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tail copulas play a more important role than copulas. In this paper, we review some estimation and testing

procedures for both, extreme value copulas and tail copulas, which received much less attention in the literature
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1. Introduction

Dependence among variables is a relevant feature, when analyzing financial losses and insurance claims

data. Fitting a parametric family to a univariate variable is much easier than to a multivariate vector.

By separating from marginals, copulas have become a useful tool in modeling dependence in particular

for risk management. Some recent review papers on copulas and their extensions include Kolve, Anjos

and Mendes [37], Mikosch [40], Embrechts [15] and Patton [44]. Although there exists a huge amount of

studies on constructing various copulas and statistical inference for copulas, the study of multivariate
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extremes related with copulas is quite behind in comparison with the research on copulas. After a quick

summary on estimation and hypothesis testing procedures for copulas, we review statistical inference

for extreme value copulas and tail copulas, which play important roles in predicting extreme events.

The paper aims at statisticians in academia and industry, who are involved in risk assessment,

dealing in particular with dependent risks. We present statistical methods relevant for multivariate

risk estimation, give ample references for further reading, and present the methods at a specific data

example. The statistical analysis is performed with the statistical software package R, which is an open

source software; for details see below.

Let (X1, . . . ,Xd)
⊤ be a random vector with distribution function F , and Fj denote the marginal

distribution function of Xj for j = 1, . . . , d. Throughout the paper we will assume that the marginal

distributions are continuous. In that case the copula of (X1, . . . ,Xd)
⊤ is uniquely defined as

CF (u1, . . . , ud) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)

for (u1, . . . , ud)
⊤ ∈ [0, 1]d. How to infer a copula plays an important role in various applications. More

detailed review on point estimation, interval estimation and goodness-of-fit tests is given in Section 2.

In insurance and finance, modeling extreme events is of high importance since, although they happen

rarely, if they happen, then they often infer huge losses for industry and society. An extreme event is

characterized by the fact that it is more disastrous than any previously observed event. Extreme value

theory deals with this problem by extrapolating from past observations into a far tail region. This

obviously sets limits to purely nonparametric copula estimation. On the other hand, if a parametric

copula is employed, extrapolation will become quite sensitive. Hence, it is desirable to have some

“copulas”, which have an intrinsic extrapolation property so that nonparametric estimation can be

applied. Based on multivariate extreme value theory, both extreme value copulas and tail copulas can

be used to predicting extreme events.

To define an extreme value copula we consider the vector of componentwise maxima

Mn := (Mn1, . . . ,Mnd)
⊤

of a given sample Xi = (Xi1, . . . ,Xid)
⊤ for i = 1, . . . , n, of i.i.d. random vectors with common

distribution function F . It follows that the copula CMn of Mn is given by

CMn(u1, . . . , ud) = CF (u
1/n
1 , . . . , u

1/n
d )n

for (u1, . . . , ud)
⊤ ∈ [0, 1]d.
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A copula C is now called an extreme value copula, if there exists a copula CF such that for all

(u1, . . . , ud)
⊤ ∈ [0, 1]d,

lim
n→∞

CF (u
1/n
1 , . . . , u

1/n
d )n = C(u1, . . . , ud)

The class of extreme value copulas coincides with the class of max-stable copulas; i.e., a copula C is

an extreme value copula if and only if for all n ∈ N

C(u1, . . . , ud) = C(u
1/n
1 , . . . , u

1/n
d )n (1)

for (u1, . . . , ud)
⊤ ∈ [0, 1]d; see e.g., Gudendorf and Segers [27].

Due to this special property of the extreme value copula, one can extrapolate data into a far tail

region in order to estimate the probability of an extreme event. We will review some estimation and

testing procedures for an extreme value copula in Section 3.

When the extreme event is really far away from the data range, condition (1) may be relaxed to be

true in an asymptotic way. This gives the so-called upper tail copula or upper tail dependence function

defined as

T (x1, . . . , xd) = lim
t→0

t−1P (F1(X1) ≥ 1− x1t, . . . , Fd(Xd) ≥ 1− xdt) (2)

for (x1, . . . , xd)
⊤ ∈ (0,∞)d, if the limit exists. Similarly, a lower tail copula or lower tail dependence

function and other parts of tail copulas can be defined, see Joe, Li and Nikoloulopoulos [33]. Obviously,

a tail copula is not a copula. Since we are interested in large losses, we concentrate in this paper on

the upper tail copula, which we call simply tail copula from now on. Since a tail copulas is defined as

a limit, the prediction of an extreme event based on the tail copula becomes more robust than using

the copula or extreme value copula, when the extreme event is far away from the data range. More

details are given in Section 4.

We organize this review paper as follows. Right at the end of this introduction we present our data

and some summary statistics. In Section 2 we explain our concepts for copulas in general, before we

move on to the more interesting objects for risk management; i.e., extreme value copulas and tail

copulas. Section 3 presents estimation and testing procedures for an extreme value copula. Review on

inference for tail copulas is given in Section 4. We conclude with an outlook in Section 5.

To illustrate these methods empirically we will analyze the Danish fire insurance claims at the end of

each section with the methods just presented. This data set is available at www.ma.hw.ac.uk/∼mcneil/.

As described there, the data were collected at the Copenhagen Reinsurance Company and comprise

2167 fire losses over the period 1980 to 1990. They have been adjusted for inflation to reflect 1985
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values and are expressed in millions of Danish Kroner. This data set has first been considered by

Rytgaard [55], see also Embrecht, Klüppelberg and Mikosch [16, Example 6.2.9 and further]. The data

is three-dimensional consisting of loss to building, loss to contents and loss to profits. Since the last

variable has rarely non-zero value, we restrict our analyses to the first two variables. The claims are

recorded only if the sum of losses to building, contents and profits is greater or equal to 1 million

Danish Kroner (DK). This introduces a negative dependence between the components. Because of

that we will only consider those observations with both components being greater than or equal to

1 million DK. This implies that we are not working with the copula P (F1(X1) ≤ u1, F2(X2) ≤ u2),

(u1, u2)
⊤ ∈ [0, 1]2, but with the conditional copula

P (F1|≥1(X1) ≤ u1, F2|≥1(X2) ≤ u2) , (u1, u2)
⊤ ∈ [0, 1]2 ,

where

F1|≥1(x1) := P (X1 ≤ x1 | X1 ≥ 1) and F2|≥1(x2) := P (X2 ≤ x2 | X2 ≥ 1)

with X1 = loss to building and X2 = loss to contents. For ease of notation we will write in the following

F1 and F2 for the conditional distribution functions F1|≥1 and F2|≥1, respectively. Due to this data

selection our reduced sample size consists of n = 301 observations. Figure 1 shows a scatterplots of

the resulting data set.

An analysis of the data in their dynamic context: Esmaeili and Klüppelberg [18] fitted a bivariate

compound Poisson process to the data by maximum likelihood estimation; a Bayesian analysis has

been performed in Gebhard, Müller and Böcker [20].

The data set will be analyzed using the statistical software package R (R Development Core Team

2010). For parametric estimation and goodness-of-fit test we will use the copula package, and the

empirical likelihood ratios for the interval estimation are computed with the emplik package. Both are

available from the Comprehensive R Archive Network at http://cran.R-project.org. The specific

R code to compute the confidence intervals can be obtained upon request from the third author. By

using R we obtain the following summary statistics.

> x.fire = cbind( building, contents )

> summary( x.fire )

building contents

Min. : 1.000 Min. : 1.001

1st Qu.: 1.573 1st Qu.: 1.466

Median : 2.618 Median : 2.621
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Figure 1. Scatterplot of the Danish fire insurance data (left), of the log transformed data (middle) and of the ranks of
the data (right).

Mean : 4.215 Mean : 5.656

3rd Qu.: 4.452 3rd Qu.: 5.289

Max. :95.168 Max. :132.013

Estimators for the Pearson correlation and Kendall’s rank correlation are the following.

> c( cor( x.fire)[1,2], cor( x.fire, method="kendall")[1,2] )

[1] 0.5124462 0.2110319

Since linear correlation is not a suitable dependence measure in this context (see e.g. Embrechts, McNeil and

Straumann [17]), we concentrate on Kendall’s tau and test if it is greater than zero.

> cor.test( building,contents, method = "kendall", alternative = "greater" )

Kendall’s rank correlation tau

data: building and contents

z = 5.4516, p-value = 2.495e-08

alternative hypothesis: true tau is greater than 0

sample estimate:

tau = 0.2110319
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Figure 1 already suggested some positive dependence between the loss to building and the loss to

contents. This is confirmed by an estimated Kendall’s tau, which is significantly greater than zero.

2. Inference for copulas

2.1. Point estimation

For estimating the copula of a random sample (X1, . . . ,Xn)
⊤ from the d-variate distribution function

F with copula C, both nonparametric and parametric estimation have been studied in the literature.

The simplest nonparametric estimator of a copula C at (u1, . . . , ud)
⊤ ∈ [0, 1]d is the empirical copulaCn(u1, . . . , ud) =

1

n

n
∑

i=1

1(Ui1 ≤ u1, . . . , Uid ≤ ud), (3)

where Uij := n
n+1Fnj(Xij) for i = 1, . . . , n and j = 1, . . . , d are the so-called pseudo observations,Fnj(x) = 1

n

∑n
i=1 1(Xij ≤ x) for j = 1, . . . , d, are the marginal empirical distribution functions and

1(·) denotes the indicator function. A smoothed version of Cn can be defined asĈn(u1, . . . , ud) =
1

n

n
∑

i=1

Kd

(

u1 − Fn1(Xi1)

h1
, . . . ,

ud − Fnd(Xid)

hd

)

, (4)

where Kd(x1, . . . , xd) :=
∫ x1

−∞ . . .
∫ xd

−∞ kd(y1, . . . , yd) dyd . . . dy1 and kd : Rd → R is a kernel function

with
∫

kd(y)dy = 1 and hj = hj(n) > 0 is a bandwidth for j = 1, . . . , d. We refer to Fremanian,

Radulović and Wegkamp [19] and Omelka, Gijbels and Veraverbeke [42] for a study of asymptotic

properties of the empirical copula and smoothed copula estimation.

For parametric estimation, we focus on fitting a parametric family to the empirical copula, leaving

the marginals free. We recall some popular bivariate parametric copula families. In particular, we give

the definition of the Gumbel, Clayton, Frank, normal and Plackett copula for (u1, u2)
⊤ ∈ [0, 1]2.

• Gumbel copula: for θ ∈ [1,∞),

CGu(u1, u2; θ) = exp
(

−((− log(u1))
θ + (− log(u2))

θ)1/θ
)

.

• Clayton copula: for θ ∈ (0,∞),

CCl(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ.

• Frank copula: for θ ∈ R \ {0},

CFr(u1, u2; θ) = −1

θ
log

(

1 +
(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1

)

.
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• Normal copula: for θ ∈ (−1, 1),

CNo(u1, u2; θ) =
1

2π
√
1− θ2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
exp

(−(x21 − 2θx1x2 + x22)

2(1 − θ2)

)

dx1dx2,

where Φ denotes the distribution function of the standard normal distribution with inverse Φ−1.

• Plackett copula: for θ ∈ R+ \ {1},

CP l(u1, u2; θ) =
(1 + (θ − 1)(u1 + u2))−

√

(1 + (θ − 1)(u1 + u2))2 − 4u1u2θ(θ − 1)

2(θ − 1)
,

and CP l(u1, u2; 1) = u1u2.

Specifically, we assume that the copula C comes from the parametric family C(·;θ), and is absolutely

continuous with density c(·;θ), where θ ∈ Θ ⊂ R
q. In this setup, a popular estimation method is the

following pseudo maximum likelihood estimation proposed in Genest, Ghoudi and Rivest [21].

The pseudo likelihood function, for θ and pseudo observations Uij as in (3), is defined as

Ln(θ) =

n
∏

i=1

c(Ui1, . . . , Uid;θ), (5)

which results in the pseudo maximum likelihood estimator θ̂n = argmaxLn(θ). The asymptotic beha-

vior of the above pseudo maximum likelihood estimator and the estimator for the asymptotic variance

are given in Genest, Ghoudi and Rivest [21]. When the marginals are also fitted to parametric famil-

ies, the traditional maximum likelihood estimation is applied. A sieve maximum likelihood estimation

is proposed by Chen, Fan and Tsyrennikov [7]. A comparison study on several different estimation

procedures is given in Kim, Silvapulle and Silvapulle [34].

2.2. Interval estimation

Here we are interested in constructing a confidence interval for the copula C(u1, . . . , ud) at some par-

ticular point (u1, . . . , ud)
⊤ ∈ [0, 1]d. An obvious approach is based on the asymptotic distribution of

either nonparametric copula estimation or smooth copula estimation. Since the asymptotic variance

of either estimate involves partial derivatives of the copula, it is required to either estimate the partial

derivatives or using bootstrap methods. In order to avoid estimating the asymptotic variance, the

empirical likelihood method has been employed recently; see Chen, Peng and Zhao [8] and Molanes

Lopez, Van Keilegom and Veraverbeke [41]. As a nonparametric resampling method the empirical

likelihood method is a powerful tool in interval estimation and hypothesis tests. We refer to Owen
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[43] for an overview on empirical likelihood methods. Recently, Jing, Yuan and Zhou [31] proposed

a so-called jackknife empirical likelihood method to deal with non-linear functionals by applying the

empirical likelihood method to some jackknife pseudo sample. This method is easy to implement. How-

ever, verifying Wilks’s theorem (e.g. van der Vaart [58, Chapter 16]) requires some delicate analysis.

Using the idea of jackknife empirical likelihood method, Peng, Qi and Van Keilegom [48] proposed a

smoothed version to construct confidence intervals for a copula. We will explain this method for the

bivariate case. Define for (u1, u2)
⊤ ∈ [0, 1]2Ĉn,i(u1, u2) :=
1

n− 1

n
∑

l=1,l 6=i

K1

(

u1 − Fn1,i(Xl1)

h

)

K1

(

u2 − Fn2,i(Xl2)

h

)

where K1(x) :=
∫ x
−∞ k1(y) dy, k1 : R → R

+
0 is a symmetric density function with support [−1, 1],

h = h(n) > 0 is a bandwidth and Fnj,i(x) = 1
n−1

∑n
l=1,l 6=i 1(Xlj ≤ x) for j = 1, 2. The smoothed

jackknife pseudo sample is then defined for i = 1, . . . , n asVi(u1, u2) = nĈn(u1, u2)− (n− 1)Ĉn,i(u1, u2) ,

where Ĉn(·, ·) is defined in (4) with K2(·, ·) = K1(·)K1(·). Next we apply the empirical likelihood

method based on estimating equations as in Qin and Lawless [52] to the above jackknife sample,

which gives the jackknife empirical likelihood function for θ = C(u1, u2) as

Ln(θ) = sup

{

n
∏

i=1

(npi) : p1 ≥ 0, . . . , pn ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piVi(u1, u2) = θ

}

.

Then Peng, Qi and Van Keilegom [48] showed the following version of Wilk’s theorem:

−2 logLn(θ0)
d−→ χ2

1

as n → ∞, where θ0 denotes the true value of θ = C(u1, u2). Based on this result, a confidence interval

of level 1− α ∈ (0, 1) for C(u1, u2) is given by

IC1−α(u1, u2;h) = {θ : −2 logLn(θ) ≤ χ2
1,1−α} ,

where χ2
1,1−α is the (1− α)-quantile of χ2

1.

2.3. Goodness-of-fit tests

Here we want to test, whether the copula belongs to a particular parametric family. That is, we test

H0 : C(·) ∈ {C(·;θ) : θ ∈ Θ} against H1 : C(·) /∈ {C(·;θ) : θ ∈ Θ}. (6)
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Based on a nonparametric estimator Cn(·) and a parametric estimator C(·, θ̂n) of the copula, it is

natural to consider rank-based versions of the Cramér-von Mises statistic
∫

[0,1]d
n
(Cn(u)− C(u; θ̂n)

)2
dCn(u) ,

or the Kolmogorov-Smirnov statistic

sup
u∈[0,1]d

∣

∣

∣

√
n
(Cn(u)− C(u; θ̂n)

)∣

∣

∣

to perform the goodness-of-fit test. Tests based on Spearman’s dependence function and smoothed

copula estimates are given in Mesfioui, Quessy and Toupin [39] and Buchner and Dette [4], respectively.

We also refer to Berg [3] and Genest, Remillard and Beaudoin [24] for overviews on goodness-of-fit

testing for copulas.

2.4. Empirical study: the Danish fire insurance data

From the exploratory analysis in Section 1 we expect a dependence structure between the components

of our data set. To check the null hypothesis of independence of losses to building and losses of contents,

we perform an independence test; see e.g., Genest and Remillard [23]

> indepTest(x.fire,empsamp)

Global Cramer-von Mises statistic: 0.3088693 with p-value 0.0004995005

Combined p-values from the M\"obius decomposition:

0.0004995005 from Fisher’s rule,

0.0004995005 from Tippett’s rule.

These p-values give strong evidence against the null hypothesis of independence. Therefore, it makes

sense to consider different copula families to model the dependence between loss of building and loss

of contents. To this end we perform goodness-of-fit tests for the Gumbel, Clayton, Frank, normal,

and Plackett family. The parameters for the parametric fit are in each case computed by the pseudo

maximum likelihood method (5). Only the Gumbel family is not rejected at the 0.05 level.

> gofCopula( gumbel.cop, x.fire )

Parameter estimate(s): 1.254864

Cramer-von Mises statistic: 0.02323339 with p-value 0.2932068

The maximal p-value of the remaining four tests was 0.0185. The left plot of Figure 2 shows the

empirical copula Cn(x, y) together with fitted Gumbel and Clayton copula. The Clayton copula looses

out on the Gumbel in particular in the tail region.
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Finally we also computed the standard error of the parameter estimate for the Gumbel copula by

applying the function fitCopula() to the pseudo observations Uij from (3).

u.fire = apply( x.fire, 2, rank) / (n+1)

> fitCopula( gumbel.cop, u.fire, method = "mpl" )

The estimation is based on the pseudo maximum likelihood

and a sample of size 301.

Estimate Std. Error z value Pr(>|z|)

param 1.254864 0.06396051 19.61936 0

The maximized loglikelihood is 17.84647

The convergence code is 0

In Figure 2 we plot the empirical copula estimator Cn(u1, 0.5) and the two jackknife confidence

intervals IC0.90(u1, 0.5; 0.5n
−1/3) and IC0.95(u1, 0.5; 0.5n

−1/3).
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Figure 2. Left: Empirical (solid) copula Cn(x, y), fitted Gumbel (dashed) copula and fitted Clayton (dotted-dashed)
copula. Plotted are the contour lines for levels 0.1, 0.2, . . . , 0.9. Right: Empirical (solid) copula Cn(u1, 0.5) with 90%
(dashed) and 95% (dotted-dashed) jackknife confidence interval.



11

3. Inference for extreme value copulas

3.1. Point estimation

Recently, Gudendorf and Segers [27] reviewed extreme value copulas and provided a list of many

well-known parametric models. We recall some in the bivariate case, where we can use the following

representation of a bivariate extreme value copula

C(u1, u2) = exp

(

log(u1u2)A

(

log(u2)

log(u1u2)

))

(7)

for (u1, u2)
⊤ ∈ [0, 1]2, and A is the so-called Pickands dependence function. It is easy to verify that A

is a convex function and satisfies max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1]; see e.g., Beirlant et al. [1,

Chapter 8.2.5]. In particular, we will give the parametric form of the Pickands dependence function

A(·;θ) for the Gumbel, Galambos, Hüsler-Reiss, Tawn and t-EV copula for t ∈ [0, 1].

• Gumbel copula: for θ ∈ [1,∞),

AGu(t) =
(

tθ + (1− t)θ
)1/θ

.

• Galambos copula: for θ ∈ (0,∞),

AGa(t; θ) = 1−
(

t−θ + (1− t)−θ
)−1/θ

.

• Hüsler-Reiss copula: for θ ∈ [0,∞],

AHR(t; θ) = (1− t)Φ

(

θ +
1

2θ
log

(

1− t

t

))

+ tΦ

(

θ +
1

2θ
log

(

t

1− t

))

.

• Tawn copula: for θ ∈ [0, 1],

A(t; θ) = 1− θt+ θt2.

• t-EV copula: for θ = (θ1, θ2) ∈ (0,∞)× (−1, 1),

At−EV (t;θ) = t tθ1+1







(

t
1−t

)1/θ1
− θ2

√

1− θ22

√

θ1 + 1






+ (1− t) tθ1+1

(

(

1−t
t

)1/θ1 − θ2
√

1− θ22

√

θ1 + 1

)

,

with tθ representing the distribution function of the tθ distribution.

For parametric estimation, methods for copulas can be employed directly such as the pseudo max-

imum likelihood estimation (5); see e.g., Beirlant et al. [1, Chapter 9.3.2] and references therein.
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Here we will focus on nonparametric estimation methods, which are different from the nonparametric

methods for copulas, since every estimation method has to guarantee that the estimated copula is an

extreme value copula; i.e., it satisfies (1).

Let (X11,X12), . . . , (Xn1,Xn2) be independent random vectors with common distribution function

F . Assume that the copula C of F is an extreme value copula; i.e., that (1) holds.

When the marginals are known, several estimators have been proposed in the literature and the

corresponding asymptotic distributions have been derived as well, we refer to Pickands [50], Deheuvels

[11], Capéraà, Fourgeres and Genest [5], Hall and Tajvidi [28], and Zhang, Wells and Peng [59].

However, when the marginals in the above estimators are replaced by empirical distribution functions,

how to derive the asymptotic distributions, has remained unknown till 2009. More specifically, Genest

and Segers [25] derived the asymptotic distributions of the estimators proposed by Pickands [50] and

Capéraà, Fourgeres and Genest [5], respectively,AP
n (t) =

(

1

n

n
∑

i=1

− log(Ui1)

1− t
∧ − log(Ui2)

t

)−1

and ACFG
n (t) = exp

(

−γ − 1

n

n
∑

i=1

log

(− log(Ui1)

1− t
∧ − log(Ui2)

t

)

)

,

for t ∈ [0, 1], where γ = −
∫∞
0 log(u) exp(−u) du is Euler’s constant. They realized that these estimators

can be expressed as functionals of the empirical copula; more precisely, for t ∈ [0, 1],AP
n (t) =

(∫ 1

0
Cn(u

1−t, ut)u−1 du

)−1

(8)

and ACFG
n (t) = exp

(

−γ +

∫ 1

0

Cn(u
1−t, ut)− 1(u > e−1)

u log(u)
du

)

, (9)

which allows us to use a result of Rüschendorf [54] for the empirical copula process
√
n(Cn − C).

Recently, Peng, Qian and Yang [49] proposed a class of weighted estimators by solving the following

equation with respect to α ≥ 0:

∫ 1

0
{Cn(u

1−t, ut)− uα}λ(u, t) du = 0 (10)

for some weight function λ(u, t) ≥ 0. Then the above two estimators in (8) and (9) correspond to

λ(u, t) = u−1 and {−u log(u)}−1, respectively. The asymptotic distributions for the above weighted

estimators are as well derived in Peng, Qian and Yang [49] by using the weighted approximation of

empirical copula processes.
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3.2. Interval estimation

In order to construct confidence intervals for the Pickands dependence function A, it is possible to

employ the normal approximation method based on one of the nonparametric estimators for A. Since

the asymptotic variance involves the first derivative A′ of A, Genest and Segers [25] proposed a way

to estimate A′ and the asymptotic variance. Instead of this rather involved method, a naive boot-

strap method can be applied to construct confidence intervals for A(t). It is known that these types

of intervals have poor coverage accuracy in general. As an alternative way for interval estimation

without estimating the asymptotic variance explicitly, the empirical likelihood method has been ap-

plied successfully. Although the empirical likelihood method works well for linear functionals, some

transformation is needed before applying profile empirical likelihood methods to nonlinear functionals.

Hence this procedure increases the computational burden in general. Using the idea of the jackknife

empirical likelihood method, Peng, Qian and Yang [49] proposed a smoothed version to construct

confidence intervals for the Pickands dependence function. The details are as follows. Define for the

pseudo observations Uij as in (3)Cn(u
1−t, ut) :=

1

n

n
∑

i=1

K1

(

u− U
1/(1−t)
i1

h

)

K1

(

u− U
1/t
i2

h

)

, u ∈ [0, 1],

where K1 is defined in Section 2.2 and h = h(n) > 0 is again a bandwidth. For j = 1, 2 and k, i =

1, . . . , n set Ukj,i = n−1
∑n

l=1,l 6=i 1(Xlj ≤ Xkj) andCn,i(u
1−t, ut) :=

1

n− 1

n
∑

l=1,l 6=i

K1





u− U
1/(1−t)
l1,i

h



K1





u− U
1/t
l2,i

h



 .

We formulate the jackknife sample asVi(u, t) = nCn(u
1−t, ut)− (n− 1)Cn,i(u

1−t, ut), u, t ∈ [0, 1],

for i = 1, . . . , n. Next we apply the empirical likelihood method based on estimating equations as in

Qin and Lawless [52] to the above jackknife sample, which gives the jackknife empirical likelihood

function for θ = A(t) as

Ln(θ) = sup

{

n
∏

i=1

(npi) : p1 ≥ 0, . . . , pn ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pi

∫ 1−bn

an

{Vi(u, t)− uθ}λ(u, t) du = 0

}

,

where an > 0 and bn > 0. The reason to employ an and bn is to control the bias term in the smoothed

estimation and to allow for the possibility of λ(0, t) = ∞ and λ(1, t) = ∞. Then Peng, Qian and Yang

[49] showed the following version of Wilks’s theorem.
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Theorem 1. With the notation as above, suppose that the second derivative A′′(t) is continuous on

[0, 1] and


















































































h = h(n) → 0, nh → ∞,

an → a ∈ [0, 1/2), bn → b ∈ [0, 1/2), h/an → 0, h/bn → 0,

n−1/4+δ1
∫ 1−bn
an

λ(u, t) du → 0,
∫ 1
0 uδ2(1− uδ2)λ(u, t) du < ∞,
√
nh2

∫ 1−bn
an

u−3/2λ(u, t) du → 0,
√
nh2

∫ 1−bn
an

{log u}−1u−3/2λ(u, t) du → 0,

{√nh}−1
∫ 1−bn
an

u−1λ(u, t) du → 0,

n−3/2
∫ 1−bn
an

u−2λ(u, t) du → 0

as n → ∞. Then the pseudo likelihood function as defined in (5) satisfies for t ∈ (0, 1),

−2 logLn(θ0)
d−→ χ2

1 ,

as n → ∞, where θ0 denotes the true value of θ = A(t) and χ2
1 the χ2

1-distribution.

Based on the above theorem, a jackknife empirical likelihood confidence interval for A(t) with level

1− α ∈ (0, 1) can be constructed as

IA1−α(t;h) = {θ : −2 logLn(θ) ≤ χ2
1,1−α},

where χ2
1,1−α is the (1− α)-quantile of the χ2

1 distribution.

3.3. Goodness-of-fit tests

For testing whether the extreme-value copula comes from a particular parametric class, we compare

the distance between nonparametric and parametric estimation of the extreme value copula as usual.

Unlike the study of goodness-of-fit tests for copulas, results on goodness-of-fit tests for extreme-

value copulas are relatively rare in the literature; we mention Ghoudi, Khoudraji and Rivest [26],

Ben Ghorbal, Genest and Nes̆lehová [2], and the recent results of Genest et al. [22]. We derive some

Cramér-von Mises type test based on the weighted estimator (10) of the Pickands dependence function

suggested in Peng, Qian and Yang [49].

Suppose we want to test (6) and the copula is an extreme value copula; i.e., (7) holds. Hence, for

some θ ∈ Θ

C(u1, u2;θ) = exp

(

log(u1u2)A

(

log(u2)

log(u1u2)
;θ

))

, (u1, u2)
⊤ ∈ [0, 1]2
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Let Âλ(t) denote the weighted estimation of Pickands dependence function; i.e., Âλ(t) is the solution

to (10). Hence C(u1, u2) is estimated by

Ĉλ
n(u1, u2) = exp

(

log(u1u2)Â
λ

(

log(u2)

log(u2u2)

))

.

Further let θ̂ denote the pseudo maximum likelihood estimate of θ as in (5). Some type of Cramér-von

Mises test statistic is defined as

TCM = n

∫ 1

0

∫ 1

0
{Ĉλ

n(u1, u2)− C(u1, u2; θ̂)}2 dC(u1, u2; θ̂),

and its asymptotic distributions is given in the following theorem. Other types of tests based on the

distance between Ĉλ
n(u1, u2) and C(u1, u2; θ̂) can be derived similarly. Set

l(u1, u2;θ) = log

(

∂2

∂u1∂u2
C(u1, u2;θ)

)

, l̇(u1, u2;θ) =
∂

∂θ
l(u1, u2;θ), l̈(u1, u2;θ) =

∂2

∂θ∂θ⊤
l(u1, u2;θ),

l̇12(u1, u2;θ) =
∂2

∂u1∂u2
l̇(u1, u2;θ), Ċ(u1, u2;θ) =

∂

∂θ
C(u1, u2;θ),

C1(u1, u2;θ) =
∂

∂u1
C(u1, u2;θ), C2(u1, u2;θ) =

∂

∂u2
C(u1, u2;θ), Σ = E

(

l̈(F1(X11), F2(X12);θ0)
)

,

where θ0 denotes the true value of θ.

Theorem 2. Suppose that the second derivative A′′(t) is continuous on [0, 1] and






































































sup0≤t≤1

√
n
∫ (n+1)−1/((1−t)∨t)

0 u1/2λ(u, t) du → 0,

sup0≤t≤1

√
n
∫ 1
( n
n+1

)1/((1−t)∨t)(1− u)λ(u, t) du → 0,

sup0≤t≤1 n
−1/4+δ1

∫ ( n
n+1

)1/((1−t)∨t)

(n+1)−1/((1−t)∨t) λ(u, t) du → 0,

sup0≤t≤1

∫ 1
0 {u(1−t)∨t(1− u(1−t)∨t)}δ2λ(u, t) du < ∞,

sup0≤t≤1

∫ 1
0 u(1−t)∨t−(1−t)(1− u1−t)δ2λ(u, t) du < ∞,

sup0≤t≤1

∫ 1
0 u(1−t)∨t−tutδ2(1− ut)δ2λ(u, t) du < ∞,

sup0≤t≤1

∫ 1
1/2(− log u)λ(u, t) du < ∞

for some λ(u, t) ≥ 0, δ1 > 0 and δ2 ∈ [0, 1/2). Further assume that there exist δ ∈ (0, 1/2), some

nonnegative functions M1(u1, u2),M2(u1, u2), and an open neighborhood N(θ0) of θ0 such that










































∫ 1
0

∫ 1
0 (u1 ∧ u2)

δ(1− u1 ∧ u2)
δ |l̇12(u1, u2;θ0)| du1du2 < ∞,

∫ 1
0

∫ 1
0 uδi (1− ui)

δCi(u1, u2;θ0) |l̇12(u1, u2;θ0)| du1du2 < ∞, for i = 1, 2,
∫ 1
0

∫ 1
0 supθ∈N(θ0) |l̈(u1, u2;θ)| dC(u1, u2;θ0) < ∞,

supθ∈N(θ0) |l̈(u1, u2;θ)− l̈(v1, v2;θ)| ≤ |u1 − v1|M1(u1, u2) + |u2 − v2|M2(v1, v2),
∫ 1
0

∫ 1
0 uδiMi(u1, u2) dC(u1, u2;θ0) < ∞, for i = 1, 2,
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and Σ−1 exists. Then

TCM
d−→
∫ 1

0

∫ 1

0
{C(u1, u2;θ0) log(u1u2)B

(

log u2
log(u1u2)

)

+B∗Σ−1Ċ(u1, u2;θ0)}2 dC(u1, u2;θ0) ,

where

B∗ =

∫ 1

0

∫ 1

0
{W (u1, u2)− C1(u1, u2;θ0)W (u1, 1)− C2(u1, u2;θ0)W (1, u2)}l̇⊤12(u1, u2;θ0) du1du2,

B(t) =

∫ 1
0 {W (u1−t, ut)− C1(u

1−t, ut)W (u1−t, 1) − C2(u
1−t, ut)W (1, ut)}λ(u, t) du

∫ 1
0 C(u1−t, ut)λ(u, t) log(u) du

,

and W (u1, u2) is a Wiener process with zero mean and covariance

E (W (u1, u2)W (v1, v2)) = C(u1 ∧ v1, u2 ∧ v2)− C(u1, u2)C(v1, v2).

Proof. It follows from Peng, Qian and Yang [49] that

sup
0≤t≤1

|
√
n{Âλ(t)−A(t)} −B(t) | = op(1).

Using similar arguments as in Chan et al. [6], we can show that

√
n{θ̂ − θ} d−→ −Σ−1B∗⊤.

Write

Ĉλ
n(u, v) − C(u, v; θ̂) = Ĉλ

n(u, v) − C(u, v;θ0)− {C(u, v; θ̂)− C(u, v;θ0)}.

Then the theorem follows from a Taylor expansion and the above equations. 2

3.4. The Danish fire insurance data (continued)

In Section 2.4 the Gumbel family was the only copula family under consideration, which was not

rejected by a Cramér-von Mises type goodness-of-fit test. Since the Gumbel copula is not only an

Archimedian copula, but also an extreme value copula, it is already a valid candidate in this framework.

Our data consists of claims exceeding one million Danish Kroner. Therefore, it makes sense to

consider extreme value copulas to describe the dependence. The rank-based goodness-of-fit test in-

troduced in Genest et al. [22] can be performed by applying the function gofEVCopula() from the

copula package. The function returns the test statistics based on the empirical copula (this is the same

result as obtained from gofCopula()) and the corrected and uncorrected estimators of A introduced

in Pickands [50] and Capéraà, Fourgeres and Genest [5]. As extreme value copulas we consider the

Gumbel, Galambos, Hüsler-Reiss, Tawn and t-EV copula. The highest p-values for all five tests are

obtained for the Hüsler-Reiss family.
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> gofEVCopula( huslerReiss.cop, x.fire )

$statistic

[1] 0.01918947 0.03430994 0.04269746 0.01763666 0.02585871

$pvalue

[1] 0.5029970 0.0984016 0.1013986 0.8806194 0.8986014

$parameters

[1] 0.904332

The test based on the Capéraà-Fougéres-Genest estimator rejected the null hypothesis of a Tawn

copula at the 0.05 level. All other null hypothesis were not rejected at this level. Finally we compare

the maximized likelihood of the Gumbel copula model with the one from the Hüsler-Reiss copula.

> fit.huslerReiss

The estimation is based on the maximum pseudo-likelihood

and a sample of size 301.

Estimate Std. Error z value Pr(>|z|)

param 0.9044139 0.08380887 10.79139 0

The maximized loglikelihood is 19.75204

The convergence code is 0

The higher likelihood is obtained for the Hüsler-Reiss copula. Therefore we would choose this copula,

if we had to decide between the two of them. In Figure 3 we compare the fitted copulas visually and

can recognize no difference.

4. Inference for tail copulas

Throughout we focus on the case of d = 2.

4.1. Point estimation

A natural nonparametric estimator for the tail copula T at (x1, x2)
⊤ ∈ (0,∞)2 defined in (2) isT(x1, x2;m) =

1

m

n
∑

i=1

1

(Fn1(Xi1) > 1− m

n
x1,Fn2(Xi2) > 1− m

n
x2

)

, (11)

where m = m(n) → ∞ and m/n → 0 as n → ∞. For ways of choosing the threshold m in (11) we refer

to Schmidt and Stadtmüller [56] and Klüppelberg, Kuhn and Peng [36]. Note that every estimator for

the tail dependence function (see Huang [30]) or the spectral measure (see de Haan and Ferreira [9])
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Figure 3. Left panel plots the empirical (solid) copula Cn(x, y), fitted Gumbel (dashed) copula and fitted Hüsler-Reiss
(dotted-dashed) copula. Right panel shows the 90% and 95% confidence intervals based on the estimator ACFG(t).

can be transformed to an estimator for the tail copula. For the proof of consistency, the asymptotic

distribution and weighted approximations of T(x1, x2;m), we refer to Huang [30], Qi [51], Drees and

Huang [12], Einmahl, de Haan and Li [13], and Schmidt and Stadtmüller [56]. Note that T (1, 1) is the

upper tail dependence coefficient, which is often used as a simple measure for extreme dependence (cf.

Joe [32]). Hence, T(1, 1;m) is the empirical estimator for T (1, 1).

Some parametric models for the tail copula can be found in Tawn [57]. Recently, a parametric

class of tail copulas is constructed via elliptical copulas; see Klüppelberg, Kuhn and Peng [35]. More

specifically, let Z := GMU(2) be an elliptically distributed random vector, where G > 0 is a positive

random variable satisfying limt→∞ P (G > tx)/P (G > t) = x−ν for all x > 0 and some ν > 0,

U(2) ∼ unif
(

{(x1, x2) ∈ R
2 : x21 + x22 = 1}

)

is independent of G and M is a deterministic 2 × 2

matrix with MM
⊤ =

( 1 ρ

ρ 1

)

. Then the tail copula of Z has the following explicit expression

T (x1, x2; (ν, ρ)) =
(

x1

∫ π/2

g((x1/x2)1/ν
(cosφ)ν dφ+ x2

∫ π/2

g((x1/x2)−1/ν )
(cosφ)ν dφ

)(

∫ π/2

−π/2
(cosφ)ν dφ

)−1
,

where g(t) := arctan
(

(t− ρ)/
√

1− ρ2
)

.

When the tail copula is fitted by a parametric class, maximum likelihood estimators, moment

estimators and their asymptotic distributions are developed in de Haan, Neves and Peng [10] and
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Einmahl, Krajina and Segers [14], respectively. In Klüppelberg, Kuhn and Peng [35, 36] an estimator

is proposed for the parameter ν of an elliptical tail copula. They apply the relation between Kendall’s

tau and the correlation coefficient for elliptical tail copulas, which translates to the estimators

ρ̂n := sin
(π

2
τ̂n

)

,

where τ̂n is a rank-based estimator of Kendall’s tau. They use this estimator as a plug-in-estimator

for ρ in the inverse T−1(· | x1, x2, ρ) of T with respect to ν. The estimator for ν is then defined as

ν̂n = T−1(T(x1, x2;m) | x1, x2, ρ̂n) .

4.2. Interval estimation

When the tail copula is modeled by a parametric family, interval estimation for the tail copula at

a given point (x1, x2) can be obtained via the normal approximation method. Alternatively one can

use methods based on nonparametric estimation and bootstrap as developed in Peng and Qi [45, 46].

Recently, a smoothed jackknife empirical likelihood method has been proposed by Peng and Qi [47]

to construct a confidence interval for the tail copula without estimating the asymptotic variance. We

review it in some detail. Define the smoothed tail copula estimatorsT̂n(x1, x2;m,h) =
1

n

n
∑

l=1

K1

(

x1 − n(1− Fn1(Xl1))/m

h

)

K1

(

x2 − n(1− Fn2(Xl2))/m

h

)

andT̂n,i(x1, x2;m,h) =
1

n− 1

n
∑

l=1,l 6=i

K1

(

x1 − n(1− Fn1,i(Xl1))/m

h

)

K1

(

x2 − n(1− Fn2(Xl2))/m

h

)

,

where K1 is defined in Section 2.2 and h = h(n) > 0 is again a bandwidth. Further define the jackknife

sample as Vi(x1, x2;h) = nT̂n(x1, x2;m,h)− (n− 1)T̂n,i(x1, x2;m,h) for i = 1, . . . , n.

Based on the above jackknife sample, one can define the smoothed jackknife empirical likelihood

function for θ = T (x1, x2) as

Ln(x1, x2; θ) = sup

{

n
∏

i=1

(npi) : p1 ≥ 0, . . . , pn ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piVi(x1, x2;h) =
m

n
θ

}

.

In order to show that Wilks’s theorem holds for the proposed method, we need some regularity

conditions. Then the following theorem follows from Peng and Qi [47].
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Theorem 3. With the notation as above we assume that k1 is a symmetric density with support [−1, 1]

and has bounded first derivative. We assume also that







m = m(n) → ∞, m/n → 0,
√
ma(m/n) → 0 as n → ∞

h = h(n) → 0, mh2 → ∞, mh4 → 0 as n → ∞.

Furthermore, we assume that T (x1, x2) has continuous first partial derivatives and that there exists a

regularly varying function a(t) → 0 such that

lim
t→0

t−1P (F1(X11) > 1− tx1, F2(X12) > 1− tx2)− T (x1, x2)

a(t)
= d(x1, x2)

holds uniformly on the set {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x21+x22 = 1}, where d(x1, x2) is non-constant and

not a multiple of T (x1, x2). Then

−2 logLn(x1, x2; θ0)
d−→ χ2

1

as n → ∞, where θ0 denotes the true value of θ = T (x1, x2).

As in Section 3.2, a jackknife empirical likelihood confidence interval for T (x, y) with level 1− α ∈
(0, 1) can be constructed as

IT1−α(x1, x2;m,h) = {θ : −2 logLn(x1, x2; θ) ≤ χ2
1,1−α},

where χ2
1,1−α is the (1− α)-quantile of the χ2

1-distribution.

4.3. Goodness-of-fit tests

For testing whether a tail copula belongs to a particular parametric family, de Haan, Neves and

Peng [10] proposed tests based on the distance between a nonparametric estimator and the maximum

likelihood estimator of the tail copula. Tests based on a moment estimator are given in Einmahl,

Krajina and Segers [14]. In case the data X has an elliptical copula, Li and Peng [38] proposed a test

based on estimators in Klüppelberg, Kuhn and Peng [36]. How to derive the empirical likelihood ratio

test remains still unknown.

4.4. The Danish fire insurance data (continued)

Finally we want to consider the extreme dependence in the losses to building and contents. We start

by estimating the upper tail dependence coefficient T (1, 1). To select a suitable threshold m, we first
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estimated T (1, 1) for various thresholds. The results are shown on the left hand side of Figure 4. The

only small plateau in the plot can be found for threshold values between 60 and 70. Therefore, we

choose m = 60 and obtain:

> emp.TailCopula = function(data,x,y,m){

+ n = nrow( data )

+ Fn1 = data[,1]

+ Fn2 = data[,2]

+ T = sum((rank(Fn1,ties.method="max")/n> 1-m/n*x)&(rank(Fn2,ties.method="max")/n>1-m/n*y))/m

+ return(T)

+ }

> emp.TailCopula( x.fire, 1, 1, 60 )

[1] 0.4166667

sample estimate: T(1,1;60)=0.4166667

This indicates the presence of upper tail dependence. To investigate this further, we estimate

T (x1, x2) at the points (x1, x2) = (
√
2 cos(ϕ),

√
2 sin(ϕ)), ϕ ∈ (0, π2 ), which contain all information

about tail dependence in the upper right quadrant due to the homogeneity property (see e.g. Schmidt

and Stadtmüller [56, Theorem 1]) of the tail copula. In Figure 4 we plot the smoothed tail copula

estimator n
mT̂n(

√
2 cos(ϕ),

√
2 sin(ϕ)) and the two jackknife confidence intervals

IT1−α(
√
2 cos(ϕ),

√
2 sin(ϕ);m, 1.5m−1/3) , α ∈ {0.05, 0.1},

for ϕ ∈ (0, π2 ) and m = 60. None of the given intervals covers zero confirming our assumption of tail

dependence for the loss of building and the loss of contents.

5. Conclusion

Extreme value copulas and tail copulas are powerful dependence functions for the assessment of joint

large risks, which create particularly dangerous situations in risk management. It is our firm believe

that the statistical methods presented here will help to improve risk management in the financial

industry. The statistical analyses we have presented in Sections 3.4 and 4.4 show that these methods

work and are indeed applicable even with standardized software. It is also clear that further efforts

are necessary to provide standardized methods and software for easy application in industry.

Since risk management problems in industry are often higher dimensional, it is important also

to provide methods and software to assess risk in arbitrary portfolios. A straightforward dimension
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Figure 4. Left: Upper tail dependence coefficient estimate Tn(1, 1;m) for various m. Right: Smoothed (solid) tail copula
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ϕ ∈ (0, π
2
) and m = 60.

reduction method in the context of the present paper has been suggested in Haug, Klüppelberg and

Kuhn [29], where also the necessary software is available.
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[18] Esmaeili, H. and Klüppelberg, C. (2010). Parameter estimation of a bivariate compound Poisson

process. Insurance: Mathematics and Economics 47, 224-233.
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24
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[54] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. The Annals

of Statistics 4, 912–923.

[55] Rytgaard, M. (1996). Simulation experiments on the mean residual life function m(x). In: Pro-

ceedings of the XXVII Astin Colloquium (pp. 59–81). Copenhagen, Denmark.

[56] Schmidt, R., & Stadtmüller, U. (2006). Nonparametric estimation of tail dependence. Scand-

inavian Journal of Statistics 33, 307–335.

[57] Tawn, J. (1988). Bivariate extreme value theory: models and estimation. Biometrika 75, 397–415.

[58] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press.

[59] Zhang, D., Wells, M.T., & Peng, L. (2008). Nonparametric estimation of the dependence function

for a multivariate extreme value distribution. Journal of Multivariate Analysis 99, 577 – 588.


	Introduction
	Inference for copulas
	Point estimation
	Interval estimation
	Goodness-of-fit tests
	Empirical study: the Danish fire insurance data

	Inference for extreme value copulas
	Point estimation
	Interval estimation
	Goodness-of-fit tests
	The Danish fire insurance data (continued)

	Inference for tail copulas
	Point estimation
	Interval estimation
	Goodness-of-fit tests
	The Danish fire insurance data (continued)

	Conclusion
	References

