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Abstract

This paper considers the problem of modeling migraine severity assessments and
their dependence on weather and time characteristics. We take on the viewpoint of a
patient who is interested in an individual migraine management strategy. Since fac-
tors influencing migraine can differ between patients in number and magnitude, we
show how a patient’s headache calendar reporting the severity measurements on an
ordinal scale can be used to determine the dominating factors for this special patient.
One also has to account for dependencies among the measurements. For this the au-
toregressive ordinal probit (AOP) model of Müller and Czado (2005) is utilized and
fitted to a single patient’s migraine data by a grouped move multigrid Monte Carlo
(GM-MGMC) Gibbs sampler. Initially, covariates are selected using proportional odds
models. Model fit and model comparison are discussed. A comparison with propor-
tional odds specifications shows that the AOP models are preferred.

Keywords:Bayes factor; Deviance; Ordinal valued time series; MarkovChain Monte Carlo
(MCMC); Proportional odds; Regression;

1 Introduction

According to Prince et al. (2004) forty-five million Americans seek medical attention for
head pain yearly causing an estimated labor cost of $13 billion. They found in their study
that about half of their migraine patients are sensitive to weather. However some studies
investigating the relationship between weather conditions and headache have been negative
or inclusive (see Prince et al. (2004) and Cooke et al. (2000)for specific references). In
these studies the frequency of headache occurrences and thedaily maximum or total score
of an ordinal severity assessment have been the focus.

Here we focus directly on studying and modeling the observedseverity categories collected
using a headache calendar. In particular we want to investigate the four daily ratings of the
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headache intensity obtained from a patient in study conducted by psychologist T. Kostecki-
Dillon, Toronto, Canada, resulting in an ordinal valued time series. We take on the view-
point of the patient who is interested in an individual migraine management strategy. Since
factors influencing migraine can differ between patients innumber and magnitude, we use
the patient’s headache calendar to determine the dominating factors for this patient.

Most studies ignore correlation among measurements on the same patient. We will show
that this correlation can be very high and should not be ignored. For example, Prince
et al. (2004) use daily maximum and total scores as response variable relating to factors
obtained from a factor analysis of the weather data alone in aregression setup ignoring this
correlation.

For studying headache occurrences Piorecky et al. (1996) used a generalized estimating ap-
proach (GEE) introduced by Zeger and Liang (1986) to adjust for the dependence between
multiple measurements. While GEE could also be used for ordinal valued time series (see
for example Liang et al. (1992), Heagerty and Zeger (1996) and Fahrmeir and Pritscher
(1996)), we prefer a likelihood based regression time series approach to investigate the in-
fluence of weather conditions on migraine severity. One major reason for this preference
is to have a complete statistical model specification, whichallows the usage of standard
model comparison techniques and forecasts in dynamic models.

Kauermann (2000) also considered the problem of modeling ordinal valued time series with
covariates. He used a nonparametric smoothing approach by allowing for time varying co-
efficients in a proportional odds model. While Kauermann (2000) uses local estimation,
Gieger (1997) and Fahrmeir et al. (1999) consider spline fitting within the GEE frame-
work. Wild and Yee (1996) focus on smooth additive components. While these approaches
are useful for fitting the data, a hierarchical time series approach which we propose here is
easier to interpret and has the potential for forecasting. In particular, we will use an autore-
gressive ordered probit (AOP) model introduced by Müller and Czado (2005). It is based
on a threshold approach using a latent real valued time series. It is fitted and validated in a
Bayesian setting using Markov Chain Monte Carlo (MCMC) methods.

Since as already mentioned many studies investigating the relationship between headache
and weather conditions have been inclusive, we believe management of migraine headaches
should be tailored to the individual migraine sufferer. Since migraine headaches are a
persistent problem such an individual analysis should be based on a headache calendar
of the individual. Such an individual approach was also followed by Schmitz and Otto
(1984). However they ignored the ordinal nature of the considered response time series.
As an example for such a single patient analysis we investigate data collected by a 35 year
old woman with chronic migraine who recorded her migraine severity four times a day on
a scale from 0 to 5. To determine which weather conditions have an important effect on the
migraine severity we used a proportional odds model commonly used for regression models
with independent ordinal responses as a starting model for our AOP analysis. We will show
that for this data the first order autocorrelation in the latent time series is high within the
AOP model (≈ 0.8), demonstrating considerable dependence among the measurements.
We like to mention that for this patient headache severity scores are not reached by first
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successively experiencing the lowest severity category tothe next higher category until
the highest is reached. Therefore a continuation ratio formulation (Agresti 2002) is not
appropriate for this patient. A Bayesian analysis of a probit continuation ratio formulation
is given by Dunson et al. (2003) in a joint model for cluster size and sub-unit specific
outcomes.

The paper is organized as follows. In Section 2 we review the proportional odds model to
motivate the AOP formulation. We address the problem of variable selection and model
comparison. In Section 3 we describe the data in more detail and present some results from
an exploratory analysis yielding three mean specificationsfor the proportional odds model
and two for the AOP model. In Section 4 we give the results of the model fitting and model
comparison, demonstrating the superiority of the AOP model. Finally Section 5 gives a
summary and draws conclusions.

2 Models, Predictions and Model Selection

2.1 Models and Estimation

In the migraine data we model an ordinal valued time series{Yt, t = 1, . . . , T}, where
Yt ∈ {0, . . . , K} denotes the pain severity at timet with ordinal levels given by{0, . . . , K}.
Together with the responseYt we observe further a vectorxt of real-valued covariates for
eacht ∈ {1, . . . , T} representing meteorological and time measurement information.

2.1.1 Proportional Odds Model

A common ordinal regression model for independent responses is the ordinal logistic model
first described by Walker and Duncan (1967) and later named proportional odds model by
McCullagh (1980). To aid us with the identification of important covariates in the migraine
headache data we utilize the proportional odds model. The identified covariate structure
will then be used in the autoregressive ordinal probit (AOP)model, which in contrast to
the proportional odds model does not ignore the dependence among the measurements.
The primary focus of this paper is the AOP model for which maximum likelihood es-
timation is not feasible and for which a Bayesian estimationapproach is therefore fol-
lowed. We now shortly review the proportional odds model from a threshold perspective,
which motivates the AOP model formulation. For this we assume that the covariate vector
xt = (xt1, . . . , xtp)

′ is p-dimensional. To model theK + 1 different categories, an under-
lying unobserved real-valued time series{Y ∗

t , t = 1, . . . , T} is used which produces the
discrete valuedYt by thresholding. In particular,

Yt = k ⇐⇒ Y ∗
t ∈ (αk−1, αk] , k = 0, . . . , K, (2.1)

Y ∗
t = −x′

tβ + ε∗t , t = 1, . . . , T, (2.2)
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where−∞ =: α−1 < α0 < α1 < · · · < αK := ∞ are unknown cutpoints, andβ =
(β1, . . . , βp)

′ is a vector of unknown regression coefficients. The errorsε∗t are assumed to
be i.i.d. and follow a logistic distribution with distribution functionF (x) = exp(x)

1+exp(x)
. It is

easy to see that (2.1)-(2.2) imply the more familiar representation given by

P (Yt ≤ k|xt) = F (αk + x′
tβ) =

exp(αk + x′
tβ)

1 + exp(αk + x′
tβ)

(2.3)

for k = 0, 1, . . . , K − 1. The properties of the proportional odds model are for example
discussed in Harrell (2001) and Agresti (2002). Lety := (y1, . . . , yT )

′ be the observed
responses andα := (α0, . . . , αK−1)

′. Since the responses are assumed to be independent
the joint likelihood is given by

L(β,α) := L(β,α|y1, . . . , yT ) =
T
∏

t=1

πt,yt , (2.4)

whereπtk := P (Yt = k|xt) = F (αk + x′
tβ) − F (αk−1 + x′

tβ) for k = 0, . . . , K − 1
andπtK := 1 −

∑K−1
k=0 πtk. The unknownβ andα together with the ordering constraint

−∞ =: α−1 < α0 < α1 < · · · < αK := ∞ can be estimated by maximum likelihood
(ML) using the S-Plus Design Library by Frank Harrell.

2.1.2 Autoregressive Ordered Probit (AOP) Model

Since the migraine severity at timet may depend not only on the covariates at timet, but
also on the migraine severity at timet − 1, it may be adequate to use the autoregressive
ordered probit (AOP) model introduced by Müller and Czado (2005). Here, the latent
process of the common ordered probit model is extended by an autoregressive component:

Yt = k ⇐⇒ Y ∗
t ∈ (αk−1, αk] , k = 0, . . . , K, (2.5)

Y ∗
t = x′

tβ + φY ∗
t−1 + ε∗t , t = 1, . . . , T, (2.6)

where−∞ =: α−1 < α0 < α1 < · · · < αK := ∞, ε∗t ∼ N(0, δ2) i.i.d., andxt =
(1, xt1, . . . , xtp)

′ is ap+1-dimensional vector of real-valued covariates. Accordingly, β0 is
the intercept for the latent process. For reasons of identifiability the cutpointα0 is fixed to 0,
and the varianceδ2 to 1. For notational convenience we use againy := (y1, . . . , yT )

′ for
the observations andα := (α1, . . . , αK−1)

′ as for the proportional odds model, however,
sinceα0 is fixed here, the vectorα has onlyK − 1 components in the AOP case.

We emphasize that the right-hand side of Equation (2.2) includes the term−x′
tβ whereas

the right-hand side of Equation (2.6) uses the termx′
tβ. To make the parametersβj in

model specifications (2.2) and (2.6) comparable we decided to compute the posterior mean
estimates in the AOP model for the responseY ◦

t := 5 − Yt. Therefore the worst migraine
severity is associated with category0, and no migraine is associated with category5 when
we fit the AOP model. Hence now in both the proportional odds and in the AOP model
a negative value forβj means that an increasing value of the covariatexj leads to a more
severe migraine.
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2.1.3 Estimation of the AOP model by GM-MGMC

In Müller and Czado (2005) it is shown that a standard Gibbs sampling approach is ex-
tremely inefficient and cannot be recommended in practice. This inefficiency of the Gibbs
sampler was already noted by Albert and Chib (1993) for polychotomous regression mod-
els and Chen and Dey (2000) for correlated ordinal regression data using lagged covariates
to account for correlation. Nandram and Chen (1996) proposed a scale reparametrization
for ordinal regression models with three categories, whichaccelerated the Gibbs sampler in
this situation sufficiently. The reason for the inefficiencyin ordinal response models is that
the updating scheme for the cutpointsα allows only small movements from one iteration to
the next in larger data sets. To overcome this inefficiency M¨uller and Czado (2005) devel-
oped a specific grouped move multigrid Monte Carlo (GM-MGMC)Gibbs sampler for the
AOP model with arbitrary number of categories. GM-MGMC Gibbs samplers have been
suggested by Liu and Sabatti (2000) as a general approach to accelerate Gibbs sampling
schemes.

Before we recall some more details on the GM-MGMC algorithm,we specifty prior distri-
butions forα, β, φ andY ∗

0 . For notational convenience we defineθ := (β′, φ)′ and write
α−k := (α1, . . . , αk−1, αk+1, . . . , αK−1)

′. Furthermore, we writeNI(µ, c
2) for a normal

distribution, truncated to the intervalI, with meanµ and variancec2. All parameters are
assumed to be a priori independent, except of the vectorα for which an order condition
has to be satisfied. ForY ∗

0 , β andφ, respectively, normal priors are chosen, and for the
cutpoints a noninformative prior on the set{0 < α1 < · · · < αK−1 < C}, so that in total
we have

π(Y ∗
0 , θ,α) ∝ exp

{

−1

2

[

σ−2(Y ∗
0 )

2 + τ−2β′β + ρ−2φ2
]

}

· 1l{0<α1<···<αK−1<C}

whereσ, τ , ρ andC are known hyperparameters. One can take large values forσ, τ and
ρ, when there is little prior information aboutY ∗

0 andθ. For notational convenience we
redefineαK := C, and write in the followingY := (Y1, . . . , YT )

′, Y ∗ := (Y ∗
0 , . . . , Y

∗
T )

′,
andY ∗

−t := (Y ∗
0 , . . . , Y

∗
t−1, Y

∗
t+1, . . . , Y

∗
T )

′ for t = 0, . . . , T .

One iteration of the GM-MGMC sampler consists of a regular iteration of the standard
Gibbs sampler, which is followed by the so-called grouped move (GM) step. Hence, one
complete iteration of the GM-MGMC sampler looks as follows:

Latent variable update:
Taking into account itsN(0, σ2)-prior, the full conditional forY ∗

0 is

f(Y ∗
0 | Y ,Y ∗

−0,α, θ) ∼ N

(

φ(Y ∗
1 − x′

1β)

φ2 + σ−2
,

1

φ2 + σ−2

)

.

The full conditionalsf(Y ∗
t |Y ,Y ∗

−t,β, φ,α), t = 1, . . . , T − 1 are truncated normal dis-
tributions,

f(Y ∗
t |Y ,Y ∗

−t,β, φ,α) ∼ N[αYt−1,αYt
)

(

φ(Y ∗
t+1 − x′

t+1β) + (x′
tβ + φY ∗

t−1)

1 + φ2
,

1

1 + φ2

)

,
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and fort = T we havef(Y ∗
T |Y ,Y ∗

−T ,β, φ,α) ∼ N[αYT −1,αYT )
(

x′
Tβ + φY ∗

T−1, 1
)

.

Joint regression and autoregressive parameter update:
Aiming in a block update of the parametersβj , j = 0, . . . , p, andφ, the full conditional
is a(p+ 2)-dimensional normal distribution:f(θ|Y ,Y ∗,α) ∼ Np+2(ΣZ

′Y ∗
−0,Σ), where

the covariance matrix is given byΣ := (Z ′Z + diag(τ−2, . . . , τ−2, ρ−2))
−1 andZ is the

T × (p + 2)-matrixZ := (z1, . . . , zT )
′, zi := (1, xi1, . . . , xip, Y

∗
i−1)

′.

Cutpoint parameter update:
For eachk = 1, . . . , K − 1, the full conditionalf(αk|Y ,Y ∗,β, φ,α−k) is a uniform
distribution in the interval(lk, rk), wherelk = max {αk−1,maxt=1,...,T {Y ∗

t |Yt = k}} and
rk = min {αk+1,mint=1,...,T {Y ∗

t |Yt = k + 1}}.

GM step:
The GM step transforms the current samples

w := (Y ∗
0 , . . . , Y

∗
T , β0, . . . , βp, α1, . . . , αK−1, φ)

from the standard Gibbs iteration according to a randomly drawn transformationγ from a
carefully specified transformation group. For the AOP model, it turned out that thepartial
scale group,

ΓT+p+K+1 := {γ > 0 : w 7→ (γY ∗
0 , . . . , γY

∗
T , γβ0, . . . , γβp, γα1, . . . , γαK−1, φ)}

accelerates the convergence of the standard Gibbs samples dramatically. Obviously, the el-
ementsγ of this partial scale group transform all parameters and latent variables except of
φ by multiplication byγ. Müller and Czado (2005) have shown that in each grouped move
step (which means once in each iteration of the MCMC algorithm) the squared transforma-
tionγ2 has to be drawn from aΓ(a, b) distribution (with densityfa,b(x) = baxa−1e−bx/Γ(a)
for x ≥ 0), where

a =
T +K + p + 2

2
, b =

∑T

t=1(Y
∗
t − x′

tβ − φY ∗
t−1)

2 + σ−2(Y ∗
0 )

2 + τ−2β′β

2
.

After drawingγ2 from this distribution, all parameters and latent variables except ofφ have
to be multiplied byγ =

√

γ2.

2.2 Model Selection with the Deviance Criteria

2.2.1 Residual Deviance Test for the Proportional Odds Model

Here we use the deviance statisticD defined as

D := 2 log
supβ,α L(β,α)

supp
1
,...,pT

L(p1, . . . ,pT )
,
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whereL(β,α) is defined in (2.4) and the supremum is taken over allα which satisfy the
ordering constraint. Further we denote byL(p1, . . . ,pT ) for pt := (pt0, . . . , ptk)

′ the joint
likelihood of T independent discrete random variablesZt taking on values0, . . . , K with
probabilitiespt0, . . . , ptK , respectively. We callL(p1, . . . ,pT ) the likelihood of the corre-
sponding unstructured model. It is straight forward to showthatD :=

∑T

t=1

∑K

k=1 log(π̄tk),
whereπ̄tk := F (ᾱk+x′

tβ̄)−F (ᾱk−1+x′
tβ̄) andβ̄ andᾱ the joint MLE ofβ andα under

the ordering constraint forα. Note that the proportional odds model can be considered as
a special case of multi categorical models considered in Tutz (2000). Here he shows that
the null hypothesis of model adequacy can be rejected at level α if D > χ2

T ·K−p,1−α, where
T is the number of observations,K the number of categories minus one andp the number
of regression parameters to be estimated. Theχ2 approximation is most accurate when
covariates are categorical and the expected cell counts formed by the cross classification of
the responses and covariates are greater than 5. Alternative goodness-of-fit tests in ordinal
regression models have been suggested in Lipsitz et al. (1996). We restrict our attention to
the residual deviance, since we want to use the deviance information criterion for the AOP
model, which is closely related to the deviance.

2.2.2 Deviance Information Criterion for the AOP model

The Deviance Information Criterion (DIC) was suggested as general model selection cri-
terion by Spiegelhalter et al. (2002). Model fit is measured by the Bayesian deviance
defined asD(θ) := −2 log{f(y|θ)} + 2 log{f(y)}. The standardizing term2 log{f(y)}
for the AOP model will be set to zero, which is consistent witha unstructured model.
Model complexity is measured by the effective number of model parameters defined as
pD := D(θ)−D(θ̄), whereD(θ) := E(D(θ)|y) andD(θ̄) = D(E(θ|y)). Spiegelhalter
et al. (2002) suggest to use

DIC := D(θ̄) + 2pD = D(θ) + pD = 2D(θ)−D(θ̄).

as model selection criterion. A model with smaller DIC is preferred. We note that the DIC
allows for an information theoretic interpretation in exponential family models (van der
Linde 2005) and might be less reliable in non exponential family models such as the AOP
model.

For the AOP model the parameterθ includes the cutpoint vectorα, the regression parame-
ter vectorβ, the autoregressive parameterφ, and all the latent variablesY ∗

t . The Bayesian
deviance for the model is

D(θ) = −2 log f(y | θ)

= −2

T
∑

t=1

log
[

Φ(αk − x′
tβ − φY ∗

t−1)− Φ(αk−1 − x′
tβ − φY ∗

t−1)
]

. (2.7)

To compute the DIC, the expressionD(θ) can be estimated by averaging the termsD(θi),
whereθi denotes the random sample forθ drawn in iterationi of the MCMC sampler. The
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value ofD(θ̄) is given by inserting the corresponding posterior mean estimates in Equation
(2.7).

We mention that the DIC as defined above considers the latent variables as the focus of the
analysis. However in our application this is not the case. Itwould be more appropriate to
consider a DIC measure based on the marginalized likelihood, i.e. the likelihood where the
latent variables are integrated out. However this would involve a very high dimensional
integration (in our application this dimension would be1072), which is even numerically
intractable.

2.3 Bayes Factors

Since DIC might be unreliable for the AOP model we consider Bayes factors based on the
marginal likelihood as an alternative method for model comparison (see Kass and Raftery
(1995)). Müller and Czado (2005) provided an estimation procedure for the marginal like-
lihood for the AOP model adapting the methods of Chib (1995) and Chib and Jeliazkov
(2001). In particular, the Bayes factor of a modelM1 versus a modelM2 is given by

B(y|M1,M2) :=
m(y|M1)

m(y|M2)
,

wherem(y|M) :=
∫

f(y|θ,M)p(θ|M)dθ is the marginal likelihood of modelM . Here
p(θ|M) andf(y|θ,M) denote the prior of the parametersθ and the likelihood in model
M , respectively. Using the definition of the posterior distributionp(θ|y,M) in Model M
the marginal likelihood of Model M can be estimated by

m(y|M) =
f(y|θo,M)p(θo|M)

p(θo|y,M)
(2.8)

for every value ofθo. For reasons of efficiency we setθo equal to the posterior mean
estimate ofθ. Whereasp(θo|M) can be computed exactly, the other two factors on the right
hand side of (2.8) have to be estimated. To this end one uses a particle filter and the output
from reduced runs of the MCMC estimation procedure. For the AOP models the model
parameters are given by the cutpoints, the regression parameters and the autoregressive
parameter.

2.4 Pseudo-predictions

One intuitive and quite simple way to investigate the quality of a model fit is to compute
pseudo-predictions. In the proportional odds model this means that one predicts the re-
sponse at timet using ML estimates for the regression parameters and cutpoints which are
plugged into the model equations. This results in a forecastprobability for each category.
One can use the category with highest forecast probability as prediction for the response at
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time t. However, when the ML estimates are based on the whole data set we call these pre-
dictions more precisely pseudo-predictions. For the AOP model one uses posterior mean
estimates instead of the ML estimates. Here, of course, one also needs a posterior mean
estimate ofY ∗

t−1.

2.4.1 Pseudo-predictions for the Proportional Odds Model

The fitted probabilities for the proportional odds model foreach category at timet are
defined by

π̄t0 := P̂ (Yt = 0 | xt,α,β) =
exp(α0 + x′

tβ)

1 + exp(α0 + x′
tβ)

,

π̄tk := P̂ (Yt = k | xt,α,β) =
exp(αk + x′

tβ)

1 + exp(αk + x′
tβ)

− exp(αk−1 + x′
tβ)

1 + exp(αk−1 + x′
tβ)

,

k = 1, . . . , K − 1,

π̄tK := P̂ (Yt = K | xt,α,β) = 1− exp(αK−1 + x′
tβ)

1 + exp(αK−1 + x′
tβ)

whereα andβ denote maximum likelihood estimates ofα andβ, respectively. The cor-
responding pseudo-prediction ofYt is therefore given by the categoryk, which has the
highest value amonḡπt0, . . . , π̄tK .

2.4.2 Pseudo-predictions for the AOP model

The corresponding posterior probability estimates in the AOP model for each category at
time t are defined by

π̄t0 := P̂ (Yt = 0 | xt,α,β, φ, Y
∗
t−1) = Φ(α0 − x′

tβ − φY
∗
t−1),

π̄tk := P̂ (Yt = k | xt,α,β, φ, Y
∗
t−1) = Φ(αk − x′

tβ − φY
∗
t−1)

− Φ(αk−1 − x′
tβφY

∗
t−1), k = 1, . . . , K − 1,

π̄tK := P̂ (Yt = K | xt,α,β, φ, Y
∗
t−1) = 1− Φ(αK−1 − x′

tβ − φY
∗
t−1).

whereα, β, φ, andY
∗
t−1 denote posterior mean estimates of the corresponding parameters

and latent variables. The corresponding pseudo-prediction of Yt are therefore given by the
category k which has the highest value amongπ̄t0, . . . , π̄tK .
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2.4.3 Assessing Model fit based on Pseudo-predictions

Now we suggest to use the pseudo-predictions for model assessment. For this we define
the variablesP obs

tk which correspond to the ’observed’ probabilities for category k at timet
in contrast to the ’predicted’ probabilities̄πtk defined in the previous subsections:

P obs
tk :=

{

1 if Yt = k,
0 else.

When categoryk is observed at timet, it is clear that a good model fit leads to a high
probability π̄tk, and to small probabilities̄πtj for the other categoriesj 6= k. A large
difference should be punished more than a small difference.Therefore we compute the
verification score introduced by Brier (1950) defined by

S :=
1

T

K
∑

k=0

T
∑

t=1

(P obs
tk − π̄tk)

2

to get an idea of the model fit. Of course, the smaller the valueof S, the better the model.
The Brier score has been heavily used to evaluate forecasts in the meteorological sciences
and has the attractive property of being a strictly proper scoring rule (see for example
Gneiting and Raftery (2004)).

3 Analysis of migraine severity data

3.1 Data description and exploratory analysis

We investigate the migraine headache diary of a 35 year old female, who is working full-
time as a manager. She suffers from migraine without aura for22 years. In this study she
recorded her headache four times a day on an ordinal scale from 0 to 5, where 0 means
that she did not feel any migraine headache, and 5 the worst migraine headache she can
feel. For a precise definition of the migraine intensity categories see Table 1. The data is
part of a larger study on determinants of migraine headachescollected by the psychologist
T. Kostecki-Dillon, York University, Toronto, Canada. Themigraine headache diary was
completed between January 6, 1995, and September 30, 1995, which is a period of 268
subsequent days. Therefore the length of the data set is4 · 268 = 1 072. In addition also
weather related information on a daily basis was collected.This includes information on
humidity, windchill, temperature and pressure changes, wind direction, and length of sun
shine on the previous day.

Table 1 contains also the frequencies for the six possible response categories in the data
set. As can be seen from this table 150 observations are unequal to zero which corresponds
to suffering from migraine headaches in about 14% of the time. On the one hand we use
covariates which reflect weather conditions, on the other hand covariates which contain
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information about the measurement time points. A description of the covariates in our
analysis is also provided in Table 1. We point out that the humidity index is measured
only in the period from May to October and the windchill indexonly in the period from
November to April. This means that always only one of these covariates is contained in the
data set.

[Table 1 about here]

In the following we conduct a short exploratory analysis. Asdescribed in Müller and Czado
(2005), the idea is to compute the average response for each category of a categorical
covariate and for intervals, when a continuous covariate isconsidered. More precisely for
a continuous covariatextj which falls in an intervalI with nI observations, the average
response is given as

Y I(x·j) :=
1

nI

∑

t:xtj∈I
Yt

Depending on the shape of the graph one can then decide to use an appropriate transforma-
tion of the covariate or to use indicator variables, which is, of course, the most flexible way
of modeling.

PMND1P (mean pressure change from previous day, cf. Figure 1, top panel): We group
the observed PMND1P values into six intervals with equal number of observations and
compute the average response for each interval. A linear relationship seems to be sufficient,
since a possibly present quadratic part is obviously small.

[Figure 1 about here]

S1P(sunshine on previous day): This covariate has not been collected during all 30 days
of April 1995, so that for 120 observations this covariate ismissing in the period under
consideration. The remaining 952 observations are groupedin intervals. The relationship
is quite linear (not shown), and a sunny day seems to increasethe probability for headache
on the following day, since the average response increases with the length of the sunshine.
The range of the average response is0.31.

HDXDD (humidity index): We computed the average response for eachinterval and de-
cided to use a quadratic transformation. The relative high range among these average re-
sponses of0.83 is a first hint at the importance of this covariate.

WCD (windchill): We use an indicator for windchill. If windchill is present, the patient
suffered from more intense migraine headaches.

WDAY (weekday): Because of the periodicity a polynomial or logarithmic transformation
does not make sense. Perhaps a sine transformation could be used. We use indicator
variables since this choice provides the most flexible way for modeling the influence of
the weekdays. Weekdays were grouped together when they showed a similar behavior.
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Indicator variables are abbreviated in a natural way. For example, the variable TUEWED
is 1 if the measurement was done on a Tuesday or Wednesday, otherwise 0.

MESS (time of measurement, cf. Figure 1, bottom panel): In the afternoon the average
response is the highest with0.51. The difference between the range of the average response
is 0.51− 0.26 = 0.25. The afternoon indicator HAMP.IND is used.

3.2 Proportional Odds Model Specifications

To determine reasonable mean specifications for the AOP model we ignore in an initial
analysis the dependence among the responses and utilize theproportional odds model. For
the proportional odds model we analyzed models with different sets of covariates. As
mentioned above, the covariate ’sunshine on previous day’ has not been collected during
April 1995. This covariate, however, seems to be important for the analysis, so we decided
to remove all observations from April 1995 and to reduce our data set to the length1 072−
120 = 952. Since the proportional odds model does not take any autoregressive dependence
between the observations into account, no selection bias occurs. The three models A, B,
and C considered in the following are found by a forward selection procedure. In each
step thep-values for each covariate were determined by a Wald test. The covariate with the
lowestp-value below the 5% level was included. Thep-values of already included variables
were checked that they remain below a 5% level and otherwise removed. This means that
the covariates of Model A, B, and C are all significant on the 5%level.

Model A contains only main effects. For time of measurement we use only an indicator for
the afternoon measurement and an indicator for Tuesday or Wednesday. In Model B and
C we consider three weekday indicators following our exploratory analysis. Furthermore,
in Model B we also allow for three interaction effects, whereas Model C contains nine
interaction components. The covariates which are used are seen in Table 2. This table also
gives the ML estimators for the regression coefficients and the cutpoints.

[Table 2 about here]

3.3 AOP Model Specifications

For the AOP model with latent variables given by

Y ∗
t = x′

tβ + φY ∗
t−1 + ε∗t

we investigate two models. For numerical stability we use covariates which have been
standardized such that they have empirical mean 0 and empirical variance 1. We call these
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standardized covariatesxs
.i = (xs

1i, . . . , x
s
T i)

′, where the components are given by

xs
ti :=

xti − x̄.i
√

1
n

T
∑

t=1

(xti − x̄.i)2

(3.9)

with x̄.i =
1
n

T
∑

t=1

xti. Only indicator variablesx.i (wherexti ∈ {0, 1} for all t ∈ {1, . . . , T})

are not standardized. The proportional odds model specifications from above were used as a
starting point for the model specifications of the AOP modelsconsidered. Note that for the
AOP model a selection bias (due to cutting out the observations in April 1995) might occur.
Since, however, the used data set still has 952 observationsand the observations which have
been cut out are concentrated in one single cluster, this possibly occurring selection bias
seems to be negligible. If the 95% credible interval of a parameter contained zero, the
corresponding covariate was removed from the model. In thisway the proportional odds
models A and B lead to the AOP models I and II, respectively.

Table 3 shows the posterior mean estimates together with estimated 2.5% and 97.5% quan-
tiles for all parameters based on 10 000 iterations with a burn-in of 1 000 iterations (this
choice seemed to be reasonable after an inspection of the chains produced by the GM-
MGMC sampler; it goes along with the results of Müller and Czado (2005), where in
several simulation settings a burn-in period of 1 000 iterations always turned out to be
sufficiently long). For Model I, the 95% credible interval for every main effect does not
contain zero, so every covariate is significant. For Model II, the 95% credible intervals for
PMND1Pst and WEDFRIt contain the value 0. However, these two covariates must remain
in the model since they appear in an interaction term which isitself significant. According
to Müller and Czado (2005), the priors of all regression coefficients were normal with mean
0 and standard deviation 10, so that they are quite uniformative compared to the magnitude
of the estimates in Table 3. The prior ofφ was truncated normal with mean 0 and standard
deviation 10, therefore again quite uninformative on(−1, 1).

[Table 3 about here]

4 Results

Now we conduct a model comparison analysis for the five modelsinvestigated in Sections
3.2 and 3.3. First we consider the proportional odds models.To decide which of the
proportional odds models fits the data best, we use the residual deviance test of Section
2.2.1. As mentioned there a model does not describe the data well, if D > χ2

T ·K−p,1−α.
Here we haveT = 952 andK = 5. We test on the 5% and 1% level and compute the
p-value. Table 2 shows the results of the deviance analysis for the three models. For all
three models the devianceD is not larger than the corresponding 99% quantiles of the
χ2-distribution, therefore all considered models fit the dataquite well. Next we compare
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the AOP models using the DIC criterion. The values of the DIC for Model I and Model
II are given in Table 3. The posterior mean of the Bayesian devianceD(θ) is smaller for
Model II, however the complexity measurepD is smaller for the more complex Model II,
which indicates that DIC might not be suitable for AOP models. Therefore we prefer to
base our model selection on Bayes factors and Brier scores. We see from the likelihood
ordinate, that Model II clearly fits the data better than Model I (by the likelihood factor
exp(−407.8493 + 417.5238) = 15906.77). However, the prior and the posterior ordinate
punish Model II heavily, since it uses four covariates more than Model I. Therefore, if one
uses the Bayes factor as model selection criterion, one should prefer the simpler Model I to
describe the data, since following the Bayes factor scale byJeffreys (1961), the evidence
of Model I against Model II is decisive.

Finally we compare all proportional odds models and AOP models using the pseudo-
predictions defined in Section 2.4. The corresponding Brierscores are given in Table 2
and 3, respectively. We conclude that the two AOP models describe the data better than all
the proportional odds models. The Brier scores chooses Model I over all models, which
is consistent with the model selection based on Bayes factors. Therefore we conclude that
Model I is the overall preferred model for this data set.

The signs of the regression parameters in Table 3 agree nearly everywhere with the signs
in Table 2. This means that both the proportional odds modelsand the AOP models lead to
the same conclusions, when asking which covariates have a high and which a low value to
reduce the migraine severity. For example from the negativesigns for S1P in all models we
conclude that a sunny day increases the headache severity onthe next day. This agrees with
our conjecture from the exploratory analysis. The indicator for afternoon, HAPM.IND,
also has a coefficient with negative sign. Again this approves our conjecture: the afternoon
headache is usually worse than in the morning, at noon, and during the night. Considering
the coefficients of the weekday indicators in Model II we see that the headache is worse
between Wednesday and Saturday which might be a consequenceof an (over)exertion on
the job.

We provide now a quantitative interpretation of the covariate effects in the AOP models.
For this we match the first two moments of the standard normal distribution to the logistic
distribution to give the approximation

Φ(z) ≈
exp

(

π√
3
z
)

1 + exp
(

π√
3
z
) .

For the AOP model it follows that the cumulative log odds ratio lt(k|xt) for category k at
time t and covariate vectorxt can be approximated by

lt(k|xt) := log

(

Ft(k|xt)

1− Ft(k|xt)

)

≈ π√
3
(αk − x′

tβ − φY ∗
t−1), (4.10)

whereFt(k|xt) := P (Yt ≤ k|xt,α,β, φ, Y ∗
t−1) = Φ(αk − x′

tβ − φY ∗
t−1). Therefore the
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scaled impact of covariatexj defined as

π√
3
(β0 + βjxj)

approximates the effect on the cumulative log odds ratio, when the remaining covariates are
set to zero. Note thatFt(k|xt) corresponds to the probability of experiencing a headache
of category k or worse at time t and covariate vectorxt, since we useY o

t = 5 − Yt in the
AOP models. Since we used standardized covariates a zero standardized covariate value
corresponds to the average value of the unstandardized covariate. The scaled impacts of
the unstandardized covariates HDXDD and S1P are given in Figure 2. Recall that HDXDD
enters the model in a quadratic fashion. The corresponding 95% credible intervals show
that the data provides much more evidence of a sunshine effect on the previous day than a
humidity effect.

[Figure 2 about here]

Using 4.10 we can approximate the cumulative odds ratio change by

Ft(k|x1)
1−Ft(k|x1)

Ft(k|x2)
1−Ft(k|x2)

≈ exp{ π√
3
(x2 − x1)

′β},

when the covariate vector is changed frombxt = x1 to xt = x2. Note that this quantity is
independent of category k,φ andY ∗

t−1. Table 4 gives these cumulative odds ratio changes
when a single covariate is changed. The remaining covariatevalues are held fixed. We see
that the presence of windchill has the largest impact on the cumulative odds ratio change
followed by a PM measurement and exposure to sunshine on the previous day. The evi-
dence for a humidity effect on the cumulative odds ratio change is marginal since the 95%
credible intervals contain 1. In particular this means thatthe odds of having a headache
of severity k or worse is 4.6 (2.93) times higher when windchill (PM measurement) is
present compared to being absent. Five hours more sunshine on the previous day changes
the cumulative odds ratio by a factor of 1.30.

[Table 4 about here]

Finally we note that the autoregressive component for the latent time seriesY ∗
t is around

0.8 indicating large positive dependence among the ordinalintensity measurements.

In summary we recommend to this patient to avoid windchill and long sunshine exposures.
The evidence for a humidity, workday and pressure change effect is too small to warrant
specific recommendations with regard to these variables. Further the chance of experi-
encing a headache compared to no headache is about three times higher in the afternoon
compared to other times of the day.
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5 Conclusions

The importance of using time series models to evaluate within patient migraine headache
diaries has also been recognized in a recent paper by Houle etal. (2005). As in Prince
et al. (2004) they study the daily total and maximum score over four measurements of a
patient over one month. They recognized that this approach yields only a time series of
length 28, which is considered too short to make significant conclusions about the time
series properties. In contrast our approach uses non-aggregated data and thus longer time
series. In addition we avoid information loss due to data aggregation. The analysis of
Houle et al. (2005) showed the presence of positive autocorrelations between successive
values of their daily outcome measures. They however do not consider time series models
to account for this autocorrelation due to their short time series length. Further, they only
included a linear time trend as explanatory variable for their headache outcome variable.
Our approach overcomes these short comings - short time series due to data aggregation,
no model based adjustment for autocorrelation and a very limited set of explanatory factors
for headache activity.

For our approach we applied the autoregressive ordered probit (AOP) model suggested by
Müller and Czado (2005) to an ordinal valued time series arising from headache intensity
assessments. Here the ordered categories are produced by threshholding a latent real-valued
time series with regression effects. To model the dependencies among the measurements
the latent time series includes not only regression components but also an autoregressive
component. Parameter estimation is facilitated using a grouped move multigrid Monte
Carlo (GM-MGMC) Gibbs sampler in a Bayesian setting. Modelswere compared using
Bayes factors and the Brier score based on pseudo predictions. We also show that the DIC
model selection criterion is problematic for AOP models.

For the migraine headache intensity data the latent time series shows a high first order
autocorrelation of around 0.8 demonstrating considerabledependence among the ordi-
nal measurements. For this patient we were able to demonstrate considerable impact of
weather related variables such as the present of windchill and sunshine length. This sup-
ports the conclusions of Prince et al. (2004) who showed thatsome patients are sensitive
to weather. Specific recommendations to this patient to lower the risk factors for severe
migraine headaches have been provided.

Even though an individual analysis offers the opportunity to develop more precise migraine
control mechanisms, it is of interest to identify common risk factors in groups of patients.
This problem is subject of current research. A possibility is to generalize the AOP model
to a multivariate setting, with the same autoregressive structure for the latent variables.
However, also other similar multivariate models could be used, for example the model dis-
cussed in Heiss (2008) (which is estimated using sequentialGaussian quadrature) or the
bivariate model proposed in Todem et al. (2007) (which is estimated using adaptive Gaus-
sian quadrature). Another possibility could be the multivariate extension of the dynamic
logit model which was developed by Bartolucci and Farcomeni(2009). Due to the involved
latent process, a direct maximum likelihood estimation is not possible here, and the authors
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suggested an EM algorithm to estimate the model.
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Table 1: Description of response scales with observed frequencies and weather and time
measurements related covariates

Response categories
intensity frequency condition

0 922 No headache
1 27 Mild headache: Aware of it only when attending to it
2 46 Moderate headache: Could be ignored at times
3 47 Painful headache: Continuously aware of it, but able to start

or continue daily activities as usual
4 24 Severe headache: Continuously aware of it. Difficult to

concentrate and able to perform only undemanding tasks
5 6 Intense headache: Continuously aware of it, incapacitating.

Unable to start or continue activity.
weather conditions
PMND1P mean pressure change since previous day in 0.01 kilopascal
S1P length of sunshine on previous day in hours
HDXDD humidity index based on maximal temperature and humidity,

only in period May to October, 0 otherwise
WCD windchill index based on minimal temperature and wind speed,

only in period November to April, 0 otherwise
WC.IND indicator for windchill: 1 if WCD unequal 0, 0 otherwise
time of measurement
WDAY weekday, also coded by 1 (Monday) to 7 (Sunday)
MESS time of measurement: HAAM = morning (also coded by 1),

HANOON = noon (2), HAPM = afternoon (3),
HABED = late evening (4)

HAPM.IND indicator for afternoon: 1 if MESS=HAPM, 0 otherwise
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Figure 1: Relationship between average response and pressure difference intervals (top
panel) and average response and time of measurement (bottompanel).
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Table 2: Maximum likelihood estimates of regression parameters and cutpoint parameters,
residual deviances and Brier scores using the proportionalodds model ignoring depen-
dence.

Model A Model B Model C
weather conditions
HDXDDt -0.4592 -0.4513 -0.4011
HDXDD2

t 0.0109 0.0106 0.0097
S1Pt -0.1055 -0.1205 -0.0651
WC.INDt -4.6821 -4.7190 -4.3610
PMND1Pt 0.0035 -0.0149 -0.0147
time of measurement
HAPM.INDt -0.4719 -0.5051 -0.5433
TUEWEDt 0.5298
TUESUNt -0.2180 -1.0196
WEDFRIt -0.2542 1.9105
THUSATt -0.3935 -0.5628
interactions
PMND1Pt · TUESUNt 0.0150 0.0174
PMND1Pt · WEDFRIt 0.0284 0.0297
PMND1Pt · THUSATt 0.0185 0.0188
S1Pt · TUESUNt 0.0703
S1Pt · WEDFRIt -0.2218
S1Pt · THUSATt -0.0413
WC.INDt · TUESUNt 0.5248
WC.INDt · WEDFRIt -0.9426
WC.INDt · THUSATt 1.3245
cutpoints
α0 6.8128 7.3810 6.5040
α1 7.0478 7.6272 6.7591
α2 7.6310 8.2314 7.3874
α3 8.6903 9.3101 8.5073
α4 10.2024 10.8279 10.0509
residual deviance (df) 1 106 (4 753) 1 083 (4 748) 1 056 (4 742)
Brier score .2545 .2467 .2405
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Table 3: Posterior mean and quantile estimates for standardized regression parameters and
cutpoint parameters using the AOP model and their deviance information criterion and
Brier score

Model I Model II
2.5% mean 97.5% 2.5% mean 97.5%

intercept 0.8817 1.2969 1.7624 1.0610 1.4764 1.9456
weather conditions
HDXDDs

t -2.3685 -1.2880 -0.3530 -2.3874 -1.3548 -0.4171
(HDXDD2

t )
s 0.4096 1.1552 2.0173 0.4616 1.2054 2.0311

S1Pst -0.2368 -0.1322 -0.0314 -0.2688 -0.1619 -0.0569
WC.INDt -1.6215 -0.8410 -0.1464 -1.6499 -0.8959 -0.2006
PMND1Pst -0.1331 -0.0172 0.0937
time of measurement
HAPM.INDt -0.9163 -0.5924 -0.2612 -0.9194 -0.5769 -0.2469
WEDFRIt -0.2672 -0.0079 0.2609
THUSATt -0.5213 -0.2899 -0.0535
interactions
PMND1Pst
×WEDFRIt 0.0839 0.3077 0.5402
autoregressive parameter
φ 0.7404 0.8077 0.8718 0.7250 0.7932 0.8541
cutpoints
α1 0.4706 0.7314 1.0221 0.4596 0.7383 1.1732
α2 1.0821 1.3851 1.6962 1.1002 1.4021 1.8384
α3 1.5870 1.8979 2.2151 1.6049 1.9250 2.3588
α4 1.8548 2.1704 2.5127 1.8644 2.2013 2.6321
deviance information criterion

D(θ) pD DIC D(θ) pD DIC
799.6967 97.8068 897.5035 787.8536 92.5850 880.4387

Bayes factor
log(f(y|θo,M)) -417.5238 -407.8493
log(p(θo|M)) -26.6353 -39.5151
log(p(θo|y,M)) 16.8070 22.7356
log(m(y|M)) -460.9661 -470.1000
Bayes Factor of Model I versus Model II= exp(−460.9661 + 470.1000) = 9 264.08

Brier score
0.1688 0.1724
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Figure 2: Scaled Impacts for humidex (solid) and sunshine (dotted) with 95% CI’s

Table 4: Posterior mean and quantile estimates of the cumulative odds changes for AOP
Model I

cumulative odds change 2.5% mean 97.5%
humidex from 10 to 20 0.08 0.66 5.31
humidex from 20 to 30 0.10 1.49 21.73
humidex from 30 to 40 0.14 3.34 88.99
humidex from 40 to 50 0.18 7.48 364.19
humidex from 20 to 40 0.01 4.97 1 934.80

2 hr more sunshine 1.02 1.11 1.21
5 hr more sunshine 1.06 1.30 1.60

10 hr more sunshine 1.13 1.69 2.54
Windchill from present

to absent 1.30 4.60 18.94
PM measurement to
no PM measurement 1.60 2.93 5.27
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