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Abstract

Tree transducers are an expressive formalism for reasoning about tree structured
data. Practical applications range from XSLT-like document transformations
to translations of natural languages. Important problems for transducers are to
decide whether two transducers are equivalent, to construct normal forms, give
semantic characterizations, and type checking, i.e., to check whether the pro-
duced outputs satisfy given structural constraints. This thesis addresses these
problems for important classes of tree transducers. Constructive solutions are
provided and classes of transducers for which these algorithms run in polynomial
time, are identified.

Equivalence testing, normalization, and semantic characterization are often
solved together by the use of a Myhill-Nerode theorem. This identifies neces-
sary and sufficient semantic properties for transformations definable by a specific
class of transducers. The theorem also implies that a unique normal form of
those transducers exists. Moreover, it implies that, given a transducer, the nor-
mal transducer can be constructed. This immediately leads to the question:
Are there classes of tree transducers for which a Myhill-Nerode theorem ex-
ists? We give an affirmative answer for the class of deterministic bottom-up
tree transducers. A semantic characterization of transformations definable by
these transducers is presented, and, moreover, it is evidenced that for every
deterministic bottom-up tree transducer, a unique equivalent transducer can
be constructed, which is minimal. The construction is based on a sequence of
normalizing transformations, which, among others, guarantee that non-trivial
output is produced as early as possible. For a deterministic bottom-up trans-
ducer where every state produces either none or infinitely many outputs, the
minimal transducer can be constructed in polynomial time.

One of the useful properties of tree walking transducers is decidability of
type checking: Given a transducer and input and output types, it can be checked
statically whether each document adhering to the input type is necessarily trans-
formed by the transducer into documents adhering to the output type. Here,
a “type” means a regular set of trees specified by a finite-state tree automa-
ton. Usually, type checking of tree transducers is extremely expensive; already
for simple top-down tree transducers it is known to be EXPTIME-complete.
Are there expressive classes of tree transducers for which type checking can be
performed in polynomial time? Most of the previous approaches are based on
inverse type inference. In contrast, the approach presented here uses forward
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type inference. This means to infer, given a transducer and an input type, the
corresponding set of output trees. In general, this set is not a type, i.e., it is
not regular. However, it can be decided if its intersection with a given type
is empty. Using this approach, we show that type checking can be performed
in polynomial time if (1) the output type is specified by a deterministic tree
automaton, and (2) the tree walking transducer visits every input node only a
bounded number of times. If the transducer is additionally equipped with ac-
cumulating call-by-value parameters, then the complexity of type checking also
depends (exponentially) on the number of such parameters. For this case, a
fast approximative type checking algorithm is presented, based on context-free
tree grammars. Finally, the approach is generalized from trees to forest walk-
ing transducers, which additionally support concatenation as a built-in output
operation.



Zusammenfassung

Baumübersetzer sind ein ausdrucksstarker Formalismus, um baumstrukturier-
te Daten zu analysieren. Praktische Anwendungen reichen von XSLT-artigen
Dokumentumstrukturierungen zu Übersetzungen natürlicher Sprache. Bedeu-
tende Problemstellungen für Übersetzer sind, zu entscheiden, ob zwei Übersetzer
äquivalent sind, eine Normalform konstruiert werden kann, es eine semantische
Charakterisierung gibt und Typüberprüfung, d.h., zu überprüfen, ob die erzeug-
ten Ausgaben gegebene strukturelle Bedingungen erfüllen. Diese Dissertation
befasst sich mit diesen Fragen für wesentliche Baumübersetzerklassen. Wir stel-
len konstruktive Lösungen bereit und identifizieren Übersetzerklassen, für die
diese Algorithmen nur polynomielle Zeit benötigen.

Äquivalenztest, Normalisierung und semantische Charakterisierung sind oft
mittels eines Myhill-Nerode Theorems gemeinsam lösbar. Es zeigt notwendige
und hinreichende semantische Eigenschaften für Übersetzungen einer bestimm-
ten Klasse von Übersetzern auf und impliziert eine eindeutige Normalform für
diese Übersetzer. Zusätzlich beinhaltet das Theorem, dass der entsprechen-
de Übersetzer in Normalform aus einem beliebigen Übersetzer konstruiert wer-
den kann. Es stellt sich also die Frage, ob es Klassen von Baumübersetzern
gibt, für die ein Myhill-Nerode Theorem existiert. Für deterministische Auf-
wärts-Baumübersetzer (deterministic bottom-up tree transducers) geben wir
eine positive Antwort. Wir präsentieren eine semantische Charakterisierung für
Übersetzungen, die durch solche Übersetzer beschrieben werden können. Des-
weiteren zeigen wir, dass für jeden deterministischen Aufwärts-Baumübersetzer
ein eindeutiger äquivalenter Übersetzer konstruiert werden kann, der minimal
ist. Diese Konstruktion basiert auf einer Folge von Normalisierungen, welche
unter anderem garantieren, dass nicht-triviale Ausgaben so früh wie möglich
erzeugt werden. Wenn jeder Zustand eines deterministischen Aufwärts-Baum-
übersetzers entweder keine oder unendlich viele Ausgaben produziert, kann der
minimale Übersetzer in polynomieller Zeit konstruiert werden.

Eine der nützlichen Eigenschaften von Zwei-Wege-Baumübersetzern (tree
walking transducers) ist, dass das Problem der Typüberprüfung entscheidbar
ist: Wenn ein Übersetzer und ein Eingabe- sowie ein Ausgabetyp vorgegeben
sind, kann statisch geprüft werden, ob der Übersetzer Dokumente, die dem Ein-
gabetyp entsprechen, grundsätzlich in Dokumente des Ausgabetyps übersetzt.
Dabei verstehen wir unter “Typ” eine reguläre Baummenge, die durch einen
endlichen Automaten spezifiziert ist. Normalerweise ist Typüberprüfung von
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Baumübersetzern extrem aufwändig. Es ist bekannt, dass dieses Problem bereits
für einfache Abwärts-Baumübersetzer (top-down tree transducers) EXPTIME-
vollständig ist. Es stellt sich die Frage, ob es ausdrucksstarke Baumübersetzer-
klassen gibt, für die Typüberprüfung in polynomieller Zeit durchgeführt werden
kann. Die meisten bisherigen Ansätze basierten auf inverser Typinferenz. Wir
benutzen hier den entgegengesetzen Ansatz mittels vorwärtsgerichteter Typin-
ferenz. Das heißt, für einen gegebenen Übersetzer und einen Eingabetyp leiten
wir die Menge aller zugehörigen Ausgabebäume her. Im Allgemeinen ist diese
Menge kein Typ, d.h., es ist keine reguläre Menge. Trotzdem ist es entscheid-
bar, ob die Schnittmenge mit einem gegebenen Ausgabetyp leer ist. Mit diesem
Ansatz zeigen wir, dass man Typüberprüfung in polynomieller Zeit durchfüh-
ren kann, wenn (1) der Ausgabetyp mittels eines deterministischen Automaten
gegeben ist und (2) der Zwei-Wege-Baumübersetzer jeden Knoten eines Einga-
bebaums höchstens begrenzt oft besucht. Wenn der Baumübersetzer zusätzlich
mit Wertparametern (call-by-value) ausgestattet ist, hängt die Komplexität aus-
serdem (exponentiell) von der Anzahl der Parameter ab. In diesem Fall wird
ein schneller approximativer Typüberprüfungsalgorithmus präsentiert, der auf
kontextfreien Baumgrammatiken basiert. Zum Schluß wird dieser Ansatz von
Bäumen auf Zwei-Wege-Wald übersetzer verallgemeinert. Diese Übersetzer er-
lauben zusätzlich Konkatenation als Operation auf Ausgabebäumen.
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Chapter 1

Introduction

Tree transducers are a formal model to describe transformations of tree struc-
tured data. Such transformations occur in various fields. Early formal ap-
proaches were inspired by compiler development. Internal representations (of
the syntax or the semantics) of programs are trees. Separating the syntax of
a program language from assigning semantics to the source language led to
the analysis of the model of syntax-directed translations [Iro61]. More gener-
ally, program analysis, like evaluations and optimizations, are tree transforma-
tions. Further works also based on the theory of tree languages, finite tree au-
tomata, and the associated algebraic formulation (e.g., [Tha69, Rou70, Tha70,
CDG+07]). The formal models of tree transducers are more abstract. Input
trees are not only syntax trees of program languages, but trees over a ranked
alphabet. Already in the year 1969, Thatcher stated that the abstract models
of tree transducers are not only generalizations of transformations of program
languages, but also of translations of natural languages:

“It appears to be an area with considerable promise of application
to questions of syntax and semantics of programming languages and
to the analysis of natural languages.” [Tha69]

In the beginning of this century, tree transducers were rediscovered in the con-
text of natural language processing [KG05]. In addition to the string- and
phrase-based models, tree-based transformation models are considered in many
areas, e.g., in machine translation [Wu97, ADB00, Eis03], i.e., automatic trans-
lation from one natural language (like Chinese) into another (like English). Fur-
ther tasks are, for instance, automatically answering a human-language question
[HG01, EM03a], generating natural language from information stored in com-
puter databases [BR00], and automatic summarization [MM99, KM02], i.e., to
automatically abstract the relevant information of (multiple) documents.

Due to the inherent syntax and semantics of natural language, sentences
will be represented by syntax trees, for instance like the two in Figure 1.1.
A transformation model may, for instance, translate passive voice into active
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2 1. Introduction

(a) Passive voice: “This book was read by many people.”

(b) Active voice: “Many people read this book.”

Figure 1.1: Syntax trees of the sentence “This book was read by many people.”
and its active counterpart “Many people read this book.”.
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voice, transforming the syntax tree in Figure 1.1(a) into the syntax tree in Fig-
ure 1.1(b). The worldwide process of globalization increases the demand for
natural language processing tools constantly. An international software prod-
uct has to be adapted to different markets, languages, and cultures. The World
Wide Web (WWW) provides a lot of information. Asking for specific informa-
tion in human language, causes that a computer has to transform the question
to understand it. Furthermore, the computer has to extract the correct infor-
mation from a huge amount of data, which may be given in different languages.
Finally, the computer has to summarize these informations and transform the
correct answer into human language [FBCC+10].

Lots of work on tree transformations was initiated also by the exchange
of data via the WWW. In the end of the 1990s, the extensible markup lan-
guage XML became the current standard data exchange format for the WWW
[ABS00, BPS98]. It allows to represent data in a sequential form preserving
the underlying structure. Associated parts are wrapped by matching pairs of
open and close tags. For instance, a company structure can be presented by an
XML-document like the one in Figure 1.2(a). Such an XML document can be
seen as a sequential representation of a tree. The tree, which is described by the
given example document is shown in Figure 1.2(b). XML is a meta language. It
does not dictate, which tags are allowed and how to use them. Services, which
require the data in a specific structure, have to declare the type of valid docu-
ments. Such types can be defined using an XML type definition language like
DTD (Document Type Definition, [BPS08]), XML Schema [FW04], or RELAX
NG (Regular Language Description for XML New Generation, [CM01]).

Today, data with an inherent structure is used, exchanged, and restructured
everywhere. An internet shop has to present its range of products dependent
on the requests of different customers. Emails need an exchange format, which
is platform-independent. A company uses data in different services, which need
the data in different representations. Booking a flight via an online travel agency
will cause a request to web services of different airlines. The airlines, in turn, will
respond a list of suitable flights with detailed information about time, prices,
and more. The travel agency then has to transform the structure of the data to
present it on its webpage.

As a consequence, there is a widespread use of transformation and query
languages for XML, like the current W3C recommendations XSLT (Extensible
Stylesheet Language Transformations, [Kay03]) and XQuery [BCF+03]. XSLT
is a complex language. A system, which automatically infers an XSLT pro-
gram from a given set of examples would lighten the work of web programmers.
Moreover, it is necessary to check if an XSLT stylesheet produces the desired
output for documents of a given input type. On the one hand, it is possible
that the transformation is erroneous, especially if it is generated automatically,
on the other hand, one may check if the stylesheet also produces valid output
for a new input type or a more restricting output type. Assume that the travel
agency gets flight informations from a new airline in a new type. The type
differs slightly from types of other airlines. The agency will check their existing
transformations before developing a new one.
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<department>

<employee>

<data>

<name> Charles Montgomery Burns </name>

<id> ... </id> ...

</data>

<subordinates>

<employee>

<data><name> Waylon Smithers </name> ... </data> ...

</employee>

<employee> ... </employee> ...

</subordinates>

</employee>

<employee> ... </employee> ...

</department>

(a) XML-document for a company structure.

(b) The company structure seen as a tree.

Figure 1.2: Company structure as XML-document and as a tree.
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These two important examples show that data in many areas can be de-
scribed using tree structures. Consequently, there is a high demand to un-
derstand the various transformations between different structures. To analyze
transformations of tree structured data, we consider the formal model of tree
transducers.

1.1 Tree Transducers

The formal model of tree transducers enhances finite-state word automata in
two dimensions. First, they work on trees rather than on strings. Secondly, tree
transducers produce output. Here, we consider tree-to-tree transducers over
ranked trees, i.e., input and output are trees with finite signatures. The most
simple models of tree transducers are top-down and bottom-up tree transducers,
cf. Chapter 7 of the textbook [CDG+07]. Input trees are transformed starting
at the root (top-down) or at the leaves (bottom-up). They were introduced
in the 1970s by Rounds and Thatcher [Rou70, Tha70], and Thatcher [Tha73],
respectively. Their expressive powers are incomparable, both for nondetermin-
istic and deterministic transducers [Eng75]. Deterministic and nondetermin-
istic top-down tree transducers (DTTTs and TTTs, respectively) are able to
produce different outputs for the same occurrence of an input subtree, i.e., a
(D)TTT copies an input tree and afterwards processes the copies differently.
This is not possible by deterministic or nondeterministic bottom-up tree trans-
ducers (DBTTs and BTTs, respectively). However, both DBTTs and BTTs
can decide whether to generate any output for an input subtree or not after
processing the subtree. Moreover, in the nondeterministic case, BTTs can pro-
duce copies of the same output tree after nondeterministic processing of the
input tree, in contrast to DTTTs, TTTs, and DBTTs. Consider, for instance,
the example transformation depicted in Figure 1.1: Transforming sentences in
passive voice into sentences in active voice. For an input tree like the one in
Figure 1.1(a), a (deterministic) bottom-up tree transducer produces an out-
put tree (Figure 1.1(b)) only if the subtree “Preposition(. . . by . . .)” is proper.
Thereto, it processes this subtree without producing any output for it. This is
neither possible by deterministic nor by nondeterministic top-down tree trans-
ducers. On the other hand, there are transformations, which are not definable
by bottom-up tree transducers, but by top-down tree transducers (see [Eng75]
for examples). Especially, if the transformation produces different outputs for
the same subtree.

An enhanced model of tree transducers is the model of tree walking trans-
ducers (or two-way tree transducers, 2TTs) [Eng09]. 2TTs are essentially the
same as the k-pebble tree transducers of [MSV00] for the case k = 0. In con-
trast to the top-down and bottom-up models, the processing of the input tree
by a 2TT is not restricted to one direction. After transforming a node, the
transducer can stay at this node, proceed with its father, or one of its chil-
dren. Thus, in contrast to top-down and bottom-up tree transducers, also in
the deterministic case, a tree walking transducer does not have to terminate for
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every input tree. A 2TT is similar to an attribute grammar, which operates on
derivation trees, and has trees as semantic domain (with tree top-concatenation
as only semantic operation). A further generalization is the model of macro
tree walking transducers (2MTTs). It can be seen as the k-pebble macro tree
transducer of [EM03b], for the case that k = 0. The 2MTT generalizes the
2TT by adding formal context-parameters to the attributes, i.e., each attribute
is seen as a function, which can take parameters of type output tree. The ad-
dition of parameters extends the expressive power of tree walking transducers
[EM03b]. Tree transducers work on ranked trees, but for practical applications
such as XSLT-transformations we have often to deal with unranked forests. A
formal model is the model of macro forest walking transducers (2MFTs), which
is an extension of 2MTTs. The 2MFT work on forests instead of ranked trees.
For instance, such a transducer can handle department structures like the one
in Figure 1.2(b), with arbitrary numbers of employees. Macro forest walking
transducers are able to concatenate output forests as an additional operation.
Such transducers are very expressive and can simulate most features of trans-
formation languages such as XSLT.

This thesis answers important computational problems for deterministic
bottom-up tree transducers and the different models of walking transducers.

1.2 Questions

There are a lot of open questions in the context of tree transducers. The most
important computational problems are:

1. Type checking: Does a given transducer produce the desired output trees
for proper input trees?

2. Equivalence testing: Do two transducers realize the same transformation?

3. Normalization: Can a unique transducer in normal form for a given trans-
formation be constructed?

4. Learning by example: How could a transducer for a transformation be
generated of which we only know examples?

The three latter problems are closely related because a common solution may
often be constructed with the use of a Myhill-Nerode theorem. The original
Myhill-Nerode theorem was stated in 1957/1958 [Myh57, Ner58] for regular word
languages and deterministic finite-state automata. It gives a semantic charac-
terization of word languages definable by finite-state automata and provides a
unique (up to isomorphism) minimal deterministic finite string automaton for
a regular language. Such a semantic characterization and a unique representa-
tion of a language or (in the context of transducers) a transformation often give
rise to a learning algorithm [Gol78, OGV93, LMN10]. For sequential string-
to-string transducers, a Myhill-Nerode style theorem and a learning algorithm
exists [Cho03, OGV93]. It is based on the minimal earliest transducers, which
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were introduced for strings by Mohri [Moh00]. Recently, it was shown that also
for deterministic top-down tree-to-tree transducers, there is a Myhill-Nerode
theorem [LMN10]. The proof relies on a new canonical normal form for such
transducers, called the “earliest” normal form (inspired by the earliest string
transducers of Mohri [Moh00]). Beside this, similar results are only known for
string transducers and simple relabeling tree transducers.

The question arises whether there is a Myhill-Nerode theorem for determin-
istic bottom-up tree transducers.

1.3 Results

In the first part of this thesis, we show that a Myhill-Nerode theorem for de-
terministic bottom-up tree transducers exists. Even though the idea is similar,
obtaining the normal form and a semantic characterization is quite different for
DBTTs than for top-down transducers. First, we present a semantic charac-
terization of transformations definable by DBTTs. We identify one important
semantic property of these transformations: They are path-finite, which means
that every path in input trees evokes only finitely many different paths in out-
put trees. If, in addition, the congruence relation of the transformation has
finite index, we show that the transformation is definable by a deterministic
bottom-up tree transducer. In particular, the Myhill-Nerode theorem leads
to a unique minimal DBTT. Given an arbitrary deterministic bottom-up tree
transducer, we show that the unique DBTT can be constructed. Generating
the “earliest” normal form for a given deterministic bottom-up tree transducer
proceeds in four steps: (1) First, we make the transducer “proper”, i.e., we re-
move all output from states which only produce finitely many different outputs.
The output for such states is postponed until the root node of the input tree.
This is similar to the “proper normal form” of [AU71, EM03c] (which removes
states that produce finitely many outputs, using regular look-ahead). (2) We
make the transducer “earliest”, i.e., every state produces output as early as
possible during translation. (3) We remove pairwise “ground context unifiers”
(this is a technical property, achievable in quadratic time on the transducer).
(4) Last, we minimize in the usual way (by merging states that are isomorphic).
Steps (2)–(4) can be done in polynomial time, i.e., given a proper transducer, its
unique earliest transducer is constructed in polynomial time. Hence, equivalence
checking for proper transducers can be done in polynomial time. Constructing a
proper transducer (Step 1) takes double exponential time in the worst case. The
Myhill-Nerode style theorem can be used to build a Gold style learning algo-
rithm [Gol78], as done for deterministic top-down tree transducers in [LMN10].
Furthermore, the normal form can be used to decide certain (semantic) sub-
classes of DBTTs; e.g., we can decide whether a given DBTT is equivalent to a
relabeling, using the normal form. This provides an alternative proof of [Gaz06],
for the deterministic case.

For the first problem, type checking a given transducer w.r.t. given input and
output types, we are interested in exact solutions (in contrast to the approxi-
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mative approach). The class of transformations for which exact type checking is
possible, is surprisingly large [EM03b, MSV03, MBPS05]; the price to be paid
for exactness is also extremely high. Even for simple top-down transformations,
exact type checking is exponential-time complete [MN05], and for more complex
transformations such as the k-pebble transducers of [MSV03], the problem is
non-elementary, i.e., cannot be expressed by an iterated exponential function.
For practical considerations, however, one is interested in useful subclasses of
transformations for which exact type checking is provably tractable. In the sec-
ond part of this dissertation, we investigate type checking of transformations
formulated through tree walking transducers, macro tree walking transducers
and macro forest walking transducers. Given suitable descriptions (types) of
admissible inputs and outputs for a tree walking transducer, type checking the
transducer means to test whether all outputs produced by the 2TT on admissi-
ble inputs are again admissible.

Our main result in Part II is: If valid output trees are described by determin-
istic tree automata, then exact type checking can be done in polynomial time
for a large class of practically interesting transformations obtained by putting
only mild restrictions on these kinds of transducers. Our approach is forward
type inference, i.e., we infer the set of output trees produced by the transducer
for valid input trees and compare this set with the given output type. More
precisely, we determine if the intersection of the inferred outputs with the com-
plement of the given output type is empty. The presented algorithms solve the
exact type checking problem for arbitrary 2TTs, 2MTTs, and 2MFTs, with
respect to regular tree (or forest) languages as types. In general, they run in
exponential time, but we present subclasses for which they run in polynomial
time. We show that if a 2TT visits the same node only constantly often, i.e., is
strictly b-bounded, then it can be type checked in polynomial time. For the more
complex classes of macro tree walking and macro forest walking transducers, we
also present approximative algorithms.

1.4 Related Work

The Myhill-Nerode theorem for bottom-up tree automata is the straightforward
generalization of the corresponding results for finite string automata. The mi-
nimal automaton and the congruence relation appear in [Bra68, Bra69, AG68,
EW67], see also Chapter 1.5 in [CDG+07]. Special transformations can be de-
fined by tree automata, like relabelings and recognizable tree relations [DT90].
For finite state transducers, a Myhill-Nerode style theorem exists for subsequen-
tial string transducers [Cho03, OGV93], which is based on the minimal earli-
est transducers for strings by Mohri [Moh00]. For tree-to-tree transducers, in
[LMN10] a Myhill-Nerode theorem for top-down tree transducers was the basis
for a Gold style learning algorithm [Gol78]. In 1980 it was shown that equiva-
lence for deterministic transducers is decidable both in the top-down [Ési80] and
bottom-up case [Zac80]. Later, a polynomial-time algorithm for single-valued
bottom-up transducers was provided [Sei92].
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A valid generalization of both deterministic bottom-up and deterministic
top-down tree transducers is the deterministic top-down tree transducer with
regular look-ahead [Eng77]. Even though the equivalence problem for DTTTs
with regular look-ahead is easily reduced to the one for DTTTs [EMS09], it
is an intriguing open problem whether DTTTs with regular look-ahead have a
canonical normal form. Another related model of transformation is the attribute
grammar [Knu68], seen as a tree transducer [Fül81, FV98]. For attributed tree
transducers, decidability of equivalence is still an open problem, but for the
special subclass of “nonnested, separated” attribute grammars (those, which
can be evaluated in one strict top-down phase followed by one strict bottom-
up phase), equivalence is known to be decidable [CFZ82]. This class strictly
includes DTTTs (but not DBTTs [FV95]). There are several other interest-
ing incomparable classes of tree translations for which equivalence is known
to be decidable, but no normal form (and no complexity) is known, e.g., MSO-
definable tree translations [EM06]. This class coincides with single-use restricted
attribute grammars or macro tree transducers with look-ahead [EM99]. Is there
a canonical normal form for such transducers?

Another interesting generalization are tree-to-string transducers. It is a
long standing open problem [Eng80] whether or not deterministic top-down
tree-to-string transducers (DTTSTs) have decidable equivalence. Recently, for
the subcase of linear sequential DTTSTs, a unique normal form similar to the
earliest normal form was proved [LLN+11]. Another recent result states that
functional visibly pushdown transducers have decidable equivalence [FRR+10].
This class is closely related to non-copying DTTSTs. It raises the question
whether our Myhill-Nerode theorem for DBTTs can be extended to functional
(but nondeterministic) bottom-up tree transducers.

In its most general setting, the type checking problem for XML transforma-
tions is undecidable. Hence, general solutions are bound to be approximative,
but seem to work well for practical XSLT transformations [MOS07]. Approxima-
tive type checking for XML transformations is typically based on (subclasses of)
recognizable tree languages. Using XPath [CD99] as pattern language, XQuery
[BCF+03] is a functional language for querying XML documents. It is strongly-
typed and type checking is performed via type inference rules computing ap-
proximative types for each expression. Approximative type inference is also
used in XDuce [HP03] and its follow-up version CDuce [Fri04]; navigation and
deconstruction are based on an extension of the pattern matching mechanism
of functional languages with regular expression constructs. Recently, Hosoya et
al. proposed a type checking system based on the approximative type inference
of [HP02] for parametric polymorphism for XML [HFC05]. Type variables are
interpreted as markings indicating the parameterized subparts. In [MOS07], a
sound type checking algorithm is proposed (originally developed for the Java-
based language Xact [KMIS04]) based on an XSLT flow analysis that deter-
mines the possible outcomes of pattern matching operations; for the benefit of
better performance, the algorithm deals with regular approximations of possible
outputs.

Milo et al. [MSV03] propose the k-pebble tree transducer (k-PTT) as a for-
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mal model for XML transformations, and show that exact type checking can
be done for k-PTTs using inverse type inference. The latter means to start
with an output type O of a transformation τ and then to construct the type
of the inputs by backwards translating O through τ . Each k-pebble tree trans-
ducer can be simulated by compositions of k + 1 stay macro tree transducers
(stay-MTTs) [EM03b], thus, type checking can be solved in time (iterated)
exponential in the number of used pebbles. Intuitively, k-pebble tree transduc-
ers for k = 0 correspond to our 2TTs. In [Eng09], it was shown that inverse
type inference for tree walking transducers can be done in exponential time,
and can be done for k-fold compositions of 2TTs in k-fold exponential time.
Maneth et al. show in [MBPS05] that inverse type inference can be done for
a transformation language providing all standard features of most XML trans-
formation languages using a simulation by at most three stay-MTTs. Inverse
type inference is used in [MN04, MN05] to identify subclasses of top-down XML
transformations, which have tractable exact type checking. We note that the
classes considered there are incomparable to the ones considered in this thesis.

Tree transducers are a promising model to describe translations on natural
languages, but the requirements to transformation models used in this context
are complex [KG05]. Because of the ambiguity of natural language, most ap-
proaches in machine translation are on statistical models [MS99]. The overview
[KG05] of (probabilistic) tree-based models in natural language processing fig-
ures out important requirements, like closure properties, on a reasonable formal
syntax-based translation model (see also [Mal11]). Until now there is no model
known which fulfills all of these properties. Most of the transducers, which are
considered as translation models, are extensions of the basic models of bottom-
up and top-down tree transducers (as required by Knight et al. in [KG05]).
Thus, it is important to understand the basic models of tree transducers, even
though the results are not directly applicable to machine translation models.
Promising models to handle the probabilities are weighted transducers, i.e.,
rules are equipped with a weight (see [FV09] for a survey). In [Mal11], weighted
(linear and nondeleting) extended top-down tree transducers are analyzed in
the context of machine translation where extended means that the patterns on
left-hand sides of rules are not restricted to one input symbol. They fulfill most
of the requirements [Mal11], but are not closed under composition [AD82]. The
different subclasses of transformations induced by extended top-down tree trans-
ducers are studied in [MGHK09]. The model of linear extended multi bottom-up
tree transducers fulfills most of the requirements stated in [KG05], but it is an
open problem if these transducers are efficiently trainable [ELM09, ELM08].
Instead of learning a transducer, the problem in this context is to train proba-
bilistic transducers (given by sets of rules) on huge amounts of collected training
data in the form of tree pairs. In [GKM08], training of probabilistic tree-to-tree
and tree-to-string transducers is discussed. Especially, for the model of weighted
extended top-down tree transducers a training algorithm is provided. In [Eis03]
a training algorithm for synchronous tree substitution grammars is given where
the model is trained on all possible derivations in proportion to their probabil-
ities.
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1.5 Own Publications

This thesis is based on the three original publications [FSM10, FSM11, MFS11].

- The paper [FSM10] was presented in 2010 at the 14th International Con-
ference on Developments in Language Theory (DLT) in London, Ontario,
Canada. It covers the minimization of deterministic bottom-up tree trans-
ducers detailed in Section 6.1 of Part I of this work.

- A longer version of the afore mentioned paper will be published in the In-
ternational Journal of Foundations of Computer Science (IJFCS) [FSM11].
It shows some extended proofs also contained in this thesis.

- Part II is based on the chapter [MFS11] of the book “Modern Applications
of Automata Theory” [DS11]. It is estimated to appear as Volume 2 of
the IISc Research Monographs Series in September 2011.

These three publications are co-authored by Prof. Dr. Sebastian Maneth and
my supervisor Prof. Dr. Helmut Seidl.
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Chapter 2

Preliminaries

In this chapter, we designate some elementary notations of sets, words, and
functions and define trees, forests, and other basic terms.

In the following N denotes the set of all positive natural numbers and by
N0 = N∪{0} we refer to the set of natural numbers including 0. For a constant
k ∈ N0 we abbreviate by [k] the set {1, . . . , k} ⊂ N where [0] = ∅.

For a set X, we denote by X∗ the set of words or strings (including the
empty word ε) over X. The concatenation of two words u and v over X is
denoted by u.v or uv. If there are words u, v, and w such that u.v = w, we
say that u is a prefix and v a suffix of w. A subset W ⊆ X∗ of words is called
prefix-closed if for all u, v ∈ X∗ holds: u.v ∈ W implies u ∈ W . Note that ε is
element of every non-empty, prefix-closed set.

For two sets X and Y and a subset D ⊆ X, a function ϕ : D → Y is a
partial function from X to Y , written ϕ : X 99K Y where ϕ is undefined for
every x ∈ X \D. Then D is the domain of ϕ. We also use dom(ϕ) to refer to
the domain. The image of a subset S ⊆ X under ϕ is the set of all images of
elements in S for which ϕ is defined, i.e., ϕ(S) = {ϕ(x) | x ∈ D ∩ S}.

2.1 Trees and Forests

Trees and forests are build over alphabets (i.e., finite sets) of symbols or node
labels. An unranked tree over an alphabet Σ consists of a root node labeled by a
symbol a from Σ and a forest f , written a 〈f〉. A forest (or hedge) is a sequence
of an arbitrary number of unranked trees, written u1u2 . . . um. The number m
is called the length of the forest. The empty forest, i.e., a forest with length
m = 0, is denoted by ε.

Definition 2.1 (Forests). Let Σ be an alphabet. The set FΣ of forests f over Σ
is defined by the grammar rules

f ::= ε | uf and u ::= a〈f〉

where a ∈ Σ.

13
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The tree in Figure 1.2(b) is such a forest (with only one non-empty tree) of the
form department〈f〉 ε where f is a forest of “employee-trees”. The length of f
depends on the company structure and varies from company to company.

Rather than on forests, tree transducers work on ranked trees. There, we
assume that a fixed rank is given for every element of Σ, i.e., Σ =

⊎
m∈N Σ(m)

where Σ(m) is the set of all symbols with rank m and
⊎

denotes the union of
distinct sets. Then, Σ is said to be a ranked alphabet. We define rank(a) = m
for all symbols a ∈ Σ(m) for m ≥ 0. We also write a(m) to denote a symbol a of
rank m. The maximal rank mr(Σ) is the smallest number m such that Σ(m) 6= ∅
and Σ(m+i) = ∅ for all i ≥ 1.

Definition 2.2 (Ranked Trees). Let Σ be a ranked alphabet. The set TΣ of
ranked trees over Σ is defined by the grammar rules

u ::= a(

m times︷ ︸︸ ︷
u, . . . , u) | b

where a ∈ Σ(m) and b ∈ Σ(0).

In the following, we use the term ‘tree’ as a synonym for ranked tree. In the
company structure example in Figure 1.2, the symbol employee has rank 2.
Every node with label employee in the tree has exactly two children which
have the labels data and subordinates, respectively. On the other side, for
the symbol department there is no fixed rank. In different companies, there are
different many employees. Thus, in order to define transducers on arbitrary trees
and forests, e.g., on XML documents, we rely on ranked tree representations of
forests, e.g., through binary trees. The empty forest then is represented by a leaf
with label e (where e is a new symbol that does not appear in the document).
The content of an element node a is coded as the left child of a, while the
forest of right siblings of a is represented as the right child. This is the well-
known first-child next-sibling encoding , cf. the textbooks [CDG+07, Knu97].
Accordingly, the ranks of symbols are either 0 or 2. Figure 2.1 shows the binary
encoding of the tree of the company structure presented in Figure 1.2(b) in the
introduction. In the following, we refer to the unranked tree of this example
structure by uB and its encoding by uB

′. Several other encodings of unranked
trees or forests by ranked trees have been used in the literature, for instance the
extension encoding was presented in [CNT04, Tak75]. The encoding encode in
[MSV03] is similar to the first-child next-sibling encoding.

A tree u′, which occurs in a tree u is called subtree of u. The set Subtrees(u)
of all subtrees of a tree u is recursively defined as follows:

Subtrees(b) = {b}

Subtrees(a(u1, . . . , um)) = {a(u1, . . . , um)} ∪
⋃
i∈[m]

Subtrees(ui)

where b and a are labels of rank 0 and m, respectively. For instance, the tree

Form(Tense(past tense), Person(1st sing.))
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Figure 2.1: The binary encoding uB
′ of the tree in Figure 1.2(b).

is a subtree of the syntax tree in Figure 1.1(a). The height of this (sub)tree is 3.
We define the height of a tree recursively as

height(b) = 1 for b ∈ Σ(0),

height(a(u1, . . . , um)) = 1 + max{height(u1), . . . , height(um)} for a ∈ Σ(m).

The height of a tree is the maximal length of a path from the root to a leaf plus
one (cf. Section 2.2).

We often consider trees with variables. For example, the right-hand sides
of rules of deterministic bottom-up tree transducers are such trees (Chapter 4).
Let X = {x1, x2, . . .} denote a countable set of distinct variables of rank 0. Trees
with variables of X are trees in TΣ(X) = TΣ∪X . Let t ∈ TΣ(X) be such a tree.
We abbreviate by t[t1, . . . , tk] the substitution t[t1/x1, . . . , tk/xk] of trees ti for
the variables xi (i ∈ [k]) in the tree t. The output of bottom-up tree transducers
is built by replacing the variables of trees in TΣ(X) by trees. For a finite set
of m distinct variables, we also write Xm = {x1, . . . , xm}. Talking about the
semantics of transducers, X is often a singleton and, in this case, we also use
variable y instead of x1.
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2.2 Nodes and Paths

The same tree may occur several times as a subtree. For instance, the subtree
Person(1st sing.) occurs twice in the syntax tree of the sentence in passive
voice in Figure 1.1(a). It is necessary to distinguish between a subtree and an
occurrence of a subtree. Assigning unique coordinates to the nodes of a ranked
tree enables us to indicate a certain occurrence of a subtree by the coordinates
of its root.

Definition 2.3 (Nodes). The set Nodes(u) ⊆ N∗ of all nodes ϑ in a ranked tree
u ∈ TΣ is defined as

Nodes(b) = {ε}
Nodes(a(u1, . . . , um)) = {ε} ∪ {iϑ | i ∈ [m], ϑ ∈ Nodes(ui)}

where b and a are symbols of rank 0 and m, respectively, and ui ∈ TΣ for i ∈ [m].

Note that this definition also holds for trees in TΣ(X) for a set X of variables.
The two occurrences of the subtree Person(1st sing.) in the tree in Figure 1.1(a)
are now uniquely indicated by their root nodes 1.2 and 2.2.2. Here, we write 1.2
instead of 12 for the second child of the first child of the root, to distinguish
between this node and the twelfth son of the root. The direction η(ϑ) of a
node ϑ indicates whether ϑ is the root of the tree or a particular child, i.e., we
define η(ε) = 0 and η(ϑ′j) = j. Both nodes 1.2 and 2.2.2 have the direction 2,
they are the second child of their fathers. The depth |ϑ| of a node ϑ is the length
of the string describing ϑ, i.e., |ε| = 0 and |iϑ′| = 1 + |ϑ′|. The size |u| of a
tree u is defined as the number of nodes, i.e., |u| = |Nodes(u)|. For a ranked
tree u and a given node ϑ ∈ Nodes(u), the tree u[ϑ] is called the subtree of u
located at ϑ and is defined as

u[ε] = u

a(u1, . . . , um)[iϑ] = ui[ϑ] for i ∈ [m].

With labu(ϑ) we refer to the label of the node ϑ in a tree u, or lab(ϑ) if u is
given by the context. Let up be the tree in Figure 1.1(a). Then, we get

up[1.2] = up[2.2.2] = Person(1st sing.) .

The label of these nodes is labup(1.2) = labup(2.2.2) = Person.
Similar notions also apply to forests. In particular, the set Nodes(f) of nodes

of a forest f is defined as

Nodes(ε) = ∅
Nodes(a〈f1〉f2) = {0} ∪ {0ϑ | ϑ ∈ Nodes(f1)} ∪ {(i+ 1)ϑ | iϑ ∈ Nodes(f2)} .

Note that the definition of nodes of a ranked tree differs from the definition of
nodes in a forest consisting of one tree only. Accordingly, also the definition of
direction differs. For a node ϑ in a forest we define the direction η(ϑ), which
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now indicates whether ϑ is at the top-level, has a left sibling or both. Thus,
η(0) = 0, η(i) = 1 for i > 0, η(ϑ′0) = 2 for ϑ′ 6= ε and η(ϑ) = 3 otherwise. The
subforest f [ϑ] at a node ϑ in a forest is defined by:

f [i] =

{
f if i = 0
f ′[i− 1] if i > 0 ∧ f = uf ′

Moreover, for ϑ = iϑ′ with ϑ′ 6= ε,

f [ϑ] =

{
f1[ϑ′] if i = 0 ∧ f = a〈f1〉f2

f ′[(i− 1)ϑ′] if i > 0 ∧ f = uf ′ .

The label labf (ϑ) of ϑ in the forest f is defined by labf (0) = ε if f = ε, and

labf (iϑ′) =

 a if i = 0 ∧ ϑ′ = ε
labf1(ϑ′) if i = 0 ∧ ϑ′ 6= ε
labf2((i− 1)ϑ′) if i > 0

if f = a〈f1〉f2. Note that the label at a node in a forest thus either is from Σ
or equals the empty forest ε. Consider for instance the unranked tree uB (in
Figure 1.2(b)) seen as a forest. We observe that the subordinate-node has the
coordinates 0.0.1. The direction of this node is η(0.0.1) = 3. The subforest
describing the personal data of Waylon Smithers (with name as root label of the
first tree) is uB [0.0.1.0.0.0]. Its father has the label labuB (0.0.1.0.0) = data.
The direction of this node in uB is η(0.0.1.0.0) = 2. Note that the subforest
indicated by this node, i.e., uB [0.0.1.0.0] consists of the tree rooted at this data-
node (the personal data of Waylon Smithers) and all its siblings.

In Part I we are not only interested in the node itself but also in the path
from the root to the node including the sequence of labels at this path. A Σ-path
is a string over the set {(a, i) | a ∈ Σ, 1 ≤ i ≤ rank(a)}.

Definition 2.4 (Paths). The set Paths(u) of paths of the tree u is inductively
defined as:

Paths(b) = {ε}
Paths(a(u1, . . . , um)) = {ε} ∪ {(a, i).p | i ∈ [m], p ∈ Paths(ui)}

The set of all paths over Σ is PathsΣ =
⋃

u∈TΣ

Paths(u).

The node of a path p is its stepwise projection to the second component, i.e.,

node(ε) = ε and node((a, i).p′) = i.node(p′) .

The subtree u[p] of a tree u at a path p and the label labu(p) of p in u are
given by the node of p in u: u[p] = u[node(p)] and labu(p) = labu(node(p)) if
p ∈ Paths(u), otherwise both are undefined. The length |p| of a path p is given
by the depth of its node, it is |p| = |node(p)|. We say that a path p belongs to
a tree u if p ∈ Paths(u).
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Let uF = up[2.2] the subtree of the syntax tree up with root label Form (cf.
Figure 1.1(a)). The path p = (Form, 2)(Person, 1) refers to the leaf with label
‘1st sing.’. The node of this path is node(p) = 2.1 and the length of this path is
|p| = 2. Remember that the height of this tree |uF| defined by the length of the
longest path from the root to a leaf plus one is 3 (cf. Page 15).

Let u be a tree in TΣ. For a symbol a ∈ Σ, the set Pathsa(u) denotes
the set of all paths p ∈ Paths(u) with labu(p) = a. For a set Σ′ ⊆ Σ, the set
PathsΣ′(u) =

⋃
a∈Σ′ Pathsa(u) is the set of Σ′-labeled paths of tree u ∈ TΣ. Note

that these definitions hold also for trees with variables if TΣ(X) is interpreted
as TΣ∪X . Mostly, we consider for a variable y the y-paths of a tree in TΣ(y),
i.e., the set Pathsy(t). We also say variable path if the variable is clear by the
context.

2.3 Tree Monoid

In the first part of this thesis, we need to distinguish different kinds of trees:
Trees without any variable, trees with at least one occurrence of a dedicated
variable y, and trees with exactly one occurrence of y. The latter are called
context. Together, trees with or without occurrences of the variable y build a
monoid with substitution into the variable as binary operation.

First, we consider trees possibly containing a dedicated variable y 6∈ Σ of
rank 0. Let TΣ(y) denote this set: TΣ(y) = TΣ∪{y}. On TΣ(y), we define a
binary operation “·” by substitution into the variable y:

t1 · t2 = t1[t2/y]

Note that every occurrence of y in t1 will be replaced by the same tree t2.
For example, Form(y, y) · Person(y) = Form(Person(y), Person(y)). The result
of t1 · t2 is a ground tree, i.e., does not contain y, iff t1 ∈ TΣ or t2 ∈ TΣ. For
instance, 3rd plural · Person(y) = 3rd plural. Moreover, the operation “·” is
associative with neutral element y. Therefore, the set TΣ(y) together with the
operation “·” and y forms a monoid. Let T̂Σ(y) denote the sub-monoid consisting
of all trees, which contain at least one occurrence of y, i.e., T̂Σ(y) = TΣ(y) \ TΣ.
Then TΣ(y) = T̂Σ(y) ∪ TΣ, and we have:

Proposition 2.1. [Eng80]

1. Let z, z′, t1, t2, t
′
1, t
′
2 ∈ TΣ(y) with t1 6= t2 and t′1 6= t′2. Assume that the

two equalities z · t1 = z′ · t′1 and z · t2 = z′ · t′2 hold. Then one of the
following two assertions is true:

(a) z, z′ ∈ TΣ and z = z′; or

(b) both z and z′ contain an occurrence of y, i.e., are from T̂Σ(y) and
z · s = z′ or z = z′ · s for some s ∈ T̂Σ(y).

2. The sub-monoid T̂Σ(y) is free.
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If there are z, z′ ∈ TΣ(y) and t, t′ ∈ T̂Σ(y) with z · t = z′ · t′, then already one of
the two assertions (a) and (b) is true.

Unfortunately, this proposition does not hold for forests. Let FΣ(y) be the
set of forests possibly containing the variable y (similar to TΣ(y)). For the
forests f = byy and f ′ = yyb (i.e., forests with three trees each of height 1), we
get that

f [yb/y] = f ′[by/y] ,

but neither f = f ′ nor is there a forest g ∈ F̂Σ(y) such that f [g/y] = f ′ or
f = f ′[g/y] where F̂Σ(y) is the set of all forests with at least one occurrence
of y. Since most of the results of Part I rely on Proposition 2.1, they cannot be
adapted to forest transformations in a straightforward manner.

Furthermore, we also need the following relations. Consider the set

T̂Σ(y)⊥ = T̂Σ(y) ∪ {⊥}

of all trees containing at least one occurrence of the variable y enhanced with
an extra bottom element ⊥ (not in Σ ∪ {y}). On this set, we define a partial
ordering by ⊥ v s for all s, and s1 v s2 for s1, s2 ∈ T̂Σ(y) iff s1 = s′ · s2 for a
suitable s′ ∈ T̂Σ(y). Note that the trees s1, s2 and s′ are not ground, i.e., they
contain at least one occurrence of y. For example, for the trees on Page 18,
we have ⊥ v Form(Person(y), Person(y)) v Person(y). The greatest element
w.r.t. the ordering v is y while the least element is given by ⊥. With respect
to this ordering, we observe:

1. Every s ∈ T̂Σ(y) has finitely many upper bounds only.

2. For every s1, s2 ∈ T̂Σ(y)⊥, there exists a least upper bound s1 t s2

in T̂Σ(y)⊥.

Since T̂Σ(y)⊥ also has a least element, namely ⊥, we conclude that T̂Σ(y)⊥
is a complete lattice satisfying the ascending chain condition, i.e., every set
S ⊆ T̂Σ(y)⊥ has a least upper bound s =

⊔
S, and there are no infinite strictly

ascending sequences ⊥ @ s1 @ s2 @ . . . where s @ s′ iff s v s′ and s 6= s′. We
call the least upper bound of a set S ⊆ T̂Σ(y)⊥ the greatest common suffix of
all trees in S and denote it by gcs(S). Thus, we have

gcs(S) =
⊔
S

w.r.t. the order v on T̂Σ(y)⊥. We call a tree s ∈ T̂Σ(y) irreducible if s 6= y and
s v s′ only holds for s′ ∈ {y, s}. The tree Person(y) is irreducible.

Example 2.1. According to the example of syntax trees for sentences (Fig-
ure 1.1), consider the trees

ts3 = Subject(Content(y), Person(3rd plural))

ts1 = Subject(Content(y), Person(1st sing.))

to1 = Object(Content(y), Person(1st sing.)) .
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For the first tree, we observe that its subtree Content(y) is greater than ts3, i.e.,
ts3 v Content(y). This follows because we can decompose the tree as follows:

ts3 = Subject(y, Person(3rd plural)) · Content(y)

Also y is greater than ts3 and for both other trees, we get the same upper
bounds. Additionally, each of these trees is a upper bound of itself. There are
no more upper bounds of these trees. Furthermore, Content(y) v y. Thus, we
get that the greatest common suffix of the set S = {ts3, ts1, to1} is

gcs(S) = Content(y) .

It is the least tree of the common upper bounds of ts3, ts1, and to1.
Now consider the trees

tsy = Subject(Content(y), Person(y))

toy = Object(Content(y), Person(y)) .

Neither Content(y) nor Person(y) is an upper bound of one of these trees.
Only y and tsy are upper bounds of tsy. Thus, this tree is irreducible. Analog,
it follows that toy is irreducible. We get that the greatest common suffix of tsy
and toy is y. /

We enhance the definition of the partial order v to trees in TΣ(y) ∪ {⊥} by
⊥ v t for all t ∈ TΣ(y) ∪ {⊥}, and t1 v t2 for t1, t2 ∈ TΣ(y) iff t1 = s · t2 for
a suitable s ∈ T̂Σ(y). Note that the prefix s of t1 must contain y. With this
condition, the tree t2 really occurs in t1.

Two trees (with or without the variable y) are unifiable if they are prefixes of
the same tree. Let > /∈ Σ∪{y,⊥} be a new symbol. Assume that t1, t2 ∈ TΣ(y)
are trees, and that there are trees s1, s2 ∈ TΣ(y)∪{>} such that t1 · s1 = t2 · s2.
Note that ti ·si = ti if ti ∈ TΣ. Then we call t1, t2 unifiable and 〈s1, s2〉 a unifier
of t1, t2. Note that we substitute the variable y in t1 and t2 possibly differently.
In terms of the common unification problem [BS01, KB70], we can interpret the
trees t1 and t2 as trees with different variables, i.e., unifying t1 and t2[y′] for
some new variable y′ 6= y.

We consider the set

DΣ = ({y} × T̂Σ(y)) ∪ (T̂Σ(y)× {y}) ∪ (TΣ ∪ {>})2 ∪ {⊥}

of candidate unifiers. The set DΣ forms a complete lattice w.r.t. the ordering ≤
defined by

- ⊥ ≤ d ≤ 〈>,>〉 for all d ∈ DΣ,

- 〈t1, t2〉 ≤ 〈t′1, t′2〉 if ti = t′i · u for all i ∈ {1, 2} for some tree u ∈ TΣ ∪ {y},
and

- 〈t1, t2〉 ≤ 〈t1,>〉 and 〈t1, t2〉 ≤ 〈>, t2〉 if t1, t2 ∈ TΣ.
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Then the most-general unifier mgu(t1, t2) ∈ DΣ for trees t1, t2 ∈ TΣ(y) is the
greatest unifier of t1, t2 w.r.t. the ordering ≤. It is ⊥ if t1, t2 are not unifiable.
Furthermore, for a set of pairs P ⊆ TΣ(y)2 the most-general unifier mgu(P ) is
the least upper bound of the unifiers of pairs in P , i.e.,

mgu(P ) =
∨
{mgu(t1, t2) | (t1, t2) ∈ P} .

If t1 is ground and t1, t2 are unifiable by some pair 〈s1, s2〉 then t1·s′1 = t1 = t2·s2

holds for all s′1 ∈ TΣ(y). It follows that t1, t2 are unifiable by each pair 〈s′1, s2〉
with s′1 ∈ TΣ(y). Thus, the most-general unifier is either 〈>, s2〉 if t2 is not
ground, or 〈>,>〉 if also t2 ∈ TΣ.

Example 2.2. Again, we consider parts of syntax trees of sentences. Thereto,
let Σ be a ranked alphabet containing the symbols Form(2), Person(1), Tense(1),
3rd plural(0), and past tense(0) (the exponents give the ranks of the symbols).
Consider the trees

t1 = Form(y, Person(3rd plural))

t2 = Form(Tense(past tense), Person(y))

t3 = Form(Tense(y), y)

t4 = Form(Tense(y), Person(3rd plural))

The trees t1 and t2 are unifiable by the unifier 〈Tense(past tense), 3rd plural〉.
This pair is already the most-general unifier mgu(t1, t2) of the two trees. The
trees t1 and t3 have the most-general unifier

mgu(t1, t3) = 〈Tense(Person(3rd plural)), Person(3rd plural)〉 ,

whereas the trees t2 and t3 are not unifiable, i.e., mgu(t2, t3) = ⊥. Finally,
consider the trees t4 and t1, for which 〈Tense(past tense),past tense〉 is a unifier.
Also 〈Tense(3rd plural), 3rd plural〉 or 〈Tense(y), y〉 are possible unifiers of this
pair. Thus, we observe that the most-general unifier is in T̂Σ(y)× {y}, it is

mgu(t1, t4) = 〈Tense(y), y〉 .

Note that the unifier 〈Tense(Tense(y)), Tense(y)〉 of t1 and t4 is no candidate
unifier, i.e., is not in DΣ, because both parts are in T̂Σ(y) and different to y. /

For the semantics of transducers, we also need the definition of contexts over
an alphabet Σ. A context c is a tree c ∈ T̂Σ(y), which contains exactly one
occurrence of y. The set of all contexts is denoted by CΣ(y) (or CΣ). The length
of a context c is the length of the path from the root to y. If context c has
length n, then there are irreducible trees c1, . . . , cn such that c = c1 · c2 · · · cn.
In the previous example, the trees t1, t2, and t4 are contexts, in contrast to t3.
The length of t4 is 2 because the y-path of t4 is (Form, 1)(Tense, 1).

Let ∼ be a equivalence relation over a set U ⊆ TΣ. It is a congruence (w.r.t.
to contexts in CΣ(y)) if for all c ∈ CΣ(y) and all u, u′ ∈ U holds:

u ∼ u′ and c · u ∈ U =⇒ c · u′ ∈ U and c · u ∼ c · u′

We write U/∼ to denote the set of equivalence classes of ∼ over U .
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2.4 Trees with State Calls

In Part II, we consider (macro) tree walking transducers. The right-hand sides
of rules of such transducers are trees containing state calls. The definitions
related to trees like the height of a tree have to be enhanced to trees with state
calls. Tree walking transducers (2TTs, cf. Section 9), which do not support
accumulating parameters, have rules like, e.g.,

qI (department) → staff(q(down1), e)

where qI and q are states, department is an input symbol and staff and e

are output symbols of rank 2 and 0, respectively. For 2TTs, state calls are of
the form q(op) where op stands for up, stay , or downi, like q(down1) in the
example rule. To enhance the definitions related to trees to right-hand sides of
rules of 2TTs, we deal with q(op) as a symbol of rank 0 for all states q and all
operations op. The right-hand sides of tree walking transducers are trees over
the alphabet Σ∪(Q×Op) where Q is the set of states and Op the set of possible
operations: Op = {up, stay}∪{downi | i ∈ N}. We get height(q(op)) = 1 for all
states q and all operations op. The right-hand side staff(q(down1), e) of the
example rule has height 2.

In Chapter 12, we then will add parameters to state calls to obtain macro
tree walking transducers (2MTTs). In this case, we fix a set Y = {y1, y2, . . .} of
formal parameters. These parameters are of rank 0. We use the same definition
as for sets of variables X (Page 15). Then, states have a fixed rank, which
determines the number of parameters. A rule of a 2MTT is for instance:

qI (department, 0) → staff(q(down1, e, e), e)

Figure 2.2: Tree representation
of a right-hand side in a 2MTT.

On the right-hand side, we have the state q
of rank 3. The exact definition of rules of
2MTTs with ranked states will be given in
Chapter 12. In a 2MTT, a state call has
the form q(op, t1, . . . , tn) where ti (i ∈ [n])
are ranked trees over Σ∪ Y and further state
calls. These right-hand sides are seen as trees
over the alphabet Σ ∪ Y ∪ (Q × Op) where
for all states q and all operations op, a label
of the form (q, op) has the rank rank(q) − 1.
Figure 2.2 illustrates the tree representation
of the right-hand side of the example rule.
There, the state call (q, down1) has rank 2. In
general, there may occur further state calls in
the subtrees. Additionally, if the state on the left-hand side has a rank greater
than 1, there may occur parameters yi on the right-hand side. For these trees
on right-hand sides of 2MTTs, we define the height recursively by:

height(q(op, t1, . . . , tn)) = 1 + max(height(t1), . . . , height(tn))
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Chapter 3

Introduction

In Chapter 1, we pointed out the relevance of a Myhill-Nerode theorem for tree
transducers. In this part, we now present a Myhill-Nerode theorem for deter-
ministic bottom-up tree transducers (DBTTs). We provide a semantic char-
acterization of tree transformations, which are definable by DBTTs. Thereto,
we split a tree-to-tree transformation into a subtree function, which provides an
output tree for every subtree of an input tree, and context functions, which map
contexts to images. Such a division is called partition. In Figure 3.1, a partition
for the example transformation, which translates sentences in passive voice into
sentences in active voice (Figure 1.1), is depicted. The Object-subtree of the
input tree is transformed into the Subject-subtree of the output tree. Further-
more, we get an image for the context of the Object-subtree, the remainder
of the output tree. Note that the grammatical person of the verb phrase in
the image of the context is determined by the subtree. Thus, different subtrees
may induce different transformations of the same contexts. We will specify a
unique partition for every transformation. Furthermore, for this unique parti-
tion, we will present necessary conditions that the transformation is definable
by a DBTT. These conditions are that the partition has finite index and is
path-finite. Roughly spoken, having finite index means that a partition has only
finitely many different context functions and path-finiteness means that each
path in input trees from the root to a node only affects finitely many differ-
ent paths in output trees. Both properties are caused by, amongst others, the
finiteness of the number of states of deterministic bottom-up tree transducers.
We will prove that these two conditions are not only necessary but also suffi-
cient, i.e., a transformation is definable by a DBTT if and only if its partition
is path-finite and has finite index.

Moreover, the path-finite partition with finite index of a transformation leads
to a unique minimal DBTT. Given an arbitrary deterministic bottom-up tree
transducer, we show that this unique DBTT can be constructed. The con-
struction is based on a sequence of normalizing transformations, which, among
others, guarantee that non-trivial output is produced as early as possible. For a
deterministic bottom-up tree transducer where every state produces either none

25
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or infinitely many outputs, the minimal transducer can be constructed in poly-
nomial time. This leads to a polynomial time algorithm to decide equivalence
of deterministic bottom-up tree transducers.

Summarizing, we get the Myhill-Nerode theorem for deterministic bottom-
up tree transducers. It says that for a tree transformation the following prop-
erties are equivalent:

1. The transformation is definable by a DBTT.

2. It exists a unique minimal DBTT describing this transformation.

3. The partition of the transformation is path-finite and has finite index, i.e.,
is a bottom-up partition.

Part I is organized as follows: Some basic notations were already given in the
previous Chapter 2. In Chapter 4, we add the formal definition of deterministic
bottom-up tree transducers and related notions and properties.

The semantic representation via partitions is given in Chapter 5. First, we
define the basic terms that are used in this context such as subtree functions,
context functions, and partitions. Every deterministic bottom-up tree trans-
ducer induces a dedicated partition. We deduce this partition and the inherent
properties like path-finiteness. The necessity of these properties is proven. In
the second section of this chapter (Section 5.2), we consider arbitrary trans-
formations. We present a normal form for the partition of a transformation,
which is the unique bottom-up partition if there is a path-finite partition of the
transformation with finite index. This partition is disambiguated by some prop-
erties like producing non-trivial output as early as possible, i.e., by the subtree
function, whereas trivial output is postponed to the context functions. In the
end, the bottom-up partition is the partition of the same transformation with
the minimal index fulfilling these properties.

In Chapter 6 we prove the Myhill-Nerode theorem. First, we present
the minimization of arbitrary deterministic bottom-up tree transducers (Sec-
tion 6.1). It is shown that the minimal DBTT is unique and we prove that
the construction can be done in polynomial time if states only produce in-
finitely many different output trees or none. The second part of the proof of the
Myhill-Nerode theorem (Section 6.2) is that the partition of a minimal DBTT
is already the bottom-up partition of its transformation. In the last section of
this chapter (Section 6.3), it is shown that the bottom-up partition of a trans-
formation induces a minimal DBTT, defining the same transformation. It is a
technical procedure where we deduce the transition rules and states and prove
their correctness.

We present conclusions and ideas of future work in Chapter 7. In particular,
we give an outlook to a learning algorithm of deterministic bottom-up tree
transducers.
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Chapter 4

Bottom-Up Tree
Transducers

In this part, we analyze deterministic bottom-up tree transducers. Such a fi-
nite state tree transducer starts at the leaves of a tree and processes the tree
to the root. During the execution, the transducer builds a new tree starting
with several subtrees. For instance, a bottom-up transducer for the example
transformation in Figure 1.1 produces output trees for the four subtrees of the
root node as illustrated in Figure 4.1 and memorizes crucial information (such
as the person or the tense) in a state. Depending on these states and the label
Sentence passive of the root node, it builds a tree using the four output trees
(Figure 4.2).

For the following definition, we recall the notation of X = {x1, x2, . . .} for a
countable set of variables and Xm = {x1, . . . , xm} for a finite subset of X with m
variables (Page 15). For a ranked alphabet Σ, mr(Σ) denotes the maximal rank
of symbols in Σ.

Definition 4.1. A deterministic bottom-up tree transducer (DBTT for short)
is a tuple T = (Q,Σ,∆, R, F ) where

- Q is a finite set of states,

- Σ and ∆ are ranked input and output alphabets, respectively, disjoint
with Q,

- R :
mr(Σ)⋃
m=0

(Σ(m) ×Qm) 99K Q×T∆(X ) is a partial transition function, and

- F : Q 99K T∆(y) is a partial function mapping states to final outputs,
called the final function of T .

For every input symbol a ∈ Σ of rank m and sequence of states q1, . . . , qm, the
transition function R provides at most one transition (or rule), which is denoted
by a(q1, . . . , qm)→ q(z) where q ∈ Q and z ∈ T∆(Xm).

29
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Figure 4.1: The outputs of selected subtrees and the reached states with further
informations.
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Figure 4.2: A transition to transform a root node of a syntax tree of a sentence in
passive voice, depending on the states reached by the subtrees (dashed arrows);
x1, x2, and x4 mark where to insert the output of the 1st, 2nd and 4th subtree.

We only consider deterministic bottom-up tree transducers in this thesis. Thus,
we use the term bottom-up tree transducer synonymous. Note that the right-
hand side q(z) is a tree over the ranked alphabet ∆ ∪ Q ∪ X where each
state in Q has rank 1, and each variable in X has rank 0. Similarly, the
left-hand side a(q1, . . . , qm) can be considered as an abbreviation for the tree
a(q1(x1), . . . , qm(xm)) over Σ ∪Q ∪ X .

For every input symbol a of rank m and sequence of states q1 . . . qm of Q,
let R(a, q1 . . . qm) be the right-hand side of the transition for a and q1 . . . qm if
it is defined, and let R(a, q1 . . . qm) be undefined otherwise.

Example 4.1. In Figure 4.2, a transition of a DBTT for the transformation
from sentences in passive voice into sentences in active voice is pictured. It is
the transformation with the left-hand side

Sentence passive(〈Subj, 1st sing.〉, 〈VP,past tense, 1st sing.〉, 〈by〉,
〈Obj, 3rd plural〉) .

The dashed arrows illustrate how the right-hand side depends on the states
on the left-hand side of the transition. It can be applied to the root of the
tree in Figure 1.1(a), when the four subtrees are transformed as in Figure 4.1.
It would reach state 〈Sentence〉 and produces an output tree with root label
Sentence active. The transducer also has a transition with the left-hand side

Sentence passive(〈Subj, 1st sing.〉, 〈VP,past tense, 1st sing.〉, 〈by〉,
〈Obj, 2nd sing.〉)

where the person of the object is 2nd singular. In this case, the node 2.2.2.1 of
the right-hand side is labeled with 2nd sing., instead of 3rd plural. It does not
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(a) The transition of the form
a(q1, q2, . . . , qk) → q(z).

(b) The final function of state q,
i.e., F (q) = z.

Figure 4.3: Sketch of a transition and a final function of a DBTT.

contain a transition with left-hand side

Sentence passive(〈Subj,1st sing.〉, 〈VP,past tense,3rd plural〉,
〈by〉, 〈Obj, 2nd sing.〉)

where the persons of the subject and of the predicate differ. Because this does
not occur in proper sentences. /

The size of a DBTT T , denoted by |T |, is the sum of the sizes (= number of
symbols) of its final outputs and the sizes of the left-hand sides and right-hand
sides of its transitions.

To illustrate DBTTs, we design states by circles, present output trees by
squares, and input labels by triangles. In Figure 4.3(a), a transition of the
form a(q1, q2, . . . , qk)→ q(z) is drawn. The order of the states on the left-hand
side is given by the sorting of the incoming edges at the bottom of the triangle
representing the label (not the position of the states). The output is located
at the arrow connecting the tip of the triangle with the state of the right-hand
side of the transition. The final function is presented in Figure 4.3(b). In
general, we draw transducers or parts of them only with labels of rank less
then 2 (Figure 4.4).

Example 4.2. Consider a smaller example. The following transformation
checks if the input tree contains an even or an odd number of b-labeled nodes.
Depending on that, the root of the output tree is labeled Even or Odd, respec-
tively. In the second case, the input tree is copied where lower case letters are
transformed into capital letters.

τ : bn(e) 7→
{

Even n ∈ N0 even
Odd(Bn(E)) n ∈ N0 odd
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Figure 4.4: The DBTT T
of Example 4.2.

It maps trees of TΣ to trees of T∆ where the in-
put alphabet is Σ = {b(1), e(0)} and the output al-
phabet is given by ∆ = {Odd(1), B(1), E(0), Even(0)},
respectively. Both input and output trees are
monadic. A DBTT defining this transformation is
T = (Q,Σ,∆, R, F ) (Figure 4.4) with set of states
Q = {qeven, qodd}, the transition function R is given
by

e→ qeven(E)

b(qeven)→ qodd(B(x1))

b(qodd)→ qeven(B(x1)) .

The final function F is defined as follows:

F (qeven) = Even and F (qodd) = Odd(y)

The transducer memorizes in the state if it has pro-
cessed an even or an odd number of b-labeled nodes.
In the end, it possibly needs the copy of the input
tree. Therefore, it produces for every node the cor-
responding output node. /
Let T = (Q,Σ,∆, R, F ) be a DBTT. Assume that t ∈ TΣ(y) and q ∈ Q. The
result [[t]]Tq of a computation of T on input t when starting in state q at variable
leaves y is defined by induction on the structure of t:

[[y]]Tq = q(y)
[[a(t1, . . . , tm)]]Tq = q′(z[z1, . . . , zk])

if ∀i [[ti]]
T
q = qi(zi) and R(a, q1 . . . qm) = q′(z)

If [[t]]Tq = q′(z′), then z′ is also called the output produced for t at q. Note that

the function [[ . ]]Tq may not be defined for all trees t. The superscript T can be
omitted if T is clear from the context. If t ∈ TΣ we also omit the subscript q,
i.e., we write [[t]]T for [[t]]Tq . In this case if [[t]]T = q′(z), we say that q′ is reached
by t. For a ground tree t ∈ TΣ, which reaches some state q′, we refer to the
output by outT (t), i.e., outT (t) = z′ iff [[t]]T = q′(z′).

The image τTq (t) of the tree t is then defined by τTq (t) = z′ · z iff [[t]]Tq = q′(z)
for some state q′ with F (q′) = z′. Again, we omit the subscript q if the tree t
does not contain the variable y. The transformation described by DBTT T is
the partial function

τT : TΣ 99K T∆ .

Example 4.3. Consider again the transformation translating passive into active
voice. In Figure 4.1 the results of the subtrees of the root of the input tree in
Figure 1.1(a) are given. Since the four states correspond to the states in the
transition given in Figure 4.2, this transition can be applied to the root of the
input tree. By the definition, we get the result of the whole tree, by replacing



34 4. Bottom-Up Tree Transducers

the variables x1, x2 and x4 by the corresponding outputs of the first, the second,
and the forth subtree, respectively. The result is the state 〈Sentence〉 together
with the output tree in Figure 1.1(b). /

We say that two transducers T and T ′ are equivalent if they describe the same
transformation, i.e., for all u ∈ TΣ, τT (u) is defined iff τT

′
(u) is defined and if

they are defined τT (u) and τT
′
(u) are equal. We also use the following notations:

The language LT (q) of a state q is the set of all ground input trees by which q
is reached, i.e.,

LT (q) = {u | ∃v ∈ T∆ : [[u]]T = q(v)} .

A context c ∈ CΣ (cf. definition on Page 21) is a context of a state q if τTq (c) is

defined. The set of all contexts of state q is denoted by CT (q):

CT (q) = {c | ∃z ∈ T∆(y) : τTq (c) = z}

Example 4.4. The tree e is an input tree of the transducer T in Example 4.2.
The result of this tree is [[e]]T = qeven(E) and its image is τT (e) = Even because
F (qeven) = Even. Note that the produced output outT (e) = E disappears.
However, the output is used to compute the result and output of other trees
containing e as subtree. Consider the tree b(e) here, for example. With the
transition b(qeven)→ qodd(B(x1)) and the result of e we get

[[b(e)]]T = qodd(B(x1)[E/x1]) = qodd(B(E)) .

For this tree, the output is also used in the image τT (b(e)). The final function
with F (qodd) = Odd(y) leads to

τT (b(e)) = Odd(y) · B(E) = Odd(B(E)) .

In the end, we get that T describes the transformation τ of Example 4.2, i.e.,
τ = τT . The languages of the states of T are

LT (qeven) = {bn(e) | n ∈ N0 is even} ,
LT (qodd) = {bn(e) | n ∈ N0 is odd} .

Now consider the context b(b(y)). The result of this context starting at qodd is
deduced as follows

[[y]]Tqodd
= qodd(y)

[[b(y)]]Tqodd
= qeven(B(x1)[y]) = qeven(B(y)) with b(qodd)→ qeven(B(x1))

[[b(b(y))]]Tqodd
= qodd(B(x1)[B(y)]) = qodd(B(B(y))) with b(qeven)→ qodd(B(x1))

Thus, the image of this context starting at qodd is τTqodd
(b(b(y))) = Odd(B(B(y))).

The context is element of CT (qodd), but we also get that b(b(y)) ∈ CT (qeven).
The sets of contexts of the two states are the same:

CT (qeven) = {bn(y) | n ∈ N0} = CT (qodd) /
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4.1 Trim Transducers

Transducers may contain useless transitions or states that we want to eliminate,
while preserving the described transformation. A state q of a DBTT is reachable
if the language LT (q) is non-empty. A state q is meaningful if q has at least
one context, i.e., CT (q) is non-empty. Furthermore, the output at state q is
potentially useful if there is a context c of q such that the image τTq (c) contains
the variable y. Otherwise, the output at q is called useless.

Definition 4.2 (Trim). A bottom-up tree transducer T is called trim if T has
the following properties:

1. Every state is reachable.

2. Every state is meaningful.

3. If the output at a state q is useless, then for each transition of the form
a(q1, . . . , qm)→ q(z) leading into state q, z = ∗.

In this definition, ∗ is a special output symbol, which does not occur in any
image produced by T . It is easy to show that each deterministic bottom-up tree
transducer is equivalent to a trim DBTT.

Proposition 4.1. For every deterministic bottom-up tree transducer T a de-
terministic bottom-up tree transducer T ′ can be constructed in polynomial time
with the following properties:

1. T ′is equivalent to T

2. |T ′| ≤ |T |

3. T ′ is trim.

Proof. For convenience, we recall the construction. Let T = (Q,Σ,∆, R, F ) be
a DBTT. First, we compute the set Reach of reachable states of T as the least
solution of the following inequation over the complete lattice of subsets of Q:

Reach ⊇ {q ∈ Q | ∃m ∈ N0, a ∈ Σ(m), q1, . . . , qm ∈ Reach, z ∈ T∆(Xm) :
R(a, q1 . . . qm) = q(z)}

Since the set Q is finite, the least solution can be computed by standard fixpoint
iteration in polynomial time. Analogously, we define the set Mean of reachable
and meaningful states of T as the least solution of the following inequations over
the complete lattice of subsets of Reach:

Mean ⊇ {q ∈ Reach | F (q) is defined}
Mean ⊇ {q1, . . . , qm ∈ Reach | ∃m ∈ N, a ∈ Σ(m), q ∈ Mean, z ∈ T∆(Xm) :

R(a, q1 . . . qm) = q(z)}

Again, since the set Reach is finite, the least solution can be computed by
standard fixpoint iteration in polynomial time.
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Additionally, we define the set Use ⊆ Mean of reachable and meaningful
states of T for which output is potentially useful as the least solution of the
following inequations:

Use ⊇ { q ∈ Mean | F (q) ∈ T̂∆(y)}
Use ⊇ {qi ∈ Mean | ∃m, i ∈ N, a ∈ Σ(m), q1, . . . , qm ∈ Mean, q ∈ Use,

z ∈ T∆(Xm) : R(a, q1 . . . qm) = q(z) and xi occurs in z}

The DBTT T ′ = (Q′,Σ,∆, R′, F ′) to be then constructed is given by:

- Q′ = Mean

- F ′ = F |Q′

- R′(a, q1 . . . qm) = q(s′) iff R(a, q1 . . . qm) = q(s) and q1, . . . , qm, q ∈ Q′

where s′ = ∗ if q 6∈ Use and s′ = s otherwise.

By construction, |T ′| ≤ |T |. The proofs that T ′ is trim and equivalent to T are
omitted.

In the remainder of this part we consider trim transducers only. For a trim
transducer T with set Q of states, we denote by Q∗ the set of states with useless
output, i.e., for which the output is always ∗.

The transducer of Example 4.2 illustrated in Figure 4.4 is already trim. Both
states are reachable and meaningful (cf. Example 4.4). Since every possible
subtree is a subtree of an input tree with an odd number of b-labeled nodes, its
output is potentially useful.



Chapter 5

Partition

A deterministic bottom-up tree transducer describes a partial tree transforma-
tion. In general, this transformation is not subtree-closed, i.e., there may be a
tree, which is not in the domain of the transformation τT , but it is a subtree of
some other tree in the domain of τT . However, the transducer produces some
output for such a subtree (but no image). For instance, a DBTT translating
sentences in passive voice into their counterparts in active voice only accepts
input trees with Sentence passive as root label. However, as Figure 3.1 illus-
trates, such a transducer produces some output for a subtree with root label
Object. In Figure 4.1 some more output trees of input subtrees are given. Since
a deterministic bottom-up tree transducer produces exactly one output tree for
every input subtree, we get a function, which produces an output for every sub-
tree of input trees. To get a characterization of the whole transformation, it
remains to map the context of the subtree, too (Figure 3.1). We will show that
this mapping is also implicitly given by a DBTT (Section 5.1). Motivated by
these induced functions of DBTTs, we consider general tree functions and define
partitions of such functions. A partition consists of a subtree-closed function
and mappings of contexts. In the next section, we will show that every DBTT
induces such a partition in a natural way. Moreover, every tree function can be
defined by a partition.

In this chapter, we consider such function partitions independent of trans-
ducers. A partition of a function τ consists of a subtree function defined on all
subtrees of input trees of τ and a residual function, which comprises the remain-
ing information about possible context of a subtree. By that, we get a function
on subtrees of input trees without losing information about the whole function.
Such a pair of a subtree function and a residual function has to fulfill some prop-
erties to describe a tree transformation. The two partial functions of a partition
have the same subtree-closed domain. A residual function maps trees to context
functions. These context functions are partial functions from contexts to trees
with arbitrarily many occurrences of the variable y. For instance, a context
function ϕ maps, amongst others, the context of the Object-subtree in Fig-
ure 3.1 to the tree Sentence active(y, vVP, vObj) on the right-hand side of this
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figure (where we abbreviated the second and the third subtree by vVP and vObj,
respectively). The residual function then maps the input subtree Object(. . .)
to this context function ϕ.

Formally, a context function ϕ is a partial function from contexts (over Σ)
to trees (over ∆), possibly containing the variable y: ϕ : CΣ(y) 99K T∆(y).
A residual function r is, in addition, a partial function, which maps trees to
context functions:

r : TΣ 99K CΣ(y) 99K T∆(y) .

The context function r(u) of a tree u ∈ TΣ is called residual of u. A residual
function defines an equivalence relation.

Definition 5.1 (r-Equivalence). Assume r is a residual function. Two trees
u, u′ ∈ dom(r) are r-equivalent if they have the same residual:

u ≡r u′ iff r(u) = r(u′) .

For a tree u ∈ dom(r), we write [u]r for the equivalence class of u w.r.t. ≡r, i.e.,
[u]r = {u′ | u ≡r u′, u′ ∈ dom(r)}.

With these definitions, we get the definition of a function partition, i.e., a
pair of a subtree function and a residual function:

Definition 5.2 (Partition). Let (σ, r) be a pair of partial functions

σ : TΣ 99K T∆ and r : TΣ 99K CΣ(y) 99K T∆(y) .

Then the pair (σ, r) is a function partition (or partition) if

- the functions have the same domain, i.e., dom(σ) = dom(r),

- the domain is subtree-closed, and

- the pair is consistent, i.e., for all trees u, u′ ∈ dom(σ) and all contexts
c, c′ ∈ CΣ(y) with c·u = c′ ·u′ holds: If c ∈ dom(r(u)) then c′ ∈ dom(r(u′))
and

r(u)(c) · σ(u) = r(u′)(c′) · σ(u′) . (5.1)

The domain of a partition (σ, r) is the domain of σ and r. The tree function
defined by the partition (σ, r) is the partial function τ : TΣ 99K T∆ given by

τ(u) =

{
r(u)(y) · σ(u) u ∈ dom(σ), y ∈ dom(r(u))
undefined otherwise.

On the other hand, we say that (σ, r) is a partition of the tree function τ and σ
is a subtree function of τ . Two partitions are equivalent if they define the same
tree function. The index of a partition is the index of the r-equivalence, i.e., the
number of equivalence classes. By Equation 5.1, we get a more general property
of the tree function τ of a partition (σ, r):
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Lemma 5.1. Let (σ, r) be a partition of tree transformation τ . For a context
c ∈ CΣ(y) and a tree u ∈ TΣ with c · u ∈ dom(τ) holds

τ(c · u) = r(u)(c) · σ(u) .

Proof. Let c ∈ CΣ(y), u ∈ TΣ, and c · u ∈ dom(τ). By definition of τ we get

τ(c · u) = r(c · u)(y) · σ(c · u) .

Furthermore, since the partition is consistent and y · c · u = c · u:

r(c · u)(y) · σ(c · u) = r(u)(c) · σ(u)

Thus, it follows τ(c · u) = r(u)(c) · σ(u).

In general, there are more than one partition for a tree function τ , and for a
subtree function σ there are different residual functions r such that (σ, r) is a
partition of τ . In particular, for every tree function τ , the canonical partition
(σ∗, r∗) exists:

σ∗(u) =

{
∗ if u ∈ Subtrees(dom(τ))
undefined otherwise

r∗(u)(c) =

{
τ(c · u) if c · u ∈ dom(τ)
undefined otherwise

Here, ∗ is an arbitrary symbol of the output alphabet. Since the image of every
residual is in T∆ (the trees do not contain the variable y), the output of σ∗ is
never used in τ . In general, the r∗-equivalence of this partition has infinitely
many equivalence classes, i.e., its index of ≡r∗ is infinite.

As already said, every deterministic bottom-up tree transducer defines a
partition. This will be defined more precisely in the next section. Often, this
partition is more significant then the canonical partition.

Example 5.1. Consider again the transducer T = (Q,Σ,∆, R, F ) of Exam-
ple 4.2, which defines the transformation

τ : bn(e) 7→
{

Odd(Bn(E)) for all odd n ∈ N0

Even for all even n ∈ N0

At each state, the transducer produces an output tree for every input subtree,
which reaches this state. Thus, the states of T describe functions:

bn(e) 7→ Bn(E) if bn(e) ∈ LT (qeven)

bn(e) 7→ Bn(E) if bn(e) ∈ LT (qodd)

Since the state reached by a tree is unambiguous and the transducer is deter-
ministic, we get the subtree-closed function

outT : bn(e) 7→ Bn(E) for all n ∈ N0 .
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This function, however, differs from the given transformation τT = τ . To get
the remaining parts of the output trees (or actually the proper output), we have
to consider another function, which is given by every state. It is the context
function, which maps every possible context of a state to an image:

τTqeven
: bk(y) 7→

{
Odd(Bk(y)) for all odd k ∈ N0

Even for all even k ∈ N0

τTqodd
: bk(y) 7→

{
Even for all odd k ∈ N0

Odd(Bk(y)) for all even k ∈ N0

Since every subtree of an input tree reaches exactly one state of the DBTT, we
can define a function rT , which maps every input subtree to such a function,
i.e., we get

rT (bn(e))(bk(y)) =

{
Odd(Bk(y)) for all n, k ∈ N0 with n+ k is odd.
Even for all n, k ∈ N0 with n+ k is even.

For the two functions outT and rT , we observe the following properties with
respect to the function τT :

1. They have the same domain, dom(outT ) = dom(rT ) = {bn(e) | n ∈ N0},
which is subtree-closed and contains exactly the subtrees of dom(τT ).

2. Together, they describe τT : For every tree bn(e) and every decomposition
of the form bn1(y) · bn2(e), it holds:

τT (bn(e)) = rT (bn2(e))(bn1(y)) · outT (bn2(e))

Thus, (outT , rT ) is a partition of τT . /

In the following, let (σ, r) be a partition with input alphabet Σ and output
alphabet ∆ and the tree function of (σ, r) is denoted τ . We designate a special
output symbol ∗ ∈ ∆, which does not occur in any image of τ . Thus, ∗ may
only occur in the output of σ.

5.1 Partitions of DBTTs

The pair (outT , rT ) in Example 5.1 is a partition of the transformation τT

defined by the DBTT T of Figure 4.4. As for this transducer, we will now
define a partition for every DBTT.

Every transducer produces some output for every subtree of an input tree.
A transducer T provides the subtree-closed function outT : TΣ 99K T∆. Addi-
tionally, for the remaining part of every input tree of the transformation, we
get an image. It is given by the partial function τTq depending on the state q,
which is reached by the subtree. More formally, let u be a subtree of an input
tree u′ of the transformation τT of DBTT T , i.e., there is a context c ∈ CΣ(y)
with u′ = c · u. Then the state q reached by u induces the function τTq , which
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provides an image τTq (c) of the context. In general, a transducer T defines a
partial function

rT : TΣ 99K CΣ(y) 99K T∆(y)

which assigns an image to every context depending on a subtree. Precisely, for a
tree u, which reaches state q and a context c ∈ CT (q), the function rT is defined
by

rT (u)(c) = τTq (c) .

As for the example transducer, we observe for the two functions outT and rT of
any transducer T the following properties:

Lemma 5.2. Let T be a DBTT. Then for the functions outT and rT hold:

1. They have the same subtree-closed domain, which is the set of subtrees of
all input trees of T , i.e.,

dom(outT ) = dom(rT ) = Subtrees(dom(τT )) .

2. They are consistent and describe τT : For every tree u′ ∈ dom(τT ) and
every decomposition of the form u′ = c · u with u ∈ TΣ and c ∈ CΣ(y)
holds:

τT (u′) = rT (u)(c) · outT (u)

With that, we conclude

Corollary 5.3. The pair (outT , rT ) of a transducer T is a partition of τT .

For a DBTT T , we call the pair (outT , rT ) the partition of T . All partitions of
DBTTs have some properties in common. In particular, we will observe that
their equivalence relations are congruences of finite index and that they are
path-finite. The last property describes a restriction of the form of the images
of similar contexts. It will be defined in Section 5.1.2. Before that, we consider
the index of the equivalence relation ≡rT for a DBTT T .

5.1.1 Finite Index

Let T be a DBTT with partition (outT , rT ). If we consider two trees, which reach
the same state in T , we observe that they have the same residual. Continuing
the translation at a state, the transducer does not distinguish with which tree it
reaches this state. Thus, two trees, which are in the language of the same state
of T are rT -equivalent. It follows that the number of equivalence classes of ≡rT
is bounded by the number of states of T . Consider for instance the DBTT T
in Example 4.2. All trees with an even number of b-labeled nodes reach the
state qeven. All these trees in LT (qeven) have the same residual (cf. the partition
in Example 5.1). Both states define different residuals. Thus, this partition has
index 2. Since a deterministic bottom-up tree transducer has a finite number of
states, every partition of a DBTT has finite index.
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(a) The function: Which part of
the output is a copy of which part
of the input.

(b) Subtree bn(dk(e)) with con-

text a(bn
′
(y)) and there images.

Figure 5.1: The function τ of Example 5.2.

Lemma 5.4. Let T = (Q,Σ,∆, R, F ) be a DBTT and (outT , rT ) its partition.
Then | ≡rT | ≤ |Q|.

Proof. Let u and u′ be two trees, which reach the same state q in T , i.e.,
u, u′ ∈ LT (q). By definition of the residual function rT , it follows

rT (u) = τTq = rT (u′) .

That means u ≡rT u′. Consequently, | ≡rT | ≤ |Q|.

Thus, if we want to get a partition, which defines a DBTT, it is a necessary
property that the r-equivalence relation of the partition has finite index. The
following example presents a tree transformation, which has no partition with
equivalence relation of finite index. Hence, this transformation is not definable
by a DBTT.

Example 5.2. Let us consider the tree function (Figure 5.1(a))

τ : a(bn(dk(e))) 7→ A(Bn(Dk(E)), Dk(E)) for all n, k ≥ 0 . (5.2)

The input tree has two variable parts. Under the root labeled a, the tree has first
a chain of b-labeled nodes, followed by a chain of nodes with label d. The leaf
has label e. The transformation copies the whole input tree once (by replacing
small letters by capital letters). Additionally, the root of the output tree has
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a further subtree, which is a copy of the chain of d’s (Figure 5.1(a)). We can
specify the following partition (σ, r) for this transformation (Figure 5.1(b)):

σ :

{
bn(dk(e)) 7→ Bn(Dk(E))
a(bn(dk(e))) 7→ A(Bn(Dk(E)), Dk(E))

for all n, k ≥ 0

r(dk(e)) : a(bn(dl(y))) 7→ A(Bn(Dl(y)), Dl(y)) for all n, k, l ≥ 0

r(bn(dk(e))) : a(bm(y)) 7→ A(Bm(y), Dk(E)) for all n, k,m ≥ 0

r(a(bn(dk(e)))) : y 7→ y for all n, k ≥ 0

However, this partition has infinitely many equivalence classes. For every k 6= k′

the trees bn(dk(e)) and bn(dk
′
(e)) have different residuals (Figure 5.1(b)).

Unfortunately, one can prove that there is no partition with equivalence rela-
tion of finite index that describes this transformation. The idea is the following:
Every partition can only produce one output tree for an input tree bn(dk(e))
(for fixed n, k ≥ 1). However, for the context a(y), we need two different sub-
trees dependent of the input tree. Hence, the residual has to produce one of
these subtrees. More precisely, the residual has to produce the part of the left
subtree, which contains all n B-labeled nodes, or the whole right subtree (with
all k D-labeled nodes). For arbitrary n and k, there are infinitely many different
such output subtrees, both for the left and the right child of the root. Hence,
there are infinitely many different residuals. /

This example shows that not every function has a partition with finite index,
but we have observed that this is a necessary property to be a function, which is
definable by a DBTT. Thus, there is no deterministic bottom-up tree transducer,
which defines the tree function τ of Example 5.2.

5.1.2 Path-Finite Partition

Another necessary property is path-finiteness. The idea is the following. A
deterministic bottom-up tree transducer applies one rule to every node of an
input tree. Thus, for every path p to some node of an input tree, we get
a sequence of rules. Although p may belong to infinitely many trees, there
are only finitely many different such sequences of rules for p. This property
restricts the form of images according to contexts in which p refers to the y
node. We will introduce this property as path-finiteness, which is a necessary
property of a partition to be a partition of a DBTT. Consider for instance
the partition illustrated in Figure 3.1. The path p = (Sentence passive, 4)
belongs to infinitely many syntax trees of sentences in passive voice. Even
though, the images of those contexts with p as y-path only have the y-path
(Sentence active, 1).

We give an example, which shows that not every partition is path-finite,
nor if its equivalence relation has finite index. Furthermore, path-finiteness is a
proper restriction in reference to partitions with equivalence relations of finite
index. We will give an example for a tree transformation, which is not definable
by a path-finite partition with equivalence relation of finite index.
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(a) The transformation τ . (b) Path (a, 1) induces (B, 1)k.

Figure 5.2: The transformation of Example 5.3, which is not path-finite.

Let (σ, r) be an arbitrary partition. For an input tree u of σ and a path p,
let Cu,p be the set of contexts in the domain of r(u) in which p refers to the
y-labeled node. The partition is path-finite if, for every pair (u, p) of an input
tree and a path, the number of y-paths in images of Cu,p under r(u) is finite.

Definition 5.3 (Path-finite). A partition (σ, r) is called path-finite if for all
u ∈ dom(σ) and each path p ∈ PathsΣ holds

|
⋃
{Pathsy(r(u)(c)) | c ∈ dom(r(u)) ∧ p ∈ Pathsy(c)}| <∞ . (5.3)

That means, for each y-path in input contexts there are only finitely many paths
in corresponding output contexts.

Example 5.3. Consider the tree function

τ : a(bn(d), bk(d)) 7→ Bn+k(D) for all n, k ≥ 0 (5.4)

which maps trees with two subtrees of depth n+1 and k+1, respectively, to one
tree of depth n+ k + 1 (Figure 5.2(a)). We will show that this transformation
has no path-finite partition with finite index (Lemma 5.5). Before that, let us
consider some partitions for τ . The canonical partition (σ∗, r∗) (cf. Page 39) is
path-finite because the images of contexts in the residuals do not contain any
y-paths. However, this partition has infinite index. On the other hand, we can
specify the following partition (σ, r) with the domain Subtrees(dom(τ)):

σ =

{
bn(d) 7→ Bn(D)
a(bn(d), bk(d)) 7→ Bn+k(D)

for all n, k ≥ 0
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r(bn(d)) =

{
a(bm(y), bk(d)) 7→ Bm+k(y)
a(bm(d), bk(y)) 7→ Bm+k(y)

for all n, k,m ≥ 0

r(a(bn(d), bk(d))) = y 7→ y . for all n, k ≥ 0

In contrast to the canonical partition, this partition has finite index. It has two
equivalence classes: The one of all input trees of τ and the one of all proper
subtrees, i.e.,

{a(bn(d), bk(d)) | n, k ≥ 0} and {bn(d) | n ≥ 0} .

However, the partition (σ, r) is not path-finite: For any tree of the form bn(d)
and the path p = (a, 1) we get infinitely many y-paths in the images of all con-
texts containing p as y-path under r(bn(d)) (cf. Figure 5.2(b)). More precisely,
let un = bn(d). Then, we get Cun,p = {a(y, bk(d)) | k ≥ 0}. For the set in
Definition 5.3, it follows

Pathsy(r(un)(Cun,p)) =
⋃
{Pathsy(Bk(y)) | k ≥ 0}

= {(B, 1)k | k ≥ 0} ,

which is an infinite set. As we prove in the following lemma, for this tree function
there is no partition, which combines both properties, i.e., a path-finite partition
with an equivalence relation of finite index. /

The transformation in the Example 5.3 is not definable by a DBTT. The follow-
ing lemma shows that every partition for this transformation is not path-finite
or has an equivalence of infinite index.

Lemma 5.5. There is a tree function τ , which is not definable by a path-finite
partition with finite index.

Proof. Consider the function τ of Example 5.3 and let (σ, r) be a partition
of τ . We show that if (σ, r) has finitely many r-equivalence classes, the par-
tition is not path-finite. For every subtree bn(d) ∈ dom(σ) and every context
a(bm(y), bk(d)) ∈ dom(r(bn(d))) it holds by Lemma 5.1

r(bn(d))(a(bm(y), bk(d))) · σ(bn(d))

= τ(a(bm+nbk(d)))

= Bn+m+k(D) .

Assume ≡r has finite index. Then there are infinitely many input trees of the
form bn(d) with the same residual. Let bn(d) and bm(d) be two trees with the
same residual (for some n 6= m). For every k ≥ 0, there are two possibilities for
the residual:

r(bn(d))(a(y, bk(d))) = Bk+n(D) (5.5)

r(bn(d))(a(y, bk(d))) = Bik(y) for some ik ≥ 0 (5.6)
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First, assume that for some k the image is ground (Equation 5.5). Then, we get
for the output trees

Bk+m(D) = τ(a(bm(d), bk(d)))

= r(bm(d))(a(y, bk(d))) · σ(bm(d))

= r(bn(d))(a(y, bk(d))) · σ(bm(d))

= Bk+n(D) · σ(bm(d))

= Bk+n(D) ,

which is not possible because n 6= m. Thus, for every k, the residual is defined
by Equation 5.6. With that, it follows

Bik(y) · Bk+m−ik(D) = Bk+m(D)

= τ(a(bm(d), bk(d)))

= r(bm(d))(a(y, bk(d))) · σ(bm(d))

= r(bn(d))(a(y, bk(d))) · σ(bm(d))

= Bik(y) · σ(bm(d))

and with that, σ(bm(d)) = Bk+m−ik(D). Since k is arbitrary, but k+m−ik must
be the same for all k, ik must be variable and dependent of k. In particular, the
set {ik | k ≥ 0} is infinite, but then, every image r(bn(d))(a(y, bk(d))) = Bik(y)
has another y-paths. More precisely, (B, 1)ik ∈ Pathsy(r(bn(d))(Cbn(d),(a,1))) for
all ik. Thus, (σ, r) is not path-finite.

It remains to prove that path-finiteness is a necessary property of a partition to
be a partition of a deterministic bottom-up tree transducer, i.e., every partition
of a DBTT is path-finite:

Theorem 5.6. The partition (outT , rT ) of a deterministic bottom-up tree trans-
ducer T is path-finite.

Proof. The idea is given in the beginning of this section: For a node in an input
tree the transducer applies one rule. There are finitely many possibilities for
each node depending on its subtrees. Thus, for a finite y-path in the input
context, there are finitely many different y-paths in its image.

Let T = (Q,Σ,∆, R, F ), u ∈ dom(rT ) and cu ∈ dom(rT (u)). We consider
the path p ∈ Pathsy(cu) and show by induction over the length of p that there
are only finitely many y-paths in the image of the residual of u such that p is a
y-path in the context, i.e., that Equation 5.3 holds.

First, assume p = ε. Thus, cu = y and there is no other context c′ ∈ CΣ(y)
with p ∈ Pathsy(c′). The image rT (u)(cu) is defined by the final function F
of T , i.e., rT (u)(cu) = F (q) for some state q ∈ Q. Thus, the image has only
finitely many different paths. Consequently, the set Pathsy(rT (u)(cu)) of all
y-paths in the image is finite.
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Now assume p = p1.(a, i) for some label a ∈ Σ of rank k and i ≤ k. We have
to prove that the set⋃

{Pathsy(rT (u)(c)) | c ∈ dom(rT (u)) ∧ p ∈ Pathsy(c)}

is finite. Consider a context c ∈ CΣ(y) with p ∈ Pathsy(c), then the context c
can be written as c = c1 · ca with p1 ∈ Pathsy(c1) and (a, i) ∈ Pathsy(ca). If
c ∈ dom(rT (u)), it follows by the definition of rT (cf. Page 41) that u reaches
a state qu ∈ Q and τTqu = rT (u). Thus, c ∈ CT (qu) and rT (u)(c) = τTqu(c). The
transducer processes the context bottom-up. Thus, there is a state qa and some
image za with [[ca]]

T
qu = qa(za). The remaining context is also translated to some

image: τTqa(c1) = z1. These two images build the image of the context c, i.e.,

τTqu(c) = z1 · za. Consequently,

rT (u)(c) = z1 · za .

Furthermore, the tree ca · u reaches state qa with c1 ∈ CT (qa). Thus, we have
ca · u ∈ dom(rT ) and c1 ∈ dom(rT (ca · u)). By induction, the set⋃

{Pathsy(rT (ca · u)(c1)) | c1 ∈ dom(rT (ca · u)) ∧ p1 ∈ Pathsy(c1)}

is finite for ca · u and p1. It remains to prove that there are only finitely many
y-paths in images of ca. Since (a, 1) is the y-path in ca, the context has the form

ca = a(u1, . . . , ui−1, y, ui+1, . . . , uk)

for some subtrees u1, . . . , ui−1, ui+1, . . . , uk ∈ TΣ. Let ui = u. By the definition
of rT (u) we get: There are q1, . . . , qk ∈ Q and output trees v1, . . . , vk ∈ T∆ with
[[uj ]]

T = qj(vj) for all j ∈ [k]. In particular, qi = qu. In addition, the right-hand
side of (a, q1 . . . qk) is R(a, q1 . . . qk) = qa(z

′
a) for some z′a ∈ T∆(Xk). The image

of ca is then given by za = z′a[v1, . . . , vi−1, y, vi+1, . . . , vk]. Thus, the y-paths in
this image are the xi-paths in z′a. However, the number of different images z′a
is bounded by the number of different sequences of states q1 . . . qk. Since Q is
finite, there are only finitely many sequences. For each of these images, the
number of xi-paths is finite. Thus, the set of y-paths⋃

{Pathsy(za) | u ∈ LT (qu) ∧ [[ca]]
T
qu = qa(za) ∧ (a, 1) ∈ Pathsy(ca)}

is finite. Together, we get for p = p1 · (a, 1)

|
⋃
{Pathsy(rT (u)(c)) | c ∈ dom(rT (u)) ∧ p ∈ Pathsy(c)}|

≤ |
⋃
{Pathsy(rT (ca · u)(c1)) | c1 ∈ dom(rT (ca · u))

∧ p1 ∈ Pathsy(c1) ∧ (a, 1) ∈ Pathsy(ca)}|
· |
⋃
{Pathsy(za) | u ∈ LT (qu) ∧ [[ca]]

T
qu = qa(za) ∧ (a, 1) ∈ Pathsy(ca)}|

< ∞ .

Summarizing, we get by Lemma 5.4 and Theorem 5.6 that for every DBTT T ,
its partition (outT , rT ) is path-finite and has finite index.
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5.2 Bottom-Up Partition

For every transformation, infinitely many different partitions are possible. First
of all, there is the canonical partition (cf. Page 39), which realizes the output in
the residual and produces ∗ for every subtree in the subtree function. We can
define arbitrarily many partitions for the same transformation by only changing
the subtree function of the canonical partition. There are also partitions with
different residual functions for one tree function. We figured out that for every
transformation, which is definable by a DBTT, there exists a partition (the
partition of the transducer), which is path-finite and has an equivalence relation
of finite index. However, if a transformation has a path-finite partition with
finite index, in general, the transformation has more than one partition with
these constraints. For instance, we can separate one input tree and define its
output under the subtree function and its residual as in the canonical partition.

In this chapter, we specify a unique partition for every transformation. We
are interested only in transformations, which are definable by DBTTs. Thus, if
there is no path-finite partition with finite index, we fix the canonical partition
as normal form. Otherwise, we present a normal form, which is path-finite and
has finite index. This normal form is a unique partition. In Section 6.3, we
show that this partition is already the partition of a unique DBTT, describing
the given transformation. The normal form has six intrinsic properties:

trim Every subtree produces significant output only if an image of some context
uses it, i.e., contains a y. Otherwise, it produces ∗.

proper The subtrees in an equivalence class are mapped to infinitely many
different output trees. Otherwise, all trees in this class are mapped to ∗.

earliest The output of such an equivalence class with infinitely many different
output trees is produced as early as possible, i.e., there is no common
suffix in all images of the residual of a subtree. This common part would
be produced by the subtree function.

unified earliest The residual of trees in different equivalence classes cannot
be unified by ground trees.

congruent The equivalence relation is a congruence relation.

minimal We consider the partition with the smallest index, which is trim,
proper, earliest, unified earliest, and path-finite.

We show that for every path-finite partition with finite index, there exists ex-
actly one partition, which fulfills all these properties and describes the same
transformation. We will call this unique partition the bottom-up partition of
the transformation if it exists (cf. Definition 5.10).



5.2. Bottom-Up Partition 49

5.2.1 Trim Partition

Similar to trim transducers, we only consider trim partitions. Meaning, for an
input subtree u, σ outputs a tree v 6= ∗ if and only if it is used in some image
of a context of u. Otherwise, it maps u to ∗. Furthermore, every subtree u in
dom(σ) has a non-empty residual. Consider, for instance, the transformation of
sentences in passive voice into sentences in active voice (Figure 1.1). Figure 4.1
shows parts of a possible subtree function, but if the preposition “by” only oc-
curs in the third subtree of the root node, its output is never used. Changing
the output of the subtree Preposition(. . . by . . .) does not change the trans-
formation defined by the suggested partition. Thus, there are infinitely many
different partitions for this transformation. To get a unique partition, we fix
the output for such subtrees to ∗.

We say that the output of u ∈ dom(σ) is useful in a partition (σ, r) if
a context of u exists, whose image under r(u) contains the variable y, i.e.,
r(u)(CΣ(y)) ∩ T̂∆(y) 6= ∅. Otherwise, the output is called useless. A trim
partition restricts the useless outputs of the subtree function.

Definition 5.4 (Trim). A partition (σ, r) is called trim if for each u ∈ dom(σ)
holds dom(r(u)) 6= ∅ and

r(u)(CΣ(y)) ⊆ T∆ ⇔ σ(u) = ∗ .

The non-emptiness of the residuals implies that the domain of a trim parti-
tion (σ, r) contains exactly the subtrees of input trees of its tree function τ ,
i.e., dom(σ) = Subtrees(dom(τ)). The transformations, which are definable by
path-finite partitions with finite index are also definable by trim and path-finite
partitions with finite index. If we restrict the domain and replace useless output
of the subtree function by ∗, we get an equivalent trim and path-finite partition
with the same equivalence relation (restricted to the domain).

Theorem 5.7. For every path-finite partition (σ, r) with finite index exists an
equivalent partition (σ′, r′), which is

- trim,

- path-finite, and

- it holds | ≡r′ | ≤ | ≡r |.

Proof. Let τ be the tree function of the partition (σ, r). First, let

D = {u | u ∈ dom(σ),dom(r(u)) 6= ∅} .

This set equals the set of subtrees of input trees of the transformation τ , i.e.,
D = Subtrees(dom(τ)). We define a subtree function σ′ on D, which differs
from σ (restricted to D) only on useless outputs. It is defined for every u ∈ D
as follows:

σ′(u) =

{
∗ r(u)(CΣ(y)) ⊆ T∆

σ(u) otherwise
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Also r′ is restricted to D. But apart from that, it equals r on this domain. Now
(σ′, r′) is trim and it describes the same tree function τ as (σ, r):

Let c · u ∈ dom(τ). If r(u)(c) ∈ T∆ is ground then

r′(u)(c) · σ′(u) = r(u)(c) · σ′(u) = r(u)(c) = r(u)(c) · σ(u) = τ(c · u) .

Otherwise, σ(u) is useful and we get

r′(u)(c) · σ′(u) = r(u)(c) · σ(u) = τ(c · u) .

Since the residuals on the new domain D do not change, the number of equiva-
lence classes is again finite, more precise, it holds | ≡r′ | ≤ | ≡r |. Furthermore,
if (σ, r) is path-finite, also (σ′, r′) is path-finite.

This theorem can also be enhanced to partitions with infinite index. The canon-
ical partition is trim (every output of the subtree function is ∗) and path-finite
(there are no y-paths in images). If the domain is finite, it has finite index.
With this theorem, we assume in the following that every partition is already
trim.

5.2.2 Proper Partition

If there exists a path-finite partition with finite index for a transformation, then
there may exist more than one. In particular, these different partitions may
have the same index. The next example shows a transformation where two
partitions (both are trim and path-finite) have the same index and there is no
path-finite partition with a smaller index. Thus, these properties do not suffice
to get a unique minimal partition.

Example 5.4. Let us consider the quotient ring of integers modulo 3, i.e.
Z3 = {0, 1, 2}, with addition +3 and multiplication ×3 (modulo 3). We use
prefix notation. Since the operations are commutative, there are six different
(ordered) input pairs. We get the following transformation τ :

+3(〈0, 0〉) 7→ 0 ×3(〈0, 0〉) 7→ 0
+3(〈0, 1〉) 7→ 1 ×3(〈0, 1〉) 7→ 0
+3(〈0, 2〉) 7→ 2 ×3(〈0, 2〉) 7→ 0
+3(〈1, 1〉) 7→ 2 ×3(〈1, 1〉) 7→ 1
+3(〈1, 2〉) 7→ 0 ×3(〈1, 2〉) 7→ 2
+3(〈2, 2〉) 7→ 1 ×3(〈2, 2〉) 7→ 1

Seen as a tree transformation, we get input trees with root +3 or ×3 (of rank 1)
and leaves (of rank 0) in the set

Σ(0) = {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 1〉, 〈1, 2〉, 〈2, 2〉}

To minimize the number of equivalence classes, we have to subsume input sub-
trees such that they have the same residual. One possibility is to subsume all
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subtrees with the same result with respect to the operation ×3. It is done by
the following partition (σ+, r+):

σ+(p) = τ(+3(p)) r+(p) =

{
+3(y) 7→ y
×3(y) 7→ τ(×3(p))

for all pairs p ∈ Σ(0)

σ+(u) = τ(u) r+(u)(y) = y for all u ∈ dom(τ)

The subtree function maps every pair at a leaf to the output if +3 is applied,
for instance σ+(〈0, 1〉) = 1. Thus, the residuals of such pairs map +3(y) to y
and use the pre-produced output. For the context ×3(y), they have to produce
the correct output by the residual, for example r+(〈0, 1〉)(×3(y)) = 0. Thus,
depending on the output of τ(×3(p)), there are three different equivalence classes
of pairs p ∈ Σ(0). Additionally, all whole input trees have the same residual.
They build one further equivalence class.

On the other hand, we can define the partition (σ×, r×) in the same way. It
subsumes the pairs with the same result w.r.t. +3 because this result is realized
by the residual function. Whereas the output of ×3(p) is produced at the leaf p:

σ×(p) = τ(×3(p)) r×(p) =

{
+3(y) 7→ τ(+3(p))
×3(y) 7→ y

for all pairs p ∈ Σ(0)

σ×(u) = τ(u) r×(u)(y) = y for all u ∈ dom(τ)

For the pair 〈0, 1〉, we get σ×(〈0, 1〉) = 0 and r×(〈0, 1〉)(+3(y)) = 1. Again, we
get four equivalence classes (depending on the output of τ(+3(p))).

One can prove that there is no partition for this transformation with less than
four equivalence classes. Thereto consider the possible different residuals. If a
residual maps some context to y, this determines the output of the corresponding
subtree function and influences the images of the other contexts. Thus, for every
leaf there are only a certain number of possible residuals. Hence, we do not have
any unique partition with minimal index for this transformation. /

In this example, we have seen that there is a transformation with different trim
and path-finite partitions. We have to define a new property, which restricts
the number of partitions further. The example shows that it is not sufficient to
take the partition with the minimal index because it is not unique. The problem
in this example is how to segment a finite set of input subtrees in equivalence
classes. To solve that, we postpone finite sets of output trees to the residual.
If there remain no finite sets of output trees of the subtree function for sets of
equivalent input trees except for {∗}, then we have a proper partition.

Definition 5.5 (Proper). A trim partition (σ, r) is called proper if for each
u ∈ dom(σ) holds

σ([u]r) = {∗} or |σ([u]r)| =∞ .

That means, if there is an input tree u with output tree σ(u) different to ∗,
there are infinitely many output trees of σ, for which the input tree has the
same residual r(u). The residual r(u) of a tree u with |σ([u]r)| = ∞ then is
called essential. Otherwise, if σ(u) = ∗, the residual r(u) is called inessential.
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As the property trim, also this property does not limit the set of transforma-
tions which are definable by proper partitions with finite index. For every finite
set of output trees of r-equivalent input trees of σ, we postpone the output to
the residual. The number of equivalence classes of the new partition is linear in
the index of ≡r.

Theorem 5.8. For every path-finite partition (σ, r) with finite index, there
exists an equivalent partition (σ′, r′), which is

- proper

- path-finite

- and has finite index.

Proof. Let τ be the tree function of (σ, r). We define a partition (σ′, r′) on the
domain of (σ, r). The new subtree function is given by:

σ′(u) =

{
σ(u) if |σ([u]r)| =∞
∗ otherwise.

In order of the new partition defining the same tree function, we have to change
the residual of subtrees u with |σ([u]r)| < ∞, and we have to postpone the
output of σ.

r′(u)(c) =

{
r(u)(c) if |σ([u]r)| =∞
r(u)(c) · σ(u) otherwise.

Now we prove that this pair (σ′, r′) is a proper and path-finite partition with
finite index, which describe τ :

- The pair (σ′, r′) describes the same tree function τ as (σ, r) and it is
consistent: Let c · u ∈ dom(τ). Then u ∈ dom(r) and c ∈ dom(r(u)). If
the set of outputs of r-equivalent trees of u is infinite, i.e., |σ([u]r)| =∞,
then

r′(u)(c) · σ′(u) = r(u)(c) · σ(u) = τ(c · u) .

Otherwise, if there are only finitely many outputs, |σ([u]r)| <∞, then

r′(u)(c) · σ′(u) = r(u)(c) · σ(u) · ∗ = r(u)(c) · σ(u) = τ(c · u) .

Thus, (σ′, r′) is a partition for the transformation τ .

- The partition is trim: The partition (σ, r) is trim. Thus, for every subtree
u ∈ dom(r) with |σ([u]r)| =∞, the trim condition

r(u)(CΣ(y)) ⊆ T∆ ⇔ σ(u) = ∗

holds also for (σ′, r′) on these trees. Otherwise, the output of σ′ is ∗ and
the range of the residual is in T∆ because σ(u) ∈ T∆ and with that also
r′(u)(c) = r(u)(c) · σ(u) for all c ∈ dom(r′(u)).
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- It is proper: Assume it is not proper, then there is a tree u ∈ dom(r′)
with

|σ′([u]r′)| <∞ and σ′([u]r′) 6= {∗} .

It follows that there must be a r′-equivalent tree u′ ≡r′ u with σ′(u′) 6= ∗.
Then, by the construction of σ′, the tree u′ gets its output by σ, i.e.,
σ′(u′) = σ(u′), which includes |σ([u′]r)| =∞. Additionally, every tree u′′,
which is r-equivalent to u′, i.e., u′′ ≡r u′, is in the same infinite equiv-
alence class: |σ([u′′]r)| = ∞. This implies that for all these trees, σ′

and r′ are defined as σ and r, respectively, i.e., σ′(u′′) = σ(u′′) and
r′(u′′) = r(u′′). Since all these trees are r-equivalent, we get

r′(u′′) = r(u′′) = r(u′) = r′(u′) .

With that, the trees are also equivalent w.r.t r′. Thus, the r′-equivalence
class of u is infinite:

[u]r′ = [u′]r′ ⊇ [u′]r .

It causes a contradiction because the set of output trees is infinite, too:

|σ′([u]r′)| = |σ′([u′]r′)| > |σ([u′]r)| =∞ .

- The partition is path-finite: Since the residual under r′ of a tree u equals
the residual under r or it is a subset of the set T∆ of ground terms. Thus,
for the set of y-paths in the images we get for every c ∈ dom(r′(u)):

Pathsy(r′(u)(c)) ⊆ Pathsy(r(u)(c))

If (σ, r) is path-finite, also (σ′, r′) is path-finite.

- It remains to proof that the index of the equivalence relation ≡r′ is finite.
Consider two r-equivalent trees u ≡r u′. If |σ([u]r)| = ∞ then they have
the same residual under r′: r′(u) = r(u) = r(u′) = r′(u′). Hence, u and u′

are equivalent w.r.t. r′, too: u ≡r′ u′. For every equivalence class [u]r
with |σ([u]r)| = ∞, there is one equivalence class [u]r′ . Thus, there are
only finitely many classes of this form.

Assume that |σ([u]r)| < ∞ and σ(u) = σ(u′). For every c ∈ dom(r(u)),
we get

r′(u)(c) = r(u)(c) · σ(u) = r(u′)(c) · σ(u′) = r′(u′)(c)

Thus, the two trees u and u′ are r′-equivalent, i.e., u ≡r′ u′. For ev-
ery equivalence class [u]r with |σ([u]r)| < ∞, there are at most |σ([u]r)|
equivalence classes

[u]r′ = {u′ | σ(u) = σ(u′), u ≡r u′} .

Thus, the number of equivalence classes of ≡r′ is finite.
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Example 5.5. For the transformation τ of Example 5.4 we get the following
proper partition (σ, r), which is also path-finite and has finite index. This
partition produces the output as late as possible because every output set (of
equivalent input trees) is finite. Starting with an arbitrary (path-finite and
trim) partition of τ , we get the following:

σ(p) = ∗ r(p) =

{
+3(y) 7→ τ(+3(p))
×3(y) 7→ τ(×3(p))

for all pairs p ∈ Σ(0)

σ(u) = ∗ r(u)(y) = τ(u) for all u ∈ dom(τ)

This partition is the canonical partition (σ∗, r∗) (Page 39). It has twelve different
equivalence classes, but for this transformation, it is the only partition (for a
fix symbol ∗), which is proper. /

5.2.3 Earliest Partition

In the previous section, we introduced a partition where finite sets of outputs are
postponed to the residual, i.e., trivial outputs are produced as late as possible.
If we have infinitely many outputs for an equivalence class, there also may be
different partitions with the same index, which fulfill the properties mentioned
until here. If we postpone infinitely many outputs to the residuals, we get an
infinite index. To preserve the finiteness, we contrarily produce the output as
early as possible, i.e., by the subtree function instead of the residual.

Example 5.6. Consider the following transformation (Figure 5.3):

τ : bn(e) 7→ Bn+1(E) for all n ∈ N0

This function copies the input tree (only changing the labels to capital letters),
and adds an additional B-labeled node. If we want to define a partition, we have
to decide whether we produce this additional node by the subtree function or
by the residual. If we add the B-node in the residual (for every tree), we get the
partition (σ, r) with

σ(bn(e)) = Bn(E) for all n ∈ N0

r(bn(e))(bk(y)) = Bk+1(y) for all n, k ∈ N0

The other way around, we get the partition (σ′, r′) with

σ′(bn(e)) = Bn+1(E) for all n ∈ N0

r′(bn(e))(bk(y)) = Bk(y) for all n, k ∈ N0

which produces the additional node in the subtree function (Figure 5.3). Both
partitions fulfill all the former conditions, i.e., they are path-finite, proper and
have finite index. In particular, the index is 1. They have both the minimal
index. /
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(a) The “latest” partition (σ, r). (b) The earliest partition (σ′, r′).

Figure 5.3: The transformation of Example 5.6 with two different partitions.

To get a unique partition in the end, we have to indicate one partition. In
the previous section, we have postponed finite sets of outputs at the cost of
a minimal index. If we now postpone infinite sets of outputs, we may get an
infinite index. Which contradicts the goal of a partition, which is definable by a
DBTT. Instead, we will move common parts of images to the subtree function,
without increasing the number of equivalence classes. In the given example,
we would choose the second partition (σ′, r′) where the additional B-node is
produced as early as possible (Figure 5.3(b)).

Formally, for a context function ϕ : CΣ(y) 99K T∆(y) let Ẑ(ϕ) denote the set
of images z ∈ T̂∆(y) in the range of ϕ. Thus, every tree in Ẑ(ϕ) contains an
occurrence of the variable y. Then we define the greatest common suffix of ϕ as
the greatest common suffix (Page 19) of all trees in Ẑ(ϕ), i.e.,

gcs(ϕ) = gcs(Ẑ(ϕ)) =
⊔
Ẑ(ϕ)

w.r.t. the order v on T̂∆(y)⊥ from Section 2.3. Note that the least upper bound
for the empty set in this order is ⊥, i.e.,

⊔
∅ = ⊥. Thus, the greatest common

suffices of inessential residuals are defined and equal ⊥.

Let (σ, r) be a partition of a function τ . The greatest common suffix of an
input tree u ∈ dom(σ) with respect to a residual function r is defined as the
greatest common suffix of its residual, i.e.,

gcs(u) = gcs(r(u)) .

Analogically, we use Ẑ(u) = Ẑ(r(u)).
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Definition 5.6 (Earliest). A proper partition (σ, r) is called earliest if for all
trees u ∈ dom(r) holds gcs(u) ∈ {y,⊥}.

The greatest common suffix of a tree u in an earliest partition is ⊥ if all images
of contexts under r(u) are ground, i.e., r(u) is inessential. Otherwise, if there
exists an image z = r(u)(c) for some context c, then gcs(u) = y. For every subset
of T̂∆(y) the least upper bound w.r.t. v exists (cf. Section 2.3). Note that the
canonical partition is earliest, because all residuals are inessential and, thus,
have the greatest common suffix ⊥. Assume that for a transformation τ a path-
finite partition with finite index exists. We show that for such a transformation τ
an earliest partition exists, which, in addition, is also path-finite and has finite
index:

Theorem 5.9. For every proper and path-finite partition (σ, r) with finite index,
there exists an equivalent partition (σ′, r′), which is

- earliest,

- path-finite and

- has finite index.

Proof. Let τ be the tree function of (σ, r). Since (T̂∆(y)⊥,v) is a complete lat-
tice satisfying the ascending chain condition, the greatest common suffix gcs(u)
(w.r.t. r) exists for every tree u ∈ dom(σ).

We define a partition (σ′, r′) on the domain of (σ, r). The new subtree
function is given by:

σ′(u) =

{
∗ if gcs(u) = ⊥
gcs(u) · σ(u) otherwise.

and the new residual r′(u) of a tree u ∈ dom(r) is defined by

r′(u)(c) =

{
r(u)(c) if gcs(u) = ⊥
z with r(u)(c) = z · gcs(u), otherwise.

Let gcs(u) and gcs′(u) denote the greatest common suffix of trees u ∈ dom(σ)
w.r.t. r and r′, respectively. First, we observe the following:

1. For all u ∈ dom(r) holds gcs(u) = ⊥ ⇔ gcs′(u) = ⊥. This follows by the
definition of (σ′, r′): If gcs(u) = ⊥, the residual is the same for r and r′.
Thus, the greatest common suffix is the same. If gcs(u) 6= ⊥, then there
is a context c such that its image under r(u) is not ground. But then also
r′(u)(c), which is determined by r(u)(c) = r′(u)(c) · gcs(u), is in T̂∆(y),
too. With that, gcs′(u) 6= ⊥.

2. For all u ∈ dom(r) holds σ(u) = ∗ ⇔ σ′(u) = ∗ because

σ(u) = ∗ trim⇐⇒ r(u)(CΣ) ⊆ T∆

⇐⇒ gcs(u) = ⊥
⇐⇒ σ′(u) = ∗ .
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3. For all u, u′ ∈ dom(r) holds u ≡r u′ =⇒ u ≡r′ u′. It holds because u
and u′ have the same residual w.r.t. r if they are r-equivalent. Further-
more, if their gcs(r(u)) is ⊥, then their residual under r′ is the same as
under r. Thus, they are also r′-equivalent. Otherwise, if gcs(r(u)) 6= ⊥,
the new image for a context c equals for r′(u) and r′(u′):

r′(u)(c) ·gcs(u) = r(u)(c) = r(u′)(c) = r′(u′)(c) ·gcs(u′) = r′(u′)(c) ·gcs(u)

With Proposition 2.1 follows r′(u)(c) = r′(u′)(c) because gcs(u) ∈ T̂∆(y).

Now we show that (σ′, r′) is a trim, proper, path-finite and earliest partition
with finite index, which describes τ .

- It is consistent and defines τ : Let c · u ∈ dom(τ). Then u ∈ dom(r) and
c ∈ dom(r(u)). If the greatest common suffix of u is ⊥, i.e., gcs(u) = ⊥,
then Ẑ(u) = ∅. That means, all images of contexts of u are ground and
since (σ, r) is trim, it follows σ(u) = ∗. We get

r′(u)(c) · σ′(u) = r(u)(c) · ∗ = r(u)(c) · σ(u) = τ(c · u) .

Otherwise, if gcs(u) ∈ T̂∆(y), we get

r′(u)(c) · σ′(u) = r′(u)(c) · gcs(u) · σ(u) = r(u)(c) · σ(u) = τ(c · u) .

Consequently, (σ′, r′) is a partition for the transformation τ .

- The new partition is trim: Let u ∈ dom(σ′). Then it follows:

σ′(u) = ∗ ⇔ σ(u) = ∗ Property 2

⇔ r(u)(CΣ) ⊆ T∆ (σ, r) is trim

⇔ gcs(u) = ⊥ Def. gcs

⇔ r′(u)(CΣ) = r(u)(CΣ) ⊆ T∆ Def. r′

- It is proper: Let u ∈ dom(σ′) be a tree with σ′(u) 6= ∗. Then it follows
with Property 2 that also σ(u) 6= ∗. This implies that there are infinitely
many different output trees of r-equivalent input trees, i.e., |σ([u]r)| =∞.
All trees u′ ≡r u have the same gcs(u′) = gcs(u) ∈ T̂∆(y). With Property 3
we know that [u]r ⊆ [u]r′ . It follows:

σ′([u]r′) ⊇ {gcs(u) · v | v ∈ σ([u]r)}

Thus, |σ([u]r′)| =∞

- The partition is earliest: Let u ∈ dom(r). If gcs(u) = ⊥, with Property 1
it follows that also gcs′(u) = ⊥. Otherwise, assume gcs(u) 6= ⊥. Then,
we know for every context c with r′(u)(c) ∈ T̂∆(y) that r′(u)(c) v gcs′(u).
Furthermore,

r(u)(c) = r′(u)(c) · gcs(u) v gcs′(u) · gcs(u) .

Since this holds for every context c with non-ground image r(u)(c), we
also get gcs(u) v gcs′(u) · gcs(u). Thus, gcs′(u) = y.
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- It is path-finite: Let u ∈ dom(σ′), c ∈ dom(r′(u)) and p a y-path in
Pathsy(r′(u)(c)). Since p is an y-path in r′(u)(c), this image is in T̂∆(y).
Thus, it fulfills the equation

r′(u)(c) · gcs(u) = r(u)(c) .

Also gcs(u) is in T̂∆(y) and there is a y-path p′ ∈ Pathsy(gcs(u)) such
that p · p′ is a y-path in r(u)(c), i.e., p · p′ ∈ Pathsy(r(u)(c)). With

|Pathsy(r′(u)(CΣ))| ≤ |Pathsy(r(u)(CΣ))| ,

it follows that (σ′, r′) is path-finite because (σ, r) is path-finite.

- The equivalence relation ≡r′ has finite index: With Property 3, we get
that ≡r′ is a coarsening of ≡r. Thus, the index of (σ′, r′) is less or equal
the index of (σ, r), which is finite.

Returning to the example in the beginning of this section, we see that we already
have found an earliest partition:

Example 5.7. Let us consider the greatest common suffices of the different
residuals in the two partitions of Example 5.6. For the first partition (σ, r) we
get the same residual for every input subtree bn(e) (for every n ∈ N0). The set
of images is

Ẑ(bn(e)) = r(bn(e))(CΣ) = {Bk+1(y) | k ∈ N0} .

Thus, gcs(bn(e)) =
⊔
Ẑ(bn(e)) = B(y). This partition is not earliest, but if we

apply the construction of the proof, we get exactly the second partition (σ′, r′)
with

gcs(r′(bn(e))) =
⊔
r′(bn(e))(CΣ) =

⊔
{Bk(y) | k ∈ N0} = y

for every n ∈ N0. Hence, this partition is earliest. /

5.2.4 Unified Partition

In the Example 5.4, we considered a tree function with different partitions, which
are not proper. We had to decide how to subsume the leaves to equivalence
classes. The obvious possibilities were either by the result of +3 or by the result
of ×3. This gave us two different partitions of the same index. We solved
that by taking a proper partition. In that case, the involved equivalence classes
have finitely many different outputs. Now there is a similar case for equivalence
classes with infinitely many outputs. There may be an input subtree u for which
we can choose two different output trees v and v′, which cause different essential
residuals for u. Nevertheless, we want to define the same transformation. Hence,
the residuals only differ somehow in the subtrees v and v′ in the images, i.e.,
the two residuals are unifiable by 〈v, v′〉 (cf. Page 20). Consider the following
example, which presents a partition with two unifiable essential residuals.
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Figure 5.4: The function τmgu of Example 5.8.

The subtree function σ is defined (for all n ∈ N0) by:

g(d(bn(e))) 7→ G(D, Bn(E)) g(d′(bn(e))) 7→ G(D, Bn+1(E))

d(bn(e)) 7→ Bn(E) d′(bn(e)) 7→ Bn(E)

bn(e) 7→ Bn(E) g(f(bn(a))) 7→ ∗
bn(a) 7→ Bn(E) f(bn(a)) 7→ E

The residual of bn(e) (for all n ∈ N0) is given by (with k ∈ N0):

d(bk(y)) 7→ A(Bk(y), E) d′(bk(y)) 7→ A(Bk+1(y), Bk(y))

g(d(bk(y))) 7→ G(D, Bk(y)) g(d′(bk(y))) 7→ G(D, Bk+1(y)) .

For bn(a) (for all n ∈ N0) we have the residual (with k ∈ N0)

bk(y) 7→ Bk(y) f(b
k
(y)) 7→ A(B(E), E) g(f(b

k
(y))) 7→ G(D, B(E)) .

For all other input subtrees, we have the following residual for all n ∈ N0:

r(u)
u σ(u) y g(y)

g(d(bn(e))) G(D, Bn(E)) y
g(d′(bn(e))) G(D, Bn+1(E)) y
g(f(bn(a))) ∗ G(D, B(E))
d(bn(e)) Bn(E) A(y, E) G(D, y)
d′(bn(e)) Bn(E) A(B(y), y) G(D, B(y))
f(bn(a)) E A(B(y), y) G(D, B(y))

Figure 5.5: The partition (σ, r) for the tree function τmgu of Example 5.8.
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Example 5.8. The Figure 5.4 illustrates the following function τmgu (∀n ∈ N0):

g(d(bn(e))) 7→ G(D, Bn(E)) g(f(bn(a))) 7→ G(D, B(E))

g(d′(bn(e))) 7→ G(D, Bn+1(E)) f(bn(a)) 7→ A(B(E), E)

d(bn(e)) 7→ A(Bn(E), E) bn(a) 7→ Bn(E)

d′(bn(e)) 7→ A(Bn+1(E), Bn(E))

All input trees are monadic. Note that the input trees on the left-hand side
differ pairwise in the node with label d and d′. On the right-hand side, we have
another leaf with label a; the d-labeled node is replaced by a node with label f.
The subtrees of the form bn(e) on the left-hand side do not have an image. In
contrast to that, all subtrees on the right-hand side have an image.

Now let us define a partition, which is earliest, path-finite and has finite in-
dex. We first consider the left-hand side. Let un = bn(e) for all n ∈ N0. For this
subtrees un (for every n ∈ N0), the subtree function has to output Bn(E). This
is necessary because this is the common part of the images of g(d(bn(e))) and
d(bn(e)), which depends on the number n of b-labeled nodes in un. Otherwise,
it contradicts one of the mentioned properties. We get the following subtree
function σ for the input trees on the left-hand side (∀n ∈ N0):

g(d(un)) 7→ G(D, Bn(E)) g(d′(un)) 7→ G(D, Bn+1(E))

d(un) 7→ Bn(E) d′(un) 7→ Bn(E)

un 7→ Bn(E)

With the restriction of the mentioned properties, the corresponding residual
function r is defined as follows. For the input subtrees un for every n ∈ N0 we
get the residual (for all k ∈ N0)

d(bk(y)) 7→ A(Bk(y), E) d′(bk(y)) 7→ A(Bk+1(y), Bk(y))

g(d(bk(y))) 7→ G(D, Bk(y)) g(d′(bk(y))) 7→ G(D, Bk+1(y)) .

For the other elements in dom(σ) we have for all n ∈ N0:

r(u)
u y g(y)

g(d(bn(e))) y
g(d′(bn(e))) y
d(bn(e)) A(y, E) G(D, y)
d′(bn(e)) A(B(y), y) G(D, B(y))

We get four different residuals and there is no possibility to cut it down to
three or less. Now consider the trees on the right-hand side. Again, we have
to produce Bn(E) for the subtrees bn(a). The trees g(f(bn(a))) have only the
context y. Thus, we produce G(D, B(E)) by the residual and output ∗ by the
subtree function, to get a proper partition.
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However, for the tree f(bn(a)), there are different possibilities. First, let us
consider the residual if

σ(f(bn(a))) = B(E) .

We get
r(u)

u y g(y)
f(bn(a)) A(y, E) G(D, y)

This residual equals the residual of d(bn(e)). Thus, we do not get a new equiva-
lence class. This partition (σ, r) is completely given in Figure 5.5. On the other
hand, one can choose

σ(f(bn(a))) = E .

Then the residual equals the residual of d′(bn(e)):

r(u)
u y g(y)

f(bn(a)) A(B(y), y) G(D, B(y))

We have the same number of equivalence classes as before. Both of these par-
titions fulfill the former properties. /

This example shows that the properties path-finite, earliest, and having finite
index do not suffice to get a unique partition. The problem for the transforma-
tion of the example is that the two residuals of u = d(b(e)) and u′ = d′(b(e))
have a unifier. That means, the pair 〈B(E), E〉 fulfills the following condition.
For all contexts c ∈ dom(r(u)) = dom(r(u′)) holds:

r(u)(c) · B(E) = r(u′)(c) · E (5.7)

In Section 2.3, the most-general unifier of two trees is introduced and it is
extended to the most-general unifier of a set of pairs of trees (Page 21). Here,
we consider the most-general unifier of two residuals. It is the most-general
unifier of the set of pairs of images corresponding to the same context.

Formally, for context functions ϕ,ϕ′ : CΣ(y) 99K T∆(y) let

C(ϕ,ϕ′) = {(ϕ(c), ϕ′(c)) | c ∈ dom(ϕ)}

if dom(ϕ) = dom(ϕ′) and C(ϕ,ϕ′) is undefined, otherwise. Then the most-
general unifier of two context functions ϕ and ϕ′ is

mgu(ϕ,ϕ′) =

{
⊥ if C(ϕ,ϕ′) is undefined
mgu(C(ϕ,ϕ′)) otherwise.

As for trees, we say that two context functions are unifiable if the most-general
unifier is not ⊥. For example, Equation 5.7 shows that the residuals r(d(b(e)))
and r(d′(b(e))) are unifiable with the unifier 〈B(E), E〉. This is already the most-
general unifier of r(d(b(e))) and r(d′(b(e))), i.e.,

mgu(r(d(b(e))), r(d′(b(e)))) = 〈B(E), E〉 .
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Let (σ, r) be a path-finite and earliest partition with finite index. The most-
general unifier mgu(r(u1), r(u2)) = 〈z1, z2〉 for unifiable residuals r(u1), r(u2) of
input trees u1, u2 ∈ dom(r) has the following properties:

- If r(ui) is inessential, then r(ui)(CΣ) ∈ T∆. Therefore, zi = >.

- Moreover, z1 contains y iff z2 contains y. If both z1 and z2 contain y, the
mgu must equal 〈y, y〉, otherwise the partition would not be earliest.

If a ground term v is in the set of outputs σ([u]r) of an equivalence class with
residual r(u), then v is called realizable in r(u). Note that the ground terms z
occurring in most-general unifiers of residuals are, however, not necessarily re-
alizable.

Definition 5.7 (Unified Earliest). An earliest partition (σ, r) is called unified
earliest if no ground term in most-general unifiers of residuals of r is realizable.

Assume for a path-finite and earliest partition with finite index, the most-general
unifiers for pairs of residuals are known. Then an equivalent unified earliest
partition can be constructed, which is again path-finite and has finite index.

Theorem 5.10. For each earliest and path-finite partition (σ, r) with finite
index, there exists an equivalent partition (σ′, r′), which is

- unified earliest,

- path-finite and

- has finite index.

Proof. Let τ be the tree function of (σ, r) and Z the set of all subtrees of ground
most-general unifiers, i.e.,

Z = Subtrees{z ∈ T∆ | u, u′ ∈ dom(r),mgu(r(u), r(u′)) = 〈z, z′〉 for some z′} .

Then we define the new partition (σ′, r′) for the same domain as follows.

σ′(u) = ∗ and r′(u)(c) = r(u)(c) · σ(u) if σ(u) ∈ Z (5.8)

σ′(u) = σ(u) and r′(u)(c) = r(u)(c) if σ(u) /∈ Z (5.9)

Since the new definition of r′(u) only depends on r(u) and σ(u), it is a well-
defined partition. First, we observe:

1. If the new residual under r′ of a tree u do not equals the former resid-
ual r(u), then it is inessential (because all σ(u) ∈ Z are ground).

2. The number of new residuals is finite. This follows because ≡r has finite
index. Hence, the number of different most-general unifiers is finite, too.
A new residual r′(u) for a tree u is composed by an old residual r(u) and
a ground subterm of a most-general unifier.
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Now we have to prove that (σ′, r′) is unified earliest and path-finite, has finite
index, and is equivalent to (σ, r).

- The partition (σ′, r′) defines τ : Let u ∈ dom(σ). Assume the output of u
is in Z, i.e., σ(u) ∈ Z. Then we get:

τ(c · u) = r(u)(c) · σ(u) = r′(u)(c) = r′(u)(c) · ∗ = r′(u)(c) · σ′(u)

Otherwise, if σ(u) /∈ Z, it is the same as for (σ, r), i.e.,

τ(c · u) = r(u)(c) · σ(u) = r′(u)(c) · σ′(u) .

Thus, the tree function of (σ′, r′) is τ .

- (σ′, r′) is trim: If σ′(u) 6= ∗ then r′(u)(CΣ(y)) = r(u)(CΣ(y)), which is no
subset of T∆ because (σ, r) is trim. If σ′(u) = ∗ then

r′(u)(CΣ(y)) = r(u)(CΣ(y)) · σ(u) ⊆ T∆ .

- It is proper: This follows directly by Property 2. New outputs under σ′

are ∗ only. In addition, the number of outputs that are changed is finite.
Thus, the infinite sets of equivalence classes with essential residual are
only reduced by a finite number.

- The partition (σ′, r′) is earliest and path-finite: For essential residuals
nothing changes (Property 1). Thus, their greatest common suffices re-
main y and the number of y-paths is the same as in r. The greatest
common suffix of an inessential residual is ⊥. The set of y-paths in the
images is empty.

- The partition is unified earliest. Assume there exists a tree u ∈ dom(σ′)
with mgu(r′(u), r′(u′)) = 〈σ′(u), z〉 for some z. Then r′(u) is not inessen-
tial and with Property 1, it equals r(u) and σ′(u) = σ(u). Assume
r′(u′) = r(u′), then 〈σ′(u), z〉 is also the most-general unifier of r(u)
and r(u′). However, then σ′(u) = σ(u) is in Z and σ′(u) = ∗ cannot
be part of the most-general unifier. Otherwise, if r′(u′) 6= r(u′), it is
inessential and we get for every c ∈ dom(r(u′)):

r(u)(c) · σ(u) = r′(u)(c) · σ′(u) = r′(u′)(c) = r(u′)(c) · σ(u′)

Thus, mgu(r(u), r(u′)) = 〈σ(u), σ(u′)〉 and with that, σ(u) is in Z. This
contradicts the assumption that r′(u) is essential.

- The equivalence relation ≡r′ has finite index: Since r has finite index and
we only get finitely many new residuals (Property 2), the index of r′ is
finite, too.

We have seen on Page 61 that the partition (σ, r) in Example 5.8 is not unified
earliest. In the following example, we apply the construction of the proof to
that partition.
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Example 5.9. Consider again the tree function τmgu of the Example 5.8. We
want to define a unified earliest partition for this function. Continuing along
the construction in the proof (Equations 5.8 and 5.9), we start with the parti-
tion (σ, r) of Example 5.8. The complete partition (σ, r), which is not unified
earliest, was given in Figure 5.5.

The residual function r maps for arbitrary n,m ∈ N0 the trees un = d(bn(e))
and u′m = d′(bm(e)) to unifiable residuals. As seen on Page 61, for those trees
holds for every context c ∈ dom(r(un)): r(un)(c) · B(E) = r(u′m)(c) · E. It follows

mgu(r(un), r(u′m)) = 〈B(E), E〉 .

Additionally, there is another non-trivial most-general unifier (of the residuals
in the first and third lines of the table on Page 59):

mgu(r(g(d(bn(e)))), r(g(f(bn(a))))) = 〈G(D, B(E)),>〉

Thus, the set of subtrees of ground unifiers as described in the proof is

Z = {G(D, B(E)), D, B(E), E} .

To get a unified earliest partition, we have to change the output and the residual
of every tree u with σ(u) ∈ Z. For instance, we have σ(e) = E. Thus, we get
σ′(e) = ∗ and the residual r′(e) is defined by

d(bk(y)) 7→ A(Bk(E), E) d′(bk(y)) 7→ A(Bk+1(E), Bk(E))

g(d(bk(y))) 7→ G(D, Bk(E)) g(d′(bk(y))) 7→ G(D, Bk+1(E)) .

For the sake of completeness, we present the unified earliest partition in Fig-
ure 5.6. The proof provides that this partition is also path-finite and has finite
index. /

5.2.5 Congruence Relation

Having a closer look at the partition constructed in the proof of Theorem 5.10,
we observe that the equivalence relation ≡r′ is a congruence relation, i.e., for
equivalent trees the same context results in equivalent trees (cf. Page 21).
In general, this is not implicitly given if a partition is unified earliest. The
following Example 5.10 presents a further partition for the tree function τmgu of
Example 5.8. Even though this partition is unified earliest, path-finite, and has
finite index, the partition’s equivalence relation is not a congruence.

Example 5.10. Consider the tree function τmgu in Figure 5.4. The following
partition (σ̂, r̂) is unified earliest, path-finite, and has finite index. It differs from
the partition (σ, r) of Example 5.8 only for those trees, which realize a ground
most-general unifier. In contrast to that, the partition (σ′, r′) of Example 5.9
never outputs any ground subtree of a most-general unifier, although if it is not
involved.
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In comparison to the partition (σ, r), the residual and the output of bn(e)
and bn(a) (for all n ∈ N0) does not change (Figure 5.5), i.e.,

r̂(bn(e)) = r(bn(e)) σ̂(bn(e)) = Bn(E)

r̂(bn(a)) = r(bn(a)) σ̂(bn(a)) = Bn(E) .

Apart from that, the subtree function σ̂ and the residual function r̂ are defined
by

r̂(u)
u σ̂(u) y g(y)

g(d(b
n
(e))) G(D, B

n
(E)) y n ∈ N0

g(d′(b
n
(e))) G(D, B

n+1
(E)) y n ∈ N0

g(f(b
n
(a))) ∗ G(D, B(E)) n ∈ N0

d(b
n
(e)) Bn(E) A(y, E) G(D,y) n 6= 1

d′(b
n
(e)) Bn(E) A(B(y),y) G(D, B(y)) n 6= 0

d(b(e)) ∗ A(B(E), E) G(D, B(E))
d′(e) ∗ A(B(E), E) G(D, B(E))

f(b
n
(a)) ∗ A(B(E), E) G(D, B(E)) n ∈ N0

The two trees e and b(e) are equivalent. However, if we enhance the trees by the
context d(y), we get non-equivalent trees d(e) and d(b(e)). Thus, this partition
is not congruent, but it is unified earliest, path-finite and has finite index. /

This example shows that congruence is not implied by the previous properties.
However, the proof of Theorem 5.10 provides an equivalent partition with con-
gruence relation for every path-finite partition with finite index. To prove this,
we first define the image of a subcontext c of a context c′ · c of a tree u. This
(unique) image does not exists in every partition. We will show for every unified
earliest, path-finite partition with finite index holds: If for every pair c, u there
is a unique image of c, depending on c and u only, the equivalence relation is
already a congruence relation (and vice versa).

Definition 5.8. Let (σ, r) be a partition, u ∈ dom(σ), and c ∈ CΣ(y) with
c · u ∈ dom(σ). Let Zu,c ⊆ T∆(y) be the set of possible images of c w.r.t. u, i.e.,
z ∈ Zu,c iff for all contexts c′ ∈ dom(r(c · u)) holds

r(c · u)(c′) · z = r(u)(c′ · c) .

The dedicated image di(u)(c) ∈ T∆(y) of c w.r.t. u is then defined by:

- If r(c·u) is essential and Zu,c is a singleton, it is the unique image z ∈ Zu,c.

- If r(c · u) is inessential and Zu,c 6= ∅, it equals ∗.

- Otherwise, it is undefined.

Note that in this definition, it is not required that c is a context of u w.r.t. r,
i.e., c is not necessarily in dom(r(u)). Furthermore, c ∈ dom(r(u)) does not
imply di(u)(c) = r(u)(c).
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If the dedicated image of c ∈ CΣ(y) w.r.t. u ∈ dom(σ) is defined, the following
holds for all contexts c′ ∈ dom(r(c · u)):

r(c · u)(c′) · di(u)(c) = r(u)(c′ · c) (5.10)

Example 5.11. Consider again the tree function in Figure 5.4 and the par-
tition (σ′, r′) in Example 5.9: For all trees u ∈ dom(σ′), c ∈ CΣ(y) with
c ·u ∈ dom(σ′) the dedicated image di(u)(c) with respect to the partition (σ′, r′)
in Example 5.9 exists. Consider for instance u = b(e) and c = d(y). The
residual r′(d(b(e))) is inessential and for every c′ ∈ dom(r′(b(e))) holds the
Equation 5.10:

r′(d(b(e)))(y) · ∗ = A(B(E), E) = r′(b(e))(d(y))

r′(d(b(e)))(g(y)) · ∗ = G(D, B(E)) = r′(b(e))(g(d(y)))

Thus, the dedicated image di(e)(b(y)) equals ∗.
With respect to the partition (σ̂, r̂) of Example 5.10, the dedicated image

does not exist for every pair u, c. Consider the same pair: u = b(e) and c = d(y).
For every z holds:

r̂(d(b(e)))(y) · z = A(B(E), E) 6= A(y, E) = r̂(b(e))(d(y))

r̂(d(b(e)))(g(y)) · z = G(D, B(E)) 6= G(D, y) = r̂(b(e))(g(d(y))) /

This example shows that not for every unified earliest, path-finite partition
with finite index the dedicated images are defined. However, another property
of the counterexample partition (σ̂, r̂) is that its equivalence relation is not
a congruence (cf. Example 5.10). We will show that we can generalize this
observation, i.e., for every unified earliest, path-finite partition with finite index,
these properties are equivalent.

Lemma 5.11. For every unified earliest and path-finite partition (σ, r) with
finite index, the following are equivalent

1. The equivalence ≡r is a congruence relation.

2. For all u ∈ dom(σ) and every c ∈ CΣ(y) with c ·u ∈ dom(σ), the dedicated
image di(u)(c) is defined.

Proof. Let τ be the tree function defined by (σ, r). First, assume that ≡r is a
congruence, i.e., for all c ∈ CΣ(y) with c · u ∈ dom(σ) holds:

u ≡r u′ =⇒ c · u ≡r c · u′ .

Let u ∈ dom(σ) and c ∈ CΣ(y) with c · u ∈ dom(σ). For every c′ ∈ dom(r(c · u))
holds

r(c · u)(c′) · σ(c · u) = r(u)(c′ · c) · σ(u) .
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Assume r(c · u) is inessential but r(u) is essential. Then there is a tree u′ ≡r u
with σ(u′) 6= σ(u). Furthermore, it holds c · u ≡r c · u′. Thus, we get for all
c′ ∈ dom(r(c · u))

r(u)(c′ · c) · σ(u) = r(c · u)(c′)

= r(c · u′)(c′)
= r(u′)(c′ · c) · σ(u′)

= r(u)(c′ · c) · σ(u′) .

Since σ(u) 6= σ(u′), for all c′ ∈ dom(r(c ·u)) holds r(u′)(c′ ·c) = r(u)(c′ ·c) ∈ T∆.
It follows that for all c′ ∈ dom(r(c · u)) holds r(c · u)(c′) · ∗ = r(u)(c′ · c). Thus,
the dedicated image di(u)(c) equals ∗. Analogously, di(u)(c) = ∗ follows also if
r(c · u) and r(u) are inessential.

Now assume r(c · u) is essential. If r(u) is inessential, it follows for all
c′ ∈ dom(r(c · u))

r(c · u)(c′) · σ(c · u) = r(u)(c′ · c) .

The dedicated image is defined, i.e., di(u)(c) = σ(c · u). Thus, assume r(u) and
r(c · u) are essential. It follows that there is a tree u′ ≡r u with σ(u) 6= σ(u′).
Since the relation is congruent, also c · u′ ≡r c · u. We get

r(c · u)(c′) · σ(c · u) = r(u)(c′ · c) · σ(u)

r(c · u)(c′) · σ(c · u′) = r(u)(c′ · c) · σ(u′)

By Proposition 2.1, there are three possibilities. Since r(c · u) is essential, there
is a context c′ with r(c · u)(c′) /∈ T∆. Thus, there is a tree sc′ ∈ T̂∆(y) with

r(c · u)(c′) · sc′ = r(u)(c′ · c) (5.11)

or r(c · u)(c′) = r(u)(c′ · c) · sc′ (5.12)

If the first equation holds, it follows that sc′ · σ(u) = σ(c · u) and with that, for
all context c̄ holds the equivalent equation. Thus, sc′ = di(u)(c) is unique. If
Equation 5.12 holds, then it holds consequently for all contexts c̄ of c · u for the
same tree sc′ . Since the partition is earliest, sc′ = y and with that, we can state

r(c · u)(c′) · y = r(u)(c′ · c) .

The dedicated image then is di(u)(c) = y.
Now assume that Property 2. of the lemma holds, i.e., the dedicated images

are defined. We show that ≡r is a congruence. Assume the opposite. Then there
are subtrees u, u′ ∈ dom(σ) with u ≡r u′ and c ∈ CΣ(y) with c · u ∈ dom(r) but

1. c · u′ /∈ dom(r) or

2. c · u 6≡r c · u′.

First, assume there exists such a triple u, u′, c with c · u′ /∈ dom(r). Since the
partition is trim, there is a context c′ ∈ dom(r(c · u)). Thus, c′ · c is a context
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of u, i.e., c′ · c ∈ dom(r(u)) = dom(r(u′)). However, then c′ · c · u′ is an input
tree of τ . Thus, if u ≡r u′ and c · u ∈ dom(r) then c · u′ ∈ dom(r), too.

Now assume there is a triple u, u′, c, which contradicts the second condition,
i.e., it exists a context c′ ∈ dom(r(c · u)) = dom(r(c · u′)) with different images
r(c · u)(c′) 6= r(c · u′)(c′). Since for every context c and every tree u with
c · u ∈ dom(σ), the dedicated image di(u)(c) exists, we get for u, u′ that for all
c̄ ∈ dom(r(c · u)) holds

r(c · u)(c̄) · di(u)(c) = r(u)(c̄ · c)
r(c · u′)(c̄) · di(u′)(c) = r(u′)(c̄ · c)

Since u ≡r u′ we get for all c̄ ∈ dom(r(c · u))

r(c · u)(c̄) · di(u)(c) = r(c · u′)(c̄) · di(u′)(c)

Thus, 〈di(u)(c), di(u′)(c)〉 is a unifier of r(c ·u), r(c ·u′). The most-general unifier
of these residuals then is either

- 〈y, y〉, 〈>,>〉, or

- 〈di(u)(c), di(u′)(c)〉, 〈di(u)(c),>〉, or 〈>, di(u′)(c)〉 with ground dedicated
images di(u)(c) ∈ T∆ and di(u′)(c) ∈ T∆, respectively.

In the first case, the residuals are equivalent, i.e., c · u ≡r c · u′. In the second
case, assume (w.l.o.g.) the dedicated image di(u)(c) ∈ T∆ is a ground term and
mgu(r(c · u), r(c · u′)) = 〈di(u)(c), z′〉 with z′ ∈ {di(u′)(c),>}. It follows:

r(c · u)(c̄) · di(u)(c) = r(u)(c̄ · c) · σ(u) = r(c · u)(c̄) · σ(c · u)

Thus, di(u)(c) = σ(c ·u), which is realizable in r(c ·u). This contradicts the fact
that (σ, r) is unified earliest. — The equivalence relation is a congruence.

Finally, by this lemma and Theorem 5.10 we get for every earliest, path-finite
partition with finite index an equivalent partition, which is unified earliest, path-
finite and defines a congruence relation of finite index. This partition is the one
given in the proof of Theorem 5.10. We will show that for this partition the
dedicated images exist.

Theorem 5.12. For every earliest and path-finite partition (σ, r) with finite
index, there exists a partition (σ′, r′) such that

- (σ′, r′) is unified earliest and path-finite

- ≡r′ is a congruence of finite index.

Proof. Let τ be the tree function defined by (σ, r) and let (σ′, r′) be the partition
defined in Equations 5.8 and 5.9 in the proof of Theorem 5.10. In that proof, we
have already shown that this partition is unified earliest and path-finite. It is
also proven that the index of the equivalence relation ≡r′ is finite. It remains to
proof that the equivalence relation is already a congruence. Thereto, we show
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that for all u ∈ dom(σ′) and every c ∈ CΣ(y) with c · u ∈ dom(σ′) the dedicated
image di(u)(c) is defined. Then it follows with Lemma 5.11 that the equivalence
relation ≡r′ is a congruence.

For every u ∈ dom(σ′), c ∈ CΣ(y) with c · u ∈ dom(σ′), and every context
c′ ∈ dom(r′(c · u)), we know

r′(c · u)(c′) · σ′(c · u) = r′(u)(c′ · c) · σ′(u) . (5.13)

Thus, let u ∈ dom(σ′) and c ∈ CΣ(y) with c · u ∈ dom(σ′). We consider the
different possibilities whether the residuals r′(c · u) and r′(u) are each essential
or inessential.

- First, assume for all c′ ∈ dom(r′(c · u)) the image of c′ · c under r′(u) is
ground, i.e., r′(u)(c′ · c) ∈ T∆. Then r′(c · u)(c′) · σ′(c · u) = r′(u)(c′ · c). If
r′(c · u) is essential, we get with di(u)(c) = σ′(c · u) the dedicated image
of c w.r.t. u. Otherwise, if the residual r′(c · u) is inessential, we get
r′(c ·u)(c′) = r′(u)(c′ ·c) for all c′ ∈ dom(r′(c ·u)) and define the dedicated
image by di(u)(c) = ∗.

- Now assume r′(c · u) is essential and it exists c′ ∈ dom(r′(c · u)) with
r′(u)(c′ ·c) ∈ T̂∆(y). Since the partition is proper, there are infinitely many
different outputs of equivalent trees, i.e., |σ′([u]r′)| = ∞. The number of
equivalence classes is finite. Thus, there are two trees u1, u2 ∈ [u]r′ with
different outputs for which c · u1 and c · u2 are equivalent. Summarizing,
we have

– u1 ≡r′ u2 ≡r′ u
– σ′(u1) 6= σ′(u2)

– c · u1 ≡r′ c · u2.

We get with Equation 5.13

r′(c · u1)(c′) · σ′(c · u1) = r′(u1)(c′ · c) · σ′(u1)

r′(c · u2)(c′) · σ′(c · u2) = r′(u2)(c′ · c) · σ′(u2) .

Since the residuals of u1 and u2 are equivalent and so are the residuals of
c · u1 and c · u2, it follows:

– σ′(c · u1) 6= σ′(c · u2)

By Proposition 2.1, there are two possibilities:

r′(c · u1)(c′) · z = r′(u1)(c′ · c) (5.14)

or r′(c · u1)(c′) = r′(u1)(c′ · c) · z (5.15)

for some z ∈ T̂∆(y). Case (a) of the Proposition 2.1, i.e., r′(u1)(c′ · c)
and r′(u)(c′ · c) are equal and ground, is impossible because we assumed
r′(u1)(c′ · c) = r′(u)(c′ · c) ∈ T̂∆(y).
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If Equation 5.14 holds, for both i ∈ {1, 2} follows z · σ′(ui) = σ′(c · ui).
Then Proposition 2.1 provides that for all c̄ ∈ dom(r′(c · ui)) the same
equation as for c′ holds:

r′(c · u1)(c̄) · z = r′(u1)(c̄ · c)

If Equation 5.15 holds, it follows analogically for both i ∈ [2] and all
c̄ ∈ dom(r′(c · ui)):

– σ′(ui) = z · σ′(c · ui)

– r′(c · u1)(c̄) = r′(u1)(c̄ · c) · z.

First, assume that Equation 5.14 holds. The trees u1 and u are equivalent.
This implies, r′(c · u1)(c̄) · z = r′(u)(c̄ · c) holds for all c̄ ∈ dom(r′(c · u1)).
Thus, for all contexts c̄ ∈ dom(r′(c · u1)) holds

r′(c · u)(c̄) · σ′(c · u) = r′(u)(c̄ · c) · σ′(u) = r′(c · u1)(c̄) · z · σ′(u) .

Hence, r′(c · u) and r′(c · u1) are unifiable. Since r′(c · u) is essential and
σ′(c · u) is realizable in r′(c · u), the most-general unifier is

mgu(r′(c · u), r′(c · u1)) = 〈y, y〉 .

However, that means that the two trees c · u and c · u1 are equivalent and
it follows for all c̄ ∈ dom(r′(c · u))

r′(c · u)(c̄) · z = r′(c · u1)(c̄) · z = r′(u1)(c̄ · c) = r′(u1)(c̄ · c) .

With di(u)(c) = z we get the dedicated image of c under u.

On the other hand, assume that the second equation (Equation 5.15)
holds, i.e., for all c̄ ∈ dom(r′(c · ui)) holds

r′(c · u1)(c̄) = r′(u1)(c̄ · c) · z .

Since the (σ′, r′) is earliest and z is a common suffix of all images in
r′(c · u1), it follows that z = y. Again, for all contexts c̄ ∈ dom(r′(c · u1))
holds

r′(c · u)(c̄) · σ′(c · u) = r′(u)(c̄ · c) · σ′(u) = r′(c · u1)(c̄) · σ′(u) .

Thus, r′(c ·u) and r′(c ·u1) are unifiable. Analogically as in the first case,
it follows that r′(c · u)(c̄) · di(u)(c) = r′(u)(c̄ · c) with di(u)(c) = y.

- Finally, assume r′(c · u) is inessential and it exists c′ ∈ dom(r′(c · u)) with
r′(u)(c′ · c) ∈ T̂∆(y). Then r′(u) is essential and there are infinitely many
trees u′ ≡r′ u with σ′(u′) 6= σ′(u).
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Assume the residual r′(c · u′) is inessential for all these u′. With Equa-
tion 5.13 follows

r′(c · u)(c′) = r′(u)(c′ · c) · σ′(u)

6= r′(u′)(c′ · c) · σ′(u′)
= r′(c · u′)(c′) .

Thus, c · u 6≡r′ c · u′. Since the partition has finite index, there is a
tree u′ ∈ [u]r′ with essential r′(c · u′) and σ′(u′) 6= σ′(u). It follows by the
previous parts of this proof that the dedicated images di(u′)(c) exist with

r′(c · u′)(c′) · di(u′)(c) = r′(u′)(c′ · c)

for all c′ ∈ dom(r′(c · u′)). Now we get with Equation 5.13 and the
equivalence of u and u′ that for all c′ ∈ dom(r′(c · u)) holds:

r′(c · u′)(c′) · di(u′)(c) · σ′(u) = r′(u′)(c′ · c) · σ′(u′) = r′(c · u)(c′)

Thus, the most-general unifier of the residuals of c · u′ and c · u is

mgu(r′(c · u′), r′(c · u)) = 〈di(u′)(c) · σ′(u),>〉 .

Then, a subtree of a ground most-general unifier is realizable in some tree
(either σ′(u) or di(u′)(c) equals σ′(u′)). This does not contradicts the
property earliest unified, but the partition (σ′, r′) in the proof of Theo-
rem 5.10 has no such most-general unifier by construction.

5.2.6 Minimal Partition

Let τ be a tree function with a partition, which is path-finite and has finite index
and let (σ, r) be a partition of τ , which is path-finite and has finite index, but
additionally it is unified earliest and ≡r is a congruence. We have seen that such
a partition exists. Unfortunately, this partition is not necessarily unique. For
instance, for the partition in Figure 5.6, which fulfills these properties, we can
increase the index without suffering the loss of one of the previous properties. If
we change the definition such that a, b(a), and bn(a) for all n ∈ N are equivalent,
the properties are preserved, but the index is smaller.

In this section, we show that the partition for τ with minimal index, which
preserves all afore introduced properties, is unique. To prove that, let ∼′r denote
the smallest equivalence relation over dom(r) with the following properties:

- If mgu(r(u), r(u′)) = 〈y, y〉 or mgu(r(u), r(u′)) = 〈>,>〉 then u ∼′r u′;

- Assume that mgu(r(u), r(u1)) = 〈>, v1〉 for some ground term v1 ∈ T∆. If
for all u2 with mgu(r(u), r(u2)) = 〈>, v2〉 for some ground term v2 ∈ T∆,
mgu(r(u1), r(u2)) = 〈y, y〉 holds then u ∼′r u1.

The relation ∼r is the greatest congruence relation, which is a refinement of ∼′r,
i.e., u1 ∼r u2 whenever for every c ∈ CΣ(y) holds c · u1 ∼′r c · u2. Two trees
u1, u2 ∈ TΣ are called similar w.r.t. r if u1 ∼r u2.
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Definition 5.9 (Minimal). A unified earliest partition (σ, r) is called minimal if
similar trees are equivalent, i.e., ≡r and ∼r define the same congruence relation.

If the most-general unifier is known for every pair of residuals, a minimal par-
tition for τ can be defined.

Theorem 5.13. For every unified earliest and path-finite partition (σ, r) with
finite index and ≡r is a congruence, there exists an equivalent partition (σ′, r′),
which is

- minimal,

- path-finite, and

- ≡r′ is a congruence relation of finite index.

Additionally, the index of (σ′, r′) is less or equal the index of (σ, r).

Proof. Let τ be the tree function of (σ, r). We define the partition (σ′, r′) on the
same domain as follows. Let u ∈ dom(r). Assume there is a tree u′ ∈ dom(r)
with u′ ∼r u and mgu(r(u′), r(u)) = 〈v′,>〉 for some v′ ∈ T∆. Note that this
implies that r(u) is inessential. We define

σ′(u) = v′ and r′(u)(c) = r(u′)(c) (5.16)

Otherwise, if no such u′ ∼r u with non trivial most-general unifier exists, the
output and the residual of u do not change, i.e.,

σ′(u) = σ(u) and r′(u)(c) = r(u)(c) (5.17)

Let u ∈ dom(r) and c ∈ dom(r(u)). If there is a tree u′ ∈ dom(r) with u′ ∼r u
and mgu(r(u′), r(u)) = 〈v′,>〉 for some v′ ∈ T∆, then Equation 5.16 provides

r′(u)(c) · σ′(u) = r(u′)(c) · v′ = r(u)(c) = r(u)(c) · σ(u) = τ(c · u) .

Otherwise, we get by Equation 5.17

r′(u)(c) · σ′(u) = r(u)(c) · σ(u) = τ(c · u) .

Thus, the pair is a partition of τ . We observe the following properties for all
trees u, u′ ∈ dom(r):

1. If r(u) is essential, then r′(u) is essential and equals r(u).

2. Contrapositive, if r′(u) is inessential, then r(u) is inessential.

3. If u′ ∼r u, then u becomes r′-equivalent to u′, i.e., u ≡r′ u′.

4. No new residuals are generated, i.e., there exists a tree u′′ ∈ dom(r) such
that r′(u) = r(u′′). In particular, u ∼r u′′.
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First, we show that the partition is minimal. Thereto, we prove, on the one
hand, that ≡r′ is a congruence. Then, ≡r′ is a refinement of ∼′r′ (cf. Page 72)
and with that ≡r′ ⊆ ∼r′ .

Let u1 ≡r′ u2. The most-general unifier of r′(u1) and r′(u2) is either 〈>,>〉
or 〈y, y〉. In the first case, both residuals are inessential and with Property 2, we
get also mgu(r(u1), r(u2)) = 〈>,>〉. That implies u1 ≡r u2. The equivalence ≡r
is a congruence. Hence, u1 ∼r u2. Now assume mgu(r′(u1), r′(u2)) = 〈y, y〉.
Property 4 provides that there are trees u′1, u

′
2 with r(u′i) = r′(ui) for i ∈ [2].

Thus, we get

u1 ∼r u′1 ≡r u′2 ∼r u2 .

The equivalence ≡r is a congruence. Hence, u′1 ∼r u′2 and with that u1 ∼r u2.
Thus, in both cases, we get that u1 and u2 are similar w.r.t. r. Since ∼r is a
congruence, it follows that for all c ∈ CΣ(y) holds c · u1 ∼r c · u2. In addition,
Property 3 implies that for all c ∈ CΣ(y) holds c · u1 ≡r′ c · u2.

On the other hand, we have to show that ∼r′ ⊆ ≡r′ . First, we show that for
all trees u1, u2, which are similar in (σ′, r′), holds u1 ∼′r u2, i.e:

u1 ∼r′ u2 =⇒ u1 ∼′r u2 . (5.18)

Thereto, let u1 ∼r′ u2. The most-general unifier is

1. mgu(r′(u1), r′(u2)) = 〈>,>〉,

2. mgu(r′(u1), r′(u2)) = 〈y, y〉,

3. mgu(r′(u1), r′(u2)) = 〈v1,>〉 for some v1 ∈ T∆, or

4. mgu(r′(u1), r′(u2)) = 〈>, v2〉 for some v2 ∈ T∆.

In the first case, also mgu(r(u1), r(u2)) = 〈>,>〉 (by Property 2) and with that
u1 ∼′r u2. In the second case, we know by Property 3 that there is a tree u3

such that r(u3) = r′(u1) = r′(u2) and u1 ∼r u3 ∼r u2.

Let us now assume the most-general unifier equals 〈v1,>〉 for some ground
term v1 ∈ T∆. Additionally, for every tree u3 holds (by definition of ∼′r′)

mgu(r′(u3), r′(u2)) = 〈v3,>〉 with v3 ∈ T∆ =⇒ u1 ∼r′ u3 . (5.19)

Since u1 and u3 have both essential residuals under r′, they must be r′-equiva-
lent. For u2 holds r′(u2) = r(u2) is inessential (Property 2).

First, assume r(u1) = r′(u1) is essential. Then mgu(r(u1), r(u2)) = 〈v1,>〉
and for all u3 with mgu(r(u3), r(u2)) = 〈v3,>〉 and v3 ∈ T∆ holds with Prop-
erty 1 also mgu(r′(u3), r′(u2)) = 〈v3,>〉. It follows with Equation 5.19 that

r(u3) = r′(u3) = r′(u1) = r(u1) .

Thus, u1 ∼′r u2 (by definition of ∼′r).
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Otherwise, assume r(u1) is inessential and different to r′(u1). There is some
tree u4 with r′(u1) = r(u4) (Property 4) and mgu(r(u1), r(u4)) = 〈>, v4〉 for
some v4 ∈ T∆ and u4 ∼r u1. With Property 1 we get r′(u4) = r′(u1). Then

mgu(r′(u4), r′(u2)) = 〈v1,>〉

for u4 with essential residual r(u4). Analog to the last assumption, we get
u4 ∼′r u2. It follows u1 ∼′r u4 ∼′r u2.

The last case that the most-general unifier equals 〈>, v2〉 for some v2 ∈ T∆

is analog. Summarizing, we get Implication 5.18 for all trees u1, u2. Since ∼r′
is a congruence, we get:

u1 ∼r′ u2 =⇒ for all c ∈ CΣ(y) : c · u1 ∼r′ c · u2 (Congruence)

=⇒ for all c ∈ CΣ(y) : c · u1 ∼′r c · u2 (Implication 5.18)

=⇒ u1 ∼r u2

=⇒ u1 ≡r′ u2 (Property 3)

It remains to prove that the partition is unified earliest. Then, we get that
the partition is minimal. Thus, we have to show that (σ′, r′) is a trim, proper,
earliest, unified earliest, and path-finite partition, and has finite index.

- It is trim and proper: We only have to consider trees where the residual
under r′ differs from the residual under r. In that case, it equals a residual
of a tree u′, i.e., r′(u) = r(u′) = r′(u′) (Property 1), which is essential.
Thus, σ′(u) = s′ 6= ∗ implies that r′(u) is essential. — It is trim.

In addition, for every essential residual, the set of outputs only increases,
i.e., σ([u]r) ⊆ σ′([u]r′). — It is proper.

- The partition is earliest, path-finite, and has finite index: With Property 4,
these properties are directly inherited from (σ, r).

- It is unified earliest: Assume there is a unifiable pair of residuals in the
range of r′ with realizable ground unifier, i.e., there are trees u1, u2 with
mgu(r′(u1), r′(u2)) = 〈v1, v2〉 where σ′(u1) = v1 ∈ T∆ is realizable in
r′(u1) and v2 ∈ T∆ ∪ {>}. Property 4 implies that there are trees u′1, u

′
2

in dom(r) with r(u′i) = r′(ui) and ui ∼r u′i (for i ∈ {1, 2}). Thus, for the
most-general unifier we get

mgu(r(u′1), r(u′2)) = 〈v1, v2〉 .

Since (σ, r) is unified earliest, u1 6≡r u′1. Otherwise, σ(u1) = σ′(u1) = v1

would be realizable in r(u1). Hence, the residual r(u′1) is inessential and
we get mgu(r(u1), r(u′1)) = 〈>, v1〉. Additionally, we have for the residuals
of u1 and u′2: mgu(r(u1), r(u′2)) = 〈>, v2〉. If v2 = >, u1 ∼r u′2 ∼r u2

and with Property 3: u1 ≡r′ u2. This contradicts the assumption that the
most-general unifier mgu(r′(u1), r′(u2)) is different from 〈y, y〉 and 〈>,>〉.
Otherwise, if v2 6= >, we get that u′1 ∼r u′2 (Definition of ∼r). It follows
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with Property 3: u′1 ≡r u′2. Since r(u′1) and r(u′2) are essential, we also
have (with Property 1) u′1 ≡r′ u′2. Furthermore, we know for both i ∈ [2]
that u′i is r′-equivalent to ui, i.e., we get

u1 ≡r′ u′1 ≡r′ u′2 ≡r′ u2 .

Again, this contradicts the assumption for mgu(r′(u1), r′(u2)).

In Example 5.9 we have defined a unified earliest partition for the example
transformation τmgu. Since we get this partition by the construction of the
proof of Theorem 5.10, we know by the proof of Theorem 5.12 that the relation
of this partition is a congruence relation. In the following example, we build
the minimal partition for the transformation τmgu as described in the proof of
Theorem 5.13:

Example 5.12. Let τmgu be the tree function of Example 5.8 and (σ, r) the
unified earliest partition with congruence relation of Example 5.9 (Figure 5.6).
Now we apply the construction of the previous proof. Thereto, we have to
consider the most-general unifiers to deduce the congruence relation ∼r. We
are only interested in the unifiers of an inessential and an essential residual.
For every residual, we choose the first tree occurring in the table on Page 65 as
representative. Let u = b2(e). We get the following:

mgu(r(g(d(u))), r(g(d(b(e))))) = 〈G(D, B(E)),>〉 (5.20)

mgu(r(d(u)), r(d(b(e)))) = 〈B(E),>〉 (5.21)

mgu(r(d′(u)), r(d(b(e)))) = 〈E,>〉 (5.22)

mgu(r(d(u)), r(d(e))) = 〈E,>〉 (5.23)

mgu(r(d′(u)), r(d′(b(e)))) = 〈B(E),>〉 (5.24)

mgu(r(u), r(b(e))) = 〈B(E),>〉 (5.25)

mgu(r(u), r(e)) = 〈E,>〉 (5.26)

mgu(r(b2(a)), r(b(a))) = 〈B(E),>〉 (5.27)

mgu(r(b2(a)), r(a)) = 〈E,>〉 (5.28)

Now we see in the first equation that tree g(d(b(e))) with inessential residual is
potential similar to g(d(u)), i.e., g(d(b(e))) ∼′r g(d(u)). Their residuals have a
most-general unifier of the form 〈v,>〉 with ground tree v ∈ T∆ and there is no
other essential residual in the range of r, which has such a most-general unifier
with r(g(d(b(e)))). Since y is the only context in dom(r(g(d(u)))), the trees are
similar:

g(d(b(e))) ∼r g(d(u)) .

Let us consider the tree t = d(b(e)). Also the residuals of d(u) and t have a
most-general unifier of the form 〈s,>〉 with ground tree s ∈ T∆ (Equation 5.21).
On the other hand, also the residuals of d′(u) and t have such a unifier (Equa-
tion 5.22). The trees d(u) and d′(u) are not equivalent, hence, d(b(e)) is similar
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to none of the trees with essential residual. In particular,

d(b(e)) 6∼r d(u) .

This difference causes that b(e) and u are not similar, as well as e and b(e).
Also u and e are not similar. Altogether, we observe the following similarities
(of representatives of the equivalence classes):

g(d(u)) ∼r g(d(b(e)))

d(u) ∼r d(e)

d′(u) ∼r d′(b(e))

b2(a) ∼r b(a) ∼r a

Additionally, for all trees u, u′ ∈ dom(r) with u ≡r u′ holds u ∼r u′. We have to
adapt the output under σ of these trees with inessential residuals to the essential
residuals of the similar trees. The bottom line is the partition (σ′, r′) given in
Figure 5.7. This congruence relation ≡r′ equals ∼r′ . It has eight equivalence
classes. /

It follows that for every path-finite partition of finite index, an equivalent mini-
mal and path-finite partition with finite index exists. Moreover, we will see that
this partition is unique for its transformation.

Theorem 5.14. Let τ be a tree function with path-finite partition of finite index,
then the equivalent minimal and path-finite partition with finite index is unique.

Proof. Let (σ, r) and (σ′, r′) be two minimal and path-finite partitions with
finite index of the same tree function τ . We show that σ = σ′ and r = r′.

If there is a tree u ∈ dom(r) and context c ∈ dom(r(u)), then c · u is in
the domain of τ and with that both u ∈ dom(r′) and c ∈ dom(r′(u)). The
partitions have the same domain and also the residuals of a tree u ∈ dom(r)
under r and r′ have the same domain, i.e., dom(r(u)) = dom(r′(u)). We prove
that for all trees u ∈ dom(r) holds

[u]r = [u]r′ and r(u) = r′(u) .

It follows immediately that σ = σ′. Let u ∈ dom(r). For every c ∈ dom(r(u))
holds:

r(u)(c) · σ(u) = τ(c · u) = r′(u)(c) · σ′(u) (5.29)

First assume that r(u) and r′(u) are inessential. It follows that r(u) = r′(u).
For every tree u′ ∈ [u]r with r′(u′) is inessential, too, the residual under r′

equals the residual of u, i.e., r′(u′) = r′(u). It follows u′ ∈ [u]r′ .
Now assume that r(u) is essential. We will show the following:

∃ u1 ≡r u with r(u) = r(u1) = r′(u1) (5.30)
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There are infinitely many different trees in [u]r with different outputs under σ,
i.e., |σ([u]r)| = ∞. Since the index of ≡r′ is finite, there is an infinite set of
such trees, which are r′-equivalent, i.e., there is a tree u′ ≡r u and the set
S = [u]r ∩ [u′]r′ is infinite and additionally |σ(S)| = ∞. Let u1, u2 ∈ S with
σ(u1) 6= σ(u2). Note that the two trees u1 and u2 are equivalent with respect
to both r and r′. Assume the residual of u1 under r′ is inessential. There is a
context c ∈ dom(r(u1)) with r(u1)(c) ∈ T̂∆(y). We get

r(u1)(c) · σ(u1) = r′(u1)(c) = r′(u2)(c) = r(u1)(c) · σ(u2)

which is a contradiction to σ(u1) 6= σ(u2). Thus, the residual r′(u1) is essential.
With Proposition 2.1 and Equation 5.29 we will show that r(u1) = r′(u1): For
every context c ∈ dom(r(u1)) holds

r(u1)(c) · σ(u1) = r′(u1)(c) · σ′(u1)

r(u2)(c) · σ(u2) = r′(u2)(c) · σ′(u2)

For every context c, either r(u1)(c) = r′(u1)(c) ∈ T∆ is ground or there is
a tree zc ∈ T̂∆(y) with r(u1)(c) · zc = r′(u1)(c) or r(u1)(c) = r′(u1)(c) · zc
(Proposition 2.1). Assume there are c and c′ with different trees zc 6= zc′ and
r(u1)(c) · zc = r′(u1)(c) and r(u1)(c′) · zc′ = r′(u1)(c′), respectively. It follows
that σ(ui) = zc · σ′(ui) = zc′ · σ′(ui) (for both i ∈ [2]). It follows, again with
Proposition 2.1 that zc = zc′ . Otherwise, assume there are c and c′ with different
trees zc and zc′ and

r(u1)(c) · zc = r′(u1)(c)

r(u1)(c′) = r′(u1)(c′) · zc′

Then σ(ui) = zc · σ′(ui) and zc′ · σ(ui) = σ′(ui) for both i ∈ [2]. It follows that
zc = zc′ = y. Summarizing, there is a tree z ∈ T̂∆(y) with r(u1)(c)·z = r′(u1)(c)
for every context c or r(u1)(c) = r′(u1)(c) · z for every context c. Since r and
r′ are earliest, z must equal y. Consequently, r(u1) = r′(u1). This gives us
Equation 5.30.

Now assume r(u) is essential and r′(u) is inessential. There is a tree u1 ≡r u
with essential residual r(u) = r(u1) = r′(u1) (cf. Equation 5.30). For all context
c ∈ dom(r(u)), we get

r′(u1)(c) · σ(u) = r(u)(c) · σ(u) = r′(u)(c) .

Thus, these residuals have the following most-general unifier:

mgu(r′(u1), r′(u)) = 〈σ(u),>〉

Since (σ′, r′) is minimal, the trees are not similar, i.e., u1 6∼r′ u. There is some
context c ∈ CΣ(y) (possibly y) such that c · u1 6∼′r′ c · u.

Let us consider the possible most-general unifiers for such contexts c: Since
the relation ≡r′ is a congruence, we know (by Lemma 5.11) that for every
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context c with c ·u1 ∈ dom(r′) the dedicated image di(c)(u1) ∈ T∆(y) exist. For
every context c′ ∈ dom(r′(c · u1)) holds

r′(c · u1)(c′) · di(c)(u1) = r′(u1)(c′ · c) .

Furthermore, it follows for every such context c and every c′ ∈ dom(r′(c · u1)):

r′(c · u1)(c′) · di(c)(u1) · σ(u) = r′(u1)(c′ · c) · σ(u)

= r(u)(c′ · c) · σ(u)

= r′(u)(c′ · c) (r′(u) is inessential)

= r′(c · u)(c′) · σ′(c · u)

Thus, we get for the most-general unifier (w.r.t. the ordering ≥ on Page 20):

mgu(r′(c · u1), r′(c · u)) ≥ 〈di(c)(u1) · σ(u), σ′(c · u)〉

However, (σ′, r′) is unified earliest and σ′(c · u) is realizable in r′(c · u). Hence,
the most-general unifier is in {〈di(c)(u1) · σ(u),>〉, 〈>,>〉, 〈y, y〉}.

If u1 6∼r′ u, then there is some context c ∈ CΣ(y) such that c · u1 6∼′r′ c · u.
More precisely, we get that

mgu(r′(c · u1), r′(c · u)) = 〈di(c)(u1) · σ(u),>〉 .

Otherwise, the trees would be r′-equivalent. Thus, r′(c · u) is inessential. Addi-
tionally, for every tree u2 (including c · u1) with mgu(r′(u2), r′(c · u)) = 〈v2,>〉
for some ground term v2 ∈ T∆, there is a tree u′2 with r′(u2) = r′(u′2) = r(u′2)
(Property 5.30). Thus,

mgu(r(u′2), r′(c · u)) = 〈v2,>〉 . (5.31)

On the other hand, we get for every context c′ ∈ dom(r(c · u)):

r(c · u)(c′) · σ(c · u) = r(u)(c′ · c) · σ(u) (consistent)

= r′(u)(c′ · c) · σ′(u) (equivalence)

= r′(c · u)(c′) · σ′(c · u) (consistent)

= r′(c · u)(c′) (inessential)

It follows that mgu(r(c ·u), r′(c ·u)) ∈ {〈>,>〉, 〈σ(c ·u),>〉}. First, assume that
r(c · u) is inessential and equals r′(c · u). Since u1 ≡r u and ≡r is a congruence,
we get that also r(c · u1) = r′(c · u). With Equation 5.29 it follows:

mgu(r′(c · u1), r′(c · u)) = mgu(r′(c · u1), r(c · u1)) = 〈σ′(c · u1),⊥〉

This contradicts the fact that (σ′, r′) is unified earliest because σ′(c · u1) is
realizable in r′(c · u1). Thus, we get mgu(r(c · u), r′(c · u)) = 〈σ(c · u),>〉 and
with Equation 5.31

mgu(r(c · u), r(u′2)) ≥ 〈σ(c · u), v2〉 .
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Since σ(c · u) is realizable in r(c · u) and (σ, r) is unified earliest, the most-
general unifier must equal 〈y, y〉 or 〈>,>〉, i.e., the trees are r-equivalent. We
get r(c · u) = r(u′2) = r′(u′2) = r′(u2). In particular, also r(c · u) = r′(c · u1).
Summarizing, for every tree u2 with mgu(r′(u2), r′(c · u)) = 〈v2,>〉 for some
ground v2 ∈ T∆, we get u2 ≡r′ c · u1. This is a contradiction to c · u1 6∼′r′ c · u.
Thus, u1 ∼r′ u and since (σ′, r′) is minimal, u1 ≡r′ u. However, we assumed
r′(u) is inessential, whereas r′(u1) is essential. — It follows that there are no
trees u with r(u) essential and r′(u) inessential.

Finally, assume that r(u) and r′(u) are both essential, but different. Then,
we know that for all c ∈ dom(r(u)) holds r(u)(c) · σ(u) = r′(u)(c) · σ′(u). Since
the residuals are different and essential, the most-general unifier is

mgu(r(u), r′(u)) = 〈σ(u), σ′(u)〉 .

With Property 5.30 there is a tree u′ ≡r′ u with r(u′) = r′(u). Thus,

mgu(r(u), r(u′)) = 〈σ(u), σ′(u)〉 .

However, σ(u) is realizable in r(u). — Contradiction to (σ, r) is unified earliest.
Altogether, the two residual functions r and r′ are the same. Thus, the

minimal partition is unique.

Summarizing the results from the previous sections, we obtain from the Theo-
rems 5.7, 5.8, 5.9, 5.10, 5.12, 5.13, and 5.14:

Theorem 5.15. For every tree function τ with path-finite partition of finite
index, a minimal, path-finite partition of finite index exists, which is unique.

We call this unique partition bottom-up partition if it exists:

Definition 5.10 (Bottom-up Partition). A partition (σ, r) of a function τ is
called the bottom-up partition of τ if it is minimal, path-finite, and has finite
index.

We write (στ , rτ ) for the bottom-up partition of τ . In the following we will see
that there exists a bottom-up tree transducer for a tree function if and only if
this unique minimal partition (which is path-finite and has finite index) exists
for τ .
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Chapter 6

Myhill-Nerode Theorem

In Section 5.1, we have seen a correspondence between partitions and DBTTs:
Every deterministic bottom-up tree transducer defines a partition, which is path-
finite and has finite index. Not only that the properties path-finiteness and finite
index are necessary to define the transformation of a DBTT, but also they are
sound. More generally, we get the following Myhill-Nerode style theorem. It
says that for every tree function, which is definable by a DBTT, the bottom-up
partition exists. Furthermore, the DBTT described by the bottom-up partition
is the unique minimal bottom-up transducer of this function.

Theorem 6.1. The following three properties are equivalent for a partial tree
function τ : TΣ 99K T∆:

1. There is a DBTT T with τT = τ .

2. There is a unique minimal DBTT Tmin with τTmin = τ .

3. The bottom-up partition (στ , rτ ) exists.

We will prove this theorem in this chapter. In the first section, we show that a
unique minimal transducer can be constructed for every deterministic bottom-
up tree transducer. The idea of the construction is inspired by the properties
of the bottom-up normal form for a partition. We get a unified earliest normal
form and prove that there is a unique minimal transducer. For a given “proper”
deterministic bottom-up tree transducer, i.e., one where every state produces
either none or infinitely many outputs, the corresponding unique minimal trans-
ducer can be constructed in polynomial time.

In a second step, we will show that the partition (outTmin , rTmin) given by
the minimal DBTT Tmin (cf. Section 5.1) is the bottom-up partition of its
transformation τTmin . Finally, we show that (3.) implies (1.): Given a bottom-
up partition, we construct a DBTT, which describes the same tree function.
Additionally, we will show that this transducer is already the minimal DBTT.

83
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(a) An expanded tree and ... (b) its compacted representation.

Figure 6.1: The compacted representation of a tree.

6.1 Minimization of Bottom-Up Transducers

In this section, we prove the first part of the Theorem 6.1, i.e., we show that
for every deterministic bottom-up tree transducer, there is a unique equivalent
DBTT in normal form. Even though the idea is similar to [EMS09], obtaining
the normal form is quite different for DBTTs than for top-down transducers.
Generating the “earliest” normal form for a given trim DBTT proceeds in four
steps. The properties of a DBTT induced by these steps are similar to some of
the properties of a bottom-up partition.

1. First, we make the transducer proper, i.e., we remove all output from
states, which only produce finitely many different outputs. The output
for such states is postponed until the root node of the input tree. This
is similar to the “proper normal form” of [AU71, EM03c] (which removes
states that produce finitely many outputs, using regular look-ahead).

2. We make the transducer earliest, i.e., every state produces output as early
as possible during translation.

3. We remove pairwise ground context unifiers (this is a technical property,
achievable in quadratic time on the transducer).

4. Last, we minimize in the usual way (by merging isomorphic states).

Steps (2)–(4) can be done in polynomial time, i.e., given a proper transducer,
its unique unified earliest transducer is constructed in polynomial time. As a
positive side effect, equivalence checking for proper transducers can be done
in polynomial time. Constructing a proper transducer (Step 1) takes double-
exponential time in the worst case.

Also in Steps 2 and 3, the constructions could result in an exponential blow-
up if we consider trees as compositions of irreducible terms. To avoid that, we
assume that terms are given in a compacted representation. Thereto, isomorphic
subterms are shared as depicted in Figure 6.1. Considering trees in this com-
pacted representation, the composition of two trees is only a substitution in one
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(a) The detail of T+. (b) The detail of T×.

Figure 6.2: Details depending on input label 〈1, 1〉 of the DBTTs of Example 6.1.

occurrence of the variable y. Thus, we have no multiple copying of subterms
and the size of the new terms in Steps 2 and 3 is restricted.

6.1.1 Proper Transducers

For a given trim transducer, there is not necessarily a unique minimal equivalent
transducer. Recall the Example 5.4 of the quotient ring of integers modulo 3.
The two intuitive partitions are not proper. For the transformation of that
example, we can also define different transducers, which are equivalent and
have the same size.

Example 6.1. Assume that Σ and ∆ are defined as in Example 5.4. Consider
the transducers T+ = (Q+,Σ,∆, R+, F+) and T× = (Q×,Σ,∆, R×, F×) defined
below (Figure 6.2). Both describe the tree function τ of that example in Sec-
tion 5.2.2. The sets of states are Q+ = {qf , q0, q1, q2} and Q× = {q′f , q′0, q′1, q′2}.
The final functions are only defined for qf and q′f , respectively, by F+(qf ) = y
and F×(q′f ) = y. Finally, the set of rules R+ for all a, b ∈ {0, 1, 2} is given by

〈a, b〉 7→ qi(j) for i = a×3 b, j = a+3 b

+3(qa) 7→ qf (x1)

×3(qa) 7→ qf (a) ,

whereas the set of rules R× for all a, b ∈ {0, 1, 2} is given by

〈a, b〉 7→ qi(j) for i = a+3 b, j = a×3 b

×3(qa) 7→ qf (x1)

+3(qa) 7→ qf (a) .
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The transducer T+ produces the output τ(+3(p)) for every pair p at the node
labeled by p. It stores the output of ×3(p) in the state reached by p. At the
root, it suffices either to pass the produced output (if the label of the root is +3)
or produces the correct output depending on the state (with root label ×3). On
the other side, T× produces the output of ×3(p) at the leaf and stores the
output of +3(p) in the state. Accordingly, the transitions for the root nodes are
swapped, too. In Figure 6.2, the difference of these transducers is illustrated.
Both parts of the figure show the transitions, which are necessary to translate
a tree containing a leaf with label 〈1, 1〉 for the deterministic bottom-up tree
transducers T+ and T×, respectively.

Both transducers are trim and describe the same transformation τ . It is
not clear how a unique normal form for the transformation with less than four
states could look like. /

Considering the partitions of these DBTTs (cf. Section 5.1), we get exactly the
partitions of Example 5.4, i.e., (σ+, r+) and (σ×, r×), respectively. Likewise, we
introduce the property “proper” for DBTTs.

Let T denote a trim transducer with set of states Q. A state q ∈ Q is called
essential if the set of results {[[t]]T | t ∈ LT (q)} for input trees reaching q is
infinite. Otherwise, q is called inessential. Note that all states of the transduc-
ers in Example 6.1 are inessential. A proper transducer postpones outputs at
inessential states.

Definition 6.1 (Proper). The trim transducer T is called proper if every
inessential state does not produce any output, i.e., is in Q∗.

For every trim bottom-up tree transducer exists an equivalent proper transducer:

Proposition 6.2. [AU71, EM03c] For every trim DBTT T , a DBTT T ′ can
be constructed with the following properties:

1. T ′ is equivalent to T

2. T ′ is proper

3. |T ′| ≤ Γ · |T |

where Γ is the sum of sizes of all outputs produced for inessential states of T .

In the worst case, an inessential state may have exponentially many outputs –
even if the input alphabet has maximal rank 1. In case that both input and
output alphabets have symbols of ranks greater than 1, doubly exponentially
many outputs of inessential states are possible.

Proof of Proposition 6.2. Let T = (Q,Σ,∆, R, F ) be a trim DBTT. First, we
determine the set Finite ⊆ Q of inessential states of T . For that, we construct
the dependence graph GT = (Q,ET ) of T . The set of nodes of GT is given by
the set Q of states of T , and the set ET of edges is given by:

ET = {(qi, q) | a(q1, . . . , qk)→ q(z) ∈ R and xi occurs in z}
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An edge (qi, q) ∈ ET is called essential if there is a transition a(q1, . . . , qk)→ q(z)
in R where z contains xi, but is different from xi. A strongly connected com-
ponent of GT is called essential if it contains an essential edge. Otherwise, it
is called inessential. Then a state q ∈ Q is essential iff it is reachable from
some essential strongly connected component. Since the set of all strongly con-
nected components can be computed in linear time [Tar72], also the set of states
within all essential strongly connected components can be computed in linear
time. Therefore, both the set of all essential states, as well as the set Finite of
inessential states, can be computed in linear time.

Consider an inessential state q ∈ Finite. We partition q into new states 〈q, z〉
where q(z) is a possible result for some input tree t ∈ LT (q). If q occurs on
a left-hand side of a rule as the state for the i-th argument where the state
in the right-hand side is essential, a new rule is generated where q is replaced
with 〈q, z〉 and the corresponding variable xi is replaced with z. Also, the final
function F ′ should be modified accordingly for inessential states.

Formally, let Finite denote the set of all inessential states of T . Let the set
of new inessential states Qf ⊆ Finite× T∆ be defined as the least set satisfying
the inequation:

Qf ⊇ {〈q, z[v1/xj1 , . . . , vr/xjr ]〉 | a(q1, . . . , qm)→ q(z) ∈ R, q ∈ Finite,
xj1 , . . . , xjr occur in z, 〈qj1 , v1〉, . . . , 〈qjr , vr〉 ∈ Qf}

Then we construct a transducer T ′ = (Q′,Σ,∆, R′, F ′) by

- Q′ = (Q\Finite) ∪Qf ;

- Assume that F (q) = z. If q /∈ Finite, then F ′(q) = z. If 〈q, v〉 ∈ Qf , then
F ′(〈q, v〉) = z · v.

- Assume that a(q1, . . . , qm) → q(z) ∈ R. Then T ′ has transitions of the
form a(q′1, . . . , q

′
m)→ q′(z′) with the following properties:

– If qi /∈ Finite, then q′i = qi. If qi ∈ Finite, then q′i = 〈qi, vi〉 ∈ Qf .
Let zi be equal to xi if qi /∈ Finite and zi = vi otherwise.

– If q /∈ Finite, then q′ = q and z′ = z[z1, . . . , zm]. If q ∈ Finite, then
q′ = 〈q, z[z1, . . . , zm]〉 and z′ = ∗.

This deterministic bottom-up tree transducer T ′ is trim and proper. For the
size, we observe that a transition of T is duplicated for every sequence of possible
outputs of the inessential states on the left-hand side. Furthermore, xi-nodes
in right-hand sides are replaced by outputs of inessential states. Thus, the size
of T ′ is bounded by Γ · |T |, where Γ is the sum of sizes of all outputs produced
for inessential states of T .

With this theorem we get a proper deterministic bottom-up tree transducer for
the transformation of Example 5.4. Thereto, we apply the construction of the
proof to one of the two transducers T+ and T× of Example 6.1.
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Figure 6.3: The dependency graph GT+
for DBTT T+.

Example 6.2. Consider again the transducer T+ of Example 6.1. The depen-
dence graph is

GT+
= ({qf , q0, q1, q2}, {(q0, qf ), (q1, qf ), (q2, qf )})

with only inessential edges (Figure 6.3). We determine that all states are inessen-
tial. The equivalent proper DBTT T ′+ = (Q′+,Σ,∆, R

′
+, F

′
+) has the following

set of states:

Q′+ = {〈qf , i〉, 〈q0, i〉, 〈q1, 1〉, 〈q1, 2〉, 〈q2, 0〉 | 0 ≤ i ≤ 2} .

Figure 6.4: The details de-
pending on label 〈1, 1〉 of
the DBTT of Example 6.2.

Since every state of Q′+ is inessential, the out-
put is postponed to the final function, whereas
the right-hand sides of the transitions R′+ are of
the form 〈q, z〉(∗). More precisely, for all pairs
〈a, b〉 ∈ Σ(0), the transitions have the form

〈a, b〉 → 〈qi, j〉(∗)

where i = a ×3 b and j = a +3 b. Additionally,
we have for states 〈qa, b〉 ∈ Q′+ with a 6= f the
transitions:

+3(〈qa, b〉)→ 〈qf , b〉(∗)
×3(〈qa, b〉)→ 〈qf , a〉(∗)

The final function is given by

F ′+(〈qf , a〉) = a for all a ∈ {0, 1, 2} .

Figure 6.4 represents the transitions of DBTT T ′+,
which are potential applied to nodes of trees with
leaf labeled 〈1, 1〉. It is the same part as we have
seen for the two transducers T+ and T× in Fig-
ure 6.2. If we construct T ′× for the second trans-
ducer T× of Example 6.1, we get an isomorphic transducer to T ′+. Both de-
terministic bottom-up tree transducers T ′× and T ′+ are proper and realize the
transformation τ . /
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6.1.2 Earliest Transducers

Assume that we are given a proper DBTT T . Analog as for partitions, we
now want this transducer to produce the output at essential states as early as
possible. Thereto, we compute the greatest common suffix of all non-ground
images of contexts for a state q and produce it at q directly.

For an essential state q, let Ẑ(q) denote the set of images z ∈ T̂∆(y) produced
for contexts of q, i.e, if q is reachable by a tree u then Ẑ(q) = Ẑ(u) w.r.t. the
partition of the DBTT (cf. Page 55 for Ẑ(u)). Thus, every tree in Ẑ(q) contains
an occurrence of the variable y. The greatest common suffix of all trees in Ẑ(q)
is denoted by gcs(q), i.e.,

gcs(q) =
⊔
Ẑ(q)

with respect to the order v on T̂∆(y)⊥ from Page 19. It equals the greatest
common suffix gcs(u) for all u ∈ LT (q). In contrast to partitions, for every
proper DBTT, the greatest common suffices of the states can effectively be
computed:

Lemma 6.3. For a proper DBTT T , the trees gcs(q) for all essential states q
of T can be computed in polynomial time.

Proof. Assume that z ∈ T∆(Xk) and xi occurs in z. Then suffi(z) denotes the
largest subtree zi of z[y/xi] with the following properties:

- y is the only variable occurring in zi, i.e., zi ∈ T̂∆(y);

- z[y/xi] = z′ · zi for some z′, i.e., z′ ∈ T̂∆∪Xk\{xi}(y).

Then the trees gcs(q) are the least solution of the inequations

gcs(qi) w suffi(gcs(q) · z), a(q1, . . . , qk)→ q(z) ∈ R and xi occurs in z,
gcs(q) w z, F (q) = z and y occurs in z.

Since T is proper, this system contains inequations only for essential states q.
The system has a unique least solution because the right-hand sides are mono-
tonic. In addition, since the complete lattice T̂∆(y)⊥ satisfies the ascending
chain condition, this least solution can effectively be computed. Using a stan-
dard worklist algorithm, it can be shown that each inequation is evaluated at
most O(|T |) times. If we represent elements from T̂∆(y) as compositions of
irreducible trees in the compact representation, then each right-hand side also
can be evaluated in polynomial time. This proves the complexity bound stated
in the proposition.

The greatest common suffix is different from ⊥ only for essential states. Since
for these states the set Ẑ(q) is not empty, the least upper bound is always
in T̂∆(y).

Definition 6.2. A proper bottom-up tree transducer T is called earliest if the
greatest common suffix of every essential state q equals y.
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With Lemma 6.3 we know that the gcs(q) are computable in polynomial time.
Thus, we can construct an earliest DBTT in polynomial time by moving these
common suffices to the output of the trees reaching the state.

Theorem 6.4. For each proper tree transducer T , a tree transducer T ′ can be
constructed in polynomial time with the following properties:

- T is equivalent to T ′

- T ′ is earliest.

Proof. Let T = (Q,Σ,∆, R, F ) be a proper tree transducer. According to
Lemma 6.3, we can compute the greatest common suffix gcs(q) for every essen-
tial state q of T . The corresponding earliest transducer T ′ = (Q,Σ,∆, R′, F ′)
has the same set of states as T as well as the same input and output alphabets,
but only differs in the transition function and the final function.

Let us first construct the final function F ′ of the new transducer T ′. Let q
be a state of T ′. Then F ′(q) is defined iff F (q) is defined. If q is an inessential
state, then F ′(q) = F (q). Now assume that q is essential and F (q) = z. Then
the greatest common suffix gcs(q) of q is a suffix of z, i.e., z = u · gcs(q) for
some u ∈ T̂∆(y). Since we assume that gcs(q) has already been output, we set
F ′(q) = u.

We now construct the transition function R′. Then R′(a, q1 . . . qm) is de-
fined iff R(a, q1 . . . qm) is defined. Assume that a(q1, . . . , qm) → q(z) is a tran-
sition in R. If q is inessential, then z = ∗ and R′ contains the transition
a(q1, . . . , qm) → q(∗) as well. Now assume q is essential. Then we construct
the output of the corresponding transition in R′ in two steps. First, we add the
greatest common suffix corresponding to q to z, i.e., we define z̄ = gcs(q) · z.
Then we remove from z̄ the greatest common suffices of all variables occurring
in (z and thus also in) z̄. Let xi1 , . . . , xir be an enumeration of the variables
occurring in z̄. Then z̄ can be uniquely decomposed into:

z̄ = u[gcs(qi1)/xi1 , . . . , gcs(qir )/xir ]

where u ∈ T∆({xi1 , . . . , xir}). Then R′ has the transition a(q1, . . . , qm)→ q(u).
Due to the one-to-one correspondence of the final functions and transition

functions, T ′ is trim. In order to prove the equivalence of T and T ′, it suffices to
verify by induction on the structure of an input tree t ∈ TΣ and every essential
state q,

[[t]]T = q(z) iff [[t]]T
′

= q(gcs(q) · z) .
Moreover, for every inessential state of T , we have:

[[t]]T = q(∗) iff [[t]]T
′

= q(∗)

In particular, this invariant implies that T ′ is still proper. In order to prove
that T ′ is earliest, it suffices to verify for every context c ∈ T̂Σ(y) of an essential
state q that the following holds

τTq (c) = τT
′

q (c) · gcs(q) .
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This invariant can again be proven by induction on the length of the context c
(using the first invariant).

Given the trees gcs(q), the construction can be performed in polynomial
time. We need to care, however, not to expand the representation of suf-
fices gcs(q): Such an expansion could result in an exponential blow-up of the
sizes of resulting trees. The factorization of output trees, which is necessary for
constructing the tree u in transitions of R′ reaching essential states, however,
can also be performed with the compacted representation directly.

Example 6.3. Assume that Σ = {a(2), b(1), c(0), d(0)} and ∆ = {D(2), E(0)}.
Consider the proper DBTT T = (Q,Σ,∆, R, F ), with set of (essential) states
Q = {q1, q2} where the final function is F = {q1 7→ D(D(y, E), D(y, E))} and the
transition function R is given by:

a(q1, q2) → q1(D(x2, D(x1, E))) d → q1(E)
b(q2) → q2(D(x1, D(D(E, E), E))) c → q2(E)

To compute the greatest common suffices, we consider the following inequations:

gcs(q1) w suff1(gcs(q1) · D(x2, D(x1, E))) = D(y, E)
gcs(q2) w suff2(gcs(q1) · D(x2, D(x1, E))) = y
gcs(q2) w suff1(gcs(q2) · D(x1, D(D(E, E), E))) = gcs(q2) · D(y, D(D(E, E), E))
gcs(q1) w F (q1) = D(D(y, E), D(y, E))

For q2, we obtain gcs(q2) = y. Moreover, since

D(y, E) t D(D(y, E), D(y, E)) = D(y, E) ,

we have gcs(q1) = D(y, E). The final function of the earliest DBTT for T ′ thus
is given by F ′ = {q1 7→ D(y, y)}. In order to construct the new transition
function, first consider the right-hand side for a(q1, q2) in R′ where the right-
hand side in T is R(a, q1q2)) = q1(D(x2, D(x1, E))) (Figure 6.5). We have already
computed the greatest common suffix for the state q1 of the right-hand side
(Step 1 in Figure 6.5). In the second step, we construct

z̄ = gcs(q1) · D(x2, D(x1, E)) = D(y, E) · D(x2, D(x1, E)) = D(D(x2, D(x1, E)), E) .

From this tree, we remove the suffices for q1 and q2 at the variables x1 and x2,
respectively. This was the third step in the Figure 6.5. It results in the tree
u = D(D(x2, x1), E). Therefore, we obtain in Step 4 the transition

a(q1, q2)→ q1(D(D(x2, x1), E)) .

Analogously, we obtain the transitions

d→ q1(D(E, E))

b(q2)→ q2(D(x1, D(D(E, E), E)))

c→ q2(E) .

For this transducer T ′, the greatest common suffices for all (essential) states
equal y and the transducer is now earliest. /
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Figure 6.5: Construction of the right-hand side R′(a, q1q2) in the earliest
DBTT T ′ of Example 6.3.
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6.1.3 Unified Transducers

For an earliest DBTT, contexts of states may disagree except for a pair of output
trees.

Example 6.4. Recall the tree function τmgu of Example 5.8 (Figure 5.4). Simi-
lar to the two partitions presented in that example, we can construct different
deterministic bottom-up tree transducers for τmgu with the same number of
states. The input and output alphabets are

Σ = {a(0), b(1), d(1), e(0), f(1), g(1)} and ∆ = {A(2), B(1), D(0), E(0), G(2)} ,

respectively. First, consider the earliest transducer T1 = (Q,Σ,∆, R1, F ) with
set of states Q = {q1, q

′
1, q2, q

′
2, q3} and R1, F given by:

e → q1(E) b(q1) → q1(B(x1))
a → q′1(E) b(q′1) → q′1(B(x1)) F (q′1) = y

d(q1) → q2(x1) g(q2) → q3(G(D, y)) F (q2) = A(y, E)
d′(q1) → q′2(x1) g(q′2) → q3(G(D, B(y))) F (q′2) = A(B(y), y)
f(q′1) → q′2(E) F (q3) = y

This transducer is illustrated in Figure 6.6. There is an additional dotted arrow
from the f-labeled transition to the state q2, which we ignore for T1. We observe
that the states q2 and q′2 are both essential and have the same contexts. The
images of the context g(y),

τT1
q2 (g(y)) = G(D, y) and τT1

q′2
(g(y)) = G(D, B(y))

differ only in the suffix B(y). The images of the context y are

τT1
q2 (y) = A(y, E) and τT1

q′2
(y) = A(B(y), y) .

If y is substituted by B(E) in the image at q2 and E at q′2, they become equal.
Thus, for each context c of q2, we get

τT1
q2 (c) · B(E) = τT1

q′2
(c) · E .

The transition with left-hand side f(q′1) produces E as output and reaches
state q′2. Thus, we can also define a transducer T2 = (Q,Σ,∆, R2, F ), which
equals T1 but R2(f, q′1) = q2(B(E)) (by the dotted arrow in the figure). Both
transducers are earliest and have the same number of states. /

We see that earliest deterministic bottom-up tree transducers may have unifiable
states. Assume that T = (Q,Σ,∆, R, F ) is an earliest DBTT and that q1, q2 ∈ Q
are states. Every state of T defines a context function τTq . We define the most-
general unifier mgu(q1, q2) of the states q1, q2 as the most-general unifier of their
context functions (cf. Page 61), i.e.,

mgu(q1, q2) = mgu(τTq1 , τ
T
q2) .
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Figure 6.6: The transducers T1 (without the B(E)-labeled arrow from ’f’ to q2)
and T2 (without the E-labeled arrow from ’f’ to q′2) of Example 6.4.
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Note that this most-general unifier is a pair if the two states have the same set
of contexts, i.e., CT (q1) = CT (q2). Otherwise, it is mgu(q1, q2) = ⊥. We call
states q1, q2 unifiable if the most-general unifier is not ⊥.

For unifiable states q1 and q2, we observe similar properties for the most-
general unifier mgu(q1, q2) = 〈z1, z2〉 as for the most-general unifier of unifiable
residuals:

- If qi is inessential, then for every context c of qi holds τTqi(c) ∈ T∆. There-
fore, zi = >.

- Moreover, z1 contains y iff z2 contains y. If both z1 and z2 contain y, the
most-general unifier must equal 〈y, y〉, otherwise, T would not be earliest.

A ground term v is called realizable in a state q if v is part of the set of out-
puts of q. Ground terms v occurring in most-general unifiers of states are not
necessarily realizable.

Definition 6.3 (Unified Earliest). The earliest DBTT T is called unified earliest
if no ground term in most-general unifiers of states of T is realizable.

In the following, we show that for every earliest DBTT, a unified earliest DBTT
can be constructed in polynomial time. For this construction, the following
result is required.

Theorem 6.5. Assume that T is an earliest deterministic bottom-up tree trans-
ducer. Then all most-general unifiers mgu(q1, q2) can be constructed in polyno-
mial time.

Proof. Let the transducer T = (Q,Σ,∆, R, F ). We determine the greatest map-
ping µ : Q2 → D∆ from pairs of states to candidate unifiers, which for all q, q′

satisfies the following constraints:

1.

µ(q, q′) ≤

 〈>,>〉 F (q) and F (q′) are undefined
⊥ F (q) defined ⇔ F (q′) undefined
mgu(F (q), F (q′)) otherwise

2. Consider a ∈ Σ of rank m, i ∈ [m], q1 . . . , qi−1, qi+1, . . . , qm ∈ Q. If it
is not the case that the right-hand side R(a, q1 . . . qi−1qqi+1 . . . qm) is de-
fined iff R(a, q1 . . . qi−1q

′qi+1 . . . qm) is defined, then µ(q, q′) ≤ ⊥. There-
fore, now assume that both right-hand sides R(a, q1 . . . qi−1qqi+1 . . . qm)
and R(a, q1 . . . qi−1q

′qi+1 . . . qm) are defined and equal q0(z) and q′0(z′),
respectively.

- If µ(q0, q
′
0) = ⊥, then µ(q, q′) ≤ ⊥.

- Assume µ(q0, q
′
0) = 〈s, s′〉 where both s and s′ contain y, and one

of them equals y. If s′ · z = z1 · u and s · z′ = z1 · u′ for some
trees u, u′ ∈ T∆(xi), then µ(q, q′) ≤ mgu(u[y/xi], u

′[y/xi]). If no
such decompositions exist, we have µ(q, q′) ≤ ⊥.
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- Assume that µ(q0, q
′
0) = 〈v, v′〉 for ground terms v, v′ ∈ T∆. If a

variable xj 6= xi occurs in z or z′, then we have µ(q, q′) ≤ ⊥. Now
assume that z[y/xi], z

′[y/xi] ∈ T∆(y) and, that v = z[vi/xi] and
v′ = z′[v′i/xi] for some vi, v

′
i ∈ T∆. If no such decomposition exists,

we have µ(q, q′) ≤ ⊥.

Therefore, assume that such a decomposition exists.

If z[y/xi], z
′[y/xi] ∈ T̂∆(y), then µ(q, q′) ≤ 〈vi, v′i〉.

If z[y/xi] ∈ T̂∆(y) and z′ ∈ T∆, then µ(q, q′) ≤ 〈vi,>〉.
If z ∈ T∆ and z′[y/xi] ∈ T̂∆(y), then µ(q, q′) ≤ 〈>, v′i〉.

- Now assume that µ(q0, q
′
0) = 〈v,>〉 for a ground term v. If a variable

xj 6= xi occurs in z, then µ(q, q′) ≤ ⊥. Assume that z[y/xi] ∈ T∆(y)
and v = z[vi/xi] for some vi ∈ T∆.

If no such decomposition exists, we have µ(q, q′) ≤ ⊥.

If such a decomposition exists and z[y/xi] ∈ T̂∆(y), then we have
µ(q, q′) ≤ 〈vi,>〉.

- The case where µ(q0, q
′
0) equals 〈>, v〉 for a ground term v ∈ T∆, is

analogous.

Each constraint induced by a pair of final outputs F (q), F (q′) as well as each
constraint induced by a matching pair of transitions

a(q1, . . . , qi−1, q, qi+1, . . . , qm)→ q0(z) and

a(q1, . . . , qi−1, q
′, qi+1, . . . , qm)→ q′0(z′)

is monotonic w.r.t. the ordering ≤ and distributes over pairwise greatest lower
bounds.

By induction on the length of contexts c ∈ T̂∆(y), we verify that for each
pair of states q, q′ it holds:

- If τq(c) and τq′(c) are defined, then µ(q, q′) ≤ mgu(τq(c), τq′(c)).

- If either τq(c) or τq′(c) is defined and not the other, then µ(q, q′) = ⊥.

It follows that µ(q, q′) ≤ mgu(q, q′) for all states q, q′. Since mgu is a solution
of the constraint system, thus, it is the greatest solution.

The complete lattice (D,≤) of candidate unifiers (cf. Page 20) has finite
height, i.e., each strictly ascending chain d1 � d2 � . . . � dk has at most
length k = 4. Using the compacted representations of trees where isomorphic
subterms are shared, this construction of the most-general unifiers works in
polynomial time.

Assume now that we are given all most-general unifiers of an earliest DBTT T .
Then we can construct a unified earliest transducer T ′, which is equivalent to T .
The idea of the proof is similar as for partitions, cf. Theorem 5.10. Realizable
ground terms (and parts of it) are stored in new inessential states and with that
are postponed. We have:
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Theorem 6.6. For each earliest DBTT T , a DBTT T ′ can be constructed in
polynomial time with the following properties:

- T ′ is equivalent to T and

- T ′ is unified earliest.

Proof. Let T = (Q,Σ,∆, R, F ) be an earliest DBTT. By Theorem 6.5, we may
assume that we are given all most-general unifiers mgu(q, q′) for states q, q′ ∈ Q.
Then we construct the unified earliest transducer T ′ = (Q′,Σ,∆, R′, F ′) in two
steps.

First, we introduce new states and get a transducer T1. Whenever an out-
put v of an input u at state q is produced by T , which will contribute to a ground
unifier of q, then the computation on u is redirected to a new state 〈q, v〉, which
memorizes v and does produce ∗ only. Instead, the output v is delayed to the
images of the contexts. This implies that the new state 〈q, v〉 is inessential.
Furthermore, for states q′ used to evaluate subtrees of u whose outputs v′ may
contribute to v, further states 〈q′, v′〉 should be introduced.

Formally, the DBTT T1 = (Q1,Σ,∆, R1, F1) is defined as follows. We denote
by V ⊆ T∆ ∪ {⊥} the set of subterms of terms occurring as ground unifiers of
states or ⊥. Let Q1 denote the set of pairs

Q1 = {〈q, v〉 | q ∈ Q, v ∈ V } .

Let R1 denote the least set of transitions, which contains for each transition
a(q1, . . . , qm)→ q(z) of R the following transitions. Assume v1, . . . , vm ∈ V and
let v = z[v1, . . . , vm].

- If v ∈ V , then a(〈q1, v1〉, . . . , 〈qm, vm〉)→ 〈q, v〉(∗) ∈ R1.

- If v 6∈ V , then a(〈q1, v1〉, . . . , 〈qm, vm〉)→ 〈q,⊥〉(z[v′1, . . . , v′m]) ∈ R1 where
v′i = xi if vi = ⊥, and v′i = vi otherwise.

Let 〈q, v〉 ∈ Q1. The final function F1 is defined for 〈q, v〉 iff F is defined for q
where F1(〈q,⊥〉) = F (q) and F1(〈q, v〉) = F (q) · v if v 6= ⊥. Some of the new
states 〈q, v〉 of T1 for v 6= ⊥ may be unreachable. The unified earliest trans-
ducer T ′ = (Q′,Σ,∆, R′, F ′), therefore, is defined as the trim DBTT equivalent
to T1, obtained according to Proposition 4.1.

By induction on the length of contexts c and depth of input trees u, we
obtain:

- ∀〈q, v〉 ∈ Q′ : c ∈ CT (q) iff c ∈ CT ′(〈q, v〉);

- ∀〈q,⊥〉 ∈ Q′, c ∈ CT (q) : τTq (c) = τT
′

〈q,⊥〉(c);

- ∀〈q, v〉 ∈ Q′, v 6= ⊥, c ∈ CT (q) : τTq (c) · v = τT
′

〈q,v〉(c);

- ∀u ∈ TΣ: [[u]]T = q(v) iff [[u]]T
′

=

{
〈q, v〉(∗) v ∈ V
〈q,⊥〉(v) v /∈ V
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The number of outputs produced at a state q of T , which is not produced
by 〈q,⊥〉 in T ′, is finite (it is bounded by the number of subtrees of ground
unifiers of T ). Thus, if q is an essential state of T , 〈q,⊥〉 is an essential state
of T ′ and each state 〈q, v〉 with v 6= ⊥ is inessential. Thus, the transducer T ′

is proper. Since the images of contexts of state q w.r.t. T equal the images of
contexts of 〈q,⊥〉 w.r.t. T ′, and the new states 〈q, v〉 with v 6= ⊥ are inessential,
the transducer T ′ is still earliest. Let v, v′ ∈ T∆. The most-general unifier of T ′

is given by

- mguT
′
(〈q′,⊥〉, 〈q,⊥〉) = mguT (q′, q),

- mguT
′
(〈q′,⊥〉, 〈q, v〉) =

 〈v
′,>〉 mguT (q′, q) = 〈v′, v〉
〈v,>〉 mguT (q′, q) = 〈y, y〉
⊥ otherwise

- mguT
′
(〈q′, v′〉, 〈q, v〉) =

{
〈>,>〉 mguT (q′, q) = 〈v′, v〉
⊥ otherwise

The new bottom-up tree transducer T ′ is unified earliest : Assume there is a
unifier mgu(〈q1, v1〉, 〈q2, v2〉) = 〈v′1, v′2〉 in T ′ with ground v′1 ∈ T∆. We show
that v′1 is not realizable in 〈q1, v1〉. Since v′1 6= >, the state 〈q1, v1〉 is essential
and with that, v1 = ⊥.

- If v2 = ⊥, then 〈v′1, v′2〉 was a most-general unifier in T of q1, q2. Conse-
quently, 〈q1, v

′
1〉 is a state in Q′.

- If v2 6= ⊥ and v′2 = > and mguT (q1, q2) 6= 〈y, y〉, then 〈v′1, v2〉 was a
most-general unifier in T for q1, q2. Thus, 〈q1, v

′
1〉 ∈ Q′.

- If v2 6= ⊥ and v′2 = > and mguT (q1, q2) 6= 〈y, y〉, then v2 = v′1 ∈ V and
〈q1, v

′
1〉 is a state in Q′.

Now we show that T and T ′ are equivalent : Consider a tree u = c · u′ with
[[u′]]T = q(v). If v 6= ⊥ and 〈q, v〉 ∈ Q′ we have:

τT (u) = τTq (c) · v = τT
′

〈q,v〉(c) = τT
′

〈q,v〉(c) · ∗ = τT
′
(u)

Otherwise, we have [[u′]]T
′

= 〈q,⊥〉(v) and:

τT (u) = τTq (c) · v = τT
′

〈q,v〉(c) · v = τT
′
(u) .

Example 6.5. Consider again the transducer T1 = (Q,Σ,∆, R1, F ) of Exam-
ple 6.4. The most-general unifiers are

mgu(q2, q
′
2) = 〈B(E), E〉

and mgu(q, q′) = ⊥, otherwise. We get the set V = {B(E), E,⊥} of subterms of
terms occurring as ground unifiers of states or ⊥. All states of Q×V are possible
new states. Except from 〈q3, B(E)〉 and 〈q3, E〉, all are reachable. Starting with
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The unified earliest transducer T ′1 = (Q′,Σ,∆, R′1, F
′) has the set of states

Q′ = {〈q1, E〉, 〈q1, B(E)〉, 〈q1,⊥〉, 〈q′1, E〉, 〈q′1, B(E)〉, 〈q′1,⊥〉,
〈q2, E〉, 〈q2, B(E)〉, 〈q2,⊥〉, 〈q′2, E〉, 〈q′2, B(E)〉, 〈q′2,⊥〉, 〈q3,⊥〉} .

The transition function R′1 is given by

a→ 〈q′1, E〉(∗) b(〈q′1, E〉)→ 〈q′1, B(E)〉(∗)
e→ 〈q1, E〉(∗) b(〈q1, E〉)→ 〈q1, B(E)〉(∗)

b(〈q′1, B(E)〉)→ 〈q′1,⊥〉(B(B(E))) b(〈q′1,⊥〉)→ 〈q′1,⊥〉(B(x1))
b(〈q1, B(E)〉)→ 〈q1,⊥〉(B(B(E))) b(〈q1,⊥〉)→ 〈q1,⊥〉(B(x1))

d(〈q1, E〉)→ 〈q2, E〉(∗) g(〈q2, E〉)→ 〈q3,⊥〉(G(D, E))
d′(〈q1, E〉)→ 〈q′2, E〉(∗) g(〈q′2, E〉)→ 〈q3,⊥〉(G(D, B(E)))

d(〈q1, B(E)〉)→ 〈q2, B(E)〉(∗) g(〈q2, B(E)〉)→ 〈q3,⊥〉(G(D, B(E)))
d′(〈q1, B(E)〉)→ 〈q′2, B(E)〉(∗) g(〈q′2, B(E)〉)→ 〈q3,⊥〉(G(D, B(B(E))))

d(〈q1,⊥〉)→ 〈q2,⊥〉(x1) g(〈q2,⊥〉)→ 〈q3,⊥〉(G(D, x1))
d′(〈q1,⊥〉)→ 〈q′2,⊥〉(x1) g(〈q′2,⊥〉)→ 〈q3,⊥〉(G(D, B(x1)))
f(〈q′1, E〉)→ 〈q′2, E〉(∗) f(〈q′1, B(E)〉)→ 〈q′2, E〉(∗)
f(〈q′1,⊥〉)→ 〈q′2, E〉(∗)

and the final function is F ′ defined as follows:

F ′(〈q′1, E〉) = E F ′(〈q′1, B(E)〉) = B(E)
F ′(〈q2, E〉) = A(E, E) F ′(〈q2, B(E)〉) = A(B(E), E)
F ′(〈q′2, E〉) = A(B(E), E) F ′(〈q′2, B(E)〉) = A(B(B(E)), B(E))
F ′(〈q2,⊥〉) = A(y, E) F ′(〈q′2,⊥〉) = A(B(y), y)
F ′(〈q′1,⊥〉) = y F ′(〈q3,⊥〉) = y

Figure 6.7: The unified earliest DBTT T ′1 of Example 6.5.
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left-hand side a, we get the new transition a → 〈q′1, E〉(∗) because E ∈ V .
Furthermore, for the transition b(q′1)→ q′1(B(x1)), we get the transition

b(〈q′1, E〉)→ 〈q′1, B(E)〉(∗)

because B(x1)[E/x1] = B(E) ∈ V . Now consider the left-hand side b(〈q′1, B(E)〉).
The potential output B(x1)[B(E)/x1] = B(B(E)) is not in V . Thus, the right-hand
side should be

R′1(b, 〈q′1, B(E)〉) = 〈q′1,⊥〉(B(B(E))) .

In addition, for the left-hand side b(〈q′1,⊥〉), we get the transition

b(〈q′1,⊥〉)→ 〈q′1,⊥〉(B(x1)) .

Now for all states 〈q′1, v〉 for v ∈ V , we get the transition

f(〈q′1, v〉)→ 〈q′2, E〉(∗) .

The whole unified earliest transducer T ′1 is given in Figure 6.7.

On the other hand, if we start with DBTT T2, we get a unified earliest
transducer T ′2 with the transition

f(〈q′1, v〉)→ 〈q2, B(E)〉(∗)

for all v ∈ {B(E), E,⊥}. However, both 〈q′2, E〉 in T ′1 and 〈q2, B(E)〉 in T ′2 are
inessential. Since they define the same context function, they are equivalent.
Altogether, the resulting DBTTs T ′1 and T ′2 are isomorphic up to renaming. /

6.1.4 Minimal Transducers

In the last example, we get two equivalent tree transducers, which are unified
earliest. But the construction of these transducers yields in a number of redun-
dant states. Consider for example the states 〈q′1, E〉, 〈q′1, B(E〉), and 〈q′1,⊥〉 of
transducer T ′1 in Figure 6.7. If we merge them, the transducer remains unified
earliest. Moreover, the resulting DBTT is smaller.

Thus, as a last step of the normalization of deterministic bottom-up tree
transducers, we merge equivalent states by preserving the properties of a unified
earliest DBTT. Therefore, we consider a congruence relation on states. It is
similarly defined as the congruence relation ∼r on subtrees in Section 5.2.6. Let
T = (Q,Σ,∆, R, F ) be a DBTT and let ∼′T denote the smallest equivalence
relation with the following properties:

- If mgu(q, q′) = 〈y, y〉 or mgu(q, q′) = 〈>,>〉 then q ∼′T q′;

- Assume that mgu(q, q1) = 〈>, s1〉 for some ground term s1 ∈ T∆. If for all
states q2 with mgu(q, q2) = 〈>, s2〉 for some s2 6= >, mgu(q1, q2) = 〈y, y〉
holds then q ∼′T q1.
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Then, the relation ∼T is the greatest equivalence relation, which is a refinement
of ∼′T such that, q1 ∼T q2, whenever for every symbol a ∈ Σ of rank m,
every i ∈ [m], and all states p1, . . . , pi−1, pi+1, . . . , pm ∈ Q, the following holds.
There is a transition a(p1, . . . , pi−1, q1, pi+1, . . . , pm)→ q′1(z1) in R iff there is a
transition a(p1, . . . , pi−1, q2, pi+1, . . . , pm)→ q′2(z2) in R. If such two transitions
exist then q′1 ∼T q′2. Two states q1, q2 are called similar if q1 ∼T q2.

Definition 6.4 (Minimal). A unified earliest transducer T = (Q,Σ,∆, R, F ) is
said to be minimal iff all distinct states q1, q2 ∈ Q are not similar, i.e., q1 6∼T q2.

Theorem 6.7. For each unified earliest DBTT T , a unified earliest DBTT T ′

can be constructed in polynomial time with the following properties:

- T ′ is equivalent to T

- T ′ is minimal

- |T ′| ≤ |T |.

Proof. Let T = (Q,Σ,∆, R, F ) be a unified earliest DBTT. By fixpoint iteration,
we compute the equivalence relation ∼T on Q. Now we build a transducer T ′

with the equivalence classes of ∼T as states. Let [q] = {q′ | q ∼T q′} the
equivalence class of q. We call [q] inessential if all states in [q] are inessential.
Otherwise, it is called essential. For each class [q], we mark a representative
state pq ∈ Q, which is essential iff [q] is essential.

Formally, we get T ′ = (Q′,Σ,∆, R′, F ′) with Q′ = {[q] | q ∈ Q}. The
function F ′ is given by F ′([q]) = F (pq). For R′, assume that q1, . . . , qm ∈ Q are
representatives of their classes and that a(q1, . . . , qm)→ q(z) ∈ R.

- If q is essential, then a([q1], . . . , [qm])→ [q](z) ∈ R′.

- If pq is inessential, then a([q1], . . . , [qm])→ [q](z) ∈ R′.

- Otherwise, if mgu(q, pq) = 〈>, s〉, then a([q1], . . . , [qm])→ [q](s) ∈ R′.

By induction on the depth of input trees u, we obtain for all u ∈ TΣ:

[[u]]T
′

= [q](z) iff ∃q′ ∈ [q] with [[u]]T =

 q′(z) if mgu(q′, pq) = 〈y, y〉
q′(z) if mgu(q′, pq) = 〈>,>〉
q′(∗) if mgu(q′, pq) = 〈>, z〉

In addition, by induction on the length of context c, we get for all c ∈ T̂Σ(y):

τT
′

[q] (c) = z iff τTpq (c) = z

It follows that τT = τT
′

and that T ′ is trim, proper, and earliest.
To prove that T ′ is unified earliest, assume that mgu(p1, p2) = 〈v1, v2〉 for

states pi ∈ Q′ and v1 ∈ T∆ is realizable in p1. If v2 is ground, it follows that
there are states q1 ∈ p1 and q2 ∈ p2 of T with mgu(q1, q2) = 〈v1, v2〉 and v1 is
realizable in q1. If v2 = >, it follows that q1 ∼T q2.
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In the following, we show that the minimal transducer is unique. Before that,
let us consider the construction of the minimal DBTT in an example.

Example 6.6. Consider again the unified earliest DBTT of Example 6.5, i.e.,
T ′1 = (Q′,Σ,∆, R′1, F

′). The complete unified earliest transducer is presented
on Page 99. Let ∼′T and ∼T denote the equivalence relations ∼′T ′1 and ∼T ′1 ,

respectively. We compute the following most-general unifiers different to ⊥:

mgu(〈q2,⊥〉, 〈q′2,⊥〉) = 〈B(E), E〉 (6.1)

mgu(〈q2, B(E)〉, 〈q′2, E〉) = 〈>,>〉 (6.2)

mgu(〈q2, B(E)〉, 〈q′2,⊥〉) = 〈>, E〉 (6.3)

mgu(〈q2,⊥〉, 〈q′2, E〉) = 〈B(E),>〉 (6.4)

Additionally, for every pair (〈q,⊥〉, 〈q, v〉) of states with q ∈ {q1, q
′
1, q2, q

′
2} and

v ∈ {E, B(E)}, the most-general unifier is

mgu(〈q,⊥〉, 〈q, v〉) = 〈v,>〉 . (6.5)

Every state q of the form 〈q2, v〉 or 〈q′2, v〉 for v ∈ {E, B(E),⊥} only occurs on
the left-hand side g(q) with 〈q3,⊥〉 on the corresponding right-hand side. Thus,
two states q, q′ of this form are similar if q ∼′T q′. With Equation 6.2, this
holds for the pair 〈q2, B(E)〉, 〈q′2, E〉, i.e., 〈q2, B(E)〉 ∼T 〈q′2, E〉. Also, we get with
Equation 6.5:

〈q2, E〉 ∼T 〈q2,⊥〉 and 〈q′2, B(E)〉 ∼T 〈q′2,⊥〉

Now consider 〈q2, B(E)〉. There are two essential states, which have a most-
general unifier of the form 〈>, v〉 with this inessential state: 〈q′2,⊥〉 and 〈q2,⊥〉
by Equations 6.3 and 6.5, respectively. Thus, 〈q2, B(E)〉 is not similar to any
essential state. The same follows for 〈q′2, E〉.

On the other hand, consider the states with q1 as first component. The left-
hand side d(〈q1,>〉) has 〈q2,>〉 on the right-hand side, whereas for 〈q1, B(E)〉 it
is R(d, 〈q1, B(E)〉) = 〈q2, B(E)〉(∗). Since 〈q2,>〉 and 〈q2, B(E)〉 are not similar,
also

〈q1,>〉 6∼T 〈q1, B(E)〉

follows. Analogously, we get with left-hand side d′(〈q1,>〉) and d′(〈q1, E〉) that
these states are not similar. Additionally, for both labels d and d′ follows

〈q1, E〉 6∼T 〈q1, B(E)〉 .

Last, we have the states, with first component q′1. There, we get with Equa-
tion 6.5 that 〈q′1, E〉 ∼′T 〈q′1,⊥〉 and 〈q′1,⊥〉 ∼′T 〈q′1, B(E)〉. Since ∼′T is the
smallest equivalence relation such that this holds, this implies

〈q′1, E〉 ∼′T 〈q′1, B(E)〉 .
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The minimal transducer Tmin = (Qmin,Σ,∆, Rmin, Fmin) has the set of
states

Qmin = {[〈q1, E〉], [〈q1, B(E)〉], [〈q1,⊥〉], [〈q′1,⊥〉],
[〈q2,⊥〉], [〈q′2, E〉], [〈q′2,⊥〉], [〈q3,⊥〉] } .

The transition function Rmin is given by

a→ [〈q′1,⊥〉](E) b([〈q′1,⊥〉])→ [〈q′1,⊥〉](B(x1))
e→ [〈q1, E〉](∗) b([〈q1, E〉])→ [〈q1, B(E)〉](∗)

b([〈q1, B(E)〉])→ [〈q1,⊥〉](B(B(E))) b([〈q1,⊥〉])→ [〈q1,⊥〉](B(x1))
d([〈q1, E〉])→ [〈q2,⊥〉](E)
d′([〈q1, E〉])→ [〈q′2, E〉](∗) g([〈q′2, E〉])→ [〈q3,⊥〉](G(D, B(E)))

d′([〈q1, B(E)〉])→ [〈q′2,⊥〉](B(E))
d([〈q1, B(E)〉])→ [〈q′2, E〉](∗)
d([〈q1,⊥〉])→ [〈q2,⊥〉](x1) g([〈q2,⊥〉])→ [〈q3,⊥〉](G(D, x1))
d′([〈q1,⊥〉])→ [〈q′2,⊥〉](x1) g([〈q′2,⊥〉])→ [〈q3,⊥〉](G(D, B(x1)))
f([〈q′1,⊥〉])→ [〈q′2, E〉](∗)

and the final function is Fmin defined as follows:

Fmin([〈q′2, E〉]) = A(B(E), E)
Fmin([〈q2,⊥〉]) = A(y, E) Fmin([〈q′2,⊥〉]) = A(B(y), y)
Fmin([〈q′1,⊥〉]) = y Fmin([〈q3,⊥〉]) = y

Figure 6.8: The minimal DBTT Tmin of Example 6.6.
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For each of these states we have the right-hand sides

R′1(f, 〈q′1, v〉) = 〈q′2, E〉(∗)
R′1(b, 〈q′1, v〉) = 〈q′1, v′〉(z)

for v ∈ {E, B(E),⊥} and suitable v′ ∈ {B(E),⊥} and z ∈ {∗, B(x1)}. Thus, we
get that 〈q′1, E〉, 〈q′1,⊥〉, and 〈q′1, B(E)〉 are equivalent under ∼T . Summarizing,
we get the following equivalence classes of ∼T with more than one element:

[〈q2,⊥〉] = {〈q2,⊥〉, 〈q2, E〉}
[〈q′2, E〉] = {〈q2, B(E)〉, 〈q′2, E〉}
[〈q′2,⊥〉] = {〈q′2,⊥〉, 〈q′2, B(E)〉}
[〈q′1,⊥〉] = {〈q′1,⊥〉, 〈q′1, B(E)〉, 〈q′1, E〉}

To get the correct transitions, let us consider, e.g., the transition a→ 〈q′1, E〉(∗)
of T ′1. The state 〈q′1, E〉 is inessential, whereas its equivalence class [〈q′1,⊥〉] is
essential. The most-general unifier of the two states is (cf. Equation 6.5)

mgu(〈q′1, E〉, 〈q′1,⊥〉) = 〈>, E〉 .

Thus, we get the new transition a→ [〈q′1, E〉](E) in Tmin.
For sake of completeness, the whole minimal deterministic bottom-up tree

transducer Tmin = (Qmin,Σ,∆, Rmin, Fmin) for the tree function τmgu is pre-
sented in Figure 6.8. /

In the following, we show that the equivalent minimal DBTT for a given earliest
unified DBTT is unique. Let the deterministic bottom-up tree transducers
T1 = (Q1,Σ,∆, R1, F1) and T2 = (Q2,Σ,∆, R2, F2) be two equivalent minimal
DBTTs, i.e., τT1 = τT2 .

For each state q ∈ Q1, a state pq ∈ Q2 is said to be related to q if both are
reached by at least one same input tree, i.e., ∃u ∈ LT1(q) ∩ LT2(pq). Since q is
reachable, there exists u ∈ LT1(q) and since q is meaningful, there should also
exist a state pq ∈ Q2 with u ∈ LT2(pq). Thus, for each state q ∈ Q1 exists
at least one related state pq in T2. We will show that there exists exactly one
related state in T2 for each state q ∈ Q1. That will give us a mapping from T1

to T2.

Lemma 6.8. Assume T1 and T2 are two minimal DBTTs, which are equivalent.
Then for each state q of T1, there exists exactly one related state pq in T2 and
the following holds:

- Every context c of q is a context of pq and τT1
q (c) = τT2

pq (c).

- LT1(q) = LT2(pq) and for each input tree u holds

[[u]]T1 = q(s) iff [[u]]T2 = pq(s) .
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Proof. If the states q and pq are related then their sets of contexts are equal,
i.e., CT1(q) = CT2(pq), because the transducers define the same transformation.

First assume that q is inessential. Then for every context c ∈ CT1(q), the
image is ground, i.e., τT1

q (c) ∈ T∆. Assume two different states p1 6= p2 of T2

are related to q in T1. For both i ∈ {1, 2}, let tree ui ∈ LT1(q) ∩ LT2(pi)
with [[ui]]

T2 = pi(si). Since the transducers T1 and T2 are equivalent, for every
context c ∈ CT1(q) it holds

τT1
q (c) = τT1(c · ui) = τT2(c · ui) = τT2

pi (c) · si .

Thus, for all context c ∈ CT1(q) it holds τT2
p1

(c) · s1 = τT2
p2

(c) · s2. Consequently,
we get for the most-general unifier:

mgu(p1, p2) ∈ {〈s1, s2〉, 〈s1,>〉, 〈>, s2〉, 〈>,>〉, 〈y, y〉}

Since T2 is unified earliest and si is an output of pi, it is not part of the most-
general unifier, i.e., mgu(p1, p2) 6∈ {〈s1, s2〉, 〈s1,>〉, 〈>, s2〉}. Moreover, since T2

is minimal, mgu(p1, p2) 6∈ {〈>,>〉, 〈y, y〉}. – Contradiction.
Now assume that q is essential. Then, there are infinitely many outputs of q.

Since T2 is finite, there should be a related state p in T2 with infinitely many
common input trees for which q produces infinitely many different outputs, i.e.,
the range outT1(LT1(q)∩LT2(p)) is infinite. Consider a context c ∈ CT1(q) with
τT1
q (c) ∈ T̂∆(y). We get for every u ∈ LT1(q) ∩ LT2(p):

τT1
q (c) · outT1(u) = τT2

p (c) · outT2(u) .

With Proposition 2.1, we know that the image τT1
q (c) in T1 is a prefix of the

image τT2
p (c) in T2 or vice versa. W.l.o.g., assume that τT1

q (c) · s = τT2
p (c) for

some s ∈ T̂∆(y). Then for infinitely many input trees u, outT1(u) = s · outT2(u).
Therefore, also for any other context c′ of q,

τT1
q (c′) · s = τT2

p (c′) .

Since T2 is earliest, the context s must equal y, and therefore, τT1
q (c) = τT2

p (c)

for every context c of q. Furthermore, it follows outT1(u) = outT2(u) for each
u ∈ LT1(q) ∩ LT2(p). Thus, if essential states q and p are related, they produce
the same output for common input trees and induce the same image for their
contexts.

Now assume there exists an input tree u1 of q with [[u1]]T2 = p1(s′) and
p1 6= p. Let [[u1]]T1 = q(s). If p1 is essential, there is a related state q1 of p1

with τT1
q1 (c) = τT2

p1
(c) for every context c of p1. Then we have for every context c

of p1 (and thus also of q and q1):

τT1
q1 (c) · s′ = τT2

p1
(c) · s′ = τT2(c · u1) = τT1(c · u1) = τT1

q (c) · s

If q1 6= q, then 〈s′, s〉 is a unifier of q1 and q. The most-general unifier of q1 and q
cannot equal 〈y, y〉 or 〈>,>〉, since T1 is minimal. Also, 〈s′, s〉 or 〈>, s〉 cannot
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equal the most-general unifier, since s is realizable at q. Finally, 〈s′,>〉 is also
no possible most-general unifier of q1 and q because q is essential. Consequently,
q1 = q, and, therefore, also p = p1.

Now assume that p1 is inessential. In the following, we prove that p1 ∼T2 p
and therefore, p1 = p since T2 is minimal. First, we note that for every context
c ∈ CT2(p1) holds

τT2
p1

(c) = τT2(c · u1) = τT1(c · u1) = τT1
q (c) · s = τT2

p (c) · s .

For a contradiction assume that p1 6= p. Then the most-general unifier of the
states p1 and p is 〈>, s〉.

Assume that the reason for p1 6∼T2
p is another essential state p2 of T2 such

that mgu(p1, p2) = 〈>, s2〉. Then the mgu of the two essential states p and p2

is given by 〈s, s2〉. Let q2 be the essential state of T1, which is related to p2.
Then q2 and p2 also have the same sets of contexts where for all c ∈ CT1(q2),
τT1
q2 (c) = τT2

p2
(c). It follows that mgu(q, q2) = mgu(p, p2) = 〈s, s2〉. Since s is

realizable in q, this is a contradiction.
If p1 6∼T2

p and there is no other essential state p2 of T2 with most-general
unifier mgu(p1, p2) = 〈>, s2〉 for some s2, then there exists a context c′ ∈ CΣ
(not necessarily in CT1(q), CT2(p), or CT2(p1)) together with states q′ of T1 and
distinct states p′, p′1, and p′2 of T2 together with output trees z and z1 with the
properties:

- [[c′]]T1
q = q′(z), [[c′]]T2

p = p′(z), and [[c′]]T2
p1

= p′1(z1);

- p′1 inessential as well, and mgu(p′, p′1) = 〈z · s,>〉;

- there exists another essential state p′2 of T2 such that mgu(p′1, p
′
2) = 〈>, s2〉.

With the same argument as above, this implies that there exists an essential
state q′2 of T1 such that mgu(q′, q′2) = 〈z · s, s2〉 where z · s is realizable at q′ —
which is a contradiction.

We conclude that the related state of an essential state is also unique (and
essential). It remains to prove for inessential states that the related state pro-
duces the same output (i.e., is also inessential) and induces the same image for
a context. For a contradiction, assume that the related state pq of an inessential
state q is essential. Then pq again is related to a unique essential state q′ that
must be different from q — which is not possible. Consequently, the related
state pq of an inessential state q must be inessential as well. Thus, the out-
put for each input tree u ∈ LT1(q) is ∗ in T1 and T2, i.e., [[u]]T1 = q(∗) and
[[u]]T2 = pq(∗). In addition, for each context c ∈ CT1(q), we have for every input
tree u of q:

τT1
q (c) = τT1(c · u) = τT2(c · u) = τT2

pq (c)

Subsequently, if we map each state of the transducer T1 to its related state
of the second minimal transducer T2, we get an isomorphism. The previous
Lemma 6.8 yields that minimal transducers are unique.
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Theorem 6.9. The minimal transducer T for a transformation τ is unique.

Proof. Assume T1 and T2 are minimal transducers with τT1 = τT2 . We define
a mapping ϕ : Q1 → Q2 by ϕ(q) = pq where pq is the related state of q. By the
previous lemma, this mapping is well-defined and a bijective. In particular, q is
the related state of pq, too. It remains to show that ϕ is an isomorphism w.r.t.
the transition and final functions, i.e.,

1. F1(q) is defined iff F2(ϕ(q)) is defined, and if they are defined, then they
are equal, i.e., F1(q) = F2(ϕ(q)), and

2. a(q1, . . . , qm)→ q0(z0) ∈ R1 ⇐⇒ a(ϕ(q1), . . . , ϕ(qm))→ ϕ(q0)(z0) ∈ R2.

Both follow from Lemma 6.8:

1. Because ϕ(q) is the related state of q and vice versa, every context c is
a context of q iff it is a context of pq, and their images are the same. In
particular for c = y,

F1(q) = τT1
q (y) = τT2

ϕ(q)(y) = F2(ϕ(q)) .

2. For each i ∈ [m], consider an input tree ui of qi. If a(q1, . . . , qm)→ q0(z)
in R1, then the tree u0 = a(u1, . . . , um) is an input tree of q0, and also
of the related state ϕ(q0). Therefore, there are states p1, . . . , pm of T2

such that ui are input trees of pi, and there is a transition of the form
a(p1, . . . , pm)→ ϕ(q0)(z′) in R2. Let p0 = ϕ(q0). Since ui are input trees
of pi (for all 0 ≤ i ≤ m), the states qi and pi are related and hence,
by Lemma 6.8, we get pi = ϕ(qi). It remains to show that z = z′. By
Lemma 6.8, outT1(ui) = outT2(ui) holds for all i = 0, . . . ,m. In particular,
this means that z = ∗ iff z′ = ∗.
Now assume that z is ground but different from ∗. Then there exists a
context c of q0 (and p0) such that s = τT1

q0 (c) = τT2
p0

(c) contains y. If z′

contains an occurrence of a variable, then there are two distinct output
trees z1, z2 at p0 such that s · z = s · z1 = s · z2 — which is impossible.
Hence, z′ must be ground as well and equal to z. It remains to consider
the case where z contains occurrences of variables xj1 , . . . , xjr and where
all states qji , pji are essential. Then z = z′ since for all i, the images for
all contexts of qji and pji must agree.

Summarizing, we obtain from Propositions 4.1, and 6.2 and Theorems 6.4, 6.6,
6.7, and 6.9:

Theorem 6.10. For each DBTT T an equivalent minimal transducer can be
constructed, which is unique up to renaming of states. If the DBTT T is already
proper, the construction can be performed in polynomial time.

This proves the first part of the Myhill-Nerode theorem for DBTTs (cf. Page 83),
i.e., (1.) implies (2.).
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6.2 From Minimal Transducers to Partitions

In Section 5.1, we defined the partition (outT , rT ) of a DBTT T and we observe
that the partition of any trim DBTT T

- is a partition of the tree function τT of the transducer (Corollary 5.3),

- is path-finite (Theorem 5.6), and

- its equivalence relation ≡rT has finite index (Lemma 5.4).

Now let T = (Q,Σ,∆, R, F ) be a minimal DBTT, which describes the tree
function τ . We show that the partition of T is the bottom-up partition of
its tree function τ , i.e., (outT , rT ) = (στ , rτ ). This leads to the next part of
Theorem 6.1. It proves that (2.) implies (3.).

First, we show that for all trees u, u′ ∈ dom(outT ) it holds u ≡rT u′ iff u
and u′ reach the same state in T , i.e., ∃q ∈ Q with u, u′ ∈ LT (q). Thereto, we
define the equivalence relation ≡T on the set of all input trees of states of T ,
i.e.,

⋃
{LT (q) | q ∈ Q}, as follows:

u ≡T u′ if ∃ q ∈ Q : u, u′ ∈ LT (q)

It is the same equivalence relation as ≡rT :

Lemma 6.11. Assume T = (Q,Σ,∆, R, F ) be a minimal deterministic bottom-
up tree transducer. Then ≡rT equals ≡T .

Proof. If u ≡T u′, there is a state q such that u, u′ ∈ LT (q). For their residuals,
we know rT (u) = τTq = rT (u′). Thus, u ≡rT u′.

Now assume u ≡rT u′, but u 6≡T u′. There are two states q 6= q′ with
u ∈ LT (q) and u′ ∈ LT (q′). Since u ≡rT u′, we get

τTq = rT (u) = rT (u′) = τTq′ .

The most-general unifier of q and q′ is mgu(q, q′) ∈ {〈y, y〉, 〈>,>〉}. If q and q′

are not similar (cf. Page 101), i.e., q 6∼ q′, there must be a context c such
that [[c]]Tq = q1(z1) and [[c]]Tq′ = q′1(z′1) with mgu(q1, q

′
1) ∈ {〈v1,>〉, 〈>, v2〉} for

some v1, v2 ∈ T∆. W.l.o.g. assume mgu(q1, q
′
1) = 〈v1,>〉. For each context

c1 ∈ CT (q1) of q1 we know that c1 is also a context of q′1. Let τTq1(c1) = z2 and

τTq′1
(c1) = z′2. Since mgu(q, q′) ∈ {〈y, y〉, 〈>,>〉}, we get

z2 · z1 = τTq (c1 · c) = τTq′ (c1 · c) = z′2 · z′1 .

On the other hand, since mgu(q1, q
′
1) = 〈v1,>〉,

z2 · v1 = z′2 .

If v1 = z1, then v1 is realizable in q1, which is a contradiction to the assumption
that T is unified earliest. Otherwise, Proposition 2.1 provides v1 ∈ T̂∆(y) or
z2 = z′2 ∈ T∆. Both contradict the definition of the most-general unifier. It
follows: u ≡rT u′ =⇒ u ≡T u′.
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The equivalence relation of the partition is the same as the equivalence relation
defined by the states of the DBTT. Now we show that the partition of the
minimal DBTT fulfills similar properties as the transducer, i.e., the partition
is also trim, proper, earliest, unified earliest, and minimal. Furthermore, the
equivalence relation is already a congruence. Consequently, the partition is
a bottom-up partition. Since the bottom-up partition of a transformation is
unique, it is the unique bottom-up partition of the transformation defined by
the transducer.

Theorem 6.12. Assume T is a minimal DBTT. Then its partition (outT , rT )
is the bottom-up partition of τT .

Proof. Let T = (Q,Σ,∆, R, F ). By Corollary 5.3, Lemma 5.4, and Theorem 5.6,
we know that (outT , rT ) is a path-finite partition of τT with finite index. We
will show that the properties trim, proper, earliest, and unified earliest are
carried over from T to the partition. We will furthermore prove that ≡T is
a congruence, which implies that ≡rT is a congruence (Lemma 6.11) and the
partition is minimal. For each u ∈ dom(outT ) we denote qu as the state reached
by u in T , i.e., u ∈ LT (qu). Let u ∈ dom(outT ). With Lemma 6.11 we get

[u]rT = LT (qu) . (6.6)

With that, we prove that (outT , rT ) is the bottom-up partition of τT :

- It is trim: Since T is trim, we get the following equivalence:

rT (u)(CΣ(y)) ⊆ T∆ ⇔ τTqu(CΣ(y)) ⊆ T∆

⇔ [[u]]T = qu(∗) T is trim

⇔ outT (u) = ∗

- The partition is proper: With Equation 6.6, we get

outT ([u]rT ) = outT (LT (qu)) .

Thus, qu is essential iff rT (u) is essential. Since T is proper, it follows that
outT ([u]rT ) is either infinite or only contains ∗.

- The partition (outT , rT ) is earliest: Assume rT (u) is essential. Then we
know that gcs(qu) = gcs(u). Since T is earliest, the greatest common
suffix equals y. On the other hand, if rT (u) is inessential, the greatest
common suffix is defined as ⊥.

- It is unified earliest: Assume there is a tree u′ ∈ dom(outT ) such that the
most-general unifier of rT (u) and rT (u′) equals 〈v, z〉 with v is a realizable
ground term. Assume outT (u) = v. Then 〈v, z〉 is also the most-general
unifier of qu and qu′ (by definition of the most-general unifier of states).
Furthermore, outT (u) = v and u ∈ LT (qu) imply, v is realizable in qu. –
Contradiction.
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- The relation ≡rT is a congruence: It suffices (with Lemma 6.11) to prove
that ≡T is a congruence relation. If u ≡T u′ then both trees u and u′

reach the same state qu. Thus, for every context c ∈ CΣ, the tree c · u in
dom(outT ) reachs the state qc·u iff the tree c · u′ reachs the same state. It
follows that c · u ≡T c · u′.

- Finally, the partition is minimal: Let u, u′ ∈ dom(outT ). By definition of
the most-general unifier of states, it holds:

mgu(u, u′) = mgu(qu, qu′)

It follows that

u ∼′rT u
′ iff qu ∼′T qu′ . (6.7)

Furthermore, we get for all trees u1, u2 ∈ dom(outT ) the following:

u1 ≡rT u2 ⇔ u1 ≡T u2 Lemma 6.11

⇔ qu1
= qu2

Definition of ≡T
⇔ qu1

∼T qu2
Definition of ∼T (6.8)

⇒ qu1
∼′T qu2

Definition of ∼T (6.9)

Now we know that ≡rT is a congruence and that it is a refinement of ∼′rT
(Equations 6.7 and 6.9). Assume that ≡rT is not the greatest congruence,
which is a refinement of ∼′rT . Then there are trees u, u′ ∈ dom(outT ) with
u ∼rT u′ but u 6≡rT u′. Since ∼rT is a congruence, it holds for every
context c with c ·u ∈ dom(outT ) that c ·u′ ∈ dom(outT ) and c ·u ∼rT c ·u′.
Thus, we get for all such contexts c · u ∼′T c · u′ by Equation 6.7. Conse-
quently, u ∼T u′ and with Equation 6.8 also u ≡rT u′. – Contradiction.
We get that ≡rT is the greatest congruence ∼rT , which is a refinement
of ∼′rT .

Finally, we get the result that for every transformation, which is definable by
a deterministic bottom-up tree transducer, the bottom-up partition exists and
is given by the unique minimal DBTT, which can be constructed (given an
arbitrary DBTT of the transformation). The following example illustrates this
on the tree function τmgu of Example 5.8.

Example 6.7. Both in Section 5.2.6 and Section 6.1.4 we considered in the
examples the tree function τmgu. In Example 5.12 we defined the unique minimal
partition (σ′, r′) of τmgu, i.e. the bottom-up partition of τmgu (Figure 5.7). In
addition, the unique minimal DBTT Tmin of τmgu (cf. Figure 6.8) is constructed
in Example 6.6.

If we deduce the partition (outTmin , rTmin) of the DBTT, we get exactly the
bottom-up partition (σ′, r′). For instance, the state [〈q2,⊥〉] is reached by the
tree d(e). The transitions

e→ [〈q1, E〉](∗) and d([〈q1, E〉])→ [〈q2,⊥〉](E)
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give us outTmin(d(e)) = E. Furthermore, since Fmin([〈q2,⊥〉]) = A(y, E), we get
that rTmin(d(e))(y) = A(y, E). Additionally, there is the transition:

g([〈q2,⊥〉])→ [〈q3,⊥〉](G(D, x1))

Since Fmin([〈q3,⊥〉]) = y, it follows

rTmin(d(e))(g(y)) = y · G(D, y) = G(D, y) .

This corresponds to the residual r′(d(e)). /

6.3 From Partitions to Minimal Transducers

In this section, we prove the last part of the Theorem 6.1. We have already
shown that for every DBTT there is a minimal DBTT and that the partition of
a minimal DBTT is the bottom-up partition of its tree function, i.e., we know
(1.) ⇒ (2.) ⇒ (3.). Since every minimal DBTT is a deterministic bottom-up
tree transducer, we also have (2.) ⇒ (1.). It remains to prove that for every
bottom-up partition a DBTT exists, which describes the same tree function.
Here, we construct such a transducer and, more specific, we will show that it is
already the minimal DBTT.

In the following, let (στ , rτ ) be the bottom-up partition of a tree function
τ : TΣ 99K T∆. Our goal is to define a DBTT Tτ , which describes τ . Thereto,
we have to build transitions of the form

a(q1, . . . , qk)→ q(z)

where z is a tree with variables x1, . . . , xk. Assume a(u1, . . . , uk) is a subtree
and this transition would be applied to the root, i.e., for i = 1, . . . , k the sub-
tree ui reaches the state qi. We build the right-hand side by replacing dedicated
subtrees of the form στ (ui) by variables xi, such that

z[στ (u1), . . . , στ (uk)] = στ (a(u1, . . . , uk))

holds. The correct trees zi ∈ T∆(y) such that zi[στ (ui)] = στ (a(u1, . . . , uk))
holds, are given by the dedicated images (cf. Definition 5.8):

zi = di(ui)(a(u1, . . . , ui−1, y, ui+1, . . . , uk))

Subsequently, we define z as the greatest common prefix of z1, . . . , zk.

Definition 6.5 (Greatest Common Prefix). Let z1, . . . , zk ∈ TΣ(y). The great-
est common prefix of z1, . . . , zk is

gcp(z1, . . . , zk) =


a(z′1, . . . , z

′
n) ∀ j ≤ k : zj = a(zj,1, . . . , zj,n) ∧ ∀ i ≤ n :

z′i = gcp(z1,i, . . . , zk,i) are defined
xi zi = y ∧ ∀ j, j′ ∈ [k] \ {i} :

zj = zj′ ∈ TΣ(y) \ {y}
undefined otherwise
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The greatest common prefix is a tree containing variables x1, . . . , xk. Let p be
a y-path of zi, i.e., p ∈ Pathsy(zi). The trees zj [p], to which p refers in the
other trees zj (for j 6= i), are the same if the greatest common prefix is defined.
Furthermore, p refers to the variable xi in the greatest common prefix. Vice
versa, if a path p in the greatest common prefix refers to a variable xi then p is a
y-path in the corresponding tree zi. With the definition of the greatest common
prefix, we now define the bottom-up tree transducer of τ using its bottom-up
partition (στ , rτ ):

Definition 6.6. The bottom-up tree transducer Tτ is defined by

Tτ = (dom(τ)/≡rτ ,Σ,∆, Rτ , Fτ )

where the right-hand sides of Rτ are defined as follows:

- For all b ∈ Σ(0) with b ∈ dom(στ ): Rτ (b) = [b]rτ (στ (b)).

- For all k > 0, a ∈ Σ(k), u1, . . . , uk ∈ dom(rτ ): If a(u1, . . . , uk) ∈ dom(στ )
then

Rτ (a, [u1]rτ . . . [uk]rτ ) = [a(u1, . . . , uk)]rτ (gcp(z1, . . . , zk))

where for all 1 ≤ i ≤ k

zi = di(ui)(a(u1, . . . , ui−1, y, ui+1, . . . , uk)) .

The function Fτ is defined for all u ∈ dom(στ ) with y ∈ dom(rτ (u)) by

Fτ ([u]rτ ) = rτ (u)(y) .

In the following, we prove that this DBTT is well-defined and correct (Theo-
rems 6.19 and 6.21). First, we show that the greatest common prefix of the
dedicated images exists. Thereto, consider a tree a(u1, . . . , uk) ∈ dom(στ ) and
the corresponding dedicated images z1, . . . , zk as defined in the previous defini-
tion. The following two lemmas show that y-paths of different trees zi and zj
are no prefixes of each other. This result is summarized in Corollary 6.15. With
this property and the fact that for each i ∈ [k] holds

zi · στ (ui) = στ (a(u1, . . . , uk)) ,

we get that the greatest common prefix of z1, . . . , zk is defined (Lemma 6.16).
After that, we prove that the choice of the right-hand side is independent of

the representatives of the states on the left-hand side (Lemma 6.18). Roughly,
this follows because trees are in the same equivalent class if they have the
same residual and, subsequently, they have the same dedicated images. Finally,
we show that the DBTT describes τ (Theorem 6.21). Additionally, we prove
that the transducer Tτ is already the minimal DBTT for this tree function
(Theorem 6.23).
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First, we show that y-paths in different images of related contexts w.r.t.
subtrees of the same node in an input tree of τ , are no prefixes of each other.
Note that we use the enhanced definition (cf. Page 20) of the partial order w
on trees in TΣ(y). For two ground trees t, t′ ∈ TΣ, t w t′ means that t occurs
as a subtree in t′.

Lemma 6.13. Assume c · a(u1, . . . , uk) ∈ dom(τ). For all i ∈ [k] let

rτ (ui)(c · a(u1, . . . , ui−1, y, ui+1, . . . , uk) = zi .

Then, it holds for all y-paths pi1 ∈ Pathsy(zi1), pi2 ∈ Pathsy(zi2), for some
i1, i2 ∈ [k] that pi2 is no proper prefix of pi1 .

Proof. Let i1, i2 ∈ [k] and pi1 ∈ Pathsy(zi1), pi2 ∈ Pathsy(zi2). Assume i1 = i2.
Since y-nodes have rank 0, pi2 is no proper prefix of pi1 . Thus, assume i1 6= i2.
Let ca be the tree c · a(u1, . . . , uk) where ui1 and ui2 are replaced by x1 and x2,
respectively, i.e.:

ca =

{
c · a(u1, . . . , ui1−1, x1, ui1+1, . . . , ui2−1, x2, ui2+1, . . . , uk) i1 < i2
c · a(u1, . . . , ui2−1, x2, ui2+1, . . . , ui1−1, x1, ui1+1, . . . , uk) i1 > i2

Under the assumption that pi2 is a proper prefix of pi1 , we show that στ is not
path-finite. Thereto, we prove that the residual rτ (ui2) maps an infinite chain

of input contexts c
(1)
2 , c

(2)
2 , . . . to images z

(1)
2 , z

(2)
2 , . . ., respectively, such that

the input contexts have all the same y-path p. But there are y-paths p(i) of z
(i)
2

such that p(1) is a proper prefix of p(2), which is a proper prefix of p(3) and so
on. First, we show that there is a chain of pairs

(u
(1)
1 , u

(1)
2 ), (u

(2)
1 , u

(2)
2 ), . . .

such that στ (u
(1)
1 ) is a proper subtree of στ (u

(1)
2 ), which is a proper subtree of

στ (u
(2)
1 ) and so forth. Furthermore, every second element u

(i)
2 in this chain is

rτ -equivalent to ui2 and the other elements u
(i)
1 are rτ -equivalent to ui1 .

We inductively construct such a chain of pairs (u
(i)
1 , u

(i)
2 ). Thereto, let

P (u
(i)
1 , u

(i)
2 ) define the property of u

(i)
1 and u

(i)
2 as informally described above.

Formally, we define for trees u1, u2 ∈ dom(στ ):

P (u1, u2) = ∀j ∈ [2] : uj ≡rτ uij (P1)

∧ ca[u1, u2] ∈ dom(τ) (P2)

∧ rτ (u1)(ca[y, u2]) = z1 ∈ T̂∆(y) (P3)

∧ rτ (u2)(ca[u1, y]) = z2 ∈ T̂∆(y) (P4)

∧ ∃v ∈ T̂∆(y) \ {y} : στ (u2) = v · στ (u1) (P5)

∧ ∃p ∈ Pathsy(z2) : z1[p] = v (P6)

Assume there is a set {(u(i)
1 , u

(i)
2 ) | i ∈ N} such that for all i ∈ N holds

P (u
(i)
1 , u

(i)
2 ). We denote by p(i) the path p ∈ Pathsy(rτ (u

(i)
2 )(ca[u

(i)
1 , y])), which
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exists according to P6 for (u
(i)
1 , u

(i)
2 ). In addition, assume that for all i ∈ N

holds: p(i) is a proper prefix of p(i+1). Then, we get an infinite set of equivalent

trees u
(i)
2 ≡rτ ui2 . All these trees have the same residual, hence, for all i ∈ N

holds ca[u
(i)
1 , y] ∈ dom(rτ (ui2)) (it follows by P4 for (u

(i)
1 , u

(i)
2 )). The path pin re-

ferring to the node labeled x2 in ca is a y-path in each input context ca[u
(i)
1 , y].

However, the set of y-paths in the output (as considered in the definition of
path-finiteness) contains all p(i):

{p(i) | i ∈ N} ⊆
⋃
{Pathsy(rτ (u2)(c)) | c ∈ dom(rτ (u2)) ∧ p ∈ Pathsy(c)}

Thus, this set is infinite and rτ is not path-finite. — Contradiction. It follows
that pi2 is no proper prefix of pi1 .

Now we prove by induction that such a set {(u(i)
1 , u

(i)
2 ) | i ∈ N} exists if pi2

is a proper prefix of pi1 . More precisely, we prove the following:

If pi2 is a proper prefix of pi1 , then there is a set {(u(i)
1 , u

(i)
2 ) | i ∈ N}

such that for all i ∈ N holds P (u
(i)
1 , u

(i)
2 ) and p(i) is a proper prefix

of p(i+1).

Again, we refer by p(i) to the path p ∈ Pathsy(rτ (u
(i)
2 )(ca[u

(i)
1 , y])), which fulfills

Property P6 for the ith pair (u
(i)
1 , u

(i)
2 ). Assume the path pi2 is a proper prefix

of path pi1 .
Basis case: First, we show that ui1 and ui2 fulfill P (ui1 , ui2). With zj = zij

for both j ∈ [2] follow immediately P1 and P2. The terms zi1 , zi2 are in T̂∆(y)
because pi1 and pi2 are y-paths of them, respectively. P3 and P4 follow. If pi2
is a proper prefix of pi1 , then zi2 [pi2 ] = y, whereas there is a tree v ∈ T̂∆(y)
different to y with zi1 [pi2 ] = v. Besides P6, we also get P5:

στ (ui2) = (zi2 · στ (ui2))[pi2 ]

= τ(ca[ui1 , ui2 ])[pi2 ]

= (zi1 · στ (ui1))[pi2 ]

= v · στ (ui1)

Property P5 holds with p = pi2 . Let ui1 and ui2 be u
(1)
1 and u

(1)
2 , respectively.

In addition, we have p(1) = pi2 .

Inductive step: Now assume we have trees u
(i)
1 and u

(i)
2 , which fulfill the

property P (u
(i)
1 , u

(i)
2 ). Let the trees zj in P3 and P4 for j ∈ [2], v in P5, and

the path p in P6 of P (u
(i)
1 , u

(i)
2 ) be denoted by z

(i)
j , v(i), and p(i), respectively.

Furthermore, we denote τ(ca[u
(i)
1 , u

(i)
2 ]) by z(i). It follows by the definition and

the consistency of (στ , rτ ):

z
(i)
1 · στ (u

(i)
1 ) = z(i) = z

(i)
2 · στ (u

(i)
2 ) . (6.10)

With Properties P3 and P4 it follows that the residuals of u
(i)
1 and u

(i)
2 are

essential. Since the bottom-up partition is proper, there are infinitely many
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trees ūj ≡rτ u
(i)
j for both j ∈ [2]. Because of this, we get the following equations

for each of these pairs (ū1, ū2):

- rτ (ū1)(ca[y, u
(i)
2 ]) = z

(i)
1 and

- rτ (ū2)(ca[u
(i)
1 , y]) = z

(i)
2 .

Consequently: τ(ca[ū1, u
(i)
2 ]) = z

(i)
1 · στ (ū1) and τ(ca[u

(i)
1 , ū2]) = z

(i)
2 · στ (ū2).

Thus, there exist z̄1 and z̄2 with

- rτ (u
(i)
1 )(ca[y, ū2]) = z̄1 and

- rτ (u
(i)
2 )(ca[ū1, y]) = z̄2.

Note that z̄1 depends on ū2 and z̄2 on ū1. Then, we have

z̄1 · στ (u
(i)
1 ) = τ(ca[u

(i)
1 , ū2]) = z

(i)
2 · στ (ū2) (6.11)

z
(i)
1 · στ (ū1) = τ(ca[ū1, u

(i)
2 ]) = z̄2 · στ (u

(i)
2 ) . (6.12)

Because of the equivalence of u
(i)
j and ūj (for both j ∈ [2]), also

- rτ (ū1)(ca[y, ū2]) = z̄1 and

- rτ (ū2)(ca[ū1, y]) = z̄2.

Consequently:

z̄1 · στ (ū1) = τ(c[ū1, ū2]) = z̄2 · στ (ū2) . (6.13)

For each pair (ū1, ū2) hold the Properties P1 and P2.

Since the partition is proper, the set of output trees {στ (ūj) | ūj ≡rτ u
(i)
j } is

infinite (for both j ∈ [2]), whereas the number of subtrees of στ (u
(i)
1 ) and στ (u

(i)
2 )

is finite. Furthermore, also for every tree v̄1, also v(i) ·v̄1 and v̄1 have only finitely
many subtrees. Thus, there are infinitely many different pairs (v̄1, v̄2) satisfying
the conditions:

1. v̄j = στ (ūj) for some ūj ≡rτ u
(i)
j (for both j ∈ [2])

2. v̄2 6= v(i) · v̄1

3. v̄j 6w στ (u
(i)
j′ ) for j, j′ ∈ [2] (and with it στ (u

(i)
j′ ) 6= v̄j)

4. v̄2 6w v̄1

Additionally, we restrict the set of pairs (v̄1, v̄2), which fulfill these conditions
such that the following two conditions hold, too:

5. rτ (u
(i)
1 )(ca[y, ū2]) ∈ T̂∆(y)

6. rτ (u
(i)
2 )(ca[ū1, y])[p(i)] ∈ T̂∆(y)
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To show that such a pair exists, assume there is no tree v̄2 = στ (ū2), which
fulfills Conditions 1.-5., i.e., there are at least two different trees v̄2 = στ (ū2)
and v̄′2 = στ (ū′2) with

- z̄1 = r(u
(i)
1 )(ca[y, ū2]) ∈ T∆ and

- z̄′1 = r(u
(i)
1 )(ca[y, ū

′
2]) ∈ T∆.

With Equations 6.11 and 6.13 for both ū2 and ū′2 and an arbitrary ū1, we get:

z
(i)
2 · v̄2 = z̄1 · στ (u

(i)
1 ) = z̄1 =z̄1 · v̄1 = z̄2 · v̄2

z
(i)
2 · v̄′2 = z̄′1 · στ (u

(i)
1 ) = z̄′1 =z̄′1 · v̄1 = z̄2 · v̄′2

By Proposition 2.1 it follows that it exists s ∈ T̂∆(y) with z
(i)
2 = z̄2 · s or

z
(i)
2 · s = z̄2 (because z

(i)
2 /∈ T∆ according to Property P4). It follows (in both

cases) that s · v̄2 = v̄2 and in order that, s equals y and z
(i)
2 = z̄2. With

Equations 6.10 and 6.12, we get:

z
(i)
1 · στ (u

(i)
1 ) = z

(i)
2 · στ (u

(i)
2 ) (Equation 6.10)

= z̄2 · στ (u
(i)
2 )

= z
(i)
1 · v̄1 (Equation 6.12)

Since στ (u
(i)
1 ) 6= v̄1 (Condition 3), z

(i)
1 must be a ground tree in T∆, which is a

contradiction to Property P3 for (u
(i)
1 , u

(i)
2 ). It follows that there are infinitely

many pairs fulfilling Conditions 1.-5.
Now assume there is no tree v̄1 = στ (ū1), which fulfills Conditions 1.-6., i.e.,

there are at least two different trees v̄1 = στ (ū1) and v̄′1 = στ (ū′1) with

- z̄2 = rτ (u
(i)
2 )(ca[ū1, y]) and z̄2[p(i)] ∈ T∆ and

- z̄′2 = rτ (u
(i)
2 )(ca[ū

′
1, y]) and z̄′2[p(i)] ∈ T∆.

With Equations 6.12 for both ū1 and ū′1 and an arbitrary ū2, we get:

z̄2[p(i)] = (z̄2 · στ (u
(i)
2 ))[p(i)] = (z

(i)
1 · v̄1)[p(i)] = v(i) · v̄1

z̄′2[p(i)] = (z̄′2 · στ (u
(i)
2 ))[p(i)] = (z

(i)
1 · v̄′1)[p(i)] = v(i) · v̄′1

Since v̄1 6= v̄′1, it follows that z
(i)
1 [p(i)] = v(i). But then we get

v̄2 = (z
(i)
2 · v̄2)[p(i)] P6 for (u

(i)
1 , u

(i)
2 )

= (z̄1 · στ (u
(i)
1 ))[p(i)] Equation 6.11

= v(i) · στ (u
(i)
1 )

= στ (u
(i)
2 ) P5 for (u

(i)
1 , u

(i)
2 ) .
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This contradicts the third condition, i.e., στ (u
(i)
2 ) 6= v̄2 (Page 115). Thus,

there must be a pair (u
(i+1)
1 , u

(i+1)
2 ) such that the Conditions 1.-6. hold for

trees v
(i+1)
j = στ (u

(i+1)
j ), for j ∈ [2], with

- z
(i+1)
1 = rτ (u

(i)
1 )(ca[y, u

(i+1)
2 ]) ∈ T̂∆(y) and

- z
(i+1)
2 = rτ (u

(i)
2 )(ca[u

(i+1)
1 , y]) with z

(i+1)
2 [p(i)] ∈ T̂∆(y).

Consequently, the pair (u
(i+1)
1 , u

(i+1)
2 ) fulfills Properties P1 - P4. Now assume

that Property P5 is not true for this pair, i.e., v
(i+1)
1 6w v

(i+1)
2 . Equation 6.12

and Property P6 for pair (u
(i)
1 , u

(i)
2 ) state

v(i) · v(i+1)
1 = (z

(i)
1 · v

(i+1)
1 )[p(i)] = (z

(i+1)
2 · στ (u

(i)
2 ))[p(i)] .

Since v
(i+1)
1 6w στ (u

(i)
2 ) and στ (u

(i)
2 ) = v(i) · στ (u

(i)
1 ), there are the following

possibilities:

1. v
(i+1)
1 = v · στ (u

(i)
2 ) and z

(i+1)
2 [p(i)] = v(i) · v ∈ T̂∆(y) or

2. z
(i+1)
2 [p(i)] = v(i) · v(i+1)

1 .

Assume the first possibility: Equation 6.13 gives us

(z
(i+1)
1 · v(i+1)

1 )[p(i)] = (z
(i+1)
2 · v(i+1)

2 )[p(i)] = v(i) · v · v(i+1)
2 .

We know that v
(i+1)
1 is no subtree of v

(i+1)
2 and vice versa. Furthermore, it

holds v
(i+1)
1 = v · v(i) · στ (u

(i)
1 ) and, thus, v

(i+1)
1 is no subtree of v and v(i). It

follows that
z

(i+1)
1 [p(i)] = v(i) · v · v(i+1)

2 .

With Equation 6.11 and P6 for (u
(i)
1 , u

(i)
2 ), it follows

v(i) · v · v(i+1)
2 = z

(i+1)
1 · στ (u

(i)
1 )[p(i)] = (z

(i)
2 · v

(i+1)
2 )[p(i)] = v

(i+1)
2 .

Thus, v(i) · v = y, which is a contradiction to Property P5 for (u
(i)
1 , u

(i)
2 ).

Now assume the second possibility, i.e., z
(i+1)
2 [p(i)] = v(i) · v(i+1)

1 : With
Equation 6.13, we get

(z
(i+1)
1 · v(i+1)

1 )[p(i)] = (z
(i+1)
2 · v(i+1)

2 )[p(i)] = v(i) · v(i+1)
1

and with Equation 6.11 and Property P6 for (u
(i)
1 , u

(i)
2 ):

(z
(i+1)
1 · στ (u

(i)
1 ))[p(i)] = (z

(i)
2 · v

(i+1)
2 )[p(i)] = v

(i+1)
2 .

Let us consider z
(i+1)
1 [p(i)]:

- If z
(i+1)
1 [p(i)] = v(i) · v(i+1)

1 , it equals v
(i+1)
2 . However, this contradicts the

assumption that v
(i+1)
1 is no subtree of v

(i+1)
2 .
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- If z
(i+1)
1 [p(i)] = v(i), we get v

(i+1)
2 = v(i) · στ (u

(i)
1 ) = στ (u

(i)
2 ). However,

this contradicts the choice of v
(i+1)
2 .

- If z
(i+1)
1 [p(i)] = v′ for some v′ 6= v(i), we get v′ · στ (u

(i)
1 ) = v

(i+1)
2 . Then

either v
(i+1)
1 is a subtree of v′ and with that v

(i+1)
1 w v

(i+1)
2 (which is a

contradiction to the assumption), or it is a subtree of v(i) and with that

v
(i+1)
1 w v(i) · v(i)

1 = v
(i)
2 (which contradicts Condition 3).

Thus, we get Property P5 for (u
(i+1)
1 , u

(i+1)
2 ):

∃v(i+1) ∈ T̂∆(y) \ {y} : v
(i+1)
2 = v(i+1) · v(i+1)

1 .

We define v(i+1) such that v
(i+1)
1 is no subtree of it.

Now we will find the path p(i+1): Thereto, consider the path p(i). We

know by Property P6 for (u
(i)
1 , u

(i)
2 ), that z

(i)
1 [p(i)] = v(i) and z

(i)
2 [p(i)] = y.

Equations 6.11 and 6.12 provide:

(z
(i+1)
1 · στ (u

(i)
1 ))[p(i)] = v

(i+1)
2

(z
(i+1)
2 · στ (u

(i)
2 ))[p(i)] = v(i) · v(i+1)

1

With Condition 6, we know that p(i) is a prefix of a y-path of z
(i+1)
2 . More

precisely,

z
(i+1)
2 [p(i)] = v(i) · v′ (6.14)

with v′ · στ (u
(i)
2 ) = v

(i+1)
1 and v′ ∈ T̂∆(y). It must be v(i) · v′ instead of only

a part of v(i). Assume the opposite, i.e., z
(i+1)
2 [p(i)] = v′ with v(i) is no prefix

of v′. Then we get with Equation 6.12 that

v′ · στ (u
(i)
2 ) = v(i) · v(i+1)

1 .

Because v
(i+1)
1 is no subtree of στ (u

(i)
2 ) (Condition 3), there must be a path p

such that v(i)[p] = στ (u
(i)
2 ). Then Property P5 for the pair (u

(i)
1 , u

(i)
2 ) implies

that στ (u
(i)
2 ) is a subtree of itself — Contradiction. Thus, Equation 6.14 is true.

With this property and Equation 6.13,

(z
(i+1)
1 · v(i+1)

1 )[p(i)] = v(i) · v′ · v(i+1)
2 = v(i) · v′ · v(i+1) · v(i+1)

1 .

There are two possibilities: z
(i+1)
1 [p(i)] ∈ T∆ or z

(i+1)
1 [p(i)] = v(i) ·v′ ·v(i+1). The

other cases are not possible: v
(i+1)
1 is no subtree of v(i) or v′ because v

(i+1)
1 is

no subtree of στ (u
(i)
2 ) and no proper subtree of itself. In addition, by definition

of v(i+1), the tree v
(i+1)
1 is no subtree of v(i+1).

Assume the first possibility, i.e., z
(i+1)
1 [p(i)] = v(i) · v′ · v(i+1)

2 . Then we get
with Equation 6.11

v(i) · v′ · v(i+1)
2 = (z

(i+1)
1 · στ (u

(i)
1 ))[p(i)] = v

(i+1)
2 .
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Since v(i) 6= y, this is a contradiction. Thus, the last possibility, must be true.
We have:

z
(i+1)
1 [p(i)] = v(i) · v′ · v(i+1) and z

(i+1)
2 [p(i)] = v(i) · v′

Let p be a y-path of v(i) · v′. Then we define

p(i+1) = p(i) · p .

This path fulfills Property P6 for (u
(i+1)
1 , u

(i+1)
2 ) and p(i) is a proper prefix of

this path p(i+1).

The y-paths are not only no proper prefixes of each other. They are also differ-
ent:

Lemma 6.14. Assume c · a(u1, . . . , uk) ∈ dom(τ). For all i ∈ [k] let

rτ (ui)(c · a(u1, . . . , ui−1, y, ui+1, . . . , uk) = zi .

Then, it holds for all y-paths pi1 ∈ Pathsy(zi1), pi2 ∈ Pathsy(zi2), for some
i1, i2 ∈ [k] that i1 6= i2 implies pi2 6= pi1 .

Proof. Let 1 ≤ i1 < i2 ≤ k, pi1 ∈ Pathsy(zi1), and pi2 ∈ Pathsy(zi2). Under the
assumption that pi2 equals pi1 , we show that there is an image z̄2 of a context
of ui2 such that there is a y-path p in z̄2 and pi1 is a proper prefix of p. Then
we get by Lemma 6.13 a contradiction.

Assume pi2 = pi1 . Let ca be the tree c · a(u1, . . . , uk) where ui1 and ui2 are
replaced by x1 and x2 respectively:

ca = c · a(u1, . . . , ui1−1,x1, ui1+1, . . . , ui2−1,x2, ui2+1, . . . , uk) .

Analog to the inductive step of Lemma 6.13, there are infinitely many trees
ūj ≡rτ uij for both j ∈ [2], such that στ (ūj) 6w στ (uij′ ) for j, j′ ∈ {1, 2}, and
στ (ū1) 6= στ (ū2). Furthermore, there exist z̄1, z̄2 with the following properties:

rτ (ū1)(ca[y, ui2 ]) = zi1 = rτ (ui1)(ca[y, ui2 ])

rτ (ū2)(ca[ui1 , y]) = zi2 = rτ (ui2)(ca[ui1 , y])

rτ (ū1)(ca[y, ū2]) = z̄1 = rτ (ui1)(ca[y, ū2])

rτ (ū2)(ca[ū1, y]) = z̄2 = rτ (ui2)(ca[ū1, y])

zi1 · στ (ui1) = τ(ca[ui1 , ui2 ]) = zi2 · στ (ui2) (6.15)

z̄1 · στ (ui1) = τ(ca[ui1 , ū2]) = zi2 · στ (ū2) (6.16)

zi1 · στ (ū1) = τ(ca[ū1, ui2 ]) = z̄2 · στ (ui2) (6.17)

z̄1 · στ (ū1) = τ(c[ū1, ū2]) = z̄2 · στ (ū2) . (6.18)

Now consider the path pi1 . We know that zi1 [pi1 ] = y = zi2 [pi1 ]. Equation 6.15
provides:

στ (ui1) = (zi1 · στ (ui1))[pi1 ] = (zi2 · στ (ui2))[pi1 ] = στ (ui2)
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By Equations 6.16 and 6.17, we get

(z̄1 · στ (ui1))[pi1 ] = στ (ū2)

(z̄2 · στ (ui2))[pi1 ] = στ (ū1)

Assume that pi1 is no prefix of a y-path of z̄2. Then z̄2[pi1 ] = στ (ū1) and (with
Equation 6.18)

(z̄1 · στ (ū1))[pi1 ] = στ (ū1) .

There are two possibilities: z̄1[pi1 ] ∈ T∆ or z̄1[pi1 ] = y. We get

στ (ū1) = (z̄1 · στ (ui1))[pi1 ] = στ (ū2)

or στ (ui1) = (z̄1 · στ (ui1))[pi1 ] = στ (ū2) ,

respectively. Both contradict the choice of στ (ū1) 6= στ (ū2) 6= στ (ui1). Thus,
path pi1 must be a prefix of a y-path of z̄2. More precisely,

z̄2[pi1 ] = v′

with v′ · στ (ui2) = στ (ū1) and v′ ∈ T̂∆(y) \ {y} (because στ (ū1) 6= στ (ui2)).
Let p′ be a y-path of v′. Then pi1 · p′ = p is a y-path of z̄2 and we have:

- c · a(u′1, . . . , u
′
k) ∈ dom(τ) with u′i = ui for i 6= i1 and u′i1 = ū1.

- for all i ∈ [k]: rτ (u′i)(c · a(u′1, . . . , u
′
i−1, y, u

′
i+1, . . . , u

′
k)) = z′i with z′i2 = z̄2

and z′i1 = zi1 .

- paths pi1 ∈ Pathsy(z′i1), p ∈ Pathsy(z′i2) holds pi1 is a proper prefix of p.

This contradicts Lemma 6.13.

By these two lemmas, a corresponding property for paths of dedicated images
follows immediately:

Corollary 6.15. Assume a(u1, . . . , uk) ∈ dom(στ ). For all i ∈ [k] let

di(ui)(a(u1, . . . , ui−1, y, ui+1, . . . , uk) = zi .

Then, it holds for all y-paths pi1 ∈ Pathsy(zi1), pi2 ∈ Pathsy(zi2), for some
i1, i2 ∈ [k] that i1 6= i2 implies pi2 is no prefix of pi1 .

By the following lemma, we get that the greatest common prefixes, as used
in Definition 6.6, are defined. In the definition, the trees gcp(z1, . . . , zk) with
dedicated images zi are part of the right-hand sides. The conditions of the
following lemma are fulfilled for these images zi (with vi = στ (ui)).

Lemma 6.16. Assume z1, . . . , zk ∈ TΣ(y) and there are v1, . . . , vk ∈ TΣ, such
that for all i, j ∈ [k] holds

zi · vi = zj · vj .

If for all i, j ∈ [k] with i 6= j and pi ∈ Pathsy(zi), pj ∈ Pathsy(zj) holds that pi
is no prefix of pj, then gcp(z1, . . . , zk) is defined.
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Proof. First, assume z1, . . . , zk ∈ TΣ. Then,

zi = zi · vi = zj · vj = zj

for all i, j ∈ {1, . . . , k}. Consequently, gcp(z1, . . . , zk) = z1 is defined.
Now assume, w.l.o.g., that z1 ∈ T̂Σ(y) and p is a longest y-path of z1, i.e.,

for all i ∈ [k] and all p′ ∈ Pathsy(zi) holds |p| ≥ |p′|. We proof that the
greatest common prefix is defined, by induction over the length of p. For p = ε,
it follows that z1 = y and z2, . . . , zk ∈ TΣ. Otherwise, p would be a prefix of
another y-path. Thus, zi = zi · vi = zj · vj = zj for all i, j ∈ {2, . . . , k}. We get
gcp(z1, . . . , zk) = x1 is defined.

If p = (a, d).p′ for a path p′, a ∈ Σ(n), and d ≤ n, then z1 = a(z1,1, . . . , z1,n)
and p′ ∈ Pathsy(z1,d). If zi = y for some i 6= 1, then ε is a y-path and a prefix
of p, which is a contradiction. Thus, z2, . . . , zk do not equal y. Furthermore,
for 2 ≤ i ≤ k, the equation zi · vi = z1 · σ(u1) implies that zi = a(zi,1, . . . , zi,n)
with zi,j · vi = z1,j · σ(u1) for 1 ≤ j ≤ n. By induction, we get for all 1 ≤ j ≤ n
that z′j = gcp(z1,j , . . . , zk,j) is defined. Consequently, gcp(z1, . . . , zk) is defined
and equals a(z′1, . . . , z

′
n).

The definition of a right-hand side in Definition 6.6 depends on the represen-
tatives of the states in the left-hand side. However, also if we choose different
representatives, we get the same right-hand side. To prove that, we first need
the following lemma:

Lemma 6.17. Assume z1, . . . , zk ∈ TΣ(y) and there are v1, . . . , vk ∈ TΣ, such
that for all i, j ∈ [k] holds

zi · vi = zj · vj .

If z = gcp(z1, . . . , zk) is defined, then for all 1 ≤ i ≤ k

z[v1, . . . , vi−1, y, vi+1, . . . , vk] = zi .

Proof. W.l.o.g., we proof the equation for i = 1, i.e., z[y, v2, . . . , vk] = z1, by
induction over z: First, assume z = x1. By definition of gcp it follows

z1 = y and ∀ j ∈ {2, . . . , k} : zj = z2 ∈ TΣ(y) \ {y}

Thus, z[y, v2, . . . , vk] = y = z1. Now assume z = xi for some 1 6= i ≤ k. By
definition of gcp it follows

zi = y and ∀ j ∈ {1, . . . , k} \ {i} : zj = z1 ∈ TΣ

Otherwise, if z1 ∈ T̂Σ(y), ε ∈ Pathsy(zi) is a prefix of each y-path in z1. Thus,

z[y, v2, . . . , vk] = vi = zi · vi = z1 · v1 = z1 .

Last, assume z = a(z′1, . . . , z
′
n) for some a ∈ Σ(n). By definition of gcp it follows

∀ j ≤ k : zj = a(zj,1, . . . , zj,n) and ∀ i ≤ n : z′i = gcp(z1,i, . . . , zk,i)
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For all j ∈ [k] holds va = zj · vj . Since zj = a(zj,1, . . . , zj,n), we get va =
a(va,1, . . . , va,n). In particular, zj,i · vi = va,i for all i ∈ [n]. By induction, we
get z′i[y, v2, . . . , vk] = z1,i and this provides:

z1 = a(z1,1, . . . , z1,n) = a(z′1, . . . , z
′
n)[y, v2, . . . , vk] = z[y, v2, . . . , vk]

In particular, the previous lemmas hold for the dedicated images zi in the Defi-
nition 6.6. Thus, we get that the greatest common prefix of trees with different,
but rτ -equivalent trees are the same:

Lemma 6.18. Assume a(u1, . . . , uk), a(u′1, . . . , u
′
k) ∈ dom(στ ) with ui ≡rτ u′i

for all i ∈ [k] and for all i ∈ [k] let

di(ui)(a(u1, . . . , ui−1, y, ui+1, . . . , uk) = zi

di(u′i)(a(u′1, . . . , u
′
i−1, y, u

′
i+1, . . . , u

′
k)) = zi .

Then gcp(z1, . . . , zk) = gcp(z′1, . . . , z
′
k).

Proof. Consider the greatest common prefix gcp(z1, . . . , zk) with respect to the
tree a(u1, . . . , uk). If we swap only for one index j ∈ [k] from uj to u′j , then
all zi possibly change (without zj). Thus, for each sequence ū1, . . . , ūk where
ūi ∈ {ui, u′i}, we get different images z̄i. For a set I ⊆ [k] of indices, we define
gcpI as the greatest common prefix of the sequence zI1 , . . . , z

I
k corresponding to

the sequence uI1, . . . , u
I
k where uIi = u′i if i ∈ I and uIi = ui otherwise. We prove

that

gcpI [vI1 , . . . , v
I
j−1, xj , . . . , xk] = gcpI∪{i}[vI1 , . . . , v

I
j−1, xj , . . . , xk]

implies

gcpI [vI1 , . . . , v
I
j , xj+1, . . . , xk] = gcpI∪{i}[vI1 , . . . , v

I
j , xj+1, . . . , xk]

for every i, j ∈ [k].
Let ua = a(u1, . . . , uk), va = στ (ua), στ (ui) = vi, and στ (u′i) = v′i, for all

i ∈ [k]. For a set I ⊆ [k], we define:

uIi =

{
ui i /∈ I
u′i i ∈ I vIi =

{
vi i /∈ I
v′i i ∈ I

Furthermore, we get zIi with:

zIi = di(ui)(a(uI1, . . . , u
I
i−1, y, u

I
i+1, . . . , u

I
k))

= di(u′i)(a(uI1, . . . , u
I
i−1, y, u

I
i+1, . . . , u

I
k))

The equality of the two dedicated images follows since ui ≡rτ u′i. It follows that
for a set I and index i /∈ I holds:

zIi = z
I∪{i}
i (6.19)
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We abbreviate greatest common prefixes of zI1 , . . . , z
I
k by gcpI = gcp(zI1 , . . . , z

I
k).

By Lemma 6.16, we know that for all I the greatest common prefix gcpI is
defined. For readability, we write for a set J ⊆ [k]: gcpIJ = gcpI [v̄1, . . . , v̄k]
where v̄i = xi if i ∈ J , v̄i = vIi otherwise. In particular, gcpI[k] = gcpI .

Thus, we want to prove that

gcp∅[k] = gcp
[k]
[k] . (6.20)

Let I ⊆ [k] and i /∈ I. By Lemma 6.17, we get gcpI{i} = zIi and gcp
I∪{i}
{i} = z

I∪{i}
i .

With Equation 6.19 it follows:

gcpI{i} = gcp
I∪{i}
{i} (6.21)

In the end of this proof, we prove the following two implications. Thereto, let
I, J ⊆ [k] be arbitrary sets and indexes i /∈ I and j /∈ J with i 6= j. It holds

vi = v′i =⇒ gcpI[k] = gcp
I∪{i}
[k] (6.22)

gcpIJ = gcp
I∪{i}
J =⇒ gcpIJ∪{j} = gcp

I∪{i}
J∪{j} . (6.23)

By Implication 6.22 follows, for arbitrary set I ⊆ [k] and index i /∈ I:

vi = v′i =⇒ gcpIJ = gcp
I∪{i}
J for all J ⊆ [k]

By the second implication, it follows immediately, for I, J ⊆ [k] and i ∈ J \ I:

gcpIJ = gcp
I∪{i}
J =⇒ gcpI[k] = gcp

I∪{i}
[k] (6.24)

Then, we get by Equation 6.21 for every 0 ≤ i ≤ k − 2 the following:

gcp
[i]
{i+1} = gcp

[i+1]
{i+1} and gcp

[i+1]
{i+2} = gcp

[i+2]
{i+2}

In addition, by Implication 6.23 and its conclusive Equation 6.24, we get

gcp
[i]
[k] = gcp

[i+1]
[k] = gcp

[i+2]
[k] .

If k = 1, Equation 6.21 already provides: gcp∅[1] = gcp
[1]
[1]. This results in

Equation 6.20: gcp∅[k] = gcp
[k]
[k].

It remains to prove the two implications. First, we show Implication 6.22,
i.e., for 1 ≤ i ≤ k and I ⊆ [k] with i /∈ I, it holds

vi = v′i =⇒ gcpI[k] = gcp
I∪{i}
[k] .

Assume vi = v′i. If for all j ∈ [k] holds vj = v′j , then follows gcpI[k] = gcp
I∪{i}
[k]

immediately. Because of the equivalence of uj and u′j , z
I
j = z

I∪{i}
j holds for
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all j ∈ [k]. Thus, consider j ∈ [k] with vj 6= v′j . Assume j /∈ I. We get the
following equations:

gcpI{i}[vi/xi] = gcpI{j}[vj/xj ]

gcp
I∪{i}
{i} [v′i/xi] = gcp

I∪{i}
{j} [vj/xj ]

gcp
I∪{j}
{i} [vi/xi] = gcp

I∪{j}
{j} [v′j/xj ]

gcp
I∪{i,j}
{i} [v′i/xi] = gcp

I∪{i,j}
{j} [v′j/xj ]

By Equation 6.21, we could replace gcp
I∪{i,j}
{i} by gcp

I∪{j}
{i} and so on. Further-

more, we have the assumption that vi = v′i. We get

gcpI{j}[vj/xj ] =gcpI{i}[vi/xi] = gcp
I∪{i}
{j} [vj/xj ]

gcpI{j}[v
′
j/xj ] =gcp

I∪{j}
{i} [vi/xi] = gcp

I∪{i}
{j} [v′j/xj ]

It follows by Proposition 2.1 that zI{j} = gcpI{j} = gcp
I∪{i}
{j} = z

I∪{i}
{j} . Now

assume j ∈ I. By the same argument for I ′ = I \{j} and Equation 6.21, we get

zI{j} = gcpI{j} = gcpI
′

{j} = gcp
I′∪{i}
{j} = gcp

I∪{i}
{j} = z

I∪{i}
{j} .

Since this holds for every j ∈ [k], we get gcpI[k] = gcp
I∪{i}
[k] (which are the gcp of

the same trees).

Last, we prove Implication 6.23, i.e., for arbitrary sets I, J ⊆ [k] and indices
i /∈ I and j /∈ J with i 6= j. It holds

gcpIJ = gcp
I∪{i}
J =⇒ gcpIJ∪{j} = gcp

I∪{i}
J∪{j} .

First, assume vi = v′i. By Implication 6.22, it follows:

gcpIJ = gcp
I∪{i}
J and gcpIJ∪{j} = gcp

I∪{i}
J∪{j}

Thus, assume vi 6= v′i. Let I, J ⊆ [k] be arbitrary sets with indices i /∈ I, j /∈ J .
Assume

gcpIJ = gcp
I∪{i}
J and gcpIJ∪{j} 6= gcp

I∪{i}
J∪{j} .

It follows

gcpIJ∪{j}[v
I
j /xj ] = gcpIJ = gcp

I∪{i}
J = gcp

I∪{i}
J∪{j}[v

I∪{i}
j /xj ] .

There is a path pj such that (w.l.o.g.)

gcpIJ∪{j}[pj ] = xj and gcp
I∪{i}
J∪{j}[pj ] = v 6= xj .
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This implies that zIj [pj ] = y and z
I∪{i}
j [pj ] = v′ 6= y. W.l.o.g., assume j /∈ I.

We have:

zIj · vj = zIi · vi (6.25)

z
I∪{i}
j · vj = z

I∪{i}
i · v′i (6.26)

z
I∪{j}
j · v′j = z

I∪{j}
i · vi (6.27)

z
I∪{i,j}
j · v′j = z

I∪{i,j}
i · v′i (6.28)

If zIj [pj ] = y, then also z
I∪{j}
j [pj ] = y (Equation 6.19). With it, we get

gcpI∪{j}[pj ] = xj . By Corollary 6.15, we know that there is no y-path in z
I∪{j}
i

which is a prefix of pj or vice versa. Thus, z
I∪{j}
i [pj ] ∈ T∆. It follows:

v′j = (z
I∪{j}
j · v′j)[pj ] = (z

I∪{j}
i · vi)[pj ] Equation 6.27

= z
I∪{j}
i [pj ] Lemmas 6.13 and 6.14

= z
I∪{i,j}
i [pj ] Equation 6.19

= (z
I∪{i,j}
i · v′i)[pj ] Lemmas 6.13 and 6.14

= (z
I∪{i,j}
j · v′j)[pj ] Equation 6.28

= (z
I∪{i}
j · v′j)[pj ] Equation 6.19

= v′ · v′j

This is a contradiction if v′ ∈ T̂∆(y). Otherwise, v′ = v′j and we get:

v′j = v′ = z
I∪{i}
j [pj ]

= (z
I∪{i}
j · vj)[pj ] v′ ∈ T∆

= (z
I∪{i}
i · v′i)[pj ] Equation 6.26

= z
I∪{i}
i [pj ] Lemmas 6.13 and 6.14: z

I∪{i}
i [pj ] ∈ T∆

= zIi [pj ] Equation 6.19

= (zIi · vi)[pj ] Lemmas 6.13 and 6.14

= (zIj · vj)[pj ] Equation 6.25

= vj

This contradicts the assumption. Thus, Implication 6.23 holds and with that

Equation 6.20: gcp∅[k] = gcp
[k]
[k].

Summarizing, we get with Corollary 6.15, Lemmas 6.16 and 6.18 that, given a
bottom-up partition for a transformation τ , the transducer Tτ of Definition 6.6
is well-defined and correct:
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Theorem 6.19. The transducer Tτ is a well-defined deterministic bottom-up
tree transducer.

Proof. Since ≡rτ has finite index, Tτ has finitely many states. We have to
show that the definitions of the transition function and the final function are
independent of the choice of representatives of involved states.

The partition (στ , rτ ) is the bottom-up partition of τ . Subsequently, the
equivalence relation ≡rτ is a congruence relation. Let k ≥ 0, a ∈ Σ(k) and for
all i ∈ [k] let ui, u

′
i ∈ dom(στ ) with ui ≡rτ u′i. Thus, we get

a(u1, . . . , uk) ≡rτ a(u′1, u2, . . . , uk)

. . .

≡rτ a(u′1, . . . , u
′
i, ui+1 . . . , uk)

. . .

≡rτ a(u′1, . . . , u
′
k)

It follows that for a transition, the state on the right-hand side is well-defined
and independent of the choice of representatives for the states on the left-hand
side. By Lemma 6.18, the same holds for the output gcp(z1, . . . , zk) on the
right-hand side.

Similarly, for the final function we get: Let u, u′ ∈ dom(στ ) with u ≡rτ u′.
Since rτ (u) = rτ (u′), the context y is in dom(rτ (u)) iff it is in dom(rτ (u′)).
Furthermore,

Fτ ([u]rτ ) = rτ (u)(y) = rτ (u′)(y) = Fτ ([u′]rτ ) .

To prove the correctness of Tτ , i.e., that τTτ = τ , we first show the following
equivalence:

Lemma 6.20. For every tree u ∈ TΣ holds

στ (u) = v ∧ q = [u]rτ ⇐⇒ [[u]]Tτ = q(v) .

Proof. Assume u ∈ dom(στ ) and c ∈ dom(rτ (u)). We prove the equivalence
by induction. If u = b ∈ Σ(0), then there is a transition b → [b](στ (u)). This
implies [[b]]Tτ = [b]rτ (στ (b)). If u = a(u1, . . . , uk) for k > 0. For all i ∈ [k],
στ (ui) is defined because στ is a subtree function. Then, there is a transition

a([u1]rτ , . . . , [uk]rτ )→ [u]rτ (gcp(z1, . . . , zk)) ∈ Rτ .

Let στ (ui) = vi for i ∈ [k]. We know by induction that for all i ∈ [k] holds:
[[ui]]

Tτ = [ui]rτ (vi). By definition, [[u]]Tτ = [u]rτ (gcp(z1, . . . , zk)[v1, . . . , vk]). In
addition, Lemma 6.17 directs that

gcp(z1, . . . , zk)[v1, . . . , vk] = v .

On the other hand, assume [[u]]Tτ = q(v). If u = b ∈ Σ(0), then there is a
transition b→ q(v). By construction, this implies that v = στ (b) and q = [b]rτ .
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If the tree u = a(u1, . . . , uk) for k > 0, then there are states q1, . . . , qk with
[[ui]]

Tτ = qi(vi) for all i ∈ [k] and a transition

a(q1, . . . , qk)→ q(z) ∈ Rτ .

We get the result [[u]]Tτ = q(z[v1, . . . , vk]). By induction, we know the output
στ (ui) = vi and the state qi = [ui]rτ for all i ∈ [k]. It follows by the construction
of Tτ and determinism that q = [u]rτ . Since the greatest common prefix is
unique, gcp(z1, . . . , zk)[v1, . . . , vk] = v.

It follows that Tτ defines the desired transformation τ :

Theorem 6.21. The bottom-up tree transducer Tτ describes τ , i.e., τTτ = τ .

Proof. With Lemma 6.20, we get for u ∈ T∆ the following: Assume τ(u) = v′.
Then στ (u) = v and rτ (u)(y) = z are defined for some v and some z with
v′ = z · v. We get for the transducer that [[u]]Tτ = [u]rτ (v) (Lemma 6.20) and
Fτ ([u]rτ ) = rτ (u)(y) = z. Thus, τTτ (u) = z · v = τ(u).

Now assume τTτ (u) = v′. Then there is a state q ∈ Q, such that [[u]]Tτ = q(v)
and Fτ (q) = z and v′ = z · v. Thus, στ (u) = v and q = [u]rτ (Lemma 6.20) and
rτ (u)(y) = Fτ ([u]rτ ) = z, which implies τ(u) = z · v = τTτ (u).

Finally, we get that the DBTT of a bottom-up partition is already the unique
minimal transducer of its tree function. Thereto, we need the following invari-
ant:

Lemma 6.22. For every tree u ∈ TΣ and every context c ∈ CΣ(y) holds

c · u ∈ dom(στ ) =⇒ [[c]]Tτ[u]rτ
= [c · u]rτ (di(u)(c)) .

Proof. Assume c · u ∈ dom(στ ). We prove the implication by induction: First,
assume c = y, then by definition, we get

[[y]]Tτ[u]rτ
= [u]rτ (y) = [y · u]rτ (di(u)(y)) .

Now assume that c = a(c1, . . . , ck) for some label a ∈ Σ(k). Since c is a context,
there is only one occurrence of y in c. Thus, w.l.o.g. only c1 ∈ CΣ(y) and
c2, . . . , ck ∈ TΣ. The result of c starting at [u]rτ is defined by

[[c]]Tτ[u]rτ
= q′(z[z1, . . . , zk])

with ∀i [[ci]]
Tτ
[u]rτ

= qi(zi) and Rτ (a, q1 . . . qk) = q′(z)

In addition, we know:

1. For i > 1 holds [[ci]]
Tτ
[u]rτ

= [[ci]]
Tτ = [ci]rτ (στ (ci)).

2. By induction follows [[c1]]Tτ[u]rτ
= [c1 · u]rτ (di(u)(c1)).

3. Rτ (a, [c1 · u]rτ .[c2]rτ . . . [ck]rτ ) = [a(c1 · u, c2, . . . , ck)]rτ (z) = [c · u]rτ (z)
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The first equation follows by Lemma 6.20 and the third is given by the con-
struction of Tτ . The output tree z is the greatest common prefix as given in the
definition of Tτ . It holds

z[y, στ (c2), . . . , στ (ck)] = di(c1 · u)(a(y, c2, . . . , ck)) .

This follows by Lemma 6.17 and the fact that

di(c1 · u)(a(y, c2, . . . , ck)) · στ (c1 · u)

= di(ci)(a(c1 · u, c2, . . . , ci−1, y, ci+1, . . . , ck)) · στ (ci)

holds for every i > 2. For the dedicated image of c1 ·u, we get for every context
c′ ∈ dom(rτ (c · u)):

rτ (c · u)(c′) · di(c1 · u)(a(y, c2, . . . , ck)) · di(u)(c1)

= rτ (c1 · u)(c′ · a(y, c2, . . . , ck)) · di(u)(c1)

= rτ (u)(c′ · c)

Since di(u)(c) is the unique tree for which this equation holds (Definition 5.8),
we get

di(u)(c) = di(c1 · u)(a(y, c2, . . . , ck)) · di(u)(c1)

= z[di(u)(c1), στ (c2), . . . , στ (c2)] ,

which is the output of c starting at state [u]rτ :

[[c]]Tτ[u]rτ
= [c · u]rτ (di(u)(c))

To prove that the unique minimal bottom-up partition induces the unique mi-
nimal DBTT, we show that the transducer Tτ is minimal, i.e., it is trim, proper,
earliest, unified earliest, and minimal. These properties are induced by the
corresponding properties of the bottom-up partition.

Theorem 6.23. The transducer Tτ is minimal.

Proof. The transducer is trim, proper, earliest, unified earliest, and minimal
because the partition is trim, proper, earliest, unified earliest, minimal, and its
equivalence relation is a congruence:

- Every state is represented by a subtree u ∈ dom(στ ). Thus, the state is
reached by this tree. Both follow by Lemma 6.20. Since the partition is
trim, there is a context c ∈ dom(rτ (u)) and with Lemma 6.22, this is also
a context of [u]rτ such that this state is meaningful. If the output of a
state q is useless and there is a transition a(q1, . . . , qk)→ q(z), then there
are trees ui ∈ LTτ (qi) (for all i ∈ [k]) and the residual of a(u1, . . . , uk) is
inessential. Then the dedicated images

di(ui)(a(u1, . . . , ui−1, y, ui+1, . . . , uk)) = ∗

and thus, the greatest common prefix of these trees equals ∗, too. It follows
that z = ∗ and with that, the transducer is trim.
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- Let q = [u]rτ be an inessential state. Then {[[u′]]Tτ | u′ ∈ LTτ (q)} is finite.
Thus, στ ([u]rτ ) is finite, too. It follows that rτ (u) is inessential and since
the partition (στ , rτ ) is proper, στ ([u]rτ ) = {∗}. This implies that the
inessential state q only produces ∗. — Tτ is proper.

- The greatest common suffix of a state q equals the greatest common suffix
of a tree u ∈ LTτ (q). Because the partition is earliest, the greatest common
suffices equal y or ⊥. For essential states, it contains y, thus, it must
equal y. Thus, the transducer is earliest.

- The most-general unifier of two essential states q, q′ is defined by the
most-general unifier of its context functions τTτq and τTτq′ , respectively.

Let c ∈ dom(τTτq ) be an arbitrary context with the result [[c]]Tτq = q̄(z).
Furthermore, let Fτ (q̄) = z′. By Lemma 6.22, we know that q̄ = [c · u]rτ
for some tree u ∈ LTτ (q). Then, we get by Lemma 6.22 and the definition
of the dedicated image:

τTτq (c) = z′ · z = rτ (c · u)(y) · di(u)(c) = rτ (u)(c)

Analogously, we get for a tree u′ ∈ LTτ (q′) that τTτq′ equals the residual

of u′, i.e., τTτq′ = rτ (u′). We get:

mgu(q, q′) = mgu(rτ (u), rτ (u′))

Assume there is a ground term v in such a most-general unifier, which is
realizable in q. That means there is an input tree ū ∈ LTτ (q) such that
out(ū) = v. Then στ (ū) = v and ū ≡rτ u (both follow by Lemma 6.22).
Hence v is realizable in rτ (u), which contradicts that the partition is uni-
fied earliest. Subsequently, Tτ is unified earliest.

- Finally, we show that the transducer is minimal. Thereto, assume Tτ is
not minimal. Then there are distinct states q1, q2 with q1 ∼Tτ q2. Let
u1, u2 ∈ dom(στ ) with [ui]rτ = qi for i ∈ [2]. For every context c ∈ CΣ(y)
follows that [c · u1]rτ ∼Tτ [c · u2]rτ if the states exist. We know that the
most-general unifier of two states equals the most-general unifier of the
residuals of any of their representative subtrees, i.e.,

mgu(q, q′) = mgu(rτ (u), rτ (u′)) if u ∈ LTτ (q), u′ ∈ LTτ (q′) .

Thus, it follows that for all contexts c ∈ CΣ(y) holds

c · u1 ∼′rτ c · u2 .

Since ∼rτ is the greatest congruence, which is a refinement of ∼′rτ , we get
u1 ∼rτ u2. Because (στ , rτ ) is minimal, u1 and u2 are rτ -equivalent. It
follows that q1 = [u1]rτ = [u2]rτ = q2. — Contradiction.

Thus, the DBTT Tτ of the bottom-up partition (στ , rτ ) is the unique minimal
transducer of τ .
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Summarizing, we proved the last part of the Myhill-Nerode Theorem 6.1. More
precise, Theorems 6.19 and 6.21 give us that for every bottom-up partition a
deterministic bottom-up tree transducer exists, which describes the same tree
function. In addition, Theorem 6.23 states that this transducer is already the
unique minimal DBTT.



Chapter 7

Conclusion

In this part, we have shown two main results for deterministic bottom-up finite-
state tree-to-tree transducers:

1. We provided a Myhill-Nerode style theorem, i.e., we gave a necessary and
sufficient condition for a tree function to be definable by a DBTT.

2. We gave a construction to get a unique DBTT, which can be performed
in polynomial time for a large class of transducers.

For the Myhill-Nerode style theorem, tree functions were semantically charac-
terized by partitions, which, in addition, provide an equivalence relation on
subtrees of the domain of the tree function. It was shown that a tree function
is definable by a DBTT if both the equivalence relation has finite index and
the partition is path-finite. The latter guarantees that every path occurring in
input trees yields only to finitely many different paths in corresponding output
trees. We introduced a normal form for path-finite partitions with equivalence
relations of finite index. This bottom-up partition is unique. Step by step, the
original partition is improved to guarantee different properties. In particular,
the equivalence relation of the bottom-up partition is a congruence. Addi-
tionally, the corresponding tree transducer with equivalence classes as states is
defined. It is shown that the bottom-up partition leads to the unique DBTT of
the same tree function.

The second contribution is the construction of this unique transducer, given
an arbitrary deterministic bottom-up tree transducer. In case that the DBTT is
already proper, i.e., does only produce output at essential states, the construc-
tion can be performed in polynomial time — given that we represent right-hand
sides compactly. Though similar in spirit as the corresponding construction for
top-down deterministic transducers, the given construction for bottom-up trans-
ducers is amazingly involved and relies on a long sequence of transformations
of the original DBTT to rule out anomalies in the behavior of the transducer.
In a last step, the DBTT was minimized.

It is well known that equivalence for deterministic bottom-up transducers
is decidable [Zac80]. Now our results provide an polynomial algorithm for the
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equivalence problem for proper DBTTs. For both transducers the unique form
has to be constructed and checked for equivalence.

7.1 Future Work

We plan to evaluate in how far our novel normal-form of DBTTs and the Myhill-
Nerode theorem can be applied in the context of learning tree-to-tree transfor-
mations. In a Gold-style learning algorithm [Gol78], the minimal DBTT would
be learned by a characteristic sample set of input and output trees. It would be
interesting, how such an algorithm can be defined using the subtree-equivalence
of the bottom-up partition. Presumably, deducing the bottom-up partition and
mainly identifying trees with essential residuals will be an intrinsic part of such
an algorithm. As another example, the normal form can be used to decide
certain (semantic) subclasses of DBTTs; e.g., we can decide whether a given
DBTT is equivalent to a relabeling, using the normal form. This provides an
alternative proof of [Gaz06], for the deterministic case.

Also, it remains to future work to evaluate how these ideas can be enhanced
to other classes of tree transformations, e.g., macro tree transducers, which are
introduced by Engelfriet in [Eng80]. In [LMN10], Lemay et al. present a Myhill-
Nerode Theorem and a Gold-style learning algorithm for deterministic top-down
tree transducers. A common superclass of deterministic bottom-up and top-
down tree transducers are deterministic top-down tree transducers with regular
look-ahead [Eng77]. Such a transducer first assigns informations to the nodes
of the input tree by processing a bottom-up relabeling. After that, it uses these
informations executing a top-down tree transducer. Is it possible to combine
the two minimization algorithms for bottom-up and top-down transducers to
get a minimal top-down transducer with regular look-ahead?

There are a lot of different applications of tree transducers, e.g., natural
language processing and XSLT (see introduction). An ambitious goal is to
enhance the transformation models (as tree transducer) and the corresponding
algorithms (e.g., to minimize or learn the models) to approach more complex
transformations, which are considered in natural language processing or which
occur in practical XSLT examples. Such approaches are often restricted by
complexity bounds.
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Type Checking Tree
Walking Transducers
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Chapter 8

Introduction

The extensible markup language XML is the current standard format for ex-
changing structured data. Its widespread use has initiated lots of work to sup-
port processing of XML on many different levels: Specialized query languages for
XML, such as XQuery, transformation languages like XSLT, and programming
language support either in the form of special purpose languages like XDuce, or
of binding facilities for mainstream programming languages like JAXB. A cen-
tral problem in XML processing is the (static) type checking problem: Given an
input and output type and a transformation f , can we statically check whether
all outputs generated by f on valid inputs conform to the output type? Since
XML types are intrinsically more complex than the types found in conventional
programming languages, the type checking problem for XML poses new chal-
lenges on the design of type checking algorithms. The excellent survey of [MS05]
gives an overview of the different approaches to XML type checking.

In Chapter 1 we have already said that the type checking problem for XML
transformations in its most general setting is undecidable. Instead of the ap-
proximative approaches, here, we will analyze exact XML type checking , i.e.,
restricting the types and transformations in such a way that type checking be-
comes decidable. For the exact setting, types can be considered as regular or
recognizable tree languages — thus, capturing the expressive strength of vir-
tually all known type formalisms for XML [MLM00]. Exact type checking is
possible for a large class of transformations (cf. Chapter 1), but even for top-
down transformations it is exponential time complete and for more complex
transformations, the problem is non-elementary. In this part, we present algo-
rithms to type check expressive classes of transformations defined by tree walk-
ing transducers (2TTs), macro tree walking transducers (2MTTs), and macro
forest walking transducers (2MFTs). We show that these algorithms work in
polynomial time for large subclasses of transformations.

Our approach is forward type inference: Given an input type I and a trans-
formation τ , we statically infer all outputs generated by τ on valid inputs. Then
we determine whether the set τ(I) of generated outputs conforms to a given out-
put type. Thereto, we check the intersection of τ(I) with the complement of

135



136 8. Introduction

the output type for emptiness. The input and output types are given by tree
automata and the transformation is given by a 2TT, 2MTT, or 2MFT. To infer
the set τ(I) of produced output trees, we restrict the transformation by enforc-
ing an additional run of the transducer on the input tree. This additional run
simulates the tree automata on the input type and checks if the input tree is
valid. Next, for this transducer and a tree automaton describing the output
type, a transducer is constructed, which produces desired output trees only, i.e.,
trees of the complement of the output type. Thereto, this transducer realizes
the same transformation as before, but simultaneously checks whether the pro-
duced output is accepted by the output automaton. If this transducer does not
produce any output, we get an affirmative answer to the type checking problem.
To check the transducer for emptiness, we construct a bottom-up tree automa-
ton, which describes the output produced by the transducer. With regard to the
different processing of the input trees (walking vs. bottom-up), this construc-
tion is complex. Roughly, we subsume all visits of the walking transducer at
one node to get the state of the automaton at this node. Thus, if the transducer
visits each node only a bounded number of times, the bottom-up automaton
can be constructed in polynomial time.

This part is organized as follows: In Chapter 9, we define tree walking
transducers and related notions. Additionally, we present a normal form for
2TTs, which offers better complexity bounds for the subsequent algorithms.
The rules of a 2TT in normal form have restricted right-hand sides.

The type checking problem is formulated in Chapter 10. Our approach of
using forward type inference, is presented. The types are given by finite tree
automata. The basic definitions and properties for bottom-up and deterministic
top-down tree automata are summarized in this chapter.

In Chapter 11, we give the algorithm to type check tree walking trans-
ducers. First, we intersect the transducer with the output type given by a tree
automaton. The resulting transducer produces only output trees not in the
output type and apart from that, works as the given transducer. If the trans-
formation of the new transducer is empty, the origin 2TT only produces valid
output with respect to the given output type. Thus, it remains to decide if the
new transducer realizes the empty transformation. Thereto, we deduce an alter-
nating tree walking automaton (ATWA), which accepts the domain of the 2TT.
For this automaton, an equivalent bottom-up tree automaton is constructed.
Since emptiness for a bottom-up tree automaton is decidable in linear time, we
get in Section 11.2 an exponential time algorithm to decide emptiness for both
2TTs and alternating tree automata. In the next section, we show that this
algorithm is a polynomial time algorithm if the transducer is b-bounded, i.e.,
every subtree is only processed in at most b different ways. With that, we show
that type checking a strictly b-bounded 2TT, i.e., every node in an input tree
is only visited b times, is polynomial in the size of the transducer and the sizes
of deterministic bottom-up automata describing the input and output types.

A similar approach is applied to type check macro tree walking transducers
in Chapter 12. First, we give the definition and discuss their semantics. Here,
we additionally have to deal with parameters for which we consider call-by-
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value evaluation. For complexity reasons, we present two different algorithms
to compute the intersection of a 2MTT with a deterministic bottom-up tree au-
tomaton and with the complement of a deterministic top-down tree automaton,
respectively. Then, we construct again an ATWA defining the domain of the re-
sulting macro tree walking transducer. With the algorithm to decide emptiness
for an ATWA of the previous chapter, type checking for 2MTTs is decidable in
exponential time. For input-linear macro tree walking transducers, i.e., strictly
1-bounded 2MTTs, it takes polynomial time only (Section 12.3).

Finally, we consider in Chapter 13 macro forest walking transducers. Here,
the output type is given by a finite forest monoid (FFM). We present an algo-
rithm to compute the intersection of a 2MFT with an FFM representing the
complement of the output type. Since the construction of the complement FFM,
in general, is exponential, we also give an algorithm intersecting output-linear
2MFTs with bottom-up forest automata. A bottom-up forest automaton is a
bottom-up tree automaton accepting the binary tree representations of forests.
Then, an ATWA (working on enriched encodings of forests) is constructed for
every macro forest walking transducer. The notion of strict b-boundedness is
also generalized for 2MFTs.
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Chapter 9

Tree Walking Transducers

Nondeterministic tree transducers describe transformations τ from trees to sets
of trees over a ranked alphabet Σ, i.e., τ : TΣ → 2TΣ . Consider for example a
transformation, which translates documents describing company structures as
the one in Figure 1.2 into a collection of all employees, which are listed under
a new root node labeled staff. Besides a data element, these new employee

elements now contain an element boss if the employee is the subordinate of
someone. For our example document, the transformation produces:

<staff>

<employee>

<data> <name> Charles Montgomery Burns </name> ... </data>

</employee>

<employee>

<data> <name> Waylon Smithers </name> ... </data>

<boss> <name> Charles Montgomery Burns </name> ... </boss>

</employee>

<employee> ... </employee> ...

<employee> ... </employee> ...

</staff>

The corresponding tree is referred as vB and its binary encoding (cf. Page 14)
as vB

′. The latter is depicted on the right in Figure 9.1. Remember that
the input tree of this example is abbreviated by uB and its encoding by uB

′,
illustrated in Figures 1.2(b) and 2.1, respectively.

A tree walking transducer starts at the root of the input tree. Depending on
the label of the current node, the direction and the state, it produces a tree with
leaves, which again may contain state calls for nodes of the input tree. These
recursively accessed nodes are determined according to the directives specified
in the right-hand side of the applied rule: On directive up, the father of the
current node is processed, on directive downi, the i-th child and on directive
stay the current node itself. Tree walking transducers can be considered as
generalizations of top-down tree transducers. While top-down tree transducers
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are only allowed to move downward in the input tree, tree walking transducers
may also stay at the current node or move upward in the tree.

Example 9.1. Using our representation of forests by binary trees (Page 14),
the transformation of our example is realized by a tree walking transducer Mstaff

with the following rules.

1 qI (department) → staff(q(down1), e) ,

2 q(employee) → employee(data(qdata(down1), qboss(stay)),

qsub(down1)) ,

3 q(e) → qup(up) ,

together with a state qdata for copying the personal data

4 qdata(data) → copy(down1) ,

as well as a state qboss to find the boss

5 qboss(employee) → qboss(up) ,

6 qboss(department) → e ,

7 qboss(subordinates)→ boss(qdata(up), e) ,

and a state qsub , which processes the subordinates

8 qsub(data) → qsub(down2) ,

9 qsub(subordinates) → q(down1) ,

10 qsub(e) → qnext(up) .

The state qnext searches (in dfs-manner) the next employee

11 qnext(data) → qnext(up) ,

12 qnext(employee) → q(down2) ,

together with a state qup for going to the boss if there is no further subordinate

13 qup(employee) → qup(up) ,

14 qup(subordinates) → qnext(up) ,

15 qup(department) → e

where state copy in Line 4 is meant to copy the content of data (i.e., the left child
in the binary representation). The initial state is qI , which means that we start
with state qI at the root of the tree. The output trees of this transformation
are binary representations of the lists of all members of staff. The root, which
is labeled staff, has a right child with label e. The left child of staff has label
employee whose left child is a data-node (with the personal data and the boss)
and whose right child is a chain of employee-nodes. Figure 9.1 illustrates this
transformation for the binary example tree uB

′ resulting in the tree vB
′. /
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The example illustrates that the “first-child next-sibling” encoding of forests
implies that the up-operation of the tree walking transducer may not necessarily
access directly the father in the forest representation but may instead reach
the left sibling – depending whether or not the current node is a left or right
child (i.e., has direction 1 or 2). In the example this was no problem: The
state qboss simply proceeds upwards in the tree representation until a node with
the right label is reached. A direct construction of forest walking transducers,
which provides the operations up, down, left , and right will be presented in
Chapter 13. For the moment, we restrict ourselves to tree walking transducers
on ranked trees (which perhaps are encodings of unranked forests).

Formally, the rules of a tree walking transducer are slightly more general
than the ones shown in Example 9.1: Additional to the label of the current
node, the left-hand side of a rule also checks the direction of the current node,
i.e., whether the current node is the root node (direction is 0), or whether it
is the i-th child of its parent node. It is well-known that in the case of tree
walking automata (viz. tree walking transducers with output symbols {0, 1} of
rank 0), such direction tests (or “child number” test) are crucial: Without them,
the automaton cannot even realize a depth-first left-to-right traversal over the
input tree, i.e., it cannot systematically search through every node of the input.
For some translations, however, direction tests are not needed (such as in our
Example 9.1). In that example, we must think of every rule as existing in (at
most) three incarnations, for direction 0 (root node), direction 1 (left child),
and direction 2 (right child). For instance, the q-rule for employee-nodes (rule
number 2 of the example) is needed in the following two incarnations:

2a q(employee, 1)→ employee(data(qdata(down1), qboss(stay)), qsub(down1))

2b q(employee, 2)→ employee(data(qdata(down1), qboss(stay)), qsub(down1))

Recall from the Preliminaries (Chapter 2) that the maximal rank of symbols in
a ranked alphabet Σ is denoted by mr(Σ).

Definition 9.1 (2TT). A tree walking transducer M (2TT for short) is a tu-
ple (Q,Σ, R,Q0) where Q is a set of states, Σ is a ranked alphabet, Q0 ⊆ Q
is a set of initial states, and R is a finite set of rules. A rule is of the form
q(a, η) → ζ where q ∈ Q, a ∈ Σ(m), m ≥ 0, η ≥ 0 and ζ is a tree generated by
the grammar

ζ ::= b(ζ, . . . , ζ︸ ︷︷ ︸
m′ times

) | q′(op) ,

with b ∈ Σ(m′), m′ ≥ 0, q′ ∈ Q, and op ∈ {stay , up} ∪ {downi | 1 ≤ i ≤ m}.

Tree walking transducers are also called 2-way tree transducers because they
generalize to trees the well known concept of 2-way finite state transducer on
words (see, e.g., [Gre78]).

Conventionally, tree transducers are defined over two ranked alphabets of
input and output symbols. In Definition 9.1 of a 2TT M , we only use one
alphabet Σ, which contains input and output symbols. If we want to distinguish
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the two, we say that a ∈ Σ is an input symbol if a appears on the left-hand side
of a rule of M ; we say that it is an output symbol if it appears in the right-hand
side of a rule of M . In Example 9.1, data is an input and output symbol and
boss is an output symbol of Mstaff.

In practice, transducers also have to cope with unknown labels in the input
such as, e.g., portions of text, which then either are ignored or copied into the
output. In order to deal with this, we could simply extend our formalism by
an extra symbol • of any given rank which serves as a placeholder for unknown
labels of this rank. This idea can be extended to placeholders for unknown
elements of different atomic types, for instance String, Number, or Date. Thus,
we can describe the so called “Simple Types” of XML Schema (cf. [FW04]).

For a right-hand side ζ, we also write ζ = z[q1(op1), . . . , qc(opc)] to refer to
all occurrences of state calls in the right-hand side; there, z ∈ TΣ(X) is a tree,
which contains exactly one occurrence of the variable xi for i = 1, . . . , c. Note
that z does not contain state calls. For example the right-hand side of the rule
in Line 2 in the Example 9.1 can be written as

z[qdata(down1), qboss(stay), qsub(down1)]

where z = employee(data(x1, x2), x3).
A 2TT is called deterministic iff there is at most one state in the set Q0 and

for every triple (q, a, η) of a state, a symbol, and a direction, there is at most
one rule with q(a, η) as left-hand side. The example 2TT Mstaff is deterministic.

Intuitively, the meaning of the expressions of a right-hand side is as follows:
The output can either be an element b whose content is recursively determined,
or a recursive call to some state q′ on the current input node, on its father or
on its i-th subtree. The match patterns in the left-hand side of the rules are
restricted to the form “a, η”, i.e., it is only allowed to check the label of the
current input node and its direction. Thus, the transformation of a 2TT M
starts at the root node of the input u with one of the initial states. A state q
can be applied to an input node ϑ with label lab(ϑ) = a and direction η = η(ϑ) if
there is a rule with left-hand side q(a, η). The evaluation continues on a child ϑi
of ϑ for each occurrence of a state call q′(downi), at ϑ itself for each occurrence
of a state call q′(stay), and at the parent of ϑ, for each occurrence of a state
call q′(up).

Hence, the meaning [[q]]u of a state q of M with respect to an input tree u
can be defined as a function from the nodes (of the input tree) to sets of trees,
i.e., [[q]]u : Nodes(u) → 2TΣ . The values [[q]]u for all q are jointly defined as the
least functions satisfying:

[[q]]u(ϑ) ⊇ ([[ζ]]u(ϑ)) for rule q(a, η)→ ζ

where ϑ is a node of u with lab(ϑ) = a and η = η(ϑ) with

[[b(ζ1, . . . , ζm)]]u(ϑ) = {b(u′1, . . . , u
′
m) | u′i ∈ [[ζi]]u(ϑ)}

[[q′(op)]]u(ϑ) = [[q′]]u([[op]]u(ϑ))
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where op stands for stay , up or downi for 1 ≤ i ≤ rank(a), and [[op]]u is defined
by:

[[stay ]]u(ϑ) = ϑ

[[downi]]u(ϑ) = ϑi

[[up]]u(ϑi) = ϑ .

The transformation τM realized by the 2TT M on an input tree u and sets U
of input trees, respectively, is defined by

τM (u) =
⋃
{[[q0]]u(ε) | q0 ∈ Q0} and τM (U) =

⋃
{τM (u) | u ∈ U} .

For a deterministic tree walking transducer M , the transformation τM is a
partial function τM : TΣ 99K TΣ. The domain of the transducer is the domain
of the transformation, i.e., dom(M) = dom(τM ) = {u | τM (u) 6= ∅}. As usual,
the size |M | of a 2TT M is the sum of the sizes of all its rules where the size
of a rule q(a, i) → ζ is defined as 3 + |ζ|. Recall that |ζ| equals the number of
nodes of ζ.

Applying the 2TT Mstaff from before to uB
′, we obtain the tree vB

′. The
right-hand sides of rules in a 2TT may be arbitrarily large and contain arbitrarily
many state calls. Dealing with such rules increases the complexity of some
algorithms on 2TTs. Thus, we give a normal form for 2TTs where the number
of state calls in right-hand sides is bounded by the maximal rank of output
symbols. In the particular case where we consider binary representations of
forests, the number of state calls in right-hand sides can be restricted to 2.

Lemma 9.1. For every 2TT M , a 2TT M ′ can be constructed in time O(|M |)
such that

1. τM ′ = τM and

2. the right-hand side of each rule of M ′ contains at most k occurrences of
states

where k is the maximal rank of the output symbols of M .

Proof. Let M = (Q,Σ, R,Q0). Intuitively, the idea of the construction is to
introduce auxiliary states for all proper subtrees which contain more than one
state call. For a symbol a ∈ Σ and direction η, let Za,η denote the set of all
subterms with more than one state call in right-hand sides of rules for a, η. For
each ζ ∈ Za,η, we introduce a fresh state qa,η,ζ . Assume that ζ = b(ζ1, . . . , ζm).
Then we introduce the new rule

qa,η,ζ(a, η)→ b(ζ ′1, . . . , ζ
′
m)

where ζ ′j = ζj if ζj contains at most one occurrence of a state, and otherwise
ζ ′j = qa,η,ζj (stay). We construct M ′ = (Q′,Σ, R′, Q0) as follows. The set of
rules R′ of the new transducer consists of all these newly constructed rules.
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Additionally, we add for every rule q(a, η) → b(ζ1, . . . , ζm) of M a new rule
q(a, η) → b(ζ ′1, . . . , ζ

′
m) where for every j, ζ ′j = ζj if ζj contains at most one

occurrence of a state, and ζ ′j = qa,η,ζj (stay) otherwise. The set of states Q′

contains all states of Q and, additionally, the new states qa,η,ζ for every sym-
bol a ∈ Σ, direction η, and every term ζ ∈ Za,η.

The resulting transducer M ′ has a new state at most for every non-leaf node
of a right-hand side of a rule in M . Thus, in the worst case, we have at most |M |
new states. In the new rules, the right-hand side of the original rule of M is
split in its subtrees. Thereby, we have |M ′| ∈ O(|M |).

In order to describe the behavior of the 2TT M = (Q,Σ, R,Q0) on a fixed input
tree u, we are also going to define runs of M . A run can itself be described by
a ranked tree over the set of rules. Here, the rank of a rule q(a, η)→ ζ is given
by the number of occurrences of calls q′(op) in ζ to states q′ in Q.

Definition 9.2 (Run). Let q denote a state of M and ϑ a node in the input
tree u of direction η, which is labeled with a. Assume that r : q(a, η) → ζ is a
rule in R with ζ = z[q1(op1), . . . , qm(opm)]. Then the tree

ρ = r(ρ1, . . . , ρm) ∈ TR

is a (q, ϑ)-run of the 2TT M on the tree u if for every i ∈ [m], ρi is a (qi, ϑi)-run
of M on u where ϑi is obtained from ϑ by operation opi. The output τ(ρ)
produced by a run ρ is defined by

τ(ρ) = z[τ(ρ1), . . . , τ(ρm)] .

A (q0, ε)-run for an initial state q0 is also called accepting run of M on u.

If M is deterministic, there exists at most one accepting run on every tree.

Example 9.2. Figure 9.2(a) shows the behavior of the (deterministic) example
2TT Mstaff on the tree ue, which describes a department with one employee:

ue = department(employee(data(. . . , e), e), e)

All states in an oval around a node are applied to this node. The picture includes
the dependences of the states. For example, consider the employee node ϑ = 1
(with lab(ϑ) = employee). There, we have the state q. In the 2TT, there is
just one rule with left-hand side q(employee, 1):

2a q(employee, 1)→ employee(data(qdata(down1), qboss(stay)), qsub(down1))

Thus, we have a (q, 1)-run ρ = r2a(ρ1, ρ2, ρ3) where ρ1, ρ3 are (qdata , 1.1)- and
(qsub , 1.1)-runs, respectively, and ρ2 is a (qboss , 1)-run. This is illustrated by
the three arrows starting at q at node ϑ. The Figure 9.2(b) shows a (qI , ε)-run
ρ′ = r1(ρ). The state copy was not detailed in Example 9.1. Accordingly, the
(copy, 1.1.1)-run here is not complete. The output τ(ρ) of this run is the tree
staff(employee(data(. . . , e), e), e) . /
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(a) The behavior of 2TT Mstaff on tree ue.

(b) The accepting run of Mstaff on the tree ue.

Figure 9.2: The 2TT Mstaff on the tree ue.
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Another approach to define the semantics of a 2TT is via accepting runs. Indeed,
this operational semantics of a 2TT coincides with the denotational semantics
provided first.

Theorem 9.2. For a tree u and a 2TT M , the following two statements are
equivalent.

1. There is an accepting run ρ of M for u with τ(ρ) = v

2. v ∈ τM (u).

Theorem 9.2 can be proved by fixpoint induction. The denotational view on
the semantics of a 2TT allows us to use fixpoint arguments for proving the
correctness of constructions, whereas the operational view is better suited for
combinatorial arguments.

9.1 Notes and References

Top-down tree transducers were invented by Rounds and Thatcher [Rou70,
Tha69]. Top-down tree transducers terminate for every input tree because they
process the input tree strictly top-down. While the height increase of a top-down
tree transducer is at most linear, the size increase is at most exponential (viz.
the translation of a monadic tree with n nodes into a full binary tree of height n).
A nondeterministic top-down tree transducer can associate at most double ex-
ponentially many output trees to a given input tree; e.g., the transducer with
the five rules q(a, η)→ b(q(down1), q(down1)), q(a, η)→ c(q(down1), q(down1))
for η ∈ {0, 1}, and q(e, 1) → e. Tree walking transducers with output strings
were invented in [AU71]; by adding the ability to generate output trees rather
than strings, we obtain the tree walking transducer of this thesis. It can be
seen as the k-pebble tree transducer of [MSV03], for the case that k = 0.
In [KS81], it was shown that tree walking transducers without child number
test are not useful: They cannot even check whether all leaves of input trees
are labeled by some symbol a. As mentioned in [EM03b], in the total determin-
istic case the tree walking transducer is essentially the same as the attribute
grammar [Knu68]. Similar to the fact that circularity of attribute grammars
is decidable, it is possible to change any deterministic tree walking transducer
in such a way that all runs are terminating [EM03b]. This is not possible for
nondeterministic tree walking transducers because they can associate infinitely
many output trees to a given input tree (viz. the transducer with the two rules
q(a, 0)→ b(q(stay)) and q(a, 0)→ e). The normal form of Lemma 9.1 is similar
to the one for pebble macro tree transducers given in Theorem 16 of [EM03b].
Attribute grammars with tree output are also called “attributed tree transduc-
ers” [Fül81]; for total deterministic such transducers (which coincide with our
tree walking transducers when they are total deterministic) it is known that the
size-to-height relationship of input tree to output tree is linear, and that the
number of different output subtrees in an output tree is linear in the size of the
corresponding input tree (see, e.g., [FV98]).
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Chapter 10

Type Checking

In this chapter, we present general techniques for certifying that all outputs
produced by a transducer M for trees of a given input type are well-formed, i.e.,
comply with some given output type O. This problem is called type checking of
the transducer M . Here, a type is just a set of trees, i.e., a tree language. Clearly,
the tractability of type checking heavily depends on the class of languages used
as types, and the class of transformations.

The binary tree vB
′ is an example for the output language of the 2TT Mstaff

(cf. Figure 9.1). Such output trees are binary trees with a root labeled with
staff and a right-comb of employee nodes as left subtree. It is the first-child
next-sibling representation of a tree, which has a root labeled with staff and
arbitrary many employee nodes as children. The following DTD (Document
Type Definition, [BPS08]) is describing this type (not the binary representation)
where content stands for further personal data which are not specified here:

<!ELEMENT staff (employee)*>

<!ELEMENT employee (data, boss)>

<!ELEMENT data (name, content)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT boss (name, content)>

<!ELEMENT content ... >

10.1 Type Checking by Forward Type Inference

Type checking a transducer M means to verify that all trees produced by M
for input trees in the given input type I are necessarily contained in the given
output type O. If τ is the transformation induced by the transducer M , we
want to check whether or not

τ(I) ⊆ O

where τ(I) = {τ(u) | u ∈ I}. If this check succeeds, then we say that M type
checks w.r.t. I and O. We solve this problem by forward inference, i.e., we
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determine whether
τ(I) ∩O = ∅

where O is the complement of the type O. In order to decide emptiness of this
intersection, we proceed in two steps. First, we construct from transducer M
a transducer MO which produces only those outputs of M , which are from O.
For 2TTs, this construction is presented in Section 11.1. Second, we present
methods for deciding emptiness of transducers (w.r.t. I).

10.2 Tree Automata

There are several specification formalisms for XML types, such as DTD, XML
Schema, or RELAX NG. For our purpose, the particular type formalisms is
not essential, as all of these formalisms can be abstracted by recognizable (or
regular) tree languages. Thus, each type definition can be translated into a finite
tree automaton. XML Schema specifications, e.g., can be considered as simple
classes of deterministic top-down automata. We briefly recall crucial definitions
of finite tree automata as needed in this chapter. Several kinds of tree automata
and basic constructions are presented, e.g., in [Löd11, CDG+07]. Recall that
we denote the maximal rank of a ranked alphabet Σ by mr(Σ).

Definition 10.1 (BTA). Let Σ be a ranked alphabet. A bottom-up finite state
tree automaton A (over Σ), BTA for short, is a tuple (P,Σ, δ, F ) where

- P is a finite set of states,

- F ⊆ P is a set of accepting states, and

- δ ⊆
mr(Σ)⋃
m=0

(P × Σ(m) × Pm) is a finite set of transitions of the form

(p, a, p1 . . . pm) where a ∈ Σ(m) and p, p1, . . . , pm ∈ P .

A transition (p, a, p1 . . . pm) denotes that, if for all i ∈ [m], BTA A arrives in
state pi after processing some tree ui, then it can assign state p to the tree
a(u1, . . . , um). Technically, a p-run ρ of A on a tree u = a(u1, . . . , um) ∈ TΣ is
a tree

ρ = r(ρ1, . . . , ρm) ∈ Tδ
where r is a transition (p, a, p1 . . . pm) ∈ δ and ρi is a pi-run of A for ui. For
some applications, it suffices to represent p-runs by trees from TP with root p.
The tree language L(A), accepted by A, consists of the trees u ∈ TΣ by which
A can reach an accepting state, i.e. it exists a p-run ρ of A for u with p ∈ F ;
the latter run is called accepting run of A on u. A bottom-up tree automaton
A = (P,Σ, δ, F ) is deterministic (DBTA) if for each symbol a ∈ Σ(m) and every
sequence p1 . . . pm of states, there is at most one state p with (p, a, p1 . . . pm) ∈ δ,
i.e., δ induces a partial function of type Σ×P ∗ 99K P . A BTA is called complete
if there is at least one rule (p, a, p1 . . . pm) ∈ δ for all m ≥ 0, a ∈ Σ(m), and
p1, . . . , pm ∈ P .
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We may also interpret the transitions of a BTA in a top-down fashion. Then
we obtain the known top-down tree automaton (TTA), which starts at the input
root node and assigns states to the children of a node, depending on the label
of the node and the current state.

Definition 10.2 (DTTA). A BTA is called deterministic top-down (DTTA for
short) if the set of final states is a singleton set, and the transition relation δ
induces a partial function P × Σ 99K P ∗, i.e., for each state p ∈ P and each
symbol a ∈ Σ(m), there is at most one sequence of states p1 . . . pm ∈ Pm with
(p, a, p1 . . . pm) ∈ δ.

As usual, the size |A| of a finite state tree automaton A is the sum of sizes of all
its transitions and the number of states where a transition (p, a, p1 . . . pm) has
size m+2. Let bta, dbta, and dtta denote the classes of all languages definable
by BTAs, DBTAs, and DTTAs, respectively. It is known that bta = dbta
equals the class of regular tree languages, and that dtta is properly contained
in this class.

Example 10.1. Coming back to the transformation from Example 9.1, the set
of valid output documents should be lists of staff members (cf. the DTD on
Page 149). More precisely:

- staff should contain a possibly empty sequence of employee elements;

- Each employee element should contain a data element and optionally, a
boss element.

A bottom-up tree automaton describing (the binary representations of) this set
is given by Astaff = (P,Σ, δ, F ) where P = {rstaff, rempl, rdata, rname, rboss, re, . . .}
and δ contains (amongst others) the transitions

(rstaff, staff, rempl re),
(rempl, employee, rdata rempl), (rempl, e),
(rdata, data, rname rboss),
(rboss, boss, rname re), (rboss, e),
(rname, name, rcontent re),
(re, e)

where rcontent is the state characterizing valid personal data of employees. The
set of accepting states is, thus, given by F = {rstaff}. Note that this BTA is,
in fact, deterministic top-down. Note further that the documents adhering to
the DTD on the beginning of Chapter 10 are, in general, no ranked trees but
forests. /

In the previous example, the BTA ran on the first-child next-sibling encoding
of forests as binary ranked trees. For convenience, we call such a finite tree
automaton also finite forest automaton (short: BFA). Again, if it is deterministic
or deterministic top-down, we abbreviate it DBFA and DTFA, respectively.
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10.3 Basic Properties of BTAs

The approach, which we advocate here, is called forward type checking (cf. Sec-
tion 10.1). Assume that O is the type of all valid output trees. In order to check
that the transducer M produces only outputs in O, we construct a transducer,
which, for every input u, only produces those output trees of transducer M ,
which are not valid, i.e., which are in O (the complement of O). Thus, type
correctness for M is reduced to emptiness of the auxiliary transducer MO. For
this idea to work, it is useful to have effective constructions which take the spe-
cification of a type and return a specification for its complement. For a complete
DBTA A = (P,Σ, δ, F ), this construction is simple: We need to exchange ac-
cepting and non-accepting states, i.e., replace F with P\F . Since every regular
tree language can be accepted by a complete DBTA, this construction implies
that the complement of a regular tree language is a regular tree language, too.
The complement of a type described by a deterministic top-down tree automa-
ton is a regular language as well, but not necessarily in dtta. The obvious
technique for constructing an automaton for the complement is, therefore, to
transform the deterministic top-down automaton into a complete deterministic
bottom-up automaton and then apply the complement construction for complete
DBTAs. This first construction, however, possibly incurs an exponential blow-
up in the number of states. Therefore, we approve a different approach: Instead
of constructing a deterministic automaton for the complement, we construct a
non-deterministic automaton. The latter can be achieved by only moderately
increasing the size.

Lemma 10.1. For a DTTA A over the ranked alphabet Σ, there is a BTA A′

over Σ with L(A′) = TΣ\L(A) and |A′| ∈ O((|A|+ |P | · |Σ|) ·mr(Σ)) where P is
the set of states of A.

Proof. Intuitively, the automaton A′ guesses a path in the input tree to some
node where the original automaton A fails. Formally, let A = (P,Σ, δ, {p0}) be
a DTTA and define BTA A′ = (P ′,Σ, δ′, {p′0}) with P ′ = {p′ | p ∈ P} ∪ {•} for
a new state • /∈ P . A state p′ is meant to generate only trees for which there is
no p-run of A. The state • describes arbitrary trees, i.e., the language TΣ. The
set δ′ of transitions of the new BTA is defined as follows:

- For every transition (p, a, p1 . . . pm) ∈ δ with m = rank(a) ≥ 1, and for
every i ∈ [m] let (p′, a, •i−1p′i•m−i) ∈ δ′.

- For every state p ∈ P , 0 ≤ m ≤ mr(Σ), and a ∈ Σ(m), (p′, a, •m) ∈ δ′

whenever ∀p1, . . . , pm ∈ P : (p, a, p1 . . . pm) 6∈ δ.

- For every a ∈ Σ(m), (•, a, •m) ∈ δ′.

For the correctness of the construction, we claim that for every state p of the
DTTA A, and every input tree u, the BTA A′ has a p′-run on u iff DTTA A has
no p-run on u. This claim can be proven by induction on the height of input
trees.
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Now let k = mr(Σ) be the maximal rank of symbols in Σ. For each transition
in δ, we get at most k new transitions in δ′ (one for each successor state).
Additionally, we possibly require a new rule of length at most k + 2 for each
pair of a state in P ′ and a symbol in Σ. Thus, the size of the new automaton A′

is in O((|A|+ |P | · |Σ|) ·mr(Σ)).

Example 10.2. For the DTTA Astaff = (P,Σ, δ, {rstaff}) in Example 10.1, the
bottom-up tree automaton A′staff = (P ′,Σ, δ′, {r′staff}) for the complement has
the following transitions for the label staff:

(r′staff, staff, r
′
empl•), (r′staff, staff, •r′e), (r′, staff, ••)

for all r′ ∈ P ′ \ {r′staff}. For the label boss it has the transitions:

(r′boss, boss, r
′
name•), (r′boss, boss, •r′e), (r′, boss, ••)

for all r′ ∈ P ′ \ {r′boss}. The set of accepting states is {r′staff}. /

10.4 Notes and References

XML type definition languages such as DTDs [BPS08], XML Schema [FW04], or
RELAX NG [CM01] are closely related to the regular tree languages [MLM00,
Nev02] that is, to the class of tree languages recognized by finite tree automata.

Tree automata are a well studied formalism in computer science, dating
back to the late 1960s. For surveys on tree automata, please see [GS84, GS97,
CDG+07]. Tree automata inherit most of the good properties of finite automata
on strings, such as effective closure under Boolean operations and decidability of
emptiness. An important property, which will be used later for type checking,
is that emptiness of BTAs can be decided in linear time (see, e.g., [Löd11],
Theorem 1.7.4 in [CDG+07]).

Theorem 10.2. Given a BTA A it can be decided in linear time whether or
not L(A) = ∅.

Just as in the string case, nondeterministic bottom-up tree automata can be
determinized (with a potential and sometimes unavoidable exponential blow up
in automaton size). This is not the case for top-down tree automata: The class
dtta of languages accepted by deterministic top-down tree automata is a strict
subclass of bta, which does not even contain all finite languages. A famous
example of a language, which is not in dtta, is the set U = {f(a, b), f(b, a)}.
Note that for a given BTA, it is decidable if its language is in dtta. This is
due to the fact that dtta languages can be characterized by the “path-closed”
property [Cou78, Vir80]; the latter means that the trees in the languages are
exactly obtained by combining all paths of the corresponding path language.
The language U for instance is not path-closed. Using a similar example, it is
easily shown that dtta is not closed under complementation (and neither under
union).
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Chapter 11

Type Checking of Tree
Walking Transducers

In this chapter, we present techniques to type check 2TTs against regular tree
languages. We use the approach of forward type inference presented in the
previous chapter. Thereto, we start with intersecting tree walking transducers
with complements of output types where the output types are given by different
types of tree automata.

11.1 Intersecting 2TTs with Output Types

For a given tree walking transducer, we build a second 2TT, which produces only
output trees in the complement of the output type, and otherwise realizes the
same transformation as the original transducer. If the output type is described
by a complete DBTA A = (P,Σ, δ, F ), the complement will be recognized by
the complete DBTA Ā = (P,Σ, δ, P \F ). Furthermore, for a given DTTA exists
a BTA describing the complement (cf. Lemma 10.1). Thus, it is sufficient to
construct a 2TT MA for a 2TT M and a BTA A (which may be the complement
automaton of a complete DBTA or of a DTTA) with τMA

(u) = τM (u) ∩ L(A)
for every tree u.

Theorem 11.1. For every 2TT M and every BTA A, there is a 2TT MA with

τMA
(u) = τM (u) ∩ L(A)

for all u ∈ TΣ. The size |MA| of MA is in O(|M |·|A|d+1) where d is the maximal
number of occurrences of states in right-hand sides of M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, F ). For each state q in Q and
all states p ∈ P , we generate new states for MA of the form 〈q, p〉. Such a state
is meant to generate only trees u ∈ TΣ for which there is a run of A starting at
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the leaves and reaching the root of u in state p. The rules of the new 2TT MA

are
〈q, p〉(a, η)→ ζ ′

for every rule q(a, η) → ζ of M and ζ ′ ∈ τp [ζ]. The sets τp [.] are inductively
defined by:

τp [b(ζ1, . . . , ζm)] = {b(ζ ′1, . . . , ζ
′
m) | (p, b, p′1 . . . p′m) ∈ δ ∧ ∀i : ζ ′i ∈ τp

′
i [ζi]}

τp [q′(op)] = {〈q′, p〉(op)} .

The set of initial states of MA is Q′0 = Q0×F . By fixpoint induction, we verify
for every state q, every input tree u ∈ TΣ, every node ϑ ∈ Nodes(u), and every
state p that

[[〈q, p〉]]u(ϑ) = [[q]]u(ϑ) ∩ {v ∈ TΣ | ∃ run ρ on v with ρ(ε) = p} .

For each state in M we have at most |A| new states in MA. If we have c occur-
rences of state calls in the right-hand side of a rule r of M , with the state on the
left-hand side, we obtain at most |A|c+1 new rules for r in MA. Therefore, the
new 2TT is of size O(|M |·|A|d+1) where d is the maximal number of occurrences
of state calls in right-hand sides in M .

Considering only binary trees, we obtain size O(|M | · |A|3) for the intersection
2TT (with Lemma 9.1). The last step is to decide whether τMA

6= ∅. Thereto,
we build a BTA describing the domain of MA. This will be done after completing
the example.

Example 11.1. Let us try to type check the 2TT Mstaff = (Q,Σ, R,Q0) via for-
ward type inference. According to Lemma 9.1, we restrict the maximal number
of state calls in right-hand sides to 2. In our example 2TT, the rule

q(employee, η)→ employee(data(qdata(down1), qboss(stay)), qsub(down2))

has three state calls. We obtain the new rules:

q(employee, η)→ employee(q′(stay), qsub(stay))

q′(employee, η)→ data(qdata(down1), qboss(stay)) .

According to the proof of Lemma 9.1, the new state q′ in these rules is the state

qemployee,data(qdata(down1),qboss(stay)) .

As output type, consider again the DTTA Astaff = (P,Σ, δ, {rstaff}). The com-
plement BTA A′staff = (P ′,Σ, δ′, {r′staff}) is given in Example 10.2. Then, the
intersection transducer (Mstaff)A′staff

is given by (Q × P ′,Σ, R′, Q0 × {r′staff}).
In what follows, we show how the first few rules in R′ are constructed from R
and δ′.

For qI (department, 0)→ staff(q(down1), e) and r′staff, we obtain the rule

〈qI , r′staff〉(department, 0)→ staff(〈q, r′empl〉(down1), e) .



11.2. Deciding Emptiness of 2TTs 157

For the rule q(employee, η) → employee(q′(stay), qsub(down2)) and r′empl, we
obtain

〈q, r′empl〉(employee, η)→ employee(〈q′, r′data〉(stay), 〈qsub , •〉(down2))

〈q, r′empl〉(employee, η)→ employee(〈q′, •〉(stay), 〈qsub , r′empl〉(down2)) .

For q(e, η)→ qup(up) and all r ∈ P ′, we obtain

〈q, r〉(e, η)→ 〈qup , r〉(up) . /

11.2 Deciding Emptiness of 2TTs

In order to check the emptiness of a tree walking transducer w.r.t. a given input
type, we construct a nondeterministic finite state automaton (cf. Section 10.2)
which then is checked for emptiness. First, for a 2TT M and an input type I, we
define an alternating tree walking automaton M ′, which ignores the output of
the 2TT, but apart from that imitates the behavior of M on trees in I. For M ′,
we then construct a nondeterministic BTA AM ′ accepting all trees u such that
τM (u) 6= ∅. The right-hand sides of transitions of an alternating tree walking
automaton are conjunctions. Whereas the empty conjunction, i.e.,

∧
∅, equals

true.

Definition 11.1 (ATWA). An alternating tree walking automaton (ATWA for
short) is a tuple M = (Q,Σ, δM , Q0) where

- Q is a finite set of states,

- Σ a ranked input alphabet,

- Q0 ⊆ Q a set of initial states, and

- δM a finite set of rules of the form

q(a, η)→ q1(op1) ∧ . . . ∧ qc(opc)

with c ≥ 0, q, q1, . . . , qc ∈ Q, a ∈ Σ(m), m ≥ 0, η ≥ 0, and for 1 ≤ i ≤ c,
opi ∈ {stay , up} ∪ {downj | j ∈ [m]}.

A transition q(a, η)→ H is also called q-rule. An ATWA traverses a tree like a
2TT, but produces no output. The language L(M) of an ATWA M is defined
as the set of all trees for which an accepting run of M exists.

Definition 11.2 (Run). For an ATWA M = (Q,Σ, δM , Q0), assume that the
rule r : q(a, η)→ H is in δM with H = q1(op1) ∧ . . . ∧ qc(opc). Then the tree

ρ = r(ρ1, . . . , ρc) ∈ TδM

is a (q, ϑ)-run of the ATWA M on the tree u if ϑ is a node of u with direction η
and label a and for all i, ρi is a (qi, ϑi)-run of M on u where ϑi is obtained
from ϑ by operation opi. A (q0, ε)-run ρ with q0 ∈ Q0 is also called accepting.
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A subtree ρ[w] of a run ρ on a node w, which is a (q, ϑ)-run for some state q
and some node ϑ of u is called (q, ϑ)-subrun. The set of rules, which are applied
to one node ϑ during a run ρ on u, is the set

rulesρ(ϑ) = {r | ∃ρ1, . . . , ρc : r(ρ1, . . . , ρc) is a (q, ϑ)-subrun of ρ} .

Lemma 11.2. Assume that M is a 2TT. Then an ATWA M ′ can be constructed
in linear time such that for every input tree u, M ′ has an accepting run for u
iff M has an accepting run for u.

Proof. The ATWA M ′ has the same set of states as M . The rules of M ′ are
obtained from those of M by replacing every right-hand side ζ of M with the
conjunction of all q(op) occurring in ζ. Formally, let M = (QM ,Σ, R,Q0) be
a 2TT. Then, the ATWA M ′ is defined by M ′ = (QM ,Σ, δ

′, Q0) for a set δ′ of
transitions δ′ = {[r] | r ∈ R} where

[q(a, η)→ ζ] = q(a, η)→ [ζ]

[ζ] = q1(op1) ∧ . . . ∧ qc(opc)

for a right-hand side ζ = z[q1(op1), . . . , qc(opc)] .

In order to prove the correctness of this construction, we first extend the transla-
tion [.] from rules to trees of rules. For ρ = r(ρ1, . . . , ρc) ∈ TR, [ρ] is inductively
defined as the tree [ρ] = [r]([ρ1], . . . , [ρc]). Then we claim that ρ is a (q, ϑ)-run
of M iff [ρ] is a (q, ϑ)-run of M ′. The proof is by structural induction on ρ. Since
for every (q, ϑ)-run ρ′ of M ′, some ρ ∈ TR exists with [ρ] = ρ′, we conclude that
τM (u) 6= ∅ iff u ∈ L(M ′).

As an example for this translation of tree walking transducers into ATWAs,
consider the 2TT Mstaff (Example 9.1). For the second rule, we get:

r′2 : q(employee, η)→ qdata(down1) ∧ qboss(stay) ∧ qsub(down1) .

In order to accept only trees of an input type I, we enlarge an ATWA M .
Let I be given by a finite state tree automaton A = (P,Σ, δA, F ) and ATWA
M = (Q,Σ, δM , Q0). For every rule q0(a, η) → H of M with q0 ∈ Q0 and
every pf ∈ F , we enhance the ATWA with the rule q0(a, η) → pf (stay) ∧ H.
Additionally, for every transition (p, a, p1 . . . pm) ∈ δA of the automaton A, we
add the rule p(a, η)→

∧
i≤m pi(downi).

In an accepting run of an ATWA, subruns for the same state and node are
interchangeable. Thus, we define uniform runs as runs where for each state q
and each node ϑ, the (q, ϑ)-subruns are the same.

Definition 11.3 (Uniform Run). A (q, ϑ)-run ρ of an ATWA M on a tree u
is called uniform if, for every state q, every node ϑ in u, and every two (q, ϑ)-
subruns ρ1, ρ2 of ρ, ρ1 = ρ2.

If an ATWA is deterministic, i.e., for each state q, direction η and label a, there
is at most one rule of the form q(a, η) → H, then every (q′, ϑ)-run is uniform.
In general, this may not be the case. However, we have:
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Lemma 11.3. For an ATWA M and an input tree u, the following two state-
ments are equivalent.

1. M has an accepting run for u.

2. M has a uniform accepting run for u.

Proof. Every uniform accepting run is an accepting run. For the reverse di-
rection, it suffices to prove that for every (q, ϑ)-run ρ of M on u, there is also
a uniform (q, ϑ)-run of M on u. For that, we consider the set B(ρ) of all
pairs (q′, ϑ′) for which ρ contains more than one (q′, ϑ′)-run as a subtree. We
proceed by induction on the cardinality of the set B(ρ). If the set B(ρ) is
empty, ρ is already uniform. Now assume B(ρ) is non-empty. Then ρ contains
a subtree ρ1 with the following two properties:

1. ρ1 is a (q1, ϑ1)-run with (q1, ϑ1) ∈ B(ρ);

2. all subtrees ρ′1 of ρ1 are (q′, ϑ′)-runs with (q′, ϑ′) 6∈ B(ρ).

Then we construct from the run ρ a tree ρ′ by replacing every occurrence of a
subtree in ρ, which is a (q1, ϑ1)-run, with ρ1. Then ρ′ is again a (q, ϑ)-run on u
but now, the set B(ρ′) ⊆ B(ρ)\{(q1, ϑ1)} contains at least one element less.
Thus, by induction hypothesis applied to ρ′, there is a (q, ϑ)-run on u, which is
uniform.

Figure 9.2(a) shows the behavior of the 2TT Mstaff on the tree ue. The cor-
responding ATWA M ′staff yields the same behavior. The Figure 9.2(b) shows
an accepting run ρ of Mstaff on ue. The corresponding run [ρ] of M ′staff (Fig-
ure 11.1(a)) is uniform. In order to decide emptiness of an ATWA M and,
accordingly, of a 2TT, we construct a nondeterministic bottom-up finite state
tree automaton AM . In order to accept the domain of M , the BTA AM guesses
uniform accepting runs. Since AM visits each node in the input tree at most
once, it guesses at every node all transitions, which are applied at this node
during a uniform run of M .

Technically, the states of the BTA AM consist of guessed directions together
with partial mappings µ : Q 99K 2Q of states to sets of states: µ(q) = B at a
given node ϑ means that the (q, ϑ)-run on the input tree will cause calls q′(up)
at ϑ only for states q′ from B. For a mapping µ, we refer to the domain as
dom(µ) = {q | µ(q) is defined}. Furthermore, to each node ϑ in the input
tree we implicitly attach Rϑ = rulesρ(ϑ) collecting the ATWA rules which are
applied to the node ϑ in an accepting run ρ of the ATWA on the input tree u.
Since ρ is uniform, the set rulesρ(ϑ) contains at most one q-rule for every q.

Example 11.2. Consider again the run ρ in Figure 11.1(a) on the tree ue.
To simulate this run on node 1.2 (with label e and direction 2), a run of the
BTA AM assigns to 1.2 the partial mapping µ1.2 = {q 7→ {qup}}. In addition,
we attach R1.2 = {q(e, 2)→ qup(up)} to this node. At node 1.1 with label data
and direction 1, we obtain the partial mapping

µ1.1 = {qdata 7→ ∅, qnext 7→ {qnext}, qsub 7→ {qnext}}
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(a) A uniform run of the ATWA M ′staff on the tree ue.

(b) The mappings µ for that run.

Figure 11.1: Behavior of M ′staff on ue.
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because qnext at node 1 also depends on qsub at node 1.1. For the run ρ we get

R1.1 = {qdata(data, 1)→ copy(down1),

qsub(data, 1)→ qsub(down2),

qnext(data, 1)→ qnext(up)}.

The mappings for the run ρ are illustrated in Figure 11.1(b). /

A pair 〈µ, η〉 is accepting if η = 0, for all q ∈ dom(µ) holds µ(q) = ∅, and
dom(µ) contains an accepting state q0 ∈ Q0 of the ATWA M .

Now assume that a is a label of arity m, η is a direction, and µ, µi : Q 99K 2Q

are partial mappings (i = 1, . . . ,m). Then

(〈µ, η〉, a, 〈µ1, 1〉, . . . , 〈µm,m〉)

is a transition of the BTA AM iff there is a set R of rules of the ATWA M
with the following properties. Let Qs, Qu, and Qd,i (i ∈ [m]) denote the set
of states q for which there is a q-rule in R, the set of states q′ with a recursive
call q′(up), and the sets of states q′ with a recursive call q′(downi) in some
right-hand side of rules in R, respectively. Then the set R of rules should have
the following properties:

1. All rules in R have a left-hand side of the form q(a, η) where q ∈ Q.

2. Assume q(a, η)→ q1(op1)∧ . . .∧ qc(opc) ∈ R. Then we have for all j ≤ c:

- If opj = stay , then R also contains a qj-rule, i.e., qj ∈ Qs;
- If opj = downi, then qj ∈ dom(µi).

3. Whenever q′ ∈ dom(µi) for i, then µi(q
′) ⊆ Qs.

4. Consider the following graph G with set of vertices

V = {q(stay) | q ∈ Qs} ∪ {q(downi) | i ∈ [m], q ∈ Qd,i} ∪ {q(up) | q ∈ Qu}

and the following set E of edges:

- If a q-rule in R contains a call q′(op), then (q(stay), q′(op)) ∈ E;

- If µi(q) = Bi is defined, then (q(downi), q
′(stay)) ∈ E for all q′ ∈ Bi.

The resulting directed graph G = (V,E) should be acyclic, and the map-
ping µ is obtained from G as follows:

- q ∈ dom(µ) iff q ∈ Qs and

- µ(q) = B iff the set B equals the set of all vertices q′(up) which are
reachable in G from q(stay).

The size of AM is exponential in the size of M . We give a detailed example for
this construction in Example 11.3. Now we state the correlation of runs of AM
and of M .



162 11. Type Checking of Tree Walking Transducers

Lemma 11.4. For a tree u the following statements are equivalent.

1. There is a uniform accepting run of M on u.

2. There is an accepting run of AM on u.

Proof. (1)⇒ (2) : Let ρ be a uniform accepting run of the ATWA M on a tree u.
For a node ϑ of u with label a and direction η, letRϑ denote the set of all ATWA
rules applied at the root in subruns of ρ starting at ϑ, i.e., Rϑ = rulesρ(ϑ). We
then construct for every node ϑ of u with label a ∈ Σ(m) and direction η a
state µϑ and a transition rϑ = (〈µϑ, η〉, a, 〈µϑ1, 1〉 . . . 〈µϑm,m〉) of the BTA AM .

The setsRϑ allow us to construct a directed graph Gu. The set Vu of vertices
of Gu are given by the set of all pairs (q, ϑ) for nodes ϑ of u and states q for
which there is a q-rule in Rϑ. The set Eu of edges consists of:

- all pairs ((q, ϑ), (q′, ϑ)) where the q-rule in Rϑ contains a call q′(stay);

- all pairs ((q, ϑ), (q′, ϑi)) where the q-rule in Rϑ contains a call q′(downi);

- all pairs ((q, ϑ), (q′, ϑ′)) where the q-rule in Rϑ contains a call q′(up) and
ϑ = ϑ′i for some i.

The graph Gu is acyclic. Moreover, since the uniform run ρ is accepting, every
vertex in Vu is reachable from some vertex (q0, ε) with q0 ∈ Q0.

The graph Gu allows to construct partial mappings µϑ for every node ϑ.
The state q is in dom(µϑ) iff (q, ϑ) is a vertex of Gu. Assume (q, ϑ) is a vertex
in the graph Gu. We consider two cases. If ϑ = ε, then Rε cannot contain
any q-rule, which has an up-call. In this case, η(ϑ) = 0, and we set µε(q) = ∅.
Otherwise, assume that ϑ = ϑ′i. Then η(ϑ) = i and q′ ∈ µϑ(q) iff there is
an edge ((q1, ϑ), (q′, ϑ′)) in Gu where (q1, ϑ) is reachable from (q, ϑ) by a path,
which contains only vertices (q2, ϑ2) referring to nodes ϑ2 from the subtree at
node ϑ, i.e., to nodes, which have ϑ as a prefix. If no such state q′ exists, then
µϑ(q) = ∅.

It now can be verified for every node ϑ with label a ∈ Σ(m) and direction η
that (〈µϑ, η〉, a, 〈µϑ1, 1〉 . . . 〈µϑm,m〉) constitutes a transition of AM (with Rϑ
as set of rules of the ATWA). Since by construction, 〈µε, 0〉 is an accepting state
of AM , we have, thus, constructed an accepting run of AM for u.

(2) ⇒ (1) : Let ρ′ be an accepting run of AM on the tree u, and let 〈µϑ, η〉
and rϑ denote the state and transition of AM attained for the node ϑ in u. We
can find sets Rϑ conforming to the properties of the transition relation of M .
These allow to construct a graph G′u analogously to the graph Gu above. By
definition of the transition relation of AM , G′u is acyclic. This allows us to
define for every vertex (q, ϑ) in G′u, the number h(q, ϑ) as the maximal length
of a path in G′u to a leaf, i.e., a vertex with out-degree 0. Using the sets Rϑ of
ATWA rules, we now construct for every node ϑ and ATWA rule r : q(a, η)→ H
from Rϑ with H = q1(op1) ∧ . . . ∧ qc(opc), a tree ρ[q, ϑ] by

ρ[q, ϑ] = r(ρ[q1, ϑ1], . . . , ρ[qc, ϑc])
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Figure 11.2: Graph G for transition (〈µ1, 1〉, employee, 〈µ1.1, 1〉, 〈µ1.2, 2〉).

where ϑj = [[opj ]](ϑ). Note that all these trees are well-defined, since the height
of ρ[q, ϑ] precisely equals h(q, ϑ). Moreover, the tree ρ[q, ϑ] is a (q, ϑ)-run of the
ATWA M on u. Since every (q′, ϑ′)-subrun of this tree equals the (q′, ϑ′)-run
ρ[q′, ϑ′], this run is also uniform. In particular, the tree ρ[q0, ε] constitutes a
uniform accepting run of the ATWA M .

By Lemmas 11.2, 11.3, and 11.4, the BTA AM recognizes the domain of the given
2TT M , which gives us Theorem 11.5. Note that this implies, by Theorem 10.2,
that also emptiness of M ’s domain (and hence of M ’s translation τM ) can be
decided in exponential time.

Theorem 11.5. Assume M is a 2TT. Then a BTA A can be constructed in
exponential time such that L(A) = dom(M). Thus, emptiness for a 2TT can be
decided in deterministic exponential time.

We continue with our example to illustrate the construction of the bottom-up
tree automaton:

Example 11.3. We consider again the tree walking transducer Mstaff and its
corresponding ATWA M ′staff. The size of the BTA AM ′staff

is exponential in the
size of the ATWA or 2TT. Therefore, we only construct states occurring in a
run of AM ′staff

on the tree in Figure 9.2(a):

ue = department(employee(data(. . . , e), e), e)

The uniform accepting run ρ in Figure 11.1(a) yields the sets Rϑ. For instance,
for the node labeled with employee, we get

R1 = {q(employee, 1)→ qboss(stay) ∧ qsub(down1) ∧ qdata(down1),

qboss(employee, 1)→ qboss(up),

qup(employee, 1)→ qup(up),

qnext(employee, 1)→ q(down2)} .
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The graph Gue in the proof of Lemma 11.4 is similar to the graph in Fig-
ure 9.2(a). There, it spans the tree ue. To obtain the graph Gue , we have to
replace a vertex q, which is located at a node ϑ of ue, by (q, ϑ).

The mappings µϑ are illustrated in Figure 11.1(b). For each state q fixed at a
node ϑ, µϑ(q) is defined. If q has no outgoing edges then µϑ(q) = ∅. Otherwise,
it is the set of all direct successors of q in this Figure 11.1(b). For example:

µε = {qI 7→ ∅, qup 7→ ∅, qboss 7→ ∅}
µ1 = {q 7→ {qup , qboss}, qnext 7→ {qup}, qboss 7→ {qboss}, qup 7→ {qup}}
µ1.1 = {qdata 7→ ∅, qsub 7→ {qnext}, qnext 7→ {qnext}}
µ1.2 = {q 7→ {qup}}

Note that qup /∈ µ1.1(qnext) although (qup , 1) is reachable from (qnext , 1.1) inGue ,
but the path contains (q, 1.2) and 1.1 is not a prefix of 1.2. In order to illustrate
a transition of BTA AM ′staff

, consider, e.g., the transition

(〈µ1, 1〉, employee, 〈µ1.1, 1〉, 〈µ1.2, 2〉) ∈ δA

with the set R1. All rules in R1 agree in the input label employee and
the direction 1 (Condition 1, Page 161). Also it contains a qboss -rule for the
call qboss(stay). For all states of occurring down1-calls, i.e., states qsub and qdata ,
the mapping µ1.1 is defined. Likewise, for q with a down2-call, q ∈ dom(µ1.2).
Thus, R1 also conforms with Condition 2 (Page 161). For Condition 3, we verify
that R1 has rules both for qnext and qup . For the last property, we construct
the graph G. The set of vertices is

V = {q(stay), qboss(stay), qnext(stay), qup(stay),

qdata(down1), qsub(down1), q(down2),

qboss(up), qup(up)}

The edges are illustrated in Figure 11.2. As the last condition (Page 161)
requires, the graph G is acyclic, and we can read off the mapping µ1.

We also verify that 〈µε, 0〉 is an accepting state. According to Lemma 11.4,
the resulting run ρ′ is an accepting run of AM ′staff

on ue. /

11.3 Efficient Subcases

In the previous section, we have provided an algorithm for deciding emptiness of
ATWAs and thus, also of 2TTs, which runs in exponential time. This algorithm
is indeed worst-case optimal. Not withstanding that, this algorithm allows us to
identify subclasses of transducers where emptiness can be decided in polynomial
time.

We call a tree walking transducer M b-bounded if every accepting run ρ of M
has at most b subruns starting at node ϑ. We call M strictly b-bounded if every
accepting run ρ of M visits each node ϑ in the input tree at most b times, i.e.,
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has at most b subrun occurrences starting at node ϑ. The same definitions are
also employed for alternating tree walking automata.

Note that the definition of b-boundedness does not exclude that the same
node ϑ is traversed arbitrarily often: If so, however, these traversals will be
copies of at most b distinct traversals. Note further that for a given trans-
ducer M , it is decidable whether or not there exists a b such that M is b-
bounded; the same holds for strict b-boundedness. To see this, we add for each
input symbol a new marked symbol of the same rank. We then consider input
trees in which exactly one node is labeled by a marked symbol (this is a regular
input tree language). Finally, we change the transducer M in such a way that it
produces a specific output tree for each subrun that starts at the marked input
node (resp. for each time the marked node is visited), and other than that does
not produce any output. The output of the new transducer, when applied to
input trees with exactly one node marked, is finite if and only if the transducer
is b-bounded for some b (resp. strictly b-bounded for some b). The finiteness is
decidable for a very large class of tree transformations [DE98], which contains
the pebble tree transducers (and hence also the 2TTs) by [EM03b].

Example 11.4. Our current example 2TT Mstaff is b-bounded — but not
strictly b-bounded. Let ρ be an arbitrary run of Mstaff on a tree u. Because the
transducer is deterministic, ρ is uniform. Hence, for every node ϑ in u, there is at
most one (q, ϑ)-subrun for every state q. For a node ϑ with label employee, there
are 4 different states q′ with rules of the form q′(employee, η)→ ζ in Mstaff. For
every other label, there are 3 or 2 different states. Thus, Mstaff is 4-bounded.

Note the difference between subruns and occurrences of subruns. There may
be different occurrences of the same subrun. Consider for example a tree u with
a node ϑ, which represents the boss of n subordinates. Then, the transducer
searches the boss for every subordinate again. Hence, for an accepting run
of Mstaff on u we have n occurrences of (qboss , ϑ)-subruns. Thus, the 2TT Mstaff

is not strictly b-bounded for every b. /

Consider the construction from the last section of a BTA AM which accepts the
same language as an ATWA M . If the alternating tree walking automaton M
is b-bounded, it suffices to consider sets R of ATWA rules of size b. Also, this
means that partial mappings µ need to be taken into account, which are of the
form: B 99K 2B

′
for subsets B and B′ of states of cardinalities at most b. Note

that the number of subsets of size at most b of a set with n elements is bounded
by 1

b! (n+ 1)b. Thus, the number of the partial mappings µ can be bounded by:

(n+ 1)2b 2b
2

b!

if n is the number of states of M . We will not provide an explicit estimation of
the number of transitions of the BTA since it crucially also depends on other
parameters such as the number of rules of M that agree in input symbol and
direction (which is typically small). We just note that for b-bounded M , the
size of the BTA AM is polynomial in the size of M . The occurring exponent,
though, is bounded by O(kb2) where k is the maximal rank of an input symbol.
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Summarizing, we find that emptiness for b-bounded 2TTs can be done
in polynomial time. Note, however, that neither b-boundedness or strict b-
boundedness is preserved by our construction to reduce the number of state
calls in right-hand sides. For an efficient method for type checking, we also
require that the bound on the number of visits to every node in the input tree
is preserved under the intersection construction (Section 11.1). In this respect,
we observe:

Lemma 11.6. If M is strictly b-bounded and A is a BTA, then MA is also
strictly b-bounded. If M is just b-bounded, this need not be the case.

We thus obtain a polynomial-time algorithm for the class of strictly b-bounded
2TTs where the number of occurrences of state calls in right-hand sides is also
bounded.

11.4 Conclusion

In this chapter, we presented techniques to type check tree walking transducers
against regular tree languages. Our approach is forward type inference. For
that purpose, for a given 2TT M , we build a second tree walking transducer,
which produces only output trees in the complement of the output type, and
otherwise realizes the same transformation as the original transducer M . For
a BTA A describing the complement of the output type, the size of the new
2TT MA is in O(|M | · |A|d+1) where d is the maximal number of occurrences
of states in right-hand sides in M ; for binary trees and with Lemma 9.1, it is in
O(|M | · |A|3).

For this intersection 2TT MA, we build an alternating tree walking au-
tomaton M ′, which imitates the behavior of MA, but does not produce any
output. This construction can be done in linear time. Then, in order to de-
cide emptiness of the ATWA M ′ and, accordingly, of the transducer MA, we
construct a nondeterministic bottom-up finite state tree automaton AM ′ . In
general, this construction is exponential in the size of M ′. Hence, emptiness of
a 2TT can be decided in exponential time — a result, which has already been
known for a long time, see the notes at the end of Section 11.5. The general
approach, however, allowed us to identify more efficient subclasses that have
been discussed in Section 11.3. If M ′ is b-bounded, emptiness can be decided
in polynomial time where the exponent of the polynomial only depends on b2

if the transducer is two-way, i.e., uses up-operations. A closer inspection of the
construction of a bottom-up tree automaton from an ATWA, though, reveals
that the exponent can be reduced to b if the transducer is stay top-down, i.e.,
uses no up-operations (but possibly stay-operations). The construction for the
intersection, on the other hand, is polynomial in the sizes both of the 2TT and
the BTA — but may be exponential in the number of occurrences of state calls
in right-hand sides. Also, if we start with a b-bounded 2TT M , the construction
may not preserve b-boundedness. Instead, the bound on the number of visits
to an input node may be increased as much as by a factor of the number of
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states of the BTA. If the tree walking transducer M is strictly b-bounded, this
property will be retained and also the alternating tree walking automaton M ′

is strictly b-bounded.
As a last step of verifying whether a tree walking transducer M type checks

w.r.t. input and output types L(AI) and L(A) (for a BTA AI), we construct a
further bottom-up tree automaton C with L(C) = L(AM ′) ∩ L(AI) using the
obvious product construction (see, e.g., Section 1.3 in [CDG+07]) such that

|C| ∈ O(|AM ′ | · |AI |) .

According to Theorem 10.2, we can test whether L(C) = ∅ (which means that
tree walking transducer M type checks w.r.t. L(AI) and L(A)) in time linear
in |C|.

Theorem 11.7. Deciding whether a strictly b-bounded 2TT M type checks
w.r.t. regular tree languages I and O, given by BTAs AI and AO, is poly-
nomial in the size of M , AI , and AO, but exponential in b2 · (d+ 1) where d is
the maximal number of occurrences of state calls in right-hand sides. If M has
no up-operations, the exponent can be improved to b · (d+ 1).

11.5 Notes and References

Our definition of ATWAs is equivalent to the alternating two-way finite tree
automata of [Slu85]. Note that alternating tree automata have recently been
used in the context of a practical implementation of type checking for tree
transducers [FH07].

The intersection of a 2TT with a given output type (Theorem 11.1) can be
seen as a sequential composition of the 2TT with a translation in FTA; the latter
is the class of partial identity mappings for regular tree languages. With this in
mind, we can, for instance, obtain that top-down tree transducers allow a similar
result as the one in Theorem 11.1: By Corollary 2(1) of [Bak79], top-down tree
transducers are closed under composition with linear and nondeleting top-down
tree transducers; since FTA is included in the latter class, we obtain the desired
result for top-down tree transducers. It is an interesting open problem whether
a similar composition result holds for 2TTs, i.e., whether 2TTs are closed under
composition with linear and nondeleting 2TTs.

The notion of b-boundedness is similar to the notion of finite-copying in tree
transducers, see, e.g., [ERS80, EM99]. Similar to the results of [EM03c], it prob-
ably holds that b-bounded transformations are of linear size increase. A more
static version of b-boundedness is the single-use restriction known for attribute
grammars [Gie88]. According to [EM99], it can probably be shown that total,
deterministic, strictly b-bounded 2TTs are equivalent to single-use restricted at-
tribute grammars. In Section 5 of [MPS07], a similar result as Theorem 11.7 has
been shown for stay-macro tree transducers (cf. also discussion in Section 12.4)

Engelfriet et al. show in [EHS07] (Theorem 5) that for every 2TT M (TT
in [EHS07]), a regular tree grammar G can be constructed in exponential time



168 11. Type Checking of Tree Walking Transducers

such that G generates the domain of τM . They refer to the relationship be-
tween 2TTs and attributed tree transducers explained in [EM03b] and a result
of [Bar82] — giving the Theorem 11.5 above. The result of Theorem 11.5 has
also been stated in Theorem A.2 of [CGKV88] with a proof sketch that uses a
game theoretic interpretation of acceptance due to Muller and Schupp [MS87].
The result also appears as Theorem 1 in [Eng09], where a finite state automa-
ton for the domain of a tree-walking tree transducer (twtt) is constructed in
exponential time; Theorem 2 of that paper states that inverse type inference is
in k-fold exponential time, for k-fold compositions of twtts.



Chapter 12

Macro Tree Walking
Transducers

In our current example, we have considered the 2TT Mstaff which lists the staff
members of a department. Although in general, several employees may have the
same boss, the transducer spawns for every employee a separate computation to
determine the corresponding boss. Conceptually as well as technically, it would
be more convenient to determine the boss first, store it in some accumulating
parameter and then propagate it to each of his employees. For this reason, we
enhance tree transducers with accumulating parameters. A tree transducer with
accumulating parameters is also called macro tree transducer.

Example 12.1. We omit the state qboss and store the data of the boss in the
first parameter yb. The transformation of the next employee, which is not a
subordinate of the current, is then stored in the second parameter (yn). By this
construction, we completely omit the states qsub , qnext , and qup . The transducer
consists of the following rules, for all η ∈ {1, 2}:

1 qI (department, 0) → staff(q(down1, e, e), e)

2 q(employee, η, yb, yn) → employee(data(qdata(down1), yb),

3 q(down1, boss(qdata(down1), e),

4 q(down2, yb, yn)))

5 q(e, η, yb, yn) → yn

6 q(data, 1, yb, yn) → q(down2, yb, yn)

7 q(subordinates, 2, yb, yn) → q(down1, yb, yn)

8 qdata(data, 1) → copy(down1)

Here state copy is meant to copy the content of data (i.e., the left child in the
binary representation). /

For the formal definition of macro tree walking transducer, we assume that every

169
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state q ∈ Q has a fixed rank, i.e., Q =
⊎
n∈NQ

(n) where Q(n) is the set of all
states with rank n.

Definition 12.1 (2MTT). A macro tree walking transducer M (2MTT for
short) is a tuple (Q,Σ, R,Q0) where Q is a set of ranked states, Σ is a ranked
alphabet, Q0 ⊆ Q(1) is a set of initial states, and R is a finite set of rules of
the form q(a, η, y1, . . . yn) → ζ, where q ∈ Q(n+1), a ∈ Σ(m), n,m ≥ 0, η ≥ 0
is a direction and y1, . . . , yn are the accumulating parameters of q. Possible
right-hand sides are described by the grammar

ζ ::= b(

m′ times︷ ︸︸ ︷
ζ, . . . , ζ) | yj | q′(op,

n′ times︷ ︸︸ ︷
ζ, . . . , ζ),

with m′, n′ ≥ 0, symbol b ∈ Σ(m′), j ∈ [n], state q′ ∈ Q(n′+1), and operation
op ∈ {stay , up} ∪ {downi | i ∈ [m]}.

In practice, states q may differ in their rank, i.e., the numbers of their accu-
mulating parameters. Let X = {x1, x2, . . .} denote a countable set of variables
of rank (not necessarily 0), and assume that Σ, X and Y are disjoint. For a
right-hand side ζ, we write also

ζ = z[q1(op1), . . . , qc(opc)]

to refer to all occurrences of (maybe nested) state calls in the right-hand side.
Here, z ∈ TΣ∪X(Y ) is a tree, which contains each variable x1, . . . , xc exactly
once with ζ = z[q1(op1)/x1, . . . , qc(opc)/xc] where z[qi(op)/xi] denotes the sub-
stitution of the state call qi(op, z1, . . . , zn) for the subtree xi(z1, . . . , zn) in z
where n is the rank of xi and n+ 1 is the rank of qi. Note that in z no state call
occurs anymore. The right-hand side of the rule in Lines 2-4 in the Example 12.1
can, for example, be written as

z[qdata(down1), q(down1), qdata(down1), q(down2)]

where z = employee(data(x1, yb), x2(boss(x3, e), x4(yb, yn))).
Intuitively, the meaning of the expressions of a right-hand side is as follows:

The produced output is defined analogously to the output of a 2TT up to the
accumulating parameters. Here, we consider call-by-value parameter passing
only. Thus, the expression ζj in parameter position j is evaluated first; then the
result (which is a tree without state calls) may be copied to the various uses of
the formal parameter yj . This evaluation strategy is also called inside-out (IO
for short). Note that we slightly abuse Definition 12.1 and use accumulating
parameters with names other than y1, y2, . . . (e.g., in Example 12.1 where we
use yb and yn). Clearly, this is without loss of generality, as parameters can
easily be renamed according to the definition.

Example 12.2. The rules in the beginning of this chapter with the initial
state qI form a 2MTT My,staff. To transform the tree uB

′ (the binary represen-
tation of our common example tree, see the left tree in Figure 9.1), the macro
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(a) The first step: An-
alyzing qI (ε)

(b) and the second step: Analyzing q(1, e, e).

Figure 12.1: Applying the 2MTT My,staff to uB .

tree walking transducer starts at the root and applies the initial state. Thus, for
the first step, we get staff(q(down1, e, e), e) where down1 refers to the node 1.
Applying the state q to this employee-node, we get several state calls. These
state calls are partially nested (Figure 12.1). In the left figure is the first output
with one state call. The right figure shows the tree after processing q(1, e, e).
There, we get the state call

q(down1, boss(qdata(down1), e), q(down2, yb, yn))

with nested calls. The first parameter accumulates a tree with root boss,
whereas the second parameter is a further state call. /

The order in which nested state calls are evaluated indeed matters. Consider,
e.g., a transducer with the rules

qI (a, 0)→ p(stay , q′(stay))

p(a, 0, y)→ a

q′(b, 0)→ b .

If we evaluate the outermost calls first, the tree u = a(u1, . . . , uk) will be trans-
formed into a. In this case, the accumulating parameter of p need not to be
evaluated. If we start with the innermost calls, there is no rule to evaluate the
state call q′(stay) in the right-hand side of the first rule. Thus, the output is
empty.

We specify the translation induced by a 2MTT using a denotational formu-
lation. Later, we will also consider an operational semantics based on runs.
In the denotational semantics, the meaning [[q]]u of state q of transducer M
with n accumulating parameters (with respect to an input tree u) is defined
as a mapping from nodes in the input tree to sets of trees with parameters in
Yn = {y1, . . . , yn}, i.e.,

[[q]]u : Nodes(u)→ 2TΣ(Y ) .
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When we evaluate an innermost call q(ϑ, v1, . . . , vn) on a node ϑ during a com-
putation, it suffices to substitute actual parameters vj for the formal parameters
yj of all terms from [[q]]u(ϑ) to obtain the set of produced outputs. The values
[[q]]u for all q are jointly defined as the least mappings satisfying:

[[q]]u(ϑ) ⊇ [[ζ]]u for rule q(a, η, ȳ)→ ζ

where ȳ denotes the sequence y1, . . . , yn of parameters and ϑ is a node of u with
lab(ϑ) = a, η(ϑ) = η, and [[ζ]]u is defined by:

[[yj ]]u = {yj}
[[b(ζ1, . . . , ζm)]]u = {b(v1, . . . , vm) | vi ∈ [[ζi]]u}

[[q′(op, ζ1, . . . , ζn′)]]u = {z[v1/y1, . . . , vn′/yn′ ] | z ∈ [[q′]]u([[op]]u(ϑ)), vi ∈ [[ζi]]u}

Again, op stands for downi, stay or up. Recall that the meaning [[op]] is defined
by

[[stay ]]u(ϑ) = ϑ, [[downi]]u(ϑ) = ϑi, and [[up]]u(ϑi) = ϑ .

Also, z[v1/y1, . . . , vn/yn] denotes the simultaneous substitution of the trees vj
for all occurrences of the variables yj in the tree z. Note that the call-by-value
semantics is reflected in the last equation: The same trees vj are used for all
occurrences of a variable yj in the tree z corresponding to a potential evaluation
of the state q′. The transformation τM , realized by the 2MTT M on an input
tree u and sets U of input trees, respectively, is, thus, defined by

τM (u) =
⋃
{[[q0]]u(ε) | q0 ∈ Q0} and τM (U) =

⋃
{τM (u) | u ∈ U} .

For the operational semantics, runs of a 2MTT M on a tree u may be similarly
defined as for a 2TT. It is a ranked tree over the set of rules. Here, the rank of
a rule q(a, η, y1, . . . , yn)→ ζ is given by the number of occurrences of recursive
calls q′(op) in ζ to states q′ in Q. These calls may be nested. Figure 12.2 shows
an accepting run ρ of the (deterministic) example 2MTT My,staff on the tree
ue = department(employee(data(. . . , e), e), e), which describes a department
with one employee.

The denotational view on the semantics of a 2MTT allows us to use fixpoint
arguments for proving the correctness of constructions, whereas the operational
view is better suited for more combinatorial arguments. In particular, we can
show that the number of occurrences of states in right-hand sides can be re-
stricted to the maximum of the ranks of output symbols and states. We have:

Lemma 12.1. For every 2MTT M , there exists a 2MTT M ′ with

1. τM ′ = τM

2. the number of states occurring in each right-hand side is bounded by k

3. |M ′| ∈ O(|M | · k2)

where k is the maximum of the ranks of output symbols and states of M .
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Figure 12.2: A run of the 2MTT My,staff on the tree ue.

Proof. The construction proceeds in two phases. In the first phase, we re-
place every complicated call q′(op, ζ1, . . . , ζn) in the right-hand side of a rule
q(a, η, y1, . . . , yn′)→ ζ by the simple call

〈q, op, ζ1, . . . , ζn〉(stay , y1, . . . , yn′)

for a new state 〈q, op, ζ1, . . . , ζn〉. Let [ζ] denote the resulting tree. For the new
state 〈q, op, ζ1, . . . , ζn〉, we introduce the rule

〈q, op, ζ1, . . . , ζn〉(a, η, y1, . . . , yn′)

→ q(op, 〈ζ1, n′〉(stay , y1, . . . , yn′), . . . , 〈ζn, n′〉(stay , y1, . . . , yn′))

for again fresh states 〈ζj , n′〉, which are meant to produce the output of ζj
using n′ parameters. For these states, we introduce the rules:

〈ζj , n′〉(a, η, y1, . . . , yn′)→ [ζj ] .

As a result of this first transformation phase, we achieve that all right-hand
sides either are of the form q(op, q1(stay , y1, . . . , yn′), . . . , qn(stay , y1, . . . , yn′))
or contain only non-nested calls, i.e., calls of the form q(op, y1, . . . , yn′). In
order to restrict the number of calls in right-hand sides of the second type,
we essentially proceed as in the proof of Lemma 9.1, i.e., we introduce extra
auxiliary states for every proper subtree of right-hand sides of the second kind,
which contain more than one call.

The resulting transducer has at most one fresh state for every node of a
right-hand side while the total sum of sizes of right-hand sides, may increase by
a factor of k2 in order to spell out all the auxiliary lists of parameters for the
new states.
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12.1 Type Checking 2MTTs

As for 2TTs, we now consider type checking for macro tree walking transducer.
For a 2MTT M and a regular language L, we again construct a transducer M ′

with τM ′(t) = τM (t) ∩ L. As in Section 11.1, the language L consists of all
erroneous outputs. In our application scenario of type checking, the language L
is the complement of the output type which is either specified by a complete
DBTA or by a DTTA. Beyond the case of 2TTs, we now additionally have to
deal with accumulating parameters. The macro tree walking transducer M ′ has
to keep track of the states of an automaton for L on the current values of the
respective parameters. We start with a general construction for deterministic
bottom-up automata.

Theorem 12.2. For every 2MTT M and every DBTA A, a 2MTT MA can be
constructed with

τMA
(u) = τM (u) ∩ L(A)

for all u ∈ TΣ. The 2MTT MA is of size O(|M | · |A|l·(d+1)) where l is the
maximal rank of a state in M and d is the maximal number of occurrences of
states in right-hand sides of M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, F ). For each state q in Q(n+1)

and all states p0, . . . , pn ∈ P , the 2MTT MA has a state 〈q, p0p1 . . . pn〉, which
is meant to generate all trees z (possibly with variables from {y1, . . . , yn}) that
could be produced by M , and for which, additionally, there is a run of A starting
at the leaves yj with state pj , and reaching the root of z in state p0. The rules
of MA are:

〈q, p0p1 . . . pn〉(a, η, y1, . . . , yn)→ ζ ′

for every rule q(a, η, y1, . . . , yn)→ ζ of M and ζ ′ ∈ τp0,p1,...,pn [ζ] where the sets
τp0,p1,...,pn [.] are inductively defined by:

τpj ,p1,...,pn [yj ] = {yj}
τp0,p1,...,pn [b(ζ1, . . . , ζm)] = {b(ζ ′1, . . . , ζ

′
m) | ∃p′1, . . . , p′m ∈ P :

(p0, b, p
′
1 . . . p

′
m) ∈ δ ∧ ∀j : ζ ′j ∈ τp

′
jp1...pn [ζj ]}

τp0,p1,...,pn [q′(op, ζ1, . . . , ζn′)] = {〈q′, p0p
′
1 . . . p

′
n′〉(op, ζ ′1, . . . , ζ

′
n′) |

∃ζ ′1, . . . , ζ ′n′ ∈ Z : ∀j : ζ ′j ∈ τp
′
jp1...pn [ζj ]}

where Z denotes the set of all subterms of possible right-hand sides of rules
of MA. The set of initial states of MA is given by Q′0 = Q0 × F . By fixpoint
induction, we verify for every state q of rank n + 1, every input tree u ∈ TΣ,
every node ϑ ∈ Nodes(u) and states p0, . . . , pn of A that

[[〈q, p0, . . . , pn〉]]u(ϑ) = [[q]]u(ϑ) ∩ {z ∈ TΣ(Y ) | δ∗(z, p1 . . . pn) = p0} (12.1)
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where Y = {y1, . . . , yn} and δ∗ is the extension of the transition function of A
to trees containing variables from Y , namely, for p̄ = p1 . . . pn:

δ∗(yj , p̄) = pj

δ∗(a(t1, . . . , tm), p̄) = δ(a, δ∗(t1, p̄) . . . δ
∗(tm, p̄))

The correctness of the construction follows from Equation 12.1.

For each state in M , we have at most |A|l new states in MA where l is
the maximal rank of states in M . Assume that d is the maximal number of
occurrences of states in right-hand sides of rules of M . Then each rule of M
gives rise to at most |A|l·(d+1) new rules in MA. Therefore, the new 2MTT is
of size O(|M | · |A|l·(d+1)).

Lemma 10.1 provides a BTA describing the complement of a DTTA — which,
however, is not necessarily deterministic. Theorem 12.2, on the other hand,
only holds for deterministic BTAs. A similar construction is also possible if the
BTA A is nondeterministic — but then only for transducers, which are output-
linear. Here, we call a 2MTT output-linear if every accumulating parameter
occurs at most once in a right-hand side. Nonetheless, we are able to handle
complements of output types described by DTTAs directly. For that, however,
we introduce a dedicated construction of a 2MTT MA.

Theorem 12.3. For every 2MTT M and every DTTA A, a 2MTT MĀ can be
constructed with

τMĀ
(u) = τM (u) ∩ L(A)

for all u ∈ TΣ. The 2MTT MĀ is of size O(|M | · (h · |A|)d+2) where h + 1 is
the maximum of the maximal rank of a state in M and the maximal rank of
an output symbol, and d is the maximal number of occurrences of state calls in
right-hand sides of M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, p0). Our goal is to construct a
2MTT MĀ, which simulates the behavior of M , while at the same time guessing
a path in the output tree, which proves non-containment in the set L(A). For
that, the set Q′ is defined as:

Q′ = Q ∪ {〈q, p〉 | q ∈ Q, p ∈ P}
∪ {〈q, p, j, p′〉 | q ∈ Q(n), p, p′ ∈ P, j ∈ [n]}

Here, a state q ∈ Q of MĀ behaves like the state q of M . States 〈q, p〉 or
〈q, p, j, p′〉 behave like q in M but, additionally, make sure that there is a path
in the generated output starting from a state p of A at the root, which verifies
that there is no p-run of A on the output. Thereby, a state 〈q, p〉 will directly
generate the end point of such a path whereas state 〈q, p, j, p′〉 will only generate
a path with p at the root reaching a parameter yj with state p′. Accordingly,
the 2MTT MĀ has the following rules:
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q(a, η, y1, . . . , yn)→ ζ

〈q, p〉(a, η, y1, . . . , yn)→ ζ ′ with ζ ′ ∈ [ζ]p

〈q, p, j, p′〉(a, η, y1, . . . , yn)→ ζ ′ with ζ ′ ∈ [ζ]p,j,p
′

for every rule q(a, η, y1, . . . , yn)→ ζ of M . The sets [.]
x

are inductively defined
in Figure 12.3.

First, we verify that for every tree z ∈ TΣ(Y ), the sets [z]p and [z]p,j
′,p′

either are empty or equal {z} where following holds:

1. [z]p = {z} iff z contains a node ϑ = i1 . . . ir such that there are transitions

(p
(j)
0 , aj , p

(j)
1 . . . p

(j)
mj ) ∈ δ for every j ∈ [r − 1], such that

(a) the label of the node i1 . . . ij equals aj ;

(b) p
(1)
0 = p and for every j ∈ [r − 2], p

(j+1)
0 = p

(j)
ij

;

(c) there is no p
(r−1)
ir

-transition of A for ar = lab(ϑ).

2. z ∈ [z]p,j
′,p′ iff z contains a node ϑ = i1 . . . ir+1, which is labeled with yj′

and there are transitions (p
(j)
0 , aj , p

(j)
1 . . . p

(j)
mj ) ∈ δ for every j ∈ [r], such

that:

(a) For every j = 1, . . . , r, the label of the node i1 . . . ij equals aj ;

(b) p
(1)
0 = p and p

(r)
ir+1

= p′ and for every j ∈ [r − 1], p
(j+1)
0 = p

(j)
ij

.

Note in particular that by this definition, z 6∈ L(A) iff [z]p0 = {z} for the initial
state p0 of A. Let us extend the operators [ . ]p and [ . ]p,j

′,p′ by:

[Z]p =
⋃
{[z]p | z ∈ Z} [Z]p,j

′,p′ =
⋃
{[z]p,j

′,p′ | z ∈ Z}

for Z ⊆ TΣ(Y ) with Y = {y1, . . . , yn}. By fixpoint induction, we verify for every
state q of rank n+ 1, every j ∈ [n], every input tree u ∈ TΣ and states p, p′ ∈ P
that:

[[〈q, p, j, p′〉]](u) = [ [[q]](u) ]p,j,p
′

[[〈q, p〉]](u) = [ [[q]](u) ]p

For each state p and right-hand side ζ of a rule, we assign states of the determin-
istic top-down tree automaton to the nodes of the tree. Either we immediately
hit a node certifying the non-existence of a p-run of the DTTA on the output
generated from ζ, or we hit an occurrence of a state call q(op, . . .). If n ≥ 1
is the rank of q, we have n choices here: Either we expect a certificate for the
failure of the DTTA A inside the evaluation of q or in one of the parameters
of q. Overall, we find that every rule of M , thus, gives rise to (h · |A|)d+2 rules.
Thus, we have |MĀ| ∈ O(|M | · (h · |A|)d+2).

Assume that we have a binary ranked alphabet and that at least one state has
an accumulating parameter, i.e., the maximal rank l of states is at least 2. By
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Lemma 12.1 it is then possible to restrict the number of occurrences of state
calls in right-hand sides of the 2MTT to l. This implies that the size of the
intersection 2MTT MA in Theorem 12.2 for a DBTA describing the output
language is in O(|M | · |A|l·(l+1)). Furthermore, the size of the 2MTT MĀ in
Theorem 12.3 for a deterministic top-down tree automaton describing the output
language is in O(|M | · (l · |A|)l+2).

12.2 Deciding Emptiness of 2MTTs

To decide emptiness of a 2MTT M , we follow the approach taken for 2TTs: We
construct an alternating tree walking automaton AM , which is then tested for
emptiness. The ATWA AM has the same set of states as M (but they are not
ranked anymore now) where the initial states of M and AM coincide. For every
rule q(a, η, y1, . . . , yn) → ζ of the 2MTT M , the ATWA AM has a rule of the
form

q(a, η)→ q1(op1) ∧ . . . ∧ qc(opc)

if q1(op1, . . .), . . . , qc(opc, . . .) is the sequence of calls to states of M (possibly
nested inside each other), in any order. Since we use 2MTTs with call-by-
value semantics, M has an accepting run on some input tree u iff AM has
an accepting run on u. Note that this construction is wrong for call-by-need
semantics because M could have an accepting run on a tree u /∈ L(AM ); for
instance, the 2MTT with the rules qI (a, 0)→ q(stay , q′(stay)) and q(a, 0, y)→ a

on the tree a.

Theorem 12.4. For every 2MTT M , an ATWA AM can be constructed in
polynomial time such that L(AM ) = dom(M). Thus, it can be decided in de-
terministic exponential time whether the translation of a 2MTT is empty or
not.

12.3 Input-Linear 2MTTs

The notions of b-boundedness and strict b-boundedness, which we have defined
for 2TTs stay meaningful also in presence of accumulating parameters, i.e.,
for 2MTTs. Analogously, we find that emptiness for b-bounded macro tree walk-
ing transducers is decidable in polynomial time — independent on the number
of accumulating parameters of states.

In order to identify classes of 2MTTs where full type checking is tractable, we
therefore take a closer look at the construction for the intersection of 2MTTs
with (complements of) output types. For simplicity, we first consider macro
tree walking transducers, which are strictly 1-bounded. This notion is only
meaningful for top-down MTTs, i.e., 2MTTs without operations up or stay . A
top-down transducer M is guaranteed to visit each node of the input tree at
most once if for the same i, the operation downi does not occur twice in the
same right-hand side of M . This property can easily be checked syntactically.
Tree transducers satisfying this restriction are called input-linear.
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Note that input-linearity for a tree transducer implies that the number of
state calls in right-hand sides is bounded by the maximal rank of input symbols.
Moreover, the output language can be described by rules that are obtained by
simply deleting all directives from the transducer’s rules. The resulting rules
no longer specify a transformation but constitute a context-free tree grammar
(short: CFTG) for generating output trees.

Example 12.3. As an example of an input-linear MTT consider the following
macro tree transducer, which produces the same output as the common exam-
ple 2MTT My,staff without the boss-subtrees. The transducer only needs one
parameter (for the next employee) and has a new state qempl . For η ∈ {1, 2}, it
has the rules:

1 qI (department, 0) → staff(q(down1, e), e)

2 q(employee, η, yn) → qempl(down1, q(down2, yn))

3 qempl(data, 1, yn) → employee(data(qdata(down1), e), q(down2, yn))

4 q(subordinates, 2, yn) → q(down1, yn)

5 q(e, η, yn) → yn

6 qdata(data, 1) → copy(down1).

The grammar characterizing its output language looks as follows:

1 qI → staff(q(e), e)

2 q(yn) → qempl(q(yn)) | q(yn) | yn
3 qempl(yn)→ employee(data(qdata , e), q(yn))

4 qdata → copy

where qI , q, qempl , qdata , and copy are nonterminals. Selection of rules depending
on input symbols and directions now has been replaced with nondeterministic
choice. /

Context-free tree grammars generalize context-free grammars to trees. Formally,
a CFTG G can be represented by a tuple (E,Σ, P, E0) where

- E is a finite ranked set of function symbols or nonterminals,

- E0 ⊆ E is a set of initial symbols of rank 0,

- Σ is the ranked alphabet of terminal nodes, and

- P is a set of rules of the form q(y1, . . . , yn)→ ζ where q ∈ E is a nontermi-
nal of rank n ≥ 0. The right-hand side ζ is a tree built up from variables
y1, . . . , yn by means of application of nonterminal and terminal symbols.

As for 2MTTs, inside-out (IO) and outside-in evaluation order for nonterminal
symbols must be distinguished. Here, we use the IO or call-by-value evaluation
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order. The least fixpoint semantics for the CFTG G is obtained straightfor-
wardly along the lines for 2MTTs — simply by removing the corresponding
directive components, i.e., by removing in the last line of the definition of [[ζ]]
for 2MTTs (Page 171) the op and [[op]]t(v). In particular, this semantics assigns
to every nonterminal q of rank n ≥ 0, a set [[q]] ⊆ TΣ(Y ) for Y = {y1, . . . , yn}.
The language generated by G is L(G) =

⋃
{[[q0]] | q0 ∈ E0}.

It is easy to see that the output language of an input-linear MTT M can
be characterized by a CFTG GM , which can be constructed from M in linear
time. During this construction, every rule q(a, η, y1, . . . , yn) → ζ is rewritten
as a production q(y1, . . . , yn) → ζ ′ where ζ ′ is obtained from ζ by deleting all
occurrences of navigation operators.

The characterization of output languages for input-linear MTTs by CFTGs is
useful because emptiness for (IO-)CFTGs is decidable using a similar algorithm
as the one for ordinary context-free (word) grammars, and hence, can be done
in linear time.

Theorem 12.5. It can be decided in linear time for a CFTG G whether or not
L(G) = ∅.

Here, we are interested in testing whether a given input-linear MTT M type
checks w.r.t. input and output types I and O. Assume that I is given by a
(possibly non-deterministic) BTA B with only productive states, i.e., for every
state p of B, there exists a p-run of B on a tree. As a first step, we construct
a new input-linear MTT MB such that MB ’s range, i.e., the set τMB

(TΣ), is
equal to τM (I). This is done by a straightforward product construction of the
BTA B and the input-linear MTT M . Note that it may happen that M does
not visit a certain subtree u of the input tree. In such a case, the checking
of u w.r.t. B cannot be done by the new transducer MB . This does not affect
the corresponding output language though. We now construct the intersection
2MTT for MB and the complement of the output type O. In case, O is given
by a DBTA, this can be done along the lines of the proof of Theorem 12.2. If O
is given by a DTTA, we rely on the construction from Theorem 12.3. Since M
is input-linear, the intersection 2MTT is again input-linear — meaning that its
range can be described by a CFTG (thus generating all “illegal outputs” of M
w.r.t. I and O). Therefore, Theorem 12.5 gives us:

Theorem 12.6. Assume M is an input-linear MTT where the ranks of input
symbols are bounded, and let I and O denote input and output types for M
where I is given by a BTA.

1. Assume that the output type O is specified with a DBTA and the maximal
rank of states of M is bounded. Then M can be type checked relative to I
and O in polynomial time.

2. Assume that the output type O is specified with a DTTA. Then M can be
type checked relative to I and O in polynomial time — even in presence
of unbounded ranks of states.
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The worst-case complexity bounds for the construction of Theorem 12.6 are
exponential in l · (k + 1) (for output types given through DBTAs) or k + 2
(for output types given through DTTAs) where l is the maximal rank of states
and k is the maximal rank of an input symbol of M . In practical applications,
both k and l may be moderately small. Still, we want to point out that in case of
input-linear MTTs, the intersection construction can be organized in such a way
that only “useful” states are constructed. In order to see this, consider again
an input-linear MTT M and a DBTA A (representing the incorrect output
trees). The idea is to introduce for every q of M of rank n + 1, a Datalog
predicate q/n+ 1. Every rule q(a, η, y1, . . . , yn)→ ζ of M then gives rise to the
Datalog implication:

q(Y0, . . . , Yn) ⇐ D[ζ]Y0

where D[ζ]X (X is a variable) is defined by

D[yj ]X = X = Yj
D[b(ζ1, . . . , ζm)]X = δ(X, b, X1 . . . Xm) ∧ D[ζ1]X1 ∧ . . . ∧ D[ζm]Xm
D[q′(ζ1, . . . , ζm)]X = q′(X,X1, . . . , Xm) ∧ D[ζ1]X1 ∧ . . . ∧ D[ζm]Xm

and the variables X1, . . . , Xm in the last two rows are fresh. For subsets
X,X1, . . . , Xm′ of the set of states of A, δ(X, a, X1 . . . Xm′) denotes the fact
that (x, a, x1 . . . xm′) ∈ δA for all x ∈ X and xj ∈ Xj , j = 1, . . . ,m′. A bottom-
up evaluation of the resulting Datalog program computes for every q/(n + 1),
the set of all tuples (p0, . . . , pn) such that the translation of 〈q, p0 . . . pn〉 is
non-empty. If we, additionally, want to restrict these predicates only to tuples,
which may contribute to a terminal derivation of initial nonterminals 〈q0, pf 〉, we
may top-down query the program with queries ⇐ q0(pf ). Practically, top-down
solving organizes the construction such that only useful nonterminals of the in-
tersection grammar are considered. Using this approach, the number of newly
constructed nonterminals often will be much smaller than the bounds stated
in the theorem. A similar construction is also possible for the intersection of
MTTs with the complements of DTTA languages.

The algorithm for input-linear MTTs can also be applied to non-input-linear
2MTTs. Then, the constructed Datalog program does no longer precisely char-
acterize the non-empty functions of the intersection 2MTT because dependen-
cies on input subtrees (viz. several transformations of the same input node)
have been lost. Accordingly, a superset is returned. By means of CFTGs, we
can express this observation as follows:

Theorem 12.7. Let GM be the CFTG constructed for a 2MTT M . Then

τM (TΣ) ⊆ L(GM ) .

Since the CFTG still provides a safe superset of produced outputs, type checking
based on context-free tree grammars is sound in the sense that if it does not
flag an error, the transformation also will not go wrong. On the other hand, a
flagged error may be possibly spurious, i.e., due to the over-approximation of
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the output language through the CFTG. Consider a top-down transducer M
with the rules

q0(a, 0)→ c(p(down1), p(down1))

p(a, η)→ a(p(down1))

p(b, η)→ b(p(down1))

p(e, η)→ e

where p realizes the identity. In this case, the corresponding approximating
CFTG GM is rather coarse: It generates c(u, v) with u, v ∈ {a, b}∗e (seen as
monadic trees). Exact tree copying, however, can be realized through the use
of parameters: The transducer with the rules

q0(a, 0)→ q(down1, p(down1))

q(σ, η, y1)→ c(y1, y1) for all σ ∈ Σ

and the same p-rules as M will realize the same translation as M . The context-
free tree grammar for the resulting transducer now does not provide an over-
approximation but precisely captures the output language of the top-down
transducer M .

When approximating the output languages of general 2MTTs with CFTGs,
we no longer can assume that the maximal number d of occurrences of nonter-
minals in a right-hand side of this grammar is bounded by a small constant.
If d turns out to be unacceptably large, we still can apply Lemma 12.1 to limit
the maximal number of occurrences of nonterminals in each right-hand side of
the transducer to a number k which is the maximal rank of output symbols and
states. This construction, however, introduces stay-moves and thus destroys
input-linearity.

Example 12.4. For our example 2MTT My,staff, we construct for each rule
of the transducer a production of the context-free tree grammar GMy,staff

and
obtain:

qI → staff(q(e, e), e)

q(yb, yn) → employee(data(qdata , yb), q(boss(qdata , e), q(yb, yn)))

| yn
| q(yb, yn)

qdata → copy
/

12.4 Notes and References

Macro tree transducers [EV85] are a combination of top-down tree transducers
and macro grammars [Fis68]. Macro grammars are just like context-free tree
grammars (CFTGs), but produce strings (a CFTG can be seen as a special
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macro grammar because terms are particular strings). In [Fis68], Fischer already
distinguishes IO and OI for macro grammars, and proves that the corresponding
classes of languages are incomparable (which also holds in the tree case). Our
normal form of Lemma 12.1 can be seen as a variant of Fischer’s IO standard
form, which in fact is very similar to Chomsky normal form of context-free
grammars: there are exactly 2 or 0 nonterminals in every right-hand side of
a grammar in IO standard form. A similar normal form might be possible
for macro tree walking transducers, too, but will cause a larger size increase
of the transducer (note that Fischer does not report on grammar sizes in his
constructions). Fischer remarks, just after Corollary 3.1.6, that emptiness of
IO macro languages can be reduced to emptiness of context-free languages, by
simply dropping all parentheses, commas, argument, and terminal symbols. The
resulting context-free (word) grammar generates the empty word if and only if
the original language is empty. Since emptiness for a context-free grammar
can be decided in linear time (see, e.g., [HMU01]), we obtain a linear time
procedure for checking emptiness of IO context-free tree languages, as stated
in Theorem 12.5. Context-free tree grammars were considered in [Rou70] and
extensively studied in [ES77, ES78].

The fact that output languages of input-linear macro tree transducers are IO
context-free tree languages is mentioned in Corollary 5.7 of [EV85] (the class
of input-linear MTTs is called LMTIO there). A 2MTT without up-moves is
called “stay-MTT”. Results similar as the ones obtained in this chapter for
2MTTs (Chapter 12) have been obtained already in [MPS07] for the restricted
case of stay-MTTs. For instance, Proposition 3 of that paper is similar to our
Theorem 12.1, Theorem 2 of [MPS07] corresponds to our Theorem 12.2, and
Theorem 5 of that paper corresponds to our Theorem 12.6. In Lemma 34 of
[EM03b] it is shown that every transformation definable by a 2TT (0-ptt in
that paper) can be realized by a stay-MTT (sMTT). Note however, that this
construction leads to a blow-up of parameters, which keep track of all possible
runs on subtrees. Thus, the algorithm of [MPS07] falls short on our efficient
subclasses of 2TTs (Section 11.3), the polynomial complexity bounds would not
hold true for 2TTs using stay-MTTs.

Just before Theorem 12.6, we describe how to incorporate an input type
into an input-linear transducer, so that the corresponding output language is
preserved. The technical details are exactly as in the proof of Theorem 3.2.1
of [ERS80] where this result was proved for top-down tree transducers. 2MTTs
are essentially the same as the k-pebble macro tree transducers (k-PMTT)
of [EM03b] for the case k = 0. For k-PMTTs, a normal form similar to our
Lemma 12.1 was shown in Theorem 16 of [EM03b].
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Chapter 13

Macro Forest Walking
Transducers

Conceptually, XML documents are not trees but forests. Therefore, we ex-
tend the concept of tree walking transducers (without or with parameters) to a
transformation formalism of forests. Forests are introduced in Definition 2.1.

Example 13.1. We consider again a transformation from company structures
(cf. Figure 1.2) to lists of employees under new root nodes labeled staff (cf.
Chapter 9). In contrast to tree walking transducers, forest transducers do not
depend on a ranked alphabet. They can deal with arbitrarily many subtrees
of nodes. Here, we define a transformation, which returns trees of the form
staff〈f〉 where f is a forest composed of employee-trees, i.e., trees of the form
employee(data(. . .), boss(. . .)). The input trees are described by the DTD in
the beginning of Chapter 10. Additionally to the operations up, stay as in tree
walking transducers, forest transducers may use a directive down for proceeding
to the first child as well as directives left and right for proceeding to the left or
right sibling, respectively.

1 qI (department, 0) → staff〈q(down, ε)〉
2 q(employee, η, yb) → employee〈data〈qdata(down)〉 yb〉
3 q(down, boss〈qdata(down)〉)
4 q(right , yb)

5 q(data, 2, yb) → q(right , yb)

6 q(subordinates, 3, yb) → q(down, yb)

7 q(ε, η, yb) → ε

8 qdata(data, 2) → copy(down)

where state copy in Line 8 is meant to copy the forest f of a subtree data〈f〉. The
right-hand side of the second rule is a composition of three forests (Lines 2−4).
The initial state is qI , which means that we start with state qI at the root

185
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of the first tree of a forest. Here, the transducer walks only the first tree of
an input forest. Note also that now rules may be selected depending on the
current label of a node in the forest together with its forest direction. Thus,
the transducer can check whether the current node is the leftmost node on the
top-level (value 0), is on the top-level, but not leftmost (value 1), is leftmost
but not on the top-level (value 2), or is neither leftmost nor on the top-level
(value 3). /

Definition 13.1 (2MFT). A macro forest walking transducer (2MFT for short)
is a tuple M = (Q,Σ, Q0, R) where

- Q is a finite ranked set of states,

- Σ is a finite alphabet with Q ∩ Σ = ∅,

- Q0 ⊆ Q(1) is the set of initial states, and

- R is a finite set of rules of the form:

q(ε, η, y1, . . . , yn)→ ζ or q(a, η, y1, . . . , yn)→ ζ

with a ∈ Σ, direction η ∈ {0, . . . , 3} and q ∈ Q(n+1) where the right-hand
sides are forests ζ of the following form:

ζ ::= ε | yj | q′(op, ζ1, . . . , ζn′) | b〈ζ1〉 | ζ1 ζ2

where q′ ∈ Q(n′+1), b ∈ Σ, op ∈ {up, stay , down, left , right} and j ∈ [n].
Moreover, the right-hand sides for empty input forests ε must not contain
occurrences of the operations down, right or left .

In case of several rules for the same q, the same direction η and the same
symbol a (or ε), we also write ζ1 | . . . | ζk to list all occurring right-hand sides.
In case, no operation up is used, the 2MFT is also called top-down (short:
1MFT or MFT ). Likewise, if all states are of rank 1, i.e., have no accumulating
parameters, the 2MFT is an (ordinary) forest walking transducer (short: 2FT ).
Finally, a 1MFT without parameters is also called forest transducer (short: 1FT
or FT ). As for macro tree walking transducers, in practice, states q may differ in
their ranks, i.e., the numbers of their accumulating parameters plus 1. The set R
of rules in Example 13.1 constitutes the transducer My,staff,f = (Q,Σ, Q0, R)
with Q = {qI , q, qdata , copy} and Q0 = {qI }, which happens to be a 1MFT.

A forest transducer behaves similar to a corresponding tree transducer:
While walking over the input forest, the transducer chooses rules corresponding
to the current states, input symbols and directions at the respective current
nodes in the input, and then evaluates the right-hand sides of the rules. Again,
we just consider the inside-out (IO or call-by-value) strategy for evaluating pa-
rameters. There are two significant differences between forest walking and tree
walking transducers: First, a forest walking transducer produces output forests
and therefore, as an extra operation, also supports concatenation of output
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forests. Second, the forest transducer has a different set of directions as well
as a different set of navigational directives: up now means that the transducer
moves to its ancestor in the input forest, left and right means that the trans-
ducer moves to its left or right sibling, whereas down means that the transducer
moves to its first child. Formally, the semantics of these operations is defined
by:

[[up]](vi) = v

[[left ]](vi) = v(i− 1) if i > 0

[[right ]](vi) = v(i+ 1)

[[down]](v) = v0

Note that only the operations down and right have immediate equivalents in
commands of a transducer on the first-child next-sibling encoding of forests
as binary trees where they correspond to the commands down1 and down2,
respectively. The up-command on the tree, on the other hand, may correspond
to the forest commands left or up — depending on whether the current node is
a right or left child. Analogously to Lemma 12.1, we find:

Lemma 13.1. For every 2MFT M , there exists a 2MFT M ′ with

- τM ′ = τM ,

- there are at most l occurrences of states on a right-hand side of rules
in M ′,

- |M ′| ∈ O(|M | · l2)

where l is the maximum of 2 and the maximal rank of states of M .

Note that it is unfortunately not possible to simulate 2MFTs by 2MTTs, which
work on (possibly enriched) first-child next-sibling encodings of input and out-
put trees. To see this, consider first the 1MFT case. As shown in [PS04], one
can easily construct a 1MFT, which takes as input a binary tree with m nodes,
and outputs a forest consisting of 2m leaves, i.e., a string of length 2m. Consider
the height increase of the corresponding translation on encoded trees: it is dou-
ble-exponential. However, the height-increase of MTTs is at most exponential
(see [EV85]). Now consider the 2MFT case. Clearly, a 2MTT can translate
a binary tree with m nodes into a monadic tree with 2m nodes by doing a
depth-first left-to-right traversal and at each step generating a duplicated state
call in a parameter position. As intermediate sentential form, the transducer
generates q(ε, q(ε, . . . , q(ε, e)) . . . ), which has 2m-many occurrences of q; it then
replaces q(ε, t) by g(t) where g is an output symbol of rank 1. A 2MFT can
generate the same sentential form, but can replace q(ε, t) by tt, i.e., the forest of
concatenating two copies of t. In this way, a forest consisting of 22m -many e’s
is generated. On first-child next-sibling encodings, this corresponds to a tree of
height 22m . Thus, the translation on encodings has double-exponential size-to-
height increase. However, it is not difficult to see that the size-to-height increase
of 2MTTs is at most exponential.
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13.1 Intersecting 2MFTs with Output Types

In this section, we consider general techniques for intersecting forest walking
transducers with output types. Assume that we are given a regular forest lan-
guage L. Our goal is to construct for a given 2MFT M another 2MFT M ′,
which behaves similar to M but produces only outputs in L. If L describes
the set of all invalid outputs, type checking for M , thus, reduces to checking
emptiness of the transformation M ′.

In order to provide a general construction for regular forest languages, let us
first assume that L is given as the language defined by a finite forest monoid A,
i.e., L = L(A). A finite forest monoid (short: FFM) can be considered as a
deterministic bottom-up automaton, which combines the individual states for
the trees ui in a forest f = u1 . . . um by means of a monoid operation ◦ (compare,
e.g., the discussion in [BW05]). Formally, a finite forest monoid consists of a
finite monoid G with a neutral element e, a finite subset F ⊆ G of accepting
elements, together with a function up : Σ × G → G mapping a symbol of Σ
together with a monoid element for its content to a monoid element representing
a forest of length 1. A finite forest monoid accepts a forest f if up∗(f) ∈ F where

up∗(f1f2) = up∗(f1) ◦ up∗(f2)

up∗(a〈f ′〉) = up(a, up∗(f ′))

up∗(ε) = e

Given a complete deterministic bottom-up forest automaton A = (P,Σ, δ, FA),
i.e., a DBTA operating on the first-child next-sibling representation of forests,
we construct a finite forest monoid as follows. Let G be the monoid of func-
tions P → P where the monoid operation is function composition. In particular,
the neutral element of this monoid is the identity function. Moreover, the func-
tion up is defined by

up(a, g) = p 7→ δ(a, g(δ(e)) p) .

Finally, the set of accepting elements is given by

F = {g ∈ G | g(δ(e)) ∈ FA} .

On the other hand, every forest monoid G gives rise to a finite tree automa-
ton AG (running on first-child next-sibling representations) whose set of states
is given by the elements of G. The transition function δ of AG is defined by:

δ(e) = e and δ(a, g1 g2) = up(a, g1) ◦ g2 .

Then the set of accepting states simply is given by the accepting elements of G.
These constructions show that every recognizable forest language can be re-
cognized by a finite forest monoid and vice versa. Although the FFM for a
bottom-up tree automaton generally can be exponentially larger, this need not
always be the case.
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Example 13.2. For our current example, the BTA in Example 10.1 is not a
complete deterministic bottom-up forest automaton. We get a complete DBFA
by adding an extra error state •. The new transition function δ′ then is defined
by:

δ′(staff, rempl re) = rstaff δ′(staff, re re) = rstaff

δ′(employee, rdata rempl) = rempl δ′(employee, rdata re) = rempl

δ′(data, rname rboss) = rdata δ′(data, rname re) = rdata

δ′(boss, rname re) = rboss δ′(name, rcontent re) = rname

δ′(e, ε) = re

and δ′(a, r1 r2) = • for all other combinations of a label a ∈ Σ and states
r1, r2 ∈ P ∪ {•}. In the corresponding finite forest monoid A = (G,Σ, up, F ),
the monoid G contains the following functions:

gstaff = {re 7→ rstaff}
gempl = {rempl 7→ rempl, re 7→ rempl}
gdata = {rboss 7→ rdata, re 7→ rdata}
gboss = {re 7→ rboss}
gname = {re 7→ rname}

gdataBoss = {re 7→ rdata}
gcontent = {re 7→ rcontent}

g• = ∅
Id = {r 7→ r | r ∈ P}

where we have omitted all entries r 7→ •. Note that in this example, the forest
monoid has only one element more than the underlying finite automaton. Also,
the composition table of these functions is given by Id ◦ g = g ◦ Id = g for all g
and furthermore:

gdata ◦ gboss = gdataBoss

gempl ◦ gempl = gempl

g ◦ g′ = g• otherwise

For the function up, we find:

up(staff, Id) = gstaff up(staff, gempl) = gstaff

up(employee, gdata) = gempl up(employee, gdataBoss) = gempl

up(data, gname) = gdata

up(boss, gname) = gboss up(name, gcontent) = gname

up(a, g) = g• otherwise

where the set of accepting functions is given by F = {gstaff}. /
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Theorem 13.2. For every 2MFT M and every finite forest monoid A, a
2MFT MA can be constructed such that for all f ∈ FΣ,

τMA
(f) = τM (f) ∩ L(A) .

The size of MA is in O(|M | · |A|l·(d+1)) where l is the maximal rank of a state q
of M and d is the maximal number of occurrences of states in right-hand sides
in M .

Proof. Let M = (Q,Σ, R,Q0) and A = (G,Σ, up, F ). For each state q in Q with
rank n+ 1 and all monoid elements g0, . . . , gn ∈ G, we generate new states for
the intersection 2MTT MA of the form 〈q, g0g1 . . . gn〉. Such a state is meant to
generate all forests f ∈ FΣ({y1, . . . , yn}) for which there is a run of A starting
at the leaves yi with monoid element gi and reaching the root of f in g0. The
rules of the new 2MFT MA are:

〈q, g0g1 . . . gn〉(a, η, y1, . . . , yn)→ ζ ′

for every rule q(a, η, y1, . . . , yn) → ζ of M and ζ ′ ∈ τg0g1...gn [ζ] where the sets
τg0g1...gn [.] are inductively defined by:

τg0g1...gn [yj ] = {yj | g0 = gj}
τg0g1...gn [b〈ζ〉] = {b〈ζ ′〉 | up(b, g′) = g0 ∧ ζ ′ ∈ τg′g1...gn [ζ]}
τg0g1...gn [ε] = {ε | g0 = e}
τg0g1...gn [ζ1ζ2] = {ζ ′1ζ ′2 | g0 = g′1 ◦ g′2 ∧ ∀ν : ζ ′ν ∈ τg

′
νg1...gn [ζν ]}

τg0g1...gn [q′(op, ζ1, . . . , ζn′)]

= {〈q′, g0g
′
1 . . . g

′
n′〉(op, ζ ′1, . . . , ζ

′
n′) | ∀ν : ζ ′ν ∈ τg

′
νg1...gn [ζν ]}

The set of initial states of MA is Q′0 = Q0 × F . By fixpoint induction, we
verify for every state q of rank n ≥ 1, every input forest f ∈ FΣ, every node
ϑ ∈ Nodes(f) and monoid elements g0, . . . , gn that:

[[〈q, g0, . . . , gn〉]]f (ϑ) = [[q]]f (ϑ) ∩ {f ′ ∈ FΣ(Y ) | up∗(f ′, g1 . . . gn) = g0} (13.1)

where Y = {y1, . . . , yn} and up∗ is the extension of up to forests containing
variables from Y , namely, for g = g1 . . . gn, we have

up∗(yi, g) = gi

up∗(ε, g) = e

up∗(a〈f ′〉, g) = up(a, up∗(f ′, g))

up∗(f1f2, g) = up∗(f1, g) ◦ up∗(f2, g)

The correctness of the construction follows from Equation 13.1.
For each state in M , we have at most |A|l new states in MA, if l is the

maximal rank of states in M . If we have d occurrences of states in the right-hand
side of a rule r of M , we obtain |A|l·(d+1) new rules for r in MA. Therefore, the
new 2MFT is of size O(|M | · |A|l·(d+1) where l is the maximal rank of a state
in M and d bounds the number of occurrences of states in right-hand sides
in M .
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Note that this construction differs from the corresponding construction for
2MTTs in that we now additionally have to take concatenations of forests into
account. It is precisely for this operation that we rely on the monoid structure
of the set G.

Example 13.3. Consider the 2MFT M of Example 13.1 and the FFM A in
Example 13.2. We get an intersection 2MFT with the following rules, for both
directions η ∈ {2, 3}:

1 〈qI , gstaff〉(department, 0) → staff〈〈q, Id Id〉(down, ε)〉
2 | staff〈〈q, gemplId〉(down, ε)〉
3 〈q, gemplId〉(employee, η, yb) → employee〈data〈〈qdata , gname〉(down)〉 yb〉
4 〈q, g2gboss〉(down, boss〈〈qdata , gname〉(down)〉)
5 〈q, g3Id〉(right , yb)
6 〈q, gemplgboss〉(employee, η, yb)→ employee〈data〈〈qdata , gname〉(down)〉 yb〉
7 〈q, g2gboss〉(down, boss〈〈qdata , gname〉(down)〉)
8 〈q, g3gboss〉(right , yb)
9 〈q, g0gb〉(data, 2, yb) → 〈q, g0gb〉(right , yb)

10 〈q, g0gb〉(subordinates, 3, yb) → 〈q, g0gb〉(down, yb)
11 〈q, Id gb〉(ε, η, yb) → ε

12 〈qdata , gname〉(data, 2) → 〈copy, gname〉(down)

For the two monoid elements g2 and g3 in the third and the forth rules holds
gempl = gempl ◦ g2 ◦ g3. Thus, g2 and g3 are in {gempl, Id}. The element g0 in
Lines 9 and 10 is either gempl or Id , whereas gb in Lines 9-11 is in {gboss, Id}.
Additionally, there are rules resulting in states 〈q′, g•gb〉 or 〈q′, g•〉 for states
q′ ∈ Q of the 2MFT. /

The draw-back of this general construction, though, is that the (complement of
the) output type, with which we aim to intersect, first must be represented as
a finite forest monoid. In general, this alone may incur an exponential blow-
up. If, however, the macro forest transducer is output-linear, i.e., uses each
parameter at most once, then a much cheaper direct construction is possible.
In particular, this cheaper construction applies to 2FTs since these transducers
have no parameters at all.

Theorem 13.3. Assume that M is an output-linear 2MFT. Then for every
(possibly nondeterministic) BFA A, a 2MFT MA can be constructed with

τMA
(f) = τM (f) ∩ L(A)

for all f ∈ FΣ. The size of the 2MFT |MA| is in O(|M | · |A|2l·(d+1)) where l is
the maximal rank of a state q of M and d is the maximal number of occurrences
of states in right-hand sides in M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, {p0}). The idea for the new
2MFT MA for the intersection is to maintain for every possibly produced output
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forest f a pair of states 〈p, p′〉 so that the automaton A, when starting in p′ to
the right of f , possibly may arrive in state p to the left. Accordingly, the set Q′

of MA consists of all states

〈q, p0p
′
0 . . . pnp

′
n〉

where q ∈ Q is of rank n+ 1, i.e., has n accumulating parameters and pi, p
′
i ∈ P

for all i. Accordingly, the rules of the new 2MFT are of the form:

〈q, p0p
′
0 . . . pnp

′
n〉(a, η, y1, . . . , yn) → f ′ with f ′ ∈ τp0p

′
0...pnp

′
n [f ]

for every rule q(a, η, y1, . . . , yn) → f of M . The sets τp0p
′
0...pnp

′
n [.] are defined

by:

τpjp
′
j p1p

′
1...pnp

′
n [yj ] = {yj}

τp0p
′
0 p1p

′
1...pnp

′
n [b〈ζ〉] = {b〈ζ ′〉 | (p0, b, p

′′
1 p
′
0) ∈ δ ∧ (p′′2 , e) ∈ δ
∧ζ ′ ∈ τp′′1 p′′2 p1p

′
1...pnp

′
n [ζ]}

τp0p
′
0 p1p

′
1...pnp

′
n [ε] = {ε | p0 = p′0}

τp0p
′
0 p1p

′
1...pnp

′
n [ζ1ζ2] = {ζ ′1ζ ′2 | ∃ p : ζ ′1 ∈ τp0p p1p

′
1...pnp

′
n [ζ1]

∧ζ ′2 ∈ τpp
′
0 p1p

′
1...pnp

′
n [ζ2]}

τp0p
′
0 p1p

′
1...pnp

′
n [q′(op, ζ1, . . . , ζm)]

= {〈q′, p0p
′
0 p
′′
1p
′′′
1 . . . p′′mp

′′′
m〉(op, ζ ′1, . . . , ζ

′
m) | ∀ν : ζ ′ν ∈ τp

′′
ν p
′′′
ν p1p

′
1...pnp

′
n [ζν ]}

The set of initial states of MA then consists of all states 〈q, p0p
′〉 where q ∈ Q0

and p0 ∈ P are accepting states of M and A, respectively, and (p′, e) ∈ δ. The
estimation of the size of the resulting transducer is similar to the case of forest
monoids — only that we have to replace the number of monoid elements with
the number of pairs of states. Thus, the new intersection transducer is of size
O(|M | · |A|2l·(d+1)).

13.2 Deciding Emptiness of 2MFTs

For deciding emptiness of a forest transducer M , we conceptually follow the
approach taken for tree transducers. There, we first constructed an alternating
tree walking automaton accepting the domain of M for which, in the second
step, a nondeterministic tree automaton is constructed. In our case, this would
mean that we first formally introduce the concept of alternating forest walking
automata for which, in a separate construction, a nondeterministic forest au-
tomaton is constructed. In order to simplify this, we will not intermediately rely
on forest walking automata. Instead, we consider for each forest f an enriched
first-child next-sibling encoding through binary trees. This means that inside
each node of the encoding, we additionally record whether or not the current
tree node represents a node on the top-level of the forest. Let Σ̄ = {ā | a ∈ Σ}
denote a set of new symbols of rank 2. Then the ranked alphabet used by the
encoding will be Σ2 = Σ ∪ Σ̄ ∪ {e, ē} where the barred symbols will only occur
on the rightmost spine in the tree. A DTTA with two states {t, n} can check
whether a tree in TΣ2

is the enriched encoding of a forest or not.
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Since the encoding is injective, it suffices for a forest transducer M to con-
struct an ATWA M ′, which defines the set of encodings of the domain of M .
Then the set of states of the ATWA M ′ is given by Q′ = {q′0, t, n} ∪ Q ∪ Qup

where Qup = {qup | q ∈ Q} is a set of fresh copies of the states in Q and q′0
serves as fresh initial state of M ′. Assume that q(a, η, y1, . . . , yn)→ ζ is a rule
of M and q1(op1, . . .), . . . , qc(opc, . . .) is the sequence of recursive calls in ζ. If
η ∈ {2, 3}, i.e., if the rule is not applicable to nodes at the top-level of the input
forest, then ATWA M ′ has the rule:

q(a, η − 1)→ q′1(op′1) ∧ . . . ∧ q′c(op′c)

where:

q′j(op′j) =


qj(stay) if opj = stay
qj(down1) if opj = down
qj(down2) if opj = right
qj(up) if opj = left and η = 3
qupj (stay) if opj = up

Furthermore, for states qup , the ATWA M ′ has the rules:

qup(a, 2) → q(up)
qup(a, 3) → qup(up)

If on the other hand η ∈ {0, 1}, i.e., the rule of the 2MFT refers to nodes at the
top-level of the input forest, then the ATWA M ′ has the rule:

q(ā, 2 · η)→ q′1(op′1) ∧ . . . ∧ q′c(op′c)

where:

q′j(op′j) =


qj(stay) if opj = stay
qj(down1) if opj = down
qj(down2) if opj = right
qj(up) if opj = left and η = 1

For every rule q(a, 0)→ ζ of M with q ∈ Q0, we add the rule

q′0(ā, 0)→ t(stay) ∧ q(stay)

where the rules for t and n simulate the computation of a top-down automaton
to verify that the input tree is the enriched encoding of a forest. Thus, the rules
of the ATWA for q′0 are meant to spawn a subrun, which verifies the encoding
and to spawn another subrun, which simulates an accepting run of the forest
transducer on the binary encoding. In particular, the states qup are auxiliary
states to implement the operation up on the binary representation of the forest.
More precisely, the rules for the state qup perform the operation up as long
as the current node is a right child. If the current node is a left child, a final
up-operation is executed to arrive at the tree representation of the father node
in state q. Overall, we find:
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Theorem 13.4. For every 2MFT M , an ATWA M ′ can be constructed in
polynomial time such that L(M ′) is the set of enriched binary encodings of the
set {f | τM (f) 6= ∅}. In particular, L(M ′) 6= ∅ iff τM 6= ∅.

We thus obtain an exponential algorithm for deciding emptiness of 2MFTs,
which is optimal. Together with our intersection constructions, this algorithm
then can be applied also for type checking 2MFT transducers w.r.t. regular
input and output types.

In order to arrive at more tractable algorithms or sub-classes, we can apply
the same ideas as for 2MTTs: in the first place, we can again approximate the
set of output forests by means of a context-free forest grammar. A context-
free forest grammar for the intersection with a regular forest language specified
through a finite forest monoid is polynomial in the size of the grammar and the
number of elements in the monoid and exponential only in l · (d + 1) where l
is the maximal rank of nonterminals and d is the number of occurrences of
nonterminals in right-hand sides. Emptiness for this forest grammar again can
be checked in time linear in the size of the grammar. A practical implementation
again may construct a Datalog program for the sets of useful nonterminals of
the grammar. We can also generalize the notions of b-boundedness and strict
b-boundedness for 2MFTs. While emptiness for b-bounded 2MFTs is decidable
in polynomial time (where the exponent again depends on b2), it is only strict
b-boundedness, which is preserved by our intersection constructions. Here we
only state the corresponding result for output types specified through finite
forest monoids.

Theorem 13.5. Assume M is a strictly b-bounded 2MFT and I and O are
regular forest languages where I and O are given by a finite forest automaton
and a finite forest monoid, respectively. Assume further that l is the maximal
rank of a state of M and d is the maximal number of occurrences of state calls in
right-hand sides. Then M can be type checked w.r.t. I and O in time polynomial
in the sizes of M , the automaton for I and the automaton for O where the
exponent linearly depends on (b+ 1)2 · l · (d+ 1).

13.3 Notes and References

Top-down macro forest transducers have been introduced by Perst and Seidl
in [PS04]. They are closely related to the top-down transducers of Maneth and
Neven [MN99] but slightly more general. It was shown in [PS04] that, even
though MFTs are more powerful than MTTs, they can be type checked with
the same complexity bounds as macro tree transducers. This idea was extended
to two-fold compositions of deterministic MTTs, in [MN08]. In [MBPS05], a
general forest transformation language tl is introduced, which captures most
features of XML transformation languages such as XSLT. The language tl
supports full MSO pattern matching both for the selection of rules applicable
at a node in the input tree and for navigation inside the input tree. Thus, 2MFTs
can be considered as a sub-language of tl where rules are selected depending
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on the current state and input label only, and where navigation is restricted to
immediate neighbors in the input forest. The main contribution of that paper
is to show how such transformations can be decomposed into three stay macro
tree transducers running on the first-child next-sibling encoding of the XML
documents in question. The semantics considered there was OI evaluation of
nested calls but similar results can also be proven for IO evaluation, i.e., call-
by-value parameter passing as considered here [Per07].
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Chapter 14

Conclusion

In this part, we have reviewed basic constructions for tree walking transducers,
which allow to obtain algorithms for type checking the transducers w.r.t. regular
input and output types. There are three orthogonal variations in which the basic
concept of a finite state machine can be made more expressive:

- top-down versus walking

- without parameters versus with parameters

- on ranked trees versus on unranked forests

At the very heart of our algorithms for type checking is to check whether or not
a transducer realizes an empty translation. Already for the weakest, i.e., one-
way top-down transducers, emptiness turns out to be complete for deterministic
exponential time. Still, however, we were able to pin-point one major source
for the complexity, namely the number of visits to the same input node. If
the transducer visits the same node only constantly often, i.e., is b-bounded for
some constant b, then emptiness becomes decidable in polynomial time.

The second ingredient of our algorithm are constructions for computing in-
tersection transducers, i.e., transducers, which only produce outputs outside a
specified regular set. Here, we considered regular sets as specified by bottom-
up deterministic automata (or monoids, in case of forests) or by deterministic
top-down automata. The latter construction for forest transducers was at least
applicable to output-linear transducers, i.e., transducers, which use each of their
accumulating parameters at most once. Two separate constructions are crucial,
since translating top-down deterministic automata into bottom-up automata
may incur an extra exponentiation in the number of states. Since these con-
structions preserve strict b-boundedness, we, thus, overall arrive at a general
class of transducers for which type checking is polynomial.

197
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