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Abstract

We perform Bayesian joint estimation of a multivariate GARCH model where the dependence

structure of the innovations across the univariate time series is given by a D-vine copula. Vine

copulas are a flexible concept to extend bivariate copulas to the multivariate case. It is based

on the idea that a multivariate copula can be constructed from (conditional) bivariate copulas.

In particular it is possible to allow for symmetric dependence between some pairs of margins by

using e.g. bivariate Student t or Gaussian copulas and asymmetric dependence between other

pairs using e.g. bivariate Clayton or Gumbel copulas. A further advantage of D-vine copulas

is that the resulting correlation matrix is always positive definite without imposing restrictions

on the parameters. In contrast to likelihood based estimation methods a Bayesian approach

always allows to construct valid interval estimates for any quantity which is a function of the

model parameters. This provides the possibility to assess the uncertainty about Value at Risk

(VaR) predictions. In a simulation study and two real data examples with up to 5 dimensions

we compare the proposed model to a benchmark multivariate GARCH model with dependence

structure of the innovations governed by a multivariate Student t copula. The proposed model

shows a clearly better fit according to the DIC. The choice between the two models also affects

∗corresponding author
Email addresses: hofmann@ma.tum.de (Mathias Hofmann), cczado@ma.tum.de (Claudia Czado)

Preprint submitted to Computational Statistics & Data Analysis March 11, 2011



the VaR predictions. We further study the error introduced by the widely used two step

estimation approach in the VaR prediction. This shows that the two step estimation approach

leads to an underestimation of the uncertainty of VaR predictions for simulated and real data.

Keywords: Multivariate GARCH model, D-vine copula, Bayesian inference, joint estimation,

two step estimation, Value at Risk.

1. Introduction

Since the proposal of (G)ARCH models by Engle (1982) and Bollerslev (1986) to account for

variance heterogeneity in financial time series a number of multivariate extensions of GARCH

models have been introduced. See Bauwens et al. (2006) for an overview. In particular the

CCC GARCH model of Bollerslev (1990) and later the DCC GARCH of Tse and Tsui (2002)

and Engle (2002) are based on multivariate Gaussian distributions, where care has to be taken

to result in positive definite covariance matrices. Another way of extending univariate GARCH

models is to use copulas for modeling the residual dependence between assets (e.g. Patton,

2006a,b; Jondeau and Rockinger, 2006; Ausin and Lopes, 2009; Min and Czado, 2010a). This

has the advantage of allowing for non Gaussian dependencies. In many applications only the

two dimensional case is considered.

In two dimensions many parametric copula families exist. Before the consideration of a pair

copula construction (PCC), the class of multivariate copulas were sparse, consisting majorly

out of elliptical copulas (see e.g. Frahm et al., 2003) and Archimedian copulas (see e.g. Nelsen,

1999) governed by a single parameter. PCC based vine copulas go back to Joe (1996) and

Bedford and Cooke (2002). The major advantage over standard multivariate copulas are their

flexibility. They are constructed using only bivariate copulas called pair copulas. They model

the (conditional) distribution of certain pairs of variables, which make up a regular vine (R-vine)

copula.

Many different factorizations are possible and Bedford and Cooke (2002) organized them using

a sequence of trees. In the first tree the pairs of variables whose distribution enter the model

directly are identified, while the second tree gives the indices for the distribution of pairs of

variables conditioned on a single variable. The next tree indicates the indices for the distribution

of pairs of variables conditional on two variables. The last tree identifies the distribution of

a pair of variables conditioned on the remaining variables. Popular subclasses are C-vines
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and D-vines. See Kurowicka and Cooke (2006) for more details on this construction principle

and Czado (2010) and Kurowicka and Joe (2011) for overviews, current developments and

applications. In particular they nest the multivariate Gauss and t-copula. No restriction

on the choice of the pair copula family is needed and they always result in positive definite

correlation matrices. Different tail behavior for pairs of variables can be modeled, including

asymmetric and heavy tail dependence. The flexibility of vine copula based GARCH models

over alternative multivariate copulas has been demonstrated empirically in Fischer et al. (2009).

To estimate the parameters of a specified vine copula model in I dimensions based on an i.i.d

sample Aas et al. (2009) developed a sequential approach for the I ∗ (I + 1)/2 pair copula

parameters of a D-vine copula. This requires only bivariate optimization if each pair copula

in the D-vine is parametrized by a single parameter. Consistency and asymptotic normality of

the sequential estimates are shown by Haff (2011). These sequential estimates can be used as

a starting values for the joint maximum likelihood (ML) estimation of all copula parameters.

Similar estimation methods are developed for C-vine copulas Czado et al. (2010) and Dißmann

(2010) for R-vine copulas.

Returning to copula based GARCH models there are several ways to facilitate parameter es-

timation. Joint ML estimation for copula based GARCH models has been only used in two

dimensions using maximization by parts in Liu and Luger (2009). Most commonly a two step

estimation approach is applied, which avoids highdimensional optimization to determine the

joint MLE of marginal and copula parameters. In this approach, univariate GARCH models

are fitted to each margin separate and fitted innovations given by standardized residuals are

determined in a first step. In a second step these innovations are either transformed paramet-

rically (Shih and Louis, 1995; Joe and Xu, 1996) or nonparametrically (Oakes, 1994; Shih and

Louis, 1995; Genest et al., 1995) to pseudo copula data.

Non parametric transformations of the innovations for each margin are popular, since one

wants to guard against misspecifications of the marginal models. Chen and Fan (2006) develop

the asymptotic theory under this misspecification and use their theory to develop tests for

comparing different copula models. In addition Kim et al. (2007) quantify the effects of the

marginal misspecification. They report large effects in 2 dimensional cases where the margins

are severely misspecified.

In two step estimation approaches the copula parameters are then estimated based on the
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pseudo copula data. If ML estimation is used at each step of the two step estimation approaches

the resulting estimates are consistent and asymptotically normal but not asymptotically efficient

(Chen and Fan, 2006; Joe, 2005). Since the resulting asymptotic covariance matrix is often

analytically intractable, it is estimated using numerical estimation of the Hessian matrix or

bootstrapping (Joe, 2005; Chen and Fan, 2006; Min and Czado, 2010a). This might result

for high dimensions in non negative definite Hessian matrix estimates or in extremely high

computational effort when bootstrapping is used.

In contrast to likelihood based estimation methods a Bayesian approach always allows to con-

struct valid interval estimates for parameters and any quantity which is a function of the

parameters. Ardia (2008) applied Bayesian Markov Chain Monte Carlo (MCMC) methods to

univariate GARCH models, while Ausin and Lopes (2009) develop joint Bayesian inference

methods for two dimensional copula based GARCH models with time varying effects. Min

and Czado (2010a) use a two step estimation approach, where GARCH margins are fitted

separately and transformed nonparametrically to pseudo copula data. MCMC algorithms are

then developed to estimate parameters in a D-vine copula with bivariate t-copulas as building

blocks. The approach was illustrated in a five dimensional application. Subsequently Bayesian

model selection methods were developed to simplify D-vine copula models by Min and Czado

(2010b); Smith et al. (2010) again utilizing a two step estimation approach.

This opens the question about the tractability of joint Bayesian inference in copula based models

in higher dimensions. Joint Bayesian inference in a D-vine copula with regression margins and

Gaussian building blocks were developed by Lanzendörfer (2009), while a D-vine copula with

AR(1) margins and t-copula building blocks were studied by Czado et al. (2011). We note the

simple structure of the marginal models allowed.

The following tasks are tackled in the paper

- Since copula based multivariate GARCH models have been widely applied to financial data we

want to demonstrate that a joint Bayesian estimation approach is feasible in higher dimensional

copula based GARCH models. For this we choose GARCH(1,1) margins with t innovations

coupled with a D-vine copula where the building blocks can be chosen individually from a

catalog of 4 parametric bivariate copula families.

- For financial applications accurate forecasting of the Value at risk (VaR) is essential. Therefore

we investigate the influence of the choice of the multivariate copula as well as the estimation
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approach (joint or two step) on these forecasts.

- The Bayesian approach allows to assess uncertainty in these forecasts. We want to quantify

these when different copula models and/or different estimation approaches are used.

The paper is organized as follows: In Section 2 we will review D-vine copulas. The model

definition and the estimation in a Bayesian setup using Markov Chain Monte Carlo (MCMC)

are given in Section 3 and 4. In Section 5 we conduct a simulation study to assess the influence

of misspecification of the copula model with regard to DIC (Spiegelhalter et al., 2002) and VaR.

We further study the error introduced by the two step estimation approach in the estimation

of the model parameters and one step ahead VaR values. Section 6 and 7 contain two real

data applications involving US$ exchange rate data and mixed stock and bond index data,

respectively. The article concludes with a discussion and an outlook in Section 8.

2. D-vine distributions and copulas

To explain the construction of D-vine copulas, we start with the fundamental theorem by

Sklar (1959). He shows that a multivariate distribution function (cdf) F1:I(x1, . . . , xI) :=

F(X1,...,XI)′(x1, . . . , xI) of a random vectorX = (X1, . . . , XI)
′ with continuous margins F1(x1), . . . ,

FI(xI) and corresponding quantile functions F−11 (x1), . . . , F
−1
I (xI) can be written as

F1:I(x1, . . . , xI) = C1:I(F1(x1), . . . , FI(xI)), (1)

where C1:I(u1, . . . , uI) := F1:I(F
−1
1 (u1), . . . , F

−1
I (uI)) is called a copula function. The copula

function can be identified as the cdf of U = (U1, . . . , UI), where Ui = Fi(Xi) ∀i = 1, . . . , I.

From (1) we see that we can choose the dependency structure as captured by the copula

function independently from the marginal distributions to construct multivariate distributions.

Applying the chain rule for differentiation to (1) the joint density (pdf) of X can be identified

as

f1:I(x1, . . . , xI) = c1:I(F1(x1), . . . , FI(xI))f1(x1) · · · fI(xI),
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where c1:I is the corresponding pdf of C1:I and fi(·) are marginal densities corresponding to Xi

for i = 1, . . . , I. In particular for I = 2 we can express the conditional pdf of X1 given X2 as

f1|2(x1|x2) =
f1:2(x1, x2)

f2(x2)
= c1:2(F1(x1), F2(x2))f1(x1). (2)

To ease the notation we denote by fj|v and Fj|v the conditional pdf and cdf of Xj given

Xv := (Xj1 , . . . , Xjn) for a set of indices v := {j1, . . . , jn}, respectively. Additionally index

sets of the form v = {i, i + 1, . . . , j} are denoted by i : j. A simple construction of a D-vine

distribution was given by Czado (2010) based on a recursive factorization of the joint pdf and

application of (1) to the bivariate conditional distributions. For convenience of the reader we

recall the major steps of this development. First decompose f1:I as

f1:I(x1, . . . , xI) = [
I∏
j=2

fj|1:(j−1)(xj|x1:(j−1))]f1(x1). (3)

Applying (3) to the conditional distribution of X1 and Xj given X2:(j−1) we can express each

factor in (3) as

fj|1:(j−1)(xj|x1:(j−1)) = c1j|2:(j−1)(F1|2:(j−1)(x1|x2:(j−1)), Fj|2:(j−1)(xj|x2:(j−1)))

fj|2:(j−1)(xj|x2:(j−1)). (4)

To achieve tractability of the model we make the assumption that the copula corresponding

to the bivariate distribution of X1 and Xj given X2:(j−1) = x2:(j−1) does not depend on the

conditioning value x2:(j−1). Therefore we denote the corresponding copula pdf by c1j|2:(j−1).

This restriction is however not severe (see Haff et al., 2010). Using (4) recursively we get

fj|1:(j−1)(xj|x1:(j−1)) = [

j−2∏
k=1

ckj|(k+1):(j−1)(Fk|(k+1):(j−1)(xk|x(k+1):(j−1)),

Fj|(k+1):(j−1)(xj|x(k+1):(j−1)))]cj−1,j(Fj−1(xj−1), Fj(xj))fj(xj) (5)
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for the factors in (3). A similar tractability assumption is made. Inserting (5) into (3) we

rewrite (3) as

f1:I(x1:I) = [
I∏
j=2

j−1∏
k=1

ckj|(k+1):(j−1)(Fk|(k+1):(j−1)(xk|x(k+1):(j−1)), Fj|(k+1):(j−1)(xj|x(k+1):(j−1)))]

[
I∏
i=1

fi(xi)]. (6)

Here we made the convention that a conditional pdf (cdf) with empty conditioning set cor-

responds to an unconditional pdf (cdf). The conditional cdf’s Fj|v occurring in (6) for v =

{k, j1, . . . , jn} and k < j can be obtained recursively (see Joe (1996) for details) as

Fj|v(xj|xv) =
∂Ckj|v−k

(Fk|v−k
(xk|xv−k

), Fj|v−k
(xj|xv−k

))

∂Fk|v−k
(xk|xv−k

)
, (7)

where v−k = {j1, . . . , jn}. We call the right hand side of (6) the pdf of a D-vine distribution

with marginal densities fi and pairwise copula densities ckj|(k+1):(j−1) for j = 2, . . . , I and

k = 1, . . . , j − 1. These copula densities can be chosen individually by the modeler. A D-vine

copula is a D-vine distribution where the marginal densities are uniform densities on [0, 1].

3. D-vine copula based multivariate GARCH models

We construct for multivariate time series data Y t = (Y1t, . . . , YIt)
′ for t = 1, . . . , T a copula

based GARCH model. In particular we assume for the ith margin a GARCH(1,1) model given

by

Yit|hit :=
√
hitεit, εit ∼ Gϕi

independent for t = 1, . . . , T (8)

hit := ωi + αiY
2
i,t−1 + βihi,t−1, t = 1, . . . , T (9)

Yi0 := 0, hi0 := 0, (10)

where ωi > 0, αi ≥ 0, βi ≥ 0 and ϕi are unknown marginal parameters. Here Gϕi
denotes

the corresponding cdf of the innovation distribution with mean zero and unit variance. Later

we need the quantile and density function, which we denote by G−1ϕi
and gϕi

, respectively. In

our examples we use an appropriately scaled Student t distribution, i.e. εit :=
ν
(G)
i −2
ν
(G)
i

ε̃it where

ε̃it is standard univariate t distributed with ν
(G)
i degrees of freedom. The quantity hit can be
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interpreted as conditional variance of Yit given hit.

The innovation vectors εt := (ε1t, . . . , εIt)
′, t = 1, . . . , T are assumed to be i.i.d for t = 1, . . . , T .

The dependence structure among the components of εt = (ε1t, . . . , εIt)
′ for fixed t is assumed

to be given by an I dimensional D-vine distribution. The pdf of the innovation vector εt is

therefore given by

fεt(ε1t, . . . , εIt) = [
I∏
j=2

j−1∏
k=1

ckj|(k+1):(j−1)(Fk|(k+1):(j−1)(εkt|εk+1,t, . . . , εj−1,t),

Fj|(k+1):(j−1)(εjt|εk+1,t, . . . , εj−1,t))][
I∏
i=1

gϕi
(εit)]. (11)

Here Fl|(k+1):(j−1)(·) denotes the conditional cdf of εl,t given εk+1,t, . . . , εj−1,t. The unconditional

cdfs that are passed to the copulas are the marginal cdfs of the innovations Fi(εit) = Gϕi
(εit)

and the conditional cdfs are defined according to the recursion (7).

The likelihood of the observations Y t given the conditional variances ht = (h1t, . . . , hIt)
′ for

t = 1, . . . , T can be obtained from (11) by a change of variables using the transformation

yt := (y1t, . . . , yIt)
′ = a(ε1t, . . . , εIt) := (ε1t

√
h1t, . . . , εIt

√
h1t)

′. Since the determinant of the

Jacobian matrix from a−1(y1t, . . . , yIt) = ( y1t√
h1t
, . . . , yIt√

hIt
) is given by

∏I
i=1

1√
hit

we get

fY t|ht(yt|ht) =

[
I∏
j=2

j−1∏
k=1

ckj|(k+1):(j−1)

(
Fk|(k+1):(j−1)

(
ykt√
hkt

∣∣∣∣∣ yk+1,t√
hk+1,t

, . . . ,
yj−1,t√
hj−1,t

)
,

Fj|(k+1):(j−1)

(
yjt√
hjt

∣∣∣∣∣ yk+1,t√
hk+1,t

, . . . ,
yj−1,t√
hj−1,t

))][
I∏
i=1

1√
hit
gϕi

(
yit√
hit

)]
.(12)

The variance parameters of the i-th marginal time series are denoted by ηi := (ωi, αi, βi)
′

and jointly by η := (η′1, . . . ,η
′
I)
′. The marginal parameters of the GARCH innovations are

collected in ϕ := (ϕ′1, . . . ,ϕ
′
I)
′. The vector of pair copula parameters is denoted by θ :=

{θ′kj|(k+1):(j−1), j = 2, . . . , I, k = 1, . . . , j − 1}.

We will call the model defined in this section a G-DV model. To distinguish between Gaussian

and Student t innovations we use the notation NG and tG, respectively. The types of the

pair copulas in one D-vine copula can either be the same or we can have different types of pair

copulas. In the first case we write NDV, tDV, CDV and GDV for a D-vine copula with

all Gaussian, Student t, Clayton and Gumbel pair copulas, respectively. In the second case,
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i.e. a mixed D-vine copula, we write mDV. For the independent I dimensional copula and the

multivariate Student t copula with a common degree of freedom (df) we will write I and tM,

respectively. So tG-tDV is a G-DV model with Student t innovations for each margin and a

D-vine copula consisting of all Student t pair copulas, while tG-tM is a multivariate GARCH

model with Student t innovations of the margins and a multivariate Student t copula for the

dependence structure of the innovations. We will also compare joint estimation with two step

estimation, where for the latter we will use the prefix 2s, i.e. 2s-tG-tDV denotes a tG-tDV

model that is estimated using a two step estimation approach.

The Gaussian D-vine copula is equivalent to a multivariate Gaussian copula. The conditional

correlations correspond to partial correlations and there exist a one-to-one correspondence be-

tween partial and unconditional correlations (Bedford and Cooke, 2002; Kurowicka and Cooke,

2006). Also a multivariate Student t-copula with a common df parameter ν can be represented

as a special D-vine copula. The association parameters in a D-vine copula with all pair t-copulas

correspond to partial correlations. If the df parameters of each pair copula satisfy

νkj|(k+1):(j−1) = ν + (j − 1− k), j = 2, . . . , I, k = 1, . . . , j − 1, (13)

then the D-vine copula with all pair t-copulas is a multivariate t-copula with df ν.

Defining Dt := diag(
√
h1t, . . . ,

√
hIt)

′ and R := Cor(εt) to be the correlation of the innovations

εt = (ε1t, . . . , εIt)
′ induced by the D-vine copula, we have Cov(Y t|Y 1:t−1) = DtRDt. This

implies that the conditional covariance Cov(Y t|Y 1:t−1) is time varying, despite a time constant

correlation R. This shows that in the case of Gaussian pair copulas the G-DV model can be

regarded as a CCC type model discussed in Bollerslev (1990). Note that for any choice of

partial correlations of a G-tDV or G-NDV model the resulting correlation matrix R is positive

definite. This shows that G-DV models can be regarded as non Gaussian extensions to CCC

models. An algorithm to sample from a G-DV model is given in Appendix A.

3.1. Selection of the D-vine copula structure

The structure of a D-vine copula is fixed up to the order in which the variables enter the D-

vine copula specification (6). An order and its inverse order lead to the same D-vine copula.

Therefore there are I!/2 possible D-vine structures. Since the number of possible D-vine copula

structures is increasing rapidly with the dimension I it is not possible in reasonable time to
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estimate all possible D-vine copula models and compare them using a model fit criterion like

DIC. Aas et al. (2009) suggest to find an order of the variables Xi, i = 1, . . . , I in which the

pairs (Xj, Xj+1) for j = 1, . . . , I − 1 have the strongest dependence among all other orderings

of the variables. In some application a natural order of the components exist, such if one wants

to jointly model measurements taken at different times of the day. The problem of searching

for an optimal D-vine structure is still an open problem. However this is not the focus here.

4. Bayesian Inference using MCMC

4.1. Prior specifications

Priors are chosen to enforce parameter restrictions. For positive marginal parameters we choose

a normal N(0, σ2) distribution truncated to [0,∞). We denote this distribution by N[0,∞)(0, σ
2).

Its mean and variance is given by 2φ(0)σ and (2φ(0)σ)2, respectively. Here φ(·) denotes the

standard normal pdf. For the df parameter of GARCH(1,1) models with Student t innovations,

we want to enforce certain finite moments. Therefore we choose the translated exponential

distribution Exp(δ, λ) with pdf

f(x; δ, λ) = λ exp(−λ(x− δ))1l(δ,∞)(x). (14)

For a finite mean of a Student t innovation we just set δ = 2. This choice also puts higher

prior probabilities to smaller df values, thus inducing high prior probabilities to heavier tail

innovations. Each prior for a marginal parameter is assumed to be independent.

For the copula parameters we impose independent priors to the parameters of each pair copula.

Since we have no prior information about the dependence we enforce a uniform prior on [−1, 1]

for the induced Kendalls τ parameter in case of a Student or Gaussian copula and on [0, 1] in

case of a Clayton or Gumbel copula. The prior densities for the association parameter of each

pair copula are obtained by a change of variables. This covers the cases of Gaussian, Clayton

and Gumbel pair copulas. For a Student t pair copula we choose again a translated exponential

distribution for the df parameter. Finally we assume prior independence between the marginal

and copula parameters. The prior choices are summarized in Table 1.
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Marginal GARCH Priors Copula Priors

Bivariate Copula Kendalls τ Prior

ωi ∼ N[0,∞)(0, σ
2
ωi

) Gaussian τ = 2 arcsin(θ)/π f(θ) = π
2

1√
1−θ2 1l[−1,1](θ)

αi ∼ N[0,∞)(0, σ
2
αi

) Clayton τ = 1− 2/θ f(θ) = 2
θ2

1l[0,1)(θ)

βi ∼ N[0,∞)(0, σ
2
βi

) Gumbel τ = 1− 1/θ f(θ) = 1
θ2

1l[1,∞)(θ)

ν
(G)
i ∼ Exp(2, λ

(G)
i ) Student τ = 2 arcsin(θ)/π f(θ) = π

2
1√
1−θ2 1l[−1,1](θ)

ν(C) ∼ Exp(δ(C), λ(C))

Table 1: Prior choice for the marginal and copula parameters and relationship between the association parameter
of the copula and Kendall’s τ for different pair copula types. To keep notation simple we omit the indices for
the copula parameters. We denote the parameters of a bivariate Student t copula by θ = (θ, ν(C))′.

4.2. Posterior distribution

The posterior distribution of the marginal parameters η and ϕ, the copula parameters θ and

the auxiliary variables h = (h′1, . . . ,h
′
T )′ given the data Y = (Y ′1, . . . ,Y

′
T )′ can be derived as:

f(η,ϕ,θ,h|Y ) ∝ f(Y ,h,η,ϕ,θ)

= [
T∏
t=1

f(Y t,ht|Y 1, . . . ,Y t−1,h1, . . . ,ht−1,η,ϕ,θ)]f(η,ϕ,θ)

= [
T∏
t=1

f(Y t,ht|Y t−1,ht−1,η,ϕ,θ)]f(η,ϕ,θ)

= [
T∏
t=1

f(Y t|ht,Y t−1,ht−1,η,ϕ,θ)f(ht|Y t−1,ht−1,η,ϕ,θ)]f(η,ϕ,θ)

= [
T∏
t=1

f(Y t|ht,ϕ,θ)f(ht|Y t−1,ht−1,η)]f(η)f(ϕ)f(θ). (15)

The conditional densities f(Y t|ht,ϕ,θ) for t = 1, . . . , T are given in (12). The factors

f(ht|Y t−1,ht−1,η) for t = 1, . . . , T are deterministic and given by f(ht|Y t−1,ht−1,η) =∏I
i=1 1lωi+αiy2i,t−1+βihi,t−1

(hit), where the indicator function 1lA(x) equals one if x ∈ A and zero

otherwise. Note that Yi0 = 0 and hi0 = 0 for i = 1, . . . , I according to the model definition in

(10). The prior densities f(η), f(ϕ) and f(θ) are given in Section 4.1.

A sample from the posterior distribution of the parameters is obtained by MCMC methods.

For details see Appendix B. Appendix B also contains the description of the Bayesian two step

estimation approach used in Section 5-7. Further it contains the description of the MCMC

algorithm used for the multivariate Student copula as a special case of the D-vine copula.
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4.3. Prediction of the Value at Risk (VaR)

Model comparison will be based amongst others on the VaR. More specifically, we will compare

different models based on the posterior predictive distribution of the VaR for a portfolio of the

margins. A portfolio is a weighted average of the margins. The VaR is a lower quantile of the

distribution of a portfolio. The absolute value of the (1 − α) ∗ 100% VaR from the predictive

distribution of a portfolio gives the loss that is not exceeded with probability α. An algorithm

to sample from the posterior predictive distribution of the VaR can be found in Appendix C.

5. Simulation study

We study the performance of Bayesian joint and two step estimation of tG-tDV and tG-mDV

models including model misspecifications effects. As performance criteria we use the deviance

information criteria (DIC) of Spiegelhalter et al. (2002) and evaluate the performance of the

one step ahead posterior predictive pdf of a 99% VaR for an equally weighted portfolio. Finally

we quantify the effects of using a two step instead of a joint approach with regard to posterior

median estimates and the length of 99% posterior credible intervals.

We choose 8 parameter scenarios for tG-tDV or tG-mDV models in 4 dimensions requiring 6

pair copulas as given in Table 2. To keep notation simple we use alternative indices defined

by (1, 2, 3, 4, 5, 6)′ := (12, 23, 34, 13|2, 24|3, 14|23)′. The 8 scenarios include different marginal

Marginal Parameters Copula Parameters

Scenario ωi αi βi ν
(G)
i Copula Types (θ1, . . . , θ6) (ν

(C)
1 , . . . , ν

(C)
6 )

1 0.01 0.07 0.92 6 (t,t,t,t,t,t) 0.8 3
2 0.01 0.07 0.92 6 (t,t,t,t,t,t) 0.3 3
3 0.01 0.07 0.92 6 (t,t,t,t,t,t) 0.3 (3,10,5,3,3,3)
4 0.01 0.07 0.92 6 (C,C,C,t,t,C) (1,1,1,0.5,0.5,1) (-,-,-,5,5,-)
5 0.05 0.25 0.7 6 (t,t,t,t,t,t) 0.8 3
6 0.05 0.25 0.7 6 (t,t,t,t,t,t) 0.3 3
7 0.05 0.25 0.7 6 (t,t,t,t,t,t) 0.3 (3,10,5,3,3,3)
8 0.05 0.25 0.7 6 (C,C,C,t,t,C) (1,1,1,0.5,0.5,1) (-,-,-,5,5,-)

Table 2: Parameter specification of the simulated data. A single value for a vector means that all elements of
the vector have this value. Copula type: t (Student t); C (Clayton).

GARCH(1,1) specifications as well as different tail and (a)symmetry behaviors of the D-vine

copula. The marginal GARCH(1,1) specifications are weakly stationary with finite second

moments. For the GARCH specification ωi = 0.01, αi = 0.07 and βi = 0.92 the 4th moment
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exist and is equal to 5.91, while the other specification does not have a finite 4th moment. This

specification also shows a higher persistence αi + βi compared to the other one.

From each scenario we simulated a data set with T = 1000 and estimated 4 models using a joint

Bayesian approach: (1) The correct tG-tDV (Scenario 1, 2, 3, 5, 6, 7) or tG-mDV (Scenario

4, 6) model; (2) A tG-NDV model assuming a Gaussian D-Vine copula which is equivalent

to a multivariate Gaussian copula; (3) A tG-I model assuming independence between the

marginal univariate time series which is equivalent to estimate univariate GARCH models for

each marginal time series; (4) A tG-tM model, assuming a multivariate Student t copula. The

tG-tM model is estimated using fully Bayesian joint estimation in contrast to e.g. Fischer et al.

(2009) who used two step ML estimation. Additionally, we estimate the tG-tDV or tG-mDV

model using two step estimation 2s-tG-tDV or 2s-tG-mDV described in Appendix B. This

is a fully Bayesian two step estimation in contrast to Min and Czado (2010a) who use a mixed

ML-Bayesian two step estimation.

The priors are, where possible, chosen that the prior mean is equal to the true parameter. For

Scenario 1 we therefore choose ωi ∼ N(0,∞)(0, 0.005/φ(0)), αi ∼ N(0,∞)(0, 0.035/φ(0)), βi ∼

N(0,∞)(0, 0.46/φ(0)), ν
(G)
i ∼ Exp(2, 1/4), i = 1, . . . 4 and τj ∼ U(−1, 1), ν

(C)
j ∼ Exp(2, 1/3),

j = 1, . . . , 6. The priors for other scenarios are chosen accordingly. For the multivariate Student

t copula we choose the prior mean of the single df parameter to be the true df parameter of

the copula c12.

For each model we obtain 4000 MCMC samples, running the MCMC algorithm for 60000

iterations after a pre-run of 10000 to determine appropriate proposal variances and a burn in of

5000, taking every 15th sample. In case of the 2s-tG-tDV or 2s-tG-mDV estimation approach,

this is done for both steps.

First we compare the four models and the two step estimation approach based on the Bayesian

model fit criterion DIC (Spiegelhalter et al., 2002) shown in Table 3 for each of the 8 scenarios.

As expected, the true tG-tDV or tG-mDV model shows the best fit for all 8 scenarios. The

tG-NDV model and the tG-I model are far away from the best model in terms of DIC. The

tG-tM model shows a relatively good fit for the Scenarios 1, 2, 5 and 6. This is not surprising

since these scenarios are relatively close to a multivariate Student t copula and the tG-tM

models require 5 fewer parameters compared to the tG-tDV models. For Scenarios 3 and 7

with different df of the Student t pair copulas in the D-vine copula the fit of the tG-tM model

13



Joint estimation two step estimation

Scenario tG-I tG-NDV tG-tM tG-t/mDV 2s-tG-t/mDV
1 8475 2562 1941 1920 2322
2 8590 8125 7557 7546 7582
3 8605 8134 7745 7687 7719
4 8580 6863 6775 6408 6473
5 8198 2668 1668 1647 2067
6 8406 8172 7363 7354 7392
7 8411 8154 7542 7485 7522
8 8325 6602 6510 6149 6218

Table 3: Simulated data: DIC Table.

is notable worse compared to the best fitting tG-tDV model. For Scenarios 4 and 8 with

different pair copula types in the D-vine copula, including asymmetric pairwise dependence,

the fit of the tG-tM model is clearly worse than for the true tG-mDV model.

The two step estimation approach 2s-tG-tDV shows a significant loss of fit in all 8 scenarios

compared to the joint estimation approach tG-tDV which is especially high in Scenario 1 and

5. These are the scenarios with the highest correlations in the D-vine copula.

We now have a look at the small sample properties of the two step estimation approach.

Table 4 and 5 show the quotients of the posterior median estimates and the 99% credibility

interval lengths for the parameters from the two step estimation approach compared to the joint

estimation approach, respectively. A quotient of > 1 means that the median or credibility

interval length of the two step estimation approach is larger compared to the joint estimation

approach. We see that for the marginal parameters the length of the credibility interval is

systematically overestimated by the two step estimation approach. For the copula parameters

the length of the credibility interval is systematically underestimated by the two step estimation

approach compared to the joint estimation approach. Further there are considerable differences

between the posterior median estimates of the two approaches. The posterior medians for the

association parameters are slightly but systematically underestimated.

Last we consider the effect that model misspecification and the error introduced by the two step

estimation approach for the correct tG-tDV/tG-mDV model have on the one step ahead VaR

predictions. For each scenario Figure 1 shows the estimated one step ahead posterior predictive

pdf of the 99% VaR for an equally weighted portfolio of the four different estimated models and

the two step estimation approach. A point estimate for the VaR can be obtained e.g. by the
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Scenario

1 2 3 4 5 6 7 8

Marginal GARCH Parameters

ω1 0.95 0.66 0.66 1 1.47 1.34 1.37 1.7
α1 0.82 0.77 0.76 0.8 0.98 1 0.99 1.05
β1 1.01 1.03 1.03 1.02 0.92 0.94 0.93 0.89

ν
(G)
1 0.97 0.86 0.85 0.89 0.96 0.87 0.86 0.9

ω2 1.23 0.8 0.73 1.16 0.89 0.69 0.66 0.97
α2 0.98 1.07 1.08 1.09 0.86 0.85 0.83 0.91
β2 0.99 1 1 0.99 1.03 1.15 1.17 1.05

ν
(G)
2 1.17 1 1.03 0.94 1.17 0.97 1.01 0.91

ω3 0.94 0.75 0.8 0.91 1.42 0.97 0.97 1.04
α3 0.75 0.81 0.88 0.81 0.9 0.9 0.94 0.82
β3 1.01 1.02 1.01 1.01 0.93 1.03 1.01 1.05

ν
(G)
3 0.99 0.95 1.01 1.01 0.97 0.95 1 1

ω4 0.9 1.06 1.16 1.25 1.27 0.86 0.9 1.09
α4 0.84 1.06 1.01 1.11 0.89 0.93 0.92 1.08
β4 1.01 0.99 0.99 0.99 0.95 1.04 1.04 0.95

ν
(G)
4 1.1 0.97 0.92 0.96 1.11 0.96 0.92 0.95

Copula Parameters

θ1 0.99 0.97 0.97 1.01 0.98 0.95 0.97 0.99
θ2 0.99 0.95 0.97 0.97 0.99 0.96 0.97 0.97
θ3 0.99 0.94 0.96 0.95 1 0.95 0.98 0.96
θ4 1 0.99 1 0.99 1.01 0.97 0.98 0.99
θ5 1 0.98 0.97 1 0.99 0.97 1 1
θ6 1 0.99 0.97 1.01 0.98 0.96 0.98 0.98

ν
(C)
1 1 0.99 1.02 - 1.01 1.01 1 -

ν
(C)
2 1.02 1.02 0.94 - 1.06 1.02 0.96 -

ν
(C)
3 1.01 1.02 0.97 - 1.09 1.01 0.93 -

ν
(C)
4 0.99 0.99 0.98 0.99 1 0.99 1.01 1.01

ν
(C)
5 1.01 1.05 1.02 1.03 1.14 1.05 0.97 1

ν
(C)
6 1.05 1.04 1.04 - 1.08 1.03 0.98 -

Table 4: The quotient of the posterior median estimates for the parameters from the two step estimation
approach compared to the joint estimation approach for the eight simulation scenarios. A quotient of > 1
means that the median length of the two step estimation approach is larger compared to the joint estimation
approach. (Bold: ”value” > 1)

posterior mode, median or mean. As expected, for the tG-tDV or tG-mDV model the true VaR

lies inside the 99% credibility interval for all eight scenarios and the posterior median is quite

close to the true value. For the tG-I model assuming independence we observe that the VaR is

significantly overestimated, i.e. the absolute value of the VaR is underestimated, in all scenarios.

In the case of a tG-NDV estimation model the VaR is significantly overestimated in five out

of eight scenarios. These are all scenarios with a lower GARCH persistence (Scenarios 5-8)
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Scenario

1 2 3 4 5 6 7 8

Marginal GARCH Parameters

ω1 1.69 0.9 0.93 1.66 3 1.79 1.87 2.46
α1 1.75 1.16 1.12 1.42 2.18 1.46 1.49 2
β1 1.98 1.05 1.03 1.45 3.02 1.66 1.67 2.04

ν
(G)
1 1.5 0.89 0.93 1.24 1.6 0.98 1 1.35

ω2 2.3 0.97 0.77 1.62 1.91 1.06 0.97 1.33
α2 1.82 1.19 1.06 1.53 1.64 1.12 1.01 1.23
β2 2.47 1.08 0.93 1.54 2.19 1.2 1.11 1.26

ν
(G)
2 1.82 1.14 1.18 1.21 2.03 1.05 1.16 1.11

ω3 1.51 0.89 0.89 1.17 2.52 1.23 1.21 1.68
α3 1.49 1.08 1.1 1.2 1.98 1.22 1.09 1.27
β3 1.69 1.05 1.09 1.2 2.57 1.3 1.16 1.54

ν
(G)
3 1.51 1.1 1.12 1.4 1.59 1.07 1.12 1.36

ω4 1.76 1.57 1.57 2.28 2.91 1.24 1.28 1.83
α4 1.71 1.43 1.23 2.07 2.03 1.21 1.2 1.64
β4 2.02 1.48 1.44 2.24 3.24 1.28 1.27 1.78

ν
(G)
4 1.82 1.15 1.01 1.44 2.13 1.1 1 1.43

Copula Parameters

θ1 0.87 0.99 1 0.89 0.95 0.97 0.97 0.87
θ2 0.87 0.96 0.95 0.86 0.9 1.01 0.96 0.86
θ3 0.87 0.96 0.93 0.81 0.8 0.93 0.93 0.85
θ4 0.94 1 0.97 0.98 0.85 0.95 0.93 0.96
θ5 0.92 0.95 0.93 0.93 0.99 0.99 1.02 0.97
θ6 0.94 0.97 0.95 0.96 1.06 0.93 1 0.94

ν
(C)
1 0.84 0.9 0.93 - 0.86 0.91 0.89 -

ν
(C)
2 0.83 0.91 0.86 - 0.96 0.89 0.91 -

ν
(C)
3 0.83 0.89 0.91 - 0.98 0.84 0.83 -

ν
(C)
4 0.91 0.95 0.92 0.98 1.01 0.93 0.89 0.98

ν
(C)
5 0.94 0.96 0.95 0.95 1.11 0.97 0.86 0.9

ν
(C)
6 1.1 1.03 0.99 - 1.14 0.94 0.94 -

Table 5: The quotient of the 99% credibility interval length for the parameters from the two step estimation
approach compared to the joint estimation approach for the eight simulation scenarios. A quotient of > 1
means that the credibility interval length of the two step estimation approach is larger compared to the joint
estimation approach. (Bold: ”value” > 1)

and with asymmetric pairwise dependencies (Scenario 4 and 8). The tG-tM model assuming a

multivariate Student t copula is very close to the tG-tDV model and the true VaR for scenarios

with common t pair copulas (Scenario 1, 2, 5 and 6). However for Scenarios 3 and 7 assuming

different df of the Student t pair copulas we already observe differences. For Scenarios 4 and

8 assuming different pair copula types in the D-vine copula, including asymmetric pairwise

dependence, there are considerable differences between the tG-tM model and the tG-mDV
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(h) Scenario 8

Figure 1: Estimated one step ahead posterior predictive pdf of the 99% VaR from an equally weighted portfolio.
Below: 99% credibility intervals (lines) and median (triangle). The true one step ahead prediction of the 99%
VaR is indicated by a vertical line.

model. For Scenario 8 the true VaR is not even inside the 99% credibility interval of posterior

predictive distribution from the VaR for the tG-tM model.

Now we examine the effect of parameter estimation error of the two step estimation approach

has on the VaR estimation. In terms of the posterior mode estimate the two step estimation
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approach for the tG-tDV/tG-mDV model, i.e. 2s-tG-tDV/2s-tG-mDV, differs a bit from the

joint estimation approach but not too much. However the two step estimation approach un-

derestimates the uncertainty about the VaR. The length of the 99% credibility interval for the

two step estimation approach is between 6% (Scenario 8) and 29% (Scenario 1) shorter than

for the joint estimation approach in the 8 considered scenarios with an average of 14%.

6. Application to exchange rate data

We consider a five dimensional dataset consisting of daily US $ exchange rates of Japanese yen

(JPY), British pound sterling (GBP), Australian dollar (AUD), Canadian dollar (CAD) and

Brazilian real (BRL) observed from July 25, 2005 until July 17, 2009 (I = 5, T = 1005). We

estimate the four models considered in Section 5; tG-mDV, tG-NDV, tG-I and tG-tM and the

two step estimation approach for the tG-mDV model, i.e. 2s-tG-mDV to the data.

For the tG-mDV model we have to choose two things:

1. The order of margins, i.e. which margins are connected by an unconditional copula. This

completely specifies the structure of the D-vine copula.

2. The copula families for all unconditioned and conditioned pairs.

The structure is chosen by the approach of Aas et al. (2009) which suggest to put the pairs with

the highest correlations together. More precisely we examine all pairwise empirical Kendall’s τ̂ .

We select the pair (i, j) with highest τ̂ij. In the next step we select a variable r 6= i, j with highest

empirical Kendall’s τ̂ value among Ai ∪Bj, where Ai := {τ̂si, s 6= i, j} and Bj := {τ̂sj, s 6= i, j}.

If the maximum is attained in Ai we choose the order r− i− j otherwise i− j− r in the D-vine

copula. We proceed in this way until a complete order of the D-vine copula is established. The

resulting order is JPY - GBP - AUD - CAD - BRL.

The copula families for each pair are chosen according to the highest AIC (Akaike, 1974).

Brechmann et al. (2010) justify this way of proceeding through simulation. In particular for

every unconditional bivariate copula in the D-vine copula we estimate all considered copula

families (Gaussian, Student, Clayton and Gumbel) using ML and choose the copula with the

lowest AIC. To choose the copula families of the pair copulas with one variable in the condi-

tioning set, we calculate the copula data of these copulas based on the estimated unconditional

copulas using (7) and choose the best fitting copula according to the AIC. The procedure is

continued for the pair copulas with larger number of variables in the conditioning set until
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copula families are specified for all bivariate copulas. The chosen pair copula families for this

data set are given in the first column of Table 7.

The prior specifications are shown in Table D.10. Priors for the marginal GARCH parameters

were chosen similar to ML estimates of GARCH(1,1) models fitted to several financial time

series. Priors for the df parameters were chosen to approximately include the Gaussian case.

The DIC for the four models and the two step estimation approach is shown in Table 6. The

tG-mDV model fits the data best. The fit of the tG-tM model is worse compared to the tG-

mDV model. The tG-NDV model shows a significantly worse fit compared to the best fitting

tG-mDV model, while the tG-I model is far away from the other models in terms of DIC. The

two step estimation approach 2s-tG-mDV shows a significant loss in fit compared to the joint

estimation approach tG-mDV according to the DIC.

tG-I tG-NDV tG-tM tG-mDV 2s-tG-mDV

-35541 -36808 -36923 -36938 -36886

Table 6: DIC values for several models applied to the exchange rate data.

Figure 2 (top row) shows the estimated one step ahead posterior predictive distribution of the

90%, 99% and 99.9% VaR from an equally weighted portfolio for the 4 estimated models and

the two step estimation approach. While the tG-I is far away from the best fitting models, we

see that the 90% VaR for the other 3 models are relatively close, while in case of the 99% VaR

and especially the 99.9% VaR we see differences.

The two step estimation approach 2s-tG-mDV clearly overestimates the VaR compared to the

joint estimation approach tG-mDV. Further we observe that the uncertainty about the VaR is

underestimated by the two step estimation approach compared to the joint estimation approach

as in the simulation study in Section 5.

Figure 2 (bottom row) shows the estimated posterior predictive pdf of the covariance stationar-

ity condition CSC = α+β−1 for the for marginal GARCH(1,1) models of the tG-mDV model.

A GARCH(1,1) process is covariance stationary if CSC < 0. The copula has only influence on

the dependency between the marginal GARCH(1,1) models but not on the marginal distribu-

tion. The properties of the margins with respect to stationarity and existence of moments are

therefore retained in the multivariate model. We see that there is a high estimated posterior

probability for the five time series to be stationary with a relatively high posterior estimate for
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Figure 2: tG-tDV: Exchange rate data: Top row: Estimated one step ahead posterior predictive distribution
of the 90% (left), 99%(middle) and 99.9%(right) VaR for an equally weighted portfolio. Below: 99% credi-
bility intervals (lines) and median (triangle). Bottom row: Estimated posterior pdf of the covariance (weak)
stationarity condition CSC = α + β − 1 for each margin. (A GARCH(1,1) process is covariance stationary if
CSC < 0).

the persistence (αi + βi).

Table 7 shows a summary of the posterior distribution from the parameters for the tG-mDV and

the 2s-tG-mDV estimation approach. The median and CI ratios of the parameters estimates

confirm the results from the simulation study in Section 5.

7. Application to a mixed portfolio of stock and bond indices

As a second application we consider a dataset of two stock and two bond indices: Treasury

Yield 5 Years (∧FVX), CBOE Interest Rate 10-Year T-No (∧TNX), iShares Dow Jones US

Utilities (IDU) and iShares Dow Jones US Healthcare (IYH). The data are given as the daily

log returns from February 26, 2006 until February 25, 2010. Usually a portfolio would not only

contain these four assets. However, for simplicity we concentrate on these four assets between

which an asymmetric dependency can be observed as can be seen in the following.

The structure in the D-vine copula and the copula families are chosen in the same way as in

Section 6. The resulting order is IDU - IYH - ∧FVX - ∧TNX. The chosen copula families are

given in the first column of Table 9.
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tG-mDV 2s-tG-mDV Quotients
2.5% 50% 97.5% 2.5% 50% 97.5% median CI length

Marginal GARCH parameters

ωJPY 5.9e-07 1.2e-06 2.6e-06 6.7e-07 1.4e-06 3.1e-06 1.17 1.17
αJPY 0.03 0.06 0.10 0.04 0.07 0.12 1.26 1.19
βJPY 0.87 0.93 0.95 0.85 0.91 0.94 0.98 1.25

ν
(G)
JPY 3.80 4.93 6.76 4.00 5.30 7.39 1.07 1.21
ωGBP 4.8e-07 8.0e-07 1.3e-06 4.7e-07 8.9e-07 1.6e-06 1.11 1.33
αGBP 0.03 0.05 0.07 0.05 0.07 0.11 1.40 1.61
βGBP 0.91 0.93 0.95 0.87 0.91 0.94 0.98 1.58

ν
(G)
GBP 4.94 6.89 10.63 5.16 7.65 12.44 1.11 1.34
ωAUD 1.2e-06 1.9e-06 3.1e-06 8.2e-07 1.6e-06 3.1e-06 0.88 1.20
αAUD 0.03 0.05 0.08 0.07 0.11 0.16 1.97 1.90
βAUD 0.88 0.92 0.94 0.82 0.88 0.92 0.96 1.52

ν
(G)
AUD 5.49 7.51 10.63 4.83 6.88 10.34 0.92 1.03
ωCAD 9.8e-07 1.7e-06 2.8e-06 4.3e-07 9.3e-07 1.8e-06 0.56 0.74
αCAD 0.04 0.06 0.09 0.06 0.08 0.13 1.41 1.40
βCAD 0.85 0.90 0.94 0.86 0.90 0.93 1.00 0.97

ν
(G)
CAD 4.92 6.88 10.38 4.42 6.39 9.74 0.93 0.97
ωBRL 2.4e-06 3.8e-06 6.0e-06 1.5e-06 2.9e-06 5.0e-06 0.75 1.00
αBRL 0.11 0.15 0.20 0.16 0.22 0.29 1.45 1.45
βBRL 0.76 0.81 0.85 0.72 0.78 0.83 0.96 1.28

ν
(G)
BRL 7.41 11.73 20.92 5.95 9.11 16.19 0.78 0.79

Copula parameters

(t) θJPY,GBP 0.16 0.23 0.30 0.16 0.23 0.29 0.99 0.94
(t) θGBP,AUD 0.54 0.59 0.63 0.54 0.58 0.62 0.99 0.89
(t) θAUD,CAD 0.51 0.56 0.60 0.49 0.53 0.57 0.96 0.84
(t) θCAD,BRL 0.35 0.41 0.46 0.33 0.38 0.44 0.94 0.94
(t) θJPY,AUD|GBP -0.14 -0.07 -0.00 -0.11 -0.04 0.02 0.62 0.97
(N) θGBP,CAD|AUD 0.11 0.17 0.23 0.11 0.18 0.24 1.03 1.03
(t) θAUD,BRL|CAD 0.29 0.35 0.41 0.29 0.35 0.40 0.98 0.95

(N) θJPY,CAD|GBP,AUD -0.18 -0.12 -0.06 -0.17 -0.11 -0.05 0.93 0.93
(t) θGBP,BRL|AUD,CAD -0.11 -0.05 0.02 -0.10 -0.04 0.03 0.78 0.95

(N) θJPY,BRL|GBP,AUD,CAD -0.24 -0.18 -0.12 -0.24 -0.18 -0.12 1.00 0.92

ν
(C)
JPY,GBP 2.82 3.82 5.50 3.01 3.93 5.45 1.03 0.95

ν
(C)
GBP,AUD 5.29 8.77 17.38 5.37 8.80 17.81 1.00 1.07

ν
(C)
AUD,CAD 6.00 9.93 19.47 6.50 10.90 21.78 1.10 1.05

ν
(C)
CAD,BRL 4.69 7.20 13.01 4.93 7.60 14.17 1.05 1.13

ν
(C)
JPY,AUD|GBP

4.82 7.59 14.08 5.16 8.07 15.46 1.06 1.09

ν
(C)
AUD,BRL|CAD

4.93 7.69 14.07 4.86 7.28 13.25 0.95 0.89

ν
(C)
GBP,BRL|AUD,CAD

6.86 11.82 23.75 7.06 12.25 24.28 1.04 1.15

Table 7: Exchange rate data: Estimated posterior quantiles for the parameters based on a tG-mDV and 2s-tG-
mDV estimation approach, respectively, and the quotients of the posterior median estimates and the credibility
interval lengths of the two step estimation approach compared to the joint estimation approach. A quotient of
> 1 means that the median or credibility interval length of the two step estimation approach is larger compared
to the joint estimation approach (Bold: ”value” > 1). The copula type is given in front of the (first) copula
parameter of each pair copula (Student: (t), Gaussian: (N)).

Additionally to the described tG-mDV model we again estimate a tG-tM , tG-NDV and tG-I

model and the two step estimation approach for the tG-mDV model, i.e. 2s-tG-mDV. We use

the same prior specifications as in Section 6. Table 8 presents the DIC for the four estimated

models and the two step estimation approach. The tG-mDV model shows a clearly better fit

to the data than the other three models including the model assuming a multivariate Student

t copula, tG-tM. This also gives evidence that mixed symmetric and asymmetric pairwise
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dependence can be found in a portfolio of real data.

tG-I tG-NDV tG-tM tG-mDV 2s-tG-mDV

-23142 -26129 -26219 -26255 -26141

Table 8: DIC values for several models applied to the mixed stock and bond index data.

Figure 3 (top row) shows the estimated one step ahead posterior predictive distribution of the

90%, 99% and 99.9% VaR for an equally weighted portfolio. Especially in case of 99.9% we see
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Figure 3: tG-tDV: Mixed stocks and bonds: Top row: Estimated one step ahead posterior predictive distri-
bution of the 90% (left), 99%(middle) and 99.9%(right) VaR for an equally weighted portfolio. Below: 99%
credibility intervals (lines) and median (triangle). Bottom row: Estimated posterior pdf of the covariance (weak)
stationarity condition CSC = α + β − 1 for each margin. (A GARCH(1,1) process is covariance stationary if
CSC < 0).

clearly different estimates for the four models. Compared to the best fitting tG-mDV model

the 99.9% VaR is overestimated by the other three models including the model assuming a

multivariate Student t copula. Further we see that the order of the estimated posterior medians

depends on the level of the VaR (90%, 99%, 99.9%). While compared to the tG-mDV the tG-

NDV model underestimates the 90% VaR it overestimates the 99.9% VaR. Figure 3 (bottom

row) shows the posterior distribution of the covariance stationarity condition CSC = α+β−1

for each margin of the tG-mDV model. While the stock indices look stationary the bond indices

have a relatively large posterior probability of being non-stationary.
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Table 9 shows a summary of the posterior distribution from the parameters for the tG-mDV

model and the 2s-tG-mDV estimation approach. The median and credibility interval length

ratios of the parameters estimates confirm the results from the simulation study in Section 5.

tG-mDV 2s-tG-mDV Quotients
2.5% 50% 97.5% 2.5% 50% 97.5% median CI length

Marginal GARCH parameters

ωIDU 4.0e-06 6.7e-06 1.1e-05 2.3e-06 4.3e-06 7.4e-06 0.64 0.73
αIDU 0.07 0.10 0.15 0.09 0.13 0.19 1.27 1.12
βIDU 0.78 0.84 0.89 0.79 0.84 0.89 1.00 0.93

ν
(G)
IDU 6.89 10.67 19.26 6.28 9.88 18.86 0.93 1.03
ωIY H 3.0e-06 5.1e-06 8.7e-06 1.7e-06 3.5e-06 6.6e-06 0.69 0.90
αIY H 0.06 0.09 0.14 0.08 0.12 0.18 1.27 1.31
βIY H 0.79 0.86 0.91 0.79 0.86 0.90 1.00 1.02

ν
(G)
IY H 5.12 7.05 10.43 4.55 6.37 9.76 0.90 1.01
ω∧FV X 1.4e-06 2.6e-06 4.4e-06 1.6e-06 3.4e-06 6.5e-06 1.34 1.78
α∧FV X 0.06 0.09 0.12 0.06 0.10 0.15 1.15 1.73
β∧FV X 0.90 0.92 0.94 0.86 0.90 0.94 0.98 1.83

ν
(G)
∧FV X

4.64 5.81 7.50 4.89 6.89 10.18 1.19 1.87

ω∧TNX 1.1e-06 2.0e-06 3.5e-06 1.5e-06 3.1e-06 5.7e-06 1.52 1.87
α∧TNX 0.06 0.09 0.12 0.06 0.09 0.14 1.08 1.46
β∧TNX 0.89 0.92 0.94 0.86 0.90 0.94 0.99 1.70

ν
(G)
∧TNX

5.19 6.74 9.22 5.44 7.94 12.87 1.18 2.00

Copula parameters

(t) θIDU,IY H 0.61 0.65 0.69 0.60 0.64 0.67 0.98 0.92
(C) θIY H,∧FV X 0.28 0.36 0.46 0.28 0.36 0.45 1.00 0.93
(t) θ∧FV X,∧TNX 0.95 0.95 0.96 0.94 0.95 0.96 1.00 0.87
(C) θIDU,∧FV X|IY H 0.01 0.06 0.14 0.01 0.06 0.13 0.95 0.95
(N) θIY H,∧TNX|∧FV X -0.14 -0.08 -0.02 -0.13 -0.07 -0.01 0.92 0.95

(N) θIDU,∧TNX|IY H,∧FV X -0.07 -0.01 0.05 -0.07 -0.01 0.05 0.39 0.92

ν
(C)
IDU,IY H 5.04 8.13 15.69 4.91 7.85 15.35 0.97 0.93

ν
(C)
∧FV X,∧TNX

3.07 4.32 6.48 3.30 4.57 6.69 1.06 1.04

Table 9: Mixed stock and bond index data: Estimated posterior quantiles for the parameters based on a tG-mDV
and 2s-tG-mDV estimation approach, respectively, and the quotients of the posterior median estimates and the
credibility interval lengths of the two step estimation approach compared to the joint estimation approach. A
quotient of > 1 means that the median or credibility interval length of the two step estimation approach is
larger compared to the joint estimation approach (Bold: ”value” > 1). The copula type is given in front of the
(first) copula parameter of each pair copula (Student: (t), Gaussian: (N), Clayton: (C)).

8. Conclusion and Outlook

We performed Bayesian joint estimation for a multivariate GARCH model where the univariate

margins follow GARCH(1,1) models and the dependence between the innovations across the

univariate time series is given by a D-vine copula. Vine copulas are flexible class of multivariate

copulas using only (conditional) bivariate copulas. It allows for symmetric dependence between

some pairs of margins and asymmetric dependence between other pairs. D-vine copulas have

the advantage that the resulting correlation matrix is always positive definite. In contrast

to likelihood based estimation methods a Bayesian approach always allows to construct valid
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interval estimates for any quantity which is a function of the model parameters. This provides

the possibility to assess the uncertainty about VaR predictions. In a simulation study and

two real data applications we compared the approach to other models including a multivariate

GARCH model assuming a multivariate Student t copula for the dependence of the innovations.

Model comparison was based on the DIC and one step ahead VaR. We further compared a

Bayesian two step estimation approach with the Bayesian joint estimation approach to assess

the small sample properties of the parameter estimates from the Bayesian two step estimation

approach and their effect on the VaR predictions.

Our findings were the following:

• The D-vine copula can provide a clearly better fit according to the DIC compared to the

multivariate Student t copula for the dependence of the GARCH innovations which has

been shown in an application to a dataset of stock and bond indices. This is due to the

fact that in a D-vine copula it is possible to allow for symmetric dependence for some

(conditional) pairs of margins and asymmetric dependence for other pairs. This is not

possible in a multivariate Student copula where all dependencies are symmetric. Is is

also not possible for the multivariate extension of Clayton of Gumbel copulas, where all

pairwise dependencies are asymmetric.

• The choice between a D-vine copula and a multivariate Student t copula for the depen-

dence of the margins clearly affects the VaR prediction.

• The application to a dataset of stock and bond indices shows that both symmetric and

asymmetric pairwise dependencies can be present within one portfolio.

• Compared to the Bayesian joint estimation approach the Bayesian two step estimation

approach can show a considerable lack of fit according to the DIC.

• The Bayesian two step estimation approach further leads to an underestimation of the

uncertainty of one step ahead VaR. This result is not directly transferable to the ML case.

However comparable results can also be expected in the ML case. This would mean that

the variance of a two step ML estimator for the VaR is smaller compared to the joint ML

estimator which is efficient.

An interesting extension of the model would be to allow for time variation of the copula pa-

rameters in the D-vine copula. Here the time varying bivariate dependency copula model of
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Almeida and Czado (2010) can be used as a model for the bivariate building blocks. An al-

ternative would be to allow for an observation driven time variation of the copula parameters

as considered in Ausin and Lopes (2009). A natural extension would also be the extension

to other vines like C-vines or more general R-vines. Financial data often show asymmetric

dependence that can not be captured by a Clayton or Gumbel copula. In this case it would

be interesting to include BB1 or BB7 pair copulas that allow for individual tail dependence

in the upper and lower tail. Since the considered bivariate asymmetric copulas are restricted

to positive correlations one could include rotated versions to allow for negative correlations in

these copula families. It is well known that beside asymmetric dependency one can find asym-

metric conditional variance in ups and downs caused by the leverage effect (Black, 1976). It

would be interesting to see how these two asymmetries work together, by considering margins

that follow e.g. a GJR model (Glosten et al., 1993). A further extension would be to allow for

ARMA-GARCH margins or higher orders of the GARCH margins.

An open question is still the choice of the best or at least a good fitting D-vine copula among the

many choices. Min and Czado (2010b) and Min and Czado (2010a) used the computer intensive

Bayesian model selection approaches of Green (1995) and Congdon (2006), respectively, to

choose the pair copula families in a D-vine. These approaches could be extended to include the

D-vine order. One could also transfer the concepts of truncation and simplification as considered

in Brechmann et al. (2010) and Brechmann and Czado (2011) to the Bayesian framework to

facilitate higher dimensional applications (I > 20).
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Appendix A. Simulation from the G-DV model

Algorithm 1 Simulation from the G-DV model

Obtain T samples from a I dimensional D-vine copula, i.e. u1:I,1:T , using

Algorithm 2 described in Aas et al. (2009)

for i← 1 : I

Start with hi,0 = 0, yi,0 = 0.

for t← 1 : T

hi,t = ωi + αiy
2
i,t−1 + βihi,t−1; εi,t = G−1ϕi

(ui,t); yi,t =
√
hi,tεi,t

end for t

end for i

Appendix B. Update of the parameters within the MCMC algorithm

Appendix B.1. Update of the marginal GARCH parameters

Variance parameters: We first update the variance parameters ηi = (ωi, αi, βi)
′ of each

margin i = 1, . . . , I within the MCMC algorithm individually for 10000 iterations. We therefore

use individual Metropolis-Hastings (MH) steps (Metropolis et al., 1953; Hastings, 1970) with

univariate Gaussian random walk proposals truncated at 0,

ω∗i |ωi ∼ N[0,∞)(ωi, σ̃
2
ωi

), α∗i |αi ∼ N[0,∞)(αi, σ̃
2
αi

), β∗i |βi ∼ N[0,∞)(βi, σ̃
2
βi

),

where ω∗i , α
∗
i and β∗i are the proposed values and ωi, αi and βi are the current values of the

parameters. The variances σ̃2
ωi

, σ̃2
αi

and σ̃2
βi

are tuned to achieve acceptance rates between 20%

and 80% as proposed in Besag et al. (1995). Since the samples of the variance parameters are

highly correlated, we use the first 8000 samples after a burn in of 2000 to get an approximation

of the covariance matrix from the posterior distribution for the variance parameters of each

magin, Σ̃i, and proceed with a joint update for ηi = (ωi, αi, βi)
′, i = 1, . . . , I using a MH

step with a three dimensional Gaussian random walk proposal with Σ̃i as proposal covariance

matrix, which is again truncated at 0 for all three parameters,

η∗i |ηi ∼ N[0,∞)3(ηi, Σ̃i).
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Here η∗i is the proposed value and ηi the current value of the parameter vector in the MCMC

algorithm and N[0,∞)3(µ,Σ) denotes the trivariate normal distribution truncated to [0,∞)3,

with mean and covariance matrix parameter µ and Σ, respectively. This leads to lower auto-

correlation between the samples with acceptance rates ranging between 7% and 42% for the

considered simulated and real data. A similar procedure is used in Ausin and Lopes (2009).

Update of the df parameters: The df parameters are updated using individual MH steps

using truncated Gaussian random walk proposals, i.e.

ν
(G)∗
i |ν(G)

i ∼ N
[δ

(G)
i ,∞)

(
ν
(G)
i , σ̃2

ν
(G)
i

)
,

i = 1, . . . , I, where ν
(G)∗
i is the proposed value and ν

(G)
i the current value of the parameter.

Here σ̃2

ν
(G)
i

is the proposal variance, that is tuned to get acceptance rates between 20% and 80%.

Appendix B.2. Update of the copula parameters

The copula parameters θkj|(k+1):(j−1) and ν
(C)
kj|(k+1):(j−1), j = 2, . . . , I, k = 1, . . . , j − 1, are

updated individually within the MCMC algorithm, using MH steps with Gaussian random

walk proposals, truncated to the domain of the parameters. The proposal variances are again

tuned in order to get acceptance rates between 20% and 80%. To facilitate reading we will

omit the indices in the following.

Update of the association parameters: In case of a Gaussian or Student pair copula, we

use a truncated random walk proposal for the association parameter,

θ∗|θ ∼ N[−1,1]
(
θ, σ̃2

θ

)
,

where θ is the current state, θ∗ is the proposed value, and σ̃2
θ is the proposal variance. In the

case of a Clayton or Gumbel pair copula, we use a Gaussian random walk proposal for Kendall’s

τ , which gives the following proposal distributions for θ,

f(θ∗|θ) := φ[0,∞]

(
1− 2

θ∗
; 1− 2

θ
, σ̃2

θ

)
2

θ2

f(θ∗|θ) := φ[1,∞]

(
1

θ∗
;
1

θ
, σ̃2

θ

)
1

θ2

in case of a Clayton or Gumbel pair copula term, respectively.
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Update of the df parameters: The df parameters are updated using individual MH steps

with truncated Gaussian random walk proposals, i.e.

ν(C)∗|ν(C) ∼ N[δ(C),∞)

(
ν(C), σ̃2

ν(C)

)
, (B.1)

where ν(C)∗ is the proposed value, ν(C) the current value and σ̃2
ν(C) the proposal variance.

The multivariate Student t copula is estimated as a special case of a D-vine copula. The prior

and proposal distribution for the df parameter of the multivariate Student t copula is chosen

to be the same as the prior and proposal distribution for a Student t pair copula in a D-vine

copula (Section 4.1 and (B.1)). The likelihood of the multivariate Student t copula for the

proposed and current value of the df parameter, that is needed in the acceptance probability

of the MH step, can be evaluated as a special case of a D-vine copula with all Student t pair

copulas. The df of the corresponding D-vine copula can be calculated from the proposed and

current value of the df parameter for the multivariate Student t copula using (13). The other

parameters of the tG-tM model are updated in the same way as the corresponding parameters

in the tG-tDV model.

In case of a Bayesian two step estimation we first estimate the margins using a G-I model, i.e. a

multivariate GARCH model assuming independence. Then we calculate the copula data using

the posterior mode estimates of the parameters of the G-I model and the probability integral

transform. In a second step we estimate a DV model for the copula data.

Appendix C. Prediction of the Value at Risk (VaR)

Algorithm 2 Generation of a sample of size R from the one step ahead posterior

predictive distribution of the (1− α) ∗ 100% VaR of an equally weighted portfolio

based on an MCMC sample of size R from the posterior distribution of the

parameters, (η(r)′,ϕ(r)′,θ(r)
′
)′, r = 1, . . . , R, and the observed data y.

for r ← 1 : R

Start with hi,0 = 0, yi,0 = 0.

for t← 1 : (T + 1)

Calculate h
(r)
it = ω

(r)
i + α

(r)
i y2i,t−1 + β

(r)
i h

(r)
i,t−1

end for t
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for s← 1 : S

Obtain a sample from an I dimensional D-vine copula with parameters θ(r),

i.e. u
(r,s)
1:I,T+1, using Algorithm 2 described in Aas et al. (2009)

for i← 1 : I

Calculate ε
(r,s)
i,T+1 = G−1

ϕ
(r)
i

(u
(r,s)
i,T+1); y

(r,s)
i,T+1 =

√
h
(r)
i,T+1ε

(r,s)
i,T+1

end for i

Calculate the portfolio value ȳ
(r,s)
T+1 := I−1

∑I
i=1 y

(r,s)
i,T+1

end for s

Calculate V aR(1−α)∗100%(ȳ
(r)
T+1), i.e. the empirical α quantile of

ȳ
(r)
T+1 := (ȳ

(r,1)
T+1, . . . , ȳ

(r,S)
T+1 )′.

end for r

The true predictive VaR of the simulated data is obtained by using the true parameter values

instead of the MCMC samples in Algorithm 2. We used S = 100000 to simulate from the

one step ahead posterior predictive distribution of the VaR and S = 10000000 to get an

approximation for the true predictive VaR. Sensitivity analyses showed that S is chosen large

enough to get sufficient precision.

Appendix D. Prior specification for the real data applications

Prior distribution Mean 0.5% 2.5% 50% 97.5% 99.5%
ωi ∼ N(0,∞)(0, 0.01/φ(0)) 0.02 0.00016 0.00079 0.01691 0.05618 0.07036
αi ∼ N(0,∞)(0, 0.035/φ(0)) 0.07 0.00055 0.00275 0.05917 0.19664 0.24627
βi ∼ N(0,∞)(0, 0.46/φ(0)) 0.92 0.00723 0.03613 0.77772 2.58445 3.23665

ν
(G)
i ∼ Exp(2, 1/5) 7 2.0 2.1 5.5 20.4 28.5

ν
(C)
j ∼ Exp(2, 1/5) 7 2.0 2.1 5.57 20.4 28.5

Table D.10: Prior specification with corresponding prior means and quantiles.
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