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Notation

Throughout this work, we use bold upper case letters to denote matrices and bold lower case letters
to denote vectors. We furthermore use the following notational conventions:
• log(·) is the natural logarithm,
• ⌊·⌋ is the floor operator,
• E[·] is the expected value of a random variable,
• | · | is the absolute value of a complex scalar,
• Re(·) is the real part and (·)∗ is the complex conjugate of a complex scalar, vector, or matrix,
• (·)T is the transpose and (·)H is the conjugate transpose of a vector or matrix,
• (·)+ is the pseudo-inverse of a matrix,
• tr(·) is the trace and det(·) is the determinant of a square matrix,
• I is the identity matrix, where the dimensions follow from the context,
• ek is the kth column of the identity matrix I, where the dimensions follow from the context,
• 1 is the vector of ones, where the dimensions follow from the context,
• and 0 is the vector or matrix of zeros, where the dimensions follow from the context.
We use the notation ( · , · ) for an open interval and [ · , · ] for a closed interval. When the upper
limit of a summation is clear from the context, we use abbreviations of the form

∑

k

for
K
∑

k=1

and
∑

j 6=k

for
K
∑

j=1
j 6=k

.

Landau Notation

The Landau symbol O(f(x)) denotes the class of functions g(x) for which

lim sup
x→∞

∣

∣

∣

∣

g(x)

f(x)

∣

∣

∣

∣

< ∞

or, equivalently, the class of functions g(x) for which there exist real positive numbers M and x0,
such that

|g(x)| ≤ M · |f(x)| for all x ≥ x0.

Similarly, the symbol o(f(x)) denotes the class of functions g(x) for which

lim
x→∞

∣

∣

∣

∣

g(x)

f(x)

∣

∣

∣

∣

= 0.

The Landau symbols can be used for the set of functions or to denote a member of the set of
functions; if g(x) = 2x3 + 3x2 + 1, we can, e. g., write g(x) ∈ O(x3) as x → ∞ or g(x) =
2x3 +O(x2) as x → ∞. For a more detailed discussion of the Landau notation, cf. [1].
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1. Introduction

Due to the increasing demand for spectral efficiency in modern cellular communications systems,
it is no longer sufficient to view the cells as isolated entities. Mobile terminals close to the cell edge
may receive a considerable amount of interference from neighboring base stations transmitting in
the same frequency band; similarly, base stations may receive interference from mobile terminals
in neighboring cells. The interference in many cases is the limiting factor when striving for high
data rates so that optimal service can only be provided to mobile terminals close to the cell center.

At the same time, the advent of base stations and mobile terminals with multiple antennas
opens up new possibilities for canceling interference, both on the receiver side, where the signals
received by the different antennas can be combined in a way that separates the desired signal from
interference and noise, and on the transmitter side, where beamforming techniques can direct the
transmitted signal towards the desired receiver and away from unintended receivers. It is not yet
very well understood how these additional degrees of freedom are best put to use in a practical sys-
tem, such that the overall performance is optimized at a reasonable complexity. It can be assumed,
though, that it is generally beneficial for the base stations to communicate among each other using
the network infrastructure in order to coordinate their interference avoidance efforts.

There are two fundamentally different approaches for base station cooperation over the network
infrastructure: the premise of the first approach is that the base stations cooperatively precode and
decode the data; effectively, several base stations are connected to form a single multi-antenna
node with antenna groups in different physical locations. The second approach, on the other hand,
excludes synchronization on a data symbol level and only allows the base stations to cooperate in
designing their strategies. The term strategy in this context encompasses the beamforming coeffi-
cients, the coding schemes, the transmit power, etc.; the payload data to be transmitted to mobile
terminals in other cells, however, is not known and the signals received by other base stations
cannot be used to help decode the own received signal. Clearly, the former approach leads to far
stricter requirements concerning the bandwidth of the infrastructure, processing power, latency,
and synchronicity; at the same time, the potential performance gains are very high. In this work
we investigate the latter approach: while the performance limits are significantly lower, implemen-
tation is, arguably, more straightforward and the requirements on the connecting links between the
base stations are far less stringent.

In order to understand some of the fundamental effects and tradeoffs inherent in the problem
of cooperative transmit strategy design, we investigate an idealized elementary subproblem: we
assume that the wireless propagation channels are frequency flat and quasi-static, and that they
can be estimated without error. Also, in our scenario only one mobile terminal is associated with
each base station. These abstractions lead to the K-user interference channel: the system model
consists of K transmitter-receiver pairs, where each receiver is only interested in the data from its
associated transmitter, but receives a superposition of the signals from all K transmitters as well
as addititional background noise.

Exploring the capacity limits of such interference channels has been a challenge in information
theory for nearly half a century. Even for the simplest such system with two single-antenna users,
not all aspects of the optimal transmit strategies have been fully understood. In recent years, sig-
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16 1. Introduction

nificant progress has been made, however, especially in the analysis of systems with more than two
users and/or multiple-antenna nodes. We give an overview of the current state of the information
theoretic study of interference channels in Chapter 2.

The best known transmit strategies—in an information theoretic sense—for interference chan-
nels with more than two users turn out to be rather complex and somewhat impractical. For the
remainder of the work we instead focus on one specific class of strategies that is information
theoretically suboptimal except for some special cases, but far more suitable for practical im-
plementation: the premise of these linear strategies is that the users cooperate only in choosing
beamformer coefficients and transmit power, but select the channel coding scheme separately, and
that the receivers treat interference as noise and thus do not require knowledge of the interfering
users’ channel codes.

In Chapters 3, 4, and 5, we investigate the optimal linear strategies for increasingly complex
scenarios: first, we assume a single antenna at each node, which allows us to gain familiarity with
the relevant concepts in a comparatively simple setting; then, in Chapter 4, we allow multiple an-
tennas on the transmitter side, thus generalizing the problem from power control to beamformer
design; and finally, in Chapter 5, we examine the general case of multiple antennas on the trans-
mitter and receiver side. For each of these three cases, we give an overview of the known analytical
results, discuss different proposed algorithms for transmit strategy design, and numerically com-
pare the performance of these algorithms for random channels. For the multi-antenna setting in
Chapter 5, we restrict our attention to the special case of one data stream per user. The more gen-
eral multi-stream case introduces many additional difficulties and is therefore outside of the scope
of this work.

In addition to the systematic overview of the topic, our main contributions are as follows:
• We discuss in detail the update procedure of the multi-antenna interference pricing algorithm.

The concept of a distributed sum utility optimization algorithm based on exchanging interfer-
ence prices was developed for single-antenna interference networks in [2] and a simplified ex-
tension to multi-antenna systems, which does not support power control and is not guaranteed
to converge, was proposed in [3]. The generalization of the pricing algorithm to multi-antenna
systems presented here resolves both of these issues and is shown experimentally to be a very
useful technique in a broad range of scenarios.

• We provide a thorough qualitative evaluation and experimental comparison of many different
known algorithms for multi-antenna interference networks. While there has been extensive
effort recently to propose methods for determining good linear transmit strategies, significantly
fewer results are available in which the performance of these different techniques is compared
and such comparisons are usually limited to selected scenarios. Furthermore, issues such as the
necessary amount of information exchange or the number of iterations required for convergence
are often neglected. The comparison in this work covers many different settings and shows that,
depending on the scenario, some algorithms are significantly more useful than others.

• We present a probabilistic analysis of the asymptotic rate offset in the multi-antenna case. Due
to the complexity of the problem, analysis in the multi-antenna case is largely restricted to
high-SNR asymptotics; while recent research has focused mainly on the achievable number
of interference-free data streams, our rate offset analysis shows that there are considerable
performance differences between solutions that achieve the same number of interference-free
data streams; our analysis allows us to approximate the high-SNR performance of choosing
the best out of many different interference-free solutions and even permits an estimation of the
globally optimal high-SNR performance in some smaller systems.



2. The Interference Channel in Information Theory

One of the main objectives of information theory is to characterize the data rates that can be trans-
mitted reliably over different types of communication channels. For many basic set-ups, such as
a single noisy communication link, or a receiver trying to decode messages received simultane-
ously from many different transmitters, the achievable rates are well understood. Scenarios with
interfering pairs of transmitters and receivers, however, have been the subject of such information
theoretic analysis for nearly half a century and the characterization of the achievable data rates, the
capacity region, is in general still unknown.

In this chapter we present a brief survey of the information theoretic research on interference
scenarios similar to those we examine in the subsequent chapters. Our goal is to give a motivation
for the utility functions and the linear strategies employed later on, and at the same time place
them into a broader context. By no means do we attempt to provide an exhaustive overview over
the literature.

2.1 Capacity of the AWGN Channel

Consider the discrete time communications system characterized by the equation

y[t] = h · x[t] + n[t] (2.1)

where t ∈ Z is the time index. The complex channel gain h ∈ C is constant over time, the noise
n[t] is a complex-valued, stationary random sequence with a jointly Gaussian distribution of the
real and imaginary parts and mean E [n[t]] = 0 for all t ∈ Z. We furthermore assume n[t] to
be a “proper” random sequence in the sense of [4], i. e., all “pseudo-covariances” of the form
E [n[t]n[t + j]] with j ∈ Z are zero, a property often referred to as “circular symmetry” of the
complex Gaussian distribution. The variance of n[t] is E [|n[t]|2] = σ2, the temporal correlation
is E [n[t]n∗[t+ j]] = 0 when j 6= 0. Since the noise is uncorrelated in time, and thus white
in frequency, we call this communications system the additive white Gaussian noise (AWGN)
channel.

In order to transmit information, we apply an input signal x[t] to the channel during the time
indices t = 1, . . . , N , which must obey the unit transmit power constraint

1

N

N
∑

t=1

|x[t]|2 ≤ 1. (2.2)

The input signal (x[1], . . . , x[N ]) is the codeword and is selected from a codebook that contains M
different codewords, each fulfilling the power constraint (2.2). The choice of the codeword conveys
log2M bits of information, or logM nats. In the following we will mostly use the unit nats in
analytical expressions for ease of notation and the unit bits for numerical results; the conversion
from nats to bits can be accomplished by a division by log 2. The information conveyed by the
codeword normalized with the length of the codeword R = 1

N
logM is called code rate and is

measured in nats per channel use, or bits per channel use (bpcu) when log2 is used.

17
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The output signal y[t] of the channel is used by the receiver in the following way to decode the
information: based on the whole received block (y[1], . . . , y[N ]) and taking into account the chan-
nel gain h and the distribution of n[t], it decides which of the M codewords in the codebook is most
likely to have been the transmitted signal (x[1], . . . , x[N ]), e. g., according to the maximum likeli-
hood criterion. Note that this can be a very complex task, possibly requiring an exhaustive search
over a very large number M of codewords. At this point the issue of computational complexity is
not considered, however, as we are interested in theoretic throughput limits.

Depending on the codebook and the specific decoding function, which maps any received block
back to one of the M codewords from the codebook, an average probability of error can be defined,
where an error is the event that the estimate returned by the decoding function is not the same as the
codeword that actually was transmitted. A code rate R is called achievable if, given an arbitrarily
low ε > 0, there exists a codebook and a decoding function with rate R, for which the probability
of error is no higher than ε. Note that the block length N is not fixed and is allowed to be as large
as necessary when determining whether R is achievable. The channel capacity C is defined as the
supremum of all achievable rates R. Consequently, all non-negative R < C are achievable and all
R > C are not achievable.

The channel coding theorem from information theory (see [5] for a thorough discussion) pro-
vides us with the means for determining the channel capacity C without specifically optimizing the
codebooks and decoding functions; instead, the system (2.1) is examined at one given time instant
and the input variable x is considered to be a random variable with the probability density function
(PDF) p(x). The output variable (or received symbol)

y = h · x+ n (2.3)

is therefore also a random variable, and we can describe our system by means of the joint PDF
p(x, y) = p(y|x) · p(x).1 Due to our assumptions concerning the properties of the noise, the con-
ditional PDF of y given x, p(y|x), is complex Gaussian with variance σ2 and mean h · x; the PDF
of the channel input p(x) depends on the transmit strategy. Next, we define the mutual information
I(x; y) between the two random variables x and y as

I(x; y) =

∞
∫

−∞

∞
∫

−∞

p(x, y) log
p(x, y)

p(x)p(y)
dy dx =

∞
∫

−∞

∞
∫

−∞

p(y|x)p(x) log p(y|x)
p(y)

dy dx (2.4)

where p(y) is the marginal PDF

p(y) =

∞
∫

−∞

p(y|x)p(x) dx. (2.5)

The mutual information can be interpreted as a measure for how much information about the
realization of x can be inferred from the observation of y, or vice versa. For the special case that y
and x are statistically independent, the mutual information is zero. Again, for a detailed discussion
of the concept of mutual information, the reader is referred to [5].

1Our notation of random variables is somewhat imprecise here, as we do not distinguish between the random
variable and its realization. Also, we denote all probability density functions as p(·) and use the argument to distinguish
between the functions. These “inaccuracies” allow for a more compact notation, while ambiguities should not arise as
long as the expressions are not taken out of context.
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(a) AWGN channel (b) Multiple access channel (c) Interference channel

Figure 2.1: Information theoretic scenarios discussed in this chapter

The channel coding theorem states that the capacity of a channel with an input variable x, an
output variable y, and a transmit power constraint as in (2.2) is

C = max
p(x)

I(x; y) s. t.: E
[

|x|2
]

≤ 1. (2.6)

In words, the channel capacity can be computed by determining the PDF of the input random
variable that maximizes the mutual information between the input and output random variable of
the channel. The PDF p(x) cannot be chosen freely, however, but must be such that the second
absolute moment of x is no larger than one, corresponding to the power constraint (2.2).

The proof of the channel coding theorem consists of two parts. First, it is shown that when the
codewords are constructed by drawing random sequences of x, where x has the PDF p(x), and the
code rate is below the mutual information I(x; y), for N → ∞ the error probability with a “joint-
typicality” decoder, which is fairly simple to analyze, tends towards zero. Second, it is proven
that whenever the error probability approaches zero with increasing blocklength N , the number of
codewords M in the codebook cannot be higher than eNC , which establishes that rates above C are
not achievable.

The PDF p(x) thus has a direct significance for codebooks achieving rates close to capacity:
the empirical distribution of x[t] (regardless of the codeword) must be close to p(x). Furthermore,
the block length N must be very large in order to be able to achieve a low probability of error.

With (2.6) the capacity of the AWGN channel (2.1) can be shown to be

C = log

(

1 +
|h|2
σ2

)

. (2.7)

The PDF p(x) that maximizes the mutual information is a complex Gaussian distribution with
mean zero and variance one; it is furthermore proper (i. e., circular symmetric). From here on,
when referring to a random variable as complex Gaussian, we will imply that it is also proper.

2.2 The Gaussian Multiple Access Channel

Next, we examine a scenario with two transmitters that cannot cooperatively encode their mes-
sages and have separate power constraints, and one receiver which would like to reliably decode
the messages from both transmitters. Again, we analyze the channel by treating the inputs (i. e.,
the transmit symbols) as random variables. The Gaussian multiple access channel (MAC) is char-
acterized by the relationship

y = h1x1 + h2x2 + n (2.8)
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Figure 2.2: The capacity region of the Gaussian MAC with |h1|2 = 2, |h2|2 = 1, and σ2 = 1. The dashed

lines mark the rates R1 = log2

(

1 + |h1|2
|h2|2+σ2

)

and R2 = log2

(

1 + |h2|2
|h1|2+σ2

)

, which are achievable by the

first user in a successive decoding scheme.

where h1 and h2 are the complex channel gains from the first and second transmitter to the receiver,
n is the complex Gaussian noise variable with variance σ2, x1 and x2 are the input random vari-
ables representing the transmitted symbols, and y is the channel output, representing the received
symbol. The power constraints on the PDFs of x1 and x2 are

E
[

|x1|2
]

≤ 1 and E
[

|x2|2
]

≤ 1. (2.9)

Furthermore, the random variables x1 and x2 are statistically independent, corresponding to the
fact that the two transmitters cannot cooperate in choosing the codewords.

For the MAC, the concept of a single achievable rate is not sufficient anymore. Instead, we are
interested in the achievable rate pairs (R1, R2), where both messages can be recovered from y with
arbitrarily low error probability. The capacity region is defined as the closure of all achievable rate
pairs. Thus, all rate pairs in the interior of the capacity region are achievable, and all rate pairs
outside of the capacity region are not achievable.

In [5, Section 14.3], it is shown that a pair of non-negative rates (R1, R2) is achievable, if and
only if the following inequalities are fulfilled:

R1 < log

(

1 +
|h1|2
σ2

)

(2.10)

R2 < log

(

1 +
|h2|2
σ2

)

(2.11)

R1 +R2 < log

(

1 +
|h1|2 + |h2|2

σ2

)

. (2.12)

The capacity region of the Gaussian MAC thus has a pentagonal shape, cf. Figure 2.2.
The justification for the bounds (2.10)–(2.12) is again carried out in two steps: first, it is shown

that all rate pairs satisfying the inequalities are achievable; second, it is proven that a rate pair
outside of the region cannot be achievable.

For the achievability proof, we assume Gaussian codebooks with unit variance (i. e., equality
in (2.9)), which will turn out to be optimal. First, let us consider a decoding scheme where the
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receiver decodes the message from the first transmitter while treating h2x2 + n as noise. Since x2

is Gaussian, has variance one, and is independent of n, achievability of R1 is equivalent to being
below the capacity of an AWGN channel with channel gain h1 and noise power |h2|2 + σ2. There-

fore, R1 < log
(

1 + |h1|2
|h2|2+σ2

)

for this scheme. When the first message is decoded correctly, the

receiver can subtract the scaled codeword h1x1 from y (for every received symbol of the block) and
achievability of R2 is equivalent to being below the capacity of an AWGN channel with channel

gain h2 and noise power σ2, i. e., R2 < log
(

1 + |h2|2
σ2

)

. Together, these two bounds on R1 and R2

give us a rectangular section of the above capacity region.
In the same way, we can obtain another rectangular section of the capacity region with a scheme

in which the second transmitter’s message is decoded first and then subtracted from the received
block. The remaining triangular section can finally be shown to be achievable with a similar ran-
dom codebook generation argument as for the AWGN channel. For this part of the region, the
decoder must perform a joint estimation of the first and second user’s message, however, which is
potentially more complex to implement than a successive scheme [5, Section 14.3].

The outer bound argument is fairly straightforward: clearly, setting h2 = 0 cannot reduce
the highest achievable rate R1, which in this case is bounded by (2.10) since the simplification
leads to an AWGN channel. In the same way, it is obvious that (2.11) describes an upper bound
on any achievable rate R2. To show that (2.12) is an upper bound on the sum rate, we define
h =

√

|h1|2 + |h2|2 and x = (h1x1 +h2x2)/h. Then y = hx+n and E [|x|2] ≤ 1 (since x1 and x2

are independent). Now, treating x as the transmit symbol of a single transmitter cannot reduce the
capacity region, as it is equivalent to allowing some cooperation between the two transmitters when
choosing their transmit symbols. Therefore, the combined rate between inputs and output cannot
be higher than in this equivalent AWGN channel, which is exactly the sum rate bound (2.12).

The three-user MAC is characterized by the equation

y = h1x1 + h2x2 + h3x3 + n (2.13)

and the power constraints

E
[

|x1|2
]

≤ 1, E
[

|x2|2
]

≤ 1 and E
[

|x3|2
]

≤ 1. (2.14)

With the same arguments as for the two-user MAC, a rate triple (R1, R2, R3) is achievable, if and
only if

R1 < log

(

1 +
|h1|2
σ2

)

(2.15)

R2 < log

(

1 +
|h2|2
σ2

)

(2.16)

R3 < log

(

1 +
|h3|2
σ2

)

(2.17)

R1 +R2 < log

(

1 +
|h1|2 + |h2|2

σ2

)

(2.18)

R1 +R3 < log

(

1 +
|h1|2 + |h3|2

σ2

)

(2.19)

R2 +R3 < log

(

1 +
|h2|2 + |h3|2

σ2

)

(2.20)
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R1 +R2 +R3 < log

(

1 +
|h1|2 + |h2|2 + |h3|2

σ2

)

. (2.21)

Again, the use of Gaussian codebooks is optimal.

2.3 The Two-User Gaussian Interference Channel

The two-user interference channel in its most general form was first discussed by Shannon [6] and
Ahlswede [7]. The defining characteristics of a general two-user interference channel are:
• It has two inputs x1 and x2, and two outputs y1 and y2.
• It is fully described by the PDFs p(y1|x1, x2) and p(y2|x1, x2) (and possibly power constraints

on the PDFs of x1 and x2).
• The transmitters cannot cooperate, i. e., x1 and x2 are statistically independent.
• The receivers cannot cooperate, i. e., the first receiver’s decoder estimates the transmitted code-

word using only y1, the second receiver’s decoder only knows y2.
• The first receiver must only be able to decode the message conveyed by x1 with vanishing error

probability. The second transmitter’s codebook is known, however, and this information can be
used when decoding. Similarly, the second receiver is only interested in estimating x2, but can
make use of the knowledge of the codebook used for x1.

The two-user Gaussian interference channel (cf. Figure 2.1) is characterized by the two equations

y1 = h11x1 + h12x2 + n1 (2.22)

y2 = h22x2 + h21x1 + n2 (2.23)

where n1 and n2 are complex Gaussian random variables with variance σ2, and the power con-
straints

E
[

|x1|2
]

≤ 1 and E
[

|x2|2
]

≤ 1. (2.24)

A rate pair (R1, R2) is achievable, if the message conveyed by x1 can be recovered from y1 and the
message conveyed by x2 can be recovered from y2 with arbitrarily low error probability. Again,
the capacity region is the closure of all achievable rate pairs.

The two-user Gaussian interference channel has been the subject of study since Carleial [8, 9].
Up until today, almost half a century after the publication of [6], the capacity region is not known,
for either the general or the Gaussian interference channel, with the exception of a few special
cases. Nonetheless, significant progress has been made in approximating and understanding the
capacity region in recent years.

The methodology for analyzing the interference channel again is to construct achievable
schemes and outer bounds on the capacity region. For the MAC, the achievable region and the
outer bound were rather straightforward and coincided, giving us a simple description of the ca-
pacity region as well as the optimal strategies. For the interference channel, this is not the case. A
number of different achievable strategies and outer bounds have been proposed, but in general a
gap between the best achievable region and the tightest outer bound remains. In the following we
will give a short overview of the relevant results.

2.3.1 Achievable Schemes

Unless stated otherwise, we assume the use of Gaussian codebooks for the following schemes.
This is, in contrast to the AWGN and Gaussian MAC, however, not proven to be optimal.
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2.3.1.1 Treat Interference as Noise

Perhaps the simplest approach is for the receivers to treat the interference as additional Gaussian
noise, reducing the analysis to that of two separate AWGN channels. When the transmitters make
use of their full power (equality in (2.24)), the achievable region is rectangular and the achievable
rate pairs fulfill

R1 < log

(

1 +
|h11|2

|h12|2 + σ2

)

(2.25)

R2 < log

(

1 +
|h22|2

|h21|2 + σ2

)

. (2.26)

Intuitively, this is a good strategy when the magnitude of the cross channels is small compared to
the noise power, i. e., in a regime of “weak” interference.

The achievable region can be enlarged by allowing the transmitters to decrease their transmit
power, by setting E [|xk|2] = pk ≤ 1 for k ∈ {1, 2}. For a given pair (p1, p2), the achievable rate
pairs fulfill

R1 < log

(

1 +
|h11|2p1

|h12|2p2 + σ2

)

(2.27)

R2 < log

(

1 +
|h22|2p2

|h21|2p1 + σ2

)

. (2.28)

By varying p1 and p2 over the interval [0, 1] and taking the union of all such achievable regions, we
obtain the complete region achievable by treating the interference as noise.

We note that this achievable strategy is somewhat of a special case compared to all following
strategies, as the codebook of the interferer must not be known at the receivers. Consequently, it
can be of advantage to back off from equality in the power constraints, which is rather unusual in
information theoretic analysis.

We also note that (2.27)–(2.28) describe the region achievable by the linear strategies discussed
in the following chapters of this work when applied to the two-user single-antenna case with rate
utility.

2.3.1.2 Time- (or Frequency-) Division Multiple Access

For the time-division multiple access (TDMA) or frequency-division multiple access (FDMA)
region, we partition the transmit blocks into two time slots, or, equivalently, partition the spectrum
in the frequency domain into two bands. In each time slot (or frequency band), only one of the
transmitters is active. The first time slot, in which only the first transmitter transmits, occupies a
fraction of 0 ≤ λ ≤ 1 of the total time, the second slot occupies a fraction of 1 − λ of the total
time.

Since the power averaged over the whole block consisting of both time slots is constrained,
the instantaneous power used during the active time slot can be increased accordingly. Therefore,
we have an AWGN channel with a power constraint of 1/λ for the first, and 1/(1 − λ) for the
second time slot. The instantaneous rates must be normalized accordingly, in order to reflect the
information throughput normalized by the length of the whole block.
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For a fixed time-sharing parameter λ ∈ (0, 1), the region is rectangular, and is characterized by

R1 < λ log

(

1 +
|h11|2
λσ2

)

(2.29)

R2 < (1− λ) log

(

1 +
|h22|2

(1− λ)σ2

)

. (2.30)

The union over all λ ∈ (0, 1) is the achievable TDMA/FDMA region.

2.3.1.3 Fully Decode Interference

In contrast to treating the interference as noise, the receivers could decide to completely decode the
interference along with the desired signal. Then, from the viewpoint of each of the two receivers,
the channel is a Gaussian MAC. A rate pair is achievable with this scheme, if it is achievable in
both of the receivers’ MACs. Therefore, the achievable region is the intersection of the capacity
regions of the two MACs (cf. (2.10)–(2.12)), leading to the description

R1 < min

{

log

(

1 +
|h11|2
σ2

)

, log

(

1 +
|h21|2
σ2

)}

(2.31)

R2 < min

{

log

(

1 +
|h22|2
σ2

)

, log

(

1 +
|h12|2
σ2

)}

(2.32)

R1 +R2 < min

{

log

(

1 +
|h11|2 + |h12|2

σ2

)

, log

(

1 +
|h21|2 + |h22|2

σ2

)}

. (2.33)

This region is in general a pentagon, but can (in contrast to the MAC) also be rectangular, if
the right-hand side of (2.33) is larger than or equal to the sum of the right-hand sides of (2.31)
and (2.32).

Intuitively, this is a good strategy if the magnitude of the cross channels is high compared to
the magnitude of the direct channels, i. e., when interference is strong. Otherwise, ensuring that the
signal is fully decodable at the unintended receiver is an unnecessarily strict requirement.

In a highly asymmetric setting, a variation of this strategy might be advantageous, in which
one receiver decodes the interference and the other receiver treats interference as noise. When the
first receiver decodes, we obtain

R1 < log

(

1 +
|h11|2
σ2

)

(2.34)

R2 < min

{

log

(

1 +
|h22|2

|h21|2 + σ2

)

, log

(

1 +
|h12|2
σ2

)}

(2.35)

R1 +R2 < log

(

1 +
|h11|2 + |h12|2

σ2

)

. (2.36)

2.3.1.4 Han-Kobayashi Scheme

In 1981, Han and Kobayashi [10] proposed a very general strategy, which encompasses all of
the previously discussed schemes as extreme cases. First of all, a discrete time-sharing random
variable q is introduced, which switches between different modes of transmission, similar to the
two time slots in the TDMA scheme. Furthermore, the information conveyed by the channel input
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xk is split into two parts: a private and a common message, represented by the random variables
xP,k and xC,k, the PDF of which depends on the transmission mode (or time slot) q. The private
message is meant to be treated as noise at the unintended receiver, the common message is meant to
be fully decoded at the unintended receiver. The channel input is generated by a mapping function
xk = fk(xP,k, xC,k, q) from the private and common messages. The mapping function also depends
on the transmission mode q.

For a given set of input distributions and mappings, and a fixed time-sharing parameter q,
the achievable region can be computed with some effort: from the viewpoint of each of the two
receivers, it is a three-user MAC with the own private and both common messages as inputs.
However, the complete Han-Kobayashi region is the union over

• all possible PDFs of xP,k and xC,k,

• all possible time-sharing schemes (i. e., probability mass functions of q),

• and all possible mapping functions fk(xP,k, xC,k, q) with k ∈ {1, 2} ensuring that the power
constraints are fulfilled,

and is therefore clearly not easily expressed.

A simplified subregion was also proposed in [10], in which the following additional constraints
are imposed:

• The mapping function is the summation of the common and private message, i. e., xk = xP,k +
xC,k,

• xP,k and xC,k (and consequently also xk) have a complex Gaussian PDF,

• E [|xP,k|2] = αk and E [|xC,k|2] = 1− αk,

• and q is deterministic, i. e., no time-sharing between different transmission modes is employed.

For fixed α1 and α2 from the interval [0, 1], we can now express the boundaries of the achiev-
able region. Viewing the whole region as the intersection of the two Gaussian three-user MAC
regions seen by the first and second receiver, we obtain seven conditions on RC,1, RP,1, and RC,2,
and another seven conditions on RC,1, RC,2, and RP,2 by applying (2.15)–(2.21). By means of
Fourier-Motzkin eliminitation (e. g., [11, Section 12.2]), these conditions can be restated as a set
of conditions on R1 = RC,1 + RP,1 and R2 = RC,2 + RP,2. The resulting region is a polyhedron
confined by conditions on R1, R2, R1 +R2, 2R1 +R2, and R1 + 2R2, defined as follows:

R1 < C3 (2.37)

R1 < C1 + C7 (2.38)

R2 < C8 (2.39)

R2 < C2 + C6 (2.40)

R1 +R2 < C1 + C10 (2.41)

R1 +R2 < C4 + C9 (2.42)

R1 +R2 < C5 + C6 (2.43)

2R1 +R2 < C1 + C5 + C9 (2.44)

R1 + 2R2 < C4 + C6 + C10 (2.45)
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where the following abbreviations were used:

C1 = log

(

1 +
|h11|2α1

|h12|2α2 + σ2

)

(2.46)

C2 = log

(

1 +
|h12|2(1− α2)

|h12|2α2 + σ2

)

(2.47)

C3 = log

(

1 +
|h11|2

|h12|2α2 + σ2

)

(2.48)

C4 = log

(

1 +
|h11|2α1 + |h12|2(1− α2)

|h12|2α2 + σ2

)

(2.49)

C5 = log

(

1 +
|h11|2 + |h12|2(1− α2)

|h12|2α2 + σ2

)

(2.50)

C6 = log

(

1 +
|h22|2α2

|h21|2α1 + σ2

)

(2.51)

C7 = log

(

1 +
|h21|2(1− α1)

|h21|2α1 + σ2

)

(2.52)

C8 = log

(

1 +
|h22|2

|h21|2α1 + σ2

)

(2.53)

C9 = log

(

1 +
|h22|2α2 + |h21|2(1− α1)

|h21|2α1 + σ2

)

(2.54)

C10 = log

(

1 +
|h22|2 + |h21|2(1− α1)

|h21|2α1 + σ2

)

. (2.55)

The union over these polyhedra for all possible values of α1 and α2, finally, is the simplified Han-

Kobayashi region.

The strategy of treating interference as noise is equivalent to giving all of the power to the
private message, i. e., setting α1 = α2 = 1; when the interference is meant to be fully decoded,
the full power is given to the common message, i. e., α1 = α2 = 0. The TDMA scheme, on the
other hand, is not necessarily contained in the simplified Han-Kobayashi region, since it requires
a time-sharing random variable q with two states, the first one with probability λ, and the second
one with probability 1− λ.

2.3.1.5 Sason’s Scheme

Another simplified subregion of the complete Han-Kobayashi region was introduced by Sason
in [12]. Here, time-sharing is allowed between two modes, i. e., the random variable q has two
possible outcomes. However, in contrast to the pure TDMA strategy, in each time slot both trans-
mitters are active. Instead of splitting the information into a private and a common part and jointly
decoding the own private and both common messages at the receivers, a simple successive decod-
ing scheme is employed: in the first transmission mode, the first user is prioritized and transmits
at the highest possible rate; the second user must transmit at a rate that is low enough so that re-
ceiver one can decode the interference first and subtract it from the received signal. In the second
transmission mode, the second user is prioritized, and the first user transmits at a sufficiently low
rate.
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For this scheme there are three free parameters that can be chosen from the interval [0, 1]: a
time-sharing coefficient λ, and two power splitting coefficients β1 and β2. The first transmission
mode occupies a fraction λ of the total time. In the first mode, user k uses a fraction βk of its full
power. In the second mode, which occupies a fraction of 1− λ of the time, the users use 1− βk of
their power. If βk = λ, user k uses the same instantaneous power in both transmission modes.

The achievable region, which is rectangular for a given set of parameters, consequently can be
described by

R1 < λ log

(

1 +
|h11|2β1

λσ2

)

+ (1− λ) ·min
{

log
(

1 + |h11|2(1−β1)
|h12|2(1−β2)+(1−λ)σ2

)

, log
(

1 + |h21|2(1−β1)
|h22|2(1−β2)+(1−λ)σ2

)}

(2.56)

R2 < (1− λ) log

(

1 +
|h22|2(1− β2)

(1− λ)σ2

)

+ λ ·min
{

log
(

1 + |h22|2β2

|h21|2β1+λσ2

)

, log
(

1 + |h12|2β2

|h11|2β1+λσ2

)}

.

(2.57)

Again, the complete achievable region with Sason’s strategy is the union of these rectangles for
all possible parameters λ, β1, and β2. It is contained in the complete Han-Kobayashi region, as it
results from a number of simplifications that can only reduce the achievable region: the random
variable q has only two outcomes; for the kth outcome, user k’s power is given fully to the private
message and the other user’s power is given fully to the common message; and the receivers can
only perform successive decoding. It is not necessarily contained in the simplified Han-Kobayashi
region, however, since time-sharing is allowed.

The TDMA region is fully contained in Sason’s achievable region, as it follows from setting
β1 = 1 and β2 = 0 and varying λ. A similar case to the previously discussed scheme where one
receiver decodes the interference and the other one treats it as noise is also contained by setting
λ = β1 = β2 = 1; with the difference, however, that here only successive decoding is allowed.

2.3.1.6 Chong-Motani-Garg Region

For the Han-Kobayashi strategy it is required that the common message of the interfering trans-
mitter is decodable with vanishing error probability, even though the contained information is
subsequently discarded by the receiver. In [13], Chong, Motani, and Garg showed that by dropping
this condition, the region achievable by any given Han-Kobayashi strategy with fixed input distri-
butions and mapping functions can be slightly enlarged, while still being contained in the complete
Han-Kobayashi region. Specifically, when the simplified Han-Kobayashi strategy is employed with
fixed parameters α1 and α2, the conditions (2.38) and (2.40) on R1 and R2 can be dropped; the
conditions on R1 +R2, 2R1 +R2, and R1 + 2R2, on the other hand, remain the same, as does the
result of taking the union over all α1 and α2.

2.3.2 Outer Bounds and Optimality Results

The best known achievable region for the Gaussian interference channel is the complete Han-
Kobayashi region. So far no outer bound has been found that in general coincides with the boundary
of the complete Han-Kobayashi region. As we will discuss in the following, however, for the case
of strong interference, a fairly simple outer bound does coincide with a simple achievable scheme;
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for other cases, some more complex outer bounds can be formulated, that at least come close to
certain achievable schemes.

First of all, we can state the simple rectangular outer bound that follows from assuming that no
interference is present:

R1 < log

(

1 +
|h11|2
σ2

)

(2.58)

R2 < log

(

1 +
|h22|2
σ2

)

. (2.59)

Note that the corner points of this bound where one of the two rates is zero are always achievable
by disabling one user.

2.3.2.1 Strong and Very Strong Interference

If |h21|2 ≥ |h11|2 and |h12|2 ≥ |h22|2, the interference is said to be strong and the strategy of fully
decoding the interference achieves all rate pairs in the interior of the capacity region. This was
proven independently in [10] and [14].

The outer bound argument is fairly intuitive: first, we set h21 = 0, which cannot reduce the
capacity region since it only makes it easier for the second receiver to decode its message. Now,
let us assume that we have an achievable rate pair of this new “one-sided” interference channel.
By definition, the first receiver can decode its message with vanishing error probability, and can
therefore also subtract it from the received signal, leaving only h12x2 + n1. Also by definition, the
second receiver can decode its message from h22x2 + n2. Since |h12| ≥ |h22|, receiver one must
therefore also be able to fully decode the interference, i. e., any rate pair that is achievable in the
one-sided interference channel, must be within the capacity region of the MAC seen by receiver
one.

From (2.12), we thus obtain the upper sum rate bound R1 + R2 < log
(

1 + |h11|2+|h12|2
σ2

)

. In

the same way, by setting h12 = 0, we can show that R1 + R2 < log
(

1 + |h22|2+|h21|2
σ2

)

. Therefore,

(2.33) coincides with our outer bound. Also, the outer bounds (2.58) and (2.59) coincide with
(2.31) and (2.32).

We can furthermore define the special case of very strong interference, in which the capac-
ity region becomes rectangular. This is the case when the sum of the right-hand sides of (2.58)
and (2.59) is less than or equal to the right-hand side of (2.33). The conditions for very strong
interference can thus be shown to be

|h12|2
|h22|2

≥ 1 +
|h11|2
σ2

(2.60)

|h21|2
|h11|2

≥ 1 +
|h22|2
σ2

. (2.61)

In this regime, the capacity region notably is the same as if no interference was present at all, i. e.,
as if h12 = h21 = 0.

2.3.2.2 Sato Bound

In 1977, Sato [15] presented an outer bound on the sum rate R1+R2 that is applicable regardless of
the magnitude of the channel parameters. The outer bound is based on the observation that allowing
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the receivers to cooperate in decoding the messages cannot reduce the capacity region. The capacity
region with cooperative receivers depends on the correlation between the noise variables n1 and
n2, whereas in the original interference channel the noise correlation clearly has no effect on the
achievable rates. Therefore, even with the worst possible noise correlation coefficient, the capacity
region with cooperative receivers must still be larger than that of the interference channel. The Sato
bound is simply the sum rate that can be achieved in a system with cooperative receivers and the
worst possible noise correlation.

With cooperative receivers, the scenario is a MAC with a vector-valued output random variable.
The capacity region arguments are very similar to those for the scalar MAC, the expressions for the
mutual information, however, are a bit different. For a given noise correlation, the sum rate must
satisfy (cf. [5, Chapter 9])

R1 +R2 < log det
(

I+HHR−1H
)

(2.62)

where

H =

[

h11 h12

h21 h22

]

and R = σ2 ·
[

1 r
r∗ 1

]

(2.63)

and r = 1
σ2 · E [n1n

∗
2] is the noise correlation coefficient. Note that |r| ≤ 1, and that |r| = 1 yields

infinite achievable sum rate (with the exception of a special case in which H is rank deficient,
which we will ignore here). The worst possible noise correlation coefficient is defined by

r̄ = argmin
r

log det
(

I+HHR−1H
)

s. t.: |r| ≤ 1. (2.64)

The solution to this optimization problem is

r̄ =
d1 −

√

d21 − 4|d2|2
2d∗2

(2.65)

with

d1 = tr
(

HHHσ−2
)

+ det
(

HHHσ−2
)

and (2.66)

d2 = (h11h
∗
21 + h12h

∗
22)σ

−2, (2.67)

resulting in the outer bound

R1 +R2 < log

(

1 +
2|d2|2

d1 −
√

d21 − 4|d2|2

)

. (2.68)

The derivation of the expression (2.65) for r̄ can be found in Appendix A1. Note that the Sato
bound, in contrast to the other bounds in this section, depends on the complex phase of the channel
coefficients in addition to their absolute value.

2.3.2.3 Carleial’s Bound

The idea of another historically relevant outer bound, published by Carleial in 1983 [16], is to
increase the magnitudes of the channel gains in a way that cannot reduce the capacity region until
they fulfill the conditions for strong interference.



30 2. The Interference Channel in Information Theory

Let us assume, e. g., that 0 < |h21|2 < |h11|2, i. e., the first transmitter’s interference is “weak”
in the sense that it does not fulfill the condition for strong interference. Now, we replace h22 by
|h11|
|h21|h22 and h21 by |h11|

|h21|h21. We have thus increased h22 and h21 by a common factor while leaving
the noise and transmit power constraint the same. This can clearly only be an improvement, as it is
equivalent to decreasing the noise power at the second receiver.

Now, the channel coefficient from transmitter one to receiver two has the same magnitude as
h11 and we can give an outer bound on the sum rate with the same argument as in the strong
interference case; an achievable rate pair cannot be outside of the region of the MAC seen by
receiver two:

R1 +R2 < log



1 +

|h11|2
|h21|2 |h22|2 + |h11|2

σ2



 . (2.69)

Similarly, if 0 < |h12|2 < |h22|2, we can also state the above with exchanged indices 1 and 2.

2.3.2.4 “One Bit” Bound

Recently, a new outer bound was formulated by Etkin, Tse, and Wang [17], which was remarkably
proven to be no further than one bit (or a factor of two inside the logarithm) away from a certain
achievable strategy, and therefore at most one bit from the true capacity region. The “one bit” bound
is a “genie-aided” outer bound, i. e., it is based on providing the receivers with side information
that they do not have in the actual channel model, but which yields manageable expressions for
the capacity region. The derivation of the bound is rather lengthy; we therefore only give the result
here and refer the reader to [17] for the proof, which relies on Fano’s inequality [5] in a similar
way as the converse of the channel coding theorem (AWGN).

For the “one bit” bound, we distinguish between two cases: weak interference and mixed inter-
ference. The interference is considered weak if |h21|2 < |h11|2 and |h12|2 < |h22|2. The resulting
bound consists of the following expressions:

R1 +R2 < log

(

1 +
|h11|2
σ2

)

+ log

(

1 +
|h22|2

|h21|2 + σ2

)

(2.70)

R1 +R2 < log

(

1 +
|h22|2
σ2

)

+ log

(

1 +
|h11|2

|h12|2 + σ2

)

(2.71)

R1 +R2 < log

(

1 +
|h12|2
σ2

+
|h11|2

|h21|2 + σ2

)

+ log

(

1 +
|h21|2
σ2

+
|h22|2

|h12|2 + σ2

)

(2.72)

2R1 +R2 < log

(

1 +
|h11|2 + |h12|2

σ2

)

+ log

(

1 +
|h21|2
σ2

+
|h22|2

|h12|2 + σ2

)

+ log

( |h11|2 + σ2

|h21|2 + σ2

) (2.73)

R1 + 2R2 < log

(

1 +
|h22|2 + |h21|2

σ2

)

+ log

(

1 +
|h12|2
σ2

+
|h11|2

|h21|2 + σ2

)

+ log

( |h22|2 + σ2

|h12|2 + σ2

)

.

(2.74)

The interference is considered mixed, if either |h12|2 ≥ |h22|2 or |h21|2 ≥ |h11|2. Here, we give
the expressions for |h21|2 < |h11|2 and |h12|2 ≥ |h22|2; the description of the outer bound for the
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other mixed interference case can be determined by exchanging the indices 1 and 2.

R1 +R2 < log

(

1 +
|h11|2
σ2

)

+ log

(

1 +
|h22|2

|h21|2 + σ2

)

(2.75)

R1 +R2 < log

(

1 +
|h11|2 + |h12|2

σ2

)

(2.76)

R1 + 2R2 < log

(

1 +
|h22|2 + |h21|2

σ2

)

+ log

(

1 +
|h12|2
σ2

+
|h11|2

|h21|2 + σ2

)

+ log

(

1 +
|h22|2

|h12|2 + σ2

)

.

(2.77)

To show that the distance to the capacity region is at most one bit, the authors compare the
outer bound with the achievable region obtained by using the Chong-Motani-Garg strategy with
the following specific choice of power splitting parameters:

α1 = min

{

σ2

|h21|2
, 1

}

and α2 = min

{

σ2

|h12|2
, 1

}

. (2.78)

The intuition behind this choice is that the private message should be at most as strong as the noise
at the unintended receiver, in order to not be easily decodable; if the private message was easily
decodable at the unintended receiver, redistributing the power in favor of the common message
would be of advantage, as this would facilitate joint decoding at the unintended receiver.

The Chong-Motani-Garg region for one specific choice of α1 and α2 is defined by bounds on
R1, R2, R1+R2, 2R1+R2, and R1+2R2, similar to the above outer bound. With this description
of the achievable region and the outer bound, it can be shown that for any pair (R1, R2) on the
boundary of the Chong-Motani-Garg region, the pair (R1 + log 2, R2 + log 2) is on or outside the
above outer bound. Since the capacity region clearly increases in size with decreasing noise power
σ2, the one bit gap becomes less significant and this bound gives us an asymptotically accurate
description of the capacity region for the case of vanishing noise power.

2.3.2.5 Recent Bounds by Kramer et Al. and Sum-Rate Optimality at Noisy Interference

In [18] and [19], a different set of outer bounds on the capacity region was proposed, which even
are tighter than the “one bit” bound in some cases, but have not been proven to be within a fixed
distance of the capacity region. The bounds are defined by rather complex expressions and are
therefore omitted here.

A notable consequence from the bounds in [19] is that in a noisy interference regime, charac-
terized by the condition

|h12|
|h11|

|h21|2 +
|h21|
|h22|

|h12|2 ≤ σ2

(

1− |h12|
|h11|

− |h21|
|h22|

)

, (2.79)

treating interference as noise and employing Gaussian codebooks is sum-rate optimal, i. e., in this
case R1 +R2 cannot be higher than the sum of the right-hand sides of (2.25) and (2.26).

2.3.2.6 Recent Bounds by Khandani et Al. and Sum-Rate Optimality at Mixed Interference

In [20], new bounds for the weak and mixed interference cases are derived that further tighten the
“one bit” bound. In the same work, it is also shown that the scheme of fully decoding one user’s
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Figure 2.3: The capacity region and some suboptimal achievable schemes for a scenario with very strong
interference. The squared channel magnitudes are |h11|2 = |h22|2 = 1 and |h12|2 = |h21|2 = 4, the noise
power is σ2 = 1. The strategy of fully decoding the interference achieves the capacity region (which is also
identical to the Han-Kobayashi region).

interference and treating the other user’s interference as noise while applying Gaussian codebooks
is sum-rate optimal in the mixed interference case. If, e. g., |h12|2 ≥ |h22|2 and |h21|2 < |h11|2,
the strategy described at the end of Section 2.3.1.3 and resulting in the achievable region defined
by (2.34)–(2.36) is optimal in terms of R1 + R2. The maximum sum rate in this case can be
equivalently stated as:

R1+R2 < log

(

1 +
|h11|2
σ2

)

+min

{

log

(

1 +
|h12|2

|h11|2 + σ2

)

, log

(

1 +
|h22|2

|h21|2 + σ2

)}

. (2.80)

2.3.3 Numerical Examples for Bounds on the Capacity Region

In this section we will present some numerical examples for the previously discussed inner and
outer bounds in order to provide an impression of the wide range of possibilities for the qualitative
behavior of the shape of the capacity region and its bounds.

The scenario in Figure 2.3 is a Gaussian interference channel with symmetric coefficients ful-
filling the conditions for very strong interference (2.60) and (2.61). The capacity region is known
to be rectangular and the same as if no interference was present at all. It can be achieved by fully
decoding the interference first and then subtracting it from the received signal, which is also a
special Han-Kobayashi strategy. Treating interference as noise, on the other hand, only achieves
a small part of the capacity region, while the orthogonalization via TDMA or FDMA performs
better, but also does not come close to achieving the optimal sum rate. The gain from allowing the
extra degrees of freedom afforded by Sason’s scheme turns out to be quite small.
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Figure 2.4: The capacity region and some suboptimal achievable schemes for a scenario with strong inter-
ference. The squared channel magnitudes are |h11|2 = |h22|2 = |h21|2 = 1 and |h12|2 = 2.25, the noise
power is σ2 = 0.4.

An asymmetric interference channel which has strong, but not very strong, interference is
shown in Figure 2.4. The capacity region is pentagonal and can again be achieved by fully decod-
ing the interference and therefore also by a specific simple Han-Kobayashi strategy. Here, though,
TDMA also achieves the optimal sum rate, and Sason’s scheme only misses a small section of the
capacity region. Again, treating interference as noise is clearly suboptimal.

When the condition for noisy interference (2.79) is fulfilled, the capacity region is not known,
but it is known that treating interference as noise is sum-rate optimal. As can be seen in Figure 2.5,
the schemes not attempting to decode any of the interference (which are also contained in the
simplified Han-Kobayashi region), come reasonably close to the best outer bound, while forcing
the interference to be decodable results in a significant loss.

The scenarios in Figures 2.6, 2.7, and 2.8 fulfill neither the strong nor the noisy interference
conditions, so that the boundary of the true capacity region may be anywhere between the tight-
est outer bound and the best achievable strategy. In Figure 2.6, the specific Chong-Motani-Garg
achievable region, for which the one bit gap to the outer bound of [17] is proven, is also shown.
It can furthermore be seen from the figures that the Sato bound can, but must not, outperform
Carleial’s bound (Figure 2.7 vs. Figures 2.6 and 2.8), that TDMA can be an improvement over the
simplified Han-Kobayashi region (Figure 2.7), and that having one receiver decode its interference
while the other one treats it as noise is sum-rate optimal in a scenario with mixed interference
(Figure 2.8).
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Figure 2.5: Some outer bounds and achievable schemes for a scenario with noisy interference. The channel
coefficients are h11 = h22 = 1, h12 = 0.4, and h21 = 0.3, the noise power is σ2 = 1. Treating interference
as noise is sum-rate optimal in this case. Carleial’s bound does not yield an improvement over the zero-
interference outer bound.
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Figure 2.6: Some outer bounds and achievable schemes for a scenario with weak interference. The channel
coefficients are h11 = 10, h22 = 1, h12 = 0.6, and h21 = 0.5, the noise power is σ2 = 0.1. The Chong-
Motani-Garg strategy is used with the fixed power splitting of (2.78).
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Figure 2.7: Another scenario with weak interference, in which TDMA yields a larger region than the sim-
plified Han-Kobayashi scheme. The channel coefficients are h11 = h22 = 1 and h12 = h21 = 0.7, the noise
power is σ2 = 0.4.
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Figure 2.8: A scenario with mixed interference, in which it is sum-rate optimal to fully decode the first
transmitter’s signal at both receivers, while treating the interference caused by the second transmitter as
noise. The channel coefficients are h11 = h22 = 1, h12 = 0.3 and h21 = 1.3, the noise power is σ2 = 0.3.
Carleial’s bound coincides with the “one bit” bound in this case.
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2.3.4 The Symmetric Interference Channel

We define the symmetric Gaussian interference channel as a Gaussian interference channel with
|h11|2 = |h22|2 and |h12|2 = |h21|2. Examining the symmetric case allows us to more concisely in-
vestigate the effect of the “strength” of the interference, while disregarding the many complexities
that arise, for example, in the mixed interference cases.

By simplifying (2.79) we observe that the symmetric interference channel is in the regime of
noisy interference if

σ2 ≥ |h12|2
|h11|
2|h12| − 1

. (2.81)

This can clearly only be fulfilled if |h11|/|h12| > 2. Interference is strong, on the other hand, if
|h11|2 ≤ |h12|2 and very strong if, additionally,

σ2 ≥ |h11|2
|h12|2
|h11|2 − 1

(2.82)

as can be seen from (2.60) and (2.61).
We now examine the question of how the capacity region, and, more specifically, the achievable

sum rate, behaves over the interference strength |h12|2. For zero interference, i. e., h12 = 0, the
capacity region is square and the achievable sum rate is given by

R1 +R2 < 2 log

(

1 +
|h11|2
σ2

)

. (2.83)

When |h12|2 ≥ |h11|2 (1 + |h11|2/σ2), so that (2.82) is fulfilled, the capacity region is identical
to the zero-interference case. For values of |h12|2 inbetween, however, the achievable sum rate is
lower, and can in general only be bounded from above and below.

Figures 2.9 and 2.10 show the influence of varying the interference power |h12|2 on the achiev-
able sum rate of a symmetric Gaussian interference channel, for fixed noise powers σ2 = 0.1 and
σ2 = 10−4, respectively. Clearly, forcing the interference to be decodable is of great disadvantage
in the noisy interference regime, while treating the interference as noise is strongly suboptimal for
channels with strong or very strong interference. Allowing for the transmitters to not use the full
power at least permits the case of only one user being active, which achieves half the sum rate
at very strong interference. Furthermore, orthogonalizing the users with TDMA outperforms the
simplified Han-Kobayashi scheme in some parts of the weak interference regime. It should finally
be noted that the “one bit” bound can be up to two bits away from the best achievable scheme in
terms of sum rate, as the one bit gap applies to each user’s rate.

Interestingly, Figure 2.10 shows that the achievable sum rate at low noise power exhibits two
minima and an intermediate peak in the regime of weak interference. This effect will be examined
more closely in the following asymptotic analysis.

2.3.5 Asymptotic Results

As is the case with many other Gaussian channel scenarios in information theory, the interference
channel lends itself to analysis of the case of asymptotically high signal-to-noise ratio (SNR),
which we define here as σ−2 → ∞.
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Figure 2.9: Upper and lower bounds on the sum capacity of a symmetric Gaussian interference channel with
direct channel coefficients h11 = h22 = 1 and variable cross channel coefficients h12 = h21. The noise
power is σ2 = 0.1. The three dashed vertical lines mark the boundaries of the noisy, strong, and very strong
interference regimes, respectively.
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Figure 2.10: Upper and lower bounds on the sum capacity of the symmetric Gaussian interference channel
as in Figure 2.9, but with noise power σ2 = 10−4.
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First, we note that all expressions for capacity and lower or upper bounds on achievable rates
encountered in this chapter are O (log σ−2) as σ−2 → ∞, i. e., they grow logarithmically with the
SNR. As a simple example, the capacity of the AWGN channel (2.7) approximately becomes

C ≈ log σ−2 + log|h|2 (2.84)

when σ−2 becomes so large that the addition of one inside the logarithm can be neglected. For
the MAC, we see that all three expressions (2.10)–(2.12) tend towards log σ−2 + ci with some
constants ci that only depend on h1 and h2. When log σ−2 is much larger than all of the constants
ci, the MAC region is approximately triangular and is constrained for the most part by the bound
on the sum rate (2.12).

In general, we define the sum capacity Csum in any two-user system as the supremum of R1+R2

over all achievable rates and the degrees of freedom (DoF) D as the growth rate of the sum capacity
over log σ−2:

D = lim
σ−2→∞

Csum

log σ−2
. (2.85)

Both the AWGN channel and the Gaussian MAC therefore have one DoF. For a scenario with
two parallel AWGN channels, which also can be viewed as a degenerate case of the interference
channel with h12 = h21 = 0, we have two DoF, as Csum is the sum of the right-hand sides of the
expressions (2.58) and (2.59). The DoF can therefore also be interpreted as an equivalent number
of parallel AWGN channels at high SNR.

For the DoF-analysis of non-degenerate interference channels, let us begin with the case of
strong interference. The sum capacity in this case is given by the right-hand side of (2.33), and it
is clear from (2.85) that D = 1. For interference channels with mixed or weak interference, we
must again formulate lower and upper bounds on the DoF. If we use, e. g., Carleial’s bound as an
upper bound and the scheme of fully decoding interference as a lower bound, we see that again the
limit is one in both cases. We therefore can state that the Gaussian two-user interference channel
has one DoF.

The DoF can be illustrated as the asymptotic slope of the sum capacity when plotted over
log σ−2. In Figure 2.11, we see that, even though the sum capacity is unknown as we are in a
regime of weak interference, the upper and many of the lower bounds achieve the same slope, so
that it is clear that the channel has one DoF.

The DoF do not capture the effects of noisy and very strong interference, though, as these
regimes require σ−2 to be below a finite threshold, cf. (2.79) and (2.60). Therefore, the authors
of [17] introduced the concept of generalized degrees of freedom (GDoF) for the symmetric case.
The key idea of the GDoF analysis is to simultaneously examine the asymptotics of the sum capac-
ity with respect to the SNR and the interference-to-noise ratio (INR). This is achieved by defining
an exponential relationship between the SNR and the INR as σ−2 → ∞, parametrized by the
exponent α:

|h12|2
σ2

=

( |h11|2
σ2

)α

⇔ |h12|2 =
(

|h11|2
)α (

σ−2
)α−1

. (2.86)

Thus, for 0 ≤ α < 1 the cross channel magnitudes are decreased with decreasing noise power,
for α = 1 they remain constant (essentially simplifying the GDoF to the conventional DoF), and
for α > 1 are increased as the noise power decreases. By inserting (2.86) in (2.81) and (2.82), it
can be seen that the noisy interference condition is asymptotically fulfilled for α ≤ 1

3
and the very

strong interference condition is asymptotically fulfilled for α ≥ 2.
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Figure 2.11: Upper and lower bounds on the sum capacity of a Gaussian interference channel with h11 =
h22 = 1 and h12 = h21 = 0.4 for varying noise power σ2.

Similar to the DoF, the GDoF are defined as the growth rate of the sum capacity over log σ−2,
but here the channel gains, and therefore the sum capacity, depend on the parameter α via (2.86):

DG(α) = lim
σ−2→∞

Csum(α)

log σ−2
. (2.87)

Again, using the known lower and upper bounds, the GDoF can be evaluated in a straightforward
way, and the resulting expression is (cf. [17])

DG(α) =































2− 2α 0 ≤ α < 1
2

2α 1
2
≤ α < 2

3

2− α 2
3
≤ α < 1

α 1 ≤ α < 2

2 α ≥ 2.

(2.88)

A plot of the GDoF DG(α) is shown in Figure 2.12. A comparison with the sum rate bounds
at high, but finite, SNR in Figure 2.10 shows that the GDoF capture the qualitative behavior of
varying the cross channel magnitudes in symmetric interference channels very well. In particular,
the GDoF analysis shows that within the regime of weak interference, i. e., α < 1, an increase in
interference power can be either beneficial, when 1

2
≤ α ≤ 2

3
, or detrimental, when α < 1

2
or

α > 2
3
. An intuition for this effect can perhaps be gained by means of the Han-Kobayashi strategy:

increasing interference power on the one hand means that the common messages can be decoded
more easily and thus can carry more useful information, on the other hand it means that the power
of the private messages must be decreased, so that they do not create additional non-decodable
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Figure 2.12: Generalized degrees of freedom of the two-user Gaussian interference channel over the inter-
ference exponent α. The three dashed vertical lines mark the boundaries of the noisy, strong, and very strong
interference regimes, respectively.

noise at the unintended receivers. Which of these two effects is dominant, depends on which part
of the weak interference regime we are examining.

We finally note that both DoF and GDoF can be defined on the individual users’ rates instead
of the sum capacity, leading to the notion of DoF or GDoF regions as the asymptotic shape of the
capacity region. Furthermore, it is possible to extend the GDoF to cover general non-symmetric
settings. This, however, requires three parameters, instead of the single parameter α, defining ex-
ponential relationships between the SNRs and INRs at both receivers, cf. [17].

2.4 The K-User Interference Channel

The Gaussian K-user interference channel is the extension of (2.22)–(2.24) to an arbitrary number
of transmitter-receiver pairs K. It is characterized by the equations

y1 =
K
∑

k=1

h1kxk + n1 (2.89)

y2 =

K
∑

k=1

h2kxk + n2 (2.90)

...

yK =
K
∑

k=1

hKkxk + nK (2.91)

and the power constraints

E
[

|x1|2
]

≤ 1, E
[

|x2|2
]

≤ 1, . . . E
[

|xK |2
]

≤ 1. (2.92)
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The noise variables n1, n2, . . . , nK are complex Gaussian and have variance σ2. The coefficient
hkj ∈ C describes the complex channel gain between transmitter j and receiver k. Again, receiver k
must decode the message conveyed by xk from the observation yk with vanishing error probability.
The codebooks of all interfering signals xj with j 6= k are known to receiver k.

It turns out that the capacity region of the K-user interference channel cannot be sufficiently
analyzed by generalizing the achievable schemes and bounding techniques used in the two-user
case. In particular, extending the idea of the Han-Kobayashi strategy to more than two users does
not yield a close-to-optimal achievable region. While it is possible to formulate conditions for a
very strong interference regime, in which the capacity region is identical to that of K parallel
AWGN channels with gains h11, h22, . . . , hKK [21], the general capacity region remains elusive.
Significant research, however, has recently been devoted to characterizing the DoF of the K-user
interference channel.

The main result is that, for almost all sets of channel coefficients hkj , the number of DoF
is K

2
[22, 23]. This result is remarkable for several reasons. First of all, it implies that adding users

to the channel does not decrease the DoF per user, which is somewhat counter-intuitive. Every user
always gets one half DoF (or “half the cake” [22]). Also, it shows that orthogonalizing the users
via, e. g., TDMA, is not optimal. For both the MAC and the two-user interference channel (as well
as many other Gaussian channel scenarios not discussed here, e. g., the multiple-input multiple-
output (MIMO) broadcast channel), orthogonalization always is capable of achieving the optimal
DoF. In the K-user interference channel, TDMA would yield one DoF, which is strictly less than
K
2

for K ≥ 3.
Furthermore, the achievability techniques leading to this result show that, contrary to previ-

ously discussed scenarios, random Gaussian codebooks are not DoF-optimal for K ≥ 3. Instead,
the notion of interference alignment is crucial. The transmit strategies and codebooks must be de-
signed in a way that all interfering signals somehow occupy overlapping subspaces at each of the
receivers. Possible techniques for creating such subspaces in which the interference can be aligned
include lattice codes [21, 24], assuming non-causally known time-variations in the channel co-
efficients [22], or “real interference alignment” based on the properties of rational and irrational
numbers [25, 23].

For the special case of the symmetric K-user IC, in which all direct channel coefficients are
identical, i. e., h11 = h22 = . . . = hKK , and all cross channels hkj with k 6= j are identical,
the GDoF have also been analyzed [26]. Here, the relationship between the direct and the cross
channel gains is defined as

h12 = hα
11σ

1−α (2.93)

since the complex phase is significant, as opposed to the two-user case, cf. (2.86). The resulting
expression for the GDoF is simply K

2
· DG(α), i. e., the GDoF from the two-user case, cf. (2.88),

multiplied with K/2, with the exception of a singularity at α = 1, where the GDoF of the K-user
interference channel are one.

2.5 Results for Multi-Antenna Scenarios

In this section we examine Gaussian interference channels with vectors as channel input and output
variables, corresponding to systems in which the transmitters and receivers have multiple antennas.
Each entry of the input and output vectors is the symbol transmitted or received at one of the an-
tennas. The power constraints are usually formulated as an upper limit on the sum of the powers of
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the symbols transmitted at all antennas of one transmitter. The noise is assumed to be independent
at all receive antennas with the same variance, which is not a loss of generality, as arbitrary noise
covariance matrices can be covered by defining equivalent “whitened” channels, cf. Chapter 5.

2.5.1 Two Users

The two-user Gaussian multiple-input multiple-output (MIMO) interference channel with Nk an-
tennas at transmitter k and Mk antennas at receiver k has input vectors xk ∈ CNk and output
vectors yk ∈ CMk , and is defined by the equations

y1 = H11x1 +H12x2 + n1 (2.94)

y2 = H22x2 +H21x1 + n2 (2.95)

and the power constraints

E
[

‖xk‖22
]

= tr
(

E
[

xkx
H
k

])

= tr(Qk) ≤ 1, ∀k ∈ {1, 2} (2.96)

where Q1 ∈ CN1×N1 and Q2 ∈ CN2×N2 are the input correlation matrices (or covariance matrices,
assuming zero-mean input vectors). The channel matrices Hkj ∈ CMk×Nj contain the complex
channel gains between all Nj antennas of transmitter j and all Mk antennas at receiver k. The
noise vectors nk ∈ CMk are assumed to be zero-mean complex Gaussian with the covariance
matrices

E
[

n1n
H
1

]

= E
[

n2n
H
2

]

= σ2
I. (2.97)

Many of the results from the scalar two-user interference channel can be generalized to the
MIMO case with some effort. An achievable strategy based on the Han-Kobayashi scheme was
presented in [27]. In [28], the “one bit” bound was formulated for a more general class of interfer-
ence channels, which includes the multi-antenna case. The gap between the outer bound and the
Han-Kobayashi region is shown to be one bit per receive antenna, i. e., for every rate pair (R1, R2)
on the bound, the rate pair (R1 − M1 log 2, R2 − M2 log 2) is proven to be achievable by a Han-
Kobayashi strategy. Conditions for a strong interference regime where it is optimal to completely
decode the interference are given in [29] for the case of either N1 = N2 = 1 or M1 = M2 = 1.
Conditions for noisy, mixed, strong, and very strong interference regimes for general antenna con-
figurations were proposed in [30, 31]. The resulting expressions for the sum capacity and capacity
regions of the MIMO interference channel are not easily given in closed form, however, but mostly
involve an optimization over all possible input covariance matrices Q1 and Q2.

The DoF of the two-user MIMO interference channel were analyzed in [32]. If all four channel
matrices have full rank, the number of DoF is

min{M1 +M2, N1 +N2,max{M1, N2},max{M2, N1}} (2.98)

and can be achieved by a scheme of transforming the channel into a number of parallel non-
interfering scalar AWGN channels by means of linear pre- and post-processing of the input and
output vectors, i. e., by spatial orthogonalization.

2.5.2 K > 2 Users

In the K-user Gaussian MIMO interference channel, the channel output of user k, for k ∈
{1, . . . , K}, is defined as

yk =

K
∑

j=1

Hkjxj + nk (2.99)
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where yk ∈ CMk , nk ∈ CMk , and xj ∈ CNj . The channel coefficients are contained in the matrices
Hkj ∈ CMk×Nj for (j, k) ∈ {1, . . . , K}2, the transmit power constraints and noise covariances for
all users are defined as in (2.96) and (2.97).

As for the K-user scalar interference channel, the capacity region and sum capacity of the
K-user MIMO interference channel remain largely elusive. Some results have been formulated,
however, concerning the DoF. In [33], it is shown when all transmitters have N antennas and
all receivers have M antennas, the following number of DoF is achievable for almost all sets of
channel matrices:

MN

M +N
K. (2.100)

Again, in order to achieve this number of DoF, random Gaussian codebooks are not sufficient
and interference alignment is necessary. Also, the number of DoF is upper-bounded by (2.100), if
additionally

K ≥ M +N

gcd{M,N} (2.101)

is fulfilled, where gcd{M,N} is the greatest common divisor of M and N . Consequently, if M =
N , the K-user MIMO interference channel almost always has exactly KN/2 DoF.

An interesting suboptimal technique for K-user MIMO interference channels is discussed
in [34], where the possibilities of spatial orthogonalization are explored. Specifically, the goal
is to design the transmit covariance matrices Qk in such a way that at every receiver k the sub-
space spanned by the possible outcomes of the desired component Hkkxk is linearly independent
of the subspace spanned by the possible outcomes of the interference component

∑

j 6=k Hkjxj .
Thus, desired signal and interference are orthogonalizable by a linear projection at the receiver,
and specialized coding schemes are not necessary.

This technique of “spatial interference alignment” achieves the optimal KN/2 DoF for K = 3
and even-numbered N , but for more than three users is generally suboptimal in terms of DoF. It
does, however, fall in the scope of the linear strategies discussed subsequently in this work and is
therefore treated in detail in Chapter 5.

2.6 Linear Strategies in the Context of Information Theoretic Limits

In this chapter we gave an overview over what is currently known about the theoretical throughput
limits of interference networks. Clearly, even in those cases where the limits are known, achieving
them in a practical system is very challenging. It was always assumed, for instance, that some
centralized entity is able to choose the best transmit strategy making use of perfect knowledge of
all channel coefficients, which might not be easily accomplished in a system in which the users
are only able to loosely cooperate. The transmit strategies (in particular the codebooks) of all
transmitters must in turn also be made available to all receivers, so that they are able to subtract the
decodable portions of the interference. This implies a considerable signaling overhead, especially
when the channel conditions vary quickly, as is usually the case in wireless environments. In the
following we investigate a particular class of strategies that is information theoretically suboptimal
in most cases, but which alleviates some of these practical issues and significantly simplifies the
process of channel coding and decoding.

These linear strategies are characterized by the following properties of the transmitters and re-
ceivers: the transmitted vectors xk are obtained by applying a linear transformation, i. e., a matrix
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multiplication, to a vector of data symbols sk ∈ Cdk , of which all entries are statistically inde-
pendent and have unit variance. The statistical independence of the elements of the data symbol
vector corresponds to dk data streams being channel coded separately. The receiver, on the other
hand, forms an estimate ŝk of the data symbol vector by applying a linear transformation (ma-
trix multiplication) to the received vector yk. The individual data streams are then decoded from
the elements of the vector ŝk separately, i. e., without knowledge of any of the codebooks of the
interfering signals or of the other streams from the desired transmitter.

For the single-antenna interference channel, in which the channel inputs and outputs are scalar,
the linear operation is simply the multiplication with a scalar. The linear receivers do not perform
any sort of successive or joint decoding of parts of the interfering signals. The only linear strategy
among the achievable schemes discussed in Section 2.3.1 is therefore that of treating interference
as noise with variable power, cf. Section 2.3.1.1. Here, the linear operation at transmitter k is the
multiplication of the unit-variance channel coded signal sk with

√
pk.

Even though the linear strategies do not achieve the full potential of general interference net-
works, their use is appealing for a number of reasons:
• The codebooks must not be known at the unintended receivers, thus greatly reducing the sig-

naling overhead.
• The receivers are not required to perform joint or successive decoding of multiple messages,

which can be computationally very demanding and/or add considerable decoding delay.
• Channel coding at the transmitters is straightforward, as the individual streams are encoded as

if they were intended for transmission over a scalar channel, in contrast to the DoF-optimal
alignment techniques, which require more complex coding schemes.

• The linear strategies achieve the optimal number of DoF for all two-user networks and for
three-user networks with an even number of antennas at each terminal.

• They are even sum-rate optimal in situations in which the interference is weak compared to the
desired signal (and the noise), which is not uncommon in practical systems. In cellular systems,
for instance, the receivers are generally associated with a transmitter in close proximity, while
the interferers are in neighboring cells, and therefore have lower channel gains.
Finally, we note that in the following we restrict ourselves to transmission strategies with a

single data stream per user, i. e., where sk is scalar. In the systems examined in Chapters 3 and 4,
where the receivers only have a single antenna, this is fully sufficient, but in the MIMO case
(cf. Chapter 5), this again is only a subset of all possible linear strategies, albeit one that already
provides many interesting challenges.
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The problem of finding the best linear strategy in single-input single-output (SISO) scenarios is
a power control problem. Extensive research has been devoted to characterizing and efficiently
achieving different kinds of optimality. A very detailed discussion can be found, e. g., in [35].

In this chapter we provide an overview of the results for the power control problem in SISO
interference networks, again without claiming completeness. The purpose is to introduce the con-
cepts of signal-to-interference-plus-noise ratio (SINR), utility functions, and different notions of
optimality as well as the difficulties in achieving optimality. Many of these concepts are easily ex-
tended to multi-antenna interference networks, which are the focus of this work, and understanding
the results for the SISO case is beneficial for the following chapters.

In the second part of this chapter, starting with Section 3.5, we discuss the aspect of distributed
or decentralized optimization and introduce the distributed interference pricing algorithm, as it
was proposed for the single-antenna case in [2]. A generalization of this algorithm will play an
important role in the multi-antenna systems in the following chapters.

3.1 System Model

The system setup is identical to that of the information theoretic Gaussian K-user SISO interfer-
ence channel discussed in Section 2.4: the K transmitter-receiver pairs (or users) are connected
with scalar complex channel gains which model the frequency flat wireless channel. The channel
coefficient between transmitter j and receiver k is hkj ∈ C and is assumed to remain constant
over time. We additionally assume that all channels between the transmitters and their intended
receivers are non-zero, i. e., hkk 6= 0 for all k ∈ {1, . . . , K}.

The symbol transmitted by user k at a given time instant is the realization of the random variable
xk. The additive noise at receiver k is the realization of the random variable nk. Thus, the received
symbol of user k is the random variable

yk = hkkxk +
K
∑

j=1
j 6=k

hkjxj + nk ∀k ∈ {1, . . . , K} (3.1)

where the first summand is the desired part, the second summand is the interference, and the
third summand is the noise. The noise variable nk is assumed to be identically distributed at each
receiver k, as a zero-mean complex Gaussian variable with variance

E
[

|nk|2
]

= σ2 ∀k ∈ {1, . . . , K} (3.2)

where σ2 > 0. We define the power pk of the transmitted signal of user k to be the second moment
of xk, i. e.,

pk = E
[

|xk|2
]

∀k ∈ {1, . . . , K} (3.3)

which is identical to the variance of xk when E[xk] = 0, as will be assumed henceforth. Further-
more, note that E[x∗

kxj ] = 0 for all j 6= k since the transmitters are not able to cooperate. We

45
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impose a unit power constraint and consequently only allow power allocations that fulfill

0 ≤ pk ≤ 1 ∀k ∈ {1, . . . , K}. (3.4)

As discussed in the definition of the linear strategies at the end of the previous chapter, the
receivers do not distinguish between interference and noise. A sensible quality metric for the com-
munications link between transmitter k and receiver k therefore is the SINR γk:1

γk =
|hkk|2pk

∑

j 6=k

|hkj|2pj + σ2
∀k ∈ {1, . . . , K}. (3.5)

We furthermore assign a utility function uk(γk) to each user k that quantifies the desirability of a
certain SINR. A utility function in our definition must be strictly increasing, i. e., a higher SINR
is always more desirable for a user than a lower SINR. Some common utility functions uk(γk) as
well as their motivation will be discussed in Section 3.3.

It should be noted that the fact that the noise powers at all receivers are identical and all trans-
mit powers are constrained in the same way does not present a loss of generality. A system with
different noise and transmit powers can be easily transformed to meet the specifications with a nor-
malization of the channel coefficients. To show this, let us consider a system in which the power
of user k is constrained by Pk instead of one and the noise power at receiver k is σ2

k instead of σ2;
the transmit symbols in this system are denoted by x′

k, the noise variables by n′
k, and the chan-

nel coefficients by h′
kj . If we now define a second system with xk = 1√

Pk
x′
k, nk = σ

σk
n′
k, and

hkj =
σ
σk

√

Pjh
′
kj , it is trivial to show that the specifications of equal noise power and unit transmit

power constraints are met while the SINRs in both systems are identical.

3.2 The Utility Region

We define a region to be a set of K-tuples. The following three regions are relevant to the systems
we are investigating:
• The power region, which consists of all power K-tuples (p1, . . . , pK) that fulfill (3.4). We refer

to these K-tuples as feasible power allocations.
• The SINR region, which consists of all SINR K-tuples (γ1, . . . , γK) that result from a feasible

power allocation via (3.5).
• The utility region, which consists of all utility K-tuples (u1(γ1), . . . , uK(γK)) that result from

a feasible SINR K-tuple.
In the following we discuss some fundamental properties of these regions.
Definition 3.1. A region is comprehensive, if for any K-tuple (r1, . . . , rK) in the region all K-
tuples (r̄1, . . . , r̄K) with 0 ≤ r̄k ≤ rk for all k ∈ {1, . . . , K} are also in the region.
Definition 3.2. A region is convex, if for any two K-tuples in the region all convex combinations
are also in the region. A convex combination of the two K-tuples (ř1, . . . , řK) and (r̂1, . . . , r̂K) is
any K-tuple (αř1 + (1− α)r̂1, . . . , αřK + (1− α)r̂K) with α ∈ [0, 1].

1The SINR metric does not capture all aspects of the quality of the communications link. For example, the shape
of the PDFs of the desired portion of the received signal and the interference could be exploited to improve detection
of the data symbols. For random Gaussian codebooks, however, the SINR is a sufficient description of the quality of a
communications link.
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(a) Comprehensive and convex (b) Not comprehensive, but
convex

(c) Comprehensive, but non-
convex

Figure 3.1: Example regions that illustrate the comprehensiveness and convexity properties. In the middle
example, it is possible to move towards an axis from a point in the region without remaining inside the
region. In the right example, a line segment connecting two points is not entirely within the region. Boundary
points that are strictly dominated by other points of the region and are therefore not part of the Pareto
boundary are marked by a thinner line; the boundary points on the axes are also not part of the Pareto
boundary.

Definition 3.3. The Pareto boundary of a region is the subset of K-tuples in the region that are not
strictly dominated by any K-tuple in the region. A K-tuple (r1, . . . , rK) is said to strictly dominate
another K-tuple (r̄1, . . . , r̄K) if rk > r̄k for all k ∈ {1, . . . , K}.

Figure 3.1 illustrates comprehensiveness and convexity as well as the Pareto boundary for
some example regions with K = 2. Comprehensiveness refers to the property that reducing one
or more elements of a K-tuple in the region while remaining inside the positive quadrant will
not lead outside the region. For a region to be convex, every line segment connecting two points
of the region must lie entirely within the region. The Pareto boundary can be thought of as the
top right boundary of the region. These concepts extend to higher dimensions, i. e., K > 2, in a
straightforward way.

The power region consists of all power allocations (p1, . . . , pK) with pk ∈ [0, 1] for all k ∈
{1, . . . , K}. It can be viewed as a unit hypercube in K-dimensional space. The power region is
clearly both comprehensive and convex; its Pareto boundary consists of all power allocations in
which at least one power pk is equal to one.

The region of feasible power allocations is mapped to the region of achievable SINRs via (3.5).
We observe that the following properties hold for the relationship between powers and SINR:

1) The SINR γk is increasing in pk and non-increasing in pj for all j 6= k.

2) If all powers are increased by a common factor, all SINRs are increased. Decreasing all powers
by a common factor leads to a decrease of all SINRs.

3) Any change in power allocation that includes decreasing at least one power will lead to a
decrease in at least one SINR. This can be seen from the fact that such a change in power
allocation can always be achieved by first performing a decrease of all powers by a common
factor and then increasing some but not all powers. The property then follows from the previous
properties 2) and 1).

Proposition 3.1. Every power allocation on the Pareto boundary of the power region is mapped

to an SINR K-tuple on the Pareto boundary of the SINR region; conversely, every SINR K-tuple
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on the Pareto boundary of the SINR region can be achieved by a power allocation on the Pareto

boundary of the power region.

Proof. For every power allocation on the Pareto boundary of the power region, at least one user has
full power. We will assume that user k has full power, i. e., pk = 1. A change of power allocation
that does not violate the power constraints will either
1) include a decrease of one or more powers or
2) consist of only increases of one or more powers, but leave pk unchanged.
In the first case at least one SINR will decrease due to the above property 3); in the second case γk
cannot increase due to property 1). Therefore the resulting SINR K-tuple cannot strictly dominate
the original SINR K-tuple, i. e., any SINR K-tuple resulting from a power allocation with at least
one full power is on the Pareto boundary of the SINR region.

A power allocation not on the Pareto boundary of the power region, on the other hand, leads to
an SINR K-tuple not on the Pareto boundary of the SINR region: if all of the powers are strictly
smaller than one, it is possible to increase all powers by a common factor, which yields a strictly
dominant SINR K-tuple due to 2) in the above properties. Therefore, an SINR K-tuple on the
Pareto boundary of the SINR region cannot be achievable by a power allocation which is not on
the Pareto boundary of the power region, but by definition must be achievable by some power
allocation, from which it follows that the converse also holds.

Proposition 3.2. The SINR region is comprehensive.

Proof. The proof is given in Appendix A2.

Proposition 3.3. The SINR region is non-convex, unless all cross channel coefficients hkj with

j 6= k are zero.

Proof. The proof is given in Appendix A3.

The utility region consists of all feasible K-tuples (u1(γ1), . . . , uK(γK)). In contrast to the
mapping from powers to SINRs, the elements of the SINR K-tuple are mapped separately to the
elements of the utility K-tuple, i. e., uk does not depend on γj with j 6= k.
Proposition 3.4. The Pareto boundary of the power region is mapped to the Pareto boundary of

the utility region.

Proof. The proposition is an immediate consequence of the fact that the utility functions uk(γk)
are strictly increasing. Therefore strict dominance in SINRs implies strict dominance in utilities
and vice versa and Proposition 3.1 holds for utilities instead of SINRs as well.

Proposition 3.5. The utility region is comprehensive.

Proof. Again, the proposition follows directly from the strict monotonicity of the utility functions
and Proposition 3.2.
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3.2.1 Convexity of the Utility Region

The utility region is in general non-convex. As an example, consider the identity utility uk(γk) =
γk, where the utility region is the same as the SINR region and is therefore non-convex unless
all cross channels are zero, cf. Proposition 3.3. It is, however, possible to formulate a sufficient
condition for convexity of the utility region and thereby identify a special class of utility functions
that guarantee a convex region. In the following we derive this condition along the lines of [35],
where it is proven for a more general system model. We also note that a similar, but stricter,
condition is derived in [2]. For the remainder of this section, we consider only utility functions that
are twice differentiable.

Definition 3.4. A function f(x) is convex in x, if for any two vectors x̌ and x̂ in the domain of f
and any λ ∈ [0, 1] the following holds:

f (λx̌+ (1− λ)x̂) ≤ λf(x̌) + (1− λ)f(x̂). (3.6)

The function f(x) is concave in x if −f(x) is convex in x, i. e., if “≥” holds instead of “≤” in
above inequality.

An in-depth study of convex and concave functions as well as their properties can be found
in [36, Chapter 3]. A notable result is that for a scalar, twice differentiable function convexity (or
concavity) is equivalent to a non-negative (or non-positive) second derivative.

To begin with, we investigate the properties of the logarithmic SINR in the logarithmic powers.
We define the logarithmic powers as

tk = log pk ⇔ pk = etk k ∈ {1, . . . , K} (3.7)

and the vector t = [t1, . . . , tK ]
T. By inserting (3.7) into (3.5) and taking the logarithm, we obtain

the logarithmic SINR

wk(t) = log γk = log|hkk|2 + tk − log

(

∑

j 6=k

|hkj|2 etj +σ2

)

k ∈ {1, . . . , K}. (3.8)

Lemma 3.1. wk(t) is concave in t.

Proof. For any λ ∈ (0, 1) and non-negative real ai and bi with i ∈ {1, . . . , I}, the following holds:

I
∑

i=1

aλi b
1−λ
i ≤

(

I
∑

i=1

ai

)λ( I
∑

i=1

bi

)1−λ

. (3.9)

This can be shown by defining a =
[

aλ1 , . . . , a
λ
I

]T
and b =

[

b1−λ
1 , . . . , b1−λ

I

]T
and applying

Hölder’s inequality (e. g., [37]):
∣

∣aTb
∣

∣ ≤ ‖a‖ 1
λ
‖b‖ 1

1−λ
. (3.10)
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Therefore, for any λ ∈ (0, 1)

λwk

(

ť
)

+ (1− λ)wk

(

t̂
)

=

= log|hkk|2 + λťk + (1− λ)t̂k − λ log

(

∑

j 6=k

|hkj|2 eťj +σ2

)

− (1− λ) log

(

∑

j 6=k

|hkj|2 et̂j +σ2

)

= log|hkk|2 + λťk + (1− λ)t̂k − log

(

∑

j 6=k

|hkj|2 eťj +σ2

)λ(
∑

j 6=k

|hkj|2 et̂j +σ2

)1−λ

(3.11)

≤ log|hkk|2 + λťk + (1− λ)t̂k − log

(

∑

j 6=k

|hkj|2 eλťj+(1−λ)t̂j +σ2

)

(3.12)

= wk

(

λť+ (1− λ)t̂
)

(3.13)

and the condition for concavity is fulfilled. For the two remaining possibilities λ = 0 and λ = 1 it
is clear that the condition is also fulfilled.

Next, we express the utility by means of the logarithmic SINR and logarithmic powers:

uk(γk) = uk

(

ewk(t)
)

k ∈ {1, . . . , K}. (3.14)

Lemma 3.2. If

ck(γk) = −u′′
k(γk)γk
u′
k(γk)

≥ 1 with u′
k(γk) =

∂uk(γk)

∂γk
and u′′

k(γk) =
∂2uk(γk)

(∂γk)2

(3.15)
holds for all γk > 0, then uk

(

ewk(t)
)

is concave in t.

Proof. uk (e
x) is increasing in ex = γk and therefore also increasing in x. Furthermore, with the

chain rule the second derivative of uk (e
x) w. r. t. x is:

∂2uk (e
x)

(∂x)2
= u′′

k (e
x) e2x +u′

k (e
x) ex = u′′

k(γk)γ
2
k + u′

k(γk)γk. (3.16)

Since a non-positive second derivative implies concavity, uk (e
x) is concave in x for ck(γk) ≥ 1. If

uk (e
x) is concave in x, uk

(

ewk(t)
)

is concave in t since wk(t) is concave in t and the composition
of a concave increasing function with a concave function is again concave [36, Section 3.2.4].

Note that ck(γk) is a quantity used in economics to describe the relative risk aversion of a
payoff function (e. g., [38]).
Theorem 3.1. If ck(γk) ≥ 1 holds for all γk > 0 and for all k ∈ {1, . . . , K}, the utility region is

convex.

Proof. Consider two feasible power allocations (p̌1, . . . , p̌K) and (p̂1, . . . , p̂K). The corresponding
vectors of logarithmic power are ť and t̂, and the resulting utility K-tuples are (ǔ1, . . . , ǔK) and
(û1, . . . , ûK), respectively. Any non-trivial convex combination of the two utility K-tuples can
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be expressed as (λǔ1 + (1− λ)û1, . . . , λǔK + (1− λ)ûK) with λ ∈ (0, 1). From Lemma 3.2 we
know that

λǔk + (1− λ)ûk ≤ uk

(

ewk(λť+(1−λ)t̂)
)

∀k ∈ {1, . . . , K}. (3.17)

Furthermore, we observe that the logarithmic power vector λť+(1−λ)t̂ corresponds to the power
allocation

(

p̌λ1 p̂
1−λ
1 , . . . , p̌λK p̂

1−λ
K

)

, which is clearly feasible. Therefore, the convex combination of
utilities (λǔ1 + (1− λ)û1, . . . , λǔK + (1− λ)ûK) is element-wise smaller or equal to the feasible
utility K-tuple resulting from the power allocation

(

p̌λ1 p̂
1−λ
1 , . . . , p̌λK p̂

1−λ
K

)

. Due to the comprehen-
siveness of the utility and SINR region (cf. Propositions 3.2 and 3.5) it is clear that the convex
combination must be feasible. Therefore the utility region is convex.

Observation 3.1. The condition ck(γk) ≥ 1 can only be fulfilled for utility functions uk(γk) that
are concave in γk since u′

k(γk) > 0 and γk > 0.
Observation 3.2. Another consequence of the condition is that uk(0) = −∞ since, as is shown in
the proof of Lemma 3.2, the condition implies that uk (e

x) is concave and increasing for x ∈ R
and therefore must be unbounded for x → −∞.

3.3 Common Utility Functions

3.3.1 Achievable Rate Utility

uk(γk) = log (1 + γk) = Rk. (3.18)

If all interfering users employ random Gaussian codebooks and these codebooks are unknown
to receiver k, i. e., the interference is equivalent to an additional Gaussian noise source, the link
of user k can be viewed as an AWGN channel and the discussion on achievable code rates in
Section 2.1 applies. Therefore, this utility describes the supremum of the code rates at which
information can be reliably transmitted on the link of user k, cf. (2.7).

As uk(0) = 0, the achievable rate utility does not belong to the class of utilities that guarantee a
convex region (cf. Observation 3.2). This can be verified by taking the first and second derivatives
of uk(γk) to obtain

ck(γk) =
γk

1 + γk
< 1. (3.19)

Indeed, since for the two-user case the utility region coincides with the rate region achievable with
the information theoretic scheme of treating interference as noise with variable power discussed
in Section 2.3.1.1, examples for the shape of this utility region can be seen in Figures 2.3–2.8.
Clearly, the utility region, in this case referred to as the rate region, can be non-convex.

We also refer to the achievable rate utility for user k as Rk. Because it is a measure for the link
throughput, the rate utility is the focus of our algorithm design and numerical results, where we
will generally use the logarithm with base 2 in order to quantify the throughput in bits per channel
use (bpcu).

3.3.2 Logarithmic Utility

uk(γk) = log γk. (3.20)

The logarithmic utility converges towards the achievable rate utility when γk ≫ 1, i. e., when the
SINR of user k is very high. For SINRs close to zero, on the other hand, the logarithmic utility is
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strongly negative, whereas the achievable rate only yields non-negative values. We can therefore
state that the logarithmic utility penalizes low SINRs more strongly.

By taking the first and second derivativies of uk(γk) = log γk we obtain

ck(γk) = 1. (3.21)

Therefore the utility region is guaranteed to be convex.

3.3.3 Proportional Fair Rate Utility

uk(γk) = log log (1 + γk) = logRk. (3.22)

If it is the overall goal to maximize the sum throughput of the system, it is possible that the optimal
strategy involves setting the power of one or more users to zero, which may be considered “unfair”
to those users. Ensuring that all users are treated equally, on the other hand, may lead to a strategy
that does not efficiently utilize the potential of the system. The concept of proportional fairness
aims at providing a compromise between these two extremes.

As it is defined in [39], a feasible rate K-tuple (R1, . . . , RK) is proportionally fair, if for every
other feasible rate K-tuple (R′

1, . . . , R
′
K)

K
∑

k=1

R′
k − Rk

Rk
≤ 0 (3.23)

holds, i. e., if the sum of rates individually weighted with R−1
k cannot be improved. Thus, a weak

user’s improvement is weighted strongly, while a strong user’s degradation is given a lower weight.
It is shown in [39] that, if the rate region is convex, the proportional fair solution is unique

and can be obtained by maximizing
∑

k uk(γk) =
∑

k logRk over all feasible power allocations.
If the rate region is non-convex, which can be the case in our system, existence and uniqueness
of a rate allocation fulfilling (3.23) is not guaranteed and maximizing

∑

k logRk does not neces-
sarily yield a proportional fair rate allocation [40]. Nonetheless, this utility can be used to obtain
a rate allocation that presents a good compromise between maximizing sum throughput and total
fairness.2

The proportional fair rate utility function again strongly penalizes low SINRs, i. e., uk(0) =
−∞. Therefore, maximizing

∑

k uk(γk) will always yield a non-zero power allocation. The first
and second derivatives of uk(γk) = log log(1 + γk) are

u′
k(γk) =

1

(1 + γk) log(1 + γk)
and u′′

k(γk) = − 1 + log(1 + γk)

(1 + γk)2(log(1 + γk))2
. (3.24)

Thus,

ck(γk) =
γk(1 + log(1 + γk))

(1 + γk) log(1 + γk)
=

γk log(1 + γk) + γk
γk log(1 + γk) + log(1 + γk)

. (3.25)

Since log(1 + γk) < γk for γk > 0, the denominator is smaller than the numerator for positive
SINRs and ck(γk) > 1. With Theorem 3.1, the utility region is guaranteed to be convex.

2Another possible approach is to “convexify” the rate region by allowing time-sharing between different feasible
power allocations. The proportional fair solution on the so-obtained convex hull of the rate region can then be deter-
mined, e. g., with a dual decomposition algorithm, cf. [41]. This approach is not further pursued in this work, as we do
not allow for time-sharing in our system model.
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A similar utility function

uk(γk) =

{

log(Rk − R̄k) if Rk > R̄k,

−∞ otherwise
(3.26)

can be used to determine the Nash bargaining solution (NBS) [42].3 The NBS results from an
axiomatic approach to modeling the outcome of a bargaining process, in which the users are
faced with the threat of a “fallback” rate allocation (R̄1, . . . , R̄K) if the bargaining process fails.
(R̄1, . . . , R̄K) may be the zero K-tuple, in which case the NBS utility is identical to the propor-
tional fair rate utility, or any other pre-defined feasible rate allocation. Note that if (R̄1, . . . , R̄K)
is on the Pareto boundary, there is always one user whose utility uk(γk) is −∞. Again, the NBS
is only defined for convex rate regions, and maximizing

∑

k uk(γk) may not lead to a solution
fulfilling the NBS axioms in our system.

3.3.4 α-Fair Rate Utility

uk(γk) =
1

1− α
(log(1 + γk))

1−α =
R1−α

k

1− α
. (3.27)

The α-fair utility is defined for α ≥ 0 with α 6= 1 [43]. It aims to provide a continuous tradeoff
between sum throughput maximization and total fairness. With l’Hôpital’s rule the proportional
fair utility can be shown to be a natural continuation of the α-fair utility at α = 1. For α = 0
maximizing

∑

k uk(γk) is identical to maximizing the sum rate without taking fairness into con-
sideration. As α → ∞, maximization of

∑

k uk(γk) approaches maxiziming the smallest element
of the rate K-tuple, i. e., in the result all rates Rk will be equal and total fairness is guaranteed.

Again, the notion of α-fairness was originally only defined for convex rate regions. The use of
this utility function for general regions is, however, also possible and is discussed in detail in [44].

The derivatives of uk(γk) = (1− α)−1 (log(1 + γk))
1−α are

u′
k(γk) =

1

(1 + γk)(log(1 + γk))α
(3.28)

u′′
k(γk) = − α + log(1 + γk)

(1 + γk)2(log(1 + γk))α+1
(3.29)

and therefore

ck(γk) =
γk(α + log(1 + γk))

(1 + γk)(log(1 + γk))
=

γk log(1 + γk) + αγk
γk log(1 + γk) + log(1 + γk)

. (3.30)

If α > 1, the denominator of ck(γk) is again smaller than the numerator and the utility region
is convex. If α < 1, we can verify with l’Hôpital’s rule that lim

γk→0
ck(γk) = α and the sufficient

condition for convexity of the utility region is not fulfilled.

3Note that uk(γk) is not strictly increasing in γk for Rk < R̄k, and therefore technically does not fall under our
definition of a utility function. Many of the techniques discussed in the following can be applied nonetheless for this
choice of uk(γk).
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Figure 3.2: Discussed utility functions over the SINR γk

3.3.5 Negative Mean Squared Error

uk(γk) = − 1

1 + γk
. (3.31)

Let us assume that the transmit symbol is formed as xk =
√
pksk, where sk is the unit-variance

data symbol, and that the receiver forms an estimate of the data symbol as ŝk = gkyk using the
scalar receiver coefficient gk ∈ C. The mean squared error (MSE) between the estimated and the
true data symbol is defined as E [|ŝk − sk|2]. The receiver coefficient gk that minimizes the MSE
can be shown to be

gk =
h∗
kk

√
pk

K
∑

j=1

|hkj|2pj + σ2

(3.32)

and the MSE resulting from using the optimal gk is

E
[

|ŝk − sk|2
]

=

∑

j 6=k|hkj|2pj + σ2

∑

j|hkj|2pj + σ2
=

1

1 + γk
. (3.33)

As the MSE should be as small as possible, the negative MSE is used as a utility function.
For the negative MSE utility, uk(0) = −1. With Observation 3.2 we can conclude that uk(γk)

does not belong to the class of utility functions that guarantee a convex utility region. This can also
be seen from

ck(γk) =
2γk

1 + γk
. (3.34)

Figure 3.2 shows the behavior of the different discussed utility functions over the SINR. It
can be seen that those utility functions that guarantee a convex region have a more pronounced
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Figure 3.3: Value of ck(γk) over the SINR γk for the discussed utility functions

rightward curvature than the others. Figure 3.3 shows the value of ck(γk) for the same utility
functions.

3.4 Concepts of Optimality

The K users’ utility functions are competing objectives in the sense that it is generally not possible
to maximize them simultaneously; it is therefore not possible to identify an undisputably optimal
power allocation. In this section we will discuss some different criteria that are used to define
optimality of a power allocation as well as the challenges in determining these power allocations.

3.4.1 The Selfish Solution or Nash Equilibrium

Let us assume that each user k is interested in maximizing its own utility function uk(γk) and is
not concerned about the value of the other users’ utility functions uj(γj) with j 6= k. Since the
utility function uk(γk) of user k is increasing in pk, in this case each user will transmit with full
power, i. e., the resulting selfish solution is the power allocation (p1 = 1, . . . , pK = 1).

This setup also fits well into the framework of game theory: the players in the game are the K
users and each user k can choose a strategy pk ∈ [0, 1]. The strategies of all users (p1, . . . , pK) then
determine the payoff for each user k, which is the utility function uk(γk).

A Nash equilibrium of a game is defined as a set of strategies for which any unilateral change
of strategy by a single user cannot improve its own payoff. In our power control game, only the
selfish solution is a Nash equlibrium: if pk is strictly less than one, user k can improve its payoff
by changing pk to one; when all powers are one, on the other hand, every user k can only decrease
its own payoff by changing pk.
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The selfish solution (or Nash equilibrium) is on the Pareto boundary of the power region and
therefore also on the Pareto boundary of the SINR and utility regions. It is worth noting that if we
assume fixed non-zero channel coefficients and let σ2 → 0, all SINRs γk are bounded from above
when the selfish solution is employed. This suggests that if the noise power is low, the selfish
solution may not be a very efficient strategy; in the numerical evaluation in Section 3.6 this will
become apparent, in particular, for the achievable rate utility.

3.4.2 Altruistic Solutions

As a counterpart to the selfish solution, we define a power allocation to be altruistic, if every user k

1) cannot unilaterally improve the utility function uj(γj) of any user j 6= k by changing pk and

2) cannot improve its own utility uk(γk) by changing pk without decreasing at least one other
utility uj(γj) with j 6= k.

As an example, consider K = 2 and all four channel coefficients to be non-zero. The altruistic
solutions in this case are (p1 = 1, p2 = 0) and (p1 = 0, p2 = 1): if both powers were non-zero,
one user would always be able to improve the other user’s utility by decreasing its own power;
if one power was zero and the other less than one, both users would not be able to improve the
other user’s utility, but the active user would be able to improve its own utility without harming the
inactive user.

In general, only power allocations with pk ∈ {0, 1} for all k ∈ {1, . . . , K} can be altruistic
solutions. To show this, let us consider 0 < pk < 1: either all other utilities do not depend on pk,
in which case uk(γk) can be improved by setting pk = 1 without harming the other users, or some
other utility is decreasing in pk, in which case this utility could be improved by setting pk = 0.
Furthermore, every user k that has full power pk = 1 cannot experience any interference if the
power allocation is an altruistic solution, i. e., the denominator in (3.5) consists only of σ2.

When all channel coefficients are non-zero, the altruistic solutions are those power allocations
in which exactly one pk is one and all others are zero. If some cross channel coefficients hkj

with k 6= j are zero, the set of altruistic solutions can be different. Consider, e. g., a system with
K = 3 users and h12 = h21 = 0. Here, (p1 = 1, p2 = 1, p3 = 0) is an altruistic solution, but
(p1 = 0, p2 = 1, p3 = 0) and (p1 = 1, p2 = 0, p3 = 0) are not.

In contrast to the selfish solution, at least one SINR γk grows without bound for σ2 → 0 if an
altruistic solution is employed, so that user k has the full benefit of a channel with vanishing noise
power. We will see in Section 3.6 that for the rate utility this can be a great advantage over the
selfish solution.

3.4.3 Feasibility and the Power Minimization Problem

For some applications it might be necessary that every user is provided with a certain quality of

service, which could be, e. g., a minimum rate necessary for operation. To this end, we assign each
user k a utility target ūk and require that uk(γk) ≥ ūk for all k ∈ {1, . . . , K}. Since there may
be many power allocations that fulfill the utility targets, we define the optimal solution to be the
power allocation that fulfills the utility targets of all users and at the same time minimizes the sum
of the transmit powers

∑

k pk.
It is of course also possible that the utility targets are outside the utility region, i. e., that they

are infeasible. The first step, therefore, is to check the feasibility of the K-tuple of utility targets.
We define (γ̄1, . . . , γ̄K) as the SINR K-tuple that corresponds to the utility targets; γ̄k can be
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determined by taking the inverse utility function of ūk. To begin with, we can formulate a simple
necessary and a simple sufficient condition for the feasiblity of (γ̄1, . . . , γ̄K).
Observation 3.3. The SINR allocation (γ̄1, . . . , γ̄K) can only be feasible if

γ̄k ≤
|hkk|2
σ2

∀k ∈ {1, . . . , K}. (3.35)

Observation 3.4. The SINR allocation (γ̄1, . . . , γ̄K) is feasible if

γ̄k ≤
|hkk|2

∑

j 6=k

|hkj|2 + σ2
∀k ∈ {1, . . . , K} (3.36)

since this means that (γ̄1, . . . , γ̄K) is element-wise smaller or equal to the SINR K-tuple resulting
from the selfish solution.

Assuming that feasibility cannot be ruled out with Observation 3.3, we proceed to determine the
power allocation (p1, . . . , pK) that fulfills the SINR targets with equality. The process of determin-
ing a power allocation from an SINR K-tuple is examined in detail in the proof of Proposition 3.2;
we therefore only give a brief description here and refer to Appendix A2 for the details.

First, all users with a target SINR of zero are removed from the system, as it is clear that
their respective powers are also zero. Next, assuming that the remaining users have the indices
{1, . . . , K}, we define the matrix

A =













|h11|2
γ̄1

−|h12|2 · · · −|h1K |2
−|h21|2 |h22|2

γ̄2
. . . −|h2K |2

...
...

. . .
...

−|hK1|2 −|hK2|2 . . . |hKK |2
γ̄K













(3.37)

and the vector p = [p1, . . . , pK ]
T and compute the power allocation as

p = σ2A−1
1. (3.38)

If the matrix A is not invertible, the SINR K-tuple (γ̄1, . . . , γ̄K) cannot be feasible, since A is
non-singular for all feasible SINR K-tuples, cf. Appendix A2; if A is invertible and one or more
elements of the resulting vector p are negative or greater than one, the target SINRs are also
infeasible; if every element of p is in the interval [0, 1], the target SINRs are feasible and we have
found the corresponding power allocation.

From the properties of the SINR we know that starting from (p1, . . . , pK) no power can be
decreased without violating the SINR targets. Therefore, the power allocation that fulfills the
SINR/utility targets with equality is also optimal in the sense that the total transmit power is mini-
mized.

3.4.4 The SINR Balancing Problem

Another possible goal of an optimization of the power allocation is to ensure that all users achieve
the same SINR and to maximize this common SINR, thus focusing on complete fairness. More
generally, instead of requiring all SINRs to be identical, we can consider arbitrary fixed ratios of
the SINRs to one another. This is called the SINR balancing problem.
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Figure 3.4: SINR region for K = 2 with |h11|2 = 1.2, |h12|2 = 1.6, |h21|2 = 0.5, and |h22|2 = 1. The
noise power is σ2 = 1. All points on the dashed line are SINR pairs of the form (βγ̄1, βγ̄2), where γ̄1 = 2
and γ̄2 = 1. The circle marks the balancing solution.

Formally, for a given K-tuple (γ̄1, . . . , γ̄K), we would like to determine the highest real-valued
scalar β for which (βγ̄1, . . . , βγ̄K) is a feasible SINR K-tuple. For example, with γ̄k = 1 for
all k ∈ {1, . . . , K}, we are searching for the highest SINR that can be achieved by all users
simultaneously; if we set γ̄1 = 2, the resulting SINR of the first user will be twice as high as that
of all other users.

We can think of all feasible SINR K-tuples that can be written as (βγ̄1, . . . , βγ̄K) as lying on
a line segment starting at the origin, cf. Figure 3.4. It is intuitively clear that, as the SINR region
is comprehensive, the solution to the SINR balancing problem must lie on the Pareto boundary
of the SINR region and that there is a unique value β for which (βγ̄1, . . . , βγ̄K) is on the Pareto
boundary.

A detailed discussion of the SINR balancing problem can be found in [35]. In the following we
briefly derive a method to obtain the solution that requires only a fixed number of steps. We begin
by characterizing the power allocations (p1, . . . , pK) that result in an SINR K-tuple of the form
(βγ̄1, . . . , βγ̄K). From (3.5), the SINR of user k is

βγ̄k =
|hkk|2pk

∑

j 6=k

|hkj|2pj + σ2
(3.39)

which we can rewrite as

γ̄k
|hkk|2

(

∑

j 6=k

|hkj|2pj + σ2

)

=
1

β
pk. (3.40)
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By defining the matrix

C =













0 γ̄1
|h12|2
|h11|2 · · · γ̄1

|h1K |2
|h11|2

γ̄2
|h21|2
|h22|2 0 · · · γ̄2

|h2K |2
|h22|2

...
...

. . .
...

γ̄K
|hK1|2
|hKK |2 γ̄K

|hK2|2
|hKK |2 · · · 0













(3.41)

and the vectors

d =









γ̄1σ2

|h11|2
...

γ̄Kσ2

|hKK |2









and p =







p1
...
pK






(3.42)

we can write the relationship between all users’ powers and SINRs in matrix-vector notation as

Cp + d = β−1p. (3.43)

Since we are looking for a solution to this equation that lies on the Pareto boundary, we know
that at least one power must be one. If we assume that pk = 1 and define an extended power vector
p̂ = [p, 1]T and the matrix

Ĉk =

[

C d

eT
kC eT

k d

]

(3.44)

where ek is the kth column of the K ×K identity matrix, we can write (3.43) as

Ĉkp̂ = β−1p̂ (3.45)

since

eT
kCp + eT

k d = β−1pk = β−1. (3.46)

In words, p̂ is an eigenvector of Ĉk. Since we do not know which user k has full power in the
solution to the balancing problem, we proceed as follows: for all k ∈ {1, . . . , K}, we check
whether there exists an eigenvector of Ĉk with only non-negative elements and in particular with
a positive kth and last element which corresponds to a positive eigenvalue. If such an eigenvector
exists, it is then scaled so that pk = 1. If all elements pj with j 6= k are in the interval [0, 1], this
vector contains the solution to the balancing problem.

As discussed above, it is clear from the properties of the SINR region that a unique power
allocation exists that solves the balancing problem, and that this procedure will therefore always
yield the solution. We note, however, that some statements on the existence and uniqueness of
eigenvectors with non-negative entries for the matrices Ĉk can also be made with the Perron-
Frobenius theorem (e. g., [37, 45]).

If all users have identical utility functions and γ̄1 = . . . = γ̄K , the utilities of all users will also
be balanced. In general, however, the utility balancing problem, i. e., fixing the ratio of the users’
utilities to one another, is considerably more difficult and cannot be solved in a straightforward
way.
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3.4.5 The Sum Utility Problem

If there are no hard target-SINR or fairness constraints, the goal from the point of view of the
system operator is usually to maximize some sort of overall efficiency of the system. With properly
designed utility functions, the overall efficiency of the system can be expressed as the sum of the
utility functions of all users. Formally, we therefore wish to solve the optimization problem

max
p1,...,pK

K
∑

k=1

uk(γk) s. t.: 0 ≤ pk ≤ 1 ∀k ∈ {1, . . . , K}. (3.47)

To begin with, it is clear that the solution to the sum utility problem must lie on the Pareto boundary
of the utility region. Any utility K-tuple that is not on the Pareto boundary is by definition strictly
dominated in terms of individual utilities, and therefore also in terms of sum utility, by another
feasible utility K-tuple.

With the Lagrangian multipliers µ1, . . . , µK and ν1, . . . , νK , we can formulate the Karush-

Kuhn-Tucker (KKT) necessary conditions for optimality, cf. [36, Chapter 5]:

K
∑

j=1

∂uj(γj)

∂pk
+ µk − νk = 0 ∀k ∈ {1, . . . , K} (3.48)

µk ≥ 0 ∀k ∈ {1, . . . , K} (3.49)

νk ≥ 0 ∀k ∈ {1, . . . , K} (3.50)

µkpk = 0 ∀k ∈ {1, . . . , K} (3.51)

νk(1− pk) = 0 ∀k ∈ {1, . . . , K} (3.52)

0 ≤ pk ≤ 1 ∀k ∈ {1, . . . , K}. (3.53)

Proposition 3.6. If the utility region is convex, (3.47) is equivalent to a concave maximization

problem and the above KKT conditions are not only necessary, but also sufficient for global opti-

mality.

Proof. The proof is given in Appendix A4.

For convex utility regions, the problem can thus be solved efficiently with a number of general
purpose algorithms, e. g., projected gradient algorithms [46] or interior point methods [46, 36].
If the utility region is non-convex, on the other hand, solving the sum utility problem may be
very difficult. In fact, it is shown in [47] that for the rate utility the problem is NP-hard, i. e., it
belongs to a class of problems that is believed not to be solvable with a number of computations
that grows only polynomially in the system dimensions. We can interpret the difficulty of solving
the optimization problem as the potential existence of multiple local maxima, where small changes
in the power allocation in any feasible direction lead to a decrease in sum utility. Each of the local
maxima also fulfills the KKT conditions. As a consequence, gradient-based search algorithms can
converge to one of the local optima and it is by no means guaranteed that the solution to the
problem is found.

Some global optimization techniques do exist, however, that are guaranteed to find the solu-
tion to (3.47) with arbitrary precision for any utility function. A notable example is the polyblock

algorithm [48], which is based on successively tightening an outer bound on the utility region
by repeatedly projecting points that are outside the utility region onto the Pareto boundary, e. g.,
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by solving balancing problems. The polyblock algorithm was specifically applied to our system
model in [49]. Such algorithms are computationally very demanding, however, and their complex-
ity grows rapidly with the system size. Therefore, their application is only feasible for small K.

3.4.5.1 Maximizing the Sum Rate

Due to its significance as the overall system throughput limit, maximization of the sum rate utility
is the main focus of this work. With (3.18) and (3.5), the utility function for user k is

uk(γk) = Rk = log(1 + γk) = log

(

1 +
|hkk|2pk

∑

j 6=k|hkj|2pj + σ2

)

= log

(

∑

j

|hkj|2pj + σ2

)

− log

(

∑

j 6=k

|hkj|2pj + σ2

)

.

(3.54)

The derivative of the sum utility w. r. t. the power pk of user k is

∑

j

∂Rj

∂pk
=

|hkk|2
∑

i|hki|2pi + σ2
−
∑

j 6=k

(

|hjk|2
∑

i 6=j |hji|2pi + σ2
− |hjk|2
∑

i|hji|2pi + σ2

)

. (3.55)

Note that the terms inside the brackets are non-negative since the two fractions have the same
numerator, but the second denominator has one more summand than the first.

Since the rate region can be non-convex (cf. Section 3.3.1), the KKT conditions do not neces-
sarily have a unique solution, and a power allocation satisfying the KKT conditions is not neces-
sarily globally optimal. Furthermore, as noted previously, the sum rate maximization problem has
been shown to be NP-hard [47].

Let us first assume a system with K = 2 users. The derivatives of the sum rate are

∂(R1 +R2)

∂p1
=

|h11|2
|h11|2p1 + |h12|2p2 + σ2

−
( |h21|2
|h21|2p1 + σ2

− |h21|2
|h21|2p1 + |h22|2p2 + σ2

)

(3.56)

∂(R1 +R2)

∂p2
=

|h22|2
|h21|2p1 + |h22|2p2 + σ2

−
( |h12|2
|h12|2p2 + σ2

− |h12|2
|h11|2p1 + |h12|2p2 + σ2

)

.

(3.57)

Now assume that the power allocation (p1, p2) fulfills the KKT conditions and that 0 < p1 < 1,
i. e., none of the constraints on p1 is active. Consequently, µ1 = ν1 = 0 and due to (3.48) the
derivative in (3.56) must be zero. With the definitions

a1 =
|h11|2

|h11|2p1 + |h12|2p2 + σ2
(3.58)

a2 =
|h21|2

|h21|2p1 + |h22|2p2 + σ2
(3.59)

a3 =
|h21|2

|h21|2p1 + σ2
(3.60)

it follows that a1+a2 = a3. The second derivative of the sum rate w. r. t. p1, obtained by taking the
derivative of (3.56) w. r. t. p1, is −a21 − a22 + a23. Since

−a21 − a22 + a23 > −a21 − 2a1a2 − a22 + a23 = −(a1 + a2)
2 + a23 = 0 (3.61)
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the first derivative is increasing in p1 at the power allocation (p1, p2). Therefore such a power
allocation cannot be a local maximum. Similarly, if 0 < p2 < 1, the power allocation cannot be a
local maximum since the second derivative of the sum rate w. r. t. p2 is positive whenever the first
derivative is zero. Consequently, for K = 2 only the three power allocations (p1 = 1, p2 = 0),
(p1 = 0, p2 = 1), (p1 = 1, p2 = 1) can be sum-rate optimal and the sum rate maximization
problem can be solved by comparing the sum rates of these three power allocations.

Unfortunately, this result is not generalizable to K > 2 users; for K = 3 users, scenarios can
be constructed where in the optimal power allocation one power is strictly between zero and one.
Then, finding power allocations that fulfill the KKT conditions does not seem to be straightforward.
Even if it is known which constraints are active in the optimal power allocation, i. e., which users
have zero power and which have full power, determining the powers of the remaining users involves
solving a system of nonlinear (polynomial) equations.

It is, however, possible to characterize the optimal power allocations for sufficiently high and
sufficiently low noise power σ2. We begin with the case where σ2 is large and define this as the
low-SNR regime. The derivative of the sum rate (3.55) can also be stated as

∂

∂pk

∑

j

Rj =
|hkk|2

∑

i|hki|2pi + σ2
−
∑

j 6=k

|hjk|2|hjj|2pj
(

∑

i|hji|2pi + σ2
)(

∑

i 6=j|hji|2pi + σ2
) . (3.62)

The first (positive) term in this expression is clearly in O(σ−2) as σ2 → ∞; the remaining (nega-
tive) summands are in O(σ−4) and therefore approach zero more rapidly than the positive term. We
can conclude that, for sufficiently high σ2, all derivatives are greater than zero and the KKT con-
ditions are only fulfilled by the power allocation p1 = . . . = pK = 1. Therefore, in the low-SNR
regime the selfish solution is optimal.

We define the case where σ2 is low and σ−2 is asymptotically high, on the other hand, as the
high-SNR regime. From (3.54), we observe that as σ−2 → ∞

Rk =

{

log(σ−2) + O(1) if
∑

j 6=k|hkj|2pj = 0 and pk > 0

O(1) otherwise,
(3.63)

i. e., Rk grows without bound as σ−2 → ∞ only if the received interference power of user k is zero.
Therefore, to maximize the sum rate in the high-SNR regime, it is necessary that there exists at least
one user that does not experience any interference. In the case that all cross channel coefficients
hkj with j 6= k are non-zero, it is only possible to remove interference for a user by setting the
power of all other users to zero; thus, the optimal power allocation is to give the user k with the
highest direct channel magnitude |hkk| the full power and all other users zero power, which also
is an altruistic solution. If some cross channels are zero, the sum-rate optimal high-SNR power
allocation is not necessarily an altruistic solution.

3.4.5.2 Maximizing the Sum Logarithmic Utility

We briefly investigate the sum utility problem with the logarithmic utility, as this is an example
for a problem in which the KKT conditions are also sufficient. Furthermore, the logarithmic utility
approaches the achievable rate when γk ≫ 1 and therefore is also relevant in terms of system
throughput. With (3.20) and (3.5), we can express the utility function as

uk(γk) = log(γk) = log pk + log|hkk|2 − log

(

∑

j 6=k

|hkj|2pj + σ2

)

. (3.64)
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Since a power close to zero results in a strongly negative utility, it is clear that the some utility
can only be maximized if pk > 0 for all k ∈ {1, . . . , K}. Also, since the solution must lie on the
Pareto boundary of the utility region, at least one power pk is equal to one. The derivatives of the
sum utility are

∂

∂pk

∑

j

uj(γj) =
1

pk
−
∑

j 6=k

|hjk|2
∑

i 6=j|hji|2pi + σ2
. (3.65)

For a system with K = 2 users, we can therefore state

∂
(

u1(γ1) + u2(γ2)
)

∂p1
=

1

p1
− |h21|2

|h21|2p1 + σ2
(3.66)

∂
(

u1(γ1) + u2(γ2)
)

∂p2
=

1

p2
− |h12|2

|h12|2p2 + σ2
. (3.67)

Since the positive part is always strictly greater than the negative part, both derivatives are always
positive. Therefore the power allocation (p1 = 1, p2 = 1) fulfills the KKT conditions and is
globally optimal.

Again, for systems with K > 2 users, determining a power allocation that fulfills the KKT
conditions is not straightforward. Even if it is known which users have full power, a nonlinear
(polynomial) system of equations must be solved to determine the powers that are less than one.

In the low-SNR regime, i. e., when σ2 is sufficiently large, it can be seen from (3.65) that all
derivatives are positive regardless of the power allocation and the selfish solution is optimal. In the
high-SNR regime, on the other hand, an obvious simplification is not possible and the solution still
requires solving a system of nonlinear equations.

3.5 Information Exchange and Distributed Optimization

So far, we have assumed that the solution fulfilling the desired optimality criterion can be com-
puted with knowledge of all system parameters, i. e., the channel coefficients hkj for all pairs
(k, j) ∈ {1, . . . , K}2 and the noise power σ2 as well as the utility functions uk(γk) for all
k ∈ {1, . . . , K}. In a wireless communications model with multiple autonomous transmitter-
receiver pairs, however, not every node is able to estimate every channel coefficient. For example,
in a system with K = 3 users, the first receiver might have knowledge of the channel coefficients
h11, h12, and h13, but not of h23 or h32. In order to be able to determine the above optimal power al-
locations (with notable exception of the selfish solution), we therefore need to assume a centralized
computer that first collects all necessary parameters, then determines the optimal power allocation,
and finally informs the users which power they should use for transmission. For the exchange of
information it is necessary that the centralized computer is connected to the users by means of a
bi-directional signaling link.

In order to investigate the information exchange procedures more closely, we make the follow-
ing assumptions:
• Receiver k is able to perfectly estimate all channel coefficients that contribute to its received

signal yk, i. e., hkj for all j ∈ {1, . . . , K}, in an initial pilot phase.
• The noise power σ2 is universally known at all transmitters and receivers. To justify this as-

sumption, we note that we could assume unit noise power and renormalize all channel coeffi-
cients hkj to hkj/σ, which would not change the users’ SINRs.
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Figure 3.5: Communication links (black) and feedback/signaling links (gray) for the centralized computation
model in a K = 3 user system.

• A feedback link from receiver k to transmitter k can be used to reliably signal channel coeffi-
cients or other system parameters.

In out centralized model, the centralized computer can be either connected to the K transmitters
or the K receivers via bi-directional signaling links, cf. Figure 3.5. If the centralized computer is
on the transmitter side, information is exchanged in the following way:

1) After the channel estimation phase, each receiver k feeds the estimated channel coefficients hkj

for all j ∈ {1, . . . , K} back to transmitter k using the feedback link.

2) The transmitters send all channel coefficients to the centralized computer over the signaling
links.

3) The centralized computer determines the transmit strategy.

4) The centralized computer informs all transmitters which power pk they should use and which
SINR γk they can expect, which is necessary for the choice of the coding scheme.

Similarly, if the centralized computer is on the receiver side, the procedure is as follows:

1) After the channel estimation phase, each receiver k sends the estimated channel coefficients
hkj for all j ∈ {1, . . . , K} to the centralized computer.

2) The centralized computer determines the transmit strategy.

3) The centralized computer informs receiver k of the power pk and the resulting SINR γk.

4) Receiver k feeds back pk and γk to transmitter k.

If a centralized computer is not available, we could assume that the users are able to exchange
the channel coefficients and that then each user for himself can determine the optimal power allo-
cation in the same way the centralized computer would. As discussed before, however, determining
the optimal power allocation can be computationally very demanding, especially when K is large;
performing the identical computations at every user is not only a waste of resources, it may also ex-
ceed the capabilities of the nodes in a mobile environment. We therefore introduce the distributed

model, where each node only has very limited computational power and is not capable of solving
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Figure 3.6: Communication links (black) and feedback/signaling links (gray) for the distributed computation
model in a K = 3 user system.

multi-variate optimization problems or systems of nonlinear equations. For the necessary infor-
mation exchange between the users, we again assume either the transmitters or the receivers to be
connected via bi-directional signaling links, cf. Figure 3.6.

In the distributed model, one-shot solutions where the users can determine their optimal power
with one simple calculation are not possible in general. In the following we instead investigate
communications procedures where, starting from some initial power allocation, the users make
use of the signaling links to gradually improve the utility K-tuple with the goal of reaching some
sort of optimality.

In addition to the three bullet points at the beginning of this section, we make another assump-
tion for the iterative procedures discussed in the following:

• Receiver k can at any time perfectly estimate the current SINR γk.

We also introduce the super-script (ℓ) to denote the iteration number. Thus, the initial power allo-

cation is
(

p
(0)
1 , . . . , p

(0)
K

)

, or in vector notation p(0) =
[

p
(0)
1 , . . . , p

(0)
K

]T

; after ℓ iterations, user k

has power p(ℓ)k and SINR γ
(ℓ)
k .

One iteration of a distributed power control algorithm typically consists of three steps:

1) Receiver k measures the current SINR γ
(ℓ)
k .

2) Based on this measurement, information is exchanged between receiver k and transmitter k
over the feedback link and if necessary between different users over the bi-directional signaling
links.

3) User k computes the updated power p
(ℓ+1)
k as a function of p

(ℓ)
k , γ(ℓ)

k , and the other locally
available information.

While some distributed algorithms require these steps to be performed synchronously (in parallel)
for all users k ∈ {1, . . . , K}, others also allow for asynchronous (or sequential) updates, where
only one user k updates its power in one iteration ℓ. The updates can be continued, e. g., for a
predefined number of iterations, or until a termination criterion, such as convergence of the powers,
has been reached.

We note that this procedure of alternatingly updating the transmit strategies and exchanging
information is not the only conceivable concept of a decentralized algorithm. An alternative as-
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sumption for a distributed scenario is that there are no signaling links between the users, but that
instead the transmitters and receivers repeatedly switch roles, as in a time-divison duplex system,
and that the channel coefficients are identical in both the forward and the reverse direction. In the
reverse phase, the transmitters can then measure, e. g., the “reverse SINR” or the received signal
power and use this information for the next transmit strategy update, cf. [35, 50]. Nonetheless,
such algorithms can in general also be employed in our uni-directional communications scenario;
the same information that would be measured by the transmitter in the reverse phase is simply
communicated over the feedback and signaling links in our model.

In the following we give an overview over several distributed strategies and subsequently com-
pare their features, drawbacks, and the necessary information exchange.

3.5.1 The Selfish Solution

The selfish solution can be achieved without any information exchange between the users. The
transmitters know that they must use pk = 1 regardless of the channel coefficients. It is, however,
necessary for receiver k to measure the SINR γk and to feed this knowledge back to transmitter k,
so that the proper coding strategy can be chosen.

3.5.2 The Noiseless Balancing Algorithm

This algorithm, proposed by Zander in 1992 [51], and thus one of the pioneering works in dis-
tributed power control, aims at balancing the SINRs for the noiseless case σ2 = 0. We recall from
Section 3.4.4 that the goal of the balancing problem is to find a feasible SINR K-tuple that is
a scaled version of a non-zero target SINR K-tuple (γ̄1, . . . , γ̄K), i. e., that can be expressed as
(βγ̄1, . . . , βγ̄K), with a maximized scaling factor β. From (3.43) it can be seen that in the noiseless
case the resulting power allocation must fulfill

Cp =
1

β
p (3.68)

i. e., the power vector p is an eigenvector with non-negative entries corresponding to a positive
eigenvalue of the matrix C defined in (3.41).

To ensure convergence of the noiseless balancing algorithm, we must assume that the matrix
C is irreducible.
Definition 3.5. A square matrix C is irreducible if there does not exist a permutation matrix P

such that

PCP T =

[

E F

0 G

]

(3.69)

where E and G are square matrices and a permutation matrix is a binary square matrix that has
exactly one 1 in each row and each column and zeros elsewhere.

In our system model, irreducibility of C has the meaning that it is not possible to partition the K
users into two non-empty sets, where the transmitters of the first set do not cause any interference
at the receivers of the second set.

The update of the noiseless balancing algorithm must be done by all users synchronously and
consists of two steps. First, a new power is determined as

p̂
(ℓ+1)
k =

(

c+
γ̄k

γ
(ℓ)
k

)

p
(ℓ)
k (3.70)



3.5 Information Exchange and Distributed Optimization 67

where c > 0 is any constant common to all users. Second, the power is rescaled as

p
(ℓ+1)
k = δ(ℓ)p̂

(ℓ+1)
k (3.71)

with a factor

δ(ℓ) =
(

max
k

p̂
(ℓ+1)
k

)−1

(3.72)

that is common to all users and ensures that the power constraint is fulfilled. As δ(ℓ) depends on
the powers p̂(ℓ+1)

k of all users k ∈ {1, . . . , K}, the values of the powers p̂(ℓ+1)
k must be exchanged

between the users after the first of the two steps of the iteration.
By inserting the definition of the SINR γ

(ℓ)
k into the update rule, we can express the updated

power of user k by means of the matrix C and the vector of previous powers p(ℓ):

p
(ℓ+1)
k = δ(ℓ)

(

c+
γ̄k

γ
(ℓ)
k

)

p
(ℓ)
k

= δ(ℓ)

(

cp
(ℓ)
k +

γ̄k
|hkk|2

(

∑

j 6=k

|hkj|2p(ℓ)j

))

= δ(ℓ)eT
k (cI+C)p(ℓ).

(3.73)

Therefore, the vector of updated powers is

p(ℓ+1) = δ(ℓ) (cI+C)p(ℓ) =

ℓ
∏

i=0

δ(i) · (cI+C)ℓ+1
p(0). (3.74)

With the eigenvalue decomposition4 C = UΛU−1 it follows that

p(ℓ+1) =

ℓ
∏

i=0

δ(i) ·U (cI+Λ)ℓ+1
U−1p(0). (3.75)

It is intuitive that, as ℓ becomes large, the elements of the diagonal matrix (cI + Λ)ℓ+1 with the
highest absolute value grow fastest, to the extent that all other elements become negligible. From
the Perron-Frobenius theorem [37] we know that for a non-negative, irreducible matrix C there are
potentially multiple eigenvalues that have the highest absolute value, i. e., that achieve the spectral
radius, but that exactly one of these is real and positive. Therefore the dominating diagonal element
of cI +Λ is unique. The Perron-Frobenius theorem also tells us that the corresponding eigenvec-
tor has only positive elements. Finally, assuming that the ith eigenvalue is dominant, eT

i U
−1p(0)

is non-zero for any positive initialization vector p(0), as is shown in detail in [51]. Therefore,
U (cI+Λ)ℓ+1

U−1p(0) in the limit is an eigenvector of C with positive entries, i. e., as ℓ → ∞

Cp(ℓ) =
1

β
p(ℓ) (3.76)

with β > 0, which is the noiseless balancing solution. The factor
∏ℓ

i=0 δ
(i) ensures that after each

iteration the power constraints are met.

4The argument can be extended to the case where C is not diagonalizable by using the Jordan canonical form [37]
instead of the eigenvalue decomposition. The important point is that the Perron-Frobenius theorem tells us that the
dominating diagonal entry of cI+Λ is unique.
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In [51], the algorithm is proposed with c = 1. The constant c could also be chosen differently
without affecting the outcome of the algorithm. Both a very high value of c and a value close to zero
can slow down convergence, however: in the former case the relative difference of the entries of
cI+Λ becomes small, while in the latter case the entries corresponding to the multiple eigenvalues
of C that achieve the spectral radius have similar absolute values.

If noise is present, convergence towards (3.76) can be achieved by replacing the first part of the
update by

p̂
(ℓ+1)
k =

(

c+
γ̄k

γ
(ℓ)
k

)

p
(ℓ)
k − γ̄kσ

2

|hkk|2
(3.77)

to compensate for the additional noise term in (3.73). The outcome of the algorithm in this case,
however, is still the noiseless SINR balancing solution, i. e., the solution to (3.68) instead of (3.43).

It should finally be noted that, if the matrix C is not irreducible, the algorithm is not guaranteed
to converge to the balanced solution.

The information exchange of the noiseless balancing algorithm will be analyzed more closely
in Section 3.5.6. We would like to point out, though, that the first part of the power update requires
only the current value of the own SINR and no information from other users’ links. Only the second
step, in which the powers are scaled uniformly to meet the power constraints, raises the need for
communication between the users.

3.5.3 The Feasibility/Power Minimization Algorithm

In 1993, Foschini and Miljanic [52] proposed a similar algorithm that aims at fulfilling a non-zero
target SINR K-tuple (γ̄1, . . . , γ̄K) with equality and also accounts for the noise power σ2, thus
solving the feasibility/power minimization problem, cf. Section 3.4.3. However, the unit power
constraints cannot be incorporated in this algorithm, i. e., the resulting powers may be larger than
one. Again, for convergence it is necessary to assume irreducibility of the matrix C.

The power update is similar to that of the noiseless balancing algorithm with c = 0, but consists
only of one step and does not contain a scaling factor:

p
(ℓ+1)
k =

γ̄k

γ
(ℓ)
k

p
(ℓ)
k . (3.78)

The update is such that in every iteration the users change their power to achieve their target SINR
with equality assuming that the other users’ powers remain constant. Clearly, when all target SINRs
have been reached, the update does not change the powers.

With the matrix and vectors defined in Section 3.4.4, we can express the updated power of
user k in terms of the vector of previous powers

p
(ℓ+1)
k =

γ̄k
|hkk|2

(

∑

j 6=k

|hkj|2p(ℓ)j + σ2

)

= eT
k

(

Cp(ℓ) + d
)

. (3.79)

Therefore, the vector of updated powers is

p(ℓ+1) = Cp(ℓ) + d = C2p(ℓ−1) +Cd + d = . . . = Cℓ+1p(0) +
(

I+C +C2 + . . .+Cℓ
)

d.
(3.80)
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If the spectral radius of C is strictly smaller than one, Cℓ+1 approaches the null matrix for large ℓ
and we can apply the geometric series to the sum within the brackets, i. e.,

lim
ℓ→∞

p(ℓ+1) = (I−C)−1
d = (I−C)−1 ·













γ̄1
|h11|2 0 · · · 0

0 γ̄2
|h22|2

...
...

. . . 0
0 · · · 0 γ̄K

|hKK |2













· σ2
1 = σ2A−1

1 (3.81)

which is, with (3.37) and (3.38), the power allocation that achieves the SINR targets (γ̄1, . . . , γ̄K)
and therefore the solution to the feasibility/power minimization problem without power constraints.

If the spectral radius of C is one or larger, however, the power allocation does not converge and
one or more powers grow without bound. It is shown in [52] that if the SINR targets are feasible,
the spectral radius of C is always below one. For the rigorous proof we refer to [52] and give an
intuitive argument for this result in the following: if the SINR targets are feasible with noise power
σ2, they are also feasible with noise power ασ2 for 0 < α < 1; furthermore, when the noise power
is decreased in this way, the target SINR K-tuple is surely not on the Pareto boundary, as it can be
met with equality by multiplying all powers with the factor α. In the case of asymptotically low
noise, i. e., for α → 0,

Cp =
1

β
p (3.82)

defines the balancing solution for the target K-tuple (γ̄1, . . . , γ̄K), as was shown in the previous
section. Since the SINR targets (γ̄1, . . . , γ̄K) are feasible and not on the Pareto boundary for α → 0
and (βγ̄1, . . . , βγ̄K) by definition is on the Pareto boundary, the resulting β must be larger than one.
Finally, the Perron-Frobenius theorem tells us that 1/β is the spectral radius of C.

The feasibility/power minimization algorithm does not require any information exchange be-
tween the users: only the current value of the own SINR is required for the power update. Also,
the updates need not be performed in parallel (even though this was assumed for the convergence
proof), i. e., the target SINRs are also reached if only some users update their powers in a given
iteration. The powers that fulfill the target SINRs can be arbitrary large, however. Furthermore, if
it turns out that the target SINRs are infeasible even without the power constraints, the powers will
continue to grow without bound with every iteration, which is highly impractical.

As a remedy, the power update could be modified so that the power is “capped” at one, i. e.,

p
(ℓ+1)
k = min

{

γ̄k

γ
(ℓ)
k

p
(ℓ)
k , 1

}

. (3.83)

As a result, the power allocation would fulfill the power constraints after each update and still could
converge to the SINR targets if they are feasible. If the SINR targets are infeasible, the algorithm
would converge to some power allocation on the Pareto boundary.

3.5.4 The Distributed Gradient Projection Algorithm

In [35], an algorithm is proposed that optimizes the sum utility by means of a projected gradi-
ent search. Clearly, when the problem (3.47) has more than one local optimum, a gradient-based
algorithm does not necessarily converge to the global optimum, but might, depending on the initial-
ization and the step size, end up in another local optimum and thus not find the solution to (3.47).



70 3. Single-Antenna Interference Networks

Nonetheless, a good local optimum will yield superior performance to most other power alloca-
tions; also, determining a local optimum with manageable computational effort may be the only
reasonable option when searching for the global optimum is computationally infeasible.

In a centralized projected gradient algorithm, a feasible initial power allocation p(0) is chosen
and the power vector is then iteratively updated according to

p(ℓ+1) = Π

(

p(ℓ) + δ · ∂

∂p

∑

j

uj(γj)

∣

∣

∣

∣

p=p(ℓ)

)

(3.84)

where δ is the step size and Π(·) is the projection. The step size δ is crucial for convergence of
the algorithm: it can either be a constant or vary in the course of the iterations; if it changes over
the iterations, the values of δ may follow a pre-defined sequence or be determined adaptively [46].
Too small steps in general mean that convergence takes very long, while too large steps can cause
convergence to fail altogether. For the following distributed gradient projection algorithm it is
assumed that δ is a constant.

The projection Π(·) ensures that the new power allocation fulfills the power constraints. It
returns the feasible power vector that is closest in terms of Euclidean norm to the argument of the
projection [35]. In our case, the projection is a very straightforward operation: every element of
the argument that is greater than one is set to one, every negative element is set to zero, and the
others are not changed.

From the point of view of user k the power update therefore is

p̂
(ℓ+1)
k = p

(ℓ)
k + δ · ∂

∂pk

∑

j

uj(γj)
∣

∣

∣

p=p(ℓ)
(3.85)

p
(ℓ+1)
k = min

{

max
{

p̂
(ℓ+1)
k , 0

}

, 1
}

. (3.86)

Making use of the chain rule, we express the derivative as

∂

∂pk

∑

j

uj(γj)
∣

∣

∣

p=p(ℓ)
= u′

k

(

γ
(ℓ)
k

) |hkk|2
∑

i 6=k|hki|2p(ℓ)i + σ2

−
∑

j 6=k

u′
j

(

γ
(ℓ)
j

) |hjj|2p(ℓ)j
(

∑

i 6=j|hji|2p(ℓ)i + σ2
)2 |hjk|2

= u′
k

(

γ
(ℓ)
k

) γ
(ℓ)
k

p
(ℓ)
k

−
∑

j 6=k

π
(ℓ)
j |hjk|2

(3.87)

where we defined

π
(ℓ)
j = u′

j

(

γ
(ℓ)
j

) |hjj|2p(ℓ)j
(

∑

i 6=j|hji|2p(ℓ)i + σ2
)2 = u′

j

(

γ
(ℓ)
j

) γ
(ℓ)
j

2

|hjj|2p(ℓ)j

= − ∂uj(γj)

∂ (|hjk|2pk)

∣

∣

∣

∣

p=p(ℓ)

for any k 6= j.

(3.88)

As can be seen from the second line, the quantity π
(ℓ)
j can also be interpreted as the negative deriva-

tive of the utility of user j w. r. t. the interference power received from any undesired transmitter,
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i. e., π(ℓ)
j is the marginal decrease in the utility of user j when its interference power is marginally

increased. In the interference pricing algorithm presented in the next section, the quantity π
(ℓ)
j will

have special significance and will be termed the interference price of user j.
We can now write the power update of user k (prior to the projection) as

p̂
(ℓ+1)
k = p

(ℓ)
k + δ

(

u′
k

(

γ
(ℓ)
k

) γ
(ℓ)
k

p
(ℓ)
k

−
∑

j 6=k

π
(ℓ)
j |hjk|2

)

(3.89)

and observe that in addition to the current value of the own SINR and own power, knowledge of
the cross channel magnitudes |hjk|2 and the current values of π(ℓ)

j for all j 6= k is required, which
must be obtained by exchanging information with the other users. The cross channel coefficients
only need to be exchanged once during the initialization of the algorithm; the prices π(ℓ)

j , however,
change with each iteration and must therefore be exchanged after each iteration. We furthermore
note that all users must update their power synchronously, so that the updated power vector can be
expressed as (3.84).

For the purpose of clarifying which information is necessary for the update, we have expressed
all terms as functions of the SINRs γ

(ℓ)
k as far as possible. If the power of user k after iteration ℓ

is zero, however, the SINR is also zero and the quantity γ
(ℓ)
k /p

(ℓ)
k cannot be evaluated. Instead, the

expression |hkk|2/
(

∑

j 6=k|hkj|2p(ℓ)j + σ2
)

must be used, which we assume can just as easily be

measured by receiver k as the SINR γ
(ℓ)
k .

Convergence of the distributed gradient projection algorithm can be guaranteed if the step size
δ is sufficiently small. As noted previously, if δ is too small, convergence may require very many
iterations. It is possible to determine an optimal step size, but this requires bounding the norm
of the Hessian matrix of the sum utility [35, 46], and is therefore not practical if the nodes have
limited processing power. Therefore, heuristics are needed for a good choice of the step size δ,
which is an open problem that is not further pursued here.

We finally note that in [35] a procedure of switching the roles of transmitters and receivers is
proposed by which the transmitters can estimate

∑

j π
(ℓ)
j |hjk|2 without communicating with the

other users over signaling links. Also, a very similar algorithm can be derived by operating on the
logarithmic powers tk instead of pk.

3.5.5 The Interference Pricing Algorithm

As an extension to the selfish solution, where each user k maximizes its own utility uk(γk), the
term “pricing” has been generally applied to schemes where each user k maximizes its own utility
minus a cost term that is linear in the own power, i. e., uk(γk)− π · pk, cf. [53, 54]. The additional
cost term can be seen as a heuristic to incorporate the negative effects that an increase of pk has on
other users’ utilities into the payoff function of user k, or as a modification of the utility function
to encourage more “social” behavior of the users, while maintaining the principle that each user is
responsible only for maximizing its own payoff. A good choice of values for the prices has been
regarded generally as a matter of heuristics and the prices were usually assumed to be constant
over iterations and/or users.

In [2], it was shown that by properly adapting the prices in each iteration, the pricing approach
can be used to find a solution candidate for the sum utility problem. In each iteration of the inter-
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ference pricing algorithm user k solves its own power control problem

p
(ℓ+1)
k = argmax

pk

uk(γk)
∣

∣

∣

pj=p
(ℓ)
j ∀j 6=k

−
∑

j 6=k

π
(ℓ)
j |hjk|2pk s. t.: 0 ≤ pk ≤ 1 (3.90)

with the interference prices π
(ℓ)
j as defined in (3.88). This problem is an inexpensive line search

and can even be solved in closed form for many utility functions. Furthermore, if uk(γk) is concave
in γk (and consequently in pk as well), (3.90) is a concave maximization problem, and thus does
not have multiple local optima.

In the following we show that if a power allocation is stationary in the interference pricing
algorithm, i. e., if p(ℓ+1)

k = p
(ℓ)
k for all k ∈ {1, . . . , K}, it fulfills the KKT conditions of the sum

utility problem. To begin with, note that stationarity of the pricing algorithm implies that p(ℓ)k fulfills
the KKT conditions of the problem (3.90). With the Lagrangian multipliers µk and νk for the power
constraints, the KKT conditons of (3.90) are

∂

∂pk
uk(γk)

∣

∣

∣

p=p(ℓ)
−
∑

j 6=k

π
(ℓ)
j |hjk|2 + µk − νk = 0 (3.91)

µk ≥ 0 (3.92)

νk ≥ 0 (3.93)

µkp
(ℓ)
k = 0 (3.94)

νk

(

1− p
(ℓ)
k

)

= 0 (3.95)

0 ≤ p
(ℓ)
k ≤ 1. (3.96)

Considering that by definition (3.88)

∂

∂pk
uj(γj)

∣

∣

∣

p=p(ℓ)
= −π

(ℓ)
j |hjk|2 (3.97)

and that the stationarity conditions must be fulfilled for all users, it is clear that the stationary
power allocation p(ℓ) fulfills the conditions (3.48)–(3.53) and that any power allocation fulfilling
the KKT conditions of the sum utility problem is a stationary power allocation of the interference
pricing algorithm.

In contrast to the previously discussed distributed projected gradient algorithm, the pricing
updates need not necessarily be performed synchronously. The result that a stationary point is a
solution candidate of the sum utility problem holds regardless of the order in which the users have
performed their updates, or even whether they have at some point used outdated information in
their updates. Whether the algorithm is guaranteed to converge to such a stationary point, is a
different question. In [2], it is proven using results from the theory of supermodular games that,
if the utility functions uk(γk) are such that ck(γk) ∈ [1, 2] for all feasible SINR K-tuples and all
k ∈ {1, . . . , K}, the interference pricing algorithm converges to the global optimum. Again, it is
neither required that the users perform their updates in parallel or in any defined order, nor that
they always use the most up-to-date interference prices; it is only necessary that all powers and
interference prices are updated “regularly”. Note, however, that while for the logarithmic utility
convergence is thereby guaranteed, the rate utility does not fall into this class of utility functions,
as for the rate utility ck(γk) < 1.
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In the following we sketch an alternative convergence argument that is given in [55]; this argu-
ment applies to a somewhat broader set of utility functions that also includes the rate utility. The
conditions that every utility function uk(γk) must fulfill for the convergence argument are:
• uk(γk) is concave in pk, i. e., u′′

k(γk) ≤ 0 and thus ck(γk) ≥ 0 for all feasible SINRs.
• uk(γk) is convex in pj for all j 6= k, i. e., ∂2uk(γk)/(∂pj)

2 ≥ 0 for all j 6= k. With

∂2uk(γk)

(∂pj)2
= u′′

k(γk)

(

∂γk
∂pj

)2

+ u′
k(γk)

∂2γk
(∂pj)2

(3.98)

and
∂γk
∂pj

= −γ2
k|hkj|2

|hkk|2pk
and

∂2γk
(∂pj)2

=
2γ3

k|hkj|4
|hkk|4p2k

(3.99)

for j 6= k, it can be seen that this condition is equivalent to ck(γk) ≤ 2 for all feasible SINRs.
• The magnitude of the second derivative of the utilitiy does not approach zero anywhere in the

interval of feasible SINRs, i. e., |u′′
k(γk)| ≥ C > 0 for all feasible SINRs.

Thus, we are essentially allowing utility functions with ck(γk) ∈ [0, 2] with the small caveat that
the second derivative may not vanish anywhere. The rate utility fulfills these conditions, as the
second derivative approaches zero only for inifinite SINR, which is not feasible.

For the following convergence argument, we assume that in iteration ℓ only user k updates its
power, and that the interference prices are up-to-date. By adding some terms that do not depend on
pk to the utility function, the power update of the interference pricing algorithm can be written as

p
(ℓ+1)
k = argmax

pk

a
(ℓ)
k (pk) s. t.: 0 ≤ pk ≤ 1 (3.100)

with

a
(ℓ)
k (pk) = uk(γk)

∣

∣

∣

pj=p
(ℓ)
j ∀j 6=k

+
∑

j 6=k

(

uj

(

γ
(ℓ)
j

)

− π
(ℓ)
j |hjk|2

(

pk − p
(ℓ)
k

))

. (3.101)

The function a
(ℓ)
k (pk) is an approximation of the sum utility, where the utility summands of

users j 6= k were replaced by their first order Taylor approximation centered at the current power
p
(ℓ)
k . Therefore, we have

a
(ℓ)
k

(

p
(ℓ)
k

)

=
∑

j

uj

(

γ
(ℓ)
j

)

(3.102)

i. e., at for pk = p
(ℓ)
k the approximation is exact. Since the summands uj(γj) with j 6= k are convex

in pk, linearization of uj(γj) in pk leads to an under-estimation of the true sum utility, i. e.,

a
(ℓ)
k (pk) ≤

∑

j

uj(γj)
∣

∣

∣

pi=p
(ℓ)
i ∀i 6=k

(3.103)

and we can state our chain of arguments for convergence:
• Since the update consists of maximizing a

(ℓ)
k (pk),

a
(ℓ)
k

(

p
(ℓ+1)
k

)

≥ a
(ℓ)
k

(

p
(ℓ)
k

)

(3.104)

and therefore the value of the sum utility is non-decreasing over the iterations.
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• The sum utility is bounded from above, therefore it converges over the iterations, i. e., the
changes in sum utility from one iteration to the next become arbitrarily small.

• Since the sum utility is under-estimated by the approximation a
(ℓ)
k (pk), the change in the ap-

proximation resulting from updating the power also becomes arbitrarily small, i. e., for any
ε > 0 there exists an ℓ0 such that

a
(ℓ)
k

(

p
(ℓ+1)
k

)

− a
(ℓ)
k

(

p
(ℓ)
k

)

≤ ε ∀ℓ ≥ ℓ0. (3.105)

• An arbitrarily small change in a
(ℓ)
k (pk) implies an arbitrarily small change in power pk from

iteration ℓ to iteration ℓ + 1 since the magnitude of the second derivative of the utilities is
bounded from below. The rigorous proof for this part of the argument is rather tedious and not
very instructive, and is therefore omitted here. Intuitively it is clear that an arbitrarily small
change of a(ℓ)k (pk) can only be accompanied by a much larger change in powers if the function

a
(ℓ)
k (pk) is arbitrarily “flat” around the maximum, which would require the second derivative of

a
(ℓ)
k (pk) to vanish, which in turn would require that u′′

k(γk) approaches zero.
Therefore, all powers converge and the power allocation reaches a stationary point.

Similar to the distributed gradient projection algorithm, the interference pricing algorithm re-
quires that the squared channel magnitudes |hjk|2 for all j ∈ {1, . . . , K} are known to user k,
which necessitates an initial channel information exchange phase. Then, in order to perform a
power update, the current interference prices π(ℓ)

j for all j 6= k must be known to user k. A detailed
analysis of the necessary amount of information exchange is given in Section 3.5.6.

3.5.5.1 Update Rules for the Sum Rate Problem

As discussed in Section 3.4.5.1, the derivatives of the rate of user k w. r. t. the different powers are

∂Rk

∂pk
=

γk
(1 + γk)pk

=
1

pk
γk

+ pk
(3.106)

∂Rk

∂pj
= − γ2

k|hkj|2
(1 + γk)|hkk|2pk

for j 6= k (3.107)

where the second line can also be obtained by applying the chain rule and using (3.99). The inter-
ference price of user k can thus be computed as

π
(ℓ)
k =

γ
(ℓ)
k

2

(

1 + γ
(ℓ)
k

)

|hkk|2p(ℓ)k

. (3.108)

For the power update, we first set the derivative of the utility minus cost to zero:

∂Rk

∂pk
=
∑

j 6=k

π
(ℓ)
j |hjk|2. (3.109)

Keeping in mind that pk/γk does not depend on pk, the power p̂(ℓ+1)
k that fulfills this condition is

p̂
(ℓ+1)
k =

1
∑

j 6=k π
(ℓ)
j |hjk|2

− p
(ℓ)
k

γ
(ℓ)
k

. (3.110)
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If p̂
(ℓ+1)
k is negative (or larger than one), the solution to (3.90) is zero (or one) since Rk, and

therefore also Rk minus the linear cost terms, is concave in pk. The power update can thus be
completed by the projection

p
(ℓ+1)
k = min

{

max
{

p̂
(ℓ+1)
k , 0

}

, 1
}

. (3.111)

Special attention must be paid to two cases where the evaluation of (3.110) is problematic: first,

if p(ℓ)k is zero, we must use the expression
(

∑

j 6=k|hkj|2p(ℓ)j + σ2
)

/|hkk|2 instead of p(ℓ)k /γ
(ℓ)
k , as

discussed below (3.89). Second, if
∑

j 6=k π
(ℓ)
j |hjk|2 is zero, the right-hand side of (3.110) is infinite

and it is clear from the optimization problem (3.90) that p(ℓ+1)
k is one.

3.5.5.2 Update Rules for the Sum Logarithmic Utility Problem

Similar to the previous section, with the derivatives

∂uk(γk)

∂pk
=

1

pk
(3.112)

∂uk(γk)

∂pj
= −γk|hkj|2

|hkk|2pk
for j 6= k (3.113)

we can compute the interference prices as

π
(ℓ)
k =

γ
(ℓ)
k

|hkk|2p(ℓ)k

(3.114)

and perform the power update as

p̂
(ℓ+1)
k =

1
∑

j 6=k π
(ℓ)
j |hjk|2

(3.115)

p
(ℓ+1)
k = min

{

p̂
(ℓ+1)
k , 1

}

. (3.116)

3.5.6 Comparison of the Distributed Algorithms

Table 3.1 gives an overview of some of the main properties of the discussed distributed algorithms.
For the information exchange analysis in Table 3.2, we assumed that the transmitters are connected
via bi-directional signaling links, as is depicted in Figure 3.6(a). Also, each transmitter k is able to
evaluate its utility function uk(γk) and the first derivative u′

k(γk), but need not have any knowledge
of the other users’ utility functions. The first column shows which information must be fed back
from every receiver to its transmitter over the feedback link once at the beginning of the algorithm;
the information in the second column is signaled from every transmitter k to every transmitter j 6=
k once. The third and fourth column contain the information that is fed back from receivers to
transmitters and signaled among the transmitters at every iteration.

If the receivers are connected and perform the computation of the power update, as in Fig-
ure 3.6(b), the information exchange requirements are very similar. The main difference is that the
receivers must additionally feed back the powers p(ℓ)k to their transmitters after each update.
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Algorithm Requires synchronous updates? Issues

Selfish solution No —
Noiseless balancing Yes balancing solution for σ2 = 0; con-

vergence requires irreducibility
Feasibility/power min. No does not allow for upper limits on

power; diverges if SINR targets are
infeasible; convergence requires ir-
reducibility

Projected gradient Yes choice of a good step size is not
straightforward

Interference pricing No no convergence guarantees for
ck(γk) > 2

Table 3.1: Overview of the discussed distributed algorithms

Algorithm Rx k → Tx k Tx k → Tx j Rx k → Tx k Tx k → Tx j

once once per iteration per iteration

Selfish solution γk — — —

Noiseless balancing |hkk|2 — γ
(ℓ)
k p̂

(ℓ)
k

Feasibility/power min. — — γ
(ℓ)
k —

Projected gradient |hkj|2 ∀j |hkj|2 γ
(ℓ)
k π

(ℓ)
k

Interference pricing |hkj|2 ∀j |hkj|2 γ
(ℓ)
k π

(ℓ)
k

Table 3.2: Information exchange requirements of the distributed algorithms assuming that the transmitters
compute the updates and are connected via signaling links, cf. Figure 3.6(a).

3.6 Numerical Evaluation of the Distributed Power Control Algorithms

In this section we give some examples demonstrating the typical convergence behavior of the dis-
cussed algorithms and then proceed to evaluate the average performance of the projected gradient
and interference pricing algorithms in terms of sum utility for a simple independent and identically
distributed (i. i. d.) Gaussian channel model. We begin with the special case of K = 2 users where
the trajectories of the discussed algorithms can be visualized in the SINR and rate regions.

3.6.1 Numerical Examples forK = 2 Users

In Figures 3.7–3.9, a typical two-user SINR region is plotted for three different values of the noise
power σ2. When the noise power decreases, the shape of the region becomes “more hyperbolic”,
and the SINR of the active user in an altruistic solution becomes much higher than the SINRs
achievable by the selfish solution.

The balancing target in all three scenarios is such that the first user has twice the SINR of the
second user; the balancing solution, i. e., the point on the Pareto boundary that fulfills the balancing
target, is marked with a circle. The noiseless balancing algorithm, however, converges towards the
balancing solution assuming that σ2 = 0, which we mark with a triangle in the plots. For low
values of σ2 the noiseless balancing solution and the balancing solution almost coincide, while



3.6 Numerical Evaluation of the Distributed Power Control Algorithms 77

0 0.05 0.1
0

0.05

0.1

 

 

Pareto boundary
Selfish solution
Altruistic solutions
Balancing solution
Noiseless balancing solution
Noiseless balancing alg.
Feasibility/power min. alg.

γ1

γ
2

Figure 3.7: SINR region for the same channel as in Figure 3.4, but with σ2 = 10. The algorithms are
initialized with the power allocation (p1 = 0.5, p2 = 0.5), the SINR target of the feasibility algorithm is
(0.03, 0.09), the balancing target is (2, 1).
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Figure 3.8: Scenario as in Figure 3.7 with σ2 = 1 and feasibility target (0.3, 1).
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Figure 3.9: Scenario as in Figure 3.7 with σ2 = 0.1 and feasibility target (1.5, 0.3).



78 3. Single-Antenna Interference Networks

for higher noise powers there is a significant gap. In the plotted scenarios, the noiseless balancing
algorithm reaches its goal in very few iterations.

The convergence performance of the feasibility algorithm, which was implemented with par-
allel updates, depends more heavily on the value of the noise power. In Figure 3.7, the target is
reached in two iterations, while in Figure 3.9, where σ2 = 0.1, more than ten iterations are needed.
Note that in Figure 3.8 an infeasible SINR target was chosen. The algorithm converges towards
it, nonetheless, thereby violating the transmit power constraints. It is also possible that an SINR
target is infeasible even with infinite transmit power; in such a case (which is not included in our
examples) the algorithm would simply diverge.

In Figures 3.10–3.12, the same scenarios are plotted in the rate domain instead of the SINR
domain. Again it can be seen that the non-convexity of the region is more pronounced for lower
noise powers. As discussed in Section 3.4.5.1, the sum-rate optimal rate pair can be either the
selfish solution or one of the altruistic solutions. Since the sum rate is equal for all points on a
straight line with slope −1, the optimal rate pair can be graphically determined as the point where
the region is “touched” by such a line of equal sum rate. In the figures the sum-rate optimal point
is marked by a circle and the supporting line of equal sum rate is visualized as a dotted line.

The pricing algorithm was implemented with parallel updates, i. e., both users update their
powers synchronously and then exchange the updated prices. In Figures 3.10 and 3.11, the pricing
algorithm converges to the optimal selfish selfish solution immediately. With lower noise power in
the scenario in Figure 3.12, on the other hand, several iterations are needed to disable the second
user. This scenario is also an example for a case in which the projected gradient and the pricing
algorithm happen to converge to two different local optima. In this particular case the pricing
algorithm finds the global optimum, but this does not appear to be a general trend.

The trajectories of the projected gradient algorithm in Figures 3.10 and 3.11 also give an in-
tuition for the difficulty of choosing the best step size. While in the case σ2 = 10 the algorithm
seems to take unnecessarily small steps, for σ2 = 1 the optimum is found with a single iteration,
even though δ = 1 was used in both cases.

In Figure 3.13, the achievable region for the same channel with σ2 = 1 can again be seen, but
this time in the logarithmic utility domain. The utility region is clearly convex, and, as discussed
in Section 3.4.5.2, the selfish soltution is optimal in terms of sum utility.

3.6.2 Numerical Examples for the Convergence Behavior forK = 4 Users

In Figures 3.14 and 3.15, we show how the sum rate evolves over the iterations for a given channel
with K = 4 users. The coefficients of the channel are

|h11|2 = 0.8 |h12|2 = 0.8 |h13|2 = 2.5 |h14|2 = 2.2

|h21|2 = 0.2 |h22|2 = 0.8 |h23|2 = 0.4 |h24|2 = 0.5

|h31|2 = 0.4 |h32|2 = 0.4 |h33|2 = 0.4 |h34|2 = 2.6

|h41|2 = 2.6 |h42|2 = 1.8 |h43|2 = 0.4 |h44|2 = 0.2.

(3.117)

Again, parallel updates were used for the interference pricing algorithm. All algorithms were ter-
minated when the Euclidean norm of the difference of the updated vector of powers p(ℓ+1) and the
previous power vector p(ℓ) was below 10−4.

The figures clearly show that choosing a small step size δ for the projected gradient algorithm
leads to slower convergence. Also, the scenario in Figure 3.14 is an example where the step size
has an influence on which local optimum is reached: with δ = 10 (and with the interference pricing
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Figure 3.10: Rate region for the scenario in Figure 3.7. The algorithms are initialized with the power allo-
cation (p1 = 0.1, p2 = 0.1), the step size of the projected gradient algorithm is δ = 1. All rate pairs on the
dotted line have the optimal sum rate.
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Figure 3.11: Scenario as in Figure 3.10 with σ2 = 1.
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Figure 3.12: Scenario as in Figure 3.10 with σ2 = 0.1.
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Figure 3.13: Scenario as in Figure 3.11 with logarithmic utility instead of rate.
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Figure 3.14: Convergence of the sum rate over iterations for the channel in (3.117) with σ2 = 1. The
initial power allocation for all algorithms is pk = 0.1 for all k ∈ {1, 2, 3, 4}. The SINR target for both the
feasibility and balancing algorithms is γ̄k = 0.06 for all k ∈ {1, 2, 3, 4}.
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Figure 3.15: Scenario as in Figure 3.14 with σ2 = 0.1.

algorithm) an inferior local optimum is found compared to the lower step sizes. Again, though, it
cannot be generally stated that small step sizes yield better performance.

For the same scenario, but with logarithmic instead of rate utility, Figure 3.16 shows that the
step sizes δ = 1 and δ = 10 lead to visible oscillations and are therefore not sufficiently small to
ensure convergence, whereas the pricing algorithm converges without problems.

3.6.3 Average Sum Utility Performance in a Gaussian Channel Model

While we have so far only presented exemplary channel realizations, it is of course of interest
how the algorithms aimed at maximizing the sum utility perform on average. To this end, we
must first define a channel model: in the following we assume that all channel coefficients hkj

are chosen independently with a zero-mean unit-variance complex Gaussian distribution, i. e., the
real and imaginary parts of all hkj are Gaussian with mean zero and variance one half, and are
uncorrelated.

For the results in Figures 3.17–3.20 the initial power allocation was pk = 0 for all k ∈
{1, . . . , K}. The iterative algorithms were run until either the Euclidean norm of the change in
the power vectors was below 10−4 or 1000 iterations were reached. In addition to the distributed
algorithms, we included the performance of two simple centralized schemes: for the plot labeled
“exhaustive user selection” the best of the 2K − 1 non-zero power allocations with pk ∈ {0, 1} for
all k ∈ {1, . . . , K} was used; also, the best out of the K altruistic solutions, in which exactly one
user has power one and all others have power zero, is shown.

Figures 3.17 and 3.18 show that for both K = 4 and K = 10 users the pricing algorithm and
the projected gradient algorithm have very similar sum-rate performance, and that the influence of
the step size δ on the performance is marginal. Also, it can be seen that the distributed algorithms
do not generally find the global optimum, as they are outperformed by the exhaustive user selec-
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Figure 3.16: Scenario as in Figure 3.15 with logarithmic utility. Discontiuities in the plots for the projected
gradient algorithm are a result of the sum utility being −∞ after certain updates in which one or more users
are given zero power.
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Figure 3.17: K = 4 users, sum rate averaged over 1000 channel realizations.
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Figure 3.18: K = 10 users, sum rate averaged over 1000 channel realizations.

tion scheme. All schemes except for the selfish solution, however, achieve an asymptotic slope of
approximately 3.3 bpcu per 10 dB increase of the inverse noise power. This is a consequence of the
fact that when all cross channels are non-zero, the optimal sum rate in bpcu grows proportionally
to log2(σ

−2) = log2(10) · log10(σ−2) as σ−2 → ∞, cf. (3.63).
For the results in Figure 3.19 the channel model was modified so that the direct channels hkk

have unit variance, whereas the cross channels hkj with k 6= j have a variance of only 0.01. Here,
it appears to be crucial that the projected gradient step size is sufficiently small in order to be able
to reach the performance of the pricing algorithm.

For the logarithmic utility (Figure 3.20) the pricing algorithm is proven to find the global op-
timum and it appears that the step size δ = 0.1 is sufficiently small so that the projected gradient
algorithm also converges towards the global optimum. For δ = 0.5, on the other hand, the plot
disappears for inverse noise powers above 5 dB since the average sum utility is minus infinity. This
indicates that in at least one channel realization the projected gradient algorithm failed to converge
as a result of the step size being too large.

Finally, in Figure 3.21 we show the effect of choosing different initial power allocations on
the sum-rate performance. In addition to the previously used initialization with zero power, the
selfish solution was used as a starting point as well as a “random” power allocation where each
user starts with a random power drawn from a uniform distribution between zero and one. These
three initialization schemes have only a marginal difference in performance. A fourth scheme,
where p(0)1 = 1 and all other powers are set to zero initially, on the other hand, performs far worse,
presumably because the initial allocation lies in the vicinity of a local optimum that is in most
cases not globally optimal.
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Figure 3.19: K = 10 users, sum rate averaged over 1000 channel realizations of a channel model where the
variance of the cross channels is 0.01 and the variance of the direct channels is 1.
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Figure 3.20: K = 10 users, sum logarithmic utility averaged over 1000 channel realizations. All channel
coefficients have unit variance.
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Figure 3.21: Scenario as in Figure 3.18, but with different initial power allocations.





4. MISO Interference Networks

If the transmitting nodes in a wireless interference network have more than one antenna, the trans-
mit strategy consists of more than simply choosing a suitable transmit power; the signals transmit-
ted from the different antennas can, e. g., be given different gains and phase shifts, thus making
it possible to generate a specific spatial characteristic of the composite transmitted signal, a tech-
nique known as beamforming. As a simple example, consider a system with two users and two
antennas at each transmitter: the transmitters can form their signals such that the individual signals
from the two antennas exactly cancel out at the respective unintended receivers. Assuming that the
signals do not happen to also cancel out at the intended receivers, we have effectively created two
parallel non-interfering links, over which data can be transmitted with full power.

The additional possibilities of designing the transmit strategies to perform this type of spatial
interference cancellation, however, make the mathematical structure of the underlying problems
considerably more complex. In contrast to the SISO case, for multiple-input single-output (MISO)
networks simple conditions for the convexity of the utility region remain elusive; similarly, closed-
form solutions for the problems of deciding whether a given strategy is on the Pareto boundary
of the utility region or whether a given SINR K-tuple is feasible have not been found. Finally,
determining the globally optimal transmit strategy for the sum utility problem appears to be com-
putationally infeasible in most cases; the focus of the algorithm design instead lies on good average
performance, reliable convergence behavior, and computationally simple update procedures suit-
able for distributed implementation.

In this chapter we give an overview of some analytical results concerning optimal transmit
strategies for MISO interference networks and proceed to discuss and numerically evaluate a num-
ber of different algorithms aimed at maximizing the sum utility.

4.1 System Model

The main difference to the system model of the previous chapter is that we now allow the transmit-
ting nodes to have more than one antenna; we denote the number of antennas of transmitter k as
Nk. Each receiving node in our system has one antenna. The complex gains of the channels from
each of the Nj antennas of transmitter j to the antenna of receiver k are collected in the vector
hkj ∈ CNj . We furthermore require that the direct channels are non-zero, i. e., hkk 6= 0 for all
k ∈ {1, . . . , K}.

With the vector xk ∈ CNk containing the symbols transmitted from the Nk antennas of trans-
mitter k, the received symbol of receiver k is

yk = hT
kkxk +

∑

j 6=k

hT
kjxj + nk ∀k ∈ {1, . . . , K} (4.1)

where, again, the noise variance

E
[

|nk|2
]

= σ2 ∀k ∈ {1, . . . , K} (4.2)

87
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with σ2 > 0 is equal at all receivers. The transmit symbol vector xk ∈ CNk has mean zero and
is uncorrelated between transmitters, i. e., E[xk] = 0 and E[xjx

H
k ] = 0 for j 6= k. The transmit

covariance matrix of user k is

Qk = E
[

xkx
H
k

]

∈ CNk×Nk ∀k ∈ {1, . . . , K}. (4.3)

Note that any valid covariance matrix Qk must be positive semi-definite. We impose a unit power
constraint on the sum of the powers across the antennas of a single user, which with (4.3) results
in the condition

tr (Qk) ≤ 1 ∀k ∈ {1, . . . , K}. (4.4)

Since the power of the portion of the received symbol yk that results from transmitter j is

E
[

|hT
kjxj|2

]

= hT
kjQjh

∗
kj ∀(k, j) ∈ {1, . . . , K}2 (4.5)

the SINR of user k is

γk =
hT

kkQkh
∗
kk

∑

j 6=k

hT
kjQjh

∗
kj + σ2

∀k ∈ {1, . . . , K}. (4.6)

As for single-antenna systems, cf. Section 3.1, different per-user transmit power constraints and
noise powers can be accomodated by appropriately renormalizing the channel coefficient vectors.

An important class of transmit strategies in MISO interference networks is single-stream beam-
forming, where the transmit signal xk is the result of multiplying a unit-variance scalar data symbol
sk with a constant beamforming vector vk, i. e.,

xk = vk · sk ∀k ∈ {1, . . . , K}. (4.7)

The covariance matrices, which in this case have at most rank one, can be written as

Qk = vkv
H
k ∀k ∈ {1, . . . , K}. (4.8)

Since tr (Qk) = ‖vk‖22, the unit power constraint is

‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K}. (4.9)

The SINR of user k expressed by means of the beamforming vectors is

γk =
|hT

kkvk|2
∑

j 6=k

|hT
kjvj |2 + σ2

∀k ∈ {1, . . . , K}. (4.10)

4.2 The Utility Region

In the SISO case, the region of feasible transmit strategies, or power region, consists of K-tuples of
real scalars; the SINR region and the utility region are also sets of K-tuples of real scalars, and the
mapping between feasible power K-tuples and feasible SINR or utility K-tuples was shown to be
bijective, cf. (3.38) and Appendix A2. In the MISO case, on the other hand, the transmit strategies
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Figure 4.1: Example region in which the strong and weak Pareto boundary are not identical: sections of the
boundary belonging to the weak Pareto boundary, but not to the strong Pareto boundary, are marked by a
thinner line.

are K-tuples of covariance matrices (Q1, . . . ,QK), or, if we allow only single-stream beamform-
ing,K-tuples of beamforming vectors (v1, . . . , vK); the region of feasible transmit strategies there-
fore has a higher dimensionality than the SINR or utility region, which are again sets of K-tuples
of real scalars (γ1, . . . , γK) or (u1(γ1), . . . , uK(γK)). Consequently, there must exist SINR or util-
ity K-tuples that can be achieved by more than one transmit strategy. This fundamental difference
to the SISO case makes it considerably more difficult to analyze the properties of the SINR and
utility region for MISO interference networks. Nonetheless, a number of interesting observations
have been made, which we discuss in the following.
Definition 4.1. The strong Pareto boundary of a region is the subset of K-tuples in the region that
are not dominated by any other K-tuple in the region with strict dominance in at least one com-
ponent. Therefore, a K-tuple (r1, . . . , rK) is on the strong Pareto boundary if there does not exist
another K-tuple (r̄1, . . . , r̄K) 6= (r1, . . . , rK) in the region with r̄k ≥ rk for all k ∈ {1, . . . , K}.

The difference between the strong Pareto boundary and the previously utilized (weak) Pareto
boundary, cf. Definition 3.3, is illustrated in Figure 4.1: instead of requiring that no other point
of the region strictly dominates a boundary point, we now require that no other point dominates
in at least one component with the other components being equal. Consequently, sections of the
weak Pareto boundary that run parallel to one or more of the axes are not part of the strong Pareto
boundary.
Proposition 4.1. The SINR region and the utility region are comprehensive.

Proof. To begin with, we assume a fixed K-tuple of positive semi-definite matrices (Q′
1, . . . ,Q

′
K)

where tr(Q′
k) = 1 for all k ∈ {1, . . . , K} and define our covariance matrices as Qk = pkQ

′
k with

0 ≤ pk ≤ 1 for all k ∈ {1, . . . , K}. From (4.6) and (3.5) it follows that the region of SINRs or
utilities achievable by varying the powers pk is identical to that of a SISO scenario with squared
channel magnitudes |hjk|2 = hT

jkQ
′
kh

∗
jk for all (j, k) ∈ {1, . . . , K}2, which is comprehensive, cf.

Propositions 3.2 and 3.5. The complete SINR or utility region for the MISO interference network
clearly is the union of such SISO regions over all valid K-tuples (Q′

1, . . . ,Q
′
K) and is therefore

also comprehensive. In the same way, comprehensiveness can be shown for the case of single-
stream beamforming.
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Proposition 4.2 (Cf. [56, 57, 58]). The SINR region and the utility region with the restriction of

single-stream beamforming (4.7) are the same as without this restriction, i. e., with covariance

matrices that may have a rank higher than one.

Although highly intuitive, as having to decode multiple independent streams of information
from a single scalar signal seems to be an unnecessary burden for the receiver, this result is not
immediately evident from the expressions (4.6) and (4.10). It was proven independently in [56,
57, 58] with some effort; the approach in all three proofs is to first allow covariance matrices Qk

with arbitrary rank and to then show that for points on the strong Pareto boundary the rank of the
resulting covariance matrices is at most one. Due to the comprehensiveness of the regions, identical
strong Pareto boundaries imply that the regions are identical. As a consequence of Proposition 4.2,
we can limit our discussion to single-stream beamforming without losing optimality.

Completely characterizing the weak or strong Pareto boundary of the SINR or utility region
for a MISO interference network is not straightforward. In particular, for a given transmit strategy
no simple method is known to determine whether the resulting SINR or utility K-tuple is on the
Pareto boundary of the region. In [56, 57, 58], however, different necessary, but not sufficient,
conditions were derived for strong Pareto optimality. In the following we discuss the necessary
conditions from [58], from which some useful conclusions can be drawn.
Proposition 4.3 (Cf. [58]). Any beamformer vk resulting in an SINRK-tuple on the strong Pareto

boundary of the SINR region (and consequently resulting in a utilityK-tuple on the strong Pareto

boundary of the utility region) must fulfill

Zkvk = µvk (4.11)

where

Zk = λkkh
∗
kkh

T
kk −

∑

j 6=k

λjkh
∗
jkh

T
jk, (4.12)

µ is the highest eigenvalue of Zk, and

K
∑

j=1

λjk = 1 with λjk ≥ 0 ∀j ∈ {1, . . . , K}. (4.13)

Furthermore, vk = 0 if µ < 0 and ‖vk‖22 = 1 if µ > 0.

The proof draws on the concept of power gain regions: the power gain from transmitter
k to receiver j is defined as |hT

jkvk|2; the power gain region of user k is the set of K-tuples
(|hT

1kvk|2, . . . , |hT
Kkvk|2) that are achievable with a feasible beamformer vk. Clearly, user k must

choose its beamformer vk such that |hT
kkvk|2 is high, whereas |hT

jkvk|2 for j 6= k is low. In particu-
lar, a beamformer vk resulting in a power gain K-tuple such that |hT

kkvk|2 can be further increased
and all |hT

jkvk|2 with j 6= k can be further decreased at the same time cannot result in a Pareto
optimal SINR K-tuple, since vk can be changed to increase all SINRs. Therefore, only a certain
section of the boundary of the K power gain regions comes into question for transmit strategies re-
sulting in SINR K-tuples on the Pareto boundary of the SINR region. This section of the boundary
of the power gain region of user k is characterized by above condition.

Some remarks on the result stated in Proposition 4.3:
• As can be observed from inserting (4.12) into (4.11), the beamformer vk of user k is a lin-

ear combination of the conjugate channel vectors between transmitter k and all receivers j ∈
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{1, . . . , K}, i. e.,

vk =
K
∑

j=1

ξjkh
∗
jk (4.14)

with ξjk ∈ C. This result was previously proven in [59].

• If hkk is linearly independent of the space spanned by all hjk with j 6= k, the highest eigen-
value of Zk is non-negative regardless of the parameters λ1k, . . . , λKk. For this case it was
additionally shown in [58] that ‖vk‖22 = 1 is a necessary condition for strong Pareto optimality.
Furthermore, in this case it is possible for transmitter k to choose a beamformer vk such that
hT

jkvk = 0 for all j 6= k while hT
kkvk 6= 0, i. e., data can be transmitted to the desired receiver

without causing interference to the undesired receivers. We refer to a beamformer fulfilling
these conditions as a zero-forcing (ZF) solution and state that, if zero-forcing is possible for
user k, it is always optimal for user k to transmit with full power.

• In the special case of K = 2 users with N1 ≥ 2 and N2 ≥ 2 transmit antennas as well as
linearly independent channel vectors h11 and h21, and linearly independent channel vectors
h22 and h12, it follows from the previous remark that both users transmit at full power; also,
the necessary condition can be further simplified:

vk =
λkv

MF
k + (1− λk)v

ZF
k

‖λkv
MF
k + (1− λk)v

ZF
k ‖2

∀k ∈ {1, 2} (4.15)

with λk ∈ [0, 1], where

vMF
k =

h∗
kk

‖h∗
kk‖2

and vZF
k =

(

I− h∗
jkh

T
jk/‖hjk‖22

)

h∗
kk

∥

∥

(

I− h∗
jkh

T
jk/‖hjk‖22

)

h∗
kk

∥

∥

2

with j 6= k. (4.16)

With the beamformer vMF
k user k maximizes its own SINR, whereas vZF

k causes no interference
at the unintended transmitter; therefore, the optimal strategies can be viewed as trading off
between selfishness and altruism. A derivation of the expressions for vMF

k and vZF
k as well as

a more detailed discussion of the concepts of selfishness and altruism is given in the following
section.

• Due to the constraint on
∑

j λjk, the set of allowed K-tuples (λ1k, . . . , λkK) has K − 1 “inde-
pendent” parameters. Consequently, the number of independent parameters in the conditions
on all K beamformers is K(K − 1) if it is clear that all beamformers use full power, and up
to K2 if ‖vk‖22 is also variable for all users. The Pareto boundary of the SINR or utility region,
on the other hand, is a K − 1-dimensional manifold in RK . It is therefore intuitive that only
a small subset of those transmit strategies fulfilling the necessary conditions is actually on the
strong Pareto boundary.

As will be shown in Section 4.5, examples can be found for SINR regions that are convex and
non-convex. Similarly, the utility region with the achievable rate utility function can be convex or
non-convex. Moreover, in contrast to the SISO case, it is possible for the utility region with the
logarithmic utility function to be non-convex in MISO interference networks. A simple sufficient
condition on the utility functions that guarantees a convex utility region, as was given for the SISO
case in Theorem 3.1, is not known for scenarios with multiple antennas.
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4.3 Optimal Transmit Strategies

4.3.1 The Selfish Solution or Nash Equilibrium

If user k is concerned only about maximizing its own utility, it must choose the beamformer vk

that maximizes its SINR γk. As can be seen in (4.10), γk is increasing in |hT
kkvk|2 and does not

depend on vk in any other way. Therefore, the selfish beamformer of user k fulfills

vMF
k = argmax

vk

|hT
kkvk|2 s. t.: ‖vk‖22 ≤ 1. (4.17)

It is straightforward to show that the resulting beamformer is

vMF
k =

1

‖h∗
kk‖2

· h∗
kk (4.18)

i. e., the linear filter “matched” to the direct channel hkk (hence the super-script “MF”). The beam-
former vMF

k fulfills the necessary condition for strong Pareto optimality (4.11): the corresponding
parameter values are λkk = 1 and λjk = 0 for all j 6= k.

When all users k ∈ {1, . . . , K} apply their respective selfish beamformers vMF
k , we refer to

the transmit strategy as the selfish solution. Since the conditions (4.11) are not sufficient for strong
Pareto optimality, the selfish solution generally is in the interior of the utility region, as will also
become apparent in the numerical examples in Section 4.5.

Similar to the SISO case, we can formulate a game with the K users as players, the individual
utility functions as payoff, and the choice of the own beamformer vk as the strategy of player k;
then, again, the selfish solution is the unique Nash equilibrium of the game, i. e., the set of strategies
from which it is not possible for any player to improve its own payoff by unilaterally changing its
strategy.

4.3.2 Altruistic Solutions

As in Section 3.4.2, we define an altruistic solution to be a K-tuple of beamformers (v1, . . . , vK)
for which each user k
1) cannot unilaterally improve the utility function uj(γj) of any user j 6= k by changing vk and
2) cannot improve its own utility uk(γk) by changing vk without decreasing at least one other

utility uj(γj) with j 6= k.
Since uj(γj) is strictly decreasing in |hT

jkvk|2 if and only if |hT
jjvj |2 is non-zero, the first condition

implies that the interference power caused by transmitter k at receiver j must be zero for all un-
intended users j 6= k for which γj > 0. If we partition the K users into two sets, the active users
with γk > 0 and the inactive users with γk = 0, each user in the active set must solve the following
optimization problem in order to be able to fulfill both conditions for an altruistic solution:

vZF
k = argmax

vk

|hT
kkvk|2 s. t.: hT

jkvk = 0 for all users j 6= k in the active set

and ‖vk‖22 ≤ 1.
(4.19)

The super-script “ZF” for zero-forcing indicates that the beamformer is designed to cause zero
interference to other active users.

As is shown in Appendix A5, the beamformer that solves above optimization problem is

vZF
k =

1

‖Πkh
∗
kk‖2

·Πkh
∗
kk (4.20)
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where the projection matrix Πk is defined as

Πk = I−H+
k Hk (4.21)

and the matrix Hk contains the stacked row vectors hT
jk for all j 6= k in the active set. If HkH

H
k

is invertible, i. e., if the vectors hT
jk for all j 6= k in the active set are linearly independent, the

projection matrix Πk can also be written as

Πk = I−HH
k

(

HkH
H
k

)−1
Hk. (4.22)

If the matrix Hk has rank Nk, the projection matrix Πk is the zero matrix. In this case, it is
impossible for user k to fulfill both altruism conditions while remaining in the set of active users
with γk > 0.

A K-tuple of beamformers is a candidate for an altruistic solution when all users k in the active
set employ their respective beamformer vZF

k and thus all users either receive zero interference or
are inactive. For an altruistic solution, it must additionally be impossible for a user in the inactive
set to become active without harming the users in the active set, i. e., vZF

k must be the zero vector
for all users in the inactive set, as otherwise the second condition would be violated. In general
there may be multiple altruistic solutions with different sets of active and inactive users.

If all users can simultaneously perform zero-forcing, i. e., if the active set consists of all K
users and vZF

k is non-zero for all k ∈ {1, . . . , K}, the altruistic solution is unique. Zero-forcing
is possible for all users, e. g., when for all k ∈ {1, . . . , K} Nk ≥ K and the vectors hjk for all
j ∈ {1, . . . , K} are linearly independent.

All altruistic solutions also fulfill the necessary conditions for strong Pareto optimality (4.11):
the corresponding values of the parameters are λkk = 0, λjk 6= 0 for all users j in the active set,
and λjk = 0 for those in the inactive set. However, the altruistic strategies in general are not on the
Pareto boundary, as will be seen in some numerical examples in Section 4.5.

4.3.3 Successive Zero-Forcing Strategies

Another set of interesting transmit strategies for MISO interference networks can be constructed by
assigning the beamformers one after another in a certain order, where each user has the constraint
that it may not decrease the previously allocated users’ SINRs.

For ease of notation, let us assume without loss of generality that the order in which the beam-
formers are allocated coincides with the user indices, i. e., v1 is allocated first, v2 second, and so
on. The first user must not fulfill any zero-forcing constraints and therefore employs the selfish
beamformer vMF

1 . The second user chooses v2 to maximize |hT
22v2|2 subject to the constraint that

the first user may not be harmed, i. e., hT
12v2 = 0. Accordingly, the beamformer of user k solves

the optimization problem

max
vk

|hT
kkvk|2 s. t.: hT

jkvk = 0 for all users j < k with γj > 0 and ‖vk‖22 ≤ 1. (4.23)

The solution can be found analogously to (4.19) by means of a projection matrix that orthogonally
projects the conjugate channel vector h∗

kk onto the subspace orthogonal to the interference channel
vectors of the zero-forcing constraint. If the number of previously allocated active users is greater
or equal to the number of antennas Nk or if the channel vectors are not linearly independent, the
solution may be the zero beamformer.
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The SINR or utility K-tuple resulting from this successive zero-forcing strategy is guaranteed
to be on the strong Pareto boundary of the SINR or utility region, as no user’s SINR can be im-
proved without decreasing another user’s SINR. To show this, let us assume that we would like to
change the transmit strategy to improve the SINR of user k without decreasing any of the SINRs
of the users j with j < k; we observe that
• |hT

11v1|2 may not be changed, as it is already at its maximum and any change would thus lead
to a decrease in γ1;

• |hT
22v2|2 may not be changed, as this would either lead to a decrease in γ1 (if the ZF constraint

is violated) or to a decrease in γ2 (if the ZF constraint is not violated);
• in the same way, all direct power gains up to user k−1 may not be changed, as otherwise either

the own SINR or that of a previously allocated user would decrease;
• also, the power gain |hT

kkvk|2 of user k, of which we would like to improve the SINR, may not
be increased, as this would lead to a decrease in the SINR of a previously allocated user;

• and finally, changing any beamformer vj with j > k cannot improve γk, as those users cause
no interference to receiver k.

Therefore, such a change in transmit strategy is not possible.
Pareto optimality of the successive ZF strategies holds regardless of the order in which the

beamformers are allocated; consequently, up to K! different points on the Pareto boundary can be
constructed with this method. In a system with K = 2, there are only two such possibilities: user
one employs the selfish beamformer vMF

1 and user two employs the altruistic beamformer vZF
2 , or

vice versa, i. e., the pair of beamformers is
(

vZF
1 , vMF

2

)

.

4.3.4 The Feasibility and Balancing Problems

In the SISO case it was possible to check the feasibility of a given SINR K-tuple by solving a sys-
tem of linear equations and examining the corresponding K-tuple of powers, cf. Section 3.4.3. As
previously discussed, there is no one-to-one correspondence between SINR K-tuples and transmit
strategies in the MISO case; in general many different K-tuples of beamformers may result in the
same SINR K-tuple.

The difficulty of checking feasibility in the MISO case becomes apparent when we state the fea-
sibility conditions for the SINR K-tuple (γ̄1, . . . , γ̄K) in a way similar to the SISO case in (A10)–
(A12):

1

γ̄1
|hT

11v1|2 −
∑

j 6=1

|hT
1jvj |2 ≥ σ2 (4.24)

...

1

γ̄K
|hT

KKvK |2 −
∑

j 6=K

|hT
Kjvj |2 ≥ σ2 (4.25)

From this system of inequalities it is not evident whether one or more sets of feasible beamformers
can fulfill the conditions, let alone how to determine a feasible transmit strategy. It was shown,
however, in [60] (and previously for a similar system model in [61, 62]) that these conditions can
be reformulated as second-order cone constraints (cf. [36, Section 4.4.2]) of the form

‖Ax+ b‖2 ≤ cTx+ d. (4.26)
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To this end, we first add |hT
kkvk|2 to both sides of the kth inequality for all k ∈ {1, . . . , K} to

obtain
(

1 +
1

γ̄1

)

|hT
11v1|2 ≥

∑

j

|hT
1jvj |2 + σ2 (4.27)

...
(

1 +
1

γ̄K

)

|hT
KKvK |2 ≥

∑

j

|hT
Kjvj |2 + σ2. (4.28)

Next, we define the matrices H̄k for all k ∈ {1, . . . , K} and the vector v in the following way:

H̄k =











hT
k1 · · · 0

T

...
. . .

...
0
T · · · hT

kK

0
T · · · 0

T











and v =







v1
...

vK






. (4.29)

Also, the vector σ = [0, . . . , 0, σ]T contains the square root of the noise power with K pre-
ceding zeros, and the selection matrix Sk = [0, I, 0] is designed such that Skv = vk for all
k ∈ {1, . . . , K}. With these definitions feasibility is equivalent to

‖H̄kv + σ‖22 ≤
(

1 +
1

γ̄k

)

|hT
kkSkv|2 ∀k ∈ {1, . . . , K}. (4.30)

Furthermore, since all SINRs γk are invariant to a complex phase shift of any beamforming vector
vj , we can assume without loss of generality that hT

kkSkv is real-valued and non-negative for all
k ∈ {1, . . . , K}, so that we can take the square root of both sides of the above conditions:

‖H̄kv + σ‖2 ≤
√

1 +
1

γ̄k
· hT

kkSkv ∀k ∈ {1, . . . , K}. (4.31)

Finally, the power constraints can be written as

‖Skv‖2 ≤ 1 ∀k ∈ {1, . . . , K} (4.32)

and we have thus expressed all conditions that must be fulfilled for feasibility of the SINR K-tuple
(γ̄1, . . . , γ̄K) as second-order cones in the variable v.

A second-order cone problem (SOCP) is a convex optmization problem in which a linear ob-
jective is minimized subject to second-order cone constraints and linear equality constraints [36,
Section 4.4.2]. SOCPs can be solved very efficiently with general purpose algorithms, relying, e. g.,
on interior point methods. An overview and evaluation of implementations of such algorithms can
be found in [63]. By simply using zero as the objective function, we can use such an algorithm
to perform our feasibility check. Alternatively, in [60], two methods were proposed to split the
burden of running the optimization algorithm between the K users. If the SINR K-tuple is indeed
feasible, the SOCP feasibility check also returns a corresponding set of beamformers, which is,
however, not necessarily optimal in the sense of total transmit power.

In order to find the transmit strategy that achieves the SINR K-tuple (γ̄1, . . . , γ̄K) with the
lowest total power, we introduce a slack variable p which upper-bounds the square root of the total
power, cf. [62]. Now, the problem of minimizing p over the variables v and p subject to the above
feasibility constraints and the additional conic constraint ‖v‖2 ≤ p is an SOCP that solves the
power minimization problem.
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4.3.4.1 Solving Balancing Problems with Repeated Feasibility Checks

As discussed in Section 3.4.4, the SINR balancing problem with the target K-tuple (γ̄1, . . . , γ̄K) is

max
v1,...,vK ,β

β s. t.: γk ≥ βγ̄k ∀k ∈ {1, . . . , K}. (4.33)

The solution to this problem can be used as a feasibility check: the K-tuple (γ̄1, . . . , γ̄K) is feasible
if the resulting scaling parameter β is greater or equal to one, otherwise the K-tuple is infeasible.
Consequently, the balancing problem is inherently at least as difficult as a feasibility check.

A straightforward solution to the balancing problem in the MISO case is not known. Instead, it
was proposed in [60] (and in [62] for a similar system model) to find the optimal β by performing
a line search with bisection and repeated feasibility checks. To begin with, a surely feasible value
β̌ is needed, e. g., β̌ = 0, as well as a surely infeasibly value β̂, which can be determined, e. g., by
assuming that all users employ their respective selfish beamformers vMF

k and bounding the SINR
γk from above by assuming that all interference power gains are zero. Next, the arithmetic mean
β̄ =

(

β̌ + β̂
)

/2 is computed and the K-tuple
(

β̄γ̄1, . . . , β̄γ̄K
)

is checked for feasibility using an

SOCP solver. If β̄ leads to a feasible SINR K-tuple, β̌ is updated to the value of β̄, otherwise β̂
is updated to the value of β̄; thus β̌ and β̂ after the update are still a lower and an upper bound on
the solution, one of which has been tightened by the feasibility check. This procedure of checking
the feasibility of the arithmetic mean of β̌ and β̂ and updating one of the two depending on the
outcome of the feasibility check is continued until β̌ and β̂ have converged to the same value up to
a given precision. This value is the solution to the balancing problem.

The bisection approach can also be used to balance the utilities, i. e., to maximize β such
that (βū1, . . . , βūK) is a feasible utility K-tuple. For each feasibility check, the SINR K-tuple
corresponding to the utility K-tuple

(

β̄ū1, . . . , β̄ūK

)

must be computed, which, however, is a
straightforward operation, as the utility functions are by definition invertible.

4.3.5 The Sum Utility Problem

The problem of finding the beamformers that maximize the sum utility is

max
v1,...,vK

K
∑

k=1

uk(γk) s. t.: ‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K}. (4.34)

With the Lagrangian multipliers µ1, . . . , µK we obtain the KKT conditions

K
∑

j=1

∂uj(γj)

∂v∗
k

− µkvk = 0 ∀k ∈ {1, . . . , K} (4.35)

µk ≥ 0 ∀k ∈ {1, . . . , K} (4.36)

µk

(

1− ‖vk‖22
)

= 0 ∀k ∈ {1, . . . , K} (4.37)

‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K} (4.38)

which are necessary, but in general not sufficient, for optimality.1 Note that we have fewer KKT
conditions than in the SISO case, cf. (3.48)–(3.53). This can be explained by the fact that the

1When taking derivatives with respect to complex variables in the context of optimization, we use Wirtinger cal-

culus (cf. [64, p. 64]), which can be understood as a shorthand for taking the derivatives with respect to the real and
imaginary parts of the variable and, when searching for a stationary point, setting both to zero.
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beamformer is not the multi-antenna generalization of the transmit power, but of the square root of
the transmit power; the generalization of the transmit power is the transmit covariance matrix. If we
were to optimize over the matrices Q1, . . . ,QK instead of the vectors v1, . . . , vK , we would indeed
have the additional constraint that all covariances must be positive semi-definite, corresponding to
the constraint of non-negative powers in the SISO case. When optimizing over the beamformers,
this constraint is fulfilled automatically.

With the chain rule, we can express the derivatives as

∂uk(γk)

∂v∗
k

= u′
k(γk) ·

∂γk
∂v∗

k

=
u′
k(γk)

∑

i 6=k|hT
kivi|2 + σ2

· h∗
kkh

T
kkvk (4.39)

and
∂uj(γj)

∂v∗
k

= u′
j(γj) ·

∂γj
∂v∗

k

= −
u′
j(γj)|hT

jjvj |2
(

∑

i 6=j |hT
jivi|2 + σ2

)2 · h∗
jkh

T
jkvk (4.40)

for j 6= k. The first KKT condition (4.35) can now be stated as

Akvk = µkvk ∀k ∈ {1, . . . , K} (4.41)

with the matrix

Ak =
u′
k(γk)

∑

i 6=k|hT
kivi|2 + σ2

· h∗
kkh

T
kk −

∑

j 6=k

u′
j(γj)|hT

jjvj |2
(

∑

i 6=j|hT
jivi|2 + σ2

)2 · h∗
jkh

T
jk. (4.42)

Note that the structure of Ak is similar to that of Zk in (4.12): it is the sum of the outer products
of the channel vectors from transmitter k to all receivers j, weighted with a real-valued scalar
with positive sign for the direct channel and non-positive sign for the cross channels. Also, similar
to (4.11), the beamformer vk that fulfills the first KKT condition is the eigenvector corresponding
to a non-negative eigenvalue of Ak, cf. (4.41). The difficulty in fulfilling the KKT conditions lies
in the fact that each matrix Ak depends on all beamformers v1, . . . , vK .

The objective function in the optimization problem (4.34) is in general not concave in the
beamformers. Furthermore, it is possible that multiple transmit strategies that result in different
utility K-tuples fulfill the KKT conditions and that gradient searches converge to different local
optima, depending on their initialization and step size. In fact, it is shown in [65] that the optimiza-
tion problem (4.34) is NP-hard for the rate utility, the proportional fair rate utility, and the α-fair
rate utility with α = 2 if the transmitters have more than one antenna; this is remarkable because,
as discussed in the previous chapter, in the SISO case both the proportional fair rate utility and the
α-fair rate utility with α = 2 guarantee a concave sum utility maximization problem, which can
be solved efficiently.

An algorithm that finds the globally optimal solution to (4.34) with arbitrary precision was
proposed for the case of K = 2 users in [66]; it is based on successively refining an approximation
of the utility region by means of the polyblock algorithm, cf. [48]. Similar techniques can also be
applied for more than two users, but their computational complexity grows extremely fast in the
system dimensions and they do not scale well to larger networks. In this work, the focus therefore
is on algorithms that are computationally simple and perform reasonably well, even though global
sum utility optimality cannot be guaranteed.
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4.3.5.1 Maximizing the Sum Rate

For the achievable rate utility function uk(γk) = Rk = log(1 + γk) the derivative w. r. t. the SINR
γk is

u′
k(γk) =

1

1 + γk
=

∑

i 6=k|hT
kivi|2 + σ2

∑

i|hT
kivi|2 + σ2

∀k ∈ {1, . . . , K}. (4.43)

With (4.39) and (4.40) the derivatives of Rk and Rj w. r. t. the conjugate beamformer v∗
k are

∂Rk

∂v∗
k

=
u′
k(γk)

∑

i 6=k|hT
kivi|2 + σ2

· h∗
kkh

T
kkvk =

1
∑

i|hT
kivi|2 + σ2

· h∗
kkh

T
kkvk (4.44)

and

∂Rj

∂v∗
k

= −
u′
j(γj)|hT

jjvj |2
(

∑

i 6=j|hT
jivi|2 + σ2

)2 · h∗
jkh

T
jkvk

= −
|hT

jjvj |2
(

∑

i|hT
jivi|2 + σ2

)(

∑

i 6=j|hT
jivi|2 + σ2

) · h∗
jkh

T
jkvk

= −
(

1
∑

i 6=j|hT
jivi|2 + σ2

− 1
∑

i|hT
jivi|2 + σ2

)

· h∗
jkh

T
jkvk

(4.45)

for j 6= k.
While the KKT conditions do not lead to a straightforward solution to the sum rate maximiza-

tion problem, they do allow us to gain some insights into the optimal strategies at asymptotically
low and high SNR. In the low-SNR regime, where σ2 → ∞, the noise power dominates the other
terms in the denominators of (4.44) and (4.45). More precisely, we can use (4.44) and (4.45) to
construct the matrix Ak, cf. (4.42), and state that

lim
σ2→∞

σ2Akv
MF
k = h∗

kkh
T
kkv

MF
k − lim

σ2→∞

∑

j 6=k

|hT
jjvj |2
σ2

· h∗
jkh

T
jkv

MF
k

= h∗
kkh

T
kkv

MF
k = h∗

kkh
T
kkh

∗
kk/‖hkk‖2 = ‖hkk‖22vMF

k

(4.46)

i. e., the selfish beamformer vMF
k in the limit is an eigenvector of σ2Ak corresponding to a positive

eigenvalue. Thus, if every user employs its respective selfish beamformer, all KKT conditions are
fulfilled. Furthermore, since σ2Ak in the limit is constant and does not depend on the transmit
strategy, the selfish solution is the only solution to the KKT conditions for which µk > 0 for all
{1, . . . , K}. Additional candidates for optimality with µk = 0 can be constructed, e. g., vk = 0;
it is intuitive, though, that such strategies cannot be local maxima in the low-SNR regime, as a
small increase in power can improve the own rate while decreasing the other users’ rates by only a
negligible amount.2 Consequently, the selfish solution is the global optimum for sufficiently high
noise power.

2To rigorously show that the zero beamformers cannot be optimal in the low-SNR regime, let us define the beam-
former as vk =

√
pkv

′

k, where v′

k is fixed with ‖v′

k‖22 = 1. From (3.62) it can be seen that ∂Rk/∂pk = O(σ−2),
whereas −∂Rj/∂pk = O(σ−4) for j 6= k, as σ2 → ∞. Therefore, an increase in power will always lead to an increase
in sum rate for sufficiently high σ2.
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The behavior of the rate Rk of user k in the high-SNR regime, i. e., for σ−2 → ∞, depends on
whether the received interference is exactly zero or not:

Rk =

{

log(σ−2) + O(1) if
∑

j 6=k|hT
kjvj |2 = 0 and |hT

kkvk|2 > 0

O(1) otherwise.
(4.47)

More precisely, we can state that

lim
σ−2→∞

∑

k Rk

log σ−2
= D (4.48)

where D is the number of users k for which
∑

j 6=k|hT
kjvj |2 = 0 and |hT

kkvk|2 > 0.3 Therefore, to
maximize the sum rate in the high-SNR regime, it is necessary to maximize the number of active
users that do not experience any interference.

In the special case that zero-forcing is possible for all users, we can achieve D = K and the
unique altruistic strategy is globally optimal. In general, however, there may be multiple config-
urations of interference-free users that achieve the same D and are candidates for the high-SNR
optimum. Also, the high-SNR optimum is not necessarily an altruistic solution.

4.4 Distributed Algorithms

Even when a centralized computer is available, determining the sum-utility optimal transmit strat-
egy appears to be prohibitively complex for the utility functions of interest (unless the number of
users K is small). With the additional constraints of our distributed computation model, i. e., com-
putationally simple updates at each node and limited information exchange between the nodes,
attempting to fully solve problem (4.34) seems to be impractical. Instead, the proposed distributed
techniques are aimed at convergence towards local sum-utility optimality or based entirely on
heuristics.

It is often assumed in the literature that the sum rate is the desired figure of merit. Some of the
algorithms discussed in the following are designed to optimize other metrics, but are nonetheless
attractive due to their simplicity. In this section we introduce the algorithms and discuss their
properties, and then proceed to numerically evaluate their average performance in terms of the rate
utility in the following section.

4.4.1 The Selfish Solution

The selfish solution

vMF
k =

1

‖h∗
kk‖2

· h∗
kk (4.49)

does not require iterative updates or information exchange between the users. Furthermore, user k
must only know its own direct channel vector hkk; estimation of the cross channel vectors hkj

with j 6= k is not necessary. As is intuitive and will become evident in the numerical evaluation,
however, not taking into account the caused interference leads to severely suboptimal performance
in many scenarios.

3The definition of D is very similar to the definition of the DoF in (2.85). The DoF, however, refer to the sum
capacity of the channel, whereas here we use D to denote the number of non-interfering data streams of a given
transmit strategy.
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4.4.2 Maximization of the “Virtual SINR”

A more sophisticated non-iterative technique that takes into account the caused interference as
well as the noise power was proposed in [67]: it is based on maximizing the virtual SINR, which
is defined as

ξk =
|hT

kkvk|2
∑

j 6=k|hT
jkvk|2 + σ2

. (4.50)

As opposed to the conventional SINR, the summands in the denominator of above expression are
the interference power gains that transmitter k is causing, not the interference power gains that
receiver k is experiencing. Consequently, the virtual SINR ξk does not depend on the beamformers
vj with j 6= k.

The beamformer vV
k that maximizes ξk can be found from the KKT conditions of the optimiza-

tion problem
vV
k = argmax

vk

ξk s. t.: ‖vk‖22 ≤ 1. (4.51)

To begin with, it is clear that ‖vV
k ‖22 = 1 since multiplying the beamformer vk with a scalar factor

larger than one will lead to an increase in ξk. By taking the derivative of the objective function
w. r. t. v∗

k using the quotient rule and omitting the denominator we obtain the first KKT condition

(

∑

j 6=k

|hT
jkvk|2 + σ2

)

h∗
kkh

T
kkvk − |hT

kkvk|2
∑

j 6=k

h∗
jkh

T
jkvk = µvk (4.52)

where the Lagrange multiplier µ must be non-negative. Dividing both sides by |hT
kkvk|2 yields

1

ξk
h∗

kkh
T
kkvk −

∑

j 6=k

h∗
jkh

T
jkvk = µ′vk (4.53)

where again µ′ must be non-negative. By multiplying from the left with vH
k we obtain

1

ξk
|hT

kkvk|2 =
∑

j 6=k

|hT
jkvk|2 + µ′ (4.54)

and it is clear that µ′ = σ2. Consequently, the optimal beamformer fulfills

1

ξk
h∗

kkh
T
kkvk =

(

∑

j 6=k

h∗
jkh

T
jk + σ2

I

)

vk (4.55)

and is therefore the unit-norm eigenvector corresponding to the only positive eigenvalue of the
rank-one matrix

Xk =

(

∑

j 6=k

h∗
jkh

T
jk + σ2

I

)−1

h∗
kkh

T
kk (4.56)

i. e.,

vV
k =

(

∑

j 6=k h
∗
jkh

T
jk + σ2

I

)−1

h∗
kk

∥

∥

∥

(

∑

j 6=k h
∗
jkh

T
jk + σ2I

)−1

h∗
kk

∥

∥

∥

2

. (4.57)
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Just as the selfish solution, the virtual-SINR optimal solution does not require iterative updates.
It is, however, necessary to exchange the cross channel information among the users, so that each
user k knows hjk for all j ∈ {1, . . . , K}.

Remarkably, the virtual SINR maximizing beamformer vV
k converges towards the selfish beam-

former vMF
k in the low-SNR regime, i. e., when the noise power σ2 is asymptotically high and the

matrix inverse approaches a scaled identity. Also, when the channel vectors permit zero-forcing
for user k, vV

k converges towards the zero-forcing beamformer in the high-SNR regime. To show
this, we apply the matrix-inversion lemma (e. g., [37, Section 0.7.4]) to the inverse in (4.57):

(

∑

j 6=k

h∗
jkh

T
jk + σ2

I

)−1

=
(

HH
k Hk + σ2

I
)−1

(4.58)

= σ−2
(

I−HH
k

(

HkH
H
k + σ2

I
)−1

Hk

)

(4.59)

which approaches a scaled version of the projection matrix Πk from (4.22) as σ−2 → ∞. There-
fore, the strategy of maximizing the virtual SINR is sum-rate optimal at low SNR and, in scenarios
where zero-forcing is possible for all users, also at high SNR.

For K = 2 the resulting strategy is in fact Pareto optimal regardless of the noise power σ2:
since γ1 · γ2 = ξ1 · ξ2 and consequently log γ1 + log γ2 = log ξ1 + log ξ2, it is clear that the
strategy of maximal individual virtual SINRs is also sum-utility optimal in the logarithmic utility
and therefore on the Pareto boundary of the SINR region.

The disadvantage of this method comes into play in scenarios in which not all users can perform
zero-forcing simultaneously: the virtual SINR maximization always results in full power for all
users, whereas the sum-rate optimal strategy at high SNR involves deactivating some users, so that
the active users can enjoy interference-free transmission.

4.4.3 Maximization of the “Global SINR”

Another SINR-related objective function was proposed for MIMO systems in [68], but can be
applied to single-antenna receivers as well. The goal is to maximize the ratio of the sum of all
desired power gains to the sum of all interference power gains and noise powers, i. e., the sum of
all numerators divided by the sum of all denominators of the individual SINRs:

ξsum =

∑

k|hT
kkvk|2

∑

k

∑

j 6=k|hT
jkvk|2 +Kσ2

. (4.60)

It was shown in [68] that
∑

k

log(1 + γk) ≥ log(1 + ξsum) (4.61)

i. e., that by maximizing ξsum a lower bound on the sum rate is maximized.
Unlike the two previously discussed strategies, the problem of maximizing ξsum is not sep-

arable into K independent sub-problems, each of which depends only on one beamformer vk.
Therefore, the value of ξsum is increased iteratively by repeatedly updating all beamformers vk,
either sequentially or in parallel.

In iteration ℓ, the beamformer of user k is updated to fulfill

v
(ℓ+1)
k = argmax

vk

ξsum

∣

∣

∣

vj=v
(ℓ)
j ∀j 6=k

s. t.: ‖vk‖22 = 1. (4.62)
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Note that the power constraint must be fulfilled with equality; it would also be possible to formulate
the update using an inequality power constraint, but the resulting algorithm turns out to have some
undesirable properties, as discussed below. With the definitions

a
(ℓ)
k =

∑

j 6=k

∣

∣hT
jjv

(ℓ)
j

∣

∣

2
(4.63)

b
(ℓ)
k =

∑

j 6=k

∑

i 6=j

∣

∣hT
ijv

(ℓ)
j

∣

∣

2
+Kσ2 (4.64)

we can express the objective function of the optimization problem as

ξsum

∣

∣

∣

vj=v
(ℓ)
j ∀j 6=k

=
vH
k h

∗
kkh

T
kkvk + a

(ℓ)
k

vH
k ·
∑

j 6=k h
∗
jkh

T
jk · vk + b

(ℓ)
k

=
vH
k

(

h∗
kkh

T
kk + a

(ℓ)
k I

)

vk

vH
k

(

∑

j 6=k h
∗
jkh

T
jk + b

(ℓ)
k I

)

vk

. (4.65)

Since the objective function is a generalized Rayleigh quotient (cf. [37, Section 4.2]), the solution
v
(ℓ+1)
k can be shown (cf. [68]) to be the principal eigenvector of the matrix

X
(ℓ)
k =

(

∑

j 6=k

h∗
jkh

T
jk + b

(ℓ)
k I

)−1
(

h∗
kkh

T
kk + a

(ℓ)
k I

)

. (4.66)

In order to compute the update, user k must know the channel vectors hjk for all j ∈
{1, . . . , K}, but also the current values of a(ℓ)k and b

(ℓ)
k . To this end, it is necessary that the users

broadcast both their received signal power and their received total interference power to all other
users after each update, i. e., user k must announce both the numerator

∣

∣hT
kkv

(ℓ)
k

∣

∣

2
and the denomi-

nator
∑

j 6=k

∣

∣hT
kjv

(ℓ)
j

∣

∣

2
+ σ2 of γ(ℓ)

k before iteration ℓ+ 1.
When the updates are performed sequentially, it is clear that a beamformer update cannot lead

to a decrease ξsum; therefore, the sequence of ξsum over the iterations is non-decreasing and must
converge. For parallel updates, on the other hand, monotonicity of the objective ξsum cannot be
guaranteed, as each user attempts to increase ξsum under the false assumption that the other users’
beamformers remain constant. While neither convergence towards the globally optimal value of
ξsum nor convergence in terms of the beamforming vectors has been proven, the numerical evalua-
tions in Section 4.5 show reliable convergence after a small number of iterations.

Similar to the virtual-SINR optimal strategy, this method is by design not capable of deacti-
vating individual users if it is in the common interest. Therefore, it cannot be sum-rate optimal
at high SNR in settings where zero-forcing is not possible. The capability to deactivate users for
the common good can be added by replacing the equality power constraint by an inequality power
constraint in (4.62); however, the interference terms |hkjvj |2 for an inactive user j 6= k are still
part of the denominator of ξsum, and consequently the remaining active users would attempt to
minimize the interference caused to both the inactive and the active users when computing their
updated beamformers. This effect in fact leads to significantly lower sum-rate performance than
with an equality power constraint in many cases.

4.4.4 Minimization of the Sum Mean Squared Error

In [69, 68, 70], the use of the sum MSE cost function for MIMO interference networks was ex-
plored. In the following we apply the resulting distributed algorithm to the special case of single-
antenna receivers.
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As discussed in Section 3.3.5, the MSE of user k is the expected power of the error between
the transmitted data symbol sk and its estimate at receiver k, denoted by ŝk:

εk = E
[

|ŝk − sk|2
]

. (4.67)

The estimated symbol ŝk is obtained by multiplying the received signal yk with a scalar factor
gk ∈ C that compensates the gain resulting from the combination of beamformer and channel:

ŝk = gkyk = gk

(

∑

j

hT
kjvjsj + nk

)

. (4.68)

Since the transmit symbols have mean zero and are uncorrelated, the MSE of user k is

εk =
∑

j

|gkhT
kjvj |2 − 2Re{gkhT

kkvk}+ 1 + |gk|2σ2 (4.69)

and the sum MSE can be expressed as
∑

k

εk =
∑

k

∑

j

|gkhT
kjvj|2 −

∑

k

2Re{gkhT
kkvk}+K +

∑

k

|gk|2σ2. (4.70)

The sum MSE depends on both the receiver gains g1, . . . , gK and the beamformers v1, . . . , vK .
The proposed iterative algorithm therefore requires both updates of the receiver gains and the
beamformers. We begin with the receiver gain update:

g
(ℓ+1)
k = argmin

gk

εk

∣

∣

∣

vj=v
(ℓ)
j ∀j.

(4.71)

Note that the other users’ MSEs εj with j 6= k do not depend on gk, so that the above optimization
also minimizes the sum MSE. The solution, which can be found by setting the derivative to zero,
is

g
(ℓ+1)
k =

v
(ℓ)
k

H
h∗

kk
∑

j

∣

∣hT
kjv

(ℓ)
j

∣

∣

2
+ σ2

(4.72)

where, to avoid confusion, it should be noted that the denominator contains not only the interfer-
ence power gains, but also the desired power gain.

The problem that must be solved for the beamformer update is

v
(ℓ+1)
k = argmin

vk

∑

j

εj

∣

∣

∣

gi=g
(ℓ)
i ∀i

s. t.: ‖vk‖22 ≤ 1. (4.73)

Since there are no summands in the sum MSE (4.70) that contain both vk and another beam-
former vj with j 6= k, the solution does not depend on the beamformers of other users. With the
Lagrangian multiplier λ, the optimality conditions are

(

∑

j

∣

∣g
(ℓ)
j

∣

∣

2
h∗

jkh
T
jk + λI

)

v
(ℓ+1)
k = g

(ℓ)
k

∗
h∗

kk (4.74)

as well as λ ≥ 0,
∥

∥v
(ℓ+1)
k

∥

∥

2

2
≤ 1, and λ

(

1 −
∥

∥v
(ℓ+1)
k

∥

∥

2

2

)

= 0. We must therefore examine two

possibilities:
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1) λ = 0 and
∥

∥v
(ℓ+1)
k

∥

∥

2

2
≤ 1.

First of all, it can be observed that even if the matrix on the left-hand side of (4.74) is not
invertible, there is always a solution, as the vector on the right-hand side lies in the span of
the matrix on the left-hand side. Furthermore, by stacking the row vectors g(ℓ)j hT

jk for all j ∈
{1, . . . , K} in the matrix G

(ℓ)
k and examining the singular value decomposition of G(ℓ)

k , it can
be shown that even if there are multiple solutions to (4.74), they are all equivalent in terms of
sum MSE and the one with the lowest power is

v̂
(ℓ+1)
k = g

(ℓ)
k

∗
(

∑

j

∣

∣g
(ℓ)
j

∣

∣

2
h∗

jkh
T
jk

)+

h∗
kk. (4.75)

2) λ > 0 and
∥

∥v
(ℓ+1)
k

∥

∥

2

2
= 1.

In this case the matrix on the left-hand side of (4.74) is invertible and the beamformer can be
expressed as

v̌
(ℓ+1)
k = g

(ℓ)
k

∗
(

∑

j

∣

∣g
(ℓ)
j

∣

∣

2
h∗

jkh
T
jk + λI

)−1

h∗
kk. (4.76)

Determining the value of λ for which v̌
(ℓ+1)
k has unit power is not possible in closed form. From

∥

∥v̌
(ℓ+1)
k

∥

∥

2

2
=
∣

∣g
(ℓ)
k

∣

∣

2
hT

kk

(

∑

j

∣

∣g
(ℓ)
j

∣

∣

2
h∗

jkh
T
jk + λI

)−2

h∗
kk (4.77)

it is, however, clear that the power of the beamformer is decreasing in λ and tends towards zero
for λ → ∞. Furthermore, it can again be seen with the singular value decomposition of G(ℓ)

k

that, for λ → 0, v̌(ℓ+1)
k approaches v̂(ℓ+1)

k . Consequently, if the power of v̂(ℓ+1)
k is strictly larger

than one, there is a unique value of λ > 0 that fulfills the optimality conditions. The behavior
of the beamformer power over λ is illustrated in Figure 4.2.
With these observations, the optimal updated beamformer v(ℓ+1)

k can be determined as follows:

first, v̂(ℓ+1)
k is computed; if the norm of v̂(ℓ+1)

k is less than or equal to one, the updated beamformer

is v(ℓ+1)
k = v̂

(ℓ+1)
k . If the norm is larger than one, λ must be strictly greater than zero and must be

determined with a line search, such that the norm of v̌(ℓ+1)
k is equal to one. The updated beamformer

then is v(ℓ+1)
k = v̌

(ℓ+1)
k .

In order to determine λ efficiently, we propose to use Newton’s method. We define

f(λ) =
∥

∥v̌
(ℓ+1)
k

∥

∥

2

2
− 1 (4.78)

and search for the root of f(λ) by iteratively updating λ such that

λnew = λold −
f
(

λold

)

f ′
(

λold

) (4.79)

where f ′(λ) = df(λ)/ dλ. The Newton update in our case can be explicitly stated as

λnew = λold +
|gk|2hT

kk

(

∑

j |gj|2h∗
jkh

T
jk + λoldI

)−2

h∗
kk − 1

2|gk|2hT
kk

(

∑

j|gj|2h∗
jkh

T
jk + λoldI

)−3

h∗
kk

(4.80)
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Figure 4.2: Two possible cases for the behavior of the beamformer power over the regularization parame-
ter λ. The circle marks the solution to the KKT conditions.

where we omitted the iteration indices for brevity. As an initial value, λ = 0 appears to be a suitable
choice.4 The Newton method converges reliably in a small number of iterations.

The sum MSE minimization algorithm consists of updates of the receiver coefficients
g1, . . . , gK and beamformers v1, . . . , vK . An update of a receiver coefficient is only necessary
if at least one of the beamformers has changed since the last update; similarly, an update of a
beamformer is only necessary if at least one of the receiver coefficients has changed. Therefore,
the algorithm must alternate between receiver and transmitter updates. For sequential operation of
the algorithm, the updates are performed in the following order: g1, v1, . . . , gK , vK ; for parallel
updates, the order is: g1, . . . , gK , v1, . . . , vK .

In conclusion, we remark on some properties of the sum MSE minimization algorithm:

• If v(ℓ)
k = 0, then g

(ℓ+1)
k = 0, and vice versa. Therefore, if a beamformer is initially zero, it will

not be activated in the course of the algorithm.
• Likewise, a beamformer that is non-zero cannot be set to zero from one iteration to the next.

The power of a beamformer can, however, be gradually reduced and approach zero.
• Regardless of whether the updates are performed sequentially or in parallel, the sum MSE is

never increased by an update. Furthermore, the sum MSE is bounded from below by zero.
Therefore, the sum MSE must converge over the iterations.

• Furthermore, if the algorithm reaches a stationary K-tuple of beamformers (v1, . . . , vK), it is
straightforward to show that the KKT conditions of the sum MSE minimization problem

min
g1,...,gK
v1,...,vK

∑

k

εk s. t.: ‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K} (4.81)

are fulfilled.
• For the update of gk, user k must know the total received signal power at receiver k as well

as the combined gain of beamformer and direct channel hT
kkv

(ℓ)
k ; we assume that these two

quantities can be straightforwardly estimated by receiver k. For the update of vk, user k must

4For λold = 0 it can be necessary to replace the inverse with the pseudo-inverse in (4.80).
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know the channel vectors hjk for all j ∈ {1, . . . , K} as well as the receiver coefficients g(ℓ)j for
all j ∈ {1, . . . , K}. While the channel information can be exchanged during the initialization
of the algorithm, the receiver coeffecients must be exchanged among the users at each iteration.

4.4.4.1 Weighted Sum MSE Minimization with Adaptive Weights

The sum MSE minimization algorithm can be easily extended to allow for assigning different pri-
orities to the users by means of real non-negative weights α1, . . . , αK . The objective is to minimize
the weighted sum of MSEs, i. e.,

min
g1,...,gK
v1,...,vK

∑

k

αkεk s. t.: ‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K}. (4.82)

A higher weight αk of user k therefore has the effect that minimizing the MSE εk at receiver k
has a higher priority. By following the same steps as for the previously discussed unweighted sum
MSE objective, it is straightforward to show
• that the receiver coefficient update is identical to the unweighted case (4.72) and
• that, assuming αk > 0, the updated beamformer must fulfill

(

∑

j

αj

αk

∣

∣g
(ℓ)
j

∣

∣

2
h∗

jkh
T
jk + λI

)

v
(ℓ+1)
k = g

(ℓ)
k

∗
h∗

kk (4.83)

instead of (4.74) in the unweighted case. The subsequent discussion on determining v
(ℓ+1)
k and

λ, cf. (4.75)–(4.80), can be applied to the weighted sum MSE in the same way, where the
channel vectors hjk are additionally weighted with a factor

√

αj/αk.
In [69], we proposed a method of adaptively choosing the weights α1, . . . , αK to mimic the be-
havior of arbitrary utility functions close to the current operating point (also cf. [71] for a different
system model). To derive this method, we begin by pointing out that the MSE of user k with the
optimal receiver coefficient gk fulfilling (4.72) is

εk =
|hT

kkvk|2
∑

j |hT
kjvj |2

(

∑

j |hT
kjvj |2 + σ2

)2 − 2|hT
kkvk|2

∑

j |hT
kjvj |2 + σ2

+ 1 +
|hT

kkvk|2σ2

(

∑

j |hT
kjvj |2 + σ2

)2

=

∑

j 6=k|hT
kjvj |2 + σ2

∑

j |hT
kjvj |2 + σ2

=
1

1 + γk

(4.84)

and note that this relationship holds after each update of receiver k. In Section 3.3.5, the same is
stated for the SISO case. Now we can express the SINR (after an update of receiver k) in terms of
the MSE

γk =
1

εk
− 1 (4.85)

and the utility of user k can also be seen as a function of the MSE εk. We proceed to formulate a
first-order Taylor expansion of the sum utility around an arbitrary operating point that is described
by the SINR K-tuple (γ̄1, . . . , γ̄K) or, equivalently, the MSE K-tuple (ε̄1, . . . , ε̄K):

∑

k

uk(γk) =
∑

k

uk(γ̄k) +
∑

k

∂uk

∂εk

∣

∣

∣

∣

εk=ε̄k

· (εk − ε̄k) + r1(ε1, . . . , εK). (4.86)
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Thus, by choosing the weights

αk = −∂uk

∂εk

∣

∣

∣

∣

εk=ε̄k

(4.87)

minimizing the weighted sum MSE is equivalent to maximizing the sum utility minus the residual
term r1(ε1, . . . , εK). If the MSE K-tuple (ε̄1, . . . , ε̄K) results from the current beamformer K-

tuple
(

v
(ℓ)
1 , . . . , v

(ℓ)
K

)

, the residual term r1(ε1, . . . , εK) is zero at the operating point and can be
considered negligible for small changes in the transmit strategy.

Different “schedules” for updating the weights come into question: for instance, α1, . . . , αK

could be computed after every transmitter/receiver update, after a fixed number of iterations, or
even after the weighted sum MSE updates have converged. Each time the weights are updated,
however, the new weights must be communicated among the users, as for the update of beamformer
vk all αj must be known.

At a stationary transmit strategy of the adaptively weighted sum MSE minimization algorithm,
the receiver coefficients g1, . . . , gK , the beamformers v1, . . . , vK , and the weights α1, . . . , αK do
not change from one iteration to the next. We can then state that the beamformers fulfill the KKT
conditions of the problem

max
v1,...,vK

−
∑

k

αkεk s. t.: ‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K} (4.88)

where we implicitly assumed that the optimal receivers g1, . . . , gK are used. Also, we can express
the derivative of the objective function of (4.88) w. r. t. a beamformer v∗

k as

−
∑

j

αj
∂εj
∂v∗

k

=
∑

j

∂uj

∂εj

∣

∣

∣

∣

εj=ε̄j

· ∂εj
∂v∗

k

. (4.89)

Since for a stationary transmit strategy the MSE K-tuple (ε̄1, . . . , ε̄K) results from the beamformer

K-tuple
(

v
(ℓ)
1 , . . . , v

(ℓ)
K

)

, it follows that

−
∑

j

αj
∂εj
∂v∗

k

∣

∣

∣

∣

vi=v
(ℓ)
i ∀i

=
∑

j

∂uj

∂v∗
k

∣

∣

∣

∣

vi=v
(ℓ)
i ∀i.

(4.90)

As a consequence, at a stationary transmit strategy the KKT conditions of (4.88) are equivalent
to the KKT conditions (4.35)–(4.38) of the sum utility problem; a stationary transmit strategy of
the adaptively weighted sum MSE minimization algorithm therefore is a candidate for local sum
utility optimality.

Furthermore, for utility functions that are convex in εk, it is known that the residual term
r1(ε1, . . . , εK) is non-negative, i. e., the linear approximation of the sum utility by means of the
negative weighted sum MSE is an under-estimation of the true sum utility that is tight in the op-
erating point. Thus, decreasing the weighted sum MSE by means of one or more beamformer
updates results in an increase of sum utility; consequently, the sum utility is non-decreasing from
one weight update to the next and thus converges. By computing the second derivative of the utility
function w. r. t. the MSE it can be shown that a utility function uk(γk) is convex in εk if and only
if ck(γk) ≤ 2γk/(1 + γk), i. e., the coefficient ck(γk) of the utility function may not exceed the
coefficient of the negative MSE utility function given in (3.34). As can be seen from Figure 3.3, of
the utility functions discussed in Section 3.3 only the rate utility fulfills this condition.

For the achievable rate utility Rk = log(1 + γk) = − log εk the weights are simply αk = 1/ε̄k;
also, Rk is clearly convex in εk, and the sum rate therefore converges with the adaptively weighted
sum MSE algorithm.
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4.4.5 Interference Pricing

We recall from the SISO case that the interference price of user k is the derivative of uk(γk) w. r. t.
the interference power evaluated at the current operating point, cf. (3.88). The objective of the
transmit strategy update of user k in the interference pricing algorithm is to maximize the own
utility uk(γk) minus the “cost” of causing interference to the other users, which can be interpreted
as a linearization of the other users’ utility functions by means of the interference prices, cf. (3.90).
The same concept can be applied to the MISO case; the resulting update problem for user k is

v
(ℓ+1)
k = argmax

vk

uk(γk)
∣

∣

∣

vj=v
(ℓ)
j ∀j 6=k

−
∑

j 6=k

π
(ℓ)
j |hT

jkvk|2 s. t.: ‖vk‖22 ≤ 1 (4.91)

where

π
(ℓ)
j = − ∂uj(γj)

∂|hT
jkvk|2

∣

∣

∣

∣

vi=v
(ℓ)
i ∀i

for any k 6= j. (4.92)

If uk(γk) is concave in γk (which corresponds to ck(γk) ≥ 0), it follows that uk(γk) is also con-
cave in |hT

kkvk|2 = hT
kkQkh

∗
kk, and thus also in Qk. Since furthermore the set of all positive

semi-definite matrices Qk that fulfill tr(Qk) ≤ 1 is a convex set, the pricing update is a concave
maximization problem when formulated in terms of the covariance matrix Qk = vkv

H
k ; this ob-

servation is consistent with the SISO case, where the update problem is a concave maximization
problem in the transmit power pk for ck(γk) ≥ 0.

While the objective function is not necessarily concave in the beamformer vk, formulating
the problem in terms of vk yields a solution procedure that is fairly simple and involves at most
a line search. In the following we describe the resulting update of the beamformer vk and refer
to Appendix A6 for the derivation. As in the SISO case, we require the utility function to fulfill
−u′′

k(γk) ≥ C > 0 for all feasible SINRs γk.
For ease of notation, we abbreviate the power gain of the desired signal as

ζ = |hT
kkvk|2 (4.93)

and the derivative of uk(γk) w. r. t. ζ as

ρ(ζ) = u′
k(γk)

∣

∣

∣

∣vj=v
(ℓ)
j ∀j 6=k

|hT
kk

vk|2=ζ

· 1
∑

j 6=k

∣

∣hT
kjv

(ℓ)
j

∣

∣

2
+ σ2

= u′
k(γk)

∣

∣

∣

∣vj=v
(ℓ)
j ∀j 6=k

|hT
kk

vk |2=ζ

· γ
(ℓ)
k

∣

∣hT
kkv

(ℓ)
k

∣

∣

2 . (4.94)

We furthermore define the matrix BH as the stacked row vectors
√

π
(ℓ)
j hT

jk for all j 6= k and the
matrix

A(ρ) = ρ · h∗
kkh

T
kk −

∑

j 6=k

π
(ℓ)
j h∗

jkh
T
jk = ρ · h∗

kkh
T
kk −BBH. (4.95)

We assume that w is the unit-norm eigenvector of A corresponding to the largest eigenvalue λ;
if λ has multiplicity higher than one, w is the eigenvector that maximizes |hT

kkw|2. The reduced
singular value decomposition of B is B = UΣV H, where Σ is invertible, UHU = I, and
V HV = I.

In the following we distinguish between the case where zero-forcing is possible, i. e., where
h∗

kk is linearly independent of the columns of B, and the case where zero-forcing is not possible,
i. e., where h∗

kk lies in the span of the columns of B. The condition can be checked by evaluating
(I−UUH)h∗

kk: if the result is the zero vector, zero-forcing is not possible.
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If zero-forcing is possible, the updated beamformer has full power and can be found by per-
forming a line search over ζ ∈ [0, ‖hkk‖22] to find the unique value ζ1, such that the resulting
eigenvector w fulfills |hT

kkw|2 = ζ1. The line search can, for example, be performed with bisec-
tion: from a lower bound ζ̌ and an upper bound ζ̂ on ζ1 a candidate ζ̄ = (ζ̌ + ζ̂)/2 is computed
and the resulting eigenvector w is determined; if ζ̄ > |hT

kkw|2, the upper bound is updated, i. e.,
ζ̂ = ζ̄ , if ζ̄ < |hT

kkw|2, the lower bound is updated, i. e., ζ̌ = ζ̄. Once ζ1 is found with the desired

precision, the updated beamformer v(ℓ+1)
k is simply the eigenvector w.

If zero-forcing is not possible, the updated beamformer does not necessarily have full power.
In order to determine the pricing update, the following steps are taken:
1) Compute ρ2 = 1/‖Σ−1UHh∗

kk‖22 and the corresponding value of ζ2, such that ρ(ζ2) = ρ2. If

ζ2 ≤ 0, the update is v(ℓ+1)
k = 0.

2) If 0 < ζ2 ≤
(

ρ22 · ‖Σ−2UHh∗
kk‖22

)−1
, the update is

v
(ℓ+1)
k = ρ2

√

ζ2 ·UΣ−2UHh∗
kk. (4.96)

3) If ζ2 >
(

ρ22 · ‖Σ−2UHh∗
kk‖22

)−1
, the value ζ1 for which w fulfills |hT

kkw|2 = ζ1 is determined
via line search over the interval

[

0,min
{

ζ2, ‖hkk‖22
}]

. The bisection method from the case

where ZF is possible can be used here as well. The updated beamformer v(ℓ+1)
k is the resulting

eigenvector w.
In order to perform the pricing update, user k must know the channel vectors hjk for all j ∈

{1, . . . , K}. In addition, the current SINR γ
(ℓ)
k , the current beamformer v(ℓ)

k , and the interference

prices π(ℓ)
j for all j ∈ {1, . . . , K} are required. Since γ

(ℓ)
k and v

(ℓ)
k can be assumed to be known at

user k, the only information that must be exchanged between the users in every iteration are the
scalar interference prices.

For the MISO interference pricing algorithm, a convergence argument similar to that in Sec-
tion 3.5.5 can be given, cf. also [55]. In addition to the concavity of the utility functions uk(γk) in
|hT

kkvk|2 for all k ∈ {1, . . . , K}, it is necessary that uk(γk) is convex in |hT
kjvj |2 for all j 6= k,

which again results in the condition ck(γk) ∈ [0, 2] for all k ∈ {1, . . . , K}. With sequential updates
and up-to-date knowledge of the interference prices it can be argued that in each iteration a lower
bound for the sum utility is maximized, which is tight at the beamformer K-tuple

(

v
(ℓ)
1 , . . . , v

(ℓ)
K

)

.
The sequence of sum utilities over the iterations is therefore non-decreasing and thus convergent.

Furthermore, it is straightforward to show that a stationary transmit strategy fulfills the KKT
conditions (4.35)–(4.38). Therefore, if the beamformers have converged, the transmit strategy is a
candidate for local optimality in the sum utility problem.

For the rate utility

ρ(ζ) =
1

ζ +
∑

j 6=k

∣

∣hT
kjv

(ℓ)
j

∣

∣

2
+ σ2

=

(
∣

∣hT
kkv

(ℓ)
k

∣

∣

2

γ
(ℓ)
k

+ ζ

)−1

(4.97)

and

ζ2 =
1

ρ2
−
∑

j 6=k

∣

∣hT
kjv

(ℓ)
j

∣

∣

2 − σ2 =
1

ρ2
−
∣

∣hT
kkv

(ℓ)
k

∣

∣

2

γ
(ℓ)
k

. (4.98)

The interference price of user k is

π
(ℓ)
k =

1
∑

j 6=k

∣

∣hT
kjv

(ℓ)
j
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2
+ σ2

− 1
∑
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∣hT
kjv

(ℓ)
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2
+ σ2

=
γ
(ℓ)
k

2

(

γ
(ℓ)
k + 1

)∣

∣hT
kkv

(ℓ)
k

∣

∣

2 . (4.99)
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4.4.5.1 Simplified Interference Pricing

In order to avoid the line search involved in the interference pricing updates, we proposed a sim-
plification in [3]: if we assume ζ =

∣

∣hT
kkv

(ℓ)
k

∣

∣

2
to be constant at the value of the previous iteration,

the matrix A does not depend on the beamformer vk. The simplified pricing update can then be
performed by determining the highest eigenvalue λ of the matrix

A = ρ
(

∣

∣hT
kkv

(ℓ)
k

∣

∣

2
)

h∗
kkh

T
kk −

∑

j 6=k

π
(ℓ)
j h∗

jkh
T
jk. (4.100)

If λ > 0, the updated beamformer v(ℓ+1)
k is the unit-norm eigenvector corresponding to λ, other-

wise it is the zero vector. It is not possible to obtain a beamformer with a power strictly between
zero and one.

Since at a stationary beamformer K-tuple it does not make a difference whether ζ is kept
constant from the previous iteration or not, stationarity in the simplified pricing algorithm also
implies fulfillment of the KKT conditions of the sum utility problem. However, the sum utility is
not necessarily increased monotonically over the iterations, and oscillations of the algorithm can
indeed be observed in numerical simulations. A numerical evaluation of the convergence behavior
and performance of the simplified pricing algorithm for an i. i. d. Gaussian channel model is given
in Section 4.5.

4.4.6 Cyclic Coordinate Descent

In [65], a distributed projected gradient algorithm for MISO interference networks was proposed.
In contrast to the SISO projected gradient algorithm discussed in Section 3.5.4, the step size is
not constant across users and iterations, but is adaptively determined in each iteration by each user
separately. For sequential updates, it is proven that the algorithm converges to a transmit strategy
fulfilling the KKT conditions without any restrictions on the curvature of the utility functions. As
the convergence proof relies on the users updating their transmit strategies one after another and
thereby in each step decreasing the total cost function, i. e., the negative sum utility, the algorithm
is said to perform a “cyclic coordinate descent”. In the following we describe the update procedure
of the algorithm and refer to [65] for the derivation and convergence proof.

We define the gradient vector for user k in iteration ℓ as

g
(ℓ)
k =

∑

j

∂uj

∂v∗
k

∣

∣

∣

∣

vi=v
(ℓ)
i ∀i.

(4.101)

A step size for the gradient projection step is computed as

κ
(ℓ)
k =

∥

∥v
(ℓ)
k − v

(ℓ−1)
k

∥

∥

2

2

2
∣

∣

∣
Re
{

(
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k − v

(ℓ−1)
k

)H(
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(ℓ)
k − g

(ℓ−1)
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)

}∣

∣

∣

. (4.102)

This rule is a heuristic based on the Barzilai-Borwein method [72], which is known to have good
numerical properties for quadratic cost functions. As the step size κ(ℓ)

k depends on the beamformer

and gradient of iteration ℓ− 1, it is necessary to define κ
(0)
k , e. g., as one.

An update direction is determined by taking a step into the direction of the gradient and pro-
jecting the result such that the power constraint is fulfilled:

d
(ℓ)
k = Π

(

v
(ℓ)
k + κ

(ℓ)
k g

(ℓ)
k

)

− v
(ℓ)
k (4.103)
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where

Π(v) =

{

v if ‖v‖22 ≤ 1

v/‖v‖2 otherwise.
(4.104)

In order to ensure convergence it is not sufficient to simply use v
(ℓ)
k + d

(ℓ)
k as the updated beam-

former. Instead, a line search between v
(ℓ)
k and v

(ℓ)
k +d

(ℓ)
k is performed with the goal of guaranteeing

that the sum utility function is “sufficiently improved”. Specifically, the step size 0 < δ
(ℓ)
k ≤ 1 that

is applied to find the updated beamformer with

v
(ℓ+1)
k = v

(ℓ)
k + δ

(ℓ)
k d

(ℓ)
k (4.105)

must fulfill the Armijo condition

u(ℓ+1)
sum ≥ u(ℓ)

sum + 2ηRe
{
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k

H
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sum + 2ηδ
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k Re
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H
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k

}

(4.106)

for a given parameter 0 < η < 1 and with

u(ℓ)
sum =

∑

k

uk(γk)
∣

∣

∣

vj=v
(ℓ)
j ∀j.

(4.107)

A suitable step size δ(ℓ)k can be found by means of a backtracking procedure: starting with δ
(ℓ)
k = 1,

δ
(ℓ)
k is decreased by repeated multiplication with a factor 0 < β < 1 until the above condition is

fulfilled. The intuition behind the Armijo condition is that it ensures that the sum utility is increased
with each update and that a small increase in sum utility is not accompanied by a large change in
the beamforming vector, thereby eliminating the possibility of an oscillation. Example parameters
used in our numerical simulations are β = 0.5 and η = 0.1. For a more detailed discussion of the
Armijo condition and backtracking line search, cf. [73, Chapter 3].

It should be noted that repeatedly checking whether the Armijo condition is fulfilled requires
user k to be able to compute the sum utility for different values of δ(ℓ)k . Therefore, user k must be
able to compute all users’ SINRs γj depending on vk and subsequently be able to compute uj(γj)
for all j ∈ {1, . . . , K}. Assuming that every user has a-priori knowledge of the utility functions of
all users, and that the channel vectors have been exchanged so that user k has knowledge of hjk

for all j ∈ {1, . . . , K}, it is sufficient for the users to announce the numerator and the denominator

of γ(ℓ)
k after each iteration: with the knowledge of

∣
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jjv
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2
+ σ2 user k can

evaluate γj for any candidate beamformer vk by subtracting
∣

∣hT
jkv

(ℓ)
k

∣

∣

2
from the denominator and

adding |hT
jkvk|2. Also, as can be seen from (4.40), the numerator and denominator of the current

SINR γ
(ℓ)
j enable user k to compute the gradient ∂uj/∂v

∗
k .

While the convergence proof relies on sequential updates, the cyclic coordinate descent algo-
rithm performs similarly with parallel updates. A detailed numerical evaluation of the convergence
behavior is given in Section 4.5.

4.4.7 Other Proposed Algorithms

The preceding list of distributed techniques is not exhaustive; the algorithms were selected for
the simplicity of their updates and their limited information exchange requirements. Some further
algorithms are intentionally not included in our comparison. For example, in [57] a distributed
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Algorithm Iterative Power control Sum rate Convergence

Selfish solution No Always full power No —
Virtual SINR No Always full power No —
Global SINR Yes Always full power No Seq. updates
Unweighted MMSE Yes Yes No Yes
Adaptively weighted MMSE Yes Yes Yes Yes
Interference pricing Yes Yes Yes Seq. updates
Simplified pricing Yes Full or zero power Yes No
Cyclic coordinate descent Yes Yes Yes Seq. updates

Table 4.1: Overview of the discussed algorithms for MISO interference networks

Algorithm Line search EVD/SVD Matrix inverse

Selfish solution No No No
Virtual SINR No No Yes
Global SINR No Yes Yes
Unweighted MMSE Newton No Yes
Adaptively weighted MMSE Newton No Yes
Interference pricing Bisection Yes No
Simplified pricing No Yes No
Cyclic coordinate descent Backtracking No No

Table 4.2: Complexity of the updates for the discussed MISO algorithms

algorithm was proposed that is based on the concept of “interference temperatures”, i. e., updating
beamformers with constraints on the allowed interference power gains. The algorithm updates the
beamformers of a pair of users in each iteration with the goal of increasing both SINRs without de-
creasing the SINRs of all other users, thereby moving in the direction of the Pareto boundary. Each
update, however, requires the solution of a convex optimization problem in K real variables and is
therefore significantly more complex than the updates of the previously discussed schemes, which
require at most a line search. Furthermore, the algorithm cannot be used for the maximization of a
sum utility.

We also did not further examine the distributed feasibility-check and balancing techniques
proposed in [60], which we briefly mentioned in Section 4.3.4: an iteration of these algorithms
requires each user to solve an SOCP in

∑

k Nk variables. Furthermore, it is questionable whether
a performance comparison between a balancing algorithm and sum-utility oriented algorithms is
meaningful.

4.4.8 Algorithm Comparison and Information Exchange Analysis

Table 4.1 gives an overview over some of the properties of the distributed algorithms discussed in
this section. The third column lists whether the norm of the resulting beamformers can be between
zero and one; the fourth column states whether the algorithm can be used to search for locally
optimal solutions to the sum rate maximization problem; in the fifth column, finally, we indicate
whether convergence in some metric, e. g., the sum utility, can be guaranteed.
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Algorithm Rx k → Tx k Tx k → Tx j Rx k → Tx k Tx k → Tx j

once once per iteration per iteration

Selfish solution hkk, γk — — —
Virtual SINR hkj ∀j, γk hkj — —

Global SINR hkj ∀j hkj γ
(ℓ)
k n

(ℓ)
k , d(ℓ)k

Unweighted MMSE hkj ∀j hkj γ
(ℓ)
k

∣

∣g
(ℓ)
k

∣

∣

2

Adaptively weighted MMSE hkj ∀j hkj γ
(ℓ)
k

∣

∣g
(ℓ)
k

∣

∣

2
, α(ℓ)

k

Interference pricing hkj ∀j hkj γ
(ℓ)
k π

(ℓ)
k

Simplified pricing hkj ∀j hkj γ
(ℓ)
k π

(ℓ)
k

Cyclic coordinate descent hkj ∀j hkj γ
(ℓ)
k n

(ℓ)
k , d(ℓ)k

Table 4.3: Information exchange requirements of the MISO algorithms assuming that the transmitters com-
pute the updates and are connected via signaling links, cf. Figure 3.6(a).

Even though it is difficult to compare the computational complexity of the updates without
explicitly counting the number of arithmetic operations in an efficient implementation, we show
some qualitative differences in computational effort between the algorithms by listing in Table 4.2
whether an update requires a line search, the computation of eigenvalues, eigenvectors, or singular
values, or the computation of the inverse or pseudo-inverse of an Nk × Nk matrix. It should be
noted, however, that the perhaps most important factor in the overall computational effort required
by an algorithm is the number of iterations needed until convergence, which we will experimentally
examine in the following section.

For the information exchange analysis in Table 4.3, we assume that all transmitters are con-
nected among each other via signaling links and the receivers are connected to their respective
transmitters via a feedback link, cf. Section 3.5; again, the information exchange requirements for
the case of connected receivers are very similar. We furthermore assume that σ2 and the utility
functions are known a-priori to each transmitter and that receiver k is able to perfectly estimate the
channel vectors hkj for all j ∈ {1, . . . , K}. Also, after each iteration, receiver k is able to measure

the current SINR γ
(ℓ)
k and the complex gain of the desired signal hT

kkv
(ℓ)
k .

We denote the numerator and denominator of γ(ℓ)
k by n

(ℓ)
k and d

(ℓ)
k , respectively, and note that

transmitter k can determine n
(ℓ)
k and d

(ℓ)
k from γ

(ℓ)
k since it has knowledge of hkk and v

(ℓ)
k . Also,

for the MMSE-based algorithms it is of significance that transmitter k can determine the receiver
gain g

(ℓ)
k from the reported SINR γ

(ℓ)
k and knowledge of the direct channel and beamformer, thus

eliminating the need for receiver k to feed back both g
(ℓ)
k and γ

(ℓ)
k after each iteration. The current

SINR γ
(ℓ)
k must always be fed back to the transmitter, so that an appropriate channel coding scheme

can be chosen for the transmission of data.
For the adaptively weighted MMSE algorithm, we assumed that the weights are updated in

each iteration; if the weights are updated less frequently, the α
(ℓ)
k can accordingly be exchanged

less frequently as well.

4.5 Numerical Evaluation of the Distributed Algorithms

In the following we investigate the performance of the previously discussed distributed algorithms
in an i. i. d. Gaussian channel model. Our performance metrics are the sum rate utility and the
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number of iterations necessary for convergence. We also briefly address the question of how to
initialize the algorithms and examine the performance difference between parallel and sequential
updates. To begin with, we show some typical SINR and rate regions for the two-user case.

4.5.1 Example SINR and Rate Regions forK = 2

The regions depicted in Figures 4.3–4.8 result from a scenario with N1 = N2 = 2 antennas at each
transmitter and the following channel coefficients:

hT
11 = [−0.75 + 0.25 j , 0.66− 0.02 j] hT

12 = [0.16− 0.26 j , 0.30− 0.17 j]

hT
21 = [0.13 + 0.06 j , −1.10 + 1.13 j] hT

22 = [0.12− 0.87 j , 0.03− 0.02 j] .
(4.108)

Figures 4.3–4.5 show the SINR region for the noise powers σ2 = 1, σ2 = 0.1, and σ2 = 0.01,
respectively. Contrary to the SISO case, the SINR region can be either convex (Figure 4.3) or
non-convex (Figures 4.4 and 4.5); the non-convexity generally becomes more pronounced with
decreasing noise power σ2. As was shown in Section 4.4.2, the strategy of maximizing the virtual
SINR is always Pareto optimal for K = 2. Also, the two successive ZF strategies, where one user
employs the selfish beamformer while the other user performs ZF (cf. Section 4.3.3), are always
Pareto optimal. From each of the two successive ZF points, the boundary of the SINR region runs
orthogonally to the axis in a straight line: these sections of the boundary can be achieved with
strategies where the prioritized user achieves its maximal SINR while the other user performs ZF
with less than unit power. The selfish and the ZF strategy (which is the unique altruistic solution
in this case) are in general not Pareto optimal; however, for higher σ2 the selfish solution moves
closer to the Pareto boundary, whereas for lower σ2 the ZF solution moves closer to the boundary.

The three corresponding rate regions are shown in Figures 4.6–4.8. A distinct non-convexity
can be seen for σ2 = 0.01. The trajectory of the interference pricing algorithm (with sequential
updates, initialized with the selfish solution) is also included. In all three examples, the pricing
algorithm converges to a point close to the virtual SINR maximizer. The strategy of maximizing
the virtual SINR in fact seems to be close to sum-rate optimal in these examples. In the following
section this will be confirmed to be a general trend for systems in which ZF is possible for all users.

4.5.2 Average Algorithm Performance in a Gaussian Channel Model with Nk ≥ K

For the numerical performance comparison of the distributed algorithms we again use a simple
i. i. d. Gaussian channel model: all entries of all channel vectors are drawn independently from a
complex Gaussian distribution. We investigate the case where both the direct channel coefficients
and the cross channel coefficients have unit variance, but also present results for a model in which
the entries of the cross channel coefficient vectors hkj with k 6= j have variance 0.01, while the
direct channel coefficients have variance one.

Previously, e. g., in the discussion of Pareto optimality and high-SNR sum-rate optimality as
well as in the derivation of the interference pricing algorithm, it was often necessary to distinguish
between the case in which ZF is possible (i. e., where hkk is linearly independent of the space
spanned by all hjk with j 6= k) and the case in which ZF is not possible. This is an indication that
the properties of the system and thus the behavior of the algorithms can be fundamentally different
depending on whether ZF is possible for all, for some, or for no users; the numerical results indeed
show a qualitative difference, motivating us to investigate two different settings: we first examine a
system with four users in which each transmitter has four antennas. Clearly, in our i. i. d. Gaussian
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Figure 4.3: SINR region for the example channel (4.108) with σ2 = 1.
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Figure 4.4: Scenario as in Figure 4.3 with σ2 = 0.1.
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Figure 4.5: Scenario as in Figure 4.3 with σ2 = 0.01.
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Figure 4.6: Achievable rate region for the example channel (4.108) with σ2 = 1. The pricing algorithm is
initialized with the selfish strategy.
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Figure 4.7: Scenario as in Figure 4.6 with σ2 = 0.1.
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Figure 4.8: Scenario as in Figure 4.6 with σ2 = 0.01.
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Update mode Sequential
Max. iteration number 1000 / 10 000
Convergence threshold 10−4 / 10−6

Newton steps 10
Bisection steps 20
Backtracking parameters β = 0.5, η = 0.1

Table 4.4: Parameters used for the numerical evaluation of the algorithms: both MMSE-based algorithms
and the cyclic coordinate descent algorithm are allowed 10 000 iterations, the other algorithms only 1000 it-
erations. The stricter convergence threshold 10−6 is used only for the adaptively weighted MMSE algorithm
and the cyclic coordinate descent algorithm.

channel model, ZF will be possible for every user almost surely. In the next section, we assume
eight users with four antennas each, so that ZF will be impossible for every user almost surely.

All algorithms are operated with sequential updates; we note, however, that parallel up-
dates yield very similar sum-rate performance and iteration counts, as will be discussed in Sec-
tion 4.5.4.5. The weights in the adaptively weighted sum MSE minimization algorithm are updated
each time all K beamformers have been updated. The algorithms are run until either a convergence
criterion is fulfilled or a maximum number of iterations is reached, where one iteration in this con-
text consists of one beamformer update of every user, i. e., altogether K updates. The convergence
criterion is fulfilled when a measure for the combined change of beamformers from one iteration
to the next is below a certain threshold; specifically, we use the sum of the Euclidean norms of
the difference between the updated and old beamforming vectors, i. e.,

∑

k

∥

∥vnew
k − vold

k

∥

∥

2
. Some

further algorithm parameters are listed in Table 4.4; they were chosen by trial and error to yield the
best possible performance in terms of sum rate.

We note that it turns out to be necessary to use a very strict convergence criterion and higher
maximum iteration number for the cyclic coordinate descent and adaptively weighted MMSE algo-
rithms in order to avoid a significant performance loss at high SNR. Also, the unweighted MMSE
algorithm can require very many iterations to converge and is therefore also allowed a higher max-
imum iteration number. The performance of the remaining iterative algorithms, on the other hand,
is relatively robust against the choice of the convergence parameters, so that we choose to use a
less strict convergence threshold. We nonetheless believe this to be a fair comparison, as the basic
premise is that each algorithm must be operated with a set of parameters that does not incur a
performance loss in any of the examined scenarios.

In the case in which ZF is possible, it turns out to be beneficial to initialize the algorithms
with the ZF solution, which is also globally optimal at high SNR. If ZF is not possible, we must
resort to other initializations, such as selfish or random beamformers. This issue is discussed in
Section 4.5.4.6.

Figure 4.9 shows the average performance for unit-variance cross channels, for the results
in Figure 4.10 the cross channels are attenuated to have variance 0.01. The median number of
iterations required for convergence as well as the percentage of channel realizations for which
convergence fails for these two scenarios is given in Table 4.5.

The figures show that the pricing algorithms, the adaptively weighted MMSE algorithm, and
the cyclic coordinate descent algorithm achieve virtually identical sum-rate performance. The strat-
egy of maximizing the virtual SINR is mostly very close to optimal, followed by the maximization
of the global SINR. The unweighted MMSE algorithm, on the other hand, suffers a small perfor-
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Figure 4.9: K = 4 users, Nk = 4 antennas for all k ∈ {1, . . . , 4}, sum rate averaged over 1000 channel
realizations. The iterative algorithms are initialized with the ZF solution.

−10 −5 0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

 

 
Selfish solution
ZF solution
Max. virtual SINR
Max. global SINR
Min. sum MSE
Adapt. weighted sum MSE
Interference pricing
Simplified pricing
Cyclic coord. descent

S
um

R
at

e
(b

pc
u)

10 log10 σ
−2

Figure 4.10: K = 4 users, Nk = 4 antennas for all k ∈ {1, . . . , 4}, sum rate averaged over 1000 channel
realizations of a channel model where the variance of the cross channels is 0.01 and the variance of the
direct channels is 1. The iterative algorithms are initialized with the ZF solution.
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Algorithm –10 dB 15 dB 40 dB –10 dB 15 dB 40 dB

Max. global SINR 4 (0) 3 (0) 2 (0) 3 (0) 4 (0) 3 (0)
Min. sum MSE 8 (0) 26 (0) 51 (0) 4 (0) 110 (0) 545.5 (0)
Adapt. weighted sum MSE 13 (0) 55 (0.1) 24 (0) 5 (0) 190 (0) 2106 (6.9)
Interference pricing 6 (0) 7 (0) 2 (0) 3 (0) 7 (0) 4 (0)
Simplified pricing 6 (0) 7 (1.3) 2 (0.1) 3 (0) 7 (0) 5 (1.8)
Cyclic coord. descent 17 (0) 71.5 (0) 25 (0) 10 (0) 21 (0) 65 (0)

Table 4.5: Median number of iterations until convergence for Figure 4.9 (left) and Figure 4.10 (right). In
parentheses is the percentage of channel realizations for which the algorithm did not converge before reach-
ing the maximum iteration number.

mance loss at high SNR. As is intuitive, the selfish solution is optimal at low SNR, but saturates
when the noise power term is small compared to the interference power terms in the denominator
of the SINR; the effect of the saturation is more negative when the cross channels are stronger.
The ZF solution is globally optimal at high SNR, but clearly suboptimal when the noise power is
large compared to the interference power terms in the denominator of the SINR; the suboptimality
is more pronounced when the cross channels are weaker.

The global SINR algorithm and the pricing algorithms generally converge within very few
iterations in these scenarios; the simplified pricing algorithm does fail to converge for a few channel
realizations, however. The MSE-based algorithms and the cyclic coordinate descent algorithm, on
the other hand, converge significantly more slowly when the SNR is high. The adaptively weighted
MMSE algorithm, in particular, occasionally even fails to converge within 10 000 iterations in
the scenario with attenuated cross channels. The performance and convergence behavior of the
algorithms is discussed in more detail in Section 4.5.4.

4.5.3 Algorithm Performance in Systems with Nk < K

For the results in Figures 4.11 and 4.12 as well as Table 4.6 we assumed K = 8 users with
Nk = 4 antennas each. The algorithm parameters are the same as in the four-user case. In this
setting it is, however, not possible to initialize the algorithms with the ZF solution; we therefore
determine the initialization beamformers as follows: first, the elements of the beamformer are
drawn independently from a complex Gaussian distribution; next, the beamformer is normalized to
have unit norm (yielding an isotropically distributed unit-norm vector); and finally, the beamformer
is scaled so that the power (or squared norm) is uniformly distributed between zero and one. As is
discussed in Section 4.5.4.6, the performance with this random initialization is marginally superior
to the performance with the selfish initialization.

In this scenario it is necessary that some users are deactivated at high SNR for optimal perfor-
mance. Therefore, the schemes for which the beamformers always have full power, i. e., the selfish
solution and the virtual SINR and global SINR maximizers, saturate at high SNR. The unweighted
MMSE algorithm does not appear to saturate, but does not reach the full slope either. The pricing
algorithms, the adaptively weighted MMSE algorithm, and the cyclic coordinate descent algorithm
perform approximately equally well for the scenario with strong cross channels and achieve the
full slope. In the scenario with weak cross channels, the simplified pricing algorithm performs
poorly at high SNR. As can be seen from Table 4.6, it fails to converge in every single channel re-
alization. Similarly, the adaptively weighted MMSE algorithm in most instances fails to converge
within 10 000 iterations.
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Figure 4.11: K = 8 users, Nk = 4 antennas for all k ∈ {1, . . . , 8}, sum rate averaged over 1000 channel
realizations. The iterative algorithms are initialized with random beamformers.
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Figure 4.12: K = 8 users, Nk = 4 antennas for all k ∈ {1, . . . , 8}, sum rate averaged over 1000 channel
realizations of a channel model where the variance of the cross channels is 0.01 and the variance of the
direct channels is 1. The iterative algorithms are initialized with random beamformers.



4.5 Numerical Evaluation of the Distributed Algorithms 121

Algorithm –10 dB 15 dB 40 dB –10 dB 15 dB 40 dB

Max. global SINR 4 (0) 4 (0) 4 (0) 3 (0) 4 (0) 4 (0)
Min. sum MSE 12 (0) 71 (0) 299 (0) 4 (0) 118 (0) 2267 (0)
Adapt. weighted sum MSE 21 (0) 73 (0) 5673 (29.9) 5 (0) 202.5 (0) 10 000 (97.4)
Interference pricing 9 (0) 13 (0) 11 (0) 3 (0) 10 (0) 22 (0)
Simplified pricing 9 (0) 11 (2.4) 9 (0) 3 (0) 12 (12.4) 1000 (99.7)
Cyclic coord. descent 30 (0) 557.5 (0) 4614.5 (2.4) 12 (0) 28 (0) 751 (0)

Table 4.6: Median iteration number for Figure 4.11 (left) and Figure 4.12 (right). In parentheses is the
percentage of channel realizations for which the algorithm did not converge before reaching the maximum
iteration number.

4.5.4 Discussion of the Numerical Properties of the Algorithms

4.5.4.1 Non-Iterative Methods and Maximization of the Global SINR

The selfish solution in general is clearly not a good strategy in terms of sum rate, unless it is known
that the noise power σ2 is significantly higher than the interference terms in the denominators of
the SINR expressions. The strategy of maximizing the virtual SINR, which also does not require
iterative updates, achieves close to optimal performance, on the other hand, as long as the scenario
allows for ZF, and in those cases provides an excellent compromise between simplicity and per-
formance. The iterative technique of maximizing the global SINR does not yield any substantial
improvement over maximizing the virtual SINR.

If, however, ZF is not possible, i. e., the number of users exceeds the number of antennas per
user in our channel model, the full potential of the system cannot be achieved without iterative
techniques.5

4.5.4.2 MMSE-Based Methods

While the adaptively weighted MMSE algorithm shows excellent performance in terms of sum
rate, the necessary number of iterations can be very high, especially if σ2 is very low. This problem
is also present, but not as severe, for the unweighted MMSE algorithm, which, however, does
not reach a satisfactory sum rate in scenarios that require reducing the number of active users.
Altogether, we conclude that the convergence properties of the MMSE-based approaches are not
ideal for general MISO interference networks.

4.5.4.3 Pricing Methods

The interference pricing algorithm offers very reliable and rapid convergence as well as excel-
lent sum-rate performance in all examined scenarios. The simulation results indicate clearly that
interference pricing is the strategy of choice for general MISO interference networks.

The simplified version of the pricing algorithm often performs very well, but has convergence
issues in certain scenarios. Specifically, it seems that if power control is necessary, i. e., when ZF
is not possible and the SNR is neither asymptotically high nor asymptotically low, the probability

5Alternatively, a preliminary user selection step could reduce the number of users in such a system, so that ZF is
possible again. We note, however, that performing such a user selection without a centralized computer is not trivial;
the iterative algorithms, on the other hand, perform this user selection “automatically” when it is needed.
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Algorithm –10 dB 15 dB 40 dB

Max. global SINR 5 (0) 6 (0) 6 (0)
Min. sum MSE 11 (0) 69 (0) 310 (0)
Adapt. weighted sum MSE 19 (0) 83 (0) 4659 (29.4)
Interference pricing 11 (0) 16 (0) 14 (0)
Simplified pricing 11 (0) 15 (3.7) 12 (0.3)
Cyclic coord. descent 32 (0) 533 (0) 4325 (2.3)

Table 4.7: Median iteration number and failed convergence percentage for the scenario in Figure 4.11 (cf.
Table 4.6, left side) but with parallel instead of sequential updates.

of running into an oscillation can be high. Simplified interference pricing might be a good low-
complexity alternative if measures can be taken to prevent or detect oscillations, which we do not
further pursue in this work.

4.5.4.4 Cyclic Coordinate Descent

The performance of the cyclic coordinate descent algorithm is very good as well. The number of
iterations required for convergence is very high at high SNR, however, and a low convergence
threshold is required, as otherwise small changes is vk from one iteration to the next are falsely
interpreted as convergence of the algorithm, when in fact they are a consequence of a small step
size κ

(ℓ)
k , cf. (4.102). This raises the question of whether the heuristic for the step size κ

(ℓ)
k can be

improved; in any case, finding a step size heuristic and convergence parameters that are suitable
for different scenarios, channel models, and a wide range of noise powers certainly presents a
challenge.

4.5.4.5 Sequential vs. Parallel Updates

The convergence proofs of some of the discussed algorithms rely on sequential updates. Also, it
is intuitive that sequential updates are beneficial for rapid convergence as we can think of parallel
updates as sequential updates with outdated information on the other users’ conditions. Parallel
updates, on the other hand, have the advantage of requiring less information exchange: the users
must communicate over their signaling links only once per K beamformer updates.

In order to quantitatively investigate the difference in performance, we simulated the scenario
with K = 8 users, Nk = 4 antennas for all users k ∈ {1, . . . , 4}, and equal direct and cross channel
gains with parallel updates. We omit the sum-rate performance plot, as it is virtually identical to
Figure 4.11; a slight difference can be, however, observed in the number of iterations necessary
for convergence, as is shown in Table 4.7: the global SINR and pricing algorithms require several
additional iterations for convergence, for the remaining algorithms such an effect is not evident.
Altogether the difference between sequential and parallel updates does not appear to be very large.

4.5.4.6 Choice of the Initialization

In Figure 4.13 and Table 4.8, the sum rate and convergence performance is shown for the interfer-
ence pricing algorithm with sequential updates and different initialization strategies in a scenario
with K = 4 users, Nk = 4 antennas for all users k ∈ {1, . . . , 4}, and equal direct and cross
channel gains. The algorithm performs best with zero-forcing initializations, while the other three
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Figure 4.13: K = 4 users, Nk = 4 antennas for all k ∈ {1, . . . , 4}, sum rate of the interference pricing
algorithm starting from different initializations averaged over 1000 channel realizations.

Initialization –10 dB 15 dB 40 dB

Zero-forcing solution 6 (0) 7 (0) 2 (0.1)
Selfish solution 6 (0) 9 (0) 8 (0)
Random beamformers 6 (0) 9 (0) 8 (0)
Zero beamformers 7 (0) 10 (0) 9 (0)

Table 4.8: Median iteration number and failed convergence percentage for Figure 4.13.

strategies lead to similar results on average, with a marginal advantage for the random initializa-
tion. The fact that the slope of the graphs for non-ZF initializations is slightly lower than for the
ZF initialization indicates that the interference pricing algorithm in some cases converges towards
a suboptimal strategy for which not all users have close to zero interference.

We note that further numerical experiments show that the behavior is similar for other scenarios
and algorithms, with the limitation that the zero initialization is not suitable for the MMSE-based
and cyclic coordinate descent methods, as for those algorithms the zero beamformers are a station-
ary transmit strategy. We therefore conclude that a sensible strategy is to initialize the beamformers
with the zero-forcing solution whenever it exists and with a random beamformer otherwise.





5. Single-StreamMIMO Interference Networks

In a general multi-antenna network, both the transmitters and the receivers may have more than one
antenna. We refer to such scenarios as multiple-input multiple-output (MIMO) systems. In contrast
to the MISO case, single-stream beamforming is not necessarily optimal in MIMO systems; in fact,
the potential of MIMO systems lies in the capability to transmit several spatially multiplexed data
streams, which can greatly increase the capacity [74]. In this work, however, we investigate only
cases where at most one stream is transmitted per user. These special cases already provide insights
into some of the fundamental properties of MIMO interference networks without being burdened
by issues such as intra-user interference, choosing the optimal stream configuration, and allocating
the power among the different streams of one user. Also, since the single-stream MIMO case is
closely related to the MISO case, we can generalize many of the previously discussed algorithms
in a straightforward way.

By combining the signals from their different antennas, multi-antenna receivers are—to a cer-
tain extent—able to distinguish the desired signal from the interference. The goal of the transmit-
ters is therefore no longer to form the beam such that the interference is canceled at the receivers,
but such that the interference is distinguishable from the desired signal. As will be discussed in
the following, the key idea is that the interference from the different transmitters is aligned in a
lower-dimensional subspace at each receiver.

Even for the single-stream case, the problem of finding optimal strategies in MIMO interfer-
ence networks is highly complex. Analytical results are only available for the rate utility in the
asymptotic regimes of low and high SNR. In this chapter we discuss these asymptotic results and
proceed to compare the known distributed algorithms, which can for the most part be derived from
the MISO algorithms presented in the previous chapter. We numerically evaluate the performance
of the algorithms in an i. i. d. Gaussian channel model.

5.1 System Model

As in the previous chapter, transmitter k has Nk antennas; we now additionally allow multiple
antennas at the receivers and denote the number of antennas at receiver k as Mk. The complex
channel gains between the Nj antennas of transmitter j and the Mk antennas of receiver k form
the matrix Hkj ∈ CMk×Nj . We assume the direct channels to be non-zero, i. e., Hkk 6= 0 for all
k ∈ {1, . . . , K}.

The vector yk ∈ CMk containing the received symbols at the Mk antennas of receiver k is

yk = Hkkxk +
∑

j 6=k

Hkjxj + nk ∀k ∈ {1, . . . , K} (5.1)

where xj ∈ CNj is the vector of symbols transmitted from the Nj antennas of transmitter j and
nk ∈ CMk is the vector of additive noise experienced at the Mk antennas of receiver k. The mean
of the noise is zero and the noise covariance matrix is

E
[

nkn
H
k

]

= σ2
I ∀k ∈ {1, . . . , K} (5.2)

125
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i. e., the noise power is σ2 > 0 at every antenna of every receiver and is not correlated between the
antennas of one receiver. We also assume the transmit symbol vectors xk to have mean zero and,
since the transmitters cannot cooperatively encode their signals, to be uncorrelated between users,
i. e., E

[

xkx
H
j

]

= 0 for k 6= j. The transmit covariance matrix of user k

Qk = E
[

xkx
H
k

]

∀k ∈ {1, . . . , K} (5.3)

is by definition positive semi-definite and is, as in the MISO case, subject to the power constraint

tr (Qk) ≤ 1 ∀k ∈ {1, . . . , K}. (5.4)

While it is possible to define the SINR of user k using the power of the desired signal, interfer-
ence, and noise terms summed up across all antennas of receiver k, it is not clear whether this is
a relevant metric. In particular, the achievable rate (when the transmit symbols and noise vectors
are Gaussian and interference is treated as noise) is in general not a function of a so-defined SINR.
Instead, we avoid the discussion of a generalization of the SINR to multi-antenna receivers and
from this point on restrict our attention to the case of single-stream beamforming, where defining
the SINR is straightforward.

For single-stream transmission, user k multiplies the unit-variance data symbol sk ∈ C with
the beamformer vk ∈ CNk to form the transmit vector

xk = vk · sk ∀k ∈ {1, . . . , K} (5.5)

where, to fulfill the unit power constraint, the beamformers must satisfy

‖vk‖22 ≤ 1 ∀k ∈ {1, . . . , K}. (5.6)

Receiver k combines the received symbols from the Mk antennas using the receive filter vector
gk ∈ CMk to form the estimated symbol

ŝk = gT
k yk ∀k ∈ {1, . . . , K} (5.7)

where we require that gk 6= 0. The SINR of user k after the receive filter can be stated as

γk =
|gT

k Hkkvk|2
∑

j 6=k

|gT
k H

T
kjvj |2 + ‖gk‖22σ2

∀k ∈ {1, . . . , K}. (5.8)

We note that γk does not change when gk is multiplied with a non-zero scalar.
As noted in the introduction to this chapter, single-stream transmission is in general not opti-

mal. As a simple counter-example, we can consider a point-to-point MIMO link, i. e., a system with
K = 1 user, and the rate utility; it is well known that it is optimal to diagonalize the channel ma-
trix and distribute the power over several orthogonal modes, thus transmitting up to min{N1,M1}
streams [74]. We note, however, that there are many MIMO scenarios, such as the fully loaded

systems discussed in Section 5.3.4, where single-stream beamforming is known to be sum-rate
optimal in the high-SNR regime.
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5.1.1 General Power Constraints and Noise Covariances

For notational convenience, we assume in our system model that all users have a unit power con-
straint and that the noise is uncorrelated and has the same variance at every receive antenna. This
does not, however, present a loss of generality; systems with different power constraints and col-
ored noise can be transformed into an equivalent system fulfilling our assumptions, as we will
show in the following.

Let us assume a more general system with received and transmitted symbol vectors y′
k and

x′
k, respectively, as well as noise vectors n′

k and channel matrices H ′
kj , which is governed by the

equations

y′
k =

∑

j

H ′
kjx

′
j + n′

k ∀k ∈ {1, . . . , K}. (5.9)

The power constraint for user k is E[‖x′
k‖22] = tr(Q′

k) ≤ Pk and the noise covariance matrix at
receiver k is E

[

n′
kn

′
k
H
]

= Rk, where Rk has full rank.1

For our equivalent system, we define the channel matrices Hkj = σ
√

PjR
− 1

2
k H ′

kj , the transmit

symbol vectors xk = x′
k/
√
Pk, and the noise vectors nk = σR

− 1
2

k n′
k. Furthermore, we let each

receiver k perform a linear operation on its received symbol vector yielding the “whitened” receive

symbol vector yk = σR
− 1

2
k y′

k, so that we obtain

yk = σR
− 1

2
k y′

k =
∑

j

σR
− 1

2
k H ′

kjx
′
j + σR

− 1
2

k n′
k =

∑

j

Hkjxj + nk. (5.10)

Due to the definitions of nk and xk, E
[

nkn
H
k

]

= σ2
I and the power constraint translates to

tr
(

E
[

xkx
H
k

])

≤ 1. Thus, by adding a “noise whitening” filter σR
− 1

2
k as a preliminary receive

processing step and renormalizing the channel matrices, we are able transform any system with
general power constraints and noise covariances into an equivalent system that fits our framework.

It remains to be shown that the two systems have identical SINR regions for single-stream trans-
mission. To this end, let us assume that the SINR K-tuple (γ1, . . . , γK) is achievable in the original
system by the receive filter K-tuple (g′

1, . . . , g
′
K) and the beamformer K-tuple (v′

1, . . . , v
′
K). It is

straightforward that in the equivalent system the receive filters gT
k = g′

k
T
R

1
2
k /σ and beamformers

vk = v′
k/
√
Pk for all k ∈ {1, . . . , K} achieve the same SINR K-tuple. Conversely, for an SINR

K-tuple that is achievable in the equivalent system, g′
k and v′

k can in the same way be obtained
from gk and vk such that the SINRs in the original system are identical. Therefore, any SINR K-
tuple that is achievable in the original system is also achievable in the equivalent system and vice
versa, and the SINR regions are identical.

5.2 Optimal Receive Filters

The SINR γk depends only on gk and not on any gj with j 6= k. Therefore, we can choose the
receive filter gk to maximize the SINR γk without affecting the other users’ performance by solving
the optimization problem

g
opt
k = argmax

gk

γk s. t.: ‖gk‖22 = 1. (5.11)

1If the noise covariance matrix Rk does not have full rank, there exists a receive filter vector gk such that
E[|gT

k n
′

k|2] = 0, i. e., user k can transmit a data stream without noise and the achievable rate is infinite.
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Note that we impose a unit-norm equality constraint on the vector gk: since the SINR γk is invariant
to a scaling of gk, this restriction does not cause a loss of optimality; assuming unit-norm receive
filters, however, provides some notational advantages later on.

We observe that the SINR can be stated as a generalized Rayleigh quotient

γk =
gT
k Hkkvkv

H
k H

H
kkg

∗
k

gT
k

(

∑

j 6=k Hkjvjv
H
j H

H
kj + σ2I

)

g∗
k

(5.12)

and therefore (5.11) can be solved in the same way as the similar optimization problems in Sections
4.4.2 and 4.4.3 (also cf. [37, Section 4.2]): assuming that vk 6= 0, the complex conjugate optimal
receive filter is

g
opt
k

∗
=

1
∥

∥

∥

∥

(

∑

j 6=k Hkjvjv
H
j H

H
kj + σ2I

)−1

Hkkvk

∥

∥

∥

∥

2

(

∑

j 6=k

Hkjvjv
H
j H

H
kj + σ2

I

)−1

Hkkvk

(5.13)
and, if vk = 0, any unit-norm receive filter is optimal, as the SINR is zero regardless of the receive
filter. Inserting the optimal receive filter into the expression for the SINR yields

γopt
k = γk

∣

∣

∣

gk=g
opt
k

= vH
k H

H
kk

(

∑

j 6=k

Hkjvjv
H
j H

H
kj + σ2

I

)−1

Hkkvk. (5.14)

Instead of maximizing the SINR, we can also choose the receive filter that minimizes the MSE:

gMMSE
k = argmin

gk

εk (5.15)

where

εk = E
[

|ŝk − sk|2
]

= E

[

∣

∣

∣
(gT

k Hkkvk − 1)sk +
∑

j 6=k

gT
k Hkjvjsj + gT

k nk

∣

∣

∣

2
]

=
∑

j

|gT
k Hkjvj |2 − 2Re

{

gT
k Hkkvk

}

+ 1 + ‖gk‖22σ2.
(5.16)

Since εk is not invariant to a scaling of gk, we do not impose a constraint on the norm of gk. Setting
the derivative of the MSE to zero results in the necessary condition for optimality

∂εk
∂gk

=
∑

j

Hkjvjv
H
j H

H
kjg

∗
k −Hkkvk + g∗

kσ
2 = 0. (5.17)

Consequently,

gMMSE
k

∗
=

(

∑

j

Hkjvjv
H
j H

H
kj + σ2

I

)−1

Hkkvk. (5.18)

Note that for vk = 0 the MSE-optimal receive filter is also the null vector, which is problematic
since the SINR is not defined for this case. It is intuitive, though, that this is a technicality that can
be resolved by defining the SINR to be zero if both vk = 0 and gk = 0.
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While (5.13) and (5.18) appear to be similar, the inverse in (5.18) contains the sum over all
indices j including k. Nonetheless, gMMSE

k and g
opt
k are collinear, as we will show in the following.

With the abbreviation
Xk =

∑

j 6=k

Hkjvjv
H
j H

H
kj + σ2

I (5.19)

we can express the MSE-optimal receive filter as

gMMSE
k

∗
=
(

Hkkvkv
H
k H

H
kk +Xk

)−1
Hkkvk. (5.20)

By applying the matrix-inversion lemma we obtain

gMMSE
k

∗
=

(

X−1
k − 1

1 + vH
k H

H
kkX

−1
k Hkkvk

X−1
k Hkkvkv

H
k H

H
kkX

−1
k

)

Hkkvk

=
1

1 + vH
k H

H
kkX

−1
k Hkkvk

X−1
k Hkkvk.

(5.21)

We recall that

g
opt
k

∗
=

1
∥

∥X−1
k Hkkvk

∥

∥

2

X−1
k Hkkvk (5.22)

and it is evident that the two optimal receive filters are identical up to a scalar factor. Since γk is
invariant to the scaling, we can also state that

γk

∣

∣

∣

gk=gMMSE
k

= γk

∣

∣

∣

gk=g
opt
k

= γopt
k . (5.23)

5.2.1 Altruism in MIMO Interference Networks

We recall from Section 4.3.2 that the strategy of user k is altruistic if
1) user k cannot change its strategy to increase any γj with j 6= k and
2) user k cannot change its strategy to increase γk without decreasing at least one γj with j 6= k.
In the MIMO case, the strategy of user k consists of the beamformer vk and the receive filter gk.
The second of the two altruism conditions implies that user k must use the optimal receive filter
g
opt
k ; otherwise γk can be increased with no effect on the other users’ SINRs by changing gk. The

first condition implies that if all users behave altruistically, it cannot be possible to increase γopt
k

by changing any vj with j 6= k. This is clearly the case when Hkjvj = 0, but can also be achieved
in a different way, as can be seen by applying the matrix-inversion lemma to the optimal SINR:

γopt
k = vH

k H
H
kkX

−1
k Hkkvk = vH

k H
H
kk

(

YkY
H
k + σ2

I
)−1

Hkkvk

= σ−2vH
k H

H
kkHkkvk − σ−2vH

k H
H
kkYk

(

σ2
I+ Y H

k Yk

)−1
Y H

k Hkkvk

(5.24)

where Yk contains the vectors Hkjvj with j 6= k as columns. It is straightforward to show that
the optimal SINR γopt

k cannot be further improved by changing any vj with j 6= k only when
Y H

k Hkkvk = 0, i. e., when vH
j H

H
kjHkkvk = 0 for all j 6= k.

Altruism in the MIMO case therefore requires that interference and desired signal are orthog-
onal at every receiver. It is, however, not trivial to compute the altruistic solutions. Furthermore,
the altruistic solutions do not appear to have any special relevance in terms of, e. g., asymptotic
optimality. As we discuss in the following section, the desirable property in MIMO systems is that
the interference and desired signal are linearly independent rather than orthogonal at the receivers.
We therefore do not further pursue the notion of altruism here.
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5.3 Low- and High-SNR Asymptotics for the Rate Utility

Little is known about the region of achievable SINR K-tuples (γ1, . . . , γK) with single-stream
beamforming. It is evident that the SINR region is comprehensive: for a fixed set of receive filters,
the system is equivalent to a MISO system in which the effective channel vectors are the com-
bination of the channel matrices and receive filters; the MIMO SINR region then is the union of
the effective MISO regions resulting from all possible sets of receive filters, each of which is a
comprehensive region. Further results, such as convexity conditions or useful parametrizations of
the Pareto boundary, however, remain elusive. Instead, the analysis in the literature focuses on the
characterization of high-SNR optimality results for the achievable rate utility. In the following we
discuss these results and begin by stating the low-SNR optimum.

5.3.1 The Low-SNR Optimal Strategy

Instead of rigorously deriving the low-SNR optimum from the KKT conditions of the sum rate
maximization problem as we did in the previous chapters for the SISO and MISO case, we follow
a more intuitive approach here. Unless stated otherwise, we assume unit-norm receive filters from
here on.

For σ2 → ∞ the denominator of the SINR γk is dominated by the noise term and the inter-
ference terms can be neglected. Thus, we drop the interference terms in (5.8) and assume that
γk = |gT

k Hkkvk|2/σ2 so that the low-SNR optimal strategy is
(

gME
k , vME

k

)

= argmax
(gk ,vk)

|gT
k Hkkvk|2 s. t.: ‖gk‖22 = 1 and ‖vk‖22 ≤ 1. (5.25)

For a fixed receive filter gk, the transmitter effectively sees a MISO channel with the
channel vector gT

k Hkk. From (4.17) we know that the selfish beamformer for this chan-
nel is vk = HH

kkg
∗
k/‖HH

kkg
∗
k‖2. Consequently, the receive filter gME

k must maximize
|gT

k HkkH
H
kkg

∗
k|2/‖HH

kkg
∗
k‖22 = gT

k HkkH
H
kkg

∗
k.

It is known, e. g., from the properties of matrix norms [37, Section 5.6], that the vector gME
k

∗

that maximizes this expression is the principal eigenvector of the matrix HkkH
H
kk, or, if we ex-

amine the SVD Hkk = UkΣkV
H
k , where the diagonal entries of Σk are ordered from highest to

lowest, gME
k

∗
= Uke1. From vk = HH

kkg
∗
k/‖HH

kkg
∗
k‖2 it follows that vME

k = Vke1, i. e., vME
k is the

principal eigenvector of the matrix HH
kkHkk.

The SINR (neglecting the interference) resulting from the low-SNR optimal receive filter gME
k

and beamformer vME
k is γk = λk/σ

2, where λk is the maximum eigenvalue of both the ma-
trices HkkH

H
kk and HH

kkHkk; hence the super-script “ME”, which stands for “maximum eigen-
value/eigenvector”.

5.3.2 High-SNR Slope and Offset

Let us assume a fixed K-tuple of unit-norm receive filters (g1, . . . , gK) and a fixed K-tuple of
beamformers (v1, . . . , vK), which we refer to as the strategy. The rate utility of user k is

Rk = log(1 + γk) = log

(

1 +
|gT

k Hkkvk|2
∑

j 6=k|gT
k Hkjvj |2 + σ2

)

(5.26)

which is zero if |gT
k Hkkvk|2 = 0. To analyze the rate of an active user k with |gT

k Hkkvk|2 > 0 in
the high-SNR regime, i. e., for σ−2 → ∞, we distinguish between two cases:
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}

Figure 5.1: Slope s and offset r of the high-SNR asymptote of the sum rate plotted over the logarithmic
SNR

1)
∑

j 6=k|gT
k Hkjvj |2 = 0:

By stating the rate of user k as

Rk = log

(

1 +
|gT

k Hkkvk|2
σ2

)

= log σ−2+log|gT
k Hkkvk|2+log

(

1 +
σ2

|gT
k Hkkvk|2

)

(5.27)

and noting that the last summand approaches zero as σ−2 → ∞, it clear that Rk → ∞ as
σ−2 → ∞.

2)
∑

j 6=k|gT
k Hkjvj |2 > 0:

lim
σ−2→∞

Rk = log

(

1 +
|gT

k Hkkvk|2
∑

j 6=k|gT
k Hkjvj |2

)

(5.28)

i. e., Rk approaches a constant as σ−2 → ∞.
Therefore, as σ−2 → ∞, the sum rate is

∑

k

Rk = s · log σ−2 + r + o(1) (5.29)

where s is the number of users k for which
∑

j 6=k|gT
k Hkjvj |2 = 0 and |gT

k Hkkvk|2 > 0.
At high SNR, the sum rate achieved by a given strategy is thus fully described by the noise

power σ2 and the two parameters s and r. In particular, when the sum rate is plotted over log σ−2,
it approaches a linear asymptote at high SNR, cf. Figure 5.1; the slope of the asymptote is s and
the y-axis intercept is r. We therefore refer to r as the sum rate offset; note that the sum rate offset,
as opposed to the sum rate, can be negative. For the special case in which all users are active and
experience no interference, i. e., all users fall under the first case, the slope is s = K and the sum
rate offset is

r =
∑

k

log|gT
k Hkkvk|2. (5.30)

As an asymptote with a higher slope lies above an asymptote with a lower slope for sufficiently
high SNR, it is necessary for the high-SNR sum-rate optimal strategy to achieve the maximum
value of s. If more than one strategy achieves the maximum slope, the candidate with the highest
sum rate offset r is the high-SNR optimum.
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5.3.3 Example:K = 3 Users, Nk = Mk = 2 Antennas

To illustrate the properties of the high-SNR optimum, we examine a scenario with K = 3 users and
Nk = Mk = 2 antennas at every transmitter and receiver k. We assume that all channel matrices
Hkj ∈ C2×2 are invertible. In the following we investigate whether it is possible to achieve an
asymptotic slope of s = 3 in this setting.

Since for s = K = 3 all three users must be active and experience zero interference after the
receive filter, we can state the following necessary and sufficient conditions:

gT
1 H11v1 6= 0 gT

1 H12v2 = 0 gT
1 H13v3 = 0 (5.31)

gT
2 H21v1 = 0 gT

2 H22v2 6= 0 gT
2 H23v3 = 0 (5.32)

gT
3 H31v1 = 0 gT

3 H32v2 = 0 gT
3 H33v3 6= 0. (5.33)

From the three conditions in (5.31) it follows that g1 6= 0 and that gT
1 (H12v2v

H
2 H

H
12 +

H13v3v
H
3 H

H
13)g

∗
1 = 0. Therefore, the matrix H12v2v

H
2 H

H
12 +H13v3v

H
3 H

H
13 ∈ C2×2 may not have

full rank and consequently H12v2 ‖ H13v3. Similar conditions follow from (5.32) and (5.33), and
we obtain the necessary conditions

H12v2 = λ1H13v3 H23v3 = λ2H21v1 H31v1 = λ3H32v2 (5.34)

where λk ∈ C and λk 6= 0 for all k ∈ {1, 2, 3}. By combining these three conditions to eliminate
v2 and v3, we observe that v1 must fulfill

v1 = λ3H
−1
31 H32v2 = λ1λ3H

−1
31 H32H

−1
12 H13v3 = λ1λ2λ3H

−1
31 H32H

−1
12 H13H

−1
23 H21v1

(5.35)
i. e., the beamformer v1 must be an eigenvector of the matrix H−1

31 H32H
−1
12 H13H

−1
23 H21. For a

given beamformer v1, the beamformers v2 and v3 can in turn be determined with (5.34), where
λ2 and λ3 are chosen such that the beamformers have unit norm. Since the so-found 3-tuple of
beamformers fulfills (5.34), a 3-tuple of unit-norm receive filters (g1, g2, g3) can be constructed
such that all six zero-interference conditions of (5.31)–(5.33) are fulfilled. The number of distinct
strategies for which the interference is zero after the receive filters simply is the number of linearly
independent solutions to the above eigenvector problem. In most cases, a full-rank 2 × 2 matrix
will have two linearly independent eigenvectors, but it is also possible to construct a set of channel
matrices where there is only one solution or where any vector is a solution.

The key property of these strategies is that the interference is aligned at the receivers: the
interference components at the first receiver, H12v2 and H13v3, coincide so that they span only
a one-dimensional subspace of C2; the same holds for the interference components at the second
and third receiver. Therefore, the receive filters can project the received signal into a subspace that
is orthogonal to the interference and thereby fully eliminate the interference.

We have, however, not yet considered the three necessary conditions gT
k Hkkvk 6= 0 for all k ∈

{1, 2, 3}. Clearly, when applied to the first receiver, this means that H11v1 ∦ H12v2. With (5.34)
it follows that v1 may not be an eigenvector of the matrix H−1

31 H32H
−1
12 H11. Similar conditions

can be formulated for the second and third user. Therefore, if, e. g., H11 = H13H
−1
23 H21, the nine

conditions of (5.31)–(5.33) cannot be simultaneously fulfilled, i. e., s = 3 is not achievable. It is
intuitive, though, that these are in some way degenerate cases, and that “in most cases” all three
users can cancel the interference without canceling the desired signal. This notion will be stated
more precisely in the following section.
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When the channel matrices do not have full rank, matters are further complicated. In particular,
it is fairly easy to construct channel matrices such that further users can be added to the system
and, e. g., K = 4 users can cancel out all interference, thus achieving a slope of s = 4. Altogether
we observe that determining the maximal slope s for a given set of channel realizations is not
trivial: the rank of the channel matrices certainly plays a role, but even if all matrices have full
rank, degenerate conditions can occur.

In this example setting we were able to explicitly compute the beamformers that achieve the
maximal slope s. This is in general not possible: for larger scenarios it turns out that strategies with
zero interference can only be found by means of iterative algorithms and that reliably finding all
such solutions appears to be computationally infeasible.

5.3.4 Achievable Slope for Random Channels: Spatial Interference Alignment

It is shown in [75] that for a given channel realization the problem of verifying whether a certain
slope s is achievable is NP-hard when Nk ≥ 3 and Mk ≥ 3 for all k ∈ {1, . . . , K}. Therefore,
determining the maximal slope is also NP-hard. However, in [34] a very useful and comparatively
simple achievability check was proposed that is valid for almost all channel realizations with a
certain antenna configuration; we discuss this feasibility test in the following.

We assume a system with K users with a given antenna configuration N1, . . . , NK and
M1, . . . ,MK . Furthermore, all users are active, i. e., vk 6= 0 for all k ∈ {1, . . . , K}. The question
that we investigate is whether the asymptotic slope s = K can be achieved. In order to determine
the maximal slope s of a system in which s = K is not feasible, it is thus necessary to remove
users from the system until a feasible configuration of active users is reached.

For the slope s = K to be achieved, the interference after the receive filters of all K users must
be zero. Therefore, it is necessary that the following system of equations is fulfilled:

∗ gT
1 H12v2 = 0 . . . gT

1 H1KvK = 0 (5.36)

gT
2 H21v1 = 0 ∗ . . . gT

2 H2KvK = 0 (5.37)
...

...
. . .

...

gT
KHK1v1 = 0 gT

KHK2v2 = 0 . . . ∗ (5.38)

Since for each user K − 1 scalar interference terms must be zero, altogether K(K − 1) equations
must be fulfilled. Furthermore, note that the equations are bilinear in the variables gk and vk; the
zero-interference conditions therefore form a system of multivariate complex polynomial equa-
tions. The key idea in checking for feasibility is the notion from algebraic geometry that a system
of polynomials with “generic” coefficients can be solved if and only if there are no more equations
than variables.

The variables in our system are the entries of the vectors gk and vk. It is clear, though, that
there is some “redundance” in the variables in the sense that any vector gk or vk can be multiplied
with a non-zero complex scalar without changing the validity of the equations. We can therefore
arbitrarily set the first entry of all vectors gk and vk to one and retain the properties of our system
of equations.2 Now, the number of “free” complex variables in the vector vk is Nk − 1 and in the
vector gk is Mk − 1.

2Note that we are not concerned about the unit norm constraints on beamformers or receive filters at this point, as
any solution to the zero-interference conditions can be rescaled to fulfill the constraints.
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Definition 5.1 (cf. [34]). A system is proper if and only if, for any subset of the above equations,
the number of variables involved is at least as large as the number of equations.3

While it can be tedious to determine whether a system is proper as the number of subsets of
the K(K − 1) equations can be very large, we can formulate a simple necessary condition by
comparing the total number of equations and the total number of variables:

∑

k

Nk +
∑

k

Mk − 2K ≥ K(K − 1). (5.39)

In symmetric settings, where N1 = . . . = NK = N and M1 = . . . = MK = M , it is shown
in [34] that comparing the total number of equations and variables is in fact sufficient for checking
whether a system is proper; in this case the condition simplifies to

N +M − 1 ≥ K (5.40)

and is both necessary and sufficient. As an example, a symmetric MISO system with N antennas
at each transmitter is proper if and only if N ≥ K. Similarly, a MIMO system in which all channel
matrices are square, i. e., where every transmitter and every receiver has N antennas, is proper if
and only if 2N − 1 ≥ K.
Theorem 5.1 (cf. [34]). If the entries of the channel matricesHkj for all (k, j) ∈ {1, . . . , K}2 are
random, statistically independent, and have a continuous distribution, then for a proper system the

slope s = K is achievable with probability one, and for an improper system it is achievable with

probability zero.

The proof relies on Bernstein’s theorem, a fundamental result in algebraic geometry, which
characterizes the solvability of sparse multivariate polynomial systems with generic coefficients,
cf. [76, Chapter 7]. In the proof in [34] the connection is made between independent random chan-
nel coefficients and the genericity of the polynomial coefficients. Furthermore, it is intuitive that
the remaining inequality conditions gT

k Hkkvk 6= 0 for all k ∈ {1, . . . , K} are fulfilled with high
probability for any beamformers and receive filters that solve the system of polynomial equations,
since the direct channel matrices Hkk do not appear in the system of equations and are statistically
independent of the cross channels.

As in the example setting discussed in the previous section, we can draw some conclusions on
the subspaces spanned by the interference components at the K receivers. Let us consider, e. g., a
symmetric setting where each transmitter and receiver has N antennas; the received signal vectors
yk in such a system are in CN . If at receiver k all interference components Hkjvj with j 6= k span
an N − 1-dimensional subspace of CN , there is a one-dimensional subspace that is orthogonal to
all received interference, on to which the receive filter gk can project the received signal, thereby
removing all interference. While it is clear that if there are exactly N−1 interferers, i. e., if K = N ,
the subspace spanned by the interference components is at most N − 1-dimensional, it is in fact
possible to accomodate more users: according to the above condition, the system is proper for up
to K = 2N − 1 users. Therefore, up to K − 1 = 2N − 2 interferers can “fit into” an N − 1-
dimensional subspace of CN at each receiver. Since the dimensionality of the subspace is lower
than the number of vectors spanning it, we say that the interference is aligned. From here on we
therefore refer to a 2K-tuple of receive filters and beamformers that achieves the slope s = K as
an aligned solution.

3The term “proper” in this context has no connection to its use in Section 2.1 to describe the “circular symmetry”
property of complex random variables.
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Furthermore, we refer to a system as fully loaded when the system is proper and condi-
tion (5.39) is fulfilled with equality, i. e., the total number of equations is equal to the total number
of variables. Fully loaded systems are significant in that they have a finite number of aligned so-
lutions, as is shown in [34]; for example, in the three-user two-antenna setting discussed in the
previous section, we found that there are generally two distinct solutions. If the system is proper,
but not fully loaded, on the other hand, the aligned solutions in general form a manifold.4

We recall that among all aligned solutions (of which all achieve the maximal slope s = K), the
one with the highest sum rate offset r is the high-SNR optimal strategy. The high-SNR optimum
in a fully loaded system can therefore be determined by computing all aligned solutions (which
depend only on the cross channels) and comparing the resulting offset r (which depends only on
the direct channels, cf. (5.30)). In order to obtain an intuition regarding the complexity of such a
procedure, we examine the number of aligned solutions for fully loaded systems.

The number of solutions to a sparse polynomial system with an equal number of variables
and equations is again characterized by Bernstein’s theorem and can be computed by means of
mixed volumes of Newton polytopes (we refer to [34, 76] for details). The computation can be
done by hand only for very small settings and does not scale well with the system dimensions.
There are, however, specialized software libraries for this purpose: in Table 5.1 we give the results
of applying such software5 to our system of zero-interference conditions for different symmetric
antenna configurations. We note that on state-of-the-art computer hardware the software required
approximately one hour to obtain the result for the setting with K = 5 users and N = M = 3
antennas and was not able to compute the number of solutions for larger system dimensions in
reasonable time.

In [78], it was observed that the number of aligned solutions for an i. i. d. channel model is iden-
tical to the number of aligned solutions in a different channel model, in which all channel matrices
have rank one. For the rank-one model, computation of the number of solutions is significantly
simpler and can be performed within reasonable time for some larger antenna configurations. We
reproduce the results given in [78] in Table 5.2.

While the exact number of solutions is difficult to compute for even larger systems, a simple
upper bound follows from Bézout’s theorem (again, cf. [34]). The bound is obtained by taking the
product of the degrees of all equations. As the degree of a bilinear equation is two, the bound in our
case is 2K(K−1) if Nk > 1 and Mk > 1 for all k ∈ {1, . . . , K}; when a node has only one antenna,
the number of variables associated with that node is zero and the degree of the respective equations
is one instead of two. This bound on the number of solutions is tight when the polynomial system
is dense, i. e., if all possible monomials with a degree less than or equal to the total degree of the
equation have non-zero coefficients; as our system of bilinear equations is sparse, the bound can
be very loose, as also becomes apparent in Tables 5.1 and 5.2.

Another, tighter, upper bound on the number of solutions can be computed by means of the
multi-homogeneous Bézout number (e. g., [79]). Computing the multi-homogeneous Bézout num-
ber, however, is a combinatorial problem that also does not scale well with the system dimensions

4Another notable property of fully loaded systems is that single-stream transmission is sum-rate optimal at high
SNR. This is a direct consequence of the fact that removing a user and adding a stream to one of the remaining users
reduces the number of free variables by a higher margin than the number of equations. For the details of counting
variables and equations in multi-stream systems we refer to [34].

5The software used is the “Mixed Volume Library” by I. Z. Emiris, which is based on the algorithm presented
in [77] and can be downloaded at http://www-sop.inria.fr/galaad/logiciels/emiris/soft_geo.html.
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N M K Solutions Upper bound (Bézout)

N 1 N 1 1
2 2 3 2 64
3 2 4 9 4096
4 2 5 44 1 048 576
3 3 5 216 1 048 576

Table 5.1: Number of solutions for different fully loaded symmetric scenarios. The results were computed
with the software “Mixed Volume Library” by I. Z. Emiris, cf. [77]; for larger scenarios, computation on
a state-of-the-art computer proved to be infeasible. Note that the values of M and N can be exchanged
without changing the number of solutions or the upper bound. The results for K = 3 and K = 4 were
previously presented in [34].

N M K Solutions Upper bound (Bézout)

5 2 6 265 1.07 · 109
4 3 6 7570 1.07 · 109
6 2 7 1854 4.40 · 1012
5 3 7 357 435 4.40 · 1012
4 4 7 1 975 560 4.40 · 1012
7 2 8 14 833 7.21 · 1016
6 3 8 22 040 361 7.21 · 1016
5 4 8 749 649 145 7.21 · 1016

Table 5.2: Number of solutions for larger fully loaded symmetric scenarios as presented in [78]. In order to
determine these results, a rank-one channel model was assumed and the number of aligned solutions was
shown to be the same as in a full-rank channel model.

and in particular does not help us estimate how the number of solutions in our case behaves for
large K, N , and M . We therefore do not further pursue this bound here.

The solution numbers for some smaller fully loaded systems shown here indicate that the num-
ber of solutions grows very rapidly in the system dimensions. It seems likely that determining all
aligned solutions for a fully loaded system is highly impractical for a MIMO interference net-
work with many users; therefore, reliably finding the high-SNR optimal strategy with acceptable
computational effort appears to be possible only in small systems.

5.3.5 Statistics of the Offset for a Gaussian Channel Model

In this section we examine the statistics of the sum rate offset r of the aligned solutions in a fully
loaded system for an i. i. d. Gaussian channel model. This analysis was presented in [80].

We begin by examining the statistics of r =
∑

k log|gT
k Hkkvk|2 for a fixed strategy, i. e., a

2K-tuple of unit-norm vectors gk ∈ CMk and vk ∈ CNk for all k ∈ {1, . . . , K}. In our i. i. d.
Gaussian channel model, the direct channels Hkk are random matrices where each element has a
complex Gaussian distribution with mean zero and variance one and the elements are statistically
independent. We make the following observations:

• The random variable hm = eT
mHkkvk is zero-mean complex Gaussian for any m ∈

{1, . . . ,Mk}, as it is the weighted sum of zero-mean complex Gaussian variables. The vari-
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ance of hm is E[|hm|2] = vH
k E[HH

kkeme
T
mHkk]vk = vH

k Ivk = 1. Furthermore, hm and hn are
statistically independent for n 6= m.

• The random variable gT
k Hkkvk = gT

k

∑

m eme
T
mHkkvk =

∑

m gT
k emhm is zero-mean com-

plex Gaussian, as it is the weighted sum of zero-mean complex Gaussian variables. The vari-
ance is E[|gT

k Hkkvk|2] = gT
k E

[
∑

m eme
T
m|hm|2

]

g∗
k = 1.

• The power of the desired signal of user k can be written as |gT
k Hkkvk|2 = a2r + a2i , where ar

and ai are the real and imaginary parts of gT
k Hkkvk, respectively; ar and ai are independent real

Gaussian random variables with mean zero and variance 1/2. Consequently, 2|gT
k Hkkvk|2 =

(√
2a1
)2

+
(√

2a2
)2

has a χ2(2) distribution, cf. [81, Chapter 7]; the PDF of zk = |gT
k Hkkvk|2

is

fzk(zk) = e−zk . (5.41)

• The distribution of rk = log|gT
k Hkkvk|2 = log zk can be determined with a transformation of

the distribution of the random variable zk (cf. [81, Chapter 5]):

frk(rk) =
fzk(zk)
∣

∣

∣

∂ log zk
∂zk

∣

∣

∣

∣

∣

∣

∣

∣

zk=erk

= erk e− erk . (5.42)

Consequently, the random variable −rk has a standard Gumbel distribution, cf. [82, Sec-
tion 10.5]; the mean is E[rk] = −γ and the variance is E [(rk + γ)2] = π2/6, where γ ≈ 0.5772
is the Euler-Mascheroni constant.

• Since the random variables r1, . . . , rK are statistically independent, the mean and variance of
the sum rate offset r =

∑

k rk are

E[r] = −Kγ and E
[

(r +Kγ)2
]

=
Kπ2

6
. (5.43)

The statistics of r for a fixed 2K-tuple of unit-norm receive filters and beamformers do not depend
on any gk or vk. Therefore, if we choose a different 2K-tuple (g1, . . . , gK , v1, . . . , vK) for each
channel realization, the statistics of r are the same, as long as the choice of the strategy is inde-
pendent of the realization of the direct channels. As was noted previously, the aligned solutions
depend only on the cross channels Hkj with k 6= j; therefore, if we select a random aligned solu-
tion without considering the direct channels Hkk for each channel realization, the asymptotic slope
is s = K and the mean and variance of the sum rate offset r are −Kγ and Kπ2/6, respectively.

If more than one aligned solution is known, selecting one at random is not a very good strategy;
instead, we would like to choose the aligned solution for which r is highest. In the following we
approximate the performance of this strategy.

5.3.5.1 Approximation for the Best of L Aligned Solutions

As was discussed in Section 5.3.4 and is indicated by the results in Tables 5.1 and 5.2, it appears
that the number of aligned solutions grows very rapidly in the system dimensions. Therefore, deter-
mining all aligned solutions and comparing the resulting sum rate offset r is considered infeasible
for larger systems. Instead, we assume that we are able to determine a random subset of all aligned
solutions consisting of L solutions. A method to obtain different aligned solutions with reasonable
complexity will be discussed later in this chapter.
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We begin with some notation: as we are examining a fully loaded system, the total number
of aligned solutions T is finite and the same for almost all channel realizations. We refer to one
aligned solution, a 2K-tuple of unit-norm receive filters and beamforming vectors, as

st =
(

gt
1, . . . , g

t
K , v

t
1, . . . , v

t
K

)

(5.44)

where for this analysis we use the super-script t ∈ {1, . . . , T} to denote the solution index. The set
of all solutions for a given channel realization is

S =
{

s1, . . . , sT
}

. (5.45)

The solution set S is a function of all cross channels Hkj with k 6= j.
We furthermore define the set L that contains the indices of the L solutions that we compare in

terms of sum rate offset, i. e.,
L = {t1, . . . , tL} (5.46)

where 1 ≤ tℓ ≤ T for all ℓ ∈ {1, . . . , L}. The random variables are the channel matrices Hkj for
all (k, j) ∈ {1, . . . , K}2, which are distributed according to the i. i. d. Gaussian channel model, and
the set L, which is a random subset with cardinality L of the set of all indices {1, . . . , T}, where
each possible subset has the same probability; consequently, for each new channel realization, a
new subset L is drawn.

The sum rate offset r is a function of the direct channel matrices Hkk as well as the 2K-tuple of
receive filters and beamformers, i. e., the aligned solution; the aligned solution in turn is a function
of the cross channel matrices Hkj with k 6= j and the solution index. Altogether, r therefore is a
function of all channel matrices and the solution index t. To express this relationship, we denote
the offset as r(H , t).

Our goal is to compute the mean offset of the best solution index in the set L, i. e.,

r̄ = E

[

max
ℓ∈{1,...,L}

r(H , tℓ)

]

. (5.47)

The mean offset r̄ is not straightforward to compute. In particular, we do not know how the off-
set r of the different aligned solutions is distributed for a given channel realization. With some
simplifying assumptions, however, we are able to approximate r̄.

First of all, note that considering a fixed index ℓ effectively means choosing a random solution,
as tℓ for a fixed ℓ is a random index between one and the total number of solutions T . From (5.43)
it is therefore clear that

E [r(H , tℓ)] = −Kγ and E
[

(r(H , tℓ) +Kγ)2
]

=
Kπ2

6
(5.48)

for any fixed ℓ ∈ {1, . . . , L}. Furthermore, let us make the following simplifying approximations:
• The distribution of r(H , tℓ) for a fixed ℓ ∈ {1, . . . , L} is Gaussian with mean −Kγ and

variance Kπ2/6. The rationale behind this approximation is that r is the sum of K independent
random variables; as K becomes large, the Gaussian approximation becomes more accurate
according to the central limit theorem, cf. [81, Chapter 7].

• The offsets for different fixed indices ℓ, i. e., r(H , t1), . . . , r(H , tL), are statistically inde-
pendent. This means that knowing the offset of a randomly chosen aligned solution does not
contain any information about the offset of the other aligned solutions. Clearly, if the aligned



5.3 Low- and High-SNR Asymptotics for the Rate Utility 139

solutions tend to be “clustered”, i. e., if, say, gt1
1 and gt2

1 as well as vt1
1 and vt2

1 tend to be similar,
the offsets are not independent, as the offset r(H , t1) and r(H , t2) are also similar. Therefore,
one assumption behind this approximation is that the vectors g1

k, . . . , g
T
k and v1

k, . . . , v
T
k are in

some way evenly distributed on the Mk- or Nk-dimensional unit sphere for a given channel
realization.
The second assumption behind this approximation is that the spectrum of singular values of
Hkk does not vary strongly from one realization to the next. Assume, e. g., that the offset
r(H , t1) is unusually high: this could contain the information that the singular values of the
realization of the direct channels are high; therefore the offset of another aligned solution
r(H , t2) is more likely to be high as well. As we discuss in Section 5.4.2.1, with growing
system dimensionsM and N , the variations in the spectrum of singular values decrease. There-
fore, this assumption in a sense is also a large-system approximation.

For the time being we do not experimentally investigate the validity of these approximations, as we
have not yet discussed how to obtain different random aligned solutions; the numerical justification
will be given later on, in Section 5.6.1.

With these two approximations, comparing the L solutions with the indices from L is equiva-
lent to comparing L independent realizations of a Gaussian random variable with mean −Kγ and
variance Kπ2/6. We can now use a result from extreme statistics that characterizes the distribution
of the maximum of L independent realizations of a Gaussian random variable, where L is large.
Theorem 5.2 (cf. [82, Example 10.5.3]). Let

u = max
n∈{1,...,L}

wn (5.49)

where wn are i. i. d. real Gaussian random variables with mean zero and variance one, then, as

L → ∞, the PDF fx(x) of x = bL(u− bL) approaches the Gumbel distribution, i. e.,

lim
L→∞

fx(x) = e−x e− e−x

(5.50)

where bL = Q−1(1/L) and Q−1(·) is the inverse Q-function. Furthermore, since the mean of the

Gumbel distribution is γ,
lim
L→∞

bL(E[u]− bL) = γ (5.51)

and

E[u] = bL +
γ

bL
+ o(1) (5.52)

as L → ∞.

The concept of the limiting Gumbel distribution is illustrated in Figure 5.2: with an increasing
number of samples L, the limiting distribution is shifted to the right and the variance decreases.

With Theorem 5.2, we approximate the mean of the maximum of L zero-mean unit-variance
Gaussian random variables w1, . . . , wL as bL + γ/bL. To obtain random variables with mean −Kγ
and variance Kπ2/6, we scale and shift the wn:

rapprox = max
n∈{1,...,L}

π

√

K

6
· wn −Kγ = π

√

K

6
· u−Kγ. (5.53)

Our approximated mean for the best out of L randomly chosen aligned solutions in an i. i. d. Gaus-
sian channel model therefore is

r̄approx = −Kγ + π

√

K

6

(

bL +
γ

bL

)

. (5.54)
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Figure 5.2: Limiting distribution of the maximum of L1 = 100 and L2 = 10000 realizations of a unit-
variance zero-mean Gaussian random variable.

Some remarks on this approximation:

• The parameter bL, which governs the gain of trying out L different realizations, grows very
slowly with L. In fact, as is shown in [82], bL ∈ O

(√
logL

)

as L → ∞.

• When L is extremely high, it is uncertain how good the approximation is. In particular, the
assumption that the distribution of the offset is Gaussian may be an oversimplification. When
the parameter bL is high, the best of L realizations is on the far right of the “tail” of the Gaussian
PDF. Intuitively, small absolute deviations of the actual PDF from the Gaussian approximation
may have a large effect on the statistics of the maximum; consider, e. g., the case where the
actual PDF is exactly zero above a certain value: the maximum of L realizations can never be
above this value, whereas with the Gaussian approximation the shift bL can be arbitrarily high.
Numerically investigating this effect is computationally very difficult, as this would require a
very large number L of aligned solutions.

• As the number of solutions is not known for arbitrarily large MIMO scenarios, the approx-
imation cannot be used to characterize the average sum rate offset of the globally high-SNR
optimal strategy with increasing system dimensions. We could, however, apply the upper bound
from Bézout’s theorem, i. e., assume L = T = 2K(K−1). Then, bL ∈ O(K) as K → ∞ and
r̄approx ∈ O

(

K3/2
)

as K → ∞.
To show that this is not a helpful approximation, we make use of a result that is proven later
on in Section 5.4.2.1: the squared maximum singular value of the channel matrices Hkk is
in O(N) as N → ∞ and therefore in O(K) for a fully loaded system with K = 2N − 1.
Consequently, we can upper-bound the sum rate of the global optimum by assuming that all
cross channels are zero, in which case each user’s individual rate offset is in O(logK) and the
sum rate offset is in O(K logK) as K → ∞; thus, this simple upper bound grows slower than
the approximation O

(

K3/2
)

and therefore applying the bound provided by Bézout’s theorem
does not yield any useful insights.

Nonetheless, as is shown in Section 5.6.2, for some example scenarios the approximation predicts
the numerically simulated behavior very well. In particular, the approximation allows us to better
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understand the performance gain that follows from the fact that there are many solutions, as op-
posed to the MISO case, where there is only one high-SNR optimal solution if the system is fully
loaded.

5.4 Non-Iterative Techniques

The aligned strategies discussed in the previous section, which achieve the full potential of the
system at infinitely high SNR, can be found by solving a non-trivial system of polynomial equa-
tions; it is in general not possible to express these solutions in closed form or determine them with
a bounded number of operations such as eigenvalue decompositions or matrix inversions. As the
asymptotic case is a simplified special case of the general sum rate maximization problem, it is in-
tuitive that for finite SNR finding good strategies does not become any easier. We therefore cannot
expect to obtain close-to-optimal strategies without iterative strategy updates. Nonetheless, the two
non-iterative schemes discussed in the following are of special interest: the first will turn out to be
a good initialization for the iterative algorithms discussed in Section 5.5 and the second provides
some interesting insights in the behavior of the sum rate offset r when the maximal slope s is not
achieved.

5.4.1 The Selfish Solution Ignoring the Interference

The maximum eigenvalue/eigenvector (ME) strategy was shown to be optimal at low SNR in Sec-
tion 5.3.1. Similarly, if all interference channel gains are zero, it is clearly in the best interest of
each user k to use gME

k and vME
k , and the ME strategy is the selfish solution. Even when the inter-

ference is not zero, we may choose to ignore the interference in order to obtain a simple strategy;
intuitively, this is a valid simplification if the noise power is large compared to the interference
power.

However, in contrast to the MISO case, for multi-antenna receivers the low-SNR optimal strat-
egy does not in general lead to the selfish solution: if interference is present, user k can improve its
own SINR γk by changing the beamformer vk to make the desired signal component “more distin-
guishable” from the interference components at receiver k and by employing the optimal receive
filter gopt

k , which takes into account the received interference.
As the selfish strategy of user k depends on the other users’ beamformers vj with j 6= k,

the selfish solution cannot be found without iterations. An algorithm in which the strategies are
iteratively updated in a selfish way will be discussed in Section 5.5.1.

5.4.2 Successive Zero-Forcing Strategies

Similar to the technique discussed in Section 4.3.3, we can also obtain a Pareto optimal strategy
in the MIMO case by assigning strategies to the users one after another and requiring that a newly
allocated strategy does not decrease the SINR of previously allocated users. We again assume
for ease of notation that the strategies are allocated in the order of the user indices 1, . . . , K; the
extension to arbitrary orders is straightforward.

As the first user experiences no interference, it can maximize its SINR γ1 by applying the ME
strategy. The objective of the second user is to maximize its own SINR γ2 with the constraint that
no interference may be caused to the first user, i. e., that gT

1 H12v2 = 0, as otherwise γ1 would be
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decreased. Similarly, the strategy of user k solves the optimization problem

max
gk ,vk

|gT
k Hkkvk|2

∑

j<k|gT
k Hkjvj |2 + σ2

s. t.: gT
j Hjkvk = 0 for all active users j < k,

‖gk‖22 = 1 and ‖vk‖22 ≤ 1

(5.55)

where a user j is considered to be active if γj > 0. Since the zero-forcing constraints do not affect
the receive filter gk, the optimal receive filter can be derived analogously to (5.13) and is

g∗
k =

1
∥

∥

∥

∥

(

∑

j<k Hkjvjv
H
j H

H
kj + σ2I

)−1

Hkkvk

∥

∥

∥

∥

2

(

∑

j<k

Hkjvjv
H
j H

H
kj + σ2

I

)−1

Hkkvk. (5.56)

Similarly, from inserting the expression for the optimal receive filter into the objective function it
follows that the problem of choosing the beamformer is

max
vk

vH
k H

H
kk

(

∑

j<k

Hkjvjv
H
j H

H
kj + σ2

I

)−1

Hkkvk

s. t.: gT
j Hjkvk = 0 for all active users j < k and ‖vk‖22 ≤ 1.

(5.57)

The solution to this optimization problem can be found with the method used for the derivation of
the zero-forcing beamformer in the MISO case, cf. Appendix A5: we stack the row vectors gT

j Hjk

for all active users j < k in the matrix Hk and define the projection matrix Πk = I − H+
k Hk.

Next, we replace vk with Πkvk in the objective function of (5.57), which results in an equivalent
optimization problem, as vk = Πkvk when the zero-forcing constraints Hkvk = 0 are fulfilled.
Without the zero-forcing constraints, the solution to the optimization problem is straightforward:
the optimal beamformer vk is the principal eigenvector of the matrix

Pk = ΠkH
H
kk

(

∑

j<k

Hkjvjv
H
j H

H
kj + σ2

I

)−1

HkkΠk. (5.58)

Since Hkvk = λ−1HkPkvk = 0, where λ is the highest eigenvalue of Pk, this solution also ful-
filles the zero-forcing constraints. Therefore, the principal eigenvector of Pk is also the maximizer
of the optimization problem (5.57).

Pareto optimality of the successive zero-forcing strategies follows from the same argument as
in Section 4.3.3:
• The SINR of user one cannot be improved.
• The SINR of user two can only be improved by violating the constraint of zero interference to

user one or by changing the beamformer of user one, i. e., γ2 can be increased only at the cost
of decreasing γ1.

• Similarly, the SINR of user k can be improved only by allowing interference to previously
allocated users or by changing previously allocated users’ beamformers, thus decreasing at
least one SINR γj with j < k.

• Consequently, if (γ1, . . . , γK) is the SINR K-tuple resulting from the successive zero-forcing
strategy, there is no feasible SINR K-tuple (γ′

1, . . . , γ
′
K) with γ′

k ≥ γk for all users k and
γ′
j > γj for at least one user j.
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The successive zero-forcing strategies are on the Pareto boundary of the SINR region and the
rate region regardless of the SNR. This does not mean, however, that they also achieve the sum-rate
optimal slope at high SNR. In the following we analyze the parameters of the high-SNR asymptote;
again, the slope s is the same for almost all channel realizations with a given antenna configuration,
whereas characterizing the sum rate offset r requires a probabilistic analysis.

We begin by examining the high-SNR limit of the optimal receive filter vector. Similar to
Section 5.2.1, we define Yk to contain the vectors Hkjvj of the active users with j < k as columns.
With the matrix-inversion lemma, the receive filter can be expressed as

g∗
k = α

(

YkY
H
k + σ2

I
)−1

Hkkvk = α
(

σ−2
I− σ−2Yk

(

Y H
k Yk + σ2

I
)−1

Y H
k

)

Hkkvk (5.59)

where α ensures that ‖gk‖22 = 1. If YkY
H
k is invertible, i. e., if there exists no vector gk 6= 0 with

gT
k Yk = 0, the high-SNR limit is g∗

k = α
(

YkY
H
k

)−1
Hkkvk; clearly, this receive filter does not

completely remove interference and user k does not contribute to the asymptotic slope s.
If, on the other hand, zero-forcing is possible, i. e., there exists a unit-norm receive filter gk

fulfilling gT
k Yk = 0, we can define the non-zero projection matrix Π ′

k = I−YkY
+
k . Furthermore,

we note that
lim
σ2→0

(

Y H
k Yk + σ2

I
)−1

Y H
k = Y +

k (5.60)

and with (5.59) the high-SNR optimal receive filter is

lim
σ2→0

g∗
k =

1

‖Π ′
kHkkvk‖2

Π ′
kHkkvk. (5.61)

From Π ′
kYk = 0 it follows that gT

k Yk = 0, i. e., the high-SNR receive filter removes all interfer-
ence. Therefore, user k contributes to the slope s, cf. (5.29).

Assuming that receiver k is able to cancel all interference, we insert the high-SNR optimal
receive filter gk into the SINR of user k:

γk =
|gT

k Hkkvk|2
σ2

=
|vH

k H
H
kkΠ

′
kHkkvk|2

‖Π ′
kHkkvk‖22 · σ2

= σ−2vH
k H

H
kkΠ

′
kHkkvk. (5.62)

Comparing this expression with the objective function of (5.57), it becomes evident that the optimal
beamformer vk is the principal eigenvector of the matrix

Pk = σ−2ΠkH
H
kkΠ

′
kHkkΠk. (5.63)

With the SVD of the projected direct channel matrix Π ′
kHkkΠk = UkΣkV

H
k , we can therefore

express the beamformer as vk = Vke1, and for the receive filter it follows that g∗
k = Uke1. We

conclude that the optimal zero-forcing strategy at high SNR can be found by applying the ME
strategy to a projected version of the direct channel matrix Hkk, where the projections from the
left and the right ensure that the receiver removes all interference and the beamformer causes no
interference, respectively.

In an i. i. d. Gaussian channel model and for any fixed set of previously allocated receive filters
g1, . . . , gk−1, the rank of the matrix Hk with probability one is the number of active users j < k
or Nk, whichever is smaller. Therefore, the projection matrix Πk is non-zero with probability one
if the number of previously allocated active users is strictly less than Nk and zero with probability
one otherwise. By the same argument, the projection matrix Π ′

k is non-zero with probability one
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if the number of non-zero beamformers vj with j < k is strictly less than Mk. And finally, if both
Πk and Π ′

k are non-zero, clearly the matrix Π ′
kHkkΠk is non-zero with probability one as well.

In a symmetric i. i. d. Gaussian scenario with N antennas at every transmitter and M antennas
at every receiver, every transmitter can almost always fulfill N−1 zero-forcing contraints and every
receiver can almost always fulfill M − 1 zero-forcing constraints. Therefore, the first min{N.M}
allocated users in the successive zero-forcing scheme are active without causing interference to
previously allocated users and are capable of completely removing the interference received from
previously allocated users. Consequently, the high-SNR slope of the successive zero-forcing strat-
egy in a symmetric setting almost always is s = min{N,M}. The optimal slope in a symmetric
setting with sufficiently many users K, on the other hand, is s = N+M−1, cf. (5.40); unless either
N = 1 or M = 1, the slope achieved by successive zero-forcing is therefore strictly suboptimal.

The successive zero-forcing procedure yields different strategies depending on the order in
which the beamformers and receive filters are allocated. Up to K! different strategies can be found
by trying out all different permutations of user indices. If we are interested in finding a strategy
with a high sum rate without trying out all K! different permutations, we can take a “greedy”
approach: in each allocation step the user with the highest resulting SINR is selected; in order to
be able to determine this user, the update, i. e., the solution to the optimization problem (5.57), must
be computed for every user that has not yet been allocated, and the resulting SINRs compared. In
the high-SNR case, instead of comparing SINRs, we can equivalently project all remaining direct
channel matrices from the left and right according to the zero-forcing constraints and select the
user for which the resulting maximum singular value is highest.

5.4.2.1 Large-System Approximation of the Offset with Successive Zero-Forcing

While the slope s achieved by the successive zero-forcing scheme is the same for almost all channel
realizations, the sum rate offset r is a random variable, which we examine in the following. We
assume an i. i. d. Gaussian channel model with unit-variance channel coefficients and examine the
case where all transmitters and receivers have N antennas. The analysis can also be applied to
general antenna configurations, but the resulting expressions become considerably more involved.
The following results were briefly discussed in [80].

Our analysis relies on a result from the theory of random matrices, which states that under
certain conditions the spectrum of singular values of a random matrix becomes deterministic as
the size of the matrix increases. By assuming asymptotically large system dimensions, we are
able to give analytical expressions for the mean offset r; these expressions can then be used as an
approximation for the offset for finite system dimensions.
Theorem 5.3. Let Hkk ∈ CN×N be a random matrix with i. i. d. complex Gaussian elements with

mean zero and variance one and let ν denote the highest eigenvalue of HH
kkHkk. Then

lim
N→∞

E
[ ν

N

]

= 4 and lim
N→∞

E

[

( ν

N
− 4
)2
]

= 0. (5.64)

Proof. It is shown in [83] and [84] that the distribution of the scaled and shifted maximum eigen-

value
ν − µN

σN

with

µN = 4N and σN =
3
√
16N (5.65)

converges towards the Tracy-Widom F2 distribution as N → ∞. The PDF of this distribution is
defined by means of the Painlevé II differential equation and cannot be expressed in closed form;
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it was, however, numerically determined in [85] that the mean and variance are µ0 ≈ −1.7711 and
σ2
0 ≈ 0.8132, respectively. Therefore,

lim
N→∞

E
[ ν

N

]

= lim
N→∞

E

[(

ν − µN

σN
σN + µN

)

/N

]

= lim
N→∞

µ0σN + µN

N

= 4 + lim
N→∞

µ0
3
√
16

N2/3
= 4.

(5.66)

Similarly,

lim
N→∞

E

[

( ν

N
− 4
)2
]

= lim
N→∞

E

[

(

σN

N
· ν − µN

σN

)2
]

= lim
N→∞

σ2
N

N2
E

[

(

ν − µN

σN
− µ0 + µ0

)2
]

= lim
N→∞

σ2
N

N2

(

E

[

(

ν − µN

σN
− µ0

)2
]

+ 2µ0E

[

ν − µN

σN
− µ0

]

+ µ2
0

)

= lim
N→∞

σ2
N

N2

(

σ2
0 + µ2

0

)

= lim
N→∞

3
√
256

N4/3

(

σ2
0 + µ2

0

)

= 0.

(5.67)

As a consequence of Theorem 5.3, we can approximate the highest singular value of Hkk/
√
N

as 2 if N is large. This result is confirmed by the Marchenko-Pastur law [86], which states that the
empirical distribution of the eigenvalues of HH

kkHkk/N approaches a known limiting distribution,
i. e., for large N the singular value spectrum of Hkk/

√
N “becomes deterministic.”

Lemma 5.1. Let Hkk ∈ CN×N be a random matrix with i. i. d. complex Gaussian elements

with mean zero and variance one and let
√
νk denote the highest singular value of the matrix

Π ′
kHkkΠk, where the projection matrices Π ′

k and Πk are statistically independent of Hkk and

have rank N − k + 1. Then

lim
N→∞

E

[

νk
N − k + 1

]

= 4 and lim
N→∞

E

[

(

νk
N − k + 1

− 4

)2
]

= 0. (5.68)

The result holds for fixed k, but also if k is a function ofN , provided thatN −k → ∞ asN → ∞.

Proof. We can express the projection matrices as Π ′
k = W ′

kW
′
k
H and Πk = WkW

H
k where

W ′
k ∈ CN×N−k+1 and Wk ∈ CN×N−k+1 are matrices with orthogonal unit-norm columns, i. e.,

W ′
k
H
W ′

k = W H
k Wk = I. Clearly, the maximum singular value of W ′

k
H
HkkWk is also

√
νk. It

is furthermore straightforward to show that W ′
k
H
HkkWk ∈ CN−k+1×N−k+1 has zero-mean unit-

variance i. i. d. complex Gaussian elements. Therefore, we can apply Theorem 5.3 to W ′
k
H
HkkWk

and the proof is complete.

With these properties of the highest singular value of the projected direct channel matrices, we
are ready to analyze the sum rate offset in a large system. We recall that in the symmetric setting
with M = N antennas at every node a slope of s = N is achievable, so that we assume that our
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system has K = N users. Since at high SNR the optimal receive filter and beamformer of user k
select the maximum singular value of the projected direct channel Π ′

kHkkΠk, the sum rate offset
is

r =

N
∑

k=1

log|gT
k Hkkvk|2 =

N
∑

k=1

log νk (5.69)

where νk is defined as in Lemma 5.1. Note that since the projection matrices Π ′
k and Πk are func-

tions of the channel matrices Hjk and Hkj for all j < k, they are indeed statistically independent
of Hkk.
Theorem 5.4. In the large system limit, i. e., as N → ∞, the mean sum rate offset for K = N
users is

E[r] = 2N log 2 + logN ! + o(N). (5.70)

Proof. We define Q = ⌊logN⌋ and split the N users into two groups; the first group consists of
N − Q users with a total rate offset of q1, the second group consists of Q users with a total rate
offset of q2:

r =

N−Q
∑

k=1

log νk +
N
∑

k=N−Q+1

log νk = q1 + q2. (5.71)

Note that limN→∞Q = ∞, but that limN→∞(N − Q)/N = 1, i. e., the number of users in the
second group grows without bound with the system dimension, but in the limit almost all users are
in the first group.

We begin by examining E[q1]; since Q grows without bound with N , we can apply the large
system limit to every user in the first group. From Lemma 5.1 it follows that in the limit νk/(N −
k + 1) is deterministic. Therefore, log νk − log(N − k + 1) approaches log 4 and we can state that

E[log νk] = 2 log 2 + log(N − k + 1) + o(1) (5.72)

and

E[q1] =

N−Q
∑

k=1

E[log νk] = 2(N −Q) log 2 + logN !− logQ! + o(N). (5.73)

It remains to be shown that 2Q log 2 ∈ o(N) and logQ! ∈ o(N). While the former follows directly
from the definition of Q, for the latter we apply the bound

logQ! ≤ Q logQ ≤ logN · log logN (5.74)

from which it follows that

lim
N→∞

logQ!

N
= 0. (5.75)

Therefore,

E[q1] =

N−Q
∑

k=1

E[log νk] = 2N log 2 + logN ! + o(N). (5.76)

For the remaining Q users in the second group, we make use of the intuitive fact that the mean
individual rate offset E[log νk] is non-increasing in the index k, as adding more constraints cannot
increase the mean achievable rate. Therefore, we can upper-bound E[q2] by assuming that all Q
users perform as well as the first user in the second group, i. e., user k = N − Q + 1. Since
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N E[r] (numerical) r̄MSA r̄LSA

2 0.54 0.87 3.47
5 7.13 7.29 11.7
10 22.8 22.9 29.0
20 61.9 61.9 70.0
100 488 488 502

Table 5.3: Approximations of the average sum rate offset of the successive zero-forcing strategy compared
to the numerically measured average offset.

N − k = Q− 1 → ∞ as N → ∞, this user still falls under the large system limit and we can state
that

E[q2] ≤ QE [νN−Q+1] = Q(2 log 2 + logQ+ o(1)) (5.77)

and

lim
N→∞

E[q2]

N
= 0. (5.78)

With
E[r] = E[q1] + E[q2] (5.79)

the proof is complete.

With the result of Theorem 5.4, we formulate our large-system approximation by ignoring the
terms that grow slower than N :

r̄LSA = 2N log 2 + logN !. (5.80)

In addition, we propose a more accurate approximation for moderate system sizes that takes into
account the shift parameter µ0 that appears in the proof of Theorem 5.3. According to the second
line of (5.66), for an i. i. d. complex Gaussian matrix of size N−k+1×N−k+1, we approximate
the highest squared singular value as

ν̄k =

(

4 +
µ0

3
√
16

(N − k + 1)2/3

)

(N − k + 1) (5.81)

for k ∈ {1, . . . , N−1}. We omit the term ν̄N , as above approximation is negative for N−k+1 = 1.
Our “moderate system-size approximation” therefore is

r̄MSA =
N−1
∑

k=1

log

(

4 +
µ0

3
√
16

(N − k + 1)2/3

)

+ logN ! (5.82)

where µ0 ≈ −1.7711. Table 5.3 shows the result of the two approximations for different system
dimensions N along with a numerical estimate of the actual value of E[r]; the estimate was ob-
tained by generating random direct channels and random projection matrices and taking the sample
mean over 10 000 realizations. For the quality of the approximation at finite SNR we refer to the
numerical results in Section 5.6.2.

The offset approximations for the successive zero-forcing strategy and the offset approximation
of an aligned solution show fundamentally different behavior: while the former is always positive
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and increases with the system size, r̄approx, cf. (5.54), is negative and decreases with the system
size (unless L grows extremely rapidly with N , in which case the validity of the approximation is
questionable). On the other hand, the former procedure yields a slope of s = N , while the latter
strategy achieves s = 2N − 1. This tradeoff between offset and slope will become more apparent
in Section 5.6.2, where we also examine the behavior of the crossing point of the two asymptotes.

5.5 Distributed Algorithms

The discussed analytical results concerning the performance of different strategies in MIMO in-
terference networks are valid in the high-SNR limit; at finite SNR, we are largely dependent on
numerical methods to evaluate the potential of the system. The goal of the algorithms discussed
in the following is to determine close-to-optimal solutions regardless of the noise power; in par-
ticular, this means that at high SNR a good algorithm should converge to an aligned solution. As
in the previous chapters, we also require that the algorithms are suitable for distributed operation,
i. e., that the individual users perform their share of the computations locally and exchange only a
limited amount of information. We focus on the maximization of the sum rate utility.

The following algorithms for single-stream MIMO interference networks for the most part
build on the algorithms known from the MISO case: for a given transmit strategy, i. e., a K-tuple
of beamformers, the optimal receive filters are straightforward to compute. For a fixed K-tuple
of receive filters, on the other hand, we can effectively view the system as a MISO interference
network with the combination of the receive filters and the channel matrices as equivalent chan-
nels. Consequently, the basic approach of the algorithms for single-stream MIMO systems is as
follows: we alternate between updating the transmit strategies by applying MISO updates on the
equivalent MISO channels using, e. g., the techniques discussed in Section 4.4, and updating the
receive filters, e. g., as discussed in Section 5.2. Clearly, this procedure implies additional informa-
tion exchange requirements: in order to compute the equivalent MISO channels, the transmitters
must have knowledge of all users’ current receive filters, which must therefore be announced after
each update.

Again, the algorithms can be operated in a sequential or a parallel mode: when updating se-
quentially, the users take turns updating first their beamformer and then their receive filter; after
user k has updated both its beamformer and its receive filter, it announces the new receive filter to
the other users. At this point all users also measure their SINR and, if necessary, compute and ex-
change their interference prices, etc., which have changed due to the beamformer update of user k;
the next user k + 1 can then perform its beamformer and receive filter update with up-to-date in-
formation concerning the other receivers’ current conditions. When considering parallel updates,
on the other hand, we assume that all K beamformers are updated simultaneously, and then all K
receive filters are updated simultaneously, followed by the exchange of the new receive filters and
other necessary information among the users.

5.5.1 Selfish Updates

As already noted in Section 5.4.1, a selfish solution in general requires iterative updates, as the
selfish behavior in the MIMO case depends on the other users’ strategies. In order to selfishly
update its strategy, user k must adjust its beamformer vk and receive filter gk to maximize γk. The
receiver update therefore consists of computing the SINR-optimal receive filter from (5.13) using
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the current beamformers:

g
(ℓ+1)
k = g

opt
k

∣

∣

∣

∣

vj=v
(ℓ)
j ∀j

=
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(ℓ)
j v

(ℓ)
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H
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∥
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. (5.83)

For a given receive filter g(ℓ)
k , the direct channel can be equivalently seen as a MISO channel with

the coefficient vector g(ℓ)
k

T
Hkk. Thus, with (4.18) the SINR-optimal transmitter update is

v
(ℓ+1)
k =

HH
kkg

(ℓ)
k

∗

∥

∥

∥
HH

kkg
(ℓ)
k

∗∥
∥

∥

2

. (5.84)

The beamformer update only requires knowledge of the direct channel matrix and the current
receive filter of the desired receiver; the former is estimated initially by the receiver and then fed
back to the transmitter, the latter is fed back after each update. The receive filter update requires
knowledge of the combination of beamformer and direct channel as well as the covariance matrix
of interference plus noise; we assume that both can be estimated locally without further information
exchange among the users.

When the iterative selfish updates have converged, i. e., when the beamformers and receive fil-
ters do not change when updated as above, the so-found stationary strategy is a selfish solution and
a Nash equlibrium: no user k can improve its own SINR γk by unilaterally adjusting its strategy
consisting of gk and vk. Convergence of the selfish updates cannot be guaranteed, however; oscil-
lations can be observed in many channel realizations in all of our numerically evaluated channel
models, cf. Section 5.6. Also, it is clear that a selfish solution does not achieve close-to-optimal
performance at high SNR: in order to reach an aligned solution, the caused interference must be
taken into account when updating the beamformers.

Without the restriction of single-stream transmission, the procedure of selfishly maximizing
the own rate is known as “iterative waterfilling” and has been the object of study for a decade
[87, 88, 89, 90, 91]. Different measures have been proposed to improve performance by artificially
reducing the number of streams [88, 90] and preventing oscillations [90]; a sufficient condition
for convergence was derived in [91]. These results are, however, not directly applicable to the
single-stream case.

5.5.2 Sum Interference Power Minimization: The “Min-Leakage” Algorithm

The first algorithm designed specifically to find aligned solutions was proposed in [50]: the objec-
tive of receive filter and beamformer design is to minimize the sum interference power

Isum =
∑

k

∑

j 6=k

|gT
j Hjkvk|2. (5.85)

It is clearly necessary to require that all beamformers have unit power and that the receive filters
have a fixed norm, as otherwise Isum would be minimized by switching off all users.

The receive filter update therefore is

g
(ℓ+1)
k = argmin

gk

Isum

∣

∣

∣

vj=v
(ℓ)
j ∀j

s. t.: ‖gk‖2 = 1. (5.86)
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The part of the cost function that depends on gk is
∑

j 6=k|gT
k Hkjvj |2; consequently, the KKT

condition necessary for optimality is

∂Isum
∂gk

=
∑

j 6=k

Hkjvjv
H
j H

H
kjg

∗
k = λg∗

k (5.87)

with the Lagrangian multiplier λ ∈ R, i. e., the optimal (complex conjugate) receive filter g∗
k is an

eigenvector of the matrix
∑

j 6=k Hkjvjv
H
j H

H
kj. By multiplying from the left with gT

k it also follows

that
∑

j 6=k|gT
k Hkjvj |2 = λ; therefore, the smallest eigenvalue leads to the smallest sum interfer-

ence power Isum. Consequently, the updated receive filter g(ℓ+1)
k

∗
is the eigenvector corresponding

to the smallest eigenvalue of the matrix
∑

j 6=k Hkjv
(ℓ)
j v

(ℓ)
j

H
HH

kj . If the smallest eigenvalue is not
unique, e. g., because the matrix has a multi-dimensional null space, any eigenvector can be chosen.
In the same way, the updated beamformer v(ℓ+1)

k can be shown to be any eigenvector corresponding

to the smallest eigenvalue of the matrix
∑

j 6=k H
H
jkg

(ℓ)
j

∗
g
(ℓ)
j

T
Hjk.

With parallel or sequential updates, the value of Isum cannot be increased by an update; there-
fore, the sum interference power must converge. It was furthermore shown experimentally in [50]
that the min-leakage algorithm reliably finds aligned solutions if the system is proper.

We note that neither the noise power σ2 nor the direct channel matrices Hkk appear in the
min-leakage updates. When the initial strategy is independent of the direct channels, the strat-
egy determined by the min-leakage algorithm is therefore also independent of the direct channels.
We can thus use the min-leakage algorithm to determine a random aligned solution, of which the
performance was analyzed in Section 5.3.5. Furthermore, by using L random independent isotrop-
ically distributed6 initialization strategies, where L is significantly lower than the total number of
solutions, we can assume that the min-leakage algorithm returns L different (independent) aligned
solutions. In Sections 5.6.1 and 5.6.2, we use this method to numerically evaluate the approxima-
tion discussed in Section 5.3.5.1.

In order to perform the update, receiver k must have knowledge of the current covariance matrix
of received interference; we assume that this can be estimated. Transmitter k must have knowledge
of all cross channels Hjk with j 6= k as well as the current receive filters g(ℓ)

j with j 6= k. The cross
channels can be exchanged once among the users, the receive filters, however, must be announced
and exchanged over the signaling links after each update.

The min-leakage algorithm was originally proposed for a time-division duplex setting, in which
receivers and transmitters periodically switch roles: assuming reciprocal channel conditions, in
the “reverse direction” the channel matrix from transmitter k (normally receiver k) to receiver j
(normally transmitter j) is HT

kj; furthermore, transmitter k in the reverse direction uses gk as its
beamformer. Therefore, the update of vk can be viewed as a receiver update in the reverse direction
and can be performed using the estimated received interference covariance matrix. No signaling
links are necessary in such a setting.

We finally note that in a MISO scenario in which zero-forcing is possible the min-leakage
algorithm converges to a strategy with zero interference power in a single iteration.

6We refer to a random strategy as isotropically distributed when all elements of the beamformers and receive filters
are drawn independently from an i. i. d. complex Gaussian distribution and the beamformers and receive filters are then
normalized to have unit norm.
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5.5.3 Virtual SINR Updates: The “Max-SINR” Algorithm

A second algorithm, which additionally takes into account the direct channel matrices and the
noise power, was also proposed in [50]. It can be viewed as an extension of the virtual SINR
maximization method discussed in Section 4.4.2 to MIMO systems.

The objective of the receive filter update of user k is to maximize the own SINR γk, cf. (5.13),
which leads to the same receive filter update as in the selfish algorithm in Section 5.5.1. The
objective of the beamformer update is to maximize the virtual SINR ξk, defined as in (4.50). Since
we can view the channel from transmitter k to receiver j in combination with the receive filter of

user j as a MISO channel with the coefficient vector g(ℓ)
j

T
Hjk, the transmitter update solves the

optimization problem
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In the same way as in Section 4.4.2 we obtain
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The beamformers in the max-SINR algorithm therefore always have full power.
Again, the max-SINR algorithm was originally proposed for a time-division duplex setting.

In the reverse direction, the beamformer update is simply a receive filter update that maximizes
the received SINR and all quantities can be estimated without the need for signaling links. In
our signaling framework, the transmitters must exchange the cross channel matrices once and the
current receive filters after each update.

General convergence of the max-SINR algorithm has not been proven, but it was shown ex-
perimentally in [50] that convergence is very reliable in an i. i. d. Gaussian channel model. In [92],
it was later shown that if the algorithm is initialized sufficiently close to a stationary strategy and
if the SNR is sufficiently high, it converges exponentially. Furthermore, it was rigorously proven
in [92] that in a proper system the globally sum-rate optimal strategy is a stationary strategy of the
max-SINR algorithm at asymptotically high SNR, as are all other aligned solutions.

5.5.4 Global SINR Updates

The use of the global SINR objective was proposed in [68]; in Section 4.4.3 we applied this algo-
rithm to the MISO case and therefore only briefly discuss the general MIMO case here.

The objective of both the transmitter and the receiver updates is to maximize the global SINR
ξsum with equality power/norm constraints. For the MISO case the global SINR is defined in (4.60);
the extension to the MIMO case is

ξsum =

∑

k|gT
k Hkkvk|2

∑

k

∑

j 6=k|gT
k Hkjvj |2 +Kσ2

. (5.90)

The receive filter is therefore updated according to the optimization problem

g
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∣

∣

∣

∣

∣vj=v
(ℓ)
j ∀j

gj=g
(ℓ)
j ∀j 6=k

s. t.: ‖gk‖22 = 1 (5.91)
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and the beamformer update is

v
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s. t.: ‖vk‖22 = 1. (5.92)

In order to compactly express the solutions to the above optimization problems, we define the
following abbreviations:
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b
(ℓ)
k =

∑

j 6=k

∑

i 6=j

∣

∣

∣
g
(ℓ)
i

T
Hijv

(ℓ)
j

∣

∣

∣

2

+Kσ2 (5.94)
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Note that a(ℓ)k is the part of the numerator of ξsum that does not depend on vk and gk, while b(ℓ)k con-

sists of the terms in the denominator that do not depend on vk and c
(ℓ)
k consists of the terms in the

denominator that do not depend on gk. The optimization problems are solved as in Section 4.4.3,
by noting that the objectives are generalized Rayleigh quotients. The resulting updated (complex

conjugate) receive filter g(ℓ+1)
k
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and the updated beamformer v(ℓ+1)
k is the principal eigenvector of the matrix
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For sequential updates, it is clear that ξsum cannot be decreased by updating either a beamformer
or a receive filter, i. e., convergence of the global SINR utility is guaranteed. For parallel updates,
convergence is reliable as well, as we show in our numerical evaluation in Section 5.6.3.

As with the previously discussed algorithms, transmitter k must have knowledge of the channel
matrices Hjk and the current receive filters g(ℓ)

j for all j ∈ {1, . . . , K}. Additionally, a(ℓ)k and b
(ℓ)
k

must be known; to this end, all users j must announce the numerators and denominators of their
respective SINRs γ(ℓ)

j after each update.

On the receiver side, we again assume that
∑

j 6=k Hkjv
(ℓ)
j v

(ℓ)
j

H
HH

kj and Hkkv
(ℓ)
k v

(ℓ)
k

H
HH

kk can

be estimated. The regularization factors a(ℓ)k and c
(ℓ)
k cannot be estimated, however, and require ad-

ditional signaling. The global SINR maximization algorithm is the only of our discussed schemes
in which the receiver update requires information that cannot be estimated.
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5.5.5 MMSE Updates

The use of the sum MSE objective for multi-antenna interference networks, which we explored for
the MISO case in Section 4.4.4, was proposed independently in [69, 70, 68]. As the generalization
from MISO to MIMO systems is fairly straightforward, we again only briefly state the updates and
refer to Section 4.4.4 for the details.

The MSE εk of user k is defined in (5.16). As εj with j 6= k does not depend on gk, the goal of
the receiver update is to minimize εk. With (5.18), the updated receive filter therefore is

g
(ℓ+1)
k

∗
=

(

∑

j

Hkjv
(ℓ)
j v

(ℓ)
j

H
HH

kj + σ2
I

)−1

Hkkv
(ℓ)
k . (5.98)

Note that, contrary to the previous algorithms, the MSE-optimal receive filter does not have unit
norm.

The sum-MSE optimal beamformer update solves the problem

v
(ℓ+1)
k = argmin

vk

∑

j

εj s. t.: ‖vk‖22 ≤ 1. (5.99)

For the solution we again make use of the notion of equivalent MISO channels and simply replace

g
(ℓ)
j hT

jk in Section 4.4.4 with g
(ℓ)
j

T
Hjk for all j ∈ {1, . . . , K} to obtain the beamformer update

v
(ℓ+1)
k =

(

∑

j

HH
jkg

(ℓ)
j

∗
g
(ℓ)
j

T
Hjk + λI

)+

HH
kkg

(ℓ)
k

∗
(5.100)

where the Lagrangian multiplier λ ≥ 0 ensures that the power constraint is fulfilled. As for the
MISO case, if λ = 0 does not fulfill the power constraint, we must determine λ with a line search,
e. g., using Newton’s method. If λ > 0, the pseudo-inverse in (5.100) can be replaced by the
inverse.

For both sequential and parallel updates, the MSE cannot be increased by an update of a
beamformer or a receive filter and therefore converges. Also, a stationary strategy of the MMSE-
algorithm clearly fulfills the KKT conditions of the sum MSE minimization problem.

We can also use this procedure to minimize a weighted sum MSE
∑

k αkεk, where αk is the
weight associated with user k: the receiver update is identical to the unweighted case and the
beamformer update is

v
(ℓ+1)
k =

(

∑

j

αj

αk
HH

jkg
(ℓ)
j

∗
g
(ℓ)
j

T
Hjk + λI

)+

HH
kkg

(ℓ)
k

∗
. (5.101)

By adaptively choosing the weights as

αk =
1

εk

∣

∣

∣

∣

∣vj=v
(ℓ)
j ∀j

gj=g
(ℓ)
j ∀j

(5.102)

we can locally mimic the behavior of the sum rate utility. Furthermore, since the rate Rk = − log εk
is convex in the MSE, the weighted-MSE approximation under-estimates the sum rate, so that from



154 5. Single-Stream MIMO Interference Networks

one weight update to the next the sum rate is non-decreasing and must converge. Finally, a strategy
that is stationary in beamformers, receive filters, and weights fulfills the KKT conditions of the
sum rate maximization problem.

The receive filter updates require knowledge of the covariance matrix of the received signal and
the combination of direct channel and desired beamformer; we assume that both can be estimated.
For the beamformer update of user k, the channel matrices Hjk must be known as well as the
current receive filters of all users j and the weights αj , which must be communicated over the
signaling links after each update.

5.5.6 Interference Pricing

The objective of the interference pricing algorithm is to maximize the own achievable rate minus a
cost term that is linear in the caused interference power. As the interference caused by user k does
not depend on the receive filter gk, the receive filter is updated to maximize the own SINR γk with
a unit norm constraint, leading to the same update as for the selfish and max-SINR algorithms,
cf. (5.83).

For the beamformer update of user k, we replace the channel vectors hT
jk in Section 4.4.5 with

the equivalent MISO channel vectors g(ℓ)
j

T
Hjk and obtain the update problem

v
(ℓ+1)
k = argmax

vk

log






1 +

∣

∣

∣
g
(ℓ)
k

T
Hkkvk

∣

∣

∣

2

∑

j 6=k

∣

∣

∣
g
(ℓ)
k

T
Hkjv

(ℓ)
j

∣

∣

∣

2

+ σ2






−
∑

j 6=k

π
(ℓ)
j

∣

∣

∣
g
(ℓ)
j

T
Hjkvk

∣

∣

∣

2

s. t.: ‖vk‖22 ≤ 1 (5.103)

where the interference price of user j 6= k is

π
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j = − ∂Rj

∂|gT
j Hjkvk|2

∣

∣

∣

∣

∣gj=g
(ℓ)
j

vi=v
(ℓ)
i

∀i

=
1

∑

i 6=j

∣

∣

∣
g
(ℓ)
j

T
Hjiv

(ℓ)
i

∣

∣

∣

2

+ σ2

− 1
∑

i

∣

∣

∣
g
(ℓ)
j

T
Hjiv

(ℓ)
i

∣

∣

∣

2

+ σ2

.

(5.104)

The derivation of the solution to the beamformer update problem (5.103) is identical to the
MISO case, which is discussed in detail in Section 4.4.5 and Appendix A6; to obtain the relevant
expressions, we must only replace the MISO channel vectors with the equivalent MISO channels
consisting of the MIMO channel and the current receive filter. For reference, we briefly state the
resulting update of the beamformer vk for the rate utility in the following.

We first define the matrix B to contain the vectors
√

π
(ℓ)
j HH

jkg
(ℓ)
j

∗
for all j 6= k as columns

and perform the reduced SVD B = UΣV H such that Σ is invertible. We can now use the left
singular basis U to check whether zero-forcing is possible for user k and distinguish between the
following two cases:

• (I−UUH)HH
kkg

(ℓ)
k

∗
6= 0, i. e., zero-forcing is possible:

We determine the unit-norm vector w and the positive scalar ρ such that w is the eigenvector
corresponding to the unique positive eigenvalue of the matrix

A(ρ) = ρ ·HH
kkg

(ℓ)
k

∗
g
(ℓ)
k

T
Hkk −BBH (5.105)



5.5 Distributed Algorithms 155
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The solution can be found with a bisection line search on the values of
∣
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]

. The updated beamformer is v(ℓ+1)
k = w.

• (I−UUH)HH
kkg

(ℓ)
k

∗
= 0, i. e., zero-forcing is not possible:

In this case it may be necessary to perform power control. To this end we compute the scalar
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and distinguish between three cases:
1) ζ2 ≤ 0

The updated beamformer is v(ℓ+1)
k = 0.

2) 0 < ζ2 ≤
∥
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The updated beamformer is
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∥
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The updated beamformer is determined in the same way as for the case in which zero-
forcing is possible, i. e., we determine w and ρ such that w is the eigenvector corresponding
to the unique positive eigenvalue of the matrix

A(ρ) = ρ ·HH
kkg

(ℓ)
k

∗
g
(ℓ)
k

T
Hkk −BBH (5.109)
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Again, we can be apply a bisection line search of the values of
∣
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. The updated beamformer is v(ℓ+1)
k = w.

Since the rate utility is convex in the received interference power, the linearization of the other
users’ utilities leads to an under-estimation of the sum rate, assuming that the other users’ strategies
remain constant. As the beamformer update maximizes the under-estimated sum rate, the sum rate
cannot be decreased by an update. Clearly, also the receiver update cannot decrease the sum rate.
With sequential updates, the sum rate therefore converges. Furthermore, it is straightforward to
show that a stationary strategy of the pricing algorithm fulfills the KKT conditions of the sum rate
maximization problem.
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Again, the receive filter updates rely only on information that can be locally estimated. For
the transmitter update of user k, knowledge of the cross channels Hjk is necessary for all j ∈
{1, . . . , K} as well as knowledge of the current receive filters weighted with the square root of the

prices, i. e.,
√

π
(ℓ)
j g

(ℓ)
j for all j ∈ {1, . . . , K}, which must be exchanged among the users after each

update. Furthermore, for (5.106) and (5.107) transmitter k must know the current interference-plus-
noise power at the desired receiver k. We assume, though, that the current SINR γ

(ℓ)
k must be fed

back to the transmitter in order to enable the coded transmission of data; therefore the interference-
plus-noise power can be computed from γ

(ℓ)
k , the direct channel Hkk, the current beamformer v(ℓ)

k ,

and the current receive filter g(ℓ)
k without any additional information exchange.

5.5.7 Interference Pricing with Incremental SNR

In [93], we proposed a heuristic procedure to improve the outcome of the simplified pricing algo-
rithm, which can be applied to the (not simplified) pricing algorithm as discussed here as well. We
first describe the method and then proceed to discuss the intuition behind it.

For the “incremental SNR” method, we define a decreasing series of noise powers that ends
with the actual noise power σ2:

σ2
(1) > σ2

(2) > . . . > σ2. (5.111)

The initialization of the algorithm is the ME strategy. Assuming that the noise power is σ2
(1), the

pricing algorithm is run until convergence is detected according to some convergence criterion.
Next, the resulting strategy is used as an initialization and the pricing algorithm is run until conver-
gence assuming a noise power of σ2

(2). This process is continued until convergence is reached for

the actual noise power σ2. The only additional signaling overhead in the incremental SNR method
is the detection of convergence and the synchronization of the SNR decrements.

We can equivalently view the incremental SNR algorithm as a procedure in which the trans-
mitters slowly increase their transmit power while the noise power remains constant; as we have
assumed unit transmit power throughout this work, denoting the incremental SNR as decreasing
noise power leads to a more consistent notation. In a practical implementation, a gradual transmit
power increase would perhaps be more suitable than transmitting with full power and (falsely)
assuming higher noise power levels.

As is shown in Section 5.6.3, the incremental SNR method generally yields higher sum-rate
performance with a lower number of total iterations compared to the pricing algorithm with fixed
SNR. We explain this result with the following observations and intuitions:
• At low SNR, i. e., for a high noise power σ2, the sum rate objective is comparatively “well-

behaved”: the optimal strategy for asymptotically low SNR can be computed in a straightfor-
ward way, cf. Section 5.3.1, and for moderately low SNR most algorithms converge within a
comparatively small number of iterations, as is shown in Section 5.6.3.

• At high SNR, on the other hand, the sum rate maximization problem in a fully loaded system
has several undesirable properties: first of all, it is intuitively clear that for sufficiently high SNR
the aligned solutions correspond to local optima, i. e., the objective function potentially has a
very large number of distinct and separate local optima. Second, numerical experiments show
that there exist many additional local optima that correspond to strategies that are not aligned
solutions; these other local optima can, for example, have the property that the interference is
aligned at some, but not all, receivers or that individual users are inactive, i. e., a suboptimal
slope is achieved.
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ME strategy ME strategy

aligned solutions

offset

increase

optimum

Figure 5.3: Simplified illustration of the sum rate objective function for low SNR (left) and high SNR
(right). The strategy consists of all beamformers vk and receive filters gk and is therefore actually multi-
dimensional; to be able to illustrate the relevant properties of the objective function, we assume a one-
dimensional optimization variable.

• Also, the different aligned solutions, i. e., the desirable local optima, may differ significantly in
sum-rate performance. In particular, we recall that the performance of an aligned solution in a
fully loaded system is described by the sum rate offset

r =
∑

k

∣

∣gT
k Hkkvk

∣

∣

2
(5.112)

cf. (5.30), i. e., the performance depends on how well the aligned beamformers and receive
filters are “matched” to the direct channel matrices.

• Altogether, it is intuitive that the quality of the strategy determined with a distributed algorithm
that uses “local” information, i. e., information that is obtained from measuring the interference
power, etc., at the current operating point, depends strongly on the initialization. Algorithms
aimed at local optimality in terms of sum rate, such as the pricing algorithm, can converge to
local optima that do not achieve the optimal slope s.

• The expression for r is maximized by the ME strategy. We can infer that the best aligned
solution will be in some sense “close” to the ME strategy and that the ME strategy may be a
good starting point when searching for the best aligned solution.

Therefore, with the incremental SNR method we attempt to “track” a local optimum as it develops
with increasing SNR while staying close to the ME solution, which suggests that the so-found
aligned solution will be a particularly good aligned solution in terms of the offset r. We illustrate
this intuition for a one-dimensional optimization problem in Figure 5.3.

The concept of gradually transforming a problem from a more manageable form into its orig-
inal, difficult form, is known as “homotopy continuation”. In [78], homotopy continuation is also
used to find aligned solutions, albeit in a different way: the “start system” is a rank-one approx-
imation of the channel matrices, for which finding a solution to the zero-interference conditions
is equivalent to solving a linear system of equations; then, the channel matrices are gradually
transformed to their original full-rank form, while the zero-interference solutions are tracked with
Newton iterations. In contrast to our incremental SNR method, however, the homotopy method
of [78] is not designed to find a good aligned solution in terms of sum rate offset.
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5.5.8 Min-Leakage Combined with Sum-Rate Gradient

In [94], an algorithm was proposed that is based on the min-leakage updates, but adds a gradient
component in order to find an aligned solution with good sum-rate performance. Each receiver
and transmitter update consists of two steps: the first is identical to the update in the min-leakage
algorithm and the second is based on moving in the direction of the sum-rate gradient. The size
of the second step is initially large and then gradually reduced, or “annealed”, so that finally the
convergence behavior of the min-leakage algorithm is reached.

For the receiver update, the intermediate receive filter ḡ(ℓ+1)
k is determined to minimize the sum

interference power, i. e., it is the eigenvector corresponding to the smallest eigenvalue of the matrix
∑

j 6=k Hkjv
(ℓ)
j v

(ℓ)
j
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kj . Next, the sum-rate gradient at the current operating point is computed:
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Since the receive filter ḡ(ℓ+1)
k has unit norm, the rate of user k is
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and the complex conjugate gradient vector is
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The gradient vector is then projected into the space orthogonal to the intermediate receive filter
ḡ
(ℓ+1)
k :
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With the step size κ(ℓ), the updated receive filter is
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Note that for κ(ℓ) = 0 the update is simply the min-leakage update ḡ(ℓ+1)
k . For κ(ℓ) > 0 an orthogo-

nal term obtained from the gradient vector is added; weighting the summands with cosine and sine
ensures that the result has unit norm. As noted in [94], a step is taken following the “geodesic on
the Grassmanian manifold.”

For the beamformer update, the principle of switching the roles of transmitters and receivers
is applied, as was already discussed for the min-leakage and max-SINR algorithms: in the reverse
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direction, receiver j acts as a transmitter and uses the vector gj as a beamformer. Transmitter k

then applies the above receive filter update to its beamformer vk. The expression for v(ℓ+1)
k can

therefore be found by replacing g∗
j with vj and vice versa for all j ∈ {1, . . . , K}, and replacing all

channel matrices Hjk with HH
kj.

In [94], it was suggested that a reasonable choice for the initial step size is κ(0) = 0.1; after each
beamformer and receive filter has been updated, the step size is then decreased by a multiplication
with 0.995. Thus, in the course of the iterations the step size approaches zero and the algorithm
converges in the same way as the min-leakage algorithm.

The receiver update requires knowledge of
∑

j 6=k Hkjv
(ℓ)
j v

(ℓ)
j

H
HH

kj and of Hkkv
(ℓ)
k v

(ℓ)
k

H
HH

kk;
we assume that both can be locally estimated. In our signaling framework without time-division
duplex, the beamformer update of user k can be performed by exchanging the channel matrices
Hjk initially and the receive filters g(ℓ)

j after each update.

5.5.9 Other Algorithms

The above list of algorithms is not exhaustive. We chose to omit some further algorithms so that
our comparison does not to become too cluttered. In [95], for example, a gradient method was
proposed, which was found in [94] to have poor convergence properties; this is consistent with our
observations in the MISO case, where for certain SNR values the projected gradient algorithm takes
very many iterations to converge and the issue of choosing a universally suitable step size appears
to be a problem. In [96], the min-leakage objective was augmented with an additional summand
that rewards a high power gain of the desired signal; it is not clear, however, how to choose the
weight of the additional term other than by trial and error, and a good choice of the weight appears
to be strongly dependent on the noise power. In [97], an MMSE-based algorithm was proposed for
a setting in which the sum power of all users is constrained instead of the individual users’ powers.

Some other algorithms, e. g., those proposed in [89, 75], are based on optimizing the transmit
covariance matrices Qk instead of the beamformers vk. To apply these algorithms to the single-
stream case, however, an additional constraint would be necessary that allows the covariance ma-
trices to have at most a rank of one; adding such a constraint is not trivial. On the other hand, it
should be noted that many of the algorithms discussed above have also been applied or can be
extended to the multi-beam case.

5.5.10 Comparison of the Distributed Algorithms

An overview of the discussed distributed algorithms is given in Table 5.4. As the second column
shows, many of the algorithms do not have the ability to reduce the power of the beamformers or
deactivate users; these algorithms depend on being initialized with the correct number of users.
Also, as shown in the third column, some algorithms are aimed specifically at optimizing the
sum rate, while others are based on a different objective that happens to also yield good sum-rate
performance. Those algorithms that maximize the sum rate can be easily extended to handle similar
objectives, such as the weighted sum rate. Finally, the table shows whether convergence in some
metric has been proven and what sort of computations are necessary for one beamformer update.

Table 5.5 shows the information exchange requirements of the different algorithms for the sig-
naling model discussed in Section 3.5. The numerator and denominator of γ(ℓ)

k are denoted by n
(ℓ)
k

and d
(ℓ)
k , respectively. Notably, the global SINR maximization algorithm also requires information

to be signaled from the transmitters to their respective desired receivers for the receive filter update.
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Algorithm Power control Sum rate Convergence Complexity

Selfish updates No No No Inverse
Min-leakage No No Yes EVD
Max-SINR No No Local Inverse
Global SINR No No Seq. updates Inverse, EVD
MMSE Yes No Yes Inverse, line search
Adaptive MMSE Yes Yes Yes Inverse, line search
Pricing Yes Yes Seq. updates EVD, line search
Incremental SNR Yes Yes Seq. updates EVD, line search
Min-leakage/gradient No Yes Yes EVD

Table 5.4: Overview of the discussed algorithms for single-stream MIMO interference networks

Algorithm Rx k → Tx k Tx k → Tx j Rx k → Tx k Tx k → Tx j Tx k → Rx k

once once per iteration per iteration per iteration

Selfish updates Hkk — γ
(ℓ)
k , g(ℓ)

k — —

Min-leakage Hkj ∀j 6= k Hkj γ
(ℓ)
k , g(ℓ)

k g
(ℓ)
k —

Max-SINR Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k g
(ℓ)
k —

Global SINR Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k g
(ℓ)
k , n(ℓ)

k , d(ℓ)k a
(ℓ)
k , c(ℓ)k

MMSE Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k g
(ℓ)
k —

Adaptive MMSE Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k g
(ℓ)
k , αk —

Pricing Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k

√

π
(ℓ)
k g

(ℓ)
k —

Incremental SNR Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k

√

π
(ℓ)
k g

(ℓ)
k —

Min-leakage/grad. Hkj ∀j Hkj γ
(ℓ)
k , g(ℓ)

k g
(ℓ)
k —

Table 5.5: Information exchange requirements of the MIMO algorithms assuming that the transmitters com-
pute the updates and are connected via signaling links, cf. Figure 3.6(a).

We again note that the weights αk in the adaptively weighted MMSE algorithm only need to
be exchanged when they are updated, which can be significantly less frequently than the beam-
former/receive filter updates. Also, the incremental SNR algorithm requires some sort of signaling
mechanism for detecting convergence and moving on to the next SNR value.

5.6 Numerical Evaluation of the Approximations and Algorithms

In this section we numerically compare the sum-rate performance of the discussed distributed
algorithms for single-stream MIMO interference networks in an i. i. d. Gaussian channel model.
As in the MISO case, we distinguish between systems where zero interference is possible and
systems where users must be deactivated at high SNR; also, we again include results for scenarios
in which the cross channel gains are significantly lower than the direct channel gains.

The discussed algorithms differ significantly in their convergence properties. As the number
of iterations required for satisfactory performance is perhaps the most important metric for the
practical relevance of the algorithms, we pay special attention to this issue as well.
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Figure 5.4: Measured distribution of the sum rate offset r of a random aligned solution compared to the
Gaussian approximation

To begin with, however, we revisit the approximation for the mean sum rate offset of the best
of L aligned solutions discussed in Section 5.3.5.1. We recall that, in order to obtain the expression
for r̄approx in (5.54), some assumptions were made for which we did not provide any numerical
evidence. Now that the min-leakage algorithm provides us with a method of generating different
random aligned solutions, we can examine the validity of the approximation more closely.

5.6.1 Numerical Validation of the High-SNR Offset Approximations

We made two simplifying assumptions in order to be able to approximate the limiting distribution
of the offset of the best of L aligned solutions in Theorem 5.2: first, we assumed that the distribution
of the offset of a random aligned solution is Gaussian; second, we assumed that the offsets of
different aligned solutions of one channel realization are statistically independent. In the following
we perform some experiments to gain some intuition concerning the validity of these assumptions.

The rationale behind the Gaussianity assumption is that the offset r is the sum of K independent
random variables and therefore approaches a Gaussian distribution for large K according to the
central limit theorem; since we know the distribution of the individual summands, cf. (5.42), we
can numerically generate realizations of r and compare the histogram with the idealized Gaussian
PDF. The result of this experiment for two fully loaded systems with K = 7 and K = 13 users,
respectively, is shown in Figure 5.4. The figures indicate that the shape of the measured PDF is
reasonably close to the Gaussian approximation, but that it appears to be slightly skewed to the
left. The visible difference between measured and approximated PDF decreases with a growing
number of users K.

The assumption of statistical independence of the aligned solutions is more difficult to validate.
To obtain some limited insight into this issue, we perform the following experiment: for every chan-
nel realization, we determine two different aligned solutions by running the min-leakage algorithm
until convergence from two random (isotropically distributed) initializations. We then estimate the
correlation coefficient [81, Chapter 6] by computing the sample mean over C channel realizations.
Since we know that the mean of r is −Kγ and the variance is Kπ2/6, the estimated correlation
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Figure 5.5: Measured distribution of the sum offset r of the best of L = 100 aligned solutions compared
with the limiting Gumbel approximation. The dotted line represents the Gaussian approximation of the sum
offset of a random aligned solution.
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where r
(1)
c and r

(2)
c are the sum rate offset of the first and the second aligned solution of the cth

channel realization, respectively, and C is the number of total channel realizations. In a fully loaded
system with N = M = 4 antennas and K = 7 users, we measured a correlation coefficient of 0.07
averaged over C = 1000 channel realizations; for N = M = 7 and K = 13, the measured
correlation coefficient was even below 0.01. These results indicate that the correlation between
different aligned solutions is not very high; we note, however, that pairwise independence is not
sufficient for mutual independence and that this experiment is only meant to provide an intuition
and not conclusive evidence.

Finally, we investigate how well the properly scaled and shifted limiting Gumbel distribution of
Theorem 5.2 matches the experimentally obtained distribution of the offset of the best of L aligned
solutions. For the results in Figure 5.5 we determined the best of L = 100 aligned solutions,
again using different random initializations for the min-leakage algorithm. For the system with
N = M = 4 antennas and K = 7 users, we generated the histogram from 100 channel realizations,
for the larger system with N = M = 7 and K = 13 the histogram was computed using 20
realizations. It appears that for K = 4 the approximation yields an over-estimation of the offset;
the reason most likely is the left skew of the distribution of r, leading to a “shorter” right tail of the
PDF. For K = 13 the Gumbel distribution matches the histogram very well.

Altogether, the results indicate that the approximation is reasonable and that it becomes more
accurate with growing system dimensions. Again, for very large values of L the approximation
should be used with caution; as discussed in Section 5.3.5.1, it is not known how accurate the
Gaussian approximation of the distribution of r is far on the right tail of the PDF and it is compu-
tationally infeasible to conclusively validate the approximation in this case, as each execution of
the min-leakage algorithm requires a considerable computational effort.
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Figure 5.6: K = 7 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations.

5.6.2 Performance of the Best of L Aligned Solutions

The performance approximation by means of slope and offset is a high-SNR approximation. In this
section we compare the sum-rate performance of the strategy of selecting the best of L solutions
(determined with the min-leakage algorithm) with the corresponding high-SNR asymptote, not
only for high SNR, but across the whole range of SNRs. We also include the successive zero-
forcing scheme, for which we derived an approximate high-SNR asymptote in Section 5.4.2.1.

Figure 5.6 shows the result of averaging the sum rate over 100 channel realizations for a fully
loaded system with K = 7 users and N = M = 4 antennas at each node. It is known that in
this setting the total number of aligned solutions is T = 1 975 560, cf. Table 5.2; we can therefore
approximate the asymptote of the global optimum by assuming L = T . The approximated asymp-
tote for the best of L = 100 solutions slightly over-estimates the measured performance, which
is consistent with Figure 5.5. For the random aligned solution, the measured performance and the
asymptote match very well at high SNR; this is to be expected since the derivation of the offset
and slope of a random aligned solution does not contain any simplifying assumptions (other than
σ−2 → ∞). For comparison with the other distributed algorithms we also included the measured
performance of the incremental SNR algorithm, which in the following section will be shown to
yield the best performance among all algorithms in this setting. Assuming that our approximation
for the global optimum is reasonable, all investigated distributed algorithms are therefore clearly
suboptimal. It is, however, also remarkable that the incremental SNR algorithm achieves better
performance than the min-leakage algorithm run until convergence a hundred times. The parame-
ters used for the iterative algorithms, such as the convergence criterion and the maximum number
of iterations, are discussed in the next section.
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Figure 5.7: K = 13 users, N = M = 7 antennas at each transmitter and receiver, sum rate averaged over
20 channel realizations.

For the approximated asymptote of the successive zero-forcing strategy, we used the offset
r̄MSA, cf. (5.82), which was already shown to approximate the numerically measured offset very
well, cf. Table 5.3. Figure 5.6 shows that the performance of the successive zero-forcing strategy
is accurately approximated by its asymptote for moderate SNRs as well. A small performance
gain can be achieved by allocating the strategies to the users in a greedy fashion, as explained in
Section 5.4.2.

Figure 5.7 shows the same comparison for a system with K = 13 users and N = M = 7
antennas at each node. Due to the higher computational complexity of running the iterative algo-
rithms for these system dimensions, the results are averaged only over 20 channel realizations. For
this setting the total number of aligned solutions is not known, and we therefore cannot approx-
imate the global optimum at high SNR. The behavior is for the most part similar to Figure 5.6;
the approximation of the best of L = 100 aligned solutions in this scenario is very accurate. Also,
the incremental SNR method has far better performance than the best out of 100 random aligned
solutions.

In Figures 5.6 and 5.7, we observe that the SNR at which the asymptote of the successive zero-
forcing strategy and the best-of-L strategy cross is higher for the larger system: while for K = 7
the two asymptotes cross around 0 dB, for K = 13 the crossing point is around 6 dB. Since the
approximations are fairly simple to compute, we can investigate how the crossing point evolves
with growing system dimensions: in a generic system with N = M antennas at each node, we
know that the best-of-L strategy has a slope of s = 2N−1 and the successive zero-forcing strategy
achieves a slope of s = N . The noise power σ2

cross at which the two approximated asymptotes cross
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Figure 5.8: Evolution of the SNR at which the approximated asymptotes for the best-of-L strategy and the
successive zero-forcing strategy cross. For the black plots, the approximation r̄MSA was used for the offset
of the successive zero-forcing strategy, for the gray plots r̄LSA was used.

is therefore defined by

r̄approx + (2N − 1) log σ−2
cross = r̄MSA +N log σ−2

cross ⇒ log σ−2
cross =

r̄MSA − r̄approx
N − 1

. (5.119)

The behavior of σ2
cross for up to K = 2N − 1 = 199 users is shown in Figure 5.8, where the gray

plots result from using the offset approximation r̄LSA instead of r̄MSA. Since the number of aligned
solutions grows rapidly in the system dimensions, we also investigate different increasing rela-
tionships between L and N . Remarkably, even for L = NN , i. e., for a super-exponential growth
of the number of sampled aligned solutions with the system dimensions, the crossing SNR σ−2

cross

increases with the system dimensions. We conclude from this brief investigation that achieving the
optimal slope in a MIMO interference network can incur a significant penalty in the offset, so that
at moderately high SNR searching for aligned solutions may not be a good approach.

5.6.3 Performance of the Distributed Algorithms

For the numerical comparison of the distributed algorithms discussed in Section 5.5 we use the
i. i. d. Gaussian channel model, where all elements of all channel matrices are independent and
complex Gaussian. The elements of the direct channel matrices Hkk have unit variance and the
elements of the cross channel matrices Hkj with k 6= j have either variance one or variance 0.01,
depending on the scenario.

To detect convergence of the algorithms, we again examine the sum of the Euclidean norms of
the differences between the previous and the current beamformers, as is explained in Section 4.5.2;
we do not use the receive filters for our convergence criterion. The convergence threshold and
the maximum iteration number were chosen to ensure that the sum-rate performance is as good
as possible across the whole examined range of noise powers; to determine the values given in
Table 5.6 we compared different convergence criteria for a fully loaded system with K = 7 users
and N = M = 4 antennas at each node and selected a criterion that did not lead to a significant
performance loss. The resulting iteration numbers are rather high, which can be argued to limit the
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Update mode Parallel
Max. iteration number 10 000 / 100 000
Convergence threshold 10−4 / 10−5

Newton steps 10
Bisection steps 20
Initial noise power σ2

(1) 10

SNR increments 2.5 dB

Initial step size κ(0) 0.1
Step size reduction factor 0.995

Table 5.6: Parameters used for the numerical evaluation of the algorithms: the MMSE-based algorithms and
the pricing algorithm (without incremental SNR) are allowed 100 000 iterations and have a convergence
threshold of 10−5, the other algorithms are allowed 10 000 iterations and have a convergence threshold of
10−4.

practical relevance of the algorithms. This is, however, intended, as we wish to investigate the full
potential of the algorithms at this point and rule out negative effects due to prematurely terminating
the iterations. Later, in Section 5.6.3.4, we briefly examine the performance when a lower number
of iterations is allowed.

In contrast to the MISO case, we found that it is crucial for the performance of the adaptively
weighted MMSE algorithm that the weights are only updated when convergence of the beamform-
ers has been detected. The adaptive MMSE algorithm is therefore operated with an inner loop and
an outer loop: in the inner loop the weights are fixed and the weighted MMSE updates are run until
convergence of the beamformers, in the outer loop the weights are updated according to the cur-
rent operating point; convergence of the algorithm is reached when the change of the beamformers
from one iteration of the outer loop to the next is below the threshold.

The sequence of noise powers used for the incremental SNR algorithm is also given in Ta-
ble 5.6. We start with a noise power of σ2

(1) = 10 and reduce the noise power after convergence of
the pricing algorithm by 2.5 dB, which corresponds to a multiplication with approximately 0.562.
The limit on the number of iterations applies to each value of the noise power separately, i. e., the
total number of iterations to reach convergence for the desired noise power may be higher.

The step size parameters for the min-leakage/gradient algorithm are adopted from [94], i. e.,
the initial step size is κ(0) = 0.1 and after each beamformer and receiver has been updated, the step
size is multiplied with 0.995. All algorithms are operated with parallel updates; the performance
and convergence behavior with sequential updates is very similar. In the successive zero-forcing
scheme the strategies are allocated in the order of the user indices, i. e., not in a greedy fashion.

In the following we compare nine iterative algorithms, each of which may take well over a
thousand iterations to converge, for a broad range of scenarios and noise powers; furthermore,
some of the algorithms require eigenvalue decompositions and/or line searches in every iteration.
Altogether, the following comparisons are computationally very demanding, so that the average
is taken only over 100 channel realizations instead of 1000 in the previous chapters. Nonetheless,
we believe the results to be meaningful, as simulations with 1000 channel realizations for selected
algorithms and noise powers indicate that the “long term” average is already practically achieved
after 100 realizations.
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Algorithm –10 dB 15 dB 40 dB –10 dB 15 dB 40 dB

Selfish updates 18 (0) 10 000 (67) 10 000 (78) 8 (0) 21 (1) 10 000 (70)
Min-leakage 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)
Max-SINR 24 (0) 1103.5 (0) 8594 (35) 9 (0) 37 (0) 2017 (1)
Global SINR 27 (0) 1334 (0) 4255 (13) 10 (0) 40 (0) 2337 (2)
MMSE 36 (0) 2026 (0) 96 363 (46) 25 (1) 287 (0) 51 527 (4)
Adaptive MMSE 80.5 (0) 5282.5 (0) 100 000 (75) 26 (1) 640.5 (2) 68 966.5 (14)
Pricing 33.5 (0) 1816 (0) 70 016.5 (23) 14 (0) 50.5 (0) 4009 (0)
Incremental SNR 25 (0) 796.5 (0) 920 (0) 10 (0) 194 (0) 885 (0)
Min-leakage/gradient 1210.5 (0) 882 (0) 1165.5 (0) 1221 (0) 1030.5 (0) 1139 (0)

Table 5.7: Median number of iterations until convergence for Figure 5.9 (left) and Figure 5.10 (right). In
parentheses is the percentage of channel realizations for which the algorithm did not converge before reach-
ing the maximum iteration number.

5.6.3.1 Underutilized System: K = 4 Users and N = M = 4 Antennas

Throughout the following numerical evaluation, we focus on systems with four antennas at each
node. We begin with a scenario with K = 4 users; clearly, this is a proper system, i. e., a slope of
s = K = 4 is almost always achievable. Furthermore, the optimal slope can be achieved without
iterative algorithms: if we consider any K-tuple of fixed receive filters, we effectively have a MISO
system with four users and four transmit antennas, for which a zero-forcing solution achieving the
optimal slope can be straightforwardly computed. Nonetheless, iterative algorithms involving an
optimization of the receive filters may still improve the sum rate offset as well as the performance
at moderate and low SNR.

Figures 5.9 and 5.10 show the sum-rate performance of the discussed non-iterative techniques
and iterative algorithms for strong and weak cross channels, respectively; the corresponding me-
dian iteration numbers are shown in Table 5.7, with the percentage of channel realizations for
which convergence was not achieved within the maximum iteration number in parentheses. We
observe that all iterative algorithms appear to achieve the optimal slope. Even the selfish update
procedure, where the caused interference is not taken into account in the beamformer updates, is
able to remove all interference, as the receivers have sufficiently many antennas to seperate the
desired signal from the interfering signals; however, the selfish updates very often fail to converge.

The min-leakage algorithm leads to a significantly suboptimal offset; convergence is reached
after one update, however, as all interference can be removed immediately with zero-forcing beam-
formers. Adding the sum-rate gradient step to the min-leakage algorithm yields an improvement,
but the performance of the other iterative algorithms is not reached. The other iterative algorithms
perform approximately equally, but exhibit substantial differences in the convergence behavior: the
MMSE-based algorithms and the interference pricing algorithm require a very high number of iter-
ations at high SNR, whereas the incremental SNR algorithm consistently converges comparatively
quickly. Altogether, the iterative algorithms yield an improvement of no more than 5 bpcu over the
successive zero-forcing strategy, so that it is disputable whether such computationally demanding
iterative procedures are worthwile in these scenarios.

5.6.3.2 Fully Loaded System: K = 7 Users and N = M = 4 Antennas

With K = 7 users the four-antenna system is fully loaded: consequently, interference alignment
is achievable without deactivating users and there is a finite number of aligned solutions. The
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Figure 5.9: K = 4 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations. The iterative algorithms are initialized with the ME solution.
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Figure 5.10: K = 4 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations of a channel model where the variance of the cross channels is 0.01 and the variance
of the direct channels is 1. The iterative algorithms are initialized with the ME solution.



5.6 Numerical Evaluation of the Approximations and Algorithms 169

−10 −5 0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

 

 
ME solution
Successive ZF
Selfish updates
Min−leakage

Max−SINR

Global SINR

MMSE

Adaptive MMSE

Pricing

Incremental SNR

Min−leakage/gradient

S
um

R
at

e
(b

pc
u)

10 log10 σ
−2

Figure 5.11: K = 7 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations. The iterative algorithms are initialized with the ME solution.

sum-rate performance of the different strategies is plotted over the SNR for strong and weak cross
channels in Figures 5.11 and 5.12, respectively, the iteration numbers are given in Table 5.8.

In contrast to the previously discussed underutilized scenario, here the sum rate achieved by the
selfish updates saturates for high SNR, as alignment can only be achieved by taking into account
the caused interference. For the successive zero-forcing strategy we can observe that an asymptotic
slope of 4 log2 10 ≈ 13.3 bpcu per 10 dB increase in SNR is achieved, which corresponds to s = 4
when rate and noise power are expressed with the natural logarithm, whereas the iterative schemes
achieve a slope of s = 7, or approximately 23.3 bpcu per 10 dB.

Of the algorithms that achieve intereference alignment, the incremental SNR algorithm on
average appears to find the best solution at the cost of a higher number of iterations than, e. g.,
the max-SINR algorithm. For the case of strong cross channels in Figure 5.11, the performance
of the incremental SNR method is closely followed by that of the min-leakage/gradient and max-
SINR algorithms; for weak cross channels, the min-leakage/gradient heuristic places too much
emphasis on removing all interference and performance is significantly poorer. The global SINR
maximization algorithm in general has convergence properties that are very similar to those of the
max-SINR algorithm, the average sum-rate performance is, however, marginally lower.

The MMSE-based algorithms yield good performance, but, as was also observed in the MISO
case, require extremely many iterations to converge when the SNR is high. Similarly, the pricing
algorithm without incremental SNR has difficulty finding an aligned solution at high SNR in the
case of strong cross channels; this has a visible effect on the slope above an SNR of 30 dB in
Figure 5.11 and can also be seen from the iteration numbers in Table 5.8.
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Figure 5.12: K = 7 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations of a channel model where the variance of the cross channels is 0.01 and the variance
of the direct channels is 1. The iterative algorithms are initialized with the ME solution.

Algorithm –10 dB 15 dB 40 dB –10 dB 15 dB 40 dB

Selfish updates 22 (0) 51 (10) 51.5 (9) 11 (0) 30 (0) 51.5 (14)
Min-leakage 1066.5 (0) 1066.5 (0) 1066.5 (0) 1270.5 (0) 1270.5 (0) 1270.5 (0)
Max-SINR 36.5 (0) 792.5 (0) 1009 (0) 12 (0) 69 (0) 1150.5 (0)
Global SINR 43 (0) 817 (0) 1081.5 (0) 13 (0) 78.5 (0) 1115.5 (1)
MMSE 52 (0) 1258.5 (0) 27 441 (1) 27 (0) 383.5 (0) 25 010 (0)
Adaptive MMSE 136.5 (0) 4558 (0) 29 690.5 (3) 28 (0) 1064.5 (0) 38 311.5 (4)
Pricing 51 (0) 1698 (0) 100 000 (66) 18 (0) 96.5 (0) 2982 (0)
Incremental SNR 39.5 (0) 2140.5 (0) 6242 (12) 12 (0) 292.5 (0) 3363.5 (0)
Min-leakage/gradient 1834.5 (0) 2236.5 (0) 2246.5 (0) 1771.5 (0) 2081 (0) 2195.5 (0)

Table 5.8: Median number of iterations until convergence for Figure 5.11 (left) and Figure 5.12 (right).
In parentheses is the percentage of channel realizations for which the algorithm did not converge before
reaching the maximum iteration number.
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Figure 5.13: K = 10 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations. The iterative algorithms are initialized with the ME solution.

5.6.3.3 Improper System: K = 10 Users and N = M = 4 Antennas

When all nodes in a MIMO interference network have four antennas, it is almost surely impossible
to achieve a slope higher than s = 7 with linear single-stream strategies, regardless of the number
of users K. If K > 7, users must therefore be deactivated in order to achieve the optimal slope.
Consequently, as is shown in Figures 5.13 and 5.14, the sum rate of the algorithms that are not ca-
pable of power control, i. e., the min-leakage, max-SINR, global SINR, and min-leakage/gradient
algorithms, cf. Table 5.4, saturates at high SNR.

The MMSE algorithms have the capability of reducing the transmit power of individual users
and therefore achieve a higher sum rate at high SNR. The unweighted MMSE algorithm does
not achieve the optimal slope, however, as can be seen in Figure 5.13, whereas the adaptively
weighted MMSE algorithm has difficulty converging within 100 000 iterations. The best perfor-
mance is achieved by the pricing-based algorithms, where, again, the incremental SNR technique
significantly improves the convergence behavior; remarkably, however, the performance of the
pricing algorithm with fixed SNR is slightly higher in Figure 5.13. A comparison of the absolute
value of the sum rate achieved at high SNR in Figure 5.13 with that achieved in Figure 5.11 shows
that the slope achieved for K = 7 users is higher than for K = 10 users; we conclude that even
the best of the known iterative techniques is not able to reliably select the appropriate number of
users for high-SNR sum-rate optimality. Instead, convergence to local optima that do not achieve
the optimal slope can occur when the algorithm is initialized with “too many” active users.
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Figure 5.14: K = 10 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged
over 100 channel realizations of a channel model where the variance of the cross channels is 0.01 and the
variance of the direct channels is 1. The iterative algorithms are initialized with the ME solution.

Algorithm –10 dB 15 dB 40 dB –10 dB 15 dB 40 dB

Selfish updates 27 (0) 40 (3) 40 (2) 12 (0) 32 (0) 44 (3)
Min-leakage 268.5 (0) 268.5 (0) 268.5 (0) 279.5 (0) 279.5 (0) 279.5 (0)
Max-SINR 45 (0) 243.5 (0) 255.5 (0) 13 (0) 93 (0) 225 (0)
Global SINR 61 (0) 243 (0) 259.5 (0) 14 (0) 115.5 (0) 257.5 (0)
MMSE 63 (0) 628 (0) 16 398 (0) 28 (0) 395 (0) 8942.5 (0)
Adaptive MMSE 182.5 (0) 9731.5 (0) 100 000 (99) 29 (0) 1478.5 (0) 100 000 (79)
Pricing 68 (0) 1180 (0) 100 000 (52) 20 (0) 129.5 (0) 2135.5 (0)
Incremental SNR 52.5 (0) 2074 (0) 5724.5 (9) 14 (0) 390.5 (0) 2842.5 (0)
Min-leakage/gradient 905 (0) 1343.5 (0) 1340.5 (0) 893 (0) 1397 (0) 1450.5 (0)

Table 5.9: Median number of iterations until convergence for Figure 5.13 (left) and Figure 5.14 (right).
In parentheses is the percentage of channel realizations for which the algorithm did not converge before
reaching the maximum iteration number.
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5.6.3.4 Discussion of the Numerical Properties of the Algorithms

The simulation results indicate that if it the system is fully loaded, the fixed-power algorithms are
very useful for finding aligned solutions. The max-SINR and global SINR algorithms show the
best convergence behavior with the former achieving a marginally higher sum-rate performance.
Somewhat surprisingly, however, these algorithms exhibit convergence difficulties at high SNR in
the underutilized setting, cf. Table 5.7. Also, it is not possible to adapt them to a different utility
function: the update procedures are not based on maximizing the sum rate, but happen to yield
good sum-rate performance; it is not possible to use the max-SINR or global SINR algorithms to
maximize, e. g., the weighted sum rate.

The interference pricing technique offers the additional possibility of deactivating users and
automatically finding a “good” number of users. This comes at a cost, however: not always is
the optimal slope achieved and the convergence behavior at high SNR is generally problematic.
Both issues can be somewhat mitigated with the incremental SNR method: with properly chosen
SNR increments we observe excellent performance in all examined scenarios and far more reliable
convergence behavior. Furthermore, it is straightforward to extend the pricing-based algorithms to
other utility functions, such as the weighted sum rate.

The remaining algorithms seem to be less practical: while the MMSE-based methods also
have the capability of deactivating users, they generally suffer from very slow convergence at high
SNR. The performance of the min-leakage strategy clearly suffers from the fact that the direct
power gain is not maximized and that at moderate and low SNR attempting to completely remove
the interference is far from optimal; instead, the noise power must be taken into account in order
to be able to provide a good tradeoff between interference cancelation and maximization of the
direct power gain. The gradient extension of the min-leakage algorithm proposed in [94] leads
to an improvement, but does not consistently perform as well as, e. g., the max-SINR algorithm;
presumably, the performance of this method can be further improved by choosing different step
size parameters, but it is questionable whether a universally suitable set of parameters can be found.

In a practical system, allowing up to 100 000 iterations would most likely be infeasible. In
Figure 5.15, we show how the algorithms perform when we terminate the algorithms after 100
iterations for the fully loaded system with K = 7 users and N = M = 4 antennas per node with
equally strong direct and cross channels. For the adaptive MMSE algorithm, we now update the
weights after each iteration; for the incremental SNR strategy, we use the same series of noise
powers as in the previous simulations (cf. Table 5.6), but permit only 5 iterations for each SNR
value, so that at 40 dB 105 iterations will have been performed, while for an SNR of 30 dB only 85
iterations are allowed.

Clearly, interference alignment and the optimal slope cannot be achieved by any algorithm in so
few iterations. The incremental SNR algorithm appears to come close; however, when we compare
the absolute values of the sum rate to those in Figure 5.11, where the algorithms are run until
convergence in the same scenario, it becomes clear that the optimal slope is not reached here. The
max-SINR and global SINR algorithms also exhibit good performance for moderately high SNR.
The min-leakage/gradient algorithm, on the other hand, performs surprisingly poorly: the choice
of the step size parameters has the effect that, when the algorithm is terminated, the size of the
gradient steps is still relatively large; in the words of [94], the algorithm is still in the “exploration
phase” and has not yet reached the “convergence phase”.

Finally, we briefly address the issues of parallel/sequential updates and the choice of the initial-
ization: further experiments show that sequential updates do not yield a substantial improvement
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Figure 5.15: K = 7 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations. The iterative algorithms are initialized with the ME solution and are allowed only
100 iterations.

for any of the examined algorithms, either in sum-rate performance or in convergence behavior;
we omit the comparison, as it is not particularly instructive. Second, in all simulations of Sec-
tion 5.6.3 we initialized the algorithms with the ME solution. In Figure 5.16, we exemplarily show
for the max-SINR and min-leakage algorithms that this leads to a significant performance gain
over random isotropically distributed initial strategies. We note that the other algorithms behave
similarly.
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Figure 5.16: K = 7 users, N = M = 4 antennas at each transmitter and receiver, sum rate averaged over
100 channel realizations.





6. Conclusion

In this work we examined networks of multiple interfering transmitter-receiver pairs, where the
transmitters and the receivers may have multiple antennas. Understanding this system model is im-
portant, e. g., for managing the inter-cell interference in cellular communication networks through
base station cooperation. We gave an overview of the analytical results concerning the achievable
performance of such networks and of the algorithms proposed to find strategies that come close to
the achievable performance; we thoroughly compared the properties of the algorithms and evalu-
ated their average performance in numerical experiments; we thereby showed that some algorithms
are significantly more useful than others.

The overview of information theoretic results in Chapter 2 showed that the capacity limits for
interference scenarios are in general difficult to analyze. As follows from the discussed achiev-
able schemes and upper bounds for asymptotically high SNR, the interference between the users
has the effect of cutting in half the degrees of freedom compared to the case where the users do
not interfere with each other. At the same time, however, these results indicate that very complex
coding schemes are necessary to achieve this asymptotically optimal behavior for more than three
users. In particular, the transmitters must jointly design their codebooks depending on the current
channel conditions, the receivers must know the codebooks used by all interfering transmitters,
and the process of encoding the data for transmission and decoding the received data is consid-
erably more difficult than “conventional” channel coding and decoding. It appears that currently
such “DoF-achieving” schemes are mainly of academic interest and most likely not suitable for
practical systems in the near future; therefore, suboptimal strategies are necessary that provide a
good compromise between performance and simplicity.

Of the different possibilities to balance simplicity and performance, the one extreme is that the
users do not cooperate at all, i. e., the transmitters do not coordinate their transmit strategies and the
receivers do not attempt to decode the interference; this leads to the paradigm of selfish behavior.
Our numerical simulations show that, as a rule of thumb, unless the power of the interference that
cannot be removed by the linear receive filters is in the same order of magnitude or lower than
the power of the background noise, selfish behavior leads to strongly suboptimal performance.
Furthermore, when transmitters and receivers have multiple antennas, selfish behavior can lead to
strategy oscillations.

This shows that cooperation among the users is in general desirable. In particular, the gain that
can be achieved by cooperation grows with decreasing power of the background noise, i. e., with
increasing SNR. The closest possible mode of cooperation allowed by our system model, and thus
the other extreme of the tradeoff between performance and simplicity, requires the transmitters to
jointly design their codesbooks and the receivers to decode the signal with the knowledge of all
transmitters’ codebooks. This type of cooperation is necessary to achieve the capacity limits of
the interference channels, but is challenging to implement in a practical system, as noted above. A
somewhat “looser” and less demanding mode of cooperation results from using the linear strategies
discussed in Chapters 3–5. Here, conventional channel coding techniques are applied to individual
scalar data streams; the transmitters cooperate only in power control and beamformer design and
the receivers decode their individual data stream without having to decode any interfering signals.
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While the linear strategies are less complex in terms of coding and information exchange
among the users, their analysis is by no means simple: some of the encountered problems are
convex optimization problems, such as the maximization of certain sum utilities in single-antenna
networks or the balancing problem in the MISO case; the sum rate maximization problems, how-
ever, which are of particular interest, are non-convex and proven to be NP-hard. Also, we observe
that the difficulty of the analysis increases when we allow the nodes to have more than one an-
tenna: for SISO systems, we can give a sufficient condition for convexity of the achievable utility
region as well as necessary and sufficient conditions for Pareto optimality of a strategy; also, the
feasibility and SINR balancing problems can be solved in a straightforward way and the high-SNR
sum-rate optimal strategy is trivial.

In the MISO case, on the other hand, even utility functions that guarantee convex utility regions
for single-antenna systems may lead to a non-convex utility region. Also, the Pareto boundary can
only be characterized with necessary conditions, which are in general not sufficient. The feasibility
problem cannot be solved in closed form, but can be reformulated so that it can be solved with gen-
eral purpose optimization tools; and the sum-rate optimal strategy at high SNR can be expressed
in closed form for settings in which zero-forcing is possible.

For general MIMO intereference networks, finally, the structure of the underlying problems
is so complex that analysis is limited to the regime of asymptotically low or high SNR for the
rate utility; these asymptotic results are not valid for all channels, but only for almost all channel
realizations of a random channel model. The high-SNR optimal strategies, which have the property
that the interference is aligned, in general cannot be expressed in closed form and numerically
finding the global high-SNR optimum appears to be computationally very demanding and only
feasible for some small scenarios: the only known method is to determine and compare all aligned
solutions, the number of which grows extremely fast with the system dimensions.

While the high-SNR analysis in the literature focuses on the characterization of the asymptotic
slope, in this work we presented a probabilistic analysis of the offset that makes use of large-system
approximations and extreme statistics. Our analysis allows us to understand the average perfor-
mance gain that can be achieved by trying out many different aligned solutions in fully loaded sys-
tems and also indicates that for larger systems the successive zero-forcing strategy, which achieves
only half of the optimal slope, can outperform aligned strategies even at moderately high SNR.

Numerous algorithms have been proposed for determining good suboptimal strategies in terms
of sum rate. These algorithms can be implemented in a distributed manner, i. e., the individual users
iteratively compute strategy updates using locally available information and exchange a limited
amount of information with the other users after each iteration. We can divide the algorithms into
two classes: the first type of algorithm adjusts only the direction of the beamformers and every
user transmits with the highest possible power; the second type of algorithm optimizes over the
beamformer direction and the power.

The most convincing of the algorithms without power control according to our numerical simu-
lations is the max-SINR algorithm, which achieves excellent sum-rate performance in many sce-
narios and generally converges quickly and reliably. The strategy of maximizing the virtual SINR,
which is the MISO equivalent of the max-SINR technique and also performs very well in systems
where zero-forcing is possible, does not even require iterative updates. Since the algorithms in this
class are not capable of deactivating individual users when it is in the common interest, they rely
on being initialized with the correct number of users, i. e., they depend on the system being proper

at high SNR. In settings where zero-interference solutions are not possible it may be necessary
to precede the fixed-power algorithms with a user selection procedure. It is not clear, however,
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how such a user selection would determine which and how many users should be active: while it
is known that at high SNR the system should be proper, at moderate SNR it could be beneficial
to have more active users. Another drawback of the fixed-power algorithms is that they are not
designed to achieve local sum-rate optimality. This does not imply that their sum-rate performance
is lower, but it does mean that they cannot be adapted to other related optimization objectives, such
as the weighted sum rate. Maximizing the weighted sum rate can be of significance when, e. g., the
users are prioritized according to scheduling considerations. Finally, fixed-power algorithms are
not applicable to single-antenna interference networks.

Algorithms in the second class, on the other hand, can be specifically designed to at least locally
maximize a certain utility. The most straightforward method to achieve this is to perform a gradient
ascent on the sum utility function. However, numerical evaluation of the proposed gradient-based
algorithms shows that choosing a universally suitable step size is an open problem and that a
poor choice of the step size can greatly affect the convergence behavior. The interference pricing
method, on the other hand, does not require any parameters to be adjusted; it shows good perfor-
mance across a wide range of scenarios and is applicable in SISO, MISO, and MIMO networks,
regardless of whether the system is proper or whether users must be deactivated. The interference
pricing algorithm is therefore able to inherently perform the necessary user selection. The algo-
rithm does have difficulties in fully loaded MIMO interference networks at high SNR, though; this
appears to be a consequence of the properties of the sum rate utility, which has many local optima
that are not aligned solutions. The heuristic of gradually increasing the SNR appears to somewhat
relieve this problem: in nearly all examined MIMO scenarios the pricing algorithm with incremen-
tal SNR achieves the best performance among all strategies. The number of iterations, however, in
general is higher than for the fixed-power algorithms.

We conclude that, due to the difficulty of the sum rate maximization problem in MIMO inter-
ference networks, there is no “one size fits all” algorithm. Also, it appears that even determining
suboptimal strategies with any of the examined algorithms requires a rather large computational
effort if we take into account the high iteration numbers. In practical interference networks the
goal consequently cannot be to achieve the optimum, but rather to improve an initial strategy as
much as possible within a limited number of iterations. Therefore, the results of Figure 5.15 are
particularly promising: they indicate that the benefits that can be realistically achieved with the
techniques presented in this work are considerable.

It remains to extend the results of this work to the general multi-beam case. Many of the known
fixed-power algorithms are discussed in the literature for more than one stream per user, but again
they rely on being initialized with a good configuration of streams per user. The challenge to be
met by the algorithms with power control is to reliably converge to close-to-optimal strategies even
when the optimal stream configuration is not known. The interference pricing technique may turn
out to be a valuable tool for this problem as well.





Appendix

A1. Derivation of the Sato Bound

In Section 2.3.2.2 we wish to solve the optimization problem

r̄ = argmin
r

log det
(

I+HHR−1H
)

s. t.: |r| ≤ 1 (A1)

with

R = σ2 ·
[

1 r
r∗ 1

]

(A2)

and a full rank matrix H ∈ C2×2. We define

A =

[

a11 a12
a∗12 a22

]

= σ−2HHH. (A3)

Since the logarithm is increasing, we can equivalently find the minimizer of the above determinant,
which we simplify as

det
(

I+HHR−1H
)

= det
(

I+HHHR−1
)

= det

(

I+
1

1− |r|2
[

a11 a12
a∗12 a22

]

·
[

1 −r
−r∗ 1

])

=
1

(1− |r|2)2 det
([

a11 − r∗a12 + 1− |r|2 a12 − ra11
a∗12 − r∗a22 a22 − ra∗12 + 1− |r|2

])

=
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d1 − 2Re(d∗2r)

1− |r|2

(A4)

with

d1 = a11 + a22 + a11a22 − |a12|2 (A5)

d2 = a12 (A6)

cf. (2.66) and (2.67). We find candidates for the minimum by taking the derivative with respect
to r∗:

∂

∂r∗

(

d1 − 2Re(d∗2r)

1− |r|2
)

=
−(1− |r|2)d2 + (d1 − 2Re(d∗2r))r
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−d∗2r

2 + d1r − d2
(1− |r|2)2 . (A7)

The zeros of the numerator are

r̄1,2 =
d1 ±

√

d21 − 4|d2|2
2d∗2

. (A8)
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Note that d1 > a11 + a22 and |d2| <
√
a11a22, since A is positive definite. Therefore, d1 − 2|d2| >

a11 + a22 − 2
√
a11a22 = (

√
a11 −

√
a22)

2 ≥ 0, and consequently d1 > 2|d2|. This means that the
numerator in (A8) is always real-valued. Furthermore,

d1 − 2|d2| ≤
√

d21 − 4|d2|2 =
√

(d1 − 2|d2|)(d1 + 2|d2|) ≤ d1 + 2|d2| (A9)

and it can be shown that |r̄1| > 1 (plus sign in (A8)) and |r̄2| < 1 (minus sign in (A8)). Since
there is exactly one candidate for an extreme value that fulfills the constraint and the cost function
is infinite on the boundary of the constraint set, we have found that the minimizer is r̄2. The
expression in (2.68) is obtained by plugging (2.65) into (A4).

A2. Proof of Proposition 3.2

Let us assume that we are given an SINR K-tuple (γ1, . . . , γK) and would like to determine a
power allocation (p1, . . . , pK) that achieves this SINR K-tuple. To begin with, it is clear that if any
γk = 0, the corresponding power pk must also be zero. It is then possible to “remove” this user
from the system and solve the equations for the remaining non-zero SINRs.

For ease of notation, we assume in the following that the zero-SINR users have already been
removed and that all SINRs γk with k ∈ {1, . . . , K} are non-zero. From (3.5) we obtain the system
of equations

|h11|2
γ1

p1 − |h12|2p2 − . . .− |h1K |2pK = σ2 (A10)

−|h21|2p1 +
|h22|2
γ2

p2 − . . .− |h2K |2pK = σ2 (A11)

...

−|hK1|2p1 − |hK2|2p2 − . . .+
|hKK|2
γK

pK = σ2 (A12)

which we can express in matrix-vector notation as

Ap = σ2
1 (A13)

where the matrix
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−|hK1|2 −|hK2|2 . . . |hKK |2
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(A14)

depends on the given SINR K-tuple (γ1, . . . , γK) and the channel coefficients, and the vector
p = [p1, . . . , pK ]

T contains the unknown powers. Therefore, we can state that the SINR K-tuple
is in the SINR region if and only if there exists a vector p that fulfills (A13) and of which each
element is in the interval [0, 1].

Next, let us assume that the SINR K-tuple (γ1, . . . , γK) is indeed feasible and that it results
from the power allocation (p1, . . . , pK), where each power is strictly greater than zero. Then, by
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inserting (3.5) into (A14), we obtain
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We can rewrite A as the product of two matrices

A = BP−1 (A16)

where
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and

P =











p1 0 · · · 0
0 p2 · · · 0
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...
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0 0 · · · pK











. (A18)

The matrix B has positive row sums and only non-positive off-diagonal elements and is therefore
an M-matrix [45]. Thus, B−1 exists and has only non-negative elements. Consequently, for every
feasible non-zero SINR K-tuple, A−1 exists and has only non-negative elements.

Now, let us assume that A results from a feasible non-zero SINR K-tuple (or, equivalently,
a feasible power allocation vector p with elements strictly greater than zero) and let us examine
another SINR K-tuple (γ̄1, . . . , γ̄K) with 0 < γ̄k ≤ γk for all k ∈ {1, . . . , K}. A power allocation
vector p̄ resulting in this SINR K-tuple must fulfill

Āp̄ = σ2
1 (A19)

where Ā is obtained by replacing γ1, . . . , γK with γ̄1, . . . , γ̄K in (A14). Since all γ̄k are smaller
than or equal to the respective γk, we can express Ā as the sum of A and a diagonal matrix D with
non-negative elements, i. e.,

Ā = A+D = (B +DP )P−1. (A20)

Since B+DP has positive row sums and only non-positive off-diagonal elements, Ā−1 exists and
has only non-negative elements. Consequently, p̄ is unique and has only non-negative elements.
Furthermore,

p̄ = σ2 (A+D)−1
1 = σ2A−1

1− σ2A−1D (A+D)−1
1 = p− σ2A−1DĀ−1

1. (A21)

Since A−1, D, and Ā−1 have only non-negative elements, each element of the vector p̄ is less than
or equal to the corresponding element of p, i. e., 0 < p̄k ≤ pk holds for all k ∈ {1, . . . , K} and p̄

is also a feasible power allocation vector.
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To show feasibility of an SINR K-tuple (γ̄1, . . . , γ̄K) that also contains zero elements, we
proceed in two steps. First, we examine the SINR K-tuple (γ̂1, . . . , γ̂K) that results from the power
allocation vector p̂. We define the kth element of p̂ to be either pk if γ̄k 6= 0 or zero if γ̄k = 0, i. e.,
we switch off the users for which γ̄k is zero and leave the rest of the power allocation unchanged.
Clearly, for the users with non-zero power p̂k, γ̂k ≥ γk. In the second step, we remove the users for
which γ̂k = γ̄k = 0 from the system. We are left with a reduced system in which 0 < γ̄k ≤ γ̂k for all
remaining users and can apply the same arguments as above to show that the K-tuple (γ̄1, . . . , γ̄K)
is feasible.

As a result, we can state that if an SINR K-tuple (γ1, . . . , γK) is feasible, any SINR K-tuple
which is element-wise smaller or equal is also feasible. Thus, the SINR region is comprehensive
and the proof is complete.

A3. Proof of Proposition 3.3

Let us assume w. l. o. g. that h21 6= 0 and examine the power allocations (p̂1 = 1, p̂2 = 1, . . . , p̂K =
1), (p̌1 = 0, p̌2 = 1, . . . , p̌K = 1), and (p1 = 1

2
, p2 = 1, . . . , pK = 1) as well as the resulting

feasible SINR K-tuples (γ̂1, . . . , γ̂K), (γ̌1, . . . , γ̌K), and (γ1, . . . , γK). We will then examine a
certain convex combination of the former two SINR K-tuples and show that it is infeasible.

The resulting SINRs are

γ̂k =
|hkk|2

∑

j 6=k

|hkj|2 + σ2
∀k ∈ {1, . . . , K} (A22)

γ̌1 = 0 and γ̌k =
|hkk|2

∑

j 6=k

|hkj|2 − |hk1|2 + σ2
∀k ∈ {2, . . . , K} (A23)
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1
2
|h11|2
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j 6=1

|h1j|2 + σ2
and γk =

|hkk|2
∑

j 6=k

|hkj|2 − 1
2
|hk1|2 + σ2

∀k ∈ {2, . . . , K}. (A24)

We observe that

γ1 =
1

2
γ̂1 and γk = 2

(

γ̂−1
k + γ̌−1

k

)−1 ∀k ∈ {2, . . . , K}. (A25)

We define the K-tuple (γ̄1, . . . , γ̄K) to be the convex combination of (γ̂1, . . . , γ̂K) and
(γ̌1, . . . , γ̌K) with α = 1

2
, i. e.,

γ̄k =
γ̂k + γ̌k

2
∀k ∈ {1, . . . , K}. (A26)

Since the harmonic mean of two real non-negative numbers is always smaller than or equal to the
arithmetic mean with equality only if the two numbers are identical, we can state that

γ1 = γ̄1, γ2 < γ̄2, and γk ≤ γ̄k ∀k ∈ {3, . . . , K}. (A27)

Next, we examine whether (γ̄1, . . . , γ̄K) is feasible. Note that any change of power allocation
from (p1 =

1
2
, p2 = 1, . . . , pK = 1) that does not violate the power constraints will either

1) include a decrease of one or more powers or
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2) consist of only increasing p1.
In both cases, due to the properties of the SINR, at least one SINR will decrease compared to
(γ1, . . . , γK). Therefore (γ̄1, . . . , γ̄K) is not feasible and the region is non-convex.

When all cross channels are zero, the SINR region is simply an orthotope (or hyperrectangle)
confined by the inequalities

0 ≤ γk ≤
|hkk|2
σ2

∀k ∈ {1, . . . , K} (A28)

and therefore convex.

A4. Proof of Proposition 3.6

The optimization problem (3.47) can be stated equivalently as

max
u1,...,uK

K
∑

k=1

uk s. t.: (u1, . . . , uK) in the utility region (A29)

where two optimization problems are equivalent, if from the solution to one of the two problems
the solution to the other problem can be found in a straightforward way.

The objective function of (A29) is linear in the optimization variables u1, . . . , uK and the fea-
sible set is convex, therefore (A29) is a concave maximization problem and the KKT conditions
of (A29) are sufficient for global optimality [36]. In the following we will show that the KKT con-
ditions of (A29) are equivalent to the KKT conditions of (3.47) in the sense that a power allocation
or corresponding utility K-tuple that fulfills the KKT conditions of one of the two problems also
fulfills the KKT conditions of the other problem.

In order to formulate the KKT conditions of (A29), we first explicitly state the constraints using
the functions fk(u1, . . . , uK) which map the utility K-tuple to a power allocation that achieves
these utilities, i. e.,

fk(u1(γ1), . . . , uK(γK)) = pk ∀k ∈ {1, . . . , K}. (A30)

We note that, as is discussed in Section 3.4.3, the mapping from the SINR K-tuple to the power
allocation is unique and well-defined for all feasible SINR K-tuples. Therefore, the mapping from
utilities to powers is also unique and the functions fk(·) are well-defined for all feasible utilities.

The optimization problem (A29) with explicitly stated constraints is

max
u1,...,uK

K
∑

k=1

uk s. t.: 0 ≤ fk(u1, . . . , uK) ≤ 1 ∀k ∈ {1, . . . , K}. (A31)

With the Lagrangian multipliers µ1, . . . , µK and ν1, . . . , νK , the KKT conditions are

1 +
K
∑

j=1

∂fj
∂uk

(µj − νj) = 0 ∀k ∈ {1, . . . , K} (A32)

µk ≥ 0 ∀k ∈ {1, . . . , K} (A33)

νk ≥ 0 ∀k ∈ {1, . . . , K} (A34)

µkfk(u1, . . . , uK) = 0 ∀k ∈ {1, . . . , K} (A35)

νk(1− fk(u1, . . . , uK)) = 0 ∀k ∈ {1, . . . , K} (A36)

0 ≤ fk(u1, . . . , uK) ≤ 1 ∀k ∈ {1, . . . , K}. (A37)
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Clearly, (A33)–(A37) are equivalent to (3.49)–(3.53). In the following we will show that, addition-
ally, (A32) is equivalent to (3.48).

To begin with, we define the Jacobi matrices

Jf =







∂f1
∂u1

· · · ∂fK
∂u1

...
. . .

...
∂f1
∂uK

· · · ∂fK
∂uK






and Ju =







∂u1

∂p1
· · · ∂uK

∂p1
...

. . .
...

∂u1

∂pK
· · · ∂uK

∂pK






. (A38)

With the vectors of Lagrangian multipliers µ = [µ1, . . . , µK ]
T and ν = [ν1, . . . , νK ]

T, we ex-
press (A32) in matrix-vector form as

1+ Jf (µ− ν) = 0 (A39)

and (3.48) as
Ju1+ µ− ν = 0. (A40)

We observe that if Ju is invertible and Jf = J−1
u , the two conditions are equivalent. From (A30)

it is clear that the derivative of fk w. r. t. pj is one if j = k and zero otherwise, i. e.,

∂fk
∂pj

= eT
j ek. (A41)

By applying the chain rule to the left-hand side of (A30), we can state the same derivative as

∂fk
∂pj

=
K
∑

i=1

∂fk
∂ui

· ∂ui

∂pj
= eT

j JuJfek. (A42)

Since this holds for any pair (j, k), it follows that

JuJf = I. (A43)

It remains to show that the Jacobi matrices are always invertible. To this end, we define the
Jacobi matrix of the SINRs as

Jγ =







∂γ1
∂p1

· · · ∂γK
∂p1

...
. . .

...
∂γ1
∂pK

· · · ∂γK
∂pK






(A44)

and note that

Ju = Jγ ·







u′
1(γ1) · · · 0

...
. . .

...
0 · · · u′

K(γK)






. (A45)

Since the utility functions are strictly increasing in the SINRs, invertibility of Jγ implies invert-
ibility of Ju. With (3.5), the elements of Jγ are

∂γk
∂pk

=
|hkk|2

∑

i 6=k|hki|2pi + σ2
and

∂γk
∂pj

= − |hkj|2|hkk|2pk
(

∑

i 6=k|hki|2pi + σ2
)2 ∀j 6= k. (A46)
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We can now express the SINR Jacobi matrix as

Jγ = W · T (A47)

where

W =











∑

i 6=1|h1i|2pi + σ2 −|h21|2p2 · · · −|hK1|2pK
−|h12|2p1

∑

i 6=2|h2i|2pi + σ2 · · · −|hK2|2pK
...

...
. . .

...
−|h1K |2p1 −|h2K |2p2 · · ·

∑

i 6=K |hKi|2pi + σ2











(A48)

and T is an invertible diagonal matrix of which the kth element is |hkk|2
/

(

∑

i 6=k|hki|2pi + σ2
)2

.

Next, we define Pε as an invertible diagonal matrix of which the kth element is pk + ε, where
ε > 0. If we denote the element in row j and column k of Pε ·W as [PεW ]j,k, we have

[PεW ]j,k =

{
(

∑

i 6=k|hki|2pi + σ2
)

· (pk + ε) for j = k

−|hkj|2pk(pj + ε) for j 6= k.
(A49)

The sum of the elements in the kth column therefore is

K
∑

j=1

[PεW ]j,k =
∑

j 6=k

|hkj|2(pj − pk)ε+ σ2ε+ σ2pk. (A50)

If pk = 0, this sum is positive regardless of ε; if pk > 0, it is positive for sufficiently small ε.
Therefore, for sufficiently small ε, PεW has positive column sums and is an M-matrix [45], which
is guaranteed to be non-singular. It follows that W is non-singular, Jγ is non-singular, and finally
that Ju is non-singular. With (A43) we have Jf = J−1

u and all KKT conditions of the problems
(3.47) and (A31) are equivalent.

A5. Derivation of the MISO Zero-Forcing Beamformer

In Section 4.3.2, the optimization problem

vZF
k = argmax

vk

|hT
kkvk|2 s. t.: hT

jkvk = 0 for all users j 6= k in the active set

and ‖vk‖22 ≤ 1
(A51)

must be solved. With the matrix Hk that contains the stacked row vectors hT
jk for all users j 6= k

that are in the active set, the optimization problem can be written as

vZF
k = argmax

vk

|hT
kkvk|2 s. t.: Hkvk = 0 and ‖vk‖22 ≤ 1. (A52)

Also, the projection matrix Πk is defined as

Πk = I−H+
k Hk. (A53)
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Due to (A53), Hkvk = 0 implies that Πkvk = vk. Therefore, our optimization problem is equiv-
alent to the optimization problem

vZF
k = argmax

vk

|hT
kkΠkvk|2 s. t.: Hkvk = 0 and ‖vk‖22 ≤ 1 (A54)

in which vk was replaced by Πkvk in the objective function, which is identical as long as the first
constraint holds.

Next, we drop the first constraint and solve the optimization problem

v′
k = argmax

vk

|hT
kkΠkvk|2 s. t.: ‖vk‖22 ≤ 1. (A55)

As for the selfish beamformer vMF
k , cf. (4.17), it is straightforward to show that

v′
k =

1

‖Πkh
∗
kk‖2

·Πkh
∗
kk. (A56)

Since, with the properties of the pseudo-inverse,

Hkv
′
k =

1

‖Πkh
∗
kk‖2

(

Hk −HkH
+
k Hk

)

v′
k = 0, (A57)

v′
k fulfills the constraint that we dropped and therefore also is the solution to problem (A54).

Consequently,

vZF
k =

1

‖Πkh
∗
kk‖2

·Πkh
∗
kk. (A58)

A6. Derivation of the MISO Pricing Update

With the definitions (4.93)–(4.95), the KKT conditions of problem (4.91) are

A(ρ)vk = µvk (A59)

µ ≥ 0, ‖vk‖22 ≤ 1, and µ(1− ‖vk‖22) = 0.
As in Section 4.4.5, we denote the highest eigenvalue of A as λ and the corresponding unit-

norm eigenvector as w. If λ has multiplicity higher than one, we define w to be the eigenvector
“closest” to h∗

kk, i. e., the eigenvector that maximizes |hT
kkw|2. Both λ and w are also functions of

ρ and therefore of ζ .
We can distinguish between three different possibilities for fulfilling the KKT conditions:

1) vk = 0: the null vector always fulfills the KKT conditions, but is not necessarily a local
maximum.

2) µ = 0 and vk 6= 0: if the solution is in the null space of the matrix A, it does not necessarily
have full power, i. e., ‖vk‖22 ≤ 1. Clearly, such a solution can only be superior to the null
solution if ζ = |hT

kkvk|2 > 0.

3) µ > 0: since A can have at most one positive eigenvalue due to its structure, and since µ must
be a positive eigenvalue of A and vk must have unit power, in this case µ = λ and vk = w.
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In the following we examine the behavior of λ and w when ρ is changed:

Aw = λw (A60)

∂A

∂ρ
w +A

∂w

∂ρ
=

∂λ

∂ρ
w + λ

∂w

∂ρ
(A61)

wH∂A

∂ρ
w +wHA

∂w

∂ρ
=

∂λ

∂ρ
+wHλ

∂w

∂ρ
(A62)

∂λ

∂ρ
= |hT

kkw|2. (A63)

The second line is obtained by taking the derivative of both sides and applying the product rule;
next, both sides are multiplied from the left with wH; the fourth line results from inserting wHA =
wHλ and ∂A/∂ρ = h∗

kkh
T
kk.

Taking the derivative of (A61) w. r. t. ρ and applying the product rule yields

∂2A

(∂ρ)2
w + 2

∂A

∂ρ

∂w

∂ρ
+A

∂2w

(∂ρ)2
=

∂2λ

(∂ρ)2
w + 2

∂λ

∂ρ

∂w

∂ρ
+ λ

∂2w

(∂ρ)2
(A64)

2wH∂A

∂ρ

∂w

∂ρ
=

∂2λ

(∂ρ)2
+ 2wH∂λ

∂ρ

∂w

∂ρ
(A65)

where the second line follows from multiplying from the left with wH, and inserting wHA = wHλ
and ∂2A/(∂ρ)2 = 0. By multiplying (A61) from the left with (∂w/∂ρ)H, we obtain

(

∂w

∂ρ

)H(
∂A

∂ρ
− ∂λ

∂ρ

)

w =

(

∂w

∂ρ

)H

(λI−A)
∂w

∂ρ
. (A66)

From (A65) and (A66) it follows that

∂2λ

(∂ρ)2
= 2

(

∂w

∂ρ

)H

(λI−A)
∂w

∂ρ
≥ 0 (A67)

since λI−A is positive semi-definite. Consequently

∂|hT
kkw|2
∂ρ

≥ 0. (A68)

We observe that
• an increase in ζ implies an increase in γk, which implies a decrease in u′

k(γk) (due to u′′
k(γk) <

0), which implies a decrease in ρ, i. e., ρ(ζ) is strictly decreasing in ζ ;
• due to (A63), λ is non-decreasing in ρ and therefore non-increasing in ζ ; furthermore, if λ > 0,

clearly |hT
kkw|2 > 0, and λ is strictly decreasing in ζ ;

• and, due to (A68), |hT
kkw|2 is non-decreasing in ρ and therefore non-increasing in ζ .

With these monotonicity properties we are able to more closely characterize the solutions to the
KKT conditions. For this purpose, we distinguish between the cases where zero-forcing is possible
and where zero-forcing is not possible, as the behavior of the eigenvalue λ will turn out to be
fundamentally different between these two cases.
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A6.1 Zero-Forcing is Possible

The non-trivial zero-forcing solution vZF
k fulfills |hT

kkv
ZF
k |2 > 0 and π

(ℓ)
j hT

jkv
ZF
k = 0 for all j 6= k.

Clearly such a vector exists if and only if hkk is linearly independent of the space spanned by
all π(ℓ)

j hjk for j 6= k. In this case the matrix A has exactly one positive eigenvalue regardless of
ρ. Furthermore, Av = 0 implies that hT

kkv = 0. Therefore, the KKT conditions can be fulfilled
either by the null vector (and potentially other equivalent beamformers in the null space of A) or
by a unit-norm vector vk that is the eigenvector of the matrix A(ρ(|hT

kkvk|2)) corresponding to the
unique positive eigenvalue. In the latter case, vk = w and ζ = |hT

kkvk|2 = |hT
kkw|2.

Since |hT
kkw|2 is non-increasing in ζ , and both |hT

kkw|2 and ζ are in the interval [0, ‖hkk‖22], it
follows that there is exactly one value ζ1 for which |hT

kkw|2 = ζ1; it also follows that |hT
kkw|2 > ζ

if ζ < ζ1, and that |hT
kkw|2 < ζ if ζ > ζ1. These properties of |hT

kkw|2 are illustrated in Figure A1.
Consequently, ζ1 can be determined with arbitrary precision by means of bisection: starting with
the lower bound zero and the upper bound ‖hkk‖22, we repeatedly check whether the arithmetic
mean of the lower and upper bound is smaller or larger than |hT

kkw|2 and update either the lower
or upper bound accordingly.

It is clear that the zero vector cannot maximize the objective, as the zero-forcing solution is
strictly superior to the zero vector. Therefore, the unique non-zero solution to the KKT conditions
determined with the line search is the only candidate for the maximizer of the pricing objective
and thus the solution to (4.91).

A6.2 Zero-Forcing is Not Possible

If h∗
kk lies in the span of the vectors π

(ℓ)
j h∗

jk with j 6= k, i. e., in the span of the columns of the
matrix B, there exists a value ρ2 for which the positive outer product ρ2h∗

kkh
T
kk exactly cancels out

one negative eigenvalue resulting from −BBH. To illustrate this, we use the reduced singular value
decomposition B = UΣV H with Σ ∈ RT×T , where T is the rank of B, as well as UHU = I and
V HV = I. Since h∗

kk lies in the span of B, there exists a vector a ∈ CT for which h∗
kk = UΣa

and we can express the matrix A as

A = ρh∗
kkh

T
kk −BBH = UΣ(ρaaH − I)ΣUH. (A69)

With an arbitrary unitary matrix W of which the first column is collinear to a, i. e., with W Ha =
‖a‖2e1, we can write

A = UΣW (ρ‖a‖22e1e
T
1 − I)W HΣUH. (A70)

It can now be seen that for ρ = ρ2 = 1/‖a‖22 the first element of the diagonal matrix ρ‖a‖22e1e
T
1 −I

is zero and the rank of A is T − 1, whereas for ρ 6= ρ2 the rank of A is T . In the special case of
ρ = ρ2 the highest eigenvalue is λ = 0 and the eigenvector w = αUΣ−1a lies in the null space
of A, but not in the null space of hT

kk. Consequently |hT
kkw|2 > 0.

As noted in the discussion of the KKT conditions at the beginning of this appendix, the case
ρ = ρ2 may yield a solution to the KKT conditions with µ = 0 that is strictly superior to the zero
vector. A candidate beamformer vk for such a solution must fulfill ρ(|hT

kkvk|2) = ρ2 and at the
same time ‖vk‖22 ≤ 1 and vk ‖ w. Beamformers that are in the null space of A, but not parallel to
w, do not have to be considered, as they contain a component in the null space of UH, which can
be considered “wasted” power with no effect on the objective function.

With the power gain ζ2 that fulfills ρ(ζ2) = ρ2, existence of such a solution is equivalent to

0 ≤ ζ2 ≤ |hT
kkw|2 =

(

ρ22 · ‖Σ−2UHh∗
kk‖22

)−1
: the vector vk fulfilling the KKT conditions can be
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0
0

0
0

ζ

ζ

ζ1

ζ1

ζ1

λ

‖hkk‖22

‖hkk‖22

‖hkk‖22

|h
T k
k
w
|2

Figure A1: Behavior of |hT
kkw|2 and λ over ζ if zero-forcing is possible. The circle marks the value of ζ for

which the KKT conditions of (4.91) are fulfilled.

found by weighting w with the scalar factor
√

ζ2/|hT
kkw|2 ∈ [0, 1]. Also, ζ2 ≤ |hT

kkw|2 implies
ζ2 ≤ ζ1, where ζ1 is the unique power gain for which the KKT conditions can be fulfilled with
µ > 0 (cf. Figure A1); and since λ is non-increasing in ζ and λ = 0 for ζ = ζ2, the highest
eigenvalue for ζ1 cannot be positive. Therefore, vk is the only non-trivial solution to the KKT
conditions.

If ζ2 < 0, on the other hand, ρ2 is not achievable for any non-negative power gain. Also, A in
this case is negative semi-definite regardless of ζ and Av = 0 implies that hT

kkv = 0. Here, the
null vector (or any equivalent beamformer in the null space of UH) is the only solution to the KKT
conditions.

If ζ2 > |hT
kkw|2, finally, it is not possible to achieve ρ2 without violating the power constraint.

Due to the previously discussed monotonicity properties, however, it is clear that ζ1 < ζ2 and that
for ζ1 the highest eigenvalue of A is positive. The value of ζ1 can be found via bisection starting
with the lower bound zero and the upper bound min{ζ2, ‖hkk‖22} and the optimal update is the
unit-norm eigenvector w evaluated at ζ1.

With these observations, we obtain the update procedure described in Section 4.4.5. The be-
havior of λ over ζ for the three different cases is illustrated in Figure A2.
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0

0

ζ
ζ1ζ2

λ

‖hkk‖22

(a) 0 ≤ ζ2 ≤ ζ1: µ = 0 and power control

0

0

ζ
ζ1

λ

‖hkk‖22

(b) ζ2 < 0: µ = 0 and zero power

0

0

ζ
ζ1 ζ2

λ

‖hkk‖22

(c) ζ2 > ζ1: µ = λ > 0 and full power

Figure A2: Three possibilities when zero-forcing is not possible. The circle marks the value of ζ for which
the KKT conditions of (4.91) are fulfilled.
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