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1. Introduction

The central subject of interest of this thesis is the class of optimal control problems with
partial differential equations and additional state constraints. The focus lies especially on
the construction of numerical solution algorithms to find an approximate solution to such a
problem, and the effectiveness of such algorithms.

The central problem class features many different ingredients, over which we give a short
overview here. The general problem form considered is

(P )


min J(q, u) q ∈ Q, u ∈ X
u = S(q)
G(u) ≥ 0 .

(1.1)

Here, u is called the state function, searched for in the state space X, and q the control variable,
searched for in the control space Q. In the field of optimal control, X is usually considered
a function space. The domain of the state functions might be a spatial domain Ω ⊂ Rn
(n ∈ {2, 3}) or in the case of time-dependent problems a domain in time and space I×Ω with a
given time interval I = (0, T ). The operator S is called control-to-state operator. It represents
the solution operator of a partial differential equation, which in turn is called the state equation.
In this thesis, elliptic and parabolic state equations are considered. The problem (P ) is then
called elliptic, or parabolic optimal control problem (OCP), respectively. The functional
J : Q×X → R is called the cost functional, and the function G is the constraint function for
the state. With all these ingredients present, (P ) is called a state constrained optimal control
problem. Without the condition G(u) ≥ 0 one would speak of an unconstrained optimal control
problem, which can be regarded as the basis class of optimal control problems.

Unconstrained optimal control problems have been of interest in applied mathematics for some
time now. A lot of practical problems, their origin ranging from civil engineering via optics to
chemical engineering and biological applications, can be modeled as optimal control problems
with partial differential equations. This is not surprising, since most technical processes allow
for user input after the initial setup, and guiding the system’s output to a user-determined
configuration is a natural desire as well. Also understandable is the possible need for bounds
on input and output variables. For most technical problems, only certain amounts of input are
possible, and concerning the output, certain states might lead to catastrophic scenarios that
must be avoided at all cost.

This thesis deals with state constrained problems, which can be motivated in different ways.
From the viewpoint of the field of optimization, (P ) can be seen as an optimization problem
on Q × X, with a partial differential equation as an equality constraint, and a pointwise
inequality constraint. The motivation to consider this problem class becomes possibly clearer
from an applicational point of view. Suppose that a scientific or technical process of interest
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1. Introduction

is described by a partial differential equation. For notational purposes the quantities which
are considered influencable are gathered in the control variable q. On the other hand, the
quantities that are regarded as descriptive of the process’ status, are gathered in the state
function u. We think of the partial differential equation in such a way that u is the solution
depending on q, and thus write formally u = S(q). The quest is now to find the pair (q, u)
of a control q and corresponding state u = S(q) that is the most favorable to the user. By
means of the condition G(u) ≥ 0 with a properly modeled function G the user can rule out
some pairs completely. Amongst the remaining pairs, favorability is determined by a given
functional J(q, u). This functional is modeled in such a way that a more favourable pair (q, u)
is mapped to a smaller value of J .

Optimal control problems with partial differential equations have been subject of investigation
for some time, see [63] for an early main work considering elliptic, parabolic and hyperbolic
optimal control problems. Numerical methods to solve these OCPs are usually comprised of
two steps, a discretization by the finite element method, and the solution of a discrete optimal
control problem. These steps are connected in an overall algorithm, so that a more or less
sophisticated sustained refinement of the discretization in the former step leads to optimal
solutions in the latter step which converge to the solution of the continous problem (P ).
For elliptic OCPs without additional constraints solution methods have been discussed in
[32, 38] and many following publications. A priori discretization error estimations have been
derived for a number of settings and discretization methods. The most basic result considers a
distributed linear-quadratic optimal control problem on a convex domain of computation. By
using discretizations with linear finite elements described by uniform meshes with discretization
parameter h, the order of convergence of the finite element solutions qh to the exact one
can be proven to be h2 in the L2-norm if either the variational discretization concept or a
postprocessing step is used, see [51, 71].
Parabolic problems pose more difficulties even for proving the existence of optimal solutions,
see [35, 63, 92]. Solution techniques have been developed and for the most basic case of
distributed control, Q = L2(I×Ω), the linear-quadratic optimal control problem discretized by
linear finite elements in space, uniform with discretization parameter h, and the dG(0)-method
in time, uniform with discretization parameter k, the convergence order of h2 + k has been
established for the controls qkh to q in the L2-norm. A proof can be found in [67], as a special
case of a more general result allowing for finite elements of different order.

A neighboring problem class frequently under consideration is the class of control constrained
optimal control problems. Here it is the control q that is required to fulfill the pointwise
constraint, G(q) ≥ 0, rather than the state u. The presence of this additional constraint may
reduce the regularity of the optimal solution of the OCP. This, in turn, reduces the order of
convergence of the numerical solution. An overview over different situations can be found
in [64]. A counter-measure to speed up the performance, or even restore the full convergence
order is the construction of locally refined meshes, that take the structure of the problem into
account. A widely used approach is the use of adaptive methods, where the discretization
error is estimated a posteriori on a coarse starting grid, and expressed in local contributions.
By the principle of equilibrating these error contributions, a local refinement algorithm is set
up. One example, where the a posteriori estimation assesses the error in the natural norms of
the involved spaces, can be found in, e.g., [46, 62]. A different approach is called goal oriented
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adaptivity, here the error in terms of a functional of interest, for example the cost functional,
is estimated, see, e.g., [94].

In the problem class (1.1) that is in this thesis’ center of attention, major care has to be put on
the state constraint. In comparison to unconstrained optimal control problems, the introduction
of the state constraint has the direct effect of a reduced regularity of the optimal solution, see,
e.g., [17]. This has further consequences for the construction of solution algorithms for (1.1).

Consider first the solution of one discretized optimal control problem only. A direct approach,
yielding exploitable optimality conditions by incorporating the state constraint by the Lagrange
formalism, shows that the Lagrange multiplier, denoted by µh, is in general a regular Borel
measure. This means that a direct numerical treatment of this problem needs to face the
handling of Borel measures, and a simple transfer of the methods for unconstrained optimal
control problems is not possible. The method of choice to solve the discretized OCPs will be a
primal-dual active set method, introduced in [14].
An alternative approach is the regularization of the problem (P ) on the continous level. This
means the construction of problems (Pγ), with γ ∈ R being the regularization parameter,
whose solution exhibits the higher regularity, but is close to the original solution in the sense
that the regularized solutions converge to the original solution with γ →∞. These regularized
problems can subsequently be numerically solved with methods for unconstrained OCPs. This
approach leaves the question of how to balance the driving of γ →∞ and h→ 0 (and possibly
k → 0) to achieve maximum effectivity of the method. Concrete choices of regularization are
the Moreau-Yosida-regularization, see [49, 54], and barrier methods, see [85, 86]. In this thesis,
the latter method is investigated.

Apart from the optimization on one discretization level, consider now the process of refinement
of the discretization. A second consequence of the reduced regularity is again the reduction
of the achievable order of convergence of the discretization error in terms of h → 0, k → 0
if uniform discretization is used, see, e.g., [26, 69]. Thus it is desirable to set up a mesh
refinement strategy to improve the convergence. In this thesis, a goal-oriented a posteriori
error estimator is derived by the dual weighted residual method, see [7] for an overview. For
problem (1.1) the error estimator is dissected into the contributions, if they are present,

η := ηh + ηk + ηd + ηγ , (1.2)

which are the spatial discretization error, temporal discretization error, control discretization
error, and regularization error. Each of these contributions is then further split up into cellweise
or intervall-wise contributions, where applicable. The so obtained error indicators are used in
the execution of the mesh refinement strategy. In the construction of a comprehensive solution
algorithm for state constrained optimal control problems one must be aware that regularities
and convergence orders can also be reduced due to other phenomena, for example boundary
properties like reentrant corners or edges, or nonsmooth boundaries, or singularities in the
data, like jumping coefficients. If the spatial location of these singularities is known, they
can be treated with a priori knowledge, e.g. mesh grading techniques, see, e.g., [89] and the
references therein. The spatial location of the singularities due to the state constraints however
is a priori unknown. Therefore it is advantageous to use a posteriori techniques.

An additional goal of investigation in this thesis is the treatment of a large-scale real-world
problem, which originates from the field of civil engineering. For structures made of concrete,
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1. Introduction

the time span of the first few days after the concrete pour is called young concrete phase. During
that phase the concrete solidifies, and its thermomechanical properties develop. Amongst
others, tensile strength is built up with time. The exact progression depends on the temperature
field inside the structure, which is changing due to chemically produced heat and heat outflow.
These phenomena in turn depend on initial and boundary conditions and material parameters.
Counteracting to this tensile strength, tensile stresses are building up. Should at any point
the tensile stress exceed the strength, the concrete will crack, which is seen as an event that is
to be avoided. The goal is to choose boundary conditions and material in such a way that no
cracks occur.
This practical problem can be modeled as an optimal control problem. The prohibition of cracks
translates as a constraint on the state variable. The state equation is a parabolic equation
coupled with one ordinary differential equation in every spatial point. So the problem does
not fit in the category (1.1) strictly speaking, but on the other hand the additional ordinary
differential equation can be treated by standard methods. Since the concrete structures are
generally large-scale and nonconvex, a goal-oriented discretization is required. Thus the
numerical treatment of this problem by the methods developed in this thesis assures the
necessary effectivity.

Summarizing, the goal of the thesis is the efficient numerical solution of optimal control
problems with elliptic or parabolic state equation and pointwise state constraints, with all
aspects mentioned above to be taken into consideration. Preferably large problem classes
are set up. The two numerical solution strategies, amounting to the primal-dual active set
strategy and to an interior-point method, are developed for a given discretization. For both
these strategies a posteriori error estimators are derived, and used to guide an adaptive mesh
refinement algorithm.

The thesis is divided into the following chapters:
In Chapter 2 the necessary basic notation is introduced, as well as the basic form of elliptic and
parabolic state constrained optimal control problems. This includes the general formulation
of elliptic and parabolic state equations, state constraints and cost functionals. Assumptions
that allow for the proof of existence and uniqueness of optimal solutions are given. Common
concepts of numerical solution strategies are introduced: for unconstrained optimal control
problems the process of deriving optimality conditions, discretization and optimization meth-
ods are described, serving as a starting point for the development of the equivalent steps in
the treatment of state constrained problems. An overview of methods to include the state
constraints is then given, and the strategy for a posteriori error estimation and the adaptive
mesh-refinement algorithm is laid out.
In Chapter 3, these general concepts are concretized for elliptic optimal control problems with
state constraints. The state equation is formulated in a precise setting. For a large problem
class the unique existence of optimal solutions is proven. Necessary optimality conditions
of first order are given. The finite element discretization is described in detail, a continous
Galerkin method of order s is used to discretize the state space. For this discretized problem
the optimization is carried out with the primal-dual active set method. The a posteriori error
estimator is derived, consisting of the spatial part ηh and the control discretization part ηd.
With subsequent splitting into the respective cellwise error indicators, the adaptive mesh
refinement algorithm is set up. Finally the interior point method as alternate optimization
method is introduced briefly.
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Chapter 4 deals with parabolic state constrained optimal control problems. Giving a precise
setting again allows to prove existence of an optimal solution and necessary optimality condi-
tions for it. The regularization by barrier functions is introduced, and optimality conditions of
the regularized problem are derived. Further, the finite element discretization in space and
time is carried out, using a continous Galerkin method of order s in space as before, and the
discontinous Galerkin method in time. The interior point optimization algorithm is applied.
The a posteriori error estimator derived distinguishes between the influences of regularization,
ηγ , and temporal, ηk, spatial, ηh, and control discretization, ηd. Implementational aspects
are considered in Chapter 5. A combination of all ingredients to a comprehensive solution
algorithm is given, considerations on the choice of parameters are made. Improvements of
subalgorithms in special situations are discussed.
Numerical experiments to validate the theoretical results and the advised optimization algo-
rithms of this thesis are carried out in Chapter 6. Combinations of elliptic and parabolic,
linear and nonlinear test problems with different structures of the active set are considered.
The efficiency of the error estimator itself, and its parts ηγ , ηk, ηh, ηd is evaluated. Also the
adaptive refinement strategy driven by the local error indicators is compared to the uniform
refinement strategy by the respective convergence rates.
Chapter 7 contains the application of the methods discussed in this thesis to the real-world
application of optimal control of young concrete thermo-mechanical properties. The model
functions for the different physical phenomena are introduced and the possibilities how to
assemble an optimal control problem are shown. The unique solvability of the state equation
and the existence of an optimal control is proven. Finally, several numerical examples are
considered and solved by the methods developed in this thesis.
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2. Basic Concepts in Optimal Control

2.1. Problem setting

2.1.1. Notation

In the following, we will introduce the basic notation used throughout the thesis, and describe
the considered problem class in a rather abstract formulation. Let Ω ⊂ Rn, n ∈ {2, 3} denote a
spatial domain with Lipschitz boundary ∂Ω =: Γ . For a point x ∈ Γ let n(x) denote the outer
unit normal vector of Ω, if it exists. By Lp(Ω), Wm,p(Ω), and Hm(Ω) with 1 ≤ p ≤ ∞,m ∈ R
we denote the usual Lebesgue and Sobolev spaces. The space of continous functions on Ω̄ with
continous derivatives up to m-th order, m = 0, 1, . . . is denoted by Cm(Ω̄), and the dual space
to C0(Ω̄) = C(Ω̄) is identified with the space of regular Borel measuresM(Ω).
The considered time interval is denoted by I = (0, T ) ⊂ R. For any Banach space Z and
time interval [t1, t2] the Lebesgue and Sobolev spaces of time dependent, Z-valued functions
are denoted by Lp([t1, t2], Z),Wm,p([t1, t2], Z), Hm([t1, t2], Z). For a proper definition of these
spaces including Bochner integrals, see, e. g., [99]. If [t1, t2] = I, the interval can be omitted
in the previous notation, and we just write Lp(Z),Wm,p(Z), Hm(Z). Again we identify
C(Ī × Ω̄)∗ = M(I × Ω). The following convention concerning the evaluation of space and
time dependent functions is used: a function v ∈ C(I ×Ω) can be interpreted as an abstract
function v : [0, T ]→ C(Ω), so that it is possible to write both v(t, x) (a number) and v(t) (a
C(Ω)-function) without being ambiguous.
All function spaces can be endowed with a subscript to prescribe a homogenous Dirichlet
boundary condition; the subscript 0 indicates the boundary condition is prescribed on the
whole boundary. If the condition is to be applied to a part Γ1 ⊂ Γ only, the subscript Γ1 is
used.

Let V,H,R be Hilbert spaces equipped with scalar products (·, ·)V , (·, ·)H , and (·, ·)R, respec-
tively, such that V is continously and densely embedded into H. With the dual spaces V ∗ and
H∗ the Gelfand triple V ↪→ H ↪→ V ∗ is formed, assuming an identification of H with H∗ is
possible. This makes it possible to represent functionals in V ∗ with their effect in the duality
pairing 〈·, ·〉V ∗,V by the effect in inner products (·, ·)H . Abbreviations for the most commonly
used scalar and duality products are

(., .) := (., .)H , (v, w)I :=
∫
I

(v(t), w(t))H dt, v, w ∈ L2(I,H),

(·, ·)Ω := (·, ·)L2(Ω), (·, ·)I×Ω := (·, ·)L2(I×Ω),

(·, ·)Γ := (·, ·)L2(Γ ), (·, ·)I×Γ := (·, ·)L2(I×Γ ),

〈·, ·〉 := 〈·, ·〉M(Ω),C(Ω̄), 〈·, ·〉I := 〈·, ·〉M(I×Ω),C(Ī×Ω̄).
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2. Basic Concepts in Optimal Control

Throughout this thesis, parlance and notation will be differentiated depending on the type
of state equation S represents. The first case considers stationary problems, where the state
equation is an elliptic partial differential equation. After the general introduction in this
section, Chapter 3 is devoted to the study of elliptic optimal control problems with state
constraints. Here, the domain of the state functions u ∈ X is Ω̄. The specific choice of the
state space X is done in Chapter 3, as it depends on the properties of (1.1). However, one
basic regularity requirement that needs to be fulfilled simply because of the presence of the
pointwise state constraints, is the continuity of the states on the whole domain. This property
is used as a starting point for the derivation of optimality conditions, see [92, section 6.1], as it
assures that the cone of non-negative functions has interior points. Thus we require

X ⊂ C(Ω̄) for elliptic OCPs. (2.1)

As a second case, time-dependent problems are considered, with the state equation being of
parabolic type. The detailed treatment is done in Chapter 4. As the state is now time and
space dependent, the domain of the state functions u ∈ X is Ī × Ω̄. Including the continuity of
the state function on the computational space-time domain, the state space has to be chosen
according to

X ⊂ C(Ī × Ω̄) for parabolic OCPs. (2.2)

For the choice of the control space no additional regularity requirements are made. The
domain of the control functions q ∈ Q is a subset of Ω̄ for elliptic optimal control problems,
and a subset of Ī × Ω̄ for parabolic optimal control problems. The actual choice depends
on the problem structure, specifically the way in which q enters the state equation. In the
case of parameter control, it is also possible to choose Q ⊂ Rk or Q ⊂ L2(Rk) as a subspace,
respectively.

2.1.2. State equation

The state equation is frequently introduced in different formulations. The classical form
employs a differential operator that will be denoted by A here. We will first introduce the
state equation for the elliptic case. Let a differential operator of second order

A : Q× V → V ∗ (2.3)

and a right hand side f ∈ V ∗ be given. They form the state equation in weak formulation:

A(q, u) = f. (2.4)

Remark 2.1. Thinking of classical situations in PDE analysis, the natural spaces employed in
the formulation in general contain discontinous functions. For example, the classical Poisson
problem is formulated in the space H1

0 (Ω). We can not choose this space as state space, since
this choice would not fulfill (2.1). Instead, the classical formulation with the natural space
denoted by V is set up, as done in (2.3). Then X is chosen as a subspace of V in an way that
secures continuity of the states.
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2.1. Problem setting

The weak formulation (2.4), being an equation in V ∗, can be concretized by testing with all
functions ϕ ∈ V . As mentioned before, the right hand side is hereby represented as a scalar
product in H. Introducing the form

a : Q× V × V → R, a(q, u)(ϕ) := 〈A(q, u), ϕ〉V ∗,V (2.5)

the weak formulation of the state equation is given as

a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ V. (2.6)

Remark 2.2. In the notation a(·)(·) the two pairs of parentheses are meant to indicate any
dependence of the function a on the argument(s) in the first parenthesis, but a linear dependence
on the argument(s) in the second one.

Two common examples for the state equation and the choices of the involved spaces are
considered next:

Example 2.1. In distributed control, q may directly enter the right hand side of the partial
differential equation. As linear state equation we might consider

−∆u(x) = q(x) ∀x ∈ Ω
u(x) = 0 ∀x ∈ Γ

(2.7)

so that the choice Q = L2(Ω), V = H1
0 (Ω), H = L2(Ω), a(q, u)(ϕ) = (∇u,∇ϕ)Ω − (q, ϕ)Ω,

and f = 0 fits into the framework.

Example 2.2. An example of a boundary control problem uses the control q entering the
right hand side of a Neumann boundary condition. We then speak of Neumann control. As
linear state equation we might consider

−∆u(x) + u(x) = f(x) ∀x ∈ Ω
∂nu(x) = q(x) ∀x ∈ Γ

(2.8)

with a given function f ∈ L2(Ω) so that the choice Q = L2(Γ ), V = H1(Ω), H = L2(Ω), and
a(q, u)(ϕ) = (∇u,∇ϕ)Ω + (u, ϕ)Ω − (q, ϕ)Γ fits into the framework.

In order to choose the state space X in accordance with (2.1) and Remark 2.1 we make the
assumption that the actual regularity of the state is better than u ∈ V . This assumption
is justified in many practical situations, and demonstrated in the previous two examples.
In Example 2.1 u ∈ H2(Ω), and in Example 2.2 u ∈ H

3
2 (Ω) can be shown in the case of convex

polyhedral domains.

Assumption 2.1. For every q ∈ Q, every state u ∈ V solving the state equation (2.6) has
actually the regularity

u ∈W 1,p(Ω) with some p > n. (2.9)

9



2. Basic Concepts in Optimal Control

This assumption assures the desired regularity u ∈ C(Ω̄) by utilizing the limiting case in the
well known embedding theorem

W 1,p(Ω) ↪→ C(Ω̄) ∀p > n.

The final choice for the state space is thus

X := V ∩W 1,p(Ω) state space for elliptic OCPs. (2.10)

This choice yields a consequence for the differential operator A: in (2.3), we had introduced the
operator as A : Q× V , but Assumption 2.1 implies that a definition of A : Q×X would have
sufficed. To find out the consequences of a restriction of the domain of A, assume functions
q ∈ Q, u ∈W 1,p(Ω) given and consider e.g. from Example 2.1 the term

a(q, u)(v) =
∫
Ω

(∇u · ∇v − qv) .

This term is well-defined for any function v ∈ W 1,p′(Ω), such that in this case A(q, u) ∈
(W 1,p′(Ω))∗ can be allowed. This motivates the following assumption for the general case:
Assumption 2.2. The restriction of A to states that actually possess the regularity u ∈ X
restrains the image of A according to

A : Q×X → Z∗ := (W 1,p′(Ω))∗. (2.11)

Accordingly we assume f ∈ Z∗.

The space Z := W 1,p′(Ω) is called dual space. With the according redefinition of a,

a : Q×X × Z → R, a(q, u)(ϕ) := 〈A(q, u), ϕ〉Z∗,Z , (2.12)

the formulation of the elliptic state constrained optimal control problem reads

(Pell)


min J(q, u) q ∈ Q, u ∈ X

a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ Z
G(x, u(x)) ≥ 0 ∀x ∈ Ω

. (2.13)

Next, parabolic state equations are considered. The usual way to formulate a parabolic state
equation in weak form is

∂tu(t) +A(q(t), u(t)) = f(t) ∀t ∈ I,
u(0) = u0(q(0)). (2.14)

To incorporate the potential time dependency of the control variable, the construction of Q is
done in the following way: The spatial layers of the controls q(t) are elements of the space
R. The control space Q can then be chosen as a subspace of L2(I,R). Thus, in (2.14) the
differential operator of second order is defined as A : R × V → V ∗ first, and u0 is a given
operator that allows the control to enter the initial condition. The states u are also time
dependent, so as a basis for the definition of X consider

W (I, V ) := {v ∈ L2(I, V ) : ∂tv ∈ L2(I, V ∗)}. (2.15)

Similar to the elliptic case, an assumption on the regularity of the state and the range of the
differential operator need to be made:

10



2.1. Problem setting

Assumption 2.3. For every q ∈ Q, every state u ∈W (I, V ) solving the state equation (2.14)
has actually the regularity

u ∈ Ls(I,W 1,p(Ω)) ∩W 1,s(I, (W 1,p′(Ω))∗) (2.16)

for a number p > n like above, and s > 2p
p−n > 2.

This assures the continuity u ∈ C(Ī × Ω̄), as the embedding

Ls(I,W 1,p(Ω)) ∩W 1,s(I, (W 1,p′(Ω))∗) ↪→ C(Ī × Ω̄)

holds for coefficients satisfying s > 2p
p−n , proven in [2, 91]. Thus the state space for parabolic

OCPs is chosen as

X = W (I, V ) ∩ Ls(I,W 1,p(Ω)) ∩W 1,s(I, (W 1,p′(Ω))∗). (2.17)

Similar to the elliptic case, the necessary regularity of functions v for the term∫
I
(∂tu v +∇u · ∇v)dt

to be well-defined is used to motivate

Assumption 2.4. The restriction of A to states that actually possess the regularity u(t) ∈
W 1,p(Ω) restrains the image of A according to

A : R× (V ∩W 1,p(Ω))→ (W 1,p′(Ω))∗. (2.18)

Accordingly we assume f(t) ∈ (W 1,p′(Ω))∗.

The necessary temporal regularity is brought in via the weak formulation: Defining the space

Z := Ls
′(I,W 1,p′(Ω)) ∩W 1,s′(I, (W 1,p)∗), (2.19)

the forms

ā : R× (V ∩W 1,p(Ω))×W 1,p′(Ω)→ R, ā(q(t), u(t))(ϕ) = 〈A(q(t), u(t)), ϕ〉W 1,p(Ω),W 1,p′ (Ω)

and
a : Q×X × Z → R, a(q, u)(ϕ) =

∫
I

ā(q(t), u(t))(ϕ(t))dt

are well-defined. Allowing for right hand sides f ∈ Z∗ and initial conditions u0 : R →
V ∩W 1,p(Ω) allows to set up the weak formulation of the state equation in the following
form

(∂tu, ϕ)I + a(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈ Z. (2.20)

All together, the formulation of the parabolic state constrained optimal control problem reads

(Ppar)


min J(q, u) q ∈ Q, u ∈ X
(∂tu, ϕ)I + a(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈ Z
G(t, x, u(t, x)) ≥ 0 ∀t ∈ [0, T ], x ∈ Ω̄.

(2.21)
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2. Basic Concepts in Optimal Control

Example 2.3. For the choice R = L2(L2(Ω)), Q = R, V = H1
0 (Ω), H = L2(Ω) a state

equation representing distributed control is
∂tu(t, x)−∆u(t, x) = q(t, x) in I ×Ω,

u(t, x) = 0 on Γ × [0, T ],
u(0, x) = 0 on Ω

(2.22)

so that a(q, u)(ϕ) =
∫
I

∫
Ω

(∇u(t, x) · ∇ϕ(t, x)− q(t, x))dx dt. We can see that Assumption 2.4 is

justified, since for any u ∈ X the number a(q, u)(ϕ) is well-defined for any ϕ ∈ Z, because the
lower regularity of ϕ is countered by the higher regularity in the definition of X, now also in
time.

The last point of this section covers both elliptic and parabolic problems again. In order
to formulate an optimal control problem of form (1.1) the state equation needs to possess a
unique solution u for every control q. The abstract forms (2.6) and (2.20) do not imply unique
solvability. Furthermore, the approach that will be chosen for the evaluation of optimality
conditions requires S to be twice differentiable.

Assumption 2.5. The control-to-state operator

S : Q→ X, S(q) = u

is well-defined and twice continously differentiable.

This assumption can be proven for large classes of state equations, see the specific chapters for
elliptic and parabolic problems.
Remark 2.3. The theory of optimal control of hyperbolic equations differs substantially from
the one for elliptic or parabolic OCPs and is also not as advanced yet. In this thesis, hyperbolic
equations will not be considered. Basic theory can be found for example in [63, 72, 73] or
the survey article [102] and the references therein. For numerical treatment, see [37, 40, 56],
amongst others.

2.1.3. State constraints

Throughout this thesis, the state constraint is given in abstract form by the function G, whose
domain depends on the type of the optimal control problem as follows

G : Ω̄ ×R→ R or G : Ī × Ω̄ ×R→ R

and is often represented by the pointwise formulation

G(x, u(x)) ≥ 0 ∀x ∈ Ω̄ or G(t, x, u(t, x)) ≥ 0 ∀t ∈ Ī , x ∈ Ω̄. (2.23)

An alternative formulation makes use of the admissible set, that is

Xad = {u ∈ X : G(x, u(x)) ≥ 0∀x ∈ Ω̄} or Xad = {u ∈ X : G(t, x, u(t, x)) ≥ 0 ∀t ∈ Ī , x ∈ Ω̄}.
(2.24)
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2.1. Problem setting

The state constraint then simply reads

u ∈ Xad. (2.25)

States u ∈ Xad are called admissible. The notion of admissibility of controls is not used in this
thesis, as it refers to constraints of the control variable by an explicitly given set Qad ⊂ Q. In
order to execute the error estimation process later, we make the following assumption:

Assumption 2.6. The constraint function G is twice differentiable in the last variable, the
control u. Furthermore, G is continous in the remaining variables.

This assures that the concatenation G(·, u(·)) is a continous function, G(·, u(·)) ∈ C(Ω̄) or
G(·, u(·)) ∈ C(Ī × Ω̄), respectively. This observation retrospectively justifies the formulation
G(u) ≥ 0 in (1.1), as we can now identify the term G(u) with a continous function from C(Ω̄)
or C(Ī × Ω̄). The Assumption 2.6 is also useful since it guarantees the closedness of Xad in X,
which is proven next:

Lemma 2.7. Let G be continous. Then the set Xad is closed in X.

Proof. We give the proof only for the elliptic case, the parabolic case can be proved in an
analogous way. Consider a sequence un → u in X. Since X ↪→ C(Ω̄) there also holds un → u
in C(Ω̄), so that there exists a constant M > 0 such that

‖u‖C(Ω̄) < M, ‖un‖C(Ω̄) < M ∀n ∈ N.

Since now G : Ω̄ × [−M,M ] → R is uniformly continous in the second variable there holds
‖G(·, un(·))−G(·, u(·))‖C(Ω̄) → 0 or

G(·, un(·))→ G(·, u(·)) in C(Ω̄).

Since G(·, un(·)) ≥ 0 on Ω̄ it follows that G(·, u(·)) ≥ 0 on Ω̄ giving the claim of the lemma.

Furthermore we require

Assumption 2.8. The admissible set Xad is convex.

In practical applications this assumption is often justified, as it means that convex combinations
of admissible states are admissible themselves.
The next lemma makes use of the fact that functions with G(·, u(·)) = 0 for some points are
still included in Xad, a formulation of G(u) > 0 in the definition of Xad above could lead to a
non-closed set.

Frequently state constraints are given explicitly, without the use of the function G. We will
give a few examples of common forms of state constraints next, but in the remainder of the
thesis the abstract notation involving G will be kept.
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2. Basic Concepts in Optimal Control

• The one-sided pointwise state constraint

u(x) ≤ ub(x) ∀x ∈ Ω̄ or ua(x) ≤ u(x) ∀x ∈ Ω̄

with given functions ua, ub : Ω → R in the elliptic case. Equivalently

u(x, t) ≤ ub(x, t) ∀(x, t) ∈ Ω × [0, T ] or ua(x, t) ≤ u(x, t) ∀(x, t) ∈ Ω × [0, T ]

in the parabolic case with given functions ua, ub : Ω × [0, T ]→ R.

• Generalizing the abstract formulation (2.23), more than one constraint can be incorpo-
rated by using a function G : Ω̄ ×R→ Rk. As the additional constraints can be treated
analog to the first distributed constraint, we will for the sake of simpler notation restrict
ourselves to one constraint.

• two-sided constraints

ua(x) ≤ u(x) ≤ ub(x) or ua(x, t) ≤ u(x, t) ≤ ub(x, t)

as a special case of the previous one, that frequently occurs in practical applications.

These types of constraints fulfill the assumptions discussed above. Constraints on the state
that are not considered in this thesis include

• constraints on the gradient, like ‖∇u‖ ≤ CG with CG > 0 a given number, or constraints
that involve other differential operators. E.g. for gradient state constraints in elliptic
optimal control problems see [25, 100].

• state constraints that are posed only on a subset of the domain, e.g.

u(x) ≤ ub(x) ∀x ∈ Ω1 ⊂ Ω,

where Ω1 has a positive distance to the boundary of the domain, dist(Ω1, ∂Ω) ≥ d > 0.
This makes it possible to prove higher regularity of the state near the boundary, which
can be utilized in the error estimation process, see [57, 58].

• constraints in single points

G(xi, u(xi)) ≥ 0 or G(ti, xi, u(ti, xi)) ≥ 0 ∀i = 1, . . . , l

for some given points xi ∈ Ω̄ and possibly ti ∈ Ī. See, e.g., [19, 68].

• constraints on the control variable, or mixed constraints, like for distributed control

q(x) + u(x) ≤ ub(x).
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2.1. Problem setting

2.1.4. Cost functional

In order to formulate an optimal control problem we assume a cost functional J : Q×X → R

to be given. (For practical purposes it suffices to have J : Q×Xad → R given.) While for the
purpose of this thesis J will be left in this abstract form, we remark that in many practical
applications, and thus in many scientific articles, J admits a special structure,

J(q, u) = J1(q) + J2(u),

it is assumed to be the sum of control costs J1(q) und state costs J2(u). A common representative
of this structure is the tracking type functional: Given a function ud ∈ X the OCP can be
interpreted as the task of guiding the state u as close to the desired state ud as possible. So
the aim is to find a control q such that the distance ‖u − ud‖2 is as small as possible. The
utilized norm is here often the L2-norm.
In order to secure the coercivity of j, often a regularization term ‖q‖2Q is added, weighed by a
typically small factor α > 0. So the most commonly used cost functional takes the form

J(q, u) = 1
2‖u− ud‖

2
L2(Ω) + α

2 ‖q‖
2
Q or J(q, u) = 1

2‖u− ud‖
2
L2(Ω×I) + α

2 ‖q‖
2
Q,

respectively, called tracking type functional.

For parabolic problems another practically interesting functional is end time control: u is
controlled to reach a desired profile in the end time point, so that we choose

J(q, u) = ‖u(T )− ud‖2H + α

2 ‖q‖
2
Q

with a given ud ∈ H.

The common approaches in the numerical solution process build on optimality conditions that
require differentiability of the cost functional. Throughout the thesis it will be thus assumed,
that J is Frechet differentiable. For the error estimation process higher differentiability is
required, the necessary assumptions on the cost functional will be indicated at the appropriate
places.

Further assumptions on J which assure the existence of a solution of (P ) will be discussed in
the following section. Let us just anticipate that a cost functional of tracking type possesses
all necessary properties. This section is concluded by the an alternative description of
problem (1.1), that utilizes the reduced cost functional: provided the unique solvability of the
state equation, define

j : Q→ R j(q) := J(q, S(q)). (2.26)

Then the optimization problem (1.1) can be represented in the reduced form:

(Pred)
{

min j(q) q ∈ Q
S(q) ∈ Xad

. (2.27)
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2. Basic Concepts in Optimal Control

2.2. Existence and uniqueness of optimal solutions

In this section we will discuss conditions under which a solution of the optimal control
problem (1.1) exists, and is unique. For the proof, some assumptions on the cost functional J
and the control-to-state operator S are made. Due to the general formulation of (1.1), these
assumptions may seem unnatural at first, however they are motivated by frequently considered
concrete realizations of the general problem class.

The first question is for the continuity of the control-to-state operator. This property is
desirable, as one would hesitate to call a problem with a noncontinous assignment between the
control and the state of the system a "control problem". In the proof of existence, a stronger
assumption on S is needed.

Assumption 2.9. Let qn ⇀ q converge weakly in Q. Then it holds that

S(qn) ⇀ S(q) in the sense of X
S(qn)→ S(q) in the sense of L2(Ω) or L2(I ×Ω), respectively.

A strong convergence S(qn)→ S(q) in X is unrealistic for frequent state equations, but As-
sumption 2.9 can often be shown.

The second quantity to consider is the cost functional. We will need the following properties
for our considerations, see, e.g., [23] for the notation:
A functional f : Q→ R is said to be weakly lower semicontinous, if for any sequence (qn) ⊂ Q
holds

qn ⇀ q in Q =⇒ lim inf
n→∞

f(qn) ≥ f(q), (2.28)

and it is said to be coercive over Q, if

∃α > 0, β ∈ R : f(q) ≥ α‖q‖Q + β ∀q ∈ Q. (2.29)

If the cost functional can be dissected into control cost and state cost, we make the assump-
tion:

Assumption 2.10. The cost functional takes the form

J = J1(q) + J2(u).

The functional J1 is continous from Q to R and convex, and J2 is continous from L2(Ω) to R.

In the case where J1 is a regularization term J1(q) = α‖q‖2Q, α > 0, see Section 2.1.4, and J2
is bounded from below, the reduced cost functional j = J1 + J2 ◦ S is coercive.
A further assumption for the formulation of a meaningful OCP that possesses an optimal
solution is the following:

Assumption 2.11. There exists a control q∗ ∈ Q such that S(q∗) ∈ Xad.

Then we can prove the following general existence theorem:
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2.2. Existence and uniqueness of optimal solutions

Theorem 2.12. Consider the abstract optimization problem in formulation (1.1), with the
spaces Q and X as discussed in Section 2.1. Let S : Q→ X be properly defined and continous
according to Assumption 2.9. The admissible set Xad shall be closed and fulfill Assumptions 2.8
and 2.11. Let J be a functional according to Assumption 2.10 with a corresponding reduced
functional j that is coercive. Then there exists a globally optimal solution q̄ to (1.1).

Proof. Since there exists an admissible control, and j is bounded from below due to (2.29) it
follows that there exists an infimum value of the cost functional

j̄ := inf
q∈Q : S(q)∈Xad

J(q, S(q)) > −∞. (2.30)

Consequently there exists a sequence qn ∈ Q such that S(qn) ∈ Xad and j(qn)→ j̄. Coercivity
of j gives for some K > 0, n0 ∈ N

‖qn‖Q < K ∀n > n0,

such that we can extract from qn a weakly convergent subsequence, for simplicity here also
denoted by qn, with qn ⇀ q̄. This control q̄ is a candidate for the optimal solution.
Consider the sequence of associated states un = S(qn). Assumption 2.9 gives un ⇀ S(q̄) =: ū.
For the next step, from [92, Theorem 2.11] it is concluded that since Xad is convex and closed
in X, it is also weakly sequentially closed. The definition of this property is that every weak
limit of un ∈ Xad is itself in Xad, so it is shown that ū ∈ Xad.

Again due to Assumption 2.9 this gives un → ū in L2(Ω) or L2(I ×Ω). With Assumption 2.10
this yields instantly convergence of the values J2(un), and the weak lower semicontinuity of J1
implied by the same assumption then gives

J(q̄, ū) = J1(q̄) + J2( lim
n→∞

un) ≤ lim inf
n→∞

J1(qn) + lim
n→∞

J2(un) = lim
n→∞

J(qn, un) = j̄.

In order to prove uniqueness, an additional assumption needs to be made, e.g. by using the
property of strong convexity of the functional j : Q→ R over Q, which means that

j(λq1 + (1− λ)q2) < λj(q1) + (1− λ)j(q2) ∀λ ∈ (0, 1) ∀q1 6= q2 ∈ Q. (2.31)

Theorem 2.13. Consider the situation of Theorem 2.12. Let additionally j be strongly convex.
Then the optimal control q̄ is unique.

Proof. Assume q̄1 6= q̄2 are solutions of (1.1), λ ∈ (0, 1) arbitrary. This would lead to the
contradiction

j(λq̄1 + (1− λ)q̄2) < λj(q̄1) + (1− λ)j(q̄2) = j̄.

In the following part of this thesis, dealing with the numerical approaches, locally optimal
solutions are searched, i.e. controls q̄ ∈ Q with S(q̄) ∈ Xad such that

∃ neighborhood Q0 of q̄ s.t. j(q̄) ≤ j(q) ∀q ∈ Q0 with S(q) ∈ Xad, (2.32)

as these can be characterized well and in an accessible form.
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2. Basic Concepts in Optimal Control

2.3. Discretization and optimization algorithms for problems
without pointwise constraints

The upcoming section will give an overview over the adaptive numerical solution of optimal
control problems without pointwise constraints. The methods of optimization and discretization
widely employed to these problems are not directly transferable to the state constrained
problem (1.1). But they form the basis for the development of such algorithms, which will be
derived in Chapter 3 (elliptic problems) and Chapter 4 (parabolic problems).

The class of problems without additional pointwise constraints central to this section is

(P̄ )
{

min J(q, u) q ∈ Q, u ∈ V
u = S(q) .

(2.33)

The concrete formulation of its elliptic variant uses the form a : Q× V × V → R as defined
in (2.5). However the omittance of the pointwise state constraints removes the necessity of
securing continous state functions at this point. Thus the space V can be left as the state
space and the formulation of the unconstrained elliptic optimal control problem is

(P̄ell)
{

min J(q, u), q ∈ Q, u ∈ V
a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ V. (2.34)

Similarly, in the unconstrained parabolic optimal control problem, the state space is chosen as
W (I, V ), such that the problem as a whole reads

(P̄par)
{

min J(q, u), q ∈ Q, u ∈W (I, V )
(∂tu, ϕ)I + a(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈W (I, V ).

(2.35)
While the derivation of the optimality conditions is discussed in many sources, e.g., [92], the
approach for the evaluation of derivatives is detailed, e.g., in [65].

2.3.1. Optimality conditions

A first-order optimality condition can be shown easily.

Lemma 2.14. If q̄ ∈ Q is a locally optimal solution of the problem (2.34) or (2.35), and the
reduced cost functional j(q) = J(q, S(q)) is Gateaux differentiable in the point q̄, then there
holds

j′(q̄)(δq) = 0 ∀δq ∈ Q

Proof. See [65].

This result can not be carried over to the state constrained problem (2.27). The reason is
that the proof considers for every direction δq ∈ Q the points q̄ + λδq. For state constrained
problems, there may be directions δq such that the point q̄ + λδq is not feasible for any λ from
an interval (0, λ0) with some λ0 > 0. The proof could only be transferred under the additional
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2.3. Discretization and optimization algorithms for problems without pointwise constraints

assumption that q̄ is feasible together with a neighborhood. This assumption would lose out
on the crucial situation of an active state constraint.

Since in general the problem (P ) is non-convex, in order to prove first-order optimality
conditions, so called Karush-Kuhn-Tucker conditions, a constraint qualification is needed. In
the following it is assumed that the constraint qualification of Kurcyusz and Zowe holds. A
general formulation of this condition and its application in different settings can be found
in [92, Section 6.1.2]. In the context of the unconstrained optimal control problem here it can
be formulated as follows:

Assumption 2.15. Let q̄ ∈ Q be a locally optimal solution of the problem (2.34) or (2.35).
Then the operator S′(q̄) is a surjective operator.

Remark 2.4. For some types of semilinear elliptic optimal control problems, Assumption 2.15
can be proven regardless, see the example in [92, Page 250].

The optimality condition then reads:

Lemma 2.16. Let (q̄, ū) be a locally optimal point of the unconstrained optimal control
problem (2.34) or (2.35), and let Assumption 2.15 be fulfilled. Then with the Lagrange
functional defined in the elliptic case as

L̄ : Q× V × V → R, L̄(q, u, z) := J(q, u) + (f, z)− a(q, u)(z) (2.36)

and in the parabolic case as

L̄ : Q×W (I, V )×W (I, V )→ R,

L̄(q, u, z) := J(q, u) + (f − ∂tu, z)I − a(q, u)(z) + (u0(q)− u(0), z(0))
(2.37)

the following first-order necessary optimality condition holds: There exists an adjoint state
z̄ ∈ X, such that

L̄′z(q̄, ū, z̄)(ϕ) = 0 ∀ϕ ∈ V (elliptic) or ∀ϕ ∈W (I, V ) (parabolic) (2.38a)
L̄′u(q̄, ū, z̄)(ϕ) = 0 ∀ϕ ∈ V (elliptic) or ∀ϕ ∈W (I, V ) (parabolic) (2.38b)
L̄′q(q̄, ū, z̄)(ψ) = 0 ∀ψ ∈ Q. (2.38c)

Proof. The existence of the adjoint state is detailed in [101]. The display of the conditions
using the Lagrange functional tightens the notation, see also [92] for a discussion of the formal
Lagrange principle.

It is also possible to examine the existence of optimality conditions of second order, see,
e.g., [92], but in this thesis the numerical approach and optimization algorithms rely on the
first-order necessary optimality conditions.
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2.3.2. Evaluation of derivatives

In the last section, Lemma 2.14 gave the optimality condition j′(q̄)(δq) = 0 ∀δq ∈ Q as a
starting point for the solution of the unconstrained problem

(P̄ ) ⇔ (P̄red) min j(q), q ∈ Q (2.39)

So during an iterative algorithm to find q̄, we need to be able to evaluate the first derivative
j′(q)(δq) for the current iterate q in any direction δq. We use the quantities from the Lagrange
approach to find a suitable representation. Thus for the current choice of q we ensure that

u = S(q) is fixed as the solution of the state equation

during the course of the algorithm. Analog, for the current q and u = S(q), the solution of the
dual equation

L̄′u(q, u, z)(ϕ) = 0 ∀ϕ ∈ V (2.40)

is denoted by z and called dual or adjoint state. By T : Q → V we denote the operator
mapping q to its associated dual state, and in the implementation we ensure that

z = T (q) is fixed as the solution of the adjoint equation

during the course of the algorithm. With these choices, the state equation is equivalent to

L̄′z(q, u, z)(ϕ) = 0 ∀ϕ ∈ V. (2.41)

Thus we get the following representations for the reduced cost functional and its first deriva-
tives:

j(q) = L̄(q, u, z), (2.42)

j′(q)(δq) = L̄′q(q, u, z)(δq). (2.43)

The latter can be expressed explicitly by

j′(q)(δq) = J ′q(q, u)(δq)− a′q(q, u)(δq, z) (elliptic case), and (2.44)

j′(q)(δq) = J ′q(q, u)(δq)− a′q(q, u)(δq, z) + (u′0(q)(δq), z(0)) (parabolic case). (2.45)

This representation is advantageous since the evaluation of the directional derivative of j in
the point q in an arbitrary number of directions δq requires only one solution of a differential
equation, as the adjoint equation (2.38b) does not depend on the direction δq.

Later in the process of solving the nonlinear equation j′(q̄)(δq) = 0 by the Newton method
it is necessary to evaluate second derivatives of j. More specifically, after discretization the
system of equations ∇2j(q)δq = −∇j(q) is typically very large. By using matrix-free methods
the full assembling of the Hessian matrix is avoided. Instead, the evaluation of matrix-vector
products for given directions δq is needed. This is equivalent to the evaluation of j′′(q)(δq, τq)
for one given δq and all directions τq. In the derivation of a favorable representation, we start
with equation (2.43) and add the terms L̄′u(q, u, z)(v) and L̄′z(q, u, z)(w) to its right hand side.
They are both zero for any v, w ∈ V due to the choices u = S(q), z = T (q). The resulting
equation,

j′(q)(δq) = L̄′q(q, u, z)(δq) + L̄′u(q, u, z)(v) + L̄′z(q, u, z)(w),
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is differentiated in direction τq. Using the notation

τu = S′(q)τq and τz = T ′(q)τq, (2.46)

this gives the representation

j′′(q)(δq, τq) = L̄′′qq(q, u, z)(δq, τq) + L̄′′qu(q, u, z)(δq, τu) + L̄′′qz(q, u, z)(δq, τz)
+L̄′′uq(q, u, z)(v, τq) + L̄′′uu(q, u, z)(v, τu) + L̄′′uz(q, u, z)(v, τz)
+L̄′′zq(q, u, z)(w, τq) + L̄′′zu(q, u, z)(w, τu),

(2.47)

which holds for all v, w ∈ V . We can show that it is possible to choose one v ∈ V in such a
way that

L̄′′qz(q, u, z)(δq, ϕ) + L̄′′uz(q, u, z)(v, ϕ) = 0 ∀ϕ ∈ V,

since by differentiation of (2.41) in direction δq this equation is true for the choice

v = S′(q)δq =: δu.

In an analogous way we can show that it is possible to choose one w ∈ V in such a way that

L̄′′qu(q, u, z)(δq, ϕ) + L̄′′uu(q, u, z)(v, ϕ) + L̄′′zu(q, u, z)(w,ϕ) = 0 ∀ϕ ∈ V,

since by differentiation of (2.40) in direction δq this equation is true for the choice

w = T ′(q)δq =: δz.

The remaining terms determine the representation

j′′(q)(δq, τq) = L̄′′qq(q, u, z)(δq, τq) + L̄′′uq(q, u, z)(δu, τq) + L̄′′zq(q, u, z)(δz, τq) (2.48)

To summarize the procedure in explicit form, the evaluation of j′′(q)(δq, τq) for one given direc-
tion δq and possibly many given directions τq is performed as follows: In the implementation,
for the current iterate q we have calculated u = S(q), z = T (q). Then, in the elliptic case

• Given δq, compute δu by solving the tangent equation, which is

a′u(q, u)(δu, ϕ) = −a′q(q, u)(δq, ϕ) ∀ϕ ∈ V. (2.49)

• Given δq, δu, compute δz by solving the additional adjoint equation, which is

a′u(q, u)(ϕ, δz) = J ′′qu(q, u)(δq, ϕ) + J ′′uu(q, u)(δu, ϕ)
− a′′uu(q, u)(δu, ϕ, z)− a′′qu(q, u)(δq, ϕ, z) ∀ϕ ∈ V.

(2.50)

• Calculate j′′(q)(δq, τq) by

j′′(q)(δq, τq) = J ′′qq(q, u)(δq, τq) + J ′′uq(q, u)(δu, τq)
− a′′qq(q, u)(δq, τq, z)− a′′uq(q, u)(δu, τq, z)− a′q(q, u)(τq, δz).

(2.51)

In the parabolic case, the equations are as follows:
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• Tangent equation: given δq, compute δu by solving

(∂tδu, ϕ)I + a′u(q, u)(δu, ϕ) + (δu(0), ϕ(0)) = −a′q(q, u)(δq, ϕ) + (u′0(q)(δq), ϕ(0))∀ϕ ∈ V.
(2.52)

• Additional adjoint equation: given δq, δu, compute δz by solving

− (ϕ, ∂tδz)I + a′u(q, u)(ϕ, δz) + (ϕ(T ), δz(T )) =
− a′′uu(q, u)(δu, ϕ, z)− a′′qu(q, u)(δq, ϕ, z) + J ′′uu(q, u)(δu, ϕ) + J ′′qu(q, u)(δq, ϕ)∀ϕ ∈ V.

(2.53)
Note that this equation runs backward in time.

• Calculate j′′(q)(δq, τq) by

j′′(q)(δq, τq) = J ′′qq(q, u)(δq, τq) + J ′′uq(q, u)(δu, τq)− a′′qq(q, u)(δq, τq, z)
− a′′uq(q, u)(δu, τq, z)− a′q(q, u)(τq, δz) + (u′0(q)(τq), δz(0)) + (u′′0(q)(δq, τq), z(0)).

(2.54)

2.3.3. Discretization

In further preparation of the construction of approximate solution algorithms of the optimal
control problems, a discretization of the involved infinite dimensional objects is carried out. For
analytical purposes it is convenient to execute the discretization sequentially, yielding optimal
control problems on different levels of discretization. This section is used to explain this idea
and introduce the used notation in the context of unconstrained optimal control problems.
Detailed extensions for the treatment of state constrained OCPs are done in Sections 3.3
and 4.3.
The stepwise discretization of the state and control spaces is as follows:

• The starting point of all considerations, the problem (P ) introduced in (1.1), is the
continous problem. It is concretized as elliptic problem in (2.13) or as parabolic problem
in (2.21).

• For parabolic problems, a semidiscretization in time is performed. This corresponds to
the dissection of the time interval Ī into subintervals Im by the choice of time points
0 = t0 < t1 < . . . , tM = T , and the construction of the semidiscretized state space X̃k,
which contains those functions that are polynomials in time if restricted to one of the
intervals Im. The related discretization parameter is a function k : Ī → R taking at every
time point t ∈ [0, T ] the value that is the length of the interval Im that contains t. It is
used as a subscript in all the related quantities.
Allowing for state functions from X̃k in the formulation of the optimal control problem
results in the semidiscrete problem (Pk).

• For both elliptic and parabolic problems, a discretization in space is performed. For
elliptic problems, this corresponds to the choice of a finite dimensional subspace Xh ⊂ X.
The associated mesh Th is a dissection of Ω̄ into spatial elements; the space Xh contains
those globally continous functions that are polynomials on every element. The related
discretization parameter h is the function h : Ω̄ → R taking at every spatial point the
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2.3. Discretization and optimization algorithms for problems without pointwise constraints

value of the diameter of the spatial element that contains this point. The set of nodes of
the mesh Th is denoted by Nh, and their number by Nh.
For parabolic problems, two different approaches are considered. The first one utilizes
the same spatial discretization at every time point, so it uses one mesh Th and one
related function h : Ω̄ → R like before. Consequently, the space X̃kh ⊂ X̃k contains those
functions whose restriction to any temporal interval is a globally continous, elementwise
polynomial function. The second approach allows for different meshes T mh on each of
the subintervals Im and in the initial point t0. These are related to M + 1 functions
hi : Ω̄ → R, i = 0 . . .M . The discrete state space X̃kh is made up of those functions
whose restriction to the kth temporal interval, or t = t0, is globally continous and
polynomial on every spatial element from precisely the kth mesh. Denote by Nm the
number of nodes of the mesh T mh , and by Ntot and Nmax the sum and maximum over
the respective numbers for all meshes.
Allowing for state functions from Xh or X̃kh results in the problem (Ph) or (Pkh),
respectively.

• In the case of an infinite dimensional control space Q, the control space needs to be
discretized as well. Even if it is already finite dimensional, it can be worthwhile to
choose a smaller subspace. Since the control space is kept abstract, one cannot describe
the discretization process more precisely than by introduction of a finite dimensional
subspace Qd ⊂ Q. One can at least give a few hints concerning common situations. If Q
consists of functions with domain Ω̄ or Ī× Ω̄, like X, a discretization analog to the one of
X, has the advantage that some residual term in the a posteriori error estimator vanishes.
A coarser control can sometimes be useful as well. In parameter control problems, where
Q is already discrete, we simply set Qd = Q.
Utilizing discrete controls allows finally to formulate the fully discrete problem (Ph,d), or
(Pk,h,d), respectively.
Alternatively, for some problem classes the discretization of even an infinite dimen-
sional control space can be avoided if the variational discretization concept is used,
see Remark 3.4.

For simpler notation, an overall discretization parameter σ will be used as a collective quantity
for all possible discretization procedures of a concrete problem. Comparing with above, it can
take the values σ = (h), σ = (k, h), σ = (h, d) or σ = (k, h, d). Thus, the optimal solution of
the fully discretized problem is always denoted by (qσ, uσ).

On these levels of discretization, in order to formulate the optimal control problems, it does
not suffice to replace the function spaces. It is also necessary to discretize the state equation,
as it is not guaranteed that S(q) ∈ Xh or S(q) ∈ Xkh for q ∈ Q or q ∈ Qd. In the respective
chapters the discrete state equations will be introduced. This is equivalent to the introduction
of discrete solution operators for the according levels of discretization:

Sk : Q→ X̃k,

Sh : Q→ Xh or Skh : Q→ Xkh.

We introduce Sσ to refer to the highest level of discretization, so Sσ := Sh for elliptic, and
Sσ := Skh for parabolic problems.
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Also the state constraint is discretized by a function evaluation in finitely many points, e.g.,
the mesh points of the discretization of the state. In the respective chapters the constraint
G(·, uσ(·)) ≥ 0 for infinitely many points x or (t, x) is discretized by a constraint Gσ(·, uσ(·)) ≥ 0
in finitely many points.

The cost functional does not need to be discretized explicitly, but is discretized indirectly by
the insertion of the discrete state into the functional. The discretized reduced cost functionals
are defined as

jk : Q→ R, jk := J(q, Sk(q)) (2.55)
jh : Q→ R, jh := J(q, Sh(q)) or jkh : Q→ R, jkh := J(q, Skh(q)) (2.56)

Analog to the notation before, jσ always refers to the highest level of discretization.

2.3.4. Optimization methods for unconstrained problems

It has not been discussed yet at which point in the solution process of (1.1) the discretization
is applied. It is possible to discretize (P ) directly and then apply a finite dimensional
optimization algorithm, which is called the discretize-then-optimize approach. Or one can
apply optimization theory to (P ) and discretize later, when optimality conditions have been
found, the optimize-then-discretize approach. This decision is also connected to the utilized
optimization method. Since some of the optimization algorithms can be formulated only for the
discrete problem, the derivation of all algorithms for the comprehensive solution will be made
using the discretize-then-optimize approach formally. However it can be shown that when a
Galerkin type discretization is employed, and the state and adjoint variables are discretized by
the same method, the two approaches lead to the same discrete optimality system, [52, Section
3.2], so that the discrimination between these two approaches does not need to be pursued in
this thesis from now on.

The explanation of the optimization method for unconstrained problems, that will be used as
a basis for the development of algorithms to solve (1.1), will be carried out for the discretize-
then-optimize approach. The discretization will hereby be left abstract, we assume to be
given the discrete spaces Qd ⊂ Q and Xh ⊂ X or Xkh ⊂ X. It can however be anticipated
here that a Galerkin finite element discretization will be used later. So for the task of this
subsection, to find an optimal solution of the discretized version of (2.33), no additional
optimality conditions and related equations need to be derived. Due to the analog structure,
the relations from Section 2.3.2 stay valid, just by replacing the spaces Q and X by their
discrete counterparts.

Remark 2.5. The restriction of Xkh ⊂ X is only for simplicity of the expressions in this
section and does not allow for discontinous Galerkin discretization in time. This type of
time discretization causes additional jump terms in the state, adjoint and additional adjoint
equations, the explicit formulation can be found in [65]. For state constrained OCPs in the
main part of this thesis, dG methods will be considered and the corresponding terms will be
derived in Chapter 4.
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The algorithm is based on the Newton method to solve the nonlinear equation j′σ(q) = 0, which
is the first order optimality condition for the considered problem{

min J(q, u), q ∈ Qd, u ∈ Xh or Xkh

u = Sσ(q) ⇔ min jσ(q), q ∈ Qd. (2.57)

As indicated before, in order to exploit the representations of Section 2.3.2 it needs to be
ensured that during the course of the optimization algorithm the state and adjoint variable are
set as the solutions of the discrete state and adjoint equations, represented by the operators
u = Sσ(q) and z = Tσ(q), with the current iterate q. In the following we describe how to
calculate one Newton step for the equation j′σ(q̄)(δq) = 0 ∀δq ∈ Qd. This means, given the
current iterate q ∈ Qd we search for the direction δq ∈ Qd in which the step is taken, i.e. the
next iterate is determined by

q + λδq,

where λ = 1 is chosen for a full Newton step, or a λ < 1 is determined, e.g., by a line search
method. The full Newton step δq is determined by

j′′σ(q)(δq, τq) = −j′σ(q)(τq) ∀τq ∈ Qd, (2.58)

or equivalently for all vectors τq from a basis of Qd.

To set up the equations representing the necessary quantities as matrices and vectors to be used
in an implementation, introduce the gradient ∇jσ(q) ∈ Qd and the Hessian ∇2jσ(q) : Qd → Qd
by the usual Riesz representation formulas

(∇jσ(q), τq)Q = j′σ(q)(τq) ∀τq ∈ Qd
(∇2jσ(q)δq, τq)Q = j′′σ(q)(δq, τq) ∀δq, τq ∈ Qd.

Next, we want to express the gradient and Hessian by means of a basis {τqi}dimQd
i=1 . Denote

the coefficient vector of the gradient with respect to that basis by f , such that

∇jσ(q) =
dimQd∑
j=1

fjτqj .

It follows with

(∇jσ(q), τqi) =
dimQd∑
j=1

fj(τqj , τqi) that Gf =
(
j′σ(q)(τqi)

)dimQd
i=1 , (2.59)

where G is the Gramian matrix with the entries (τqj , τqi) at the (i, j)-th position. The vector
(j′σ(q)(τqi))dimQd

i=1 can be evaluated by the right hand sides of (2.44) or (2.45), respectively.

Next, the full Newton step δq is also expressed by its coefficient vector, denoted d, such that

δq =
dimQd∑
j=1

djτqj .
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Its definition equation

(∇2jσ(q)δq, τqi) = −(∇jσ(q), τqi) i = 1, 2, . . . ,dimQd. (2.60)

thus becomes
dimQd∑
j=1

dj(∇2jσ(q)τqj , τqi) = −(∇jσ(q), τqi) i = 1, 2, . . . ,dimQd,

so that d is determined by

Kd = (∇2jσ(q)δq, τqi)dimQd
i=1 = (j′′σ(q)(δq, τqi))dimQd

i=1 = −Gf , (2.61)

where K is the matrix with the entries j′′σ(q)(τqj , τqi) at the (i, j)-th position. The entries of K
can be evaluated by the right hand sides of (2.51) or (2.54), respectively. This allows finally
to set up the linear system used to determine the Newton step as

Hd = −f (2.62)

where the matrix H = G−1K as the coefficient matrix of the Hessian ∇2jσ(q) is symmetric.
The execution of the Newton algorithm with the explicit buildup of this matrix H and the
following exact solution of the linear system (2.62) is called an exact Newton method. If dimQd
is very large, this computation is very costly due to H typically not being sparse, and can be
avoided by solving (2.62) iteratively by a method that utilizes only products of of the matrix
with a vector, e.g. the CG method. Hereby a product of the form ∇2jσ(q)δq is represented by
its coefficient vector h where

Gh = (j′′σ(q)(δq, τqi))dimQd
i=1 (2.63)

similar as before. This approach including the approximative solution of (2.62) is an example
of an inexact Newton method. For more considerations on different solvers see [65].

Assembling all the parts introduced above, we obtain Algorithm 2.1 for finding the optimal
solution of problem (2.57). Techniques well established for Newton type algorithms, like line
search, and a stopping criterion based on the norm of the coefficient vector f , complete the
algorithm.
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Algorithm 2.1. Newton-type optimization for an unconstrained optimal control
problem

1: input data: current triple q0, u0, z0

where there is secured u0 = Sσ(q0), z0 = Tσ(q0)
2: parameter: TOLN , TOLL
3: Set counter i = 0.
4: repeat
5: Compute f as vector representation of ∇jσ(qi) by (2.59)
6: Compute d as vector representation of the Newton update δq

by solving Hd = −f iteratively, e.g., by CG method with tolerance TOLL
7: for any product Hd̃ the CG algorithm requests do
8: With δ̃q being the direction represented by d̃
9: Compute δ̃u by the tangent equation of the current problem

i.e. (2.49) or (2.52)
10: Compute δ̃z by the additional adjoint equation of the current problem

i.e. (2.50) or (2.53)
11: Evaluate (2.51) or (2.54) to get right hand side of (2.63)
12: Get h = Hd̃ by solving (2.63)
13: Determine step length λi by line search

(might involve repeated solution of the state equation)
14: Set qi+1 = qi + λiδq
15: Compute ui+1 = Sσ(qi+1)
16: Compute zi+1 = Tσ(qi+1)
17: i = i+ 1
18: until |∇jσ(qi)| ≤ TOLN
19: output data: qi, ui, zi

2.4. Treatment of inequality constraints

In this section we will give a raw plan on the necessary steps to include state constraints into
the analytic and algebraic framework laid out in Section 2.3. The basic equations exploited in
the set up were the optimality conditions (2.38). Thus first the equivalent Karush-Kuhn-Tucker
conditions for state constrained problems are derived. The evaluation of the Kurcyusz-Zowe
constraint qualification according to [92] yields a more comprehensive condition:

Assumption 2.17. Let q̄ be a locally optimal control for (Pell). Additionally to Assump-
tion 2.15, there exists a control q̂ ∈ Q such that S(q̄) + S′(q̄)(q̂ − q̄) ∈ int(Xad).

It is also called a local Slater condition, and has the meaning that the resulting function
S(q̄) + S′(q̄)(q̂ − q̄) has no active points. The equivalence of the local Slater condition and the
Kurcyusz-Zowe constraint qualification relies on the fact that the set used to formulate the
inequality constraints, i.e. Xad, possesses interior points, see [92]. It was therefore crucial to
set up the state space X as a space of continous functions, a demand that was made at the
very beginning in (2.1). Without this property the KKT conditions, which are the basis of
the numerical solution algorithms and the error estimation and adaptivity process, would not
stand.
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The compact representation of the optimality conditions uses the Lagrange functionals, defined
by

L : Q×X ×Z ×M(Ω)→ R, L(q, u, z, µ) := J(q, u) + (f, z)− a(q, u)(z)−〈µ,G(u)〉 (2.64)

in the elliptic case and

L : Q×X × Z ×M(I ×Ω)→ R,

L(q, u, z, µ) := J(q, u) + (f − ∂tu, z)I − a(q, u)(z) + (u0(q)− u(0), z(0))− 〈µ,G(u)〉
(2.65)

in the parabolic case. With the use of the following notation for Borel measures µ ∈M(Ω),

µ ≥ 0 ⇔ 〈µ, f〉 ≥ 0 ∀f ∈ C(Ω̄) with f(x) ≥ 0 in Ω, (2.66)

the optimality conditions take the following form:

Lemma 2.18. Let (q̄, ū) be a locally optimal point of the state constrained optimal control
problem (2.13) or (2.21), and let Assumption 2.17 hold. Then there exists an adjoint state
z̄ ∈ Z, and a multiplier µ̄ with µ̄ ∈ M(Ω) in the elliptic case and µ̄ ∈ M(I × Ω) in the
parabolic case, such that

L′z(q̄, ū, z̄, µ̄)(ϕ) = 0 ∀ϕ ∈ Z
L′u(q̄, ū, z̄, µ̄)(ϕ) = 0 ∀ϕ ∈ X
L′q(q̄, ū, z̄, µ̄)(ψ) = 0 ∀ψ ∈ Q
〈µ̄, G(ū)〉 = 0, µ̄ ≥ 0.

(2.67)

The proof of existence is again done in [101], for the representation using L compare [92,
Section 6.2].
Some recent results on second-order sufficient optimality conditions for state constrained
elliptic problems can be found in [20].

The next steps in the transfer of the ideas from unconstrained problems, the evaluation of the
derivatives and the discretization, are very specific to the type of the state equation and thus
discussed in the specific chapters. For the treatment of state constraints in the optimization
process, a wide variety of approaches has been developed. An overview will be given in the
following.

The first method to be outlined is the primal-dual active set (PDAS) method. Note that the
loss of regularity, reflected by the introduction of the measure µ, has a direct effect on the
choice of the optimization method, see [14] and the references therein. Also, for the continous
state constrained optimal control problems the PDAS method can not be established as an
analog to the control constrained case. Instead, the method is formulated for the discretized
problems.
The description is reduced to the variables qd and µh, thus uh and zh are required to be coupled
to qd and µh by the discrete state and adjoint equations. For elliptic problems, the basic idea
is as follows: given an actual control qd and multiplier µh we alternate between the following
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steps: First determine the active set, that is the set of points where the state constraints are
exactly fulfilled or plain violated

A = {xi ∈ Nh : Gh(uh(xi)) + c · µi ≤ 0}, (2.68)

with some constant c > 0. Then, calculate a new pair (qd,µh) by solving the minimization
subproblem

(PE)
{

min J(Sh(q), q) q ∈ Qd
Gh(Sh(q)(xi)) = 0 ∀xi ∈ A

,

which requires an equality constraint to be fulfilled on the active set. The repetition of the two
steps is stopped if two successively computed active sets are equal. The PDAS method will
be described in detail in Section 3.4 for the solution of elliptic problems. It is equivalent to a
semismooth Newton method. Thus for one given discretization the PDAS method converges
superlinearly, but considering the repeated solution of the discrete optimal control problems
on adaptively refined meshes, there holds no mesh-independence. For a detailed discussion,
see [47, 49].
It should be noted that (PE) is only guaranteed to have a solution for some kinds of optimal
control problems. In general this does not hold, e.g., for boundary control problems. This
question is discussed in detail in Section 3.4.
Remark 2.6. A method that incorporates the state constraint directly without utilizing a
Lagrange multiplier, for a smaller class of problems, is introduced in [50]. It utilizes a level set
approach.

Another class of methods to incorporate state constraints are regularization methods. Here
the state constrained problem is altered in such a way, that the solution regains the original
regularity and can thus be calculated by known methods. An example is the barrier method,
see, e.g., [85, 97], where a regularization term is added to the cost functional: Instead of (2.13),
the problem

(Pγ)
{

min Jγ(q, u) := J(q, u) + bγ(u) q ∈ Q, u ∈ X
u = S(q) (2.69)

is considered with a regularization parameter γ > 0 and a barrier functional bγ(u) that is
chosen in such a way that it is small for values bounded away from the constraint, but goes to
infinity as the state function approaches the constraint. Clearly, this problem belongs to the
class (2.33) and can thus be solved by the techniques described before. Driving γ →∞ lets
the solution of (Pγ), denoted by (qγ , uγ), approach the solution (q, u) of the state constrained
problem. On the other hand, the regularization introduces an additional error, that has to be
accounted for in the error estimation process.
A barrier method will be applied to elliptic state constrained OCPs in Section 3.6, and studied
in depth when solving parabolic problems in Chapter 4. Naturally, also the problems (Pγ) are
discretized to solve them approximately. The solutions of the discrete regularized problems
are denoted by (qγσ, uγσ).

In contrast to barrier methods, in Moreau-Yosida regularization, the regularized problem
is given by

(Pγ)

 min J(q, u) + 1
2γ
∫
Ω
|(λ̄− γG(u))+|2 q ∈ Q, u ∈ X

u = S(q)
(2.70)
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in the elliptic case and the obvious analog for parabolic problems. In (Pγ), γ > 0 is the
regularization parameter, λ̄ a given square-integrable function, and (·)+ is short for max(0, ·).
Here, infeasible iterates are allowed, as penalization is only done on violation of the bounds,
and not on approaching the bounds. Driving γ →∞ lets the solutions of (Pγ) approach that
of (P ); see, e.g., [74] for parabolic problems. Path following methods, that describe how fast
the iteration γ →∞ can be done, are discussed e.g. in [48].

Some different regularization methods depend on the actual structure of the problem, for
example they require distributed control, which means q is defined on the same domain as u.
In Lavrentiev regularization, the regularized problem is given by

(Pε)


min J(q, u) q ∈ Q, u ∈ X
u = S(q)

G(u) + εq ≥ 0
, (2.71)

with the regularization parameter ε > 0. The condition G(u) + εq ≥ 0 is a mixed state-control
constraint. Optimal control problems with that type of constraint exhibit solutions of full
regularity, in particular the Lagrange multiplier is an L2-function, see, e.g., [75, 93], thus
enabling the use of optimization algorithms derived from the optimality system in a way similar
to the proceeding for optimal control problems without further inequality constraints. Driving
ε→ 0 lets the solutions (qε, uε) of (Pε) approach the solution (q, u) of (P ); see, e.g., [74] for
parabolic problems. Strategies how to drive ε→ 0 have been considered, e.g., in [21].

In contrast to this situation, for boundary control it is not possible to add u and q as the
domains of the state and the control function are different. A regularization can still be done by
the virtual control concept, which was developed in [59]. The virtual control v is introduced
as a new quantity, defined on Ω, or I ×Ω. The regularized problem is then given by

(Pε)


min J(q, u) + Ψ(ε)

2 ‖v‖L2(Ω) q ∈ Q, u ∈ X, v ∈ L2(Ω)
u = S(q) + Ŝ(Φ(ε)v)

G(u) + ξ(ε)v ≥ 0
(2.72)

with some functions Ψ(ε), Φ(ε), ξ(ε), and the operator Ŝ is the solution operator of the partial
differential equation that is obtained by equipping the original state equation with homogenous
boundary conditions and using the argument of Ŝ as the distributed right hand side.

2.5. A posteriori error estimation and adaptive algorithm

The optimization methods introduced in the last section can be used to solve a discretized
version of the optimal control problem (1.1). Any such discrete problem is described by a set
T containing the following elements: the spatial meshes Th or T mh , m = 0 . . .M , for parabolic
problems the time intervals Im, m = 1 . . .M , and the discrete control space Qd. If a barrier
method is used, the regularization parameter γ is needed to describe the discretized problem
as well.

In an algorithm to find the best possible approximation of (q̄, ū), under restriction of the
computational effort or tolerance, not only one such discrete problem is solved. Instead,
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2.5. A posteriori error estimation and adaptive algorithm

a sequence of such problems is solved, described by the discretizations T (i) and possibly
parameters γ(i), i = 0, 1, . . . , in the following fashion: the starting discretization T (0), and
possibly γ(0), are given. Now the discrete problem is solved and the respective error is estimated.
The information generated from this estimation is used to create a refined discretization T (i+1),
and possibly a new γ(i+1). This process is repeated until the overall error is estimated to be
smaller than a given tolerance.

The easiest strategy for the refinement step T (i) → T (i+1) is uniform refinement: in the
temporal discretization the time intervals are bisected into two equal parts, and in the spatial
discretization every spatial element K is dissected into an appropriate number of elements of
equivalent size, by bisection of each edge. Since in this refinement strategy no information
from the problem itself is used, it can not be expected that it decreases the error in the fastest
possible way.

Looking for a different strategy to decrease the error, one important question is: in which
quantity is the error measured. This determines the quantity that is decreased well, and about
evenly distributed over the cells or time intervals. A possible approach is assessing the error
measured in the natural norms of the spaces in question, i.e.

‖ū− uσ‖X and ‖q̄ − qσ‖Q.

But since it is the minimization of J which determines the success of the computations, i.e. the
convergence and its rate in terms of effort, one has a strong cause to estimate the discretization
error with regard to the cost functional. The error estimators developed in this thesis for state
constrained problems will follow this principle of goal oriented error estimation. This approach,
estimating

J(q̄, ū)− J(qσ, uσ) ≈ η,

has been developed in [8] considering unconstrained elliptic optimal control problems. It
has since been successfully developed to be applied to parabolic problems [66], and problems
including control constraints [44, 94] or state constraints [13, 41]. A somewhat more general
concept is to estimate the error in a given functional I : Q×X → R, called quantity of interest.
This estimation of I(q̄, ū)− I(qσ, uσ) can be motivated by physical considerations, when the
quantity that the user is actually interested in is not the one that is to be minimized. For
unconstrained and control constrained problems this concept is developed in [11, 12, 65].

The error estimator η consists of all of the following shares, or a selection of it:

ηk: For parabolic problems, a discretization in the time variable is necessary, the estimate of
the temporal discretization error is denoted by ηk.

ηh: A discretization in the space variable is always necessary, the estimate of the spatial
discretization error is denoted by ηh.

ηd: If the control space is discretized, Qd ⊂ Q, the introduced control discretization error
is estimated by ηd. On the other hand, should Qd = Q, which can happen for finite
dimensional control spaces only, then ηd does not occur.

ηγ : If a regularization method is used, the introduced regularization error is estimated by ηγ .
On the other hand, if we use the PDAS method, then ηγ does not occur.
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2. Basic Concepts in Optimal Control

Some of these can be dissected further; localized according to temporal and spatial influence:

ηk: For parabolic problems, the temporal discretization error consists of estimates of the
error on the subintervals Im,

ηk =
M∑
m=1

ηmk . (2.73)

ηh: The spatial discretization error consists of estimates of the error on the cells K. If there
is only one mesh Th we have

ηh =
∑
K∈Th

ηh,K . (2.74)

In the case of dynamic discretization in space the localization is

ηh =
M∑
m=0

∑
K∈T m

h

ηmh,K . (2.75)

Should either temporal or spatial discretization be chosen for refinement, the refinement can
now be done locally guided by this localized error estimator. For the control discretization a
similar construction is possible, if Q is also distributed in time and/or space.
The overall strategy is displayed in Algorithm 2.2. The parameters c1, c2, c3 ∈ (0, 1), cγ ∈ (1,∞)
can be used to fine tune the behavior of the algorithm, but should be chosen with care, as to
allow for a sufficient distance in the distinction of the cases. Where not indicated otherwise, in
the numerical experiments the values c1 = 0.6, c2 = 0.8, c3 = 0.9, cγ = 3.16 were used.

Before carrying out this a posteriori strategy, the question arises what improvement can be
expected compared to a uniform refinement strategy. For reference, consider the optimal
control problem with linear elliptic state equation, distributed control and tracking type
cost functional, on a two-dimensional domain. For uniform discretization with discretization
parameter h, the convergence rate of ‖q̄− qσ‖L2(Ω), indicative of the one for the cost functional
J(q̄, ū) − J(qσ, uσ), is h2 for the problem without additional pointwise constraints, see [64].
The inclusion of state constraints reduces the order to h1−ε, see [26].
This simplest example shows already an order reduction. Therefore the goal of the adaptive
refinement strategy is to improve the convergence order, or at least improve the convergence
by a constant factor.

Similarly to state constraints, other types of singularities can cause convergence order reduction.
Consider for example singularities due to reentrant corners or edges in nonconvex domains.
In [5] the convergence order is improved by the creation of non-uniform meshes, albeit the
utilized techniques use a priori information as opposed to the a posteriori approach used in
this thesis.
In the case of optimal control problems it can be argued that the inclusion of the state
constraints leads to the lower regularity of the optimal solution and thus the lower convergence
rates via irregular data in the dual equation. Considering the sole finite element approximation
of such a partial differential equation with irregular data, without connection to an optimal
control problem, convergence order reduction can be countered by the use of graded meshes.
In Appendix A such a partial differential equation is considered. Its finite element approximation
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2.5. A posteriori error estimation and adaptive algorithm

Algorithm 2.2. Error equilibration algorithm

1: input data: the old discretization T = (Th, Qd) (elliptic)
or T =

(
(Im)Mm=1 , Th, Qd

)
(parabolic)

or T =
(

(Im)Mm=1 , (T mh )Mm=0 , Qd

)
(parabolic, dynamic)

and possibly the old regularization parameter γ
2: parameters: c1, c2, c3, cγ
3: Evaluate the relevant error estimators of ηγ , ηk, ηh, ηd according to

- (3.52), (3.53) (elliptic OCP)

- (4.41), (4.45), (4.46) (parabolic OCP)

4: calculate relative contributions: with η̄tot = |ηd|+ |ηh|+ |ηk|+ |ηγ | these are
η̄1 = |ηd|

η̄tot
, η̄2 = |ηh|

η̄tot
, η̄3 = |ηk|

η̄tot
, η̄4 = |ηγ |

η̄tot

5: if the maximum relative contribution from {η̄1, . . . , η̄4} is > c1 then
6: choose the relevant structure for refinement
7: else if the two largest relative contributions from {η̄1, . . . , η̄4} combined are > c2 then
8: choose the two relevant structures for refinement
9: else if the three largest relative contributions from {η̄1, . . . , η̄4} combined are > c3 then
10: choose the three relevant structures for refinement
11: else
12: choose all four structures for refinement
13: Refinement process. Set T̄ = T , γ̄ = γ.
14: if spatial discretization is chosen for refinement then
15: refine Th ⇒ T̄h̄, see Algorithm 3.3 (elliptic)

or Th ⇒ T̄h̄, see Algorithm 4.2 (parabolic)
or (T mh )Mm=0 ⇒

(
T̄ m
h̄

)M
m=0 , see Algorithm 4.2 (parabolic, dynamic)

16: if temporal discretization is chosen for refinement then
17: refine (Im)Mm=1 ⇒

(
Īm
)M̄
m=1, see Algorithm 4.3 (parabolic)

or refine (Im)Mm=1 ⇒
(
Īm
)M̄
m=1, with

(
T̄ m
h̄

)M
m=0 ⇒

(
T̄ m
h̄

)M̄
m=0 see Algorithm 4.3

(parabolic, dynamic)
18: if γ is chosen for refinement then
19: set γ̄ = cγγ
20: if Qd is chosen for refinement then
21: refine Qd ⇒ Q̄d as described in Section 3.5 or Section 4.5
22: output data: the new discretization T̄ , the new regularization parameter γ̄

on a family of uniform meshes would lead to convergence order h2 for a regular right hand
side, but only h1−ε for irregular data. Then a family of meshes Th is constructed that is not
uniform but graded, such that the convergence order is restored to h2|ln(h)|

3
2 . The existence of

such meshes justifies the expectation to restore the convergence order also for state constrained
optimal control problems. The intention of this thesis is the creation of such meshes using
a posteriori techniques, as the location of the singularity caused by the state constraint is a
priori unknown.

Returning to the more general thoughts from the beginning of this section. To set up a
fair comparison of the quality of different strategies solving (P ) approximately, we need a
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2. Basic Concepts in Optimal Control

measure of the computational effort invested to reach a certain error level J(q̄, ū)−J(qσ, uσ), or
J(q̄, ū)−J(qγσ, uγσ) if the solution method utilizes regularization as well as discretization. If no
regularization of the problem is involved, the number of degrees of freedom of the discretization
may be an acceptable measure for the complexity of the discrete problem. It is plausible that
at least asymptotically this does not skew the comparison.

This does not hold when using regularization. One could, without changing the number of
degrees of freedom, increase the regularization parameter γ reducing the error but increasing
the necessary computational effort, as the problem gets harder to solve due to a larger condition
number of the discrete problem. As this increase in relation to the one caused by increasing
the degrees of freedom is unknown, it cannot be accounted for. To achieve a more reasonable
comparison, one may

- compare only computational times. This has its drawbacks as it is implementation
dependent and requires the numerical tests to be carried out on a closed system to avoid
fluctuations in computational power,

- leave γ constant and only compare efficiency of the other refinements,

- couple the increase of γ to the number of degrees of freedom.

One could also investigate computational efficiency in terms not only of elapsed time, but also
of needed storage space. We think however that the developments in the computer industry in
the last decades have made the issue of limited storage space almost disappear, so we do not
investigate this further. For some application problems like climate models it might however
be a valid concern.
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3. Elliptic Optimal Control Problems with
State Constraints

In this chapter elliptic optimal control problems with pointwise state constraints are considered.
With the notation from Section 2.1.2, such a problem takes the form

(Pell)


min J(q, u), q ∈ Q, u ∈ X

a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ Z
G(u) ≥ 0

(3.1)

For a large class of semilinear elliptic state equations unique existence of a solution of the state
equation is shown, and conditions under which a local optimal solution of (3.1) exists, and
obeys first order Karush-Kuhn-Tucker optimality conditions are given.
For the numerical solution of any elliptic optimal control problem with a locally optimal point
obeying these, the finite-element-discretization of problem (Pell) will be executed, and two
optimization algorithms will be discussed. For problems with distributed control, a primal-dual
active set method can be used. Here, the Lagrange multiplier needs to be introduced into the
implementation, so it is required to deal with Borel measures in the program code. For the
aim of producing efficient meshes, an a posteriori error estimator is derived and utilized in
an adaptive refinement algorithm. Alternatively, (Pell) can be regularized and a sequence of
regularized problems can be solved by an interior point algorithm.

3.1. Analysis of the state equation

From Section 2.1.2, recall the definitions of

X = V ∩W 1,p(Ω) with some p > n, (3.2)

such that the state space X contains continous functions from the weak solution space, and

Z = W 1,p′(Ω) where 1
p

+ 1
p′

= 1. (3.3)

Linking the control and state space by Assumptions 2.1 and 2.2, the elliptic state equation has
been formulated as

a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ X, (3.4)

using the semilinear form
a : Q×X × Z → R.
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3. Elliptic Optimal Control Problems with State Constraints

The interpretation that the given space V with its properties, like the satisfaction of Dirichlet
boundary conditions, is used to construct the state space X, could be transferred to the control
space: the given space R is regarded as the spatial part of the control. For elliptic OCPs the
distinction does not make a difference, we can simply set

Q = R control space for elliptic OCPs, (3.5)

for parabolic problems this will be different. This procedure allows to include different possible
choices of Q, especially different control domains. The distinction between control domains
gives rise to the labeling of certain classes of elliptic control problems, some of which are given
in the following examples by model equations in this framework.

Example 3.1. 1. For the choice Q = L2(Ω), the following equation is an example for
distributed control:

−∆u = q in Ω
u|Γ = 0 on Γ

The weak formulation is obtained by a(q, u)(ϕ) := (∇u,∇ϕ)− (q, ϕ) with state space
X = W 1,p

0 (Ω).

2. For the choice Q = L2(Γ ), the following equation is an example for boundary control:

−∆u+ u3 = 0 in Ω
∂nu|Γ = q on Γ

The weak formulation is obtained by a(q, u)(ϕ) := (∇u,∇ϕ) + (u3, ϕ) − (q, ϕ)Γ with
state space X = W 1,p(Ω).

3. For the choice Q = Rk, so that the control space is in fact k-dimensional, the following
equation is an example for parameter control:

−∆u =
k∑
i=1

qifi in Ω

u|Γ = 0 on Γ,

where the fi ∈ L2(Ω) are given functions. The weak formulation is obtained by
a(q, u)(ϕ) := (∇u,∇ϕ)−

∑k
i=1 qi(fi, ϕ) with state space X = W 1,p

0 (Ω).

The first property that has to be ensured for a meaningful formulation of a problem of class (3.1)
is the unique solvability of the state equation with the necessary regularity. For a large class
of semilinear problems the proof will be given here.

Example 3.2. Let Ω ⊂ R2 be a polygonal Lipschitz domain, its boundary seperated into
Γ = Γ1 ∪ Γ2 with |Γ1| > 0. Let a linear and continous operator B : Q→ L2(Ω) be given, and
the differential operator

Āu(x) = −
2∑

i,j=1

∂

∂xi

(
aij(x) ∂

∂xj
u(x)

)
(3.6)
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3.1. Analysis of the state equation

where the coefficients aij can be arranged in a symmetric matrix A(x) = (aij(x)) with the
entries aij ∈ L∞(Ω) satisfying for some α0 > 0 the condition

2∑
i,j=1

aij(x)ξiξj ≥ α0|ξ|2 ∀ξ ∈ R2 and a.e. in Ω.

Denote by ∂νĀ(x) the conormal derivative to the operator Ā defined for x ∈ Γ as the directional
derivative in the direction νĀ(x) := A(x) · n(x). Further, let the given functions d and b
describing the nonlinearity be measurable with respect to the first argument, and d(x, ·) and
b(x, ·) monotone increasing and three times differentiable on R with respect to the second
argument for each fixed x ∈ Ω or x ∈ Γ2 respectively. Furthermore, b and d are assumed to
be bounded of order two with respect to the first variable, this means there exists a constant
K > 0 such that

|d(x, 0)|+ |du(x, 0)|+ |duu(x, 0)| ≤ K a.e. in Ω (3.7)

and analog for b on all spatial points of Γ2. The semilinear elliptic state equation is then given
as

Āu(x) + d(x, u(x)) = (Bq)(x) ∀x ∈ Ω,
u(x) = 0 ∀x ∈ Γ1,

∂νAu(x) + b(x, u(x)) = 0 ∀x ∈ Γ2.

(3.8)

The mapping to an L2(Ω)-function on the right-hand side of (3.8) allows for several types of
control to be realized in this problem class. Possibilities include

- parameter control, by chosing R = Q = Rk, the operator Bq :=
k∑
i=1

qibi with some given

functions bi ∈ L2(Ω), and

- distributed control, by chosing R = Q = L2(Ω), B = id.

The semilinear state equation can be expressed in the standard notation by the semilinear
form

a(q, u)(ϕ) = (A∇u,∇ϕ) + (d(·, u), ϕ) + 〈b(·, u), ϕ〉Γ2 − (Bq, ϕ) (3.9)

and the choice of the right-hand side f = 0 in (3.4).

Lemma 3.1. In the setting of Example 3.2, for every q ∈ Q there exists a unique weak solution
u ∈ V := H1

Γ1
(Ω) of the state equation. Moreover, there holds u ∈W 1,p(Ω) for some p > 2.

Proof. Unique existence in H1
Γ1

(Ω) follows by standard arguments for monotone operators.
Next, by following the steps in [92, Theorem 4.7, 4.8], we prove that u ∈ C(Ω̄). It remains to
prove u ∈W 1,p(Ω).
The solution u fulfills the linear elliptic equation

Āu(x) = f̄(x) in Ω,
u(x) = 0 on Γ1,

∂νAu(x) = g(x) on Γ2,
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3. Elliptic Optimal Control Problems with State Constraints

where f̄(x) = Bq(x)− d(x, u(x)) and g(x) = −b(x, u(x)). By the properties of the nonlinearity
functions b and d and the continuity of u we obtain f̄ ∈ L2(Ω). Using a trace theorem we
get that u ∈ H

1
2 (Γ2) ∩ C(Γ̄2). Then, we obtain due to the Lipschitz-continuity of b(·, ·) with

respect to the second argument that g ∈ H
1
2 (Γ2). This implies by [39, Theorem 4.4.4.13,

Corollary 4.4.4.14] that for all s < 2

u−
∑

ciψi ∈W 2,s(Ω),

where ci ∈ R and the ψi are functions describing the singular behaviour of u at the corners of
the domain Ω. It can be directly checked, that ψi ∈ W 1,p(Ω) holds with some p > 2. This,
together with the fact that W 2,s(Ω) ↪→W 1,p(Ω), completes the proof.

This ensures the well-definedness of the control-to-state operator S. The operator is also
known to be twice continously Fréchet differentiable, which can be shown as in [92].

3.2. Optimality conditions

In Theorem 2.12 conditions were formulated for the existence of an optimal solution. Given
a concrete optimal control problem, it can usually not immediately be checked whether
the involved assumptions hold, especially Assumption 2.9 on the state equation. For an
example problem class, the necessary steps will be proven here. Therefore, the semilinear state
equation (3.8) from the last section is considered, only for simplicity of notation with a simpler
boundary condition. To set up the optimal control problem, a cost functional and a state
constraint are considered that fulfill the assumptions of Theorem 2.12. For this, a function
ϕ is introduced which enters the state cost part of the cost functional, and which fulfills the
following conditions:

Assumption 3.2. Let ϕ : Ω × R, (x, u(x)) 7→ ϕ(x, u(x)) be a function that is nonnegative,
measurable with respect to the spatial variable x for every real u and twice differentiable with
respect to u for almost all x ∈ Ω. Let ϕ fulfill the boundedness condition of order 2 analog
to (3.7) and the local Lipschitz condition

∃L(M) : |ϕy(x, y1)− ϕy(x, y2)| ≤ L(M)|y1 − y2| a.e. in Ω, ∀y1, y2 ∈ [−M,M ].

Theorem 3.3. Consider the problem

min J(q, u) :=
∫
Ω
ϕ(x, u(x)) dx+ α

2 ‖q‖
2
Q q ∈ Q = L2(Ω), u ∈ X = W 1,p(Ω)

Āu(x) + d(x, u(x)) = q(x) in Ω,
u(x) = 0 on Γ1,

∂νAu(x) = 0 on Γ2.
G(u) ≥ 0 in Ω,

(3.10)

with the quantities Ā, d, Γ1, Γ2 fulfilling the same assumptions as in Lemma 3.1. The function
ϕ is assumed to have the properties according to Assumption 3.2, also α > 0. The admissible set
Xad induced by the constraint function G is assumed to be closed in X and fulfill Assumptions 2.8
and 2.11. Then, problem (3.10) admits an optimal solution.
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Proof. Due to Lemma 3.1, S : Q→ X is well-defined. As in Theorem 2.12, the boundedness
of J implies the existence of

j̄ := inf
q : S(q)∈Xad

J(q, S(q)),

which in turn gives a sequence (qn) with j(qn) → j̄. Due to the regularization term α
2 ‖q‖

2
Q

this sequence must be bounded by some constant,

‖qn‖Q < K ∀n > n0,

implying the existence of a weakly convergent subsequence, which is again denoted by qn, so
that qn ⇀ q̄. Setting un := S(qn), the maximum-norm a priori estimation [92, Theorem 4.8],

‖S(q)‖L∞(Ω) ≤ cS(‖q‖L2(Ω) + 1),

gives a bound for ‖un‖L∞(Ω) ≤ M = cS(K + 1) ∀n > n0. Now, consider zn := d(x, un(x)).
Due to the properties of d, the zn are bounded in L∞(Ω) too, see [92, p. 156]. Thus the zn are
bounded in L2(Ω) as well, so we can choose a weakly convergent subsequence, w.l.o.g. again
denoted by (zn), zn ⇀ z̄ in L2(Ω). Thus the un fulfill the equation

Āun = qn − zn in Ω
un = 0 on Γ1,

∂νAun = 0 on Γ2.

with the right hand side qn − zn converging weakly in L2(Ω) to q̄ − z̄. Since this equation is
linear, it is known that its solution operator is linear and continous from L2(Ω) to H1(Ω). As
a linear operator the solution operator is weakly continous, which yields the convergence

un ⇀ ū in H1(Ω),

and since H1(Ω) is compactly embedded in L2(Ω) also

un → ū in L2(Ω).

Note, that in contrast to the proof of Theorem 2.12 we do not know yet that ū = S(q̄). But
now, including the boundedness of un in C(Ω̄) [92, Lemma 4.9] proves that

‖d(·, un)− d(·, ū)‖L2(Ω) ≤ L(M)‖un − ū‖L2(Ω),

such that
d(·, un)→ d(·, ū) in L2(Ω).

Considering the weak form of the state equation,∫
Ω

2∑
i,j=1

(
aij

∂

∂xj
un

)
∂

∂xi
v dx+

∫
Ω

d(·, un)v dx =
∫
Ω

qnv dx,

for any v ∈ H1
Γ1

(Ω) the proven properties un ⇀ ū in H1(Ω), un → ū in L2(Ω), ‖un‖L∞(Ω) ≤M
allow to take the single expressions to the limit to conclude∫

Ω

2∑
i,j=1

(
aij

∂

∂xj
ū

)
∂

∂xi
v dx+

∫
Ω

d(·, ū)v dx =
∫
Ω

q̄v dx,
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which means ū = S(q̄). As in Theorem 2.12 the closedness in X and convexity of Xad secures
ū ∈ Xad. Finally due to the properties of ϕ the functional u 7→

∫
Ω
ϕ(x, u(x)) is Lipschitz-

continous on the set of all u ∈ L2(Ω) with ‖u‖L∞(Ω) ≤M , see again [92, Lemma 4.9], which
in turn secures that J(q̄, ū) = j̄ and concludes the proof.

We will now go on to characterize local optima of the general problem class (3.1). The
general derivation has been done in Lemma 2.18 already, but for a better overview the
conditions are stated again specially for the elliptic case and with minimum preconditions.
Remember the Lagrange functional used to formulate the KKT conditions is defined on
L : Q×X × Z ×M(Ω)→ R by

L(q, u, z, µ) := J(q, u)− a(q, u)(z) + (f, z)− 〈µ,G(u)〉. (3.11)

The optimality conditions are as follows:

Theorem 3.4. Consider the problem (3.1). Let S and G be one time Fréchet differentiable,
and Assumptions 2.11 and 2.17 be fulfilled. Let the point (q̄, ū) ∈ Q ×X be locally optimal
for the problem (3.1). Then there exist an adjoint state z̄ ∈ Z and a Lagrangian multiplier
µ̄ ∈M(Ω) so that the following optimality system holds for x̄ = (q̄, ū, z̄, µ̄):

L′z(x̄)(ϕ) = 0 ∀ϕ ∈ Z (3.12a)
L′u(x̄)(ϕ) = 0 ∀ϕ ∈ X (3.12b)
L′q(x̄)(ξ) = 0 ∀ξ ∈ Q (3.12c)
〈µ̄, G(ū)〉 = 0 and µ̄ ≥ 0. (3.12d)

Consider the equations from Theorem 3.4 in detail. Writing (3.12a) in an explicit way yields
the state equation in weak form again,

a(q̄, ū)(ϕ) = (f, ϕ) ∀ϕ ∈ Z. (3.13)

Concerning condition (3.12b), the adjoint equation, the explicit formulation is given by

a′u(q̄, ū)(ϕ, z̄) = J ′u(q̄, ū)(ϕ)− 〈µ̄, G′(ū)ϕ〉 ∀ϕ ∈ X, (3.14)

The adjoint equation is central to the theory of state constrained optimal control problems.
Since µ̄ is in general a Borel measure, this equation dictates the low regularity of the adjoint
state. This, in turn, makes the full regularity of X ⊂W 1,p(Ω) necessary for the test functions;
they can in general not be chosen from a larger set. This point is illustrated in the following
example.

Example 3.3. Consider the linear-quadratic distributed optimal control problem with given
functions ud, f ∈ L2(Ω), ub ∈ C(Ω̄) with ub > 0:

min J(q, u) = 1
2‖u− ud‖

2
L2(Ω) + α

2 ‖q‖
2
L2(Ω), q ∈ Q = L2(Ω), u ∈ X = W 1,p

0 (Ω)
a(q, u)(ϕ) := (∇u,∇ϕ)− (q, ϕ) = (f, ϕ) ∀ϕ ∈ X

G(u) := ub − u ≥ 0
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3.3. Finite element discretization

The adjoint equation in weak form according to (3.14) then reads: Find a z ∈ Z such that

(∇z,∇ϕ) = (u− ud, ϕ) + 〈µ, ϕ〉 ∀ϕ ∈ X.

In strong form, this can formally be written as

−∆z =u− ud + µ in Ω
z|Γ =0

(3.15)

which is a Poisson equation for z with a right-hand side that is not in H−1(Ω). It can be
proven that the solution has the regularity z ∈ W 1,p′(Ω) for all p′ < n

n−1 , see [18]. Thus for
the state the regularity u ∈W 1,p(Ω) is required with some p > n to guarantee that the term∫

Ω

∇u(x) · ∇z(x) dx,

contained in the Lagrange functional, is well-defined.

The explicit formulation of condition (3.12c) gives the gradient equation

J ′q(q̄, ū)(ξ) = a′q(q̄, ū)(ξ, z̄) ∀ξ ∈ Q. (3.16)

The conditions (3.12d) can be expressed equivalently by the variational inequality

〈µ̄, ϕ−G(ū)〉 ≥ 0 ∀ϕ ∈ C(Ω̄), ϕ ≥ 0. (3.17)

3.3. Finite element discretization

Next the discretizations used for the elliptic problem are described. Here we have two levels of
discretization, the spatial discretization indicated by the subscript h, and the disretization of
the control space, indicated by the subscript d, such that σ = (h, d).

The discretization of the spatial state variable is done using a continous Galerkin finite element
method of order s, with s ∈ N, s ≥ 1, in short cG(s). The discretization of the control variable
has to be kept more abstract since different structures of Q are possible, a few examples for
typical situations will be discussed.

3.3.1. Discretization of the state variable

Concerning the state variable, the discretization of the state space is described by a mesh on
the computational domain Ω. Let us assume here that Ω is indeed polygonal - otherwise a
polygonal approximation Ωh would need to be considered that approaches Ω in the refinement
limit h→ 0. Details can be found, e.g., in [16].

The mesh on the considered discretization level is denoted by Th, and is composed of cells K.
These are the spatial domains of the finite elements. We use (nondegenerate) quadrilaterals
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3. Elliptic Optimal Control Problems with State Constraints

in twodimensional, and hexahedrals in threedimensional domains. The vertices of all cells -
counted only once if several cells share one vertex - are also called nodes, making up the set
Nh, and their number is denoted by Nh. We denote the diameter of each cell K by hK and
set the diameter of the mesh as the function

h : Ω̄ → R, x 7→ hK if x ∈ K. (3.18)

We will now describe what properties of the triangulation we expect. The property of regularity
of the mesh Th means

• domain exploitation: Ω̄ =
⋃

K∈Th
K̄

• void of overlaps: ∀K1,K2 ∈ Th : K1 ∩K2 = ∅ ⇔ K1 6= K2

• face adaption: ∀K ∈ Th : every face of K is either a subset of the boundary Γ or equal
to a face of a different cell.

To ease the construction of the intended local refinement, we are not demanding regularity by
the strict definition above, but one exception is made: for every face of a cell, we will allow
for a minimum number of hanging nodes. In 2D this is one hanging node, which has to be
in the midpoint of the face. In 3D, the construction requires five hanging nodes, one in the
midpoint of the face plus one in the midpoint of each of the four edges. The consequence of
this is that faces with hanging nodes are equal to the faces of two (in 2D) or four (in 3D)
neighboring cells of equal size. An example configuration can be seen in Figure 3.1. A further

Figure 3.1.. Mesh structure - regular nodes (filled) and hanging nodes (empty) in a
2D mesh

demand that is added: every spatial mesh has to obey a patch-wise structure. That means
that the mesh Th can be interpreted as the global refinement of a coarser mesh T2h. In other
words, any cell together with three (in 2D) or seven (in 3D) neighboring cells forms a patch
which is the common coarser cell from T2h. This property will be utilized in the construction
of computable error indicators. The mesh in Figure 3.1 does not have this property, but the
one in Figure 3.2 has. Next we introduce the basis functions in every cell used to define the
finite element space. The functions to build a finite element of order s on the cell K ∈ Th are
obtained by a transformation from the reference cell K̂ = (0, 1)n. Since K is nondegenerate
there exists an affine bilinear transformation function TK : K̂ → K. The space of functions
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3.3. Finite element discretization

Figure 3.2.. Mesh structure - patched mesh in 2D

on the reference cell for a Lagrange element of order s is the space of polynomials with each
coordinate up to power s,

Qs(K̂) := span
{

n∏
i=1

xαii |αi ∈ {0, 1, . . . , s}
}
.

The transformation then yields

Qs(K) :=
{
vh : K → R | vh ◦ TK ∈ Qs(K̂)

}
.

as the set of FEM functions on the cell K. This finally gives the FE space

Xs
h := {vh ∈ V ∩ C(Ω̄) | vh|K ∈ Qs(K) ∀K ∈ Th}. (3.19)

Note that the function value of finite element functions in hanging nodes is determined by
point-wise interpolation. Hanging nodes thus do not carry a degree of freedom, and are not
accounted for in the set Nh. Prescribing the value this way secures global continuity. With
the definition of Xs

h the semidiscrete state equation can be formulated as

a(q, uh)(ϕh) = (f, ϕh) ∀ϕh ∈ Xs
h. (3.20)

Its solution operator is denoted by Sh : Q→ Xs
h.

As the intention is the approximate solution on a sequence of refined meshes (T (i)), i = 1, 2 . . . ,
some remarks on the mesh refinement process T (i) → T (i+1) are made. An important property
of the refinement process is obviously that it preserves all the desired properties of the previous
mesh. Assume we are given one mesh and one set of cells T̃h ⊂ Th marked for refinement by
the evaluation of an error estimator. A refinement of one cell means replacing it with four (in
2D) or eight (in 3D) cells of half the dimensions of the old one. This creates one regular node
(in the midpoint of the old cell) and four (in 2D) or 18 (in 3D) nodes that may be hanging
nodes or regular ones depending on the neighboring cells.
In general it does not suffice to refine only the cells marked by the error estimator, as this
would violate some of the conditions posed above. Together with one cell marked for refinement
all the cells from the same patch need to be refined in order to keep the patch structure. Also,
to avoid multiple hanging nodes per face, we can not allow for neighboring cells of more of
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3. Elliptic Optimal Control Problems with State Constraints

one size level difference. Should this occur during refinement, the larger cell has to be marked
for refinement additionally, and consequently its whole patch. This process must be repeated
until every face has at most one hanging node.

Furthermore let us stress the fact that this way of refinement leads a to quasi-uniform family
of meshes (T (i)). Remember, such a family of quadrilaterals is called shape-regular, if there
exists a constant κ > 0 such that

hK ≤ κh′K ∀K ∈ T (i) ∀i = 1, 2, . . .

where h′K denotes the smallest diameter of any side (in 2D) or face (in 3D) of K. However, in
the context of a posteriori error estimation and adaptivity it is not necessary to demand (T (i))
to be quasi-uniform, this means families where there exists a κ̄, such that

h ≤ κ̄h′K ∀K ∈ T (i) ∀i = 1, 2, . . . ,

as we could easily keep refining the mesh in one subdomain, and leave it unrefined in another,
causing the ratio of largest and smallest cell diameter to grow arbitrarily.

3.3.2. Discretization of Lagrange multiplier and state constraint

The spatial discretization, described by the mesh Th, can also be used to motivate a dis-
cretization of the spaceM(Ω) and of the state constraint. Let δxi denote the Dirac measure
concentrated at the node xi. We then define the discrete multiplier space as

Mh :=

µh =
Nh∑
i=1

µiδxi : µi ∈ R, xi ∈ Nh

 . (3.21)

For a discrete multiplier the positivity can be easily checked by

Mh 3 µh ≥ 0 ⇔ µi ≥ 0 ∀i ∈ {0, 1, . . . , Nh}. (3.22)

Further a discretization of the constraint G(x, u(x)) ≥ 0 is necessary, since it must be fulfilled
in infinitely many points. In some common cases this constraint has an equivalent formulation
in finitely many points, in general an approximation needs to be introduced by

Gh(xi, uh(xi)) ≥ 0 ∀xi ∈ Nh (3.23)

with an appropriately chosen function Gh : Ω̄ ×R→ R.

Consider the special case of a one-sided state constraint, e.g. G(x, u(x)) = ub(x) − u(x), a
discretization of the state variable with linear or bilinear finite elements, and let the upper
boundary ub be in this FE space, or simply be a constant function. Using the coordinates
of uh, uh =

∑
uiϕi, and ub in the nodal basis, ub =

∑
ubiϕi, it can be easily shown that the

equivalence

uh(x) ≤ ub(x) ∀x ∈ Ω̄ ⇔ uh(xi) ≤ ub(xi) ∀xi ∈ Nh
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3.3. Finite element discretization

holds true. This means we can set Gh = G and write Gh(uh) ≥ 0 as abbreviation for (3.23)
like before.

Had ub not been an FE function, a possible approximation would have been the use of the
function ubh :=

∑
ub(xi)ϕi in the definition

Gh(xi, uh(xi)) = ubh(xi)− uh(xi) (3.24)

of the discretized constraint function.

Another example for the discretization of the state constraint, this time for Q2-elements, has
been done in [24]. In the general case with abstract G we assume an appropriate Gh can be
found.

The discrete admissible set can now be defined as

Xad,h := {u ∈ Xs
h : Gh(xi, uh(xi)) ≥ 0 ∀xi ∈ Nh},

and the spatially discretized elliptic control problem reads

(Ph)


min J(q, uh) q ∈ Q, uh ∈ Xs

h

a(q, uh)(ϕh) = (f, ϕh) ∀ϕh ∈ Xs
h

Gh(uh) ≥ 0 .
(3.25)

3.3.3. Discretization of the control variable

The discretization of the control variable, or the choice of a finite dimensional subspace

Qd ⊂ Q (3.26)

can not be described in such a detailed manner, as Q is an abstract space. The general case
has to be left to the user. For the examples considered in Section 3.1, possibilities are discussed
here:

Example 3.4. For distributed control, as introduced in Example 3.1, no. 1, the space
Q = L2(Ω) can either be discretized like the state space by a cG(s) method. Alternatively
cellwise constant functions can be employed, induced by the same mesh. This would mean
setting

Qd = {v ∈ Q : v|K = const ∀K ∈ Th}

and is a dG(0) method. Other choices are possible if a specific problem suggests it, for example
a different mesh could be used in the discretization process. But for the numerical examples in
this thesis only one mesh is used for the discretization of both state and control variable.

Example 3.5. For Neumann control, as in Example 3.1, no. 2, also the mesh Th can be used
to induce a discretization of Q = L2(Γ ): A cG(sd) finite element space on Ω is set up as
described before, and the traces of those functions on the boundary make up the discrete
control space:

Qd =
{
γ(vh) ∈ C(Γ ) : vh ∈ V sd

h

}
.
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For Dirichlet control the discussion is more involved, as there are several possibilities to
establish a weak formulation and choose an appropriate control space to begin with, see, e.g.,
[60] for a discussion of this. Also specially designed boundary element methods can be used,
see [78].

In the case of parameter control as in Example 3.1, no. 3, Q is already finite to begin with, so
it suffices to set Qd = Q.
Remark 3.1. For certain optimal control problems there also exist solution techniques that
require no discretization of the control. For this so called variational discretization concept,
see [51] for elliptic, and [27] for parabolic problems.

3.3.4. Discrete optimality conditions

Employing the discrete spaces defined before, and using the combination of subscripts σ = (h, d),
the fully discrete problem is introduced as

(Pσ)


min J(qσ, uσ) qσ ∈ Qd, uσ ∈ Xs

h

a(qσ, uσ)(ϕσ) = (f, ϕσ) ∀ϕσ ∈ Xs
h

Gσ(uσ) ≥ 0 .
(3.27)

Analog to the continous problem, we need the following assumption for the proof of existence
of an optimal solution:

Assumption 3.5. There exists a control q∗d ∈ Qd such that Sh(q∗d) ∈ Xad,h.

In some situations the assumption can be proven for h small enough, see [70].

Theorem 3.6. Consider problem (3.27), and let Assumption 3.5 hold. Then, there exists an
optimal control q̄σ.

The proof can be done like in the continous case. Again we need a local Slater condition to be
fulfilled.

Assumption 3.7. Let q̄σ denote a locally optimal control. There exists a control q̂d ∈ Qd such
that Sh(q̄σ) + S′h(q̄σ)(q̂d − q̄σ) ∈ int(Xad,h).

The optimality conditions can be formulated using the Lagrangian L as follows:

Theorem 3.8. Let (q̄σ, ūσ) be locally optimal for the discrete problem (3.27). Then there exist
an adjoint state z̄σ ∈ Xs

h and a discrete multiplier µ̄σ ∈Mh such that the following condition
holds in the point x̄σ = (q̄σ, ūσ, z̄σ, µ̄σ) ∈ Qd ×Xs

h ×Xs
h ×Mh:

L′z(x̄σ)(ϕσ) = 0 ∀ϕσ ∈ Xs
h (3.28a)

L′u(x̄σ)(ϕσ) = 0 ∀ϕσ ∈ Xs
h (3.28b)

L′q(x̄σ)(ξσ) = 0 ∀ξσ ∈ Qd (3.28c)
〈µ̄σ, Gσ(ūσ)〉 = 0, µ̄σ ≥ 0 (3.28d)
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3.4. Optimization with the primal-dual active set method

The proof is analog to the continous case. Again we write the equations from Theorem 3.8 in
explicit form. We obtain the discrete state equation

a(q̄σ, ūσ)(ϕσ) = (f, ϕσ) ∀ϕσ ∈ Xs
h, (3.29)

the discrete adjoint equation

a′u(q̄σ, ūσ)(ϕσ, z̄σ) = J ′u(q̄σ, ūσ)(ϕσ)− 〈µ̄σ, G′σ(ūσ)ϕσ〉 ∀ϕσ ∈ Xs
h, (3.30)

and the discrete gradient equation

J ′q(q̄σ, ūσ)(ξσ) = a′q(q̄σ, ūσ)(ξσ, z̄σ) ∀ξσ ∈ Qd. (3.31)

3.4. Optimization with the primal-dual active set method

In order to find a solution algorithm for (3.27), note that (Pσ) describes a fairly large problem
class. Thus it can not be expected that there exists a numerical method that solves all problem
instances contained in (3.27) at all. Even if such a method exists, it cannot be expected that
it solves all the problems equally well. Methods that utilize special features of a subclass of
problems will usually do better.

In the upcoming section the method of direct treatment of the state constraints by the primal-
dual active set (PDAS) method will be introduced. The use of this method is well established,
but it is applicable only to a subset of the problems included in (3.27). A method that can be
applied to the complete problem class is described in Section 3.6.

The primal-dual active set method is based on the partition of the set Nh into an active and
an inactive set. If the active set of the optimal solution

Aexact := {xi ∈ Nh : Gσ(ūσ(xi)) = 0}. (3.32)

would be known, then the optimal control could be determined by the solution of an equality-
constrained optimal control problem. This corresponds to an optimal control problem on the
inactive set

Iexact = Nh \Aexact.

that can be solved with Newton-type methods. Naturally, Aexact is unknown to us. It is thus
approximated by a sequence of sets (Ai) ⊂ Nh, where A0 is an arbitrary starting set, and the
others are gained by the recursion of the following two steps:

• Given Ai, solve the following auxiliary problem

(PE)
{

min jσ(qσ), qσ ∈ Qd
Gσ(Sσ(qσ))|Ai = 0

This is an optimal control problem with additional equality constraints in |Ai| points
with the explicit formulation

Gσ(xj , Sσ(qσ)(xj)) = 0 ∀xj ∈ Ai.

The Lagrange multiplier associated with these constraints is denoted by µi+1 ∈Mh, the
jth component µi+1

j corresponds to the point xj ∈ Nh.
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• With the solution of (PE), denoted by qi+1
σ , and the according multiplier µi+1, the next

active set Ai+1 then corresponds to the state ui+1
σ = Sσ(qi+1

σ ) and is given by

Ai+1 := {xj ∈ Nh : Gσ(xj , ui+1
σ (xj)) + c · µi+1

j ≤ 0}, (3.33)

with some constant c > 0.

This iteration yields a sequence of sets Ai and controls qi+1
σ .The method has converged when

Ai = Ai+1 for some i.

The detailed explanation of the solution of (PE) will be done below. Let us first address the
point which problems of type (3.1) can be solved by the PDAS method. In this algorithm it
is not inherently clear whether the first step, the solution of (PE), is well-defined. For some
types of state equations it might be impossible to find a control so that the corresponding
state fulfills the constraint with equality on the prescribed set Ai. There are several examples
of elliptic OCPs the PDAS method can be applied to, see e.g. [13, 15]. A sufficient condition
for the well-definedness of the algorithm in the general framework (3.1) is obviously that the
discrete control-to-state operator is surjective, or

Sσ(Qd) = Xs
h.

The statement of a weaker condition, this means an a priori specification of the range of Sσ,
is hardly possible even for a given realization of (Pσ). As a non-rigorous rule of thumb one
may say though, that a larger control space leads to the permissibility of the PDAS algorithm
more often than a smaller one. For the standard problems from Example 3.1, the rule of
thumb favors distributed over boundary over parameter control. This limitation of the range
of operation of the PDAS method is intrinsic to state constrained OCPs, in contrast to control
constrained ones.

Next, the solution of (PE) will be detailed. As it has equality constraints only, the algorithm
will be built up with strategies similar to those from Section 2.3.4. Again, the solution
(qi+1
σ , µi+1) is approximated by a sequence of controls and multipliers

(qi+1
k , µi+1

k ), k = 0, 1, . . . . (3.34)

As starting values the last values from the last PDAS step are chosen, qi+1
0 := qi, µi+1

0 := µi.
Then it suffices to describe one step k → k + 1 in the sequence (3.34). For simplicity of
notation, assume qσ and µσ are the current iterates, and the current active set is denoted by
A. The task is to find the update (δq, δµ) to advance in the sequence (3.34). Like before, the
method is developed in reduced form, but now reduced to the control qσ and the multiplier µσ.
The state uσ and adjoint state zσ, are fixed as the solutions of the discrete state and adjoint
equations (3.29) and (3.30), represented by the solution operators of these equations,

uσ = Sσ(qσ) and zσ = Tσ(qσ, µσ).

For the equality constrained problem (PE), denote its Lagrangian by

M(qσ, µσ) := jσ(qσ)− 〈µσ, Gσ(uσ)〉A, (3.35)
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where 〈·, ·〉A with A ⊂ Nh is defined for discrete measures of the form µ =
∑

xi∈Nh
µiδxi and

functions f ∈ C(Ω̄) as
〈µ, f〉A :=

∑
xi∈A

µif(xi).

The optimality conditions are as before

M ′(qσ, µσ) = 0 ⇔ M ′q(qσ, µσ)(δq) = M ′µ(qσ, µσ)(δµ) = 0 ∀δq ∈ Qd, δµ ∈Mh.

The evaluation of these directional derivatives for given directions δq ∈ Qd, δµ ∈Mh is done
as follows:

M ′q(qσ, µσ)(δq) = j′(qσ)(δq)− 〈µσ, G′σ(uσ)S′σ(qσ)δq〉A
= J ′q(qσ, uσ)(δq) + J ′u(qσ, uσ)(δu)− 〈µσ, G′σ(uσ)δu〉A
= J ′q(qσ, uσ)(δq) + a′u(qσ, uσ)(δu, zσ)
= J ′q(qσ, uσ)(δq)− a′q(qσ, uσ)(δq, zσ), (3.36)

where, as before, δu = S′σ(qσ)δq is given as solution of the discrete tangent equation

a′u(qσ, uσ)(δu, ϕσ) = a′q(qσ, uσ)(δq, ϕσ) ∀ϕσ ∈ Xs
h, (3.37)

which is obtained by total derivation of the discrete state equation.
The other directional derivative is

M ′µ(qσ, µσ)(δµ) = −〈δµ,Gσ(uσ)〉A. (3.38)

Like before, the equation M ′(qσ, µσ) = 0 will be solved using a Newton-type method. The
necessary second derivatives are evaluated as follows:

M ′′qq(qσ, µσ)(δq, τq) = ∂

∂q
(J ′q(qσ, uσ)(τq)− a′q(qσ, uσ)(τq, zσ))(δq)

=J ′′qq(qσ, uσ)(δq, τq) + J ′′uq(qσ, uσ)(δu, τq)− a′′qq(qσ, uσ)(δq, τq, zσ)
− a′′uq(qσ, uσ)(δu, τq, zσ)− a′q(qσ, uσ)(τq, T ′σ,q(qσ, µσ)δq),

M ′′µq(qσ, µσ)(δµ, τq) =− a′q(qσ, uσ)(τq, T ′σ,µ(qσ, µσ)δµ),
M ′′qµ(qσ, µσ)(δq, τµ) =− 〈τµ,G′σ(uσ)δu〉A,
M ′′µµ(qσ, µσ)(δµ, τµ) =0.

The two terms involving T ′σ are treated as follows: total derivation of the dual equation yields
the term T ′σ,q(qσ, µσ)δq + T ′σ,µ(qσ, µσ)δµ. This motivates the definition of

δz := T ′σ,q(qσ, µσ)δq + T ′σ,µ(qσ, µσ)δµ,

which is obtained for given δq, δu, δµ as solution of the discrete additional adjoint equation:

a′u(qσ, uσ)(ϕσ, δz) = −a′′uu(qσ, uσ)(δu, ϕσ, zσ)− a′′qu(qσ, uσ)(δq, ϕσ, zσ)
+ J ′′qu(δq, ϕσ) + J ′′uu(δu, ϕσ)− 〈µσ, G′′σ(uσ)(δu, ϕσ)〉 − 〈δµ,G′σ(uσ)(ϕσ)〉 ∀ϕσ ∈ Xs

h.
(3.39)
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The absolute second derivative can thus be evaluated as

M ′′(qσ, µσ)((δq, δµ), (τq, τµ)) = J ′′qq(qσ, uσ)(δq, τq) + J ′′uq(qσ, uσ)(δu, τq)
− a′′qq(qσ, uσ)(δq, τq, zσ)− a′′uq(qσ, uσ)(δu, τq, zσ)
− a′q(qσ, uσ)(τq, δz)− 〈τµ,G′σ(uσ)δu〉.

(3.40)

This formulation is indeed favorable, since, like in Section 2.3.4, the repeated evaluation of this
term for one given direction (δq, δµ) and many directions (τq, τµ) requires only the solution of
two partial differential equations (assuming q, u, z are given):

- the tangent equation with δq to calculate δu,

- the additional adjoint equation with δq, δu, δµ to calculate δz.

The procedure of solving the equation M ′(qσ, µσ) = 0 can be done analog to Section 2.3.4.
Given bases (τqj), j = 1 . . . dim(Qd) of Qd and (τµj), j = 1 . . . dim(Mh) ofMh, the utilized
directions are counted in this order:

(τq, τµ)j =
{

τqj : 1 ≤ j ≤ dim(Qd)
τµj−dim(Qd) : dim(Qd) + 1 ≤ j ≤ dim(Qd) + dim(Mh) .

Thus the gradient ∇M is written as

∇M(qσ, µσ) =
dim(Qd)+dim(Mh)∑

j=1
fj(τq, τµ)j ,

where its coefficient vector f is determined by

(M ′(qσ, µσ)((τq, τµ)i))dim(Qd)+dim(Mh)
i=1 = (∇M(qσ, µσ), (τq, τµ)i)dim(Qd)+dim(Mh)

i=1 = Gf
(3.41)

with the Gramian matrix G.
The full Newton step (δq, δµ), determined byM ′′(qσ, µσ)((δq, δµ), (τq, τµ)) = −M ′(qσ, µσ)(τq, τµ)
is represented by

(δq, δµ) =
dim(Qd)+dim(Mh)∑

j=1
dj(τq, τµ)j ,

with its coefficient vector d. Utilizing these quantities the formal buildup of the system of
equations

Kd = −Gf

can be done as before, with K being the matrix with entries

M ′′(qσ, µσ)((τq, τµ)j , (τq, τµ)i)

at the (i, j)-th position. However due to its origin in the Lagrangian (3.35) the system matrix
H := G−1K is not positive definite, but exhibits a saddle point structure. The solution of
the system of equations can be achieved, e.g., by a GMRes method, see [83]. Analog to the
representation (2.63), products of the form ∇2M(qσ, µσ)(δq, δµ) to be used within the GMRes
method can be evaluated by

Gh = (M ′′(qσ, µσ)(δq, δµ)(τq, τµ)i)dim(Qd×Mh)
i=1 (3.42)
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3.4. Optimization with the primal-dual active set method

such that h is the coefficient vector of the product. After the determination of d and thus
(δq, δµ) one can use the full Newtin step qk+1

i+1 = qki+1 + δq and µk+1
i+1 = µki+1 + δµ, or it can be

necessary to include a globalization technique, such as a line search method, to determine a
λi ∈ (0, 1] to set qk+1

i+1 = qki+1 +λiδq and µk+1
i+1 = µki+1 +λiδµ. An overview over the whole PDAS

method for state constrained ellipctic OCPs is given in Algorithm 3.1. An analog formulation
is possible for parabolic problems.

Algorithm 3.1. Primal-dual active set method for state constrained ellipctic OCPs

1: input data: control q0, multiplier µ0,
2: parameter: TOLN , TOLL
3: solve u0 = Sσ(q0), z0 = Tσ(q0, µ0)
4: determine the active set A0 by (3.33)
5: set i = 0
6: repeat
7: Solve (PE) (qi, ui, zi, µi, Ai, TOLN , TOLL), see Algorithm 3.2.
8: this yields qi+1, ui+1, zi+1, µi+1

9: determine the active set Ai+1 by (3.33)
10: set i:=i+1
11: until Ai = Ai−1

12: output data: q̄ := qi, ū := ui, z̄ := zi, µ̄ := µi

Algorithm 3.2. Newton-type optimization for PDAS

1: input data: current functions q0, u0, z0, µ0, active set A
2: parameter: TOLN , TOLL
3: Set counter i = 0.
4: repeat
5: Compute f as vector representation of ∇M(qi, µi) by (3.41)
6: Compute d> as vector representation of the Newton update (δq, δµ)>

by solving Hd> = −f iteratively, e.g. by GMRes method with tolerance TOLL
7: for any product Hd̃ the GMRes algorithm requests do
8: With (δ̃q, δ̃µ) being the direction represented by d̃
9: Compute δ̃u by (3.37)

10: Compute δ̃z by (3.39)
11: Evaluate (3.40) to get right hand side of (3.42)
12: Get h = Hd̃ by solving (3.42)
13: Determine step length λi by line search
14: Set qi+1 = qi + λiδq, µi+1 = µi + λiδµ
15: Solve ui+1 = Sσ(qi+1), zi+1 = Tσ(qi+1, µi+1)
16: i = i+ 1
17: until |∇M(qi, µi)| ≤ TOLN
18: output data: qi, ui, zi, µi
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3.5. A posteriori error estimator and adaptivity

At this stage, given a mesh Th and a control discretization Qd, a discrete approximation (qσ, uσ)
to a locally optimal solution (q̄, ū) of (3.1) can be computed. We now turn to the subject of
estimating the error that this approximation has caused in terms of the cost functional. Thus
the aim is to derive an error estimator

η ≈ J(q̄, ū)− J(qσ, uσ).

The first result represents the error in terms of derivatives of the Lagrangian. Note that in
contrast to the derivation of the numerical solution algorithm before, it is now required that
the control-to-state operator S is three times Gateaux differentiable.

Lemma 3.9. Let x̄ = (q̄, ū, z̄, µ̄) ∈ Q ×X × Z ×M(Ω) be a point satisfying the first-order
necessary optimality condition (3.12), and let xσ = (qσ, uσ, zσ, µσ) ∈ Qd×Xh×Xh×Mh be a
discrete point satisfying the corresponding discrete optimality condition (3.28) with the Lagrange
functional L being three times Gateaux differentiable. Then it holds for the discretization error
with respect to the cost functional

J(q̄, ū)− J(qσ, uσ) = 1
2L
′(x̄)(x̄− xσ) + 1

2L
′(xσ)(x̄− xσ) + 〈µσ, Gσ(uσ)−G(uσ)〉+R, (3.43)

where R is a term of third order, R = O(‖x̄− xh‖3).

Proof. For the points x̄ and xσ, the application of the respective optimality conditions to the
definition of the Lagrangian (3.11) shows that there holds

L(x̄) = J(q̄, ū) and L(xσ) = J(qσ, uσ) + 〈µσ, Gσ(uσ)−G(uσ)〉. (3.44)

Following the proof of the respective theorem in [10], an evaluation of the occuring integral
with the trapezoidal rule, using the abbreviation e := x̄− xσ, yields

J(q̄, ū)− J(qσ, uσ) = L(x̄)− L(xσ) + 〈µσ, Gσ(uσ)−G(uσ)〉

=
1∫

0

L′(xσ + se)(e)ds+ 〈µσ, Gσ(uσ)−G(uσ)〉

= 1
2L
′(x̄)(x̄− xσ) + 1

2L
′(xσ)(x̄− xσ) + 〈µσ, Gσ(uσ)−G(uσ)〉+R

where the remainder term is given as

R = 1
2

1∫
0

L′′′(xσ + se)(e, e, e) · s · (s− 1)ds.

The utilization of the continous and discrete optimality conditions gives the next step in the
derivation.
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3.5. A posteriori error estimator and adaptivity

Lemma 3.10. In the situation of Lemma 3.9, there holds the error representation formula

J(q̄, ū)− J(qσ, uσ) = 1
2{J

′
u(q̄, ū)(ū− uσ)− a′u(q̄, ū)(ū− uσ, z̄)− a(qσ, uσ)(z̄ − z̃σ)

+(f, z̄ − z̃σ) + J ′q(qσ, uσ)(q̄ − q̃σ)− a′q(qσ, uσ)(q̄ − q̃σ, zσ)
+J ′u(qσ, uσ)(ū− uσ)− a′u(qσ, uσ)(ū− uσ, zσ)}+R+R2

+〈µσ, Gσ(uσ)−G(uσ)〉

(3.45)

where q̃σ ∈ Qd and z̃σ ∈ Xs
h can be arbitrarily chosen, and R2 is a quadratic remainder term

detailed below.

Proof. Starting from equation (3.43), the terms to be considered from the derivative of L in
the continous optimal point x̄ are:

L′z(x̄)(z̄ − zσ) = 0 due to optimality condition (3.12a), (3.46a)
L′u(x̄)(ū− uσ) = 0 due to optimality condition (3.12b), (3.46b)
L′q(x̄)(q̄ − qσ) = 0 due to optimality condition (3.12c), (3.46c)
L′µ(x̄)(µ̄− µσ) = −〈µ̄− µσ, G(ū)〉. (3.46d)

For the discrete optimal point xσ the following terms occur:

L′z(xσ)(z̄ − zσ) = −a(qσ, uσ)(z̄ − zσ) + (f, z̄ − zσ), (3.47a)
L′q(xσ)(q̄ − qσ) = J ′q(qσ, uσ)(q̄ − qσ)− a′q(qσ, uσ)(q̄ − qσ, zσ), (3.47b)
L′u(xσ)(ū− uσ) = J ′u(qσ, uσ)(ū− uσ)− a′u(qσ, uσ)(ū− uσ, zσ)− 〈µσ, G′(uσ)(ū− uσ)〉,

(3.47c)
L′µ(xσ)(µ̄− µσ) = −〈µ̄− µσ, G(uσ)〉. (3.47d)

Using the discrete state and gradient equations (3.29) and (3.31) in the right hand sides
of (3.47a) and (3.47b) any arbitrary discrete functions z̃h ∈ Xs

h, q̃d ∈ Qd can be inserted:

L′z(xσ)(z̄ − zσ) = −a(qσ, uσ)(z̄ − z̃σ) + (f, z̄ − z̃σ), (3.48a)
L′q(xσ)(q̄ − qσ) = J ′q(qσ, uσ)(q̄ − q̃σ)− a′q(qσ, uσ)(q̄ − q̃σ, zσ). (3.48b)

Take a step back to get an overview over the terms that are summed up for the representation
of J(q̄, ū)− J(qσ, uσ) via (3.43). It comprises of the right hand sides of the equations (3.46a)
through (3.46c), which are zero, and those of (3.46d), (3.48a), (3.48b), (3.47c), and (3.47d).
All summands that do not involve any measures can be transferred straight to the claim of the
lemma in (3.45). The terms with Lagrange multipliers are summed up and treated further.
The following terms remain:

− 〈µσ, G′(uσ)(ū− uσ)〉 − 〈µ̄− µσ, G(ū)〉 − 〈µ̄− µσ, G(uσ)〉 (3.49)

By using the complementarity conditions (3.12d) and (3.28d), and a Taylor expansion on two
terms, the term (3.49) is transformed to

〈µσ, G(ū)−G′(uσ)(ū− uσ)〉 − 〈µ̄, G(uσ)〉
=〈µσ, G(uσ)−R1

2〉 − 〈µ̄, G(ū) +G′(ū)(uσ − ū) +R2
2〉

=〈µ̄, G′(ū)(ū− uσ)〉+R2, (3.50)
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where the remainder terms from the Taylor expansion are

R1
2 = 1

2

1∫
0

G′′(uσ + s(ū− uσ))(ū− uσ, ū− uσ)s(1− s) ds,

R2
2 = 1

2

1∫
0

G′′(ū+ s(uσ − ū))(ū− uσ, ū− uσ)s(1− s) ds,

such that the sum R2 = R1
2 +R2

2 is quadratic in ‖ū− uσ‖. This last term in (3.50), without
the remainder R2, is finally replaced by utilizing the adjoint equation (3.14), achieving the
term

J ′u(q̄, ū)(ū− uσ)− a′u(q̄, ū)(ū− uσ, z̄).
Summing up all contributions yields the claim of the lemma.

Remark 3.2. Due to the general formulation of the state constraint using the function G some
unusual terms appear in the error representation. In the common situation that G is linear,
the remainder term R2 disappears.
Also since the discretization of G by Gσ is left abstract, the term 〈µσ, G(uσ)−Gσ(uσ)〉 can
not be simplified. If for example an upper state constraint G(u) = ub − u is present with the
approximation Gσ as introduced in Section 3.3.2, see (3.24), the term reduces to 〈µσ, ub− ubh〉.
Since µσ is comprised of point evaluations in gridpoints, this term is zero.

This motivates the following assumption with the intention to omit the term

〈µσ, Gσ(uσ)−G(uσ)〉

in the error estimator:

Assumption 3.11. Let the approximation of G by Gσ be of such a quality that the term
〈µσ, Gσ(uσ)−G(uσ)〉 is of not larger order than the remainder terms R2,R3.

For more complicated state constraints it might be necessary to construct a computable
estimator for this term.

The error representation (3.45) still contains the continous solution q̄, ū, z̄. To define computable
error estimators, that only contain the quantities qσ, uσ, zσ, we employ some interpolation
operators to get suitable approximations. The technique of interpolation in higher order finite
element spaces has been used successfully in a posteriori error estimation. We use operators

Ph : Xs
h → X̂s

h, Pq : Qd → Q̂d (3.51)

where X̂s
h and Q̂d are suitable finite element spaces such that Phuσ and Pdqσ are assumed to

be good approximations to ū− uσ and q̄ − qσ. As an example of such an operator we discuss
an operator that can be used for quantities that are spatially discretized by the cG(1) method.
Remember that the mesh Th is assumed to have a patch structure. We use

Ph = I
(2)
2h − id,

where I(2)
2h uσ interpolates the bilinear function uσ into the space of biquadratic finite elements

on the patches. Figure 3.3 illustrates this interpolation.
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(b) the same function including its biquadratic
interpolant

Figure 3.3.. Biquadratic interpolation on a patch in 2D

Remark 3.3. The use of the operators Ph for estimation of local approximation errors can be
rigorously justified only for smooth solutions q̄, ū, z̄ employing super-convergence effects. Since
in the state constrained case the adjoint solution z̄ and consequently the control variable q̄
possess in general only reduced regularity, this justification could be debated. Nevertheless, we
expect a useful behaviour of the proposed error estimator, since the operator Ph is defined
locally and the regions where the adjoint state z̄ is not smooth are usually strongly localized.

Now by the approximations

q̄ − qσ ≈ Pdqσ, ū− uσ ≈ Phuσ, z̄ − zσ ≈ Phzσ,

the computable error estimators can be formulated. An approximation of Lagrange multipliers
is not necessary. The discretization error of the state space is estimated by

ηh :=1
2
(
J ′u(qσ, uσ)(Phuσ)− a′u(qσ, uσ)(Phuσ, zσ)− a(qσ, uσ)(Phzσ) + (f, Phzσ)

+J ′u((Pd + id)qσ, (Ph + id)uσ)(Phuσ)− a′u((Pd + id)qσ, (Ph + id)uσ)(Phuσ, (Ph + id)zσ)
)

(3.52)
and the discretization error of the control space is estimated by

ηd := 1
2
(
J ′q(qσ, uσ)(Pdqσ)− a′q(qσ, uσ)(Pdqσ, zσ)

)
. (3.53)

Their sum makes up the total discretization error.

η = ηh + ηd (3.54)

Remark 3.4. The residual of the gradient equation,

J ′q(qσ, uσ)(q̄ − q̃σ)− a′q(qσ, uσ)(q̄ − q̃σ, zσ),
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can sometimes be shown to be zero, leading also to the estimator ηd = 0. Examples for this
situation are the case Q = Qd, or the situation discussed in [13], where for distributed control
and Q = L2(Ω) it was secured that Vh ⊂ Qd. Then, a coupling of the discretization of Q to
the one of X in the refinement strategy is necessary.
Remark 3.5. The origin of the interpolation operators in the first argument of J ′u and a′u is
that these terms originate from the term 〈µ,G′σ(ū)(ū− uσ)〉, which has been replaced by the
dual equation. One cannot approximate this term directly by 〈µσ, G′σ(uσ)(I(2)

2h uσ − uσ)〉 since
µσ acts only on the nodes xi ∈ Nh, where the term I

(2)
2h uσ − uσ is zero. Another possibility

is the definition of a different operator, in [41] an operator is employed which uses function
evaluations in the midpoints of element faces.
Remark 3.6. Under additional regularity assumptions on active sets and problem data, a more
thorough analysis is conducted in [45]. There, the multiplier µ̄ can be decomposed into a
regular L2-part on the active set and a singular part concentrated on the boundary between
the active and inactive sets, which is used in the construction of the error estimator. Also
the structure of the active set is taken into account, the article allows for active sets with
nonempty interior in Rn and active sets that are just curves in Ω.

In the construction of an overall approximative solution algorithm for (3.1), after the solution
of the discrete problem on T = (Th, Qd) and an estimate of the discretization error with respect
to the cost functional is obtained, a new, refined, discretization has to be established unless
some stopping criterion is met. Several strategies will be described here. The construction
process of the refined discretization T̄ = (T̄h̄, Q̄d) consists of decisions on two levels:

1. Which structure is chosen for refinement. A general framework is given in Algorithm 2.2,
for elliptic problems the decision reduces to

- only Th, or

- only Qd, or

- both Th and Qd.

2. For every structure to be refined, the method of refinement can be chosen as

- uniform, or

- local, by using error indicators.

Although these decisions are independent from each other, the strategy’s description is often
given by just one word. Frequently used strategies that will also be used in the test computations
here, are

• Global refinement. Both Th and Qd are refined uniformly. For the state space this means
that the mesh T̄h̄ is obtained from the mesh Th by replacing every cell by 2n equivalent
ones by evenly partition. The same is done with the control space, if it is distributed in
space. In the case of boundary control, evenly partition the face elements.
This basic „strategy“ uses no information from the error estimation at all. Its use is
not recommended except for extremely simple problems, and is more thought of as a
comparison strategy to measure the success of the other strategies against.
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3.5. A posteriori error estimator and adaptivity

One could advise a discriminated variant of the global refinement by comparing the
error estimators for the state and control contributions, and uniformly refine only the
structure, whose error estimator has the larger absolute value.

• Adaptive refinement. First, the contributions of the error estimator ηh and ηd are used
to decide which structure is to refine according to Algorithm 2.2.
First assume that the state space is chosen for refinement. The local refinement strategy
is based on a localization of the estimated error ηh. The estimate needs to be split
up into cellwise contributions, local error indicators. For the refinement of the state
space, the localization of ηh should not be obtained by taking the explicit formulation
of (3.52) and evaluation of the respective integrals over the cell in question instead of
Ω. This would lead to an overestimation of the error as the residual terms exhibit a
strongly oscillatory behavior, see [10]. Instead, the localization can be achieved by two
strategies: an integration by parts in space, or a filtering technique, which both secure
the correct local order of convergence. Details are described in [65, Section 6.4.2]. Both
these procedures yield the cellwise error indicators

ηh =
∑
K∈Th

ηh,K , (3.55)

but there exist also strategies to gain nodewise indicators. For the construction of the
new mesh T̄h̄ from the error indicators ηh,K a number of standard strategies exist. The
natural idea is to order the cells according to the absolute values of their error indicators,
starting from the largest,

|ηh,K1 | ≥ |ηh,K2 | ≥ . . . ,

and find one index i, up to which the corresponding cells are marked for refinement. The
strategy to determine the index i is explained in detail in [65, section 6.5]. It is found as
the argument minimizing

E(i)N (i)δ, (3.56)

where E(i) is a prediction of the discretization error on the refined mesh, N (i) is the
number of degrees of freedom of that mesh, and δ depends on the degree of the polynomials
used in the FE space, and the dimension of the respective domain to be discretized. The
details of the refinement of the spatial discretization are described in Algorithm 3.3.
If, on the other hand, the control space is chosen for refinement, a localization of the
error estimator ηd can be used equivalently.

• Coupled adaptive strategy. For distributed control, where the state and control functions
are defined on the same domain, in this strategy the discretization of the control is
coupled to the discretization of the state. Only the localization of ηh is used to refine
the mesh Th locally, which induces both state and control discretization.
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Algorithm 3.3. Local refinement of the spatial discretization for elliptic OCPs

1: input data: mesh Th
2: evaluate localization ηh =

∑
K∈Th

|ηh,K |

3: sort ηh,K by their absolute value: |ηh,K1 | ≥ |ηh,K2 | ≥ . . .
4: find the index i = arg min

1≤i≤Nh
E(i)N (i)δ

5: mark cells K1, . . . ,Ki for refinement
6: together with any marked cell, mark also all the cells from its patch, to keep the patch

structure
7: refine all marked cells by evenly partition
8: repeat
9: iterate over all cells:

10: if current cell Ki has neighboring cell such that Ki has more than one hanging node
on the shared face: refine Ki, together with its patch

11: until no such pair of cells exists any more
12: output data: refined mesh T̄h̄

3.6. Regularization and interior point method

The solution of (P ) as described in Section 3.4 is only possible for some classes of problems. In
the following, a method is presented that formally allows the numerical solution of all problems
of type (1.1). The problem is regularized by replacement of the pointwise state constraint by a
penalty functional in the cost functional, weighted by a decreasing function of a regularization
parameter γ > 0. This unconstrained optimal control problem possesses a solution of increased
regularity that can be approximated by usual methods. The convergence of the solution of the
regularized problems to the unregularized solution can be proven for certain problem classes,
see, e.g., [85].
The application of this approach introduces a new source of error, the regularization error
J(q, u) − J(qγ , uγ). This is not necessarily a drawback, if it can be kept small, that means
equilibrated to the other error contributions. This finally poses the question of how to choose
γ in comparison to the discretization parameter h, which in turn needs some kind of error
estimation a priori or a posteriori to run a path following strategy. That is because a naive
coupling γ = γ(h) without taking the problem structure into account would be not very helpful
as a γ too small causes a too large regularization error; and a γ too big makes the problem
harder to solve and may lead out of the preferrable Newton convergence radius.
Looking ahead to parabolic problems, the decision between the solution methods, here primal-
dual active set and regularization, will reappear. However, since the computational domain is
increased by the temporal dimension it will be harder to find practical problems there that
allow the application of the PDAS method and are still not too involved numerically. Thus
the focus in Chapter 4 is on the regularization approach allowing us in the following to keep
this section short for the treatment of elliptic problems.

Define a penalty functional, e.g. by

bγ(u) = γ

∫
Ω

− ln(G(u(x))) dx. (3.57)
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Alternatives are discussed in Section 4.1. Then the penalized cost functional

Jγ(q, u) = J(q, u) + bγ(u) (3.58)

is used to set up the regularized optimal control problems

(Pγ)
{

min Jγ(q, u) q ∈ Q, u ∈ X
a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ X . (3.59)

The numerical solution of these problems can be done like in Section 2.3. The solution of a
discretized variant of (Pγ) is denoted by (qγσ, uγσ). The error estimator for

J(q̄, ū)− J(qγσ, uγσ) ≈ η = ηh + ηd + ηγ ,

used to guide the simultaneous adaptive refinement and driving of γ → ∞ can be derived
equivalently to the parabolic case, which will be derived in the following chapter.
In a setting similar to the one of this thesis, the derivation of an estimator for the error
J(q̄, ū)− Jγ(qγσ, uγσ) can be found in [100].
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4. Parabolic Optimal Control Problems with
State Constraints

This chapter is devoted to parabolic optimal control problems with state constraints. With
the notation from Section 2.1.2, such a problem takes the form

(Ppar)


min J(q, u) q ∈ Q, u ∈ X
(∂tu, ϕ)I + a(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈ X.
G(u) ≥ 0

(4.1)

Remember the choices Q ⊂ L2(I,R) as a subspace, and

X = W (I, V ) ∩ Ls(I,W 1,p(Ω)) ∩W 1,s(I, (W 1,p′(Ω))∗)

with some p > n and s > 2p
p−n . Again we shortly discuss properties of the state equation,

give conditions under which local optima exist, and obey first order Karush-Kuhn-Tucker
optimality conditions.
As the PDAS method considered before is only possible for a limited class of optimal control
problems with state constraints, we concentrate on a regularization method for the solution
of state constrained parabolic problems. Regularized problems (Pγ), which are problems
without state constraints, are used to approximate the state constrained problem (Ppar). The
discretization of these problems will be done by a discontinous Galerkin method, dG(r) in
time, and in space a continous Galerkin method cG(s) like before.
As optimization method an interior point algorithm will be used. Due to the absence of
inequality constraints, it does not contain Borel measures. The regularization causes an
additional error, which needs to be accounted for in the a posteriori error estimation process.

4.1. Continous setting and optimality conditions

In Section 2.1.2, the parabolic state equation has been formulated as

(∂tu, ϕ)I + a(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈ X. (4.2)

There, the link between the control space Q and the state space X was established by the
semilinear form

a : Q×X × Z → R

under Assumption 2.3 and Assumption 2.4. Again, this general formulation allows for different
possible choices of the control space and, unlike the elliptic case, Q as a space of time dependent
controls is set up using the spatial function space R. A few examples for these control types
are:
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Example 4.1. 1. Distributed control, where the distribution is in space and time. By the
choice R = L2(Ω), Q = L2(L2(Ω)) the following equation is set up:

∂tu−∆u = q in I ×Ω
u|I×Γ = 0 on I × Γ
u(0) = 0 on {0} ×Ω

2. Boundary control, by the choice R = L2(Γ ), Q = L2(L2(Γ )) the following equation is set
up:

∂tu−∆u+ u3 = 0 in I ×Ω
∂nu|I×Γ = q on I × Γ

u(0) = 0 on {0} ×Ω

3. Distributed initial control, so that the control does only depend on the spatial, but not
the temporal point. One can choose R = L2(Ω), Q = P0(I,R), so there holds Q ⊂ L2(R)
still. The following equation is set up:

∂tu−∆u+ u3 = 0 in I ×Ω
∂nu|I×Γ = 0 on I × Γ

u(0) = q on {0} ×Ω

4. Parameter control, by the choice R = Rk, Q = P0(I,R), so that the control space is in
fact k-dimensional, the following equation is set up:

∂tu−∆u =
k∑
i=1

qifi in I ×Ω

∂nu|I×Γ = 0 on I × Γ
u(0) = 0 on {0} ×Ω

with given functions fi ∈ L2(L2(Ω)).

5. Parameter control with time dependent parameters, similar to the last equation, but
the parameters are timedependent in general. By the choice R = Rk, Q = L2(Rk), the
following equation is set up:

∂tu−∆u =
k∑
i=1

qi(t)fi(x) in I ×Ω

∂nu|I×Γ = 0 on I × Γ
u(0) = 0 on {0} ×Ω

with given functions fi ∈ L2(Ω).
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4.1. Continous setting and optimality conditions

Remark 4.1. The state equations presented in Example 4.1 were given to illustrate the variety
of choices that lie in the general introduction of Q ⊂ L2(I,R) as a subspace. Setting up
an optimal control problem that can be analyzed with the help of a Lagrange multiplier by
the Karush-Kuhn-Tucker theory requires a control-to-state operator S : Q→ C(Ī × Ω̄) with
range in the continous states, as has been argued before. For parabolic problems this is
frequently problematic, as it may put severe restrictions to the spatial dimension n, see [75].
A possible remedy is the introduction of additional constraints, specifically upper and lower
L∞-constraints on the control variable. In the following, the continuity of the states shall be
assumed.

As in the elliptic case, we assume the unique solvability of the state equation according
to Assumption 2.5, as a proof is possible for concrete realizations of (4.2), but not in the most
general setting. The same holds true for the existence of an optimal control.

Next, first order optimality conditions are formulated. Although the discretization of the
parabolic optimal control problem will not be based on formulation (4.1), we will still utilize
the following conditions in the error estimation process. The measure space employed from
now on is

M(I ×Ω) = (C(Ī × Ω̄))∗,

and the Lagrangian is now defined on L : Q×X × Z ×M(I ×Ω)→ R by

L(q, u, z, µ) = J(q, u) + (f − ∂tu, z)I − a(q, u)(z) + (u0(q)− u(0), z(0))− 〈µ,G(u)〉. (4.3)

The KKT conditions that have been proven in Lemma 2.18 already are for a better overview
stated again specially for the parabolic case and with minimum preconditions:

Theorem 4.1. Let the point (q̄, ū) ∈ Q×X be locally optimal for the problem (4.1). Let S
and G be one time Fréchet differentiable, and Assumptions 2.11 and 2.17 be valid. Then there
exist an adjoint state z̄ ∈ Z and a Lagrangian multiplier µ̄ ∈M(I ×Ω) so that the following
optimality system holds for x̄ = (q̄, ū, z̄, µ̄):

L′z(x̄)(ϕ) = 0 ∀ϕ ∈ Z (4.4a)
L′u(x̄)(ϕ) = 0 ∀ϕ ∈ X (4.4b)
L′q(x̄)(ψ) = 0 ∀ψ ∈ Q (4.4c)

〈µ̄, G(ū)〉 = 0, µ̄ ≥ 0. (4.4d)

The explicit formulation of the optimality conditions is as follows: Equation (4.4a) gives the
state equation again:

(∂tū, ϕ)I + a(q̄, ū)(ϕ) + (ū(0), ϕ(0)) = (f, ϕ)I + (u0(q̄), ϕ(0)) ∀ϕ ∈ Z (4.5)

The evaluation of (4.4b) gives the formulation of the adjoint equation

(∂tϕ, z̄)I + a′u(q̄, ū)(ϕ, z̄) + (ϕ(0), z̄(0)) = J ′u(q̄, ū)(ϕ)− 〈µ̄, G′(ū)(ϕ)〉 ∀ϕ ∈ X (4.6)

The gradient equation (4.4c) is expressed by

J ′q(q̄, ū)(ψ)− a′q(q̄, ū)(ψ, z̄) + (u′0(q̄)(ψ), z̄(0)) = 0 ∀ψ ∈ Q. (4.7)
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4. Parabolic Optimal Control Problems with State Constraints

Like in the elliptic case, the complementarity conditions (4.4d) can be expressed equivalently
by the variational inequality

〈µ̄, ϕ−G(ū)〉 ≥ 0 ∀ϕ ∈ C(Ī × Ω̄), ϕ ≥ 0. (4.8)

Analog to the treatment of elliptic optimal control problems it is possible to solve parabolic
ones by the PDAS method, provided the structural assumption that the auxiliary problem
(PE) can always be solved. But since this method can be transferred directly from the elliptic
case, we will refrain from covering this method here.

4.2. Regularization

Instead, we consider a regularization method, as has been introduced in Section 2.4. The
considered penalty functionals are defined as follows. For a given order o ≥ 1 the polynomial
or logarithmic penalty functional is

bγ(u) :=
∫

Ω×I

−γ ln(G(u))d(x, t) for o = 1,

bγ(u) :=
∫

Ω×I

1
o− 1γ

o(G(u))1−o d(x, t) for o > 1,
(4.9)

and depends on the regularization parameter γ > 0. The derivative of the penalty functional
is thus

b′γ(u) =
∫

Ω×I

−γo(G(u(t, x)))−oG′(u)d(x, t). (4.10)

For every regularization parameter γ > 0 the regularized parabolic optimal control problem is
formulated by

(Pγ)
{

min Jγ(qγ , uγ) := J(qγ , uγ) + bγ(uγ) qγ ∈ Q, uγ ∈W
(∂tuγ , ϕ)I + a(qγ , uγ)(ϕ) + (uγ(0), ϕ(0)) = (f, ϕ)I + (u0(qγ), ϕ(0)) ∀ϕ ∈W, (4.11)

where the state space is chosen like for unconstrained problems,

W = W (I, V ).

A problem (Pγ) can be solved by methods for unconstrained problems, which will be detailed
below. The intention is to solve a sequence of these problems (Pγi) with γi → ∞ such that
the solutions of these problems converge to the solution of the constrained problem. For some
classes of optimal control problems and penalty functionals this property has been proven, see,
e.g., [85]. Of course the question arises whether a later implementation should really solve
the problems (Pγi) with good accuracy before increasing γ, or whether a few steps in the
respective approximative solution algorithm are sufficient.

For problem (4.11), the Lagrange functional is defined by Lγ : Q×W ×W → R

Lγ(qγ , uγ , zγ) = J(qγ , uγ) + (f − ∂tuγ , zγ)I − a(qγ , uγ)(zγ) + (u0(qγ)− uγ(0), zγ(0)) + bγ(uγ).
(4.12)

The optimality conditions can now be derived according to Lemma 2.16:
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4.3. Finite element discretization in space and time

Theorem 4.2. Let the point (qγ , uγ) ∈ Q × W be locally optimal for the problem (4.11).
Then there exists an adjoint state zγ ∈W such that the following optimality system holds for
xγ = (qγ , uγ , zγ):

L′γ,z(xγ)(ϕ) = 0 ∀ϕ ∈W (4.13a)
L′γ,u(xγ)(ϕ) = 0 ∀ϕ ∈W (4.13b)
L′γ,q(xγ)(ψ) = 0 ∀ψ ∈ Q (4.13c)

The explicit formulations are given as follows: The state equation is

(∂tuγ , ϕ)I + a(qγ , uγ)(ϕ) + (uγ(0), ϕ(0)) = (f, ϕ)I + (u0(qγ), ϕ(0)) ∀ϕ ∈W. (4.14)

The formal derivation of the adjoint equation gives

(∂tϕ, zγ)I + a′u(qγ , uγ)(ϕ, zγ) + (ϕ(0), zγ(0)) = J ′u(qγ , uγ)(ϕ) + b′γ(uγ)(ϕ) ∀ϕ ∈W,

first. For implementational reasons, this equation should be transformed, so that it does not
contain a terminal but an initial condition of the differential equation running backwards in
time. Usually this is done by integration in parts of the term (∂tϕ, zγ)I , so that the formulation
of the adjoint equation becomes

− (ϕ, ∂tzγ)I +a′u(qγ , uγ)(ϕ, zγ)+(ϕ(T ), zγ(T )) = J ′u(qγ , uγ)(ϕ)+b′γ(uγ)(ϕ) ∀ϕ ∈W. (4.15)

The gradient equation is given by

J ′q(qγ , uγ)(ψ)− a′q(qγ , uγ)(ψ, zγ) + (u′0(qγ)(ψ), zγ(0)) = 0 ∀ψ ∈ Q. (4.16)

4.3. Finite element discretization in space and time

For the discretization of a parabolic optimal control problem, discretizations in time and space
need to be performed. In this order, the levels of discretization are indicated by the subscripts
k for the temporal, h for the spatial, and d for the control space discretizations, such that
σ = (k, h, d).

The discretization of the spatial state variable is again done by a Galerkin finite element
method of order s, with s ∈ N, s ≥ 1, in short cG(s). For the time variable the discontinous
Galerkin method dG(r) is used. The discretization of the control variable is kept abstract.

First the regularized continous problem (4.11) is semidiscretized in time. For that, assume we
are given a set of M + 1 time points

0 = t0 < t1 < t2 < · · · < tM−1 < tM = T.

The subintervals defined by Im = (tm−1, tm] ⊂ I are the ones used to define the spaces. Their
lengths are denoted by km := tm − tm−1, and analog to the spatial discretization parameter
from Section 3.3 we define the temporal discretization parameter k as a function on I by
setting

k|Im = km ∀m = 1, . . . ,M.
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4. Parabolic Optimal Control Problems with State Constraints

For the discontinous Galerkin method of order r, the space

X̃r
k :=

{
vk ∈ L2(I,H)|vk|Im ∈ Pr(Im, X),m = 1, 2, . . . ,m and vk(0) ∈ H

}
(4.17)

is employed. The following derivation is possible for arbitrary r ∈ N0, but in the numerical
experiments later on only r = 0 is used, which is equivalent to a variant of the implicit Euler
method.
Next, for any discontinous function the notation for function values at the left and right
endpoint of the time intervals, and the jump in between is introduced by

v+
k,m := lim

t↘0
vk(tm + t), v−k,m := lim

t↘0
vk(tm − t), [vk]m = v+

k,m − v
−
k,m

The semidiscretized state equation then reads: For a qk ∈ Q find uk ∈ X̃r
k so that

M∑
m=1

(∂tuk, ϕ)Im +a(qk, uk)(ϕ) +
M−1∑
m=0

([uk]m, ϕ+
m) + (u−k,0, ϕ

−
0 ) = (f, ϕ)I + (u0(qk), ϕ−0 ) ∀ϕ ∈ X̃r

k .

(4.18)
The solution operator of this equation is denoted by

Sk : Q→ X̃r
k

With this, the semidiscretized optimal control problem is given by

(Pγk)
{

min Jγ(qγk, uγk), qγk ∈ Q, uγk ∈ X̃r
k

Sk(qγk) = uγk
, (4.19)

and the Lagrangian associated with the discontinous Galerkin discretization in time L̃γ : Q×
X̃r
k × X̃r

k is

L̃γ(qγk, uγk, zγk) = J(qγk, uγk) + (f, zγk)I −
M∑
m=1

(∂tuγk, zγk)Im − a(qγk, uγk)(zγk)

−
M−1∑
m=0

([uγk]m, z+
γk,m) + (u0(qγk)− uγk(0), zγk(0)) + bγ(uγk).

(4.20)

The next discretization level is the spatial discretization. This is done by a continous Galerkin
method of order s similar to in the elliptic case, but on every time section {t0} and Im,m =
1 . . .M one spatially discretized space needs to be specified. One possible choice is to use the
same mesh Th with its according space Xs

h, like in (3.19), on every interval. The finite element
space would then be chosen as

X̃r,s
kh =

{
vkh ∈ L2(I,H) : vkh|Im ∈ Pr(Im, Xs

h) ∀m = 1, 2, . . . ,M and vkh(0) ∈ Xs
h

}
(4.21)

Another possibility is to allow for different meshes T mh for every time section m = 0 . . .M .
This dynamic spatial discretization then employs the M + 1 spaces Xs,m

h implied by these
meshes, and uses the finite element space

X̃r,s
kh =

{
vkh ∈ L2(I,H) : vkh|Im ∈ Pr(Im, X

s,m
h )∀m = 1, 2, . . . ,M and vkh(0) ∈ Xs,0

h

}
(4.22)
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4.3. Finite element discretization in space and time

The fully discretized state equation then reads: For given qγkh ∈ Q find uγkh ∈ X̃r,s
kh so that

M∑
m=1

(∂tuγkh, ϕ)Im+a(qγkh, uγkh)(ϕ) +
M−1∑
m=0

([uγkh]m, ϕ+
m) + (u−γkh,0, ϕ

−
0 )

=(f, ϕ)I + (u0(qγkh), ϕ−0 ) ∀ϕ ∈ X̃r,s
kh .

(4.23)

The solution operator of this equation is denoted by

Skh : Q→ X̃r,s
kh ,

so the temporally and spatially discretized problem can be written as

(Pγkh)
{

min Jγ(qγkh, uγkh), qγkh ∈ Q, uγkh ∈ X̃r,s
kh

Skh(qγkh) = uγkh
. (4.24)

On the last level, the control variable has to be discretized by the choice of a finite dimensional
Qd ⊂ Q. Due to the abstract nature of Q in the setting of this section we can as usual not
give a concrete form, but will discuss a few examples.

Example 4.2. For distributed control, as introduced in Example 4.1, the space Q =
L2(I, L2(Ω)) can again be discretized like the state space W . So utilizing the same time
mesh and space mesh(es) and the application of the dG(r) method in time and the cG(s)
method in space. It can sometimes make sense to discretize the control on a coarser time mesh
than the state. The time points of the control discretization would the be a subset of the time
points of the state discretization.

Example 4.3. For initial control, where Q = L2(Ω), it seems reasonable to utilize the same
discretization that has been used in t0 for the state equation, so set Qd = V sd

h or Qd = V sd,0
h

with some appropriate polynomial degree sd.

Example 4.4. For control by time dependent parameters, where R = Rk and Q = L2(Rk),
one can use the same time points {ti}Mi=0 as before and set Qd = {q ∈ Q : q|Im ∈ Prd(Im, Rk)}
with some appropriate polynomial degree rd.

With the combination of the subscripts σ = (k, h, d), the fully discretized problem then reads

(Pγσ)
{

min Jγ(qγσ, uγσ), qγσ ∈ Qd, uγσ ∈ X̃r,s
kh

Sσ(qγσ) = uγσ
. (4.25)

Utilizing the reduced cost functional jγσ : Q → R given by jγσ(q) = Jγ(q, Sσ(q)) the fully
discretized problem in reduced form is formulated as

(Pγσ,red) min jγσ(qγσ), qγσ ∈ Qd. (4.26)
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4. Parabolic Optimal Control Problems with State Constraints

4.4. Optimization by interior point method

In this section the numerical solution of the fully discretized regularized problem (4.25) for
one given discretization X̃r,s

kh , Qd and regularization parameter γ will be described. As it is
an optimal control problem without additional constraints, it can be solved by the Newton
method as layed out in Section 2.3.4, with only a few adaptions.

One difference is that starting value for the control q0 can not be chosen arbitrarily, but it
has to be an admissible control for (Pγσ), which means Jγ(q0, Sσ(q0)) <∞. This means also,
that Assumption 2.11 which secures the existence of an admissible control for (P ), or the
extension of this assumption to a discretization of (P ), is not sufficient. The reason is that
for this admissible control the constraint could be active on a set with nonzero measure so
that bγ(uγσ) =∞. Thus a new assumption on the existence of an admissibe control, and a
constraint qualification is necessary:

Assumption 4.3. There exists a control q∗d ∈ Qd such that Jγ(q∗d, Sσ(q∗d)) <∞.

Assumption 4.4. Let qγσ ∈ Qd be a locally optimal solution of the problem (Pγσ). Then the
operator S′σ(qγσ) is a surjective operator.

Given an admissible starting control q0 the iteration qi → qi+1 follows the strategy from Sec-
tion 2.3.4. Therefore the derivation of the computable first and second derivatives of jγσ utilizes
the Lagrangian L̃γ from (4.20) instead of L̄ from (2.37) within the approach from Section 2.3.2.
So consider the optimality conditions for problem (Pγσ) which, according to Lemma 2.16 can
under Assumption 4.3 and Assumption 4.4 be formulated using the Lagrange functional L̃γ
as

L̃′γ,z(qγσ, uγσ, zγσ)(ϕ) = L̃′γ,u(qγσ, uγσ, zγσ)(ϕ) = L̃′γ,q(qγσ, uγσ, zγσ)(ψ) = 0∀ϕ ∈ X̃r,s
kh , ∀ψ ∈ Qd

Analog to the derivation in [9], the optimality conditions are expressed explicitly, and the
following equations are derived in explicit form:

• the discrete state equation (4.23), determining uγσ for given qγσ ∈ Qd.

• the discrete adjoint equation: for given qγσ ∈ Qd, uγσ ∈ X̃r,s
kh determine zγσ ∈ X̃r,s

kh by
solving

−
M∑
m=1

(ϕ, ∂tzγσ)Im −
M−1∑
m=1

(ϕ−m, [zγσ]m) + (ϕ(T ), zγσ(T )) + a′u(qγσ, uγσ)(ϕ, zγσ)

= J ′u(qγσ, uγσ)(ϕ) + b′γ(uγσ)(ϕ) ∀ϕ ∈ X̃r,s
kh .

(4.27)

• the discrete tangent equation, which his obtained by total differentiation of the state
equation, determining δu ∈ X̃r,s

kh for a given direction δq ∈ Qd by solving

M∑
m=1

(∂tδu, ϕ)Im + a′u(qγσ, uγσ)(δu, ϕ) +
M−1∑
m=0

([δu]m, ϕ+
m) + (δu(0), ϕ(0))

= −a′q(qγσ, uγσ)(δq, ϕ) + (u′0(q)(δq), ϕ(0)) ∀ϕ ∈ X̃r,s
kh .

(4.28)
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4.4. Optimization by interior point method

• the discrete additional adjoint equation, which is obtained by total differentiation of the
dual equation, determining δz ∈ X̃r,s

kh for given δq ∈ Qd and δu ∈ X̃r,s
kh by solving

−
M∑
m=1

(ϕ, ∂tδz)Im + a′u(qγσ, uγσ)(ϕ, δz)−
M−1∑
m=1

(ϕ−m, [δz]m) + (ϕ(T ), δz(T ))

= −a′′uu(qγσ, uγσ)(δu, ϕ, zγσ)− a′′qu(q, u)(δq, ϕ, zγσ) + J ′′uu(qγσ, uγσ)(δu, ϕ)
+ J ′′qu(qγσ, uγσ)(δq, ϕ) + b′′γ(uγσ)(δu, ϕ) ∀ϕ ∈ X̃r,s

kh .

(4.29)

With these equations, like in Section 2.3.4 the first and second derivatives can be calculated as
follows:

• for any given direction δq ∈ Qd calculate j′γ(qγσ)(δq) as

j′γσ(qγσ)(δq) = L̃′γ,q(qγσ, uγσ, zγσ)(δq)
= J ′q(qγσ, uγσ)(δq)− a′q(qγσ, uγσ)(δq, zγσ) + (u′0(qγσ)(δq), zγσ(0))

(4.30)

• for any given directions δq, τq ∈ Qd calculate j′′γ (qγσ)(δq, τq) as

j′′γ (qγσ)(δq, τq) =J ′′qq(qγσ, uγσ)(δq, τq) + J ′′uq(qγσ, uγσ)(δu, τq)− a′′qq(qγσ, uγσ)(δq, τq, zγσ)
− a′′uq(qγσ, uγσ)(δu, τq, zγσ)− a′q(qγσ, uγσ)(τq, δz)
+ (u′0(qγσ)(τq), δz(0)) + (u′′0(qγσ)(δq, τq), zγσ(0)).

(4.31)

Thus, Algorithm 2.1 can be utilized to solve (Pγσ) as the necessary evaluations of j′γσ and
j′′γσ and differential equations are provided. The solution of (Pγσ) for a given discretization
σ and regularization parameter γ is presented in Algorithm 4.1. The incorporation into a
comprehensive algorithm for the solution of (Ppar) needs to detail more steps, for example secure
the admissibility of q0, and manage the increasing of γ and refinement of the discretization. In
preparation of this algorithm, in the following section the necessary error estimators will be
derived.
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4. Parabolic Optimal Control Problems with State Constraints

Algorithm 4.1. Interior point optimization method for state constrained parabolic
OCPs

1: input data: q0, γ
2: parameter: TOLN , TOLL
3: Solve u0 = Sσ(q0) by (4.23), z0 = Tσ(q0) by (4.28)
4: check for admissibility: make sure bγ(u0) <∞
5: set up the problem{

min J(qγσ, uγσ) + bγ(uγσ) qγσ ∈ Qd, uγσ ∈ X̃r,s
hk

uγσ = (Sσ(qγσ))

6: Solve by Newton method (q0, u0, z0, TOLN , TOLL), see Algorithm 2.1.
7: this yields q̄, ū, z̄.
8: output data: q̄, ū, z̄

4.5. A posteriori error estimator and adaptivity

In order to estimate the error with respect to the cost functional J caused by the regularization
and discretization of problem (4.1), this error is dissected in the following way:

J(q̄, ū)− J(qγσ, uγσ) = J(q̄, ū)− J(qγ , uγ)
+J(qγ , uγ)− J(qγσ, uγσ)

= J(q̄, ū)− J(qγ , uγ)
+Jγ(qγ , uγ)− Jγ(qγσ, uγσ) + bγ(uγσ)− bγ(uγ) (4.32)

The influences of the steps of numerical treatment are seperated by the following contribu-
tions:

ηγ :≈ J(q̄, ū)− J(qγ , uγ)
ηk :≈ Jγ(qγ , uγ)− Jγ(qγk, uγk) + bγ(uγk)− bγ(uγ)
ηh :≈ Jγ(qγk, uγk)− Jγ(qγhk, uγhk) + bγ(uγhk)− bγ(uγk)
ηd :≈ Jγ(qγhk, uγhk)− Jγ(qγσ, uγσ) + bγ(uγσ)− bγ(uγhk)

(4.33)

Here, ηγ is the regularization error estimator, ηk the temporal error estimator, ηh the spatial
error estimator, and ηd like before the estimator for the control discretization error. Their
combination gives

η := ηh + ηk + ηd + ηγ . (4.34)

Remark 4.2. The fully discretized problem (4.25) which is solved numerically approximates
a local minimizer of Jγ . Thus the term bγ(uγσ)− bγ(uγ) from the representation (4.32) can
be viewed as an error in a quantity of interest. This means an error estimator for this term
could be derived as in [65], using methods for a general quantity of interest. This approach
requires the solution of an additional linear-quadratic optimal control problem. To avoid this
numerical effort the error estimator will be derived utilizing the available information on b and
its dissection in (4.33).

First the regularization error is approached.
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4.5. A posteriori error estimator and adaptivity

Lemma 4.5. Let (q̄, ū) ∈ Q×X be a local optimal solution of the original problem (4.1), and
(qγ , uγ) ∈ Q×W a local optimal solution of the regularized problem (4.11), with the Lagrange
functional L being three times Gateaux differentiable. Then the following representation formula
for the regularization error holds:

J(q̄, ū)− J(qγ , uγ) = 1
2〈b
′
γ(uγ), G(ū)−G(uγ)〉 − 1

2〈µ̄, G(uγ)〉+Rreg, (4.35)

where the remainder term Rreg is of third order.

Proof. Together with the adjoint states z̄ and zγ and multiplier µ̄ from Theorems 4.1 and 4.2,
we set

x̄ = (q̄, ū, z̄, µ̄) and xγ = (qγ , uγ , zγ , b′γ(uγ)).
Since (q̄, ū) and (qγ , uγ) both satisfy the state equation (4.2), and x̄ satisfies the complementarity
condition (4.4d), it follows that

J(q̄, ū)− J(qγ , uγ) = L(x̄)− L(xγ)− 〈b′γ(uγ), G(uγ)〉 (4.36)

With the procedure from the proof of Lemma 3.9, the formulation of the difference L(x̄)−L(xγ)
as an integral and its evaluation with the trapezoidal rule, we get

J(q̄, ū)− J(qγ , uγ) = 1
2L
′(x̄)(x̄− xγ) + 1

2L
′(xγ)(x̄− xγ)− 〈b′γ(uγ), G(uγ)〉+Rreg, (4.37)

where the remainder term takes the form

Rreg = 1
2

1∫
0

L′′′(sx̄+ (1− s)xγ)(x̄− xγ , x̄− xγ , x̄− xγ)s(s− 1)ds. (4.38)

The evaluation of the partial derivatives in the q, u and z coordinate gives zero both for L′(x̄)
and L′(xγ) due to the optimality conditions (4.4) and (4.13). There remain the terms
1
2L
′
µ(x̄)(µ̄− b′γ(uγ)) + 1

2L
′
µ(xγ)(µ̄− b′γ(uγ)) = −1

2〈µ̄− b
′
γ(uγ), G(ū)〉 − 1

2〈µ̄− b
′
γ(uγ), G(uγ)〉

= 1
2〈b
′
γ(uγ), G(ū)〉 − 1

2〈µ̄− b
′
γ(uγ), G(uγ)〉,

using the complementarity condition (4.4d). Adding the remaining summand −〈b′γ(uγ), G(uγ)〉
from (4.37) proves the assertion.

In order to define a computable error estimator from (4.35), in [100, section 4.1] it is argued
that the convergence of b′γ(uγ) to µ̄ for γ → ∞ in the sense ofM(I × Ω), [85], justifies the
approximation of 〈µ̄, G(uγ)〉 by 〈b′γ(uγ), G(uγ)〉. This yields the intermediary approximation

J(q̄, ū)− J(qγ , uγ) ≈ 1
2〈b
′
γ(uγ), G(ū)〉 − 〈b′γ(uγ), G(uγ)〉. (4.39)

Two different ways to treat this expression further are discussed in [100], either using the sign
of 〈b′γ(uγ), G(ū)〉 or the convergence of uγ → ū. Either possibility results in an estimator of
the form

J(q̄, ū)− J(qγ , uγ) ≈ −c0〈b′γ(uγσ), G(uγσ)〉 (4.40)
with the constant c0 ∈ {0.5, 1}. The choice of a constant c0 ∈ [0.5, 1] can also be argued for in
the following example.
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4. Parabolic Optimal Control Problems with State Constraints

Example 4.5. In the case of an upper state constraint, where the state u is bounded from
above by a given function ψ ∈ C2(Ω)

u ≤ ψ on Ω × I ⇔ G(u) := ψ − u ≥ 0,

the regularization error estimator in representation (4.39) takes the form

−
∫

Ω×I

ψ − uγ
γo(ψ − uγ)o︸ ︷︷ ︸

=:B

d(x, t) + 1
2

∫
Ω×I

ψ − u
γo(ψ − uγ)o︸ ︷︷ ︸

=:A

d(x, t)

So, on the active set, there holds ψ − u = 0, and, for large values of γ, ψ − uγ is small due to
the regularization. Thus we expect |A| � |B|.
On the inactive set, ψ − u is in general large, and ψ − uγ also. Thus we expect |A| ≈ |B|.
Altogether, comparing points from the active and the inactive set, we expect the value of either
function A and B in these points to be much smaller on the inactive than on the active set.
This leads to the following extreme cases:

- if the active set is large, then |
∫
B d(x, t)| � |

∫
A d(x, t)|, and the choice c0 = 1 in (4.40)

is justified.

- if the active set is small, for instance it consists only of a point, then |
∫
B d(x, t)| ≈

|
∫
A d(x, t)|, and the choice c0 = 0.5 in (4.40) is justified.

So we define the regularization error estimator as

ηγ := −c0〈b′γ(uγσ), G(uγσ)〉 (4.41)

with a constant c0 ∈ [0.5, 1].

Considering from (4.33) the parts including Jγ(), we can see that the evaluation is done in
points that are optimal solutions of problem (4.11) on the different levels of discretization, and
the evaluated functional Jγ is also that of this problem. As this problem is an optimal control
problem without further inequality constraints, we can use the methods from [65, section 6.2]
to find a suitable representation. For shorter notation define the residuals

ρ̃u(q, u)(ϕ) = L̃′γ,z(q, u, z)(ϕ),
ρ̃z(q, u, z)(ϕ) = L̃′γ,u(q, u, z)(ϕ),
ρ̃q(q, u, z)(ϕ) = L̃′γ,q(q, u, z)(ϕ).

Lemma 4.6. Let (qγ , uγ), (qγk, uγk), (qγkh, uγkh), (qγσ, uγσ) be stationary points of Lγ or L̃γ,
respectively, which are assumed to be three times Gateaux differentiable functionals. Then,
with arbitrary ẑγk, ûγk ∈ X̃k, ẑγkh, ûγkh ∈ X̃r,s

kh , q̂γσ ∈ Qd the following representation formulas
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hold,

Jγ(qγ , uγ)− Jγ(qγk, uγk) = 1
2 ρ̃

u(qγk, uγk)(zγ − ẑγk) + 1
2 ρ̃

z(qγk, uγk, zγk)(uγ − ûγk) +Rk

Jγ(qγk, uγk)− Jγ(qγkh, uγkh) = 1
2 ρ̃

u(qγkh, uγkh)(zγk − ẑγkh)

+ 1
2 ρ̃

z(qγkh, uγkh, zγkh)(uγk − ûγkh) +Rh

Jγ(qγkh, uγkh)− Jγ(qγσ, uγσ) = 1
2 ρ̃

q(qγσ, uγσ, zγσ)(qγkh − q̂γσ) +Rd,
(4.42)

where the remainder terms Rk,Rh,Rd are of third order and take a form analog to Rreg
in (4.38).

The proof is completely analog to the one in [65].

Comparing the already treated terms with the plan laid out in (4.33) it is found that the
summands missing a proper representation are the six involving the penalty functional bγ .
These are treated by the following Taylor expansion:

bγ(uγk)− bγ(uγ) ≈ −b′γ(uγk)(uγ − uγk)
bγ(uγkh)− bγ(uγk) ≈ −b′γ(uγkh)(uγkh − uγk)
bγ(uγσ)− bγ(uγkh) ≈ −b′γ(uγσ)(uγσ − uγkh)

(4.43)

The next step towards the definition of computable error estimators is the approximation
of the weights from (4.42) and (4.43). Like in the elliptic case, in Section 3.5, higher order
interpolation is used. We use linear operators Pk, Ph, Pd to approximate

uγ − ûγk ≈ Pkuγk zγ − ẑγk ≈ Pkzγk qγkh − q̂γσ ≈ Pdqγσ
uγk − ûγkh ≈ Phuγkh zγk − ẑγkh ≈ Phzγkh,

and analog for the weights from (4.43). We follow [65] further to choose the operators:
Naturally the operator Pk should depend on the degree r of the dG(r)-method of temporal
discretization. For the implemented dG(0)-method the operator Pk = I

(1)
k − id is chosen, where

I
(1)
k : X̃0

k → X1
k is an interpolation operator into the space of continous and piecewise linear

functions in time, explicitly given by

I
(1)
k v|Im = v−m−1 + t− tm−1

tm − tm−1
(v−m − v−m−1) for v ∈ X̃0

k . (4.44)

Considering the spatial operator Ph, if the spatial discretization is done by the cG(1) method,
we can use the operator I(2)

2h from Section 3.5 and extend it to time dependent functions by
setting

(I(2)
2h vhk)(t) := I

(2)
2h vhk(t).

Then we choose Ph = I
(2)
2h − id. The combination all these considerations, (4.33), the error

representation (4.42), (4.43), and the interpolation operators, gives rise to the definition of the
temporal error estimator

ηk := 1
2 ρ̃

u(qγσ, uγσ)(Pkzγσ) + 1
2 ρ̃

z(qγσ, uγσ, zγσ)(Pkuγσ)− b′γ(uγσ)(Pkuγσ), (4.45)
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and the spatial error estimator

ηh := 1
2 ρ̃

u(qγσ, uγσ)(Phzγσ) + 1
2 ρ̃

z(qγσ, uγσ, zγσ)(Phuγσ)− b′γ(uγσ)(Phuγσ). (4.46)

Remark 4.3. To define a computable control error estimator, in the current error representation

ηd ≈
1
2 ρ̃

q(qγσ, uγσ, zγσ)(Pdqγσ)− b′γ(uγσ)(uγσ − uγkh)

the weight uγσ − uγkh remains to be approximated. Since the refinement strategy employed
for the numerical calculations in this thesis does not utilize an extra control discretization, but
instead couples the discretization of the control variable to that of the state, an application
of a control error estimator was not necessary and no approximation of the term has been
considered so far. This could be done by at least two possibilities.
One is the treatment of the term bγ(uγσ) − bγ(uγ) as an additional quantity of interest, as
discussed in Remark 4.2.
Alternatively, one could possibly use the transformation

b′γ(uγσ)(uγσ − uγkh) = b′γ(uγσ)(Skh(qγσ)− Skh(qγkh))
≈ b′γ(uγσ)(S′kh(qγσ)(qγσ − qγkh))
≈ b′γ(uγσ)(S′kh(qγσ)(Pdqγσ)) =: b′γ(uγσ)(δud),

where δud denotes the solution of the tangent equation (4.28) with the direction δq = Pdqγσ.

Analog to the elliptic case, the error estimates ηγ , ηk, ηh can now be used within an adaptive
refinement process. The strategies now deal with the four components γ, (Im)Mm=1, Th or
(T mh )Mm=0 and Qd instead of two. Still, the first decision to make is which structure(s) are
refined. Using the error estimates, Algorithm 2.2 can be used to choose a subset of structures
to be treated. Alternatively, for test strategies used in numerical experiments, it may be
desirable to

- fix all structures to be chosen

- fix a certain subset of the structures to be always refined

- fix a subset to be used within Algorithm 2.2 to choose the structures to be refined.

If the regularization is chosen, then simply γ is increased by a given factor.
For the other components, a second decision has to be made, whether the refinement is to be
conducted globally, or locally, by using local error indicators.
For the spatial refinement, the procedure is analog to the elliptic case. For the local refinement
of a non-dynamic spatial discretization, the cell- or nodewise error indicators

ηh =
∑
K∈Th

ηh,K ,

can be obtained like before. For a dynamic spatial discretization the procedure has to be done
for all time steps, leading to a breakdown into indicators

ηh =
M∑
m=0

∑
K∈Th

ηmh,K ,
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details can be found in [87]. So for one given m ∈ {0, . . . ,M} the indicators {ηmh,K : K ∈ Th}
can be used to refine the mesh T mh as before.
Considering the temporal refinement, global refinement means the obvious bisection of every
interval from (Im)Mm=1. For local refinement the localization

ηk =
M∑
m=1

ηmk

is evaluated, again according to [87]. A choice of a subset of intervals to be refined can be
obtained analog to the spatial refinement. Every chosen interval Im is dissected by including
the point 1

2(tm−1+tm) to the set of time points. In the case of dynamic discretization also a new
spatial mesh has to be introduced. In the implementation, a copy of the mesh corresponding
to the right end point of the interval to be refined is chosen.
The refinement of the control space, if necessary, can be done equivalently by means of a
localization of the error estimator ηd.

Like before, these partial aspects can be assembled to an overall refinement strategy. A global
strategy would refine always all components globally. The fully adaptive strategy consists of the
application of the error equilibration strategy Algorithm 2.2 which in turn uses Algorithm 4.2
and Algorithm 4.3 as local refinement strategies for spatial and temporal refinement, if needed.
Intermediate versions between the fully global and adaptive ones can be set up as well.

Algorithm 4.2. Local refinement of the spatial discretization for parabolic OCPs

1: input data: mesh Th or (T mh )Mm=0 (dynamic)

2: evaluate localization ηh =
∑

K∈Th
ηh,K or ηh =

M∑
m=0

∑
K∈Th

ηmh,K

3: sort these eror indicators by their absolute values:
|ηh,K1 | ≥ |ηh,K2 | ≥ . . . (nondynamic)
analog for every time point m independently (dynamic)

4: find the index i = arg min
1≤i≤Nh

E(i)N (i)δ (nondynamic)

analog find an index im for every time point m independently (dynamic)
5: mark cells K1 . . .Ki for refinement (dynamic), or K1 . . .Kim for every time point m
6: refine the marked cells by evenly partition, together with all the cells from the same

patches
7: repeat
8: iterate over all cells K ∈ Th, or time levels m = 0 . . .M and cells K ∈ Th (dynamic):
9: if the current cell K has a neighboring cell such that it has more than one hanging

node on the shared face: refine K, together with its patch
10: until no such pair of cells exists any more
11: output data: mesh T̄h̄ or

(
T̄ m
h̄

)M
m=0 (dynamic)

Remark 4.4. When following the temporal course of a numerical solution obtained with dy-
namic discretization, it can occur that, possibly restricted to a part of the domain Ω, the
spatial discretization at a later time point is coarser than it has been at an earlier time point.
Sometimes this behavior is referred to as coarsening, as the calculation has „started out“with
a fine spatial discretization and has „progressed“ to a coarser one.
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Algorithm 4.3. Local refinement of the temporal discretization for parabolic OCPs

1: input data: (Im)Mm=1, and possibly (T mh )Mm=0 (dynamic)
2: denote the time points separating the intervals Im by 0 = t0 < t1 < · · · < tM−1 < tM = T

3: evaluate localization ηk =
M∑
m=1

ηmk .

4: sort ηmk by their absolute values: |ηm1
k | ≥ |η

m2
k | ≥ . . .

5: find the index i analog to (3.56)
6: for every interval Imj with j ≤ i do
7: insert midpoint 1

2 (tmj−1 + tmj ) into set of time points
8: if dynamic discretization: construct new spatial FE space connected to this new time

point, copy the mesh T mjh

9: get new intervals
(
Īm
)M̄
m=1 from set of time points

10: output data:
(
Īm
)M̄
m=1, and possibly

(
T̄ m
h̄

)M̄
m=0

This notion does however not fit into the tighter sense of the concept of coarsening a discretiza-
tion, as the spatial discretizations at two subsequent time points on the same discretization
level Ti are not derived from one another. They rather stem from the spatial discretizations at
the two time points used at the former discretization level Ti−1. We only allow for refinement in
this step, V s,m,(i)

h ⊃ V s,m,(i−1)
h , but not coarsening. Consequently it follows that X(i)

kh ⊃ X
(i−1)
kh ,

which would not hold for true coarsening. Figure 4.1 illustrates this point about the word
coarsening within dynamic discretization.
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4.5. A posteriori error estimator and adaptivity

(a) Starting discretization: the meshes corresponding to times t0 (left), t1 (middle) and t2
(right) are equal.

(b) Dynamically refined discretization: the meshes corresponding to tn, n = 0, 1, 2, have
been obtained by refinement of the respective meshes in Figure 4.1(a). As no nodes,
or degrees of freedom, have been removed, no coarsening has taken place, although
viewing only the meshes in Figure 4.1(b) in their timely order could suggest otherwise.

Figure 4.1.. Refinement of a dynamic spatial discretization
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This chapter deals with implementational issues of the algorithms proposed before. While the
main ingredients have been derived and discussed thoroughly, some practical points remain
to be clarified. Also, alternatives to some aspects within the complete algorithm will be
discussed.

5.1. Complete algorithm

Until now, the single aspects of the solution process have been discussed seperately from each
other. A composition of these ingredients into one general optimization algorithm for the

Algorithm 5.1. Optimization algorithm - general

1: input data: a problem of type (1.1)
2: parameter: tolerances TOLE , TOLC for error and computational time, TOLN , TOLL
3: Set i=0
4: Choose starting discretization T0 = (T (0)

h , Q
(0)
d ) (elliptic)

or T0 =
((

I
(0)
m

)M
m=1

, T (0)
h , Q

(0)
d

)
(parabolic)

or T0 =
((

I
(0)
m

)M
m=1

,
(
T m,(0)
h

)M
m=0

, Q
(0)
d

)
(parabolic, dynamic).

If optimization method 6= PDAS, choose starting regularization parameter γ0
5: repeat
6: Set up the fully discretized problem (Pσ) (3.27) or (Pγσ) (4.25)

with discretization Ti implying the spaces X(i)
h or X̃s,(i)

kh ,M(i)
h , Q

(i)
d .

7: Choose starting control q(i)
0 ∈ Q

(i)
d . If PDAS, choose µ(i)

0 ∈M
(i)
h .

8: Solve with PDAS(q(i)
0 , µ

(i)
0 , TOLN , TOLL), see Algorithm 3.1

or solve with IP(q(i)
0 , γi, TOLN , TOLL), see Algorithm 4.1

9: This yields discrete solution ū(i), z̄(i) ∈ X(i)
h or X̃s,(i)

kh , q̄(i) ∈ Q(i)
d

and possibly µ̄(i) ∈M(i)
h

10: Evaluate a posteriori error estimator (3.54) or (4.34) resp., giving η(i)

11: if (|η(i)| ≤ TOLE) OR (computational time ≥ TOLC) then
12: BREAK
13: Use equilibration strategy with input Ti, γi, see Algorithm 2.2
14: This yields Ti+1, γi+1.
15: Set i = i+ 1.
16: until false
17: output data: (q̄(i), ū(i)) as approximate solution of (1.1)
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efficient approximate solution of problem (1.1) from start to finish is conducted in Algorithm 5.1.
In the following the execution of step 7, the choice of the starting control, will be concretized,
as the general formulation in Algorithm 5.1 may leave questions. A good choice of the starting
value of a control q(i)

0 on the discretization level i shall possess two advantageous properties: it
has to be admissible, and it is preferrably in close proximity to the mesh-optimal control, to
allow for immediate superlinear convergence of the optimization algorithm.

On the first discretization level, T0, the existence of an admissible control is secured by Assump-
tions 3.5 and 4.3. Mathematical information on the mesh-optimal control has not been retrieved
yet, so one has to pass on the proximity property, unless information from an applicational
background can be utilized to guess an acceptable control.
On the subsequent discretization levels Ti, i ≥ 1, it is possible to get a starting control by
interpolation of the mesh-optimal control q̄(i−1) from the last level. Naturally it can be expected
to be close to the optimal control on the new discretization. So if I(i)

q : Q(i−1)
d → Q

(i)
d is an

interpolation operator, we choose
q

(i)
0 := I(i)

q q̄(i−1) (5.1)
as the starting value. For parameter optimization, where Q is finite dimensional to begin with,
this step does not apply (I(i)

q = id).

Example 5.1. In the case of a spatially distributed control, the operator I(i)
q : Q(i−1)

d → Q
(i)
d

could be chosen as the identity mapping on the linear finite element functions. This is achieved
by the following construction: For every node xj ∈ N (i), the value of the control on the new
level is set to

I(i)
q q̄(i−1)(xj) =


q̄(i−1)(xj) : xj ∈ N (i−1)

1
|N (i)
j |

∑
xk∈N

(i)
j

q̄(i−1)(xk) : xj /∈ N (i−1) , (5.2)

where N (i)
j denotes the set of neighboring nodes of xj , these are the closest nodes of the

„parent“ patch, the refinement of which defined xj .

This proposed choice of starting control does however not solve the problem of admissibility:
in general the value I(i)

q q̄(i−1) is not admissible. If the optimization method is PDAS, then
this is not a problem, an iterior-point method however requires an admissible starting control.
This problem occurs in analog form for control constrained OCPs, but can there be solved
easily by the projection of I(i)

q q̄(i−1) on the admissible set: for control constrained problems
Qad is explicitly given, so that the construction of a projection onto the discretized set Qad,h
is usually a simple task. This is contrary to state constrained problems, where the set of
admissible controls is not given explicitly. In fact, the only exploitable information on the
interior of the admissible set is in general the value q(0)

0 on the first discretization level. This
may be utilized to construct a feasible control as follows:
Assume the interpolation of q(0)

0 in the set Q(i)
d yields an admissible control, that will be

denoted by q̊(i). Since q̊(i) may be outside the fast convergence neighborhood of the exact
solution, a convex linear combination of I(i)

q q̄(i−1) and q̊(i) close to the former is taken as a
strong candidate for a close, but admissible starting control. So set

q
(i)
0,k := (1− λk)I(i)

q q̄(i−1) + λkq̊
(i), k = 0, 1, . . . (5.3)
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until for some K the control q(i)
0,K is admissible, then choose q(i)

0 := q
(i)
0,K as starting control.

The λk can be chosen as k · c with a small constant 0 < c � 1. As numerical experience
shows, with advancing refinement the violation of the state constraint decreases. Since it is
advantageous to choose the final λk as small as possible, it is also possible to make the choice
λk = k · c(i) with a level-dependent (decreasing) factor c(i): If for one discretization level Ti the
linear combination with k = 1 gave an admissible control (but k = 0 did not), then decrease
the factor, e.g. by setting c(i+1) = 1

2c
(i).

A finer tuning of the values of c(i), λk etc. is usually not worth the effort, as the admissibility
test of the resulting controls is usually too expensive.

5.2. Implementation of Borel measures

In the framework of Algorithm 5.1 the fully discretized optimization problems may be solved
by different methods. If the primal-dual active set method is chosen, the Lagrange multiplier
µ needs to be introduced as a new system variable into the computational treatment.

In the overall agorithm in step 7 a starting value µ(i)
0 has to be chosen just like for the

control q(i)
0 as considered in Section 5.1. On the first mesh T0, the consideration for the

multiplier applies analog: since there is no prior knowledge, one may just take any value, unless
technical background suggests otherwise. For the subsequent levels, since admissibility is not
a requirement for the starting solution for the PDAS algorithm the correction part related
to (5.3) can be omitted and one just sets q(i)

0 := I
(i)
q q̄(i−1).

The analog setting of a multiplier
µ

(i)
0 := I(i)

µ µ̄(i−1) (5.4)

requires some care in the construction of the interpolation operator I(i)
µ . The choice I(i)

µ = I
(i)
q

as the interpolation of the multiplier analog to (5.2) may be easy to implement as the operators
work on nodal vectors regardless. But since I(i)

q is the identity operator on the space of
linear finite element functions, this choice seems unnatural. A possible alternative to this
interpolation is the use of the operator

I(i)
µ µ̄

(i−1)
j =

{
µ̄

(i−1)
j : xj is node of Ti−1

0: else
, (5.5)

which is the identity operator on the space of discrete Borel measuresM(i−1)
h .

The decision whether to choose interpolation according to (5.2) or according to (5.5) thus
depends on the structure of the multiplier. This can be explained by considering the effect of
these two operators on the discretizations of two prototypical examples of multipliers - the first
is a constant function, the second is a line measure - see Figure 5.1 for the discretizations on a
coarse grid. Global refinement of the mesh and subsequent interpolation of these multipliers
using (5.2) leads to the situation depicted in Figure 5.2. While the support of the regular part
is realized correctly, the line measure part is hugely overapproximated, it exhibits three times as
many active nodes as necessary. This does not hinder the convergence of the algorithm, but the
convergence speed is slowed down considerably. The situation when using the interpolation (5.5)
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is depicted in Figure 5.3. This method underestimates the support of both the regular and
the measure part of the multiplier. Still, numerical experience shows interpolation by (5.5) to
work considerably better. This seems plausible, as the introduced mismatch of the support is
smaller, also active sets are usually approached from the outside.

(a) discrete measure µh ∈Mh as discretization
of the constant function µ ∈ L2(Ω)

(b) discrete measure µh ∈Mh as discretization
of the line measure µ /∈ L2(Ω)

Figure 5.1.. Discrete Borel measures. The height of the bar in node xi represents
the value of the related coefficient µi.

(a) applied to the discretization of the constant
function µ ∈ L2(Ω)

(b) applied to the discretization of the line mea-
sure µ /∈ L2(Ω)

Figure 5.2.. Result of the interpolation according to (5.2) applied to the measures
from Figure 5.1.
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(a) applied to the discretization of the constant
function µ ∈ L2(Ω)

(b) applied to the discretization of the line mea-
sure µ /∈ L2(Ω)

Figure 5.3.. Result of the interpolation according to (5.5) applied to the measures
from Figure 5.1.

5.3. Possible modifications of the standard algorithm

In this section possible modifications of Algorithm 5.1 will be discussed. In the buildup of this
algorithm, in the previous chapters the following typical procedures were discussed:

• (adaptive) discretization methods,

• methods to solve a nonlinear (optimization) problem, and

• methods to solve the linear subproblems generated by the nonlinear method.

Different methods that realize each of these specific steps are available. For example, the
discretization can be governed by

• a uniform refinement strategy, or

• an adaptive refinement strategy

– using the dynamic mesh approach, or

– using only one spatial mesh.

The optimization method may be

• the primal dual active set method, or

• the interior point method.

For linear solvers there is a large amount of possibilities, in this thesis only the CG and GMRes
methods were mentioned.
The setup of these procedures to form the complete method in this thesis is as follows: The
steps are executed in a nested loop in the following order

1. adaptive discretization,
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2. → nonlinear optimization,

3. −→ linear subproblems.

An alternative to this nested iteration is discussed in [42, 85]. Switching the order of the loops
to

1. nonlinear optimization,

2. → adaptive discretization,

3. −→ linear subproblems

leads to the application of adaptivity for linear problems, but requires the use of the nonlinear
solver in function space.

Another modification concerns problems with a two-sided state constraint. So consider the
problem 

min J(q, u) q ∈ Q, u ∈ X
u = S(q)

ua(x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω̄ or Ω̄ × Ī
(5.6)

where we assume the active sets of the state constraints to be separated. This can be achieved
by securing

ub > ua on Ω̄ or Ω̄ × Ī .

The standard conversion of the two-sided constraint like indicated in Section 2.1.3 would utilize
two multipliers, µa ∈M(Ω) orM(I ×Ω) associated to the partial constraint ua(x) ≤ u(x),
and µb ∈M(Ω) orM(I ×Ω) associated to u(x) ≤ ub(x).
An improvement of this approach can be achieved by observing the known sign of the multipliers:
As optimality conditions require µa, µb ≥ 0, and the implementation dictates the positive sign
for all components at every computational step, a common multiplier can be defined by

µ := µb − µa. (5.7)

Now the implementation can be done with the single multiplier µ instead of both µa and µb,
thus saving computational effort. A component of µ with a negative value corresponds to a
point where the lower bound is active, a positive component corresponds to the upper bound.
This construction works due to the separation of the active sets.

The third modification of the solution process is the transformation of nonlinear boundaries to
constant ones. Consider the most general problem (1.1). If the inverse of the constraint function,
G−1, exists and is monotone decreasing, then it can be easily shown that the relations

G(u) ≥ 0 ⇔ u−G−1(0) ≤ 0

are equivalent and thus the transformation

û := G−1(0)− u (5.8)
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leads to the following problem that is equivalent to (P ):
min J(q,G−1(0)− û) q ∈ Q, û ∈ X
û = G−1(0)− S(q)

û ≥ 0 .

A similar construction is possible for a monotone increasing inverse of the constraint function,
with

û := u−G−1(0)

being the appropriate transformation.
The advantage of this formulation is that due to the constant bounds the discretization of the
constraint function G becomes trivial.

Example 5.2. For the single upper bound u ≤ ub the transformation is

û := ub − u.

The problem is then transformed as follows:
min J(q, u) q ∈ Q, u ∈ X
u = S(q)
u ≤ ub

⇒


min J(q, ub − û) q ∈ Q, û ∈ X
û = ub − S(q)

û ≥ 0

Example 5.3. For the two-sided constraint ua ≤ u ≤ ub, the transformation introduced
in (5.8) can not be applied directly. Still, the transformation

û := u− ua
ub − ua

,

obtained in a similar way, leads to the following equivalent problem,
min J(q, u) q ∈ Q, u ∈ X
u = S(q)

ua ≤ u ≤ ub
⇒


min J(q, û(ub − ua) + ua) q ∈ Q, û ∈ X

û = S(q)−ua
ub−ua

0 ≤ û ≤ 1 ,

which obtains the goal of smooth constraint functions as well.

5.4. Considerations derived from practical problems

In Chapter 7 the methods developed in this thesis are applied to the large-scale practical
problem of the control of structural properties developed during the hydration phase of young
concrete. A wide range of different practical problems has been treated by modelling the task
as an optimal control problem. Studying the utilized solution processes reveals aspects that
have not been emphasized yet. In the following, we give a few examples of practical optimal
control problems, and links to publications:
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5. Aspects of Implementation

- In hypothermia cancer treatment, see [96], the computational domain is a part of the
patient’s body. The forward operator includes the heat as well as electric field equations,
optimization is done over parameters. State constraints arise naturally, as sound tissue
has to be protected against too much heat.

- The problem of optimal glass cooling, investigated, e.g., in [22] has the goal to guide the
temperature of a glass melt to room temperature by adjusting the furnace temperature,
which is modelled as boundary control. The control aspires to guide the temperature of
the glass to a given temperature profile, which is chosen for a minimum of unwanted
stresses, that are building up during the cooling process.

- In the surface hardening of steel [65], a laser beam is moved along the surface of a
workpiece, inducing heat and with that the formation of austenite, causing the hardening
effect. The aim is to control the laser energy such that a desired hardening profile
is reached. The control-to-state operator consists of the heat equation coupled with
an ordinary differential equation in every spatial point that describes the formation of
austenite depending on the temperature.

An uncritical application of the solution process to practical problems like these as described
until now will solve those problems, but it can be improved easily by taking some further
aspects of the practical problem into account. These can comprise of the following:

The choice of the starting mesh T (0)
h at the beginning of the first discretization process holds

the opportunity to improve the numerical behavior via the following consideration: The
spatial extension of the computational domain can be enormous. This leads to large discrete
problems even on a relatively coarse discretization level. It is thus unfavorable to choose an
equidistant mesh as T (0)

h . Typically in practical problems the solution exhibits structures on
very different spatial or temporal size scales so that a uniform discretization would either
result in huge discrete problems or the loss of fine-scale information. Instead, based on an a
priori understanding of the physical process in question, a starting mesh can be designed that
resolves the structure of the solution well with minimal effort.

Another aspect is that in practical problems the computational domain Ω is often nonconvex.
This can lead to additional loss of regularity of the solution, and so reduce the accuracy and
convergence speed of the algorithms explained here. To counteract this phenomenon, a priori
mesh grading might be used. This means that the starting mesh is constructed to have a finer
discretization in a neighborhood of the edge or corner in question, i.e. the cells’ diameter
depend on the distance to the reentrant edge or corner. For some basic problem classes, this
dependency takes a form analog to (A.4), where the distance to the point a corresponds to the
distance to the critical structure. A detailed analysis of this concept for elliptic problems in
two and three dimensions can be found in [4–6]. A grading of the mesh towards the origin can
then be obtained by applying the transformation

T (x) = x‖x‖
1
µ
−1

to all points in a neighborhood of the critical structure, where µ ∈ (0, 1] denotes the grading
parameter.
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In many practical applications, more than one physical quantity is needed to describe the
state of the system. This corresponds to a state variable with more than one component,
u : Ω̄ → Rns or u : Ī × Ω̄ → Rns . For reasons of simplicity, this is not explicitly treated in
this thesis. For simple problems it suffices to treat the other components like the first one.
Especially the a posteriori error estimation is not affected by a greater number of components.
Only for more difficult problems it may be necessary to use more involved techniques; also this
affects mainly questions of discretization and implementation. For flow control problems, for
example, it can be necessary to use stabilization techniques to obtain a useable discretization.

Furthermore, in practical problems it often occurs that uncertainties on the input data
are relatively large. Therefore it may be unrealistic to expect computational results that
are in very accurate accordance to reality observations. Then sometimes in the numerical
algorithms the focus is shifted away from high order accuracy, convergence rates and related.
Instead the expectations on speedup of calculations in the first refinement steps are increased.
This approach can be supported by adaptive mesh refinement based on a posteriori error
estimation.
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6. Numerical Results

In this chapter some example problems will be considered that fit into the general frame-
work (3.1) or (4.1), respectively. They will be solved numerically by the algorithms developed
in the previous chapters. The employed optimization method on one level of discretization
for the elliptic problems is the PDAS method described in Section 3.4. For the parabolic
problems, a regularization by the barrier approach and subsequently the optimization by the
interior point method is applied, as described in Section 4.4. In one example, both optimization
methods are applied to make a comparison between them.

The generality of the setting allows for many different constellations. Thus example problems
of different types are chosen to illustrate the possible differences. Specifically, linear and
nonlinear problems, elliptic and parabolic ones, and such with known and unknown exact
solutions are considered. Additionally, attention is payed to the structure of the optimal
solution; this means the active sets can e.g. be points, lines or twodimensional sets.

One goal of the numerical experiments is to evaluate the quality of the error estimators derived
previously. Two aspects will be evaluated: the first is how good the estimated value η matches
the overall error in the cost functional. For this the effectivity index

Ieff = J(q̄, ū)− J(qσ, uσ)
η

(6.1)

is defined. It should be evaluated for every error estimation for the mesh-optimal solution on
every considered level of discretization. To evaluate Ieff, the value of the cost functional is
needed, which is only known if the optimal solution (q̄, ū) is known. If J(q̄, ū) is not available, it
is replaced by a precalculated value J∗ := J(qσ∗ , uσ∗), where (qσ∗ , uσ∗) is the optimal solution
to a discrete problem that is on every level finer discretized than the problems Ieff is to be
evaluated for, so that the small inaccuracy does not have a sizeable influence. To judge the
quality of the error estimator, a proximity of Ieff to 1 would be best. Strictly this can be
expected only for the limit h→ 0 (k → 0, γ →∞). So if the discretization is relatively coarse,
relative to the difficulty of the problem in question, sizable deviations from this value cannot
be excluded at all; especially changes in the sign of the error are often an indicator for these
deviations.

Another indicator for the quality of the a posteriori error estimation is the effect of the local
refinement of the discretizations, respectively the error equilibration. Solving the numerical
problems with different discretization strategies, for example once on a series of uniformly
refined discretizations, and once including the adaptation, we are able to compare the numerical
effort relative to the cost functional error.
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The implementation of the solution methods and error estimation were all done in the
optimization toolkit RoDoBo [80] in connection with the finite element library Gascoigne [36].
For visualization we used the visualization tool VisuSimple [95].

6.1. Elliptic problem with known exact solution

As the first example problem the following elliptic optimal control problem governed by a
linear state equation is considered:

(Ex1)



Minimize J(q, u) = 1
2‖u− ud‖

2
L2(Ω) + 1

2‖q‖
2
L2(Ω),

−∆u = q + f in Ω,
u = 0 on Γ1,

∂nu = 0 on Γ2,

G(u) ≥ 0 in Ω̄,

where Ω = (0, 1)2 is the unit square, and the parts of the boundary are

Γ1 = { x = (x1, x2) ∈ ∂Ω | x1 = 0 } and Γ2 = ∂Ω \ Γ1.

To integrate this problem into the framework provided in Chapter 2 the spaces are chosen
as Q = R = L2(Ω), V = H1

Γ1
(Ω) =

{
v ∈ H1(Ω)

∣∣ v|Γ1 = 0
}
, X = W 1,p(Ω) ∩H1

Γ1
(Ω). The

functions G, f, ud represent the data of this problem, and will be chosen in such a way that
the optimal solution can be calculated explicitly and exhibits some interesting features.

The goal is to construct an optimal solution that fulfills the state constraint exactly with
G(ū) = 0 on the set

{
(x1, x2) ∈ Ω̄

∣∣∣ x1 ≥ s
}
and with G(ū) > 0 on the rest of the domain.

So the active and the inactive sets of the optimal solution are seperated by the line {x1 = s}
with some parameter s ∈ (0, 1) to be chosen later. As described in [49] from this construction
follows a structure of the multiplier µ̄ as the sum of a regular and a line measure part, that is
µ̄ = µ̄1 + µ̄2 with µ̄1 ∈M(Ω) \ L2(Ω) and µ̄2 ∈ L2(Ω). The representation

〈µ̄1, ϕ〉 = cµ

∫ 1

0
ϕ(s, x2) dx2 ∀ϕ ∈ C(Ω̄), µ̄2 =

{
0, x1 < s

b, x1 ≥ s.
(6.2)

is employed with a constant cµ to be determined later and b > 0 to be chosen freely.

To construct an optimal solution with the properties described above, upper state constraints
are chosen, i.e. G(u) = ub − u, and an ansatz for the optimal state is made demanding that

- ū is not depending on x2,

- the restriction of ū to the active set is a polynomial of degree 4,

- the restriction of ū to the inactive set is a polynomial of degree 3,

- the transition over the boundary between these sets is C2, but the third derivative has a
jump there,
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6.1. Elliptic problem with known exact solution

- ū fulfills the boundary conditions of (Ex1).

This determines ū up to a constant m ≤ s−3 which is left as a parameter that can later be
used to work out the influence of the measure part of the error estimator. The optimal state
takes the form

ū(x1, x2) =


x3

1
s3 − 3x

2
1
s2 + 3x1

s , x1 < s

− 3m
4(1−s)(x1 − s)4 +m(x1 − s)3 + 1, x1 ≥ s.

The constraint function ub is thus determined on the active set, and needs to be continued on
the inactive set which can be done by any function larger than ū. Considering the boundary
conditions on u, the choice

ub(x1, x2) =

1, x1 < s

− 3m
4(1−s)(x1 − s)4 +m(x1 − s)3 + 1, x1 ≥ s

is made. Setting further

ud(x1, x2) := ū+ 2 =


x3

1
s3 − 3x

2
1
s2 + 3x1

s + 2, x1 < s

− 3m
4(1−s)(x1 − s)4 +m(x1 − s)3 + 3, x1 ≥ s

for easier calculations and incorporating the adjoint and the gradient equation with the choice

f(x1, x2) =
{ 6
s2 − 6mx1 + x1(x1 − 2) + b(1− s)x1, x1 < s

(1− r)x2
1 + (b− 18ms

1−s − 2− 6m)x1 + 6
s2 − rs

2, x1 ≥ s,

where the abbreviation r = b
2 −

9m
1−s is used, the missing parts of the exact solution (q̄, ū, z̄, µ̄)

turn out to be

q̄(x1, x2) =
{
−x1(x1 − 2)− ( 6

s3 − 6m)x1 − b(1− s)x1, x1 < s

−x1(x1 − 2)− 6
s2 + 6ms+ b

2x
2
1 − bx1 + b

2s
2, x1 ≥ s,

z̄ = −q̄,

and µ̄ is set according to (6.2) with cµ =
(

6
s3 − 6m

)
. Remember this construction leaves three

parameters s ∈ (0, 1),m < s−3, b > 0 entering the data ub, ud, f and the optimal solution of the
problem (Ex1). A visualization of the optimal solution (q̄, ū) for one choice of the parameters
can be seen in Figure 6.1. Also observe that the construction of the structure especially of µ̄ is
achieved with smooth data ub, ud ∈ C2(Ω), f ∈ C1(Ω).

The optimization method used in the following numerical solution of (Ex1) is PDAS. The
starting discretization is always a mesh of 4 × 4 congruent quadratic cells, used for the
discretization of the state and the control space. The refinement strategies used to create a
new mesh after a mesh-optimal solution on an old mesh has been found, that will be compared
here, are the uniform refinement and the adaptive refinement given by a localization of the
error estimator ηh (3.52) in Section 3.5. As the discretization of the control space is tied to
that of the state space, ηd is zero and thus omitted, see also Remark 3.4.
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Figure 6.1.. Optimal solution of (Ex1) for (s,m, b) = (0.5,−10, 50), dependence on
x1 only, as the functions are x2-independent.

We present the results of the computations for two sets of parameters (s,m, b). The choice
of the parameter m = −2 secures that the multiplier part of the error representation (3.52),
i.e., J ′u((Pd + id)qd, (Ph + id)uh)(Phuh)− a′u((Pd + id)qd, (Ph + id)uh)(Phuh, (Ph + id)zh), has
a significant size compared to the other parts. For significantly larger m the effects of the
reduced regularity originating from the state constraints would be negligible, and the behavior
of the numerical solution would be as expected with experimental order of convergence with
respect to h being almost exactly 2 and effectivity index almost exactly 1. The choice of the
parameter b is less significant, we choose b = 50.

The first choice of the remaining parameter is s = 0.125. As the exact solution is known,
the optimal value of the cost functional J(q̄, ū) = 74244.18954366 . . . is used to evaluate the
discretization error and the effectivity index on every mesh. The results can be seen in Table 6.1,
for every discretization level the number of degrees of freedom N , the discretization error
J(q̄, ū)− J(qσ, uσ) and the efficiency index Ieff are displayed. The efficiency indices show that
an accurate error estimation is observed after the second refinement step. The visualization of
the relation between the remaining two quantities in Figure 6.2(a) shows an advantage of the
local refinement strategy compared to the uniform strategy in the discretization error relative
to the degrees of freedom. As the choice s = 0.125 means that the line where the measure
µ̄1 is concentrated is always a grid line, the second test is made with the choice s = 0.3. The
evaluation of the discretization error and the effectivity index using the new optimal value of
J(q̄, ū) = 3044.536619 . . . in Table 6.2 shows accurate error estimation in most cases. However,
the localization of the estimator guides the local refinement process to more efficient meshes,
as can be seen in Figure 6.2(b). An example plot of such a mesh is displayed in Figure 6.3. A
refinement of the region around {x1 = s} is observed.
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6.1. Elliptic problem with known exact solution

Table 6.1.. Development of discretization errors and of the effectivity indices for
s = 0.125 for (Ex1)

(a) adaptive refinement

N J(q̄, ū)− J(qσ, uσ) Ieff

25 1.37e+03 4.54
55 -5.93e-02 0.00

113 -8.56e-03 0.41
189 -1.48e-02 0.94
403 -3.90e-03 0.94
1233 -1.72e-03 0.93
4241 -6.60e-04 0.96

(b) uniform refinement

N J(q̄, ū)− J(qσ, uσ) Ieff

25 1.37e+03 4.54
81 -6.62e-02 0.00

289 -1.59e-02 0.98
1089 -3.92e-03 0.96
4225 -9.70e-04 0.97
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Figure 6.2.. Discretization errors vs degrees of freedom for Ex1

Table 6.2.. Development of discretization errors and of the effectivity indices for
s = 0.3 for (Ex1)

(a) adaptive refinement

N J(q̄, ū)− J(qσ, uσ) Ieff

25 3.02e+00 0.65
55 1.33e+00 8.74
139 1.15e-01 1.71
403 2.56e-02 -4.68
955 -3.88e-03 0.96
2185 -1.24e-03 0.78
5125 -2.99e-05 0.81

(b) uniform refinement

N J(q̄, ū)− J(qσ, uσ) Ieff

25 3.02e+00 0.65
81 1.32e+00 8.03
289 1.33e-01 1.52
1089 3.03e-02 -0.45
4225 6.10e-04 1.23

93



6. Numerical Results

Figure 6.3.. An example of a locally refined mesh for s = 0.3 for Ex1

6.2. Elliptic problem with unknown exact solution

The second example problem takes a form similar to (Ex1), but this time the data are chosen
in such a way that the active set has a curved boundary so it can not be matched by the
spatial discretization. Consider on the unit square Ω = (0, 1)2

(Ex2)



Minimize J(q, u) = 1
2‖u− ud‖

2
L2(Ω) + α

2 ‖q‖
2
L2(Ω),

−∆u = q in Ω,
u = 0 on Γ,

G(u) ≥ 0 in Ω̄,

with the data α = 0.1, G(u) = ub − u (upper state constraint) with ub = 0.01, and

ud = 10(sin(2πx1) + x2).

For this problem, which has been considered in [49], the exact solution is not available, so
for the following investigations the approximate optimal value J∗ = 41.62230492265025 is
used, which was computed on a fine mesh with N = 66049 nodes. The behavior of the error
and effectivity index when using PDAS as optimization method, and adaptive refinement can
be seen in Table 6.3(a). Additionally the value of the error estimator ηh itself is displayed,
which may seem redundant at this point, but can be compared in magnitude to the estimator
contributions from the following tests.

There, (Ex2) is solved by regularization (order o = 2) and interior point method. For this
approach two different refinement strategies are considered. In both, the discretization error
ηh and the regularization error ηγ are estimated, and the result of this estimation determines
whether a new spatial mesh is used, or the regularization parameter is increased, or both,
as described in Algorithm 2.2. The difference is in the creation of the new spatial meshes,
it can again be created by global, or adaptive refinement of the old mesh. The results can
be seen in Table 6.3(b) and Table 6.3(c). The comparison of the error convergence relative
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6.2. Elliptic problem with unknown exact solution

Table 6.3.. Development of discretization errors and of the effectivity indices for
(Ex2)

(a) solution with PDAS

N ηh J∗ − J(qσ, uσ) Ieff

9 -9.45e-03 -5.94e-01 62.80
25 -9.04e-03 -1.07e-02 1.18
69 -3.73e-03 -3.19e-03 0.86
97 -3.06e-03 -2.59e-03 0.85
271 -7.60e-04 -8.41e-04 1.11
789 -2.37e-04 -2.50e-04 1.06

2783 -6.46e-05 -6.49e-05 1.01
9817 -1.75e-05 -1.75e-05 1.00

(b) solution with IP, global refinement by component

N γ ηh ηγ η J∗ − J(qσ, uσ) Ieff

25 1.0e+02 -1.47e-03 -3.08e-02 -3.22e-02 -3.408e-02 1.06
81 3.2e+02 -2.10e-03 -6.71e-03 -8.81e-03 -1.598e-02 1.81
81 1.0e+03 -2.60e-03 -1.56e-03 -4.16e-03 -1.195e-02 2.87
289 1.0e+03 -5.83e-04 -1.68e-03 -2.27e-03 -4.170e-03 1.84
289 3.2e+03 -6.47e-04 -4.39e-04 -1.09e-03 -3.112e-03 2.87
1089 3.2e+03 -1.79e-04 -4.51e-04 -6.31e-04 -1.088e-03 1.73
1089 1.0e+04 -1.88e-04 -1.23e-04 -3.11e-04 -7.990e-04 2.57
4225 1.0e+04 -4.69e-05 -1.26e-04 -1.73e-04 -2.868e-04 1.66
4225 3.2e+04 -4.83e-05 -3.51e-05 -8.34e-05 -2.051e-04 2.46

16641 3.2e+04 -1.21e-05 -3.58e-05 -4.79e-05 -7.631e-05 1.60

(c) solution with IP, adaptive refinement

N γ ηh ηγ η J∗ − J(qσ, uσ) Ieff

25 1.0e+02 -4.82e-03 -2.91e-02 -3.40e-02 -3.084e-02 0.91
25 3.2e+02 -4.51e-03 -5.61e-03 -1.01e-02 -1.443e-02 1.43
25 1.0e+03 -4.43e-03 -1.16e-03 -5.59e-03 -1.122e-02 2.01
69 1.0e+03 -3.00e-03 -1.50e-03 -4.50e-03 -4.362e-03 0.97
231 1.0e+03 -5.75e-04 -1.66e-03 -2.24e-03 -2.444e-03 1.09
231 3.2e+03 -5.89e-04 -4.27e-04 -1.02e-03 -1.403e-03 1.38
647 3.2e+03 -2.36e-04 -4.41e-04 -6.77e-04 -7.635e-04 1.13
647 1.0e+04 -2.46e-04 -1.20e-04 -3.66e-04 -4.807e-04 1.31

2169 1.0e+04 -9.35e-05 -1.23e-04 -2.17e-04 -2.153e-04 0.99
2169 3.2e+04 -9.58e-05 -3.38e-05 -1.30e-04 -1.357e-04 1.05
4173 3.2e+04 -4.21e-05 -3.51e-05 -7.72e-05 -7.630e-05 0.99
11379 3.2e+04 -1.42e-05 -3.57e-05 -4.98e-05 -4.780e-05 0.96
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to the number of degrees of freedom is displayed in Figure 6.4(a). The adaptive IP strategy
has an advantage over the uniform one. This comparison should be expanded however, as
for the regularization approach the number of degrees of freedom is not the only influence
on the numerical effort: the regularization parameter γ is as well. Thus in Figure 6.4(b) the
computational time is displayed as the quantity to evaluate the error level against. It can also
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Figure 6.4.. Convergence of the error for (Ex2)

be seen that the PDAS method produces better results than the two IP strategies, however
this might be problem-dependent.

6.3. Nonlinear elliptic problem

Example problem (Ex3) on the unit square Ω = (0, 1)2 has a nonlinear state equation and
two-sided state constraints:

(Ex3)



Minimize J(q, u) = 1
2‖u− ud‖

2
L2(Ω) + α

2 ‖q‖
2
L2(Ω),

−∆u+ u3 = q + f in Ω,
u = 0 on Γ,

ua ≤u ≤ ub in Ω̄,

with α = 0.001, f = 0, ub = 0, and

ud = 16x(1− x)2(x− y) + 3
5 , ua = −0.08− 4

(
x− 1

4

)2
− 4

(
y − 27

32

)2
.

Again, no exact solution is avaliable so the approximate optimal value J∗ = 0.2506264253907605
is used. The numerical tests show that the active set A+ corresponding to the upper bound is
a set with non-zero two-dimensional volume and the active set A− corresponding to the lower
bound contains apparently only one point. The development of the discretization errors and
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6.3. Nonlinear elliptic problem

Figure 6.5.. Example of a locally refined mesh for (Ex3)

the effectivity indices for the numerical solutions calculated by the PDAS method are given
in Table 6.4 for both uniform and local mesh refinement. The comparison of both refinement
strategies with respect to the required number of degrees of freedom to reach a given error
tolerance is done in Figure 6.6. A typical locally refined mesh is shown in Figure 6.5.

Table 6.4.. Development of discretization errors and of the effectivity indices for
(Ex3)

(a) local refinement

N J∗ − J(qσ, uσ) Ieff

25 5.38e-04 -1.41
41 -1.16e-04 0.43
99 -4.48e-05 0.33
245 -2.68e-05 0.60
541 -1.04e-05 0.56

1459 -6.04e-06 0.89
4429 -1.54e-06 0.83
13107 -5.01e-07 0.89

(b) uniform refinement

N J∗ − J(qσ, uσ) Ieff

25 5.38e-04 -1.41
81 -1.58e-04 0.62

289 -6.18e-05 0.87
1089 -1.58e-05 0.87
4225 -3.99e-06 0.89
16641 -7.45e-07 0.66

97



6. Numerical Results

Figure 6.6.. Convergence of the error for (Ex3)

6.4. Parabolic problem

As a time-dependent problem the following example with a linear parabolic state equation is
considered:

(Ex4)



Minimize J(q, u) = 1
2‖u− ud‖

2
L2(Ω×I) + α

2 ‖q‖
2
Q,

ut −∆u = q in (0, T )×Ω,
u(t, x) = 0 ∀t ∈ (0, T ), x ∈ Γ,
u(0, x) = 0 on Ω,
G(u) ≥ 0 in Ī × Ω̄.

The domain is Ω = (0, 1)2, and the end time is T = 1 so that I = (0, 1). The integration into
the theoretical framework utilizes the spaces R = L2(Ω), Q = L2(L2(Ω)), V = H1

0 (Ω), X =
W (I, V ) ∩ Ls(I,W 1,p(Ω)) ∩W 1,s(I, (W 1,p′(Ω))∗). The problem data are α = 0.001, upper
state constraints G(u) = ub − u with ub = 0.1, and

ud = t sin6((2tx+ (1− 2t)x4)π) sin6(((2t− 1)2y − 4t(t− 1)y4)π).

This function exhibits a growing peak, see Figure 6.7, in other words sup
x∈Ω̄

ud(t, x) is increasing.

With the present choice of the upper state constraint ub, this leads to the following structure
of the active set: from a certain time interval starting in t = 0 there are no active points, at
time t = ub the state constraint becomes active in one point, and after that the constraint
is active in a set with nonempty two-dimensional interior. For the determination of an
approximate solution of (Ex4) a regularization according to Section 4.2 is considered, with a
starting regularization parameter of γ = 100 and order o = 1. By the interior point method,
see Section 4.4, the discrete optimal solution is found. The starting discretization always
consists of an evenly partition of I into 6 subintervals, and a spatial mesh consisting of 4× 4
congruent quadratic cells is used in every time point. The results for this setup with different
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6.4. Parabolic problem

(a) Plot of ud(t = 1
6 , ·) (b) Path of the peak from

t = 0 to t = 1. The peak
grows in time.

Figure 6.7.. Structure of ud for (Ex4)

refinement strategies are displayed in Table 6.5 and Figure 6.8. As the exact optimal solution is
not available, the approximate optimal value J∗ = 1.19205981 · 10−3 is used in the calculation
of the Ieff.
The simplest strategy of global refinement of all components at the same time seemingly leads
to convergence just fine, but apparently its performance suffers from the fact that the error
contributions relating to the estimators ηh, ηk, ηγ are of different order of size. The second
strategy separates the regularization error from the other contributions. Since this is the
error connected to the state constraint, we investigate the effect of discarding any knowledge
about ηγ in the refinement strategy: the discrimination which component to refine is made
only between ηh and ηk, while γ is increased regardless. While this is a small improvement of
the first strategy, the third, full adaptive refinement strategy increases the convergence order
considerably.
A more detailed investigation of the importance of the estimator ηγ and its use in the

refinement strategy is displayed in Figure 6.9. Here the comparison is taken between two
strategies: Firstly, the most involved strategy is considered, this is the evaluation of all
estimator components and their use in the error equilibration algorithm, see Section 2.5.
Alternatively, the use of ηγ is omitted, but instead γ is always increased by a constant factor
cγ instead. The evaluation is done for the values cγ ∈ {1.5, 10, 31.6}. Looking at Figure 6.9(a)
it can be seen that cγ = 1.5 leads to a too slow convergence of the error relative to the degrees
of freedom. Obviously this guess for cγ is too small, the regularization error is not decreased
fast enough. The other choices for cγ seem to have no disadvantage compared to the involved
strategy. The disadvantage for a too large cγ can be recognized with a comparison of the
error relative to the computational time, see Figure 6.9: As the convergence properties of the
numerical methods deteriorate with growing γ, the numerical effort needs to be increased to
solve the discrete problems, leading to an increase in overall computational time.
Lastly, within the adaptive refinement strategy a comparison is made between the dynamic
and the nondynamic spatial discretization approach. The results, this time obtained with
a barrier functional of order o = 2, can be seen in Table 6.6 and, together with a plot of
one mesh, in Figure 6.4. In the first few discretization levels no difference occurs, as in the
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6. Numerical Results

Table 6.5.. Results for (Ex4) with o = 1 for the simpler refinement strategies

(a) Global refinement of all components at the same time

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

25 6 1.0e+02 -7.54e-04 -5.41e-04 -1.00e-02 -1.13e-02 -1.367e-02 1.21
81 12 3.2e+02 -9.98e-05 -3.50e-05 -3.16e-03 -3.30e-03 -4.352e-03 1.32
289 24 1.0e+03 -1.87e-04 6.76e-05 -1.01e-03 -1.12e-03 -1.312e-03 1.17
1089 48 3.2e+03 -3.635e-04

(b) Global refinement, comparison between ηh and ηk

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

25 6 1.0e+02 -7.54e-04 -5.41e-04 -1.00e-02 -1.13e-02 -1.367e-02 1.21
81 12 3.2e+02 -9.98e-05 -3.50e-05 -3.16e-03 -3.30e-03 -4.352e-03 1.32
289 12 1.0e+03 -5.04e-05 1.11e-05 -1.01e-03 -1.04e-03 -1.369e-03 1.31
1089 12 3.2e+03 -1.50e-04 -6.57e-07 -3.17e-04 -4.68e-04 -4.416e-04 0.94
4225 12 1.0e+04 -1.494e-04

(c) Adaptive refinement, comparison between ηh, ηk and ηγ . Nondynamic discretization.

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

25 6 1.0e+02 -7.54e-04 -5.41e-04 -1.00e-02 -1.13e-02 -1.367e-02 1.21
25 6 3.2e+02 -1.01e-03 -3.62e-04 -3.16e-03 -4.54e-03 -5.072e-03 1.12
81 6 1.0e+03 -2.58e-04 -5.79e-04 -1.01e-03 -1.84e-03 -1.595e-03 0.87
81 8 3.2e+03 -2.22e-04 -4.01e-05 -3.17e-04 -5.79e-04 -6.119e-04 1.06

265 8 1.0e+04 -1.53e-03 -5.45e-05 -1.02e-04 -1.69e-03 -1.796e-04 1.06
587 8 1.0e+04 -9.50e-05 -3.13e-05 -1.02e-04 -2.27e-04 -1.642e-04 0.72
1321 8 3.2e+04 -6.88e-06 -1.32e-05 -3.17e-05 -5.18e-05 -6.492e-05 1.25
1321 12 1.0e+05 -2.06e-05 -1.33e-04 -1.02e-05 -1.64e-04 -2.322e-05 0.14
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Figure 6.8.. Convergence of the error for (Ex4) for different refinement strategies
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Figure 6.9.. Convergence of the error for (Ex4) for different values of cγ

Table 6.6.. Results for (Ex4) with o = 2 for the adaptive spatial refinement strategy

(a) nondynamic version

Ntot γ J∗ − J(qσ, uσ) Ieff

175 1.0e+01 -6.820e-02 1.40
175 3.2e+01 -1.055e-02 1.55
175 1.0e+02 -1.798e-03 1.30
175 3.2e+02 -5.705e-04 0.55
567 3.2e+02 -3.097e-04 1.90
567 1.0e+03 -9.484e-05 1.37
1939 3.2e+03 -1.994e-05 1.31
6363 1.0e+04 -8.729e-06 1.23

(b) dynamic version

Ntot γ J∗ − J(qσ, uσ) Ieff

175 1.0e+01 -6.820e-02 0.54
175 3.2e+01 -1.055e-02 0.54
175 1.0e+02 -1.798e-03 0.59
175 3.2e+02 -5.705e-04 0.63
567 3.2e+02 -3.097e-04 0.64
567 1.0e+03 -9.484e-05 0.68
1459 3.2e+03 -2.192e-05 0.72
3809 1.0e+04 -7.623e-06 0.60
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6. Numerical Results

dynamic version the spatial error indicators are close enough to each other that the same
spatial refinement is chosen on every temporal interval. When the dynamic discretization kicks
in in level 6, the dynamic version produces slightly smaller functional errors.
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Figure 6.10.. Comparison of the dynamic and the nondynamic approach of the
spatial discretization for (Ex4)
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7. Optimal Control of Young Concrete
Thermo-Mechanical Properties

In this chapter the results of the previous work will be applied to a large-sized real-world
problem. Large-sized means that a large number of degrees of freedom is needed for the coarsest
sensible discretization, which is due to the presence of physical phenoment of different order of
magnitude. The spatial domain Ω is a three-dimensional, non-convex set with characteristic
structures of different length scales. Similarly, in the considered time interval [0, T ] chemical
processes of a very small duration take place that need to be resolved. The state variable
consists of two components so that the control-to-state operator represents the solution of a
system of differential equations. The control variable is comprised of parameters as well as a
component that is distributed in time.

7.1. Problem introduction

In the field of civil engineering, especially construction, the decision process on how to execute
the building of any structure needs to include different aspects, e.g. stability, practicability,
security, legal issues and so on. The means to fulfill these criteria are obviously all interconnected
and influencing each other. Finally, they all have different costs, so that the task is to minimize
the overall cost in compliance with the above criteria.

A classical problem within this set is the control of the properties of a young concrete structure.
The word “young” refers to the time span beginning just after the pour of the concrete,
where it is a liquid paste, until the solidification is complete and the concrete has reached
maximum strength. The entity of chemical processes is often referred to as hydration. This
process, including the following mechanical hardening, takes usually a few days. The driving
force of these is the heat development, as an exothermal chemical reaction takes place during
the solidification. The thermal expansion and following contraction, possibly under external
restrains, leads to internal tensile stresses, that may decrease the possible workload the structure
can sustain when in use later, or even cause the concrete to crack. Measures that are usually
taken to decrease the stresses include

- varying the concrete recipe, that is the mixing ratio of the ingredients,

- changing the choice of ingredients in the concrete recipe, e.g. changing the type of
cement, or using additives,

- manipulating the temperature of the raw material before the pour, that is the initial
condition,
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7. Optimal Control of Young Concrete Thermo-Mechanical Properties

- manipulating the heat exchange at the boundary, that is shifting the stripping point and
after stripping the heating or cooling of the blank surface.

In the context of optimal control, these measures correspond to the control variable q. The
task is to control the stresses, or certain derived quantities according to user specification,
with minimal cost. Due to the financial magnitude of the problems addressed, it is no doubt
worthwhile to utilize computational methods to decrease the costs.

The chemical and physical processes taking place in the young concrete phase are well
investigated. For the use of scientific computation, models of different complexity and accuracy
have been developed. For an overview over the general field, see [28, 43, 82, 90] and the
references therein. Publications that deal with partial aspects are [30, 34, 84, 98] for the
investigation of the heat produced during the hydration, [61] for the study of creep phenomena,
and [1] for the investigation of the influence of the moisture content. Aspects of the stochastic
distribution of material properties are dealt with in [55]. In the following sections, a scenario
of a concrete hydration problem will be specified, and a suitable model chosen.

In practical use, these models are mainly used for simulation computations. That means, the
user chooses a constellation, that is the values for the control q are assigned by user experience.
Then one forward simulation is carried out. If the resulting state does not violate the constraints,
it is usually accepted. If it violates the constraints, or the user has the feeling that the solution
is not „good enough“ q is changed, again by user experience. An example for the course
of action can be found in [77], further descriptions in [28, 81]. To the author’s knowledge
the problem has never been investigated from the viewpoint of mathematical optimization.
The imperative to minimize costs (under the above security and stability constraints) on the
other hand does point strongly to using optimization, at least if the computational effort
can be limited reasonably. This is not clear due to the large size of the simulation problem
alone, and demands an efficient discretization. In section Section 7.5 several classes of optimal
control problems will be formulated for the young concrete hydration problem. These are
state constrained parabolic optimal control problems, so that the techniques from the previous
chapters will be applied to some instances of the problem in the last section.

7.2. Modelling the involved quantities

Current models require at least the two quantities temperature and maturity to characterize
the state of the concrete. They will be denoted by y(t, x) and τ(t, x) in the spatial point x ∈ Ω̄
at time t ∈ [0, T ], respectively. Staying in the framework of the previous chapters, we set

u(t, x) = (y(t, x), τ(t, x)) (7.1)

as the state of the optimal control problem. More state variables that can be used in broader
models like moisture content, stresses etc. will not be considered here.

104



7.2. Modelling the involved quantities

Basis of the forward operator S(q) = u will be the heat equation

cρyt(t, x)− λ∆y(t, x) = Q̇(t, x) in (0;T ]×Ω
y(0, x) = y0 in Ω

∂

∂n
y(t, x) = σ (ȳ(t, x)− y(t, x)) on (0;T ]× Γ,

(7.2)

where the internal heat source Q̇(t, x) is composed of the heat internally produced by the
chemical reaction, and the possible decrease by some water cooling device. While ȳ(t, x)
is considered a given external temperature profile, the heat capacity c, density ρ, and heat
conductivity λ are material parameters and thus potentially subject to the control measures,
as well as the initial temperature y0 and the heat transfer coefficient σ. In the following the
considered user influences will be precisely modelled, specifying the influence of q on these
quantities.

The direct influence of the user on the concrete composition is as follows: We assume the
concrete recipe specified by the partial densities ρi of its ingredients. The set of ingredients
is fixed for our purposes, see table Table 7.1(a), but could of course be extended. Also the
type of ingredients like cement species, additives and so on, is fixed and has to be made by
user experience. The partial densities are now to be assigned to the control variable q, but we
notice that not all four partial densities can be manipulated independently from each other,
as they must fulfill a volume condition: denoting the partial volumes by Vi and the overall
volume by V , the relation ∑

i

Vi = V ⇔
∑
i

ρi
ρg,i

= 1, (7.3)

has to be fulfilled, with ρg,i denoting the bulk densities of the ingredients, see Table B.2(a) for
example data. Thus one degree of freedom is lost, and one of the partial densities can not be
considered a component of the control variable. The partial density of aggregate ρ4 is chosen
to be that one, the others are assigned to the control component with the same index,

qi := ρi, i = 1 . . . 3,

so that the remaining partial density can be expressed by

ρ4 = ρg,4

(
1− q1

ρg,1
− q2
ρg,2
− q3
ρg,3

)
. (7.4)

The composition of the mixture influences the heat equation (7.2) via the material parameters.

Table 7.1.. Partial densities and other components of the control variable

(a) partial densities

q1 = ρ1 partial density of (blast-furnace) cement
q2 = ρ2 partial density of fly ash
q3 = ρ3 partial density of water
ρ4 partial density of aggregate

(b) other

q4 = y0 initial temperature
q5 = t0 stripping point
q6 = w(t) water cooling rate
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For some of them, the connection is directly known. The density ρ(q) of the mixture is given
by

ρ(q) =
3∑
i=1

ρN,iqi with ρN,i :=
(

1− ρg,4
ρg,i

)
, (7.5)

the thermal conductivity λ(q) and the heat capacity c(q) of the mixture are simply the means
of the respective values of the ingredients, weighted with their partial densities:

λ(q) = λ4
ρg,4
ρ(q) +

3∑
i=1

(
λi − λ4

ρg,4
ρg,i

)
qi
ρ(q) , (7.6)

c(q) = c4
ρg,4
ρ(q) +

3∑
i=1

(
ci − c4

ρg,4
ρg,i

)
qi
ρ(q) . (7.7)

Here λi and ci denote the heat conductivity and capacity of the single ingredients. Example
data, which will also be used in the numerical tests later, can be found in Table B.2(a).

The second way of user influence on the technical process is the manipulation of the initial
temperature, we can directly set

y0 = q4 (7.8)
to be a constant. While it would be mathematically possible to treat non-constant initial
temperatures y0(x), when considering young concrete the mixing of the ingredients before the
pour leads to an even temperature of the material throughout the domain.

The third user influence measure to consider is concerned with the heat exchange of the
concrete stucture with the environment. While the heat exchange coefficient can be a function
σ(t) in general, in engineering practise it is likely to be a piecewise constant function. In the
utilized model it is assumed that σ is constant with a given value for some time after the pour,
that is the time span when the formwork is applied to the construction. After stripping the
formwork at some time t0, σ takes a different value. The stripping point itself, however, is
user controllable, and thus included in the control variable as

t0 = q5. (7.9)

So the heat exchange coefficient is given as

σ(t) =
{
σ0 : t ≤ q5
σ1 : t > q5

. (7.10)

From equation (7.2) there remains one term to be considered, the internal heat source Q̇(t, x).
Two phenomena take part in this, the chemically produced heat Q̇c(t, x) due to the chemical
reactions within the concrete, and the heat deducted by a possible water cooling device Q̇p(t, x),
so that

Q̇(t, x) = Q̇c(t, x) + Q̇p(t, x). (7.11)
Many publications are devoted to the study of the chemical heat Q̇c(x, t); for the model
employed in this thesis the considerations from [55] were used as a starting point. In the
literature dealing with these models it is common to introduce the degree of hydration

α(t, x) := Qc(t, x)
Q∞

(7.12)
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as a new variable. There, Q∞ is a material constant, the choice of which will be discussed
along with other material constants later in this section.
One more variable has to be introduced first. The reason is that the chemical heat source
model needs to reflect two different effects. For one, the chemical reaction rate depends on the
temperature y, increasing with y. But it also depends on the leftover raw material, which can
be indicated by the heat that has been produced until that time point. This second effect is
commonly incorporated into the model by the use of a quantity called maturity or effective
age, here denoted by τ . The interpretation of the maturity is to trace the heat development
back to one calibration configuration. This means α(τ) describes the progress of the reaction
in a test scenario that can be achieved under controlled conditions. For these tests usually
adiabatic boundary conditions are chosen.

For both the course of α(τ) and τ(t, ·), a number of models have been discussed in the civil
engineering literature, for an overview see e.g. [29]. A common form for the maturity is
τ (t, x, y(·, ·)) =

∫ t
0 g (y(θ, x)) dθ with an appropriate function g(·). One maturity, which was

introduced by Saul [84], is

τ (t, x, y(·, ·)) =
t∫

0

y(θ, x) + 10
30 dθ. (7.13)

This model does not incorporate material parameters, thus it is independent of the concrete
recipe. A more involved approach which can be motivated by chemical reaction kinetics is the
maturity of Freiesleben Hansen et al. from [34],

τ (t, x, y(·, ·)) =
t∫

0

exp
(
A

R

( 1
293 −

1
273 + y(θ, x)

))
dθ. (7.14)

In this formula R is the universal gas constant and A the activation energy. The activation
energy of the hydration reactions can generally depend on the temperature. But according to
[55, (5.22)], an activation energy constant in the temperature is applicable to a large class of
cements (containing "German cements"), so for simplicity we are assuming a constant activation
energy, given by

A

R
= 5050K · cSL − 2950K, (7.15)

and cSL depends on the type of cement only, see [55, Chapter 5] and Table B.2(b). The
adiabatic reaction progression can be modeled by Wesche’s proposal in [98] as

α = α (τ) = eaW τbW , (7.16)

where aW , bW < 0 are material parameters. Another very common model was introduced by
Jonasson [30]:

α = α (τ) = e
aJ

[
log
(

1+ τ
τk

)]bJ
(7.17)

where aJ , bJ < 0 and τk > 0 are material parameters. When using this model, experiments find
only a small range of values the parameter aJ takes, so some sources set aJ to the approximate
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value aJ = −1 to begin with (see [43, Section 2.3.2.5] or [79, formula 4.1 and 4.2 in Section
4.1.2]).

In the model of the chemical heat source it remains to specify the values of the material
parameters. For optimization problems with constant concrete composition, these parameters
Q∞, aW , bW , bJ , τk can be assumed to be known constants. The values chosen for numerical
tests can be found in Table B.1. If however the concrete composition is subject to the control
variable, then they have to be regarded as Q∞(q), aW (q), bW (q), bJ(q), τk(q). Unfortunately,
no analytic relation of these parameters to the concrete composition is known. So until more
in-depth research is carried out, the test measurements from [55, Appendices C,D] are used.
These give the values of the material parameters for a number of standard concrete recipes.
These data points are used as reference points for a parameter fitting approach. For the
numerical tests in this thesis, the linear models

Q∞(q) = mQ∞,0 +
4∑
i=1

mQ∞,iρi, (7.18)

aW (q) = maW,0 +
4∑
i=1

maW,iρi, (7.19)

bW (q) = mbW,0 +
4∑
i=1

mbW,iρi, (7.20)

bJ(q) = mbJ,0 +
4∑
i=1

mbJ,iρi, (7.21)

τk(q) = mτk,0 +
4∑
i=1

mτk,iρi, (7.22)

were used. The parameters maW,i,mbW,i,mbJ,i,mτk,i,mQ∞,i are hereby found by linear fitting
of the data from [55], see Appendix B and especially Table B.4 for example data.

With this, the chemical heat source is modelled. It remains to consider Q̇p(t, x) as the deducted
heat of a possible water cooling system, which is the last considered method of user influence.
It is thought of as one pipe of radius r̄ going straight through the concrete structure. Water
of temperature yc colder than the concrete is pumped through the pipe at a rate of w(t)
extracting heat energy from the concrete. The modelling is taken from [53]. For simplicity,
we do not model the pipe as boundary with according Robin boundary conditions, but use
the distributed term Q̇p in the right hand side of (7.2). The amount of extracted energy can
be controlled by the flow rate of the water w(t), which can be adjusted over time. Thus Q̇p
depends on the time point t, but since the cooling water heats up as it runs through the
pipe, Q̇p also depends on the spatial position x. For an easier description we consider x̄ as
lengthwise coordinate of the pipe, such that x̄ takes values between x̄ = 0 at the inflow and
x̄ = l̄ at the outflow, see Figure 7.1 for an illustration. A mapping x̄ → x, which gives the
lengthwise position of any point x inside the pipe, is easily obtained. The deducted heat is
modelled as follows:

Q̇p(t, x, w(t)) = −2σW (w(t))
r̄

(
y − yc −

2πr̄x̄(x)σW (w(t))(y − yc)
w(t)ρW cW

)
, (7.23)
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7.2. Modelling the involved quantities

with σW (w(t)) =

350 + 210

√
w(t)/π/ms

r̄

 W

Km2 , (7.24)

following the considerations in [53, section 8.3].

Figure 7.1.. Cooling pipe inside a concrete body. While any point within the body
can be described by its spatial coordinates x = (x1, x2, x3), every point
inside the pipe, which is simplified as a one-dimensional object, can
also be described by its distance from the inflow x̄.

To integrate all the models into one state equation, not only the temperature y but also the
maturity τ is considered as a component of the state variable. This is benefitial due to the
dependence (7.13) or (7.14). Also the term Q̇c is replaced via (7.12) and the chain rule by

Q̇c = Q∞
∂α

∂τ

∂τ

∂t

and the two partial derivatives in this expression are denoted by h and g. So, with explicit mark-
ing of the dependencies of all functions on q, y, τ , but suppressed time and space-coordinates,
the state equation reads: For a given q ∈ R5 × L∞(Ī), find a u = (y, τ) ∈W (I,H1(Ω))2 such
that

τt = g(y) in (0;T ]×Ω
c(q)ρ(q)yt − λ(q)∆y = Q∞(q)g(y)h(τ, q)− Q̇p(q) in (0;T ]×Ω

τ(0, x) = 0 in Ω
y(0, x) = y0(q) in Ω
∂

∂n
y = σ(q) (ȳ − y) on (0;T ]× ∂Ω,

(7.25)

where the functions g, h are chosen according to the models discussed above as

g(y) = y + 10
30 (Saul’s maturity) or (7.26)

g(y) = exp
(
A

R

( 1
293 −

1
273 + y

))
(maturity of Fr. Hansen et al.), (7.27)
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7. Optimal Control of Young Concrete Thermo-Mechanical Properties

and

h(τ, q) = aW (q)bW (q) eaW (q)τbW (q)
τ bW (q)−1 (model of Wesche) or

(7.28)

h(τ, q) = − bJ(q)
τ + τk(q)

e
−
[

log
(

1+ τ
τk(q)

)]bJ (q) [
log

(
1 + τ

τk(q)

)]bJ (q)−1
(model of Jonasson).

(7.29)

7.3. State equation

In this section we will study the properties of the state equation. For an arbitrary, but constant
control q ∈ Q it can be written as

τt = g(y) in (0;T ]×Ω
cρyt − λ∆y = Q∞g(y)h(τ)− Q̇p in (0;T ]×Ω

τ(0, x) = 0 in Ω
y(0, x) = y0 in Ω
∂

∂n
y = σ (ȳ − y) on (0;T ]× ∂Ω.

(7.30)

with given constants c > 0, ρ > 0, Q∞ > 0, y0, and σ ∈ L∞([0, T ]), ȳ, Q̇p ∈ L∞([0, T ]×Γ ). This
is a parabolic partial differential equation for y coupled with an ordinary differential equation
for τ in every point x ∈ Ω̄, which is not in the functional analytic setting of the previous
chapters. To apply the central concepts of this thesis, first the existence and uniqueness of a
solution of (7.30) will be shown. For the proof some properties of the functions g and h are
necessary:

Assumption 7.1. The model functions are continously differentiable, g, h ∈ C1(R+), and
possess the following properties: For g there holds either

- g is affine linear, so g(y) = C1y + C2 ≤ C(1 + y) (case 1), or

- g is a bounded function with bounded derivative, so |g(y)|+ |g′(y)| ≤ C3 (case 2).

For h there holds:

- h and its derivative are bounded, so |h(τ)|+ |h′(τ)| ≤ C.

Remark 7.1. It can be checked that the models (7.26)-(7.29) used in this thesis fulfill Assump-
tion 7.1 as long as the material parameters have their natural sign a, b ≤ 0, τk, A,R > 0.

Further, define the set

K := {v ∈ L2(I ×Ω) : ‖v‖W (0,T ) ≤ B},

where B is a constant independent of y, τ and will be determined in the course of the following
lemmas. K is then a compact, convex and nonempty subset of L2(I ×Ω) due to the compact
embedding of W (0, T ) into L2(I ×Ω).
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7.3. State equation

Theorem 7.2. The system of equations (7.30) with the parameters given as above, and the
functions q, h fulfilling Assumption 7.1, exhibits a solution u = (y, τ) ∈ K ×H1(L2(Ω)). Also
it holds that ‖y‖L∞(Ω×I) ≤ C0 with a constant C0 > 0 independent from y and τ .

This theorem will be proven by applying Schauder’s fixed point theorem to a fixed point
operator D which will be built up step-wise over the course of the following lemmas.

Lemma 7.3. The Nemyzki-operator D1 : y 7→ g(y) maps the set K into L2(I × Ω), and is
continous from L2(I ×Ω) to L2(I ×Ω).

Proof. To prove that g(y) ∈ L2(I ×Ω) for all y ∈ K: distinguish two cases by the properties
of g according to Assumption 7.1:

- Case 1: If g is affine linear, then

‖g(y)‖2L2(I×Ω) =
∫∫
I×Ω

(g(y))2dxdt ≤
∫∫
I×Ω

C2(1 + y)2dxdt ≤ C̃,

with C̃ depending on B,C, I,Ω.

- Case 2: Since g is bounded,

‖g(y)‖2L2(I×Ω) ≤ C
2
3

∫∫
I×Ω

dxdt ≤ C̃,

with C̃ depending on C, I,Ω.

Continuity of D1 follows from continous differentiability of g:
‖g(y)− g(yn)‖L2(I×Ω) ≤ C‖y− yn‖L2(I×Ω) (Lipschitz-condition) so that a converging sequence

yn
L2(I×Ω)→ y has converging values g(yn) L

2(I×Ω)→ g(y).

Lemma 7.4. The operator D2 : g 7→ τ , where τ ist the unique function solving the ordinary
differential equation

τt = g
τ(0) = 0,

maps the set L2(I × Ω) into H1(L2(Ω)) ⊂ L2(I × Ω), and is continous from L2(I × Ω) to
L2(I ×Ω).

Proof. by basic properties of the integral.

Lemma 7.5. The Nemyzki-operator D3 : τ 7→ h(τ) maps the set L2(I × Ω) into the set
{h ∈ L∞(I × Ω) : ‖h‖L∞(I×Ω) ≤ C4} ⊂ L2(I × Ω), and is continous from L2(I × Ω) to
L2(I ×Ω).

Proof. like in Lemma 7.3.
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7. Optimal Control of Young Concrete Thermo-Mechanical Properties

Lemma 7.6. Let the operators F1, F2 : L2(I × Ω) → L2(I × Ω) be continous, and let their
images F1(L2(I × Ω)), F2(L2(I × Ω)) ⊂ {u : ‖u‖L∞(I×Ω) ≤ C}. Then the product operator
F : (g, h)→ F1(g) · F2(h) is continous from L2(I ×Ω)× L2(I ×Ω) to L2(I ×Ω).

Proof. F maps to L2(I ×Ω) indeed, as

‖F (g, h)‖L2(I×Ω) = ‖F1(g)F2(h)‖L2(I×Ω) ≤ ‖F1(g)‖L∞(I×Ω)‖F2(h)‖L2(I×Ω).

For a sequence (gn, hn)→ (g, h), that means gn
L2(I×Ω)→ g, and hn

L2(I×Ω)→ h, the continuity of
F1, F2 provides F1(gn) L

2(I×Ω)→ F1(g) and F2(hn) L
2(I×Ω)→ F2(h). Then

‖F (gn, hn)− F (g, h)‖L2(I×Ω)

≤ ‖F (gn, hn)− F (gn, h)‖L2(I×Ω) + ‖F (gn, h)− F (g, h)‖L2(I×Ω)

= ‖F1(gn)(F2(hn)− F2(h))‖L2(I×Ω) + ‖F2(h)(F1(gn)− F1(g))‖L2(I×Ω)

≤ ‖F1(gn)‖L∞(I×Ω)‖F2(hn)− F2(h)‖L2(I×Ω)

+ ‖F2(h)‖L∞(I×Ω)‖F1(gn)− F1(g)‖L2(I×Ω)

→ 0 as n→∞

proves the continuity of F .

Lemma 7.7. For l ∈ L∞(I × Ω) with ‖l‖L∞(I×Ω) ≤ C there exists a unique solution y ∈
W (0, T ), y ∈ L∞(I ×Ω) to either of the problems

cρyt − λ∆y = Q∞l in Ω
y(0) = y0

λ ∂
∂ny = σ(ȳ − y) on Γ

and


cρyt − λ∆y = Q∞(C1y + C2)l in Ω

y(0) = y0
λ ∂
∂ny = σ(ȳ − y) on Γ

,

and it holds ‖y‖W (0,T ) + ‖y‖L∞(I×Ω) ≤ C‖l‖L∞(I×Ω) ≤ C2 =: B with B only depending on
c, ρ, λ,Q∞, y0, σ, ȳ, C.

Proof. E.g. like in [76, Proposition 2.1].

Lemma 7.8. The operator D4 : l 7→ y, where y solves

cρyt − λ∆y = Q∞l in Ω
y(0) = y0,

λ
∂

∂n
y = σ(ȳ − y) on Γ

(7.31)

maps L∞(I ×Ω) into K ⊂ L2(I ×Ω), and is continous from L2(I ×Ω) to L2(I ×Ω).

Proof. Well-definedness of the operator was proven in the last lemma. For continuity, consider
a sequence L∞(I × Ω) ⊃ (ln) L2

→ l ⊂ L∞(I × Ω). Let yn, y ∈ W (0, T ) ⊂ L2(I × Ω) be the
according solutions yn = D4(ln), y = D4(l). We have to show yn

L2
→ y. Subtracting the
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7.3. State equation

equations (7.31) for y and yn, we find y − yn solves problem (7.31) with Q∞(l − ln) as right
hand side, which by Lemma 7.7 gives us

‖y − yn‖W (0,T ) ≤ C‖l − ln‖L2(I×Ω)

thus proving the lemma.

Lemma 7.9. The operator D̃4 : l 7→ y, where y solves

cρyt − λ∆y = Q∞(C1y + C2)l in Ω
y(0) = y0,

λ
∂

∂n
y = σ(ȳ − y) on Γ

(7.32)

maps L∞(I ×Ω) into K ⊂ L2(I ×Ω), and is continous from L2(I ×Ω) to L2(I ×Ω).

Proof. Again, well-definedness of the operator was proven in Lemma 7.7. With the sequence
{u : ‖u‖L∞(I×Ω) ≤ C} ⊃ (ln) L2

→ l ⊂ L∞(I × Ω) as before, we set yn = D̃4(ln), y = D̃4(l),

having to show yn
L2
→ y. Subtracting the equations (7.32) for y and yn, and substituting

zn = e−Ltyn, z = e−Lty, with L to be determined later, yields

cρ(zt − zn,t) + cρL(z − zn)− λ∆(z − zn) = Q∞(l(C1y + C2)− ln(C1yn + C2))e−Lt (7.33)

zn(0) = z(0) = e−Lty0,

λ
∂

∂n
zn = σ(e−Ltȳ − zn) on Γ

λ
∂

∂n
z = σ(e−Ltȳ − z) on Γ.

Testing this equation with z − zn and integrating over Ω × [0, T ] leads to
cρ

2 (‖z(T )− zn(T )‖2L2(Ω) − ‖z(0)− zn(0)‖2L2(Ω)︸ ︷︷ ︸
=0

) + cρL‖z − zn‖2L2(I×Ω)

+ λ‖∇(z − zn)‖2L2(I×Ω) +
∫
Γ

σ(z − zn)2 = Q∞

∫∫
I×Ω

(l(C1y + C2)− ln(C1yn + C2))e−Lt(z − zn)

To estimate the L2-norm of z − zn it suffices to consider the third term on the left hand side.
This is legit, as the other terms are positive. In the following we estimate the right hand side:

cρL‖z − zn‖2L2(I×Ω) ≤ Q∞
∫∫
I×Ω

(C2(l − ln) + C1(ly − lny + lny − lnyn))e−Lt(z − zn)

= Q∞

∫∫
I×Ω

(C2(l − ln)e−Lt(z − zn) + C1ye
−Lt(z − zn)(l − ln) + C1ln(z − zn)2)

≤ Q∞(C2‖(l − ln)e−Lt‖L2(I×Ω)‖(z − zn)‖L2(I×Ω)+
C1‖(l − ln)‖L2(I×Ω)‖z − zn‖L2(I×Ω)‖y‖L∞(I×Ω) + C1‖ln‖L∞(I×Ω)‖z − zn‖2L2(I×Ω))
≤ Q∞C‖z − zn‖2L2(I×Ω) +Q∞C‖(l − ln)‖2L2(I×Ω)

Choosing L large enough gives the desired convergence.
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Now the proof of Theorem 7.2 can be given:

Proof. Case 1: g is affine linear. Then we define the operator D : K → K by

y 7→ D̃4 ◦D3 ◦D2 ◦D1(y).

Case 2: g is bounded. Then we define the operator D : K → K by

y 7→ D4 ◦ F (D1(y), D3 ◦D2 ◦D1(y)).

In either case, the previous lemmas provide the well-definedness of D and its continuity
from L2(I × Ω) to L2(I × Ω). Since K is nonempty, convex and compact, the application
of Schauder’s fixed point theorem, see, e.g., [31, Chapter 9.2, Theorem 3], to D yields that
a solution y ∈ K exists. Subsequent application of the previous lemmas gives additionally
τ ∈ H1(L2(Ω)) and y ∈ L∞(I ×Ω), with ‖y‖L∞(I×Ω) ≤ B.

Theorem 7.10. Under the assumptions made in Theorem 7.2, the solution u = (y, τ) of the
state equation (7.30) is unique.

Proof. Let (y1, τ1) and (y2, τ2) be two solutions of (7.30). We denote

u = y1 − y2, µ = τ1 − τ2.

By a few calculations it can be shown that there holds:

µt = g′(y∗)u in (0, T ]×Ω
µ(0) = 0 on Ω

cρut − λ∆u = Q∞(g(y1)h′(τ∗)µ+ h(τ2)g′(y∗)u) in (0, T ]×Ω
u(0) = 0 on Ω

λ
∂

∂n
u = −σu on (0, T ]× Γ

, (7.34)

with some y∗(t) ∈ (y1(t), y2(t)), τ∗(t) ∈ (τ1(t), τ2(t)). With a constant L > 0, that will be
specified later, consider the functions w(t) = u(t)e−Lt and ν(t) = µ(t)e−Lt. Then, (7.34)
transforms to

νt + Lν = g′(y∗)w in (0, T ]×Ω
ν(0) = 0 on Ω

cρwt + cρLw − λ∆w = Q∞(g(y1)h′(τ∗)ν + h(τ2)g′(y∗)w) in (0, T ]×Ω
w(0) = 0 on Ω

λ
∂

∂n
w = −σw on (0, T ]× Γ

(7.35)

Testing the first equation with ν and integrating from 0 to T we obtain:

1
2‖ν(T )‖2 + L ‖ν‖2L2(L2(Ω)) =

∫ T

0
(g′(y∗)w(t), ν(t)) dt ≤ C1

2L‖w‖
2
L2(L2(Ω)) + L

2 ‖ν‖
2
L2(L2(Ω)).
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Hence,

‖ν‖L2(L2(Ω)) ≤
√
C1
L
‖w‖L2(L2(Ω)).

Testing the third equation in (7.35) with w and integrating from 0 to T we obtain:

cρ

2 ‖w(T )‖2 + cρL ‖w‖2L2(L2(Ω)) + λ‖∇w‖2L2(L2(Ω)) + σ‖w‖2L2(L2(Γ ))

= Q∞

∫ T

0

∫
Ω
h(τ2)g′(y∗)w(t)2 dx dt︸ ︷︷ ︸
≤C1C2‖w‖2

L2(L2(Ω))

+Q∞
∫ T

0

∫
Ω
g(y1)h′(τ∗) ν(t)w(t) dx dt︸ ︷︷ ︸

≤
C1(1+C0)C3/2

2
L

‖w‖2
L2(L2(Ω))

.

Note, that we used g(y1) ≤ g(0) +C1y1 ≤ C1(1 +C0) due to the boundedness of the derivative
of g. Therefore, there holds:

cρ

2 ‖w(T )‖2 +
(
cρL− C1C2 −

C1(1 + C0)C3/2
2

L

)
‖w‖2L2(L2(Ω)) + λ‖∇w‖2L2(L2(Ω))

+ σ‖w‖2L2(L2(Γ )) ≤ 0.

Choosing L large enough we conclude w = 0. Therefore y1 = y2 and τ1 = τ2.

7.4. Optimization problems

In civil engineering there is not just one prototypical optimal control problem to be found
for young concrete. Instead, the demands on the structure may differ in their nature. The
formulation of an optimal control problem of the form

min J(q, u)
u = (y, τ) = S(q) by (7.30)

G(u) ≥ 0
(7.36)

has to reflect the precise situation on the applicant’s side. In this section, a number of common
choices of cost functionals and state constraints will be discussed.

Also note that the introduction of

q = (q1, . . . , q6) = (ρ1, ρ2, ρ3, y0.t0, w) ∈ R5 × L2(I)

is to be seen as a „maximum“ control, but in practise not always all of these control measures
may be possible or desired. One can easily exclude some component(s) of (q1, . . . , q6) from the
formulation of (7.30) by inserting a constant value.
Remark 7.2. Although no control constraints were formulated explicitly, these are in a certain
sense still present for technical reasons: for every component in q there are upper and lower
bounds beyond which the physical quantities become meaningless: partial densities are bound
between zero and the corresponding bulk densities, and so on. It may be necessary to reflect
this in the implementation.
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The formulation of the state constraint or the cost functional may utilize some physical
quantities that can be derived from the state variable. These are mechanical properties that
are developed during the solidification phase. One is the dergee of hydration itself:

α(t, x) = α(τ(t, x)) by the model (7.16) or (7.17)

as an indicator for the progress of the hydration. Other model functions use the maturity, see,
e.g., [55], to approximate the tensile strength fct

fct(t, x) = fct,∞

(
α(τ(t, x))− α0

1− α0

)γ1

,

the compressive strength fcc

fcc(t, x) = fcc,∞

(
α(τ(t, x))− α0

1− α0

)γ2

,

and Young’s modulus

E(t, x) = E∞

(
α(τ(t, x))− α0

1− α0

)γ3

.

The final values fct,∞, fcc,∞, E∞ and the exponents γ1, γ2, γ3 are constants. Typical values for
the final values are in the range of fct,∞ = 2.5MPa, fcc,∞ = 40MPa, E∞ = 30GPa, and for
the exponents γ1 = 1, γ2 = 3

2 , γ3 = 1
2 .

7.4.1. State constraint

The simplest pointwise state constraint is bounding the temperature from above. This demand
may be necessary explicitly since above a certain temperature range the chemical reactions in
the hydration change, putting the construction at risk. This is formulated as

y(t, x) ≤ ymax ⇔ G(t, x, u(t, x)) := ymax − y(t, x) ≥ 0,

with, e.g., ymax = 70◦C.

A meaningful constraint of the strength of the concrete could be demanding a minimum value
for the tensile strength (compressive strength is seldom a problem) at every time point or in
the endpoint only. This results in the formulation

fct(t, x) ≥ fct,min(t) ⇔ G := fct,∞

(
α(τ(t, x))− α0

1− α0

)γ1

− fct,min(t) ≥ 0 or

fct(T, x) ≥ fct,min ⇔ G := fct,∞

(
α(τ(T, x))− α0

1− α0

)γ1

− fct,min ≥ 0

with fct,min(t) or fct,min given.

A frequent constraint is a criterium for freedom of cracks. Since the development of the
temperature inside the structure causes the building up of tensions, the structures are often
at risk of cracking. Although these tensions could be approximated by solving the equations
of linear thermo-elasticity, and so the cracking predicted, the effort to solve the additional
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partial differential equations is frequently avoided by using temperature criteria instead. One
criterium that is often used states that if the maximum temperature difference within the
structure is 15K or lower, then no cracks do occur. From physical considerations it is often a
priori known where the coldest and warmest point of the structure is going to be. Naming
these points x1, x2, the constraint is

y(t, x1)− y(t, x2) ≤ 15K ∀t ∈ [0, T ].

This criterium can not be written with a constraint function G as in Section 2.1.3. But also in
this case an analog approach is possible by defining

G := 15− y(t, x1) + y(t, x2)

7.4.2. Cost functional

Here are now some suggestions for contributions that may be chosen to be used as summands
in the definition of a cost functional.

An obvoius suggestion is to take the term cost functional literally, and have

- F1(q1, q2, q3) describe the actual material costs of cement, fly ash, water and additives,

- F2(q4) describe the heating or cooling costs of the raw material,

- F3(q5) describe the costs for the application of the formwork,

- F4(q6) describe the costs for operating the water cooling device.

These suggestions amount to control costs.

Additionally, or instead, state costs can play a role in the sense of real monetary costs. For
example failure to reach an agreed upon goal in terms of the tensile strength may result in
having to pay a fine, the amount of which depends upon the time span the realization of
the minimum value was delayed. State costs can also gradually reward or penalize present
properties of the state on a user-defined scale, for example the consideration of tensile strength
as a property that is more advantageous the higher its value is, can lead to a summand

F5(fct(u)) with a monotonically decreasing function F5.

The cost functional can also be used for the weak, or regularized, fulfilling of state constraints,
or an approach that weighs the fulfilling of the state constraints against decreasing of the cost
functional.
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7.5. Examples and numerical results

7.5.1. Control of initial temperature and heat transfer

In this section an optimal control problem of young concrete hydration is considered that is
motivated as follows: Assume that a large part of a construction process is fixed for external
reasons, and only the initial temperature y0 of the ingredients and the heat exchange coefficient
σ can be chosen freely; the latter, e.g., by adjusting the thickness of the formwork. These are
commonly used methods to influence the temperature distribution. The executing company
may now have a standard construction procedure leading to some preferred values for y0 and σ,
and changing these values induces costs. If now the fulfillment of an additional state constraint
is demanded which the standard procedure would violate, the question is to find values for
y0, σ such that the state constraint is fulfilled at minimal cost.

Thus the parameter control problem is modelled by setting

q = (q1, q2) = (y0, σ) ∈ R2 =: Q.

as the control variable with the components q1 denoting the initial temperature in ◦C and q2
the heat exchange coefficient in kJ

m2Kh . The state equation is then given by

τt = g(y) in (0;T ]×Ω
cρyt − λ∆y = Q∞g(y)h(τ) in (0;T ]×Ω

τ(0, x) = 0 in Ω
y(0, x) = q1 in Ω
∂

∂n
y = q2 (ȳ − y) on (0;T ]× Γ.

(7.37)

For the following numerical tests the models (7.13) and (7.16) are chosen for the chemical
heat source, the remaining material parameters c, ρ, λ,Q∞ are set according to the reference
concrete recipe in Table B.1, and ȳ = 20◦C is chosen as exterior temperature. The considered
temporal interval has a length of T = 48h and the spatial domain Ω is the wall illustrated
in Figure 7.2. Since heat is only produced in the part of the domain that is labeled as „new
concrete“ g(y) and h(τ) are set to zero on the „foundation“ part of the domain. The objective
is then to solve the optimal control problem with upper temperature constraints

(Ex5)


min 5(q1 − 20)2 + 5(q2 − 8)2, q ∈ Q,

S(q) = (y, τ) according to (7.37),
y(t, x) ≤ 72◦C .

(7.38)

Note that the problem data have indeed been chosen in such a way that the optimal control of
the unrestricted problem (q1, q2) = (20, 8) violates the state constraints.

The computations were carried out with the interior point method with a barrier functional of
order o = 2, starting regularization parameter γ = 0.3, a starting temporal discretization with
M = 12 equidistant time steps, and an equidistant spatial discretization with Nm = 135 in
every time step.
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7.5. Examples and numerical results

Figure 7.2.. Computational domain for (Ex5) and (Ex7) consisting of a foundation
of old concrete (solid grey), where no heat is produced and a wall of
fresh concrete (shaded). In (Ex7) the latter includes a cooling pipe.

First consider the temporal discretization only. Leaving the spatial discretization and the
regularization parameter γ constant, the global temporal refinement is compared to the adaptive
refinement driven by the error estimator ηk from (4.45). The results are displayed in Table 7.2
where the estimated optimal value of the cost functional is J∗ = 1937.8 and was obtained on a
finer temporal discretization than those used for the table. The temporal meshes created by
the adaptive process are depicted in Figure 7.3 up to the level where M = 236. The efficiency

Table 7.2.. Results for (Ex5), temporal refinement only

(a) Global refinement

M ηk J∗ − J(qσ, uσ) Ieff

12 8.16e+02 9.808e+02 1.20
24 5.93e+02 7.130e+02 1.20
48 3.57e+02 3.711e+02 1.04
96 1.84e+02 1.877e+02 1.02
192 9.32e+01 9.427e+01 1.01
384 4.68e+01 4.719e+01 1.01
768 2.34e+01 2.357e+01 1.01

(b) Adaptive refinement

M ηk J∗ − J(qσ, uσ) Ieff

12 8.16e+02 9.808e+02 1.20
18 6.14e+02 7.549e+02 1.23
32 3.65e+02 4.298e+02 1.18
60 2.07e+02 2.377e+02 1.15
120 1.18e+02 1.258e+02 1.07
236 6.30e+01 6.478e+01 1.03
462 3.25e+01 3.283e+01 1.01
920 1.65e+01 1.646e+01 1.00

indices being close to 1 point to a good quality of the error estimation. The adaptive strategy
yields a marginally better error convergence than the global one, see also Figure 7.5(a).
Next, only the spatial discretization is subject to investigation. Starting from the initial
discretization again, the global spatial refinement strategy and the adaptive strategy using
error estimator (4.46) are compared. The evaluation of the error with J∗ = 593.0 calculated
on the finest level, displayed in Table 7.3, shows however also no significant improvement of
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Figure 7.3.. Adaptive temporal refinement for (Ex5)

the functional error convergence. A locally refined mesh created during the process is shown
in Figure 7.4. Finally the fully adaptive algorithm is applied to the problem. Here the error

Table 7.3.. Results for (Ex5), spatial refinement only

(a) Global refinement

Nmax ηh J∗ − J(qσ, uσ) Ieff

135 -2.48e+03 -3.640e+02 0.15
765 -1.91e+01 -1.019e+01 0.53
5049 -5.34e+00 -2.578e+00 0.48
36465 -5.855e-01

(b) Adaptive, nondynamic refinement

Nmax ηh J∗ − J(qσ, uσ) Ieff

135 -2.48e+03 -3.640e+02 0.15
765 -1.91e+01 -1.019e+01 0.53
3011 -5.04e+00 -3.289e+00 0.65
13709 -1.02e+00 -1.840e+00 1.81

estimators ηγ , ηk, ηh are evaluated and Algorithm 2.2 is used to determine which discretization
is to be refined adaptively. The results are displayed in Table 7.4, showing again a good
efficiency index. In Figure 7.5(b) the convergence of the error is displayed, together with
the errors from the temporal and spatial refinement. For better visual comparability of the
convergence rate the starting values of these errors have been normed so that the plots share a
starting point. It can be seen that Figure 7.5(b) indicates a better convergence rate for the
complete algorithm.
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7.5. Examples and numerical results

Figure 7.4.. Locally refined mesh for (Ex5)

Table 7.4.. Results for (Ex5), complete strategy

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

135 12 3.0e-01 -2.48e+03 8.16e+02 -7.56e+02 -2.42e+03 -9.570e+02 0.40
765 12 3.0e-01 -1.91e+01 2.32e+02 -8.65e+02 -6.52e+02 -6.032e+02 0.93
765 12 9.5e-01 -3.16e+02 3.37e+02 -8.85e+01 -6.89e+01 -7.891e+01 1.15
3011 18 9.5e-01 2.81e-01 1.27e+01 -9.74e+01 -8.43e+01 -6.695e+01 0.79
3011 18 3.0e+00 -8.544e+00
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Figure 7.5.. Convergence of the error for (Ex5) for different discretization strategies.
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7.5.2. Control of the concrete recipe

The following example is concerned with the control of the concrete recipe. Changing the
composition of the concrete mix is a frequent way to manipulate the temperature development,
tensile strength or other quantities. According to the models set up in Section 7.2, the control
recipe is controlled by the three partial densities of cement, fly ash, and water. Thus the
parameter control problem is modelled by setting

q = (q1, q2, q3) = (ρ1, ρ2, ρ3) ∈ R3 =: Q.

The state equation is then given by

τt = g(y) in (0;T ]×Ω
c(q)ρ(q)yt − λ(q)∆y = Q∞(q)g(y)h(τ, q) in (0;T ]×Ω

τ(0, x) = 0 in Ω
y(0, x) = y0 in Ω
∂

∂n
y = σ (ȳ − y) on (0;T ]× Γ,

(7.39)

with the material models from Section 7.2, specifically (7.5), (7.6), (7.7) for density, thermal
conductivity and heat capacity. For the chemical heat source the models (7.13) and (7.16)
are chosen, the occurring material parameters are modelled by (7.18), (7.19), (7.20) using
the example data from Appendix B. For the following numerical tests the remaining input
parameters are chosen as ȳ = 20◦C, y0 = 15◦C, σ = 20 kJ

m2Kh . The considered temporal interval

Figure 7.6.. Computational domain for (Ex6), due to symmetry only one quarter
of the platform needs to be considered.

has a length of T = 48h and the spatial domain Ω is the platform illustrated in Figure 7.6. The
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objective is then to solve the optimal control problem with temperature difference constraints

(Ex6)


min 500(q1 − 400)2 + 250(q2 − 60)2 + 10(q3 − 160)2, q ∈ Q,

S(q) = (y, τ) according to (7.39),
|y(t, x1)− y(t, x2)| ≤ 15K ∀t ∈ [0, T ],

(7.40)

where x1, x2 ∈ Ω̄ are two given points. The idea behind the chosen values in (Ex6) is to
mimick a frequent problem: The control minimizing the cost functional (400, 60, 160) has a
high cement content. This may be cheap, since due to quick heat release the concrete structure
is quickly completed. But a too quick heat release can weaken the structure by inducing cracks.
This shall be avoided by demanding that the temperature difference constraint

|y(t, x1)− y(t, x2)| ≤ 15K

to be fulfilled. The points x1 and x2 are the ones which are going to exhibit the coldest and
warmest temperatures, which in these types of concrete constructions are known pretty well a
priori. For the example problem (Ex6) the constants are chosen in such a way that (400, 60, 160)
does not fulfill the temperature constraint, and the objective is to find the cheapest control
that does.

The computations were carried out with the interior point method with a barrier functional of
order o = 2, starting regularization parameter γ = 10, a starting temporal discretization with
M = 24 equidistant time steps, and a spatial discretization with Nm = 476 in every time step.
First consider the temporal discretization only. Leaving the spatial discretization and the
regularization parameter γ constant, the global temporal refinement is compared to the
adaptive refinement driven by the error estimator ηk from (4.45). The results are displayed
in Table 7.5 where the estimated optimal cost functional value is J∗ = 8213.3 and was obtained
on a finer temporal discretization than those used for the table. Again, a good quality of the

Table 7.5.. Results for (Ex6), temporal refinement only

(a) Global refinement

M ηk J∗ − J(qσ, uσ) Ieff

24 -1.40e+03 -2.517e+03 1.80
48 -6.98e+02 -7.953e+02 1.14
96 -3.75e+02 -4.050e+02 1.08
192 -1.97e+02 -2.013e+02 1.02
384 -1.03e+02 -1.038e+02 1.01

(b) Adaptive refinement

M ηk J∗ − J(qσ, uσ) Ieff

24 -1.40e+03 -2.517e+03 1.80
36 -7.59e+02 -9.258e+02 1.22
52 -5.13e+02 -6.312e+02 1.23
84 -3.34e+02 -3.641e+02 1.09
148 -2.08e+02 -2.158e+02 1.04
260 -1.22e+02 -1.244e+02 1.02

error estimation is obtained. The adaptive strategy leads to a slightly better error convergence
than the global one, see also Figure 7.7(a).
Next, the fully adaptive algorithm is applied to the problem. Here the error estimators

ηγ , ηk, ηh are evaluated and Algorithm 2.2 is used to determine which discretization is to be
refined adaptively. The results can be seen in Table 7.6. In Figure 7.5(b) the convergence of
the error is displayed, together with the errors from the temporal refinement.
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Table 7.6.. Results for (Ex6), complete strategy

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

476 24 1.0e+01 -3.26e+03 -1.40e+03 -9.17e+03 -1.383e+04 -8.436e+03 0.61
476 24 3.1e+01 -2.91e+03 -1.21e+03 -7.23e+02 -4.843e+03 -5.327e+03 1.10

2868 24 3.1e+01 -9.28e+01 -1.15e+03 -7.67e+02 -2.010e+03 -2.774e+03 1.38
2868 36 1.0e+02 -9.60e+01 -3.28e+02 -9.89e+01 -5.229e+02 -3.863e+02 0.83
2868 52 1.0e+02 -2.851e+02
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Figure 7.7.. Convergence of the error for (Ex6) for different discretization strategies.

7.5.3. Control of the flow rate of a water cooling system

This section deals with the control of a water cooling system. The control variable set as

q = (q6) = w(t) ∈ L2(I) =: Q

gives the deduced heat by equations (7.23) and (7.24). The models (7.13) and (7.16) are
chosen for the chemical heat source, and the material parameters set as constants according to
a reference concrete recipe

c = 1000 J
kgK , ρ = 2000 kg

m3 , λ = 2.143 W
mK ,

Q∞ = 293.2kJkg , aw = −11, bw = −1.

Further, the values for the occuring temperatures are chosen as y0 = 15◦C, ȳ = 20◦C, yc = 10◦C
and the heat transfer coefficient σ = 8.33 W

m2 K . So the state equation is

τt = g(y) in (0;T ]×Ω
cρyt − λ∆y = Q∞g(y)h(τ)− Q̇p(q) in (0;T ]×Ω

τ(0, x) = 0 in Ω
y(0, x) = y0 in Ω
∂

∂n
y = σ (ȳ − y) on (0;T ]× Γ.

(7.41)
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The considered time interval has a length of T = 96h. The domain Ω is a wall that is erected
on a foundation, see Figure 7.2. Since heat is only produced in the part of the domain that
is labeled as „new concrete“ in Figure 7.2, g(y) and h(τ) are set to zero on the „foundation“
part of the domain. The objective is then to solve the optimal control problem with upper
temperature constraints

(Ex7)


min‖q‖2L2(0,T ), q ∈ Q,
S(q) = (y, τ) according to (7.41),

y(t, x) ≤ 57◦C .

(7.42)

Note that the data of (Ex7) are chosen in such a way that q ≡ 0 is not a feasible control, that
means no cooling would violate the temperature constraint. Thus the most efficient cooling
profile is searched that obeys the temperature constraint.
The computations were carried out with an interior point method with order o = 2, see Sec-
tion 4.4, starting regularization parameter γ = 5, a starting temporal discretization with
M = 6 equidistant time steps, and an equidistant spatial discretization with Nm = 765 in
every time step.
First compare the global refinement strategy that refines all components uniformly with the
fully adaptive strategy, that first chooses the component(s) with substantial error contribution
according to Algorithm 2.2, and then refines these locally. In the spatial discretization, the
non-dynamic approach is used first. The results, using the estimated value J∗ = 39.683440762,
can be seen in Table 7.7 and Figure 7.8(a) The error estimation yields efficiency indices not

Table 7.7.. Results for (Ex7) for simultanous spatial and temporal refinement

(a) global refinement of spatial and temporal discretization

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

765 6 5.0e+00 9.36e-01 4.05e+00 -5.58e+00 -5.94e-01 6.763e+00 -11.39
5049 12 1.6e+01 1.01e+00 5.73e+00 -5.87e-01 6.15e+00 5.071e+00 0.82

36465 24 5.0e+01 4.21e-01 3.98e+00 -6.36e-02 4.34e+00 2.983e+00 0.69

(b) adaptive, non-dynamic refinement of spatial and temporal discretization

Nmax M γ ηh ηk ηγ η J∗ − J(qσ, uσ) Ieff

765 6 5.0e+00 1.01e+00 3.99e+00 -5.58e+00 -0.58e-01 6.846e+00 -11.80
765 8 1.6e+01 1.65e+00 5.05e+00 -5.78e-01 6.12e+00 6.563e+00 1.07
765 12 1.6e+01 2.48e+00 2.78e+00 -6.00e-01 4.67e+00 3.606e+00 0.77

5049 16 1.6e+01 1.50e+00 1.29e+00 -6.13e-01 2.17e+00 2.384e+00 1.10
18965 18 1.6e+01 1.330e+00

far from 1. The adaptive strategy leads to a considerably faster convergence of the error.
During the repeated use of the error equilibration algorithm Algorithm 2.2, all the components
(regularization, spatial, temporal discretization) have been refined at least once. This allows
for the following consideration: Compare the second line of Table 7.7(a) and the third line
of Table 7.7(b). At the same regularization parameter, the adaptive strategy uses a temporal
discretization with the same number of subintervals as the global strategy. But although the
adaptive spatial discretization uses fewer nodes than the global one, its discretization error is
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Figure 7.8.. Convergence of the error for (Ex7) for different discretization strategies.

lower. The reason for this is that the M = 12 subintervals created by the adaptive strategy
are not equidistant, but instead resolve the time period better where large temperatures occur,
thus reducing the temporal discretization error greatly. The development of the temporal
discretization can be seen in Figure 7.9.

In a second test, the dynamic approach of the spatial discretization is to be investigated. Since
the tests showed a strong focus of the effects on the time discretization around the point where
the maximum temperature is reached, the comparison is done by using a constant temporal
discretization with M = 12 equidistant time steps that is not refined during the process. The
process of error equilibration is now executed with the spatial discretization and regularization
errors of a semidiscrete problem (Pk), resulting in only the error estimators ηh, ηγ being used.
The estimated optimal cost functional value, now that for (Pk), is J∗ = 35.85. The results
are displayed in Table 7.8 and Figure 7.8(b). The dynamic discretization strategy yields
faster convergence than the global one. In fact, a better order of convergence is achieved.
Two examples for grids from the dynamic discretization approach can be seen in Figure 7.10,
representing the meshes with the most and the fewest nodes. To investigate the distribution of
the number of spatial nodes over time, a numerical test with a constant temporal discretization
with M = 48 equidistant intervals was carried out. The results are graphically displayed
in Figure 7.11(a). One notes a large number in the first time step, that can be attributed to the
initial condition singularity, the mismatch between y0 and ȳ. Apart from this one time point,
the numbers are fairly low and change only moderately from time step to time step, except for
a spike in the middle of the time interval around t = 30h. Note that the need for a finer spatial
discretization occurs some time after the temperature maximum, compare Figure 7.11(b).
Remember that this time point of maximum temperature was the one where the temporal
discretization needed to be refined according to the error estimator. This difference is somewhat
surprising and illustrates the fact that even for practical problems intuition is not always right
when dealing with the question where the local refinement is to be executed.
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Table 7.8.. Results for (Ex7) for spatial refinement only, M = 12

(a) global refinement of the spatial discretization

Ntot Nmax γ ηh ηγ η J∗ − J(qσ, uσ) Ieff

9945 765 5.0e+00 1.75e+00 -5.80e+00 -4.05e+00 -9.806e-01 -0.24
9945 765 1.6e+00 1.69e+00 -5.81e-01 1.11e+00 2.498e+00 2.25
65637 5049 1.6e+00 1.09e+00 -5.87e-01 5.04e-01 1.279e+00 2.54

474045 36465 5.0e+01 2.90e-01 -5.94e-02 2.31e-01 5.753e-01 2.49
3597165 276705 5.0e+01 2.672e-01

(b) adaptive, dynamic refinement of the spatial discretization

Ntot Nmax γ ηh ηγ η J∗ − J(qσ, uσ) Ieff

9945 765 5.0e+00 1.75e+00 -5.80e+00 -4.05e+00 -9.806e-01 -0.24
9945 765 1.6e+00 1.69e+00 -5.81e-01 1.11e+00 2.498e+00 2.25

53309 5049 1.6e+01 1.08e+00 -5.88e-01 4.90e-01 1.233e+00 2.51
195433 19957 5.0e+01 2.77e-01 -5.97e-02 2.18e-01 3.661e-01 1.68
636469 72311 5.0e+01 7.926e-02
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(a) at time t = 24h, with N3 = 72311 (b) at time t = 96h, with N12=39451

Figure 7.10.. Two spatial discretization meshes for (Ex7)
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Figure 7.11.. Distribution of the number of nodes of the spatial discretization on
the time intervals when using dynamic spatial discretization, but
constant temporal discretization for (Ex7)
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8. Summary

This thesis was concerned with the development of efficient numerical solution strategies for
elliptic and parabolic optimal control problems (OCPs) with pointwise state constraints.

The main analytical difficulty was hereby caused by the reduced regularity induced by the
state constraint. This needed to be accounted for in the functional analytic setting of the
problem, theorems on the existence and uniqueness of optimal solutions and the derivation of
optimality conditions.

Two optimization strategies were proposed for the numerical solution of the OCPs at hand.
The first is a primal-dual active set method that can be applied to the optimality system,
reduced to the control and multiplier variables, directly. This method was described in detail
for elliptic problems. A disadvantage is that it is only applicable to a certain class of OCPs.
The second optimization strategy is an interior point algorithm applied to a regularized variant
of the original problem. It was presented extensively for parabolic problems. The introduction
of an additional regularization parameter can here be seen as a disadvantage.

For the numerical solution of the problems, the governing equations were discretized by Galerkin
finite element methods. If the PDAS optimization method is used, this leads to the consideration
of discrete Borel measures, which poses an additional difficulty in the implementation. The
main point of the thesis here was however the choice of efficient discretizations. To that end,
estimators for the error with respect to the cost functional were developed, based on the DWR
method. Their contributions, potentially spatial, temporal, control and regularization error
estimators, were used in an error equilibration algorithm. Furthermore, localizations of the
temporal and spatial estimators were used in an adaptive algorithm creating locally refined
meshes. By these means an improvement of the convergence speed of the numerical solution
was to be achieved.

The efficiency of the developed algorithms was illustrated on several numerical examples.
Especially promising in practical regard is the application to the optimal control of young
concrete thermo-mechanical properties.
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A. Convergence order for the Laplace
equation with irregular data

This appendix considers the use of graded meshes in the approximative solution of elliptic
differential equations with irregular right hand side. The quintessential content of Appendix A
has been published in [3], in the creation of which the author of this thesis was also involved.
In contrast to the often considered L2-right hand sides, permitting less regular ones reduces
also the regularity of the solution and thus the approximation order on uniform meshes. The
use of graded meshes proves to be a remedy. Thus, following the discussion in Section 2.5,
motivates a similar procedure for the solution of optimal control problems with additional
state constraints.

Consider the elliptic boundary value problem

−∆u = δa in Ω, u = 0 on ∂Ω, (A.1)

with a convex polygonal domain Ω ⊂ R2, and δa denoting the Dirac measure concentrated
in the point a ∈ int(Ω). Since this problem does not have an H1(Ω)-solution, consider the
solution u in the space

W 1,q
0 (Ω) := {v ∈W 1,q(Ω) : v = 0 on ∂Ω in the sense of Lq(∂Ω)},

q ∈ [1, 2), defined via
(∇u,∇v) = v(a) ∀v ∈W 1,q′

0 (Ω) (A.2)

where q′ > 2 satisfies 1/q + 1/q′ = 1. If (A.2) is approximated by the finite element method
by

(∇uh,∇vh) = vh(a) ∀vh ∈ Vh. (A.3)

where Vh is the space of linear finite element functions corresponding to a mesh Th from a
family of quasi-uniform triangulations, then the error of the finite element approximation in
the L2-Norm converges only with order h1, [88], as opposed to h2 that would be obtained
for a regular right hand side in (A.1). The goal of this section is to prove that the use of
specially designed meshes improves the convergence order to almost the original rate, precisely
h2|ln h|3/2.

Thus let (Th) be a family of shape-regular triangulations of Ω that is graded with grading
parameter µ = 1

2 towards the point a ∈ int(Ω), i.e. for every cell T ∈ Th the cell diameter hT
depends on the distance rT of the cell T from the point a by

hT ∼
{
hr

1/2
T : rT > 0
h2 : rT = 0

(A.4)
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A. Convergence order for the Laplace equation with irregular data

W.l.o.g assume that
h ≤ h0 < 1

holds in order to ensure that ln h does not change sign. The domain Ω is split into the sets

Ω0 =
⋃
rT=0

T and Ω1 = Ω \Ω0

and an element T ∗ ∈ Ω0 chosen. Its diameter is h∗ ∼ h2.

The main result will be derived from a theorem that considers the application of these graded
meshes to problems with regular right hand side. Thus consider the Poisson problem with a
right-hand side f ∈ L2(Ω),

−∆z = f in Ω, z = 0 on ∂Ω, (A.5)

and state the following theorem:
Theorem A.1. Let f ∈ L2(Ω), z ∈ H1

0 (Ω) ∩H2(Ω) be the solution of problem (A.5) and zh
be a finite element approximation of z in the space of linear finite elements Vh using a mesh
that is graded according to condition (A.4). Then the a priori estimate

|(z − zh)(a)| ≤ ch2|ln h|3/2‖z‖H2(Ω)

holds for all h ≤ h0.

With this result the main result can be proven quickly:
Corollary A.2. Let u be the solution of (A.1) and uh ∈ Vh its finite element approximation
defined via (A.3) on a family of meshes that are graded according to condition (A.4). Then
the a priori estimate

‖u− uh‖L2(Ω) ≤ ch2|ln h|3/2

holds for all h ≤ h0.

Proof. Denoting the error by e := u− uh, we define the function v ∈ H1
0 (Ω) as the solution of

(∇v,∇ϕ) = (e, ϕ) ∀ϕ ∈ H1
0 (Ω),

i.e. the weak solution of the boundary value problem

−∆v = e in Ω, v = 0 on ∂Ω.

Note that v ∈ H2(Ω) ↪→ W 1,p(Ω) holds for any p < ∞. Its finite element approximation
vh ∈ Vh is defined by

(∇vh,∇ϕh) = (e, ϕh) ∀ϕh ∈ Vh.
With these auxiliary quantities we can estimate ‖e‖L2(Ω) by utilizing Theorem A.1

‖u− uh‖2L2(Ω) = ‖e‖2L2(Ω) = (e, u)− (e, uh)
= (∇v,∇u)− (∇v,∇uh)
= v(a)− vh(a) = (v − vh)(a)
≤ ch2|ln h|3/2‖∇2v‖L2(Ω)

≤ ch2|ln h|3/2‖e‖L2(Ω).

Dividing this inequality by ‖u− uh‖L2(Ω) gives the desired result.
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As first step in the proof of Theorem A.1 define the weight function σ : Ω → R by

σ(x) := (|x− a|2 + h2
∗)1/2 (A.6)

The following properties of σ can be proven by calculation.

Lemma A.3. For the function σ defined in (A.6) the inequalities

|σ|+ |∇σ| ≤ c
|∇2σ| ≤ cσ−1

σ−1(x) ≤
{
h−1
∗ if x ∈ {T ∈ Th : rT = 0},
cr−1
T if x ∈ {T ∈ Th : rT > 0}

(A.7)

are valid.

For functions with elementwise H2-regularity the notation ∇hv ∈ L2(Ω) and ∇2
hv ∈ L2(Ω)

given through
∇hv|T = ∇v|T and ∇2

hv|T = ∇2v|T
will be used. The nodal interpolant of a function v ∈ H1

0 (Ω) ∩ C(Ω̄) is denoted by Ihv ∈ Vh.
We show the following estimate of a weighted interpolation error.

Lemma A.4. For any function v from the set

{v ∈ H1
0 (Ω) ∩ C(Ω̄) : v ∈ H2(T ) ∀T ∈ Th}

the estimate
‖σ−1/2∇(v − Ihv)‖L2(Ω) ≤ ch‖∇2

hv‖L2(Ω)

holds on meshes of type (A.4). For functions v ∈ H1
0 (Ω) ∩H2(Ω) this results in

‖σ−1/2∇(v − Ihv)‖L2(Ω) ≤ ch‖∇2v‖L2(Ω).

Proof. One can calculate by using (A.7)

‖σ−1/2∇(v − Ihv)‖2L2(Ω) =
∑
T⊂Ω0

∫
T

σ−1|∇(v − Ihv)|2 +
∑
T⊂Ω1

∫
T

σ−1|∇(v − Ihv)|2

≤
∑
T⊂Ω0

ch−1
∗ h2

∗‖∇2v‖2L2(T ) +
∑
T⊂Ω1

cr−1
T h2

T ‖∇2v‖2L2(T )

≤
∑
T⊂Ω

ch2‖∇2v‖2L2(T ).

This proves the assertion.

Lemma A.5. For any function v ∈ H1
0 (Ω) ∩H2(Ω) the inequality

‖∇(v − Ihv)‖L2(Ω) ≤ c‖σ∇2v‖L2(Ω)

holds provided the mesh is graded according to (A.4).
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A. Convergence order for the Laplace equation with irregular data

Proof. With the help of the function σ we can estimate the element size on the two subdomains.
On Ω0 there follows directly

h2
∗ ≤ σ2(x) ∀x ∈ Ω0. (A.8)

On Ω1 one has σ(x) ≥ rT and σ(x) ≥ h∗. Since there holds hT ∼ hr
1/2
T the relation

h2
T ∼ h2rT ∼ h∗rT is used to conclude

h2
T ≤ cσ2(x) ∀x ∈ Ω1. (A.9)

Now we can estimate

‖∇(v − Ihv)‖2L2(Ω) ≤ c
∑
T

∫
T

h2
T |∇2v|2 = c

∑
T⊂Ω0

∫
T

h2
∗|∇2v|2 + c

∑
T⊂Ω1

∫
T

h2
T |∇2v|2.

With the estimates (A.8), (A.9) one can continue with

‖∇(v − Ihv)‖2L2(Ω) ≤ c
∑
T

∫
T

σ2|∇2v|2 = c‖σ∇2v‖2L2(Ω),

and the assertion is proved.

Lemma A.6. Let the function y ∈ H1
0 (Ω) ∩ H2(Ω) be the solution of the boundary value

problem
−∆y = w in Ω, y = 0 on ∂Ω (A.10)

with a given right-hand side w ∈ L2(Ω). Then for h ≤ h0 the estimate

‖σ∇2y‖L2(Ω) ≤ c|ln h|‖σw‖L2(Ω)

holds, where σ is the weight function defined in (A.6).

Proof. Set ξ := x− a and denote by ξ1, ξ2 its components. By the chain rule it holds

‖ξi∇2y‖L2(Ω) ≤ ‖∇2(ξiy)‖L2(Ω) + c‖∇y‖L2(Ω), i = 1, 2.

With the definition of σ and the a priori estimate ‖∇2y‖L2(Ω) ≤ c‖∆y‖L2(Ω) this yields

‖σ∇2y‖2L2(Ω) =
2∑
i=1
‖ξi∇2y‖2L2(Ω) + h2

∗‖∇2y‖2L2(Ω)

≤
2∑
i=1

(
‖∇2(ξiy)‖2L2(Ω) + c‖∇y‖2L2(Ω)

)
+ ch2

∗‖∆y‖2L2(Ω).

With the use of h∗ ≤ σ we continue

‖σ∇2y‖2L2(Ω) ≤ c
2∑
i=1
‖∆(ξiy)‖2L2(Ω) + c‖∇y‖2L2(Ω) + c‖σ∆y‖2L2(Ω)

≤ c
2∑
i=1
‖ξi∆y‖2L2(Ω) + c‖∇y‖2L2(Ω) + c‖σw‖2L2(Ω)

≤ c‖σ∆y‖2L2(Ω) + c‖∇y‖2L2(Ω) + c‖σw‖2L2(Ω)

≤ c‖σw‖2L2(Ω) + c‖∇y‖2L2(Ω), (A.11)
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where we have used inequality (A.7) and the definition (A.10) of y. It remains to show that
‖∇y‖L2(Ω) ≤ |ln h|‖σw‖L2(Ω). Start with the estimation

‖∇y‖2L2(Ω) = |(∆y, y)| ≤ ‖σ∆y‖L2(Ω)‖σ−1y‖L2(Ω) = ‖σw‖L2(Ω)‖σ−1y‖L2(Ω). (A.12)

The last factor will be estimated by using its representation in polar coordinates (r, θ) with
respect to a. In the following we use the observation

σ(r) =
(
r2 + h2

∗

) 1
2 ⇒ d

dr (ln σ(r)− ln σ(0)) = r

σ2 (A.13)

and the inequality ∣∣∣∣ ln σ(r)− ln σ(0)
r

∣∣∣∣ ≤ c

σ
|ln h| for h ≤ h0, (A.14)

which is proved later. Furthermore for simplicity of notation we replace the integration domain
Ω by a disc of radius R = diam (Ω) ≥ 1 with the center in a, such that this disc contains Ω.
We continue the function y with y = 0 outside the domain Ω such that this extension of the
domain does not change the value of any quantities involved. With the observation (A.13),
partial integration with respect to the radius r, and estimate (A.14) one can conclude

‖σ−1y‖2L2(Ω) =
∫
Ω

σ−2y2 dx =
2π∫
0

R∫
0

rσ−2y2 dr dθ

=
2π∫
0

R∫
0

|ln σ(r)− ln σ(0)|
r

r 2y∂ry dr dθ

≤
2π∫
0

R∫
0

c

σ
|ln h|r|y∂ry| dr dθ

≤ c|ln h|
2π∫
0

R∫
0

σ−1r|y||∇y| dr dθ

≤ c|ln h|‖σ−1y‖L2(Ω)‖∇y‖L2(Ω).

Dividing by ‖σ−1y‖L2(Ω) yields

‖σ−1y‖L2(Ω) ≤ c|ln h|‖∇y‖L2(Ω).

Inserting this into equation (A.12) and dividing by ‖∇y‖L2(Ω) yields

‖∇y‖L2(Ω) ≤ c|ln h|‖σw‖L2(Ω)

and thus with (A.11) the claim of the lemma.

It remains to prove inequality (A.14). To this end, we distinguish the cases r > h∗ and r ≤ h∗
and begin with the case r > h∗. Since σ(r) is strictly monotone and positive the function
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A. Convergence order for the Laplace equation with irregular data

|ln σ(r)| takes its maximum at the left or right boundary of [0, R]. For h ≤ h0 these values
can be estimated by

|ln σ(0)| = |ln h∗| ≤ c|ln h| and (A.15)

|ln σ(R)| = |ln
√
R2 + h2

∗| ≤ c|ln h|, (A.16)

since ln
√
R2 + h2

∗ ≤ ln
√
R2 + h2

0 = c|ln h0| ≤ c|ln h| for c = ln
√
R2 + h2

0/|ln h0|. Thus it
follows

|ln σ(r)− ln σ(0)| ≤ 2 max
0≤r≤R

|ln σ(r)| ≤ c|ln h|,

again for h ≤ h0. Since it is 1/r ≤ c/σ the inequality (A.14) is proved.

For the case r ≤ h∗ we can conclude by the mean value theorem∣∣∣∣ ln σ(r)− ln σ(0)
r

∣∣∣∣ ≤ max
0≤s≤h∗

|(ln σ)′(s)| = max
0≤s≤h∗

s

σ(s)2 .

As the last function is monotonically increasing on [0, h∗] it takes its maximum at the end of
the interval. This means by using h∗ ≤ σ(r) ≤

√
2h∗∣∣∣∣ ln σ(r)− ln σ(0)

r

∣∣∣∣ ≤ h∗
2h2
∗
≤
√

2
2

1
σ

and inequality (A.14) is also proved in this case.

For our further considerations we introduce a regularized Dirac function by

δh :=
{
|T ∗|−1 sign(z − zh) in T ∗,
0 elsewhere,

where z is the solution of (A.5) and zh is the corresponding finite element approximation
from Theorem A.1. Notice that δh ∈ L2(Ω). The corresponding regularized Green function
gh ∈ H1

0 (Ω) ∩H2(Ω) is defined by

−∆gh = δh in Ω, gh = 0 on ∂Ω. (A.17)

Also, consider the function ghh ∈ Vh as the Ritz projection of gh onto Vh, i.e.,

(∇ghh,∇ϕh) = (∇gh,∇ϕh) ∀ϕh ∈ Vh. (A.18)

Lemma A.7. For the regularized Green function gh defined in (A.17) the estimate

‖σ∇2gh‖L2(Ω) ≤ c |ln h|1/2

holds for h ≤ h0.

Proof. The assertion follows from setting ρ = h∗ in [33, Theorem B4]. In this paper, a C1,1-
domain Ω is considered but this assumption is not necessary for the result of this lemma.

Lemma A.8. For the regularized Green function gh and its Ritz projection ghh defined in
(A.17) and (A.18), respectively, the estimate

‖σ−1(gh − ghh)‖L2(Ω) ≤ c|ln h|3/2

holds for h ≤ h0.
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Proof. We introduce the abbreviation eg := gh − ghh and consider the auxiliary equation

−∆y = σ−2eg
‖σ−1eg‖L2(Ω)

in Ω, y = 0 on ∂Ω.

Its weak form can be written as

(∇y,∇ϕ) = (σ−1eg, σ
−1ϕ)

‖σ−1eg‖L2(Ω)
∀ϕ ∈ H1

0 (Ω).

The choice ϕ = eg yields

‖σ−1eg‖L2(Ω) = (∇eg,∇y) = (∇eg,∇(y − Ihy)) ≤ ‖∇eg‖L2(Ω)‖∇(y − Ihy)‖L2(Ω). (A.19)

For the first term of the right-hand side we use Lemma A.5 with the choice v = gh and conclude
with the result from Lemma A.7

‖∇eg‖L2(Ω) ≤ c‖∇(gh − Ihgh)‖L2(Ω) ≤ c‖σ∇2gh‖L2(Ω) ≤ c|ln h|1/2. (A.20)

For the second term on the right-hand side of inequality (A.19) we write with the Lemmas A.5
and A.6

‖∇(y − Ihy)‖L2(Ω) ≤ c‖σ∇2y‖L2(Ω) ≤ c|ln h|
∥∥∥∥∥σ σ−2eg
‖σ−1eg‖

∥∥∥∥∥
L2(Ω)

= c|ln h|. (A.21)

Inequality (A.19) yields together with estimates (A.20) and (A.21) the assertion of this
lemma.

Lemma A.9. For the regularized Green function gh and its Ritz projection ghh defined in
(A.17) and (A.18), respectively, the inequality

‖∇2
h(σ(gh − ghh))‖ ≤ c|ln h|3/2

is satisfied for h ≤ h0.

Proof. We use again the abbreviation eg := gh − ghh, apply the product rule on every element
T ∈ Th and get

∇2(σeg)|T = (∇2σ)eg|T + 2∇σ|T · ∇eg|T + σ(∇2eg)|T .

This results with Lemma A.3 in the estimate

‖∇2
h(σeg)‖2L2(Ω) ≤ c

(
‖σ−1eg‖2L2(Ω) + ‖∇eg‖2L2(Ω) + ‖σ(∇2

heg)‖2L2(Ω)

)
. (A.22)

The first term of the right-hand side of this inequality is estimated in Lemma A.8, giving a
contribution of c|ln h|3. The second term is estimated in (A.20). Since the equality∇2(ghh|T ) = 0
holds for linear elements on every element T it follows for the third term with application
of Lemma A.7

‖σ(∇2
heg)‖2L2(Ω) = ‖σ∇2gh‖2L2(Ω) ≤ c|ln h|. (A.23)

This means, Lemma A.8 yields together with the inequalities (A.22), (A.20) and (A.23) the
assertion.
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Lemma A.10. For the regularized Green function gh and its Ritz projection ghh defined in
(A.17) and (A.18) the inequality

‖σ1/2∇(gh − ghh)‖L2(Ω) ≤ ch|ln h|3/2

holds for h ≤ h0.

Proof. We use the abbreviation eg := gh − ghh. With the product rule we observe

‖σ1/2∇eg‖2L2(Ω) = (∇eg, σ∇eg) = (∇eg,∇(σeg))− (∇eg, eg∇σ). (A.24)

For the first term of the right hand side we apply the Galerkin orthogonality and estimate

(∇eg,∇(σeg)) = (∇eg,∇(σeg − Ih(σeg)))
= (σ1/2∇eg, σ−1/2∇(σeg − Ih(σeg)))

≤ 1
4‖σ

1/2∇eg‖2L2(Ω) + ‖σ−1/2∇(σeg − Ih(σeg))‖2L2(Ω)

≤ 1
4‖σ

1/2∇eg‖2L2(Ω) + ch2‖∇2
h(σeg)‖2L2(Ω)

≤ 1
4‖σ

1/2∇eg‖2L2(Ω) + ch2|ln h|3 (A.25)

where we have used Lemmas A.4 and A.9 in the last two steps, respectively. For estimating
the second term of the right hand side of (A.24) we consider another auxiliary equation,

−∆y = eg
‖eg‖L2(Ω)

in Ω, y = 0 on ∂Ω.

Utilizing the weak form of this equation with eg as the test function, and later on Lemma A.4,
we can write

‖eg‖L2(Ω) = (∇eg,∇y) = (∇eg,∇(y − Ihy))

≤ ‖σ1/2∇eg‖L2(Ω)‖σ−1/2∇(y − Ihy)‖L2(Ω)

≤ ‖σ1/2∇eg‖L2(Ω)ch‖∇2y‖L2(Ω)

≤ ch‖σ1/2∇eg‖L2(Ω) (A.26)

since the L2-norm of eg/‖eg‖L2(Ω) is one. With this result the second term of the right-hand
side of (A.24) can be estimated with the help of Lemma A.3 as

(∇eg, eg∇σ) = (σ1/2∇eg, σ−1/2eg∇σ)
≤ ‖σ1/2∇eg‖L2(Ω)‖σ−1/2eg∇σ‖L2(Ω)

≤ 1
8‖σ

1/2∇eg‖2L2(Ω) + c‖σ−1/2eg‖2L2(Ω)

≤ 1
8‖σ

1/2∇eg‖2L2(Ω) + c(eg, σ−1eg)

≤ 1
8‖σ

1/2∇eg‖2L2(Ω) + c‖eg‖L2(Ω)‖σ−1eg‖L2(Ω).
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With estimate (A.26) and Lemma A.8 one can conclude

(∇eg, eg∇σ) ≤ 1
8‖σ

1/2∇eg‖2L2(Ω) + ch|ln h|3/2‖σ1/2∇eg‖

≤ 1
4‖σ

1/2∇eg‖2L2(Ω) + ch2|ln h|3 (A.27)

by applying Young’s inequality in the last step. With equation (A.24) the assertion follows
from inequalities (A.25) and (A.27).

Now Theorem A.1 can be proven.

Proof. Let T ∗ denote an element that contains a, and set ẽ := z − zh. By using the nodal
interpolant Ih estimate

|(z − zh)(a)| ≤ max
T ∗
|ẽ|

≤ max
T ∗
|z − Ihz|+ max

T ∗
|Ihẽ|

≤ max
T ∗
|z − Ihz|+ c|T ∗|−1

∫
T ∗

|Ihẽ| dx

≤ max
T ∗
|z − Ihz|+ c|T ∗|−1

∫
T ∗

|z − Ihz|dx+
∫
T ∗

|ẽ| dx


≤ cmax

T ∗
|z − Ihz|+ c|T ∗|−1

∫
T ∗

|ẽ| dx

≤ ch∗‖∇2z‖L2(T ∗) + c|T ∗|−1
∫
T ∗

|ẽ|dx. (A.28)

Since h∗ ∼ h2 it remains to estimate |T ∗|−1 ∫
T ∗
|ẽ|dx. To this end, we consider the auxiliary

problem (A.17). From the weak form of this boundary value problem it is easy to see that

(∇gh,∇ẽ) = (δh, ẽ) = |T ∗|−1
∫
T ∗

|ẽ| dx (A.29)

is the term left to consider. With the Ritz projection ghh defined in (A.18) we can write

(∇gh,∇ẽ) = (∇(z − zh),∇gh)
= (∇(z − zh),∇(gh − ghh))
= (∇(z − Ihz),∇(gh − ghh))
≤ ‖σ−1/2∇(z − Ihz)‖L2(Ω)‖σ1/2∇(gh − ghh))‖L2(Ω), (A.30)

using Galerkin orthogonality. The application of Lemmas A.4 and A.10 yields together with
equation (A.29) the assertion.
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B. Utilized data for the models of the
material properties of concrete

In the physical models established for the hydration of young concrete in Section 7.2 a number
of material dependent quantities were utilized. Depending on the context, some of them may
be constants within the optimization problem at hand, or a dependence on the control variable
may be present. For the solution of a practical problem, the values of these quantities must be
determined according to the used material. The purpose of this appendix is to present realistic
example data for the material dependent quantities. These were also used in the numerical
tests presented in Section 7.5.

In the case that the concrete composition is not subject to the control variable, the values
according to Table B.1 were used. If the specific composition of the concrete matters, the used

Table B.1.. Standard material parameters utilized for constant concrete composition

parameter value parameter value parameter value

c 1.0 kJ
kgK ρ 2000 kg

m3 λ 2.143 W
mK

Q∞ 293.2kJkg aW −11 bW −1
cSL 1.4 bJ −1 τk 24

bulk values for density, thermal conductivity and heat capacity can be found in Table B.2(a).
The values of cSL for different types of cement presented in Table B.2(b) have been taken
from [55, Table 5.6]. When the quantities Q∞, bJ , τk, aW , bW are needed in dependence of the

Table B.2.. Used data for material properties

(a) bulk properties for the ingredients

ingredient index i ρg,i/
kg
m3 λi/

W
mK ci/

kJ
kgK

cement 1 3000 1.3 0.80
fly ash 2 2300 1.3 0.75
water 3 1000 0.6 4.18
aggregate 4 2600 3.0 0.80

(b) cSL for different cements

type of cement cSL

ENCI CEM I (diff. types) 1.25
ENCI CEM II/B-V 32.5 R 1.25
ENCI CEM III/B 42.5 LHHS 1.65
ENCI CEM III/B 42.5 LHHS + 1.60
ENCI CEM III/A 52.5 1.40
ENCI CEM V/A 42.5 1.40

concrete recipe, see Section 7.2, the models (7.18) through (7.22) are used. In these models the
constants m·,i are unknown until now. To determine them the following data is used: In [55,
Appendix C,D] some concrete recipes named ICO-03 through ICO-07 containing cement type
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B. Utilized data for the models of the material properties of concrete

CEM III are listed together with their material properties, see Table B.3. By insertion of the

Table B.3.. Data for modelling the dependence of material properties on the concrete
recipe

(a) recipes considered in [55]

name ρ1 ρ2 ρ3 ρ4

ICO-03 270 90 156 1836
ICO-04 390 0 183 1786
ICO-05 280 100 152 1826
ICO-06 270 80 143 1876
ICO-07 240 110 150 1872

(b) measured data according to [55]

name Q∞ bJ τk aW bW

ICO-03 379 -1.37 20.14 -10.2 -0.65
ICO-04 361 -0.83 26.35 -4.6 -0.39
ICO-05 385 -0.86 21.91 -16.7 -0.84
ICO-06 379 -1.01 25.44 -6.55 -0.49
ICO-07 401 -0.92 28.03 -6.40 -0.47

recipes and measured data into the models (7.18) through (7.22) the parameters m·,i can be
determined. In the following this is demonstrated for Q∞. Collecting the measured data in a
vector and the recipe data in a matrix by

Q∞ =


379
361
385
379
401

 , R =


1 270 90 156 1836
1 390 0 183 1786
1 280 100 152 1826
1 270 80 143 1876
1 240 110 150 1872

 ,

and the missing parameters in the vector mQ∞ = (mQ∞,0mQ∞,1mQ∞,2mQ∞,3mQ∞,4)>, then
model (7.18) is expressed by the linear system RmQ∞ = Q∞, which has the unique solution

mQ∞ = (−1.7173e+ 03 7.9182e− 01 1.2679e+ 00 1.5762e+ 00 8.2926e− 01)> .

The quadratic structure of this linear system of equations is occurring by chance here in the
sense that there were just as many recipes considered in [55] as the number of considered
ingredients plus one. In general with more measurements one would expect a higher accuracy
of the model, and the then rectangular, overdetermined system of equations would be solved
in the sense of least squares by solving the normal equations. The necessary measurements
are rare, especially since only data corresponding to the same type of cement should be used
according to experience.
For the other material parameters the procedure described above yields the parameters m·,i
displayed in Table B.4.

Table B.4.. Model parameters utilized in (7.18) through (7.22)

parameter m·,0 m·,1 m·,2 m·,3 m·,4

Q∞ -1.7173e+03 7.9182e-01 1.2679e+00 1.5762e+00 8.2926e-01
bJ -7.4728e+01 4.4821e-02 4.5562e-02 2.6197e-02 2.8905e-02
τk -1.0075e+03 4.1591e-01 4.2298e-01 5.8434e-01 4.2816e-01
aW -3.7871e+02 -1.0769e-01 -1.7945e-01 4.3651e-01 1.8826e-01
bW -2.1095e+01 2.9982e-04 -2.1576e-03 1.8871e-02 9.5937e-03
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