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1 Abstract

One of the main goals of this work is to extend the concept of metamaterials to arbi-
trary waveguiding structures. Starting at the transmission line equations for composite
right/left-handed transmission lines (CRLH TL) it is shown that a pure description by
voltage and current restricts to a certain type of wave, normally the TEM mode, which
is not sufficient for a characterisation of arbitrary waveguiding structures. Hence, the
solution of waveguides in general is derived by a formulation in terms of fields. By intro-
ducing inhomogeneities to cylindrical waveguides, novel characteristics can be triggered
which cannot be attained with conventional materials. To highlight the contributions of
metamaterials to electromagnetic devices, the performance of conventional applications
is presented, in particular of leaky-wave antennas where the effect of metamaterials is
especially obvious. Typically, with the purpose to simplify production and analysis, these
modifications are realised in a periodical manner. Therefore, the Bloch-Floquet theorem
is employed facilitating the analysis of fields in periodic configurations such that the field
solution of the entire periodic cell continuation can be derived by the field solution of one
unit cell.

The second key contribution of this work is to obtain the eigensolutions of inhomoge-
neous periodic eigenproblems derived from the cylindrical waveguides, which are modified
in inhomogeneous manner. The eigensolutions are needed for characterisation reasons
and to promote an efficient design procedure. A modal series expansion is formulated to
express the field solutions of periodically loaded waveguides where purely analytical and
numerical computation procedures for solving eigenproblems encounter difficulties. In this
way, the field solution in cross sections of the waveguide transversal to the propagation
direction are achieved where a pair of transversal planes, also called port planes, define a
periodic unit cell. The eigensolutions for the electric and the magnetic field, respectively,
of the background waveguide supply the basis functions in the series expansion. For
simple host waveguides, these eigensolutions can even be given analytically. If more com-
plicated configurations are concerned the 2D eigensolutions for the host waveguides can
be gained numerically by employing a computer simulation tool such as CST Microwave
Studio (CST MWS). The weighting coefficients in the series expansion are constituted by
the amplitudes of the modes in the port planes, which are obtained by considering the
coupling of the modes in the unit cell. The relation can be described by the transfer or
T-matrix. The T-matrix is chosen because it can be utilised to formulate a linear eigen-
value equation. Another advantage of the T-matrix is that it is related to the scattering
or S-matrix, which is a common quantity to describe the physical properties of electro-
magnetic devices by waves. The S-matrix is conveniently obtained by measurements or
in any numerical computation. Therefore, the field solution of the 3D unit cell is com-
puted in a driven full-wave simulation and in this way the cumbersome computation by
a numerical eigensolver is circumvented. Another decisive factor is that the excitation by
few modes suffices to gain the field solution for closed waveguiding structures which are
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mostly operated in the fundamental mode to ensure stable working. Thereby, the final
eigenproblem is reduced tremendously and can be solved by conventional means without
any difficulties.

Since the eigensolutions of the cylindrical host waveguides serve as basis functions they
are derived from Maxwell’s equations and are studied in particular because basis functions
must fulfill requirements of completeness and orthogonality. Eigenproblems which allow
separation of variables with the product ansatz result in 1D coupled scalar eigenproblems,
which are of Sturm-Liouville type. The solutions of Sturm-Liouville problems feature
the desired properties of orthogonality and completeness. Moreover, the orthogonality
principle is generally regarded for vector quantities which is for ubiquitous application.
With view to the subsequent realisations, the field solutions for the £ and H modes in
rectangular hollow waveguides and in the grounded dielectric slab as well as a shielded
three-layer structure are derived in particular.

By the introduced inhomogeneities, wave propagation is enabled even in the former
evanescent wave regime. For this reason, real energy transfer of evanescent modes is
examined required to apply a modal series expansion in the evanescent frequency domain.

Given that arbitrary waveguiding structures also include open region problems, the
needed comprehensive integral formulation is presented. With the aim to evade such an
integral evaluation, a tricky conversion is introduced by which the open field problem is
restored to a closed equivalence while maintaining the behaviour of the open configuration.
This is reached by placing an absorption layer in front of a closing metal shield. An alter-
native absorption layer is conceived which replaces the desirable perfectly matched layer
(PML) to avoid corresponding numerical problems. The influence and the performance of
the alternative absorbing layer is studied before it is applied to compute the modal field
solution of the grounded dielectric slab.

Having provided the theoretical background, practical realisations are inspected. First,
corrugated waveguides found in literature are evaluated by the modal series expansion.
With the purpose to relieve sophisticated hollow waveguide design, a CRLH waveguide
is implemented by substrate integrated waveguide technology. Its fundament is the Hqg
hollow rectangular waveguide mode which strongly resembles the equivalent circuit (EQC)
of the CRLH TL. By special but simple modifications a considerable value of the missing
series capacitance is achieved. This procedure is especially beneficial in many aspects in
contrast to microstrip realisations which make up the majority of metamaterial realisa-
tions. Another important aspect in metamaterial terms is perfectly manageable by the
Hip hollow waveguide mode design. It is the balanced state. Since the shunt resonance
frequency is already determined by the transverse geometry it remains to adjust the series
resonance by the longitudinal dimensions to result in identical resonance frequencies. The
crucial point is that the two parameters are decoupled from each other.

Based on similar concepts, two leaky-wave antennas are developed which feature broad-
side radiation by operation in the fundamental mode not achievable by conventional means.
To complement the family of arbitrary waveguiding structures, periodicities are introduced
in the grounded dielectric slab which is the prototype of the open waveguide kind. This is
however operated on higher space harmonics but by subsampling, the wavenumbers can
be reverted to the fast wave region in the visible range ascribable to the left-handed range.
Radiation in the entire upper hemisphere is proven for the metal-backed dielectric slab as
well, broadside radiation inclusive. Evaluation by the modal series expansion delivers the
corresponding dispersion behaviour and the modal field solution.
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In 1967, Victor Veselago [Ves68] theoretically speculated on the existence of “substances
with simultaneously negative € and p”, which is generally classified as left-handed (LH)
effect, and which is the origin of all research on metamaterials. Not until 2000, Smith et
al. [SPVT00] succeeded in demonstrating experimentally a structure exhibiting negative
¢ and p at the same time for a certain frequency range. Since the negative values result
from resonance effects in this structure they only appear close to the resonance frequency.
Moreover, the designed composition is lossy. An engineering approach to metamaterials
is attained by extending the well-known lumped-element equivalent circuit model used for
the analysis of transmission lines to the case of metamaterials. Since a realisation of purely
LH configurations is not possible due to natural right-handed (RH) physical effects the de-
sired properties of metamaterials are tried to emulate by employing lumped or distributed
circuit elements to set up the equivalent circuit (EQC) of a composite right/left-handed
transmission line (CRLH TL) [EIK02],[01i02],[CI02]. Equally, short-circuited or open
transmission lines can also function as the required inductors and capacitors [SMIN06].
The majority of up-to-date conceived CRLH TL configurations are based on microstrip
design and are therefore open.

Contrary to the designs based on microstrip technology, which are mainly restricted to
TEM-wave operation, the goal of this work is to expand the concept of metamaterials to
arbitrary waveguiding structures. By introducing inhomogeneities to homogeneous waveg-
uiding structures, characteristics can be generated which are unprecedented. By observing
the EQC of the Hjg rectangular hollow waveguide mode [ZB65], it is obvious that the
EQC strongly resembles the EQC of the CRLH TL apart from the missing series capaci-
tance. By only small modifications, the series capacitance can be introduced achieving the
aimed CRLH configuration. The EQC is well established and the physical nature of the
Hyy mode is inherent unlike microstrip compositions which only mimic the behaviour of
the CRLH TL. Further, by the unavoidable inhomogeneities in microstrip configurations,
part of the energy leaks into air. In antenna applications, this is even aspired but not
if the purpose is energy transfer, then leakage must be prevented. Hollow waveguides
offer here attractive solutions as they transport energy with little losses and they are
closed by themselves. Another important benefit of in particular an Hg mode waveguide
realisation is that operation in the fundamental mode can be ensured being stable and
predictable. One possible implementation, which exhibits the Hjg waveguide mode, is a
rectangular hollow waveguide with corrugated walls as analysed in [EK06]. However, such
a conventional hollow waveguide design is expensive and elaborate to fabricate and due
to the deep corrugations by no means a compact solution.

The design presented in [YCNT07] does also not seem to cater for a simple fabrication
procedure. The closed CRLH TL is derived from a stripline configuration and in order to
suppress radiation it is closed in a box-like manner. Hollow waveguide modes may arise in
the box-like construction. To avoid them the sidewalls must be placed as close as possible
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to the inner conductor leading overall to a structure of complicated shape.

In [DWO05], substrate integrated waveguide (SIW) technology is demonstrated facilitat-
ing hollow waveguide design in which the vertical side walls are replaced by lateral rows
of vias leading to light weight. The entire structure results as a miniaturisation of possi-
bly bulky hollow waveguides. Potential integration into microwave devices becomes easy.
With the aim to circumvent the complex fabrication of a hollow waveguide and being
economical, SIW technology is adopted and an SIW operating in the Hig rectangular
hollow waveguide mode is presented in chapter 7.2. Spurious radiation, as it is the case
for similar designs based on microstrip technology [YCNT07], does not occur due to the
closed configuration. The architecture in chapter 7.2 features periodic unit cells which
can easily be manufactured by multi-layer printed circuit technology [WEO08b],[WE09a].
By the special design a sufficient serial capacitance is achieved resulting in unit sections of
remarkably short lengths compared to wavelength complying well with the homogeneity
criterion of metamaterials. Consequently, refractive effects dominate diffraction of which
the effects are more difficult to handle. In the macroscopic view, the SIW architecture
shows a homogeneous overall behaviour.

Another issue in metamaterials, especially in those based on the CRLH TL theory, is to
attain the balanced state [CI06]. This means that the series resonant circuit and the shunt
resonant circuit are adjusted in a way that they reveal the same resonant frequency. A
design based on the Hiy hollow waveguide mode is advantageous in this respect, too. The
shunt resonant frequency is prescribed by the transverse dimension of the geometry and
the series resonant frequency can be tuned mainly by finding the appropriate longitudinal
length of the unit cell in propagation direction. The balancing process is thus handy
to manage. The CRLH SIW exhibits broadband matching in the balanced state. The
attenuation rate is well comparable to similar designs, despite low-cost dielectric substrate,
which is not particularly of low loss.

The balanced state can be characterised as a order resonance where the wavelength
appears to be infinitely long leading to a homogeneous field distribution within the SITW.
A homogeneous illumination of the waveguiding structure by the field is especially advan-
tageous with regard to antennas because a large aperture results in a high directivity. For
a periodically constituted closed SIW structure as described above, leakage would be an
undesired side effect. Nonetheless, it can also be implemented as open configuration and
can thus function as leaky-wave antenna. Leaky-wave antennas are not only attractive as
conformal antennas which makes them adequate for integration in radar applications or
in communication devices predominantly working in the microwave regime. Having a low
profile, they achieve a relatively high gain. Leaky-wave antennas belong to the travelling
wave type of antennas where the wave while propagating along the structure radiates a
certain part of the energy more or less in a continuous manner. The beam direction can
be shifted by merely sweeping the frequency. Hence, neither additional phase shifters
nor other complex feeding mechanisms are required. The scan direction of conventional
RH leaky-wave antennas is yet restricted to forward direction related to the propagation
direction of the wave. Only with metamaterial based leaky-wave antennas the scan range
can easily be extended while operation takes place in a single mode. Now, radiation is
feasible from close to backfire to nearly endfire including the broadside direction. The
latter is achieved if the antenna structure is balanced. Two leaky-wave antennas of this
kind are realised, one by multi-layer printed circuit design cf. section 8.1 and another one
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by single-layer printed circuit technology facilitating even more simple manufacturing cf.
section 8.2. The concept of the second leaky-wave antenna has been adopted by [DI09]
but the design of the slots does not account exactly enough for the currents flowing in
the upper metallisation. As a result, the bandwidth is narrower and the radiation perfor-
mance is worse.

Additionally to the STW based leaky-wave antennas, another antenna is conceived which
is based on a grounded dielectric waveguide cf. section 8.3. Conversely to the other re-
alisations, this kind of antenna is an inherently open configuration. It is supposed to
represent an arbitrary type of waveguides extending the limited range of modes exhibited
by SIWs derived from the Hig rectangular hollow waveguide mode. It also belongs to the
travelling wave kind of antennas. A grounded dielectric waveguide features a TM wave
with zero cut-off frequency as well as higher TE and TM modes, synonymic for H and
FE modes, respectively. In order to compare the dielectric slab antenna with the other
designs implemented in this work, TE wave operation is ensured. By introducing period-
ically repeated corrugations onto the dielectric slab, the radiation can be expanded until
backfire proving LH wave operation. Broadside radiation is also observed.

All realisations in this work favor H modes. The concept could also have been conceived
for TM guiding structures by analogous designs. However, to ensure stable operation in
electromagnetic devices operation in the fundamental mode is preferred. In a rectangular
hollow waveguide, the first electric mode is the F1; mode of which the cut-off frequency is
yet higher than of the magnetic fundamental mode Hyy and is therefore of less technical
importance. Instead, the Fy; mode could have been considered in a waveguide with circu-
lar cross section. However, the magnetic fundamental mode Hq; possesses a lower cut-off
frequency in a circular hollow waveguide and its propagation must be suppressed [MG92].
For these difficulties with respect to electric mode types, magnetic mode types are chosen
for the configurations particularly the Hip mode. By selecting the first TE mode, the
dielectric slab was not operated in its fundamental mode. However, this structure was
basically investigated in order to demonstrate the advanced simulation method realised
in this work. Equally, cross coupling to the fundamental TM mode is not an issue for this
kind of structure.

The accomplished waveguiding structures demonstrate different metamaterial-based
properties. They are implemented in a closed fashion to exhibit wave propagation con-
versely to the direction of energy transfer or show waves at certain frequency with an
infinite wavelength. The open SIWs working as leaky-wave antennas radiate in the en-
tire upper hemisphere by just scanning the frequency. Moreover, they perform broadside
radiation often not achievable by conventional leaky-wave antennas. Yet to theoretically
predict the performance of developed structures and to promote a straightforward design
procedure, an analysis is necessary yielding in particular the eigenvalues and eigensolu-
tions of the structures. A good tool of giving immediate insight into the physical meaning
of the eigenvalues is obtained by illustrating the eigenvalues in a so-called dispersion di-
agram. It distinguishes guided waves from leaky waves and also the attenuation rate of
the wave can be added. Therefore, the solution of the dispersion eigenproblems is of main
scientific interest in this work.
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The eigenvalues and the corresponding eigenmodes reveal the inherent traits of a struc-
ture and of any system without any kind of excitation. Once the eigenvalues and eigenso-
lutions are known the determination of the response of a linear system to every arbitrary
excitation can be reduced to the projection of the excitation onto the eigensolutions, what
is more or less trivial. This solution procedure is yet not often pursued in the field of numer-
ical electromagnetics since the numerical determination of eigensolutions and eigenvalues
is often of great computational expense. Instead, the direct solution of the problem with
the relevant excitation is mostly more efficient. In particular, since many eigensolutions
are needed for a sufficiently accurate description of complicated field problems.

The situation changes if a linear system is operated in a frequency range in which only
few eigensolutions are relevant, ideally just one. Resonators for instance mostly work on
their lowest resonance and waveguides transfer electromagnetic signals usually in the fun-
damental mode, for which single operation can be ensured in a certain frequency range.
This is for example the TEj( (transversal electric) or Hyy wave for rectangular waveguides
or the TEM (transversal electromagnetic) waves or quasi-TEM waves for multi-conductor
waveguides. Then, it is necessary to characterise the essential behaviour of the operating
mode but also of the neighbouring modes. For resonators, the eigenvalues are the reso-
nance frequencies and the eigensolutions are the corresponding field distributions within
the resonator. They need to be known for characterising the resonator with respect to
field strength, loss etc. For waveguides, the eigenvalues are pairs of frequencies and prop-
agation constant, e.g. w and -, and their relation for a waveguide mode is known as the
dispersion relation of the mode. This means that for waveguide problems many eigenval-
ues and eigensolutions need to be determined namely the complete dispersion relations of
all relevant modes in the frequency range of interest.

Waveguiding problems in general require to revert to numerical field computation meth-
ods. Nearly every numerical method can possibly be employed for solving eigenproblems.
Essential is that the basic discretised operator is regarded without any form of excitation
while describing the field problem and by taking into account the boundary conditions.
The eigensolutions are hence obtained as null space of the operator. Eigensolutions nor-
mally exist only for definite discrete frequencies or discrete pairs of frequency and propaga-
tion constant. In another interpretation, eigensolutions are such functions which are not
changed except for a multiplicative constant, the eigenvalue, if the corresponding operator
is applied to them. In this work, eigensolutions can be regarded in the first form, that
is the elements of a null space for an operator which depends on one or two parameters
(propagation constant, frequency) or either in the second way because the eigenvector
containing the field quantities on one side of a periodic unit cell is mapped by a factor,
the phase difference or the transfer matrix, onto the field quantities on the opposite side.

For solving waveguiding or rather dispersion problems, a 2D formulation is used in which
an exponential field dependence with a complex propagation constant along the waveguide
is assumed. This is exactly the mentioned eigenproblem with an operator, which depends
on the two parameters frequency and propagation constant. Examples for numerically
solving eigenproblems of the waveguide type are to find in [MZ89],[DP02],[SGG02]. In
[MZ89],[DP02], integral solver solutions are pursued whereas in [SGG02], the method of
finite elements (FE) is employed. Basic information for solving waveguide problems with
the FE method are also contained in [Jin02].



2D formulations of cylindrical waveguides, where material and geometry do not change
along the waveguide longitudinal axis, require rather few discretisation unknowns and are
relatively easy to solve. The problems become explicitly more difficult to solve if inho-
mogeneous waveguides are treated. Here, only such waveguides are considered which are
composed of cylindrical host waveguides with periodical perturbations. The periodical
modifications are used to alter the dispersion behaviour of the waveguide and generate
a truly new performance. Such a dispersion engineering is particularly employed in the
area of metamaterials [CI06],[EZ06]. The periodic configuration enables a formulation
of the corresponding eigenproblem based on the Bloch-Floquet theorem [Col91] that fac-
torises the field solution in a periodic and a non-periodic field part. Wave propagation
of the desired eigenmode is expressed by the non-periodic part and is implemented in
form of periodic boundary conditions. Numerical solutions of such problems demand the
discretisation of an elementary cell, where a 3D problem follows to solve. The numerical
description of such problems can fast lead to a great number of unknowns especially in
case of metamaterials, which mostly exhibit elaborate material and geometry variation
within small dimensions. All numerical eigenproblem solvers, which represent the opera-
tor equation in form of a linear equation system, require to solve such a linear equation
system. Thus, a problem of linear algebra results. Nowadays, a variety of diverse and
potent algebraic procedures already exist but in many cases nevertheless this potential is
not enough. Very efficient program packages for the solution of algebraic eigenproblems
are indeed even freely available [LSY98]. The most efficient algebraic eigenproblem solvers
are the so-called Krylov subspace methods [Saa92], which start with an error vector and
continue with building a Krylov subspace by subsequent matrix-vector products. The
eigenproblem is formulated as such in the subspace and finally solved. A comprehensive
description of the topic is to find in [Saa92]. For many problems, it is often still impossible
to find reasonable solutions and then, it is simultaneously not possible even to determine
the cause of the failure. This is especially the case for eigenproblems where the depen-
dencies of eigenvalue and frequency are not linear. Then the algebraic solution is not at
all satisfying and very tedious. Non-linear dependencies of the parameters are however
unavoidable in case of integral equation formulations or other open problems and local
numerical procedures with perfectly matched layer (PML) boundary conditions.

In [BSS10], the authors try to sort out the unphysical modes caused by the PML al-
ready during the solution process by using a-priori knowledge of the field pattern with the
purpose to improve the iterative Jacobi-Davidson algorithm, that is used e.g. in the nu-
merical eigensolver in CST MWS [CST11]. The method seems promising but the studied
structures are still simple. They do not contain any metal and are dielectric substrates
with air holes.

For these reasons, purely algebraic eigenproblem strategies are not pursued further
in this work. Instead procedures are searched which result in a simplification of the
algebraic eigenproblem or rather which completely circumvent the solution of an algebraic
eigenproblem.

A simplification of the algebraic eigenproblem can be achieved by diminishing the num-
ber of needed unknowns. Nevertheless, it is to be kept in mind that the structure of
the equation system, namely dense or sparse, plays an important factor with view to the
solution behaviour of the eigenproblem. In general, integral equation formulations need
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notedly less unknowns than local procedures like finite elements (FE) [Jin02], finite dif-
ference (FD) or finite integration technique (FIT), employed in the computer simulation
program CST MWS [WTMO08|,[CST11], but lead to fully populated equation systems.

Other methods, related to integral equation formulations in a certain sense, are Trefftz
methods [KW93],[Li07], which construct the solutions of the eigenproblem with particular
solutions of the corresponding differential operator in the infinite homogeneous space. In
this manner, the description of the problem can be reduced to the boundary and continuity
conditions on material and solution domain boundaries, similar to surface integral equa-
tions. If one succeeds in formulating the field solution with very few particular solutions
an eigenproblem results with very few unknowns. A special form of the Trefftz method is
the method of fundamental solutions or method of auxiliary sources, where the particular
solutions are created as solutions of sources outside of the solution domain [Kar01]. This
procedure is also known from the generalised multipole technique or multiple multipole
method [Haf90]. The difficulty of this procedure is yet the “right” choice of fundamental
solutions for general problems.

A very efficient formulation of inhomogeneous periodic eigenproblems can be achieved
if one arrives at constructing the searched eigensolutions with the eigensolutions of the
homogeneous background eigenproblem, the cylindrical waveguide. These are the eigen-
solutions of the host waveguide in case of periodically modified waveguides as considered
in this work. For many cylindrical waveguides such as hollow waveguides and layered
structures, the eigensolutions can be given analytically. The concept ideally applies to
the periodically loaded substrate integrated waveguides studied in this work. For more
complicated background structures, the eigensolutions can be computed by solving 2D
eigenproblems numerically. If the periodic boundary conditions of the inhomogeneous
problem can be placed in the homogeneous parts of the underlying structure it is possible
to develop the fields in the periodic boundaries by the eigensolutions of the homogeneous
case. The coupling of the fields at the boundaries can be computed by an adequate nu-
merical field computation method. The algebraic eigenproblem to be solved then just
comprises the expansion coefficients for the fields at the boundaries and it is mostly so
small that its solution is not a problem at all anymore. The main computation effort is
the determination of the coupling coefficients in form of a series of excitation problems,
where one homogeneous mode is excited at a time and the coupling onto all other modes
is to observe. This procedure is known as scattering (SMA) or transfer matrix approach
and is also used in [LBSW09]. In [LBSWO09], however, two pairs of perfectly magnetic
(PMC) and perfectly electric conducting (PEC) boundary conditions are defined in order
to gain a closed parallel-plate configuration with the TEM mode as fundamental mode.
Higher order modes are also considered. In this way, a 3D periodic configuration with
plane wave incidence is approximated. In [GRB00] a similar procedure is chosen but the
homogeneous modes are not only applied at the outer boundaries but also at sectional
boundaries within the solution domain. This method becomes critical if no suitable ho-
mogeneous waveguide sections can be used or if a great number of homogeneous modes
are needed for describing the field problem.

For the closed waveguide problems treated in this work, the solution set is finite and
the computation method is very well suited. Only few modes suffice for an accurate
solution of eigenvalues because the waveguides are particularly operated in a single mode,



the fundamental mode, to ensure stable working. However, for field problems with open
boundaries, an expansion of the fields in modes is difficult because the series expansion is
generally to be extended to an integral formulation, i.e. a continuous spectrum of modes,
what would be very cumbersome in a numerical implementation.

Nevertheless, the modal series expansion delivers approximate but good results com-
pared to reference data for hollow waveguide based leaky-wave antennas as in section 8.2
[WE10a] because the energy is mainly guided in the waveguide and only a minor part
leaks into the surroundings. However, the approximate computation can be improved by
a more advanced computation procedure, which will be a core contribution of this work.

The systematic analysis of open dielectric waveguides started with an increasing interest
in integrated circuits operated in the millimeter wavelength regime in the 1970ties. The
pure analytical solution of the eigenproblem requires comprehensive integral procedures.
Marcatili [Mar69] and McLevige et al. [MIMT75] analyse dielectric image lines by the effec-
tive dielectric constant method which supplies approximate eigenvalues but no complete
field distributions. Solbach et al. [SW77] instead present an exact formulation, where the
problem is embedded in a closed waveguide. The conversion from the open region prob-
lem into a closed problem type has the decisive advantage of being treatable by known
means and no demanding integration techniques are required. The problem is further
subdivided into subregions and the analytical solution is to derive for each subregion. A
successive matching of the boundaries finally delivers the desired results. Since dielectric
image lines are considered the guided waves are hardly disturbed by the PEC top shield
set in an appropriate distance. Mittra et al. [MHJ80] also transform the original open
region problem into an equivalent closed configuration. The fields are expanded into the
eigenfunctions of each subregion and the eigenvalues are obtained by mode-matching and
further improved by a variational method.

Derudder et al. [DdZ098],[DOdZvdB01] place a perfectly matched layer (PML) in
front of the PEC boundary in order to diminish its reflection properties. They get the
eigenvalue solution of the host waveguide analytically and employ the mode-matching
technique to solve inhomogeneous waveguide problems. The accuracy is enhanced com-
pared to [SW77],[MHJ80] while less modes are needed in the expansion. Bérenger de-
veloped the concept of the PML [Ber94] to truncate finite-difference time-domain lat-
tices in 1994. Later, the finite-element technique adopts the PML [WKLLO02] and shows
that it can be interpreted as an anisotropic simultaneously lossy and active layer. In
[DAZ098],[DOdZvdB01], the original open waveguide is treated as closed configuration
but by preserving the properties of the original open waveguide. The continuous eigen-
spectrum of the open region is transformed into a discrete set of substrate, evanescent and
so-called PML modes of the equivalent closed waveguide and can be handled by a series
expansion instead of a complicated integral procedure. The drawback of this procedure is
that it requires to find the analytical field solutions of every subregion and it is therefore
constrained in its application range. A purely numerical approach to find the eigenmodes
of the host waveguides would be plagued by the strange material composition of the PML,
active and anisotropic.

In this work, the idea from [DdZ098],[DOdZvdB01] is adopted and upgraded that it
becomes more practical. The open problem is closed by a PEC shield but an isotropic
lossy absorber is employed to suppress the reflections of the shield. The cylindrical back-
ground waveguide modes used for the series expansion can thus be easily computed and
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the series expansion concept with background waveguide modes can be used as discussed
before but now for open problems [WE11]. The result is a very reduced eigenproblem
which is easily solvable. The solution procedure perfectly functions for waveguide prob-
lems but would be inefficient for problems tackled in [LBSW09] or [SLWO05]. For field
problems where no homogeneous waveguide regions can be found or if a large number
of waveguide modes is required to describe the field problem, the expansion in modes
becomes difficult. Then, a direct frequency-dependent excitation is to prefer, where the
reaction of the system to the excitation is observed. From the course of the response
of the system, the resonance frequency can be determined. This procedure is pursued
in [EW10],[EWC11] employing the FEBI technique [EW06], where analogies to electric
circuits, resonators and to measurement techniques are utilised and which aims to solve
periodic problems in two or three dimensions. The eigenvalues and eigensolutions are de-
rived from the reaction of the system to the response. Similar approaches are pursued in
[Reu07],[Reu08],[Reu09],[Reull], where problems from mechanics [Reu07], homogeneous
waveguide problems [Reu08], Laplace problems [Reu09], [FYC09], and general Sturm-
Liouville problems [Reul0] are treated. The technique is yet not further explained in this
work since this work focuses on waveguiding architectures, where the modal expansion is
well suited.

The work is structured as follows: Chapter 3 provides the knowledge about state-of-the-
art metamaterials and reports about the performance of conventional leaky-wave antennas
to understand the benefits of metamaterial-based leaky-wave antennas as realised later.
Chapter 4 explains the modal series expansion procedure which is conceived to compute
the class of periodically composed metamaterial waveguides. The basis functions in the
modal series expansion are supplied by the eigensolutions of the cylindrical host waveg-
uides which are derived from Maxwell’s equations in chapter 5. The left-handed properties
created by the periodicities in the waveguides often refer to the frequency domain where
formerly no wave propagation has taken place. Therefore, as the series expansion is based
on effective wave contributions in form of energy, it is proven that the proposed computa-
tion concept is valid even in the evanescent frequency domain. Not only closed waveguides
are treated but equally open ones. Chapter 6 explains the difficulties in evaluating open
region problems. Section 6.2 presents a strategy to circumvent the complex computation
procedure. By a tricky conversion, the actual integral-demanding open problems can
fully and accurately be computed by a modal series expansion. The following chapters
concentrate on metamaterial realisations and evaluation of the modal series expansion
technique. It is tested on a waveguide found in literature [EKYGO05],[EKO06] in section 7.1
and on a realised closed waveguide implemented in SIW technology in section 7.2 but the
fabrication process is simplified tremendously by planar printed circuit technology. Fur-
thermore, leaky-wave antennas are computed being implemented by double-layer printed
circuit technology in section 8.1 and even simpler by single-layer printed circuit technol-
ogy in section 8.2. The last realised travelling wave antenna in section 8.3 is based on
a grounded dielectric slab, which represents the inherently open kind of waveguide and
there, the modal series expansion method computes efficiently the problem which actually
requires complicated integration. In the appendix 9, the singular value decomposition is
likened to the eigenvalue decomposition of matrices and the term pseudoinverse is ex-
plained. The matrix pencil method is also explained which provides reference data for
the computed eigenvalues.



3 Metamaterials

3.1 Maxwell’s Equations and Material Properties

The fundamental differential equations of electromagnetic theory are Maxwell’s equations
(MWESs) and were formulated by Maxwell in 1865 [Max92]:

V x H(r
VxE(
D(
B(

jwD (r)+J (r),
—jwB (r) — M (r),
=p(r),
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They completely describe the generation of electric and magnetic fields in a closed form by
charges and currents as well as the interaction between the two fields. All field quantities
are assumed to vary in time according to the complex exponential function e and are
location-dependent, i.e. E = E(r). Maxwell’s equations only are not sufficient. They
need to be complemented by the material relations which are in an isotropic linear medium
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D(r) =¢E(r) =B (1), (3.5)
J(r)=0E (r)+ Jexc (1), (3.6)
B (r) = pH (r) = prpoH (r), (3.7)

where Joyx (1) is assumed as impressed. The material parameters ¢, and p, are direction-
independent since isotropic media are assumed but they may depend on location. In the
anisotropic case, the material parameters would be tensors instead of scalar quantities.
The material parameters can also become complex to account for losses in materials. The
conductivity of a material can be described by the imaginary part of &, according to

jwereoE (r) + KE (1) = jweg <er —J%) E(r). (3.8)
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Common natural materials have ¢, > 1, u/. > 1 and € > 0, p/ > 0. ¢/ <0 or )/ <0
denote active materials. For classification, media can be sorted in a diagram such as
in Fig. 3.1, in which only the real part is considered. Media with a negative ¢/ are to
find as electric plasma or as metals at optical frequencies. A negative p,. is exhibited by
ferrimagnetic materials. In both cases, waves cannot propagate. To date, no combination
of negative €. and negative .. is known to exist in nature. The properties of the material
parameters are yet to expand since in 1967, a material with negative refractive index
has been derived theoretically by Victor Veselago [Ves68]. The history of metamaterials
began. A simultaneous negative permeability and negative permittivity demand to revise
physical laws. The characteristics of metamaterials are demonstrated with MWEs in
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Figure 3.1: The diagram of permittivity-permeability combinations.

simplified form, considered for plane waves e (k"= without sources, since any other

wave can be expressed by a superposition of plane waves. Inserting E = Ege3* 791 and
H = Hye 1+ into Egs. (3.1)-(3.7) without excitation, results in (u,, &, assumed to
be real)

RH case LH case
ik x B (r) = —wpolu [H (r) (39) ik x B (r) =wpolu,|H (r) (3.11)
—jk x H (r) = weoler|E (r)  (3.10) —jk x H (r) = —wepler | E ().

(3.12)

By comparing the RH case with the LH case we observe that —jk x E (r) and —jk x H (r)
point in opposing directions in the LH event. The Poynting vector, however, maintains
its direction. The wavenumber £k in a LH medium is negative such that phase and group
velocities become anti-parallel. Since k& < 0, the refractive index is negative in a LH
medium. In the RH case, the electric field, the magnetic field and the wave vector com-
pose a right-handed triad, which is anticlockwise or left-oriented in the LH case. To build
the triad, one now needs the left hand, which also reasons the origin of the name. Conse-
quently, physical laws as e.g. Snellius law are to upgrade. The speciality of LH refractive
behaviour was later theoretically utilised in a perfect lens by Pendry [Pen00]. Due to the
LH mechanism, originally evanescent waves are reinforced and waves are reconstructed
at the location of the focus. Thus, the traditional resolution limit can theoretically be
broken.

In theory, the LH material has already been deduced in 1967 whereas a practical imple-
mentation was difficult and required a long time to be accomplished. The breakthrough
of man-made realisation was achieved by Smith et al. [SPV*00] in 2000. The group
of physicists implemented an artificial effectively homogeneous structure consisting of a
particularly designed microstructure, where the wave does not resolve the constituents.
The material is composed of split-ring resonators (SRRs) and metal wires, as pictured
in Fig. 3.2. The behaviour of the structure can be described in terms of an equivalent
electric circuit. The electric field of an incident wave is parallel to the wire grid gener-
ating a current in the wires such that the magnetic field encircles the wires and a shunt
left-handed inductance Ly, is caused. The inductance may lead to an effective negative
permittivity. The SRRs can be modeled by a series capacitance Cr, and an inductor L, in
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Figure 3.2: Split-ring resonators and metal wires [SPV100].

parallel to Cf. The magnetic field of the incident wave stands perpendicular on the SRR
plane and interacts with the resonator such that it changes the permeability. The free
space in between can be described by the natural right-handed elements Lz in series and
Cpr in shunt. The corresponding simplified equivalent circuit is shown in Fig. 3.3. The
left-handed effect of equally negative permittivity and permeability can also be described
by a combined Lorentz/Drude dispersion model [Lorl6] and [Dru00] in physical terms.
The negative permeability only occurs if the SRRs are near to resonance and therefore
merely for a small bandwidth. The combination of both negative quantities may lead to a
negative refractive index with n = —,/g.p1,. The SRR composition performs a magnetic
response despite no magnetically conducting material is included. The fact contributes to
the definition of metamaterials which are the materials after (=meta in Greek) the materi-
als. They represent distinguished properties other than the materials they are composed
of. The SRRs work on resonances and are therefore strongly dependent on frequency.
Yet, they can be regarded as effectively homogeneous meaning the dimensions p of their
constituents are p << Ay, with A\, as the wavelength of the guided wave in the structure.
Therefore the electromagnetic wave only “feels” the macroscopic nature of the structure
and not the characteristics of the constituents. Atoms of a material are comparable, which
are not visible either.

Another realisation of metamaterials is offered by photonic crystals (PCs), of which the
mechanism is demonstrated in Fig. 3.4. They are operated in the frequency range where
the lattice period p is about a multiple of half a guided wavelength \,, p &~ \;/2. This
is in the Bragg regime where interferences take place. The wave notices the lattice and a
periodic setup is substantial. In contrast, effectively homogeneous compositions dominate
the long wave domain and no interference effects appear. The internal architecture does
not require periodicity for working. Here, periodicity is mainly employed to facilitate anal-

Figure 3.3: The equivalent circuit represents the left-handed effects due to the SRRs and the
metal wires.
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Figure 3.4: Photonic crystals mimic a negative refractive index and a flat lens enables focus-
ing [GAAT04].

ysis and fabrication. Effectively homogeneous materials exhibit refraction whereas PCs
feature scattering and diffraction. Nevertheless, it has been achieved to realise negative
refractive effects with photonic crystals [GAAT04] and [Not00].

In microwave engineering, according to the size of the components lumped components
with maximum p < A\;/4, quasi-lumped in the order of (A\;/4 < p < A;/2) and distributed
components (p > \;/2) are to distinguish. The difference is whether the phase variation
of the signal from the input to the output of the component is negligible or not. In the
distributed case, the wave character must be considered.

A rough overview has been given in this section to imagine a metamaterial and its
implementational possibilities. Literature, e.g. [CI06], provides further details. Many
realisations include microstrip technology and others which guide and function with TEM
waves. In this work, the aim is not to restrict to a special guiding type but to expand
the scope of transmission lines. The novel functionalities enabled by metamaterials can
furthermore reform electromagnetic devices such as antennas. This becomes especially
obvious with view to the leaky-wave type, which is focused on in this work. To understand
the benefits of metamaterial based leaky-wave antennas, the class of conventional leaky-
wave antennas and their performance is presented in section 3.4. First, the characteristics
of metamaterials are explained by means of transmission-line theory.
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3.2 Combined Right/Left-Handed Transmission Lines

Resonant-type LH architectures like SRRs have the drawback of being bandwidth-limited
and lossy. By analogy of backward waves and LH waves, a transmission line (TL) ap-
proach was published in 2002 by three goups: Eleftheriades et al. [IE02],|GE02], Oliner
[Oli02] and Caloz et al. [CI02],[COII02] almost at the same time. The advantage of
metamaterial TLs is that they can be engineered in planar configurations integrable in
microwave integrated circuits and planar printed circuit boards (PCBs). The TL theory
is well-established and promotes an efficient design of microwave applications. Yet, as a
pure realisation of left-handedness is not possible the combined RH-/LH TL forges ahead,
which is visualised in Fig. 3.5. The RH elements represent the natural physical effects
caused by currents flowing in the metallisations inducing magnetic flux proportional to the
inductance L'y Az and by voltage gradients between upper and lower metallisations con-
tributing to the shunt capacitance C,Az. The EQC of the RH TL is pictured in Fig. 3.6a.
At low frequencies, the RH elements with the inductance in series and the capacitance in
shunt tend to be short and open, respectively, so that the EQC is reduced to the LH ele-
ments (1/Cr) Az and (1/L1) Az in Fig. 3.6b. They are dual to the RH elements. In the
LH band, backward wave propagation occurs, while the energy still maintains its transfer
direction like in the RH case. Phase and group velocities are therefore anti-parallel. At
high frequencies, the CRLH EQC is dominated by the RH components as in Fig. 3.6a. It
is the conventional and known RH TL, where the wave propagates in the same direction
as the energy does.

The transmission-line equations for the RH case are well-known. For the CRLH TL the
EQC of the RH TL in Fig. 3.6a and the EQC of the LH TL in Fig. 3.6b are to combine
and the result is depicted in Fig. 3.5. A transmission line is assumed to consist of a
cascade of sections with length Az. For vanishing Az, the line is uniform with per-unit-
length impedance Z' = jwLy — UJJT/L and per-unit-length admittance Y’ = jwC}p — UJJT/L

1

!/
In order to simplify notation, for instance (C_L) is written in short ( L

L
considered. Applying Kirchoff’s current and voltage laws [Har01] for vanishing Az — 0,
the transmission line differential equations

). Losses are not

—au (. .,

—dr (. ]

Az ' Az

Figure 3.5: The equivalent circuit of a CRLH transmission line.
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Figure 3.6: Lumped-circuit model of the RH TL and the LH TL respectively.

are obtained. Decoupling both equations yields
YU - Z'Y'U =0, (3.15)

by considering forward wave progress with U = Ujye 7% in z-direction. The equivalent
gives the equation for the current

VI -Z'Y'T=0 (3.16)

with I = Iye™*. Egs. (3.15) and (3.16) correspond to one-dimensional Helmholtz equa-
tions. From both equations, the complex propagation constant v can be determined as

y=a+jB=VvZ'Y". (3.17)

The phase constant is the imaginary part of v given as

1 1
g = \l (wL}2 - w—C'L> (wC}ﬂ2 — w—L’L> (3.18)

and becomes real for (wL}Q — ﬁ) (wC}z — ﬁ) > (. « is in this case zero but a radicand
smaller than zero would yield a # 0 and 8 = 0. The complex propagation constant is
the characteristic quantity of the solution mode denoted as eigenvalue. It depends on the
angular frequency w and on the transmission line quantities. In Figs. 3.7a and 3.7b the
dispersion relation for 3 is plotted revealing where pairs of w and ( yield a solution set
to the eigenvalue problem. The phase constant in Eq. (3.18) can be purely real and a
passband emerges for the frequency range since v = j5. For the frequencies for which 3
is purely imaginary, it can be treated as v = « and a stop band arises, where no wave
propagation occurs. The sign is to maintain according to the reference wave direction.
Only the CRLH TL shows a stop band but not the pure RH or LH TL. No energy
is transported in the so-called bandgap that is illustrated in Fig. 3.7a. In contrast in
Fig. 3.7b, the dispersion graph of a so-called balanced structure [CI06] is not interrupted.
Precondition is the relation L'yC} = CRL} resulting in an identical resonant frequency
of the shunt wg, and the series circuit wy

Ws = Wsh- (319)
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The balanced frequency follows with

1
| Crino L, — Vs (3.20)

meaning a smooth transition from the LH frequency band to the RH band corresponding
to continuous wave propagation. With (3.19), the expression for the phase constant
simplifies to

/ 1
VR A S

It becomes evident that the first part described by the RH elements dominates the higher
frequency range and the second part composed of the LH elements governs the lower fre-
quency range.

At the transition point, the set wp, 5 = 0 induces particular performance for electromag-
netic devices. For a leaky-wave antenna, radiation in broadside direction occurs, which is
not easily achievable by conventional LWAs cf. section 3.4. In addition, it follows from
B = 0 the wavelength as A\ = %’r — 00, such that the field is evenly distributed along the

structure, whereas the group velocity is vy = (%)_1 £ 0.

® general case o, balanced case: L;C; =C,L;
max (@, @,
} bandgap <—— @, (ransition/
min(a, @,) \ balanced frequency
B B
(a) Dispersion curve showing a bandgap (b) Dispersion behaviour with wave
propagation throughout the frequency
range

Figure 3.7: The phase constant visualised in a dispersion diagram.

By dividing the differential equations Egs. (3.13) and (3.14) and substituting -y, the
characteristic impedance of the transmission line

Z/
o=\ ,F (3.22)

is determined. With the terms above and the impedance due to the LH elements Z; =

(3.23)
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The homogeneous CRLH TL with Az — 0 does not exist in nature, but CRLH TL with
finite Az can often be assumed to be effectively homogeneous in certain frequency ranges.
The electromagnetic wave does not “see” a perturbed structure what happens in the fre-
quency range where the wavelength is much larger than the inhomogeneities. The model
in Fig. 3.5 has an infinitesimal physical length Az [m] — 0 whereas in Fig. 3.8, the phase
along the unit cell in symmetric realisation is represented in terms of its electrical length
fp = A¢ [rad]. A physical length p is eventually ascribed to a practical implementation.
In particular, p refers to the length of one period in a periodical arrangement. In the limit
p = Az — 0, the unit cell of Fig. 3.8 is identical with the continuous model. In practice,
the LC-based CRLH TL is regarded as effectively homogeneous for waves if the dimension
of the unit cell is considerably smaller than the guided wavelength, p < A,/4 at least and
the electrical length of the unit cell is smaller than /2.

The structures considered within this work are periodically constructed architectures.
For their analysis, periodic boundary conditions can be applied to one cell of the periodic
network, and it suffices to find the solution for one preferably symmetric unit cell of the
CRLH TL depicted in Fig. 3.8 in reference to the Bloch-Floquet theorem cf. section 3.3.
V,, and I, are the total voltage and current amplitudes, i.e. the sum of the contributions
from the incident and reflected waves at the terminal plane n. The voltage and current
at the (n + 1) terminal plane are identical with the voltage and current at the previous
terminal apart from a propagation factor. The system in between the two terminals or
ports can be represented by an ABC D-matrix, hence it is

V, V, A B V,
n| _ n+1 _ n+1
()= ()= (& 2) (i) =

A—e® B Vier)
(e o) (1) o

from which an matrix eigenvalue equation arises for . For the symmetric unit cell of the
CRLH TL the ABC D-matrix is

(A B) _ <1+% Z(1+%)>7 (3.26)

7Y
¢ D Y 1+Z4-

or

and it renders the phase constant as imaginary part of

p= %cos1 (1 + Z2—Y) (3.27)

as nontrivial solution from the zero determinant. The procedure is well described in
[Col00] and [CI06] for instance. Eq. (3.27) simplifies to

cos(fBp) ~ 1 — @ =1+ Z2—Y (3.28)

by using a Taylor series approximation, which is permissible for an electrically small length
|Bp| = |A¢| << 1. In the general case, [ is then

oo ) o)
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Figure 3.8: The CRLH transmission line and its immitances.

which is identical to Eq. (3.18).

The waves, which progress in periodic compositions, are called Bloch waves. Together
with ~ or 3, the Bloch impedance Zp is referred to as characteristic quantity of them.
Like any other impedance quantity, Zp is defined by a voltage-current relationship, which
is at the terminal plane (n + 1) given as

v _ 2B
it D—A+,/(A+D)?—4

derived from Eq. (3.25) and by the exploitation of further relations [Col00]. The upper and
the lower signs refer to wave propagation in forward and backward direction, respectively,
provided that only one forward or one backward wave is regarded. The voltage-current
ratio is constant at the terminals of any unit cell in the TL. In case of the unit cell
(Z/2 =Y — Z/2), the Bloch impedance takes the form

250 — (3.30)

(ZY]2)2 + ZY
- .

In general, the Bloch impedance is a complex quantity. Since the real part of Zp corre-
sponds to real power flow Zg is commonly defined according to power flow considerations.
As the direction of power transfer is identical in the conventional right-handed case as
well as in the novel left-handed event, the sign of the real part of Zp is therefore equal as
well. In the bandgap, reactive power is present and Zp appears as imaginary number. If
power is complex, Zpg also arises as complex number.

The Bloch impedance is identical within a terminal plane in periodic repetition. The lo-
cation of a terminal plane can be set arbitrarily within one period and the Bloch impedance
varies within the period. The characteristic impedance of a homogeneous waveguide may
differ from the characteristic impedance of a periodically composed waveguide. In the ho-
mogeneity limit p — 0, Z,Y — 0 and the Bloch impedance in Eq. (3.31) for the periodical
network reduces to the characteristic impedance Z, of the homogeneous guide [CI06]:

. .| Z | Z!

Similarly, it is Zp = Z. for the balanced case, where Z; = é—,L = Zp = 1/%, since
L R

wse = ws (cf. Eq. (3.23)) suppressing resonance effects and the characteristic impedance

Zp = (3.31)
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becomes a frequency-independent quantity [CI06] providing matching over a wide band-
width.

With the practical realisation and a finite electrical length, a stop band emerges which
limits the LH band with highpass character in the lower frequency range and the lowpass-
like RH band at higher frequencies cf. Fig. 3.9. The combination eventually features
bandpass behaviour with wy as lower limiting frequency and with wgr as upper bound
to the consecutive stop band because |cos(Sp)| < 1. These frequencies deliver estimate
values for practical designs. Although having spoken of a filter-like behaviour metamate-
rials rather influence the phase than the magnitude of signals. However, an approach to
design a balanced CRLH TL from a Chebyshev filter due to their similarity is suggested
in [LMO7].
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Figure 3.9: Dispersion diagram for the balanced and unbalanced CRLH TL for a finite length.
Balanced: Lr = Ly =1 nH, Cr = Cp, =1 pF; unbalanced: Cp, =2 pF.

In this section, the waves on a transmission line have been explained, namely first for
continuous TLs with an infinitesimal unit cell and secondly for TLs with finite length
unit cells in view of practical implementations. LC-based unit cells can be restored to the
homogeneous state in the limit. The consecutive simplifications deliver conveniently good
first approximations. The transmission line model is always described via voltage and
current. The transmission line is typically realised in form of a TEM waveguide, if this
one is operated in its fundamental mode, the TEM wave with zero cut-off. On a TEM
waveguide, higher-order modes may also exist. On non-TEM waveguides like rectangular
hollow waveguides or dielectric waveguides, the lowest mode often exhibits a nonzero cut-
off frequency. For determining the characteristic quantities of arbitrary waveguides, it is
necessary to turn to a formulation by fields. For this purpose, various guiding architectures
and the associated waves are investigated, let it be RH waves, LH waves and also several
modes on one guide. The procedure is the following. For understanding waveguides in
general, the knowledge of modes on a homogeneous background material is provided first
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cf. chapter 5. The well-known waveguide theory is treated for hollow waveguides in es-
pecially to cover the case of a closed region with a finite set of propagating modes and
an infinite series of evanescent waves. Thereafter, discontinuities are introduced and the
behaviour of the resulting modes is examined. LH waves are generated in this fashion. By
this strategy, leaky-wave antennas are analysed and constructed as well. The modelling
gives a good approximation of the performance. As open waveguiding prototype, the
dielectric slab is studied on which again a finite set of propagating modes is promoted as
well as an infinite set of evanescent modes.

Contrary to the closed cross section, these modes are, however, not sufficient to describe
the waves on the corresponding periodically loaded metamaterial waveguides. In order to
achieve a complete representation of the fields, an integral over the continuous spectrum
of waves which are not bound to the homogeneous waveguide must be added.

3.3 Bloch-Floquet Theorem

Since a formulation by fields is recommended, an adequate suitable analysis method is
shown for fields in periodic configurations. Metamaterials are usually implemented period-
ically. Periodic structures, meaning periodic along the propagation direction e.g. along z
in a Cartesian coordinate system, allow the application of Bloch-Floquet’s theorem [Col91]
stating that the field solution is the product of a periodic function and a non-periodic term,
the propagation term, according to

E(Z) _ EP(Z) e—'yz Ep(z) — EP(Z + p) (3 33)
H(z) Hy(z) | Hp(2) Hy(z+p) |’ '
in which p denotes the length of a period and « the complex propagation constant. Thus,
by knowing the solution at one plane at zy in the structure, the solution at any plane
in the periodic array can be derived. With the periodic loading the traits are repeated
periodically as well.

Although the analysis of the periodic cell array can be broken down to only one unit
cell the analytical solution of a complex unit cell is often complicated till impossible to
compute. This truly applies to metamaterials, where material and geometry compositions
vary fast within small dimensions. The complexity and the extent of the analysis are
described in chapter 4.

3.4 Leaky-Wave Antennas

In the last section of this chapter, which presents the state-of-the-art related to this work,
leaky-wave antennas are examined. They represent an important antenna type, which is
supposed to demonstrate the peculiarities of metamaterials. The class of leaky-wave an-
tennas can further be subdivided into subtypes as uniform and periodic. A good overview
of leaky-wave antenna classes is provided in [0J07] and [GTRQP106]. In fact, metama-
terials do not need to be periodic but are nevertheless mostly constructed periodically
for simplification reasons. Since they operate in the sub wavelength regime they can be
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regarded as homogeneous in the macroscopic view. Yet before turning to leaky-wave an-
tennas based on metamaterials, the knowledge of the working and the performance of
traditional leaky-wave antennas is to convey not only to understand the improvements
enabled by metamaterials.

A leaky-wave antenna belongs to the travelling wave type of antennas and guides a wave
along its structure while permitting the wave to radiate power into the surroundings. Due
to the leakage, the propagation constant v is complex with an imaginary part as phase
constant S and a real part, the attenuation constant «. A large o means that the power
leaked away per unit length is big, which ends up in a short effective aperture length
and a large beamwidth. A small value of « leads to a large effective aperture provided
the physical length is sufficiently long. A long effective aperture in turn is known for a
high gain and a narrow beam. The fixed aperture primarily decides about the beamwidth
whereas the value of « strongly affects the efficiency of radiation. 90 percent of the power
should be leaked away while the mode propagates along the structure in order to yield a
proper radiation efficiency. A larger leakage rate would result in a strongly increased « at
the end of the antenna in order to have useful radiation contributions from these parts of
the aperture. The remaining power at the end should be absorbed by a matched load to
avoid the appearance of backlobes. Generally, the beam direction varies with frequency
like the phase constant such that scanning is acquired by changing the frequency. Thus,
no additional phase shifters are required. Leaky-wave antennas are mainly conformal with
a low profile that makes them easy to integrate into other devices or applications. The
early leaky-wave antennas are based on closed waveguides, which are “opened” by a cut
to let radiation take place. They were followed by already open waveguides operating
in the millimeter wave range, some of them are dielectric waveguides, groove guides,
microstrip lines etc. Nevertheless, the fundamental modes on the open waveguides are
typically bound meaning that no radiation occurs not even by inserting a slot. Instead,
introducing asymmetry or modifying the geometry are examples of measures to achieve
radiation.

3.4.1 Overview of Leaky-Wave Antenna Types

The uniform type of leaky-wave antennas reveals a uniform geometry along the length
of the guiding architecture. Its operation mode is fast and therefore radiates. However,
radiation is limited to the forward quadrant. If the antenna is strictly uniform the side
lobe level is considerably high. The drawback can be improved by tapering the geometry
which controls the amplitude of the aperture distribution. The difficult task is to modify
« slightly while keeping 8 constant along the antenna length to maintain constructive
interference in the desired radiation direction. This fact also applies to the periodic type.

The uniform type can be further subdivided as reported in [0J07] dependent on whether
it is air-filled or partially dielectric filled. For the two-material leaky-wave antenna, the
transition between the slow and the fast wave range is rapid, which occurs at endfire, and
thus, the beam directs very closely to endfire. The scan range is in general broader. The
single-medium antenna stays 10°-15° away from broadside and endfire and the frequency
sensitivity is rather inert. Its main advantage is that the beamwidth remains constant
while scanning [0J07]. The radiation directions are illustrated with Fig. 3.10.
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The periodic type of LWAs exhibits a slow dominant mode with 5y > kg, which does
not show radiation even though the structure is open. Only the introduction of a periodic
array produces an infinity of space harmonics with §,, for each of them. They are related
to each other by

2nm

Bn = Bo + P (3.34)

with d the period and [y of the fundamental space harmonic of the waveguide. The fast
ones of them radiate. With view to Eq. (3.34), (3, can adopt various values, the mode n
can be fast or slow, forward or backward. For being fast in nature, |3, /kq| < 1 is required,
but ‘,Bo/ko‘ > 1. With

b _ Po | mdo (3.35)

ko ko d
it is evident that |5, /ko| < 1 can result with n < 0 and adequate A\o/d. Since a stable
operation is demanded the design is to alter such that preferably merely the first harmonic
radiates, so n = —1 is chosen. The scan behaviour ranges from the backward quadrant
into some part of the forward quadrant, leaving an open stop band at broadside as ex-
plained in [0J07]. The range in the forward quadrant is limited by the emergence of the
n = —2 mode from backfire, endfire or the next waveguide mode emerging above the cut-
off frequency. The periodic discontinuities along the structure appear as small loadings.
If they are nonresonant a smooth antenna results and it seems to be quasi-continuous. In
contrast, the functional principle of slots in a slot array is based on resonance and they
are to be considered individually with mutual coupling effects. Their operation is very
dependent on frequency. A slot array is nevertheless good for rapid scanning but the scan

range of such an antenna is narrow.
/’ broadside \
re forward
i
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Figure 3.10: Beam steering enabled by tuning the operation frequency.

A surface-wave antenna is an open waveguide with a dominant mode purely bound.
Surface-wave antenna are just endfire antennas as radiation is generated only at disconti-
nuities such as the end [0JO7].
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Open waveguides, though they are already open, usually furnish a dominant mode that
is purely bound, no matter if their realisation is accomplished via a uniform or a peri-
odic design. As well as based on open waveguides is a group of travelling-wave antennas
which is formed by employing microstrip lines. The interest in leaky-wave antennas based
on microstrip lines arose in the 70ties along with the interest to work in the millimeter
wave domain and even higher frequencies. Well-known publications analysing modes in
microstrip lines are [Men78] and [Erm78]. New types of antennas were sought because
of the increase in losses with higher frequencies. Small dimensions often mean a limit in
fabrication so that novel manufacturing techniques are demanded. The connection to a
feed might cause spurious radiation and is therefore problematic.

The other category of leaky-wave antennas is constructed with closed waveguides. They
support a fast wave and operate on the n = 0 space harmonic but physical opening is
needed. One method to open them is to cut a long slit along their length, but the disad-
vantage is that it disrupts the current lines promptly with the consequence of a wide beam
instead of a narrow one. An alternative is to use a series of closely spaced holes instead,
such that the current can just flow around them. Moreover, due to the close distance
between the holes the structure appears as quasi-uniform. Since the closed waveguides
are simple in the cross section and easy to analyse, accurate expressions of the complex
wavenumber are easy to obtain. The feed junction produces only little spurious radiation.
The result is a remarkably good agreement between theory and practice [0JO7].

To sum up the most important traits of the different basic waveguides, open waveguides
feature a slow wave and need periodic modulations causing radiation. Yet their beam may
swing from the backward quadrant to some part of the forward quadrant. Closed waveg-
uides with introduced closely spaced holes provide a fast wave and seem quasi-uniform
with only the n = 0 space harmonic leaking. However, they reveal the disadvantage of
radiating only in the forward quadrant.

In conclusion, closed waveguides appear as good means to supply the basic concept
for metamaterials since they already provide useful prerequisites. The integration of
metamaterials in waveguides could diminish their drawbacks and together they might
even lead to unprecedented devices with novel functionalities.

3.4.2 Bound or Leaky Wave - Slow or Fast Wave

Whether the wave is just guided or additionally radiating while propagating along the
architecture depends on the mathematical nature of the wavenumber pointing perpendic-
ular to the antenna aperture. A representation by the wavenumber k is preferred for this
purpose, which is related to the propagation constant by v = jk. For illustration of the
radiation mechanism, a scalar plane wave representation is considered according to

W(x, 2) = hge HreTemik=2, (3.36)

The relationship of the wavenumbers is visualised in Fig. 3.11. The functional dependence
of the scalar wave potential is held generally and serves mainly for the demonstration
of the principle. The wavenumbers k. longitudinal and k, transverse to the structure,
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Figure 3.11: Radiated wave front with corresponding wavenumber components.

the wavenumber k, pointing into the space and the wavenumber of free space, which
furthermore denotes the light line with kg = tw,/epu, fulfill the separation equation

k2 + kL + k2 = k. (3.37)

Assuming a laterally constant field distribution in y-direction, k, = 0 is obtained (cf. sec-
tion 5.7) and Eq. (3.37) reduces to the two-dimensional case, the propagation constant in
x can be ascertained. Whether propagation or attenuation takes place two cases are to
distinguish, namely

if |ky| < ko, it is if |ks| > ko, it is
ky = +£\/kE — k2 (3.38) ky = +£\/kE — k2 (3.39)
with k., € Re. with k, € jIm.

Fig. 3.12 depicts the relation. If an imaginary k, results the corresponding exponent in
(3.36) becomes real and no wave propagation in x-direction occurs. Since k, = f; —jag, a
positive a, > 0 leads to wave attenuation with e~*** and a negative «, to an exponential
increase of energy for x — oo. As this is only acceptable within short distances but
physically not reasonable for x — oo, the wave is called improper. This topic is referred
to in detail in section 6.1.

From the radiation condition Eq. (3.38),

k.
ko >k, 