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Chapter 1

Introduction

In finance, the capital asset pricing model (CAPM) is frequently used to describe the
relationship between the returns of a well-diversified portfolio and the market return. The
CAPM may be viewed as multivariate normal regression model with a common regression
variable — the market return.

The aim of this thesis is to provide an MCMC procedure for the joint estimation of
regression parameters, residual variance and residual correlation in such a model envi-
ronment. An important part of this is to model the residual correlation with a Gaussian
pair-copula construction instead of a correlation or precision matrix. This approach allows
for flexibility and model reduction.

The thesis is organized as follows: In Chapter 2, we recall some basics that we later need in
the thesis, like Bayesian inference, Markov Chain Monte Carlo methods and pair-copula
constructions.

In Chapter 3, we define the model for two dimensions and develop a fast running algorithm
that estimates the model parameters. Finally, we verify the well behavior of the algorithm
by performing a small sample analysis which comprises of a wide number of scenarios.

In Chapter 4, we consider the general case of an arbitrary dimension. Again, our model is
defined and an MCMC algorithm is developed. For the estimation of dependence structure
covered by a correlation matrix, we will propose two different ways of performing the
Metropolis-Hastings step.

In Chapter 5, we look at a data set of U.S. industrial returns covering a period of over
80 years. After an extensive data analysis, we choose 3 suitable structures and apply
our previously derived MCMC algorithm on the data. The results of the MCMC are
analyzed, compared and searched for possible model reduction. The chapter concludes
with a validation of the results.

In Chapter 6, we summarize the results of the thesis and propose sources for possible
extensions.



Chapter 2

Preliminaries

2.1 Moments and their estimation

In this section we briefly recall the definitions and meanings of moments and how they
can be estimated if one has a sample of i.i.d. random variables.

Definition Let X, X1, ... X, bei.i.d. with distribution function F'. Then the kth moment
of X is defined by py, := E(X*) = i X*dF if the integral exists, otherwise the kth moment

n
does not exist. If it exists, the kth moment can be estimated by my := £ 3 XF.
i=1

The first moment is called the expectation or mean of X, its estimator m; is called the
mean of X1, ..., X, and also denoted by X. If u; exists for all £ € N, then the distribution
of X is uniquely determined by the set of all moments {uy, k& € N}.

The value of the moments ;. with large k£ € N often depends strongly on the expectation
E(X). Thus, one often prefers another measure, the centralized moment, which is defined
as follows:

Definition Let X, Xi,...X,, be i.i.d. with distribution function F. If the kth moment
exists, the kth centralized moment of X is defined by

i = B(X = )" = [ (X = B(X))aF

If it exists, the kth centralized moment can be estimated by my, := % S(X, — X))k,
i=1

The first centralized moment is always 0, the second centralized moment is called variance
and its root the standard deviation. Other important moment measures are the skewness
and the kurtosis. Definitions of mean, variance, skewness and kurtosis and corresponding
estimators are provided in table 2.1.
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| | Notation | Definition | Estimator |
Mean L E(X) % X,
i=1
Variance R S e
. Zn: Xi—X)*
Skewness v E((X—JE;(X)P) =
(.gl(Xi*X)Q)2
% i (X;—X)4
(Excess) Kurtosis || x %}WL) _3| Lz _3
(gl(Xi—X)Q)2

Table 2.1: Definition of mean, variance, skewness and kurtosis as well as their estimators

The mean of a distribution tells us what we may expect as typical value for X, or,
following the law of large numbers, what the mean of a large sample will approximately
be. The variance measures the typical quadratic distance between a single value drawn
from the distribution of X and the mean. To get information about the lopsidedness of
the distribution, one can look at the skewness. A symmetric distribution like the normal
distribution has a skewness of 0, whereas a negative skewness shows that the distribution
is skewed to the left, a positive skewness shows the opposite. At last, the kurtosis is a mea-
sure for the probability of extreme events. While the normal distribution has a kurtosis of
zero, a distribution with “fatter tails” has a positive kurtosis, whereas a negative kurtosis
shows that extreme events are even less likely as in the normal case. From its definition
it follows that the kurtosis is always greater than —3, except for point distributions, for
which the kurtosis is equal to —3. In the literature one also finds a definition of kurtosis
where the “—3”-Term is omitted; this is why our definition is often referred to as “excess
kurtosis”.

2.2 Normal distribution

In this section we recall the definition and some basic properties of the normal distribution,
which we will need later in this thesis. They can be found for instance in Bickel and
Doksum (2001).

Definition Multivariate normal distribution. Let pu € RY and let ¥ € R%*? be a positive
definite matrix. A random vector X has a d dimensional normal distribution with mean
vector p and covariance matrix X, Notation X ~ Ny(u, X), if its density can be written
as

1 1 P
o) = s {e-ws @]

where © = (21,...,24)".
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Example Bivariate normal dzstmbutzon Let p € R? o € (0,00)% and p € (—1,1).

The density of X ~ NQ( ( ) ( ot 00102)
M2 pPO102

(1,22) 1
p(x1,29) = exp
b 2mo1094/1 — p?

2
D)

o= )iz m))} 1)

€
)
( ( 2 — o)

Remark Let X ~ Ny(u,Y). Let b € RF and A € R¥*4,
Then it holds

Z = AX +b~ Ny (Ap+ b, AT A'). (2.2)

Theorem Let (X' Y') ~ Ny(p,¥) with d = d, + d,, X € R*, Y € R%, where the
mean p and the covariance matrix Y are suitably partitioned as

n= (ux) and ¥ = (Efm Emy)
Ky Yy Dy
with Ky € Rdza Hy < Rdya Z:m € Rdedz7 Zyy S R&*% and ny S R xdy

Then the random vectors X and Y follow normal distributions, where X ~ Ny, (., X2z
and Y ~ Ndy(uy, Y,y)- In addition, also the conditional distribution of X given ¥ =y
is multivariate normal, more precisely X|Y =y ~ Ny, (1,,, Xepy) With

IJ’x|y = y'x + El‘yzy_yl(y - I“l’y) and Ex\y = Ezz - ExyE;yIE;y, (23)

The conditional covariance matrix ¥, is the Schur complement of X, in the joint co-
variance matrix .

If we compare the marginal distribution of X and the distribution of X conditional on
Y =y, we see that the unconditional mean g, is “corrected” by a term that depends on
the deviation of the known value y from its mean and on the covariances of X and Y.
Also the covariance matrix of X changes when the value of Y is known, but this change
is independent of the realized value y.

2.3 Other distributions and their properties

Besides the normal distribution, we will need some other distributions later in this thesis.
Especially, we need distributions for random variables that are constrained to positive
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values or values inside a compact interval. One of the simplest is the uniform distribution,
which is used for example for non-informative prior distributions on a bounded interval.

Definition Uniform distribution. A random variable X has a uniform distribution on the
interval I = (i1,12) (1,12 € R, i1 < i), Notation X ~ Uniform(iy, i), if its density can
be written as

defined over the support (i1, 72).

Remark Properties of the uniform distribution. Let X ~ Uniform(iy,is).

Then there exists no unique mode for X (since the density is the same on the whole
(i2—i1)°

interval (i1, 12)), the expectation is E(X) = 22 and the variance is Var(X) = 25

Another important distribution is the Gamma distribution for positive random variables,
as well as its inverse, the so called Inverse Gamma distribution. There exist many dif-
ferent parametrizations for those distributions in the literature. In our thesis we choose
parametrizations which make it very easy to apply inverse transformations.

Definition Gamma distribution. A random variable X has a Gamma distribution with
parameters a > 0 and b > 0, Notation X ~ Gamma(a,b), if its density can be written as

plz) = %x exp{—bz}

defined over the support (0, 00), where I'(z) = [ t*~* exp{—t}dt is the Gamma function.
0

Remark Properties of the Gamma Distribution. Let X ~ Gamma(a,b).

Then the mode of X is 271 if a > 1, the expectation is F(X) = ¢ and the variance is
Var(X) = .

Definition Inverse Gamma distribution. A random variable X has an Inverse Gamma
distribution with parameters a > 0 and b > 0, Notation X ~ InverseGamma(a,b), if its

density can be written as
b® b
p(r) = o~ exp {——}
x

['(a)

defined over the support (0, 00).

Remark Properties of the Inverse Gamma distribution. Let X ~ InverseGamma(a,b).

Then the mode of X is %, the expectation is E(X) = -2 if a > 1, and the variance is

Var(X) L—% if a > 2.

~ @1

As mentioned before, the relationship between the Gamma distribution and its inverse is
very simple.
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Corollary Let X ~ Gamma(a,b). Then X! ~ I'nverseGamma(a,b).

Besides the uniform distribution, there is another frequently used distribution for contin-
uous random variables defined on bounded intervals, the Beta distribution. Usually one
finds this distribution defined on the support (0,1), as follows:

Definition Beta distribution. A random variable X has a Beta distribution with param-
eters a > 0 and b > 0, Notation X ~ Beta(a,b), if its density can be written as

1
pz) = Ba.0)

l,afl (1 o l,)bfl

defined over the support (0,1), where B(a,b) is the so-called Beta function defined by
Bla,b) := D(a)L'(b)
19) "7 Tatb)
Remark Properties of the Beta distribution. Let X ~ Beta(a,b).
Then the mode of X is -2 if @ > 1 and b > 1, its expectation is E(X) = -% and the

a+b—2 T a+b
) if a > 2.

variance is Var(X) = W

If a=b=1, then X ~ Uniform(0,1).

There is also an important connection between the Gamma distribution and the Beta
distribution:

Remark Let X and Y be independent random variables with X ~ Gamma(ay,b) and
Y ~ Gamma(az,b). Then Z = XLJFY ~ Beta(ay, as).

Now one can derive the Beta distribution on an arbitrary interval (iy,i5) with i; < is € R
and iy < ig by performing a linear transformation. If X ~ Beta(a,b), we can define
Y := (i — 11)X 4 4; and know from the univariate density transformation theorem that
the density of Y is obtained by

1 y—1
py(y) == —Px X . )
12— 92— 1
if px(-) denotes the density of X. We will need later the Beta distribution on (—1,1), so
setting (i1,12) := (—1,1) leads to

ro =35y () (5)

For a = b, it holds
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2.4 Bayesian inference

Assume you have data resulting from a statistical model (Q, F,{Pg|@ € ©}) with un-
known parameter (vector) @ located in a parameter space ©. In the classical approach,
one interprets @ as fixed, but unknown quantity. The drawback of this point of view is
that probabilistic interpretations of all functions ¢(@) are not possible, so one is limited to
interpreting functions of the data like estimators, confidence intervals etc. for fixed values
of 6.

An alternative approach is to treat the parameter 8 as a random variable, whose assumed
distribution is called the prior distribution. This distribution reflects all information avail-
able about @ before observed data is analyzed. If one has a sample @ = (z1,...,x,)" of
i.i.d. random variables Xj,..., X,, with distribution function F'(-|@) for each 8 € ©, the
additional knowledge about 6 from « is included by calculating the distribution of 0
conditional on @, which is called the posterior distribution.

To obtain the density p(@|x) of the posterior distribution, one can apply the well-known
theorem of Bayes, if the prior density p(@) and the likelihood f(x|@) are available:

Theorem Bayes theorem

plofe) = =080

where f(x) = [ f(x|0)p(0) d6.

Due to the frequent application of this theorem, the presented approach is called Bayesian
inference. Since f(x) does not depend on 8, we usually do not have to calculate it. This
means that all available information about 6 is restricted to the prior density and the
likelihood, and that the posterior density may be determined by

p(Blz) o« f(x]0)p(6) (2.4)

up to a proportional constant which guarantees that the integral of the posterior density
p(Olx) is 1.

2.5 Markov Chain Monte Carlo (MCMC) methods

Markov Chain Monte Carlo (MCMC) methods can be used when the distribution of a
random variable is hard to calculate. As basis of our presentation of the topic we use the
good introductions provided by Gilks et al. (1996) and Gschéfil (2006).

Our motivation into the topic is to consider the posterior distribution. In Bayesgian in-
ference, one is often interested e. g. in the posterior mean, mode, variance, quantiles or
other characteristics of the posterior distribution.
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More generally, if one has data € R™ and a model with unknown parameter vector
0, one wants to know the expected value F (¢g(0)|x) of a function g(€) that depends on
the parameter @ with respect to the posterior distribution. As we have seen before, the
posterior distribution is calculated by p(6|x) = m%, so the expression of interest
can be obtained by

) = g — 4 90)p(6)(2]6)d6
E(9(0)lz) = [ g(6)p(6le)is - 00)/ 1210

However, in many complex applications it is not possible to calculate the denomina-
tor [ f(x|0)p(6)dO analytically or in a numerically tractable way, especially for high-
dimensional 8. The idea of MCMC methods is to construct a Markov chain with a station-
ary distribution equal to the posterior distribution. With a sample {0(1), ..,0™ meN }
from this Markov chain and the use of the Law of large numbers for Markov chains, one
can approximate F (g(0)|x) by

m

E(g(0)lz) ~ —— 3 ¢(6")

m="To r=rg+1

where 0 < rq < m is the number of samples that are not used for the approximation. This
is due to the fact that in practice, the first samples are often not representative for the
stationary distribution since they usually depend strongly on the chosen initial value 8
of the chain. The set {1,...,79} is called burn-in period.

There are two classical approaches to construct a Markov chain with stationary dis-
tribution p(@|x). The first one is the Gibbs sampler which was introduced by Geman
and Geman (1984) and made popular for statistics by the works of Gelfand and Smith
(1990). Assume we have a d dimensional parameter vector @ = (6,,...,6;) and data
. The Gibbs sampler generates a sample from the posterior distribution p(@|x) by se-
quentially generating new values for each component 6; of 8, using all other components
0_;, = (01,...,0;_1,0,41,...,6,)" and the data . More precisely, this algorithm uses the
full conditional densities

p(0;10_5,x) (j=1,...,d)

to generate samples for each component of 8. The whole procedure is provided in Al-
gorithm 2.1. The full conditional distributions required by the Gibbs sampler may be
of similar complexity as the posterior itself. In those cases, it might be a hard task to
get samples from them, and thus the Gibbs sampler brings hardly any advantage. Here,
one can use the Metropolis-Hastings algorithm developed by Hastings (1970) in extension
of the work of Metropolis et al. (1953). This algorithm requires only knowledge of the
posterior density up to a proportional constant, as provided in relation (2.4).
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Algorithm 2.1 Gibbs sampler
1: INPUT initial values 9(0), data @, number of MCMC iterations m
2: OUTPUT sample 0W ..., 0™ of the posterior distribution

3: FOR r:=1,...,m DO
4: FOR j:=1,...,d DO

5 Drawasample 6 from p(6s)6y ..., 6], )

6: Draw a sample Hér) from p(QQ\GY)’ 9;’“_1), o (96(;—1)7 x)
7: Draw a sample 6 from p(6,4]6\"”,...,0\,, x)

8: END FOR

9: END FOR

The Metropolis-Hastings algorithm works as follows: In step r, a sample 8”"? is drawn
from a proposal distribution q(~|0(’"71)) which depends on the current chain value oY,
The new value is taken with an acceptance probability depending on the posterior density
and the proposal density, defined as

— in [ 1 p(6” " |)q(6" " [6"") (2.5)
Pace = ’ p<0(r71)‘w>q(0prop‘0(r71)) :

On the other hand, the sampled value is rejected with probability 1 — pue., such that
the chain stays at the current value. The Metropolis-Hastings sampler is summarized in
Algorithm 2.2.

Algorithm 2.2 Metropolis Hastings algorithm
1: INPUT initial values 8, data @, number of MCMC iterations m
2: OUTPUT sample 0N, ..., 0™ of the posterior distribution

3: FORr:=1,...,m DO
Draw a sample 877 from q(.|9(r*1))
Calculate acceptance probability p,e. from (2.5)

Draw a sample x from Uniform(0,1)
IF poe. < & THEN
") .— g(prop)
ELSE
10: 6" .= oY
11:  END IF
122 END FOR

The definition of the acceptance probability guarantees the convergence of the created
chain towards the posterior distribution p(@|x). Thus, a nice feature of the Metropolis-
Hastings algorithm is that the convergence holds regardless of the choice of the proposal
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distribution. However, a bad choice of the proposal may lead to a high number of rejections
and therefore to slow convergence.

As alternative to updating all components of @ at once, one can also divide 8 into
blocks and/or single components and apply sequentially Metropolis Hastings steps on
each block/component of 6. Furthermore, it is possible to apply the Gibbs sampler to
some selected components of @ and the Metropolis Hastings steps to the remaining ones.
This can be helpful in a situation when the full conditional densities are available only
for a part of the parameter vector 8. A chain created by an MCMC algorithm which uses
both Gibbs and Metropolis Hastings sampling is called a hybrid chain. We will use the
latter method for our MCMC algorithm.

2.6 Copula and measures of Dependence

2.6.1 Modeling dependence with copulas

Copulas are functions that describe the connection between the joint distribution of ran-
dom variables and their marginal distributions. The copula concept was developed by Abe
Sklar in his revolutionary work Fonctions de répartition a n dimensions et leurs marges.
This concept allows us on the one hand to describe dependence of random variables in-
dependently from their marginal distributions and on the other hand to construct joint
distributions by separately defining dependence and marginal behavior. In our introduc-
tion of copulas, we follow Nelsen (1999).

Definition A (bivariate) copula is a function C from [0, 1]* to [0, 1] with the following
properties:

(i) For every u,v € [0, 1],
C(u,0)=0=C(0,v)

(ii) For every u,v € [0, 1],
C(u,1) =uand C(1,v) = v

(iii) For every wuy,ug, vy, vy € [0,1] with u; < up and vy < vg,

C(ug,v2) — Clug,v1) — Cluy,v2) + C(uq,v1) > 0

We concentrate on the bivariate case, i. e. with copulas we always mean bivariate copulas
fulfilling the properties above. Of course, a definition for an arbitrary dimension d can
also be easily derived, but we will not need that in this thesis.

At next, we will introduce the important Sklar’s theorem, which first appeared in Sklar
(1959). It allows us to divide a bivariate distribution function into a copula and its
marginal distribution functions as well as to construct a bivariate distribution function
from a copula and two univariate distribution functions.
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Theorem (Sklar’s theorem) Let H be a joint distribution function with margins F* and
G. Then there exists a copula C' such that for all z,y € R:= R U {—o00, +00}:

H(x,y) = C(F(x), G(y)) (2.6)

If G and F' are continuous, then C' is unique; otherwise, C' is uniquely determined on the
product space of the range of F' and the range of GG. Conversely, if C' is a copula and F' and
G are distribution functions, then the function H defined by (2.6) is a joint distribution
function with margins F' and G.

Proof. See Nelsen (1999), p. 18 O

It is possible to derive a similar result for density functions instead of distribution func-
tions. For that purpose we will look at the partial derivatives of a copula, which we will
use to define a copula density and to see when such a density exists. The word “almost”
is used in the sense of the Lebesgue measure.

0C (u,v)
ou

Theorem Let C' be a copula. For any v € [0, 1], the partial derivative exists for

almost all u, and for such v and w it holds

0< %C’(u,v) <1

0C (u,v)

Similarly, for any u € [0, 1], the partial derivative =

such v and v it holds

exists for almost all v, and for

0
< — <1
0< aUC(u,v) <

Furthermore, the functions u +— 80(,5)”” and v — % are defined and nondecreasing
almost everywhere on [0, 1].
Proof. See Nelsen (1999), p. 11 O

f@CuU) and 9%C (u,v)

Theorem Let C' be a copula. I are continuous on [0, 1]* and 9C (u,v)

uOv ou
exists for all w € (0,1) when v = 0, then BCéZ’U) nd 2 g(g ) exist in (0,1)% and 2 80(; v)
920 (u,w)
Oudv *
Proof. See Seeley (1961) O

For bivariate distribution functions H(x,y), the density is equal to the twice partial

(z,y)

differentiation %. We will use the same relationship for defining the density of a

copula C.

Definition Let C' be a twice partial differentiable copula.
The function ¢ : [0,1]? — [0, 1] defined by

9?C(u,v)
Oudv

c(u,v) =
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is called the density of the copula C.

With Sklar’s theorem and by using the same notation as above, we can use arbitrary
marginal densities f(z) and g(y) to construct a joint density h(z,y) from the copula
density c¢(F(z),G(y)) and vice versa:

oy = P 0 POFW).C) _ PCF).G) OF () 0G1)
Y= oxdy Oxdy ~ OF(x)0G(y) 0r Oy
= c(F(x),G(y))f(x)g(y) (2.7)

which means that a copula density is constructed by

h(F~(u), G (v))
f(EHw) g (FH(v)

c(u,v) =

2.6.2 Measures of dependence
Before we introduce the Gauss copula, we discuss different types of correlations. Reference

for this part is Kurowicka and Cooke (2006).

Definition Product moment correlation. The product moment correlation of random
variables X, Y with finite expectations E(X), E(Y) and finite variances 0%, 0%, is
E(XY)—-EX)E(Y)

0x0y

p(X, Y) =

In this thesis, we mean by the single word “correlation” always the product moment cor-
relation. For random variables X7, ..., Xy and j,k € {1,...,d} we write pj; := p(X;, Xj).
The matrix (p;;);k=1,..q is called correlation matrix and denoted by R in most cases.

aaaa

Definition Partial correlation. Let X4, ..., X, be random variables with zero mean and
standard deviations o1 = ... = 04 = 1. Let the numbers bi2.3 _q4,...,b14:2... ¢—1 Mminimize
E ((X1 —bias,..aXo — ... — biao,.a-1Xa) )

Then the partial correlation pia;3.. 4 is defined as

-----

£12;3,....d = SgI1 (512;3 ..... d) \/512;3 ..... db21;3 ..... d
We will mainly use an equivalent definition:
det (R1,2)
Vdet (Rn) det(R_(2.)

P12;3,....d = (2-8)

where R_; 1) denotes the correlation matrix 2 reduced by the jth row and the £th column.
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The partial correlation pja.3 . 4 can be interpreted as the correlation between the orthogo-
nal projections of X; and X5 on the plane orthogonal to the space spanned by X3, ..., X,.
Yule and Kendall (1965) proposed a recursive formula to calculate partial correlations from
the correlation matrix R:

P12:3,....d—1 — P1d;3,...,d—1P2d;3,...,d—1
P12;3,....d = - - (2.9)
\/1 — P1d;3,....d-1 \/1 — P24:3,....d-1

We will need both formulas later when we derive the correlation matrix R out of a certain
set of partial correlations. The last type of correlation that we consider is the conditional
correlation.

Definition Conditional correlation. Let X4, ..., X, be random variables with finite ex-
pectations E(X1),... E(Xy) and finite variances 0%, ...0%,. The conditional correlation
of X1, Xy given X3,..., Xy

P12]3,....d = P(X1|X3> ooy Xy X2|X3> s ,Xd)
_ E(X1X5| X5, ..., Xy)
O'(X1|X3, P ,Xd) O'(X2|X3, P ,Xd)

is the (product moment) correlation computed with the conditional distribution of X;
and X, given X3,..., Xy.

By exchanging indices, one can derive arbitrary partial correlations pjx,; and conditional
correlations pjy; for j,k € {1,...,d} and I C {1,...,d} \ {j,k} from the definitions
above. For consistency, we will permanently use the notation pjr.g := pjro := pjr-

Theorem For any d-dimensional normal distribution, the partial correlation pj.; is equal
to the conditional correlation p,y; for all j,k € {1,...,d} and I € {1,...,d} \ {4, k}.

Proof. See Baba, Shibata, and Sibuya (2004) O

Since our model will be based on the multivariate normal distribution, we will later often
use partial and conditional correlations as synonyms.

2.6.3 Gauss copula and the bivariate normal distribution

Definition (Bivariate) Gauss copula. Let @5 ,(-,-) denote the cumulative distribution
function of the bivariate standard normal distribution with correlation p, let ®(-) denote
the cdf of the univariate standard normal distribution and ®~!(-) its inverse. With the
use of Sklar’s theorem, we define the Gauss (or normal) copula with parameter p € [—1, 1]
as

Clu,v]p) = s, (27 (u), 2 ' (v)) (2.10)
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The density of a Gauss copula with parameter p is defined as

1 2(,,2 2 -9
exp{—p (u” +v7) puv} (2.11)

c(u,v|p) = \/17_7 2(1 — p?)

over the support [0, 1]2.

Since the Gauss copula is derived from the normal distribution, it is no surprise that the
density of an arbitrary bivariate normal distribution can be constructed by the product of
a Gauss copula density and two univariate normal densities and vice versa. This is shown
by the following theorem.

Theorem Let (-, -|p) denote the density of a Gauss copula, ®, ,2(-) the cdf of a univariate
normal distribution with mean p and variance o2 and ¢, ,2(+) its density function.
Let r= (M17M2>/ S RQ? 02 = (O'%,O'%)/ S (07 OO>2 and pe (_17 1)

Then the following statements are equivalent:

2
o (X1, Xo) ~ No(p, %) with ¥ := ( o1 PUle)

2
PO102 gy

o Xi ~N(u1,0%), Xo ~ N(us,03) with joint density
frm2) = ¢ (@ 03(00), Oy o(@2)[0) Quor(@)ep (@) (212)

Proof. We use the notation ®(-), ®7!(-), () for the cumulative distribution function,
its inverse and the density function of a univariate standard normal distribution and we
write @y ,(+, ), @2,(-, -) for the cumulative distribution function and density function of a
bivariate standard normal distribution with correlation p.

We see that
c <¢>W,g (1), Dy, 02 (22)

oC
200, o <¢)”1’U% (1'1), @F‘?ﬂ% (x2)
H1,07 H2,05
")

0) Pus 2 (01 Py 3 ()

- (7<I> p) 90#1,0% ("L‘l)(pug,ag (1'2)

oC
B 01107 <®“1’U% (1'1), @MQ,JE (:E2)

where we applied in the last step the chain rule for differentiation.

Since @, 52 (x) = ®(*>F), the expression above is equal to
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oC r1 — 1 Ty — [
0] b | ——
89018:62 ( ( o1 > ’ < g9 ) ‘p>
(2100 O 1 1 — p1 -1 T2 — M2
= ) d b —— d ¢ —
010 2’p( ( ( o1 >>7 ( ( 02 >>>
_ 0 o T1 — H1 T2 — [42
021012 Zp o1 o9

_ (961—#1 $2—M2> 11
= ¥2,p ) —

o1 o9 01 09
_ 1 exp 1 ($1—M1>2+(902—#2)2_2/)((361—#1) (962—#2))
27/1 — p? 2(1 - p?) o1 op) o1 o
LS
g1 09
which is equal to the density of Ny (p, o?) given in (2.1) O

2.7 Pair-copula constructions and vines

2.7.1 Modeling dependence with bivariate copulas

Bivariate copulas can be used to express or construct a multivariate distribution by spec-
ifying the dependence and conditional dependence of selected pairs of random variables
and all marginal distribution functions. The idea was developed by Bedford and Cooke
(2002) based on the work of Joe (1996). Our presentation of the concept follows Aas et al.
(2009).

Consider a vector X = (X1,...,X,) of random variables with a joint density function
f(z1,...,24). Using conditional densities, we can factorize the joint density as
(1, xa) = fa(xa) - f(wa-i|za) - f(xa—2|a—1,2a) - f(@1]22s ... 2a) (2.13)

and this decomposition is unique up to a re-labeling of the variables. We now want to
use this decomposition to express the joint density as product of copula densities and the
marginal densities. For the bivariate case, we already know from (2.7) that

f(x1,m2) = cra(Fi(21), Fa(x2)) fi(21) fo(2) (2.14)

where c15 is the appropriate pair-copula density for the pair of transformed variables
Fi(z1) and Fy(z3). For a conditional density f(z1|z2), it follows that

[z, 22)
fa(2)

We can also apply the representation (2.15) when we are conditioning on further variables.

f(xi]z2) = = c1a(Fi(21), Fa(z2)) f1 (1) (2.15)
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Thus, for three random variables X7, X5 and X3 we see that

f(9€17332|333)

f(xalz3)

for the appropriate pair-copula density c19/3, applied to the transformed variables F'(z1|z3)
and F'(zo|x3). We can further decompose f(z1|x3) in the way of (2.15), which leads to

far|xg, x3) = = C12|3(F(951\953)7 F(xo]x3)) f(21|23)

f($1|~’132, 953) = 012\3(F(9€1|333), F($2\9€3))013(F1(951)7 F3($3))f1(1131)

So with the decomposition (2.13), we can factorize the joint density of X, X, and X3 in
the form

f(@1, @2, 23) = f3(w3) f(w2]x3) f (21|72, 23)
= crop(F(z1|z3), F(22|3))c1s(Fi(21), F3(w3))cos(Fa(z2), F3(73))
- Ji(@1) fa (o) f3(3)

where we used f(za]z3) = cos(Fo(x2), F3(x3)) fa(z2). One can use similar decompositions
to get other pair-copula constructions like

f(x1, 29, 23) = cizp(F(w1]22), F(z3]72))c12(Fi(21), Fa(m2))cos(Fa(72), F3(73))
'f1($1)f2(£132)f3(9€3)

where the copula density c;3 is different from the density cjg3 used in the previous
construction.

For the general case of random variables X1, ..., X4, one can obviously obtain many differ-
ent pair-copula constructions for the joint density f(x1,...,x4) by using the factorization
(2.13) and applying the formula

f(@lv) = cov, (F(a]v;), F(vjlv_;)) f(x]v;)
where v is a vector of dimension k¥ < d, j € {1,...,k} and v_; denotes the vector v

reduced by the component v;. To calculate the marginal conditional distribution functions
F(x|v) involved in the pair-copula construction, one uses the relationship

Csw_,; (F(z|v_;), F(v;lv_5))
IF (vj|v-;)

F(z|v) =
proved by Joe (1996), where Cy, |»_, is a copula. So for univariate v, we get

0Cs, (F(z), F(v))

Flet) = *C

= W(F(z), F(v), 0,0) (2.16)
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where 0,, are the parameters of the copula C,,. We use the notation of the A-function
later when we calculate the likelihood of a certain pair-copula construction.

The h-function depends on the type of the associated copula. For the Gauss copula, the
h-function can be easily derived: Recall that the Gauss copula is defined by

C(ur,ualp) = Pop (7" (wr), D7 (1))

For random variables (X, V)" ~ N (0, (; f)) , the conditional distribution of X given

V =wvis N(pv,1 — p?), so the h-function is given by

o (0 )

1—p?

2.7.2 Vines

The number of possible pair-copula constructions for a multivariate distribution increases
significantly with the dimension. For example, there are 240 possible decompositions for
a 5 dimensional distribution. Bedford and Cooke (2002) have developed a structure that
helps to organize them, the regular vine. In this thesis, we concentrate on an interesting
special case, the D-vine, which was introduced by Kurowicka and Cooke (2004). Essen-
tially, we follow again the presentation in Aas et al. (2009).

A wvine V on d variables consists of d — 1 nested trees T7,...,T,;_1 that are specified as
follows: For each j € {1,...,d—1}, tree T} consists of d—j+1 nodes (and thus d—j edges),
and each edge of tree T; becomes a node in tree T 1. A regular vine V is a vine where
two nodes in tree T} may be joined by an edge only if they share a common node in tree
T;. The complete set of edges of V is called constraint set and denoted by CV. Each of the
n(n—1)

——5— edges of a regular vine corresponds to a bivariate copula density in a pair-copula

construction. Adding the marginal densities, we get the complete decomposition.

A D-vine is a regular vine where each node is connected to at most 2 other nodes. Figure
2.1 shows as example a D-vine on 4 variables, consisting of 3 trees and 6 edges. We can
denote the edges of each vine by (jk|j+ 1,...,k — 1), where 1 < j < k < d. The edge
(jklj+1,...,k — 1) € CV corresponds to a copula density Cjk|j+1,..k—1 1 & pair-copula
construction.

The corresponding pair-copula density of the D-vine may be written as

f((L‘l, e ,xd)

d d—1 d—i
= H fr(wr) H H Cjjtilj+1,ji—1 (F(@jlzjer, - mip1), F(zjalzjin, o 2540-1))
P =1 j=1

(2.17)
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Figure 2.1: Hlustration of a D-vine on 4 variables, consisting of trees T},7T5,T3. Each of
the 6 edges (jk|j+ 1,...,k — 1) corresponds to a bivariate copula density

To calculate the conditional distribution functions occurring in the likelihood (2.17) in
an efficient way, we iteratively use the relationships denoted in equation (2.16) and the
corresponding h-functions. To see how this works, we look at three random variables
X1, X2, X3 and calculate the conditional distribution function f(z1|xe,z3). To simplify
the demonstration, we omit the copula parameters in the h-functions.

2.16) OC132(F(21]2), F'(w3|75))
OF (z3|x2)

= h(F(21]x2), F(xs]x2))

_ (3012(F1(171)>F2($2)) 9023(F2($2)>F3($3)))
OFy(12) ’ OFy(12)

= h(h(Fi(21), Fa(22)), h(F3(x3), F2(72)))

= h(h(uy,us), h(us, us))

f($1|!7€2>$3)

where u; := Fj(x;) for j = 1,2,3. In the same way, we get all other values of conditional
distribution functions in the D-vine likelihood, using only the h-functions, the copula
parameters and uy := Fy(21),...,uq := Fy(x4). Algorithm 2.3 provides the calculation of
the log-likelihood for uniform marginal distributions. To simplify the description, we use
the notation

L(z,v|0) := log(c(z,v|0))

where 6 is the parameter of the copula density c. Since uy, ..., uq follow a Uniform(0,1)
distribution, we can calculate the copula part of the D-vine log-likelihood with Algorithm
2.3. The whole expression is then determined by adding the logarithms of the marginal
densities.



CHAPTER 2. PRELIMINARIES 19

Algorithm 2.3 Log-likelihood evaluation for a D-vine with uniformly distributed
marginals
1: INPUT Data uy,...,uq € (0,1), copula parameters {0 k11, k1,1 < j <k < d}

2: OUTPUT Log-likelihood Ly,

Lvine::0
FOR j:=1,...,d—1DO

Vo,j = Uj
END FOR
FOR j:=1,...,d—1 DO

Lyine := Lyine + L(UO,j7 UO,j+1|0j,j+1)
END FOR
10: v1,1 := h(vo1, V0,2, bh2)
11: FOR j:=1,...,d—3 DO
12: vy = h(vojy2, V041, 0541,512)
130 V19541 = M(Vo,j41, V0512, Oj41,5+2)
14: END FOR
15: v1,2q—4 = h(vo,4, Vo,a-1,0d-1.d)
16: FOR j:=2,...,d—1 DO
172 FOR Ek:=1...,d—1DO
18: Lyine = Luine + L(Vj—1,26—1, Vj—1,2k| Ok ot j 1, Jo+j—1)
19:  END FOR
20 IF j=d—1THEN
21: STOP
22:. END IF
23: w1 = h(vj_11,vj-12, 011442, ;)
24: IF d >4 THEN
25: FOR k:=1,...,d—j—2DO

26: U)ok i= M(Vj 1 2542, Vj—1,254 1 Okt ot j 11 k42,1 h45)
27: Vjok1 1= P(Vj—1,26415 Vj—1,2k+25 Okt 1 bt jb1|k+2,.. ht5)
28: END FOR

29:  END IF

30:  Vj24—2j-2 1= h(Ujfl,QdejaUjfl,Qdejflaedfj,d\dfjJrl ..... 1)

31: END FOR
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2.7.3 D-vines and the multivariate normal distribution

In Section 2.6.3 we showed how a bivariate normal distribution can be expressed as product
of a Gauss pair-copula density and two univariate normal densities. We see that this
corresponds to a pair-copula construction organized on a two dimensional D-vine: The
constraint set of this vine is CV = {(1,2)}, which leads to the decomposition

f(x1,29) = cra (Fi(21), Fo(72)|012) f(21) f(72)

If ¢15(, -|@12) is the density of a Gauss copula with parameter 815 = p12 and f(x1), f(22)
are univariate normal densities, we get our previously considered product (2.12), so we
know that the joint density is normal with correlation pis.

So the question arises if this relation also holds for D-vines with dimension d > 2 and if the
copula parameters p;,; with (jk|I) € CV can be interpreted as conditional correlations
as the notation suggests.

We will see that this is the case.

In the following, we use the notation j:k, which we define as j:k := 7,5 +1,...,k for
j<k,j:k:=jforj=kandj:k:=0forj > k.

Theorem Let V be a d-dimensional D-vine and for each element
(Jklj+1:k—=1), 1<j<k<d

of the D-vine let cjkj+1.-1(,|Pjklj+1:6—1) denote the density of a Gauss copula with
parameter pjg|jt1:k—1 € (—1,1). Let ®(-) denote the cdf of the standard normal distribution
and ¢(-) its density function.

Then the following statements are equivalent:
o (Xy,...,Xy)" ~N(0,R) with conditional correlations pjg|j+1:k-1
o X; ~N(0,1),...,X;~N(0,1) with joint density

f(xl)”' 7xd)
d d—1d-1
= [T eGr) TT 11 crisvserivim (Fl@jlas i), Fl@iale; o )lp)jes--1)
k=1 1=1 j=1

Proof. Czado and Min (2009) show how a multivariate joint density can be decomposed
into a D-vine density. In our case, the joint density is multivariate normal and is decom-
posed — as in the bivariate case — into the marginal normal densities and Gauss copula
densities whose correlation parameters are equal to the corresponding conditional corre-
lations. The copula parameters p; jyi;+1:41-1 € (—=1,1) are conditional correlations and
due to the normal distribution equal to the partial correlations p; jii.j+1:j+1—1, which form
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a partial correlation specification on a D-vine. Bedford and Cooke (2002) show that for
any d-dimensional regular vine V there exists a one-to-one correspondence between the
set of d-dimensional correlation matrices and the set of partial correlation specifications
for the vine V (see Bedford and Cooke (2002), Corollary 7.5). O

2.7.4 Calculating the correlation matrix from a partial correla-
tion D-vine

We have seen in Section 2.6.2 how a partial correlation may be calculated from the cor-
relation matrix R. But we are also interested in how the correlation matrix R can be
derived from partial correlations adapted to a D-vine. We developed an algorithm that
performs this calculation.

Before we provide the algorithm, we have to do some preparations. At first, we solve the
recursive formula (2.9) of Yule and Kendall (1965) for p1a3.. 4-1, such that we get

_ 2 2
P12:3,....d—1 = P1d;3,....d—1P2d;3,....d—1 T P12;3,...,d\/1 — Plas,.d-1 \/1 — P2as,..d-1
=: g(p123,...dlp1a3,..a-1, P2d3....a-1) (2.18)

At next, we need to calculate partial correlations from reordered submatrices of the cor-
relation matrix. For that purpose, we use the following notation:

For d € Nand [ <d, let (ji,...,7;) be an ordered subset of {1,...,d} and R a matrix of
dimension d x d. We write R[ji, ja, ..., ji] for a matrix M of dimension [ x [ that satisfies

My =R, Vi ke{l,. .. 0}

isJk
This means that the rows and columns of R are rearranged according to the order of
(J1,---,71). If I < d, then R[jy, ..., ;] does not contain all entries of R.

For any correlation matrix R € R%¥? and ordered subset (ji,...,5) of {1,...,d}, we
can use M := R[ji,...,j] as correlation matrix in formula (2.8) to calculate the partial
correlation

_ det (M7(1,2))
\/det (M_11)) det(M_(3,2))

Algorithm 2.4 now shows the calculation of the correlation matrix R from a vector of
partial correlations adapted to a D-vine. We describe how this algorithm works: At the
beginning, all unconditional correlations are taken from the first tree of the D-vine. So we
know all correlations of the type p;; with |j — k| < 2. In the case d = 2 we have finished,
so we assume in the following that d > 2 holds.

(2.19)

Pj1ja;js,...di

In step [, we know all correlations pj;; with |j — k| < I. We take py 1449, =: 11 from the
D-vine and calculate the partial correlation p; j404-1 as follows: At first, we determine
the partial correlation p; 149,41 := vo with formula (2.19) and M := R[[,1+1,2: ] —1].



CHAPTER 2. PRELIMINARIES 22

Algorithm 2.4 Calculation of the correlation matrix from a partial correlation D-vine
1: INPUT dimension d
2: partial correlations {pjk.j+1.k—1} adapted to a d-dimensional D-vine

3: OUTPUT correlation matrix R

4: Create empty matrix R

diag(R) :==(1,...,1)

FOR j =1, d—1DO
Rjje = Rjp1 = pign

END FOR

IF d > 2 THEN

10 FOR[:=2,...,d—1DO

11: FOR j:=1,...,d—-1DO

o

12: V1 2= Pjjtj+1i+-1
13 FOR k:=1,...,l—1 DO
14: M:=R[j+l—kj+lj+1:j+1—k—1]
15: Use M as correlation matrix and (2.19) to calculate
Vo '= Pjtl—k,j+lj+1:j+H—k—1
16: V= P gttittgtik-1 = 9 (U]t kgragvi-k-1, v2) from (2.18)
17: END FOR
18: RjJJrl = RjJrl"j =1

19: END FOR
20 END FOR
21: END IF

Although the correlation matrix R is not entirely known yet, the entries of M are deter-
mined, since M consists only of correlations pj; with [j — k| < |(1+1) — 2| < [ that have
been ascertained previous to step [.

Afterwards, we take pjj.0,—1 from the D-vine and use (2.18) to calculate

P1,1+1;2:1-1 = G (p1,1+l;2:l|ﬂll;2:l—1> ;Ol,1+l;2:l—1) = g(V1|p1z;2:l—1, V2)

If I = 2, we have p13 = p1,141,20—1 and add it to our correlation matrix. Otherwise, for [ > 2,
we redefine the auxiliary variable vy as 11 1= p114.00-1 and calculate pj_q14720-2 = 2
with (2.19) and M = R[l — 1,1+ 1,2 : | — 2]. Again, all entries of M are known, since
7=kl <|1+1) -2 <lforall ke {l—1,1+1,2:1—2}. At next, we get p1 1411212
with (2.18) by evaluating

P11+1;2:1-2 ‘= G (p1,1+l;2:171|p1,l71;2:1727 p1+l,zf1;2;172) =g (V17 P1,1—1;2:1—2, V2) .

In the same way we determine the partial correlations py 14s:2:1—3, p1,141:2:1—4, etc. until we
reach p114; = p1,141,20—0—1) and store this correlation in the correlation matrix R. Sum-
ming up, we have determined the first unconditional correlation of step [ by successively
reducing the conditioned set of the partial correlation py 14:2.-
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For each j € {2,...,d — [}, we perform similar calculations to get the unconditional
correlations p; j4; from the partial correlations p; jisj+1:j41—1. Thus, at the end of step [,
we know all correlations pj;, with |j — k| < 1. We go on with step [ + 1 until we reach step
d — 1, such that all correlations pj; with |j — k| < d — 1 are known, which means that we
have the complete correlation matrix.

2.8 Parameter estimation

2.8.1 Estimation methods

There exist many different methods to get estimates for unknown parameters of a statis-
tical model. We will use an MCMC method to get Bayesian estimates. However, to get
initial values for the algorithm, it is useful to calculate classical estimates as the mazi-
mum likelihood estimator, see for example Bickel and Doksum (2001). For the following
definitions, assume again that we have a statistical model (2, F,{Pg|0 € ©}) with un-
known parameter vector & € ® and an n-dimensional data set € = (x1,...,x,) from
independent random vectors X, ..., X, with likelihood

f(x|0) = Hfl z;|0)

Definition The mazimum likelihood estimator (MLE) for € is defined by
6 := arg max{f(x|0)}
6cO

We have seen in Section 2.7 that one can divide a multivariate distribution of dimension
d into a product of bivariate copula densities and the marginal densities. If we denote
the marginal parameters by ™) and the copula parameters by 8, and furthermore
their associated parameter spaces by @) and ©?)  the whole parameter vector is
given by @ = (8 9P’y So we get an estimator for @ by initially maximizing the

marginal likelihood which is independent of 8°”?), so we get an estimate é(mar) for (mer)
and afterwards maximizing the joint likelihood conditional on 8™ = é(mar). Details on

this method can be found in Joe and Xu (1996).

In the following, we denote the jth marginal likelihood of X; = (X;, ..., Xi4)' by fij, for
j=1,...,d.We can write the marginal parameter vector as ™) = (95’”‘”"”, . Bémar)/),

where the marginal likelihood f;; depends only on Oﬁmar for all j € {1,...,d}.

~ mm‘)/ A~ (cop)!

Definition The inference for margins (IFM) estimator is @ = (0 )’ where
~ (mar) mar .
6, = argmax {f”(xzjw( Ny vie{l,...,d}
egma'r) g(mar)
~ (cop) L cop (mar)
6" = arg max {f(x|6' )}

g(cop) ¢ @(cop)
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We will sometimes use empirical estimates for the copula parameters instead of the con-
ditional maximization of the likelihood. In those cases, we will mention this explicitly in
the text.

For Bayesian inference, we include prior information in the estimation of the parame-
ter vector. For all cases where the prior distribution is informative, it is convenient to
maximize the posterior distribution instead of the likelihood.

Definition The posterior mode estimator is defined by

6 := arg max{p(0]xz)}
6cO

We will use later an approximation for the posterior density by an MCMC algorithm to
calculate the posterior mode.

2.8.2 Quality of estimates

When an algorithm is developed to estimate parameters of a model, one is interested in
the goodness of the estimation process. The estimates of a good algorithm should be close
to the true parameter value . We introduce statistics that contain information about
the goodness of an estimator and show how they can be estimated if an i.i.d. sample
{é(l), e ,é(r), r € N} of estimates generated by the algorithm is given. Reference for this
is Section 2.6 of Kastenmeier (2008) and Venables and Ripley (2003).

Definition The bias of an estimator § for a parameter 6 with true value 6,,,. is defined
as

b(6) == E(0) — b1y

Thus, the bias measures the expected deviation of the estimator from the true parameter

value. If b(f) = 0, i. e. the expected value of the estimator is equal to the true value, we
call 0 unbiased.

To estimate the bias, we have to estimate the expectation E(é) With our i.i.d. sample
{9(1), 00 e N}, we can calculate the sample mean

which is an unbiased and consistent estimator for E(f) (see e.g. Georgii (2002), pp. 194
and 202).
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With the sample mean, we get an estimator for the bias:
Z;(é> = 9_ - etrue = 1 i é(k) - etrue
—

It is also important to look at the standard error of the estimated bias, which is equal to
the standard error of the sample mean, since 6, is constant. The variance of the sample
mean is defined by

- 1 1 ; 1 ;
Var () = Var (; Z 0(k)> == Z Var(§®) = ;Var(é’) (2.20)
k=1

r
k=1

where the penultimate equality of (2.20) results from the independence of the sample
{6W, ... 0" r € N}. For the variance Var(f), we have the unbiased and consistent
estimator (see again Georgii (2002), pp. 194 and 202)

. 1 o /. N\ 2

2 k

0) = ) .

$°(0) = — > (2.21)
k=1

which is called sample variance. So using (2.20) and (2.21), we get as estimator for the

variance of the sample mean and of the estimated bias

2(0) = 53(60) = () = ﬁ (6% - 9)2 (2.92)

and their standard errors can be determined by taking the square root of (2.22).

So far, we measured the absolute deviation of the estimator 0 from the true value ...
For the comparison between estimates of parameters with different true values, it makes
more sense to compare the relative deviations. For that purpose, we define the relative
bias and provide estimates for its value and its standard error.

Definition The relative bias of an estimator 6 for a parameter ¢ with true value 6;,.,. # 0
is defined as

A~

E() = Opue _ b(B)

etrue etrue

rb(0) =

From this definition, it is straightforward to get an estimator for the relative bias:

~ b -0
rb(0) := ) _ frue

etrue 6)true
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The variance of the estimated relative bias can be transformed into

Htrue true

~ - b(f 1 o
Var (rb(@)) =Var ( ( )> =5 Var (b(@))
So an estimator for the variance of the relative bias is given by

r

5 1 5 (2.22) 1 . N\ 2
20) = —st(0) 2 =3 (09 -0 2.23
and the associated standard error is s,,(6) := sgb(é)

2.9 The capital asset pricing model (CAPM)

The capital asset pricing model (CAPM) is used to describe the rate of return of an
asset like a stock or a bond in an equilibrium market when this asset is added to a well-
diversified portfolio. The idea was developed among others in the works of Sharpe (1964)
and Lintner (1965) based on the portfolio optimization theory developed by Markowitz
(see Markowitz (1952)).

Imagine that an investor can allocate her wealth into d € N assets 1,...,d with returns
Y1,..., Yy She wants to choose an optimal portfolio w = (wy,...,w,)" with weights

d
w; e RVj € {1,...,d},;wz~: 1 and return

d
Vo= wY
j=1

In the Markowitz framework, an investor takes into account only the expected return
E(Y,) and the variance Var(Y,) (or equivalently its standard deviation). She accepts
to bear a higher risk — represented by the standard deviation — only in exchange for a
higher expected return. If a riskless asset exists, that is an asset Y; with expected return
E(Yy) = ro and variance Var(Yy) = 0, and if the investor uses a so-called quadratic utility
function, Markowitz shows that the optimal portfolio always consists of a proportion of
the riskless asset and of one other portfolio which is called the tangency portfolio.

The capital asset pricing model provides different assumptions on the available assets on
the market and on the behavior of the market participants. Applying Markowitz opti-
mization, one sees that the tangency portfolio is equal to a portfolio of all available assets
weighted by their market value. This portfolio is therefore also called the market portfolio.
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As result of the CAPM assumptions, the expected return of each available asset Y7, ...,Y}y
in a market equilibrium is given by

E(Y;)=ro+B;(E(YMm) —10), je{1,....,d} (2.24)

where Y}, is the return of the market portfolio. So the expected return of each asset is the
riskless rate of return plus a risk premium depending on the value of §; and the expected
return of the market. We can rearrange (2.24) to

E(Y})_TozﬁjE(YM_TO)a jE{l,,d}

meaning that the expected excess return of each asset Y; is equal to 3; times the expected
market excess return.

Assuming that the CAPM holds, we can hence describe the excess return of d assets at
time ¢ € {1,...,n} via a regression model with one common covariate and without an
intercept term, as specified in the following chapters.



Chapter 3

Bivariate regression normal copula
model with a single common
covariable

3.1 Introduction

In our application we have multivariate continuous response data available together with
a common covariate. For this we want to construct univariate regression models for the
margins and use a Gauss copula for modeling the dependence between the response vari-
ables. At first, we concentrate on the bivariate case. As financial application, one could
possibly think of modeling the dependency of the returns of two asset classes given the
market return in the CAPM framework described in Section 2.9. Note that the theoretical
results of this chapter can also be derived by using the calculations in the chapter for three
and more dimensions.

3.2 Model definition

Imagine we have a data set consisting of n pairs (y;1,¥:2)" and n observations z;, where
i€ {l,...,n}. We want to describe the relationship between them using a two dimensional
regression model on z; with bivariate normal distributed errors to get random variables
(Y1, Yio) (i =1,...n), thus we can interpret the data (y;1,y:2)" as realizations of (Y;, V)’
forallie {1,...,n}. Let n e N, B € R? o2 € (0,00)% and p € (—1,1).

Furthermore, let e; = S o Na 0 , Loy Lid. Vi=1,...,n.
Ei2 0 P 1

For given values z; € R, ..., z, € R we define the two dimensional model by

Yij:ziﬁj—kajsij (221,,71) (]:1,2) (31)

28
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Using the notation ¢(-, -|p) for the density of a bivariate Gauss copula with parameter p,
we can also formulate the model as two dimensional pair-copula construction:

Yij = z:3; + 0je4 (i=1,...,n) (j =1,2)
ple) = ¢ (@(sﬂ), (i) p) oen)plen)  iid Vi=1,...,n (3.2)

This means we have 5 unknown parameters in our model (3.2): The regression parame-
ters 3; and (3, the residual variance parameters o7 and o5 and the residual correlation
parameter p.

3.3 Prior choices

In a Bayesian setting, the unknown parameters [3;, 0]2- (j = 1,2) and p are not fixed
values, but random variables, which means that we have to define prior distributions for
each parameter.
Assume (3, ajz» (j = 1,2) and p are priorly independent and

B; ~ N (0, sf) independent Vj =1,2

0]2- ~ InverseGamma(a;,b;) independent Vj =1,2

p~Uniform(—1,1)
2

where s?,s2 > 0, a,as > 0 and by, by > 0 are parameters that can be chosen subject to
the prior information.

Thus, the joint prior density p(3, o2, p) is given as follows:
2

p(B.a.p) = [ p(8) - 1T p(e}) - p()

J=1

2
p(B;) = ! eXp{—ﬁ—J} Vji=1,2

3
27?5? 255

b o e b, .
o) = s { B i1
J

The assumption of prior independence of all parameters means that change of prior infor-
mation on one parameter does not affect the prior distribution of the other parameters.
The choice of a normal prior distribution for B is common for parameters that are propor-
tional to the mean of the random variable of interest. Also the inverse gamma distribution
is a suitable choice for positive parameters, so we use it as prior of o2. For the last pa-
rameter p, we assume a non-informative prior, which is also consistent to our assumptions
and results in higher dimensions. But any other prior for p can be easily integrated in the
approach by multiplying it to the proportional expression of the full conditional density,
which is derived later in this chapter.
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3.4 Likelihood

We use the notation Y; := (Y;, Yis)" and as before B := (31, 52)’ and o? := (0%, 03)". For
the total response variables we write Y := (Y,...,Y")".

From the model definition (3.2) we can directly derive the distribution of Y; (i € {1,...,n})
for given values of 3, o2, and p.

Lemma It holds Y; ~ N3(8z2;, %) for given values of 3, o2, p and 7 € {1,...,n}, and
2
the covariance matrix ¥ := ( o1 p012(7 2) does not depend on i.
p0102 0'2

Proof. From (3.2) we know that e; ~ N; (O, ([1) ';)) From (2.2) we see that

e o 0 z 0 o 0 1 p\ (o1 O '
vie(2) ¢ (5 a)ea () (0 2) 0 D6 2)

-~

=X

O

This means that for each 7 € {1,...,n}, the likelihood f;(Y |3, 02, p) of Y; corresponds
to the density of a bivariate normal distribution, as defined in (2.1). As the error variables
{€i, i € {1,...,n}} are independent, it follows from the model definition (3.2) that the
response variables {Y;, i € {1,...,n}} are independent for given values of 3, 6% and p.
Thus, the joint likelihood f(Y'|3, 02, p) of all response variables is

f(Y|,@, U2>p) = HfZ(YZ|16’ U?ﬂ)
=1

ﬁ exXp 4§ — 41 . (yil — Ziﬁl)Z + (%‘2 - ZiﬁQ)Z
1 2mo1094/1 — p? 2(1 = p?) i ;

01 03

—2p (yi1 — 2i81) (Yi2 — Ziﬁ2)> }

0102

— 1 - Yi1 — Zzﬁl) (yiz — zi2)°
 (2moy0)(1 — p2)E exp{ 2(1—p2) Z < * o3

—2) (yz'l — 2i51) (Y2 — ZiﬁQ)) }

0102
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3.5 Full conditional distributions

Our aim is to construct an MCMC Algorithm to get samples from the joint posterior
distribution of (3,02, p). To do this we follow the approach of a Gibbs sampler, that is
sequentially updating the parameters 3, o* and p by using the full conditional distri-
butions, i. e. the distribution of one parameter given all others and the data. However,
we will see that only for 3 exists a known full conditional distribution, whereas we need
Metropolis-Hastings steps for the other parameters. In this section, we derive the full
conditional distribution of 3 and proportional expressions of the full conditional densities
of p and ¢ := 0—1]2 (j=1,2)

3.5.1 Full conditional distribution of the regression parameter 3

We get a proportional expression of the full conditional density of B by multiplying the
likelihood with the prior density of 3:

p(Bla’, p, Y )p(B) < f(Y|B, 02 p)
1 /8% B3 { 1 SN =22y B+ 220 =22y + 2253
xew g (G +5) oo a2 (T T
_9 2} 1 Pa — ziyin B2 — 22‘%251) }
p 0109
> 20 DI szfﬁﬁz

= 1 i=1 3 i=
=exp |l t+t 5+t 5 " 2——¢
{ 2(&@—&) 2B 8 ool )

Z yinzih P Z YiaZih Z YioZi[3a P Z YiZi32
o 2 =1 =1 =1 =1 ) }

+ 2 -2
of(1—=p?)  “owoa(1—p?) 031 —p?)  o102(1 - p?)

With S, := > 22, S,y = D yinz and Sy, :=
i=1 =1

n
7 =

Y;27; this term simplifies to

=1

Szzs% + U%(l — p2)
oys3(1— p?)
UQSzyl - palszyg

PS:z
) T LR —2

o Ulszyg - pUQSzyl
)} 69

Szzs% + U%(l — pz)
oisi(1 — p?)

p(Blo, p.Y) 0<eXp{ — %( B 33

We want to show that the full conditional density of 3 is the density of a bivariate normal

2
. . . . 1 . . T VT1Ty
distribution with mean vector pu = H1) and covariance matrix ! 5~ ], where
125) VT1Ty ’7'2

peER? 71 >0, 7 >0and v € (—1,1) have to be identified.
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If this is the case, then
2 ! 1 (b1 — M1)2 (B2 — M2)2 (61 — 1) (B2 — pi2)
Y — -2
p(Blo, p,Y) x exp { ) ( = + 2 v p

x ex { _ 1(5% —2m b X B3 — 24120 B 21/5152 — p231 — M152) }
L 2\a=mn T - 1= )

Now we rearrange the expression above and get

9 ! 1 1 9 1 9 v
Y — = )
p(ﬁ‘o’ ) P ) X exp { 2 ((1 _ 1/2)7'1251 + (1 . VQ)TQQBQ (1 . VQ)Tszﬁlﬁz
Toly — VT2 HoT1 — VTall1
- 22— -2 3.4
(1—V2)T1272ﬁ1 (1—v2)nr3” )} (3:4)

By comparing expressions before ; in (3.3) and (3.4), it follows

1 1 Sest+oi(1—p?)
L= oisi(l—p?)
RN 1 i \/SZZS% + O-%(l B p2> _ U1 (3 5)
V1—v2n o151/ 1 — p? o151/ 1 — p? .
where v, := +/S..s? + 0}(1 — p2). In the same manner we see that
1
L (3.6)

V1I—121  03894/1 — p?

with vy := /S,.8% + 03(1 — p?).

If we now want to have equal factors before 313, in equations (3.3) and (3.4), it must
hold

14 ! pSZZ

= 3.7
(I=v)nm  o10a(l = p?) (37)
We can write the left hand side of (3.7) as I/ﬁﬁ (3.5)(3.6) VUISI\/PZ;Z;Q\/PPQ
which leads to
y = PIz=S15 (3.8)
V1V2

Remark: Note that v € (—1, 1) holds, since

ViUy = \/Szzs% +0?(1 — p2)\/SZZ3§ +03(1 — p?)

> 1/S,.534/ 5,52 > |pS..s150]

8) |pSz-
@9 [pSusisa| _

= |v v
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From (3.8) it follows 1 — 1% = W, so we get using (3.5)
12

o o151/ 1 —p?  o151y/1 — pPuivy
L VIR vi\/vIv3 — p2S2, 5783
o181y/ 1 — p?ug o181v/ 1 — p?vq
- >0 (3.9)
u

- 2,2 _ 202 2.2
\/'01'02 p*SZ,5185

where we set u = \/v}v3 — p2S52 s3s3.

Applying similar calculations to (3.6), we get

1_ 2
TRV TP (3.10)

u

To =

At last, we want to find an expression for the mean parameter p = (i1, u2)’. For that

purpose we again look at equations (3.3) and (3.4).
Comparing the factors before (31, we see that

Topfly — UTifle 1 0252y, — pO1S.y,

(1—v)rin  ofoa(1—p?)
H1 0255y, — PO1S2y, v M2
& = _— 3.11
(1—v2)7? o205(1 — p?) 7 (1 —1v2)m ( )

Similarly, we compare the factors before fs:

Tipg — VTol1 | alszyg - pa2szy1

(1—v2)m73 N o103(1 — p?)
N 12%) _ Ulszyg - PU2Szy1 K 241 (3 12)
(1 -1 o103(1 — p?) T (1 —v?)m ’

Setting (3.11) into (3.12) results in:

M1 _ UZSzyl - pglszyg + ZT Ulszyg - PU2Szy1 + K M1
(1—v?)7? oioy(1 — p?) P o105(1 — p?) 7 (1 —1v2)7
M1 0252y, — PO1Szy, V7_2(0132y2 — pUQSZ.m) 3.13
Ad 2 25.(1 — p2 2(1 — o2 (3.13)
Ti oioa(l — p?) T10105(1 — p?)

Now we solve (3.13) for p:
! (1103 5.y, — pT10109S5y, + V2025, — pUT201025.y,)
H1 = 2,201 _ 2
oio3(1— p?)
_ (tio3 — pyTiT20109) Soy, + (VT1T20} — pTE0102) Sy (3.14)
oto3(1—p?)
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Next, we want to eliminate 7, 7 and v.
For that we use

@9 oi(l—p)’sivy

2
71 2 (3.15)
and g, BDEDE10) pSz5152 01511 — pP03 9285/1 — pPor _ p(1 = p*) 010281835
12 - V1V2 U u N u?
(3.16)

This results in

s14)6.15)3.16) (1= p*)st (010305 — p*070353) Soy, + (p070255S:: — poioav;) Ssy)

u?oios (1 — p?)
— 5% ((Ug - ,0285522) 0252, + (S%Szz — U%) palSZyQ) (3.17)

oou?

M1

Finally, we use vy — p?s25.. = S,2yss + 03(1 — p?) — p?s2S,2y = (1 — p?)(S,2ys3 + 03) and
s325,, —vi = —02(1 — p?) to simplify (3.17) to

1—p?)s?
M1 = % ((Szzsg + U%)Szyl - 10010252312) (3.18)
Similarly, it follows that
1—p?)s?
g = ( uZ )53 ((SZZS% + af)SZy2 — palagszgyl) (3.19)

Result: The full conditional density of 3 is a bivariate normal density whose parameters
are given above.

3.5.2 Full conditional distribution of the correlation p

In the next part we determine an expression that is proportional to the full conditional
density of p. As we have assumed a non-informative prior distribution for p, the full
conditional density of p is proportional to the likelihood.

p(p|B, 0% Y) x f(Y|B,0% p)p(p) < f(Y|B,0°, p)

n

1 1 (yi1 — Zzﬂl)Z (Yi2 — Zzﬂz)Z
Oc(l— ”eXp{_Q(l—p2)2< p + o2

)’ =
— 9 (yi1 — 2:B81) (Yi2 — Ziﬁ2)> }

0102

n n n

By defining r{ := >~ (i1 —12:)% 13 := 3 (yia—F22:)* and 112 := 3 (ya — b12:) (Vi — Bo2:)
i=1 i=1 i=1
we can write the full conditional density of p as

1 1 r? rl r
2Y)o¢ —— - (A, 2 g, 12
PlB, oY) o o P T o\t T Yo,
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We further use the abbreviations a := % + % and b := ;1152’ so that the full conditional
2
density of p is proportional to a function g,(p, a,b) defined as follows:
1 a—bp
b) = ——+ — ,okY 3.20
0o(prab) (1_p2)5exp{ 1_p2}o<p<p|,6 o?Y) (3.20)

The function g, is well defined and positive for all p € (—1,1). Additionally, a > b holds,

since
n n n

‘7% Z(yzl - ﬁlzz‘)Q + U% Z(yﬂ - 5221‘)2 — 20109 Z(yil - 5121‘)(%2 - 5221‘)
a—b=—=1 =1 i=1
20203
Z US(yu - ﬁlzi)Q - 20201(%1 - ﬁ1Zi)(yz‘2 - 5221‘) + U%(yiQ - ﬁ2Zi)2
=1
B 20203
(02(3/i1 - 6121‘) — 01 (yz'2 - 5221'))2
i=1
= >0
20202 -

However, a closed form for the integral f 9,(p,a,b) dp does not exist, which means
(_171)

that we know p(p|3,02,Y) only up to a proportional constant and therefore cannot use

the Gibbs sampler to update p. Here, a Metropolis-Hastings step is necessary, and we will

use g,(p, a, b) to calculate the acceptance probability. Due to numerical reasons, it is often

better to calculate with the logarithm of g,(p, a, b), which is
n a—bp
log(g,(p,a,b)) = =5 log (1= p°) =

1—p?

(3.21)

3.5.3 Full conditional distribution of the error variances o>

For the last parameter o2, we do not directly calculate the full conditional density, but
we look instead at qﬁ? = ( = 1,2). This makes the calculations a bit easier. We know

mma(ay, b;) follows ¢ ~ Gamma(ay, b;)(j = 1,2). At first, we

1
2
9;
that from ajz» ~ InverseGa
concentrate on ¢?.

(61163, B,p,Y) o [(Y[B, 9%, p)p(¢})
o (¢7)7 exp {_ﬁ Z (Qb%(yil — 2})? = 2p¢192(yir — 2:61) (yiz — Ziﬁ2))}

i=1

bi!
) F(;l) (¢%)a1—1 eXp{_blgbi}
X (¢%)n7_2+a1 exp { - ﬁ (Qﬁ Z(yil — B121)? =2p¢1 ¢ Z(yil — Brzi) (Yi2 — 52)) }
i=1 i=1

~exp{—bi197}
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n n

With the abbreviations r7 = Y (yi1 — $12;)% and 12 = > (yi1 — (12:)(yi2 — [2) that we
i=1 =1
have used before, we get

p(63163,8,p,Y)
=2, 1
o< (6) T " exp { e (¢%<r% Fon(1— ) - 2p<z>1¢2r12> }

B B2 44, i+ 201 (1 — p?) PPaT12
= (&) exp{— St (¢%—2\/¢?@+2b1(1_p2>>} (3.22)

By defining the function g4, as

Gon (2, ¢,d) := gt exp {—c (Vz — d)z}

we can write the expression (3.22) in the form

2 2
+2b,(1 = p*) pPP2r12
2 42 Y 2 1 _ 2 .4
p(¢1‘¢27/67p7 ) X G¢1 1 2(1_p2) ’T%—I—le(l—pQ) g¢1(¢17017 1)
7‘2 _ 2 r
where ¢; 1= 712??1_(;2)’) ) and d; = o e +’;‘£f(112_p2).

The logarithm of g4, is given by

n—2

log(gs, (z,c,d)) = ( + al) log(z) — ¢ (Vr — d)2 (3.23)

For the parameter ¢3, we define the function g4, as

Gon (2, ¢, d) := 2”22 oxp {—c (Vz — d)z}

The logarithm of g, is given by

n—2

log(gg, (@, ¢, d)) = ( + 0/2) log(z) — ¢ (Vr — d)2 (3.24)

By performing similar calculations as before, one sees that

2 2
21 42 o 75+ 20y(1 — p?) PO17T12 2
Y = d
p(¢2|¢1716apa ) O<g¢2 ( 29 2(1_p2) 7T%+2b2(1—p2> g¢2(¢2a027 2)
7‘2 —p? T
where ¢y := %(;g)p) and dy := %.
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3.6 The bivariate MCMC algorithm

Now that we have derived the full conditional density of 3 and proportional expressions
for the full conditional densities of p, ¢? and ¢2, we are able to build an MCMC algorithm
to get samples from the posterior distribution. This algorithm constructs a hybrid chain
consisting of a Gibbs sampler’s update for 3 and Metropolis-Hastings steps for the other
parameters. As mentioned before, it is not possible to construct a Gibbs Sampler for all
parameters, since we completely know the full conditional density only for 3. On the
other hand, a Metropolis-Hastings step for 3 would raise the problem of finding a two
dimensional proposal density which does not lead to a high rate of rejections or would
require to update the components 3; and [y separately. The Gibbs sampler makes it
possible to get new values for both components of 3 in one step without suffering any
rejections. Therefore, the hybrid chain combines the advantage of the knowledge of the
full conditional density of 3 with the possibility of updating the other parameters without
completely knowing their full conditional density.

As proposal distribution for the Metropolis-Hastings steps, we take a random walk, i. e. a
normal distribution whose mean is the old value for the parameter and whose variance is
a predefined proposal variance sf,mp7_. This choice makes it easy both to sample from the
proposal distribution and to calculate the acceptance probability. However, the random
walk may propose negative values for ¢;, j € {1,2} or inadmissable values for p. In those
cases, the algorithm will of course reject the proposed values. This means that a high

proposal variance may lead to a high rate of rejections.

Algorithm 3.1 MCMC Algorithm for two dimensions

1. INPUT data y;; withi=1,...,n,j=1,2

2: data z; withi=1,...,n

3 prior parameters s2, s3, aj, by, as, by

4: number of MCMC iterations m (resp. size of posterior distribution sample)
5 proposal variances s>, 5., 55,0, 4, a0d 85,

6: initial values B8, 62 and 0

7. OUTPUT Samples 8%, ..., 80, o2 . g2m) pM o ptm)

oo

: B:= 8", 61 =y, 63 = iy, p = O
9: FORr:=1,...,m DO
10: B-UPDATE:

2
T UTT
11:  Draw a sample = (21, x2) from N (u 1 L2

\vnm T
as defined in (3.8), (3.9), (3.10), (3.18) and (3.19)
122 B:=8" =z
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Algorithm 3.2 MCMC Algorithm for two dimensions (continued)

13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:
30:

31:
32:
33:
34:

35:
36:
37:
38:
39:

o2-UPDATE:
Draw a sample ¢2
IF ¢;2;mp,1 >0 THEN
Calculate logarithm of acceptance probability
laee = max {1Og(g¢1 (¢;2)rop,1> cr,di)) — 1Og(g¢1 (Qb%’ cr,di)), 0}
using formula (3.23)
Draw a sample z from Uniform(0,1)
IF z < exp{lo..} THEN
Qﬁ = ?)rop,l
END IF
END IF
Draw a sample ¢, 5
IF qﬁfmpz >0 THEN
Calculate logarithm of acceptance probability
laec = max {1Og(g¢2 (gbf)rop,Q? C2,d2)) — 1Og(g¢2 (nga c2,d2)), 0}
using formula (3.24)
Draw a sample z from Uniform(0,1)
IF z < exp{lae.} THEN
¢% = ?)rop,2
END IF
END IF

o) = (.

from N (3, s2

1 prop,¢1)

from _/\/’(Q%, sz;rop,(;ﬁz)

p-UPDATE:
Draw a sample pp.op from N (p, sgmp7 ))
IF pprop € (—1,1) THEN
Calculate logarithm of acceptance probability
lace := max {10g(g,(pprop; a, b)) —10g(g,(p, a, b)), 0}
using formula (3.21)
Draw a sample x from Uniform(0,1)
IF x < exp{lo..} THEN
P = Pprop
END IF
END IF

pl") = p

40: END FOR
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3.7 Small sample performance using the bivariate
MCMC algorithm for Bayesian inference

In this section we test the derived algorithm on different scenarios and analyze the results.
For that purpose we choose predefined values for the parameters 3, o and p and create
data based on these parameters. Then the algorithm uses this data to calculate estimates.
We consider the correctness and convergence of the algorithm and look at the error be-
havior of the MCMC estimators. The two dimensional MCMC algorithm runs quite fast,
which allows us to consider a lot of different scenarios and a high number of iterations.

3.7.1 Simulation setting

At first, we have to decide how much data we want to create. For every parameter con-
stellation we consider two data sizes: n = 1000 and n = 5000. Whereas the first choice
should be enough to get feasible estimates, we use the second one to consider if estimates
improve when the data size is increased. Next, we have to specify the covariates z;, which
are independent of the parameter constellation. We choose the z;’s as a sequence from -1
to 1 with equal distance and length n, i. e. z; := —1, z, := 1 and the other values are
specified such that it holds:

2
2 il = Vie{2,...,n}
So these values follow a line from —1 to 1, which means that the simulated data y;; will
follow a linear trend whose steepness depends on the value specified for ;. For the 3's we
distinguish two situations: In the first part of the scenarios, we set (3, := (5 := 0.5, which
means that y;; and y;, follow the same trend, whose steepness is lower than the one of
the z;’s. For the second part of the scenarios, we change 35 to 3, which means that trends
of y;1 and y;o are different: In the first case the trend of the z;’s is weakened, whereas the
trend is strengthened in the second time series.

For the specification of % and 02, we look at the signal-to-noise ratio

EYi)| 62 |z06]

NR(Y;;) =
SNR(Y;;) Tar (V) -

ie{l,....,n},je{1,2}

If the signal-to-noise ratio is greater than 2 for most of the data, then the signal dominates
the noise, which should make estimation of the trend and correlation parameters easier.
So it is of interest, which part of the data satisfies this relation, i. e. we are interested in
the fraction

' : . card{z € {1,...,n :'Zi—ﬁi‘>2
PSNR; = card{i € {1,...,n} : SNR(Y};) > 2)} _ {ief } o, )}

n n

(3.25)

We will choose a PSNR; of 50% or of 80%, and we consider the case when these ratios
are equal as well as the case when they are different. Since we have chosen 3; > 0 in all of
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our scenarios and have used the same z;’s, we can infer ajz» directly from 3; and PSNR;.
The resulting values of a? provided in the result tables are quite small, which is due to
the choice of a low @ and the data z;, of which ca. 50% has an absolute value smaller 0.5.

For the important correlation parameter p, we consider no correlation, medium correlation
and strong correlation. In Table 3.1, we list all 42 scenarios that we have considered. For
each scenario, we perform 20 data replications, run the MCMC algorithm and analyze
the results.

3.7.2 Further specification of the MCMC algorithm

There are still a few things to specify before we can run the MCMC algorithm. At first,
we need initial values for the parameters 3, o? and p. For the marginal parameters, we
take the marginal maximum likelihood estimators, which are

n n 0
(0) Z:1 “ii Sy 2(0) '—1(% B zlﬂ]( )’ T2
ﬁ] = Z_n ; = S J and O'] = = ] = o _j 1 (j = 1, 2)
> % ~
i=1

As initial value for p, we take the value that maximizes the conditional likelihood given
B = B? and 62 = 6. As the function g, defined in (3.20) is proportional to the
likelihood, we can use it for the maximization. However, this is equivalent to maximizing
the logarithm of g, that we derived in (3.21), but the latter is numerically more efficient.

This is why we set

p¥ = arg max{log(g,(p, a,0))} (3.26)
pe(—1,1)
with a := 27~Tf(0) + 2%%0) and b := —5*25. To perform the maximization, we use the R-
T2 91 0102

function optimize() which executes one dimensional optimizations.

Now that we have the initial values, we specify the prior parameters. At first, we have
to specify the prior variances for 3; and (. We decide to take an approximately non-
informative prior distribution, which means that we take huge prior variances. Our choice
is s? := s3 := 100000. For 0% and o3, we follow Congdon (2003) on page 10 and set the
parameters of the prior inverse gamma distribution to a; := as := 1 and by := by = 0.001.
From the preliminaries chapter, we know that this choice leads to a non-existing prior
expectation for o7 and 3. As one can see, we have taken the same prior parameters for
all components of 3 and o?.

The proposal variance is determined by pilot runs for each parameter. This means that we
take an initial value for the proposal variance of the considered parameter. Afterwards, we
run the MCMC algorithm on the data with e.g. 2000 iterations and look at the acceptance
rate of the parameter. If it is too small, e. g. less than 20%, we decrease the proposal
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‘ Scenario H PSNR; ‘ PSNR, ‘ G’s ‘ P ‘ n ‘

1 50% 50% | equal 0.0 | 1000

2 50% 50% | equal 0.0 | 5000

3 50% 50% | equal 0.5 | 1000

4 50% 50% | equal 0.5 | 5000

5 50% 50% | equal 0.8 | 1000

6 50% 50% | equal 0.8 | 5000

7 50% 80% | equal 0.0 | 1000

8 50% 80% | equal 0.0 | 5000

9 50% 80% | equal 0.5 | 1000
10 50% 80% | equal 0.5 | 5000
11 50% 80% | equal 0.8 | 1000
12 50% 80% | equal 0.8 | 5000
13 80% 80% | equal 0.0 | 1000
14 80% 80% | equal 0.0 | 5000
15 80% 80% | equal 0.5 | 1000
16 80% 80% | equal 0.5 | 5000
17 80% 80% | equal 0.8 | 1000
18 80% 80% | equal 0.8 | 5000
19 50% 50% | different | 0.0 | 1000
20 50% 50% | different | 0.0 | 5000
21 50% 50% | different | 0.5 | 1000
22 50% 50% | different | 0.5 | 5000
23 50% 50% | different | 0.8 | 1000
24 50% 50% | different | 0.8 | 5000
25 50% 80% | different | 0.0 | 1000
26 50% 80% | different | 0.0 | 5000
27 50% 80% | different | 0.5 | 1000
28 50% 80% | different | 0.5 | 5000
29 50% 80% | different | 0.8 | 1000
30 50% 80% | different | 0.8 | 5000
31 80% 50% | different | 0.0 | 1000
32 80% 50% | different | 0.0 | 5000
33 80% 50% | different | 0.5 | 1000
34 80% 50% | different | 0.5 | 5000
35 80% 50% | different | 0.8 | 1000
36 80% 50% | different | 0.8 | 5000
37 80% 80% | different | 0.0 | 1000
38 80% 80% | different | 0.0 | 5000
39 80% 80% | different | 0.5 | 1000
40 80% 80% | different | 0.5 | 5000
41 80% 80% | different | 0.8 | 1000
42 80% 80% | different | 0.8 | 5000

Table 3.1: Overview of all parameter constellations and data sizes used to test the algo-
rithm
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variance and repeat the procedure. The effect of this is that the proposed values will
be closer to the old values, which should lead to less rejections and though to a higher
acceptance rate. However, if the acceptance rate is too large, for instance greater than 80%,
autocorrelations may get high, so it would be difficult to get approximately uncorrelated
samples from the MCMC. Thus, we increase the proposal variance in that case and run
the algorithm again, which has the opposite effect as described before. We carry out this
procedure until we have proposal variances that lead to acceptance rates in a range of
about 25% to 50%.

At last, we set the number of MCMC iterations to m = 50000, which is enough to get good
estimates for the mode of each parameter and takes about 10 Minutes on my machine

(Intel® Core™ 2 Duo CPU 2.2 GHz).

3.7.3 Results

As mentioned before, we simulate data 20 times and afterwards run our MCMC algo-
rithm on each data set for each scenario specified in Table 3.1. When looking at the
results, we see at first that the algorithm converges for every scenario and replication and
that autocorrelations die down before lag 50. For each replication and each parameter
0 € {51, B,0%,03,p}, we then use every 50th iteration and a burn-in period of 5000 it-
erations to estimate the posterior density of 6 with use of the R-function density(). This
means that the density is estimated based on 900 approximately uncorrelated samples.

We show an example of the performance of the MCMC algorithm in Figure 3.1, in which
we illustrate the results for one replication of scenario 21, i.e. with true parameter values
By = 0.5, B = 3, 02 = 0.0155, 02 = 0.563 and p = 0.5. The left column of Figure 3.1
shows the parameter values of the MCMC algorithm for every 30th iteration. As one
can see, the algorithm shows a good variation around the true values, which are marked
as a horizontal line in the plots. Furthermore, the plots of the autocorrelation function
located in the middle column indicate that autocorrelations get close to zero after a lag
of approximately 30. This means that the MCMC mixes well in this example.

The plots in the right column show estimations of the posterior density based on our
chain values. The two vertical lines mark the location of the mode and the true parameter
value. Obviously we like to have the mode near to the true value, which is the case for
most of the parameters. Only for p we see a greater distance between the two values,
which is convenient to the corresponding trace plot in the left column, where most chain
values lie below the line marking the true parameter value of 0.5. However, the estimated
posterior density of the true parameter is high enough to be acceptable.

For each replication of each scenario, we get an estimator émOd for the posterior mode 6,,,4
by taking the mode of the estimated density. We take this as estimate for each replication
and calculate the mean of estimates 0,04, the estimated bias, the relative bias and their
standard errors. Recall that the estimated standard error of the mean is equal to that of
the bias.
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We present the results in Tables 3.2 to 3.8, whereas each table covers six scenarios with
equal true values for 3 and o2, but different values for n and p. The true values, estimates
and standard errors are provided in the columns, where we used the following notations:

Sc. # : Scenario index
PSNR; : Predifined PSNR;, j = 1,2 for the scenario, see (3.25)
n : length of simulated data set
0 : parameter of interest

Otrue : true value of 6

20
1 A .
Ormod := 20 g Hﬁfgd , mean of estimated values Hﬁfgd (k=1,...,20)

A~ A

b(0rm0d) (20 Z 0m0d> — birue = Omod — Otrue , estimated bias

5(Ormod) = Var (é) = %0 , estimated standard error of ,,,q and /b\(émod),
TREL )
where s := , | — 0 rmod
19 ( mod )
k=1
SIA 6)7mo — 0 rue b emo : :
Tb(Omod) = Cé) frue _ (9 ) , estimated relative bias
true true

A —— (Brod — Oirue s 1 5(Omo
1o (Omoa) = \/VW (#) V2002, (emd)’

true

estimated standard error of rb(é’mOd)

For each table, the bold values in the g(émod) column show the maximum absolute values
for the same 6 € {3, 32,0%,03} over all scenarios mentioned in the table. The largest
absolute value of the estimated bias of p is not highlighted, since the true value of p
changes three times, and therefore the bias estimates from different scenarios listed in
the same table are not always comparable. For the Tb(@mod) column, we instead mark
the highest absolute value within one scenario in bold type. This makes sense, since the
relative bias (in contrast to the bias itself) makes it possible to compare the accuracy of
estimates between parameters even when their true values are different.

We do not calculate the estimated mean squared error because a plausible value for it is
hardly achieved with only 20 replications. Furthermore, there are some scenarios where
the true value for the parameter p is 0. Here, the relative bias obviously makes no sense

« 2

resp. would be oco. In those cases, we use the notation “—7".
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Figure 3.1: Trace plots, autocorrelation plots and estimated density for one replication of
Scenario 23
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.4981 | —0.191 0.139 —0.382 0.279
B2 | 0.5000 0.5017 0.167 0.176 0.333 0.353
1 0.5 0.5 1000 | o2 | 0.0155 0.0156 0.014 0.011 0.929 0.720
o2 | 0.0155 0.0153 | —0.020 0.013 —1.287 0.835
p | 0.0000 | —0.0021 | —0.214 0.585 - -
B1 | 0.5000 0.5009 0.087 0.055 0.173 0.109
B2 | 0.5000 0.4997 | —0.032 0.072 —0.065 0.144
2 0.5 0.5 5000 | o2 | 0.0155 0.0154 | —0.005 0.004 —0.326 0.288
o3 | 0.0155 0.0153 | —0.019 0.006 —1.218 0.418
p | 0.0000 0.0019 0.188 0.207 — -
B1 | 0.5000 0.5003 0.033 0.161 0.067 0.322
B2 | 0.5000 0.5001 0.011 0.147 0.023 0.295
3 0.5 0.5 1000 | o2 | 0.0155 0.0152 | —0.027 0.015 —1.750 0.978
o2 | 0.0155 0.0153 | —0.022 0.016 —1.393 1.038
p | 0.5000 0.5008 0.083 0.582 0.167 1.163
B1 | 0.5000 0.4989 | —0.106 0.058 —0.211 0.115
B2 | 0.5000 0.4997 | —0.025 0.072 —0.051 0.143
4 0.5 0.5 5000 | o2 | 0.0155 0.0154 | —0.015 0.005 —0.947 0.311
o3 | 0.0155 0.0154 | —0.010 0.007 —0.633 0.450
p | 0.5000 0.4969 | —0.308 0.241 —0.616 0.483
B1 | 0.5000 0.4991 | —0.088 0.137 —0.176 0.274
B2 | 0.5000 0.4983 | —0.165 0.088 —0.331 0.176
5 0.5 0.5 1000 | o2 | 0.0155 0.0154 | —0.006 0.014 —0.365 0.885
o2 | 0.0155 0.0155 | —0.001 0.017 —0.060 1.077
p | 0.8000 0.7988 | —0.118 0.202 —0.147 0.253
B1 | 0.5000 0.5003 0.026 0.060 0.052 0.119
B2 | 0.5000 0.5002 0.019 0.064 0.037 0.127
6 0.5 0.5 5000 | o2 | 0.0155 0.0155 | —0.005 0.007 —0.305 0.444
o3 | 0.0155 0.0155 | —0.002 0.006 —0.148 0.364
p | 0.8000 0.8010 0.103 0.123 0.129 0.154

Table 3.2: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with 5, = 5, and low PSNR; = PSNR,

Scenarios with equal (’s and low PSNR; = PSNR,

We start with analyzing the scenarios where 31 = (3, holds. In Table 3.2 we see the results
for the scenarios with PSNR; = PSN Ry = 0.5. The largest deviation between estimates
and true values for both (3; and 35 can be found in the first scenario. with no correlation
and the smaller data size n = 1000. Here, the bias is about —0.19% for 3, and 0.17%
for 3. Since the true parameter values of o7 and o3 are very small, it does not surprise
that this also holds for the estimated bias, whose largest absolute values can be found in
scenario 3. With only one exception (o in scenarios 5 and 6), the estimate for the residual

variance parameters ajz» gets closer to the true value when n is increased.

To compare the estimation between different parameters, we look at the relative bias. We
observe that the largest relative deviation from the true value can always be observed for
a ajz» estimate. The highest relative deviation is that of the 0% estimate in scenario 3 with
about 1.75%. The estimated bias for p ranges from —0.31% to —0.10%.

The standard errors of the relative bias srb(gmod) are all smaller than 1.2% and decreasing
when n goes from 1000 to 5000. We observe the decreasing standard error when increasing
n in all 42 scenarios so we will not mention this again when analyzing Tables 3.3 to 3.8.
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.4989 | —0.109 0.154 —0.219 0.309
B2 | 0.5000 0.5000 0.003 0.075 0.005 0.150
7 0.5 0.8 1000 | o2 | 0.0155 0.0157 0.017 0.017 1.103 1.108
o2 | 0.0025 0.0025 0.002 0.003 0.900 1.027
p | 0.0000 | —0.0102 | —1.018 0.809 - -
B1 | 0.5000 0.4997 | —0.035 0.057 —0.069 0.114
B2 | 0.5000 0.5006 0.064 0.026 0.129 0.051
8 0.5 0.8 5000 | o2 | 0.0155 0.0155 | —0.004 0.006 —0.277 0.407
o3 | 0.0025 0.0025 0.000 0.001 0.033 0.519
p | 0.0000 0.0031 0.307 0.474 — —
B1 | 0.5000 0.5000 0.003 0.174 0.006 0.349
B2 | 0.5000 0.5002 0.020 0.050 0.040 0.100
9 0.5 0.8 1000 | o2 | 0.0155 0.0154 | —0.009 0.014 —0.554 0.931
o2 | 0.0025 0.0025 | —0.002 0.003 —0.752 1.099
p | 0.5000 0.4985 | —0.153 0.455 —0.307 0.910
B1 | 0.5000 0.4985 | —0.146 0.089 —0.292 0.178
B2 | 0.5000 0.4996 | —0.040 0.021 —0.080 0.042
10 0.5 0.8 5000 | o2 | 0.0155 0.0156 0.010 0.006 0.670 0.381
o3 | 0.0025 0.0025 0.003 0.001 1.088 0.585
p | 0.5000 0.5025 0.249 0.190 0.498 0.380
B1 | 0.5000 0.4988 | —0.120 0.149 —0.241 0.297
B2 | 0.5000 0.4997 | —0.032 0.059 —0.064 0.119
11 0.5 0.8 1000 | o2 | 0.0155 0.0154 | —0.013 0.016 —0.821 1.003
o2 | 0.0025 0.0025 | —0.001 0.003 —0.307 1.036
p | 0.8000 0.7966 | —0.342 0.241 —0.428 0.301
B1 | 0.5000 0.5002 0.022 0.067 0.045 0.133
B2 | 0.5000 0.5003 0.029 0.024 0.057 0.049
12 0.5 0.8 5000 | o2 | 0.0155 0.0154 | —0.005 0.006 —0.355 0.387
o3 | 0.0025 0.0025 0.000 0.001 0.078 0.401
p | 0.8000 0.8012 0.119 0.079 0.149 0.099

Table 3.3: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with 5, = 6, and PSNR; < PSNR,

Scenarios with equal ’s and different PSNR;

In the next six scenarios, we increase PSN Ry to 80%, while all other true values stay the
same. The results are provided in Table 3.3.

The maximum absolute value of the estimated bias of (; can be found in scenario 10,
that of (5 in scenario 8, both with n = 5000. For the JJQ. parameters we find the according
maximums in scenarios 7 and 10. As expected, this value is much larger for o3, since
the true value of o3 has decreased due to the higher PSN R,. For the scenario with high
correlation, the deviation from the true value is in general smaller than in those with no
or medium correlation.

When comparing the relative bias of all parameters within a scenario, we see that the
largest absolute values always belongs to a ajz» parameter. The largest of them is that of
0? in scenario 7, with no correlation and the smaller data size. For p # 0 we observe
estimated relative biases between —0.43% and 0.50%. The biases in the uncorrelated

settings (scenarios 7 and 8) are —1.02% and 0.31%.
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.5006 0.061 0.045 0.122 0.090
B2 | 0.5000 0.4999 | —0.006 0.052 —0.012 0.105
13 0.8 0.8 1000 | o2 | 0.0025 0.0025 0.003 0.003 1.258 1.105
o2 | 0.0025 0.0025 | —0.002 0.003 —0.930 1.149
p | 0.0000 | —0.0003 | —0.027 0.531 - -
B1 | 0.5000 0.4999 | —0.010 0.028 —0.019 0.056
B2 | 0.5000 0.4998 | —0.017 0.029 —0.034 0.057
14 0.8 0.8 5000 | o2 | 0.0025 0.0025 | —0.000 0.001 —0.196 0.387
o3 | 0.0025 0.0025 0.001 0.001 0.495 0.356
p | 0.0000 | —0.0030 | —0.301 0.318 — -
B1 | 0.5000 0.4993 | —0.069 0.058 —0.137 0.115
B2 | 0.5000 0.4998 | —0.018 0.066 —0.037 0.131
15 0.8 0.8 1000 | o2 | 0.0025 0.0025 0.000 0.003 0.026 1.020
o2 | 0.0025 0.0025 0.002 0.002 0.807 0.990
p | 0.5000 0.5005 0.053 0.584 0.105 1.168
B1 | 0.5000 0.4998 | —0.017 0.024 —0.034 0.047
B2 | 0.5000 0.4999 | —0.010 0.025 —0.019 0.051
16 0.8 0.8 5000 | o2 | 0.0025 0.0025 | —0.000 0.001 —0.109 0.494
o3 | 0.0025 0.0025 | —0.001 0.001 —0.425 0.340
p | 0.5000 0.5016 0.161 0.169 0.322 0.338
B1 | 0.5000 0.4982 | —0.182 0.036 —0.363 0.073
B2 | 0.5000 0.4988 | —0.118 0.030 —0.236 0.061
17 0.8 0.8 1000 | o2 | 0.0025 0.0025 0.001 0.002 0.570 0.870
o2 | 0.0025 0.0025 0.003 0.002 1.249 0.966
p | 0.8000 0.8025 0.255 0.253 0.318 0.317
B1 | 0.5000 0.4998 | —0.018 0.031 —0.037 0.062
B2 | 0.5000 0.4999 | —0.013 0.032 —0.027 0.064
18 0.8 0.8 5000 | o2 | 0.0025 0.0025 0.001 0.001 0.354 0.428
o3 | 0.0025 0.0025 0.000 0.001 0.116 0.383
p | 0.8000 0.7992 | —0.081 0.089 —0.101 0.111

Table 3.4: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with §; = 5 and high PSNR; = PSNR,

Scenarios with equal (3’s and high PSNR, = PSNR;

Table 3.4 provides the results when PSNR; is changed to 80%, such that PSNR; and
PSNR, are equal again.

Here, we find the maximum absolute value of the bias for the 3; parameters in the sce-
nario with high correlation and n = 1000, namely 0.18% for 3; and 0.12% for (5. The
absolute values of the estimated biases for o7 and o3 are now both very small with a
maximum absolute value of 0.03% for o2 in scenario 13 and 0.03% for o2 in scenario 17.
The appropriate relative biases are about 1.25%.

All corresponding relative biases for p # 0 are smaller than 0.33%. Again, the largest
absolute value of the relative bias within a scenario is always that of o7 or o2. We frequently
observe that the relative bias gets closer to 0 when n is increased, this especially holds
for the scenarios with medium or high correlation.
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.4965 | —0.345 0.157 —0.690 0.315
B2 | 3.0000 3.0069 0.688 0.842 0.229 0.281
19 0.5 0.5 1000 | o2 | 0.0155 0.0154 | —0.011 0.020 —0.726 1.274
a2 | 0.5630 0.5653 0.234 0.487 0.416 0.864
p | 0.0000 | —0.0092 | —0.917 0.785 - -
B1 | 0.5000 0.4995 | —0.051 0.072 —0.102 0.145
B2 | 3.0000 3.0004 0.040 0.399 0.013 0.133
20 0.5 0.5 5000 | o2 | 0.0155 0.0155 | —0.005 0.006 —0.298 0.378
o3 | 0.5630 0.5651 0.208 0.278 0.370 0.494
p | 0.0000 0.0005 0.054 0.354 — —
B1 | 0.5000 0.4986 | —0.143 0.149 —0.287 0.299
B2 | 3.0000 2.9980 | —0.202 1.044 —0.067 0.348
21 0.5 0.5 1000 | o2 | 0.0155 0.0154 | —0.011 0.021 —0.716 1.359
a2 | 0.5630 0.5624 | —0.059 0.493 —0.105 0.875
p | 0.5000 0.4990 | —0.097 0.499 —0.195 0.997
B1 | 0.5000 0.5004 0.037 0.062 0.075 0.124
B2 | 3.0000 2.9973 | —0.268 0.536 —0.089 0.179
22 0.5 0.5 5000 | o2 | 0.0155 0.0156 0.014 0.007 0.927 0.419
o3 | 0.5630 0.5668 0.384 0.238 0.682 0.423
p | 0.5000 0.5073 0.728 0.284 1.457 0.567
B1 | 0.5000 0.4986 | —0.143 0.135 —0.286 0.271
B2 | 3.0000 2.9933 | —0.669 0.728 —0.223 0.243
23 0.5 0.5 1000 | o2 | 0.0155 0.0154 | —0.010 0.020 —0.623 1.280
a2 | 0.5630 0.5605 | —0.251 0.637 —0.446 1.131
p | 0.8000 0.7982 | —0.184 0.374 —0.230 0.468
B1 | 0.5000 0.4989 | —0.111 0.079 —0.222 0.157
B2 | 3.0000 2.9978 | —0.216 0.501 —0.072 0.167
24 0.5 0.5 5000 | o2 | 0.0155 0.0154 | —0.006 0.009 —0.384 0.563
o3 | 0.5630 0.5612 | —0.176 0.255 —0.313 0.454
p | 0.8000 0.7987 | —0.127 0.084 —0.159 0.105

Table 3.5: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with 5; < 8, and low PSNR; = PSNR,

Scenarios with different 5’s and low PSNR; = PSNR,

So far, we looked at situations where the true 3; parameters are the same. Now we increase
By from 0.5 to 3 and analyze the results, which are provided in Tables 3.5 to 3.8. The
first setting shown in Table 3.5 is comparable to that in Table 3.2, except the fact that
we have different 3; parameters.

We find the maximum absolute value for the bias of both (; and (3, in scenario 19.
The corresponding maximum values for the residual variance parameters are located in
scenario 22, where this value is 0.14% for 0% and 0.38% for o3. The larger value of o3 can
be explained by the fact that the true value of (35 is larger than that of 3; and therefore
the true value of o3 derived from the predefined PSN R, is larger.

For the relative biases, we observe that their absolute values drop for all parameters
when n is increased, except for scenarios 21 and 22. Similarly as we have observed it
before, the largest absolute value of rb(6,,,4) within a scenario belongs to a residual
variance parameter, except for scenario 22, where that of p is greater than that of the
other parameters. Here the estimated relative bias is 1.46%, which is also the maximum

absolute value of all relative bias estimates in the table.
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.5005 0.047 0.162 0.093 0.324
B2 | 3.0000 3.0047 0.472 0.483 0.157 0.161
25 0.5 0.8 1000 | o2 | 0.0155 0.0157 0.022 0.017 1.409 1.105
a2 | 0.0900 0.0901 0.011 0.079 0.124 0.874
p | 0.0000 | —0.0055 | —0.548 0.671 - -
B1 | 0.5000 0.5008 0.078 0.061 0.156 0.121
B2 | 3.0000 2.9965 | —0.346 0.126 —0.115 0.042
26 0.5 0.8 5000 | o2 | 0.0155 0.0154 | —0.008 0.005 —0.518 0.339
o3 | 0.0900 0.0901 0.007 0.033 0.076 0.369
p | 0.0000 | —0.0040 | —0.405 0.309 — -
B1 | 0.5000 0.5011 0.106 0.224 0.212 0.448
B2 | 3.0000 3.0002 0.021 0.469 0.007 0.156
27 0.5 0.8 1000 | o2 | 0.0155 0.0154 | —0.007 0.015 —0.457 0.969
a2 | 0.0900 0.0895 | —0.052 0.069 —0.579 0.765
p | 0.5000 0.4969 | —0.314 0.423 —0.628 0.845
B1 | 0.5000 0.5003 0.032 0.072 0.064 0.144
B2 | 3.0000 3.0010 0.098 0.135 0.033 0.045
28 0.5 0.8 5000 | o2 | 0.0155 0.0155 | —0.003 0.008 —0.166 0.484
o3 | 0.0900 0.0901 0.010 0.046 0.115 0.515
p | 0.5000 0.4990 | —0.103 0.242 —0.206 0.484
B1 | 0.5000 0.4968 | —0.322 0.131 ~0.644 0.261
B2 | 3.0000 2.9967 | —0.333 0.338 —0.111 0.113
29 0.5 0.8 1000 | o2 | 0.0155 0.0154 | —0.010 0.015 —0.639 0.951
a2 | 0.0900 0.0904 0.044 0.092 0.490 1.018
p | 0.8000 0.7960 | —0.404 0.212 —0.505 0.266
B1 | 0.5000 0.5007 0.066 0.059 0.131 0.118
B2 | 3.0000 2.9996 | —0.044 0.182 —0.015 0.061
30 0.5 0.8 5000 | o2 | 0.0155 0.0154 | —0.014 0.006 —0.899 0.371
o3 | 0.0900 0.0898 | —0.019 0.041 —0.216 0.460
p | 0.8000 0.7992 | —0.083 0.087 —0.103 0.109

Table 3.6: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with 6, < 6, and PSNR; < PSNR,

Besides the logical consequences from the change of the true values of 3, and 02 on the
bias, we see no systematic change when we compare the results to those of scenarios 1 to
6. But one can observe that the standard errors of the estimated relative bias stay similar.

Scenarios with different 5’s and different PSNR;

For the scenarios 25 to 30, we change the value of PSN Ry to 80%, so the settings belonging
to Table 3.6 can be compared to the scenarios mentioned in Table 3.3, besides the different
predefinition of 3.

The maximum absolute value of the estimated bias of (3; is located in scenario 29, that
of By in scenario 25. For o7 and o2 we see that the highest absolute values of the bias
are those in scenarios 25 and 27. This means that all four maximum values belong to
scenarios where n = 1000 holds.

When we compare the relative deviation from the true values, we see that the absolute
value of the estimated relative bias within a scenario ranges between 0.21% and 1.41%,
and drops for most scenarios when n is increased.
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.4996 | —0.037 0.074 —0.075 0.148
B2 | 3.0000 2.9992 | —0.076 1.014 —0.025 0.338
31 0.8 0.5 1000 | o2 | 0.0025 0.0025 | —0.002 0.003 —0.878 1.137
a2 | 0.5630 0.5675 0.452 0.522 0.804 0.927
p | 0.0000 0.0025 0.248 0.812 - —
B1 | 0.5000 0.5000 | —0.004 0.027 —0.007 0.055
B2 | 3.0000 3.0070 0.700 0.498 0.233 0.166
32 0.8 0.5 5000 | o2 | 0.0025 0.0025 | —0.001 0.001 —0.241 0.442
o3 | 0.5630 0.5625 | —0.047 0.244 —0.083 0.434
p | 0.0000 | —0.0007 | —0.066 0.274 — —
B1 | 0.5000 0.5008 0.082 0.064 0.164 0.128
B2 | 3.0000 2.9963 | —0.375 0.849 —0.125 0.283
33 0.8 0.5 1000 | o2 | 0.0025 0.0025 0.000 0.003 0.085 1.053
a2 | 0.5630 0.5725 0.946 0.753 1.680 1.338
p | 0.5000 0.5041 0.414 0.598 0.828 1.197
B1 | 0.5000 0.5000 0.001 0.026 0.002 0.053
B2 | 3.0000 2.9979 | —0.207 0.382 —0.069 0.127
34 0.8 0.5 5000 | o2 | 0.0025 0.0025 | —0.001 0.001 —0.557 0.545
o3 | 0.5630 0.5586 | —0.444 0.269 —0.788 0.477
p | 0.5000 0.4982 | —0.178 0.289 —0.357 0.579
B1 | 0.5000 0.4992 | —0.083 0.057 —0.166 0.114
B2 | 3.0000 2.9924 | —0.756 0.892 —0.252 0.297
35 0.8 0.5 1000 | o2 | 0.0025 0.0025 | —0.001 0.002 —0.543 0.957
a2 | 0.5630 0.5565 | —0.652 0.372 —1.158 0.660
p | 0.8000 0.7965 | —0.348 0.165 —0.435 0.206
B1 | 0.5000 0.5003 0.032 0.019 0.064 0.039
B2 | 3.0000 3.0071 0.705 0.416 0.235 0.139
36 0.8 0.5 5000 | o2 | 0.0025 0.0025 | —0.001 0.001 —0.405 0.400
o3 | 0.5630 0.5610 | —0.199 0.201 —0.354 0.357
p | 0.8000 0.7996 | —0.036 0.106 —0.045 0.132

Table 3.7: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with 6; < 6, and PSNR; > PSN R,

For the non-zero values of p we observe relative biases between —0.63% and —0.21%,
whereas we have an estimated bias of —0.55% for n = 1000 and of —0.41% for n = 5000
when Y;; and Yjy are uncorrelated.

For scenarios 31 to 36, we exchange the values of PSNR; and PSN R,. In those scenarios
with 31 = s, it was not necessary to consider this case. But here, we have to distinguish
between the situation when the low PSNR; belongs to the low 3;, and when the low
PSNR; belongs to the high 3;. The results for the latter case are provided in Table 3.7
and can also be compared to those in Table 3.3 where 3; = (35 holds.

We find the maximum absolute values of the estimated bias of both 3; and 35 in scenario

35 with high correlation and n = 5000. The corresponding values for 0% and o3 can be

observed in the scenarios 31 and 33, where n = 1000 holds.

Looking at the maximum absolute value of the relative bias for each scenario in Table 3.7,

we observe values ranging from 0.24% to 1.68%, which all correspond to the parameters

2 2
o] or ;.
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102 10%- 10%- 10%-
Sc. # | PSNRy | PSNR» n 0 Otrue Omod | ¥Omod) | $Omod) | T0Omod) | $r6Omod)
B1 | 0.5000 0.5011 0.112 0.072 0.223 0.144
B2 | 3.0000 3.0006 0.060 0.479 0.020 0.160
37 0.8 0.8 1000 | o2 | 0.0025 0.0025 0.001 0.002 0.393 0.807
a2 | 0.0900 0.0891 | —0.093 0.097 —1.029 1.081
p | 0.0000 0.0064 0.640 0.666 - -
B1 | 0.5000 0.5004 0.037 0.025 0.073 0.051
B2 | 3.0000 3.0019 0.192 0.137 0.064 0.046
38 0.8 0.8 5000 | o2 | 0.0025 0.0025 | —0.001 0.001 —0.226 0.438
o3 | 0.0900 0.0900 0.004 0.041 0.048 0.457
p | 0.0000 | —0.0032 | —0.323 0.282 — -
B1 | 0.5000 0.5007 0.072 0.056 0.144 0.113
B2 | 3.0000 3.0025 0.250 0.355 0.083 0.118
39 0.8 0.8 1000 | o2 | 0.0025 0.0025 | —0.003 0.002 —1.129 0.959
a2 | 0.0900 0.0895 | —0.049 0.073 —0.545 0.812
p | 0.5000 0.4854 | —1.464 0.682 —2.928 1.364
B1 | 0.5000 0.4997 | —0.027 0.033 —0.055 0.065
B2 | 3.0000 2.9990 | —0.105 0.166 —0.035 0.055
40 0.8 0.8 5000 | o2 | 0.0025 0.0025 | —0.001 0.001 —0.533 0.355
o3 | 0.0900 0.0900 | —0.004 0.029 —0.047 0.328
p | 0.5000 0.4988 | —0.118 0.268 —0.237 0.536
B1 | 0.5000 0.5005 0.050 0.054 0.100 0.107
B2 | 3.0000 3.0046 0.458 0.385 0.153 0.128
41 0.8 0.8 1000 | o2 | 0.0025 0.0025 | —0.000 0.003 —0.051 1.213
a2 | 0.0900 0.0899 | —0.014 0.099 —0.154 1.095
p | 0.8000 0.7997 | —0.027 0.302 —0.034 0.377
B1 | 0.5000 0.4998 | —0.017 0.026 —0.034 0.052
B2 | 3.0000 2.9990 | —0.102 0.172 —0.034 0.057
42 0.8 0.8 5000 | o2 | 0.0025 0.0025 | —0.000 0.001 —0.119 0.428
o3 | 0.0900 0.0900 | —0.002 0.036 —0.017 0.403
p | 0.8000 0.7989 | —0.110 0.116 —0.138 0.145

Table 3.8: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and correlations with 6, < 5 and high PSNR; = PSNR,

For the correlation parameters p # 0, we get estimates of the relative bias from —0.44% to
0.83% and in the cases with p = 0, we get the values 0.25% and 0.07% for the estimated
bias.

Scenarios with different (3’s and high PSNR; = PSNR,

The last “block” of scenarios we look at are those when the 3; parameters are different
and both PSN R; values are fixed to 80%. The results of the MCMC parameter estimation
are provided in Table 3.8.

The maximum absolute value of the estimated bias of 3; is 0.11% and located in scenario
37, that of By is 0.46% and belongs to scenario 41. For the 0]2- parameters we find the
corresponding maximums in scenarios 39 and 37. In all four cases, n = 1000 holds.

The estimated relative bias reaches absolute values up to 2.33%, which belongs to param-
eter p and scenario 39. The relative deviations of the p estimates in the other scenarios
are small. For the independence scenarios 37 and 38, we have estimated biases of 0.64%
and —0.32%. Over all parameters, the absolute values of the relative bias in Table 3.8
drop in general when the data size n is decreased.
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Comparison of all scenarios

By looking at the results over all scenarios, one can say that the algorithm provides good
estimates for all parameters in every considered situation. We can see this by looking at
the relative bias. In most scenarios, the relative bias and its standard error have a scale
of 1072 or even 1073, and there are almost as much situations when the relative bias is
positive as when it is negative. The maximum absolute value of the relative bias is only
2.93%, the second largest one is 1.75%. While this maximum can be found in scenario 39
where the data size is n = 1000, we can see that rising the sample size to n = 5000 leads
to a much lower estimated relative bias (see scenario 40).

Overall effect of n

This is an effect we observe for most of the scenarios. There are a few scenarios where the
absolute value of relative bias of one or more parameters is greater for n = 5000 than in
the corresponding scenario with n = 1000, but this may be due to randomness and only
20 replications. The fact that in 73 out of 98 pairs the relative bias is greater for n = 1000
than for n = 5000 and also the higher standard error indicate consistence of the MCMC
estimators. For most of the parameters, the relative bias decreases about 50 — 60%.

Overall effect of PSNR;

Next, we look at the effect of a different signal-to-noise ratio, at first for the case when
this ratio is the same for Y;; and Y;,. When PSN R; increases from 50% to 80%, i. e. when
there are more data points where the signal dominates the noise, one can observe in the
results that the absolute value of the relative bias gets smaller, i. e. the algorithm provides
closer estimates. This especially holds for the B estimates, which is corresponding to what
we expect, as it is easier to estimate the trend parameters when the signal dominates the
noise. For the o and p estimators this effect is less clear, but results suggest the possibility
of an effect on the error behavior. Looking at the standard error of the B-estimates we see
that it clearly drops in every considered scenario when the PSN R; values are increased.
This is a result of the lower values of o?. For the other parameters this error stays
quite similar when the signal-to-noise ratio changes. Averaging over all scenarios with
PSNR; = PSNR, and all parameters, the absolute value of the relative bias drops from
0.38% to 0.29%.

In those scenarios with different PSNR; for Y;; and Y;,, we observe that the 3;-parameter
with higher PSNR; often has a lower absolute value of the relative bias, whereas its
standard error is always smaller than that of the other parameter f;. Also in most of
the cases the relative bias of the JJQ. with the higher PSNR; has a lower absolute value,
but their standard errors hardly differ. This situation inside of a scenario is quite similar
to the situation before, where we compared different scenarios to each other. It is also
interesting to compare scenarios 25 — 30 to scenarios 31 — 36. In all of those scenarios it
holds PSNR; # PSN Ry, but in the first group the lower §; has the smaller PSNR;,
whereas it has the greater PSNR; in the second group. That means we compare for
instance the relative bias of (31 in scenario 25 to that of (5 in scenario 31. We can see
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that the relative biases change, but there is no clear direction: In some cases, the relative
bias goes up, and in other cases it goes down. If we include the standard errors in our
consideration, the the bias change gets less meaningful.

Overall effect of the correlation p

When the true value for the correlation parameter p is increased from 0 via 0.5 to 0.8,
this has no systematic effect on the estimates of the relative bias of 3;. For 0]2-, there also
is no observable overall rise or fall when p is increased. As mentioned before, the standard
error of the relative bias of 3; shows some dependance on the value of JJQ., but we see no
big changes of it when p is increased. Furthermore, also the standard errors of the relative
bias of 0]2- stay at least similar when only the correlation p changes. For the relative bias
of p itself we see a clearer effect: In most comparable scenarios its absolute value drops

when p is increased from 0.5 to 0.8.

Overall effect of the regression parameter 3

At last, we look at the impact of changing the true values of 3. As described before, for
each scenario where (3; = 35 holds, we have another scenario where [3; < (35 holds but all
other parameters stay unchanged. If we compare the relative biases, we see hardly any
relationship between them. In some cases the relative bias rises, in others it drops or stays
approximately the same. However, the standard errors of the relative bias roughly stay
the same when (35 is increased.



Chapter 4

Multivariate regression normal
copula model with a single common
covariate

4.1 Introduction

After we looked intensively at the bivariate case in the last chapter, we now want to
develop and investigate a multivariate model, which allows us to consider for example d
asset classes given the market return. The approach works similarly to that in the bivariate
case, but here the main difficulty is handling the dependence.

4.2 Model definition

We look for a model for a dataset consisting of n response vectors y, = (yi1, - - -, Yia)’ and
n observations zi,...,z, (i € {1,...,n}). Similarly to the bivariate case, we choose a
regression model with correlated, normal distributed errors.

7777

Assume that €; := (g;1,...,61) ~Ny(0,R) iid. Vi=1,...,n.
For given values z1, ..., z4 we define the multivariate model by

Yij=zfj+o0je; (i=1,...n)(G=1,...,d) (4.1)
In the multivariate case, it is helpful to work with vectors and matrices. With the defini-
tions Y; := (Yi1,...,Y), Xi = 21y (where I, is the d-dimensional identity matrix) and

D :=diag(oy,...,04), we can write (4.1) in the form

o4
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4.3 Prior choices

Since we want to consider Bayesian estimates, we have to specify prior distributions for
all our parameters. We choose these similarly to the bivariate case.

Assume all components 3, ..., ; and o, ...,02 and the correlation matrix R are priorly
independent and
B; ~ N (O 52-) independent Vj=1,...,d
j2 ~ InverseGammal(a;, b)) independent Vj =1,...,d

p(R) o< 1 (which is a proper prior)

where s?,...,5%2>0, a,...,aq >0 and by, ..., by > 0 are parameters that can be chosen

subject to the prior information.

As mentioned in Section 3.3, the choice of independent priors has the advantage that a
change on the prior distribution of one parameter does not affect the prior distribution
of the other parameters. For an explanation of the prior choice for 3 and o?, we refer
to Section 3.3. The prior definition of the correlation matrix R is also consistent to the
bivariate case, where we also chose a non-informative prior for the correlation parameter p.
However, it is not clear in higher dimensions that we get a proper prior for the correlation
matrix R. We see this later when we express R by a set of partial correlations.

The prior specification leads to the joint prior density

d
(B,0.p) = H ;) - [ [ p(o?
j=1 j=1
2
(8;) = . eXp{—QB—;Q} Vi=1,...,d

4.4 Likelihood

2

01 0102012 - 0104P1d
2
. 0102012 o s 020¢P2d
Defining > := DRD = ) ,2 ) . we see from (4.2) that
O\04p1d O204p2d - O
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From the model definition (4.1) we know that Y’; is independent of Y for ¢ # k. This
means that the likelihood f(y|3,Y) is given by

n 1 -
H\/m Xp{—§(yi_Xzﬂ)z (yi_Xi/B)}

4.5 Full conditional distribution of 3

fylB, %)

Now we want to determine the full conditional densities of all parameters, at first the full
conditional density of 3.
From the prior specification in (4.1) we know that 8 ~ N (0,T), where

s?2 0 0

0 s2 - 0
I':= _2

0 0 s2

Thus, the full conditional density for 3 is given by

p(BID, R, y) < f(y|B, X)p(B)

o<<f[exp{—< X8, Xiﬂ)})exp{—%ﬂTlﬁ}

o 3 (S5 ) (\(;X;Eixi) )]
§

ocexp{—% (ZyZlX>FF ,3+,3F1,3>

(8 — ) 1(ﬂ—un)}

1

A
v
[——
=i,

X exp

[\Dlr—t

Since X; = z;I;, we can write for ', !:

Il = <Z X{E‘lXZ) +I = (Z 22 ) sS4t =g, n 4t

i=1
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So the expression for p,, can be transformed into

=T, (i XZ-ZlyZ) =T, (i ziZlyZ) =T,x! (i zl-yl-)
i=1 i=1 i=1

=:S.y
—1

= (8.2 TN SIS, = (Sed, + 307 7S,

Hence, the full conditional distribution of 3 is a normal distribution with mean
w, = (S..1, + fol)_lszy and covariance matrix ', = (5., X7 + F’l)_l.

o7

Special case: If we choose s? — oo, i. e. p(B) o 1, then I'"! — 0, which leads to

B‘D7R7yNNd( lszyas 12)

We are now able to construct an Update for 3 for the MCMC algorithm. This is done in

Algorithm 4.1.

Algorithm 4.1 Update for 3

INPUT S.., S.y, 02, T, R™!
OUTPUT New value 3,,.,,

D :=diag(o) with o := (01,...,04)
Yl:=D'R7ID™!

L, =Sy t+1H!

pn =T E71S,,
Draw a sample 3

new from Nd(una Fn)

4.6 Full conditional distribution of o2

The next parameters of interest are the elements o?

j
express the likelihood in terms of
Vij:Y;j—zzﬂj VZzl,HVle,,d

We write v;; := y;; — 2:3;, where y;; are realizations of Y;;.

of o2 = (0%,...,03). Initially, we

From the properties of the multivariate normal distribution and the distribution of Y

specified in (4.3) we know that V; := (Viy,...,Viy)'|8,2 ~ Ny (0,%) Vi=1,...,

that they are independent, such that the likelihood can be expressed as

i 1
Y) exp{ —=v/ X,
(I, 21\/ 27Tddet () p{ 2" }

where v; 1= (v;1,...,0,4) and v := (v, ..., v))".

n and

(4.5)
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We do not calculate the full conditional densities of 0%, ..., 02 directly, but look instead
at the inverse parametrization

1 .
¢ri=— Vi=1,....d
g;

From the prior specification in (4.1) we know that for each 7 = 1,...,d it holds

o3 ~ InverseGamma(ay, b;), so it follows ¢? ~ Gamma(ay,b;). We consider at first only
the full conditional distribution of ¢?, the full conditional distributions of the parameters
@3, .., ¢ are obtained similarly.

For that purpose we want to replace the covariance matrix > = DRD in the likelihood
(4.5) by ¢2,...,¢% and the correlation matrix R. Let p* (j,k = 1,...,d) be the entries
of the inverse correlation matrix R

We see that
S|
det(X) = det(DRD) = det(D) det(R) det(D) = det(R) [ | P (4.6)
j=1 "7
and
d d
VX, = v D'RT' D, = Z Z(D’lfvi)j(D’lvi)kpik
j=1 k=1
d d
= Z Z O P’ Vi Vi (4.7)
j=1 k=1

By inserting (4.6) and (4.7) in the likelihood (4.5), we can derive the full conditional
density of ¢?:

p(&3165, ., 0%, B, Ryy) o< p(¢]) [ [ f(wilB, %)
i=1

bal n \l H ¢2 1 d d '
= T, A (¢7)" " exp{~ b1¢1}H {222¢j¢kp]kvijvik}

1V (2m)d det(R =1 k=1
n d
- 1
oc (@) exp{=bigi} [ ] /o exp {—5 ( oMol 4261y ¢kp1kvilvik> }
i=1 k=2
n d n
n=24, 1
oc (¢7) 7 T exp {—5 <¢%(2bl +p Y vh) + 208 o™y Uil'Uz'k) }
i=1 k=2 i=1
d
n=24, 1
= (1) 2 T exp {—5 <¢%(251 + " Spa1) + 2462 Y ¢k;p1k5'u,1k> }
k=2
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where Sy i == D> vijvy for jk=1,...,d.
=1

2

Performing similar calculations, one gets a proportional expression for the full conditional
density of qﬁ? for an arbitrary index j € {1,...,d}:

n—2 ] 1 .. d .
p(ﬁb?]d)Q_j,,B,R,y) X (¢?)T+a‘7 exp { ~ 35 <¢?(ij + P”Sv,jj) + 2\/;?;¢kpjksv,jk‘> }
k#j
=: gy, (67,0 ;, R, Sy) (4.8)

2
where ¢, := (¢7,..., 07 1,071, ...,03) and Sy := (S jk)jk=1,..d

As in the bivariate case, we use the expression (4.8) to construct a Metropolis-Hastings
step for a2, by sequentially updating all components of ¢* := (¢, ..., ¢2). As proposal

density for each component (b?, j € {1,...,d}, we choose again a normal distribution
centered around the current value (b? with a predefined proposal variance szmmb]_. The

result is presented in Algorithm 4.2.
Due to numerical reasons, we also prefer using the logarithm of g4 to calculate the
acceptance probability. It holds

log (g¢] (Qb?, ¢%]a Ril’ S’U))

d
- (n 5 =+ aﬂ') log(¢7) — % (‘75?(25]‘ + 077 8,55) + 2\/¢7§Z ¢kﬂijv,jk> (4.9)
k=1

k#j

4.7 Full conditional distribution of the correlation
matrix R

4.7.1 Reparametrization of R

At last, we want to determine the full conditional densities of all entries in the correlation
matrix R. For that purpose, we use the “standardized” model residuals

Yij — zi;

0j

Eij = VZzl,HVle,,d

From our model definition (4.1) we know that &; ~ Ny (0, R) Vi =1,...,n and that they
are independent.

For d > 3 we have the problem that not every combination of {p;r€(—1,1), 1<j<k<d}
leads to admissible, i. e. positive definite values of R and ¥. To avoid this, we consider a
d-dimensional D-vine V with constraint set CV .
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Algorithm 4.2 Update for o

. INPUT vy,...,v,, 0% RV = (%) 421 4, a1, ... aq, by, ..., by, 31297“0197%’ ce 31297“0197%
: OUTPUT New value o2,
"FOR j:=1,....d DO
FORk::j,...,d]T?O

Sv,jk = Sv,kj = Z VijVik
i=1

END FOR
: END FOR

Sy = (Sv,jk;)j,k;:l,...,,d
6= (% 2
:FOR j:=1,...,d DO

Draw a sample ¢2,_ . from N (¢?, s

Drop,j ( J PT0P7¢,7')
Calculate logarithm of acceptance probability
lace := max {1Og(g¢]( 127rop7ja ¢2—j7 Rila S’v)) - 1Og(g¢j( ?a ¢2—ja Ril) S’U))a O}
using formula (4.9)
13:  Draw a sample x from Uniform(0,1)
14:  IF 2 < exp{lsec.} THEN
B 6= G
16:  END IF
17 END FOR

/
. 1 1
18: afww = <¢%,...,¢3>

© PSS T AN

ol
o9

With the D-vine we can describe the correlation matrix R by a set of partial correlations
{pirjrin—1 € (-1, 1), 1<j<k<d}

which is called a complete partial correlation specification. This means each partial corre-
lation pjk,j+1.6—1 corresponds to an edge (jk|j +1: &k — 1) in the vine V.

The advantage of this specification is that any arbitrary choice of pji.jt14-1 € (—1,1)
leads to an admissible value of the correlation matrix R. For any d-dimensional regular
vine V there exists a one-to-one correspondence between the set of d-dimensional corre-
lation matrices and the set of partial correlation specifications for the vine (see Bedford
and Cooke (2002), Corollary 7.5).

As we have seen in the preliminaries chapter, the likelihood of g; (i = 1,...,n) can now
be formulated as follows:

f(5i17 cee 75id|Pv)

d d—1 d—1
= [Tt TTTI crisnisriviot (FEijleijrgmia)s Feijaleijsnga)|pi i)
k=1 =1 j=1

(4.10)
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Next, we want to choose a prior density for py, := {pjr;jr1.6-1, 1 < j <k < d}, such that
the resulting distribution of R fits to our prior specification in (4.1).

For that purpose let B(_1 1)(, a, @) denote the density of a beta distributed random vari-
able with equal parameters transformed from (0,1) to (—1,1), i. e

272011 (201)

(D(a))”

Lewandowski, Kurowicka, and Joe (2007) propose the prior density

p(py) = H P (Pjksj+1k—1) (4.12)
(jk|j+1:k—1)eCcy

Biaiy(z,a,a) = (1 — xZ)afl (4.11)

with
d—(k—j—-1)
2

p (ij;jﬂ:kq) = B(—1,1) (ij;jﬂ:kh n—1+ ,n—1+

where 1 > 0.

Furthermore, they show that the resulting prior density of R satisfies
p(R) o (det(R))"™"

By setting the parameter 7 to 1 in the prior specification (4.13), we get our non-informative
prior for R defined in Section 4.3.

For our MCMC algorithm we can now sequentially update all components of p,, by us-
ing MH-steps. For calculating the acceptance probability, we need an expression that
is proportional to the likelihood of pji.jt+1.6—1. To get such an expression, we have two
possibilities.

4.7.2 Calculation with the D-vine likelihood

At first, we can calculate directly the D-vine likelihood of € := (€], ..., €/,)’ which depends
on the copula parameters p,,. Since €1, ..., &, are independent, it follows from (4.10):

flelpy) =] f(eilpy)
=1

n d d—1 d—1
H <P Eik H H Cj i+1]j+1:5+1—1 (F(€ij|€z‘,j+1:j+l—1)> F(ei,j+l|€i,j+1:j+l—1)|pj,j+l\j+1:j+lfl)
i=1k =1 j=1

1d—1

O<H [ ciinivrivimr (F(eijleijingri), Feijpleijogr)lpijrnicicio)
i=1 =1 j=1

=: gp(Py. €) (4.14)

3
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The advantage of this approach is that this expression depends only on all u;; := ®(g;))
with ¢ € {1,...,n} and j € {1,...,d}: By definition, all copula densities do not depend
on the marginal densities and as shown in Aas et al. (2009), also the conditional distri-
bution functions can be calculated using only the copula parameters p,, and the values
of u;;. So one can use any efficient algorithm which calculates D-vine likelihoods resp.
log-likelihoods.

We get a proportional expression for the full conditional density of pjk.jt1.k—1 by

P(Pjkjrik—1lpjrgr1r—1,€) < f(€lPy)P(Pjksjt1:k-1)
d—ktj—1

X gp(pva 6)(1 - p?k:;j-i—l:k;—l) 2
The Metropolis-Hastings step for p,, using the D-vine likelihood is provided in Algorithm
4.3. As proposal density for each element pjj.;11 -1 of py, we use again a normal distribu-
tion with a predefined proposal variance s2,,, piern_ s centered around the current value
of pjk;j+tk—1.

Algorithm 4.3 Update for p,, using the D-vine likelihood
1: INPUT p,, €, {s? 1<j<k<d}

Prop,Pjk;j+1:k—1"
2: OUTPUT New value Prew, v
3: FOR j:=1,...,d DO
4: FORk:=j+1,...,d DO

5: Draw a sample pop from N (pjgjs1:6-1, 8127T0pvpjk;j+1:k—l)

6: Create a copy p,,.py of py, where the element with index (jk;j +1:k—1) is
replaced by Pprop,jk;j+1:k—1"=Pprop

7: Calculate logarithm of acceptance probability

lacc = log(gp(pprop,])? E)) - log(gp(pva E))

d—k+j—
+ I (108(1 = P jkeg1k-1) = 108(1 = 1 1))
using the definition of g, in (4.14)

8: Draw a sample = from Uniform(0,1)
9: IF x < exp{lo.} THEN

10: Py = pprop,V

11: END IF

122 END FOR

13: END FOR

14: pnew,V = Py

4.7.3 Calculation with the normal likelihood

Another possibility to get a proportional expression for the full conditional density of
Pjk;j+1:k—1 is to calculate the correlation matrix R from the vector of partial correlations

py- Recall that &; ~ Ny (0, R), so
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1 1
g;|R) = ex ——nglsi}
HedR) = e p{ 2
and the likelihood of € = (€, ...,€])’ can be written as

n

f(e|R) = Hf(si|R) = (271)_"7ddet(R)*% exp {—% Ze;R_lei} =:gr(R,e) (4.15)

i=1

With this normal likelihood and py» (jj.;+1.6-1) denoting the partial correlation vector py,
without component pjp.jt1:x—1, it holds

p(pjk;jJrlik*l|pV\(jk;j+1:k—1)7 e) o< f(e|R)p(pjkijr1:k—1)
d—k+j—1
o gr(R, €)(1 — P?k;jﬂ:kq) 2
where R is the correlation matrix derived from p,, by using Algorithm 2.4. We summarize
this alternative approach in Algorithm 4.4. In our implementation, we noticed that the

update of Algorithm 4.4 is about 25% faster than the application of the D-vine likelihood
in the update performed by Algorithm 4.3.

Algorithm 4.4 Update for p,, using the normal likelihood
1: INPUT p,, €, {s? 1<j<k<d}

Prop,Pjk:j+1:k—1"
2: OUTPUT New value Prew,v
3: FOR j:=1,...,d DO

4: FOREk:=j+1,...,d DO

5: Draw a sample pop from N (pjgjs1:6-1, 8127T0pvpjk;j+1:k—1)
6: Create a copy p,,.py of py, where the component (jk;j +1:k — 1) is replaced

by pprop,jk;jJrl:kfl::pprop
Get correlation matrices R and Ry, from py, and p,,,, with Algorithm 2.4
8: Calculate logarithm of acceptance probability

lacc = 1Og(gR(Rpropa 5)) - 1Og(gR(R> E))

d—k+j—
+ 5 (108(1 = P kg 1k-1) —108(1 = 1 1))
using the definition of gg in (4.15)

9: Draw a sample = from Uniform(0,1)
10: IF x < exp{lo.} THEN

11: Py = pprop,V

12: END IF

13:  END FOR

14: END FOR

15: pnew,V = Py
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4.8 The multivariate MCMC algorithm

In the previous Sections 4.5 to 4.7 we developed updates for all parameters. With the
derived algorithms, we are now able to construct an MCMC algorithm that samples from
the joint posterior distribution. The result is — as in the bivariate case — a hybrid chain,
since we have a Gibbs step for 3 and Metropolis Hastings steps for o and for the partial
correlations p,, resp. the correlation matrix R. Algorithm 4.5 describes the procedure.

Algorithm 4.5 Multivariate MCMC algorithm

1. INPUT data y, = (yi1, ..., %) and z; withi=1,....,n

2: prior parameters s2,..., s, ai,...,aq, by,...,bq

3: number of MCMC iterations m (resp. size of posterior distribution sample)

4: proposal variances s2., ... ’(S)ZTOP’% and {83,051, 01 <G <k < d}
e 0 0

5: initial values 8¢ ), o2 and Py

6: OUTPUT Samples ,6(1), LB g2 gm) pg,l), e pg,m)

7. 1T ..

8 S, = 0 27

9: Suyi= > ZiY;

10: B:=80, 62:= 020 p, = p§,0)
11: FOR r :=1,...,m DO

12:  Calculate correlation matrix R from p,, using Algorithm 2.4
13:  Calculate inverse R~1

14:  Calculate new value ﬂ(r) =0
15 FORi:=1,...,n DO

16: V;, =Y, — ZZ,B(T)

172 END FOR

18:  Calculate new value 02" := o2 _  from Algorithm 4.2
19: o0?%:=oc*"

20 FORi:=1,...,n DO

21: FOR j:=1,...,d DO

from Algorithm 4.1

new

UI]

22: €ij = o,

2. END FOR

24: g; = (82‘1, RPN >€id)/

25:  END FOR

26 e=(¢el,...,e)

27:  Calculate new value pg )= Prew,y from Algorithm 4.3

or alternatively from Algorithm 4.4

29: END FOR
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4.9 The three dimensional case

In this section, we want to concentrate on d = 3 dimensions. The marginal parameters
B3 and o? can be updated by using the formulas that we derived for the general case.
However, the update of the correlation matrix takes a lot of time, so it makes sense to
look for faster updates if one is only interested in the three dimensional case.

For that purpose, we consider the D-vine V with constraint set CV = {(12), (23), (13|2)}.
Recall that €;|3, X ~ N3 (0,R) Vi=1,...,n.

We can write the likelihood in terms of €; = (g1, €;2,£;3)" in the form

f(&lB, %) = ci2 (Fi (€01) , Fa (€i2) | pr12) co3 (Fa (€4i2) , F3 (€43) | pas)
ccrzp (Fuz (inlen)  Fap (islei) [ps) fi(en) fo(ei) f3(eis) (4.16)

where cia, c23 and ¢33 are Gauss copula densities with parameters pia, pe3 and pis,
which correspond to the respective (partial) correlations of ;.

Fy, F; and F3 denote the distribution functions of €;1, €;9, €;3 and f1, fo and f3 their density
functions.

The conditional distribution function of €;; given ;5 is Fij2 and that of g;3 given ;5 is
Fy)p.

Since €;; ~ N(0,1) Vi=1,...,nVj=1,2,3 we can write (4.16) as

f(&ilB,X) = c12 (P (€ir) , P (i) [p12) c23 (P (€i2) , P (€:3) | p23)
ccigp (Fup (ginlein) By (eisle) [pis) e(en)e(ei)e(eis) (4.17)

where ®(-) denotes the standard normal distribution function and ¢(-) the standard nor-
mal density function.

4.9.1 Full conditional distribution of p;s

Now we want to determine the full conditional density of pis.
As a first step, we perform transformations of the likelihood f (e;, |3, X) defined in (4.17),
such that the resulting expression is proportional to f (g;|3,%) in terms of pis:

f (€i|ﬁ> E)
o C12 (@ (gi1), P (gi2) |p12) 90(51'1)90(52‘22013\2 (Fuj2 (einlein) , Fapp (€islei) |p1se)  (4.18)

g
=:912(€41,€42,p12)

Since ¢12 (€41, €i2, p12) has the form of a bivariate normal density with mean (0,0)" and

P12

covariance matrix
piz 1

), it is equal to the joint density fia (€51, €:2) of £;1 and e;o.
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Thus we get

f (€i|5, Z) x fi2 (€i1, €i2) C13]2 (F1|2 (51'1‘&2) 7F3|2 (51'3‘&2) |013;2)
f12 (5z'1, €i2) fo3 (61‘2, €i3)
N fa (52‘2) N Ja (52‘2) y

=f2(eileir)  =f32(cizlei2)

= g13)2 (€1, P12, P23, P13:2) (4.19)

X €132 (F1|2 (€z‘1|5i2) >F3|2 (€z‘3|5i2) |P13;2)

where fo3 (€52, €:3) denotes the joint density of (g4, €53)" and fij2(€i1|€i2) resp. fs2(€islein)
the conditional density of ;1 resp. €;3 given g;5.

Since

() () (o ) e ()~ ((0): (o 7))

we know from (2.3) that g, |g;2 ~ N7 (p12gia, 1 — p2y) and e;3|e0 ~ N7 (pa3cin, 1 — p33), s0
G13)2 (€:, 12, P23, p13:2) is a bivariate normal density with mean (pize;2, pasciz) and covari-
ance matrix

( 1 —pi, p132v/1 — pPay/1 — P%:s)

/013;2\/1 - P%Q\/l - P%g - P%g
This leads to

f(&ilB, %) o< g13)2 (€1 P12, P23, P13;2)
(2.1) 1

2my/1 — pipn/1 - P%z«:\/ 1—plsy

. exp {_ 1 ((51'1 —p12gi2)® | (i3 — pascin)” _ 2p13;2(6i1 — p12€iz) (€i3 — P235z’2)> }
2( )

+
L= plss L=ty L= 3 V1= i1 - 03y
1 { 1
V1= pi 2(1 - P%3;2) 1—pip)

2 2 2 2
. (ql — 2p12e€i2 + PIocir  2p132(€ir€is — pasir€ia — pr2(Einkis — p23€z~2))> }

\/1—/)%2 \/1_/)%3

X

(4.20)

By setting j = 1, k = 2 and = 1 in the prior definition (4.13) and by using (4.11), we
get the prior density for pio:

2-23F1p(2- 3
()

=

plora) = L- ) (1= ) (4.21)
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With (4.20) and the prior density (4.21) we can derive the full conditional density of pis:
p(p12|pas, pra2, 07, B,y) o p(p12) (H f (&, B, E))
i=1

n
o p(p12) (H 91312 (&3, P12, P23, P13;2)>

i=1
1" 1 1
(1 - o) ___ﬂm{_
i[[l v1- P%Q 2(1 - P%3;2)\/ 1- P%Q
] <6121 — 2p12€51842 + P%25122 . 2P13;2(5i15i3 — P23Ei1&i2 — p12(5i25i3 - ,0235122))> }

\/1_/)%2 \/1_/)%3

n n n

2 2 2

. 1 D€ —2p12 )] Eilgi2 + pia ) Ein
=1 =1 =1

=(1-p%) % exp{ —
(=7 2(1 = piz0)V/1 = Pl V1-pi

n n n n
2p132( > €in€iz — pas 2 €i1€i2 — p12( X Ei2ciz — pa3 Y €5))
=1 =1 =1 =1

V11— p3

By defining Se ji == > eijei Vi, k € {1,2,3}, we get
i=1

p(p12lp23, p1si2. 02, B, y)
ol 1 Se,11 — 2p125¢,12 + PoSe22
<) T - [ 12 4 S
2(1 = plsp)V/1 = pi V1-pt
 2p132(Sen3 — p23Se 2 — p12(Se23 — p23Ss,22))> }
V1-p3s
Note that the expression above depends only on the parameters pss, p13.2 and on the
statistics Se ji, which can be calculated fast.

4.9.2 Full conditional distribution of po3

To obtain a proportional expression of the full conditional density of py3, we can perform
the same steps as in the previous derivation. This results in

p(p2slpras p132, 02, B, y)
9 \— 25t 1 Se.33 — 2p23Se,23 + p335¢,22
2(1 = pizp) V1 — P V1= p3

 2p132(Se13 — p125e,23 — p23(Se12 — p1255,22))> }

v1- P%2
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4.9.3 Full conditional distribution of p;3.

At last, we determine the full conditional density of pis2. As before, we start with a
transformation of the likelihood f (&;|3,%) defined in (4.17) that is proportional to the
parameter of interest P13:2°

[ (&8, %) o cizp (Fipp (enrlein) , Fapp (eislein) |p132)
f12<5i17€i2> f23(€i2|5i3)

o fa(gi2) N fo(€i2) y

Vv VvV
=fij2(cirleiz) =f3p2(cizleia)

o crzpp (Fij2 (Eilein)  Fapa (€i3lei2) [prsi2)

= g13)2 (Ez‘, P12, P23, 013;2)

where we already know the expression gisjs (€5, p12, P23, p13;2) from (4.19). Note that
fi2(gi1, €i2) and foz(€42, €i3) do depend on py2 and pa3, but not on pi3.0.

From the prior specification (4.13) with j = 1, k = 3 and n = 1 and from (4.11) we receive

2-2141P(2. 1)
(0(1))*

so we have an a non-informative prior for p;s.o.

p(p1s2) = (1-phy) o1

Thus, it follows that

n

p(p13;2lp12, pas, 0%, B,y) o p(piz:2) <Hf €i,3,%) ) o [ [ 91312 (6ir pr2, P23, pra2)
i=1

n

~ 1 exp {_2( 1 ; <(5i1 — p1egia)® | (€i3 — pasein)®

—_— +
— 3
i=14/1— p%3;2 1 —piso

1—pl 1—p3s

2p1z2(ein — progiz)(€ig — P235i2)> }
P23

\/1 - P12\/1
1 Z €2 — 2p12 Z Eil€iz2 + pla Z €%

2(1 - P%z«z;z) 1 — 1y

oc (1= plgp) "2 exp § —

n n n

2 2 2
> €3 — 2p23 ) €ia€i3 + Pa3 ) Ein
I i=1 i=1 i=1

1 — p3,

2p13: 2(2 Ei1€i3 — P23 Z Ei1€i2 — Plz(Z €i2€i3 — P23 Z £%))
=1 =1

\/1_P12\/1_P23
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Finally, we use again the notations Se jr = Y €56 Vi, k € {1,2,3} and get
i=1

p(p13:2p12, p23, 02, B, )

n 1 Se11 — 2p125e,12 + p395e22
X (1 - p%3;2) 2 exp _2(1 — 2 ( < 1 —5 B -
013;2) P12
+Ss,33 — 2023523 + P335¢ 22  2p13,2(Se13 — p125e,23 — P235e12 + P12P235€,22)
L= pi V1= piv/1 =03

4.10 Small sample performance using the multivari-
ate MCMC algorithm for Bayesian inference

The algorithm was tested for different true parameter values with simulated data sets of
different data sizes. For three dimensions, the results are provided in the appendix. The
algorithm was also checked on higher dimensions, especially for dimension 12, since this
dimension is relevant for our application in chapter 5.

The results were always acceptable and comparable to the bivariate case. However, we
omit an extensive analysis of results here and refer to Section 3.7.



Chapter 5

Application: U.S. industrial returns

5.1 Data description

In this chapter we want to apply the MCMC algorithm for the multivariate regression
normal copula model to real data. Our data consists of monthly excess returns of 12
different U.S. industrial portfolios such as manufacturing, energy or healthcare, and of
the market return from July 1926 to December 2007, making a total of 978 observations.
The returns were constructed by Kenneth R. French and sourced from the Wharton Data
Service. With excess returns we mean that the risk-free rate is subtracted from each
portfolio return and the market return.

To identify each portfolio, we use different symbols. All considered industrial returns and
the corresponding portfolio symbols are listed in Table 5.1.

In accordance to our notation in the previous chapter, we denote the excess return of
portfolio j € {1,...,12} at time ¢ € {1,...978} by v;;, and the market return at the same
time as z;. However, as we later change the order of the portfolios, we prefer to use the
symbols N, D, etc. instead of the indices 1,...,12. For example, y;y denotes the return
of the Consumer Non-Durables industry at time ¢ € {1,...,978}. As scale, we use per
cent values.

At first, we look at the summary statistics of the monthly industrial returns and the
market return given in per cent values in Table 5.2. One sees that most industry returns
are in a range of —30 to 40 and that their means are positive. The quartiles also suggest
a non symmetric distribution with positive skewness.

The impression of a skewed distribution for most portfolio returns is confirmed by the
estimates of the centralized moments provided in Table 5.3. Besides the positive skewness
we also see that estimated variance and estimated excess kurtosis differ clearly from each
other. A high variance may result from a high leverage of the market return (i.e. high
$3;) or a high deviation from the leveraged market return (i. e. high ¢7). With our model,
we will be able to distinguish between these effects and additionally include correlation
between residuals.

70
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Table 5.1: Investigated industrial portfolios and their abbreviation

‘ Symbol ‘ Description / Type of industry ‘

Consumer Non-Durables

Consumer Durables

Manufactoring

Energy

Chemicals

Business Equipment

Telecommunications

Utilities

Shops

Healthcare

Money

Qler| T w| N W| Q== D] =

Other

‘ Min. ‘ 1st Qu. ‘ Median ‘ Mean ‘ 3rd Qu. ‘ Max. ‘

2 -29.04 -0.21 0.97 | 0.65 3.66 | 38.27
yin | -24.51 -0.16 0.80 | 0.69 3.40 | 34.31
yip | -34.81 -0.30 0.70 | 0.80 4.48 | 79.61
Yine | -29.15 -0.24 1.19 | 0.75 4.06 | 60.14
yie | -26.01 -0.25 0.65| 0.80 4.25 | 33.47
yic | -31.41 -0.23 0.78 | 0.76 4.04 | 48.88
yip | -34.64 -0.32 0.90 | 0.82 4.86 | 58.47
yir | -21.59 -0.16 0.68 | 0.55 2.76 | 28.13
yiv | -32.99 -0.20 0.76 | 0.61 3.27 | 43.13
yis | -30.21 -0.25 0.73 | 0.68 3.76 | 36.95
Yim | -34.80 -0.22 0.74] 0.79 3.82 | 38.56
Yis | -39.90 -0.23 0.85| 0.77 4.15 | 59.82
yio | -31.19 -0.27 0.73 | 0.56 4.06 | 58.41

Table 5.2: Summary statistics of portfolio excess returns
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‘ ‘ est. variance ‘ est. skewness ‘ est. kurtosis

72

Z; 29.3 0.22 7.95
Yin 22.0 -0.01 5.90
YiD 57.9 1.25 15.48
Yint 45.6 1.12 13.35
Vie 35.7 0.26 3.24
Yic 34.4 0.49 8.88
YiT 20.9 0.07 3.37
Yis 34.8 -0.00 5.49
Yirt 33.4 0.18 7.18
Yis 46.8 0.66 12.31
Yio 44.7 0.95 12.88

Table 5.3: Estimates of variance, skewness and (excess) kurtosis for the excess market
return and the industrial portfolio returns

To get a further impression of the distribution of the excess market return, we look at its
time series plot (Figure 5.1). We see that there is no clear trend, and that the volatility
varies over time. Relatively large deviations from the mean can be observed around index
40 which corresponds to the Great Depression commencing in 1929 and the following
economic recovery, around the beginning of the Second World War and at the time of the
“Black Monday” in October 1987.

However, we are not interested in the distribution of the market return itself, but on
its effect on the industrial portfolio returns. The strong dependence between the market
return and the industrial returns can be observed by looking at the time series plots
of all portfolio returns (see Figure 5.2). This apparently strong dependence suggests an
application of the capital asset pricing model, i.e. a multivariate regression model with
one common covariate.

Before we run the MCMC algorithm, we use the marginal estimators
; ZiYij '_1(%]' - Ziﬁj(-mar))Q

mar 2(mar [ .
BJ( )= - and O'j( )= w— (j=1,...,12)
>z
i=1

to get residuals of the form

(mar)
(mar) | yij - Ziﬁj
ij T 2(mar)
o

J

(j=1,...,12)
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Figure 5.1: Time series plot of the excess market return

Using these residuals and the marginal estimates, we are able to calculate further quan-
tities in the following Table 5.4 to learn more about the dataset. For each Portfolio index
Jj€{1,...,12}, we get besides the empirical standard deviation

(mar) | 2(mar)
J ’ 9;

an estimate of PSN R;, which tells us how much of the data given the marginal estimates
for 3; and 0]2- has a signal-to-noise ratio larger than 2.

Finally, we calculated for each portfolio 7 € {1,...,12} the goodness of fit measure EJQ,
which is defined by

2 . =1
== (5.1)
Z:lyi]

Note that this definition differs from the frequently used coefficient of determination R?,
since no intercept term is included in our model.

The marginal estimates are provided in Table 5.4. As we can see, the estimates for the
regression parameters 3; and the residual variances JJQ. clearly differ among the portfolios.
However, the values in the PSN R; column show that the signal-to-noise ratio suggested
by the marginal estimation is often smaller 2, which means that the noise dominates the
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Figure 5.2: Time series plots of the industrial portfolios excess returns
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Portfolio | ™" | o™ | o™ | PSNR™ in % | R

]

N 0.77 5.02 2.24 19.02 | 0.78
D 1.22 14.43 3.80 16.05 | 0.75
M 1.19 4.08 2.02 44.58 | 0.91
E 0.86 | 14.41 3.80 6.85 | 0.60
C 0.98 6.55 2.56 23.21 | 0.81
B 1.29 | 10.52 3.24 25.26 | 0.83
T 0.64 8.94 2.99 6.34 | 0.58
U 0.81 13.46 3.67 6.34 | 0.59
S 0.96 7.83 2.80 19.22 | 0.78
H 0.87 | 11.80 3.44 9.00 | 0.65
$ 1.16 7.53 2.74 28.63 | 0.84
0 1.13 6.79 2.61 30.47 | 0.85

Table 5.4: Marginal estimates of 3;, JJQ., o; and PSNR; as well as the goodness of fit

measure EJQ for each portfolio

signal, which could lead to imprecise [3; estimates. When estimating those parameters
with our MCMC approach, we can take a closer look on the accuracy of the estimates. In
contrast to the low PN SR; values, the high RJZ- values of 60 to 91 per cent of the marginal
regressions suggest that a high fraction of the total variance of y;; is explained by the
values of §; and z;.

The next subject of interest is the distribution of the standardized residuals, which we
assume to be normal in our model. We take the standardized residuals 55;”‘”“) resulting
from the marginal estimates and create QQ-plots shown in Figure 5.1 to find out more
about their distribution. These plots show that the distribution of the residuals has heavier
tails than the normal distribution, especially for portfolios M, C, $ and O. However, the
normal model is suitable to estimate the regression parameters, residual variances and
the residual correlations. An alternative approach to our model is to assume a Student’s
t-distribution as marginal distribution for the standardized residuals €;;, as it is done in
Pitt et al. (2006). We consider our model as a first model.

Another interesting point to analyze is if there is any autocorrelation in the residuals.
In Figure 5.4 we therefore show plots of the empirical auto correlation function for the
residuals of each portfolio and until a lag of 30. These plots propose that there is no
correlation between portfolio returns at different points in time. This is what we expect, as
it is the result of the unpredictability of excess returns: If there was a high autocorrelation
between the residuals of the portfolio excess return, one could use the current return to
predict whether the portfolio will outperform the market return in the next period.

The picture changes if one looks at the squares of the estimated residuals and their
autocorrelation plots, as provided in Figure 5.5. One can see significant autocorrelation
for almost all portfolio returns and for many lags.
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Emp. residual correlation matrix

S U T B C E M D N

H

Figure 5.6: Visualization of the empirical residual correlation matrix R(™")

This suggests that one could also extend our model with fixed variance for all time points
to a GARCH process.

Note that we have so far ignored the dependence between the portfolios besides the
common covariate z;. We will do this later in this chapter when we run MCMC algo-
rithms. However, by using marginal estimates and the resulting residuals 55}”0”) for all
i€ {1,...,978}, j € {1,...,12} we can calculate an empirical residual correlation ma-
trix R(me). We perform this with the R routine cor().

We illustrate the estimated correlation matrix in the form of an image plot in Figure
5.6. Each entry in the image plots consists of a correlation and a color. The correlation
belongs to the portfolios that can be found on the two axes, while a dark color marks a
comparatively strong correlation (positive or negative) and a bright color marks a corre-
lation close to 0. As we can see, there is no correlation whose absolute value is greater
0.5, which shows that a large fraction of the dependency between portfolio returns as ob-
served in the time series plot can be explained by the market return. We see that from a
total of 66 correlations, there are 7 with an absolute value greater 0.3 and 18 correlations
between —0.05 and 0.05. The highest dependency can be observed between the residuals
of portfolios Chemicals C' and Consumer Non-Durables N, whose estimated correlation
is 0.41.
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5.2 Arranging the data in three different D-vines

To construct a D-vine structure for our partial correlation specification, we need to choose
an order of the 12 Portfolio indices whose unordered set will be referred to as

I={N,D,M,E,C,B,TU,S,H,S$,O0}.

The chosen order of Z then determines the first tree of the D-vine, which itself determines
the other trees of the D-vine. As there are 12! possible orders of the portfolio index set and
each reverse order leads to the same D-vine, there are 172' = 239500800 different D-vines.
We choose 3 of them.

5.2.1 1st Order: Original order

In the first order, we just keep the original order of the dataset. So in the first D-vine,
the first tree is

N-D-M-E-C-B-T-U-S-H-%-0

5.2.2 2nd Order: Put strongest correlations on top

In Section 5.1, we used marginal estimators of 3 and o to get a first estimator of the cor-
relation matrix, which we called R, We can use now these matrix entries to construct
a D-vine, such that the edges of the first tree are correlations whose estimated absolute
value is as large as possible. Then we expect that the absolute values of the estimated
correlations from the MCMC algorithm in the first tree will be relatively large. In addition
we hope that the partial correlations in the following trees may be close to 0 and therefore
can be omitted in a reduced model.

We build the first tree of our D-vine by sequentially adding an edge that corresponds to
the strongest possible of all correlations that are left without violating the D-vine rules.
The lower triangle of our correlation matrix, as presented in Figure 5.6, is given in detail
in Table 5.5. For readability, we omitted the upper triangle of this symmetric matrix.

The strongest correlations are psy = 0.413, psy = 0.367, pgny = 0.332, ppp = —0.328,
prav = —0.325 and psp = —0.324.

If we construct a graph of those correlations, such that every correlation corresponds to
an edge of its indices, we get

B-E-S-N-H

$-U
T-M

This graph consisting of three components is meant to be a part of the first tree of our
D-vine.
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[ Portf. || N | D ] M | E ] C | B ] T | U | S| H | $] O]
N 1.00
D -0.03 | 1.00
M -0.01 | 0.26 1.00
E -0.19 | -0.17 | -0.07 1.00
(o] 0.17 | 0.20 0.25 | -0.07 | 1.00
B -0.32 | 0.01 0.01 | -0.33 | -0.12 | 1.00
T 0.01 | -0.12 | -0.33 | -0.21 | -0.12 | -0.06 | 1.00
U 0.12 | -0.07 | -0.20 0.06 | -0.01 | -0.22 | 0.13 | 1.00
S 0.41 | 0.15 | -0.05 | -0.32 | 0.03 | -0.08 | 0.01 | -0.06 | 1.00
H 0.33 | -0.16 | -0.15 | -0.14 | 0.14 | -0.04 | -0.02 | 0.03 | 0.11 1.00
$ 021 | 001 | -0.03 | -0.10 | -0.03 | -0.22 | 0.05 | 0.37 | 0.14 | 0.09 | 1.00
o] 0.00 | -0.05 0.29 | -0.09 | -0.15 | -0.13 | -0.11 | -0.06 | -0.05 | -0.12 | 0.10 | 1.00

Table 5.5: Lower triangle of estimated correlation matrix R(™"); strongest empirical cor-
relations are printed as bold values

[ Portf. [ D] M] C] B T] U] H] §$] o]
D 1.00
M 0.26 1.00
C 0.20 0.25 | 1.00
B 0.01 0.01 | -0.12 | 1.00
T -0.12 | (-0.33) [ -0.12 | -0.06 | 1.00
U -0.07 | -0.20 [ -0.01 [ -0.22 | 0.13 1.00
H -0.16 | -0.I5 [ 0.14 | -0.04 | -0.02 | 0.03 | 1.00
$ 0.0l | -0.03 [ -0.03 | -0.22 | 0.05 | (0.37) | 0.09 | 1.00
0 -0.05 0.29 | -0.15 | -0.13 | -0.11 | -0.06 | -0.12 [ 0.10 | 1.00

Table 5.6: Lower triangle of the submatrix of the estimated correlation matrix R(™")

without {E, S, N}; already used correlations are printed in brackets, the next strongest
empirical correlations are printed as bold values

The next strongest correlation would be ppy = —0.320, but if we add an edge {B, N}
to our graph, the vertex N would have three edges, which is not allowed for a D-vine.
Since also the vertices E and S already have two edges, the search for the next strongest
correlation is bounded on the submatrix of R shown in Table 5.6. All correlations that
have already been used are printed in brackets (with E, S, N deleted).

The next strongest correlations in the submatrix are pors = 0.294, pyp = 0.260,
pcv = 0.246 and pgp = —0.223. After adding an edge {MO} to our graph, M is al-
ready connected to two vertices and therefore only another edge {$B} can be added to
the graph. So far, we have expended our graph to

U-$-B-E-S-N-H
T-M-0

Now M, $ and B are vertices with two edges, so we may remove all rows and columns of
the submatrix of Table 5.6 corresponding to these three covariables, which means that we
get a new submatrix of the correlation matrix as provided in Table 5.7. From that matrix,
the strongest correlations are pop = 0.197 and pyp = —0.156, so our graph expands to

U-$-B-E-S-N-H-D-C
T-M-0
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[ Portf. | D ] C] T] U] H] O]
D 1.00
C 0.20 | 1.00
T -0.12 | -0.12 | 1.00
U -0.07 | -0.01 [ 0.13 | 1.00
H -0.16 | 0.14 [ -0.02 | 0.03 | 1.00
9] -0.05 | -0.15 | -0.11 | -0.06 | -0.12 | 1.00

Table 5.7: Lower triangle of the submatrix of the estimated correlation matrix R(™e")
without {E, S, N, M,$, B}; the next strongest empirical correlations are printed as bold
values

The next strongest correlation is poc = —0.147, so we can complete our graph into a
tree by connecting the vertices C' and O. This resulting tree is chosen as first tree of the
second D-vine construction. It is

U-$-B-E-S-N-H-D-C-0O0-M-T

5.2.3 3rd Order: Sequentially choose minimal partial correla-
tions

In the 3rd order, we try to find a D-vine which leads to zero partial correlations in
the last trees of the vine. These partial correlations have a conditioned set with many
covariables and therefore their corresponding likelihoods are harder to calculate by pair-
copula algorithms. We again use the estimated correlation matrix R from the marginal
estimates as basis for our choosing decisions, hoping that if some partial correlations
derived by that empirical matrix are close to zero, this also holds for the corresponding
partial correlations resulting from the MCMC algorithm. With this estimated covariance
matrix, we are now able to calculate estimates for all partial correlations. We start by
searching for covariables with indices j,k € Z ={N,D,M,E,C,B,T,U, S, H,$,0} , such
that that the absolute value of the partial correlation

DjkIT\{jik}

is minimal.

We calculate all possible 66 partial correlations of that form and their absolute values.
Table 5.8 shows the 26 lowest of them, and the remaining 40 partial correlations have an
absolute value greater 0.1.

As the minimal absolute partial correlation is that of B and M given all others, we choose
B as first node and M as last node of the first tree of the D-vine. This means the first
tree is now

B—-...— M
and the last tree of the vine, i. e. the 11th tree, has been determined. The dots in the

middle represent the remaining nodes and their adjacent edges of the first tree, which
have not been assigned yet.
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Rank | j | k | [pjwrginl Rank | j | k | [pjmzgnl
I B[ M|  0.00027 14 [ H[S]| 005288
2 E|U | 00037 15 | U [H]| 005299
3 B | H| 001430 16 | 9 |H| 0058705
i D $ | 001882 7 | N|U| 006709
5 T $| 001925 I8 | C [T | 007256
6 N[O 001968 19 | S[$] 007301
7 DU | 002035 20 |U|O| 007431
8 C U 002262 21 | C [ S| 0.07476
9 M|S | 00233 22 | M| E| 007358
10 | N| M| 004257 23 | $ |O]| 008121
11| T | U] 00403 21 | C | S| 008665
12 | N| T | 00489% 25 | T | S| 009485
13 | N|$§| 005131 26 | N|C| 009650

Table 5.8: All estimated partial correlations of the form p; i1\ () With absolute value less
than 0.1, sorted by absolute value

Next, we want to assign covariables to the two next nodes of the first tree. We choose
these covariables in a way that the sum of the absolute values of the partial correlations
belonging to the 10th tree is minimal. That means we have to minimize the sum

B yT\(BM}| F | P, M| T\ [0, BY |

The results of the lowest 10 possible sums are given in Table 5.9. So in our sense the best
choice is H and $, such that the first tree now looks like

B-%$-.-H-M

The next two covariates are chosen such that the two partial correlations determined by
the two outer nodes of the 9th tree are as close to zero as possible, which means we have
to minimize the sum

\OByz\(BM, Y| F | P, M\ (0, B,8} | (5.2)

Note that the inner partial correlation in the 9th tree is independent of the choice of [
and m, but depends on on the indices that we have already assigned, so it does not have
to be included in the minimization.

Table 5.10 shows the 5 combinations of partial correlations of the form (5.2) with lowest
sum of absolute values.
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Rank | 1 | ppy. | m | pmmy | 1011 + [Py ]
1 H|-0.015| $ | 0.024 0.039
2 H | -0.015 | N | 0.045 0.059
3 H | -0.015 | E | -0.091 0.105
4 H | -0.015] S |-0.103 0.118
) S 1-0.102 | $ | 0.024 0.126
6 D |-0.110 | $ | 0.024 0.134
7 U |-0.121 | $ | 0.024 0.145
8 S 1-0.102 | N | 0.045 0.147
9 D | -0.110 | N | 0.045 0.154
10 U |-0.121 | N | 0.045 0.166

Table 5.9: The 10 combinations of estimated partial correlations that are relevant for
determining the 10th tree with lowest sum of absolute values

We see that the best combination is pp g7\ (8,501} and py,ar7\(N,M,B,5}, Which is why we
add N and S to the first tree of the vine, which looks now as follows:

B-$-N—-..-S-H-M

We go on with that scheme, always minimizing the sum of the absolute values of the two
partial correlations determined by the two outer nodes of the current tree, as all partial
correlations determined by inner points are independent of the next choices.

The next best results are shown in Table 5.11. These results suggest that we take as next
covariables F¥ and U, such that the first tree is now

B-$-N-FE-..-U-S-H-M

and the 8th tree has been determined.

A look at the results for the next step, as shown in Table 5.12, motivates us to add D
and C' to the first tree, which is now

B-$-N-FE-D-.-C-U-S-H-M

At last, only two possible choices are left, which are specified in Table 5.13. The best
choice of the two leads finally to the complete first tree of the form
B-$-N-FE-D-T-0-C-U-S-H-M

such that finally all trees of the D-vine are determined.
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Rank | I | ppy. | m | pmmy | |PBa:| + |Pmmy ]
1 S 1-0.10 | N | 0.047 0.15
2 D | -0.11 | N | 0.047 0.16
3 U|-0.12 | N | 0.047 0.17
4 S 1-0.10 | £ | -0.092 0.19
5} D |-0.11 | E | -0.092 0.20

Table 5.10: The 5 combinations of estimated partial correlations that are relevant for
determining the 9th tree with lowest sum of absolute values

Rank | 1 | ppuy. | m | pmmy | 1P| + [Py ]
1 U |-0.11| E | -0.093 0.20
2 D |-0.12 | E | -0.093 0.22
3 C 1-0.16 | £ | -0.093 0.25
4 D |-0.12 | U | -0.150 0.27
) U|-011| D | 0.178 0.29

Table 5.11: The 5 combinations of estimated partial correlations that are relevant for
determining the 8th tree with lowest sum of absolute values

Rank | I | ppy. | m | pm,m) |ﬁ37”.| + |pAm7M\.|
1 C |-016 | D 0.20 0.35
2 D |-012| T | -0.26 0.37
3 D|-012 | C 0.27 0.39
4 C|1-016|T | -0.26 0.41
5! T1-023|D 0.20 0.43

Table 5.12: The 5 combinations of estimated partial correlations that are relevant for
determining the 7th tree with lowest sum of absolute values

Rank | 1 | pgu | m | P | 9B | + |Pmona]
1 O|-021|T -0.27 0.49
2 T1]-0211|0 0.30 0.52

Table 5.13: The two estimated partial correlations relevant for determining the 6th tree
and their sum of absolute values



CHAPTER 5. APPLICATION: U.S. INDUSTRIAL RETURNS 86

5.3 Results

We run our MCMC algorithm for each D-vine construction. As initial values for 8 and
o? we take the marginal estimators that we have calculated in our data description. For
the partial correlations, we use the empirical correlation matrix that we have calculated
before and used to select the order in the 2nd and the 3rd D-vine construction. We use
the definition of the partial correlation, but take our empirical correlation matrix instead
of the true correlation matrix. Thus, we get estimates for every partial correlation in each

D-vine construction and use them as initial values.

We choose the same prior parameters as in the simulations in the previous chapters, i.e.
we take 3? := 100000 Vj € {1,...,12} for the prior variance of 3 and specify the prior
parameters of JJQ. toa; := 1 and b; = 0.001 for every j € {1,...,12}. The prior distribution
of the partial correlation parameters was already specificated in detail in the previous
chapter and we leave it unchanged, that means we have a prior uniform distribution for
the covariance matrix R which results from each partial correlation specification.

Again, we determine the proposal variance of each parameter by pilot runs, such that
the acceptance rate is greater than 20% and resulting autocorrelations die down after up
to 30 iterations. On the next pages, we discuss the results, which were calculated with
12000 MCMC iterations, a burn in period of 2000 and a subsample of the remaining chain
consisting of every 30th iteration. This means that all estimates and quantities are based
on 334 MCMC iterations.

At first, we compare the results for the marginal parameters 3 and o2, as provided in
Tables 5.14 to 5.16. In these tables, we use the following notation: # denotes the current
parameter of interest, whose estimates are provided in the corresponding row. éa-lOO%
denotes the empirical « - 100%-quantile out of the 334 estimates for the parameter 6 and
for a - 100% € {2.5%, 5%, 95%,97.5%}. Omea denotes the empirical median, 6 the mean
and 6,4 the estimated posterior mode of §. The minimum of the subsample is denoted by
Qmm, the maximum by Qmam The estimator QIFM corresponds to the marginal estimates
B™) and o2(mar) which we presented in Section 5.1 and used as initial values for 3 and
o?. At last, we added the mean acceptance rate p,.. which is 1 for all 3; parameters, since
they are updated with a Gibbs sampler and not by an MH-step.

The results in Tables 5.14 to 5.16 are quite similar for all three vine orders. The mode
estimates hardly differ, the greatest deviations can be observed on the estimates for high
values of 0]2-. For instance, the greatest absolute deviation between posterior mode es-
timates can be observed for the residual variance o%, where the estimate of the first
construction is 11.719, of the second 12.001 and of the third 11.905. The corresponding
marginal estimator is 11.803. However, there is no case where the estimator émOd of one
construction is outside the interval (é5%, é%%) of another constrution. We also observe that
the differences between the posterior modes and the marginal estimators denoted in the
IFM-column are quite small. To conclude, the mean acceptance rate of the o>-Parameters

is about 30%.
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L0 | Omin | 0259 05% Omed 0 095% | 0o97.5% Omaz Omod | O1rmM | Pacc
BN 0.733 0.746 0.748 0.768 0.768 0.788 0.793 0.802 0.768 0.767 1.000
1675 1.157 1.169 1.178 1.219 1.217 1.253 1.258 1.273 1.220 1.218 1.000
B 1.152 1.168 1.171 1.188 1.189 1.209 1.212 1.224 1.187 1.189 1.000
BE 0.807 0.817 0.822 0.859 0.859 0.899 0.905 0.943 0.860 0.858 1.000
Bc 0.935 0.946 0.952 0.979 0.979 1.005 1.008 1.025 0.979 0.978 1.000
BB 1.237 1.254 1.261 1.291 1.292 1.325 1.329 1.336 1.291 1.294 1.000
Bt 0.584 0.607 0.614 0.640 0.642 0.673 0.679 0.692 0.638 0.643 1.000
Bu 0.756 0.767 0.771 0.806 0.806 0.841 0.850 0.862 0.807 0.805 1.000
Bs 0.916 0.926 0.932 0.960 0.960 0.987 0.994 1.013 0.960 0.961 1.000
By 0.820 0.833 0.835 0.866 0.866 0.900 0.903 0.927 0.864 0.865 1.000
Bs 1.107 1.124 1.132 1.158 1.158 1.183 1.188 1.208 1.157 1.158 1.000
Bo 1.086 1.108 1.112 1.135 1.136 1.161 1.168 1.177 1.135 1.135 1.000
4.442 4.618 4.680 5.046 5.047 5.417 5.476 5.671 5.051 5.017 0.286
12.747 13.339 13.516 14.550 14.571 15.587 15.882 16.313 14.479 14.427 0.311
3.525 3.775 3.807 4.107 4.118 4.449 4.495 4.652 4.097 4.083 0.283
12.668 13.263 13.376 14.392 14.437 15.541 15.675 16.158 14.407 14.412 0.279
5.908 6.033 6.126 6.586 6.592 7.090 7.133 7.566 6.578 6.548 0.304
9.203 9.725 9.855 10.581 10.577 11.292 11.509 12.023 10.601 10.521 0.285
8.075 8.279 8.353 8.997 9.025 9.757 9.813 10.363 8.961 8.942 0.300
12.082 12.424 12.563 13.527 13.558 14.667 14.874 15.441 13.512 13.456 0.295
6.824 7.142 7.268 7.907 7.891 8.496 8.584 9.076 7.926 7.829 0.292
10.596 10.835 10.981 11.784 11.837 12.892 13.038 13.514 11.719 11.803 0.302
6.685 6.943 7.038 7.608 7.584 8.146 8.271 8.592 7.617 7.527 0.305
6.134 6.292 6.336 6.804 6.830 7.393 7.492 7.943 6.773 6.790 0.300

9.9.9.9

Q9.9.9.9. 9.9

Q
D 1999 1o Mo 1o 19 oy Ny g i g 2

Table 5.14: MCMC results for the marginal parameters of the 1st vine construction.

[0 | Omin 02.5% 05% Omed 0 095% | 097.5% Omax Omod | O1FMm | Pacc
BN 0.728 0.741 0.745 0.769 0.768 0.787 0.789 0.798 0.771 0.767 1.000
1675 1.166 1.179 1.185 1.219 1.220 1.256 1.262 1.302 1.219 1.218 1.000
B 1.142 1.165 1.168 1.190 1.190 1.209 1.213 1.222 1.190 1.189 1.000
BE 0.800 0.815 0.823 0.860 0.859 0.894 0.899 0.915 0.862 0.858 1.000
Bc 0.941 0.949 0.952 0.980 0.979 1.002 1.009 1.032 0.980 0.978 1.000
BB 1.235 1.254 1.258 1.291 1.292 1.324 1.333 1.366 1.289 1.294 1.000
Bt 0.593 0.611 0.614 0.645 0.644 0.671 0.675 0.701 0.645 0.643 1.000
Bu 0.754 0.765 0.769 0.804 0.803 0.835 0.842 0.864 0.804 0.805 1.000
Bs 0.905 0.931 0.936 0.964 0.963 0.988 0.991 1.010 0.964 0.961 1.000
By 0.808 0.829 0.835 0.866 0.866 0.899 0.903 0.915 0.866 0.865 1.000
Bs 1.109 1.128 1.132 1.159 1.159 1.184 1.189 1.219 1.159 1.158 1.000
Bo 1.092 1.105 1.108 1.133 1.134 1.161 1.166 1.178 1.134 1.135 1.000
4.530 4.619 4.710 5.044 5.047 5.406 5.545 5.829 5.042 5.017 | 0.281
12.642 13.246 13.453 14.401 14.481 15.571 15.945 16.872 14.356 14.427 0.296
3.596 3.764 3.829 4.120 4.117 4.391 4.451 4.664 4.119 4.083 0.290
12.595 13.237 13.488 14.372 14.427 15.518 15.715 16.366 14.311 14.412 0.280
5.845 6.065 6.138 6.606 6.596 7.066 7.142 7.311 6.608 6.548 | 0.294
9.418 9.807 9.879 10.616 10.637 11.498 11.642 12.779 10.587 10.521 0.284
7.938 8.206 8.311 9.019 9.017 9.682 9.838 10.392 9.034 8.942 0.297
11.758 12.257 12.512 13.522 13.548 14.525 14.991 15.750 13.483 13.456 0.298
7.027 7.251 7.337 7.874 7.881 8.529 8.597 9.003 7.858 7.829 | 0.287
10.602 10.957 11.024 11.968 11.931 12.830 13.020 13.465 12.001 11.803 | 0.301
6.593 6.951 7.044 7.538 7.564 8.150 8.263 8.737 7.524 7.527 | 0.301
6.128 6.286 6.341 6.846 6.845 7.342 7.487 7.800 6.857 6.790 | 0.293

9.9.9.9

Q.9 9. 9.9

Q
D 1999 1o N 1o 19 ety Ny g g g 2

Q

Table 5.15: MCMC results for the marginal parameters of the 2nd vine construction.



CHAPTER 5. APPLICATION: U.S. INDUSTRIAL RETURNS 88

L0 | Omin | Oosn | 050 | Omea | 0 | Oos | Oors% | Omax | Omoa | Orrams | Pace |
BN 0.729 0.741 0.746 0.767 0.768 0.789 0.792 0.813 0.767 0.767 1.000
1675 1.136 1.173 1.183 1.221 1.219 1.254 1.261 1.296 1.221 1.218 1.000
B 1.159 1.169 1.171 1.190 1.189 1.208 1.210 1.223 1.189 1.189 1.000
Br 0.793 0.815 0.823 0.859 0.859 0.894 0.898 0.917 0.859 0.858 1.000
Bco 0.934 0.951 0.955 0.979 0.979 1.005 1.013 1.019 0.979 0.978 1.000
BB 1.218 1.258 1.263 1.295 1.294 1.326 1.333 1.352 1.295 1.294 1.000
Bt 0.594 0.606 0.614 0.644 0.643 0.670 0.678 0.691 0.645 0.643 1.000
Bu 0.744 0.758 0.765 0.807 0.806 0.839 0.848 0.867 0.809 0.805 1.000
Bs 0.910 0.929 0.935 0.961 0.962 0.992 0.996 1.018 0.960 0.961 1.000
By 0.806 0.825 0.828 0.865 0.866 0.904 0.910 0.928 0.866 0.865 1.000
Bs 1.117 1.127 1.130 1.157 1.157 1.185 1.189 1.200 1.156 1.158 1.000
Bo 1.089 1.105 1.110 1.133 1.134 1.160 1.164 1.170 1.132 1.135 1.000
o2 4.344 4.551 4.649 5.012 5.024 5.449 5.526 5.788 4.979 5.017 | 0.277
12.676 13.276 13.421 14.549 14.538 15.649 16.116 16.823 14.554 14.427 0.309
3.456 3.766 3.817 4.089 4.096 4.395 4.451 4.801 4.069 4.083 | 0.281
12.651 13.330 13.538 14.431 14.500 15.681 15.876 16.368 14.364 14.412 0.273
5.837 6.115 6.171 6.616 6.622 7.133 7.217 7.591 6.625 6.548 | 0.300
9.384 9.715 9.815 10.611 10.617 11.478 11.607 11.920 10.581 10.521 0.280
7.954 8.171 8.327 9.008 9.004 9.652 9.850 10.147 9.020 8.942 0.296
12.039 12.346 12.521 13.536 13.546 14.591 14.689 15.312 13.565 13.456 0.292
6.778 7.200 7.316 7.842 7.863 8.453 8.543 9.038 7.805 7.829 | 0.289
10.606 10.810 10.935 11.874 11.890 12.747 13.006 13.866 11.905 11.803 | 0.293
6.633 6.946 7.062 7.558 7.584 8.206 8.388 8.756 7.532 7.527 | 0.293
6.195 6.331 6.366 6.820 6.827 7.298 7.367 7.723 6.839 6.790 | 0.293

9.9.9.9

Q 9 9 9 9 9
o b M o g oy g 1 22
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Table 5.16: MCMC results for the marginal parameters of the 3rd vine construction.

To visualize the results for the partial correlation parameters, we use image plots that
are constructed as follows: Each square of the plot shows the value of a certain (partial)
correlation between the returns of the two portfolios that belong to its coordinates, let’s
say A on the horizontal axis and B on the vertical axis. The corresponding conditioning
set is formed by all portfolio indices that lie on the vertical axis between A and B.

Of course, if A is adjacent to B on that axis, the conditioning set is empty, and therefore
we have the product moment correlation psp. If we look at another square e. g. with
coordinates A and D, and if we see that portfolio indices B and C' lie between A and
D on the vertical axis, than we know that this square represents the partial correlation

PAD|BC-

This means that our image plots for the partial correlations are constructed in such a way
that the diagonal is empty and each subdiagonal below shows all partial correlations of
one specific tree of the vine: The first subdiagonal shows the unconditional correlations
of the first tree of the vine, the second subdiagonal all partial correlations on the second
tree, and so on.

To see how these plots are constructed we start with an example: Consider a four dimen-
sional vine whose first tree is

A-B-C-D

We set pap := ppc := pcp = 0.8, pacip := pepjc = 0.5 and psppc = 0.3. Then the
corresponding image plot is provided in Figure 5.7, and the location of each parameter in
the plot can be looked up in the table right next to the plot.
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M —| pas

O —| paBc  pBc

A —| pap|BC PBDIC  PCD

| | | \

Figure 5.7: Image plot of the discussed example and position of the partial correlations

In Figure 5.8, we see the posterior mode estimates for each partial correlation and each
order in form of image plots that are constructed as explained before. More detailed
information on the results is provided in the appendix.

As we have different partial correlation specifications for each vine, it is difficult to com-
pare the estimated values. But as every construction results from a multivariate normal
distribution, we expect that the distribution resulting from the estimates should be — at
least approximately — the same for the three orders. However, we can derive an estimated
correlation matrix from the mode estimators for the partial correlations for each vine. We
then expect that the estimates of the correlation matrix are quite similar.

As we can see in Figure 5.9, this is the case.
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Figure 5.8: Estimated partial correlations resulting from the mode estimates in the 1st
(a), the 2nd (b) and the 3rd (c) order
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(@

Figure 5.9: Estimated Correlation matrices resulting from the mode estimates for the
partial correlations in the 1st (a), the 2nd (b) and the 3rd (c) order
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5.4 Model reduction and comparison with full
models

As there are 24 marginal and 66 copula parameters in our three models, the question
arises whether it is possible to omit some of them, e.g. fix those parameters to zero.
To decide this, we construct estimated credible intervals for each parameter
VS {ﬁj,a?,pjk|j+1:k_1, jg=1,..,12, k = j+1,...,12} from our MCMC sample. If
0e (é5%, é%%) holds, we know that 6 is not credible on the level 10% based on our esti-
mation. Similarly, we infer that € is not credible on the level 5% if 0 € (ég_g,%, é97_5%). Since
the second credible interval always contains the first, it is clear that € is not credible on
the 5% level if it is not credible on the 10% level.

Looking in Tables 5.14 to 5.16 we see that no interval (fy.59, 97.5%) contains 0, thus all
B; parameters are credible on the 5% level in every D-vine construction. So we have no
motivation to leave out some [3; components in a reduced model, which would induce
independency of the associated portfolio return from the market return. For the UJQ. pa-
rameters, a value of 0 makes no sense and is also not allowed according to our premises.
Instead, one could think of choosing the same o parameter for all the portfolio residual
variances 0]2-, which would reduce the number of parameters by 11. However, the Tables
5.14 to 5.16 suggest that most variances are different, since for instance the sampled
maximum of % is smaller than the sampled minimum of ¢% in all three orders.

So we concentrate in the following on reducing models by leaving out all partial correlation
parameters that are not credible on the 10% level resp. on the 5% level, such that we get
two reduced models for each D-vine construction. For the first order, we see that 17 partial
correlation parameters are not credible on the 10% level, and another three not credible
on the 5% level. So almost one third of the copula parameters may be left out in a reduced
model.

For the second construction, we expect that all unconditional correlations, i. e. those in
the top tree, are credible on both levels. Looking at the results, we see that this is the
case. On the other hand, we hoped that many of the partial correlations in the other trees
would be zero. Indeed, 19 resp. 23 partial correlation parameters may be omitted in the
reduced model if one integrates only the parameters that are credible on the 10% resp.
on the 5% level. This is more than in any other examined order.

We pursued another plan in the 3rd construction: Here, the partial correlations with
the largest conditioning set should be non-credible, if possible. From the results we see
that this is the case for 5 of the 6 partial correlations in the three bottom trees on both
considered credible levels. In total, there are 16 non-credible partial correlations based on
the 10% level and 20 based on the 5% level.
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We run our MCMC algorithm on all mentioned reduced models by leaving out the updates
of all parameters that were fixed to 0. The results for the partial correlation parameters
are shown in Figures 5.10 and 5.11. On the left hand side of the figure are the image plots
representing the estimates of the partial correlations. To compare each reduced model to
the corresponding full model, one can look at the right hand side, where the difference of
each parameter between reduced and full model is shown. As one can see, the estimates
of the reduced models are very similar to those of the corresponding full models. This is
confirmed by the look on the difference shown in the right columns of the two figures.

But of course, one is again interested at the correlation matrices resulting from the partial
correlation estimates. Because of the small difference between the partial correlations in
the full and the reduced models, one expects that also the correlation matrices look
very similar. To check this, one can look at Figures 5.12 and 5.13, where the estimated
correlation matrices from the reduced models and the difference to those of the full models
are shown as image plot for each D-vine construction and each credibility level.

To compare both full and reduced models, we use following Spiegelhalter et al. (2002) and
Silva and Lopes (2008) the model decision criterion DIC', which is defined as

DIC =2E (D (8)|y) — D (E(8|y))

where D(-) denotes the deviance which is defined as D(0) := —2log (f(y|@)). A model
with a smaller DIC' is preferred to a model with a larger DIC. With a (sub-)sample

{O(T), r=1,...,s} of size s generated by the MCMC algorithm, one can estimate the
DIC by

o 1 S 1 S
DIC:=2-) D@OY)-D =) o7
(S0 -n (1%
The results are provided in Table 5.17. Over all models, the DIC' method prefers the 2nd
order model reduced by all parameters that are not credible on the level 10%. Regarding all

full models, the 1st order is preferred. The model with the smallest number of parameters
is the reduced model of the 2nd D-vine construction based on the level 5%.
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Figure 5.10: Estimated partial correlations of the reduced models and their difference to
the corresponding full models in the 1st (a), the 2nd (b) and the 3rd (c) order. Credible
Level: 10%
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Figure 5.11: Estimated partial correlations of the reduced models and their difference to
the corresponding full models in the 1st (a), the 2nd (b) and the 3rd (c) order. Credible
Level: 5%
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Figure 5.12: Estimated correlation matrices of the reduced models and their difference to
the corresponding full models in the 1st (a), the 2nd (b) and the 3rd (c) order. Credible
Level: 10%
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Figure 5.13: Estimated correlation matrices of the reduced models and their difference to
the corresponding full models in the 1st (a), the 2nd (b) and the 3rd (c) order. Credible
Level: 5%
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Model est. DIC' | # Param.
1st Order 56849.98 80
Reduced (10%) 1st Order | 56831.41 63
Reduced (5%) 1st Order 56837.28 60
2nd Order 56851.12 80
Reduced (10%) 2nd Order | 56825.17 61
Reduced (5%) 2nd Order | 56832.25 57
3rd Order 56850.63 80
Reduced (10%) 3rd Order | 56834.56 64
Reduced (5%) 3rd Order | 56834.56 60

Table 5.17: Comparison of reduced and full models for all three D-vine constructions

5.5 Model validation

We are now interested in the ability of our model to predict portfolio returns if the market
excess return is given. For that purpose, we construct statistics consisting of proportions
of each of the 12 industrial returns. Representatively, we choose 5 statistics S;i, ..., Sis
for each point in time ¢ € {1,...,978}, that are given by

12
Sik, = E wy;Yij
j=1

where the weights wy; sum up to 1 and are constant over time for all £ € {1,...,5}. The
weights of the five statistics are defined in Table 5.18 and are based on the empirical esti-

mates of the correlation matrix R = (p;i);k=1,.,12 and the residual variances o,...,0%.

For simplicity, we use the notations pj; := p; ) and g; = \/af(mar) (j,k=1,...,12)

in the table. A visualization of the resulting weights for each statistic is provided in Figure
5.14.

.....

(mar
k

In the first statistic S;;, we choose equal weights for each portfolio. The weights of the
second statistic for each portfolio j € {1,...,12} are the higher the stronger the portfolio
j is correlated to all other portfolios. For the third statistic, we modify this choice by
using only positive correlations and ignoring all negative correlations. This is due to
the fact that a positive correlation between two assets leads to a higher risk, whereas a
negative correlation reduces the risk. For the weights of statistic S;4, we restrict only on
correlations that are at least 0.1. The last statistic S;5 also takes into account the residual
variances. Here, we choose the weights based on all positive covariances, including the
residual variance itself. For each portfolio j € {1,...,12}, the weight ws; is proportional
to the sum of the variance ajz» and the positive covariances between Y;; and all other
portfolio returns.

We now omit the years 2001 to 2007 in our data, that is all excess returns with time
indices starting from 895, and want to apply the CAPM model on the reduced data set.
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Statistic | Definition of weights
Sz' wlj:% (j217712)
12
Si Woj; 1= 12a]- with Qg5 = Z |ij1<:| (] = ]_, ey 12)
> ask k=1
k=1 k#j
" ‘ 12 .
Sis ws; = 32— with ag; == PikLip,>0 (j=1,...,12)
> ask k=1
k=1 k#j
w ‘ 12 .
Sia Wy, = z— with aqj ;== PirLip,>01} (j=1,...,12)
> G4k k=1
k=1 k#j
w ‘ 2 .
Sz'5 w5j = 12—] Wlth Cl5j = Z O’jakpjkl{ﬁjk>0} (] = 1, ey 12)
kzlazlk k=1

Table 5.18: Definition of weights for statistics S;1,..., S
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Figure 5.14: Illustration of weights for the statistics S, ..., S
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In Section 5.4 we have seen that the DIC' method prefers the model based on the 2nd
D-vine construction reduced by all parameters that are not credible on the 10% level. So
we choose this model and run our MCMC algorithm.

We run this algorithm until iteration m = 52000, choose a burn-in period of 2000 and use
every 10th iteration. This means we get a sample

{0, r=1,...,5000}

of the posterior distribution of the parameter vector 8 = (ﬂ’, o?, pﬁ,)/ where p,, denotes
the parameter vector of partial correlations in the considered model.

For each remaining dates i € {895,...,978} that have not been used in our previous
calculation, we are interested in the predictive quantiles of our statistics Sy, k € {1,...,5}
given the market return:

qf@lOO% = ;Iellg {P(Sik STlYy, o Yy, Py, Z) a}

To estimate these quantiles, we look at the situation where also @ is given. At first, we
calculate the quantiles

q;x 100%(0) = ;QIE{P i < x|y1,...,yi,1,21,...,2’i,9) > a}

= inf {P(Si < z|2;,0) > a}
zeR

From the model definition (4.1), we know that the distribution of Y; = (Y 1,...,Yi12)
for given 0 is

where ¥ = diag(o)Rdiag(o) and R denotes the correlation matrix resulting from p,,.
12

Since Sy, = Y wy;Y;; = w, Y, for wy == (Wi, ..., w2), it holds
i=1

Sik|0 ~ N (1x(0),07,(0))

with p,(0) = w),B2; and 02, (0) = w),Xwy,. Thus, the quantiles ¢ are the quan-
tiles of the normal distribution N (111(0), 0%.(0)), so we can approximate the predictive
quantile

o 100%(0)

qzlkloo% — /qﬁgloo% (a)do
5000
o 100% ~a-100%
~ 5000 Z it = G

using our sample from the MCMC algorithm.
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Figure 5.15: Actual returns and quantile borders (2.5% and 10%) predicted by the reduced
model for the years 2001 to 2007 for the Statistic S;; with equal weights

For each point in time, the estimated predictive quantile ¢ 100% ig compared to the actual

value s;;, = Z]lil wy;Yi; for our statistic Sy. If our model has poor prediction power given
market returns, it is possible that for many dates i € {895,...,978}, the actual values
are much lower than predicted by the model, i. e. smaller than g;; for a small «.

The results for the statistic with equal weights, S;;, are shown in Figure 5.15. The dashed
line represents the estimated values of the quantile ql.llg% and the dotted line those of qff’%
for each i € {895, ...,978}. The actual values s;; of the statistic S;; are shown as points.
As one can see both quantile lines are close to each other, and most of the actual values
lie above the lines. Over all time indices i € {895, ...,978} there is in fact one point below
the 2.5% quantile line and 5 points lie below the 10% line. As the total number of time
points in the considered prediction period is 84, the expected number of points below the
quantile lines is 2.1 for the 2.5% level and 8.4 for the 10% level. Thus, the results for our
model based on the S;; statistic are acceptable.

We do the same things for the full model of the 2nd order. The result is presented in
Figure 5.16, again for the first statistic S;;. We see that this graph looks very similar to
that of the reduced model. Actually, the same point lies below the 2.5% quantile line,
and also the five points below the 10% quantile line are the same. Thus, the satisfactory
results of the reduced model do not change when all missing parameters are included.
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Figure 5.16: Actual returns and quantile borders (2.5% and 10%) predicted by the full

model for the years 2001 to 2007 for the Statistic S;; with equal weights
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Figure 5.17: Actual returns and quantile borders (2.5% and 10%) predicted by the inde-

pendence model for the years 2001 to 2007 for the Statistic S;; with equal weights
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In our models, we have up to 66 parameters to take into account the dependency between
the residuals of the model. So it may be interesting to compare the result that we just
received to a model where independence between the residuals is assumed. This indepen-
dence model has only 24 parameters compared to 71 parameters in our reduced model
of the second order. To get a sample for 3 and o? in the independence model, we just
apply our MCMC algorithm with all components of p,, fixed to 0. After that, we repeat
the procedure that we developed to test the predictability of our model.

The result for the statistic with equal weights, S;1, is shown in Figure 5.17. Again, the
dashed line represents the estimated values of the quantile ql.llg% and the dotted line those
of ¢%°% for each i € {895,...,978}. One can see that now less points lie below the
10% quantile line. In fact, there are now only 2, compared to 5 in the models where
the correlation was included. Since the expected number of actual values sq; below that
line is 8.4, this indicates that prediction power gets worse when the partial correlation
parameters are removed from the model and independence of the portfolio return residuals
is assumed. However, at least for the 2.5% quantile results stay the same, i. e. we have
one point below the dotted line.

With the help of Figures 5.15 to 5.17, we analyzed the performance of the reduced, the
full and the independence model concerning statistic S;; representatively for all statistics
{Si1,...,Si}. Now we want to compare the predictability of the three models over all
statistics, and look in addition to cjl-z,f% and cjilko% at the estimated quantiles with levels 1%

and 5%. The results are provided in Table 5.19.

For the first statistic S;;, we look at the two quantiles we have not considered yet. For
both the 1% and the 5% level, the observed number of values below the quantiles are a
bit better for the reduced and full model as for the independence model.

The next results we look at belong to the statistic S;3, whose weights are chosen in
dependence of the correlation. In exception of the 1% level where both values are equal,
the observed number of values below the quantile lines of the reduced model is closer to
the expected one than those of the independence model. When we compare the results of
the full and the reduced model, we see only a difference for o = 2.5%, where the value
for the reduced model is a bit better. For all other levels — and for all other statistics —
we observe identical results for the full and the reduced model. So one can follow that
prediction power of these two models is practically identical. This is why we compare in
the following only the reduced and the independence model.

For statistic S;3, which is based on positive correlations, we observe better results for the
reduced model concerning the levels 1%, 2.5% and 5%. However, there are more values
outside the 1% and 2.5% quantiles than for statistics S;; and S;,. For the 10% level,
the observed number of values smaller than the estimated quantiles of the independence
model are closer to the expected one in comparison to the reduced model.
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Red. Model | Full Model | Ind. Model

Statistic | a - 100% observed observed observed | expected
1% 1 1 0 0.84

2.5% 1 1 1 2.10

Si 5% 2 2 1 4.20
10% 5 5 2 8.40

1% 1 1 1 0.84

2.5% 2 1 1 2.10

Sio 5% 3 3 1 4.20
10% 5 5 3 8.40

1% 3 3 4 0.84

2.5% 3 3 4 2.10

Si3 5% 4 4 5 4.20
10% 5 5 10 8.40

1% 3 3 4 0.84

2.5% 4 4 4 2.10

Sia 5% 4 4 4 4.20
10% 6 6 9 8.40

1% 1 1 1 0.84

2.5% 2 2 2 2.10

Sis 5% 4 4 3 4.20
10% 5 5 4 8.40

Table 5.19: Comparison of observed and expected number of values smaller than the
estimated quantiles for different levels, models and statistics

From the results for statistic S;4 we see no preferred model. The results of the 1% level are
better for the reduced model, those of the 10% level better for the independence model
and for all other levels, the results are equal. Residual variances are taken into account
when we look at statistic S;5. Here we observe better values for the reduced model.

For all statistics, we observe an acceptable number of actual values below the quantiles
of different levels predicted by the reduced model. This can be seen when we compare
those numbers to the expected number denoted in the last column of Table 5.19. Over
all statistics and levels, the reduced model shows better results than the independence
model, so our validation suggests that it is worth to include the partial correlations in
the model. The difference of full and reduced model is hardly observable, so the partial
correlations fixed to zero in our reduced model do not improve the results and therefore
may be omitted due to our validation.



Chapter 6

Conclusion and outlook

We developed an MCMC algorithm to for a joint Bayesian estimation of the regression
parameters, residual variances and the correlation matrix in a multivariate regression
model with correlated, normally distributed errors.

Using the literature about the pair-copula and vine concept, we modeled the dependence
by a Gauss pair-copula construction arranged on a D-vine. In that context we developed
an algorithm that allows to “switch” between the partial correlation specification and
the correlation matrix, and proposed two ways of calculating the acceptance probability
in the update of the correlation matrix: On the one hand the calculation of a D-vine
likelihood, on the other hand the transformation of the partial correlation specification
to the correlation matrix and afterwards the calculation of the normal likelihood. Both
methods lead to similar results.

To test the algorithm, we performed an extensive small sample analysis, especially for
dimensions 2 and 3. We observed convergence and well behavior of the algorithm in all
considered parameter constellations and relatively accurate estimates. Furthermore, we
analyzed consequences of the change of different true parameter values.

When we applied the algorithm on a data set consisting of monthly returns of 12 U.S.
industrial portfolios, we also found convergence of the algorithm. We tried three different
orders for the D-vine and found out that the MCMC estimates of all 3 orders and the
previously determined empirical estimates of the marginal parameters and the correlation
matrix were very similar.

However, the three different orders led to different possibilities of model reduction. We
used the DIC criterion to compare both reduced and full models and received a preferred
model. At last, we validated the model using different statistics that can be interpreted as
weighted portfolios of the 12 industries and analyzed the predictive power of our model for
the last 7 years of our dataset. The model showed satisfactory results and outperformed
a model that assumes independence of the residuals.

105
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There are many different ways to extend our model: At first, one could consider models
with 2 or more covariates, which was not of interest in our work. Another possibility is
to change the marginal distributions of the model. Instead of the normal distribution,
one could use a t-distribution or a GARCH model for each marginal distribution. If
only the marginal distributions are modified, one can keep the update for the partial
correlations that we presented. Furthermore, the three vine orders we proposed here will
lead to different models, even without model reduction. At last, one can also include
other classes of pair-copulas, for example bivariate ¢- or Gumbel-copulas when modeling
the dependence.



Appendix A

Notations

notation ‘ definition / meaning

X, X X random variable, X = (X7, ..., Xy)" random vector

x, x x realization of X, & = (x1,...,z4)" realization of X

X; X, =(Xi,...,X;q) random vector with time index i

X composite vector X = (X7,..., X}) or matrix X = (X1,...,X4)
of random vectors X 1,..., Xy

ij random vector X_j = (Xl, ce 7Xj—17 Xj+1, v ,Xd)/

F(z), F~1(z) F distribution function of X, F~1 its inverse / quantile function

F(z1]z2) conditional distribution function of X; given Xy

flxy,. .. zq) joint density of X1,...,Xy4

fi(x;) marginal density of X;

fx1|x2) conditional density of X; given X»

gk jik=3j,....,kfor j <k, j:k=0forj>k

M_¢n matrix M reduced by jth row and kth column

diag(M) diagonal elements of matrix M

diag(xy,...,zq) | diagonal matrix with diagonal elements z1,...,z4

C(-,), el-) C(-,-) copula, ¢(-,-) copula density

c(+,-10) copula density with copula parameter (vector)

h(-,-,0) h-function, see (2.16)

®(-) distribution function, ¢(-) density of a standard normal distribution

P, ,2(:), distribution function, ¢, ,2(-) density of N (u,0?)

Do (-5 ), distribution function and density of a bivariate standard normal
©2.,(+°) distribution with correlation p

INQ) P(z) = J,” t* ' exp{—t}dt Gamma function

B(a,b) B(a,b) = Fr(?;ig;) Beta function

Pik pjk = p(Xj, X};) (product moment) correlation of X; and Xj,
P element of inverse correlation matrix in jth row and kth column
P12:3,...d partial correlation of Xy and X5 given X3,..., Xy

P123,....d conditional correlation of X; and X5 given X3,..., Xy

V, CV V vine, CV constraint set, i.e. set of all edges of V

Py set / vector of partial correlations adapted to vine V
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0,0 model parameter (vector) of interest
p(6) prior density of 6
f(x]6) likelihood of € / conditional density of & given 6
p(0)x) posterior density of ¢
D(0) D(0) = —2log (f(x|f)) deviance of 6
DIC DIC =2E (D (0)|x) — D (E(f|x)) deviance information criterion
Otrue true value of 6
0 estimator for 6
00.100% estimated posterior a - 100% quantile of ¢
émed, émod émed estimated posterior median, émod of estimated posterior mode of
0 estimated posterior mean of # or sample mean of estimates 6, ... 0"
é[ FM inference for margins estimator for
b(0), b(6) b(0) bias, b(#) estimated bias of 6
rb(6), rb(0) rb(f) relative bias, rb(f) estimated relative bias of 0
s2(0) sample variance of estimates (), ... 9(")
s(0) = s3(0) estimated standard error of 6 and b(0)
Srb(Omod) estimated standard error of rb(é)
Dace mean acceptance rate
Yii Yi; = 2;8; + 0j€i;, jth component of response variable at time ¢
Z given covariate data at time %
Bj regression coefficient of jth component
O'j2- parameter for residual variance of jth component
€ij marginally standardized residual at time %
p, R p residual correlation parameter (d = 2), R residual correlation matrix
s? prior variance of (3;
aj, bj prior parameters of O'j2-
2 =
J J o
Vij Vij =Y — 25
Iy identity matrix of dimension d
X; X; = z;1; design matrix
D D = diag(o1,...,04)
b > = DRD correlation matrix of Y,
PSNR; fraction of elements in {Y1;,...,Y,;} with % > 2
Sz S, = Zgljl ZZ'2
Sy, Sey; = D iy Zilij
Sy Sey =D i1 %Y
Swjks Sv Sw,jk = D i1 VijVik s Sv = (Sv,jk)jk=1,..d
Se jk Se,jk = D i1 EijEik
r? s =i (Wis — Bizi)*

Table A.1: Notations and abbreviations
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Appendix B
Tables

B.1 Results of the small sample analysis of the MCMC
algorithm for 3 dimensions

Tables B.1 to B.6 show characteristics of estimates created by the MCMC algorithm using
simulated data with different true parameter values and data sizes. For each scenario, the
maximum value of the relative bias 7b(6,,04) is printed in bold type. In contrast to the
considered constellations in the bivariate case, we choose the same 3 configuration over
all scenarios and do not consider the case where the PSNR; values are different, i. e.
PSNRy = PSNRy, = PSN Rj3 holds in all scenarios. On the other hand, we also look at
small data sizes, namely n = 200.
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107 107 10%- 10%
Sc. # | PSNRy | PSNRy | PSNR3 n 0 Otrue Omod b(emod) S(Gmod) 7‘b(‘gmod) Srb(emod)
51 1.0000 | 0.9904 -0.959 1.021 -0.959 1.021
B2 2.0000 | 2.0065 0.654 1.676 0.327 0.838
B3 3.0000 | 2.9812 -1.881 3.533 -0.627 1.178
0'% 0.0625 | 0.0583 -0.425 0.166 -6.793 2.656
1 0.5 0.5 0.5 200 0'% 0.2500 | 0.2548 0.476 0.932 1.903 3.728
0'% 0.5625 | 0.5477 -1.480 1.964 -2.631 3.491
P12 0.3000 | 0.2861 -1.388 2.494 -4.627 8.313
P23 0.3000 | 0.2688 -3.121 2.104 -10.404 7.015
p13;2 | 0.3000 | 0.2983 -0.167 1.467 -0.558 4.889
51 1.0000 | 0.9964 -0.362 0.556 -0.362 0.556
B2 2.0000 1.9895 -1.049 0.975 -0.525 0.487
B3 3.0000 | 3.0000 0.000 1.130 0.000 0.377
0'% 0.0625 | 0.0634 0.095 0.062 1.514 0.990
2 0.5 0.5 0.5 1000 0'% 0.2500 | 0.2492 -0.078 0.397 -0.312 1.588
0'% 0.5625 | 0.5519 -1.058 0.508 -1.881 0.903
P12 0.3000 | 0.2879 -1.207 0.744 -4.022 2.480
P23 0.3000 | 0.2964 -0.361 1.043 -1.204 3.476
p13;2 | 0.3000 | 0.2923 -0.767 1.040 -2.557 3.468
51 1.0000 | 0.9963 -0.370 0.227 -0.370 0.227
B2 2.0000 1.9936 -0.641 0.307 -0.321 0.154
B3 3.0000 | 2.9893 -1.072 0.511 -0.357 0.170
0'% 0.0625 | 0.0629 0.035 0.042 0.562 0.677
3 0.5 0.5 0.5 5000 0'% 0.2500 | 0.2484 -0.159 0.142 -0.637 0.569
0'% 0.5625 | 0.5643 0.178 0.297 0.316 0.529
P12 0.3000 | 0.3062 0.618 0.346 2.060 1.153
P23 0.3000 | 0.3039 0.392 0.467 1.305 1.556
p13;2 | 0.3000 | 0.2902 -0.978 0.419 -3.260 1.397
51 1.0000 1.0130 1.301 0.814 1.301 0.814
B2 2.0000 | 2.0160 1.598 1.643 0.799 0.822
B3 3.0000 | 3.0557 5.571 3.014 1.857 1.005
0'% 0.0625 | 0.0607 -0.176 0.172 -2.815 2.757
4 0.5 0.5 0.5 200 0'% 0.2500 | 0.2365 -1.354 0.867 -5.415 3.469
0'% 0.5625 | 0.5725 1.003 2.534 1.783 4.505
P12 0.8000 | 0.7914 -0.856 1.081 -1.070 1.351
P23 0.3000 | 0.2919 -0.806 1.986 -2.687 6.620
p13;2 | 0.3000 | 0.2838 -1.617 2.195 -5.390 7.316
51 1.0000 1.0037 0.368 0.449 0.368 0.449
B2 2.0000 | 2.0153 1.533 0.816 0.767 0.408
B3 3.0000 | 3.0050 0.505 1.083 0.168 0.361
0'% 0.0625 | 0.0637 0.116 0.073 1.854 1.174
5 0.5 0.5 0.5 1000 0'% 0.2500 | 0.2571 0.708 0.301 2.830 1.205
0'% 0.5625 | 0.5789 1.639 0.652 2.914 1.160
P12 0.8000 | 0.8039 0.388 0.292 0.484 0.365
P23 0.3000 | 0.2934 -0.656 1.008 -2.187 3.360
p13;2 | 0.3000 | 0.3001 0.007 1.016 0.023 3.386
51 1.0000 1.0005 0.050 0.216 0.050 0.216
B2 2.0000 1.9995 -0.054 0.266 -0.027 0.133
B3 3.0000 | 3.0067 0.671 0.751 0.224 0.250
0'% 0.0625 | 0.0618 -0.071 0.034 -1.140 0.538
6 0.5 0.5 0.5 5000 0'% 0.2500 | 0.2488 -0.119 0.168 -0.477 0.672
0'% 0.5625 | 0.5566 -0.586 0.250 -1.042 0.445
P12 0.8000 | 0.7977 -0.230 0.148 -0.288 0.185
P23 0.3000 | 0.2995 -0.047 0.281 -0.156 0.935
p13;2 | 0.3000 | 0.2922 -0.785 0.417 -2.616 1.390

Table B.1: Mean of estimates, estimated bias, relative bias and their
errors for different data size and parameter constellations (Scenarios 1 — 6)

estimated standard
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107 107 10%- 10%
Sc. # | PSNRy | PSNRy | PSNR3 n 0 Otrue Omod b(emod) S(Gmod) 7‘b(‘gmod) Srb(emod)
51 1.0000 | 0.9748 -2.524 1.247 -2.524 1.247
B2 2.0000 1.9520 -4.799 2.007 -2.400 1.003
B3 3.0000 | 2.9792 -2.077 3.223 -0.692 1.074
0'% 0.0625 | 0.0608 -0.167 0.232 -2.672 3.719
7 0.5 0.5 0.5 200 0'% 0.2500 | 0.2376 -1.239 0.841 -4.955 3.365
0'% 0.5625 | 0.5483 -1.418 1.203 -2.521 2.139
P12 0.8000 | 0.7917 -0.835 0.868 -1.044 1.085
P23 0.8000 | 0.7818 -1.824 0.980 -2.280 1.225
p13;2 | 0.3000 | 0.3037 0.366 2.078 1.221 6.925
51 1.0000 | 0.9974 -0.262 0.283 -0.262 0.283
B2 2.0000 1.9937 -0.631 0.901 -0.316 0.450
B3 3.0000 | 2.9895 -1.046 1.594 -0.349 0.531
0'% 0.0625 | 0.0625 0.000 0.069 0.007 1.111
8 0.5 0.5 0.5 1000 0'% 0.2500 | 0.2439 -0.610 0.340 -2.440 1.358
0'% 0.5625 | 0.5581 -0.436 0.492 -0.776 0.874
P12 0.8000 | 0.8002 0.025 0.322 0.031 0.402
P23 0.8000 | 0.7992 -0.076 0.396 -0.095 0.495
p13;2 | 0.3000 | 0.2979 -0.206 0.794 -0.686 2.648
51 1.0000 | 0.9991 -0.086 0.126 -0.086 0.126
B2 2.0000 | 2.0001 0.008 0.340 0.004 0.170
B3 3.0000 | 2.9947 -0.527 0.369 -0.176 0.123
0'% 0.0625 | 0.0620 -0.047 0.044 -0.758 0.704
9 0.5 0.5 0.5 5000 0'% 0.2500 | 0.2489 -0.115 0.112 -0.458 0.449
0'% 0.5625 | 0.5606 -0.186 0.351 -0.331 0.625
P12 0.8000 | 0.7966 -0.335 0.151 -0.419 0.189
P23 0.8000 | 0.7997 -0.030 0.175 -0.037 0.218
p13;2 | 0.3000 | 0.2931 -0.694 0.378 -2.314 1.261
51 1.0000 | 0.9931 -0.688 1.174 -0.688 1.174
B2 2.0000 1.9977 -0.234 1.786 -0.117 0.893
B3 3.0000 | 3.0125 1.248 2.889 0.416 0.963
0'% 0.0625 | 0.0584 -0.406 0.197 -6.504 3.159
10 0.5 0.5 0.5 200 0'% 0.2500 | 0.2393 -1.067 0.546 -4.268 2.184
0'% 0.5625 | 0.5089 -5.356 1.793 -9.522 3.188
P12 0.3000 | 0.2962 -0.378 2.177 -1.260 7.257
P23 0.3000 | 0.3015 0.148 1.999 0.492 6.664
p13;2 | 0.8000 | 0.7871 -1.291 0.630 -1.614 0.787
51 1.0000 | 0.9953 -0.473 0.483 -0.473 0.483
B2 2.0000 1.9885 -1.145 1.090 -0.573 0.545
B3 3.0000 | 2.9882 -1.178 1.190 -0.393 0.397
0'% 0.0625 | 0.0614 -0.109 0.053 -1.743 0.843
11 0.5 0.5 0.5 1000 0'% 0.2500 | 0.2504 0.037 0.399 0.148 1.594
0'% 0.5625 | 0.5516 -1.090 0.505 -1.939 0.897
P12 0.3000 | 0.3047 0.472 0.868 1.573 2.895
P23 0.3000 | 0.3054 0.543 1.038 1.810 3.459
p13;2 | 0.8000 | 0.7999 -0.006 0.338 -0.007 0.423
51 1.0000 1.0006 0.064 0.238 0.064 0.238
B2 2.0000 1.9959 -0.409 0.404 -0.204 0.202
B3 3.0000 | 3.0012 0.124 0.727 0.041 0.242
0'% 0.0625 | 0.0622 -0.032 0.039 -0.511 0.619
12 0.5 0.5 0.5 5000 0'% 0.2500 | 0.2504 0.044 0.149 0.174 0.595
0'% 0.5625 | 0.5587 -0.377 0.361 -0.671 0.642
P12 0.3000 | 0.2997 -0.030 0.482 -0.099 1.605
P23 0.3000 | 0.3047 0.474 0.529 1.581 1.763
p13;2 | 0.8000 | 0.7993 -0.074 0.086 -0.093 0.108

Table B.2: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and parameter constellations (Scenarios 7 — 12)
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107 107 10%- 10%
Sc. # | PSNRy | PSNRy | PSNR3 n 0 Otrue Omod b(emod) S(Gmod) 7‘b(‘gmod) 5rb(9mod)
51 1.0000 | 0.9944 -0.561 0.839 -0.561 0.839
B2 2.0000 1.9998 -0.016 1.320 -0.008 0.660
B3 3.0000 | 3.0109 1.091 2.191 0.364 0.730
0'% 0.0625 | 0.0599 -0.264 0.147 -4.228 2.358
13 0.5 0.5 0.5 200 0'% 0.2500 | 0.2436 -0.641 0.309 -2.563 1.235
0'% 0.5625 | 0.5586 -0.389 2.305 -0.692 4.097
P12 0.8000 | 0.7871 -1.292 0.846 -1.615 1.058
P23 0.3000 | 0.2819 -1.811 1.284 -6.036 4.280
p13;2 | 0.8000 | 0.7934 -0.663 0.979 -0.829 1.223
51 1.0000 1.0044 0.441 0.452 0.441 0.452
B2 2.0000 | 2.0088 0.881 0.981 0.440 0.490
B3 3.0000 | 3.0304 3.039 0.718 1.013 0.239
0'% 0.0625 | 0.0607 -0.184 0.088 -2.949 1.416
14 0.5 0.5 0.5 1000 0'% 0.2500 | 0.2472 -0.281 0.305 -1.122 1.220
0'% 0.5625 | 0.5419 -2.060 0.778 -3.663 1.383
P12 0.8000 | 0.7984 -0.164 0.223 -0.205 0.278
P23 0.3000 | 0.2878 -1.217 0.876 -4.055 2.920
p13;2 | 0.8000 | 0.7979 -0.210 0.245 -0.263 0.306
51 1.0000 1.0000 0.003 0.289 0.003 0.289
B2 2.0000 | 2.0025 0.253 0.483 0.126 0.241
B3 3.0000 | 2.9978 -0.220 0.884 -0.073 0.295
0'% 0.0625 | 0.0631 0.057 0.041 0.906 0.661
15 0.5 0.5 0.5 5000 0'% 0.2500 | 0.2522 0.215 0.198 0.861 0.793
0'% 0.5625 | 0.5619 -0.063 0.325 -0.111 0.578
P12 0.8000 | 0.8018 0.180 0.172 0.225 0.215
P23 0.3000 | 0.3020 0.195 0.383 0.652 1.277
p13;2 | 0.8000 | 0.8004 0.042 0.076 0.052 0.095
51 1.0000 1.0027 0.269 1.046 0.269 1.046
B2 2.0000 1.9987 -0.129 2.306 -0.064 1.153
B3 3.0000 | 3.0097 0.972 3.652 0.324 1.217
o’% 0.0625 | 0.0612 -0.129 0.219 -2.070 3.506
16 0.5 0.5 0.5 200 0'% 0.2500 | 0.2396 -1.040 0.619 -4.161 2.477
0'% 0.5625 | 0.5664 0.390 1.757 0.693 3.124
P12 0.8000 | 0.7872 -1.283 0.684 -1.603 0.855
P23 0.8000 | 0.7858 -1.418 0.851 -1.773 1.064
p13;2 | 0.8000 | 0.8161 1.611 0.522 2.014 0.653
51 1.0000 1.0064 0.645 0.562 0.645 0.562
B2 2.0000 | 2.0165 1.653 0.998 0.826 0.499
B3 3.0000 | 3.0211 2.110 1.379 0.703 0.460
0'% 0.0625 | 0.0616 -0.095 0.104 -1.515 1.661
17 0.5 0.5 0.5 1000 0'% 0.2500 | 0.2482 -0.182 0.418 -0.728 1.673
0'% 0.5625 | 0.5575 -0.500 0.874 -0.889 1.554
P12 0.8000 | 0.7958 -0.419 0.289 -0.523 0.362
P23 0.8000 | 0.8001 0.015 0.230 0.018 0.287
p13;2 | 0.8000 | 0.8018 0.179 0.378 0.224 0.473
51 1.0000 | 0.9974 -0.264 0.177 -0.264 0.177
B2 2.0000 1.9950 -0.495 0.355 -0.248 0.178
B3 3.0000 | 2.9894 -1.056 0.532 -0.352 0.177
0'% 0.0625 | 0.0625 -0.003 0.043 -0.048 0.687
18 0.5 0.5 0.5 5000 0'% 0.2500 | 0.2497 -0.030 0.163 -0.119 0.650
0'% 0.5625 | 0.5612 -0.134 0.378 -0.238 0.671
P12 0.8000 | 0.7974 -0.261 0.129 -0.326 0.162
P23 0.8000 | 0.7990 -0.105 0.117 -0.131 0.146
p13;2 | 0.8000 | 0.8011 0.106 0.148 0.133 0.186

Table B.3: Mean of estimates, estimated bias, relative bias and their
errors for different data size and parameter constellations (Scenarios 13 — 18)

estimated standard
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10%- 10% 107 10%-
Sc. # | PSNR1 | PSNRy | PSNR3 n 0 Otrue Omod b(emod) S(Gmod) rb(emod) Srb(emod)
b1 1.00 | 0.9985 -0.149 0.321 -0.149 0.321
B2 2.00 | 2.0044 0.436 0.850 0.218 0.425
B3 3.00 | 2.9864 -1.355 1.312 -0.452 0.437
o? 0.01 | 0.0102 0.016 0.016 1.615 1.626
19 0.8 0.8 0.8 200 | o? 0.04 | 0.0416 0.164 0.127 4.101 3.174
o3 0.09 | 0.0932 0.323 0.157 3.593 1.749
p12 0.30 | 0.3280 2.801 2.698 9.338 8.994
p23 0.30 | 0.3044 0.442 1.669 1.474 5.564
p13;2 0.30 | 0.3021 0.207 2.433 0.690 8.109
B1 1.00 | 0.9999 -0.014 0.225 -0.014 0.225
B2 2.00 | 1.9980 -0.201 0.355 -0.101 0.178
B3 3.00 | 3.0003 0.026 0.757 0.009 0.252
o? 0.01 | 0.0100 0.000 0.008 -0.034 0.825
20 0.8 0.8 0.8 1000 | o2 0.04 | 0.0398 -0.023 0.048 -0.575 1.212
a3 0.09 | 0.0885 -0.148 0.133 -1.641 1.482
p12 0.30 | 0.3213 2.129 0.510 7.098 1.700
p23 0.30 | 0.2969 -0.308 1.265 -1.027 4.217
p13;2 0.30 | 0.3084 0.837 1.131 2.790 3.769
B1 1.00 | 1.0002 0.018 0.071 0.018 0.071
B2 2.00 | 1.9985 -0.149 0.165 -0.075 0.083
B3 3.00 | 3.0012 0.122 0.136 0.041 0.045
o? 0.01 | 0.0101 0.005 0.006 0.511 0.618
21 0.8 0.8 0.8 5000 | o2 0.04 | 0.0398 -0.024 0.029 -0.592 0.723
a3 0.09 | 0.0896 -0.045 0.040 -0.499 0.442
p12 0.30 | 0.2946 -0.540 0.372 -1.801 1.242
p23 0.30 | 0.2985 -0.147 0.399 -0.490 1.330
p13;2 0.30 | 0.2953 -0.465 0.494 -1.551 1.648
51 1.00 | 1.0090 0.899 0.473 0.899 0.473
B2 2.00 | 2.0086 0.861 0.882 0.431 0.441
B3 3.00 | 3.0221 2.213 1.209 0.738 0.403
o? 0.01 | 0.0096 -0.042 0.033 -4.159 3.274
22 0.8 0.8 0.8 200 | o3 0.04 | 0.0386 -0.145 0.067 -3.621 1.677
a3 0.09 | 0.0877 -0.227 0.344 -2.519 3.820
p12 0.80 | 0.7859 -1.407 0.389 -1.759 0.487
p23 0.30 | 0.2502 -4.978 1.714 | -16.594 5.715
p13;2 0.30 | 0.2805 -1.946 2.287 -6.488 7.623
51 1.00 | 1.0026 0.260 0.163 0.260 0.163
B2 2.00 | 2.0039 0.388 0.386 0.194 0.193
B3 3.00 | 3.0080 0.801 0.560 0.267 0.187
o? 0.01 | 0.0100 0.003 0.011 0.253 1.093
23 0.8 0.8 0.8 1000 | o% 0.04 | 0.0396 -0.037 0.041 -0.937 1.015
o5 0.09 | 0.0887 -0.130 0.101 -1.442 1.126
p12 0.80 | 0.7948 -0.518 0.282 -0.648 0.352
p23 0.30 | 0.2899 -1.006 1.207 -3.354 4.025
p13;2 0.30 | 0.3146 1.456 1.188 4.852 3.960
B 1.00 | 0.9999 -0.008 0.059 -0.008 0.059
B2 2.00 | 2.0001 0.013 0.158 0.006 0.079
B3 3.00 | 3.0010 0.097 0.256 0.032 0.085
o? 0.01 | 0.0099 -0.009 0.004 -0.918 0.416
24 0.8 0.8 0.8 5000 | o3 0.04 | 0.0397 -0.031 0.027 -0.772 0.686
o3 0.09 | 0.0895 -0.049 0.038 -0.548 0.418
p12 0.80 | 0.7985 -0.149 0.148 -0.186 0.186
p23 0.30 | 0.2960 -0.396 0.269 -1.319 0.896
p13;2 0.30 | 0.2990 -0.103 0.594 -0.344 1.980

Table B.4: Mean of estimates, estimated bias, relative bias and their estimated standard

errors for different data size and parameter constellations (Scenarios 19 — 24)
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10Z. 10Z. 102- 102-
Sc. # | PSNR1 | PSNRy | PSNR3 n 0 Otrue Omod b(emod) S(Gmod) rb(emod) Srb(emod)
B1 1.00 | 1.0009 0.093 0.324 0.093 0.324
B2 2.00 | 2.0022 0.224 0.528 0.112 0.264
B3 3.00 | 2.9921 -0.794 0.828 -0.265 0.276
o? 0.01 | 0.0095 -0.047 0.044 -4.722 4.415
25 0.8 0.8 0.8 200 o3 0.04 | 0.0381 -0.186 0.189 -4.641 4.736
o3 0.09 | 0.0835 -0.646 0.323 -7.180 3.593
P12 0.80 | 0.7768 -2.323 1.274 -2.904 1.593
P23 0.80 | 0.7960 -0.404 0.741 -0.505 0.926
p13:2 0.30 | 0.2799 -2.012 2.333 -6.708 7.775
B1 1.00 | 0.9996 -0.041 0.097 -0.041 0.097
B2 2.00 | 2.0019 0.193 0.221 0.096 0.111
B3 3.00 | 2.9996 -0.038 0.284 -0.013 0.095
o? 0.01 | 0.0101 0.008 0.016 0.780 1.550
26 0.8 0.8 0.8 1000 | o2 0.04 | 0.0403 0.030 0.053 0.758 1.328
a3 0.09 | 0.0890 -0.104 0.116 -1.151 1.292
P12 0.80 | 0.8003 0.029 0.354 0.036 0.443
P23 0.80 | 0.8018 0.178 0.286 0.222 0.358
p13:2 0.30 | 0.3088 0.876 1.147 2.921 3.824
B1 1.00 | 0.9995 -0.049 0.075 -0.049 0.075
B2 2.00 | 1.9984 -0.161 0.119 -0.080 0.060
B3 3.00 | 2.9973 -0.267 0.206 -0.089 0.069
o? 0.01 | 0.0101 0.008 0.008 0.792 0.767
27 0.8 0.8 0.8 5000 | o2 0.04 | 0.0403 0.032 0.025 0.792 0.633
a3 0.09 | 0.0907 0.067 0.069 0.748 0.770
P12 0.80 | 0.8022 0.221 0.151 0.277 0.188
P23 0.80 | 0.8013 0.130 0.142 0.162 0.178
p13:2 0.30 | 0.3080 0.804 0.290 2.679 0.967
B1 1.00 | 0.9983 -0.166 0.452 -0.166 0.452
B2 2.00 | 2.0000 -0.004 0.681 -0.002 0.340
B3 3.00 | 2.9954 -0.461 1.507 -0.154 0.502
o? 0.01 | 0.0100 -0.004 0.030 -0.430 2.952
28 0.8 0.8 0.8 200 o2 0.04 | 0.0397 -0.034 0.106 -0.843 2.644
a3 0.09 | 0.0875 -0.248 0.310 -2.758 3.442
P12 0.30 | 0.3204 2.040 1.905 6.801 6.349
P23 0.30 | 0.3217 2.166 0.992 7.221 3.306
p13:2 0.80 | 0.7931 -0.694 0.659 -0.868 0.824
B1 1.00 | 0.9998 -0.023 0.142 -0.023 0.142
B2 2.00 | 1.9973 -0.272 0.285 -0.136 0.142
B3 3.00 | 2.9925 -0.754 0.362 -0.251 0.121
o? 0.01 | 0.0100 -0.001 0.016 -0.139 1.589
29 0.8 0.8 0.8 1000 | o2 0.04 | 0.0389 -0.110 0.050 -2.749 1.250
a3 0.09 | 0.0902 0.018 0.151 0.198 1.673
P12 0.30 | 0.3040 0.400 1.024 1.332 3.414
P23 0.30 | 0.3052 0.517 1.005 1.723 3.351
0132 0.80 | 0.7991 -0.085 0.277 -0.107 0.347
B1 1.00 | 1.0009 0.093 0.079 0.093 0.079
B2 2.00 | 1.9996 -0.036 0.099 -0.018 0.049
B3 3.00 | 3.0022 0.218 0.240 0.073 0.080
o? 0.01 | 0.0099 -0.007 0.010 -0.705 0.972
30 0.8 0.8 0.8 5000 | o3 0.04 | 0.0399 -0.007 0.019 -0.185 0.478
o3 0.09 | 0.0890 -0.101 0.062 -1.118 0.685
P12 0.30 | 0.2955 -0.450 0.323 -1.499 1.077
P23 0.30 | 0.2936 -0.643 0.415 -2.144 1.385
0132 0.80 | 0.7971 -0.293 0.216 -0.367 0.270

Table B.5: Mean of estimates, estimated bias, relative bias and their estimated standard

errors for different data size and parameter constellations (Scenarios 25 — 30)
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10Z. 10Z. 102- 102-

Sc. # | PSNR1 | PSNRy | PSNR3 n 0 Otrue Omod b(emod) S(Gmod) rb(emod) Srb(emod)
B1 1.00 | 0.9966 -0.340 0.305 -0.340 0.305

B2 2.00 | 1.9940 -0.601 0.489 -0.300 0.244

B3 3.00 | 2.9927 -0.730 1.255 -0.243 0.418

o? 0.01 | 0.0096 -0.044 0.043 -4.406 4.260

31 0.8 0.8 0.8 200 o3 0.04 | 0.0388 -0.117 0.149 -2.914 3.725
o3 0.09 | 0.0862 -0.375 0.278 -4.168 3.083

P12 0.80 | 0.7904 -0.957 1.311 -1.197 1.639

P23 0.30 | 0.2902 -0.984 2.632 -3.279 8.772

p13:2 0.80 | 0.7894 -1.063 1.103 -1.329 1.378

B1 1.00 | 0.9992 -0.083 0.176 -0.083 0.176

B2 2.00 | 1.9998 -0.017 0.483 -0.008 0.241

B3 3.00 | 2.9954 -0.457 0.307 -0.152 0.102

o? 0.01 | 0.0099 -0.009 0.011 -0.884 1.068

32 0.8 0.8 0.8 1000 | o2 0.04 | 0.0389 -0.110 0.067 -2.743 1.680
a3 0.09 | 0.0916 0.159 0.148 1.763 1.649

P12 0.80 | 0.7963 -0.375 0.424 -0.469 0.530

P23 0.30 | 0.2996 -0.036 0.783 -0.119 2.609

p13:2 0.80 | 0.8031 0.311 0.354 0.389 0.442

B1 1.00 | 0.9995 -0.051 0.078 -0.051 0.078

B2 2.00 | 1.9993 -0.065 0.146 -0.033 0.073

B3 3.00 | 3.0004 0.039 0.198 0.013 0.066

o? 0.01 | 0.0100 -0.001 0.004 -0.117 0.389

33 0.8 0.8 0.8 5000 | o2 0.04 | 0.0401 0.008 0.027 0.188 0.672
a3 0.09 | 0.0895 -0.050 0.037 -0.560 0.409

P12 0.80 | 0.8007 0.070 0.180 0.088 0.225

P23 0.30 | 0.3015 0.155 0.393 0.516 1.312

p13:2 0.80 | 0.7980 -0.197 0.083 -0.246 0.104

B1 1.00 | 0.9961 -0.387 0.549 -0.387 0.549

B2 2.00 | 1.9967 -0.327 0.866 -0.163 0.433

B3 3.00 | 2.9880 -1.198 1.440 -0.399 0.480

o? 0.01 | 0.0091 -0.088 0.036 -8.771 3.649

34 0.8 0.8 0.8 200 o2 0.04 | 0.0368 -0.319 0.088 -7.976 2.191
a3 0.09 | 0.0833 -0.674 0.298 -7.493 3.316

P12 0.80 | 0.7900 -0.997 0.889 -1.246 1.111

P23 0.80 | 0.7895 -1.054 1.126 -1.318 1.408

p13:2 0.80 | 0.7950 -0.500 1.182 -0.624 1.477

B1 1.00 | 0.9996 -0.043 0.112 -0.043 0.112

B2 2.00 | 1.9966 -0.341 0.238 -0.170 0.119

B3 3.00 | 2.9985 -0.150 0.445 -0.050 0.148

o? 0.01 | 0.0099 -0.013 0.014 -1.264 1.442

35 0.8 0.8 0.8 1000 | o2 0.04 | 0.0396 -0.040 0.051 -1.003 1.274
o5 0.09 | 0.0889 -0.113 0.111 -1.255 1.232

P12 0.80 | 0.7935 -0.646 0.438 -0.808 0.547

P23 0.80 | 0.7947 -0.531 0.442 -0.664 0.552

0132 0.80 | 0.8031 0.314 0.330 0.393 0.413

B1 1.00 | 1.0001 0.007 0.053 0.007 0.053

B2 2.00 | 1.9996 -0.041 0.129 -0.020 0.064

B3 3.00 | 3.0008 0.079 0.244 0.026 0.081

36 o? 0.01 | 0.0100 -0.004 0.006 -0.448 0.625
0.8 0.8 0.8 5000 | o3 0.04 | 0.0400 0.004 0.020 0.098 0.502

o3 0.09 | 0.0899 -0.013 0.052 -0.145 0.576

P12 0.80 | 0.7981 -0.190 0.211 -0.238 0.264

P23 0.80 | 0.7981 -0.194 0.207 -0.242 0.258

0132 0.80 | 0.8022 0.223 0.195 0.279 0.243

Table B.6: Mean of estimates, estimated bias, relative bias and their estimated standard
errors for different data size and parameter constellations (Scenarios 31 — 36)
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B.2 MCMC estimates of parameters for the U.S. in-
dustrial returns data

We have defined three D-vine orders and run our MCMC algorithm for each order. The
results for the marginal parameters have already been provided in Tables 5.14 to 5.16,
those for the copula parameter are presented in tables B.8 to B.10. For the reduced
models, the characteristics of the MCMC estimates are shown for both marginal and
copula parameters in Tables B.11 to B.22.

To avoid long notations of the partial correlations with large conditioned sets, we do
not use the portfolio indices in Z = {N,D, M, E,C,B,T,U, S, H,$,0} in the tables but
instead the position indices {1,...,12}. Of course, this implicates that partial correla-
tions with equal position indices in different orders usually also refer to different partial
correlations.

For example, p15. = p15)2,34 denotes pycpyme in the first construction, pygispe in the
second and pppjsye in the third construction. Table B.7 shows for each position index
the corresponding portfolio index in the three orders.

Another notation we use in the copula parameter tables is the quantity C,.190% for
a - 100% € {2.5%,5%}. This quantity is 1 if the parameter ¢ in the corresponding row
is credible on the level « - 100%, meaning that 0 ¢ [9(0,50).100%, 9(1_0,50).100%]. Otherwise,
Ca-100% 18 0.

[Constr. | 1 [ 23 [4]5[6]7[8]9]10]11]12]

1 N|\D/ M|E|C|B|T|\U|S|H|S$|O
2 U|$|B|E|S|N|H|D|C|O|M|T
3 B|$|N|E|D|\T|O|C|U|S|H|M

Table B.7: Positions of covariables in the D-vine constructions 1, 2 and 3. For each row,
the first tree of the respective D-vine can be derived by connecting adjacent columns.
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L 0 | Omin | Oos% | 059 | Omea 0 095% | 097.5% | Omax Omod | O1rm [Cio%]Cs% ]| Pace |
P1,2 -0.121 | -0.090 | -0.083 | -0.032 | -0.031 0.022 0.036 0.086 | -0.032 | -0.031 0 0 0.50
2,3 0.170 0.207 0.213 0.257 0.256 0.302 0.311 0.325 0.255 0.260 1 1 0.52
P3,4 -0.145 | -0.128 | -0.120 | -0.067 | -0.065 | -0.011 -0.002 0.015 | -0.068 | -0.066 1 1 0.51
4,5 -0.147 | -0.130 | -0.117 | -0.062 | -0.063 | -0.015 -0.004 0.023 | -0.059 | -0.066 1 1 0.49
P5,6 -0.220 | -0.182 | -0.171 -0.118 | -0.119 | -0.070 -0.059 | -0.026 | -0.118 | -0.123 1 1 0.51
6,7 -0.153 | -0.127 | -0.111 -0.062 | -0.062 | -0.015 -0.005 0.036 | -0.061 -0.060 1 1 0.53
P7,8 0.039 0.071 0.079 0.130 0.130 0.189 0.198 0.228 0.125 0.132 1 1 0.56
£8,9 -0.153 | -0.113 | -0.106 | -0.057 | -0.057 | -0.011 0.002 0.025 | -0.055 | -0.055 1 0 0.50
£9,10 -0.005 0.055 0.071 0.114 0.114 0.163 0.178 0.203 0.114 0.114 1 1 0.53
p10,11 0.008 0.026 0.037 0.089 0.088 0.140 0.148 0.172 0.089 0.090 1 1 0.54
£11,12 0.023 0.049 0.056 0.101 0.102 0.154 0.172 0.191 0.097 0.103 1 1 0.53
£1,3]- -0.093 | -0.068 | -0.059 | -0.003 | -0.002 0.055 0.063 0.099 | -0.004 | -0.001 0 0 0.50
P2,4] -0.249 | -0.218 | -0.212 | -0.164 | -0.162 | -0.111 -0.099 | -0.058 | -0.162 | -0.162 1 1 0.55
P3,5)- 0.136 0.178 0.192 0.240 0.239 0.286 0.291 0.319 0.242 0.243 1 1 0.49
P4,6]- -0.408 | -0.390 | -0.380 | -0.339 | -0.338 | -0.288 -0.283 | -0.245 | -0.342 | -0.339 1 1 0.46
P5,7]- -0.207 | -0.171 -0.166 | -0.120 | -0.118 | -0.068 -0.064 | -0.034 | -0.122 | -0.125 1 1 0.53
P6,8|- -0.289 -0.264 -0.258 -0.212 -0.211 -0.158 -0.149 -0.132 -0.214 -0.216 1 1 0.54
P7,9|- -0.071 | -0.046 | -0.032 0.024 0.023 0.076 0.083 0.102 0.027 0.020 0 0 0.52
£8,10]- -0.072 | -0.032 | -0.016 0.039 0.038 0.088 0.095 0.116 0.038 0.038 0 0 0.53
P9,11]- 0.047 0.060 0.076 0.129 0.127 0.178 0.187 0.227 0.129 0.130 1 1 0.53
£10,12]- -0.223 | -0.193 | -0.188 | -0.136 | -0.135 | -0.080 -0.072 | -0.042 | -0.136 | -0.131 1 1 0.53
P1,4]- -0.275 | -0.249 | -0.236 | -0.187 | -0.187 | -0.134 -0.124 | -0.093 | -0.187 | -0.195 1 1 0.49
P25 0.058 0.071 0.082 0.134 0.134 0.183 0.200 0.255 0.136 0.136 1 1 0.55
P3,6]- -0.089 | -0.035 | -0.023 0.024 0.024 0.076 0.085 0.110 0.024 0.024 0 0 0.49
Pa|- -0.331 | -0.312 | -0.301 -0.256 | -0.256 | -0.206 -0.189 | -0.171 -0.256 | -0.263 1 1 0.48
P5.8]- -0.116 | -0.077 | -0.071 -0.019 | -0.019 0.029 0.039 0.061 -0.019 | -0.022 0 0 0.55
£6,9|- -0.181 | -0.154 | -0.147 | -0.093 | -0.093 | -0.041 -0.031 0.013 | -0.094 | -0.094 1 1 0.51
£7,10]- -0.128 | -0.085 | -0.079 | -0.027 | -0.024 0.038 0.048 0.068 | -0.032 | -0.028 0 0 0.55
P8,11]- 0.291 0.311 0.322 0.372 0.370 0.415 0.422 0.444 0.373 0.378 1 1 0.50
P9,12|- -0.144 | -0.108 | -0.100 | -0.051 | -0.052 0.000 0.010 0.074 | -0.050 | -0.052 0 0 0.53
P1,5]- 0.105 0.131 0.143 0.189 0.189 0.238 0.250 0.285 0.188 0.184 1 1 0.50
P26 -0.137 | -0.092 | -0.081 -0.030 | -0.031 0.019 0.024 0.061 -0.030 | -0.033 0 0 0.52
£3,7]- -0.406 | -0.375 | -0.369 | -0.324 | -0.324 | -0.281 -0.267 | -0.244 | -0.321 -0.329 1 1 0.49
P4,8]- -0.061 | -0.039 | -0.031 0.020 0.020 0.068 0.077 0.104 0.021 0.018 0 0 0.52
P5,9]- -0.089 | -0.042 | -0.032 0.019 0.019 0.071 0.083 0.091 0.019 0.018 0 0 0.52
£6,10]- -0.125 | -0.083 | -0.075 | -0.025 | -0.024 0.029 0.038 0.066 | -0.025 | -0.027 0 0 0.54
P7,11]- -0.069 | -0.056 | -0.047 0.006 0.006 0.059 0.075 0.088 0.006 0.004 0 0 0.57
P8,12|- -0.202 -0.184 -0.174 -0.121 -0.121 -0.068 -0.062 -0.005 -0.121 -0.118 1 1 0.54
£1,6]- -0.481 | -0.439 | -0.433 | -0.391 | -0.389 | -0.341 -0.332 | -0.301 -0.392 | -0.400 1 1 0.47
P2,7]- -0.178 | -0.140 | -0.134 | -0.080 | -0.080 | -0.029 -0.020 | -0.005 | -0.079 | -0.083 1 1 0.56
£3,8]- -0.247 | -0.227 | -0.220 | -0.168 | -0.168 | -0.112 -0.105 | -0.070 | -0.171 -0.170 1 1 0.54
P4,9]- -0.436 | -0.419 | -0.417 | -0.378 | -0.376 | -0.331 -0.322 | -0.301 -0.378 | -0.383 1 1 0.46
£5,10]- 0.041 0.079 0.089 0.139 0.138 0.185 0.196 0.227 0.138 0.135 1 1 0.54
£6,11]- -0.225 | -0.202 | -0.190 | -0.140 | -0.142 | -0.095 -0.087 | -0.043 | -0.138 | -0.142 1 1 0.56
P7.12|- -0.218 | -0.173 | -0.162 | -0.116 | -0.115 | -0.063 -0.058 | -0.027 | -0.116 | -0.113 1 1 0.53
P1,7]- -0.191 | -0.167 | -0.155 | -0.107 | -0.107 | -0.060 -0.042 | -0.025 | -0.110 | -0.116 1 1 0.54
P2,8]- -0.117 | -0.080 | -0.072 | -0.024 | -0.024 0.027 0.037 0.064 | -0.023 | -0.026 0 0 0.56
£3,9]- -0.223 | -0.191 -0.181 -0.125 | -0.126 | -0.074 -0.063 | -0.030 | -0.124 | -0.126 1 1 0.54
P4,10]- -0.198 | -0.179 | -0.169 | -0.120 | -0.116 | -0.059 -0.048 | -0.017 | -0.123 | -0.127 1 1 0.54
P5,11]- -0.136 | -0.119 | -0.106 | -0.063 | -0.061 -0.011 -0.003 0.024 | -0.062 | -0.061 1 1 0.56
£6,12]- -0.227 -0.205 -0.198 -0.144 -0.143 -0.092 -0.081 -0.044 -0.144 -0.141 1 1 0.54
P1,8]- -0.034 | -0.009 0.006 0.050 0.051 0.098 0.110 0.145 0.048 0.049 1 0 0.54
P2,9]- 0.004 0.043 0.049 0.101 0.102 0.151 0.162 0.190 0.103 0.103 1 1 0.54
P3,10|- -0.293 -0.279 -0.270 -0.222 -0.221 -0.175 -0.166 -0.128 -0.222 -0.226 1 1 0.53
P4,11]- -0.269 | -0.226 | -0.219 | -0.159 | -0.161 -0.109 -0.098 | -0.068 | -0.157 | -0.164 1 1 0.55
psa. | 0.247 | -0.225 | -0218 | -0.164 | -0.164 | -0.118 | -0.107 | -0.061 | -0.161 | -0.165 | 1 | 1 | 0.54
£1,9]- 0.267 0.290 0.301 0.349 0.348 0.394 0.398 0.417 0.349 0.347 1 1 0.50
£2,10]- -0.298 | -0.253 | -0.245 | -0.198 | -0.196 | -0.145 -0.134 | -0.097 | -0.199 | -0.200 1 1 0.54
P3,11]- -0.051 | -0.012 0.001 0.054 0.053 0.102 0.110 0.136 0.054 0.052 1 0 0.56
P4,12]- -0.328 | -0.309 | -0.299 | -0.255 | -0.254 | -0.206 -0.200 | -0.156 | -0.256 | -0.255 1 1 0.53
£1,10]- 0.171 0.206 0.213 0.264 0.263 0.310 0.318 0.344 0.264 0.262 1 1 0.53
P2,11]- -0.074 | -0.051 -0.043 0.001 0.003 0.060 0.070 0.112 | -0.001 0.001 0 0 0.57
P3,12|- 0.164 0.196 0.211 0.258 0.259 0.309 0.316 0.339 0.258 0.262 1 1 0.54
P1,11]- -0.043 | -0.008 | -0.001 0.049 0.051 0.107 0.120 0.135 0.049 0.050 0 0 0.58
P2,12]- -0.224 | -0.205 | -0.194 | -0.149 | -0.148 | -0.097 -0.084 | -0.058 | -0.150 | -0.149 1 1 0.57
£1,12]- -0.107 | -0.084 | -0.078 | -0.020 | -0.019 0.036 0.050 0.080 | -0.020 | -0.020 0 0 0.57

Table B.8: MCMC results for the copula parameters of the 1st vine construction.
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O | Omin | Oos% | 059 | Omea 0 095% | 097.5% | Omax Omod | O1rm [Cio%]Cs% ]| Pace |
P1,2 0.279 0.305 0.311 0.364 0.361 0.401 0.411 0.433 0.367 0.367 1 1 0.50
02,3 -0.312 -0.281 -0.272 -0.221 -0.221 -0.173 -0.163 -0.138 -0.220 -0.224 1 1 0.54
p3,4 -0.409 | -0.378 | -0.370 | -0.326 | -0.325 | -0.281 -0.273 | -0.238 | -0.325 | -0.328 1 1 0.47
4,5 -0.413 | -0.379 | -0.367 | -0.315 | -0.318 | -0.268 -0.260 | -0.218 | -0.314 | -0.324 1 1 0.50
P5,6 0.330 0.349 0.358 0.410 0.409 0.453 0.463 0.476 0.410 0.414 1 1 0.47
6,7 0.261 0.275 0.281 0.332 0.330 0.374 0.380 0.418 0.334 0.332 1 1 0.52
p7.8 -0.241 | -0.219 | -0.205 | -0.154 | -0.154 | -0.098 -0.088 | -0.049 | -0.156 | -0.156 1 1 0.54
£8,9 0.072 0.123 0.145 0.192 0.191 0.238 0.246 0.270 0.192 0.197 1 1 0.53
09,10 -0.224 | -0.203 | -0.195 | -0.144 | -0.146 | -0.100 -0.090 | -0.049 | -0.141 -0.147 1 1 0.53
p10,11 0.206 0.236 0.243 0.292 0.291 0.336 0.343 0.386 0.294 0.294 1 1 0.50
p11,12 | -0.387 | -0.373 | -0.365 | -0.320 | -0.320 | -0.270 -0.260 | -0.239 | -0.321 -0.325 1 1 0.50
£1,3]- -0.241 | -0.212 | -0.204 | -0.153 | -0.153 | -0.110 -0.100 | -0.043 | -0.152 | -0.154 1 1 0.55
P2,4] -0.284 | -0.240 | -0.236 | -0.186 | -0.186 | -0.133 -0.122 | -0.078 | -0.185 | -0.193 1 1 0.54
£3,5]- -0.284 | -0.256 | -0.251 -0.203 | -0.203 | -0.153 -0.145 | -0.121 -0.203 | -0.208 1 1 0.51
P4,6]- -0.157 | -0.119 | -0.107 | -0.056 | -0.056 | -0.007 0.004 0.036 | -0.056 | -0.061 1 0 0.53
P5,7]- -0.111 | -0.089 | -0.082 | -0.033 | -0.032 0.022 0.034 0.064 | -0.036 | -0.027 0 0 0.56
£6,8]- -0.079 | -0.042 | -0.029 0.022 0.022 0.073 0.083 0.116 0.022 0.023 0 0 0.56
P7.9]- 0.088 0.119 0.137 0.178 0.179 0.225 0.233 0.266 0.174 0.178 1 1 0.56
£8,10|- -0.125 | -0.086 | -0.074 | -0.023 | -0.023 0.027 0.039 0.070 | -0.022 | -0.019 0 0 0.55
P9,11]- 0.200 0.243 0.253 0.300 0.300 0.347 0.358 0.381 0.299 0.306 1 1 0.51
£10,12|- -0.107 | -0.081 -0.069 | -0.025 | -0.022 0.029 0.041 0.063 | -0.026 | -0.021 0 0 0.54
P1,4]- -0.016 0.000 0.012 0.057 0.059 0.112 0.119 0.135 0.057 0.059 1 0 0.56
p2,5|- -0.040 | -0.011 0.001 0.059 0.057 0.110 0.117 0.149 0.062 0.058 1 0 0.56
P3,6]- -0.447 | -0.418 | -0.409 | -0.355 | -0.358 | -0.314 -0.307 | -0.286 | -0.354 | -0.367 1 1 0.50
Pa|- -0.183 | -0.152 | -0.147 | -0.093 | -0.093 | -0.042 -0.033 | -0.017 | -0.091 -0.097 1 1 0.55
P5.8]- 0.072 0.107 0.118 0.175 0.172 0.218 0.226 0.254 0.180 0.175 1 1 0.55
£6,9]- 0.049 0.074 0.084 0.134 0.135 0.190 0.200 0.213 0.133 0.133 1 1 0.56
£7,10]- -0.208 | -0.166 | -0.159 | -0.107 | -0.109 | -0.055 -0.043 | -0.020 | -0.107 | -0.108 1 1 0.56
P8,11]- 0.153 0.177 0.188 0.240 0.240 0.294 0.298 0.333 0.240 0.244 1 1 0.54
£9,12]- -0.124 | -0.101 -0.094 | -0.042 | -0.043 0.006 0.017 0.037 | -0.038 | -0.046 0 0 0.55
P1,5]- -0.212 | -0.178 | -0.163 | -0.109 | -0.109 | -0.055 -0.050 | -0.038 | -0.109 | -0.111 1 1 0.56
P2,6|- -0.002 0.016 0.028 0.075 0.079 0.134 0.139 0.176 0.073 0.082 1 1 0.56
£3,7]- -0.043 | -0.020 | -0.006 0.037 0.039 0.090 0.098 0.117 0.035 0.036 0 0 0.55
P4,8]- -0.232 | -0.208 | -0.201 -0.151 | -0.154 | -0.104 -0.099 | -0.070 | -0.150 | -0.159 1 1 0.54
P5,9]- -0.180 | -0.148 | -0.138 | -0.089 | -0.089 | -0.037 -0.026 0.006 | -0.088 | -0.089 1 1 0.57
£6,10]- -0.034 0.003 0.014 0.065 0.065 0.123 0.130 0.149 0.065 0.067 1 1 0.56
P7,11]- -0.222 | -0.194 | -0.184 | -0.130 | -0.130 | -0.075 -0.069 | -0.041 -0.130 | -0.132 1 1 0.55
£8,12]- -0.136 | -0.097 | -0.086 | -0.040 | -0.037 0.020 0.034 0.055 | -0.042 | -0.037 0 0 0.55
£1,6]- -0.033 0.003 0.014 0.060 0.061 0.116 0.125 0.137 0.059 0.060 1 1 0.56
P2,7]- -0.068 | -0.028 | -0.019 0.028 0.028 0.077 0.082 0.128 0.028 0.027 0 0 0.57
£3,8]- -0.189 | -0.128 | -0.123 | -0.072 | -0.071 -0.021 -0.016 0.014 | -0.072 | -0.078 1 1 0.55
P4,9]- -0.086 | -0.067 | -0.055 | -0.006 | -0.005 0.049 0.059 0.080 | -0.010 | -0.005 0 0 0.55
£5,10]- -0.146 | -0.122 | -0.109 | -0.057 | -0.059 | -0.012 -0.004 0.028 | -0.057 | -0.061 1 1 0.55
£6,11]- -0.102 | -0.070 | -0.064 | -0.011 | -0.011 0.045 0.051 0.107 | -0.011 -0.013 0 0 0.57
P7,12]- -0.175 | -0.139 | -0.126 | -0.072 | -0.074 | -0.024 -0.018 0.021 -0.072 | -0.078 1 1 0.56
P1,7]- -0.101 | -0.065 | -0.055 | -0.011 | -0.008 0.045 0.057 0.110 | -0.015 | -0.009 0 0 0.57
P2,8]- -0.109 | -0.072 | -0.065 | -0.017 | -0.016 0.038 0.046 0.074 | -0.018 | -0.019 0 0 0.58
£3,9]- -0.183 | -0.153 | -0.145 | -0.085 | -0.086 | -0.031 -0.015 0.017 | -0.086 | -0.088 1 1 0.55
P4,10|- -0.225 | -0.201 -0.195 | -0.142 | -0.141 -0.089 -0.078 | -0.053 | -0.144 | -0.138 1 1 0.55
P5,11|- -0.147 | -0.124 | -0.116 | -0.066 | -0.065 | -0.017 -0.008 0.022 | -0.064 | -0.063 1 1 0.58
£6,12]- -0.064 | -0.021 -0.013 0.043 0.042 0.096 0.106 0.136 0.045 0.043 0 0 0.55
P1,8|- -0.144 | -0.118 | -0.109 | -0.057 | -0.058 | -0.009 -0.001 0.036 | -0.057 | -0.059 1 1 0.57
P2,9]- -0.169 | -0.144 | -0.136 | -0.094 | -0.092 | -0.045 -0.034 | -0.005 | -0.096 | -0.093 1 1 0.57
£3,10]- -0.313 -0.277 -0.268 -0.214 -0.216 -0.166 -0.157 -0.118 -0.212 -0.214 1 1 0.54
P4,11|- -0.120 | -0.078 | -0.069 | -0.020 | -0.020 0.027 0.042 0.098 | -0.018 | -0.020 0 0 0.55
P5,12]- -0.089 | -0.067 | -0.060 | -0.001 | -0.003 0.047 0.056 0.080 0.003 | -0.003 0 0 0.56
£1,9]- -0.123 | -0.057 | -0.051 -0.005 | -0.006 0.043 0.052 0.090 | -0.007 | -0.008 0 0 0.57
£2,10]- -0.063 | -0.005 0.002 0.052 0.052 0.103 0.112 0.132 0.052 0.053 1 0 0.56
P3,11]- 0.006 0.031 0.045 0.096 0.095 0.143 0.152 0.182 0.098 0.095 1 1 0.55
P4,12]- -0.366 | -0.343 | -0.333 | -0.281 | -0.282 | -0.231 -0.220 | -0.179 | -0.280 | -0.292 1 1 0.53
£1,10]- -0.251 | -0.200 | -0.196 | -0.142 | -0.143 | -0.086 -0.079 | -0.059 | -0.140 | -0.148 1 1 0.56
P2,11]- -0.134 | -0.092 | -0.080 | -0.032 | -0.031 0.020 0.029 0.044 | -0.033 | -0.032 0 0 0.57
P3,12|- -0.309 -0.286 -0.269 -0.222 -0.221 -0.172 -0.164 -0.094 -0.222 -0.228 1 1 0.55
P1,11]- -0.272 | -0.236 | -0.226 | -0.170 | -0.169 | -0.115 -0.107 | -0.077 | -0.171 -0.170 1 1 0.56
P2,12]- -0.085 | -0.069 | -0.058 | -0.004 | -0.003 0.049 0.061 0.102 | -0.002 | -0.004 0 0 0.57
£1,12]- -0.044 | -0.018 | -0.009 0.039 0.042 0.101 0.109 0.125 0.039 0.044 0 0 0.57

Table B.9: MCMC results for the copula parameters of the 2nd vine construction.
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L0 | Omin | 50 | 059 | Omea 0 O95% | Oo7.5% | Omax Omod | O1rm [Cio%]Cs% ]| Pace |
p1,2 -0.307 -0.281 -0.268 -0.223 -0.223 -0.178 -0.171 -0.120 -0.225 -0.224 1 1 0.49
2,3 0.113 0.149 0.160 0.207 0.206 0.249 0.263 0.298 0.209 0.212 1 1 0.50
P3,4 -0.258 | -0.235 | -0.227 | -0.181 | -0.178 | -0.127 -0.123 | -0.100 | -0.184 | -0.187 1 1 0.48
4,5 -0.254 | -0.218 | -0.215 | -0.168 | -0.168 | -0.120 -0.112 | -0.080 | -0.167 | -0.174 1 1 0.52
P5,6 -0.229 | -0.177 | -0.172 | -0.119 | -0.119 | -0.069 -0.057 | -0.023 | -0.116 | -0.120 1 1 0.54
6,7 -0.232 | -0.178 | -0.173 | -0.115 | -0.115 | -0.061 -0.046 | -0.031 -0.116 | -0.115 1 1 0.54
P7,8 -0.232 | -0.214 | -0.203 | -0.149 | -0.150 | -0.100 -0.086 | -0.047 | -0.148 | -0.147 1 1 0.52
£8,9 -0.090 | -0.069 | -0.057 | -0.006 | -0.006 0.048 0.061 0.080 | -0.008 | -0.008 0 0 0.52
09,10 -0.152 | -0.124 | -0.109 | -0.054 | -0.055 | -0.008 0.004 0.019 | -0.051 -0.055 1 0 0.52
£10,11 0.032 0.048 0.059 0.113 0.112 0.161 0.174 0.208 0.114 0.114 1 1 0.54
p11,12 | -0.231 | -0.212 | -0.202 | -0.151 | -0.151 -0.101 -0.083 | -0.043 | -0.149 | -0.153 1 1 0.51
£1,3]- -0.359 | -0.344 | -0.332 | -0.282 | -0.283 | -0.235 -0.220 | -0.166 | -0.280 | -0.287 1 1 0.49
P2,4] -0.189 | -0.122 | -0.115 | -0.069 | -0.067 | -0.015 -0.005 0.016 | -0.070 | -0.067 1 1 0.52
£3,5]- -0.162 | -0.131 -0.115 | -0.063 | -0.065 | -0.017 -0.006 0.008 | -0.061 -0.065 1 1 0.52
P4,6]- -0.334 | -0.288 | -0.280 | -0.235 | -0.234 | -0.183 -0.175 | -0.135 | -0.234 | -0.238 1 1 0.52
P5,7]- -0.140 | -0.128 | -0.121 -0.068 | -0.066 | -0.012 -0.007 0.034 | -0.070 | -0.062 1 1 0.54
P6,8|- -0.213 | -0.189 | -0.179 | -0.130 | -0.130 | -0.083 -0.072 | -0.037 | -0.131 -0.135 1 1 0.54
P7.9]- -0.155 | -0.124 | -0.109 | -0.063 | -0.063 | -0.013 0.000 0.029 | -0.066 | -0.066 1 0 0.52
£8,10]- -0.072 | -0.041 -0.029 0.028 0.026 0.073 0.087 0.119 0.031 0.027 0 0 0.51
P9,11]- -0.059 | -0.031 -0.016 0.038 0.037 0.086 0.094 0.133 0.037 0.038 0 0 0.53
£10,12]- -0.126 | -0.093 | -0.081 -0.033 | -0.032 0.019 0.026 0.071 -0.036 | -0.029 0 0 0.52
P1,4]- -0.515 | -0.488 | -0.468 | -0.428 | -0.428 | -0.384 -0.373 | -0.349 | -0.428 | -0.435 1 1 0.46
p2,5|- -0.082 | -0.055 | -0.049 0.003 0.002 0.052 0.062 0.094 0.001 0.001 0 0 0.54
P3,6]- -0.104 | -0.086 | -0.078 | -0.031 | -0.032 0.015 0.025 0.049 | -0.028 | -0.040 0 0 0.52
P4,7|- -0.215 | -0.188 | -0.181 -0.138 | -0.135 | -0.081 -0.073 | -0.041 -0.142 | -0.133 1 1 0.53
P5.8]- 0.101 0.120 0.129 0.177 0.177 0.232 0.243 0.277 0.177 0.178 1 1 0.53
P6,9|- 0.048 0.073 0.081 0.127 0.126 0.170 0.178 0.214 0.129 0.125 1 1 0.54
£7,10]- -0.138 | -0.107 | -0.099 | -0.051 | -0.051 -0.004 0.005 0.051 -0.054 | -0.049 1 0 0.51
P8,11|- 0.022 0.069 0.084 0.143 0.140 0.191 0.202 0.231 0.146 0.140 1 1 0.54
£9,12]- -0.274 | -0.253 | -0.245 | -0.197 | -0.196 | -0.146 -0.137 | -0.122 | -0.199 | -0.197 1 1 0.51
P1,5]- -0.185 | -0.150 | -0.135 | -0.085 | -0.087 | -0.035 -0.021 0.001 -0.083 | -0.092 1 1 0.55
P2,6|- -0.051 | -0.019 | -0.011 0.041 0.041 0.098 0.108 0.137 0.043 0.040 0 0 0.55
£3,7]- -0.117 | -0.094 | -0.081 -0.028 | -0.028 0.033 0.042 0.078 | -0.029 | -0.023 0 0 0.51
P4,8]- -0.166 | -0.141 -0.134 | -0.077 | -0.078 | -0.021 -0.013 0.014 | -0.072 | -0.080 1 1 0.54
P5,9]- -0.149 | -0.118 | -0.113 | -0.064 | -0.062 | -0.006 0.002 0.027 | -0.067 | -0.064 1 0 0.53
£6,10]- -0.079 | -0.038 | -0.032 0.019 0.019 0.068 0.080 0.110 0.017 0.017 0 0 0.51
P7,11]- -0.186 | -0.156 | -0.144 | -0.095 | -0.095 | -0.042 -0.037 | -0.014 | -0.095 | -0.095 1 1 0.53
£8,12]- 0.197 0.222 0.227 0.275 0.274 0.313 0.324 0.383 0.278 0.278 1 1 0.51
£1,6]- -0.261 | -0.231 -0.220 | -0.172 | -0.171 -0.121 -0.115 | -0.080 | -0.172 | -0.181 1 1 0.55
P2,7]- -0.003 0.050 0.055 0.107 0.105 0.149 0.153 0.184 0.108 0.106 1 1 0.55
£3,8]- 0.103 0.116 0.126 0.175 0.176 0.225 0.232 0.287 0.173 0.175 1 1 0.51
P4,9]- -0.013 0.022 0.029 0.080 0.080 0.131 0.140 0.184 0.080 0.079 1 1 0.52
£5,10]- 0.046 0.080 0.091 0.139 0.139 0.189 0.206 0.258 0.139 0.144 1 1 0.51
£6,11]- -0.110 | -0.085 | -0.076 | -0.027 | -0.025 0.026 0.038 0.059 | -0.026 | -0.024 0 0 0.54
P7.12|- 0.247 0.262 0.272 0.320 0.319 0.363 0.369 0.399 0.321 0.326 1 1 0.51
P1,7)- -0.298 -0.277 -0.268 -0.212 -0.214 -0.164 -0.158 -0.124 -0.211 -0.214 1 1 0.55
P2,8]- -0.138 | -0.110 | -0.100 | -0.054 | -0.051 0.002 0.016 0.027 | -0.057 | -0.052 0 0 0.56
£3,9]- 0.042 0.062 0.074 0.131 0.129 0.179 0.187 0.224 0.135 0.135 1 1 0.51
P4,10]- -0.386 | -0.363 | -0.360 | -0.311 | -0.311 -0.264 -0.259 | -0.232 | -0.309 | -0.315 1 1 0.49
P5,11]- -0.285 -0.267 -0.259 -0.215 -0.211 -0.159 -0.147 -0.122 -0.217 -0.214 1 1 0.53
£6,12]- -0.380 | -0.326 | -0.316 | -0.268 | -0.268 | -0.224 -0.205 | -0.189 | -0.270 | -0.272 1 1 0.52
P1,8]- -0.232 | -0.205 | -0.200 | -0.153 | -0.152 | -0.101 -0.088 | -0.053 | -0.153 | -0.157 1 1 0.56
P2,9]- 0.284 0.308 0.315 0.360 0.361 0.406 0.417 0.432 0.359 0.366 1 1 0.51
£3,10|- 0.313 0.352 0.358 0.401 0.403 0.451 0.458 0.469 0.399 0.407 1 1 0.48
P4,11|- -0.241 | -0.221 -0.210 | -0.162 | -0.161 -0.108 -0.102 | -0.079 | -0.165 | -0.168 1 1 0.55
P5,12|- 0.102 0.134 0.147 0.194 0.195 0.246 0.252 0.270 0.192 0.197 1 1 0.56
£1,9]- -0.195 | -0.162 | -0.155 | -0.106 | -0.108 | -0.058 -0.049 | -0.026 | -0.106 | -0.110 1 1 0.57
£2,10]- -0.001 0.025 0.035 0.085 0.086 0.140 0.149 0.179 0.085 0.085 1 1 0.58
P3,11]- 0.190 0.229 0.237 0.279 0.278 0.319 0.330 0.353 0.280 0.278 1 1 0.53
P4,12]- -0.179 | -0.151 -0.143 | -0.090 | -0.090 | -0.045 -0.028 | -0.003 | -0.087 | -0.093 1 1 0.57
£1,10]- -0.211 | -0.165 | -0.152 | -0.100 | -0.099 | -0.048 -0.035 0.013 | -0.098 | -0.102 1 1 0.57
P2,11]- -0.041 | -0.014 | -0.004 0.051 0.050 0.100 0.112 0.145 0.054 0.052 0 0 0.58
P3,12]- -0.043 | -0.014 0.000 0.049 0.050 0.100 0.111 0.138 0.051 0.047 0 0 0.57
P1,11]- -0.123 | -0.069 | -0.063 | -0.009 | -0.010 0.046 0.054 0.081 -0.010 | -0.015 0 0 0.57
P2,12]- -0.072 | -0.038 | -0.028 0.022 0.023 0.074 0.082 0.127 0.023 0.024 0 0 0.56
£1,12]- -0.078 | -0.055 | -0.047 0.001 0.001 0.053 0.062 0.086 | -0.002 0.000 0 0 0.57

Table B.10: MCMC results for the copula parameters of the 3rd vine construction.
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Lo | Omin | 0259 05% Omed 6 b95% | 097.5% | Omax Omoa | Orrns | Pace |
B1(= Bn) 0.726 0.742 0.745 0.767 0.767 0.789 0.795 0.800 0.767 0.767 1.000
B2(= Bp) 1.150 | 1.174 | 1.181 | 1.221 | 1.221 | 1.258 | 1.267 | 1.291 | 1.223 | 1.218 | 1.000

B3(= Bar) 1.158 1.167 1.170 1.190 1.190 1.211 1.215 1.227 1.190 1.189 | 1.000
Ba(= BE) 0.798 0.817 0.824 0.858 0.858 0.895 0.900 0.914 0.859 0.858 | 1.000

Bs(= Bc) 0.933 0.948 0.956 0.978 0.978 1.003 1.010 1.020 0.977 0.978 | 1.000
Bs(= BB) 1.238 1.254 1.258 1.295 1.294 1.329 1.336 1.347 1.296 1.294 | 1.000
B7(= Br) 0.599 0.608 0.613 0.643 0.643 0.674 0.678 0.697 0.643 0.643 | 1.000
Bs(= Bu) 0.736 0.763 0.769 0.806 0.807 0.843 0.851 0.875 0.806 0.805 | 1.000
Bo(= Bs) 0.910 0.928 0.935 0.960 0.960 0.986 0.992 1.005 0.958 0.961 | 1.000

Bio(= Bu) 0.808 0.826 0.831 0.864 0.865 0.901 0.910 0.929 0.864 0.865 | 1.000
B11(= Bs) 1.110 1.125 1.130 1.161 1.159 1.184 1.191 1.204 1.164 1.158 | 1.000
B12(= Bo) 1.099 1.106 1.108 1.135 1.135 1.163 1.165 1.184 1.135 1.135 | 1.000

o3 (= ag\,) 4.397 4.584 4.641 4.978 4.998 5.329 5.420 5.843 4.972 5.017 | 0.280

o3 (= Ug) 12.686 | 13.115 | 13.301 | 14.477 | 14.467 | 15.635 | 15.995 | 16.955 | 14.491 | 14.427 | 0.299

U%(Z aéw) 3.556 3.770 3.812 4.080 4.084 4.385 4.442 4.618 4.079 4.083 | 0.291

oy (= 053) 12.699 | 13.327 | 13.599 | 14.595 | 14.576 | 15.589 | 15.863 | 16.374 | 14.587 | 14.412 | 0.274

oi(=o0 5.819 6.056 6.122 6.587 6.600 7.084 7.186 7.605 6.580 6.548 | 0.294
3%

oi(=o 9.501 9.691 9.808 | 10.502 | 10.538 | 11.409 | 11.580 | 11.849 | 10.457 | 10.521 | 0.282
§_ %

of(=o 7.917 8.277 8.392 8.990 8.996 9.634 9.706 9.912 8.981 8.942 | 0.298
7 T

o2 (=o? 11.955 | 12.381 | 12.513 | 13.516 | 13.526 | 14.736 | 14.938 | 15.364 | 13.545 | 13.456 | 0.294
3— o7

o4 (=0%) 6.929 7.206 7.317 7.860 7.883 8.490 8.568 9.467 7.857 7.829 | 0.290

U%O(I 021) 10.346 | 10.893 | 11.048 | 11.799 | 11.810 | 12.703 | 12.800 | 13.209 | 11.782 | 11.803 | 0.303

0%1(2 ag) 6.746 6.987 7.044 7.548 7.577 8.170 8.322 8.713 7.523 7.527 | 0.294

0%2(2 4) 5.984 6.264 6.370 6.833 6.848 7.339 7.443 7.828 6.785 6.790 | 0.297

Table B.11: MCMC results for the marginal parameters of the reduced model of the 1st
vine construction with credible level 10%.

| 0 | Gmin 025% 05% Gmed 0 695% 0975% Omaz Gmod GIFJVI | Pace |
B1(= BN) 0.728 0.741 0.747 0.766 0.766 0.787 0.792 0.804 0.765 0.767 | 1.000
ﬁg(: ﬁD) 1.150 1.170 1.180 1.215 1.216 1.253 1.258 1.279 1.215 1.218 1.000
ﬂg(: ﬂ]w) 1.160 1.166 1.170 1.189 1.188 1.209 1.212 1.227 1.190 1.189 1.000
Ba(= BE) 0.792 0.816 0.826 0.860 0.861 0.894 0.900 0.928 0.860 0.858 | 1.000
Bs(= Beo) 0.944 0.949 0.955 0.978 0.978 1.001 1.006 1.014 0.978 0.978 | 1.000
ﬁs(I ﬁB) 1.243 1.257 1.261 1.291 1.291 1.323 1.327 1.342 1.292 1.294 1.000
B7(= Br) 0.600 0.610 0.615 0.645 0.645 0.676 0.679 0.693 0.647 0.643 | 1.000
Bs(= Bu) 0.735 0.767 0.777 0.808 0.808 0.844 0.851 0.872 0.808 0.805 | 1.000
Bo(= Bs) 0.910 0.927 0.932 0.961 0.960 0.989 0.994 1.003 0.963 0.961 | 1.000

Bio(= Bu) 0.811 0.822 0.831 0.865 0.866 0.900 0.905 0.929 0.864 0.865 | 1.000
B11(= Bs) 1.119 1.127 1.131 1.160 1.160 1.189 1.192 1.209 1.159 1.158 | 1.000
(= Bo) 1.086 1.104 1.108 1.135 1.134 1.158 1.161 1.176 1.136 1.135 | 1.000

of(=0}) | 4440 [ 4601 | 4683 | 4981 | 5009 | 5386 | 5487 [ 5663 | 4960 [ 5017 | 0285
oj(=op) | 12629 | 13302 | 13.403 | 14424 | 14438 | 15,552 | 15755 | 16.740 | 14412 | 14427 | 0.307
of(=of) | 3623 | 3782 | 3818 | 4088 | 4108 | 4435 | 4478 | 4662 | 4.066 | 4083 | 0.285
oy(=op) | 13035 | 13208 | 13,515 | 14541 | 14534 | 15.580 | 15775 | 16.557 | 14.527 | 14412 | 0.273
oi(=0 5848 | 6.074 | 6.131 | 6.594 | 6.601 | 7.138 | 7.238 | 7.718 | 6.581 | 6.548 | 0.296
3_ o2
of(=of) | 9299 | 9639 | 9743 | 10556 | 10569 | 11470 | 11.730 | 11961 | 10559 | 10521 | 0.283
o2(=07) | 7.964 | 8254 | 8368 | 8935 | 8968 | 9.633 | 9.779 | 10.271 | 8.905 | 8.942 | 0.292
of(=op) | 11.682 | 12309 | 12,519 | 13.448 | 13.470 | 14.430 | 14.664 | 15.739 | 13478 | 13456 | 0.294
oi(=0 7.149 | 7.250 | 7.330 | 7.808 | 7.900 | 8.465 | 8.609 | 8.957 | 7.892 | 7.820 | 0.288
9 S,
ofo(= o) | 10.699 | 10957 | 11.057 | 11778 | 11.803 | 12.703 | 12881 | 13.445 | 11.745 | 11803 | 0.293
oL(=og) | 6358 | 6914 | TOLT | 7560 | 7.574 | 8170 | 8.289 | 8775 | 7.534 | 7.527 | 0.303
o, (=0Z) | 6.035 | 6306 | 6336 | 6.842 | 6.847 | 7.337 | 7.410 | 7.977 | 6.852 | 6.790 | 0.298

Table B.12: MCMC results for the marginal parameters of the reduced model of the 1st
vine construction with credible level 5%.
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0 Omin | 02.5% O59% Omed 0 095% | Bo7.5% | Omaw | Omoa | Orrar |Cr0%]Cs%] Pace |
2,3 0.175 0.197 0.206 0.256 0.255 0.300 0.310 0.331 0.256 0.260 1 1 0.53
P3,4 -0.143 | -0.122 -0.111 -0.061 -0.060 | -0.012 0.001 0.039 | -0.061 -0.066 1 0 0.51
4,5 -0.158 | -0.126 | -0.115 -0.060 | -0.061 -0.007 0.004 0.030 | -0.059 | -0.066 1 0 0.49
P5,6 -0.200 | -0.176 | -0.166 -0.121 -0.120 | -0.071 -0.062 | -0.032 -0.120 | -0.123 1 1 0.50
p6,7 -0.129 | -0.110 | -0.100 -0.057 | -0.057 | -0.006 0.003 0.031 -0.058 | -0.060 1 0 0.53
pP7.,8 0.026 0.072 0.080 0.128 0.129 0.182 0.189 0.218 0.127 0.132 1 1 0.55
p8,9 -0.142 | -0.104 | -0.100 -0.051 -0.052 -0.005 0.002 0.069 | -0.051 -0.055 1 0 0.50
£9,10 0.003 0.051 0.059 0.113 0.114 0.162 0.170 0.196 0.111 0.114 1 1 0.54
p1o,11 | -0.007 0.016 0.025 0.070 0.071 0.118 0.122 0.144 0.070 0.090 1 1 0.54
£11,12 0.007 0.048 0.054 0.103 0.102 0.148 0.159 0.205 0.101 0.103 1 1 0.52
p2,4]- -0.266 | -0.223 | -0.218 -0.165 | -0.167 | -0.122 -0.110 | -0.064 | -0.163 | -0.162 1 1 0.54
P3,5|- 0.142 0.175 0.186 0.238 0.236 0.287 0.292 0.306 0.238 0.243 1 1 0.49
P4.6]- -0.399 | -0.387 | -0.383 -0.339 | -0.339 | -0.296 -0.287 | -0.267 | -0.341 -0.339 1 1 0.45
P5,7]- -0.202 | -0.174 | -0.166 -0.112 | -0.113 | -0.062 -0.057 | -0.033 | -0.111 -0.125 1 1 0.53
P6,8|- -0.281 -0.260 | -0.255 -0.209 | -0.208 | -0.162 -0.154 | -0.112 -0.209 | -0.216 1 1 0.54
P9,11]- 0.050 0.079 0.086 0.132 0.133 0.185 0.195 0.222 0.132 0.130 1 1 0.53
£10,12|- -0.220 | -0.198 | -0.187 | -0.141 -0.139 | -0.089 -0.078 | -0.064 | -0.146 | -0.131 1 1 0.53
P1,4- -0.283 | -0.248 | -0.238 -0.191 -0.191 -0.141 -0.131 -0.099 | -0.194 | -0.195 1 1 0.50
P25 0.045 0.079 0.085 0.144 0.142 0.192 0.201 0.216 0.145 0.136 1 1 0.54
Pa7|- -0.332 -0.306 -0.295 -0.248 -0.249 -0.202 -0.192 -0.171 -0.249 -0.263 1 1 0.48
£6,9|- -0.183 | -0.150 | -0.144 -0.090 | -0.091 -0.037 -0.023 0.020 | -0.089 | -0.094 1 1 0.51
P8,11]- 0.298 0.313 0.326 0.379 0.377 0.420 0.427 0.442 0.381 0.378 1 1 0.49
P1,5]- 0.077 0.110 0.125 0.178 0.176 0.221 0.225 0.281 0.180 0.184 1 1 0.50
P3,7]- -0.406 | -0.381 -0.370 -0.330 | -0.330 | -0.288 -0.284 | -0.270 | -0.331 -0.329 1 1 0.50
P8,12]- -0.208 | -0.175 -0.168 -0.119 | -0.118 | -0.070 -0.057 | -0.016 | -0.117 | -0.118 1 1 0.53
P1,6]- -0.465 | -0.434 | -0.429 -0.389 | -0.387 | -0.343 -0.337 | -0.308 | -0.393 | -0.400 1 1 0.48
p2,7]- -0.182 | -0.146 | -0.138 -0.090 | -0.090 | -0.040 -0.032 | -0.002 -0.090 | -0.083 1 1 0.56
P3.8]- -0.242 -0.227 -0.213 -0.161 -0.160 -0.112 -0.104 -0.039 -0.161 -0.170 1 1 0.54
P4,9|- -0.466 | -0.426 | -0.423 -0.387 | -0.385 -0.340 -0.332 | -0.288 | -0.390 | -0.383 1 1 0.46
P5,10]- 0.035 0.079 0.085 0.139 0.138 0.185 0.193 0.212 0.139 0.135 1 1 0.53
£6,11]- -0.237 | -0.199 | -0.191 -0.140 | -0.139 | -0.089 -0.081 -0.022 -0.141 -0.142 1 1 0.54
P7,12]- -0.208 | -0.174 | -0.164 | -0.116 | -0.116 | -0.063 -0.050 | -0.041 -0.114 | -0.113 1 1 0.53
P1,7]- -0.176 | -0.158 | -0.142 -0.101 -0.101 -0.057 -0.050 | -0.003 | -0.100 | -0.116 1 1 0.55
P3,9|- -0.185 -0.169 -0.161 -0.114 -0.112 -0.063 -0.049 -0.021 -0.114 -0.126 1 1 0.53
P4,10]- -0.206 | -0.179 | -0.173 -0.120 | -0.120 | -0.071 -0.060 | -0.045 -0.120 | -0.127 1 1 0.54
P5,11]- -0.157 | -0.121 -0.113 -0.061 -0.059 | -0.005 0.009 0.034 | -0.061 -0.061 1 0 0.56
£6,12]- -0.247 | -0.204 | -0.193 -0.150 | -0.148 | -0.100 -0.095 | -0.068 | -0.151 -0.141 1 1 0.54
P1,8]- -0.069 | -0.017 | -0.010 0.043 0.043 0.093 0.101 0.128 0.043 0.049 0 0 0.53
p2,9|- 0.001 0.047 0.062 0.111 0.110 0.157 0.165 0.188 0.111 0.103 1 1 0.54
paao. | -0.202 | -0.277 | -0.269 | -0.227 | -0.225 | -0.180 | -0.172 | -0.128 | -0.229 | -0.226 | 1 | 1 | 053
P4,11]- -0.261 -0.219 | -0.211 -0.162 | -0.161 -0.110 -0.100 | -0.066 | -0.161 -0.164 1 1 0.56
P5,12]- -0.273 | -0.229 | -0.220 -0.169 | -0.168 | -0.119 -0.110 | -0.056 | -0.169 | -0.165 1 1 0.54
P1,9]- 0.255 0.290 0.298 0.345 0.345 0.390 0.401 0.417 0.345 0.347 1 1 0.50
£2,10|- -0.272 | -0.235 -0.221 -0.182 | -0.180 | -0.136 -0.130 | -0.083 | -0.183 | -0.200 1 1 0.55
P3,11]- -0.059 | -0.018 | -0.007 0.048 0.048 0.103 0.113 0.142 0.044 0.052 0 0 0.56
P4,12]- -0.353 | -0.323 | -0.305 -0.257 | -0.259 | -0.213 -0.201 -0.163 | -0.256 | -0.255 1 1 0.53
£1,10]- 0.169 0.209 0.221 0.267 0.267 0.312 0.321 0.339 0.269 0.262 1 1 0.54
P3,12]- 0.186 0.203 0.210 0.258 0.259 0.308 0.319 0.344 0.258 0.262 1 1 0.54
P2,12]- -0.255 | -0.207 | -0.202 -0.150 | -0.150 | -0.103 -0.097 | -0.058 | -0.149 | -0.149 1 1 0.56

Table B.13: MCMC results for the copula parameters of the reduced model of the 1st vine
construction with credible level 10%
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0 Omin | 025% 059 Omed 0 095% | 0975% | Omaz | Omod | O1rar [Cio%]Cs%| Pace |
2,3 0.135 0.195 0.205 0.255 0.254 0.305 0.310 0.333 0.257 0.260 1 1 0.52
P3,4 -0.136 | -0.124 | -0.114 -0.065 | -0.064 | -0.014 -0.003 0.019 | -0.066 | -0.066 1 1 0.51
4,5 -0.151 -0.112 -0.107 | -0.061 -0.059 | -0.010 0.003 0.025 -0.063 | -0.066 1 0 0.48
P5,6 -0.193 | -0.175 -0.168 -0.120 | -0.121 -0.074 -0.060 0.002 -0.120 | -0.123 1 1 0.52
p6,7 -0.141 -0.114 | -0.108 -0.058 | -0.057 | -0.009 0.001 0.035 -0.058 | -0.060 1 0 0.52
pP7.,8 0.013 0.073 0.082 0.131 0.130 0.177 0.186 0.235 0.134 0.132 1 1 0.55
£9,10 0.012 0.054 0.067 0.114 0.113 0.162 0.172 0.205 0.112 0.114 1 1 0.54
p1o,11 | -0.010 0.015 0.028 0.073 0.073 0.115 0.126 0.159 0.075 0.090 1 1 0.53
p11,12 | -0.005 0.036 0.048 0.095 0.094 0.142 0.150 0.164 0.095 0.103 1 1 0.53
p2,4]- -0.249 | -0.226 | -0.218 -0.165 | -0.165 -0.113 -0.104 | -0.087 | -0.167 | -0.162 1 1 0.53
£3,5]- 0.134 0.186 0.193 0.241 0.240 0.286 0.294 0.320 0.240 0.243 1 1 0.50
P4,6]- -0.399 | -0.380 | -0.374 | -0.326 | -0.329 | -0.281 -0.276 | -0.250 | -0.324 | -0.339 1 1 0.45
P5,7]- -0.225 | -0.180 | -0.167 | -0.117 | -0.117 | -0.066 -0.059 | -0.026 | -0.115 -0.125 1 1 0.52
£6,8]- -0.310 | -0.272 -0.266 -0.215 | -0.215 -0.165 -0.149 | -0.106 | -0.214 | -0.216 1 1 0.54
P9,11]- 0.062 0.096 0.104 0.152 0.152 0.200 0.207 0.232 0.150 0.130 1 1 0.53
£10,12|- -0.219 | -0.199 | -0.191 -0.134 | -0.134 | -0.082 -0.073 | -0.042 -0.133 | -0.131 1 1 0.52
P1,4) -0.274 -0.245 -0.241 -0.194 -0.192 -0.142 -0.134 -0.105 -0.195 -0.195 1 1 0.48
P2,5 0.049 0.075 0.084 0.141 0.140 0.190 0.196 0.229 0.143 0.136 1 1 0.55
Pa,7|- -0.330 | -0.304 | -0.293 -0.249 | -0.248 | -0.204 -0.198 | -0.184 | -0.251 -0.263 1 1 0.49
£6,9]- -0.216 | -0.159 | -0.148 -0.098 | -0.098 | -0.051 -0.038 | -0.012 -0.098 | -0.094 1 1 0.51
P8,11]- 0.292 0.323 0.329 0.375 0.373 0.414 0.419 0.439 0.377 0.378 1 1 0.51
P1,5]- 0.113 0.127 0.133 0.177 0.178 0.229 0.238 0.272 0.176 0.184 1 1 0.50
£3,7]- -0.397 | -0.380 | -0.370 -0.329 | -0.328 | -0.283 -0.277 | -0.268 | -0.332 -0.329 1 1 0.50
£8,12]- -0.217 | -0.183 | -0.167 | -0.118 | -0.118 | -0.068 -0.061 -0.044 | -0.119 | -0.118 1 1 0.53
£1,6]- -0.475 | -0.442 -0.437 | -0.393 | -0.393 | -0.349 -0.334 | -0.303 | -0.394 | -0.400 1 1 0.47
P2,7]- -0.174 | -0.155 -0.143 -0.090 | -0.090 | -0.035 -0.023 | -0.009 | -0.089 | -0.083 1 1 0.56
£3,8]- -0.254 | -0.234 | -0.226 -0.173 | -0.173 | -0.123 -0.112 | -0.056 | -0.173 | -0.170 1 1 0.54
P4,9]- -0.457 | -0.437 | -0.428 -0.383 | -0.384 | -0.339 -0.331 -0.278 | -0.383 | -0.383 1 1 0.46
£5,10]- 0.060 0.076 0.086 0.132 0.132 0.181 0.190 0.219 0.130 0.135 1 1 0.54
£6,11]- -0.233 | -0.197 | -0.191 -0.144 | -0.141 -0.086 -0.077 | -0.059 | -0.149 | -0.142 1 1 0.57
P7,12]- -0.196 | -0.171 -0.158 -0.109 | -0.110 | -0.063 -0.056 | -0.029 | -0.108 | -0.113 1 1 0.54
P1,7]- -0.194 | -0.161 -0.153 -0.106 | -0.105 -0.054 -0.047 | -0.024 | -0.106 | -0.116 1 1 0.54
£3,9]- -0.213 | -0.172 -0.163 -0.117 | -0.116 | -0.066 -0.060 | -0.044 | -0.119 | -0.126 1 1 0.53
£4,10]- -0.210 | -0.177 | -0.169 -0.115 | -0.117 | -0.066 -0.063 | -0.007 | -0.115 -0.127 1 1 0.52
P5,11]- -0.143 | -0.119 | -0.114 | -0.062 | -0.061 -0.009 -0.001 0.031 -0.063 | -0.061 1 1 0.57
£6,12]- -0.231 -0.209 | -0.204 | -0.155 | -0.154 | -0.106 -0.098 | -0.046 | -0.157 | -0.141 1 1 0.53
P2,9]- 0.013 0.050 0.061 0.107 0.108 0.164 0.171 0.197 0.104 0.103 1 1 0.54
P3,10|- -0.297 -0.276 -0.269 -0.224 -0.225 -0.179 -0.172 -0.147 -0.226 -0.226 1 1 0.53
P4,11]- -0.251 -0.225 -0.216 -0.157 | -0.159 | -0.104 -0.097 | -0.046 | -0.156 | -0.164 1 1 0.55
P5,12]- -0.241 -0.230 | -0.217 | -0.169 | -0.170 | -0.120 -0.113 | -0.066 | -0.166 | -0.165 1 1 0.54
£1,9]- 0.273 0.291 0.298 0.347 0.345 0.386 0.395 0.408 0.350 0.347 1 1 0.50
£2,10]- -0.264 | -0.238 | -0.227 | -0.181 -0.180 | -0.131 -0.124 | -0.091 -0.183 | -0.200 1 1 0.54
P4,12]- -0.349 | -0.318 | -0.312 -0.259 | -0.259 | -0.211 -0.206 | -0.186 | -0.259 | -0.255 1 1 0.53
£1,10]- 0.176 0.203 0.218 0.270 0.268 0.318 0.325 0.348 0.270 0.262 1 1 0.53
£3,12]- 0.182 0.203 0.212 0.257 0.258 0.306 0.313 0.351 0.255 0.262 1 1 0.54
P2,12]- -0.273 | -0.207 | -0.197 | -0.150 | -0.150 | -0.103 -0.092 | -0.062 -0.151 -0.149 1 1 0.57

Table B.14: MCMC results for the copula parameters of the reduced model of the 1st vine
construction with credible level 5%
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| 0 | Omin 625% 65% Omed 0 095% 6975% Omax Omod 017 M Dacc
B1(= Bu) 0.756 0.769 0.773 0.806 0.807 0.841 0.844 0.869 0.806 0.805 | 1.000
,32(: ,3$) 1.115 1.129 1.134 1.159 1.159 1.183 1.187 1.205 1.160 1.158 1.000
ﬁ3(: ﬁB) 1.246 1.255 1.262 1.295 1.293 1.321 1.327 1.348 1.297 1.294 1.000
Ba(= BE) 0.793 0.812 0.818 0.856 0.857 0.895 0.900 0.925 0.856 0.858 | 1.000
Bs(= Bs) 0.914 0.927 0.933 0.960 0.961 0.990 0.995 1.013 0.960 0.961 | 1.000
Be(= BN) 0.730 0.741 0.742 0.768 0.767 0.787 0.793 0.806 0.769 0.767 | 1.000
B7(= Br) 0.808 0.825 0.833 0.864 0.864 0.902 0.907 0.915 0.862 0.865 | 1.000
ﬁg(: ,BD) 1.156 1.179 1.183 1.218 1.218 1.255 1.263 1.279 1.217 1.218 1.000
Bo(= Bc) 0.941 0.953 0.956 0.978 0.979 1.002 1.007 1.016 0.977 0.978 | 1.000
610(: ﬂo) 1.093 1.107 1.112 1.135 1.136 1.161 1.167 1.173 1.134 1.135 1.000
,311(: ﬁ]\/j) 1.162 1.167 1.171 1.189 1.189 1.208 1.211 1.227 1.189 1.189 1.000
Bi2(= Br) 0.589 0.606 0.615 0.645 0.644 0.673 0.676 0.711 0.644 0.643 | 1.000
af (: a‘gj) 11.840 12.380 12.530 13.476 13.506 14.624 14.723 15.040 13.425 13.456 0.298
0’% =o0%) 6.640 6.927 6.967 7.536 7.559 8.180 8.262 8.575 7.526 7.527 | 0.306
o3 (= Ug ) 9.381 9.631 9.794 | 10.560 | 10.571 | 11.383 | 11.527 | 12.359 | 10.506 | 10.521 | 0.284
a% (: a‘g) 12.618 13.243 13.403 14.564 14.572 15.794 16.003 16.468 14.549 14.412 0.282
Ug (= 05) 6.829 7177 7.278 7.819 7.843 8.433 8.613 8.967 7.808 7.829 | 0.294
Ug (= Ué\,) 4.346 4.612 4.657 4.978 5.017 5.439 5.514 5.902 4.960 5.017 | 0.277
oz (: o ) 10.207 10.742 10.930 11.802 11.824 12.791 12.986 13.666 11.787 11.803 0.295
o2 (: 0'51) 12.610 13.121 13.411 14.447 14.441 15.567 15.760 16.637 14.465 14.427 0.301
o‘% (= o'g) 5.881 6.047 6.111 6.554 6.571 7.019 7.100 7.661 6.555 6.548 | 0.295
o5(= Ug)) 6.048 6.296 6.355 6.836 6.827 7.325 7.380 7.896 6.833 6.790 | 0.295
0’%1 (= Uéw) 3.568 3.708 3.772 4.084 4.094 4.449 4.511 4.796 4.081 4.083 | 0.285
0%2 (=07) 7.983 8.223 8.333 8.926 8.953 9.634 9.810 | 10.143 8.882 8.942 | 0.304

Table B.15: MCMC results for the marginal parameters of the reduced model of the 2nd
vine construction with credible level 10%.

| 0 | Omin 625% 65% Gmed 0 095% 6975% Omaz Gmod 017 M Pacc
Bi(= Bu) 0.742 0.764 0.769 0.805 0.804 0.841 0.846 0.863 0.806 0.805 | 1.000
B2(= Bs) 1.108 1.126 1.132 1.158 1.158 1.186 1.192 1.204 1.159 1.158 | 1.000
B3(= Br) 1.240 1.259 1.265 1.294 1.294 1.327 1.332 1.358 1.295 1.294 | 1.000
Ba(= BE) 0.793 0.816 0.823 0.859 0.859 0.896 0.903 0.926 0.859 0.858 | 1.000
Bs(= Bs) 0.920 0.930 0.934 0.961 0.961 0.986 0.995 1.014 0.962 0.961 | 1.000
Be(= BN) 0.730 0.741 0.748 0.767 0.768 0.789 0.794 0.807 0.767 0.767 | 1.000
B7(= Br) 0.808 0.831 0.838 0.867 0.867 0.899 0.905 0.927 0.868 0.865 | 1.000
Bs(= Bp) 1.144 1.174 1.182 1.218 1.217 1.253 1.261 1.274 1.219 1.218 | 1.000
Bo(= Bc) 0.931 0.948 0.954 0.980 0.979 1.006 1.012 1.032 0.981 0.978 | 1.000
Bio(= Bo) 1.093 1.105 1.110 1.136 1.135 1.159 1.165 1.184 1.135 1.135 1.000
B11(= Bum) 1.160 1.167 1.171 1.191 1.190 1.208 1.209 1.227 1.193 1.189 | 1.000
Bi2(= Br) 0.573 0.606 0.612 0.643 0.643 0.676 0.683 0.697 0.643 0.643 | 1.000
a‘f (= agj) 11.921 12.353 12.517 | 13.570 13.558 | 14.597 | 14.772 15.941 13.634 13.456 | 0.295
0’%(: o3) 6.668 6.917 7.039 7.485 7.517 8.099 8.216 8.616 7.477 7.527 | 0.296
ol (= Ug ) 9.337 9.739 9.943 | 10.691 | 10.684 | 11.448 | 11.581 | 12.031 | 10.688 | 10.521 | 0.281
J% (= Jg) 12.833 | 13.359 13.539 | 14.472 14.510 | 15.619 15.855 16.436 | 14.443 14.412 | 0.271
Ug (= 05) 6.948 7.073 7.165 7.781 7.784 8.330 8.458 8.916 7.792 7.829 | 0.295
Ug (= Ué\,) 4.328 4.578 4.616 5.012 5.000 5.389 5.453 5.551 5.018 5.017 | 0.288
oz (=o0%) 10.176 | 10.693 | 10.896 | 11.791 | 11.804 | 12.759 | 12.954 | 13.606 | 11.794 | 11.803 | 0.307
oi(= 051) 12.622 | 13.375 | 13.566 | 14.432 | 14.483 | 15.531 | 15.764 | 16.566 | 14.363 | 14.427 | 0.305
a% (= ag) 5.666 5.982 6.086 6.568 6.570 7.122 7.235 7.524 6.546 6.548 | 0.296
o3y(= Ug)) 5.955 6.250 6.320 6.792 6.820 7.309 7.357 7.709 6.797 6.790 | 0.293
0’%1 (= Uéw) 3.615 3.788 3.808 4.090 4.093 4.417 4.476 4.634 4.080 4.083 | 0.295
0%2 (=07) 7.770 8.174 8.264 9.011 8.993 9.642 9.775 | 10.204 9.021 8.942 | 0.295

Table B.16: MCMC results for the marginal parameters of the reduced model of the 2nd

vine construction with credible level 5%.
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[ 0 | bmin | bos% 05% Omed 0 Oos5% | Oo7.5% | Omaa Omod | O1rm [Cio%]Cs% ]| Pace |
P1,2 0.273 0.300 0.312 0.359 0.359 0.406 0.411 0.449 0.360 0.367 1 1 0.49
£2,3 -0.314 -0.277 -0.267 -0.219 -0.220 -0.174 -0.164 -0.146 -0.218 -0.224 1 1 0.54
p3,4 -0.413 | -0.380 | -0.370 | -0.326 | -0.327 | -0.285 -0.279 | -0.252 | -0.327 | -0.328 1 1 0.48
P45 -0.396 | -0.373 | -0.364 | -0.315 | -0.316 | -0.271 -0.265 | -0.236 | -0.314 | -0.324 1 1 0.49
P5.,6 0.329 0.354 0.367 0.406 0.406 0.448 0.454 0.500 0.407 0.414 1 1 0.46
6,7 0.233 0.274 0.286 0.333 0.331 0.377 0.383 0.410 0.334 0.332 1 1 0.52
P7,8 -0.225 | -0.213 | -0.206 | -0.152 | -0.152 | -0.100 -0.086 | -0.058 | -0.152 | -0.156 1 1 0.55
£8,9 0.080 0.132 0.138 0.188 0.189 0.243 0.254 0.290 0.186 0.197 1 1 0.53
p9,10 | -0.221 | -0.208 | -0.200 | -0.153 | -0.151 -0.101 -0.087 | -0.061 -0.157 | -0.147 1 1 0.54
p1o,11| 0.205 0.244 0.255 0.295 0.296 0.341 0.351 0.392 0.295 0.294 1 1 0.50
p11,12| -0.412 | -0.382 | -0.374 | -0.325 | -0.325 | -0.277 -0.269 | -0.249 | -0.326 | -0.325 1 1 0.50
P1,3|- -0.227 | -0.206 | -0.198 | -0.151 -0.151 -0.096 -0.087 | -0.066 | -0.153 | -0.154 1 1 0.55
p2,4|- -0.272 | -0.251 -0.243 | -0.189 | -0.191 -0.140 -0.128 | -0.101 -0.186 | -0.193 1 1 0.56
£3,5]- -0.275 | -0.252 | -0.247 | -0.198 | -0.199 | -0.152 -0.144 | -0.099 | -0.196 | -0.208 1 1 0.51
£4,6]- -0.131 | -0.103 | -0.089 | -0.041 -0.040 0.010 0.017 0.061 -0.042 | -0.061 0 0 0.53
P7,9]- 0.093 0.124 0.132 0.178 0.179 0.231 0.238 0.280 0.178 0.178 1 1 0.54
£9,11]- 0.195 0.246 0.253 0.302 0.301 0.342 0.346 0.387 0.301 0.306 1 1 0.53
P1,4- -0.010 0.001 0.010 0.058 0.058 0.107 0.114 0.131 0.057 0.059 1 1 0.56
P2,5 -0.028 0.005 0.009 0.058 0.058 0.112 0.126 0.152 0.056 0.058 1 1 0.56
£3,6]- -0.455 | -0.402 | -0.394 | -0.348 | -0.349 | -0.305 -0.295 | -0.270 | -0.347 | -0.367 1 1 0.51
Pa,7|- -0.206 | -0.158 | -0.151 | -0.096 | -0.095 | -0.046 -0.041 0.010 | -0.092 | -0.097 1 1 0.54
P5,8]- 0.085 0.113 0.123 0.168 0.170 0.217 0.226 0.257 0.169 0.175 1 1 0.55
£6,9]- 0.035 0.076 0.085 0.132 0.133 0.183 0.191 0.218 0.131 0.133 1 1 0.57
£7,10]- -0.194 | -0.155 | -0.147 | -0.106 | -0.105 | -0.058 -0.049 | -0.015 | -0.107 | -0.108 1 1 0.54
P8,11]- 0.169 0.186 0.193 0.239 0.240 0.289 0.297 0.324 0.237 0.244 1 1 0.54
P1,5]- -0.215 | -0.174 | -0.164 | -0.112 | -0.111 -0.059 -0.052 | -0.018 | -0.113 | -0.111 1 1 0.56
P2,6]- -0.002 0.021 0.034 0.083 0.083 0.135 0.151 0.171 0.082 0.082 1 1 0.58
P4,8]- -0.247 | -0.228 | -0.218 | -0.165 | -0.166 | -0.115 -0.105 | -0.062 | -0.164 | -0.159 1 1 0.54
P5,9]- -0.191 | -0.148 | -0.141 | -0.088 | -0.089 | -0.035 -0.028 | -0.002 | -0.086 | -0.089 1 1 0.57
£6,10]- -0.036 | -0.006 | -0.001 0.056 0.056 0.110 0.118 0.135 0.057 0.067 0 0 0.56
P7.11]- -0.222 | -0.186 | -0.181 | -0.131 -0.129 | -0.079 -0.067 | -0.039 | -0.129 | -0.132 1 1 0.56
£1,6]- -0.022 0.001 0.013 0.062 0.061 0.109 0.119 0.164 0.062 0.060 1 1 0.56
£3,8]- -0.160 | -0.143 | -0.133 | -0.086 | -0.087 | -0.038 -0.032 | -0.009 | -0.086 | -0.078 1 1 0.55
£5,10]- -0.142 | -0.123 | -0.112 | -0.059 | -0.058 | -0.006 0.004 0.023 | -0.060 | -0.061 1 0 0.56
P7.12|- -0.143 | -0.129 | -0.122 | -0.067 | -0.067 | -0.019 -0.008 0.016 | -0.065 | -0.078 1 1 0.55
£3,9]- -0.201 | -0.145 | -0.143 | -0.093 | -0.094 | -0.045 -0.035 | -0.003 | -0.094 | -0.088 1 1 0.56
£4,10]- -0.213 | -0.199 | -0.196 | -0.152 | -0.151 -0.102 -0.090 | -0.066 | -0.153 | -0.138 1 1 0.54
P5,11]- -0.131 | -0.125 | -0.113 | -0.063 | -0.063 | -0.012 -0.006 0.027 | -0.062 | -0.063 1 1 0.56
£1,8]- -0.143 | -0.114 | -0.102 | -0.056 | -0.055 | -0.005 0.000 0.024 | -0.058 | -0.059 1 0 0.57
P2,9]- -0.184 | -0.150 | -0.143 | -0.092 | -0.092 | -0.045 -0.035 | -0.010 | -0.092 | -0.093 1 1 0.57
P3,10[- -0.297 -0.276 -0.269 -0.220 -0.221 -0.170 -0.161 -0.142 -0.219 -0.214 1 1 0.53
£2,10]- -0.033 | -0.011 -0.001 0.053 0.052 0.101 0.107 0.142 0.053 0.053 0 0 0.57
P3,11]- 0.008 0.032 0.046 0.100 0.098 0.149 0.154 0.195 0.102 0.095 1 1 0.56
P4,12]- -0.366 | -0.341 -0.331 | -0.279 | -0.280 | -0.230 -0.224 | -0.210 | -0.277 | -0.292 1 1 0.53
£1,10|- -0.234 | -0.213 | -0.205 | -0.147 | -0.147 | -0.094 -0.081 | -0.042 | -0.146 | -0.148 1 1 0.56
£3,12]- -0.309 | -0.281 -0.270 | -0.222 | -0.221 -0.174 -0.168 | -0.138 | -0.220 | -0.228 1 1 0.55
P1,11]- -0.241 | -0.221 -0.215 | -0.170 | -0.169 | -0.116 -0.110 | -0.092 | -0.173 | -0.170 1 1 0.56

Table B.17: MCMC results for the copula parameters of the reduced model of the 2nd
vine construction with credible level 10%.
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[ 0 | bmin | bo5% 05% Omed 0 Oos5% | Oo7.5% | Omax Omod | O1rm [Cio%]Cs% ]| Pace |
p1,2 0.283 0.315 0.320 0.366 0.367 0.413 0.419 0.458 0.365 0.367 1 1 0.50
2,3 -0.295 | -0.277 | -0.266 | -0.218 | -0.217 | -0.167 -0.157 | -0.116 | -0.216 | -0.224 1 1 0.55
p3,4 -0.405 | -0.384 | -0.380 | -0.340 | -0.339 | -0.296 -0.284 | -0.255 | -0.339 | -0.328 1 1 0.48
P45 -0.393 | -0.362 | -0.357 | -0.313 | -0.312 | -0.261 -0.257 | -0.226 | -0.315 | -0.324 1 1 0.50
P5.,6 0.330 0.352 0.364 0.403 0.403 0.445 0.453 0.468 0.403 0.414 1 1 0.46
6,7 0.236 0.263 0.275 0.331 0.328 0.375 0.382 0.418 0.333 0.332 1 1 0.52
P7,8 -0.239 | -0.219 | -0.205 | -0.156 | -0.156 | -0.108 -0.097 | -0.043 | -0.155 | -0.156 1 1 0.54
£8,9 0.095 0.136 0.143 0.189 0.190 0.238 0.247 0.283 0.189 0.197 1 1 0.54
p9,10 | -0.250 | -0.213 | -0.202 | -0.158 | -0.156 | -0.109 -0.096 | -0.063 | -0.160 | -0.147 1 1 0.52
p1o,11| 0.218 0.244 0.252 0.294 0.294 0.340 0.348 0.374 0.296 0.294 1 1 0.50
p11,12| -0.405 | -0.374 | -0.367 | -0.323 | -0.324 | -0.284 -0.273 | -0.208 | -0.324 | -0.325 1 1 0.50
£1,3]- -0.256 | -0.206 | -0.196 | -0.148 | -0.150 | -0.103 -0.099 | -0.071 -0.148 | -0.154 1 1 0.55
P2,4] -0.271 | -0.240 | -0.231 | -0.186 | -0.186 | -0.134 -0.125 | -0.093 | -0.187 | -0.193 1 1 0.55
£3,5]- -0.290 | -0.260 | -0.249 | -0.200 | -0.201 -0.156 -0.144 | -0.133 | -0.199 | -0.208 1 1 0.52
P7,9]- 0.078 0.127 0.134 0.180 0.180 0.232 0.243 0.269 0.180 0.178 1 1 0.55
£9,11]- 0.212 0.251 0.255 0.297 0.299 0.347 0.357 0.382 0.294 0.306 1 1 0.52
£3,6]- -0.437 | -0.410 | -0.396 | -0.354 | -0.353 | -0.307 -0.295 | -0.268 | -0.357 | -0.367 1 1 0.49
Pa,7|- -0.185 | -0.156 | -0.149 | -0.095 | -0.095 | -0.040 -0.028 0.018 | -0.094 | -0.097 1 1 0.55
P5,8]- 0.075 0.115 0.122 0.173 0.173 0.225 0.235 0.266 0.171 0.175 1 1 0.56
£6,9]- 0.038 0.073 0.081 0.133 0.133 0.183 0.190 0.202 0.132 0.133 1 1 0.57
£7,10]- -0.190 | -0.166 | -0.159 | -0.111 -0.111 -0.063 -0.052 | -0.032 | -0.111 | -0.108 1 1 0.56
P8,11]- 0.153 0.179 0.190 0.240 0.240 0.289 0.297 0.320 0.241 0.244 1 1 0.54
P1,5]- -0.231 | -0.166 | -0.160 | -0.106 | -0.108 | -0.059 -0.049 | -0.026 | -0.101 | -0.111 1 1 0.57
P2,6]- -0.004 0.014 0.024 0.079 0.079 0.135 0.146 0.166 0.078 0.082 1 1 0.57
P4,8]- -0.260 | -0.225 | -0.215 | -0.164 | -0.165 | -0.115 -0.103 | -0.053 | -0.165 | -0.159 1 1 0.55
P5,9]- -0.158 | -0.143 | -0.135 | -0.079 | -0.081 -0.031 -0.015 0.011 -0.077 | -0.089 1 1 0.57
£6,10]- -0.037 | -0.002 0.010 0.054 0.056 0.106 0.117 0.139 0.049 0.067 1 0 0.56
P7.11]- -0.209 | -0.189 | -0.182 | -0.132 | -0.133 | -0.080 -0.076 | -0.043 | -0.129 | -0.132 1 1 0.55
£1,6]- -0.018 0.004 0.017 0.059 0.062 0.114 0.125 0.155 0.054 0.060 1 1 0.57
£3,8]- -0.164 | -0.143 | -0.133 | -0.083 | -0.085 | -0.039 -0.033 0.012 | -0.082 | -0.078 1 1 0.56
£5,10]- -0.140 | -0.129 | -0.117 | -0.061 -0.061 -0.010 -0.003 0.030 | -0.058 | -0.061 1 1 0.55
P7,12]- -0.148 | -0.130 | -0.121 | -0.072 | -0.071 -0.021 -0.009 0.023 | -0.071 | -0.078 1 1 0.56
£3,9]- -0.169 | -0.146 | -0.137 | -0.089 | -0.090 | -0.041 -0.032 | -0.009 | -0.090 | -0.088 1 1 0.55
£4,10]- -0.265 | -0.202 | -0.195 | -0.144 | -0.144 | -0.096 -0.088 | -0.066 | -0.144 | -0.138 1 1 0.54
P5,11]- -0.155 | -0.128 | -0.118 | -0.065 | -0.067 | -0.018 -0.010 0.021 -0.061 | -0.063 1 1 0.58
£1,8]- -0.136 | -0.117 | -0.104 | -0.056 | -0.055 | -0.005 0.007 0.034 | -0.056 | -0.059 1 0 0.57
P2,9]- -0.191 | -0.149 | -0.142 | -0.091 -0.091 -0.041 -0.028 0.004 | -0.092 | -0.093 1 1 0.58
£3,10]- -0.320 | -0.271 -0.264 | -0.216 | -0.217 | -0.167 -0.155 | -0.129 | -0.217 | -0.214 1 1 0.53
P3,11]- 0.013 0.042 0.054 0.102 0.102 0.153 0.164 0.187 0.100 0.095 1 1 0.56
P4,12]- -0.373 | -0.346 | -0.338 | -0.287 | -0.288 | -0.236 -0.226 | -0.187 | -0.286 | -0.292 1 1 0.53
£1,10|- -0.229 | -0.208 | -0.197 | -0.145 | -0.143 | -0.086 -0.076 | -0.039 | -0.146 | -0.148 1 1 0.56
P3,12]- -0.292 -0.278 -0.272 -0.223 -0.222 -0.168 -0.160 -0.136 -0.224 -0.228 1 1 0.55
P1,11]- -0.261 | -0.224 | -0.215 | -0.169 | -0.168 | -0.118 -0.107 | -0.068 | -0.171 | -0.170 1 1 0.56

Table B.18: MCMC results for the copula parameters of the reduced model of the 2nd
vine construction with credible level 5%
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Lo | Omin | 0a5% 5% Omed 0 O95% | B97.5% Omazx Omod | Orrm | Pace
B1(=BB) 1.241 1.260 1.263 1.295 1.294 1.322 1.328 1.349 1.295 1.294 1.000
B2(= Bs) 1.102 1.129 1.131 1.158 1.158 1.183 1.187 1.195 1.157 1.158 1.000
B3(= Bn) 0.730 0.742 0.747 0.765 0.766 0.787 0.793 0.807 0.765 0.767 | 1.000
Ba(= BE) 0.776 0.816 0.824 0.858 0.857 0.891 0.897 0.913 0.856 0.858 | 1.000
Bs(= Bp) 1.159 1.178 1.185 1.220 1.220 1.254 1.260 1.274 1.221 1.218 1.000
Be(= Br) 0.587 0.610 0.618 0.643 0.643 0.672 0.678 0.699 0.641 0.643 | 1.000
B7(= Bo) 1.091 1.103 1.109 1.134 1.135 1.159 1.162 1.177 1.134 1.135 1.000
Bs(= Bc) 0.929 0.947 0.952 0.978 0.978 1.001 1.005 1.025 0.977 0.978 | 1.000
Bo(= Bu) 0.749 0.766 0.770 0.803 0.805 0.840 0.845 0.864 0.803 0.805 | 1.000

Bio(= Bs) 0.914 0.929 0.937 0.963 0.963 0.990 0.995 1.015 0.963 0.961 | 1.000
B11(= Br) 0.818 0.828 0.833 0.863 0.864 0.898 0.907 0.922 0.863 0.865 | 1.000
Bi2(= Bur) 1.151 1.168 1.170 1.190 1.190 1.210 1.215 1.219 1.190 1.189 | 1.000

(= 023) 9.078 | 9.739 | 9.921 | 10.575 | 10.619 | 11.430 | 11.544 | 11.948 | 10.500 | 10.521 | 0.290

o3(= ag) 6.658 | 6.920 | 6.980 | 7.547 | 7.522 | 8.046 | 8.124 | 8.587 | 7.584 | 7.527 | 0.291

oi(=o 4.370 | 4.573 | 4.646 | 4.965 | 4.961 | 5323 | 5.367 | 5.656 | 4.954 | 5.017 | 0.278
3_ 2

o2 (= 053) 12.946 | 13.363 | 13.498 | 14.439 | 14.463 | 15.554 | 15.662 | 16.582 | 14.413 | 14.412 | 0.276

(=0 12.807 | 13.170 | 13.381 | 14.428 | 14.491 | 15.626 | 15.929 | 16.502 | 14.342 | 14.427 | 0.299
3_ 7

oi(=o 8231 | 8.346 | 8446 | 9.001 | 9.025 | 9.644 | 9.791 | 10.359 | 8.981 | 8.942 | 0.294
§_ %

oi(=o0 5.947 | 6.275 | 6.333 | 6.813 | 6.820 | 7.319 | 7.499 | 7.810 | 6.796 | 6.790 | 0.302
S = o2

U%(: ag) 5.801 | 6.005 | 6.092 | 6.568 | 6.570 | 7.059 | 7.134 | 7.540 | 6.555 | 6.548 | 0.300

ag(: o) | 11.877 | 12.324 | 12.455 | 13.466 | 13.490 | 14.536 | 14.800 | 15.397 | 13.486 | 13.456 | 0.297

o%o(= U%) 6.939 | 7.143 | 7.246 | 7.809 | 7.818 | 8447 | 8556 | 9.003 | 7.811 | 7.829 | 0.283

o2 (= 05,) 10.480 | 10.908 | 10.998 | 11.710 | 11.766 | 12.608 | 12.818 | 13.119 | 11.655 | 11.803 | 0.304

0% (=02) | 3638 | 3.779 | 3.806 | 4.078 | 4.092 | 4.383 | 4.492 | 4.614 | 4.072 | 4.083 | 0.292

Table B.19: MCMC results for the marginal parameters of the reduced model of the 3rd
vine construction with credible level 10%.

Lo | Omin | 025% 5% Omed 4 O95% | B97.5% Omazx Omod | Orrm | Pace
Bi1(=BB) 1.239 1.258 1.261 1.292 1.292 1.322 1.328 1.340 1.292 1.294 1.000
B2(= Bs) 1.119 1.128 1.134 1.160 1.159 1.185 1.193 1.208 1.160 1.158 1.000
B3(= Bn) 0.728 0.744 0.748 0.768 0.768 0.789 0.794 0.806 0.767 0.767 | 1.000
Ba(= BE) 0.797 0.818 0.821 0.858 0.859 0.893 0.898 0.913 0.856 0.858 | 1.000
Bs(= Bp) 1.171 1.180 1.186 1.216 1.217 1.250 1.255 1.273 1.215 1.218 1.000
Be(= Br) 0.590 0.611 0.614 0.646 0.645 0.673 0.680 0.707 0.647 0.643 | 1.000
B7(= Bo) 1.086 1.106 1.111 1.135 1.135 1.158 1.162 1.191 1.137 1.135 1.000
Bs(= Bc) 0.935 0.949 0.955 0.980 0.980 1.005 1.007 1.015 0.979 0.978 | 1.000
Bo(= Bu) 0.748 0.764 0.769 0.806 0.806 0.842 0.853 0.866 0.806 0.805 | 1.000

Bio(= Bs) 0.913 0.929 0.935 0.961 0.961 0.991 0.994 1.015 0.961 0.961 | 1.000
B11(= Br) 0.805 0.827 0.835 0.867 0.867 0.900 0.904 0.931 0.866 0.865 | 1.000
Bi2(= Bar) 1.147 1.169 1.172 1.188 1.189 1.208 1.213 1.223 1.187 1.189 | 1.000
9.519 9.853 9.952 | 10.614 | 10.679 | 11.563 | 11.670 | 12.104 | 10.575 | 10.521 | 0.287
6.788 6.982 7.089 7.630 7.653 8.202 8.323 8.748 7.625 7.527 | 0.301
4.452 4.631 4.668 5.021 5.018 5.410 5.487 5.782 5.023 5.017 | 0.284
12.676 | 13.261 | 13.453 | 14.461 | 14.492 | 15.715 | 15.856 | 16.547 | 14.473 | 14.412 | 0.280
13.213 | 13.413 | 13.571 | 14.546 | 14.568 | 15.673 | 15.783 | 16.276 | 14.514 | 14.427 | 0.301
7.771 8.137 8.301 8.897 8.941 9.631 9.774 | 10.116 8.844 8.942 | 0.300
6.107 6.212 6.324 6.797 6.808 7.291 7.387 7.655 6.790 6.790 | 0.302
5.820 6.013 6.088 6.580 6.572 7.064 7.152 7.335 6.575 6.548 | 0.294
12.017 | 12.494 | 12.575 | 13.473 | 13.499 | 14.385 | 14.664 | 15.082 | 13.438 | 13.456 | 0.300
6.760 7.117 7.234 7.789 7.795 8.412 8.514 9.000 7.781 7.829 | 0.292
10.394 | 10.813 | 10.964 | 11.795 | 11.821 | 12.734 | 12.872 | 13.288 | 11.771 | 11.803 | 0.291
3.498 3.720 3.791 4.027 4.052 4.353 4.406 4.597 4.005 4.083 | 0.300
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Table B.20: MCMC results for the marginal parameters of the reduced model of the 3rd
vine construction with credible level 5%.
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[ 60 | bmin | bo5% 059 Omed 6 959 | Oor5% | Omax Omod | O1rm [Cio%]Cs% ]| Pace |
P1,2 -0.312 -0.274 -0.269 -0.220 -0.220 -0.167 -0.159 -0.134 -0.219 -0.224 1 1 0.49
2,3 0.130 0.143 0.152 0.205 0.204 0.252 0.260 0.291 0.205 0.212 1 1 0.53
P3,4 -0.268 | -0.236 | -0.230 | -0.172 | -0.173 | -0.122 -0.107 | -0.083 | -0.173 | -0.187 1 1 0.50
P4,5 -0.242 -0.227 -0.221 -0.174 -0.172 -0.127 -0.116 -0.079 -0.174 -0.174 1 1 0.52
p5,6 -0.213 | -0.182 | -0.171 | -0.122 | -0.123 | -0.075 -0.068 | -0.054 | -0.120 | -0.120 1 1 0.53
p6,7 -0.219 | -0.177 | -0.168 | -0.118 | -0.118 | -0.065 -0.061 | -0.029 | -0.117 | -0.115 1 1 0.54
P7,8 -0.248 | -0.206 | -0.197 | -0.146 | -0.145 | -0.088 -0.080 | -0.066 | -0.149 | -0.147 1 1 0.53
p9,10 | -0.156 | -0.127 | -0.120 | -0.062 | -0.065 | -0.016 -0.005 0.022 | -0.062 | -0.055 1 1 0.52
p1o,11| 0.014 0.039 0.044 0.109 0.107 0.163 0.168 0.210 0.112 0.114 1 1 0.54
p11,12| -0.223 | -0.206 | -0.197 | -0.147 | -0.148 | -0.102 -0.094 | -0.044 | -0.143 | -0.153 1 1 0.51
P1,3|- -0.361 | -0.340 | -0.330 | -0.289 | -0.287 | -0.240 -0.233 | -0.198 | -0.288 | -0.287 1 1 0.47
p2,4]- -0.182 | -0.132 | -0.116 | -0.071 -0.069 | -0.017 -0.007 0.008 | -0.073 | -0.067 1 1 0.52
£3,5]- -0.155 | -0.124 | -0.115 | -0.061 -0.061 -0.006 0.001 0.038 | -0.061 | -0.065 1 0 0.52
P4,6]- -0.323 | -0.280 | -0.270 | -0.227 | -0.228 | -0.184 -0.178 | -0.135 | -0.227 | -0.238 1 1 0.52
P5,7]- -0.166 | -0.116 | -0.109 | -0.062 | -0.060 | -0.009 -0.001 0.035 | -0.064 | -0.062 1 1 0.54
£6,8]- -0.210 | -0.185 | -0.177 | -0.126 | -0.126 | -0.074 -0.062 | -0.030 | -0.127 | -0.135 1 1 0.54
P7.9]- -0.152 | -0.115 | -0.109 | -0.059 | -0.058 | -0.007 0.001 0.028 | -0.060 | -0.066 1 0 0.52
P1,4- -0.496 | -0.477 | -0.472 | -0.430 | -0.431 -0.393 -0.386 | -0.359 | -0.430 | -0.435 1 1 0.47
Pa,7|- -0.235 | -0.202 | -0.190 | -0.139 | -0.141 -0.095 -0.089 | -0.040 | -0.138 | -0.133 1 1 0.53
P5,8|- 0.101 0.112 0.127 0.171 0.170 0.214 0.225 0.257 0.171 0.178 1 1 0.53
P6,9|- 0.032 0.056 0.071 0.121 0.119 0.164 0.171 0.206 0.124 0.125 1 1 0.53
£7,10]- -0.113 | -0.083 | -0.075 | -0.034 | -0.033 0.009 0.013 0.046 | -0.034 | -0.049 0 0 0.50
P8,11]- 0.054 0.070 0.079 0.139 0.137 0.192 0.198 0.225 0.141 0.140 1 1 0.53
P9,12]- -0.283 | -0.246 | -0.235 | -0.189 | -0.189 | -0.145 -0.135 | -0.091 -0.191 | -0.197 1 1 0.51
P1,5]- -0.187 | -0.155 | -0.143 | -0.085 | -0.088 | -0.034 -0.027 0.008 | -0.084 | -0.092 1 1 0.55
P4,8]- -0.143 | -0.122 | -0.108 | -0.065 | -0.064 | -0.015 -0.005 0.038 | -0.066 | -0.080 1 1 0.54
P5,9]- -0.145 | -0.121 -0.112 | -0.065 | -0.062 | -0.008 0.000 0.016 | -0.066 | -0.064 1 1 0.54
P7,11]- -0.215 | -0.147 | -0.140 | -0.095 | -0.094 | -0.044 -0.037 | -0.018 | -0.096 | -0.095 1 1 0.53
P8,12|- 0.186 0.213 0.226 0.273 0.273 0.322 0.328 0.351 0.271 0.278 1 1 0.51
£1,6]- -0.255 | -0.238 | -0.221 | -0.175 | -0.173 | -0.119 -0.114 | -0.092 | -0.177 | -0.181 1 1 0.55
P2,7]- 0.018 0.038 0.053 0.106 0.106 0.155 0.162 0.221 0.105 0.106 1 1 0.54
£3,8]- 0.072 0.114 0.123 0.165 0.166 0.218 0.225 0.260 0.163 0.175 1 1 0.52
P4,9]- 0.000 0.025 0.033 0.083 0.083 0.138 0.147 0.183 0.084 0.079 1 1 0.52
P5,10]- 0.055 0.090 0.099 0.148 0.149 0.200 0.207 0.234 0.145 0.144 1 1 0.51
P7.12|- 0.209 0.268 0.276 0.323 0.323 0.367 0.375 0.388 0.322 0.326 1 1 0.51
P1,7]- -0.292 | -0.273 | -0.263 | -0.214 | -0.214 | -0.163 -0.153 | -0.097 | -0.215 | -0.214 1 1 0.55
£3,9]- 0.026 0.056 0.065 0.114 0.115 0.166 0.175 0.192 0.112 0.135 1 1 0.52
£4,10]- -0.386 | -0.360 | -0.355 | -0.305 | -0.305 | -0.263 -0.255 | -0.191 -0.306 | -0.315 1 1 0.49
P5,11|- -0.301 | -0.269 | -0.255 | -0.208 | -0.207 | -0.158 -0.151 | -0.082 | -0.206 | -0.214 1 1 0.53
P6,12|- -0.349 | -0.324 | -0.317 | -0.269 | -0.268 | -0.218 -0.202 | -0.147 | -0.271 | -0.272 1 1 0.53
£1,8]- -0.262 | -0.209 | -0.200 | -0.149 | -0.148 | -0.095 -0.089 | -0.045 | -0.150 | -0.157 1 1 0.57
P2,9]- 0.260 0.306 0.311 0.361 0.360 0.403 0.418 0.463 0.363 0.366 1 1 0.50
£3,10]- 0.320 0.360 0.365 0.403 0.404 0.441 0.449 0.486 0.404 0.407 1 1 0.48
P4,11|- -0.244 | -0.221 -0.207 | -0.158 | -0.157 | -0.109 -0.098 | -0.067 | -0.157 | -0.168 1 1 0.55
P5,12|- 0.062 0.131 0.139 0.197 0.195 0.244 0.265 0.299 0.200 0.197 1 1 0.57
£1,9]- -0.218 | -0.170 | -0.159 | -0.109 | -0.110 | -0.060 -0.048 | -0.017 | -0.110 | -0.110 1 1 0.57
£2,10]- 0.002 0.029 0.038 0.087 0.086 0.138 0.151 0.180 0.088 0.085 1 1 0.57
P3,11|- 0.188 0.221 0.229 0.280 0.280 0.326 0.341 0.371 0.278 0.278 1 1 0.54
P4,12|- -0.177 | -0.150 | -0.140 | -0.088 | -0.091 -0.043 -0.036 | -0.017 | -0.085 | -0.093 1 1 0.58
£1,10]- -0.184 | -0.159 | -0.147 | -0.102 | -0.101 -0.055 -0.046 | -0.014 | -0.102 | -0.102 1 1 0.57

Table B.21: MCMC results for the copula parameters of the reduced model of the 3rd
vine construction with credible level 10%.
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L 0 | Omin | 25 05% Omed 0 095% | 0975% | Omaz | Omod | O1rar [Cio%]Cs%l| Pace |
1,2 -0.300 -0.276 -0.268 -0.223 -0.225 -0.183 -0.176 -0.142 -0.221 -0.224 1 1 0.48
2,3 0.133 0.158 0.170 0.213 0.215 0.258 0.271 0.290 0.215 0.212 1 1 0.50
P3,4 -0.263 | -0.236 | -0.229 | -0.178 | -0.178 -0.127 -0.116 | -0.104 | -0.176 | -0.187 1 1 0.49
4,5 -0.263 | -0.230 | -0.218 | -0.167 | -0.168 -0.117 -0.108 | -0.101 -0.166 | -0.174 1 1 0.52
P5,6 -0.191 -0.178 | -0.167 | -0.120 | -0.120 -0.071 -0.062 | -0.019 | -0.123 | -0.120 1 1 0.53
p6,7 -0.193 | -0.167 | -0.161 -0.114 | -0.112 -0.064 -0.052 | -0.033 | -0.116 | -0.115 1 1 0.53
P7,8 -0.227 | -0.200 | -0.192 | -0.150 | -0.149 -0.098 -0.088 | -0.067 | -0.150 | -0.147 1 1 0.53
p1o,11| -0.011 0.037 0.045 0.102 0.102 0.152 0.173 0.205 0.105 0.114 1 1 0.54
p11,12| -0.249 | -0.212 -0.201 -0.153 | -0.152 -0.102 -0.092 | -0.074 | -0.153 | -0.153 1 1 0.51
P1,3]- -0.368 | -0.338 | -0.333 | -0.289 | -0.289 -0.240 -0.232 | -0.190 | -0.290 | -0.287 1 1 0.48
p2,4]- -0.169 | -0.142 -0.131 -0.076 | -0.077 | -0.027 -0.022 0.008 -0.074 | -0.067 1 1 0.52
P3,5|- -0.135 | -0.116 | -0.103 | -0.055 -0.055 -0.009 -0.001 0.014 -0.053 | -0.065 1 1 0.53
P4.6]- -0.290 -0.281 -0.273 -0.228 -0.228 -0.182 -0.174 -0.148 -0.226 -0.238 1 1 0.51
P5,7]- -0.156 | -0.115 -0.108 | -0.058 | -0.057 | -0.007 0.002 0.022 -0.059 | -0.062 1 0 0.54
£6,8]- -0.211 -0.183 | -0.178 | -0.124 | -0.125 -0.076 -0.065 | -0.045 -0.123 | -0.135 1 1 0.53
P1,4- -0.508 | -0.474 | -0.470 | -0.424 | -0.425 -0.385 -0.376 | -0.334 | -0.422 | -0.435 1 1 0.47
P4,7|- -0.222 | -0.203 | -0.196 | -0.148 | -0.148 -0.097 -0.089 | -0.064 | -0.148 | -0.133 1 1 0.52
P5,8]- 0.105 0.124 0.128 0.176 0.175 0.218 0.225 0.242 0.178 0.178 1 1 0.53
£6,9]- 0.022 0.061 0.073 0.121 0.120 0.168 0.174 0.203 0.120 0.125 1 1 0.53
P8,11]- 0.031 0.071 0.084 0.138 0.136 0.182 0.188 0.221 0.141 0.140 1 1 0.52
£9,12]- -0.234 | -0.219 | -0.209 | -0.161 -0.160 -0.111 -0.107 | -0.082 -0.159 | -0.197 1 1 0.52
P1,5]- -0.171 -0.154 | -0.147 | -0.095 -0.096 -0.047 -0.038 | -0.005 -0.090 | -0.092 1 1 0.56
P4,8]- -0.160 | -0.126 | -0.118 | -0.067 | -0.067 | -0.020 -0.010 0.034 | -0.065 | -0.080 1 1 0.53
P7,11]- -0.207 | -0.161 -0.154 | -0.101 -0.102 -0.053 -0.047 | -0.027 | -0.099 | -0.095 1 1 0.53
£8,12]- 0.158 0.215 0.221 0.270 0.272 0.323 0.328 0.349 0.270 0.278 1 1 0.50
P1,6]- -0.258 | -0.233 | -0.226 | -0.173 | -0.173 -0.125 -0.111 -0.080 | -0.170 | -0.181 1 1 0.55
P27 0.048 0.073 0.083 0.130 0.129 0.175 0.182 0.209 0.133 0.106 1 1 0.53
P3,8|- 0.076 0.104 0.114 0.162 0.161 0.211 0.218 0.240 0.162 0.175 1 1 0.52
P4,9]- -0.009 0.009 0.020 0.072 0.068 0.115 0.124 0.153 0.072 0.079 1 1 0.51
£5,10]- 0.063 0.086 0.098 0.151 0.150 0.206 0.217 0.233 0.152 0.144 1 1 0.50
P7,12]- 0.247 0.267 0.278 0.325 0.325 0.368 0.375 0.399 0.326 0.326 1 1 0.51
P1,7]- -0.294 | -0.273 | -0.265 | -0.219 | -0.220 -0.172 -0.163 | -0.123 | -0.217 | -0.214 1 1 0.55
£3,9]- 0.060 0.079 0.095 0.148 0.144 0.189 0.196 0.248 0.151 0.135 1 1 0.50
£4,10]- -0.380 | -0.358 | -0.354 | -0.307 | -0.308 -0.262 -0.253 | -0.225 -0.308 | -0.315 1 1 0.48
P5,11|- -0.288 -0.266 -0.260 -0.212 -0.212 -0.167 -0.155 -0.110 -0.211 -0.214 1 1 0.53
£6,12]- -0.379 | -0.332 -0.320 | -0.271 -0.272 -0.226 -0.218 | -0.186 | -0.272 | -0.272 1 1 0.53
£1,8]- -0.264 | -0.208 | -0.200 | -0.153 | -0.153 -0.101 -0.093 | -0.060 | -0.156 | -0.157 1 1 0.56
P2,9]- 0.295 0.309 0.320 0.366 0.366 0.411 0.421 0.438 0.366 0.366 1 1 0.50
£3,10]- 0.324 0.350 0.356 0.405 0.403 0.451 0.459 0.468 0.407 0.407 1 1 0.48
P4,11]- -0.243 | -0.217 | -0.209 | -0.161 -0.157 | -0.103 -0.097 | -0.072 -0.163 | -0.168 1 1 0.55
P5,12]- 0.116 0.132 0.146 0.196 0.197 0.243 0.253 0.268 0.202 0.197 1 1 0.55
£1,9]- -0.188 | -0.168 | -0.162 | -0.111 -0.112 -0.060 -0.049 | -0.025 -0.114 | -0.110 1 1 0.57
£2,10]- -0.014 0.023 0.037 0.086 0.086 0.136 0.151 0.194 0.088 0.085 1 1 0.58
P3,11]- 0.189 0.222 0.234 0.281 0.282 0.326 0.336 0.361 0.280 0.278 1 1 0.55
P4,12]- -0.164 | -0.141 -0.135 | -0.090 | -0.087 | -0.031 -0.017 0.002 -0.091 -0.093 1 1 0.56
£1,10]- -0.203 | -0.164 | -0.155 | -0.103 | -0.103 -0.052 -0.042 | -0.005 -0.103 | -0.102 1 1 0.57

Table B.22: MCMC results for the copula parameters of the reduced model of the 3rd
vine construction with credible level 5%.
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