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Abstract— Driving as an incremental forming method can
create almost any 2D and 3D sheet metal parts using universal
tool sets. In this paper, stretching as an approach of the
driving is modelled through the three phases that are the
hybrid deformations, the material flows and the springback. In
comparison with the experiment results, the stretching model is
acceptable to be employed in the model predictive control that
can supply the optimal control input through minimizing the
objective function. The optimization problem is solved by the
use of the discrete dynamic programming. The optimal control
input results from the optimal path with minimal costs. The
according parameters that can affect the control output are
tuned to find out a reasonable combination of them that yields
rational control outputs.

I. INTRODUCTION

Driving is one of the oldest manufacturing methods. It
allows the creation of nearly any two or three dimensional
geometry using universal tool sets [1], which satisfies differ-
ent customer demands for product individualization [2].

Driving is an incremental forming process carried out by
relatively small, inexpensive C-frame presses. It has a high
degree of the interaction between tools and materials, in
which material properties are changed by work hardening
and where contact conditions are varied with every forming
stroke. After a multitude of strokes the shapes of work pieces
suffer from accumulated inaccuracies. In order to automate
this process, a sensor system was employed to get feedback
of state deformations of the work pieces [3][4]. Using a
fuzzy controller and a switching P-controller respectively,
the driving loop was closed to shape the sheet metal parts in
the desired forms. These two control strategies can be easily
implemented. But it is time-consuming to tune them for just
suiting the changing of the state parameters. Sometimes the
tuning could be unachievable. At this point,Model Predictive
Control (MPC) as a new control strategy is proposed to suit
for changing of system parameters and making the end forms
precisely.

Nowadays, MPC is a popular control strategy and widely
used in the process industry [5]. It uses a model of processes
to get a control law by minimizing an objective function. It is
a totally open methodology based on certain basic principles.

In section 2, the driving process will be modeled. Using
this model, the strategy, the algorithm and the results of
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MPC will be presented in section 3. The section 4 will give
conclusions and future works.

II. MODELING

Using the driving machine, the L-shaped metal sheets can
be stretched or shrinked in processes by means of hammering
strokes on the metal sheets. During every forming stroke,
the tools clamp the sheet and transform the vertical stroke
into horizontal movement and by that induce compressive
(shrinking) or tensile (stretching) stress into the sheet.So
the sheet can be bended at different positions into a given
2D form. The forming force can be applied manually or
automatically by tuning the stroke depth, which denotes the
distance between the upper and the lower tool part. In the
paper, only the stretching process will be modeled.

A. Geometry Approximation of L-Shaped Metal Sheets

Fig. 1. L-sheet with a bending angle at the stroke position

In Fig. 1, the L-sheet was stretched in the middle resulted
with a certain angle. It is seen that the L-sheet has the
two flanks and the transition zone between the both. In the
forming process, the material of the upper flank is extended
in the plain at the stroke position but in different rates. The
nearer the stroke points are located at the transition zone,the
less the material is elongated. The lower flank is orthogonal
to the upper flank and is therefore only bended through
the forming force of the upper flank. In order to make the
analytical modeling of the stretching process possible, itis
necessary to approximate the geometry of the L-sheet. For
the approximation, it is assumed that the length of the L-
sheet stays constantly. Hence, the L-sheet can be seen as
the combination of the two flanks that have a common edge
with a constant length and the transition zone is replaced
with constraints. Fig. 3 shows the deformations of the two
flanks after some strokes. The two flanks are constrained at
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Fig. 2. Approximated geometry model of the L-sheet (1).

the fiber with the constant lengthl0. In the flankπB , the
major strainǫ1B is calculated as follows:

ǫ1B =

∫ lB

l0

dl

l
= ln

(

lB
l0

)

. (1)

With the equationslB = θ(ρB + yB) and

l0 = θρB (2)

, the strainǫ1B is gained at the positionyB :

ǫ1B = ln(1 +
yB

ρ
) ≈

yB

ρ
. (3)

Identically, the major strainǫ1H in the partπH is yH/ρ.
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Fig. 3. Parameterization of the bended L-sheet for calculating strains. This
is the topview of the approximated geometry model (2).

B. Process of Sheet Metal Deformations

By a hammering stroke, the upper tool moves downwards
to the upper surface of the L-sheet and brings the force
into the L-sheet successively. There are three phases in this
total process. In the first phase, the two flanksπB , πH will
be formed till the flow limit of the material. The second
phase indicates the material flow procedure that happens
simultaneously in both flanks. With the decreased force on
the L-sheet, the two flanks spring back in the third phase,
which can also cause the reverse bending. In the following,
these three phases will be detailed described.

1) Hybrid Deformations of L-Sheets: In this phase, there
exist two forming steps that denote the hybrid deformations
of the two flanksπB , πH [6]. At the first step, the two
flanks are formed only elastically. The Hookes’s law yield
the stress-strain relation in the materialσ1 = Eǫ1 (E =
E/(1− ν)), that is to say, the stress increases proportionally
with the forming rates. If the stress exceeds the elastic limit,
the material goes into the plastic or flow phase. Hereby, a
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Fig. 4. Phases of deformations of the L-sheet at one stroke in stretching
processes. The time responses of the movements of the upper tool(top),
the forces on the surface of the L-sheet (middle) and the bending anlge
(bottom).

simple material model is used to interprete the adjoined two
steps. It has an elastic or a proportional part and a perfect
plastic part. At the second step, the flankπB stays elastically,
while the flankπH goes into the flow. The major stressσ1H

in the flankπH has a constant flow stressSH . Till σ1B = SB ,
the flankπB begins to flow. After these two steps, the L-sheet
has been already formed in the small angleθ [6]:

θ =
2SH l0

ET
. (4)

The force limitFf can be calculated in the following [6]:

Ff =
1

4
(2BSB + HTSH/B). (5)

If the horizontal force on the surface of the L-sheet is greater
thanFf , the forming process goes into the second phase.

2) Procedure of Material Flows: Although the L-sheet
is totally in the flow phase, the flankπH is formed only
passively and can be ignored because of its small deforma-
tion energy. But it must exist for keeping the constraints to
continue the forming of the flankπB . The figure 5 shows
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Fig. 5. Flat strain-stress states on the L-sheet under the horizontal velocity
of the toolVst



the plane stress on the flankπB :

ǫ1; ǫ2 = −ǫ1; ǫ3 = 0; (6)

σ1; σ2 = 0; σ3 = 0;

with the constraints

ǫ1 |y=0 = 0; ǫ̇1 |y=0 = 0, (7)

where ǫ̇1 is the velocity of the deformation that is defined
by the velocity of the displacementv1

ǫ̇1 =
∂v1

∂x
. (8)

The velocity of the displacement can be evaluated through
the velocity of the tool in the horizontal directionVst

v1 =
2Vst

Bl0
xy. (9)

Hereby, the velocityVst is approximated by

Vst =
1

2

∂Hst

∂t

∣

∣

t=t∗
0

, (10)

and it stays constant in the flow time interval. Altogether,
the velocity of the deformatioṅǫ1 is calculated as follows:

ǫ̇1 =
2Vst

Bl0
y. (11)

In order to gain the bending angle, the strain at the boundary
of the flankπB is determined in a time interval∆t

ǫ|y=B =

∫ ∆t

0

ǫ̇|y=Bdτ = ǫ̇|y=B∆t. (12)

It should be denoted that the velocity of the deformation
keeps constant in the time interval∆t. The figure 4 shows
the time response of the upper tool movementHst(t), the
force on sheetsFH(t) and the bending angleθ(t). Along the
response till the timet0, the upper tool contacts the surface
of the sheet. At the time pointt0, the slackness between the
sheet and the tool is removed and the lower tool does not
slacken any more. Since this time point

t0 =
1

ω
arcsin

(

Ast + ∆h

Ast + h

)

, (13)

the force on the sheet rises linearly to the maximumFm and
then falls off. Hereby,∆h indicates the slackness between
the upper tool and the sheet and the slacked offset of the
lower tool. It is formulated as follows:

∆h = ξ
H + h

Hr + h
h, (14)

where ξ is the transfer factor that describe the effect of
the initial movements of the tools in vertical and horizontal
directions, in which the slackness disappers and the tools
don’t slide on the surfaces any more. The reference distance
H + h is brought in the calculation because the tool moves
itself from a reference position. The valueH andh can be
arbitrarily chosen in the valid intervals with suitableξ. Since
the time point

t1 =
1

ω

[

π − arcsin

(

Ast + ∆h

Ast + h

)]

, (15)

the upper tool leaves from the surface. In the time interval
[t∗0, t

∗

1], the material flows when the forceFH on the surface
of the L-sheet exceeds the limitFf (Eq. 5) and

t∗0 =
Ff

2ηFm

(t1 − t0) + t0, (16)

t∗1 = t1 −
Ff

2ηFm

(t1 − t0), (17)

whereµ is the friction coefficient. The friction state in the
driving process is normally very complex and varies after
every stroke. Especially, the surface roughness is changed
higher after the first stroke than after the subsequent strokes.
With Eq. 2 and 12, the bending angleθ is determined:

θ =
2Vst

B
(t∗1 − t∗0). (18)

In addition, the deformationǫ2 denotes the necking at the
flank edge reasonably (5).

3) Springback and Reverse Bending: If the forceFH falls
belowFf , the bended L-sheet springs back. To calculate the
springback angleθz, the similarity law of triangles is used
on the flow curve [6] and

θz =
SBL

EB
. (19)

Actually, the flankπH has also a springback angle that ist
different from θz, so that the flankπH should be bended
back to find a new forming balance. Because the springback
angles are even very small, the reverse bending is ignored
here.

C. Evaluation

In this section, the model will be evaluated with stan-
dardized L-sheets, the force progression on stroke depths
(Fig. 6(a)) and the stress-strain curve of the flat drawing
(Fig. 6(b)). From the force progression, the force maximum
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Fig. 6. Force progression on stroke depthes (left); Stress-strain curve of
flat drawing (right).

Fm in the time interval[t0, t1] can be determined by the
input stroke depthh. With the help of the stress-strain
curve, the flow stressSB is updated after every stroke,
although the elastic, perfect plastic material model was used
in the first phase. The flow stressSH lies always on the
0.2% plastic limit Rp0.2 because of almost no changing
of it. Additionally, the friction coefficient of the L-sheetis
formulated as follows:

µ =

{

µ0 t = 0
µ1 + µ2 · Rand() t > 0

. (20)



A stochastic functionRand() is employed to simulate the
stochastic change of the surface roughness from one stroke
to another stroke. Fig. 7 shows the results of the simulations
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Fig. 7. The results of simulations and experiments (with parametersB =

35mm, H = 50mm, T = 1.17mm, l0 = 9mm, E = 210000N/mm2,
ν=0.3, ξ = 0.85, H = 23.5mm, h=2mm,µ0=0.15,µ1=0.33,µ2 = 0.5).

in comparison with the results of the experiments. It is to
be seen that the most differences of the bending angles lie
under±0.2o (The material breaks already down after about
15 strokes).

Althrough many approximations were done in the model-
ing, this mathematical model has showed its relatively high
accuracy with respect to the experiments. It describes the
stretching process besser than a FEM model and suitable for
model based implementations.

III. MODEL PREDICTIVE CONTROL

A. MPC Strategy

At present, MPC as a popular control strategy is widely
applied in process industry. MPC uses a model to predict
outputs according to control inputs. In order to reach the set
point ys, a reference trajectoryyr(k) is planned from the
current outputyo(k), namely,

yr(k) = fr(yo(k), ys). (21)
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Fig. 8. Strategy of MPC.

The control inputu(k) must be carefully calculated. For
it, an objective functionJ(k) can be given. It should contain
predictive errors in the predictive horizonP and terms about
the control inputs. The general objective function is defined
as follows:

J(k) = ‖yp(P ) − yr(P )‖2
Q +

P
∑

k=1

‖yp(k) − yr(k)‖2
Q

+

L
∑

k=1

(

‖u(k) − ur(k)‖2
R + ‖∆u(k)‖2

S

)

, (22)

where‖ • ‖2
Q is the weighted 2. norm withQ. With tuning

the weightsQ, R and S, each term can contribute toJ(k)
comparably. The predictive horizonP and control horizonL
can be identical. In practice, good results can be gained ifP
is greater thanL. The both horizons can be chosen neither
arbitrarily short nor arbitrarily long, because the prediction
doesn’t hold steady any more with a too short horizon and
the long horizon slows down the prediction. Additionally, the
model errore(k) = yo(k)− ym(k) will be incorporated into
the predictoryp(k + 1) = ym(k + 1) + g · e(k), whereg is
a weight.
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Fig. 9. Closed loop control of MPC

MPC control strategy can be used for a linear model
and also a nonlinear model. The reference trajectory should
be planned rationally due to output limitations. For opti-
mizations analytical solutions should be firstly researched,
because numerical methods can only supply approximated
results. If there are no analytical solutions to be found out,
the numerical methods are applied, which is profitable for a
time discrete system. The optimal control input is renewed
at each step, so that the effect of disturbance is held as little
as possible.

B. Formulation of the Control Problem

In section II, the stretching process is modeled that it has
elastic deformations in the both flanksπB and πH , plastic
deformations in the flankπB and in the both flanks as well as
the springback. Hereby, only the totally plastic deformations
are oberserved and formulated in the following:
Phase 1:

θP1 =
2SH l0
ĒT

(23)

θS(n −
1

2
) = θS(n − 1) + θP1 (24)

SB(n −
1

2
) = S

(

BθS(n − 1
2 )

l0

)

Ff =
1

4
(2BSB(n −

1

2
) + HTSH/B)



Phase 2:

θP2 =
2(Ast + h(n − 1))

B
(
π

2
− φ) cos φ (25)

θS(n) = θS(n −
1

2
) + θP2 (26)

SB(n) = S

(

BθS(n)

l0

)

φ =
Ff

µf(h(n − 1))
(
π

2
− γ) + γ

γ = arcsin

(

Ast + ∆h(n − 1)

Ast + h(n − 1)

)

Phase 3:

θP3(n) = θP1(n) + θP2(n) −
SB(n)L

EB
(27)

In this mathematical model, the elastic forming is ignored
and the output from the model is not null although the control
input (stroke depth) is null, because the plastic deformations
have already happened even only with null stroke depth but
from certain reference positions. Actually, the control input
stroke depthh has a limitation because of the machinery
restraints. Hence, the output bending angleθP3 has also a
limit and it is stochastic because of the modelling of the
friction coefficient (Eq. 20). To get the optimal stroke depth
at every stroke, it is necessary to resolve the optimization
problem according to the model and the objective function.
Unfortunately, the model is nonlinear and it is also difficult to
linearize it. The dynamic programming is a powerful method
and can deal with the nonlinearity of the model and the
limitations at the input/output.

C. Diskrete Dynamic Programming

In the phase of the optimization, the optimal control input
is determined by minimizing the objective functionJ(k):

u(k) = argminu(k)J(k). (28)

For a time discrete model, the discrete dynamic programming
(DDP) is preferred [7].

1) Principle: For a dynamic optimization problem, the
states x(0) = x0 are transfered in a end condition
g[x(P ), P ] = 0 with respect to the restrictions. In the
figure 10, the principle of the optimality is clarified. There
are two parts of the optimal state trajectoryxopt(n). In
the part 2 the statesxopt(n1) go onto the end condition
along the optimal trajectory 2. If there could exist another
optimal trajectory 3 with less costs, it is inconsistent with
the indication of the optimal trajctory with minimal costs.
The feature in the demonstrated optimality principle delivers
a path to calculate the optimal trajectory numerically, so
called ”dynamic programming” (DP). A direct application
is to solve combinatorial problems that indicate multi-stage
determination problems. The determinations lie on each state
from one stage to another stage, which is really connected
with certain costs. The target of optimization is to find
the shortest path with minimal costs from a initial stage
to a final stage. In order to make numeric analysis of

x0

1
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x nopt(  )

x nopt(   )1
g x N N[ ( ), ]=0

Fig. 10. Clarification of the optimality principle of the dynamic program-
ming.

multi-stage procedures possible, the valid state fieldX (k)
and the valid control fieldU [x(k), k] are discretized in
terms of appropriate grid points. The discretization interval
∆x(k) and∆u(k) should be suitably chosen depending on
formulated problems and desired solution accuraries. With
the help of the discretization, the multi-stage procedure of DP
is preformed in the following. The use of a discrete control
input u(k) on one discrete statex(k) goes into another state:

x(k + 1) = f [x(k), u(k), k] (29)

of the stagek+1. Actually, there are many transitionsu(k) at
every state pointx(k). Consequently, optimal control value
can result from direct comparisons of these transitions, so
that the destination of the global minimum is guaranteed for
the one-stage optimization. The multi-stage procedure leads
then to a global minimum of the multi-stage optimization
problem, because DP checks indirectly all the possible com-
binations of the transitions. This global minimum refers to
the discrete problem and therefore shows an approximation
of the solution of the initial control problem. But for the
adequate small discrete intervals, the approximation can be
arbitrarily created. The end conditiong[x(P )] = 0 must be
extended because of the discretization. A tolerance band±δ
about the end condition is constructed by the definition of
following setG = {P|∃β : |x(P ) − β| ≤ δ,g(β) = 0}. If
x(P ) ∈ G, the control goal could be achieved in terms of
discrete problems.

2) Creation of the Objective Function: With respect to
the equation (Eq. 22), the objective function of one-stage
optimizations is specified for the stretching model as follows:

J(k) = Q(yp(k) − yr(k))2 + R(u(k) − ur(k))2 + S∆u2,
(30)

in which ur(k) is the reference control input (stroke depth),
which can bring the sheets in a certain state with little
distortion and anisotropic residual stresses. Furthermore, the
control input can not change very huge in comparison to the
last input, otherwise the material will break down earlier.
The result from minimizingJ(k) is a optimal control law
that is available in table form: for each grid pointx(k) the
respective discrete control valueu(k) is known as the optimal
transition to the next time pointk + 1. If an optimal control
trajectory would derive from this control law, the cases can
appear that the statesx(k + 1) either lie out of the valid
state fieldX (k) or don’t overlap any grid point of the stage



k + 1. In the first case, the transition will be disregarded.
In contrast, an interpolation will be applied for the second
case. The ”nearest neighbour” interpolation is the simplest
method, while the linear interpolation is also implemented

JL(k) =
(y(k) − y1(k))

(y2(k) − y1(k))
(J2(k) − J1(k)) + J1(k), (31)

whereJ1(k) andJ2(k) are the costs resulted fromy1(k) and
y2(k) respectively. The current outputy(k) is then replaced
by the nearest point (y1(k) or y2(k)), so that no exploded
calculations would come up.

3) Calculation of the Control Input: To determine the
optimal control input, the path from the initial state point
to the desired state point with minimal costs must be found
out. For this purpose, the cost matrixC is firstly generated
to clarify the transitions from one time point to another time
point graphically, that is

























∞ c2,1 c3,1 · · · ci,1 ∞ · · ·
c1,2 ∞ ∞ · · · ∞ ci+1,2 · · ·
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...
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...
. . .

...
...

...
c1,i ∞ ∞ · · · ∞ ci+1,i · · ·
∞ c2,i+1 c3,i+1 · · · ci,i+1 ∞ · · ·
...

...
... · · ·

...
...

. . .

























,

(32)
where ci,j = cj,i. Furthermore, the Dijkstra’s algorithmus
[8] is employed to get the shortest path with the use of the
cost matrixC.

D. Results

In this section, it is to test how highly the responsible
parameters affect the control output. In the one-stage ob-
jective functionJ(k), there are three available terms that
are weighted withQ, R and S respecitvely. The results
will show whether they really contribute something to the
objective function. Normally, a fixed length of prediction
horizon (PH) will be held. Against it, the results with a
changingPH will be also gained. The ”nearest neighbour”
(NN ) and linear (LN ) interpolations (IP ) will be tried
to determine which method can render besser results. The
reference trajectory (RT ) will be given, because there could
exist a referencing sequence of strokes according to the
material features. At last, the discretization interval will be
scaled down to find the compromise between solution accu-
racies and calculation complexities. Because of the stochastic
modelling of the friction coefficient, the meanE(θP3 − θr)
and the varianceσ2(θP3 − θr) are chosen to present the
results.

The length of the predition horizon refers to an effictive
parameter. Normally, the MPC can only supply worse results
with a short horizon. This doesn’t denote that the besser
results could be gained with a longer horizon. From Tab. I,
besser control outputs result fromPH = 3.

With the addition of the term∆u2(k) in the objective
function, the control outputs can be advanced obviously. This

TABLE I

THE RESULTS FOR CONTROL OUTPUTS FROM DIFFERENT PARAMETERS.

Q S R PH IP RT ∆y ∆h E σ

1 0 0 1 NN 0 0.5 0.5 0.1786◦ 0.0911◦

1 0 0 2 NN 0 0.5 0.5 0.1727◦ 0.0477◦

1 0 0 3 NN 0 0.5 0.5 0.1475◦ 0.0575◦

1 0 0 4 NN 0 0.5 0.5 0.1616◦ 0.0217◦

1 0 0 5 NN 0 0.5 0.5 0.2033◦ 0.0216◦

1 0 0 6 NN 0 0.5 0.5 0.2018◦ 0.0415◦

1 1 0 3 NN 0 0.5 0.5 0.0851◦ 0.0336◦

1 1 1 3 NN 0 0.5 0.5 0.0753◦ 0.0146◦

1 1 1 3 LN 0 0.5 0.5 0.0231◦ 0.0224◦

1 1 1 0 LN 0 0.5 0.5 0.0564◦ 0.0549◦

1 1 1 3 LN 1 0.5 0.5 0.0240◦ 0.0132◦

1 1 1 3 LN 0 0.1 0.1 0.2018◦ 0.0920◦

term has the ability that no huge difference can appear be-
tween two consequent control inputs. In this regard, the ma-
terial features are changed constantly and the supplementary
measurement variations are largely reduced. Furthermore,the
term (u− ur)

2 is inserted in the objective function, because
in the opinion of the forming technique the material features
can be changed consequently with a suitable stroke depth.
Hence, with a reference stroke depth, the control output
is then a little advanced. Compared with the results from
”nearest neighbour” interpolation, the linear interpolation has
improved the results significantly, because the transitioncosts
are calculated more accurately.

If the prediction length is decided by the valid prediction
stages, the results are obviously worst (PH = 0). The reason
for it is that the predition horizon would be very short at
the last strokes. In order to create a good functionality of
the material, a reference trajectory of stroke depths can be
provided (RT = 1). The quality of the control outputs stays
almost unchanged. That is to say, if possible, such a reference
trajectory should be given.

The discretization can play a role. Theoritically, more
accurate control outputs can be obtained with smaller in-
tervals. But in practice, it is to be seen that the worse
outputs result from the smaller discretization intervals.The
reason for it is that the transition costs varies hugely at
a same transition compared with from the large intervals.
Hereby, it presents a problem of the inductance coupling
of the discretization intervals and the weights. The both
parameters should be matched. Additionally, the complexity
of DDP grows exponentially with the dimension of the state
vector and control input vector. Altogether, the optimal pa-
rameters in this paper is(Q,R, S, PH, IP,RT,∆y,∆h) =
(1, 1, 1, 3, LN, 0, 0.5, 0.5) Due to the coase discretization in-
tervals and the relativ short horizont, the online computation
is actually possible.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In the section II, the stretching process was modeled in
the three phases that contain the hybrid deformations, the



material flow and the springback. In comparison with the
results of experiments , the most differences of the bending
angle are less than0.2o, which is acceptable to be used in
MPC. The key issue of MPC is the optimization problem.
Because of the highly nonlinear discrete model, the powerful
method DP was implemented to gain the optimal control
input. It was also tested which parameters and how they
affect the control outputs. The meanE and the varianceσ2

were used to choose the parameters because of the stochastic
modeling of the friction coefficientµ. At this point, it should
be denoted that DP can handle a stochastic process very well.

B. Future Works

In this paper, a reasonable combination of the parame-
ters was found out. In the future, the paremeters will be
tuned finely to identify the appropriate domains and their
combinations. This could be achieved through an advanced
optimization using an objective function that has terms the
mean E and the varianceσ2 of the errors, for example
E · σ2. This denotes also the learning process, in which
E and σ2 are calculated from the past inputs and outputs.
Furthermore, a hybrid control strategy can practically gain
more advantages. In the future, MPC will be combined with
another control strategy (e.g. Iterative Learning Control). The
online experiments will be done in the next works.
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