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Abstract

The tail behaviour of stationary Rd-valued Markov-Switching ARMA processes driven
by a regularly varying noise is analysed. It is shown that under appropriate summability
conditions the MS-ARMA process is again regularly varying as a sequence. Moreover,
the feasible stationarity condition given in Stelzer (2006) is extended to a criterion for
regular variation. Our results complement in particular those of Saporta (2005) where
regularly varying tails of one-dimensional MS-AR(1) processes coming from consecutive
large parameters were studied.
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1 Introduction

Markov-switching ARMA (MS-ARMA) processes are a modification of the well-known ARMA
processes by allowing for time-dependent ARMA coefficients, which are modelled as a Markov
chain. These processes are particularly popular in econometric modelling since the seminal
paper by Hamilton (1989). In this paper we study the tail behaviour of multivariate MS-
ARMA processes which are driven by a regularly varying i.i.d. noise sequence. In our analysis
we allow the driving parameter chain to have a general state space as in Stelzer (2006), instead
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of assuming only finitely many regimes as usual (see e.g. Francq & Zaköıan (2001) or Krolzig
(1997)).

Under appropriate summability conditions on the coefficients, we establish that the MS-
ARMA process is (multivariate) regularly varying with the same index of regular variation as
the driving noise sequence. Moreover, the spectral measure of regular variation is determined
by the spectral measure of the noise. Extending a result of Stelzer (2006) we see that the
summability conditions are satisfied (for all indices of regular variation), if in almost all
regimes the sum of some norm of the autoregressive coefficients is strictly less than one.

Recently Saporta (2005) studied one-dimensional MS-AR(1) processes with finitely many
regimes and obtained that the possible appearance of consecutive large AR(1) coefficients
(explosive regimes) implies that the tail of the stationary distribution follows a power law
under some technical conditions. For random coefficient autoregressive processes (i.e. the AR
coefficients are i.i.d.) similar results are given in Kesten (1973) and Klüppelberg & Perga-
menchtchikov (2004).

The paper is organized as follows. In Section 2 we briefly recall the details of the MS-
ARMA model and in Section 3 the details of multivariate regular variation. Thereafter, we
analyse MS-ARMA processes with a regularly varying noise in Section 4 and conclude with
some examples in Section 5.

2 Markov-switching ARMA processes

Below (stationary) multivariate Markov-switching ARMA processes are briefly reviewed. For
more details we refer to Stelzer (2006).

In defining MS-ARMA processes, one starts from a (multivariate) ARMA equation (see
e.g. Brockwell & Davis (1991)) with drift and allows for random coefficients which are modelled
as a Markov chain. We denote the real d× d (m× n) matrices by Md(R) (Mm,n(R)).

Definition 2.1 (MS-ARMA(p, q) process). Let p, q ∈ N0, p + q ≥ 1 and ∆ = (Σt,Φ1t, . . . ,

Φpt, Θ1t, . . . ,Θqt)t∈Z be a stationary and ergodic Markov chain with some (measurable) subset
S of Md(R)1+p+q as state space. Moreover, let ε = (εt)t∈Z be an i.i.d. sequence of Rd-valued
random variables independent of ∆ and set Zt := Σtεt ∈ Rd. A stationary process (Xt)t∈Z in
Rd is called MS-ARMA(p, q,∆, ε) process, if it satisfies

Xt − Φ1tXt−1 − · · · − ΦptXt−p = Zt + Θ1tZt−1 + · · ·+ ΘqtZt−q (2.1)

for all t ∈ Z. (2.1) is referred to as the MS-ARMA(p, q,∆, ε) equation.
Furthermore, a stationary process (Xt)t∈Z is said to be an MS-ARMA(p, q) process, if it

is an MS-ARMA(p, q, ∆, ε) process for some ∆ and ε satisfying the above conditions.

The elements of S are called “regimes”, and “ergodic” is to be understood in its general
measure theoretic meaning.
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Remark 2.2. Compared to Stelzer (2006) we do not include an intercept (mean) µt in
the parameter chain ∆ and the defining equation (2.1), as this makes the following results
notationally easier. Note, however, that the results of this paper can be immediately applied
to the case with a general µt under an appropriate condition ensuring relative light-tailedness
of

∑∞
k=0 A0A−1 · · ·A−k+1m−k using Basrak (2000, Remark 2.1.20) (see also Mikosch (1999,

Remarks 1.3.5, 1.5.11)) with mt := (µT, 0T, . . . , 0T)T ∈ Rd(p+q). 2

Given some i.i.d. noise (εt) and parameter chain (∆t), the natural question arising is,
whether there exists a stationary (always understood in the strict sense) solution to (2.1).
Below, the zeros appearing denote zeros in Mm,n(R) or Rd with the appropriate dimensions
m,n and d being obvious from the context.

Proposition 2.3 (State Space Representation, Stelzer (2006, Prop. 2.3)). Define

Xt = (XT
t , XT

t−1, . . . , X
T
t−p+1, Z

T
t , . . . , ZT

t−q+1)
T ∈ Rd(p+q), (2.2)

Σt = (ΣT
t , 0T, . . . , 0T

︸ ︷︷ ︸
p−1

, ΣT
t , 0T, . . . , 0T

︸ ︷︷ ︸
q−1

)T ∈ Md(p+q),d(R), Ct = Σtεt,

Φt =




Φ1t · · · Φ(p−1)t Φpt

Id 0 · · · · · · 0

0
. . . . . .

...
0 · · · 0 Id 0



∈ Mdp(R), J =




0 · · · · · · 0
Id 0 · · · 0

0
. . . 0 · · · ...

0 · · · 0 Id 0



∈ Mdq(R),

Θt =




Θ1t · · · Θ(q−1)t Θqt

0 · · · · · · 0

0 · · · · · · ...
0 · · · · · · 0



∈ Mdp,dq(R),

At =

(
Φt Θt

0 J

)
∈ Md(p+q)(R). (2.3)

Then (2.1) has a stationary and ergodic solution, if and only if

Xt = AtXt−1 + Ct (2.4)

has one.

The process X as defined above is called the state space representation of the MS-ARMA
process.

In order to avoid degeneracies in the state space representation, we presume without
loss of generality p ≥ 1 from now on. Moreover, in the case of a purely autoregressive
MS-ARMA equation, i.e. q = 0, it is implicitly understood that Jt and Θt vanish, Xt =(
XT

t , XT
t−1, . . . , X

T
t−p+1

)T, Σt =
(
ΣT

t , 0T, . . . , 0T
)T and At = Φt.
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Regarding notation, ‖ ·‖ shall denote any norm on Rd(p+q) as well as the induced operator
norm and D→ convergence in distribution. If k = 0, the product AtAt−1 · · ·At−k+1 below
is understood to be identical to the identity Id(p+q) on Rd(p+q), a convention to be used
throughout for products of this structure.

Theorem 2.4 (Stelzer (2006, Th. 2.5 a))). Equation (2.4) and the MS-ARMA(p, q, ∆, ε) equa-
tion (2.1) have a unique stationary and ergodic solution, if E(log+ ‖A0‖) and E(log+ ‖C0‖)
are finite and the Lyapunov exponent γ := inf

t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
is strictly

negative. The unique stationary solution X = (Xt)t∈Z of (2.4) is given by

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k (2.5)

and this series converges absolutely a.s.

3 Multivariate regular variation

As we are dealing with processes in Rd and also shall consider the state space representation
of an MS-ARMA process, we recall first some results on multivariate regular variation in
this section. Comprehensive references on this topic are Resnick (1987, Section 5.4.2; 2004),
Mikosch (2003), and for univariate regular variation Bingham, Goldie & Teugels (1989).

Let ‖ · ‖ denote an arbitrary, fixed norm on Rd and Sd−1 the unit sphere in Rd, i.e.
Sd−1 = ∂B1(0), with respect to this norm ‖ · ‖. Moreover, let v→ denote vague convergence,
M+(E) the set of Radon measures over some space E, B(E) the Borel sets over E and Bµ the
µ-boundaryless sets for some measure µ, i.e. all sets B with µ(∂B) = 0. We define multivariate
regular variation as follows.

Definition 3.1 (Regular variation on Rd). a) Let X be an Rd-valued random variable. If
there exists an Sd−1-valued random variable θ such that for some α > 0 and every u > 0

P
(
‖X‖ > tu, X

‖X‖ ∈ ·
)

P (‖X‖ > t)
v→ u−αP (θ ∈ ·)

in M+(Sd−1) for t → ∞, then X is said to be (multivariate) regularly varying and we write
X ∈ Rα.

The parameter α is called the index of regular variation and P (θ ∈ ·) ∈ M+(Sd−1) the
spectral measure of regular variation of X

b) A random sequence (Xn)n∈Z in Rd is called regularly varying (as a sequence), if all
its finite dimensional distributions are regularly varying.

For the necessary background on vague convergence of Radon measures on locally compact
Polish spaces see, for example, Resnick (1987) or Bauer (1992).
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Several equivalent definitions for multivariate regular variation exist, confer e.g. Basrak
(2000), Lindskog (2004) or Resnick (2004) for detailed discussions. We employ the following
characterization, as it makes transformations straightforward.

Theorem 3.2. Let X be an Rd-valued random variable. Then the following are equivalent:
(i) X is regularly varying.
(ii) There exists a positive sequence (an)n∈N, an →∞ as n →∞, and a non-zero νX ∈

M+

(
Rd\{0}

)
with νX

(
Rd\Rd

)
= 0 such that

nP (X ∈ an·) v→ νX(·)
in M+

(
Rd\{0}

)
for n →∞.

If (ii) holds, then there exists an α > 0 such that νX(tA) = t−ανX(A) for all Borel sets
A and ∂Bδ(0) ∈ BνX for all δ > 0. In particular, νX has no atoms.

νX is referred to as the measure of regular variation of X.

Remark 3.3. a) (One point uncompactification) Rd\{0} is called the one point uncompac-
tification of Rd. For d = 1 this is obtained as follows: Take the space R with the usual
topology and form the two point compactification by setting R = R ∪ {∞,−∞} and adding
the neighbourhoods of ±∞, i.e. the sets [−∞, a) and (a,∞] with a ∈ R, to the basic open
sets. Then take R\{0} and remove the open neighbourhoods of 0 from the topology. For the
d-dimensional case one takes the compactification Rd, which is simply the d-fold product of
R, with the product topology. Then one removes the point 0 from Rd and the open neigh-
bourhoods of 0 from the topology.

One can interpret this procedure as interchanging the roles of zero and infinity. In Rd\{0}
compact sets can by characterized by being closed (in the usual sense) and bounded away
from zero. By this procedure we obtain a locally compact Polish space, a possible metric on
R\{0} is given by d(x, y) := |x−1− y−1| (cf. Resnick (1987, p. 225f)). For the construction of
a possible metric on Rd\{0} see Lindskog (2004, Theorem 1.5), for instance.

b) (ii) is norm-free and thus it does not matter, which norm is used in the definition.
Therefore the results of this paper do not depend on the particular norm. However, the
spectral measure is different for different norms, see also Hult & Lindskog (2002).

c) νX is non-degenerate, if and only if νX((a,∞]Sd−1) > 0 for one and hence all a > 0
(note (a,∞]Sd−1 := {xz : x ∈ (0,∞], z ∈ Sd−1}).

Moreover, we need a precise notion of Lr-spaces of multivariate random variables.

Definition 3.4. Denote by Lr
R with r ∈ (0,∞] the usual space of r-times integrable real-valued

random variables and be Rd (or Md(R)) equipped with a norm ‖ · ‖. Then Lr
Rd (or Lr

Md(R)) is
defined as the space of all Rd- (or Md(R)-) valued random variables X with ‖X‖ ∈ Lr

R. For
short we often omit the space subscript and write Lr.

Moreover, ‖ · ‖Lr : Lr → R+
0 , X 7→ E(‖X‖r)1/r defines (up to a.s. identity) a norm on Lr

for r ≥ 1 and dLr(·, ·) : Lr×Lr → R+
0 , (X, Y ) 7→ E(‖X −Y ‖r) a metric on Lr for 0 < r < 1.
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The Lr spaces are independent of the norm ‖ · ‖ used on Rd (or Md(R)), when viewed
solely as sets. This is, however, not true for the norms ‖ · ‖Lr and metrics dLr(·, ·). Yet, due to
the equivalence of all norms on Rd (or Md(R)) it is immediate to see that for different norms
‖ · ‖ the induced norms and metrics on Lr are equivalent. All results from the well-known
theory of the Lr

R spaces extend immediately to the multidimensional Lr spaces (see e.g. the
overview in Stelzer (2005, Section 2.4)).

Remark 3.5. Note that for a regularly varying random variable X with index α one has
that X ∈ Lβ ∀ 0 < β < α and X 6∈ Lβ ∀ β > α 2

The next theorem provides the basis for our analysis of MS-ARMA processes with regularly
varying noise. For some matrix A we denote by A−1 the pre-image under A.

Theorem 3.6. Let ε = (εk)k∈N0 be an i.i.d. sequence of Rd-valued random variables in Rα

and ν, (an)n∈N be the measure and normalizing sequence associated to εk in Theorem 3.2
(ii). Assume, moreover, that A = (Ak)k∈N0 is a sequence of Mqd(R)-valued random variables
independent of ε.
If α < 1, assume that there is a 0 < η < α with α + η < 1 such that Ak ∈ Lα+η for all k ∈ N0

and ∞∑

k=0

E
(‖Ak‖α+η

)
< ∞ and

∞∑

k=0

E
(‖Ak‖α−η

)
< ∞. (3.1)

If α ≥ 1, assume that there is a 0 < η < α such that Ak ∈ Lα+η for all k ∈ N0 and
∞∑

k=0

E
(‖Ak‖α+η

)1/(α+η)
< ∞ and

∞∑

k=0

E
(‖Ak‖α−η

)1/(α+η)
< ∞. (3.2)

Then the tail behaviour of Y =
∑∞

k=0 Akεk is given by

nP

( ∞∑

k=0

Akεk ∈ an·
)

v→ ν̃(·) :=
∞∑

k=0

E
(
ν ◦A−1

k (·)) (3.3)

in M+

(
Rq\{0}).

In particular, Y =
∑∞

k=0 Akεk is in Rα with associated measure ν̃ and normalizing se-
quence (an)n∈N, provided there is a relatively compact K ∈ B (

Rq\{0}) and an index j ∈ N0

such that E
(
ν

(
A−1

j (K)
))

> 0.

This theorem is a straightforward generalization of Resnick & Willekens (1991, Th. 2.1),
who consider random vectors and matrices with positive entries. We omit giving a proof, since
an inspection of Resnick & Willekens (1991) shows that all their arguments carry through to
our set-up (see also Stelzer (2005, Th. 3.19)).

Remark 3.7. Condition (3.1) or (3.2), respectively, is independent of the norm used and
motivated mainly by the proof. If Ak ∈ Lβ for some β > α and all k ∈ N0 and

lim sup
k→∞

E
(
‖Ak‖β

)1/k
< 1,
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then (3.1) or (3.2), respectively, is satisfied for all admissible η with η ≤ β − α, as the root
criterion from standard analysis shows. 2

4 MS-ARMA processes driven by regularly varying noise

Returning back to MS-ARMA processes we are now equipped with the necessary tools to
study the effects of a regularly varying noise sequence ε.

Theorem 4.1. Let (εt)t∈Z be an i.i.d. sequence of Rd-valued random variables in Rα and ν,
(an)n∈N the associated measure and normalizing sequence of Theorem 3.2 (ii). Assume further
that E(log+ ‖A0‖) < ∞ and γ < 0.

If α < 1, assume there is an η with 0 < η < α and α+η < 1 such that A0 · · ·A−k+1Σ−k ∈
Lα+η for all k ∈ N0 and that

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α+η

)
< ∞,

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α−η

)
< ∞. (4.1)

If α ≥ 1, assume that there is an η with 0 < η < α such that A0 · · ·A−k+1Σ−k ∈ Lα+η

for all k ∈ N0 and that
∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α+η

) 1
α+η < ∞,

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α−η

) 1
α+η < ∞. (4.2)

Then the following hold:
a) There is a unique stationary and ergodic solution X = (Xt)t∈Z to the MS-ARMA

equation (2.1) given by Theorem 2.4.
b) The tail behaviour of X0, the state space representation of the stationary solution, is

given by

nP (X0 ∈ an·) v→ ν̃(·) =
∞∑

k=0

E
(
ν ◦ (A0 · · ·A−k+1Σ−k)

−1 (·)
)

. (4.3)

c) For the stationary solution X0 the tail behaviour is described by

nP (X0 ∈ an·) v→ ν̄(·) =
∞∑

k=0

E
(
ν ◦ (PA0 · · ·A−k+1Σ−k)

−1 (·)
)

, (4.4)

where P := (Id, 0, . . . , 0) ∈ Md,(p+q)d(R) with Id being the identity on Rd.
d) Provided there is a relatively compact K ∈ Rd\{0} with E

(
ν ◦ Σ−1

0 (K)
)

> 0, X0 and
X0 are in Rα with normalizing sequence (an) and measures ν̃ and ν̄, respectively.

e) Finally, if ε0 ∈ Lα, then X0 and X0 are in Lα.

Proof: From Σ0 ∈ Lα+η and ε0 ∈ Rα one gets C0 = Σ0ε0 ∈ Lβ ∀ 0 < β < α and, hence,
E(log+ ‖C0‖) < ∞. Therefore a) is Theorem 2.4. Parts b) and c) follow from Theorem 3.6 us-

ing the series representation of X0 given in Theorem 2.4 and Xt =
∞∑

k=0

PAt · · ·At−k+1Σt−kεt−k,

noting that P is the projection on the first d coordinates.
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Turning to d) we observe that

E
(
ν ◦Σ−1

0 (A1 ×A2 × · · · ×Ap+q)
)

= E(ν ◦ Σ−1
0 (A1 ∩Ap+1)) (4.5)

×δ0(A2 × · · · ×Ap−1 ×Ap+2 × · · ·Ap+q)

for Ai ∈ B(Rd), where δ0 denotes the Dirac measure with respect to 0 in Rd(p+q−2). So, setting
K̃ = K × 0Rd(p−1) × K × 0Rd(q−1) gives a relatively compact set with E(ν ◦ Σ−1

0 (K̃)) > 0.

Furthermore, E(ν ◦ (PΣ0)−1(K)) = E(ν ◦Σ−1
0 (K ×Rd(p+q−1)))

(4.5)
= E(ν ◦Σ−1

0 (K)) > 0 and
thus ν̃ and ν̄ are non-degenerate, which proves d).

ε0 ∈ Lα and (4.1) or (4.2), respectively, ensure that the conditions (4.1) or (4.2) of Stelzer
(2006, Th. 4.2) hold with r = α, as ε and ∆ are independent. Thus e) follows from this
Theorem. 2

Remark 4.2. a) From the above results the extremal domain of attraction of the station-
ary marginal distribution of the MS-ARMA process can be immediately deduced using e.g.
Resnick (1987, Corollary 5.18). In the case d = 1, we have tail equivalence of the station-
ary distribution and the driving noise and, in particular, that the distributions of ε0 and X0

both belong to the maximum domain of attraction of the Fréchet distribution Φα (cf. e.g.
Resnick (1987) or Embrechts, Klüppelberg & Mikosch (1997)), provided the upper tails are
non-degenerate.

b) For the non-degeneracy condition E(ν ◦ Σ−1(K)) > 0 in d) it suffices that Σ0 has a
strictly positive probability of being invertible. (If Σ0 is invertible, Σ−1

0 (B0(1)) ⊆ ‖Σ−1
0 ‖B0(1),

hence Σ−1
0

(
(1,∞]Sd−1

)
=

(
Σ−1

0 (B0(1))
)c ⊇ (‖Σ−1

0 ‖,∞]Sd−1 and thus

ν ◦Σ−1
0

(
(1,∞]Sd−1 × 0Rd(p−1) × (1,∞]Sd−1 × 0Rd(q−1)

)
= ν ◦ Σ−1

0

(
(1,∞]Sd−1

)
> 0

due to the non-degeneracy of ν.)
d) For the one-dimensional stochastic difference equation Xt = AtXt−1 + Ct with i.i.d.

(At, Ct) similar results are to be found in Grey (1994) or Konstantinides & Mikosch (2005)
and for one-dimensional positive valued random coefficient autoregressive models in Resnick &
Willekens (1991). For the multivariate general stochastic difference equation Xt = AtXt−1 +
Ct with ergodic (At) and i.i.d. (Ct) independent of (At) see Stelzer (2005, Section 4.3). 2

The regular variation results can be strengthened further.

Theorem 4.3. If all conditions of Theorem 4.1 including the existence of a relatively compact
K ∈ Rd\{0} with E

(
ν ◦ Σ−1

0 (K)
)

> 0 are satisfied, then X = (Xt)t∈Z as well as X = (Xt)t∈Z
are regularly varying as a sequence with index α.

Proof: It remains to show that all finite dimensional distributions of X = (Xt)t∈Z are regu-
larly varying. We restrict ourselves to showing that the two-dimensional marginals are again
regularly varying. It is obvious that the very same arguments can be used for all higher
dimensional marginals.
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W.l.o.g. we only consider the joint distribution of X0 and Xh for h ∈ N. From the series
representations of X0 and Xh we construct a series representation of (XT

0 ,XT
h )T as follows.

Set

Ah =

(
0Md(p+q),d(R)

Σh

)
, Ah−k =

(
0Md(p+q),d(R)

AhAh−1 · · ·Ah−k+1Σh−k

)
for k = 1, 2, . . . , h− 1

A0 =

(
Σ0

AhAh−1 · · ·A1Σ0

)
,

Ah−k =

(
A0A−1 · · ·Ah−k+1Σh−k

AhAh−1 · · ·Ah−k+1Σh−k

)
for k = h + 1, h + 2, . . . ,

then (XT
0 ,XT

h )T =
∑∞

k=0Ah−kεh−k and the sequences (Ah−k)k∈N0 and (εh−k)k∈N0 are mutu-
ally independent. On R2d(p+q) consider the norm ‖·‖∗ defined via the norm ‖·‖ used on Rd(p+q)

by ‖(xT
1 , xT

2 )T‖∗ = max{‖x1‖, ‖x2‖}. For any matrix A ∈ M2d(p+q),d(R) with A = (AT
1 , AT

2 )T,
where A1, A2 ∈ Md(p+q),d(R), it holds that ‖A‖∗ ≤ max{‖A1‖, ‖A2‖} ≤ ‖A1‖ + ‖A2‖. Using
(4.1) or (4.2), respectively, the triangle inequalities in Lα±η and the elementary inequality
|a + b|r ≤ |a|r + |b|r for 0 < r ≤ 1 and all a, b ∈ R, we thus obtain from the definition of Ah−i

that Ah−i ∈ Lα+η for all i ∈ N0 and
∑∞

k=0 E
(
‖Ah−k‖α+η

∗
)

< ∞,
∑∞

k=0 E
(
‖Ah−k‖α−η

∗
)

< ∞,

if α < 1, or
∑∞

k=0 E
(
‖Ah−k‖α+η

∗
)1/(α+η)

< ∞,
∑∞

k=0 E
(
‖Ah−k‖α−η

∗
)1/(α+η)

< ∞, if α ≥ 1.

So Theorem 3.6 gives nP
(
(XT

0 ,XT
h )T ∈ an·

) v→ ν̂(·) :=
∑∞

k=0 E
(
ν ◦ A−1

h−k(·)
)

as n →∞. Since
A−1

h (0Rd(p+q) ×K × 0Rd(p−1) ×K × 0Rd(q−1)) = Σ−1
h (K), the measure ν̂ is non-degenerate un-

der the non-degeneracy condition of Theorem 4.1 d) and so (XT
0 ,XT

h )T is multivariate regularly
varying with index α, measure ν̂ and normalizing sequence (an). To obtain the result for the
marginal distribution of the MS-ARMA process, i.e. for (X0, Xh), one again simply needs to
employ a projection onto the first and (p + q + 1)th d-dimensional coordinate. 2

Using Remark 3.7 a) and the Jensen’s inequality to obtain γ < 0 one gets some asymptotic
criteria replacing the summability conditions.

Lemma 4.4. Let (εt)t∈Z be a sequence of i.i.d. Rd-valued random variables in Rα and ν,
(an)n∈N the associated measure and normalizing sequence of Theorem 3.2 (ii). Assume that
there is a β > α such that A0 · · ·A−k+1Σ−k ∈ Lβ and A0 · · ·A−k+1 ∈ Lβ for all k ∈ N0 and
that

lim sup
n→∞

E
(
‖A0 · · ·A−n+1Σ−n‖β

)1/(n+1)
< 1, lim sup

n→∞
E

(
‖A0 · · ·A−n+1‖β

)1/n
< 1. (4.6)

Then the conditions of Theorem 4.1 are satisfied.

Under an independence condition this simplifies further.

Corollary 4.5. Assume Σ−k is independent of A0 · · ·A−k+1 ∀ k ∈ N0. Then Σ0 ∈ Lβ

and A0 · · ·A−k+1 ∈ Lβ ∀ k ∈ N0 are sufficient for A0 · · ·A−k+1Σ−k ∈ Lβ ∀k ∈ N0 and
lim supn→∞E

(‖A0 · · ·A−n+1‖β
)1/n

< 1 implies already that (4.6) is satisfied.
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In order to obtain a condition that can be verified easily, we use the following Theorem
from Stelzer (2006) and thereby extend the feasible stationarity condition given in Corollary
3.4 of that paper to ensure that the conditions for a regularly varying noise to determine the
tail-behaviour of the stationary MS-ARMA process are satisfied.

Theorem 4.6. Let d, p ∈ N, q ∈ N0 and A ⊂ Md(p+q)(R) be a set of matrices such that for
each A ∈ A there are matrices A1(A), . . . , Ap(A), B1(A), . . . , Bq(A) ∈ Md(R) such that

A =




A1(A) · · · Ap−1(A) Ap(A) B1(A) · · · Bq−1(A) Bq(A)
Id 0 · · · · · · 0 0 · · · · · · 0

0
. . . . . . 0 0 · · · · · · ...

0 · · · 0 Id 0 0 · · · · · · ...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · 0 Id 0 · · · 0
...

. . . . . .
... 0

. . . 0 · · · ...
0 · · · · · · 0 0 · · · 0 Id 0




.

Assume, moreover, that there is a norm ‖·‖d on Rd and c < 1 such that sup
A∈A

∑p
i=1 ‖Ai(A)‖d <

c and sup
A∈A

∑q
i=1 ‖Bi(A)‖d < ∞ hold for the induced operator norm.

Then there is a norm ‖ · ‖ on Rd(p+q) and c′ < 1 such that supA∈A ‖A‖ < c′ in the induced
operator norm. Especially, ‖x0x1 · · ·xk‖ < (c′)k+1 for any k ∈ N and sequence (xn)n∈N0 with
elements in A.

Lemma 4.7. Assume that there are c < 1, C,M ∈ R+ and a norm ‖ · ‖ on Rd such
that

∑p
i=1 ‖Φi0‖ ≤ c,

∑q
i=1 ‖Θi0‖ ≤ M and ‖Σ0‖ ≤ C a.s. Then A0 · · ·A−k+1Σ−k ∈ Lβ,

A0 · · ·A−k+1 ∈ Lβ for all k ∈ N0 and (4.6) is satisfied for all β > α.

Proof: Define the subset A = {A0 :
∑p

i=1 ‖Φi0‖d ≤ c̄} of the state space of Φt. Then the
conditions of this Lemma imply that the process (At)t∈Z a.s. takes only values in A at all
times t ∈ Z. From Theorem 4.6 we thus obtain obtain an operator norm ‖ · ‖ which ensures
‖A0A−1 · · ·A−k+1‖ < (c′)k a.s. for some c′ < 1 and all k ∈ N0. Thus, A0 · · ·A−k+1 ∈ Lβ for
all β > α and the second part of (4.6) is satisfied. Furthermore, ‖A0 · · ·A−k+1Σ−k‖ ≤ C(c′)k

implies A0 · · ·A−k+1Σ−k ∈ Lβ for all k ∈ N0 and β > α and that the first part of (4.6) is
satisfied. 2

Note that in Stelzer (2006) it was shown that under similar conditions an MS-ARMA
process is not only stationary, but also geometrically ergodic/strong mixing and has finite
moments of at least as many orders as the driving noise ε.
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Figure 1: Simulations of an i.i.d. symmetric 1.5-stable noise sequence (upper left), the MS-ARMA(2,1) process

from Example 7.1 (upper right) and the MS-AR(1) processes from Examples 7.2 (lower left) and 7.3 (lower

right)

5 Some illustrative examples

Finally, we consider some examples and simulate sample models. We shall look at real-valued
MS-ARMA(p,q) processes with Σt = 1, i.e. Xt = Φ1tXt−1 + . . . + ΦptXt−p + εt + Θ1tεt−1 +
. . .+Θqtεt−q. As noise we take an i.i.d. sequence εt with symmetric 1.5-stable distribution, cf.
Figure 1 (upper left) for a simulation. In particular, this noise is non-degenerately regularly
varying in both tails with index 1.5. The results of Stelzer (2006) give that all examples below
are geometrically ergodic. Thus, we use arbitrary starting values for the MS-ARMA processes
and show the simulated values after an appropriate burn-in period only.

In the first two examples we presume that there are only two possible states of ∆ given
by ∆(1) and ∆(2) and that the transition matrix of the Markov parameter chain ∆ is

P =

(
p11 p12

p21 p22

)
=

(
p̄ 1− p̄

1− p̄ p̄

)

11



for some p̄ ∈ (0, 1). Thus, the stationary distribution is (π(1), π(2)) = (1/2, 1/2) and ∆ is
aperiodic and irreducible.
Example 5.1: Take p̄ = 3/4 and let us consider an MS-ARMA(2,1) process with the two
regimes given by the equations

Xt = 0.6Xt−1 − 0.3Xt−2 + εt + 2εt−1 and Xt = −0.5Xt−1 + 0.2Xt−2 + εt + 0.5εt−1.

Obviously the conditions of Lemma 4.7 are satisfied and so Theorem 4.1 in combination with
Lemma 4.4 shows that the MS-ARMA process is stationary and regularly varying with index
1.5. The simulation in Figure 1 (upper right) illustrates this, in particular, that the stationary
distribution is tail equivalent to the noise.
Example 5.2: Take p̄ = 3/4 and consider a real valued MS-AR(1) process with two regimes
given by the AR(1) coefficients Φ(1) = 1/2 and Φ(2) = 11/10, respectively. Although the
second regime is explosive and thus Lemma 4.7 is not applicable, we can still show stationarity
and regular variation. Regarding the conditions of Lemma 4.4, the only problem is (4.6), but
as we have only finitely many regimes, we can use the tools of Francq & Zaköıan (2001).
Define

Q =

(
p11Φ(1)

2 p21Φ(1)
2

p12Φ(2)
2 p22Φ(2)

2

)
.

Then one calculates ρ(Q) = (219+
√

23761)/400 ≈ 0.9328650868 for the spectral radius of Q.
Tedious but elementary calculations along similar lines as the arguments in Francq & Zaköıan
(2001) (cf. Stelzer (2005, Theorem 5.23)) show that ρ(Q) < 1 implies that (4.6) holds with
β = 2. Thus, all conditions of Theorems 4.1 and 4.3 are satisfied. Again, the simulation in
Figure 1 (lower left) illustrates the fact that the MS-AR process is regularly varying (with
index 1.5) and the stationary distribution is tail equivalent to the noise.

Of particular interest is the downwards going spike at about time 1500, which obviously is
not caused by a large shock in the noise sequence ε. In fact, it comes from the autoregressive
coefficient being 1.1 over a rather long period. MS-AR(1) processes with finitely many regimes
where the tails of the stationary distribution are determined by such events were studied in
Saporta (2005). Our theoretic results show that the tails are, however, determined by the
noise in this example and it is also easy to see that this does not change, if we take any other
noise ε which is regularly varying with index less than two. However, using Saporta (2005)
and calculating the λ as defined in Theorem 1.1 (1) of this article numerically as λ = 2.8875
one obtains that the MS-AR(1) process given above with a different noise ε has a stationary
distribution that is regularly varying with index 2.8875 provided ε0 ∈ Lr for some r > 2.8875.
In this case not the noise but the possible occurrence of explosive regimes determines the tail
behaviour. The regularly varying tail behaviour can be seen in Figure 2 where the process is
simulated with a standard normal i.i.d. noise ε. Note in particular how the spikes build up
due to consecutive occurrences of the explosive regime.
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Figure 2: Simulation of the MS-AR(1) process in Example 5.2 with a standard normal noise ε

Observe also that we have obtained regular variation as a sequence for the MS-ARMA
processes with a regularly varying noise above, whereas the results of Saporta (2005) only
give that the stationary distribution is regularly varying in the tails. What happens for noise
sequences ε which are regularly varying with index two or greater and do not satisfy ε0 ∈ Lr

for some r > 2.8875 requires a detailed analysis which is beyond the scope of the present
paper.
Example 5.3: Finally, we consider an MS-AR(1) process with an uncountable state space for
the parameter Φ1t. Take a, b, c such that −1 < a < b < 1 and c > 0 and an i.i.d. sequence (ut)
uniformly distributed on the interval [−1, 1]. Then the evolution of the autoregressive coeffi-
cient shall be given by Φ1t = max (min (Φ1,t−1 + cut, b) , a), i.e. we choose the new parameter
uniformly from the neighbourhood with radius c of the old one, but do not allow it to leave
the interval [a; b]. Using Lemma 4.7, Lemma 4.4 and Theorem 4.1 one sees that the MS-AR(1)
process is stationary and regularly varying with index 1.5. The simulation in Figure 1 (lower
right) with a = −0.9, b = 0.9 and c = 0.05 again illustrates in particular the regular variation
and tail equivalence.

Observe that in the above examples one deducts immediately from (4.3) that both tails of
the stationary distribution of the MS-AR(1) process are non-degenerately regularly varying,
since this holds for the noise εt.
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