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Abstract

This paper considers the problem of modeling migraine #gvassessments and
their dependence on weather and time characteristics. Mgeotathe viewpoint of a
patient who is interested in an individual migraine manageinstrategy. Since fac-
tors influencing migraine can differ between patients in hamand magnitude, we
show how a patient’s headache calendar reporting the sevedasurements on an
ordinal scale can be used to determine the dominating faéboithis special patient.
One also has to account for dependencies among the measiserRer this the au-
toregressive ordinal probit (AOP) model of Muller and Cag@005) is utilized and
fitted to a single patient’'s migraine data by a grouped movéignid Monte Carlo
(GM-MGMC) Gibbs sampler. Initially, covariates are seégttising proportional odds
models. Model fit and model comparison are discussed. A cosguawith propor-
tional odds specifications shows that the AOP models areipesf.

Keywords:Bayes factor; Deviance; Ordinal valued time series; Ma®bain Monte Carlo
(MCMC); Proportional odds; Regression;

1 Introduction

According to Prince et al. (2004) forty-five million Ameries seek medical attention for
head pain yearly causing an estimated labor cost of $1®hillThey found in their study
that about half of their migraine patients are sensitive éatlver. However some studies
investigating the relationship between weather condsteomd headache have been negative
or inclusive (see Prince et al. (2004) and Cooke et al. (28@03pecific references). In
these studies the frequency of headache occurrences addithenaximum or total score

of an ordinal severity assessment have been the focus.

Here we focus directly on studying and modeling the obsesesdrity categories collected
using a headache calendar. In particular we want to invagstitpe four daily ratings of the
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headache intensity obtained from a patient in study comdiay psychologist T. Kostecki-
Dillon, Toronto, Canada, resulting in an ordinal valueddiseries. We take on the view-
point of the patient who is interested in an individual migeamanagement strategy. Since
factors influencing migraine can differ between patientsumber and magnitude, we use
the patient’s headache calendar to determine the dominfaiiors for this patient.

Most studies ignore correlation among measurements orathe patient. We will show
that this correlation can be very high and should not be igghorFor example, Prince
et al. (2004) use daily maximum and total scores as resparsable relating to factors
obtained from a factor analysis of the weather data aloneegm@ssion setup ignoring this
correlation.

For studying headache occurrences Piorecky et al. (19@@)aigeneralized estimating ap-
proach (GEE) introduced by Zeger and Liang (1986) to adprdife dependence between
multiple measurements. While GEE could also be used fonatdialued time series (see
for example Liang et al. (1992), Heagerty and Zeger (1996) Fahrmeir and Pritscher

(1996)), we prefer a likelihood based regression time seqpproach to investigate the in-
fluence of weather conditions on migraine severity. One maason for this preference

is to have a complete statistical model specification, whilkbws the usage of standard
model comparison techniques and forecasts in dynamic meodel

Kauermann (2000) also considered the problem of modelitigakvalued time series with
covariates. He used a nonparametric smoothing approaclolaray for time varying co-
efficients in a proportional odds model. While Kauermann@Quses local estimation,
Gieger (1997) and Fahrmeir et al. (1999) consider splinaditivithin the GEE frame-
work. Wild and Yee (1996) focus on smooth additive composiewthile these approaches
are useful for fitting the data, a hierarchical time serigga@ach which we propose here is
easier to interpret and has the potential for forecastimgatticular, we will use an autore-
gressive ordered probit (AOP) model introduced by Milled £zado (2005). It is based
on a threshold approach using a latent real valued timessdtiis fitted and validated in a
Bayesian setting using Markov Chain Monte Carlo (MCMC) noelth

Since as already mentioned many studies investigatingelaganship between headache
and weather conditions have been inclusive, we believe gamant of migraine headaches
should be tailored to the individual migraine sufferer. ¢®mmigraine headaches are a
persistent problem such an individual analysis should s®da@n a headache calendar
of the individual. Such an individual approach was alsociwid by Schmitz and Otto
(1984). However they ignored the ordinal nature of the abergid response time series.
As an example for such a single patient analysis we investdgta collected by a 35 year
old woman with chronic migraine who recorded her migraingeséy four times a day on

a scale from 0 to 5. To determine which weather conditiong laavimportant effect on the
migraine severity we used a proportional odds model comynagsed for regression models
with independent ordinal responses as a starting modeUfohOP analysis. We will show
that for this data the first order autocorrelation in therlateme series is high within the
AOP model & 0.8), demonstrating considerable dependence among the reezsuts.
We like to mention that for this patient headache severityes are not reached by first
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successively experiencing the lowest severity categompheonext higher category until
the highest is reached. Therefore a continuation ratio titetion (Agresti 2002) is not
appropriate for this patient. A Bayesian analysis of a grotntinuation ratio formulation
is given by Dunson et al. (2003) in a joint model for clusteresand sub-unit specific
outcomes.

The paper is organized as follows. In Section 2 we review thegrtional odds model to
motivate the AOP formulation. We address the problem ofaldeé selection and model
comparison. In Section 3 we describe the data in more detdipeesent some results from
an exploratory analysis yielding three mean specificationthe proportional odds model
and two for the AOP model. In Section 4 we give the results efrtiodel fitting and model
comparison, demonstrating the superiority of the AOP mod@hally Section 5 gives a
summary and draws conclusions.

2 Models, Predictions and Model Selection

2.1 Models and Estimation

In the migraine data we model an ordinal valued time sefdést = 1,...,7T}, where
Y; € {0,..., K} denotes the pain severity at tirheith ordinal levels given byo0, ..., K}.
Together with the responsé we observe further a vectar, of real-valued covariates for
eacht € {1,...,T} representing meteorological and time measurement infioma

2.1.1 Proportional Odds Model

A common ordinal regression model for independent resmasgbe ordinal logistic model
first described by Walker and Duncan (1967) and later namepioptional odds model by
McCullagh (1980). To aid us with the identification of impamt covariates in the migraine
headache data we utilize the proportional odds model. Téwetiiied covariate structure
will then be used in the autoregressive ordinal probit (A@fdel, which in contrast to
the proportional odds model does not ignore the dependanoag@the measurements.
The primary focus of this paper is the AOP model for which maxin likelihood es-
timation is not feasible and for which a Bayesian estimatapproach is therefore fol-
lowed. We now shortly review the proportional odds modehfra threshold perspective,
which motivates the AOP model formulation. For this we asstinat the covariate vector
x; = (vu,...,2y) is p-dimensional. To model th& + 1 different categories, an under-
lying unobserved real-valued time serigs*,t = 1,...,7} is used which produces the
discrete valued; by thresholding. In particular,

K:k <~ K*E(Oékfl,ak], ]{]:O,...,K, (21)
Y =—x,0+¢), t=1,...,T, (2.2)



where—oco =: a1 < ag < a1 < --- < ag := oo are unknown cutpoints, and =

(b1, - .., Bp) is avector of unknown regression coefficients. The erspiare assumed to
be i.i.d. and follow a logistic distribution with distrition function F/(z) = {225 Itis

easy to see that (2.1)-(2.2) imply the more familiar repnést@on given by
exp(ay, + z8)

POV < bl) = Fla+ @) = 6= (2.3)
fork =0,1,..., K — 1. The properties of the proportional odds model are for examp
discussed in Harrell (2001) and Agresti (2002). ket= (y1,...,yr) be the observed
responses ana := («ay,...,ax_1)". Since the responses are assumed to be independent
the joint likelihood is given by
T
L(/Baa) = L(ﬁ7a|y17---7yT>:H7Tt,yt7 (24)
t=1

wherery, == P(Y; = klzy) = Flog + x,8) — Flag—y + x;8) fork = 0,..., K — 1
andm =1 — Zf:_ol m. The unknown3 and a together with the ordering constraint
—00 = a1 < ag < aq < --- < ag := oo can be estimated by maximum likelihood
(ML) using the S-Plus Design Library by Frank Harrell.

2.1.2 Autoregressive Ordered Probit (AOP) Model

Since the migraine severity at timenay depend not only on the covariates at timbut
also on the migraine severity at time- 1, it may be adequate to use the autoregressive
ordered probit (AOP) model introduced by Muller and Cza@005). Here, the latent
process of the common ordered probit model is extended bytanegressive component:

Yi=k << Y€ (agp_1,, k=0,... K, (2.5)

Y/ = a8+ oY, + €], t=1,...,T, (2.6)

where—co =: a | < ayg < a1 < -+ < ag = 00, &f ~ N(0,0%) i.id., andz; =

(1,z4,...,24)" is ap+ 1-dimensional vector of real-valued covariates. Accorting, is

the intercept for the latent process. For reasons of idahiiiy the cutpointy, is fixed to O,

and the variancé® to 1. For notational convenience we use aggin= (yi,...,yr) for
the observations and := (ay,...,ax_1) as for the proportional odds model, however,

sinceqy is fixed here, the vectax has onlyK — 1 components in the AOP case.

We emphasize that the right-hand side of Equation (2.2yded the term-x;3 whereas
the right-hand side of Equation (2.6) uses the tarj. To make the parameters in
model specifications (2.2) and (2.6) comparable we decmledrmpute the posterior mean
estimates in the AOP model for the respon$e:= 5 — Y;. Therefore the worst migraine
severity is associated with categdryand no migraine is associated with categorwhen
we fit the AOP model. Hence now in both the proportional odds$ iarthe AOP model
a negative value fof; means that an increasing value of the covarigteeads to a more
severe migraine.



2.1.3 Estimation of the AOP model by GM-MGMC

In Muller and Czado (2005) it is shown that a standard Gilzheing approach is ex-
tremely inefficient and cannot be recommended in practibeés ihiefficiency of the Gibbs
sampler was already noted by Albert and Chib (1993) for gadyomous regression mod-
els and Chen and Dey (2000) for correlated ordinal regrastata using lagged covariates
to account for correlation. Nandram and Chen (1996) prapasscale reparametrization
for ordinal regression models with three categories, whmtelerated the Gibbs sampler in
this situation sufficiently. The reason for the inefficiemeyrdinal response models is that
the updating scheme for the cutpoint&llows only small movements from one iteration to
the next in larger data sets. To overcome this inefficiencyiédand Czado (2005) devel-
oped a specific grouped move multigrid Monte Carlo (GM-MGM&bbs sampler for the
AOP model with arbitrary number of categories. GM-MGMC Gldamplers have been
suggested by Liu and Sabatti (2000) as a general approadtétesate Gibbs sampling
schemes.

Before we recall some more details on the GM-MGMC algorittwa specifty prior distri-
butions fora, 3, ¢ andY; . For notational convenience we defile= (3, ¢)’ and write
a_j = (aq,...,qp 1,041, ..,ax_1)". Furthermore, we writéV;(u, ¢) for a normal
distribution, truncated to the interva) with meanyu and variance?. All parameters are
assumed to be a priori independent, except of the veetfmr which an order condition
has to be satisfied. Fafy, 3 and¢, respectively, normal priors are chosen, and for the
cutpoints a noninformative prior on the St < o; < --- < ax_1 < C}, so that in total
we have

* 1 — * — —
n(Y5.6,0) wp{—§k2@gf+f2ﬁﬁ%z>%ﬂ}-mkm<<w<ﬁm

whereo, 7, p andC are known hyperparameters. One can take large values foand
p, when there is little prior information abodf" and@. For notational convenience we
redefineayx := C, and write in the followingY” := (Y1,...,Yr), Y™ = (Y{,.... Y},
andY™, = (Yy,..., Y, Y5, ... Yy) fort =0,...,T.

One iteration of the GM-MGMC sampler consists of a regularation of the standard
Gibbs sampler, which is followed by the so-called groupeden@M) step. Hence, one
complete iteration of the GM-MGMC sampler looks as follows:

Latent variable update:
Taking into account itV (0, o2)-prior, the full conditional fov;" is

oY —z18) 1
¢2 + o2 ) ¢2 + o2 :

The full conditionalsf (Y,*|Y,Y",,3,¢,), t = 1,...,T — 1 are truncated normal dis-
tributions,

ﬂmrnYmmm~N<

f(Y;*‘Y, Yttv /67 (ba Ol) ~ N[ay _1,ay;) <¢<Y;il - wnglB) . (wgﬁ i QbY;ttl) ! ) )

1+¢2 ’1+¢2
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and fort = T we havef (Y |Y,Y* ., B, 6, a) ~ Nay, .y )(:c’TB + oY} 1, 1).
-1

Joint regression and autoregressive parameter update:

Aiming in a block update of the parametets j = 0, ..., p, and¢, the full conditional
is a(p + 2)-dimensional normal distributiorf!(8|Y, Y™, &) ~ N,2(X2'Y ", ¥), where
the covariance matrix is given by := (Z'Z +diagim2,...,72,p72)) " andZ is the
T x (p+2)-matrix”Z := (z1,...,27) 2z = (Lza, ..., 2y, Y7 )

Cutpoint parameter update:

For eachk = 1,..., K — 1, the full conditional f(ax|Y,Y ™", 3, ¢, a_) is a uniform
distribution in the intervally, rx), wherel, = max {a;_1, max,— _r{Y;"|Y: = k}} and
r{Yy Y, =k+1}}

.....

T = min {1, ming_;

.....

GM step:
The GM step transforms the current samples

w = ()/0*7"'7Y;7507"'76p7a17---7aK—17¢)

from the standard Gibbs iteration according to a randoméyvdrtransformationy from a
carefully specified transformation group. For the AOP mpiiélirned out that theartial
scale group

FTerJrKJrl = {’Y >0:w— (fy}/(]*? cee 7’}/Y’1:k77607 s 77ﬁp7fya17 cee 77041(717@}

accelerates the convergence of the standard Gibbs samaieatitally. Obviously, the el-
ementsy of this partial scale group transform all parameters arehlatariables except of

¢ by multiplication by~. Muller and Czado (2005) have shown that in each groupedcemov
step (which means once in each iteration of the MCMC algorjtthe squared transforma-
tion~? has to be drawn fromE(a, b) distribution (with densityf, ,(z) = b*z* e /T'(a)

for z > 0), where

S THEpr2 07 —wB - oY) o () + T8
2 9 — 2 .

After drawing~? from this distribution, all parameters and latent variatdgcept ofs have
to be multiplied byy = /~2.

2.2 Model Selection with the Deviance Criteria
2.2.1 Residual Deviance Test for the Proportional Odds Model

Here we use the deviance statisfiaddefined as

Supﬁ,a L(/67 a)
T L(p17 s 7pT)’

-----



whereL(3, «) is defined in (2.4) and the supremum is taken oveoalthich satisfy the
ordering constraint. Further we denote bip, ..., py) for p, := (pw, - . ., pu)’ the joint
likelihood of T independent discrete random variabtegaking on value$), ..., K with
probabilitiespy, . . ., pik, respectively. We call.(p,, ..., py) the likelihood of the corre-
sponding unstructured model. Itis straight forward to sttetD := >>7, S°%  log(7),
wherery, ;= F(ay +x,8) — F(a,_, +=;3) and3 anda the joint MLE of 3 anda under
the ordering constraint faie. Note that the proportional odds model can be considered as
a special case of multi categorical models considered im ®Q00). Here he shows that
the null hypothesis of model adequacy can be rejected dtdeve) > X%_K,pvl,a, where

T is the number of observation&, the number of categories minus one anthe number
of regression parameters to be estimated. Yhapproximation is most accurate when
covariates are categorical and the expected cell countgefibby the cross classification of
the responses and covariates are greater than 5. Altexrggtodness-of-fit tests in ordinal
regression models have been suggested in Lipsitz et al6]19& restrict our attention to
the residual deviance, since we want to use the deviancematmn criterion for the AOP
model, which is closely related to the deviance.

2.2.2 Deviance Information Criterion for the AOP model

The Deviance Information Criterion (DIC) was suggested exsegal model selection cri-
terion by Spiegelhalter et al. (2002). Model fit is measurgdhe Bayesian deviance
defined asD(0) := —2log{f(y|0)} + 2log{f(y)}. The standardizing terlog{f(y)}

for the AOP model will be set to zero, which is consistent vatlunstructured model.
Model complexity is measured by the effective number of nhpdeameters defined as

pp := D(0) — D(0), whereD(0) := E(D(0)|y) andD(0) = D(E(0|y)). Spiegelhalter
et al. (2002) suggest to use

DIC := D(6) +2pp = D(0) +pp = 2D(0) — D(0).
as model selection criterion. A model with smaller DIC isfpreed. We note that the DIC
allows for an information theoretic interpretation in expatial family models (van der
Linde 2005) and might be less reliable in non exponentiallfamodels such as the AOP
model.

For the AOP model the parametincludes the cutpoint vectay, the regression parame-
ter vectorg3, the autoregressive paramegerand all the latent variablés*. The Bayesian
deviance for the model is

D(9) = —2log f(y | 6)

T
= —2) log [®(ay — @B — @Yy ) — Dlag 1 —xB— ¢V )] . (2.7)
t=1

To compute the DIC, the expressidn ) can be estimated by averaging the tein®,),
where@; denotes the random sample tbdrawn in iteration of the MCMC sampler. The
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value of D(0) is given by inserting the corresponding posterior meameg#és in Equation
2.7).

We mention that the DIC as defined above considers the lateiatbles as the focus of the
analysis. However in our application this is not the casevoild be more appropriate to
consider a DIC measure based on the marginalized likelihaadhe likelihood where the
latent variables are integrated out. However this woulalvir a very high dimensional
integration (in our application this dimension would W#?2), which is even numerically
intractable.

2.3 Bayes Factors

Since DIC might be unreliable for the AOP model we consideyd3dactors based on the
marginal likelihood as an alternative method for model carigon (see Kass and Raftery
(1995)). Muller and Czado (2005) provided an estimatiarcpdure for the marginal like-
lihood for the AOP model adapting the methods of Chib (199%) €hib and Jeliazkov
(2001). In particular, the Bayes factor of a modé| versus a model/; is given by

m(y| M)

B(y|M17 MQ) = m(y|M2)7

wherem(y|M) := [ f(y|@, M)p(6|M)d6 is the marginal likelihood of model/. Here
p(@|M) and f(y|@, M) denote the prior of the parametétsand the likelihood in model
M, respectively. Using the definition of the posterior disttionp(6|y, M) in Model M
the marginal likelihood of Model M can be estimated by

y|0°, M)p(0°| M)
p(0°|y, M)

for every value of@°. For reasons of efficiency we s@t equal to the posterior mean
estimate of. Wherea(6°| M) can be computed exactly, the other two factors on the right
hand side of (2.8) have to be estimated. To this end one usasie@filter and the output
from reduced runs of the MCMC estimation procedure. For tid?Anodels the model
parameters are given by the cutpoints, the regression péeesnand the autoregressive
parameter.

m(y|ar) = L1

(2.8)

2.4 Pseudo-predictions

One intuitive and quite simple way to investigate the qyadita model fit is to compute
pseudo-predictions. In the proportional odds model thismsethat one predicts the re-
sponse at time using ML estimates for the regression parameters and cugpehich are
plugged into the model equations. This results in a foreuadiability for each category.
One can use the category with highest forecast probabdifyrediction for the response at



timet. However, when the ML estimates are based on the whole dateszll these pre-
dictions more precisely pseudo-predictions. For the AORlehone uses posterior mean
estimates instead of the ML estimates. Here, of course, Isoen@eds a posterior mean
estimate ofy}* ;.

2.4.1 Pseudo-predictions for the Proportional Odds Model

The fitted probabilities for the proportional odds model &ach category at time are
defined by

exp(@ + ;)
1+ exp(ap + «;8)
exp(ay + =, 8) _exp(@ + x,3)
1 +exp(@ +x,8) 14 exp(@p_i +x,8)
k=1 K—1,
exp(ax_1 + z}8)
1+ exp(@x 1 + z;0)

Mo = p(YtZOVfUmaaB):

Tk = P(Ytzkm,aﬁ):

7_TtK = P(YQZKL’I}t,H,B):l—

wherea and3 denote maximum likelihood estimates @fand 3, respectively. The cor-
responding pseudo-prediction ®f is therefore given by the categoky which has the
highest value amongy, . . ., Tk

2.4.2 Pseudo-predictions for the AOP model

The corresponding posterior probability estimates in t#PAnodel for each category at
timet are defined by

77-150 = p()/t - 0 | mtaaa ngv?:—l) = @(O&O - mtﬁ ¢Y:—1)>
ﬁtk = P(K - k | wt7a737 57 ?:—1) = (I)(ak - .’,Ctﬁ (bYZ:l)
— (@ —xBPY, ), k=1,...,K -1,
Mg = p(YVt =K | wtaaa Bv 57 7:ﬁkfl) =1- qD(aK—l - 1‘23 - aYIA)

wherea, 3, ¢, andY’,_, denote posterior mean estimates of the corresponding péeesn
and latent variables. The corresponding pseudo-predicfi®; are therefore given by the
category k which has the highest value amang. . . , k.



2.4.3 Assessing Model fit based on Pseudo-predictions

Now we suggest to use the pseudo-predictions for model steses. For this we define
the variables”3>* which correspond to the 'observed’ probabilities for catgg: at timet
in contrast to the 'predicted’ probabilities, defined in the previous subsections:

obs .__ 1 if Y;f = ]{3,
Fy” = { 0 else.

When category: is observed at time, it is clear that a good model fit leads to a high
probability 7, and to small probabilities;; for the other categories # k. A large
difference should be punished more than a small differeddeerefore we compute the
verification score introduced by Brier (1950) defined by

K
1
R DID I

k=0 t=1
to get an idea of the model fit. Of course, the smaller the vafu# the better the model.
The Brier score has been heavily used to evaluate forecatite meteorological sciences
and has the attractive property of being a strictly properiag rule (see for example

Gneiting and Raftery (2004)).

3 Analysis of migraine severity data

3.1 Data description and exploratory analysis

We investigate the migraine headache diary of a 35 year ol who is working full-
time as a manager. She suffers from migraine without aurdZgrears. In this study she
recorded her headache four times a day on an ordinal scate@rtw 5, where 0 means
that she did not feel any migraine headache, and 5 the woggtime headache she can
feel. For a precise definition of the migraine intensity gatées see Table 1. The data is
part of a larger study on determinants of migraine headaobiéected by the psychologist
T. Kostecki-Dillon, York University, Toronto, Canada. The&graine headache diary was
completed between January 6, 1995, and September 30, 1985 is a period of 268
subsequent days. Therefore the length of the data detd68 = 1 072. In addition also
weather related information on a daily basis was colleclidds includes information on
humidity, windchill, temperature and pressure changesdwlirection, and length of sun
shine on the previous day.

Table 1 contains also the frequencies for the six possilsigorese categories in the data
set. As can be seen from this table 150 observations are ahegqero which corresponds
to suffering from migraine headaches in about 14% of the .ti@e the one hand we use
covariates which reflect weather conditions, on the othedh=zovariates which contain
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information about the measurement time points. A desomptf the covariates in our
analysis is also provided in Table 1. We point out that the iditynindex is measured
only in the period from May to October and the windchill indexly in the period from
November to April. This means that always only one of thesegates is contained in the
data set.

[Table 1 about here]

In the following we conduct a short exploratory analysis.d&scribed in Miller and Czado
(2005), the idea is to compute the average response for edefoty of a categorical

covariate and for intervals, when a continuous covariatemsidered. More precisely for
a continuous covariate;; which falls in an intervall with n; observations, the average
response is given as

Depending on the shape of the graph one can then decide to appeopriate transforma-
tion of the covariate or to use indicator variables, whiglofsourse, the most flexible way
of modeling.

PMND1P (mean pressure change from previous day, cf. Figure 1, toplpa/Ne group
the observed PMND1P values into six intervals with equal lbeinof observations and
compute the average response for each interval. A lineatioakhip seems to be sufficient,
since a possibly present quadratic part is obviously small.

[Figure 1 about here]

S1P(sunshine on previous day): This covariate has not beeratetl during all 30 days
of April 1995, so that for 120 observations this covariatenissing in the period under
consideration. The remaining 952 observations are groupedervals. The relationship
is quite linear (not shown), and a sunny day seems to incteag@obability for headache
on the following day, since the average response increasesh& length of the sunshine.
The range of the average response 3.

HDXDD (humidity index): We computed the average response for edehval and de-
cided to use a quadratic transformation. The relative higilye among these average re-
sponses 0.83 is a first hint at the importance of this covariate.

WCD (windchill): We use an indicator for windchill. If windcHils present, the patient
suffered from more intense migraine headaches.

WDAY (weekday): Because of the periodicity a polynomial or laganic transformation
does not make sense. Perhaps a sine transformation couldgede We use indicator
variables since this choice provides the most flexible waynfodeling the influence of
the weekdays. Weekdays were grouped together when theyeshawgimilar behavior.
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Indicator variables are abbreviated in a natural way. Fanede, the variable TUEWED
is 1 if the measurement was done on a Tuesday or Wednesdagvata O.

MESS (time of measurement, cf. Figure 1, bottom panel): In therafion the average
response is the highest wiitb 1. The difference between the range of the average response
is0.51 — 0.26 = 0.25. The afternoon indicator HAMP.IND is used.

3.2 Proportional Odds Model Specifications

To determine reasonable mean specifications for the AOP Imaslégnore in an initial
analysis the dependence among the responses and utiligefiational odds model. For
the proportional odds model we analyzed models with diffeeets of covariates. As
mentioned above, the covariate 'sunshine on previous day’not been collected during
April 1995. This covariate, however, seems to be importanttfe analysis, so we decided
to remove all observations from April 1995 and to reduce @iadet to the length072 —
120 = 952. Since the proportional odds model does not take any autssige dependence
between the observations into account, no selection biasrec The three models A, B,
and C considered in the following are found by a forward gelacprocedure. In each
step thep-values for each covariate were determined by a Wald test.colariate with the
lowestp-value below the 5% level was included. Th&alues of already included variables
were checked that they remain below a 5% level and otherwi®s®ved. This means that
the covariates of Model A, B, and C are all significant on thel&del.

Model A contains only main effects. For time of measuremestige only an indicator for
the afternoon measurement and an indicator for Tuesday dn&égelay. In Model B and
C we consider three weekday indicators following our exgilory analysis. Furthermore,
in Model B we also allow for three interaction effects, wheseéModel C contains nine
interaction components. The covariates which are useceareia Table 2. This table also
gives the ML estimators for the regression coefficients aecttitpoints.

[Table 2 about here]

3.3 AOP Model Specifications

For the AOP model with latent variables given by
Y =uB+ oY +e

we investigate two models. For numerical stability we useadates which have been
standardized such that they have empirical mean 0 and exlprariance 1. We call these
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standardized covariates; = (z3,, ..., z5,;)’, where the components are given by

Ty — T

Xy = (3.9
\/%tzl(xn- —Z;)?

T
with z; = %an- Only indicator variables: ; (wherez,; € {0,1} forallt € {1,...,T})

are not stantdérdized. The proportional odds model spewiiitssfrom above were used as a
starting point for the model specifications of the AOP modelssidered. Note that for the
AOP model a selection bias (due to cutting out the obsemsaiioApril 1995) might occur.
Since, however, the used data set still has 952 observatnahihe observations which have
been cut out are concentrated in one single cluster, thisifdgsoccurring selection bias
seems to be negligible. If the 95% credible interval of a pet@r contained zero, the
corresponding covariate was removed from the model. Invitaig the proportional odds
models A and B lead to the AOP models | and I, respectively.

Table 3 shows the posterior mean estimates together withaed 2.5% and 97.5% quan-
tiles for all parameters based on 10 000 iterations with adouiof 1 000 iterations (this
choice seemed to be reasonable after an inspection of thescheduced by the GM-
MGMC sampler; it goes along with the results of Muller anda@a (2005), where in
several simulation settings a burn-in period of 1 000 iteret always turned out to be
sufficiently long). For Model I, the 95% credible interval fevery main effect does not
contain zero, so every covariate is significant. For Modehkk 95% credible intervals for
PMND1PF and WEDFR] contain the value 0. However, these two covariates mustirema
in the model since they appear in an interaction term whidtsétf significant. According

to Muller and Czado (2005), the priors of all regressiorfii@ents were normal with mean

0 and standard deviation 10, so that they are quite unifavemabmpared to the magnitude
of the estimates in Table 3. The prior®fvas truncated normal with mean 0 and standard
deviation 10, therefore again quite uninformative(eri, 1).

[Table 3 about here]

4 Results

Now we conduct a model comparison analysis for the five madeéstigated in Sections
3.2 and 3.3. First we consider the proportional odds modé&ts.decide which of the
proportional odds models fits the data best, we use the @sidwiance test of Section
2.2.1. As mentioned there a model does not describe the dataifvD > x7. ., ..
Here we havel’ = 952 and K = 5. We test on the 5% and 1% level and compute the
p-value. Table 2 shows the results of the deviance analysith&three models. For all
three models the deviande is not larger than the corresponding 99% quantiles of the
y2-distribution, therefore all considered models fit the dgtie well. Next we compare
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the AOP models using the DIC criterion. The values of the Dd€Model | and Model
Il are given in Table 3. The posterior mean of the Bayesiariatee D () is smaller for
Model Il, however the complexity measupg is smaller for the more complex Model I,
which indicates that DIC might not be suitable for AOP modélberefore we prefer to
base our model selection on Bayes factors and Brier scoresseé#/ from the likelihood
ordinate, that Model Il clearly fits the data better than Mddgy the likelihood factor
exp(—407.8493 + 417.5238) = 15906.77). However, the prior and the posterior ordinate
punish Model Il heavily, since it uses four covariates mantModel I. Therefore, if one
uses the Bayes factor as model selection criterion, onddpoefer the simpler Model | to
describe the data, since following the Bayes factor scaléeffyeys (1961), the evidence
of Model | against Model Il is decisive.

Finally we compare all proportional odds models and AOP redsing the pseudo-
predictions defined in Section 2.4. The corresponding Bsgeres are given in Table 2
and 3, respectively. We conclude that the two AOP modelsriesthe data better than all
the proportional odds models. The Brier scores chooses Maner all models, which
is consistent with the model selection based on Bayes facldrerefore we conclude that
Model | is the overall preferred model for this data set.

The signs of the regression parameters in Table 3 agreeyreaamtywhere with the signs
in Table 2. This means that both the proportional odds madelgthe AOP models lead to
the same conclusions, when asking which covariates hawghaainid which a low value to
reduce the migraine severity. For example from the negaigres for S1P in all models we
conclude that a sunny day increases the headache sevetiity naxt day. This agrees with
our conjecture from the exploratory analysis. The indic&bo afternoon, HAPM.IND,
also has a coefficient with negative sign. Again this apps@we conjecture: the afternoon
headache is usually worse than in the morning, at noon, angdhe night. Considering
the coefficients of the weekday indicators in Model Il we dest the headache is worse
between Wednesday and Saturday which might be a conseqaokacgover)exertion on
the job.

We provide now a quantitative interpretation of the covariffects in the AOP models.
For this we match the first two moments of the standard normséiloution to the logistic
distribution to give the approximation

exp (lz>
O(z2) ~ Vs :
1+ exp (%z)

For the AOP model it follows that the cumulative log oddsa@tik|x;) for category k at
time t and covariate vectat; can be approximated by

Fy(k|xy)

Li(klz,) = log (m

) = elan el - o7, (4.10)

whereF,(k|x,) = P(Y; < klzy, o, 8,0,Y ) = ®(a, — 2,8 — ¢Y;" ;). Therefore the
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scaled impact of covariate; defined as

V3

approximates the effect on the cumulative log odds rati@mthe remaining covariates are
set to zero. Note thaft;(k|x,) corresponds to the probability of experiencing a headache
of category k or worse at time t and covariate veatgrsince we us&,° = 5 — Y; in the
AOP models. Since we used standardized covariates a zemeastbzed covariate value
corresponds to the average value of the unstandardizediat®vaThe scaled impacts of
the unstandardized covariates HDXDD and S1P are given ur&i@. Recall that HDXDD
enters the model in a quadratic fashion. The correspondi®f &edible intervals show
that the data provides much more evidence of a sunshind efiigbe previous day than a
humidity effect.

(Bo + Bjx;)

[Figure 2 about here]

Using 4.10 we can approximate the cumulative odds ratioghay

Fi(k|z1)

1—Fy(k[x1) @ /

)~ p{ = (T2 — 21)'B},
Fy(klz2)

1—F(kl23) V3

when the covariate vector is changed from = x; to x; = x5. Note that this quantity is
independent of category k,andY;* ;. Table 4 gives these cumulative odds ratio changes
when a single covariate is changed. The remaining covarates are held fixed. We see
that the presence of windchill has the largest impact on timeutative odds ratio change
followed by a PM measurement and exposure to sunshine onr¢veops day. The evi-
dence for a humidity effect on the cumulative odds ratio gieais marginal since the 95%
credible intervals contain 1. In particular this means thatodds of having a headache
of severity k or worse is 4.6 (2.93) times higher when windd#M measurement) is
present compared to being absent. Five hours more sunghithe @revious day changes
the cumulative odds ratio by a factor of 1.30.

[Table 4 about here]

Finally we note that the autoregressive component for ttemtdime serieg’;* is around
0.8 indicating large positive dependence among the oréhitehsity measurements.

In summary we recommend to this patient to avoid windchidl amg sunshine exposures.
The evidence for a humidity, workday and pressure changeteff too small to warrant

specific recommendations with regard to these variablesth&uthe chance of experi-
encing a headache compared to no headache is about threehigher in the afternoon

compared to other times of the day.
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5 Conclusions

The importance of using time series models to evaluate mthtient migraine headache
diaries has also been recognized in a recent paper by Hoale €2005). As in Prince
et al. (2004) they study the daily total and maximum score émeér measurements of a
patient over one month. They recognized that this approaitsyonly a time series of
length 28, which is considered too short to make significamictusions about the time
series properties. In contrast our approach uses nongajgredata and thus longer time
series. In addition we avoid information loss due to datareggfion. The analysis of
Houle et al. (2005) showed the presence of positive autelations between successive
values of their daily outcome measures. They however dogradider time series models
to account for this autocorrelation due to their short tirees length. Further, they only
included a linear time trend as explanatory variable foirtheadache outcome variable.
Our approach overcomes these short comings - short timessguie to data aggregation,
no model based adjustment for autocorrelation and a veitelihset of explanatory factors
for headache activity.

For our approach we applied the autoregressive orderedt pAGP) model suggested by
Muller and Czado (2005) to an ordinal valued time seriesiragifrom headache intensity
assessments. Here the ordered categories are producedshhblding a latent real-valued
time series with regression effects. To model the depenegmenong the measurements
the latent time series includes not only regression compisrigut also an autoregressive
component. Parameter estimation is facilitated using aggd move multigrid Monte
Carlo (GM-MGMC) Gibbs sampler in a Bayesian setting. Modetse compared using
Bayes factors and the Brier score based on pseudo prediciiégmalso show that the DIC
model selection criterion is problematic for AOP models.

For the migraine headache intensity data the latent timessshows a high first order
autocorrelation of around 0.8 demonstrating considerdblgendence among the ordi-
nal measurements. For this patient we were able to demtmsiwasiderable impact of
weather related variables such as the present of windctdlisanshine length. This sup-
ports the conclusions of Prince et al. (2004) who showeddbate patients are sensitive
to weather. Specific recommendations to this patient to ddive risk factors for severe
migraine headaches have been provided.

Even though an individual analysis offers the opporturatgieévelop more precise migraine
control mechanismes, it is of interest to identify commolk figsctors in groups of patients.
This problem is subject of current research. A possibibtya generalize the AOP model
to a multivariate setting, with the same autoregressiwgctire for the latent variables.
However, also other similar multivariate models could bedj$or example the model dis-
cussed in Heiss (2008) (which is estimated using sequeatiaksian quadrature) or the
bivariate model proposed in Todem et al. (2007) (which isrested using adaptive Gaus-
sian quadrature). Another possibility could be the muitate extension of the dynamic
logit model which was developed by Bartolucci and Farconi2009). Due to the involved
latent process, a direct maximum likelihood estimatioroispossible here, and the authors
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suggested an EM algorithm to estimate the model.
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Table 1: Description of response scales with observed &ecjas and weather and time
measurements related covariates

Response categories
intensity  frequency condition

0 922 No headache

1 27 Mild headache: Aware of it only when attending to it

2 46 Moderate headache: Could be ignored at times

3 47 Painful headache: Continuously aware of it, but ablé¢aid s
or continue daily activities as usual

4 24 Severe headache: Continuously aware of it. Difficult to
concentrate and able to perform only undemanding tasks

5 6 Intense headache: Continuously aware of it, incapauitat

Unable to start or continue activity.

weather conditions

PMND1P mean pressure change since previous day in 0.0lakitap

S1P length of sunshine on previous day in hours

HDXDD humidity index based on maximal temperature and hityid
only in period May to October, 0 otherwise

WCD windchill index based on minimal temperature and winelesh
only in period November to April, O otherwise

WC.IND indicator for windchill: 1 if WCD unequal 0, O otherse

time of measurement

WDAY weekday, also coded by 1 (Monday) to 7 (Sunday)

MESS time of measurement. HAAM = morning (also coded by 1),
HANOON = noon (2), HAPM = afternoon (3),
HABED = late evening (4)

HAPM.IND indicator for afternoon: 1 if MESS=HAPM, 0 othersé
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Figure 1: Relationship between average response and peedsierence intervals (top
panel) and average response and time of measurement (qudtwat).
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Table 2: Maximum likelihood estimates of regression patanseand cutpoint parameters,
residual deviances and Brier scores using the proportiodds model ignoring depen-
dence.

Model A Model B Model C
weather conditions
HDXDD; -0.4592 -0.4513 -0.4011
HDXDD? 0.0109 0.0106 0.0097
S1R -0.1055 -0.1205 -0.0651
WC.IND; -4.6821 -4.7190 -4.3610
PMND1R, 0.0035 -0.0149 -0.0147
time of measurement
HAPM.IND; -0.4719 -0.5051 -0.5433
TUEWED, 0.5298
TUESUN -0.2180 -1.0196
WEDFRI; -0.2542 1.9105
THUSAT, -0.3935 -0.5628
interactions
PMNDI1PR - TUESUN 0.0150 0.0174
PMND1PR - WEDFR}; 0.0284 0.0297
PMND1PR - THUSAT; 0.0185 0.0188
S1R - TUESUN 0.0703
S1R - WEDFRJ; -0.2218
S1R - THUSAT; -0.0413
WC.IND; - TUESUN 0.5248
WC.IND; - WEDFRI; -0.9426
WC.IND; - THUSAT; 1.3245
cutpoints
o 6.8128 7.3810 6.5040
o 7.0478 7.6272 6.7591
o) 7.6310 8.2314 7.3874
o3 8.6903 9.3101 8.5073
oy 10.2024 10.8279 10.0509
residual deviance (df) 1106 (4753) 1083(4748) 1056 (4742)
Brier score .2545 2467 .2405
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Table 3: Posterior mean and quantile estimates for staizgardegression parameters and
cutpoint parameters using the AOP model and their deviamimgnnation criterion and
Brier score

Model | Model Il

2.5% mean 97.5% 2.5% mean 97.5%
intercept 0.8817  1.2969 1.7624 1.0610 1.4764 1.9456
weather conditions
HDXDDj} -2.3685 -1.2880  -0.3530 -2.3874  -1.3548 -0.4171
(HDXDD?)S 0.4096 1.1552 2.0173 0.4616 1.2054 2.0311
S1E -0.2368 -0.1322 -0.0314 -0.2688 -0.1619 -0.0569
WC.IND; -1.6215 -0.8410 -0.1464 -1.6499 -0.8959 -0.2006
PMND1F -0.1331 -0.0172 0.0937
time of measurement
HAPM.IND; -0.9163 -0.5924  -0.2612 -0.9194 -0.5769 -0.2469
WEDFRI -0.2672  -0.0079 0.2609
THUSAT, -0.5213 -0.2899 -0.0535
interactions
PMND1P
x WEDFRI; 0.0839 0.3077 0.5402
autoregressive parameter
10) 0.7404 0.8077 0.8718 0.7250 0.7932 0.8541
cutpoints
o 0.4706 0.7314 1.0221 0.4596 0.7383 1.1732
o) 1.0821 1.3851 1.6962 1.1002 1.4021 1.8384
o3 1.5870 1.8979 2.2151 1.6049 1.9250 2.3588
oy 1.8548 2.1704 2.5127 1.8644 2.2013 2.6321
deviance information criterion

D(0) PD DIC D(6) PD DIC

799.6967 97.8068 897.5035 787.8536 92.5850 880.4387
Bayes factor

log(f(y|6°, M)) -417.5238 -407.8493
log(p(6°|M)) -26.6353 -39.5151
log(p(0°|y, M)) 16.8070 22.7356
log(m(y|M)) -460.9661 -470.1000
Bayes Factor of Model | versus ModelH exp(—460.9661 + 470.1000) = 9 264.08
Brier score

0.1688 0.1724
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Figure 2: Scaled Impacts for humidex (solid) and sunshio&éd) with 95% CI's

Table 4: Posterior mean and quantile estimates of the caweiladds changes for AOP
Model |

cumulative odds change 2.5% mean 97.5%
humidex from 10to 20 0.08 0.66 5.31
humidex from20to 30 0.10 1.49 21.73
humidex from 30to 40 0.14 3.34 88.99
humidex from40to 50 0.18 7.48 364.19
humidex from20to 40 0.01 4.97 1934.80

2 hr more sunshine 1.02 1.11 1.21
5 hr more sunshine 1.06 1.30 1.60
10 hr more sunshine 1.13 1.69 2.54

Windchill from present
toabsent 1.30 4.60 18.94

PM measurement to
no PM measurement 1.60 2.93 5.27
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