exceptional model mining [58] provides an approach that is
able to discover subgroups with a more complex target concept: a model and its fitting
to a subgroup. It performs a level-wise beam search and explores the best t subgroups
of each level. In contrast, SD4TS does not require the definition of a model and is
guaranteed to find the globally optimal subgroup. While subgroup discovery usually
aims for a descriptive exploration of the entire population, we discover for each patient
only subgroups that are supported by the patient’s features. Therefore, we do not need
a covering heuristic. With the introduction of prediction quality we have a measure that
enables quality pruning of the search space (comparable to optimistic estimate pruning
[91, 42]), whereas existing algorithms quite often only offer pruning according to fre-
quency [53]. While test selection and subgroup discovery are well-investigated areas of
research, their combination has not yet been considered in the literature.

5.6 Conclusion

Many questions in medical research are related to the discovery of statistically interesting
subgroups of patients. However, subgroup discovery with a single target variable is rarely
sufficient in practice. Rather, more complex variants, e.g., handling costs, are required.
In this study, we considered such variants of subgroup discovery in the context of the
clinical task of test selection and diagnosis: For our breast cancer diagnosis scenario,
the task is to detect subgroups for which single modalities should be given priority over
others, as indicated by a cost function. We designed an algorithm that handles costs
and finds the most cost-efficient subgroups of a population. By limiting the output size
to the best t subgroups, it is possible to prune the search space considerably, especially
for lower values of the minimum frequency (i.e., support) parameter. Consequently,
the proposed algorithm clearly outperforms the baseline algorithm used for comparison
(APRIORI-SD) in our experiments. The main problems and limitations in the context
of our study were caused by the small sample size (138 examples, i.e., lesions) and the
non-unique solution for optimal test selection. In other words, for many cases, two or
more tests perform equally well in practice. Our task could also be solved applying
slightly modified methods from Section 5.5. However, we expect this to result in longer
runtimes. Overall, we showed that subgroup discovery can be adapted for test selection.
Similar techniques should be applicable successfully in other areas as well. In the next
chapter, we compare the method with the information-theoretic approach of test selection
discussed in Chapter 4.
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Set 1

min-s. 5 10 20 30 50

1 80.7 82.6 77.8 79.2 81.5

5 79.5 81.3 76.6 78.2 82.7

10 82.7 80.7 76.1 79.0 80.1
t 20 82.6 79.6 77.8 80.4 80.5

30 82.5 79.3 80.1 79.2 80.5
100 82.8 80.3 79.7 79.1 80.5
250 82.2 80.7 79.7 79.1 80.5

Set 2

min-s. 5 10 20 30 50

1 73.1 75.8 69.1 70.9 74.2

5 71.4 73.9 67.4 70.2 75.9

10 75.9 73.1 66.6 70.7 72.2
t 20 75.8 71.5 69.0 72.7 72.8

30 75.6 71.1 72.2 70.9 72.8
100 76.0 72.6 71.7 70.8 72.8
250 75.2 73.1 71.7 70.8 72.8

Set 3

min-s. 5 10 20 30 50

1 45.6 48.4 37.9 42.6 47.3
5 42.8 42.1 35.6 43.0 51.6

10 47.3 41.8 37.1 46.9 42.5
t 20 44.5 42.6 42.6 49.6 47.1

30 49.6 46.1 49.2 41.4 47.1
100 51.0 47.7 46.1 41.4 47.1
250 51.0 47.7 46.1 41.4 47.1

Table 5.6: Results of leave-one-out cross-validation of SD4TS with varying minsupport
and t parameters over three different test sets (best parameter settings in
bold). The displayed costs are averaged over all test lesions. A cost for a
single lesion is derived by taking the costs of the test proposed by the majority
of the returned subgroups. If two or more tests are proposed equally often,
we take the average of their costs.
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In the previous chapters, we introduced two approaches to test selection. We refer to
them as IMAX and SD4TS. In this chapter we compare the two methods. For the
experiments in Chapter 4 and Chapter 5 we considered only the 138 lesions with complete
information on the test attributes and the biopsy findings. Therefore, we restrict our
analysis in this chapter to these 138 lesions.

6.1 Which Modalities are Selected?

First, we compare which modalities are proposed by the two approaches for the 138
lesions. Figure 6.1 shows the distribution of modalities selected by IMAX and by
SD4TS. We see that IMAX prefers MRI whereas SD4TS prefers USND.
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Figure 6.1: Distribution of selected modalities for IMAX (left) and SD4TS (right).

6.2 How Accurate is the Overall Assessment compared to the

Biopsy?

Next, we compare the accuracy of the diagnosis obtained by selecting the proposed
image modality. As in Section 2.1.2, we illustrate the accuracy of the overall assessment
compared to the biopsy findings. Table 6.1 displays the results for the modalities selected
by IMAX, SD4TS, and for the case of always selecting the same modality. It shows
that IMAX and SD4TS do similarly well with some variations in BI-RADS=2 and
BI-RADS=4. Both x-ray methods (DMAM and FMAM) do worse, i.e., they evaluate
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more malignant lesions evaluated as benign (with BI-RADS=1). Compared to MRI and
USND, our proposed methods evaluate fewer benign lesions a malignant (BI-RADS=5).

We also compare the prediction quality pq of both approaches: SD4TS yields a pre-
diction quality of 82.8 and IMAX a slightly lower one of 81.6. Comparing this to the
results for Set1 in Table 5.5 and Table 5.6 shows that IMAX can compete with the
best parameter settings for SD4TS and outperforms picking always the same modality
or picking a modality at random.

On the other hand, we validate SD4TS by the correctness criterion from Section
4.5, which is the ratio of correctly assessed lesions, when applying the selected test and
deciding for the most probable biopsy outcome given the test result and all available
background attributes. We determine the probability by the probability distribution Q
of the approach that assumes a joint model. This yield a correctness of 0.733 for SD4TS
which is slightly lower than the correctness for IMAX of 0.748 but still much higher
than selecting a modality at random (compare Table 4.3).

6.3 Conclusion

We could show that both of our approaches perform better than selecting a methodology
at random. The two approaches achieve similarly good results. The main difference is
that SD4TS also provides a descriptions of subgroups that have the same optimal test,
which makes it possible to explain relations of the patients features and the selected
modality and hence discover novel medical knowledge. In contrast, IMAX is especially
adapted for situations when physicians plan to apply a chain of modalities. For instance,
when the outcome of a test is already known, IMAX is able to incorporate this knowl-
edge as a background attribute. This enables a better decision for an additional image
methodology.
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Table 6.1: Accuracy of BI-RADS-Assessments (X-axis) of single modalities (DMAM,
FMAM, MRI and USND). The Y-axis gives the number of cases of a cer-
tain x-value. The color of the piles encodes the portion of lesions with the
same biopsy result.
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7 Subgroup Discovery on Clusterings

In the following, we present a new approach to subgroup discovery with more complex
output in the form of images. The study was conducted in the medical domain of
Alzheimer’s disease and other forms of dementia. The psychiatry and nuclear medicine
departments of Klinikum rechts der Isar (TU München) granted access to psychological
and physiological data of patients suffering from Alzheimer’s disease or dementia. The
data consists of PET scan images and structured data containing patient information
and the results of psychological tests. A detailed description can be found in Section 2.2.

One of the goals of medical research in the area of dementia is to correlate images
of the brain with clinical tests. Our approach is to start with the images and explain
the differences and commonalities in terms of the other variables. First, we cluster
PET scans of patients to form groups sharing similar features in brain metabolism.
To the best of our knowledge, it is the first time ever that clustering is applied to
whole PET scans. Secondly, we explain the clusters by relating them to non-image
variables. To do so, we employ an algorithm for relational subgroup discovery, RSD,
with the cluster membership of patients as target variable. Our results enable interesting
interpretations of differences in brain metabolism in terms of demographic and clinical
variables. The approach was implemented and tested on an exceptionally large data
collection of patients with different types of dementia. It comprises 10 GB of image
data from 454 PET scans, and 42 variables from psychological and demographical data
organized in 11 relations of a relational database. We believe that explaining medical
images in terms of other variables (patient records, demographic information, etc.) is a
challenging new and rewarding area for data mining research.

7.1 Motivation

Given the results from neuroimaging studies, one of the major goals of medical research
is to correlate them with other non-image based variables (e.g., demographic information
or clinical data). The usual approach is to select a subset of patients fulfilling specific
predefined criteria (e.g., the level of cognitive impairment) and to compare the images
associated with those patients to data from healthy controls in a group analysis. How-
ever, it is clear that such an approach can never be guaranteed to be complete: If the
first step misses an important subset, it is not possible to recover from this omission in
subsequent steps.

Therefore, we propose to apply data mining techniques to take the opposite approach:
to start with the images and explain the differences and commonalities in terms of non-
image variables. In this way, the results of the analysis are less dependent on the choices
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made in the selection of patients. In fact, the goal is to obtain a complete list of de-
scriptions of subgroups of patients, which are unusual with respect to the PET images.
The approach was implemented and tested on data derived from an exceptionally large
pre-existing data collection of patients with different types of dementia, collected at
our university hospital. In the first step, we clustered PET scans of patients to form
groups sharing similar features in brain metabolism. In the second step, we explained
the clusters by relating them to clinical and other non-image variables. To do so, we
employed RSD [57, 86], an algorithm for relational subgroup discovery, with the cluster
membership of patients as the target variable. After extracting relevant information
from 200 GB of data (removing duplicates, intermediate results, and incompletely pro-
cessed images), we obtained a dataset comprising 10 GB of image data from 454 PETs,
and 42 variables from clinical and demographical data organized in 11 relations of a
relational database. Large image clusters identified metabolic patterns corresponding
well to typical findings in major types of dementia. Furthermore, the approach allowed
the detection of differences in cognitive performance in presence of comparable brain
pathology, thus potentially helping to identify factors supporting compensation (e.g.,
age, gender, education).

In summary, the contributions of this chapter are as follows: First, we present a new
application area and task for data mining in a highly relevant area of medical research.
Second, we present the first clustering of whole PET scans. Third, we propose, motivated
by medical considerations, a new type of correlation analysis based on a loose coupling
of clustering and subgroup discovery. Fourth, the procedure itself is novel in the medical
area, as the approach is diametral to current practice in the analysis of PET images and
deemed highly relevant by medical experts in the field.

This chapter is organized as follows: In Section 7.2 we explain our workflow and how
we applied the clustering and subgroup discovery algorithms to the data set. Section 7.3
presents our results and their interpretation by medical experts. Section 7.5 discusses
the results from a higher perspective. The chapter closes with a review of related work
(Section 7.6) and the overall conclusion.

7.2 Method

The data mining part of our approach is illustrated on the right-hand side of Figure
7.1. In the first step, we apply k-Medoids clustering to the image data. The clusters
of the best clusterings according to clustering quality and expert evaluation are further
interpreted by the corresponding non-image data. For the interpretation of image clus-
ters, we employ RSD (relational subgroup discovery) [57, 86], an algorithm for finding
interesting subgroups in data. In subgroup discovery, the goal is to find subgroup de-
scriptions (typically conjunctions of attribute values as in rule learning) for which the
distribution of examples with respect to a specified target variable is “unusual” compared
to the overall target distribution. In our case, clinical and demographic variables form
the subgroup descriptions, and the cluster membership is chosen as the target variable.
Before applying RSD, we still remove images with incomplete corresponding non-image
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Figure 7.1: Workflow of our approach. The upper part shows the processing of image
data, the lower part the processing of the structured non-image data. Pre-
processing steps are on the left side, data mining and interpretation of results
on the right.

data as well as all clusters below a certain size.

In the following, we give a short description of the clustering and subgroup discovery
algorithms and explain how we applied them to our data.

7.2.1 Clustering

We chose the k-Medoids algorithm [52], a derivate of k-Means [92], with variance-
weighted features to cluster PET scans. Alternative clustering approaches and their
results will be discussed in Section 7.5. As mentioned above, the images have to be
normalized and standardized before clustering. The resulting ASCII files (with over
500,000 real-valued entries) were taken as input for k-Medoids. To obtain meaningful
and significant clusters using k-Medoids, it is necessary to weight the features according
to their variance. This is feasible due to the huge differences in the variance of the inten-
sity in different brain regions. These differences are caused, among others, by activation
patterns specific for certain types of dementia and for healthy controls. Moreover, it is
clear that not all parts of a PET scan reflect the state of brain tissue: For instance, in
the PET image, the brain is surrounded by a dark area which is the same for all scans
(cf. Figure 2.8). Figure 7.2 shows the variance distribution of the voxels in the 32nd
layer over all PET scans. As regions of low variance are not very informative for the
clustering, we chose to weight each voxel at position (i, j, k) by the standard deviation
over all PET scans sijk. Therefore, we obtain the following distance measure based on
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V

Figure 7.2: Distribution of variance (over all patients) of voxels from the 32nd layer of
the PET scans.

the Euclidian distance measure with the variables weighted by their standard deviation:

dist(A, B) =

√

√

√

√

n
∑

i=1

m
∑

j=1

l
∑

k=1

(sijk · aijk − sijk · bijk)2 (7.1)

Since the optimal number k of clusters is not known in advance, we need a quality
measure to compare clusterings with different k. One of the few quality measures for
clusterings independent of k is the silhouette coefficient (SC) [52]. For a single cluster
C of a clustering C it is defined as:

SCC(C) =
1

|C|
∑

x∈C

b(x, C)− a(x, C)
max {a(x, C), b(x, C)} (7.2)

where a(x, C) is the distance of object x to the medoid of the cluster C it belongs to and
b(x, C) the distance of object x to second nearest medoid. For an entire clustering Ck we
used the mean of SCC(Ck) over all C which is referred to as SC(Ck) in the following.

It always holds −1 ≤ SC ≤ 1. A high SC does not necessarily reflect the best
clustering, since SC(Ck) = 1 for all Ck with k = 1 or k = |X|. Generally, SC(Ck)
increases with k → |X|, because SCC(Ck) = 1 for all clusters C that consist of one
example only.

On our data, clustering with more than 30 clusters results in too small clusters despite
their high SCs. Clustering with k < 10 is not informative as well, because it tends to
find results consisting of two or three very large clusters and single outliers forming their
own clusters. In this case, the resulting SC(C) is high because outliers forming their
own clusters have an SC of 1, which increases the overall SC. Therefore, the number of
appropriate k was expected to be between 10 and 30.

As the results of k-Medoids depend both on the initial choice of medoids and the input
order of objects, it was tested 5000 times for each k ∈ 2, . . . , 100, and the clustering C∗k
with the maximum SC was chosen. The initial computation of the distance matrix
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needed two hours, and the 5000 runs took two hours for all k on a 1GB RAM (1.6 GHz)
machine.

For the obtained SC distribution, local maxima exist at k = 10, 12, and 16. We
hence chose to further examine these three clusterings using subgroup discovery on the
corresponding clinical and demographic data. Since our analysis showed very similar
results for clustering with k = 12 and k = 10, we omit the presentation of the results for
k = 12, and focus on only those for k = 10 and k = 16 in Section 7.3.

To determine the significance of a clustering with parameter k, an additional random-
ization test was performed. All original scans were shuffled to obtain 454 new images in
a way that each voxel occurred again in one of the new scans, while keeping its location.
So, the variance for each voxel stays the same. Subsequently, a clustering for parameter
k was performed 100 times similarly to the original clustering. The resulting SCs were
used to create a sorted list. For a given clustering Ck with original data, the p-value can
easily be determined by the rank of the corresponding silhouette coefficient SC(Ck) in
this list. The final validation of the clustering is done by presenting the mean images to
an expert, who interpreted them and explained details.

7.2.2 Subgroup Discovery

Subgroup Discovery is a method for finding subgroups in a dataset that are sufficiently
large and statistically unusual given their distribution on an attribute of interest (see
Chapter 3.2 for an introduction). In this work, we used the subgroup discovery algorithm
RSD (see Section 3.2.1) and its publicly available Prolog implementation1 [85].

The parameters of RSD were set as follows: For getting the maximal number of
interesting subgroups for each class, the output was increased to 20 subgroups for each
class. The beam width was set to 15, and the maximal number of literals in each rule
was set to 4. For the clustering results with k = 16, the running time of RSD on a
Pentium 4 (2,8 GHz) with 1 GB RAM was approximately 8 hours.

The significance of the subgroups was determined by the likelihood ratio (see Equation
3.4), where k is the number of clusters. Interesting subgroups were identified by checking
their p-value2 and by expert validation.

7.3 Results

This section focuses on the clusterings C∗10 and C∗16. First, we present the medical in-
terpretation of the mean images of the obtained clusters in Section 7.3.1. Subsequently,
we discuss in Sections 7.3.2, Section 7.3.3 and 7.3.4, the characteristics of clinical values
and subgroup results from RSD with the clusters from the clusterings with k = 10 and
k = 16 as the target variable. Moreover, we relate the subgroup descriptions to medical
expert knowledge.

1http://labe.felk.cvut.cz/∼zelezny/rsd/
2A subgroup is considered significant, if its p-value is below 0.05.
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Figure 7.3: Mean images of the three largest clusters of the clustering with k = 10.

Figure 7.4: Mean images of the nine largest clusters of the clustering with k = 16. In
the second row on the right is the mean image of the healthy control group
C.

7.3.1 Clustering of PET Scans

Both clusterings (with k = 10 and k = 16) were significant with a p-value less than 0.01
as determined by the randomization test. Generally, the clusters vary widely in their size
and also encompass singleton clusters, i.e., outliers. More specifically, the distribution of
cluster sizes for clustering C∗10 is (187, 2, 5, 2, 4, 1, 5, 1, 207, 40), meaning that the first
cluster consists of 187 PETs, the second of 2, and so forth. In the following, we refer
to the first cluster in this list as Cluster 0, and the i-th as Cluster i − 1. Analogously,
the distribution of cluster sizes for clustering C∗16 is (2, 42, 1, 8, 105, 104, 28, 40, 8, 1,
3, 61, 1, 1 , 48, 1). Thus, both clusterings found outliers and other very small clusters.
In fact, one image that was sorted into its own cluster was rotated upside down. It was
therefore most different from all other scans. The other singletons scans were strongly
deformed, for which SPM5 is unable to compensate. For instance, some patients kept
their chin too close to the chest during the recording.

For all clusters containing at least five PETs, we calculated their mean images (five for
clustering with k=10, and nine for clustering with k=16). In both clusterings we found
clusters grouping patients with frontotemporal dementia (Cluster 9 in Figure 7.3 and
Cluster 7 in Figure 7.4), nearly healthy patients (Cluster 0 in Figure 7.3 and Cluster 4 in
Figure 7.4) and global hypometabolism (Cluster 3 in Figure 7.4 and Cluster 2 of C∗10 not
illustrated). Clustering with k=16 performed better, because it managed to differentiate
more precisely the group of left lateral deficiency (Cluster 8 in Figure 7.4) and a typical
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Alzheimer’s cluster (Cluster 11 of size 61 in Figure 7.4). Both were not separated by the
clustering with k=10. Even though the remaining clusters cannot be interpreted clearly
from a medical point of view, they can be distinguished visually. This can be seen by
the differences in metabolism in the occipital and centering regions, which are lighter in
Cluster 5 than in Cluster 6 (Figure 7.4). Cluster 1 shows highly affected patients.

In summary, the clusterings were judged as meaningful by domain experts (R. Perneczky
and A. Drzezga). To further explain the differences in the cognitive areas, we combined
the images with clinical data. In the next section, we present a simple correlation anal-
ysis and relate the clusters to single non-image variables. This serves as a baseline for
the more complex approach based on subgroup discovery.

7.3.2 Simple Correlation Analysis of C∗16
In medicine, next to the diagnosis and test results, age and gender are important variables
to describe status and progression of a disease. Therefore, we first relate the large clusters
of C∗16 to those attributes. Looking at the distributions of diagnoses of C∗16, some clusters
have a high proportion of patients with Alzheimer’s disease, while others contain only
patients with a cognitive disorder (Figure 7.5 clusters 4 and 11). This indicates that k-
Medoids clustering is capable of grouping similar images together. This is also supported
by the MMSE values of the clusters (Figure 7.6). Cluster 4 has the highest MMSE score
and a low variance, indicating that its patients are almost healthy. In contrast, the
MMSE of Cluster 14 is not bad (around 25), but the high variance indicates that there
exist some patients that suffer from a more severe disease. The same is true for clusters
8, 11 and 1. This is an interesting finding, because it states that patients with a similar
brain metabolism may have different cognitive abilities. Cluster 8 comprises patients
which have a left lateral metabolic deficiency, so the low MMSE score can be explained
well. Again, the high variation states that some people might not be impaired too much
from this hypometabolism.
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Figure 7.5: Distribution of ICD10 codes for clusters of C∗16
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As age is correlated with the progress of dementia, we also investigated the distribution
of age among the clusters (Figure 7.7). The difference between Cluster 14 and Cluster
4 is approximately 20 years. The average age of Cluster 14 is around 75 while Cluster 4
has younger people of age 55, which goes hand in hand with the distribution of ICD10
codes that define Cluster 4 as an almost healthy cluster. Cluster 3 also has a very
high average age and a low variance characterizing old morbid people with an advanced
hypometabolism.

Concerning the gender distribution of each cluster, Cluster 4 and 14 have a higher
fraction of women, while Cluster 11 holds more men (Figure 7.8). This is quite inter-
esting, because it suggests that there might be some differences in the development of
dementia between the genders. Another explanation may be a different behavior as to
when a physician is consulted.

This first overview of attributes in the clusters shows their general characteristics.
However, simple correlation analysis is not able to detect dependencies among the at-
tributes. Clearly, the correlation of multiple attributes can only be analyzed by more
complex methods like subgroup discovery. It allows us to explore the interaction of at-
tributes within a cluster. For instance, Cluster 14 has a high variance in MMSE scores
and an unbalanced gender distribution, but so far we cannot see if men have a better
MMSE score than women, or if there is no significant difference between the genders.
Identifying subgroups helps to combine interesting characteristics and allows to take into
account several variables at once.

7.3.3 Subgroup Discovery on C∗10
Our application of subgroup mining requires reliable psychological data and sufficiently
large clusters. Thus, we first discard those examples without revised psychological
data. Next, we eliminate all clusters with less than 5 examples after the first filtering
step. Thus, we keep Cluster 0, Cluster 8, and Cluster 9, with the sample distribution
(115, 118, 14) (initially, it was (187, 207, 40)). Figure 7.3 shows the mean images for
each of these clusters.

Table 7.1 displays the interesting subgroups discovered for Cluster 0. Each row in the
table presents a subgroup description along with quality measures and the distribution
of cases over the clusters. For instance, the first subgroup A1 covers 29 images from
Cluster 0, 5 images from Cluster 8, and none from Cluster 9.

The mean image of Cluster 0 resembles the 20 healthy controls (Figure 2.8), which
leads to the assumption that this cluster contains mainly almost healthy patients. Sub-
group A1 shows that 85% of the patients, younger than 55, fall into Cluster 0. Experts
confirm that the younger a patient, the better the activity of metabolism and the lower
the probability of a dementia diagnosis. Furthermore, subgroup A2 and A9 reveal that
the distribution of patients with good test results is especially high in Cluster 0, which
also explains the similarity of the mean image to the healthy controls. Hence, these
subgroups confirm the assumption that Cluster 0 contains the healthier patients.

However, there is also one subgroup of patients with Alzheimer’s diagnosis (A4) and
one describing patients with a very low score for CDR activities and CERAD construc-
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|sg ∩ cl| |sg ∩ cl| Class

Id. Description p-value |cl| |sg| distr.

A1 age ≤ 54 < 10−4 0.25 0.85 (29,5,0)

A2 verbal fluency ≥ 20 7.10−3 0.22 0.64 (25,11,0)

A4 ICD = Alzheimer’s 5.10−2 0.13 0.7 (14,6,0)
& age: 65-69

A9 MMSE: 26-29 2.10−2 0.05 1 (6,0,0)
& BNT: 14-15
& ICD = F06.7
& age: 55-59

A11 activities = 1 5.10−2 0.04 1 (4,0,0)
& constructional
praxis: 3-5

overall distribution over clusters 0, 8, 9: (115,118,14)

Table 7.1: Interesting subgroups in Cluster 0 of C∗10.
|sg∩cl|
|sg| is the proportion of patients

in the subgroup sg having a PET in cluster cl. In contrast, |sg∩cl|
|cl| expresses

the proportion of the patients with a PET in cluster cl that are also covered
by the subgroup description of sg.

tional praxis (A11). Further research revealed that these people suffer from Alzheimer’s
disease in an advanced state, which should not fall into this cluster. The corresponding
mean images of the outliers in this cluster had the most affinity to Cluster 0 in high-
variance areas. With the choice of a larger k, the algorithm can sort them out into
different clusters. We can conclude that the subgroup mining step identifies four outliers
within Cluster 0.

Cluster 9 (in Figure 7.3) describes patients that have a huge deficit in the frontotem-
poral metabolism. This leads to the conclusion that they are not affected by Alzheimer’s
disease, but by some other form of dementia. Furthermore, experts assumed no signif-
icant reduction of CERAD constructional praxis (A41), while CERAD verbal fluency
is highly impaired (A55) as well as scores in CDR (A42). These conclusions could be
confirmed by the subgroups in Table 7.2.

The discovered subgroups for Cluster 8 showed that it consists mainly of patients above
the age of 74. However, for a medical interpretation of this cluster, the medical experts
could not obtain additional information from the mean image or the other subgroup
descriptions. Thus, we assume that this cluster is too heterogeneous and that we need a
clustering with a larger k to split this cluster into smaller, more homogeneous clusters.
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|sg ∩ cl| |sg ∩ cl| Class

Id. Description p-value |cl| |sg| distr.

A41 constructional 4.10−3 0.57 0.22 (14,14,8)
praxis: 10-11
& gender: m
& ICD: other diag.

A42 memory: 1 2.10−3 0.29 0.5 (3,1,4)
& activities: 1
& judgment: 0-0.5
& community: 1

A49 community: 2-3 2.10−3 0.29 0.4 (1,5,4)

A52 CDT: ≤ 2 2.10−4 0.21 1 (0,0,3)
& word list recall: 10
& verbal fluency: 9-12
& other tests: CT

A53 CDT: 3-6 2.10−3 0.21 0.6 (0,2,3)
& global: 2-3
& community: 2-3

A55 gender: m 2.10−4 0.21 1 (0,0,3)
& verbal fluency: 0-8
& community: 2-3

overall distribution over clusters 0, 8, 9: (115,118,14)

Table 7.2: Interesting subgroups in Cluster 9 of C∗10.
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|sg ∩ cl| |sg ∩ cl| Class

Id. Description p-value |cl| |sg| distr.

A21 BNT: 14-15 2.10−4 0.6 0.56 (4,40,13,1,3,6,5)
& CDT: 1-2

A22 age: 0-54 < 10−4 0.39 0.79 (3,27,1,0,0,2,1)

A23 word list recall no: 10 < 10−4 0.42 0.7 (1,29,5,0,0,0,2)
& CERAD-sum:
76-100

A24 constructional < 10−4 0.42 0.78 (1,29,7,0,1,0,3)
praxis: 10-11

& constructional
praxis recall:10-11

A26 BNT: 14-15 < 10−4 0.33 0.89 (0,23,3,0,0,0,0)
& MMSE: 26-29
& verbal fluency: ≥ 20

overall distr. over clusters 1, 4, 5, 6, 7, 11, 14: (22,69,58,17,13,37,29)

Table 7.3: Interesting subgroups in Cluster 4 of C∗16.

7.3.4 Subgroup Discovery on C∗16
Analogously to the filtering procedure for C∗10, we only kept seven clusters for the further
analysis of C∗16: Clusters 1, 4, 5, 6, 7, 11, and 14, containing (22, 69, 58, 17, 13, 37, 29)
images (initially (42, 105, 104, 28, 40, 61, 48)). Figure 7.4 shows those clusters and those
having more than five images before the filtering steps (Cluster 3 and Cluster 8).

In this clustering we find a cluster (Cluster 4) that resembles the mean image of the
healthy controls. Since no hypometabolism is visible, medical experts interpreted it
as representing a group of almost healthy patients. Table 7.3 shows a subset of the
interesting subgroups discovered for Cluster 4. Groups of young patients (A22) and
groups of patients with very good test results (A21, A23) were discovered. So, the
clustering identified a relatively healthy group that was supported by both subgroup
discovery and experts.

Cluster 7 describes patients that have a huge deficit in the frontotemporal metabolism.
This leads to the conclusion that they are not affected by Alzheimer’s disease, but by
some other form of dementia. Furthermore, experts assumed no significant reduction of
CERAD constructional praxis, while CERAD verbal fluency is highly impaired as well as
scores in CDR. Significant subgroups that show the impairment were found for clustering
with k = 16 and k = 10.

The mean image of Cluster 11 is the prototype of a patient with Alzheimer’s disease,
which is confirmed by the subgroups displayed in Table 7.4. 78.4% of the patients in
this cluster have the disease, which is visible in the mean image through the reduction
of metabolism in the temporoparietal cortex. In fact, this is not the only cluster with a
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|sg ∩ cl| |sg ∩ cl| Class

Id. Description p-value |cl| |sg| distr.

A101 ICD: Alzheimer’s < 10−4 0.78 0.33 (11,5,16,12,3,29,13)

A102 BNT: 14-15 < 10−4 0.32 0.71 (0,0,3,1,1,12,0)
& gender: m
& ICD: Alzheimer’s

A106 age: 55-59 5.10−4 0.19 0.58 (1,1,0,3,0,7,0)
& ICD: Alzheimer’s

A107 age: 65-69 10−4 0.3 0.58 (3,1,3,1,0,11,0)
& ICD: Alzheimer’s

overall distr. over clusters 1, 4, 5, 6, 7, 11, 14: (22,69,58,17,13,37,29)

Table 7.4: Interesting subgroups in Cluster 11 of C∗16.

high ratio of patients with Alzheimer’s disease. In Cluster 6, 70% of the patients suffer
from the disease. This was confirmed by subgroups containing an Alzheimer’s diagnosis.
Contrary to Cluster 11, in Cluster 6 also the frontal metabolism is reduced. This is
reflected by worse (higher) results of CDR.

Regarding the subgroups found for Cluster 14 (Table 7.5), it seems that this cluster
describes elderly women (A124, A129, A133) with low test results and therefore a sim-
ilar state of dementia. Surprisingly, there is a group of men with high MMSE scores
(A126). Although this subgroup is not significant, it is highly interesting. It indicates
that men with the same metabolic patterns as women have a less impaired cognitive
ability. Further investigations (Table 7.6) showed that men and women are in the same
age group, but men do have slightly better overall results in the most important psy-
chological tests. Although female and male patients fall into the same cluster (based
on brain metabolism), they apparently differ in their cognitive abilities. This finding
may possibly be explained by the hypothesis of cognitive reserve, which postulates that
some individuals can somehow offset the symptoms of neurodegeneration. Although the
neurobiological substrate is still unknown, the higher neuron count in men might be as-
sociated with higher reserve. To show the same symptoms of dementia as women, men
have to suffer from a larger loss of cells. Another factor discussed in dementia research
[75] is the education level, which is also higher among the men in this cluster, compared
to the women. Here we now see an example of the power of subgroups. The method
allows not only to describe sets of instances, but also to bring up groups with unusual
and therefore interesting features, which cannot be found by simple correlation studies.
Altogether, we can conclude that the clustering with k = 16 produces more meaningful
clusters than the clustering with k = 10. Even though all subgroups displayed are sta-
tistically significant (see the p-values), C∗16 differentiates more accurately. For example,
it detects an “Alzheimer cluster” (Cluster 11), whereas the distribution of patients with
Alzheimer’s disease in C∗10 is (39, 48, 5). Therefore, none of the clusters in C∗10 shows a
preference of being a definite “Alzheimer cluster”.
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|sg ∩ cl| |sg ∩ cl| Class

Id. Description p-value |cl| |sg| distr.

A121 graduation 2.10−1 0.52 0.24 (4,17,15,3,1,8,15)
< high school

& gender: f

A124 ICD: Alzheimer’s 2.10−3 0.17 0.83 (0,0,0,1,0,0,5)
& personal: 0-0.5
& gender: f
& age: 70-73

A126 wordlist recall: 7-10 2.10−1 0.07 1 (0,0,0,0,0,0,2)
& gender: m
& age: 65-69
& MMSE: 30

A127 other tests: MR 7.10−3 0.24 0.54 (1,1,3,1,0,0,7)
& graduation

< high school
& age: 74-77

A129 gender: f 10−2 0.17 0.71 (0,0,1,0,0,1,5)
& MMSE: 11-20
& age: 70-73

A133 gender: f 10−2 0.14 1 (0,0,0,0,0,0,4)
& CERAD-sum:

47-57
& age: ≥ 78

overall distr. over clusters 1, 4, 5, 6, 7, 11, 14: (22,69,58,17,13,37,29)

Table 7.5: Interesting subgroups in Cluster 14 of C∗16.

Women Men

n n

Age 75 19 70 10
MMSE 23.26 19 25.22 9
global 0.97 15 0.8 5
CERAD-Sum 53.64 14 62.5 8
CDT 3.93 15 3.66 9

Table 7.6: Comparison of the gender distribution in Cluster 14 of C∗16.
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Figure 7.9: Mean within-cluster distance (x-axis) and support (y-axis) of resulting item-
sets (clusters) with a minimum relative support of 0.1.

7.4 Comparison with Constrained Clustering

Another possible approach is to apply methods from constraint-based clustering (e.g.,
by Sese et al. [81]), such that only clusters constrained by descriptions of non-image
variables are considered. This is similar to the usual approach in medicine: select a
subset of patients fulfilling specific predefined criteria and compare the images associated
with those patients. Automating this process results in determining frequent itemsets
based on the structured non-image data. This can easily be achieved with the APRIORI
algorithm [92]. First we select a subset of patients covered by one frequent itemset.
Then we evaluate the similarity of their PETscans by the mean of the pairwise weighted
Euclidean distance. In this way, we obtain a mean distance for each itemset.

The grey diamonds in Figure 7.9 represent the discovered itemsets, where the x-axis
corresponds to their mean distance and the y-axis to the size of the subset covered by the
itemset. We found 5,858 frequent itemsets for a minsupport of 0.1. For comparison, the
white squares represent the large clusters from clustering C∗16. We can see that Cluster
4 (similar to healthy controls) has a lower mean distance (higher similarity of brain
activity) than any of the itemset constraint groups. However, there is a large number of
itemsets with more homogeneous PET scans than Cluster 11 and Cluster 7. This is a
result of the clustering approach, where the task is to find a set of disjoint clusters whose
union covers the entire example set. Therefore, it is necessary to also put patients with
dissimilar PET scans into a cluster.

The clustering task constrained to itemsets means finding a set of disjoint frequent
itemsets that together cover all examples. The straight-forward approach is to do that
in a greedy way: we determine the itemset with the most homogeneous PET scans.
Then we determine the next most homogeneous itemset which does not overlap with
the previously determined itemsets and so on. When no more disjoint itemset can be
found, we combine the yet uncovered, remaining examples into a final set. The black
triangles in Figure 7.9 represent the set of disjoint itemsets. It shows that two of the
disjoint itemsets have higher mean distance than the clusters in clustering C∗16. These
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are the sets that were selected last in the greedy algorithm. We therefore want to
consider different algorithm of selecting a disjoint set of frequent itemsets. We do that
by modeling this task as an integer-linear program in the next chapter.

In summary, we can say that itemset-constraint-clustering provides physicians with
groups of patients that share similar psychological and similar metabolic patterns (item-
sets with low mean distance). Additionally, it finds groups with similar psychological
patterns and higher variation in brain activity (itemsets with high mean distance). How-
ever, this approach is not able to detect a complete set of patients with similar brain
activity. On the other hand, clustering of PET scans finds groups of patients with simi-
lar brain activity. That means our approach can combine all patients with a particular
metabolic pattern, even patients that differ in their psychological features. Therefore,
itemset-constraint clustering seems to be adapted for specific queries, whereas our ap-
proach provides a general correlation of image and non-image data. Moreover, we au-
tomatically create an overview of the status of disease and provide hypotheses to be
further validated by medical experts.

7.5 Discussion

As they reflect, in some sense, the “ground truth” of the state of a brain, we chose PET
images as the starting point of our analysis. The differences between different states
are then explained by non-image variables. The presented approach uses k-Medoids
and RSD to achieve those tasks, but we also considered and tested other methods for
clustering and correlation analysis. Due to the high dimensionality of the data, we also
tested the subspace clustering method PreDeCon [16], but could not identify appropriate
parameter settings to obtain significant results. As a further test, we clustered the images
with hierarchical agglomerative clustering (complete linkage). This method also found
the outliers mentioned above and sorted the relatively healthy patients into one cluster.
However, although the two clustering methods produced largely similar results, they
differed in the partition of unspecific clusters, which may be explained by the“myopia”of
the hierarchical clustering scheme. To establish a baseline for the subgroup discovery, we
performed a simple correlation analysis based on individual variables. Our experiments
confirmed that this is clearly not sufficient, as many of the more complex subgroups
cannot be detected in this way.

From a medical point of view, we showed that it is possible to obtain meaningful clus-
ters of PET scan images. Medical experts could identify different patterns of disease,
and confirmed that the resulting findings (clusters, outliers and subgroups) have med-
ical novelty and significance. As mentioned above, the new approach of reversing the
direction of the analysis, i.e., starting with the PET scan images, is considered new in
this area.
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7.6 Related Work

Data mining in the context of dementia and Alzheimer’s disease can be roughly cate-
gorized into three categories: First, machine learning approaches for the improvement
of differential diagnosis. Second, data mining techniques applied to brain imaging data.
Third, transcriptomics and proteomics analysis of dementia and Alzheimer’s disease.

One of the earliest work from the first category deals with the prediction of the type
of dementia (Alzheimer’s disease, vascular dementia, or other) from a small set of de-
mographic variables and the total scores from clinical tests [62]. The latter variables
included measures of category fluency, letter fluency, delayed free recall and recognition,
simple and complex attention span, visual-constructional abilities, and object naming.
Similarly, Corani et al. [27] predicted different types of dementia (Alzheimer’s disease,
dementia with Lewy bodies, Parkinson’s disease with dementia and vascular dementia)
from cognitive profiles based on the Cognitive Drug Research (CoDR) system. CoDR
consists of a series of computerized tests (tasks), which assess some cognitive faculties
of the patient, such as memory, attention, and reaction times. The results from those
tests together constitute the cognitive profile of a patient.

Work from the second category includes the one by Fung et al. [37] and Mega-
looikonomou et al. [63]. Fung et al. classify Alzheimer’s patients based on their SPECT
images. Megalooikonomou et al. give a survey of data mining techniques applied to
brain imaging data. Clustering is applied to find groups of inter-related voxels, not to
find groups of images. To the best of our knowledge, clustering methods have not been
applied to whole PET scans before.

The third category includes a study of gene expression changes in patients with
Alzheimer’s disease [88] and a study aiming for the discovery of Alzheimer-relevant pro-
teins [24].

The work presented in this chapter differs from previous work in its combined analysis
of PET images and clinical variables. Similar to work in the first category, the results
are mainly useful for diagnostic purposes. Although biological information in the form
of transcriptomics or proteomics data is not yet used in our approach, it is easy to
incorporate it in the subgroup descriptions or even as the target for subgroup discovery.

7.7 Conclusion

In the chapter, we introduced a new and challenging problem for data mining research:
correlating large databases of PET scans with structured patient data. The goal of
the work was not to develop completely new methods, but to show that current data
mining methods like RSD are able to solve this large (initially 200 GB) and complex
(image data and 11 relations) problem and produce valid and relevant results. The
task itself is critical to gain a better understanding of various forms of dementia. The
presented approach aims for more completeness than previous methods. To do so, we
first identified clusters of PET scans sharing similar features in brain metabolism. In
the second step, we explained the differences and commonalities among those clusters
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in terms of clinical and demographic variables. To validate the results, we computed
p-values of the clusterings and interpreted the clusters and subgroup descriptions in the
light of domain knowledge. To the best of knowledge, this type of analysis has not been
done before. One of the subproblems, the clustering of whole PET scans (not voxels),
also has not been addressed in the literature before.

In future work, we are planning to further improve the quality of the clusterings by
taking into account more advanced features (e.g., brain regions) and by developing more
advanced methods specifically for high-dimensional PET images. Moreover, standard
algorithms for subgroup discovery suffer from similar problems as algorithms for pattern
mining and association rule mining [74]. For instance, it is necessary to filter interdepen-
dent results, as the refinement (specialization) of an “interesting” subgroup is likely to
produce another “interesting” subgroup. Another limiting factor of the subgroup discov-
ery approach is the incompleteness of the psychological data. Finally, the integration of
gene expression and proteomic data could aid in the formation of mechanistic hypotheses.

Another possible approach introduced in Section 7.4 is to apply methods from constraint-
based clustering, such that only clusters constrained by descriptions of non-image vari-
ables are considered. We will further investigate this task in the next chapter.

In summary, we believe that explaining medical images in terms of other variables
(patient records, demographic information, etc.) is a challenging new and rewarding
task for data mining research.
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In this chapter, we address the problem of building a clustering as a subset of a (possi-
bly large) set of candidate clusters under user-defined constraints. In contrast to most
approaches to constrained clustering, we do not constrain the way observations can be
grouped into clusters, but the way candidate clusters can be combined into suitable clus-
terings. The constraints may concern the type of clustering (e.g., complete clusterings,
overlapping or encompassing clusters) and the composition of clusterings (e.g., certain
clusters excluding others). We show that these constraints can be translated into integer
linear programs, which can be solved by standard optimization packages. Our exper-
iments with benchmark and real-world data investigates the quality of the clusterings
and the running times depending on a variety of parameters.

8.1 Motivation

Constraint-based mining approaches aim for the incorporation of domain knowledge and
user preferences into the process of knowledge discovery [19]. This is mostly supported
by inductive query languages [20, 76, 72, 34, 18]. One of the most prominent and impor-
tant instances of constraint-based mining is constrained clustering. Since its introduction
(incorporating pairwise constraints into k-Means [87]), constrained clustering has been
extended to various types of constraints and clustering methods (compare Chapter 3.3).
Most of the approaches constrain the way observations can be grouped into clusters, i.e.,
they focus on building clusters under constraints. In this chapter, we consider a different
problem, namely that of building clusterings from a (possibly large) set of candidate
clusters under constraints. In other words, we address the following problem: Given a
set of candidate clusters, find a subset of clusters that satisfies user-defined constraints
and optimizes a score function reflecting the quality of a clustering. Clearly, both ap-
proaches are not mutually exclusive, but just represent different aspects of finding a good
clustering under constraints. In fact, the problem of constructing suitable clusterings
requires a suitable set of cluster candidates, which can be the result of, e.g., constrained
clustering under pairwise constraints [87] or itemset classified clustering [82].

The process of building suitable clusterings can be constrained by the user in various
ways: The constraints may concern the completeness of a clustering, the disjointness
of clusters, or they may concern the number of times examples are covered by clusters.
Moreover, some clusters may preclude others in a clustering, or clusters may require
others. Constraints of the latter type can be formulated as logical formulae. The quality
of a clustering to be optimized can then be defined as the mean quality of the clusters,
their median quality, or their minimum quality. We present a set of possible constraints
along those lines and shows how they can be mapped onto integer linear program models.
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In this way, users can obtain tailor-made clusterings without being concerned with the
technical details, much in the spirit of constraint-based mining and inductive query
languages in general [19, 20]. Doing so, it is also possible to take advantage of a huge
body of literature on the subject and advanced optimization tools.

This chapter is organized as follows: In Section 8.2, we present the different types
of constraints that can be considered. Section 8.3 explains how those constraints can
be translated into an integer linear model. In Section 8.4, we present experimental
results with the approach. Then, we discuss related work (Section 8.5) and come to our
conclusions (Section 8.6).

8.2 Constrained Clustering

In this section, we present the possible constraints that can be applied to a clustering.
First, we have to introduce some notation: Let X = {e1, ..., em} be a set of examples,
and B a set of base clusters (i.e., cluster candidates potentially to be included in a
clustering). Furthermore, the number of examples is denoted by m = |X|, and the
number of base clusters by n = |B|. Then a set of clusters C = {C1, ..., Ck} ⊆ B
denotes a clustering. Moreover, we are given an objective function f : 2B → R which
scores a given clustering according to its quality. Finally, we are given constraints Φ(C)
that restrict the admissible subsets of B, either with respect to the sets of instances
(e.g., whether they are overlapping or encompassing one another) or with respect to
known interrelationships between the clusters (e.g., cluster C1 precludes cluster C2 in a
clustering).

The overall goal is then to find a clustering C ⊆ B satisfying the constraints Φ(C)
and optimizing the objective function f .

Next, we discuss the different types of constraints on clusterings. First, we present
set-level constraints, i.e., constraints in the form of logical formulae that control the
clusters that can go into a clustering depending on other clusters. Second, we present
clustering constraints, that is, constraints that determine the form of a clustering, for
instance, whether the clusters are allowed to overlap. Third, three different optimiza-
tion constraints [34] will be introduced, which determine the objective function to be
optimized.

8.2.1 Set-Level Constraints

In the following, let a literal Liti be either a constraint Cj ∈ C or Cj /∈ C. For conve-
nience, we will call Cj ∈ C an unnegated literal and Cj /∈ C a negated literal. Then we
can have three types of constraints:

• Conjunctive constraints setConstraint(C, Lit1 ∧ Lit2 ∧ ... ∧ Litl): This type of
constraint ensures that certain clusters are included or excluded from a clustering.
Clusters referred to by unnegated literals have to be included, clusters referred to
by negated literals have to be excluded.
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• Disjunctive constraints setConstraint(C, Lit1 ∨ Lit2 ∨ ... ∨ Litl): This type of
constraint ensures that at least one of the conditions holds for a clustering. If all
literals are unnegated, for instance, it is possible to state that at least one of the
listed clusters has to participate in a clustering.

• Clausal constraints setConstraint(C, Lit1∧Lit2∧ ...∧Litl−1 → Litl): This type of
constraint states that if all conditions from the left-hand side are satisfied, then also
the condition on the right-hand side has to be satisfied. For instance, it is possible
to say that the inclusion of one cluster has to imply the inclusion of another (e.g.,
Ci ∈ C → Cj ∈ C) or that one clusters makes the inclusion of another impossible
(e.g., Ci ∈ C → Cj /∈ C).

These constraints can be translated easily into linear constraints (see Section 8.3).
Arbitrary Boolean formulae could, in principle, be supported as well. However, they
would require the definition of new variables, thus complicating the definition of the
optimization problem. Note that instance-level constraints in the style of Wagstaff et al.
[87], must-link and cannot-link, can easily be taken into account as well: However, here
the constraints would effectively reduce the set of clusters that are put into the set of
candidate clusters B. If we enforced those constraints on some set of candidate clusters
B, then we would discard those individual clusters not satisfying the constraints, and
restrict B to some subset B′ ⊆ B in the process.

Also note that the set of base clusters B can be the result of other data mining
operations. For instance, consider the case of itemset classified clustering [82], where
the potential clusters in one feature space (view) are restricted to those that can be
described by frequent itemsets in another feature space (view). This is the setting that
will be explored in Section 8.4 on experimental results.

8.2.2 Clustering Constraints

This section describes constraints that determine the basic characteristics of clusterings:

• completeness(C, minCompl, maxCompl): This constraint determines the degree
of completeness of a clustering. More formally, it ensures that for clustering C, it

holds that minCompl ≤ |∪Cj∈CCj |

|X| ≤ maxCompl.

• overlap(C, minOverlap, maxOverlap): This constraint determines the allowed de-
gree of overlap between clusters of a clustering. Let coverage(ei, C) be a func-
tion determining the number of clusters in a clustering C containing example ei:
coverage(ei, C) = |{Cj |Cj ∈ C∧ei ∈ Cj}|. Furthermore, let numberOverlaps(C) =
∑

ei∈X, coverage(ei,C)>1(coverage(ei, C) − 1) be a function counting the number of
times instances are covered more than once (with multiple overlaps of one instance
counted multiple times). Then the constraint overlap(C, minOverlap, maxOverlap)

is satisfied if minOverlap ≤ numberOverlaps(C)
|X| ≤ maxOverlap.1

1This is related to the notion of disjointness of clusters, but minimum overlap and maximum overlap
seem more intuitive than minimum disjointness and maximum disjointness.
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• encompassing(C, F lag): This constraint determines whether the clusters are al-
lowed to encompass each other, i.e., whether the clusters are allowed to form a
hierarchy. If Flag = no, then it holds that there is no pair Ci, Cj ∈ C such that
Ci ⊂ Cj .

• numberClusters(C, minK, maxK): This constraint restricts the number of clus-
ters that can be part of a solution: minK ≤ |C| ≤ maxK.

• exampleCoverage(C, minCoverage, maxCoverage): This constraint limits the num-
ber of times an example can be covered by clusters. Formally, it holds that for
each ei ∈ X : minCoverage ≤ coverage(ei, C) ≤ maxCoverage.

8.2.3 Optimization Constraints

This section introduces the optimization constraints [34] used in our approach. The
quality of a clustering is defined as an aggregate over the qualities of its clusters.

• maxMeanQuality(C): This constraint implies that the mean quality of the clus-
ters contained in a clustering is optimized.

• maxMinQuality(C): This constraint implies that the minimum quality of the
clusters contained in a clustering is optimized.

• maxMedianQuality(C): This constraint implies that the median quality of the
clusters contained in a clustering is optimized.

Those optimization constraints are just the most basic ones that are conceivable. In
fact, it is easy to combine the quality of a clustering with any of the above clustering
constraints, for instance, not excluding overlapping clusters, but penalizing too much
overlap. The same is possible for completeness (penalizing lack of completeness). Note
that if cluster quality is defined as within-cluster distance, it is necessary to invert this
quantity (e.g., by changing the sign) for our purposes. When translated into an integer
linear model, the optimization constraints determine the objective function used.

8.2.4 Combining Constraints

Given the constraints introduced above, it is now possible to combine them in queries
for clusterings. More precisely, a query can now be formed by a pair (Φ, f()), where Φ
is a logical conjunction of set-level and clustering constraints, and f() is one of the three
optimization constraints from the previous section.

As an example, consider the following query:

q = (numberClusters(C, 2, 5) ∧ overlap(C, 0.1, 0.2) ∧ completeness(C, 0.9, 1.0)∧
setConstraint(C, C1 ∈ C → C2 ∈ C) ∧ setConstraint(C, C1 ∈ C → C3 /∈ C),

maxMeanQuality(C))
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It aims to find a clustering containing between 2 and 5 clusters, with an allowed overlap
between 0.1 and 0.2, a desired completeness between 0.9 and 1.0, and such that the
inclusion of cluster C1 implies the inclusion of C2 and the exclusion of C3. The possible
clusterings are optimized with respect to their mean cluster quality.

8.3 Method

In this section, we describe how to translate the introduced constraints into linear con-
straints. In Section 8.3.1 and 8.3.2 we focus on the clustering constraints restricted to
the optimization constraint maxMeanQuality(C), in Section 8.3.3 we handle alterna-
tive optimization constraints and in Section 8.3.4 we present the translation of set-level
constraints. The constraints are used to form an integer linear program, which can then
be solved by any package for ILP optimization.

First, we define an m×n-matrix A (m being the number of examples and n being the
number of base clusters as introduced above) with:

aij =

{

1 if cluster Cj contains example ei,
0 otherwise,

(8.1)

and w ∈ R
n, where wj is the within-cluster distance, which is defined as the mean

of the pairwise distances between the examples covered by the cluster Cj . Note that
minimizing the within-cluster distance is equivalent to maximizing the between-cluster
distance for a fixed k. In our setting, k varies between minK and maxK. As our
clustering approach is strongly constrained by the given set of base clusters, there is
no or only little bias towards a k near maxK. For instance, smaller base clusters may
not provide the required completeness, thus, a solution with larger base clusters and a
smaller k may be preferred.

Figure 8.1 shows an example for m = 7 examples and n = 5 candidate clusters. The
matrix A and the vector w are displayed in Table 8.1. Here, wj is the mean of the
pairwise Euclidian distances between the examples covered by cluster Cj .
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Figure 8.1: Problem with 7 examples and 5 base clusters

A: C1 C2 C3 C4 C5

e1 1 1 0 0 0
e2 1 1 0 0 0
e3 1 1 1 0 0
e4 0 1 0 1 1
e5 0 0 0 1 1
e6 0 0 1 0 1
e7 0 0 1 0 1

w: 1.33 1.3 1.55 1 1.75

Table 8.1: Matrix A and vector w for the example introduced in Fig. 8.1

minCompl maxOverlap selected sets mean(w)

1 0 {C1, C5} 1.54
6/7 0 {C1, C5} 1.54
5/7 0 {C1, C4} 1.17

1 1/7 {C1, C3, C4} 1.29
1 2/7 {C2, C3, C4} 1.28

5/7 2/7 {C2, C4} 1.15

Table 8.2: Optimal clusterings for the example introduced in Fig. 8.1
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maximize 1
k
(wmax − w)T x

subject to (i) Ax ≤ 1

(ii) Ax ≥ y
(iii) 1T x = k
(iv) 1T y ≥ m ·minCompl
(v) x ∈ {0, 1}n
(vi) y ∈ {0, 1}m

Table 8.3: Optimization task for determining the optimal disjoint clustering

8.3.1 Modeling Clustering Constraints: Disjoint Clustering

Let our objective be to determine the disjoint clustering C with the minimal mean
within-cluster distance, i.e., C has to satisfy

(completeness(C, minCompl, 1) ∧ overlap(C, 0, 0), maxMeanQuality(C)).

This is also known as the Weighted Set Packing Problem [38], which is NP-complete.
This task can be defined as the optimization problem shown in Table 8.3.

The goal is to minimize the mean of the within-cluster distance (w) over all k selected
clusters, which is equivalent to maximizing the mean of the inner cluster similarities
(wmax − w) of all k selected clusters, where wmax := maxj wj .

Since we would like to formulate a linear program, it is not possible to optimize over
the variable k that appears in the denominator of the objective function. However, we
can keep the problem linear by treating k as a constant and resolve the optimization
problem with varying values for k.

We introduce a vector x expressing which clusters are selected (i),(v):

xj =

{

1 if cluster Cj is selected,
0 otherwise.

(8.2)

The vector y contains information about which examples are covered by the selected
clusters: If yi = 1 then ei is covered by a selected cluster (ii).2

The clustering is further subject to the constraints that each example must not be
covered by more than one clustering (i) and that at least m ·minCompl examples have
to be covered (iv).

For the example in Figure 8.1, we obtain the solutions presented in the first three rows
of Table 8.2.

2Note: if we set minCompl < 1, it is possible that yi = 0 for some example ei, even though ei is covered
by the selected clusters. However, this does not affect the solution.
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maximize 1
k
(wmax − w)T x

subject to (i) Ax = y
(ii) 1T x = k
(iii) z ≥ 1− y
(iv) 1T z ≤ (m−m ·minCompl)
(v) v ≥ y − 1

(vi) 1T v ≤ n ·maxOverlap
(vii) x ∈ {0, 1}n
(viii) y ∈ N

m
0

(ix) v ∈ N
m
0

(x) z ∈ {0, 1}m

Table 8.4: Optimization task for determining the optimal clustering with up to
maxOverlap multiply covered examples

8.3.2 Modeling Clustering Constraints: Clustering with Overlaps

We can relax the constraint of disjointness by allowing some of the selected clusters to
overlap. This means that some examples can be covered by more than one cluster: C
has to satisfy

(completeness(C, minCompl, 1) ∧ overlap(C, 0, maxOverlap), maxMeanQuality(C)).

This can be realized by the optimization task in Table 8.4. The goal is still to maximize
the mean of the inner cluster similarity of the k selected sets. Again, we have the
constraint that at least m ·minCompl examples have to be covered (iv). In this setting
we allow that some examples can be covered by more than one set. We restrict the
number of allowed overlaps to maxOverlap (vi). This yields an integer-valued vector y,
where yi = number of sets that cover example ei (y(i) = coverage(ei, C)). Furthermore,
we need the vector v, where vi = number of overlaps of the example ei.

3 To model
the constraint that demands at least minCompl examples to be covered, we introduce
a vector z such that if zi = 0 then example ei is covered.

For the example in Figure 8.1, we obtain the solutions presented in the lower part of
Table 8.2 where maxOverlap > 0.

8.3.3 Modeling Optimization Constraints

So far we have shown integer linear models that determine the optimal clustering C
with respect to maxMeanQuality(C). In this section we will show how to model the

3If the optimal C contains less overlaps than n ·maxOverlap, vi may take higher values than the actual
number of overlaps of ei. (v) However, this does not affect the solution.
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optimization constraints maxMinQuality(C) and maxMedianQuality(C).
The optimization task in Table 8.4 has to be modified in the following way:

maxMinQuality(C)

Instead of maximizing the mean 1
k
(wmax−w)T x, the aim is now to maximize the objective

function dmin, that is the lowest inner cluster similarity. For this purpose, we introduce
the additional constraint dmin ≤ wmax − wjxj for each j, making sure that dmin takes
the intended value. With this objective, we can remove the constraint 1T x = k.

maxMedianQuality(C)

Here, the objective is to maximize dmed, which means to maximize the median quality.
Again, we can remove the constraint 1T x = k. We need to introduce the following
additional constraints:

(xi) xl ∈ {0, 1}n

(xii) xr ∈ {0, 1}n

(xiii) x = xl + xr

(xiv) xl + xr ≤ 1

(xv) 1T xr − 1T xl ≤ 1

(xvi) 1T xl − 1T xr ≤ 0

(xvii) (wmax − wj)xlj ≤ dmed, ∀j
(xviii) dmed ≤ wmax − wjxrj

, ∀j

The intuitive explanation for the introduced vectors xl and xr is as follows. To determine
the median inner cluster similarity we partition the selected clusters into two sets whose
cardinalities differ by at most 1 (constraints (xv) and (xvi)). The clusters that have a
lower quality than the median-cluster quality are those having an xl value of 1 (constraint
(xvii)), and the clusters that have a higher quality than the median-cluster quality are
those having an xr value of 1 (constraint (xviii)).

Note that for the case of an even number of sets, this model maximizes the upper
median, i.e., the set at the (k

2 + 1)th position. If the goal is to maximize the lower

median, i.e., the set at the k
2 th position, we need to modify the constraints (xv) and

(xvi) to:

(xv) 1T xr − 1T xl ≥ 1

(xvi) 1T xr − 1T xl ≤ 2

Number of constraints

The introduced models (including the overlap and the completeness constraints) consist
of 7m+2n+3 constraints for maxMeanQuality(C), 7m+3n+2 constraints for maxMin-
Quality(C), and 7m + 10n + 4 constraints for maxMedianQuality(C). Thus the number
of constraints directly depends on the dimensions of the input matrix A. However, the
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number of constraints is not the only factor that impacts the computational time. More-
over, the time to solve the problem depends on the number k of desired clusters and the
parameter values minCompl and maxOverlap. In which way these parameters influence
the runtime mainly depends on the structure of the underlying data set and the selection
of base clusters. Compare our experiments on the scalability of the approch in Section
8.4.1.

8.3.4 Modeling Set-Level Constraints

Finally, we explain how set-level constraints can be dealt with, and based on this, how
the encompassing(C, F lag) constraint can be solved. For convenience, we define a trans-
formation operator τ on literals, which gives τ(Cj ∈ C) = xj in case of unnegated and
τ(Cj /∈ C) = (1− xj) in case of negated literals.

• Conjunctive constraints setConstraint(C, Lit1 ∧Lit2 ∧ ...∧Litl). This states that
certain clusters have to be included or cannot be included in a clustering. These
constraints can directly be transformed into equality constraints of the form xj = 1
for Cj ∈ C and xj = 0 for Cj /∈ C.

• Disjunctive constraints setConstraint(C, Lit1 ∨Lit2 ∨ ...∨Litl). This gives rise to
an additional linear constraint of the following form:

∑l
i=1 τ(Liti) ≥ 1.

• Clausal constraints setConstraint(C, Lit1 ∧ Lit2 ∧ ... ∧ Litl−1 → Litl). This gives
rise to an additional linear constraint τ(Litl)−(

∑l−1
i=1 τ(Liti)) ≥ 2−l. For instance,

setConstraint(C, C1 ∈ C∧C2 /∈ C → C3 ∈ C) gives rise to the constraint x3−x1−
(1−x2) ≥ −1, i.e., x3−x1+x2 ≥ 0, which is only violated for x1 = 1, x2 = 0, x3 = 0.

Using these set-level constraints, it is now possible to solve the encompassing(C, F lag)
constraint: If Flag = no, then for each Ci ∈ B and Cj ∈ B with Ci ⊂ Cj , the following
set constraint has to be set: setConstraint(C, Ci /∈ C ∨Cj /∈ C). In other words, it will
be translated into a linear constraint (1− xi) + (1− xj) ≥ 1, i.e., xi + xj ≤ 1.

8.4 Experiments and Results

We implemented the two linear models of Table 8.5 and Table 8.4 and tested their
performance on two datasets. For optimization, we use the Xpress-Optimizer [29], which
combines common methods, such as the simplex method, cutting plane methods, and
branch and bound algorithms [79].

For the first batch of experiments we use the dataset on dementia patients provided
by the psychiatry and nuclear medicine departments of Klinikum rechts der Isar of
Technische Universität München (see Section 2.2.2). Recalling from Section 2.2.2, the
dataset consists of two types of data: structured data (demographic information, clinical
data, including neuropsychological test results) and image data (PET scans showing the
patient’s cerebral metabolism). We include 257 data records belonging to patients with
PET scans and psychological and demographic values.
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minSupport 0.05 0.1 0.2 0.3

n = #itemsets 68,460 5,447 326 62
#possible pairs 2.3 · 109 1.5 · 107 5.3 · 104 180
# disjoint pairs 1.2 · 106 1.8 · 103 40

# clusters that a cluster overlaps

min 4,079 1,451 234 47
max 68,477 5,447 326 62
mean 56,435 5,014 314 59
median 60,921 5,191 319 59

# clusters that cover an example

min 27 21 13 7
max 49,781 4,221 253 50
mean 46,933 728 85 24
median 16,285 372 73 23

Table 8.5: Statistics of frequent itemsets on the dementia data with m = 254 examples.

Our experimental setting is the one introduced in Section 7.4 and similar to the usual
approach in medicine: select a subset of patients fulfilling specific predefined criteria and
compare the images associated with those patients. Automating this process results in
determining frequent itemsets based on the structured non-image data. This can easily
be achieved with the APRIORI algorithm [2]. First we select a subset of patients covered
by one frequent itemset. Then we evaluate the similarity of their PET scans by the mean
of the pairwise weighted Euclidean distance (see equation (7.1)). In this way, we obtain
a mean distance wj for each itemset Cj . To tackle outliers, i.e., PET scans that are
very distant from all other PET scans, we remove those data records, before generating
itemsets. Otherwise each outlier affects the mean distance of each itemset it is covered
by. For the given dataset, three outliers are removed.

Since we constrain our clustering to frequent itemsets, there is a huge number of
clusters that overlap or even completely encompass other clusters, e.g., if C1 = set of
examples that support item i1 and C2 = set of examples that support items i1 ∧ i2, then
C2 ⊆ C1. For a relative minSupport of 0.1, we obtain 5, 447 itemsets (see Table 8.5 for
all related statistics). Each of them overlaps other itemsets. On average, each itemset
overlaps 5, 014 other itemsets, at least 1, 451 and at most all 5, 447 sets. Each example
is covered by 727.5 itemsets on average, at least by 21 and at most by 4, 221. For the
distribution of other minSupport values see again Table 8.5.

We measure how the mean within-cluster distance4 performs for different parameter
settings. For each setting, we run the optimization task for all k ∈ {2, . . . , ⌊(maxOverlap+
1) · n ·minSupport⌋}5 and decide for the best solution of these runs. For example, for

4Note that our base clusters have a minimal size of n · minSupport. Therefore, we avoid that the
clustering can consist of singleton clusters with a within-cluster distance of 0.

5Due to the minimal cluster size, there is no solution possible for a larger k.
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Figure 8.2: Mean within-cluster distance (y-axis) for varying maxOverlap, minCompl
(x-axis), and k parameters and minSupport = 0.1.

our data with m = 254, a minSupport of 0.1 and maxOverlap = 0.15, we run it for all
k ∈ {2, . . . , 10}.

The results of the single runs with different ks for various parameter settings are shown
in Figure 8.2. We test on six different values for maxOverlap (0, 0.025, 0.05, 0.1, 0.15, 0.2)
with minCompl varying from 1.0 to 0.4. For each parameter setting, we are interested
in the clustering with the lowest mean(w), comparing the solutions of different k values.
For the most parameter settings, the best clustering consists of 3 or 4 clusters. Only
when we allow an overlap > 0.1, we obtain optimal clusterings with k = 5. For each
parameter setting, we show the mean(w) of the best clustering in Figure 8.3 and Figure
8.4.

Figure 8.3 shows results for disjoint clusterings (maxOverlap = 0). As expected,
we find better solutions when we relax the completeness constraint by lowering the
minCompl parameter. Also allowing smaller sets (a lower minSupport) improves the
quality of the solutions.

The effect of allowing overlaps can be seen in Figure 8.4. As in the disjoint setting, the
quality of the solution improves with lower minCompl. Increasing maxOverlap leads to
an additional improvement.

Overall, our experiments show that the quality of the resulting clustering can be
increased by relaxing the completeness constraint, allowing overlapping clusters, and
allowing smaller base clusters.
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8.4.1 Scalability

In a second batch of experiments, we focus on the scalability of our approach. This
is known to be a big challenge for integer linear programs. We experiment on two
publicly available datasets on thyroid disease6 (m = 2,659 examples, 16 categorical and 6
numerical attributes7) and on forest cover type8 (m = 10,000 examples, 44 binary and 10

6http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/
7We discretized the numerical attribute age into five (equally sized) values. Also, we removed examples

with no numerical attribute values.
8http://archive.ics.uci.edu/ml/datasets/Covertype
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numerical attributes). The pairwise Euclidian distances are computed on the normalized
numerical attributes. On the thyroid dataset, we determine n=12,134 frequent itemsets
with a minSupport of 0.1 on the categorical attributes. We did experiments on the
entire thyroid dataset and two subsets: one with m=500 examples and n=12,134 base
clusters, and the other one with m=1,000 examples and again n=12,134 base clusters.
On the cover type dataset, we determine n=709 frequent itemsets with a minSupport
of 0.05 on the categorical attributes.

As in the previous experiments, we tested different values for k, minCompl, and
maxOverlap. For all tested parameter settings on the dementia data set, time varies
from 0.4 seconds to almost 15 hours per problem instance, with 10 minutes on average
and 31.7 seconds for the median.9 On the thyroid dataset (see Table 8.6), the majority
(86.8%) of problems is solved in less than 500 seconds, 78% in less than 300 seconds,
and 36% in less than 60 seconds (minimum is 7.4 seconds). We interrupt runs that take
longer than six hours and mark them with an ×.

The following observations from more than 500 runs on the benchmark (thyroid)
and the real-world dataset (dementia) shed some light on the behavior of the optimizer
depending on some key parameters:

• The running times appear to scale roughly linearly in the number of base clusters
n (see Figure 8.5) and the number of examples m (see rows in Table 8.6).

• Relaxing the maxOverlap constraint from zero (disjoint clusters) to slightly larger
values typically leads to an (often sharp) increase in the running times. However,
they may decrease again for larger values (compare Figure 8.5 and 8.6).

• A similar observation can be made for minCompl: Relaxing the completeness
requirement from one to slightly smaller values typically leads to an (often sharp)
increase in the running times. However, further reducing minCompl often does
not change the running times too much (compare Figures 8.5 and 8.7). Setting
minCompl = 1 is easier to solve because the problem solver has to search only in
the solution space where yi = 1 for all i (compare (iv) in Table 8.3). minCompl
typically harms performance

• On the thyroid dataset and the cover type dataset, allowing overlaps in combination
with a lower minCompl increases the runtime dramatically (compare results for
minCompl = 0.9 and maxOverlap = 0.05). For those settings no optimal solution
could be obtained in reasonable time.

• The behavior in terms of k (between minK and maxK) is highly non-monotonic:
A problem instance may be extremely hard for a certain k, whereas it may become
easy again for k + 1. This may be explained by the “puzzle” that has to be solved:
It may be impossible to reach a certain required completeness for a smaller number
of larger “tiles”. However, given a larger number of smaller “tiles”, it may become
possible again. The precise behavior is clearly dependent on the available base
clusters.

9On a 512 MB RAM (900 MHz) machine
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Thyroid Dataset Covertype

Parameters number of examples no. of exampl.

k maxO minC 500 1000 2659 10, 000

2 0 1 8.8 15.1 70.3 0.8
4 0 1 *8.1 *13.5 *49.8 0.8
5 0 1 10.5 14.7 58.2 0.8

2 0 0.9 31.7 58.3 135.0 3.9
4 0 0.9 *105.4 *169.2 *420.0 3.7
5 0 0.9 20.8 159.0 264.9 3.6

2 0 0.8 38.6 168.9 176.4 4
4 0 0.8 356.6 116.3 547.5 4
5 0 0.8 23.7 53.9 281.7 3.7

2 0.05 1 25.1 40.4 84.6 2.1
4 0.05 1 *21.4 *38.8 *101.5 2.1
5 0.05 1 26.0 42.0 92.9 2.1

2 0.05 0.9 157.5 296.5 346.8 5368.5
4 0.05 0.9 × × × ×
5 0.05 0.9 119.1 14382.3 × 6441.8

2 0.1 1 21.3 40.4 107.1 2.1
4 0.1 1 *28.8 *63.3 *186.7 2.1
5 0.1 1 42.6 69.3 206.7 2.2

2 0.1 0.9 65.6 256.4 632.2 641.4
4 0.1 0.9 1351.3 1030.1 17408.9 1168.6
5 0.1 0.9 133.0 2005.0 × ×

Table 8.6: Running times (in seconds) of the thyroid dataset and the cover type dataset
for varying parameters. We test on three different dataset sizes with 500, 1000
and 2659 examples. ∗ indicates that no solution exists for these parameters.
× indicates that the experiment was stopped after six hours.
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Figure 8.5: Runtime (in seconds) of disjoint clustering on dementia data for different k
and different numbers of base clusters n.

Experiments with set-level constraints (detailed results not shown) indicate that they
either make a problem insolvable (which can be determined very fast) or do not impact
running times, because they constitute only a very small fraction of the constraints.
Simple set-level constraints like Cj ∈ C, however, simplify the set of base levels a priori
and thus speed up the overall process.

In summary, our experiments on two datasets showed that the running times depend
on the structure of the problems stronger than on their size. Although the majority
of tested problem instances was computable within a reasonable time, we found some
instances that were more difficult to compute than others. For the latter cases, it may
be an option to set a runtime limit and output a near-optimal solution.

8.5 Related Work

Constrained clustering has been extensively investigated over the past few years. We
refer to Section 3.3 for a brief introduction. Many contributions focus on incorporating
background knowledge in the form of instance-level constraints (e.g., [87]). More recent
work investigates set-level and other types of constraints (e.g, [30]). Davidson et al. [30,
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31] study the computational complexity of finding a feasible solution for clustering with
constraints and show that finding a feasible solution is NP-complete for a combination
of instance-level and cluster-level constraints. Clustering has been approached with
linear programs before [32, 77]. However, these approaches start from a number of
instances they want to assign to clusters, whereas our approach starts from a set of
possible base clusters. Demiriz et al. [32] use linear programs to solve k-means with the
constraint that each cluster has to contain a minimum number of points. This approach
is extensible to pairwise constraints. In their experiments they show that it is feasible
to solve constrained clustering by linear programming even for large datasets.

Itemset classified clustering has been introduced by Sese et al. [82]. They start from
a dataset with feature attributes and objective attributes. In our case, the PETs-voxels
correspond to the objective attributes and the psychological data corresponds to the
feature attributes. Sese et al. focus on 2-clusterings and maximize the interclass variance
between the two groups. Our approach handles a more general setting and can also find
k-clusterings with k > 2.

Although it may appear related at first glance, the approach is different from clustering
approaches for association rules (e.g., by An et al. [6]) in its goal of constrained clustering
(not summarization of pattern mining results). However, set covering and set packing
approaches may also be useful for summarizing itemsets and association rules.

Chaudhuri et al. [23] mention the weighted set packing problem in the context of
finding a partition consisting of valid groups maximizing a benefit function. However,
they solve the problem in a greedy fashion and thus do not aim for a global optimum.

8.6 Discussion and Conclusion

We presented an approach to constrained clustering based on integer linear program-
ming. The main assumption is that a (possibly large) set of candidate clusters is given
in advance, and that the task is then to construct a clustering by selecting a suitable sub-
set. The construction of a suitable clustering from candidate clusters can be constrained
in various ways. Clustering constraints allow specifying the degree of completeness of
a clustering, the allowed overlap of clusters, and whether encompassing clusters are ac-
ceptable (hierarchical clusterings). In contrast, set-level constraints let the user explicitly
state logical formulae that must hold for clusterings to be valid, for instance, that two
clusters are mutually exclusive or that one cluster requires another in a clustering. Set-
level constraints restrict the combinations of admissible clusters without reference to
the instances. The overall quality of a clustering can be optimized in various ways: by
optimizing the minimum, the mean and the median of the individual clusters’ qualities
in a clustering.

Our provided framework is very general and flexible and hence can be adapted to
the user’s needs. The user may start with the default values of minCompl = 1.0 and
maxOverlap = 0. In case she wants to increase the quality of the resulting clustering,
she can relax the completeness constraint to a lower value of minCompl and/or allow for
some multiply covered examples by increasing the maxOverlap parameter. Additionally,
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set-level constraints may be used to exclude or include certain clusters.
Given such a set of constraints, it is then possible to map a set of constraints onto

a program for integer linear programming. In this sense, the presented work stands
in the tradition of other approaches to constraint-based mining and inductive query
languages, where the technical complexity of the task is hidden from the users and they
can still freely combine mining primitives according to their interests and preferences
[19, 20, 76, 72, 34, 18].

Although integer linear programming is known to be an NP hard problem, there are
fast solvers available today, making use of a wide range of different solution strategies and
heuristics. Generally speaking, the base set of candidate clusters still has to be relatively
small (compared to the power set of instances) to keep the optimization feasible. Vice
versa, the set of constraints should not be excessively large. Contrary to the intuition,
however, that the running times should depend heavily on the number of instances and
the number of available clusters, we found in our experiments that the scalability in
these two parameters was not as critical as expected. Other parameters, like the degree
of allowed overlap, showed a much greater impact on the running times.

From a more general point of view, it is clear that problem instances with excessive
running times exist, and we also encountered such instances in our experiments. In
future work, we plan to address this issue by near-optimal solutions, which are an option
offered by many optimization packages like Xpress-Optimizer. One possible approach
could be based on a user-defined time limit: If the optimal solution can be found within
the time frame, it is returned and flagged as optimal. If the time limit is exceeded and
a solution was found, the best solution could be returned and flagged as near-optimal.
If no solution was found within the given time, the user is informed about this outcome.
In this way, the system remains transparent about the quality of its solutions.

In future work, it would be interesting to see if some of the set-level constraints could
be pushed into the algorithms for solving integer linear programs, or if they have to be
solved, for instance, by splitting a problem into a series of related optimization problems.
One of the disadvantages of the current formulation is that the cluster quality has to
be defined for each cluster in advance and not by accessing the examples during the
optimization process. Also, we focus on the within-cluster distances in this work, and do
not take into account between-cluster distances yet. Taking into account the between-
cluster distances is possible, but would require a slightly different formulation of the
optimization problem. Finally, it would be interesting to investigate whether similar
techniques could be used in rule learning and related problems like subgroup discovery.
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Figure 8.6: Effect of varying maxOverlap values on the runtime for k = 3 (left) and
k = 4 (right) and minCompl ∈ {0.7, 0.8, 0.9, 1.0}.
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Figure 8.7: Effect of varying minCompl values on the runtime for k = 3 (left) and k = 4
(right) and maxOverlap ∈ {0, 0.05, 0.1}.
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9 Conclusion

We now summarize the main contributions and give an outlook on possible directions
for further research.

9.1 Summary

The main goal of this thesis was to investigate how a comprehensive analysis of medical
datasets can improve the process of diagnosis. For this purpose, we analyzed two medical
datasets, one on breast cancer diagnosis and one on dementia patients. We focused on
two clinical tasks, the selection of an optimal test for a patient that yields an accurate
diagnosis, and the correlation of image and non-image data.

For the former task, we introduced a data-efficient approach to test selection that is
based on the concept of conditional mutual information. The computation of conditional
mutual information relies on an accurate estimation of the underlying probability dis-
tributions. However, this estimation is often difficult to obtain, due to small datasets
and the underlying computational complexity. We therefore had to find alternative ways
to estimate the underlying probabilities. We described and compared a basic approach
consisting of averaging mutual information estimates conditioned on individual observa-
tions and another approach where it is possible to condition on all observations at once.
This is achieved by making some conditional independence assumptions represented in
a Bayes net. We showed that these alternatives allow an accurate estimation of the
probabilities and thus an appropriate calculation of the conditional mutual information.
This then can be applied to determine which test to conduct for a patient at a certain
point in time.

Many questions in medical research are related to the discovery of statistically inter-
esting subgroups of patients. However, subgroup discovery with a single target variable
is rarely sufficient in practice. Rather, more complex variants, e.g., handling costs and
complex output in the form of images, are required. In this thesis, we considered such
variants of subgroup discovery in the context of the clinical task of diagnosis: For breast
cancer diagnosis, the task is to detect subgroups for which single modalities should be
given priority over others, as indicated by a quality function. For Alzheimer diagnosis,
the task is to find and analyze subgroups sharing similar PET scans. Here, the subgroup
descriptions are based on features from psychological tests and background information
about the patient.

For breast cancer diagnosis, we designed an algorithm that handles qualities (or costs)
and finds the best subgroups of a population. By limiting the output size to the best
t subgroups, it was possible to prune the search space considerably, especially for lower
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values of the minimum frequency (i.e., support) parameter. Therefore, the proposed al-
gorithm SD4TS clearly outperforms the baseline algorithm used for comparison (APRI-
ORI SD).

On a set of Alzheimer’s patients with PET scans we were able to show that subgroup
discovery also works well for complex outputs such as images. We developed a work-
flow that first clusters images, and then applies subgroup mining to find subgroups with
unusual statistical patterns in certain clusters. We also developed an alternative work-
flow that first determines frequent itemsets in the non-image data obtaining groups of
patients that share the same test result or demographical information. In a second step,
these groups are evaluated by computing the similarity of their brain scans. Thus, these
groups can be considered as base clusters that can be combined into an overall cluster-
ing. We proposed a method for constrained clustering that can perform this combination
while satisfying several user-defined constraints. This methods is based on translating
the constraints into an integer linear program that then can be solved with standard op-
timization tools. Both approaches could provide useful hints for physicians and perhaps
even suggest new hypotheses.

Summing up, the main contributions of the thesis are:

• a new method for test selection based on information maximization,

• new methods for subgroup discovery with costs and complex output,

• two alternative workflows for the correlation of image and non-image data,

• a new method for constrained clustering that offers a translation of a variety of
user-defined constraints into an interger-linear program which then can be solved
with standard optimization tools, and

• an implementation and experimentally evaluation of those methods.

Overall, we showed that subgroup discovery can be a valuable tool for the analysis of
breast cancer and Alzheimer diagnosis data. Similar techniques should be applicable
successfully in many other medical domains as well.

9.2 Challenges and Limitations

The main problems and limitations in the context of the HUP study were caused by
the small sample size (138 examples, i.e., lesions) and the equivocality of optimal test
selection. In other words, for many cases, two or more tests perform equally well in
practice. On the Alzheimer data, the results of subgroup discovery depend critically on
the quality of the clusterings. As clustering of PET scans is largely uncharted territory,
we believe that there should be ample room for improvement in this area.

Our results show that it is promising to continue this kind of analysis in other medical
fields. However, a major limitation is acquiring the necessary data. It seems that most
hospitals are yet not prepared. Even though hospitals store a huge volume of data, this
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data is mostly not accessible for research. There are many reasons for this. First, there is
a high justifiable concern about privacy in order to protect the patients. In general, the
patients have to agree that their data is used for research purposes. This is no problem
for new patients. However, to get agreements of past patients retrospectively is almost
impossible. This can be circumvented by a de-identification of the data which is often
difficult, time consuming, and expensive.

A second reason is that most of the data is not digitally accessible. Although many
hospitals maintain a hospital information system (HIS) to store and administer patient
records, test results, and the billing system, this HIS is not generally available for research
purposes (see privacy concerns). Furthermore, this system is rarely a complete source of
information. For instance, in the dementia study, most test records were only available
on paper, which are archived in a huge collection of ring binders. Using this kind of data
always requires manual data entry and revision.

A huge challenge is the inclusion of images. Images are owned by the patients, here an
agreement of the patient is also needed. Beyond that, only few hospitals store all images
in a PACS system (Picture archiving and communication system), a digital medical
image management, communication, review and distribution system. Many pictures are
stored only on CD-ROMs, or in the case of X-rays, only on film. There is a need for
research image databases, which also store annotations of the images and provide a link
to other information of the patient.

A further reason that complicates the data access, is that most patient records contain
only very little structured information. Most information is free text (often with typos),
whose analysis requires sophisticated text mining and natural language processing tech-
niques. The amount of information provided in the records varies from patient to patient
and strongly depends on the time and accuracy of the author.

In order to get universal results, an ultimate goal would be to combine datasets across
hospitals. However, this seems to be a distant prospect, because right now it is often
already very difficult to combine datasets of different departments of the same hospital.

Overall, these challenges should not sound too daunting. Our experience shows that
there are already departments that are willing to invest in proper data storage and are
also open to this type of analysis. Furthermore, much research in the area of health
care business addresses the introduction of research databases that store patient records
and images and enable their efficient management. Therefore, we expect to find better
conditions in the near future.

9.3 Directions for Future Work

In future work, research could be extended towards interweaving the two methods of
clustering and subgroup discovery. For instance, during the process of subgroup genera-
tion, the similarity of images could be computed “on the fly” and used for pruning. This
could yield a form of semi-constrained clustering, where the base clusters do not have
to be restricted to the cover of an itemset, which is the set of examples that exactly
match the itemset description. Moreover, the base clusters can represent “itemset and
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friends”, which are sets of examples that have approximately the same features. This
can be achieved by first determining frequent itemsets and their corresponding covers.
In a second step it is possible to modify the covers by either adding or removing some
examples. For this task different heuristics are conceivable: a new example should only
be added if part of the itemset description is matching, or in case the adding will improve
the pairwise similarity of images above a certain threshold. In this context, a further idea
is to work with disjoint itemset descriptions which enables the merging of two complete
covers of two different itemsets.

Our approaches to test selection can be extended to a decision support system that
provides the health care worker with information on which test(s) to conduct on a patient.
Further ideas for the analysis of the HUP data are outlined in Section 2.1.4. A very
challenging and interesting task is to design a similarity function between two patients.
A good similarity function enables a new patient to be matched with similar patients,
who were treated previously. Knowing their diagnosis and therapy outcome could help
to diagnose new patients more accurately and advise an optimal therapy.

A different direction of research is to address the challenges discussed in the previous
section. For instance, one can develop research databases that are accessible to health
care workers and researchers. One important aspect of these databases is that they have
to be easy to use for the health care workers, because the basis of a complete and up-to-
date database is the prompt data entry of new patients. A further step is to provide a
tool that integrates the database and software applications that are already used in the
clinical business, e.g., image viewers or image processing tools, or data mining tools.
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