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Ī identity dyad
Im imaginary part
J electric current density
JA electric surface current density
jF electric surface current density (instantaneous quantity)
kx,y,z Cartesian components of the wave vector, wavenumbers
l length
L free-moving window length for the matrix pencil method,

inductance
L′ per-unit-length inductance
LL left-handed inductance
LR right-handed inductance
Lp inductance in parallel
Ls series inductance
Lsh shunt inductance
LH left-handed
LWA leaky-wave antenna
M number of waves, modes
M magnetic current density
MA magnetic surface current density
MP matrix pencil method
MWEs Maxwell’s Equations
n noise,

refractive index
n unit normal vector
p period or periodical length,

dimension
p generalised eigenvector
P power
PC photonic crystals
PCB printed circuit board
PEC perfectly electric conducting
PMC perfectly magnetic conducting
PML perfectly matched layer
qE eigenvalue of E mode depending on transversal geometry
qH eigenvalue of H mode depending on transversal geometry
Re real part
rB reflection coefficient related to the Bloch impedance
r position vector
r′ vector of source location
RH right-handed
S Poynting vector
Sij scattering parameter, relation between ingoing wave at port j to outgo-

ing wave at port i
S-matrix scattering matrix



vii

SIW substrate integrated waveguide
SMA scattering matrix approach
SRR split-ring resonator
SVD singular value decomposition
XT transpose of a matrix X
t time
tan δ loss factor
TE transverse electric
TEM transverse electromagnetic
TL transmission line
TM transverse magnetic
T -matrix transfer matrix
U voltage
Uf amplitude of forward travelling voltage wave
V mode voltage
v (eigen)vector
vg group velocity
vph phase velocity
w width
y representation of a signal
Y admittance
z = eγt , complex pole, eigenvalue of a matrix Z
z eigenvector of a matrix Z
Z impedance
ZB Bloch impedance
Zc characteristic impedance
ZF 0 = 120π Ω, field impedance of free space
ZF E characteristic impedance of E mode
ZF H characteristic impedance of H mode
ZL transmission line impedance
Zi(ku) impedance function for mode i dependent on wavenumber in u-direction



viii Symbols and Acronyms

α attenuation constant
β phase constant
δ Dirac impulse,

delta function distribution
∆ differential length
δm,n Kronecker symbol
ε0 = 8.854 · 10−12 As/(Vm), permittivity of free space
εeff effective permittivity
εm Neumann factor
εr relative permittivity
η efficiency
ϕ coordinate in the cylindrical coordinate system
φ electric scalar potential,

phase
γ propagation constant
Γ eigenvalue
κ sample distance
λ wavelength
λg guided wavelength
λ0 wavelength in free space
λHP W wavelength of a homogeneous plane wave
µ0 4π · 10−7 Vs/(Am), permeability of free space
µr relative permeability
ϑ coordinate in the spherical coordinate system
ρ coordinate in the cylindrical coordinate system,

electric charge density
ρA electric surface charge density
ρmA magnetic surface charge density
ρm magnetic charge density
σ electric conductivity
τ singular value
ω angular frequency
ω0 balanced frequency
ωpe electric plasma frequency
ωs series resonant frequency
ωsh shunt resonant frequency
Ω Ohm
ψ magnetic scalar potential
ψE z-component of magnetic vector potential
ψH z-component of electric vector potential

∇ Nabla operator, gradient
∇· divergence operator
∇× curl operator
∆ = ∇2 Laplace operator



1 Abstract

One of the main goals of this work is to extend the concept of metamaterials to arbi-
trary waveguiding structures. Starting at the transmission line equations for composite
right/left-handed transmission lines (CRLH TL) it is shown that a pure description by
voltage and current restricts to a certain type of wave, normally the TEM mode, which
is not sufficient for a characterisation of arbitrary waveguiding structures. Hence, the
solution of waveguides in general is derived by a formulation in terms of fields. By intro-
ducing inhomogeneities to cylindrical waveguides, novel characteristics can be triggered
which cannot be attained with conventional materials. To highlight the contributions of
metamaterials to electromagnetic devices, the performance of conventional applications
is presented, in particular of leaky-wave antennas where the effect of metamaterials is
especially obvious. Typically, with the purpose to simplify production and analysis, these
modifications are realised in a periodical manner. Therefore, the Bloch-Floquet theorem
is employed facilitating the analysis of fields in periodic configurations such that the field
solution of the entire periodic cell continuation can be derived by the field solution of one
unit cell.

The second key contribution of this work is to obtain the eigensolutions of inhomoge-
neous periodic eigenproblems derived from the cylindrical waveguides, which are modified
in inhomogeneous manner. The eigensolutions are needed for characterisation reasons
and to promote an efficient design procedure. A modal series expansion is formulated to
express the field solutions of periodically loaded waveguides where purely analytical and
numerical computation procedures for solving eigenproblems encounter difficulties. In this
way, the field solution in cross sections of the waveguide transversal to the propagation
direction are achieved where a pair of transversal planes, also called port planes, define a
periodic unit cell. The eigensolutions for the electric and the magnetic field, respectively,
of the background waveguide supply the basis functions in the series expansion. For
simple host waveguides, these eigensolutions can even be given analytically. If more com-
plicated configurations are concerned the 2D eigensolutions for the host waveguides can
be gained numerically by employing a computer simulation tool such as CST Microwave
Studio (CST MWS). The weighting coefficients in the series expansion are constituted by
the amplitudes of the modes in the port planes, which are obtained by considering the
coupling of the modes in the unit cell. The relation can be described by the transfer or
T -matrix. The T -matrix is chosen because it can be utilised to formulate a linear eigen-
value equation. Another advantage of the T -matrix is that it is related to the scattering
or S-matrix, which is a common quantity to describe the physical properties of electro-
magnetic devices by waves. The S-matrix is conveniently obtained by measurements or
in any numerical computation. Therefore, the field solution of the 3D unit cell is com-
puted in a driven full-wave simulation and in this way the cumbersome computation by
a numerical eigensolver is circumvented. Another decisive factor is that the excitation by
few modes suffices to gain the field solution for closed waveguiding structures which are
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mostly operated in the fundamental mode to ensure stable working. Thereby, the final
eigenproblem is reduced tremendously and can be solved by conventional means without
any difficulties.

Since the eigensolutions of the cylindrical host waveguides serve as basis functions they
are derived from Maxwell’s equations and are studied in particular because basis functions
must fulfill requirements of completeness and orthogonality. Eigenproblems which allow
separation of variables with the product ansatz result in 1D coupled scalar eigenproblems,
which are of Sturm-Liouville type. The solutions of Sturm-Liouville problems feature
the desired properties of orthogonality and completeness. Moreover, the orthogonality
principle is generally regarded for vector quantities which is for ubiquitous application.
With view to the subsequent realisations, the field solutions for the E and H modes in
rectangular hollow waveguides and in the grounded dielectric slab as well as a shielded
three-layer structure are derived in particular.

By the introduced inhomogeneities, wave propagation is enabled even in the former
evanescent wave regime. For this reason, real energy transfer of evanescent modes is
examined required to apply a modal series expansion in the evanescent frequency domain.

Given that arbitrary waveguiding structures also include open region problems, the
needed comprehensive integral formulation is presented. With the aim to evade such an
integral evaluation, a tricky conversion is introduced by which the open field problem is
restored to a closed equivalence while maintaining the behaviour of the open configuration.
This is reached by placing an absorption layer in front of a closing metal shield. An alter-
native absorption layer is conceived which replaces the desirable perfectly matched layer
(PML) to avoid corresponding numerical problems. The influence and the performance of
the alternative absorbing layer is studied before it is applied to compute the modal field
solution of the grounded dielectric slab.

Having provided the theoretical background, practical realisations are inspected. First,
corrugated waveguides found in literature are evaluated by the modal series expansion.
With the purpose to relieve sophisticated hollow waveguide design, a CRLH waveguide
is implemented by substrate integrated waveguide technology. Its fundament is the H10

hollow rectangular waveguide mode which strongly resembles the equivalent circuit (EQC)
of the CRLH TL. By special but simple modifications a considerable value of the missing
series capacitance is achieved. This procedure is especially beneficial in many aspects in
contrast to microstrip realisations which make up the majority of metamaterial realisa-
tions. Another important aspect in metamaterial terms is perfectly manageable by the
H10 hollow waveguide mode design. It is the balanced state. Since the shunt resonance
frequency is already determined by the transverse geometry it remains to adjust the series
resonance by the longitudinal dimensions to result in identical resonance frequencies. The
crucial point is that the two parameters are decoupled from each other.

Based on similar concepts, two leaky-wave antennas are developed which feature broad-
side radiation by operation in the fundamental mode not achievable by conventional means.
To complement the family of arbitrary waveguiding structures, periodicities are introduced
in the grounded dielectric slab which is the prototype of the open waveguide kind. This is
however operated on higher space harmonics but by subsampling, the wavenumbers can
be reverted to the fast wave region in the visible range ascribable to the left-handed range.
Radiation in the entire upper hemisphere is proven for the metal-backed dielectric slab as
well, broadside radiation inclusive. Evaluation by the modal series expansion delivers the
corresponding dispersion behaviour and the modal field solution.



2 Introduction

In 1967, Victor Veselago [Ves68] theoretically speculated on the existence of “substances
with simultaneously negative ε and µ”, which is generally classified as left-handed (LH)
effect, and which is the origin of all research on metamaterials. Not until 2000, Smith et
al. [SPV+00] succeeded in demonstrating experimentally a structure exhibiting negative
ε and µ at the same time for a certain frequency range. Since the negative values result
from resonance effects in this structure they only appear close to the resonance frequency.
Moreover, the designed composition is lossy. An engineering approach to metamaterials
is attained by extending the well-known lumped-element equivalent circuit model used for
the analysis of transmission lines to the case of metamaterials. Since a realisation of purely
LH configurations is not possible due to natural right-handed (RH) physical effects the de-
sired properties of metamaterials are tried to emulate by employing lumped or distributed
circuit elements to set up the equivalent circuit (EQC) of a composite right/left-handed
transmission line (CRLH TL) [EIK02],[Oli02],[CI02]. Equally, short-circuited or open
transmission lines can also function as the required inductors and capacitors [SMIN06].
The majority of up-to-date conceived CRLH TL configurations are based on microstrip
design and are therefore open.

Contrary to the designs based on microstrip technology, which are mainly restricted to
TEM-wave operation, the goal of this work is to expand the concept of metamaterials to
arbitrary waveguiding structures. By introducing inhomogeneities to homogeneous waveg-
uiding structures, characteristics can be generated which are unprecedented. By observing
the EQC of the H10 rectangular hollow waveguide mode [ZB65], it is obvious that the
EQC strongly resembles the EQC of the CRLH TL apart from the missing series capaci-
tance. By only small modifications, the series capacitance can be introduced achieving the
aimed CRLH configuration. The EQC is well established and the physical nature of the
H10 mode is inherent unlike microstrip compositions which only mimic the behaviour of
the CRLH TL. Further, by the unavoidable inhomogeneities in microstrip configurations,
part of the energy leaks into air. In antenna applications, this is even aspired but not
if the purpose is energy transfer, then leakage must be prevented. Hollow waveguides
offer here attractive solutions as they transport energy with little losses and they are
closed by themselves. Another important benefit of in particular an H10 mode waveguide
realisation is that operation in the fundamental mode can be ensured being stable and
predictable. One possible implementation, which exhibits the H10 waveguide mode, is a
rectangular hollow waveguide with corrugated walls as analysed in [EK06]. However, such
a conventional hollow waveguide design is expensive and elaborate to fabricate and due
to the deep corrugations by no means a compact solution.

The design presented in [YCN+07] does also not seem to cater for a simple fabrication
procedure. The closed CRLH TL is derived from a stripline configuration and in order to
suppress radiation it is closed in a box-like manner. Hollow waveguide modes may arise in
the box-like construction. To avoid them the sidewalls must be placed as close as possible
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to the inner conductor leading overall to a structure of complicated shape.
In [DW05], substrate integrated waveguide (SIW) technology is demonstrated facilitat-

ing hollow waveguide design in which the vertical side walls are replaced by lateral rows
of vias leading to light weight. The entire structure results as a miniaturisation of possi-
bly bulky hollow waveguides. Potential integration into microwave devices becomes easy.
With the aim to circumvent the complex fabrication of a hollow waveguide and being
economical, SIW technology is adopted and an SIW operating in the H10 rectangular
hollow waveguide mode is presented in chapter 7.2. Spurious radiation, as it is the case
for similar designs based on microstrip technology [YCN+07], does not occur due to the
closed configuration. The architecture in chapter 7.2 features periodic unit cells which
can easily be manufactured by multi-layer printed circuit technology [WE08b],[WE09a].
By the special design a sufficient serial capacitance is achieved resulting in unit sections of
remarkably short lengths compared to wavelength complying well with the homogeneity
criterion of metamaterials. Consequently, refractive effects dominate diffraction of which
the effects are more difficult to handle. In the macroscopic view, the SIW architecture
shows a homogeneous overall behaviour.

Another issue in metamaterials, especially in those based on the CRLH TL theory, is to
attain the balanced state [CI06]. This means that the series resonant circuit and the shunt
resonant circuit are adjusted in a way that they reveal the same resonant frequency. A
design based on the H10 hollow waveguide mode is advantageous in this respect, too. The
shunt resonant frequency is prescribed by the transverse dimension of the geometry and
the series resonant frequency can be tuned mainly by finding the appropriate longitudinal
length of the unit cell in propagation direction. The balancing process is thus handy
to manage. The CRLH SIW exhibits broadband matching in the balanced state. The
attenuation rate is well comparable to similar designs, despite low-cost dielectric substrate,
which is not particularly of low loss.

The balanced state can be characterised as a 0th order resonance where the wavelength
appears to be infinitely long leading to a homogeneous field distribution within the SIW.
A homogeneous illumination of the waveguiding structure by the field is especially advan-
tageous with regard to antennas because a large aperture results in a high directivity. For
a periodically constituted closed SIW structure as described above, leakage would be an
undesired side effect. Nonetheless, it can also be implemented as open configuration and
can thus function as leaky-wave antenna. Leaky-wave antennas are not only attractive as
conformal antennas which makes them adequate for integration in radar applications or
in communication devices predominantly working in the microwave regime. Having a low
profile, they achieve a relatively high gain. Leaky-wave antennas belong to the travelling
wave type of antennas where the wave while propagating along the structure radiates a
certain part of the energy more or less in a continuous manner. The beam direction can
be shifted by merely sweeping the frequency. Hence, neither additional phase shifters
nor other complex feeding mechanisms are required. The scan direction of conventional
RH leaky-wave antennas is yet restricted to forward direction related to the propagation
direction of the wave. Only with metamaterial based leaky-wave antennas the scan range
can easily be extended while operation takes place in a single mode. Now, radiation is
feasible from close to backfire to nearly endfire including the broadside direction. The
latter is achieved if the antenna structure is balanced. Two leaky-wave antennas of this
kind are realised, one by multi-layer printed circuit design cf. section 8.1 and another one
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by single-layer printed circuit technology facilitating even more simple manufacturing cf.
section 8.2. The concept of the second leaky-wave antenna has been adopted by [DI09]
but the design of the slots does not account exactly enough for the currents flowing in
the upper metallisation. As a result, the bandwidth is narrower and the radiation perfor-
mance is worse.

Additionally to the SIW based leaky-wave antennas, another antenna is conceived which
is based on a grounded dielectric waveguide cf. section 8.3. Conversely to the other re-
alisations, this kind of antenna is an inherently open configuration. It is supposed to
represent an arbitrary type of waveguides extending the limited range of modes exhibited
by SIWs derived from the H10 rectangular hollow waveguide mode. It also belongs to the
travelling wave kind of antennas. A grounded dielectric waveguide features a TM wave
with zero cut-off frequency as well as higher TE and TM modes, synonymic for H and
E modes, respectively. In order to compare the dielectric slab antenna with the other
designs implemented in this work, TE wave operation is ensured. By introducing period-
ically repeated corrugations onto the dielectric slab, the radiation can be expanded until
backfire proving LH wave operation. Broadside radiation is also observed.

All realisations in this work favor H modes. The concept could also have been conceived
for TM guiding structures by analogous designs. However, to ensure stable operation in
electromagnetic devices operation in the fundamental mode is preferred. In a rectangular
hollow waveguide, the first electric mode is the E11 mode of which the cut-off frequency is
yet higher than of the magnetic fundamental mode H10 and is therefore of less technical
importance. Instead, the E01 mode could have been considered in a waveguide with circu-
lar cross section. However, the magnetic fundamental mode H11 possesses a lower cut-off
frequency in a circular hollow waveguide and its propagation must be suppressed [MG92].
For these difficulties with respect to electric mode types, magnetic mode types are chosen
for the configurations particularly the H10 mode. By selecting the first TE mode, the
dielectric slab was not operated in its fundamental mode. However, this structure was
basically investigated in order to demonstrate the advanced simulation method realised
in this work. Equally, cross coupling to the fundamental TM mode is not an issue for this
kind of structure.

The accomplished waveguiding structures demonstrate different metamaterial-based
properties. They are implemented in a closed fashion to exhibit wave propagation con-
versely to the direction of energy transfer or show waves at certain frequency with an
infinite wavelength. The open SIWs working as leaky-wave antennas radiate in the en-
tire upper hemisphere by just scanning the frequency. Moreover, they perform broadside
radiation often not achievable by conventional leaky-wave antennas. Yet to theoretically
predict the performance of developed structures and to promote a straightforward design
procedure, an analysis is necessary yielding in particular the eigenvalues and eigensolu-
tions of the structures. A good tool of giving immediate insight into the physical meaning
of the eigenvalues is obtained by illustrating the eigenvalues in a so-called dispersion di-
agram. It distinguishes guided waves from leaky waves and also the attenuation rate of
the wave can be added. Therefore, the solution of the dispersion eigenproblems is of main
scientific interest in this work.
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The eigenvalues and the corresponding eigenmodes reveal the inherent traits of a struc-
ture and of any system without any kind of excitation. Once the eigenvalues and eigenso-
lutions are known the determination of the response of a linear system to every arbitrary
excitation can be reduced to the projection of the excitation onto the eigensolutions, what
is more or less trivial. This solution procedure is yet not often pursued in the field of numer-
ical electromagnetics since the numerical determination of eigensolutions and eigenvalues
is often of great computational expense. Instead, the direct solution of the problem with
the relevant excitation is mostly more efficient. In particular, since many eigensolutions
are needed for a sufficiently accurate description of complicated field problems.

The situation changes if a linear system is operated in a frequency range in which only
few eigensolutions are relevant, ideally just one. Resonators for instance mostly work on
their lowest resonance and waveguides transfer electromagnetic signals usually in the fun-
damental mode, for which single operation can be ensured in a certain frequency range.
This is for example the TE10 (transversal electric) or H10 wave for rectangular waveguides
or the TEM (transversal electromagnetic) waves or quasi-TEM waves for multi-conductor
waveguides. Then, it is necessary to characterise the essential behaviour of the operating
mode but also of the neighbouring modes. For resonators, the eigenvalues are the reso-
nance frequencies and the eigensolutions are the corresponding field distributions within
the resonator. They need to be known for characterising the resonator with respect to
field strength, loss etc. For waveguides, the eigenvalues are pairs of frequencies and prop-
agation constant, e.g. ω and γ, and their relation for a waveguide mode is known as the
dispersion relation of the mode. This means that for waveguide problems many eigenval-
ues and eigensolutions need to be determined namely the complete dispersion relations of
all relevant modes in the frequency range of interest.

Waveguiding problems in general require to revert to numerical field computation meth-
ods. Nearly every numerical method can possibly be employed for solving eigenproblems.
Essential is that the basic discretised operator is regarded without any form of excitation
while describing the field problem and by taking into account the boundary conditions.
The eigensolutions are hence obtained as null space of the operator. Eigensolutions nor-
mally exist only for definite discrete frequencies or discrete pairs of frequency and propaga-
tion constant. In another interpretation, eigensolutions are such functions which are not
changed except for a multiplicative constant, the eigenvalue, if the corresponding operator
is applied to them. In this work, eigensolutions can be regarded in the first form, that
is the elements of a null space for an operator which depends on one or two parameters
(propagation constant, frequency) or either in the second way because the eigenvector
containing the field quantities on one side of a periodic unit cell is mapped by a factor,
the phase difference or the transfer matrix, onto the field quantities on the opposite side.

For solving waveguiding or rather dispersion problems, a 2D formulation is used in which
an exponential field dependence with a complex propagation constant along the waveguide
is assumed. This is exactly the mentioned eigenproblem with an operator, which depends
on the two parameters frequency and propagation constant. Examples for numerically
solving eigenproblems of the waveguide type are to find in [MZ89],[DP02],[SGG02]. In
[MZ89],[DP02], integral solver solutions are pursued whereas in [SGG02], the method of
finite elements (FE) is employed. Basic information for solving waveguide problems with
the FE method are also contained in [Jin02].
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2D formulations of cylindrical waveguides, where material and geometry do not change
along the waveguide longitudinal axis, require rather few discretisation unknowns and are
relatively easy to solve. The problems become explicitly more difficult to solve if inho-
mogeneous waveguides are treated. Here, only such waveguides are considered which are
composed of cylindrical host waveguides with periodical perturbations. The periodical
modifications are used to alter the dispersion behaviour of the waveguide and generate
a truly new performance. Such a dispersion engineering is particularly employed in the
area of metamaterials [CI06],[EZ06]. The periodic configuration enables a formulation
of the corresponding eigenproblem based on the Bloch-Floquet theorem [Col91] that fac-
torises the field solution in a periodic and a non-periodic field part. Wave propagation
of the desired eigenmode is expressed by the non-periodic part and is implemented in
form of periodic boundary conditions. Numerical solutions of such problems demand the
discretisation of an elementary cell, where a 3D problem follows to solve. The numerical
description of such problems can fast lead to a great number of unknowns especially in
case of metamaterials, which mostly exhibit elaborate material and geometry variation
within small dimensions. All numerical eigenproblem solvers, which represent the opera-
tor equation in form of a linear equation system, require to solve such a linear equation
system. Thus, a problem of linear algebra results. Nowadays, a variety of diverse and
potent algebraic procedures already exist but in many cases nevertheless this potential is
not enough. Very efficient program packages for the solution of algebraic eigenproblems
are indeed even freely available [LSY98]. The most efficient algebraic eigenproblem solvers
are the so-called Krylov subspace methods [Saa92], which start with an error vector and
continue with building a Krylov subspace by subsequent matrix-vector products. The
eigenproblem is formulated as such in the subspace and finally solved. A comprehensive
description of the topic is to find in [Saa92]. For many problems, it is often still impossible
to find reasonable solutions and then, it is simultaneously not possible even to determine
the cause of the failure. This is especially the case for eigenproblems where the depen-
dencies of eigenvalue and frequency are not linear. Then the algebraic solution is not at
all satisfying and very tedious. Non-linear dependencies of the parameters are however
unavoidable in case of integral equation formulations or other open problems and local
numerical procedures with perfectly matched layer (PML) boundary conditions.

In [BSS10], the authors try to sort out the unphysical modes caused by the PML al-
ready during the solution process by using a-priori knowledge of the field pattern with the
purpose to improve the iterative Jacobi-Davidson algorithm, that is used e.g. in the nu-
merical eigensolver in CST MWS [CST11]. The method seems promising but the studied
structures are still simple. They do not contain any metal and are dielectric substrates
with air holes.

For these reasons, purely algebraic eigenproblem strategies are not pursued further
in this work. Instead procedures are searched which result in a simplification of the
algebraic eigenproblem or rather which completely circumvent the solution of an algebraic
eigenproblem.

A simplification of the algebraic eigenproblem can be achieved by diminishing the num-
ber of needed unknowns. Nevertheless, it is to be kept in mind that the structure of
the equation system, namely dense or sparse, plays an important factor with view to the
solution behaviour of the eigenproblem. In general, integral equation formulations need
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notedly less unknowns than local procedures like finite elements (FE) [Jin02], finite dif-
ference (FD) or finite integration technique (FIT), employed in the computer simulation
program CST MWS [WTM08],[CST11], but lead to fully populated equation systems.

Other methods, related to integral equation formulations in a certain sense, are Trefftz
methods [KW93],[Li07], which construct the solutions of the eigenproblem with particular
solutions of the corresponding differential operator in the infinite homogeneous space. In
this manner, the description of the problem can be reduced to the boundary and continuity
conditions on material and solution domain boundaries, similar to surface integral equa-
tions. If one succeeds in formulating the field solution with very few particular solutions
an eigenproblem results with very few unknowns. A special form of the Trefftz method is
the method of fundamental solutions or method of auxiliary sources, where the particular
solutions are created as solutions of sources outside of the solution domain [Kar01]. This
procedure is also known from the generalised multipole technique or multiple multipole
method [Haf90]. The difficulty of this procedure is yet the “right” choice of fundamental
solutions for general problems.

A very efficient formulation of inhomogeneous periodic eigenproblems can be achieved
if one arrives at constructing the searched eigensolutions with the eigensolutions of the
homogeneous background eigenproblem, the cylindrical waveguide. These are the eigen-
solutions of the host waveguide in case of periodically modified waveguides as considered
in this work. For many cylindrical waveguides such as hollow waveguides and layered
structures, the eigensolutions can be given analytically. The concept ideally applies to
the periodically loaded substrate integrated waveguides studied in this work. For more
complicated background structures, the eigensolutions can be computed by solving 2D
eigenproblems numerically. If the periodic boundary conditions of the inhomogeneous
problem can be placed in the homogeneous parts of the underlying structure it is possible
to develop the fields in the periodic boundaries by the eigensolutions of the homogeneous
case. The coupling of the fields at the boundaries can be computed by an adequate nu-
merical field computation method. The algebraic eigenproblem to be solved then just
comprises the expansion coefficients for the fields at the boundaries and it is mostly so
small that its solution is not a problem at all anymore. The main computation effort is
the determination of the coupling coefficients in form of a series of excitation problems,
where one homogeneous mode is excited at a time and the coupling onto all other modes
is to observe. This procedure is known as scattering (SMA) or transfer matrix approach
and is also used in [LBSW09]. In [LBSW09], however, two pairs of perfectly magnetic
(PMC) and perfectly electric conducting (PEC) boundary conditions are defined in order
to gain a closed parallel-plate configuration with the TEM mode as fundamental mode.
Higher order modes are also considered. In this way, a 3D periodic configuration with
plane wave incidence is approximated. In [GRB00] a similar procedure is chosen but the
homogeneous modes are not only applied at the outer boundaries but also at sectional
boundaries within the solution domain. This method becomes critical if no suitable ho-
mogeneous waveguide sections can be used or if a great number of homogeneous modes
are needed for describing the field problem.

For the closed waveguide problems treated in this work, the solution set is finite and
the computation method is very well suited. Only few modes suffice for an accurate
solution of eigenvalues because the waveguides are particularly operated in a single mode,
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the fundamental mode, to ensure stable working. However, for field problems with open
boundaries, an expansion of the fields in modes is difficult because the series expansion is
generally to be extended to an integral formulation, i.e. a continuous spectrum of modes,
what would be very cumbersome in a numerical implementation.

Nevertheless, the modal series expansion delivers approximate but good results com-
pared to reference data for hollow waveguide based leaky-wave antennas as in section 8.2
[WE10a] because the energy is mainly guided in the waveguide and only a minor part
leaks into the surroundings. However, the approximate computation can be improved by
a more advanced computation procedure, which will be a core contribution of this work.

The systematic analysis of open dielectric waveguides started with an increasing interest
in integrated circuits operated in the millimeter wavelength regime in the 1970ties. The
pure analytical solution of the eigenproblem requires comprehensive integral procedures.
Marcatili [Mar69] and McLevige et al. [MIM75] analyse dielectric image lines by the effec-
tive dielectric constant method which supplies approximate eigenvalues but no complete
field distributions. Solbach et al. [SW77] instead present an exact formulation, where the
problem is embedded in a closed waveguide. The conversion from the open region prob-
lem into a closed problem type has the decisive advantage of being treatable by known
means and no demanding integration techniques are required. The problem is further
subdivided into subregions and the analytical solution is to derive for each subregion. A
successive matching of the boundaries finally delivers the desired results. Since dielectric
image lines are considered the guided waves are hardly disturbed by the PEC top shield
set in an appropriate distance. Mittra et al. [MHJ80] also transform the original open
region problem into an equivalent closed configuration. The fields are expanded into the
eigenfunctions of each subregion and the eigenvalues are obtained by mode-matching and
further improved by a variational method.

Derudder et al. [DdZO98],[DOdZvdB01] place a perfectly matched layer (PML) in
front of the PEC boundary in order to diminish its reflection properties. They get the
eigenvalue solution of the host waveguide analytically and employ the mode-matching
technique to solve inhomogeneous waveguide problems. The accuracy is enhanced com-
pared to [SW77],[MHJ80] while less modes are needed in the expansion. Bérenger de-
veloped the concept of the PML [Ber94] to truncate finite-difference time-domain lat-
tices in 1994. Later, the finite-element technique adopts the PML [WKLL02] and shows
that it can be interpreted as an anisotropic simultaneously lossy and active layer. In
[DdZO98],[DOdZvdB01], the original open waveguide is treated as closed configuration
but by preserving the properties of the original open waveguide. The continuous eigen-
spectrum of the open region is transformed into a discrete set of substrate, evanescent and
so-called PML modes of the equivalent closed waveguide and can be handled by a series
expansion instead of a complicated integral procedure. The drawback of this procedure is
that it requires to find the analytical field solutions of every subregion and it is therefore
constrained in its application range. A purely numerical approach to find the eigenmodes
of the host waveguides would be plagued by the strange material composition of the PML,
active and anisotropic.

In this work, the idea from [DdZO98],[DOdZvdB01] is adopted and upgraded that it
becomes more practical. The open problem is closed by a PEC shield but an isotropic
lossy absorber is employed to suppress the reflections of the shield. The cylindrical back-
ground waveguide modes used for the series expansion can thus be easily computed and
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the series expansion concept with background waveguide modes can be used as discussed
before but now for open problems [WE11]. The result is a very reduced eigenproblem
which is easily solvable. The solution procedure perfectly functions for waveguide prob-
lems but would be inefficient for problems tackled in [LBSW09] or [SLW05]. For field
problems where no homogeneous waveguide regions can be found or if a large number
of waveguide modes is required to describe the field problem, the expansion in modes
becomes difficult. Then, a direct frequency-dependent excitation is to prefer, where the
reaction of the system to the excitation is observed. From the course of the response
of the system, the resonance frequency can be determined. This procedure is pursued
in [EW10],[EWC11] employing the FEBI technique [EW06], where analogies to electric
circuits, resonators and to measurement techniques are utilised and which aims to solve
periodic problems in two or three dimensions. The eigenvalues and eigensolutions are de-
rived from the reaction of the system to the response. Similar approaches are pursued in
[Reu07],[Reu08],[Reu09],[Reu10], where problems from mechanics [Reu07], homogeneous
waveguide problems [Reu08], Laplace problems [Reu09], [FYC09], and general Sturm-
Liouville problems [Reu10] are treated. The technique is yet not further explained in this
work since this work focuses on waveguiding architectures, where the modal expansion is
well suited.

The work is structured as follows: Chapter 3 provides the knowledge about state-of-the-
art metamaterials and reports about the performance of conventional leaky-wave antennas
to understand the benefits of metamaterial-based leaky-wave antennas as realised later.
Chapter 4 explains the modal series expansion procedure which is conceived to compute
the class of periodically composed metamaterial waveguides. The basis functions in the
modal series expansion are supplied by the eigensolutions of the cylindrical host waveg-
uides which are derived from Maxwell’s equations in chapter 5. The left-handed properties
created by the periodicities in the waveguides often refer to the frequency domain where
formerly no wave propagation has taken place. Therefore, as the series expansion is based
on effective wave contributions in form of energy, it is proven that the proposed computa-
tion concept is valid even in the evanescent frequency domain. Not only closed waveguides
are treated but equally open ones. Chapter 6 explains the difficulties in evaluating open
region problems. Section 6.2 presents a strategy to circumvent the complex computation
procedure. By a tricky conversion, the actual integral-demanding open problems can
fully and accurately be computed by a modal series expansion. The following chapters
concentrate on metamaterial realisations and evaluation of the modal series expansion
technique. It is tested on a waveguide found in literature [EKYG05],[EK06] in section 7.1
and on a realised closed waveguide implemented in SIW technology in section 7.2 but the
fabrication process is simplified tremendously by planar printed circuit technology. Fur-
thermore, leaky-wave antennas are computed being implemented by double-layer printed
circuit technology in section 8.1 and even simpler by single-layer printed circuit technol-
ogy in section 8.2. The last realised travelling wave antenna in section 8.3 is based on
a grounded dielectric slab, which represents the inherently open kind of waveguide and
there, the modal series expansion method computes efficiently the problem which actually
requires complicated integration. In the appendix 9, the singular value decomposition is
likened to the eigenvalue decomposition of matrices and the term pseudoinverse is ex-
plained. The matrix pencil method is also explained which provides reference data for
the computed eigenvalues.



3 Metamaterials

3.1 Maxwell’s Equations and Material Properties

The fundamental differential equations of electromagnetic theory are Maxwell’s equations
(MWEs) and were formulated by Maxwell in 1865 [Max92]:

∇ ×H (r) = jωD (r) + J (r) , (3.1)

∇ ×E (r) = −jωB (r) −M (r) , (3.2)

∇ ·D (r) = ρ (r) , (3.3)

∇ ·B (r) = ρm (r) . (3.4)

They completely describe the generation of electric and magnetic fields in a closed form by
charges and currents as well as the interaction between the two fields. All field quantities
are assumed to vary in time according to the complex exponential function ejωt and are
location-dependent, i.e. E = E (r). Maxwell’s equations only are not sufficient. They
need to be complemented by the material relations which are in an isotropic linear medium

D (r) = εE (r) = εrε0E (r) , (3.5)

J (r) = σE (r) + Jexc (r) , (3.6)

B (r) = µH (r) = µrµ0H (r) , (3.7)

where Jexc (r) is assumed as impressed. The material parameters εr and µr are direction-
independent since isotropic media are assumed but they may depend on location. In the
anisotropic case, the material parameters would be tensors instead of scalar quantities.
The material parameters can also become complex to account for losses in materials. The
conductivity of a material can be described by the imaginary part of εr according to

jωεrε0E (r) + κE (r) = jωε0

(
εr − j

σ

ωε0

)

︸ ︷︷ ︸
ε′

r−jε′′
r

E (r) . (3.8)

Common natural materials have ε′
r > 1, µ′

r > 1 and ε′′
r > 0, µ′′

r > 0. ε′′
r < 0 or µ′′

r < 0
denote active materials. For classification, media can be sorted in a diagram such as
in Fig. 3.1, in which only the real part is considered. Media with a negative ε′

r are to
find as electric plasma or as metals at optical frequencies. A negative µ′

r is exhibited by
ferrimagnetic materials. In both cases, waves cannot propagate. To date, no combination
of negative ε′

r and negative µ′
r is known to exist in nature. The properties of the material

parameters are yet to expand since in 1967, a material with negative refractive index
has been derived theoretically by Victor Veselago [Ves68]. The history of metamaterials
began. A simultaneous negative permeability and negative permittivity demand to revise
physical laws. The characteristics of metamaterials are demonstrated with MWEs in
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Figure 3.1: The diagram of permittivity-permeability combinations.

simplified form, considered for plane waves e−j(k·r−ωt) without sources, since any other
wave can be expressed by a superposition of plane waves. Inserting E = E0e−j(k·r−ωt) and
H = H0e−j(k·r−ωt) into Eqs. (3.1)-(3.7) without excitation, results in (µr, εr assumed to
be real)

RH case

−jk×E (r) = −ωµ0|µr|H (r) (3.9)

−jk×H (r) = ωε0|εr|E (r) (3.10)

LH case

−jk×E (r) = ωµ0|µr|H (r) (3.11)

−jk×H (r) = −ωε0|εr|E (r) .
(3.12)

By comparing the RH case with the LH case we observe that −jk×E (r) and −jk×H (r)
point in opposing directions in the LH event. The Poynting vector, however, maintains
its direction. The wavenumber k in a LH medium is negative such that phase and group
velocities become anti-parallel. Since k < 0, the refractive index is negative in a LH
medium. In the RH case, the electric field, the magnetic field and the wave vector com-
pose a right-handed triad, which is anticlockwise or left-oriented in the LH case. To build
the triad, one now needs the left hand, which also reasons the origin of the name. Conse-
quently, physical laws as e.g. Snellius law are to upgrade. The speciality of LH refractive
behaviour was later theoretically utilised in a perfect lens by Pendry [Pen00]. Due to the
LH mechanism, originally evanescent waves are reinforced and waves are reconstructed
at the location of the focus. Thus, the traditional resolution limit can theoretically be
broken.

In theory, the LH material has already been deduced in 1967 whereas a practical imple-
mentation was difficult and required a long time to be accomplished. The breakthrough
of man-made realisation was achieved by Smith et al. [SPV+00] in 2000. The group
of physicists implemented an artificial effectively homogeneous structure consisting of a
particularly designed microstructure, where the wave does not resolve the constituents.
The material is composed of split-ring resonators (SRRs) and metal wires, as pictured
in Fig. 3.2. The behaviour of the structure can be described in terms of an equivalent
electric circuit. The electric field of an incident wave is parallel to the wire grid gener-
ating a current in the wires such that the magnetic field encircles the wires and a shunt
left-handed inductance LL is caused. The inductance may lead to an effective negative
permittivity. The SRRs can be modeled by a series capacitance CL and an inductor Lp in
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Figure 3.2: Split-ring resonators and metal wires [SPV+00].

parallel to CL. The magnetic field of the incident wave stands perpendicular on the SRR
plane and interacts with the resonator such that it changes the permeability. The free
space in between can be described by the natural right-handed elements LR in series and
CR in shunt. The corresponding simplified equivalent circuit is shown in Fig. 3.3. The
left-handed effect of equally negative permittivity and permeability can also be described
by a combined Lorentz/Drude dispersion model [Lor16] and [Dru00] in physical terms.
The negative permeability only occurs if the SRRs are near to resonance and therefore
merely for a small bandwidth. The combination of both negative quantities may lead to a
negative refractive index with n = −√

εrµr. The SRR composition performs a magnetic
response despite no magnetically conducting material is included. The fact contributes to
the definition of metamaterials which are the materials after (=meta in Greek) the materi-
als. They represent distinguished properties other than the materials they are composed
of. The SRRs work on resonances and are therefore strongly dependent on frequency.
Yet, they can be regarded as effectively homogeneous meaning the dimensions p of their
constituents are p << λg, with λg as the wavelength of the guided wave in the structure.
Therefore the electromagnetic wave only “feels” the macroscopic nature of the structure
and not the characteristics of the constituents. Atoms of a material are comparable, which
are not visible either.

Another realisation of metamaterials is offered by photonic crystals (PCs), of which the
mechanism is demonstrated in Fig. 3.4. They are operated in the frequency range where
the lattice period p is about a multiple of half a guided wavelength λg, p ≈ λg/2. This
is in the Bragg regime where interferences take place. The wave notices the lattice and a
periodic setup is substantial. In contrast, effectively homogeneous compositions dominate
the long wave domain and no interference effects appear. The internal architecture does
not require periodicity for working. Here, periodicity is mainly employed to facilitate anal-

RC LL

RL

LC

pL

Figure 3.3: The equivalent circuit represents the left-handed effects due to the SRRs and the
metal wires.
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Figure 3.4: Photonic crystals mimic a negative refractive index and a flat lens enables focus-
ing [GAA+04].

ysis and fabrication. Effectively homogeneous materials exhibit refraction whereas PCs
feature scattering and diffraction. Nevertheless, it has been achieved to realise negative
refractive effects with photonic crystals [GAA+04] and [Not00].

In microwave engineering, according to the size of the components lumped components
with maximum p < λg/4, quasi-lumped in the order of (λg/4 < p < λg/2) and distributed
components (p > λg/2) are to distinguish. The difference is whether the phase variation
of the signal from the input to the output of the component is negligible or not. In the
distributed case, the wave character must be considered.

A rough overview has been given in this section to imagine a metamaterial and its
implementational possibilities. Literature, e.g. [CI06], provides further details. Many
realisations include microstrip technology and others which guide and function with TEM
waves. In this work, the aim is not to restrict to a special guiding type but to expand
the scope of transmission lines. The novel functionalities enabled by metamaterials can
furthermore reform electromagnetic devices such as antennas. This becomes especially
obvious with view to the leaky-wave type, which is focused on in this work. To understand
the benefits of metamaterial based leaky-wave antennas, the class of conventional leaky-
wave antennas and their performance is presented in section 3.4. First, the characteristics
of metamaterials are explained by means of transmission-line theory.
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3.2 Combined Right/Left-Handed Transmission Lines

Resonant-type LH architectures like SRRs have the drawback of being bandwidth-limited
and lossy. By analogy of backward waves and LH waves, a transmission line (TL) ap-
proach was published in 2002 by three goups: Eleftheriades et al. [IE02],[GE02], Oliner
[Oli02] and Caloz et al. [CI02],[COII02] almost at the same time. The advantage of
metamaterial TLs is that they can be engineered in planar configurations integrable in
microwave integrated circuits and planar printed circuit boards (PCBs). The TL theory
is well-established and promotes an efficient design of microwave applications. Yet, as a
pure realisation of left-handedness is not possible the combined RH-/LH TL forges ahead,
which is visualised in Fig. 3.5. The RH elements represent the natural physical effects
caused by currents flowing in the metallisations inducing magnetic flux proportional to the
inductance L′

R∆z and by voltage gradients between upper and lower metallisations con-
tributing to the shunt capacitance C ′

R∆z. The EQC of the RH TL is pictured in Fig. 3.6a.
At low frequencies, the RH elements with the inductance in series and the capacitance in
shunt tend to be short and open, respectively, so that the EQC is reduced to the LH ele-
ments (1/CL)′∆z and (1/LL)′∆z in Fig. 3.6b. They are dual to the RH elements. In the
LH band, backward wave propagation occurs, while the energy still maintains its transfer
direction like in the RH case. Phase and group velocities are therefore anti-parallel. At
high frequencies, the CRLH EQC is dominated by the RH components as in Fig. 3.6a. It
is the conventional and known RH TL, where the wave propagates in the same direction
as the energy does.

The transmission-line equations for the RH case are well-known. For the CRLH TL the
EQC of the RH TL in Fig. 3.6a and the EQC of the LH TL in Fig. 3.6b are to combine
and the result is depicted in Fig. 3.5. A transmission line is assumed to consist of a
cascade of sections with length ∆z. For vanishing ∆z, the line is uniform with per-unit-
length impedance Z ′ = jωL′

R − j
ωC′

L

and per-unit-length admittance Y ′ = jωC ′
R − j

ωL′
L

.

In order to simplify notation, for instance
(

1
CL

)′
is written in short

(
1

C′
L

)
. Losses are not

considered. Applying Kirchoff’s current and voltage laws [Har01] for vanishing ∆z → 0,
the transmission line differential equations

−dU
dz

=

(
jωL′

R − j

ωC ′
L

)
I, (3.13)

−dI
dz

=

(
jωC ′

R − j

ωL′
L

)
U (3.14)

s
L ' z�

sh
C ' z�

U

I

1

sh

z
L '

�

1

s

z
C '

� s
L ' z�

sh
C ' z�

1

sh

z
L '

�

1

s

z
C '

�

z� z�

1

sh

z
L

�
′ 

 
 

1

s

z
C

�
′ 

 
 

1

sh

z
L

�
′ 

 
 

1

s

z
C

�
′ 

 
 

1

L

z
L

�
′ 

 
 

1

L

z
C

�
′ 

 
  R

L z�′

R
C z�′

R
C z�′

R
L z�′

1

L

z
C

�
′ 

 
 

1

L

z
L

�
′ 

 
 

Figure 3.5: The equivalent circuit of a CRLH transmission line.
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Figure 3.6: Lumped-circuit model of the RH TL and the LH TL respectively.

are obtained. Decoupling both equations yields

γ2U − Z ′Y ′U = 0, (3.15)

by considering forward wave progress with U = Uf e−γz in z-direction. The equivalent
gives the equation for the current

γ2I − Z ′Y ′I = 0 (3.16)

with I = If e−γz. Eqs. (3.15) and (3.16) correspond to one-dimensional Helmholtz equa-
tions. From both equations, the complex propagation constant γ can be determined as

γ = α+ jβ =
√
Z ′Y ′. (3.17)

The phase constant is the imaginary part of γ given as

β =

√√√√
(
ωL′

R − 1

ωC ′
L

)(
ωC ′

R − 1

ωL′
L

)
(3.18)

and becomes real for
(
ωL′

R − 1
ωC′

L

) (
ωC ′

R − 1
ωL′

L

)
> 0. α is in this case zero but a radicand

smaller than zero would yield α 6= 0 and β = 0. The complex propagation constant is
the characteristic quantity of the solution mode denoted as eigenvalue. It depends on the
angular frequency ω and on the transmission line quantities. In Figs. 3.7a and 3.7b the
dispersion relation for β is plotted revealing where pairs of ω and β yield a solution set
to the eigenvalue problem. The phase constant in Eq. (3.18) can be purely real and a
passband emerges for the frequency range since γ = jβ. For the frequencies for which β
is purely imaginary, it can be treated as γ = α and a stop band arises, where no wave
propagation occurs. The sign is to maintain according to the reference wave direction.
Only the CRLH TL shows a stop band but not the pure RH or LH TL. No energy
is transported in the so-called bandgap that is illustrated in Fig. 3.7a. In contrast in
Fig. 3.7b, the dispersion graph of a so-called balanced structure [CI06] is not interrupted.
Precondition is the relation L′

RC
′
L = C ′

RL
′
L resulting in an identical resonant frequency

of the shunt ωsh and the series circuit ωs

ωs = ωsh. (3.19)
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The balanced frequency follows with

ω0 = 4

√
1

C ′
RL

′
RC

′
LL

′
L

=
√
ωshωs (3.20)

meaning a smooth transition from the LH frequency band to the RH band corresponding
to continuous wave propagation. With (3.19), the expression for the phase constant
simplifies to

β = ω
√
C ′

RL
′
R − 1

ω
√
L′

LC
′
L

. (3.21)

It becomes evident that the first part described by the RH elements dominates the higher
frequency range and the second part composed of the LH elements governs the lower fre-
quency range.
At the transition point, the set ω0, β = 0 induces particular performance for electromag-
netic devices. For a leaky-wave antenna, radiation in broadside direction occurs, which is
not easily achievable by conventional LWAs cf. section 3.4. In addition, it follows from
β = 0 the wavelength as λ = 2π

β → ∞, such that the field is evenly distributed along the

structure, whereas the group velocity is vg = ( dβ
dω )−1 6= 0.

general case 
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Figure 3.7: The phase constant visualised in a dispersion diagram.

By dividing the differential equations Eqs. (3.13) and (3.14) and substituting γ, the
characteristic impedance of the transmission line

Zc =

√
Z ′

Y ′ (3.22)

is determined. With the terms above and the impedance due to the LH elements ZL =√
L′

L

C′
L

it is

Zc = ZL

√√√√√√

(
ω
ωs

)2
− 1

(
ω

ωsh

)2
− 1

. (3.23)
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The homogeneous CRLH TL with ∆z → 0 does not exist in nature, but CRLH TL with
finite ∆z can often be assumed to be effectively homogeneous in certain frequency ranges.
The electromagnetic wave does not “see” a perturbed structure what happens in the fre-
quency range where the wavelength is much larger than the inhomogeneities. The model
in Fig. 3.5 has an infinitesimal physical length ∆z [m] → 0 whereas in Fig. 3.8, the phase
along the unit cell in symmetric realisation is represented in terms of its electrical length
βp = ∆φ [rad]. A physical length p is eventually ascribed to a practical implementation.
In particular, p refers to the length of one period in a periodical arrangement. In the limit
p = ∆z → 0, the unit cell of Fig. 3.8 is identical with the continuous model. In practice,
the LC-based CRLH TL is regarded as effectively homogeneous for waves if the dimension
of the unit cell is considerably smaller than the guided wavelength, p < λg/4 at least and
the electrical length of the unit cell is smaller than π/2.

The structures considered within this work are periodically constructed architectures.
For their analysis, periodic boundary conditions can be applied to one cell of the periodic
network, and it suffices to find the solution for one preferably symmetric unit cell of the
CRLH TL depicted in Fig. 3.8 in reference to the Bloch-Floquet theorem cf. section 3.3.
Vn and In are the total voltage and current amplitudes, i.e. the sum of the contributions
from the incident and reflected waves at the terminal plane n. The voltage and current
at the (n+ 1)th terminal plane are identical with the voltage and current at the previous
terminal apart from a propagation factor. The system in between the two terminals or
ports can be represented by an ABCD-matrix, hence it is

(
Vn

In

)
= eγp

(
Vn+1

In+1

)
=

(
A B
C D

)(
Vn+1

In+1

)
(3.24)

or
(
A− eγp B
C D − eγp

)(
Vn+1

In+1

)
= 0, (3.25)

from which an matrix eigenvalue equation arises for γ. For the symmetric unit cell of the
CRLH TL the ABCD-matrix is

(
A B
C D

)
=

(
1 + ZY

2 Z
(
1 + ZY

2

)

Y 1 + ZY
2

)
, (3.26)

and it renders the phase constant as imaginary part of γ

β =
1

p
cos−1

(
1 +

ZY

2

)
(3.27)

as nontrivial solution from the zero determinant. The procedure is well described in
[Col00] and [CI06] for instance. Eq. (3.27) simplifies to

cos(βp) ≈ 1 − (βp)2

2
= 1 +

ZY

2
(3.28)

by using a Taylor series approximation, which is permissible for an electrically small length
|βp| = |∆φ| << 1. In the general case, β is then

β =

√(
ωLR − 1

ωCL

)(
ωCR − 1

ωLL

)
, (3.29)
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Figure 3.8: The CRLH transmission line and its immitances.

which is identical to Eq. (3.18).

The waves, which progress in periodic compositions, are called Bloch waves. Together
with γ or β, the Bloch impedance ZB is referred to as characteristic quantity of them.
Like any other impedance quantity, ZB is defined by a voltage-current relationship, which
is at the terminal plane (n + 1) given as

Zf,b
B =

V f,b
n+1

If,b
n+1

=
2B

D −A±
√

(A+D)2 − 4
, (3.30)

derived from Eq. (3.25) and by the exploitation of further relations [Col00]. The upper and
the lower signs refer to wave propagation in forward and backward direction, respectively,
provided that only one forward or one backward wave is regarded. The voltage-current
ratio is constant at the terminals of any unit cell in the TL. In case of the unit cell
(Z/2 − Y − Z/2), the Bloch impedance takes the form

ZB =

√
(ZY/2)2 + ZY

Y
. (3.31)

In general, the Bloch impedance is a complex quantity. Since the real part of ZB corre-
sponds to real power flow ZB is commonly defined according to power flow considerations.
As the direction of power transfer is identical in the conventional right-handed case as
well as in the novel left-handed event, the sign of the real part of ZB is therefore equal as
well. In the bandgap, reactive power is present and ZB appears as imaginary number. If
power is complex, ZB also arises as complex number.

The Bloch impedance is identical within a terminal plane in periodic repetition. The lo-
cation of a terminal plane can be set arbitrarily within one period and the Bloch impedance
varies within the period. The characteristic impedance of a homogeneous waveguide may
differ from the characteristic impedance of a periodically composed waveguide. In the ho-
mogeneity limit p → 0, Z, Y → 0 and the Bloch impedance in Eq. (3.31) for the periodical
network reduces to the characteristic impedance Zc of the homogeneous guide [CI06]:

lim
p→0

ZB = lim
p→0

√
Z

Y
=

√
Z ′

Y ′ = Zc. (3.32)

Similarly, it is ZB = Zc for the balanced case, where ZL =

√
L′

L

C′
L

= ZR =

√
L′

R

C′
R

, since

ωse = ωs (cf. Eq. (3.23)) suppressing resonance effects and the characteristic impedance
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becomes a frequency-independent quantity [CI06] providing matching over a wide band-
width.

With the practical realisation and a finite electrical length, a stop band emerges which
limits the LH band with highpass character in the lower frequency range and the lowpass-
like RH band at higher frequencies cf. Fig. 3.9. The combination eventually features
bandpass behaviour with ωL as lower limiting frequency and with ωR as upper bound
to the consecutive stop band because | cos(βp)| ≤ 1. These frequencies deliver estimate
values for practical designs. Although having spoken of a filter-like behaviour metamate-
rials rather influence the phase than the magnitude of signals. However, an approach to
design a balanced CRLH TL from a Chebyshev filter due to their similarity is suggested
in [LM07].
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Figure 3.9: Dispersion diagram for the balanced and unbalanced CRLH TL for a finite length.
Balanced: LR = LL = 1 nH, CR = CL = 1 pF; unbalanced: CL = 2 pF.

In this section, the waves on a transmission line have been explained, namely first for
continuous TLs with an infinitesimal unit cell and secondly for TLs with finite length
unit cells in view of practical implementations. LC-based unit cells can be restored to the
homogeneous state in the limit. The consecutive simplifications deliver conveniently good
first approximations. The transmission line model is always described via voltage and
current. The transmission line is typically realised in form of a TEM waveguide, if this
one is operated in its fundamental mode, the TEM wave with zero cut-off. On a TEM
waveguide, higher-order modes may also exist. On non-TEM waveguides like rectangular
hollow waveguides or dielectric waveguides, the lowest mode often exhibits a nonzero cut-
off frequency. For determining the characteristic quantities of arbitrary waveguides, it is
necessary to turn to a formulation by fields. For this purpose, various guiding architectures
and the associated waves are investigated, let it be RH waves, LH waves and also several
modes on one guide. The procedure is the following. For understanding waveguides in
general, the knowledge of modes on a homogeneous background material is provided first
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cf. chapter 5. The well-known waveguide theory is treated for hollow waveguides in es-
pecially to cover the case of a closed region with a finite set of propagating modes and
an infinite series of evanescent waves. Thereafter, discontinuities are introduced and the
behaviour of the resulting modes is examined. LH waves are generated in this fashion. By
this strategy, leaky-wave antennas are analysed and constructed as well. The modelling
gives a good approximation of the performance. As open waveguiding prototype, the
dielectric slab is studied on which again a finite set of propagating modes is promoted as
well as an infinite set of evanescent modes.

Contrary to the closed cross section, these modes are, however, not sufficient to describe
the waves on the corresponding periodically loaded metamaterial waveguides. In order to
achieve a complete representation of the fields, an integral over the continuous spectrum
of waves which are not bound to the homogeneous waveguide must be added.

3.3 Bloch-Floquet Theorem

Since a formulation by fields is recommended, an adequate suitable analysis method is
shown for fields in periodic configurations. Metamaterials are usually implemented period-
ically. Periodic structures, meaning periodic along the propagation direction e.g. along z
in a Cartesian coordinate system, allow the application of Bloch-Floquet’s theorem [Col91]
stating that the field solution is the product of a periodic function and a non-periodic term,
the propagation term, according to

{
E(z)
H(z)

}
=

{
Ep(z)
Hp(z)

}
e−γz,

{
Ep(z)
Hp(z)

}
=

{
Ep(z + p)
Hp(z + p)

}
, (3.33)

in which p denotes the length of a period and γ the complex propagation constant. Thus,
by knowing the solution at one plane at z0 in the structure, the solution at any plane
in the periodic array can be derived. With the periodic loading the traits are repeated
periodically as well.

Although the analysis of the periodic cell array can be broken down to only one unit
cell the analytical solution of a complex unit cell is often complicated till impossible to
compute. This truly applies to metamaterials, where material and geometry compositions
vary fast within small dimensions. The complexity and the extent of the analysis are
described in chapter 4.

3.4 Leaky-Wave Antennas

In the last section of this chapter, which presents the state-of-the-art related to this work,
leaky-wave antennas are examined. They represent an important antenna type, which is
supposed to demonstrate the peculiarities of metamaterials. The class of leaky-wave an-
tennas can further be subdivided into subtypes as uniform and periodic. A good overview
of leaky-wave antenna classes is provided in [OJ07] and [GTRQP+06]. In fact, metama-
terials do not need to be periodic but are nevertheless mostly constructed periodically
for simplification reasons. Since they operate in the sub wavelength regime they can be
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regarded as homogeneous in the macroscopic view. Yet before turning to leaky-wave an-
tennas based on metamaterials, the knowledge of the working and the performance of
traditional leaky-wave antennas is to convey not only to understand the improvements
enabled by metamaterials.

A leaky-wave antenna belongs to the travelling wave type of antennas and guides a wave
along its structure while permitting the wave to radiate power into the surroundings. Due
to the leakage, the propagation constant γ is complex with an imaginary part as phase
constant β and a real part, the attenuation constant α. A large α means that the power
leaked away per unit length is big, which ends up in a short effective aperture length
and a large beamwidth. A small value of α leads to a large effective aperture provided
the physical length is sufficiently long. A long effective aperture in turn is known for a
high gain and a narrow beam. The fixed aperture primarily decides about the beamwidth
whereas the value of α strongly affects the efficiency of radiation. 90 percent of the power
should be leaked away while the mode propagates along the structure in order to yield a
proper radiation efficiency. A larger leakage rate would result in a strongly increased α at
the end of the antenna in order to have useful radiation contributions from these parts of
the aperture. The remaining power at the end should be absorbed by a matched load to
avoid the appearance of backlobes. Generally, the beam direction varies with frequency
like the phase constant such that scanning is acquired by changing the frequency. Thus,
no additional phase shifters are required. Leaky-wave antennas are mainly conformal with
a low profile that makes them easy to integrate into other devices or applications. The
early leaky-wave antennas are based on closed waveguides, which are “opened” by a cut
to let radiation take place. They were followed by already open waveguides operating
in the millimeter wave range, some of them are dielectric waveguides, groove guides,
microstrip lines etc. Nevertheless, the fundamental modes on the open waveguides are
typically bound meaning that no radiation occurs not even by inserting a slot. Instead,
introducing asymmetry or modifying the geometry are examples of measures to achieve
radiation.

3.4.1 Overview of Leaky-Wave Antenna Types

The uniform type of leaky-wave antennas reveals a uniform geometry along the length
of the guiding architecture. Its operation mode is fast and therefore radiates. However,
radiation is limited to the forward quadrant. If the antenna is strictly uniform the side
lobe level is considerably high. The drawback can be improved by tapering the geometry
which controls the amplitude of the aperture distribution. The difficult task is to modify
α slightly while keeping β constant along the antenna length to maintain constructive
interference in the desired radiation direction. This fact also applies to the periodic type.

The uniform type can be further subdivided as reported in [OJ07] dependent on whether
it is air-filled or partially dielectric filled. For the two-material leaky-wave antenna, the
transition between the slow and the fast wave range is rapid, which occurs at endfire, and
thus, the beam directs very closely to endfire. The scan range is in general broader. The
single-medium antenna stays 10◦-15◦ away from broadside and endfire and the frequency
sensitivity is rather inert. Its main advantage is that the beamwidth remains constant
while scanning [OJ07]. The radiation directions are illustrated with Fig. 3.10.
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The periodic type of LWAs exhibits a slow dominant mode with β0 > k0, which does
not show radiation even though the structure is open. Only the introduction of a periodic
array produces an infinity of space harmonics with βn for each of them. They are related
to each other by

βn = β0 +
2nπ

d
(3.34)

with d the period and β0 of the fundamental space harmonic of the waveguide. The fast
ones of them radiate. With view to Eq. (3.34), βn can adopt various values, the mode n
can be fast or slow, forward or backward. For being fast in nature, |βn/k0| < 1 is required,
but |β0/k0| > 1. With

βn

k0
=
β0

k0
+
nλ0

d
(3.35)

it is evident that |βn/k0| < 1 can result with n < 0 and adequate λ0/d. Since a stable
operation is demanded the design is to alter such that preferably merely the first harmonic
radiates, so n = −1 is chosen. The scan behaviour ranges from the backward quadrant
into some part of the forward quadrant, leaving an open stop band at broadside as ex-
plained in [OJ07]. The range in the forward quadrant is limited by the emergence of the
n = −2 mode from backfire, endfire or the next waveguide mode emerging above the cut-
off frequency. The periodic discontinuities along the structure appear as small loadings.
If they are nonresonant a smooth antenna results and it seems to be quasi-continuous. In
contrast, the functional principle of slots in a slot array is based on resonance and they
are to be considered individually with mutual coupling effects. Their operation is very
dependent on frequency. A slot array is nevertheless good for rapid scanning but the scan
range of such an antenna is narrow.

backward

broadside

forward

endfire
backfire

forward

broadside

backward

Figure 3.10: Beam steering enabled by tuning the operation frequency.

A surface-wave antenna is an open waveguide with a dominant mode purely bound.
Surface-wave antenna are just endfire antennas as radiation is generated only at disconti-
nuities such as the end [OJ07].
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Open waveguides, though they are already open, usually furnish a dominant mode that
is purely bound, no matter if their realisation is accomplished via a uniform or a peri-
odic design. As well as based on open waveguides is a group of travelling-wave antennas
which is formed by employing microstrip lines. The interest in leaky-wave antennas based
on microstrip lines arose in the 70ties along with the interest to work in the millimeter
wave domain and even higher frequencies. Well-known publications analysing modes in
microstrip lines are [Men78] and [Erm78]. New types of antennas were sought because
of the increase in losses with higher frequencies. Small dimensions often mean a limit in
fabrication so that novel manufacturing techniques are demanded. The connection to a
feed might cause spurious radiation and is therefore problematic.

The other category of leaky-wave antennas is constructed with closed waveguides. They
support a fast wave and operate on the n = 0 space harmonic but physical opening is
needed. One method to open them is to cut a long slit along their length, but the disad-
vantage is that it disrupts the current lines promptly with the consequence of a wide beam
instead of a narrow one. An alternative is to use a series of closely spaced holes instead,
such that the current can just flow around them. Moreover, due to the close distance
between the holes the structure appears as quasi-uniform. Since the closed waveguides
are simple in the cross section and easy to analyse, accurate expressions of the complex
wavenumber are easy to obtain. The feed junction produces only little spurious radiation.
The result is a remarkably good agreement between theory and practice [OJ07].

To sum up the most important traits of the different basic waveguides, open waveguides
feature a slow wave and need periodic modulations causing radiation. Yet their beam may
swing from the backward quadrant to some part of the forward quadrant. Closed waveg-
uides with introduced closely spaced holes provide a fast wave and seem quasi-uniform
with only the n = 0 space harmonic leaking. However, they reveal the disadvantage of
radiating only in the forward quadrant.

In conclusion, closed waveguides appear as good means to supply the basic concept
for metamaterials since they already provide useful prerequisites. The integration of
metamaterials in waveguides could diminish their drawbacks and together they might
even lead to unprecedented devices with novel functionalities.

3.4.2 Bound or Leaky Wave - Slow or Fast Wave

Whether the wave is just guided or additionally radiating while propagating along the
architecture depends on the mathematical nature of the wavenumber pointing perpendic-
ular to the antenna aperture. A representation by the wavenumber k is preferred for this
purpose, which is related to the propagation constant by γ = jk. For illustration of the
radiation mechanism, a scalar plane wave representation is considered according to

ψ(x, z) = ψ0e
−jkxxe−jkzz. (3.36)

The relationship of the wavenumbers is visualised in Fig. 3.11. The functional dependence
of the scalar wave potential is held generally and serves mainly for the demonstration
of the principle. The wavenumbers kz longitudinal and ky transverse to the structure,
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Figure 3.11: Radiated wave front with corresponding wavenumber components.

the wavenumber kx pointing into the space and the wavenumber of free space, which
furthermore denotes the light line with k0 = ±ω√

εµ, fulfill the separation equation

k2
x + k2

y + k2
z = k2

0 . (3.37)

Assuming a laterally constant field distribution in y-direction, ky = 0 is obtained (cf. sec-
tion 5.7) and Eq. (3.37) reduces to the two-dimensional case, the propagation constant in
x can be ascertained. Whether propagation or attenuation takes place two cases are to
distinguish, namely

if |kz| < k0, it is

kx = ±
√
k2

0 − k2
z (3.38)

with kx ∈ Re.

if |kz| > k0, it is

kx = ±
√
k2

0 − k2
z (3.39)

with kx ∈ j Im.

Fig. 3.12 depicts the relation. If an imaginary kx results the corresponding exponent in
(3.36) becomes real and no wave propagation in x-direction occurs. Since kx = βx − jαx, a
positive αx > 0 leads to wave attenuation with e−αxx and a negative αx to an exponential
increase of energy for x → ∞. As this is only acceptable within short distances but
physically not reasonable for x → ∞, the wave is called improper. This topic is referred
to in detail in section 6.1.
From the radiation condition Eq. (3.38),

k0 > kz → kz

k0
=

√
εr,eff < 1 (3.40)

results. For higher order modes kz must still be of lower value to satisfy condition (3.40).
Above

√
εr,eff = 1 all energy remains confined within the structure. Other combinations

are conceivable since kz = βz − jαz and kx = βx − jαx but the combinations are here
limited to the case βz > 0. Tab. 3.1, like the table in [Ish90], usefully summarises the
relations where the exponential functional dependence is added as compared to [Ish90].
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Figure 3.12: The light line separates the slow and the fast wave regions, deciding about pure
guiding or the capability of radiation.

Beam Direction, Radiation Efficiency

The beam direction follows directly with regard to Fig. 3.11 as

sin ϑm ≈ βz

k0
, (3.41)

with ϑm as the angle of the maximum of the beam. The length of the leaky-wave antenna
is L and the beamwidth ∆ϑ, which is [OJ07]

∆ϑ ≈ 1

L/λ0 cos ϑm
. (3.42)

With the knowledge of the complex wavenumber kz or βz and αz, a proper design can
be proceeded effectively. The beam direction, radiation efficiency, beam-steering with
frequency and the handling of the side lobe level can be controlled efficiently.

Case: βz αz βx αx Propagation Term Meaning

+ 0 + 0 e−j|βz|z−j|βx|x fast wave

+ − + + e−j|βz|z+|αz|z−j|βx|x−|αx|x backward leaky

+ 0 0 + e−j|βz|z−|αx|x trapped surface wave

+ + − + e−j|βz|z−|αz|z+j|βx|x−|αx|x Zenneck wave

+ 0 − 0 e−j|βz|z+j|βx|x plane wave incidence

+ − − − e−j|βz|z+|αz|z+j|βx|x+|αx|x

+ 0 0 − e−j|βz|z+|αx|x untrapped surface wave

+ + + − e−j|βz|z−|αz|z−j|βx|x+|αx|x forward leaky wave

Table 3.1: Classification of wave types.
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3.4.3 Working Principles: Conventional Versus Novel Functionalities
with Metamaterials

A LWA devised by metamaterials does not need to be periodic in order to yield radiation
as it is sufficient to operate it in the fundamental mode, which is typically fast in nature.
Nevertheless, normally they reveal a periodic constitution but with the purpose to ease
manufacturing and analysis. In contrast, usual LWAs need periodicities in order to gen-
erate leaky space harmonics. Actually, since the period in metamaterial LWAs is much
smaller than the operating wavelength p << λg the entity can be seen as uniform. With
reference to the scan range of customary uniform LWAs described in section 3.4.1, the
broad scanning range of the metamaterial LWAs is a crucial benefit.

Due to the operation at the n = 0 space harmonic, the feeding mechanism can be
kept simple and efficient meaning small and broadband by just employing a feed line in
comparison to a traditional LWA, where e.g. a balun is needed to excite the odd, the fast
mode [QCI+99].

With view to the dispersion diagram in Fig. 3.13 of CRLH TL structures in general, it
becomes apparent that an open CRLH structure can radiate since the dispersion curve
indicates | β

k0
| < 1 in certain frequency regions, where β refers to the longitudinal phase

constant which was βz in section 3.4.2. In contrast to conventional LWAs, CRLH struc-
tures present backfire to endfire scanning capability including broadside radiation if the
structural elements are balanced. At the frequency where β = 0, radiation perpendicular
to the antenna plane occurs and the wavelength as well as the phase velocity is infinite.
These specialities can be exploited for promising new gadgets.
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Figure 3.13: The light line (dashed green line) distinguishes the radiation region from the purely
guided wave range. Exemplary dispersion curve of CRLH TL (blue solid line).





4 Modal Series Expansion of Periodically
Loaded Waveguides

The concept here is to generate the eigensolutions of inhomogeneous periodic eigenprob-
lems, as sketched in Fig. 4.1, in a series expansion employing the eigensolutions of the
underlying background waveguides as basis functions. These eigensolutions are best suited

p

z p++++

zinput port in plane   

output port in plane

Figure 4.1: Unit cell with periodic loading.

since they comply with the preconditions of orthonormality and completeness. To ensure
stable working, a waveguide is typically operated in the fundamental mode and only one
mode up to a finite number of propagating modes exist in the frequency range of interest.
Hence, the expansion with only very few modes (propagating and some evanescent) may
suffice to provide an accurate solution. For many cylindrical waveguides, the eigensolu-
tions can be given analytically. In case the background structure is more complicated the
eigensolutions can be computed by numerically solving 2D eigenproblems, e.g. with CST
MWS [CST11]. The studied periodically constructed waveguides allow the Bloch-Floquet
theorem to be applied, cf. section 3.3, meaning that the solution of an entire periodic
waveguide is obtained by considering the solution of one unit cell, for which the bound-
aries are defined as periodic. The periodic boundaries can be placed arbitrarily. However,
by positioning them in the undistorted regions of the background waveguide transversal
to the propagation direction, here the z-direction, it is possible to formulate the fields
depending on x, y in the input periodic boundary according to

Eport,in (x, y) =
M∑

m=1

[amem,port (x, y) + bmem,port (x, y)] (4.1)

Hport,in (x, y) =
M∑

m=1

[amhm,port (x, y) − bmhm,port (x, y)] (4.2)

by the eigensolutions em,port and hm,port for the electric and for the magnetic field, respec-
tively, of the background waveguide as basis functions. The wave coefficients am indicate
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inward waves, whereas the wave coefficients bm denote outward waves. The term with
the outward wave coefficient bm is to subtract in case of the magnetic field in order to
maintain an orientation in the right-hand sense. The waveguide cross section is identical
with the port planes in a full-wave simulation of the unit cell, from where the M feeding
modes directly excite the structure. One mode after the other may excite the unit cell
and the couplings onto all the other modes can be recorded. The two port planes (in and
out) limit a unit cell constituting the whole periodic waveguide by periodic repetition in
longitudinal, i.e. z-direction. By inserting the modal expansion, Eqs. (4.1) and (4.2), into
the Bloch-Floquet theorem, section 3.3, the field solution in the output port plane

Eport,out (x, y) = Eport,in (x, y) e−γp (4.3)

Hport,out (x, y) = Hport,in (x, y) e−γp (4.4)

is obtained, where

Eport,out (x, y) =
M∑

m=1

[
b′

mem,port (x, y) + a′
mem,port (x, y)

]
(4.5)

Hport,out (x, y) =
M∑

m=1

[
b′

mhm,port (x, y) − a′
mhm,port (x, y)

]
, (4.6)

and likewise the field solution in the port planes of the entire waveguide. The length of
the periodic unit cell and thus of one period is p, and γ denotes the complex eigenvalue
γ = α + jβ, composed of the phase constant β and the attenuation constant α. Actually
the eigenvalue is Γ = eγp and it is a scalar quantity, which belongs to a nonzero eigenvector
v as defined below. For wave problems, γ specifies the nature of the wave. The incident
modes am in the input port plane are related to the outgoing primed modes b′

m in the
output port plane by the propagation factor according to

am = b
′

meγp (4.7)

and vice versa

bm = a
′

meγp. (4.8)

4.1 Eigenproblem and Transfer Matrix Representation

Eqs. (4.7) and (4.8) relate the amplitudes of individual modes to each other under the
assumption that they belong to an eigensolution. However, the relative amplitudes of the
individual modes are not yet defined. They are obtained by considering the couplings of
the modes according to
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11 TM1
12 . . . TMM

12

T 11
21 . . . T 1M

21 T 11
22 . . . T 1M

22
...

. . .
...
...

. . .
...

TM1
21 . . . TMM

21 TM1
22 . . . TMM

22







a
′

1
...
a

′

M

b
′

1
...
b

′

M




. (4.9)
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The complex wave amplitudes of the modes in the output port plane can be grouped in
the vector v = (. . . , a′

m, . . . , b
′
m, . . .). The transfer matrix T thus describes the couplings

of the modes at the input port to the modes at the output port, pictured in Fig. 4.2
for the kth unit cell. The superscripts of the T -parameters in Eq. (4.9) are introduced
to distinguish the contribution of the mth mode at the input port, indicated by the first
superscript, from the contribution of the mth mode at the output port indicated by the
second superscript. The subscripts are just for localisation reasons in the matrix and have
no physical meaning. The T -matrix is usually full, unsymmetric and complex. At each
port, M modes are observed leading to a T -matrix with dimension 2M × 2M because
to each mode belongs an inward a and an outward wave b. In a periodic network, the
outward wave b′ at the output port of the kth unit cell is the inward wave a at the input
port of the subsequent (k + 1)th unit cell. The behaviour of the wave quantities of the
total series network of K subsystems can easily be obtained by matrix multiplication

Ttotal =
K∏

k=1

Tk, (4.10)

where the order in the product has to be respected. With the goal to classify periodic
architectures, the T -matrix is the ideal form of description.

The function of the T -matrix can be interpreted as a mapping from the modes at the
output port onto the modes at the input port. The same mapping is described by the
propagation term eγp. The equality can be subsumed in the linear eigenvalue equation

eγpv = Tkv or

(Tk − eγpI)v = 0, (4.11)

with the identity matrix I.
According to the relation stated with Eq. (4.11), the matrix T has to be decomposed

into its eigenvalues. In general, an eigenvalue decomposition analyses a matrix when it
represents a mapping from a vector space into itself. The eigenvectors of the square T -
matrix are multiplied by the matrix and remain proportional to the original vector. They
only change in magnitude by a factor which is the eigenvalue, which is here in form of the
propagation factor eγp. In contrast, a singular value decomposition serves for analysing
a mapping from one vector space into another one with potentially different dimensions.
Ideally, T is to diagonalise and the relation reads

TV = V D. (4.12)

The diagonal matrix D presents the eigenvalues on its diagonal and its ith entry corre-
sponds to the ith column vector vi of V . If V is nonsingular the eigenvalue decomposition

,k Ma �
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k
T

'

,1kb,1kb ,1ka
'

,1ka

 ,k M
b

�
'

,k Mb
'

,k Ma

Figure 4.2: The T -matrix characterising the kth unit cell.



32 4 Modal Series Expansion of Periodically Loaded Waveguides

can be posed as

T = V DV −1. (4.13)

Is T not to diagonalise an eigenvalue decomposition is not possible. To different eigen-
values Γi 6= Γj the eigenvectors vi 6= vj correspond, which are orthogonal to each other,
therefore it is

vT ∗
i vj = 0, (4.14)

where vT ∗
i denotes the complex conjugate transpose to vi. Orthogonalilty or rather or-

thonormality of the vectors is the precondition to express any vector x in terms of a
system of orthogonal unit vectors in the form

x = c1v1 + · · · c2Mv2M , (4.15)

where the coefficients ci are found by multiplying (4.15) by each of the vectors v∗
i [CH53];

they are

ci = xv∗
i . (4.16)

The eigenvectors establish a solution space of which the dimension is determined by the
number of linearly independent eigenvectors, equally specified by the rank of the matrix.
For j modes or eigenvectors j eigenvalues follow if not degenerated. An indication of
degeneracy is if the multiplicity of the eigenvalues is bigger than the dimension of the
eigenspace spanned by the eigenvectors. In case an eigenvalue exists n-times

Γ = Γ1 = Γ2 = . . . = Γn (4.17)

but n linearly independent eigenvectors exist, thus dim(vΓ ) = n and not dim(vΓ ) < n,
then the matrix T is diagonalisable. If two eigenvectors possess one and the same eigen-
value a degeneracy results. But the eigenvectors vi and vj can be combined in the way
that vi = vi and vj = vi+Cvj such that they end up as orthogonal. The new eigenvectors
are indeed orthogonal but have one eigenvalue in common.

The concept of expressing any vector in terms of a system of orthogonal unit vectors
stated in Eq. (4.15) is analogous. It can be transferred to express any piecewise continu-
ous function in a solution domain by a set of orthonormal functions. The proof in terms
of functions is given in section 5.4. Here, the application is demonstrated by expanding
field solutions in port planes by the orthonormal set of eigensolutions em,port and hm,port

as in Eqs. (4.1) and (4.2). The expansion coefficients for the basis functions supply the
components of the eigenvectors v = (. . . , a′

m, . . . , b
′
m, . . .). They are found by Eq. (4.12)

and construct the matrix V while each eigenvector corresponds to an eigenvalue on the
diagonal in matrix D. The jth column vector belongs to the jth eigenvalue as jjth en-
try on the diagonal of D. The relation is illustrated in Fig. 4.3 for an example of two
considered port modes. The first component a′

j1 corresponds to the first inward wave of

the background waveguide. The (M + 1)th component b′
j1 is the corresponding outward

wave. The quotient b′
1/a

′
1 can be interpreted as a kind of reflection coefficient for the first

port mode at the second port. The second component of vj belongs to the second port
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Figure 4.3: Correspondence between eigenvalue j in D, eigenvector j in V and exciting modes.

mode and so on. The vector vj is of dimension 2M because of M considered port modes.
From eigenvalue j corresponding to eigenvector vj, the propagation and attenuation con-
stant can be deduced. If studying closed waveguides, the eigenvalue of the propagating
fundamental mode can be selected according to the criterion

|eγp| ∼= 1, (4.18)

if no or only little losses are present. Evanescent modes reveal |eγp| 6= 1. From the
determined eigenvalue, the propagation and the attenuation constant can be retrieved by

β = −∠(e−γp)/p (4.19)

α = ln(|e−γp|)/p (4.20)

for the forward wave. The attenuation and the propagation constant can be depicted in
a dispersion diagram giving immediately insight in the physical properties of the complex
mathematical solution of the wave which may be guided, attenuated, leaky or combina-
tions of it.

4.2 Scattering Matrix and Numerical Implementation

The T -parameters (Eq. (4.9)) are not directly accessible because they have no physical
meaning. Instead, the scattering parameters in the S-matrix express the physical prop-
erties of an electromagnetic system such as a unit cell with respect to accessible ports.
While the T -matrix relates the wave quantities at the input port to the wave quantities
at the output port, the S-matrix describes the relation of the outward waves b to the
inward waves a at one port or from one port to the other one under the condition that
the remaining ports are matched, i.e.

Sij =
bi

aj

∣∣∣∣∣
an=0, aj 6=0

(4.21)

and they represent the degree of cross-coupling from one mode to the others caused by
the inhomogeneity contained in the examined unit cell. The coupling of the fields at the
boundaries can then be solved via an appropriate numerical field computation program
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Figure 4.4: N waveguides terminate in a common junction.

like CST MWS [CST11], in which an exact formulation of the problem description is nu-
merically implemented. So, the main computational effort is to determine the couplings
but it is just a series of M excitation problems, where the periodic boundary conditions
are yet not to consider. The solution procedure is known as the scattering matrix ap-
proach (SMA), e.g. [SLW05].

Usually, N waveguides may terminate in a common region which may contain active
and/or passive elements as sketched in Fig. 4.4. The system is accordingly attributed to
as an N -port. Then, one mode is commonly assumed to exist in each waveguide. On
the other hand, only one waveguide may be present while furnishing M modes and the
system can be addressed to as an M -port. For this work, waveguide systems are concerned
carrying M modes. It is an MN -port and the number of ingoing and outgoing waves at
each port is the same. In Fig. 4.4, the dotted line marks the reference location for the
waves to be registered. Measuring the wave in a distance away from the reference terminal
would generate an additional phase shift and possibly amplitude change. Here, a multi-
mode wise excitation is performed on unit cells of a periodically constituted waveguide
with an input port and an output port. The ports are thereby directly placed on one unit
cell without additional feeding lines. To clarify the notation, the number of waveguides is
referred to with N = 2 and the modes are denoted as M modes that excite the two-port
system. In total, the matrix of the system is of size 2M × 2M due to an inward and an
outward wave of every mode as to see with view to the S-matrix reading




b1
...
bM

b
′

1
...
b

′

M




=

(
S11 S12

S21 S22

)




a1
...
aM

a
′

1
...
a

′

M




(4.22)

where S11, S12, S21 and S22 can be treated as submatrices of dimension M × M of S.
The primed quantities again mark the waves at the output port. Here, the S-parameters
express the behaviour of modes. Contrary to background waveguides, where waves can
travel unimpededly, the amplitudes of reflected waves are determined by the physical
properties of waveguide inhomogeneities. Moreover, the inhomogeneities cause a cross



4.2 Scattering Matrix and Numerical Implementation 35

�� 

kS

'

,1kb,1kb ,1ka
'

,1ka

� ,k Mb ,k Ma �
'

,k Mb
'

,k Ma

Figure 4.5: The S-matrix describes the kth cell with 2M modes.

coupling of the modes. The transmission parameter S23
21 signifies that mode 3 is transmit-

ted from the first to the second port while coupling onto mode 2. The elements on the
main diagonal are the reflection parameters, e.g. Sjj

ii is the reflection coefficient of mode
j on port i. Each S-parameter is defined under the precondition that all the other modes
are matched. Symmetric unit cells yield symmetric S-matrices.

The relation in Eq. (4.22) is illustrated with Fig. 4.5 for the kth unit cell. Since the unit
cell is part of a periodic network the description by the T -matrix is beneficial. Moreover,
the relation to an eigenproblem is needed. Therefore, the S-matrix is to convert into the
T -matrix by the following transformation formulas [Col91]:

T11 = −det {S} \S21 = S12 − S11S22\S21 (4.23)

T12 = S11\S21 (4.24)

T21 = −S22\S21 (4.25)

T22 = 1\S21. (4.26)

Consequently, the benefits of both matrices can be combined. Since the division of ma-
trices does not exist the symbol “\” is introduced representing rather the multiplication
by the inverse matrix. This operation must be carried out with caution because small
singular values of a matrix may falsify the result, cf. 9.3 in the appendix. If a matrix is
even singular the inverse does not exist at all and the pseudoinverse must be used instead.

By closer regarding the conversion formulas Eqs. (4.23)-(4.26), it is obvious that the
T -matrix can not result as symmetric. Furthermore, it is conspicuous that the multipli-
cation with the inverse of the submatrix of the transmission coefficient S21 is contained.
The inverse of a matrix however does not exist if it is singular creating instability. Such
small singular values may occur if modes are included which do not really contribute to
the field solutions. These modes now appear among the dominant modes that falsifies the
actual behaviour. Therefore and to recover numerical stability, the contributions of these
modes must be eliminated beforehand. A singular value decomposition (SVD) cf. 9.1 of
each submatrix of the S-matrix is carried out and a threshold is introduced below which
the minor SVs are deleted. As such, a pseudoinverse is generated cf. 9.3. The submatrices
are rebuilt and the S-matrix can be transformed into the T -matrix. Consequently, the
eigenproblem (4.11) can be solved numerically stable and it is reduced due to only few
feeding modes.

The essential trait of this modal series expansion method is that the solution of complex
eigenproblems can be reverted to the solution of corresponding and simplified excitation
problems or rather to the excitation with a series of single modes. The system matrix
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arising from the discretisation of a unit cell and to be solved is greatly reduced com-
pared to the system matrix relevant for the original eigenproblem. The final algebraic
eigenproblem only encompasses the coefficients in the expansion for the boundary fields
and is of minor computational expense. Driven problems in turn can be computed effi-
ciently with numerical programs. Since the excitation is run with only few M modes a
scattering matrix of manageable size 2M × 2M results saving computational complexity
and simulation time tremendously. In this manner, the M modal field solutions em,port

and hm,port as field solutions of the port region provide the basis functions. The modal
field solutions of the background structure are best suited as basis functions. Their wave
nature and their derivation is elucidated in the next chapter. In sections 5.4 and 5.5, it is
demonstrated that the waveguide modes fulfill the requirements of proper basis functions
like orthonormality and completeness.

Additionally, a driven simulation seems advantageous offering best boundary flexibil-
ity in contrast to a simulation with an eigensolver, where open boundary conditions are
often problematic. They are notwithstanding necessary for computing the fields of an-
tenna applications. However, for field problems with open boundary conditions, implying
infinite free space, an endless number of modes needs to be considered and the discrete
set of modes coalesces into a continuous spectrum signifying that the series expansion is
to extend by an integral representation. The solution procedure just described delivered
yet approximate and good results in case of leaky-wave antennas presented in chapter 8
compared to reference data because the field modes are mainly concentrated and guided
in the waveguides. In section 8.2, the basis functions are the eigensolutions of the ac-
tual waveguide without the open space. This approximate approach is improved with the
computation strategy presented in chapter 6.2, which extends the modal series expansion
with a discrete set of modes to open structures.



5 Solutions of Cylindrical Waveguides

In this chapter, modal field solutions are derived for cylindrical waveguides since they
provide the background media for periodically repeated inhomogeneities in these waveg-
uides. Cylindrical waveguides are characterised by a transversal cross section which may
be inhomogeneous in material and geometry. This cross section is uniform along the lon-
gitudinal axis of the waveguide, which is taken as z-axis and which is assumed to extend
to infinity. Consequently, the position vector can be decomposed as

r = ρ+ zez . (5.1)

The vector ρ in the transversal plane can further be split up in

ρ = ueu + vev, (5.2)

where u, v denote orthogonal curvilinear coordinates as shown in Fig. 5.1. The waveguides

u

v

z

ϕ
( )Cρ ϕ

C

Figure 5.1: The cylindrical waveguide.

can be closed or open, they are of general kind and the transversal cross section is enclosed
by a curve C. The curve C is defined by the radius vector ρC(ϕ). If the curve C completely
or partly extends to infinity, the waveguides are open.

Typically, waveguides exhibit conventional material parameters and artificial material
properties will later be considered when periodic inhomogeneities are placed in the cylin-
drical waveguides.
The material relations are inserted in Maxwell’s equations which consequently read

∇ ×H (r) = jωεE (r) + J (r) , (5.3)

∇ ×E (r) = −jωµH (r) −M (r) , (5.4)

∇ · (εE) (r) = ρ (r) , (5.5)

∇ · (µH (r)) = ρm (r) . (5.6)
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For the solution of electromagnetic problems the boundary conditions have to be defined.
On the boundary between some adjacent domains 1 and 2 with different material proper-
ties, it is to distinguish whether surface currents or surface charges exist or not [Col91].
Thereby, it is assumed that the unit normal vector n points from medium 2 into medium
1. Then, the boundary conditions result in

n× (H1 (r) −H2 (r)) =

{
0 : standard

JA (r) : surface currents
(5.7)

for the magnetic field and for the electric field in

n× (E1 (r) −E2 (r)) =

{
0 : standard

−MA (r) : surface currents.
(5.8)

In the event of charges, the situation for the electric flux density yields

n · (D1 (r) −D2 (r)) =

{
0 : standard

ρA (r) : surface charges
(5.9)

and for the magnetic flux, it is

n · (B1 (r) −B2 (r)) =

{
0 : standard

ρmA (r) : surface charges.
(5.10)

In section 5.1, auxiliary potential functions are introduced to solve Maxwell’s equa-
tions cf. [Bal05] and some general considerations are given. In section 5.2, field modes
in waveguides are examined first generally while in section 5.3, E and H modes are de-
duced in the form of five-component fields. Section 5.4 elucidates scalar eigenproblems
and the characteristics in general. In section 5.5, a more general vectorial orthogonality
principle is derived. Next, special field modes are presented. It starts with the TEM
wave in section 5.6, followed by the solutions for a rectangular cross section bounded by
perfectly conducting walls in section 5.7. Section 5.8 demonstrates that evanescent modes
contribute to real power transfer and section 5.9 is concerned with open dielectric waveg-
uiding structures and in especially with the modal solutions of TE and TM waves on the
grounded dielectric slab. In section 5.10, the modal solution is analytically derived for a
three-layer composition which is bounded by PEC at the top and the bottom.

5.1 Solutions of Maxwell’s Equations by Auxiliary
Potential Functions

For simplicity, homogeneous space is implied. In addition, for isotropic and linear media,
εr and µr are scalar and constant. First, MWEs are considered under the excitation of
purely electric currents:

∇ ×H (r) = jωεE (r) + J (r) , (5.11)

∇ ×E (r) = −jωB (r) , (5.12)

∇ ·B (r) = 0. (5.13)
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Eq. (5.13) results from the fact that no magnetic sources exist, hence the divergence of
the magnetic field is 0. It is known that any vector field e.g. C (r) can be decomposed
into a rotational field part and a gradient field part [Ish90]:

C (r) = ∇ ×A (r) + ∇φ (r) . (5.14)

The divergence yields

∇ ·C (r) = ∇ · (∇ ×A (r))︸ ︷︷ ︸
=0

+ ∇ · ∇φ (r)︸ ︷︷ ︸
6=0

. (5.15)

Since ∇ ·B (r) = 0 equally vanishes,

B (r) = ∇×A (r) A (r) : magnetic vector potential (5.16)

can be defined. Eq. (5.16) is inserted into (5.12) resulting in

∇ × (E (r) + jωA (r)) = 0, (5.17)

where the term in parentheses can be represented by the gradient of a scalar potential.
Thus, it is

E (r) = −jωA (r) − ∇φ (r) . φ (r) : electric scalar potential (5.18)

Inserting (5.18) with (5.16) into (5.11) gives

∇ × ∇ ×A (r) = ω2µεA (r) − jωµε∇φ (r) + µJ (r) . (5.19)

The relation

∇ × ∇ ×A (r) = ∇∇ ·A (r) −∆A (r) (5.20)

renders

∆A (r) + ω2µεA (r) = ∇(∇ ·A (r) + jωµεφ (r)) − µJ (r) , (5.21)

where the wavenumber k can replace ω
√
µε.

Alternatively, Eq. (5.14) can be stated such that any vector field consists of a curl-free
component A′ and a divergence-free component A′′: A = A′ +A′′ with ∇ ×A′ = 0 and
∇ ·A′′ = 0. Since ∇ ×A = ∇ ×A′′ = B as defined in (5.16), ∇ ·A = ∇ ·A′ is still free
to choose and this is accomplished by satisfying the Lorenz gauge

∇ ·A (r) + jωµεφ (r) = 0. (5.22)

Finally, with the Lorenz gauge and from (5.21), the inhomogeneous vector Helmholtz
equation

∆A (r) + k2A (r) = −µJ (r) (5.23)
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follows, which would be a homogeneous eigenvalue problem equation without an electric
current excitation J . Applying the divergence operator on (5.19), imposing the Lorenz
condition and the continuity equation, which is

∇ · J (r) = −jωρ (r) , (5.24)

it returns

∆φ (r) + k2φ (r) =
∇ · J (r)

jωε
= −ρ

ε
(5.25)

which is the inhomogeneous scalar Helmholtz equation.

Applying (5.22) to (5.18),

E (r) = −jω
(
A (r) +

1

k2
∇∇ ·A (r)

)
(5.26)

is obtained and from (5.11) with (5.16), the electric field can be computed from the
magnetic vector potential and the electric currents:

E (r) =
1

jωµε
∇ × ∇ ×A (r) − 1

jωε
J (r) . (5.27)

For reasons of completeness, the computation of the magnetic vector potential is given
due to sources, since this is the common case although primarily source-free fields are
treated in this work. The magnetic vector potential is gained via integrating over either
volume source currents as

A (r) =
µ

4π

∫∫∫

V

e−jk|r−r′|

|r − r′| J(r′)dV ′ (5.28)

or over surface source currents with

A (r) =
µ

4π

∫∫

A

e−jk|r−r′|

|r − r′| JA(r′)dA′ (5.29)

where the term 1
4π

e−jk|r−r
′|

|r−r′| denotes the Green’s function of the scalar Helmholtz equation
for the three-dimensional free space. This is the solution of the scalar Helmholtz equation
for an excitation with the delta Dirac function. Having computed A (r), the result can
be inserted into (5.26) which finally yields the electric field in form of

E (r) =
−jωµ

4π

∫∫∫

V

(
Ī +

1

k2
∇∇

)
e−jk|r−r′|

|r − r′| · J(r′)dV ′ (5.30)

for source currents within a volume and equivalently for source currents within a surface.
Ī is here the unit dyad.

By the principle of duality, the fields of magnetic source currents can be computed by
means of an electric vector potential, of which the definition is

E (r) = −1

ε
∇×F (r) F (r) : electric vector potential (5.31)
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because ∇·(εE (r)) = 0. The resulting field representations by the electric vector potential
and the magnetic scalar potential ψ (r) involving magnetic current sources M (r) are

H (r) = −jωF (r) − ∇ψ (r) , (5.32)

H (r) = −jω
(
F (r) +

1

k2
∇∇ · F (r)

)
, (5.33)

H (r) =
1

jωµε
∇ × ∇ × F (r) − 1

jωµ
M (r) . (5.34)

The computations of the potentials follow with

∆F (r) + k2F (r) = εM (r) , (5.35)

∆ψ (r) + k2ψ (r) = −ρm (r)

µ
, (5.36)

F (r) =
ε

4π

∫∫∫
e−jk|r−r′|

|r − r′| M(r′)dV ′. (5.37)

After deriving the tools for computing the electromagnetic field solutions they can be used
to achieve the field solutions for waveguiding structures.

5.2 Field Modes in Waveguides

The fundamental properties are examined with respect to Maxwell’s equations in the
subsequent sections. Since the medium parameters do not vary along the z-axis field types
can be conveniently computed by separation of location dependence into longitudinal and
transversal functional dependencies. The field types feature the form

E(u, v, z) = E0(ρ)e±γz , (5.38)

H(u, v, z) = H0(ρ)e±γz , (5.39)

where the e±γz-dependence is due to the translation invariance in z. The number of
field types or modes with different cross sectional dependence approaches infinity. It is to
distinguish between propagating wave types with a purely imaginary propagation constant
in the lossfree case

γ = jβ (5.40)

and evanescent modes with a real propagation constant

γ = α. (5.41)

Losses or radiation lead to a complex propagation constant. The number of wave types
in a cylindrical waveguide is always finite whereas the number of evanescent modes is
infinite. Wave types may have a cut-off frequency above which they are able to propagate
and to transport energy. Below this very frequency, they are evanescent. One type
without a lower cut-off frequency is the transversal electromagnetic (TEM) wave existing
in multi-conductor systems. It cannot propagate in a fully closed waveguide without inner
conductor since the potential difference on a closed boundary is zero and the solution to
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the Laplace equation in the transversal plane is hence also zero. A mode is termed
fundamental if it is the only one to propagate in a specific frequency range, which is
typically at low frequencies. For instance, a rectangular waveguide has the H10 mode as
fundamental mode if the vertical dimension b and the horizontal length a show a relation
of 0.5 ≥ b

a and the wavelength of a homogeneous plane wave λHP W is 1 ≤ λHP W

a ≤ 2.

Phase and Group Velocity

In time domain, a wave type travelling in +z-direction is

E(r, t) = Re
{
E0(ρ)ej(ωt−βz)

}
. (5.42)

Keeping the argument of the exponential constant yields the phase velocity of the wave
as

c =
ω

β
. (5.43)

An information-carrying wave set can be seen as a superposition of harmonic waves with
different frequencies. While integrating over a small band the integral describes the cor-
responding envelope curve. By keeping the integration result constant [Col91], the group
velocity of the envelope curve follows with

vg =
(
dβ

dω

)−1

. (5.44)

The group velocity is consequently the velocity with which the information or energy of
the electromagnetic wave advances. It is always smaller than the velocity of light whereas
the phase velocity may turn out greater than the velocity of light.

5.3 Five-Component Fields for E and H Modes

The vector eigenvalue problem is simplified by a split-up into scalar eigenvalue problems
adequate for many cross-sectional domains. This scalarisation is equivalent with a de-
composition into E and H modes [FM94]. It is possible to pursue modal expansions of
independent transverse fieldsEt andHt and to formulate the dependent longitudinal com-
ponents thereby. For this reason, it is desirable to eliminate the longitudinal component
and to seek field equations for the independent transverse components only. As such, the
field is decomposed into a transverse part and a longitudinal component according to

E(u, v, z) = [Et(u, v) + ezEz] e−γz, (5.45)

H(u, v, z) = [Ht(u, v) + ezHz] e−γz (5.46)

for longitudinal z-direction. The operators are separated likewise:

∇ = ∇t + ez
∂

∂z
, (5.47)

∇2 = ∆ = ∇2
t +

∂2

∂z2
. (5.48)
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A facilitating decomposition into E and H modes results which is appropriate for many
configurations. An ansatz is posed for the marked direction of propagation.
For the E-type modes, the ansatz reads

A = ezψE , F = 0, (5.49)

ψE = ψEte
−γEz. (5.50)

It results in

E =
1

jωµε
∇ × ∇ ×A = − γE

jωµε
∇tψE − ez

∇2
tψE

jωµε
, (5.51)

H =
1

µ
∇ ×A = − 1

µ
ez × ∇tψE yielding Hz = 0 (5.52)

generating the transversal magnetic (TM) modes without an H-component in propagation
direction.
Likewise for the H modes or the transversal electric (TE) modes the ansatz is

F = ezψH , A = 0, (5.53)

ψH = ψHte
−γH z, (5.54)

E = −1

ε
∇ × F =

1

ε
ez × ∇tψH yielding Ez = 0, (5.55)

H =
1

jωµε
∇ × ∇ × F = − γH

jωµε
∇tψH − ez

∇2
tψH

jωµε
. (5.56)

In both cases, the ansatz just contains one z-component which entails vector field solutions
depending only on one scalar quantity. Since they have to fulfill the scalar Helmholtz
equation the ansatz is applied to the homogeneous form of (5.25) considering no sources.
Without any excitation, the equation represents an eigenvalue problem. For E modes, it
is

∆ψE + k2ψE = 0, (5.57)

∆tψE +
(
k2 + γ2

E

)

︸ ︷︷ ︸
q2

E

ψE = 0 (5.58)

where

qE =
√
k2 + γ2

E (5.59)

is the eigenvalue of the E-field modes, and similarly for H-field types one gets

∆ψH + k2ψH = 0, (5.60)

∆tψH +
(
k2 + γ2

H

)

︸ ︷︷ ︸
q2

H

ψH = 0 (5.61)

with

qH =
√
k2 + γ2

H (5.62)
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as eigenvalue of the H-field modes.

Eqs. (5.59) and (5.62) constitute the separation equations for the E and the H modes,
respectively. Each of the field types is just composed of five components. However, any
six-components fields can be generated by superposition of E and H modes because E
and H modes together typically form a complete set and an arbitrary field within a closed
region can be represented. Consequently, it is sufficient to describe such fields by only
two scalar quantities.

Both eigenvalues qE and qH result from the field solution and depend on the transversal
geometry. The wavenumber k = ω

√
εµ characterises the solution medium and contains

the frequency for which the eigenvalue equation is to solve. The propagation constant
γ =

√
q2 − k2 specifies whether the field mode is able to propagate or whether it is

attenuated.

It yields for a real k
with real eigenvalues |q| < k: propagating
waves with

γ = jβ, α = 0 (5.63)

and the wavelength

λg =
2π

β
=

2π√
k2 − q2

(5.64)

with λg > λ0 =
2π

k
. (5.65)

with real eigenvalues |q| > k: evanescent
waves with

γ = α, β = 0, (5.66)

where λg is imaginary.

Every field type with an eigenvalue q possesses a frequency which is called the cut-off
frequency since ωc = 2πfc with k = ωc

√
εµ = kc = q, with which the propagation

constant becomes γc =
√
q2 − k2

c = 0 and α = 0 as well as β = 0. Generally, q and k can
become complex quantities. Consequently, γ will be complex, too and a classification of
the modes is not that clear anymore.

Besides γ, the other characteristic quantity of a field mode is the field impedance. The
modal field impedance is defined with respect to the transverse field components and the
corresponding relations are
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for E/TM modes:

Et = − γE

jωµε
∇tψE (5.67)

Ht = − 1

µ
ez × ∇tψE (5.68)

turning to

ez ×Et = ZF EHt (5.69)

with ZF E =
γE

jωε
(5.70)

for H/TE modes:

Et =
1

ε
ez × ∇tψH (5.71)

Ht = − γH

jωµε
∇tψH (5.72)

thus

ez ×Et = ZF HHt (5.73)

with ZF H =
jωµ

γH
(5.74)

From the previous equations it becomes obvious that the transversal E- and H-fields are
perpendicular to each other and that the field impedances are location-independent for
constant ε and µ.

5.4 General One-Dimensional Eigenvalue Problem

The scalar eigenvalue problems are given in (5.58) and (5.61) for E modes and H modes,
respectively. If separation of variables is possible with the product ansatz, then, coupled
1D scalar eigenproblems result which are typically of Sturm-Liouville type. The solu-
tions of Sturm-Liouville problems possess the important properties of orthogonality and
completeness, what will be discussed in the sequel.

An eigenvalue problem of the Sturm-Liouville type [FM94] is given as

[
d

dx

(
s(x)

d

dx

)
− g(x) + Γmh(x)

]
fm(x) = 0, x1 ≤ x ≤ x2 (5.75)

subject to the homogeneous boundary conditions

s(x)
dfm(x)

dx
+ c1,2fm(x) = 0, x = x1,2, (5.76)

while s(x), g(x) and the weighting function h(x) are supposed to be piecewise continuous
functions of x in the domain of focus. The eigenvalues Γm are real for real s(x), g(x), h(x)
and c1,2, marking the Hermitian case, and they belong to a non-dissipative medium. The
proof can be found in [FM94]. For the derivation of the orthogonality relation for the
Hermitian case, Eq. (5.75) is to multiply by the eigenfunction f∗

n(x) belonging to the
eigenvalue Γ ∗

n = Γn. Furthermore, integration is necessary over the defined x-domain to
obtain

x2∫

x1

f∗
n(x)

d

dx

(
s(x)

dfm(x)

dx

)
dx−

x2∫

x1

g(x)f∗
n(x)fm(x)dx+Γm

x2∫

x1

h(x)f∗
n(x)fm(x)dx = 0. (5.77)

Equally, it is to proceed by defining Eq. (5.75) for f∗
n and multiplication with fm and

a subsequent integration. The outcome is Eq. (5.77) but with m and n interchanged.
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Subsequently, the second equation is to subtract from the first one and eventually

(Γm − Γn)

x2∫

x1

hf∗
n(x)fm(x)dx =

[
s

(
fm(x)

df∗
n(x)

dx
− f∗

n(x)
dfm(x)

dx

)]x2

x1
(5.78)

turns out. The boundary conditions let the right-hand side vanish and lead to the orthog-
onality property of fm(x) and f∗

n(x) relative to the weighting factor h(x)

x2∫

x1

h(x)fm(x)f∗
n(x)dx = 0, m 6= n. (5.79)

The requirement

x2∫

x1

h(x)|fm(x)|2dx = 1 (5.80)

states that the eigenfunctions are normalised to unity.

In the special case that Γm = Γn, it is said that the corresponding modes are degenerate
and the proof of orthogonality just given fails [Col91]. However, a suitable linear combi-
nation of the degenerate modes can always be formulated such that the subset of modes
is orthogonal again [Col91]. For example, letting f1 and f2 be two degenerate modes with
eigenvalue Γ in common, a new subset of modes could be f ′

1 = f1, f
′
2 = f2 + cf1, in which

c is a constant and chosen such that
∫∫

S f
′
1f

′∗
2 dS = 0. Now with

∫∫
S fmf

∗
ndS = Pmn with

m = 1 and n = 2, it is c = −P12

P11
and the two modes f ′

1 and f ′
2 are orthogonal [Col91].

This is the Gram-Schmidt orthogonalisation procedure.

The set of eigenfunctions fm(x) constitutes a complete set and it encompasses all possi-
ble solutions for Eq. (5.75) [FM94],[CH53]. The set can represent a permissible function
F (x) in the x-interval, for which the sum

F (x) =
∑

m

Fmfm(x) (5.81)

over all eigenfunctions fm(x) converges. In order to find the coefficients Fm, (5.81) is
multiplied by h(x)f∗

m(x) with the purpose to obtain Eqs. (5.79) and (5.80) and make use
of the orthogonality property. Subsequently, Fm can be evaluated as

Fm =

x2∫

x1

h(ξ)F (ξ)f∗
m(ξ)dξ. (5.82)

The completeness of the set of fm is usually shown by choosing for F (x) the expressive
delta function δ(x−x′). With regard to the Fourier transform, the delta function comprises
all frequencies. Hence, it is

Fm =

x2∫

x1

h(ξ)δ(ξ − x′)f∗
m (ξ) dξ = h(x′)f∗

m(x′). (5.83)
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From Eq. (5.81) the completeness relation

δ(x − x′)
h(x′)

=
∑

m

fm(x)f∗
m(x′), x1 < x, x′ < x2 (5.84)

results. In conclusion, Eq. (5.84) gives the final representation of a permissible function
F (x) as in Eq. (5.81). A more detailed explanation on functions which can be expanded
in terms of the eigenfunctions into an absolutely and uniformly convergent series imply-
ing completeness and orthogonality of the eigenfunctions can be found in [CH53]. The
previous deduction has been made since the differential equation (5.75) together with the
boundary condition (5.76) constitute a Sturm-Liouville system which reveals important
properties being prerequisite for the basis functions in the modal expansion concept em-
ployed in chapter 4. The principle characteristics, among others, but which are valuable
within this work are:

1. The eigenfunctions form an orthogonal set over the closed interval x1 ≤ x ≤ x2,
with respect to the weighting function h.

2. The eigenfunctions form a complete set, such that a piecewise-continuous function
of x defined over the interval x1 ≤ x ≤ x2 may be expanded.

3. An infinite number of eigenfunctions with discrete eigenvalues exists.

Such a Sturm-Liouville system holds e.g. for the special case of a homogeneous rectangular
waveguide considered in section 5.7, where separation of the variables is performed in
Cartesian coordinates.

5.5 General Orthogonality Principle

A vectorial and more general orthogonality principle can be derived from the Lorentz
reciprocity principle as demonstrated in [Col91]. It is required for instance for a waveguide
with walls having a finite conductivity where the eigenfunctions no longer satisfy the
boundary conditions stated in Eq. (5.76) and where the various E and H modes cross
couple. Additionally in inhomogeneously filled waveguides, the propagating modes are
usually combinations of E and H modes. Therefore, a more general orthogonality relation
is demanded in order to expand any arbitrary field into a series of the very modes. For
the derivation, Htn, Etn and Htm, Etm are designated as transverse fields for two linearly
independent solutions of Maxwell’s equations [Col91]. For each solution, the curl equation
for the electric field gives

∇ ×En = −jωHn ∇ ×Em = −jωHm, (5.85)

where Hn, En and Hm, Em include the axial and the transverse components. The latter
equations are scalarly multiplied byHm andHn, respectively, and subsequent subtraction
renders

Hm · ∇ ×En −Hn · ∇ ×Em = 0. (5.86)

Analogously, the same procedure is applied to the curl equations for the magnetic field
yielding an equivalent result but with the roles of E and H interchanged:

Em · ∇ ×Hn −En · ∇ ×Hm = 0. (5.87)
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The addition of these two equations results in

∇ · (En ×Hm −Em ×Hn) = 0. (5.88)

Since the fields En, Hn and Em, Hm depend on the z-coordinate with eγnz and eγmz,
respectively, this equation can be expressed as

∇ · (En ×Hm −Em ×Hn) = ∇t · (En ×Hm −Em ×Hn)

− (γn + γm)ez · (Etn ×Htm −Etm ×Htn) = 0.
(5.89)

By application of the two-dimensional form of the divergence theorem to the waveguide
cross section bounded by the contour C one gets

∫∫

S

∇t · (En ×Hm −Em ×Hn) dA =
∮

C

n · (En ×Hm −Em ×Hn) dl. (5.90)

The contour integral vanishes because n × En and n × Em vanish, that is particularly
true for perfectly electric and perfectly magnetic conducting walls and fields at infinity,
and the latter expression on the right-hand side of (5.89) remains as

(γn + γm)
∫∫

S

ez · (Etn ×Htm −Etm ×Htn) dA = 0. (5.91)

Eq. (5.91) also holds on imperfect conductors by using the impedance boundary condition
Et = Zmn×H [Col91] since the integrand is zero on the waveguide contour.
By the introduction of transverse fields in the form

Htn = hn(u, v)e−γnz, (5.92)

Etn = en(u, v)e−γnz, (5.93)

with hn and en as transverse vector functions of the transverse coordinates u, v, Eq. (5.91)
becomes

(γn + γm)
∫∫

S

ez · (en × hm − em × hn) dA = 0. (5.94)

It can be demonstrated that each cross product term disappears separately, which is the
desired orthogonality condition. For this purpose, the two solutions En, Hn and E′

m, H′

m

are considered where E′

m, H′

m is the same mode as before but now oppositely directed in
z-direction. The direction of the transverse magnetic field is hence reversed. The equation
analogue to Eq. (5.94) is

(γn − γm)
∫∫

S

ez · (−en × hm − em × hn) dA = 0. (5.95)

Addition and subtraction of the latter equation in both forms referring to a propagation
direction in positive and in negative direction eventually yields

∫∫

S

(en × hm) · ezdA = 0, (5.96)

∫∫

S

(em × hn) · ezdA = 0. (5.97)
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In the absence of losses it can moreover be shown that
∫∫

S

(en × h∗
m) · ezdA = 0 (5.98)

with h∗
m the complex conjugate of hm. Eq. (5.98) evidences that the power flow in

a lossfree guide is the sum of the power transported by each mode individually. The
outcome in Eqs. (5.96) and (5.97) is even valid for two degenerate modes which are an
E mode and an H mode as considered in [Col91]. Completeness considerations of vector
modes are again based on modal representations of the Dirac delta functions and the
properties of the integral transforms with the corresponding Green’s functions. Further
considerations on this topic can be found in [CH53].



50 5 Solutions of Cylindrical Waveguides

5.6 Transverse Electromagnetic Field Type

A wave type with cut-off frequency zero is the transverse electromagnetic field type (TEM)
existing in a waveguide with a homogeneous cross section and a multi-conductor configu-
ration as mentioned earlier e.g. cf. section 5.2, and it can be deduced from the E and H
modes, respectively:

E/TM modes:
For γE = jk, qE = 0 results
and it is

∆tψEt = 0 : Laplace equation

E =
1

jωµε
∇ × ∇ ×A

= − γE

jωµε
∇tψE → Ez = 0

H =
1

µ
∇ ×A

= − 1

µ
ez × ∇tψE → Hz = 0

H/TE modes:
For γH = jk, qH = 0 results
and it follows

∆tψHt = 0 : Laplace equation

E = −1

ε
∇ × F

=
1

ε
ez × ∇tψH → Ez = 0

H =
1

jωµε
∇ × ∇ × F

= − γH

jωµε
∇tψH → Hz = 0

In case the Laplace equation is satisfied in the transverse plane, the gradient of suitable
scalar functions arises. The name TEM already preludes that both fields do not possess
a component in propagation direction. Their E and H fields are perpendicular to each
other, that means that the E and H fields are interchanged for both field types. The
boundary conditions eventually decide which field type exists in a waveguide. A TEM
wave is basically the fundamental mode of propagation on a transmission line exhibiting a
potential difference between two separated conductors. Such a TEM wave can never exist
on a waveguide, of which the cross section is completely closed by a continuous conductive
material and no other electrically insulated conductor exist inside the enclosure. Therefore,
no potential difference can develop like in e.g. a coaxial cable.

5.7 Rectangular Hollow Waveguide

In this section, the eigenvalue equations according to (5.58) and (5.61) are solved explicitly
[FM94] for the finite rectangular region depicted in Fig. 5.2 with vertical side length b and
horizontal side length a. The shape of the waveguide cross section is bounded by perfectly
conducting walls. In this case, the transverse Laplace operator is represented by

∆t = ∇2
t =

∂2

∂x2
+

∂2

∂y2
. (5.99)

The product ansatz can be formulated as

ψt = ψt0ψkx
(x)ψky

(y), (5.100)
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x

y
b

a

Figure 5.2: Rectangular cross section of a waveguide.

where the factor ψt0 is a constant amplitude factor carrying appropriate physical units.
The boundary condition for the E modes reads ψEt = 0, named direct or Dirichlet con-
dition, whereas for the H modes the indirect or Neumann condition ∂

∂nψHt = 0 holds on
the metallic walls at x = 0; a and y = 0; b. In the following, the solutions for H modes are
regarded more in detail being more significant within this work. Since the cross-section is
homogeneous the vector eigenvalue equation can be scalarised into two one-dimensional
equations

(
d2

dx2
+ kx

2

)
ψHkx

(x) = 0,
∂

∂x
ψHkx

(0) =
∂

∂x
ψHkx

(a) = 0, (5.101)

(
d2

dy2
+ ky

2

)
ψHky

(y) = 0,
∂

∂y
ψHky

(0) =
∂

∂y
ψHky

(b) = 0, (5.102)

in which kx and ky are separation constants or eigenvalues and are related to the transverse
wavenumber qH in Eq. (5.62) by

q2
H = kx

2 + ky
2. (5.103)

Similar relations are valid for the E mode functions.
Respecting the boundary conditions, the solutions to the eigenvalue equations (5.101) and
(5.102) are found to be

ψHkx
(x) =

√
2

a
cos(kxx), with kx =

mπ

a
, m = 1, 2, 3, · · · ; ψH0(x) =

1√
a

(5.104)

ψHky
(y) =

√
2

b
cos(kyy), with ky =

nπ

b
, n = 1, 2, 3, · · · ; ψH0(y) =

1√
b

(5.105)

The multiplicative constants are necessary for normalisation reasons, which is

a∫

0

ψ2
Hkx

(x)dx = 1 =

b∫

0

ψ2
Hky

(y)dy. (5.106)

The orthogonality property of the eigenfunctions is proven by

a∫

0

cos
(
mπx

a

)
cos

(
m′πx
a

)
dx = 0, m 6= m′; m,m′ = 0, 1, 2, 3, ..., (5.107)
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where ψHky
(y) satisfies the property as well. It can be formulated in one single orthonor-

mality relation

a∫

0

ψHkx
(x)ψHkx

′(x)dx = δkxkx
′ =

{
1, kx = kx

′

0, kx 6= kx
′,

(5.108)

where δm,n is the Kronecker delta. The proofs of (5.107) and (5.108) are evident due to
the Sturm-Liouville type of (5.101) and (5.102) as well as the boundary conditions. Alike,
completeness and orthonormality of the mode set ψHkx

(x) is satisfied as in Eq. (5.84) by
the delta function:

δ(x − x′) =
∞∑

m=0

ψHkx
(x)ψHky

(x′) =
1

a

∞∑

m=0

εm cos(kxx) cos(kxx
′), 0 < x, x′ < a,

(5.109)

with the Neumann factor εm, which is

εm =

{
1, m = 0

2, m 6= 0.
(5.110)

The eigenfuntions for the two-dimensional, rectangular region conclude by multiplication
of the two one-dimensional solutions. The two-dimensional delta function can be repre-
sented by δ(ρ − ρ′) = δ(x − x′)δ(y − y′) and it is concisely

δ(ρ − ρ′) =
1

ab

∞∑

m=0

∞∑

n=0

εmεncos
(
mπx

a

)
cos

(
nπy

b

)
cos

(
m′πx
a

)
cos

(
n′πy
b

)
,

0 < x, x′ < a, 0 < y, y′ < b.

(5.111)

The orthonormality relation consequently holds for the two-dimensional function set as
well as it does for the one-dimensional.

H Mode (TE Mode) Field Components

The Hmn waves feature Ez=0. The other components ensue from the two-dimensional
transverse scalar potential

ψHt = ψt0

√
εmεn

ab
cos

(
mπ

a
x

)
cos

(
nπ

b
y

)
(5.112)

with respect to Eqs. (5.55)-(5.56) as

Hz =
ψt0

jωµ

√
εmεn

ab

(
k2

x + k2
y

)
cos(kxx) cos(kyy)e−γH z, (5.113)

Hx =
γHψt0

jωµ

√
εmεn

ab
kx sin(kxx) cos(kyy)e−γH z, (5.114)

Hy =
γHψt0

jωµ

√
εmεn

ab
ky sin(kyy) cos(kxx)e−γH z, (5.115)

Ex = HyZF H , (5.116)

Ey = −HxZF H , (5.117)
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fulfilling the features of Fig. 5.2. The wave impedance specific for the H mode is ZF H

ZF H =
jωµ

γH
=

λg

λHP W
ZF and ZF =

√
µ

ε
(5.118)

with the wavelength in the waveguide

λg =
λHP W√

1 −
(

λHP W

λc

)2
(5.119)

and λHP W as the wavelength of the homogeneous plane wave let it be in free space or
in dielectric substrate if the waveguide is filled with one. The cut-off wavelength λc is
derived from the separation equation in general as follows:

λc =
1√(

m
2a

)2 +
(

n
2b

)2 (5.120)

The phase constant at cut-off is βc which is related to the cut-off wavelength as βc = 2π
λc

.

At cut-off, it is q2
H = β2

c = k2
x + k2

y analogue to Eq. (5.62). The Hmn modes comprise the
fundamental mode with m = 1, n = 0, and (5.112) yields

Ey = −ψt0

√
2

ab
sin
(
π

a
x

)
e−γH z, (5.121)

H−x =
Ey

ZF H
, (5.122)

Hz =
ψt0

jωµ

√
2

ab

(
k2

x + k2
y

)
cos

(
π

a
x

)
e−γH z. (5.123)

From Eq. (5.120), λc = 2a results with m = 1 and n = 0. Usually, the various field types
are denoted by two indices m, n, which give clue on the number of half waves or extremes
in the different coordinate directions of the cross section. The H10 mode is particularly
beneficial because it has the lowest critical frequency fc and thus it occupies a certain
frequency range, in which only itself is able to propagate. So, no interference with higher
order modes is to expect. This fact can be exploited in applications like waveguides or
antennas in which single mode operation must be ensured.

E Mode (TM Mode) Field Components

For E modes, the solution functions are to derive in a similar manner taking into account
the Dirichlet boundary condition for the sake of which, cosine is to exchange by sine. The
Emn waves with Hz = 0 arise from the transversal scalar potential for the electric field

ψEt =
2ψt0√
ab

sin
(
mπx

a

)
sin
(
nπy

b

)
, (5.124)
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where the prefactor is chosen for normalisation reasons and to account for the appropriate
physical units. With respect to Eqs. (5.51) and (5.52), the components result as

Ez =
2ψt0

jωε
√
ab

(k2
x + k2

y) sin(kxx) sin(kyy)e−γE z, (5.125)

Ex =
−2γEψt0

jωε
√
ab

kx cos(kxx) sin(kyy)e−γE z, (5.126)

Ey =
−2γEψt0

jωε
√
ab

ky sin(kxx) cos(kyy)e−γEz, (5.127)

Hx =
−Ey

ZF E
, (5.128)

Hy =
Ex

ZF E
. (5.129)

Solutions for m = 0 or n = 0 are not possible without violating the boundary conditions.
The wave impedance for the E field is

ZF E =
γE

jωε
=
λHP W

λg
ZF . (5.130)

Transport of Energy

For Hmn modes in general, the transferred complex power in time average is

S =
1

2
{E ×H∗} (5.131)

Sz =
1

2

{
ExH

∗
y − EyH

∗
x

}
=

1

2

{
1

Z∗
F H

(|Ex|2 + |Ey|2)

}
, (5.132)

P =

b∫

y=0

a∫

x=0

Szdxdy =
|ψt0|2
2Z∗

F H

(
k2

x + k2
y

)
(5.133)

for effective field quantities in the mean time average. From Eq. (5.133), a factor can
be deduced in order to normalise the field components thus assuring energy transport of
1 Watt per m2.

Mode Patterns

The corresponding mode patterns of the instantaneous field distribution are shown in
Fig 5.3 and Fig. 5.4. Plots of the electric and magnetic fields are helpful for the illustration
of the field distributions of the various modes. One type of pattern visualises the electric
and magnetic field strengths on transverse and longitudinal planes within the waveguide.
It delivers information about the locations of maximum field strength, power flow etc. The
other kind of pattern presents the magnetic field intensity or rather current density on
the inner surface of the waveguide walls. The current flow is indicative of dissipation and
of coupling by apertures in the waveguide walls. All in all, they provide understanding of
the field behaviour. Not only give they hints for the design of equivalent circuit diagrams
but also for the appropriate design of electromagnetic structures guiding the modes, what
is important. Electric field lines are drawn as solid, while magnetic field lines and electric
current lines are dashed lines [ZB65].
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(a) Front view (b) Vertical longitudinal side view

Figure 5.3: Field distributions of the H10 mode in the rectangular waveguide. Electric field lines
are solid, magnetic field lines are dashes.

Current Circuits

To fulfill the boundary conditions at perfectly conducting waveguide walls, the tangential
electric field vanishes and according to (5.7), the electric surface current density ensues
with

JF = n×H(0). (5.134)

Hence, the electric surface current density forces the magnetic field to zero. Losses in
the waveguide walls are calculated via perturbation computation by assuming a finite
conductive layer in which the surface wall currents flow homogeneously distributed and
which matches with the exponential current distribution in the lossy conductor (“skin”
effect). The power loss is integrated and is summed up over transversal and longitudinal
side walls. With increasing frequencies, the longitudinal losses dominate, the transversal
losses vanish gradually. Not only the ohmic losses need to be accounted for but also the
dielectric losses, because they are frequency-dependent as well. Losses as well as radia-
tion contribute to the attenuation constant α as real part of the propagation constant of
a guided mode and the loss considerations are useful for interpreting the value of α.

Again, for illustration of the wall currents, t = t0 is chosen and jF = f(x, y, z) is drawn
in time domain [ZB65]. Fig. 5.5a depicts the electric and magnetic field lines and the
corresponding wall currents. They can be divided into longitudinal currents (Fig. 5.5b)

(a) Horizontal longitudinal side view (b) Surface currents on the walls

Figure 5.4: Field distributions and surface currents of the H10 mode. Electric field lines are solid,
magnetic field lines are dashes.
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and transversal currents (Fig. 5.5c). Current circuits are closed by displacement currents
(Fig. 5.6a and Fig. 5.6b).

h

e

(a) Electric and magnetic
field lines and surface cur-
rents

(b) Longitudinal wall cur-
rents

(c) Transverse currents

Figure 5.5: Surface wall currents of the H10 mode in the rectangular waveguide.

ziv iv

(a) Longitudinal side view (b) Displacement currents

Figure 5.6: Continuation of electric currents by displacement currents.

From the course of the currents and the field distribution, the equivalent circuits (EQCs)
can be concluded. With view to the EQC of the TEM transmission line wave, the rect-
angular hollow waveguide mode H10 is represented by lumped circuit elements as well
(Fig. 5.7a). As for TEM waves, only short lengths ∆z of transmission lines compared to
wavelength are embodied by lumped elements (Fig. 5.7b).

Comparing to transmission-line theory, the line impedance for H modes results from
the longitudinal and transversal reactive loadings

ZL(H) =

√
X ′

long.

B′
transv.

=

√
L′

s

C ′
1√

1 −
(ωc

ω

)2 (5.135)

with ωc =
1√
L′

pC
′
. (5.136)

The EQC of the H10 wave is similar to the EQC of a TEM line but the metal side walls
of a waveguide cause transversal currents and hence shunt inductances. The resonant fre-
quency of the shunt resonator is equivalent with fc of the rectangular waveguide. Higher
order H modes reveal a similar EQC with only varied values of the lumped elements.

For completeness, the mode patterns and the EQC of the electric wave type are dis-
played. By setting m = 1 and n = 1, the first electric mode is obtained of which the
mode patterns are to find in Fig. 5.8a. The EQC of the electric wave types is illustrated
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in Fig. 5.8b, which furnishes the dual case to Fig. 5.7 in the sense that the shunt resonant
circuit is replaced by a resonant circuit in series and the series inductance is substituted
by a shunt capacitance.

(a) Lumped circuit elements
represent the H10 mode.

'sL z�

'
1 1

'p p

z z
L L

 
� = �  

 
zC �´

'sL z�

(b) Lumped circuit elements for a short
length ∆z

Figure 5.7: EQC of the H10 mode.

(a) Field pattern of the E11 mode [Mar51] (b) Equivalent circuit

Figure 5.8: Equivalent circuit for E modes.

The transmission line impedance can also be given in terms of field quantities. Since
the focus in this work is especially on periodic structures the Bloch impedance ZB

[Col00],[Poz04] is preferably to consider cf. 3.3. In particular, the transmission line or
Bloch impedance is relevant for matching purposes. Though not unique it is a charac-
teristic quantity for every eigensolution and is the ratio of voltage and current according
to the corresponding EQC, where voltage is associated with the electric field and current
with the magnetic field according to

V =
∫

Cv

E · ngroundds, (5.137)

I =
∫

Ci

(nground ×H) · nportds. (5.138)

For the line or Bloch impedance three definitions can consequently be given:

ZB,V I =
V

I
, (5.139)

ZB,P I =
2P

|I|2 , (5.140)

ZB,P V =
|V |2
2P

, (5.141)
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where the transported power is

P =
1

2

∫∫

S

(E ×H∗) · nportdA. (5.142)

The integration paths in the cross section are illustrated in Fig. 5.9. Nevertheless, only
for TEM-waveguides the three definitions deliver the same result for the characteristic
impedance because the transverse fields are gradient fields. In non-TEM guiding archi-
tectures like rectangular waveguides, only the power flow together with the longitudinal
component of the surface wall current appear as physically most self-evident. Therefore,
a definition of the characteristic impedance according to Eq. (5.140) is preferred. The
definition of voltage instead significantly depends on the line of integration. The field
distribution of the electric field for the H10 mode is given in Eq. (5.121). For definition
of (5.139), different equivalent circuit models may be obtained, which describe the same
traits of the considered mode, provided they remain consistent within the equivalent cir-
cuit.

S
v
C

iC

ground
n

port
n C

Figure 5.9: Ways of integration in the plane to compute ZB.

5.8 Energy Transfer of Evanescent Modes

The modal solutions of the periodically loaded waveguides are formulated by series expan-
sion in the eigensolutions of the host waveguides cf. chapter 4. The method is well-known
[Col91] but as it is also applied to the frequency range where the host waveguides by itself
exhibit no wave propagation it is to investigate whether the series expansion is usable in
this frequency range, too. The cut-off frequency of the fundamental mode of the back-
ground waveguide is the key threshold below which traditionally no wave propagation
occurs. By having introduced periodicities, wave propagation in the left-handed sense
is yet enabled in the former evanescent frequency domain. If wave propagation is now
to observe below the former cut-off frequency a representation by series expansion with
evanescent waves must be possible as well.

Real power transfer above cut-off is stated in Eq. (5.133). It follows to demonstrate
that evanescent modes can transfer real power as well as shown in [WE10b]. The study
reduces to transverse components Et, Ht of TE modes according to Eqs. (5.55), (5.56)
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considered in an appropriately chosen orthogonal curvilinear coordinate system:

ezSz =
1

2
Re {Et ×H∗

t } · ez. (5.143)

The examination starts with the complex fields of two oppositely directed evanescent
modes in any cross-sectional plane in the waveguide where γH = α and ε, µ are assumed
to be real quantities. The index f stands for forward and b for backward directed waves:

Et =
1

ε

(
ψ0f e−γH z+jϕf + ψ0be

γH z+jϕb

)
(ez × ∇tψHt), (5.144)

H∗
t =

γH

jωµε

(
ψ0f e−γH z−jϕf − ψ0be

γH z−jϕb

)
∇tψ

∗
Ht, (5.145)

which yields

1

2
Re {Et ×H∗

t } =
1

2
Re
{ −γH

jωµε2
|∇tψHt|2

(
ψ2

0f e−2γH z − ψ2
0be

2γH z

−2jψ0fψ0b sin (ϕf − ϕb))
} (5.146)

=
γH

ωµε2
|∇tψHt|2ψ0fψ0b sin (ϕf − ϕb) . (5.147)

For evanescent waves, it is γH = α indicating exponential decay or increase. The result
verifies that the Poynting vector possesses a real part, signifying real power transport if
the forward and backward wave differ in their phases. It is to imagine as superimposition
of the in forward and in backward direction decaying waves.

Lastly, the focus has particularly been on hollow waveguide modes in a rectangular
waveguide because the H10 hollow waveguide mode provides the starting point for the
substrate integrated waveguide designs presented in this work. The SIW structures ex-
hibit modes with a cut-off frequency. However, the goal of this work is to generalise the
concept of waveguides and arbitrary waveguiding structures are investigated exhibiting
any kind of modes. For this purpose, a grounded dielectric slab is chosen as prototype
which features not only modes with a cut-off frequency but also one without, namely the
TM0 mode.

In addition, a grounded dielectric slab waveguide is a representer of open problems
which call for a more cleverly devised computation strategy as considered so far, which is
addressed in chapter 6.
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5.9 H Waves and E Waves on the Grounded Dielectric Slab

Surface waves can exist in a variety of geometries involving dielectric interfaces. Besides
grounded dielectric slabs, surface waveguides furthermore incorporate ungrounded dielec-
tric slabs, dielectric rods, corrugated conductors or dielectric coated conducting rods to
name a few. The wave impedance normal to the air-dielectric interface can be shown to
be reactive promoting wave guidance along the boundary. Here a coated dielectric slab
is considered as a very basic guiding type with a reactive surface. For the typification
of surface waves, the field exponentially decays away from the dielectric surface, which
is physically reasonable, while the electromagnetic wave travels along the dielectric layer.
The field is mostly contained in or near the dielectric and becomes more bound to it with
increasing frequencies.

In the sequel, the eigensolutions of the modes on the grounded homogeneous dielectric
slab are derived to supply the basis functions in the modal series expansion when applied
to the periodically modified grounded dielectric slab waveguide in chapter 8.3.

The analytical eigensolutions of the simple grounded dielectric slab depicted in Fig. 5.10
are also to find in literature, e.g. [Har01],[Poz04],[Ish90]. The solving procedure is the
same as for the three-layer structure examined in section 5.10. Further details are hence
to find there. The solutions for the TM modes, synonymic for E modes, are easily ob-
tained from the TE case by the principle of duality. The solution for the TE mode type,
synonymic for H modes, is considered as later TE modes are promoted to exist on the
slab. Generally, a field ansatz is to apply for every layer and the tangential fields are
to match at the interfaces of the layers. To distinguish the wavenumbers of the various
layers, the notation of the wavenumber kx = k′

x − jk′′
x is preferred to γ = α + jβ. The

two forms are related in the way γ = jk. Together with the separation equations, a set
of transcendental equations is derived. The ansatz for the H wave type guarantees the
tangential electric field to vanish at the conductor referring to the geometry in Fig. 5.10.
Therefore, the transverse functional dependence is odd. The ansatz is

ψH1 = A cos(kx1x)e−jkzz (5.148)

ψH2 = Be−k′′
x2xe−jkzz (5.149)

for layer 1 and for layer 2, respectively, and denoted by the corresponding subscripts. The
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Figure 5.10: Grounded dielectric slab geometry.
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wavenumber kz is identical in both regions since belonging to one wave existing in both
layers equally. The transverse wavenumber in medium 1 is kx1. For the air layer, it is
kx2 = −jk′′

x2 in order to ensure e−k′′
x2x with k′′

x2 real and to provide physically reasonable
field solutions. As such, the field decays with increasing distance. The ansatz for both
regions has to fulfill the Helmholtz equation in the way

∆tψHt1,2 + (k2
1,2 − k2

z)ψHt1,2 = 0. (5.150)

The field components are

Ey1 =
∂

∂x
ψH1

= −Akx1 sin(kx1x)e−jkzz (5.151)

Hx1 =
1

jωµ0

∂2

∂x∂z
ψH1

= A
kzkx1

ωµ0
sin(kx1x)e−jkzz (5.152)

Hz1 =
1

jωµ0

(
∂2

∂z2
+ k2

)
ψH1

= A
k2

0εr − k2
z

jωµ0
cos(kx1x)e−jkzz (5.153)

for region 1, and for region 2

Ey2 = ±Bk′′
x2e−k′′

x2xe−jkzz (5.154)

Hx2 = ±Bkzk
′′
x2

ωµ0
e−k′′

x2xe−jkzz (5.155)

Hz2 = B
k2

0k
2
z

jωµ0
e−k′′

x2xe−jkzz. (5.156)

A and B are constants to be determined in a way that the field continuity conditions are
fulfilled. The permeability is µ1,2 = µ0µr with µr = 1. The permittivity in region 2 is
just ε0 with εr = 1, but in region 1, it is εr 6= 1. Further, the separation equations for
region 1 and for region 2 are

k2
x1 + k2

z = k2
0εr (5.157)

−k′′2
x2 + k2

z = k2
0 . (5.158)

By fulfilling the continuity condition of the tangential components at the dielectric-air
interface and by considering the separation equations, transcendental equations follow as

−k′′
x2 = kx1 cot(kx1a) (5.159)

k′′
x2 =

√
k2

0(εr − 1) − k2
x1, (5.160)

where a is the height of the dielectric. Equations (5.159) and (5.160) must be solved simul-
taneously for the variables kx1 and k′′

x2 in the real kx1a, k
′′
x2a-plane as shown in Fig. 5.11.

The found intersections are inserted in Eq. (5.157) or Eq. (5.158) giving the final solutions
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Figure 5.11: Intersections of cotangens with semicircles increasing with frequency deliver
solutions.

for propagation constant kz and frequency as plotted in Fig. 5.12. The second equation
(5.160) represents semicircles, of which the radius increases with frequency. Solutions for
k′′

x2 < 0 are called improper or leaky modes. Since they make physically no sense they are
normally excluded from the solution but in [HHMS91], it is pointed out that information
about the exact position of such leaky wave poles is valuable for enhancing the computa-
tion efficiency of the steepest descent method [FM94]. This method is applied to evaluate
improper integrals which arise from solving for the fields in open regions. The first TE
mode does not start to propagate as guided wave until the radius of the semicircle becomes
greater than π/2. At cut-off, it is kz = k0 as the lowest real value of kz from (5.158) and
from (5.157), kz becomes at most kz = k0

√
εr. This makes sense with regard to phase

velocity which is faster than that of a plane wave in dielectric 1/
√
µ0ε0εr but lower than

that in free space 1/
√
µ0ε0. In contrast, a TM0 mode with zero cut-off exists because the

tangent function replaces the cotangent function in the transcendental equations for TM
mode types as will be seen shortly. The first branch of the tangent function starts at zero.
Hence, a TM mode with zero cut-off is present. The cut-off frequencies of the TEn modes
can be determined by

fc =
(2n− 1)c

4a
√
εr − 1

, for n = 1, 2, 3, . . . (5.161)

and are obtained if k′′
x2 = 0 and kz = k0. The cut-off frequencies by Eq. (5.161) are de-

picted as diamond symbols in Fig. 5.12 for an example waveguide and match the transition
from the leaky into the guided state obtained by the intersections. The cut-off frequen-
cies for the first to the third mode are: 5.72 GHz, 17.17 GHz and 28.62 GHz. Above
these frequencies, the modes hence appear as guided surface waves. The corresponding
solution curves are depicted in Fig. 5.12 as continuous lines with crosses. The modes are
trapped in the dielectric and are called trapped surface waves. Below cut-off, they show
up as leaky waves. The corresponding solutions are marked as single crosses in Fig. 5.12.

Mathematically, leaky and guided waves exist simultaneously because one semicircle
representative for one frequency may intersect the cotangent curve in the negative as well
as in the positive part. The first branch supports only leaky modes at low frequencies.
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Figure 5.12: Graphical solution of the characteristic equations for a grounded dielectric slab with
thickness 7 mm and εr = 4.5.

The transversal functional dependence of TM modes in x-direction is even. The ansatz
for layer 1 and layer 2 is

ψE1 = A sin(kx1x)e−jkzz (5.162)

ψE2 = Be−k′′
x2xe−jkzz. (5.163)

The fields are obtained from the function ψE by equations dual to Eqs. (5.151)-(5.156),
which are

Ex1 =
−kzkx1

ωε0εr
A cos(kx1x)e−jkzz (5.164)

Ez1 =
A

jωε0εr
(k2

0εr − k2
z) sin(kx1x)e−jkzz (5.165)

Hy1 = −Akx1 cos(kx1x)e−jkzz (5.166)

in the dielectric and in air, they read

Ex2 =
kzk

′′
x2B

ωε0
e−k′′

x2xe−jkzz (5.167)

Ez2 =
B

jωε0
(k2

0 − k2
z)e−k′′

x2xe−jkzz (5.168)

Hy2 = k′′
x2Be−k′′

x2xe−jkzz. (5.169)

The detailed derivation of the solution for this kind of mode is given in [Ish90]. The
transcendental set of equations for the TM wave type results as

k′′
x2 =

kx1

εr
tan(kx1a) (5.170)

k′′
x2 =

√
k2

0(εr − 1) − k2
x1, (5.171)
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where kx2 = −jk′′
x2 again asserts physically reasonable solutions. The cut-off frequencies

of the TMn modes can be determined by

fc =
(2n− 2)c

4a
√
εr − 1

for n = 1, 2, 3, . . . . (5.172)

A and B are again determined by the continuity conditions of the tangential components.
Then, the field configurations for the TM modes are achieved together with the obtained
solutions for the eigenvalue kx1 characteristic of the geometry and the propagation con-
stant kz for TE modes correspondingly [Ish90].

5.10 Analytical Solution for the Shielded Three-Layer

Model

Another homogeneous waveguiding configuration is the shielded three-layer model as dis-
played in Fig. 5.13, which is bounded at xmin and xmax by PEC. An infinite extension in
the y- and z-directions is assumed. Furthermore, propagation in the positive z-direction
is supposed and expressed by a e−jkzz propagation factor, with kz the wavenumber in
z-direction. The invariance in y-direction is considered by ∂

∂y = 0. The dielectric layer is

z x

y

a h�d h

1 2 3 PEC

dielectric layer air

PEC

dielectric layer

Figure 5.13: A grounded dielectric slab waveguide with air region and PEC terminated dielectric
cover layer.

located at 0 ≤ x ≤ a, the air region extends from a < x < h − d and another dielectric
layer from h − d ≤ x ≤ h. The permittivity and permeability are generally denoted
by the appropriate subscript for the regions 1, 2, 3. Since having three distinct regions,
three field solutions must be individually found in the first step. In the second step, the
continuity criterion of the tangential fields has to be satisfied at the interfaces. For a
simple dielectric slab, the even TM modal solution constitutes the dual solution to the
odd TE modal solution and vice versa. For the metal-backed dielectric slab in region 1,
only the odd TE mode function supplies a solution and the even TM eigenfunction. Odd
and even refers to the transverse fields, i.e. in x-direction. In the following, TE modes
are considered but the solution for TM modes can simply be derived by the principle of
duality. Consequently for region 1, the ansatz for the TE or H mode reads

ψH1 = A cos(kx1x)ejkzz (5.173)
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with kx as wavenumber in x-direction. All wavenumbers are complex numbers. In the
sequel, A,B,C,D are arbitrary constants to be determined. The media are characterised
by ki = ω

√
εiµi with i = 1, 2, 3 and εi = ε0εri, µi = µ0µri. The field components follow

as

Hx1 =
Akx1kz

ωµ1
sin (kx1x) e−jkzz (5.174)

Hy1 = 0 (5.175)

Hz1 =
A

jωµ1

(
k2

1 − k2
z

)
cos (kx1x) e−jkzz (5.176)

and

Ex1 = 0 (5.177)

Ey1 = −Akx1 sin (kx1x) e−jkzz (5.178)

Ez1 = 0. (5.179)

It is evident that the tangential electric field component vanishes at the boundary x =
0, which is PEC. For the air region 2, two solution parts exist accounting for a wave
propagating in positive direction and one in negative x-direction. Thus, the ansatz is

ψH2 =
(
Be−jkx2x + Cejkx2x

)
e−jkzz. (5.180)

The field components then read

Hx2 =
kx2kz

jωµ2

(
Cejkx2x −Be−jkx2x

)
e−jkzz (5.181)

Hy2 = 0 (5.182)

Hz2 =
k2

2 − k2
z

jωµ2

(
Be−jkx2x + Cejkx2x

)
e−jkzz (5.183)

Ex2 = 0 (5.184)

Ey2 = jkx2

(
Cejkx2x −Be−jkx2x

)
e−jkzz (5.185)

Ez2 = 0. (5.186)

For the third region, the ansatz is

ψH3 = D cos (kx3(x− h)) e−jkzz (5.187)

and the field components are

Hx3 =
Dkx3kz

ωµ3
sin (kx3(x− h)) e−jkzz (5.188)

Hy3 = 0 (5.189)

Hz3 =
D

jωµ3

(
k2

3 − k2
z

)
cos (kx3(x− h)) e−jkzz (5.190)

Ex3 = 0 (5.191)

Ey3 = −Dkx3 sin (kx3(x− h)) e−jkzz (5.192)

Ez3 = 0. (5.193)
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The separation parameter equations in each region ensue with

k2
x1 + k2

z = k2
1 = ω2ε1µ1 (5.194)

k2
x2 + k2

z = k2
2 = ω2ε2µ2 (5.195)

k2
x3 + k2

z = k2
3 = ω2ε3µ3. (5.196)

The matching of the tangential E- and H-components at the dielectric-air interface x = a
gives

−kx1A sin(kx1x) = jkx2

(
Cejkx2x −Be−jkx2x

)
(5.197)

A

µ1
k2

x1 cos(kx1x) =
kx2

µ2

(
Be−jkx2x + Cejkx2x

)
. (5.198)

The ratio of the second equation to the first and solving for the ratio of the unknown
constants yields

C

B
=

(
jkx1

kx2

µ2

µ1
cot(kx1a) − 1

)
e−j2kx2a

jkx1

kx2

µ2

µ1
cot(kx1a) + 1

. (5.199)

Continuity of Ey and Hz at x = h− d requires that

jkx2

(
Cejkx2(h−d) −Be−jkx2(h−d)

)
= −Dkx3 sin(−kx3d) (5.200)

k2
x2

µ2

(
Be−jkx2(h−d) + Cejkx2(h−d)

)
=
k2

x3

µ3
D cos(−dkx3). (5.201)

From the ratio of the second to the first expression and determination of the ratio of C
B

gives the second condition for the unknown constants B and C

C

B
=

(
jkx3µ2

kx2µ3
cot(−dkx3) − 1

)
e−j2kx2(h−d)

jkx3µ2

kx2µ3
cot(−dkx3) + 1

. (5.202)

By equating 5.199 and 5.202, the following condition follows
(
jkx3µ2

kx2µ3
cot(−dkx3) − 1

)
e−j2kx2(h−d)

jkx3µ2

kx2µ3
cot(−dkx3) + 1

−

(
jkx1

kx2

µ2

µ1
cot(kx1a) − 1

)
e−j2kx2a

jkx1

kx2

µ2

µ1
cot(kx1a) + 1

= 0. (5.203)

The roots of Eq. (5.203) deliver the propagation constant and offer an alternative to
the more costly graphical procedure presented in section 5.9. The roots can be found
numerically for instance by a Newton-Raphson algorithm, which can be moreover easily
applied to the case where the root is complex i.e. in the presence of losses.



6 Treatment of Open Region Problems

6.1 Integral Representation and Modal Expansion

The topic of wave representations in open regions is partly following [TO63], which gives
a good introduction into the subject. Closed waveguides furnish discrete modes which
may propagate without or with attenuation, in the latter case the propagation constants
are complex. Most discrete modes are however completely evanescent. Regarding open
waveguiding structures, the boundaries are extended to infinity in some directions causing
the discrete modes falling closer and closer together until they coalesce in the limit into
a continuous spectrum of modes. A discrete set of modes can be interpreted as kind of
a generalised Fourier series whereas a continuous spectrum of modes relates to a corre-
sponding Fourier integral. Besides the continuous spectrum of modes, which describes
the radiation behaviour, a discrete set of modes may exist which constitutes any kind of
surface waves.

In the sequel, wave representations are investigated in a geometry as depicted in Fig. 6.1
which is composed of a semi-infinite free-space region limited by a plane boundary which
may either be a distinct surface such as an ideal conductor or a transition boundary
between free space and other defined media e.g. layered dielectric media. The boundary
condition at the interface is assumed to be invariant in y- and z-direction and hence, it
may be expressed by an impedance function being specified at the interface for every
single mode i in the transverse x-direction and being independent of y and z. kx is the
transverse wavenumber and characteristic for the corresponding modes. In accordance
with the y-invariance, the corresponding unit source of either electric or magnetic type
is a line source parallel to the y-axis and it is located at z = 0. The Green’s function
describing the problem at and above the interface x ≥ 0 reads

G(x, z) =
1

2π

∞∫

−∞
f(kz)e−jkxxe−jkzzdkz , (6.1)

which refers to a longitudinal representation of modes. The field in Eq. (6.1) consists
of a continuous spectrum with purely real eigenvalues ranging from negative to positive
infinity. The time dependence ejωt is self-evident. Electric or magnetic line currents excite
TM modes or TE modes, respectively, and G(x, z) is proportional to the y-component of
these modes. The term f(kz) is the specified amplitude function which contains the
primary excitation of the line source and the reflection coefficient at the interface, which
depends on the impedance function as well as on the location of the source. The Green’s
function in Eq. (6.1) represents a Fourier transform with respect to kz expressing the
field by plane waves, where the 1D integration is performed along the real axis in the
complex kz-plane according to [Som09] to maintain a field expansion in homogeneous
media. The wavenumbers kx and kz are related via the separation equation with k = ω

√
µε



68 6 Treatment of Open Region Problems

corresponding to plane waves in free space and it is

kx = ±
√
k2 − k2

z . (6.2)

For a unique interpretation of the square root function, a two-sheeted Riemann surface is

z

x

y

line source

( )i x
Z k

ϑ

r

air

Figure 6.1: Configuration of the interface

defined such that one value or branch is assigned to one Riemann sheet and the other one
to a second Riemann sheet. The two Riemann sheets are connected at arbitrary branch
cuts linking the branch points. One pair of branch points results from Eq. (6.2) as kz = ±k
and another one can be assumed at ∞. In the complex kz-plane, branch cuts are extended
from the branch points ±k to infinity. The obtained Riemann sheets are categorised as
proper and improper to distinguish between physically reasonable and unreasonable modal
field solutions. The original Sommerfeld integration path [Som09] along the real kz-axis
gives a converging integral in Eq. (6.1). By extending kz into the complex plane, the
integration path can be deformed according to Cauchy’s integral formula. However, the
path must be deformed with care in order to maintain the convergence of the integral and
singularities must not be crossed. However, poles can be considered separately according
to Cauchy’s residue theorem.

A proper solution of the problem also includes that the integral in Eq. (6.1) vanishes
at infinity. The considered configuration in Fig. 6.1 requires the boundary condition as

Im {kx} < 0, (6.3)

in order that the waves decay properly with x → ∞. This boundary condition must be
taken into account for a proper definition of the square root function and thus the branch
cut in the complex kz-plane. The branch cuts are chosen in the way that proper and
improper sheets are clearly separated. Consequently, the upper half of the kx-plane plots
on the top sheet of the two-sheeted Riemann kz-plane. This sheet is proper and depicted
in Fig. 6.2. Also the chosen branch cuts are drawn, which are obtained from Eq. (6.2),
linking the branch points ±k according to (6.2) with infinity in a way that the top Riemann
sheet for kz is mapped on Im {kx} < 0. For the branch cuts, Im {kx} = −k′′

x = 0 and
infinitesimal losses for the free-space wavenumber, that is

0 < | Im {k}2 | << |k|2, (6.4)
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are assumed. The advantage of the chosen branch cuts is that the transverse integral
representation that will be obtained by a contour deformation as considered below is a
spectral one and the integration along the entire real kz-axis (Sommerfeld integration
path) is properly performed in the top sheet agreeing with the boundary condition.

In contrast to the integration in the complex kz-plane corresponding to a longitudinal
spectral representation, Eq. (6.1) can be evaluated in the complex kx-plane which refers to
a transverse representation of modes. Then, the former integration path P is transformed
towards the path P ′ along a semicircle at −∞ as demonstrated in Fig. 6.2 for positive z.
For negative z, the semicircle would be in the upper half of the top sheet of the kz-plane.
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Figure 6.2: The complex kz-plane (top sheet)

By Cauchy’s theorem for complex integration [Col91], Eq. (6.1) may be expressed as

G(x, z) =
1

2π




∞∫

−∞

(
f(kz(kx))e−jkxxe−jkzz dkz

dkx

)
dkx + 2πj

∑
residues



 , (6.5)

since the semicircle at infinity does not contribute to the integral. The integration is
hence performed along the entire real kx-axis, thus a path around the branch cuts in
Fig. 6.2 as defined before. The residues account for potential pole singularities which
are proper because they only occur in the top sheet of the kz-plane and their fields
are identified as surface waves cf. section 5.9. Improper poles never occur since they
are in the lower half of the kx-plane, which the path P ′ does not include. Contrary to
the longitudinal representation of Eq. (6.1) yielding a continuous spectrum of modes, the
transverse representation additionally spawns a discrete spectrum, which however exhibits
directly the discrete waves associated with a waveguide. The continuous spectrum whereas
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is not bound at the interface and may account for radiation. The poles of the field appear
from the poles of f(kz(kx)) and more explicitly from the poles in the reflection coefficient
R(kx) contained in f(kz(kx)) meaning that

Zi(kx) + Z0(kx) = 0, (6.6)

which is defined at the interface. Zi(kx) is the specified impedance at the interface and
Z0(kx) the characteristic impedance of the semi-infinite transmission line in the transverse
resonance method [FM94] representative for the free space. All poles of R(kx) correspond
to proper eigenvalues of the spectral transverse representation if Eq. (6.3) is also fulfilled.
Whenever the amplitude |R(kx)| → ∞ waves propagating in ±z-direction are found which
are the surface waves.

The disadvantage of the form of Eq. (6.5) is that it has only brought little progress
in solving it compared to Eq. (6.1). For an explicit and complete but asymptotically ap-
proximate solution for the field at the interface and in the free space region above it, the
steepest-descent representation is usually employed and treated extensively in literature,
e.g. [TO63, FM94]. The great advantage of (6.5) for the present work is that it is closely
related to the discrete modal expansion as used before for the treatment of closed prob-
lems. The branch cut integral can be considered as a correction to the guided mode series
necessary due to the open problem. In order to utilise this representation, a procedure
for the efficient evaluation of the branch cut integral is to find.

The deformation of the path of integration and the treatment of open region problems
has been investigated comprehensively, e.g. [FM94],[MB87]. To circumvent the difficulties,
the idea is to restore the open field problem to a closed computation domain. For this
work, arbitrary open waveguiding structures are relevant. According to the strategy, they
are shielded by perfectly electric conducting boundaries. To preserve the characteristics
of an open problem a perfectly matched layer (PML) can be placed in front of the PEC to
absorb the reflections and to pretend as if the PEC would not be present. With view to
Fig. 6.3, the branch points ±k do then not exist anymore, since the wavenumber kx only
appears squared as k2

x in the integrand [FM94]. By deforming the integration path to
−j∞ the original continuous path collapses into discrete residue pole contributions. The
pole contributions can be handled in exactly the same way as the guided modes in the
series representation. This result can be seen as a numerical integration of the integral in
Eq. (6.5), which is exact. This concept has been proposed in [DdZO98], [DOdZvdB01],
[RdZ02]. The corresponding discrete modes in the PML covered waveguide have been
used for a mode-matching solution of step transitions in finite layered substrates. However,
[DOdZvdB01] was restricted to homogeneous layered structures, where the discrete modes
can be derived analytically. Possible courses of the loci of the poles for the resulting
waveguide in [DOdZvdB01] are exemplarily indicated in Fig. 6.3. So-called PML modes
appear of which the field mainly resides in the PML. Additionally, evanescent modes
occur similar to leaky modes in the open waveguide which also contribute to the complete
spectrum in the closed configuration [DOdZvdB01]. Notwithstanding, the procedure in
[DOdZvdB01] is restricted to problems where an analytical eigensolution is derivable. By
including numerical tools for evaluating 2D eigensolutions, the modal expansion technique
will be more universal. In summary, a complicated integration technique is avoided and
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Figure 6.3: Discrete modes for the dielectric-air-PML-PEC configuration in [DOdZvdB01].

the solution to the open-region eigenproblem can be conveniently captured by a series
expansion as formulated in chapter 4. The numerical implementation of such a procedure
is yet not straightforward, since the determination of the discrete PML modes is hampered
by the strange material properties of PML.
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6.2 Transformation of Open Region Problem to Equivalent
Closed Region Problem

The modal series expansion as formulated in chapter 4 does not represent a complete
modal field solution for problems of the open type. To circumvent complicated integra-
tion procedures required to evaluate arising improper integrals for open regions, the idea
is adopted to convert the open problem into a closed configuration as already suggested in
[SW77],[MHJ80] for non-radiating structures. By introducing a PML in front of the PEC
boundary [DOdZvdB01], the reflections of the PEC shall be minimised to that grade
that they do not disturb the field solutions of the problem. The PML preserves the
information of the open configuration while the resulting closed problem can efficiently
be described by a discrete set of substrate, evanescent and so-called PML modes of the
equivalent closed anisotropic waveguide. The PML modes are mainly located in the PML.
In order to expand the restricted application range of [DOdZvdB01], the eigensolutions
of the subregions are not deduced analytically for the method in this work. A purely
numerical approach would however be plagued by the strange material properties of the
PML, being active and anisotropic. Thus, to avoid an inclusion of a PML in the simu-
lation, an isotropic absorbing layer is conceived which is simple and lossy fulfilling the
task of a PML. CST MWS is then used to deliver the 2D eigensolutions for the port
regions transversally placed with regard to the longitudinal axis of the waveguide. The
ports cover the complete cross section including the absorption layer. Conversely to other
solution processes, where modes with the field concentrated in the absorption layer are
identified as unphysical and undesired, these modes provide here necessary information
in the series expansion. Surface modes below the cut-off frequency mainly appear in the
air layer or at lower frequencies even in the absorbing layer since they were originally leaky.

6.2.1 Perfectly Matched Layer

In 1994, J. P. Bérenger succeeded in presenting a perfectly matched layer (PML) bound-
ary condition [Ber94] as effective means to truncate finite-difference time-domain (FDTD)
lattices enabling to treat open problems with the FDTD technique. Compared to other
matched layers at that time, the PML perfectly absorbs plane waves which may strike
a vacuum-layer interface at any frequency and observation angle. Later, the PML was
adapted to function in finite-element methods (FEM) [WKLL02]. Originally, the PML
was derived by 2D considerations. Later, the analysis of PML was extended to full 3D
dimensions [KTT94] and moreover to nonorthogonal grids [NWCL94],[RG97]. In 1997, a
PML working in cylindrical and spherical grids has been derived by Teixeira et al. [TC97]
using a complex stretching approach already introduced in [CW94]. The advantage is
that the PML behaves as an isotropic layer due to its complex thickness. As such, the
closed-form solutions of Maxwell’s equations can be mapped onto the PML media by
analytical continuation of the spatial variables in the complex domain. Gedney [Ged96]
further developed the concept of an uniaxial anisotropic PML, introduced by Sacks et
al. [SKLL95], working in lossy and dispersive media amending Bérenger’s PML to better
attenuate not only propagating but also evanescent waves.

The key elements for understanding the uniaxial anisotropic PML are outlined in the
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following as to find concisely in [DOdZvdB01]. With view to Fig. 6.4, the PML is here
limited by PEC at x = h and by the air layer at x = h − dP ML. Its formative relations
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substrate

x

z

h

h � d
PML

PEC
y

z

Figure 6.4: The 3-layer structure substrate, air, PML

are

D = εᾱ ·E (6.7)

B = µᾱ ·H (6.8)

where ᾱ is in particular

ᾱ =




1
α(x) 0 0

0 α(x) 0
0 0 α(x)


 (6.9)

and

α(x) = 1 + (κ0 − 1)f(x) − j
σ0

ωε0
f(x) (6.10)

with κ0, σ0 and f(x) that describe the type of the PML. In especially the parameter κ0 6= 0
was introduced by Gedney in [Ged96] to better attenuate evanescent waves. The conduc-
tivity here is denoted with σ0. Exemplarily, the eigenmodes are deduced [DOdZvdB01]
for z as propagation direction having consequently a field dependence of e−jkzz under the
assumption to have an invariance in y-direction. Maxwell’s curl equations within the PML
yield two independent sets of which one refers to TE-polarised waves and the other one
to TM-polarised waves related to the propagation direction. Solving both sets for Ey and
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Hy, respectively, one obtains

1

α

∂

∂x

(
1

α

∂Ey

∂x

)
+ γ2Ey = 0 (6.11)

1

α

∂

∂x

(
1

α

∂Hy

∂x

)
+ γ2Hy = 0 (6.12)

with γ2 = ω2εµ− k2
z . Ez and Hz yield the same equations. With the complex coordinate

transformation presented in [CW94],[TC97]

α∂x = ∂x̃ → x̃ =

x∫
α(x′)dx′, (6.13)

these equations become

∂2Ey

∂x̃2
+ γ2Ey = 0 (6.14)

∂2Hy

∂x̃2
+ γ2Hy = 0. (6.15)

Eqs. (6.14) and (6.15) are Helmholtz equations for homogeneous isotropic materials in the
new coordinate x̃. Hence, the PML behaves as an isotropic material but with a complex
thickness d̃PML given as

d̃PML =

h∫

(h−dPML)

α(x′)dx′. (6.16)

The true thickness of the PML is yet dPML. This analytical continuation of space coor-
dinates to the complex space has already been proven in [TC97], which can be used to
derive PMLs for more general linear media [DOdZvdB01].

In a numerical implementation, a PML is usually modelled as a layer with finite thick-
ness and with anisotropic material properties as given in Eqs. (6.7)-(6.10). From (6.9), it
is clear that such a material is anisotropic and the αxx-component is even active. The
numerical handling of such a material is not easy.

6.2.2 Design of an Isotropic Absorbing Layer

In order to avoid the numerical difficulties with a PML, a conventional isotropic absorbing
layer is designed consisting of six layers with tapered attenuation to achieve the neces-
sary overall attenuation rate. These layers reach comparable performance of a single
PML and their functionality definitely suffices to demonstrate the computation method
in principal. Each of the six layers features ε′

r = 1 and µ′
r = 1 but with electric and

magnetic losses gradually and simultaneously increasing. The more the waves penetrate
into the six layers the more the waves are attenuated. At the first layer, they only face
slight attenuation in order to keep reflections especially low. While the reflected waves
move back in direction of arrival they are again attenuated so that only little reflections
influence the model under test. The negative imaginary part of the material parameters
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marked with double primes describes the losses, i.e. ε′′
r and µ′′

r , respectively. tan δ is

equal because e.g. tan δµ = µ′′
r

µ′
r

but chosen not to vary with frequency. The first sub
layer shows tan δε/µ = 0.01 and is followed by layers with tan δε/µ = 0.02, tan δε/µ = 0.07,
tan δε/µ = 0.15, tan δε/µ = 0.3 and tan δε/µ = 0.8. The last layer is covered by PEC.
The losses roughly double with the intention to smoothly attenuate incident waves. The
thicknesses measure 6 mm, 6 mm, 6 mm, 9 mm, 12 mm and 10 mm from the bottom to
the top, thus slowly increasing towards the top where the losses rise. For the desired
application, the absorbing layers are aimed to work from 9 − 14 GHz, so the thicknesses
are less than half of the wavelength for the maximum frequency 14 GHz. The idea is that
the waves impinging on the layers do not have to face a jump in the material parameters
experiencing little reflection. The values for permittivity and permeability are identical.
Hence, the impedance of the layers, which is

ZF 0 =
√
µ0

ε0

√
µ′

r − jµ′′
r

ε′
r − jε′′

r

, (6.17)

always maintains the same value of the free space impedance. In the following, it is spo-
ken of one overall layer instead of six layers. In summary, two key aspects of Bérenger’s
PML are adopted but the designed absorbing layer is neither frequency nor incident angle
independent. In especially waves impinging under grazing angle at the absorption layer
cannot be absorbed properly. This layer however satisfies the object to evaluate the com-
putation procedure. It is less sophisticated than its scientific peers, which however fail as
well in completely absorbing incident waves under grazing angle.

The absorption capacity of the attenuation layer is tested and confirmed by the S-
parameter results for a quadratic hollow waveguide set-up, as illustrated in Fig. 6.5, where
the absorbing layers are placed in front of a short-circuit. In Fig. 6.6, the S-parameters
of the absorption layer are directly compared to the S-paramters obtained for the weaker
attenuating layer with the same material parameters ε′

r and µ′
r, respectively, but with

only a fourth of the loss values. Since the overall behaviour is only of interest it is not
distinguished between the specific modes. For both absorbing layers, the mutual coupling
between different modes i 6= k is so low namely below −120 dB that it is negligible proving
that the waves weakly depend on each other and can hence be considered as orthogonal.
The reflection coefficients of the first to the fifth mode for the good absorption layer are
very low on the order of −36 dB or better testifying broadband working. The worse
absorbing layer exhibits reflection coefficients which are larger than −28 dB. The good as
well as the worse absorbing layer disclose peaks next to cut-off of the individual modes as
expected. One peak is off the frequency range of focus.

6.2.3 Influence of the Isotropic Absorbing Layer

The analytical eigensolutions derived in section 5.9 for the dielectric-vacuum interface
pictured in Fig. 5.10 are contrasted with the solutions found by the software CST MWS
[CST11]. The geometry together with the absorption layer is shown in Fig. 6.7. The
dielectric slab exhibits εr = 4.5, tan δ = 0.002 and a thickness of 7 mm. The simulation
model additionally includes the absorbing layer described in section 6.2.2, of which the
influence is to test. In Fig. 6.8 and Fig. 6.9, it is to observe that the leaky modes are not
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Figure 6.5: Simulation model in CST MWS to study the absorption capability.
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Figure 6.6: The S-parameters of a good and a weaker absorption layer in contrast, without
specification of the individual modes.

revealed in the numerical computation. Leaky modes are however found analytically and
displayed by crosses. Higher order modes below the cut-off frequency are close to the light
line before they appear as guided surface modes in CST MWS. Concerning the absorbing
quality of both layers, it is to observe that the results of the less absorbing layer deviate
from the analytical solutions especially at the transition from the leaky into the guided
state. The cut-off frequencies are plotted by diamond-symbols. The better absorption
layer results approach quite exactly the analytical solutions. The fields of the port modes
for the simulation model concentrate in the air or in the absorbing layer below cut-off as
to see at 3.6 GHz in Fig. 6.10 for the lowest mode with cut-off at 5.72 GHz. Above cut-off
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(e.g. at 16 GHz), the field is located in the substrate (Fig. 6.11). Further performance
results are to find in chapter 8.3 where the absorbing layers are directly evaluated together
with a periodically corrugated dielectric slab.

89 79 67 58 49 43 37 7 0z [mm]

absorbing layers air substrate

Figure 6.7: Geometry of the simulation model.
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Figure 6.8: Analytical solution compared to simulation results of well performing absorber.
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Figure 6.9: Analytical solution vs. simulation results of weaker absorption layer.
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Figure 6.10: |E|-field distribution below cut-off for the fundamental mode at 3.6 GHz.
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Figure 6.11: |E|-field distribution above cut-off for the fundamental mode at 16 GHz.





7 Closed Waveguide Realisations

7.1 Corrugated Rectangular Hollow Waveguide

The modal field solution of a dielectric-filled corrugated waveguide as pictured in Fig. 7.1
is computed by the modal series expansion method. Reference data deliver the models
computed by Eshrah et al. in [EK06] and [EKYG05]. The configuration of the corrugated
waveguide is closed and a discrete set of eigenvalues is to expect. In the reference literature,
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(a) Hollow waveguide [EK06]

waveguide 

excitation 1st 

port

corrugation wall

εr=1

2nd waveguide 

port

y

x z

dielectric 

filling εr=10.2

w

p

(b) Simulation model in CST MWS

Figure 7.1: Rectangular hollow waveguide with dielectric filled corrugations.

the dispersion curves for the imaginary part of γ are derived by means of asymptotic
corrugation boundary conditions [EK06] for a width-to-period ratio of w

p = 0.5 and by
spectral analysis for a width-to-period ratio of w

p = 0.85 [EKYG05]. The corrugated
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waveguide fulfills the EQC of a CRLH TL since the missing series capacitance is realised
in form of the corrugations. LH wave propagation is enabled for frequencies f ≤ 7.6 GHz
below the bandgap for w

p = 0.5 whereas the fundamental H10 mode features a cut-off
frequency of fc = 8.8 GHz. One corrugation constitutes a periodic unit cell and is driven in
a full-wave analysis (Fig. 7.1b). The waveguide ports are directly imposed on the cell and
are placed on a rim of a wall. In this way, it is easier for the series of M modes to converge.
The resulting S-parameters are transformed into the transfer parameters of the T -matrix.
Since only few modes are chosen as excitation the T -matrix is of small dimension and so
is the equivalent eigenproblem solvable with acceptable effort. By increasing the number
of included modes the values of the start and stop frequencies of the bandgap vary. The
dispersion graphs are depicted in Figs. 7.2a and 7.2b. It is found that three modes are
sufficient to yield very good agreement with the solution derived by Esrah et al. in [EK06]
and [EKYG05], respectively, in both cases as shown in [WE09b]. The excitation with fewer
modes causes a lack of information. In Fig. 7.2b, the scattering matrix approach (SMA)
also proves good coincidence with the analytical solution in the RH range. As additional
feature, the modal expansion method also provides the attenuation constant, which is the
real part of γ, not revealed by the reference techniques.

Once having obtained the eigenvalues and eigenvectors of a periodic unit cell, the modal
field solution in the terminal plane can be deduced with Eqs. (4.1) and (4.2) and conse-
quently in the terminal planes of the entire periodic waveguide by the Bloch-Floquet
theorem. To obtain the eigensolutions for a homogeneous cross section in the waveguide
serving as basis functions, a 2D eigenproblem is solved at a fixed frequency which is the
reference frequency fref . It is essential to know whether the reference frequency is above
or below the cut-off frequency fc of the modal solution for a homogeneous cross section
since the E and the H fields are interrelated via the wave impedance, which is imaginary
below cut-off and real above cut-off. The wave impedance of the modes can be calcu-
lated analytically according to Eq. (5.118) and Eq. (5.130) for H modes and for E modes,
respectively. For propagating modes, the wave impedance for TE or H waves is

ZF H =
ωµ

βH
= ZF

λg

λ
or ZF H =

ZF√
1 −

(
λ
λc

)2
, (7.1)

and for TM or E waves, the wave impedance is

ZF E =
βE

ωε
= ZF

λ

λg
or ZF E = ZF

√

1 −
(
λ

λc

)2

. (7.2)

The wavelength λg in the waveguide is given by Eq. (5.119) whereas λ refers here to the
free space wavelength or wavelength of the homogeneous plane wave λHP W . According
to (7.1), ZF H must become imaginary for f < fc resulting in

ZF H =
jωµ

α
= j

ZF√(
fc

f

)2
− 1

(7.3)

and accordingly, the field impedance of the E modes reads below cut-off

ZF E =
α

jωǫ
= −jZF

√(
fc

f

)2

− 1. (7.4)
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Figure 7.2: Disperions results by SMA, analytical solution and reference literature in comparison.

The appropriate choice of the sign and the imaginary or real nature of the square root is
to adapt to the frequency for which the modal field solution is intended to solve. Hence,
an adequate factor is to introduce for creating the modal field solution of the periodically
loaded waveguide for any other frequency f below or above fref . CST MWS determines
the magnetic modal solution from the electric modal solution and the wave impedance for
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fref . Thus, the magnetic modal solution results as

fref > fc : H =
E

|ZF H | fref > fc : H =
E

|ZF E | , (7.5)

fref < fc : H = − jE

|ZF H | fref < fc : H =
jE

|ZF E | , (7.6)

where H and E waves are distinguished. Hence, the corresponding correcting factor −j
or j is to introduce according to whether fref > fc and f < fc or fref < fc and f > fc in
order to gain the correct modal field solution for H and E modes. The correcting factors
in both cases −j or j for H or E modes, respectively, are derived from the fact that the
Poynting vector must be identical in any case

E2

ZF H
=

E2
ref

ZF H,ref
→ E = Eref

√
ZF H

ZF H,ref
(7.7)

and for the magnetic field

H2ZF H = H2
refZF H,ref → H = Href

√
ZF H,ref

ZF H
. (7.8)

For E waves ZF H is to replace by ZF E.

The modal field solution of the periodically loaded waveguide is displayed for the fre-
quency f = 7.5 GHz in the LH range in Figs. 7.3a to 7.3c on a rim of a wall. The
field distribution cannot be compared to the one shown in [EKYG05] since they derived
the field solution in the aperture between two corrugations. The original cylindrical host
waveguide would have exhibited only wave attenuation and no wave propagation at this
frequency. The magnitude of the Ey-component is reasonably the strongest value with the
highest magnitude close to the rim. In contrast to the H10 mode of the host waveguide a
longitudinal component Ez is also present [WE09b].

From the generated field solution, the Bloch impedance ZB is derived by the definition
of an equivalent current derived from the magnetic field on the rim and by the transferred
power in the cross section according to Eq. (5.140) for the model with w

p = 0.85. The
integration paths are illustrated in Fig. 7.4. The real and the imaginary part of ZB

are pictured in Fig. 7.5, where an imaginary ZB is to observe in the bandgap and a
dominant real ZB in the propagation domain. In [EKYG05], the waveguide impedance
was calculated instead.
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Figure 7.3: Modal field distribution in the port plane of a corrugation wall.
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7.2 CRLH Waveguide in SIW Technology 87

7.2 CRLH Waveguide in SIW Technology

In this section, the peculiarities of a composite right/left-handed transmission line are
realised in a closed waveguiding structure with the purpose to transport energy with low
attenuation and to exploit the special phase behaviour in the LH frequency range [WE08b].
A start from a hollow waveguide design is advantageous with respect to optimal energy
transfer in comparison to an implementation in microstrip technology as many other real-
isations to be found in literature e.g. in [CI06]. In contrast to the design as a corrugated
hollow waveguide in section 7.1, the idea is to implement the H10 hollow waveguide mode
as an SIW. The EQC of the rectangular hollow waveguide mode H10 in Fig. 7.6a strongly
resembles the EQC of the CRLH TL by nature with view to Fig. 7.6b, except for the series
capacitance. In anticipation of sections 8.1 and 8.2, two open realisations based on the
same configuration concept act as antennas. In section 8.1, an additional layer provides
for the enhanced series capacitance. In order to arrive at a closed configuration, details
are shown in Fig. 7.7, the open implementation is extended by the use of image princi-
ple. However, the second resulting level of metal tongues is omitted with the purpose to
simplify manufacturing. Kapton foil acts as separation layer between the upper metallic
pattern and the lower layer of metal tongues. In this manner, a high series capacitance
can be reached and the unit sections can be kept short in length with ∆l ≈ λ0/20. The
tongues are shaped according to the distribution of the transverse current density which
is higher in the center and fades towards both sides. The currents flow along the lateral
vias and create the shunt inductance. The shunt capacitance can roughly be regarded as
two capacitances in parallel from the top and bottom metallic layers, respectively, to the
middle metallic layer. The series inductance stems from the current flowing in longitudi-
nal direction. The shunt resonant frequency is determined by the transverse geometry of
the SIW, limited by the lateral rows of vias. Once having established the shunt resonance
frequency, the series resonant frequency is left to be adjusted by the longitudinal length
of the unit cell in propagation direction. As such, the decisive design parameters to reach
the balanced state are decoupled and a handy balancing procedure results cf. sections 8.1
and 8.2 [WE09a].

(a) EQC of the H10 mode.
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Figure 7.6: Equivalent circuit diagrams of the H10 mode and the CRLH TL.

A tapered feeding section provides the transition from the periodical structure to the
feeding microstrip line of 50 Ω as depicted in Fig. 7.7a. The smooth transition reduces
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(a) Internal SIW structure revealing the tapered transition to
the input

�w

�l

(b) Periodic unit cell

Figure 7.7: SIW configuration as CST MWS model.

reflections and promotes matching.

7.2.1 Simulation, Prototype and Measurement Results

Starting point is the transition frequency from the LH into the RH state, which is in-
tended to be 4.35 GHz. Coincidence of the series and the shunt resonance is achieved
with ∆w = 18.5 mm and ∆l = 3.625 mm. 40 cells add up to a total length of 184.62 mm,
which are built on the dielectric Arlon 25FR with εr = 3.58, which is economically priced.
In CST MWS the loss factor of the substrate is set to tan δ = 0.0035 and the mate-
rial data of the Kapton foil read εr = 2.8 with tan δ = 0.003 as loss factor. However,
the real effective material values cannot be exactly ascertained in the frequency range of
interest. Therefore, two models with differently long tapered feeding sections are simu-
lated. Regarding the reflection coefficient, the second designed simulation model unveils
better matching at lower frequencies, where the transition section is made longer. The
first design whereas delivered better matching in the higher frequency range. In order to
demonstrate the functionality of the described principle a prototype has been fabricated
and the measures of the second tapering have been chosen. The prototype is displayed in
Fig. 7.8 even though everything is closed. In Fig. 7.9, the reflection coefficient of the pro-
totype shows a peak at around 4.2 GHz but the reflections are nonetheless mainly below
−9 dB. The first simulation model reveals an input reflection coefficient of |S11| < −13 dB
from 4 GHz to 7 GHz but the second model shows slightly better matching performance
with |S11| < −15 dB from 3.4 GHz to 4.8 GHz, which are the frequencies in focus. The
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discrepancies between measurement and simulation can be explained by fabrication toler-
ances, uncertainties of the material parameters and by the simulation mesh.

The transmission parameters of the simulation and the measurement are in good agree-
ment, as shown in Fig. 7.10. The |S21| of the simulation model with taper 2 clearly
confirms the balanced condition by a smooth course whereas the course of the |S21| of the
measured prototype deviates from being perfectly balanced, that is in accordance with
the result of |S11|. From the transmission factor, the propagation constant can be derived
by unwrapping its phase. The graphs from measurement and simulation coincide well
and are displayed in Fig 7.11. Nevertheless, a phase offset cannot be ascertained without
de-embedding.

Figure 7.8: Realised prototype.
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Figure 7.9: Reflection coefficient of simulation model and prototype in comparison.

7.2.2 Dispersion Diagram

The physical meaning of the mathematically complex nature of the propagation constant
γ or rather of the phase constant β versus frequency can be visualised in the dispersion
diagram. It hints to the performance of the structure. On this behalf, γ is computed on
two ways to compare the results. First, a unit section with imposed periodic boundary
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Figure 7.10: Transmission coefficient from simulation and measurement.
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Figure 7.11: Unwrapped phase of S21 from simulation and measurement.
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conditions is modeled in the finite element (FE) based eigenmode solver of Ansoft HFSS
[Ans11]. Second, the estimation algorithm matrix pencil (MP) cf. appendix 9.4 processes
the field solution data obtained by the driven transient simulation of the periodically
loaded waveguide. Fig. 7.12 reveals the outcome of both computations and verifies almost
identical dispersion behaviour. The LH trait is clearly attained to observe by the negative
slope in the lower frequency domain. The balanced state with β = 0 is established at
4.35 GHz where the LH mode smoothly converts into the RH mode prevailing in the upper
frequency range. A vanishing β signifies infinite wavelength as is pictured in Fig. 7.13 in
the simulation plot. For comparison, the same cut in the field plot of the transverse E-
component in the horizontal plane at a height of 0.5 mm is depicted for the LH frequency
3.6 GHz in Fig. 7.14 and for the RH frequency 5 GHz in Fig. 7.15. Unfortunately, the
pictures cannot be animated here. That would testify the backward wave propagation in
the LH case and the forward travel direction in the RH case.
As additional information, the MP method features the attenuation behaviour. The
attenuation constant from the MP method and the one yielded by the not-deembedded
CST MWS simulation results according to

α
[
m−1

]
= − |S21| [dB]

l 8.686 [dB]
(7.9)

are added to the dispersion graph (Fig. 7.12). The curves nicely agree except around the
transition frequency where a comparable attenuation does not arise by the MP algorithm.
The losses account for α = 1.026 m−1 at 4.35 GHz and at 4.7 GHz they bring about
α = 0.89 m−1, which is in the range of the losses in [YCN+07] if not better. The loss
factor of the Arlon 25FR with tan δ = 0.0035 is higher than the one of Rogers 6002 used
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Figure 7.12: Dispersion diagram comparing results from the matrix pencil method (MP) and the
eigenmode solver in HFSS.
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Figure 7.13: Transverse E-component for 4.3 GHz, near transition frequency.

Figure 7.14: Transverse E-component for 3.6 GHz, LH region.

Figure 7.15: Transverse E-component for 5 GHz, RH region.

in [YCN+07] with tan δ = 0.002. Additionally in [YCN+07], the operation frequencies are
lower and the structure exhibits only nine cells. Losses of α = 0.77 m−1 are reported for
2.8 GHz.

7.2.3 Bloch Impedance

For periodic architectures, the Bloch impedance ZB signifies the matching characteristic
of the waves travelling in the periodic arrays. ZB varies within one cell but is periodi-
cally identical at each periodic cross sectional plane. Only a forward advancing wave is
assumed in the periodically modulated waveguide because of the good matching perfor-
mance revealed in Fig. 7.9. As for the other CRLH structures cf. sections 8.1, 8.2, ZB

has been computed from the driven field solution obtained with CST MWS. The input
interface of a unit cell exhibits a Bloch impedance of which the real and the imaginary
parts are displayed in Fig. 7.16 over frequency. It is computed via the definition of power
and current in Eq. (5.140). Compared to the open similarly designed structure in section
8.1, the value of the applied voltage remains the same. One reference potential is on the
inner layer in the middle of the SIW and the other reference potential is on the outer shell,
i.e. on the top and on the bottom layer. As the set-up is not perfectly symmetric the
upper part supports slightly more energy. The current partly flows in the upper section
and partly in the lower section. For one half of the cross section ZB mainly remains the
same compared with ZB of the open composition. For the entire structure, the Bloch
impedance is only half of it since the lower and the upper part can be regarded as in
parallel. The imaginary part is | Im(ZB)| ≤ 4 Ω and fluctuates around the zero line. The
real part is between 8 Ω and 14 Ω.

The lowest possible reflection coefficient is attained with a reference impedance of the
waveguide of ZL = 10.75 Ω depicted in Fig. 7.17. In conclusion, the CRLH waveguide
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Figure 7.16: Bloch impedance by real and imaginary part.

promises broadband operation with the balanced frequency as center frequency. Addi-
tionally, it can be easily included in conventional RH TL circuits by relatively simple
matching networks.
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Figure 7.17: Reflection coefficient due to the Bloch impedance and a reference impedance ZL =
10.75 Ω.





8 Leaky-Wave Antenna Realisations

8.1 CRLH Leaky-Wave Antenna: Slotted Substrate

Integrated Waveguide

Conventionally, slots introduced in the metallic enclosure of hollow waveguides typically
serve for alternating sign sampling to realise broadside radiation for rectangular hollow
waveguides [EE10]. An attractive alternative to trigger broadside radiation offer com-
posite right-/left-handed transmission lines since they enable broadside radiation directly
in the fundamental mode. For this goal, slots are introduced in the top metallic plate
perpendicular to the direction of propagation and in distance much smaller than in the
traditional way and than the operating wavelength. One periodic unit cell is shown in
Fig. 8.1a. One cut is thereby very narrow in order to attain a considerable capacitance
value. On a second level just below the top level, metallic strips or metal tongues are to
bridge the gaps and are to enhance the capacitance to keep the periodic sections particu-
larly short. The form of the metal tongues accounts for the transverse currents and the
corresponding field distribution within the waveguide by having a tapered shape toward
the ends. As such, the nature of the field is preserved and no additional parasitic effects
are created besides the desired series capacitance to the original EQC of the H10 rect-
angular hollow waveguide mode displayed in Fig. 8.1b. The functional field dependence
within the rectangular SIW is similar to the known sine-functional course of the H10 mode
promoted by the host waveguide. To separate the metallisations, Kapton foil serves as
separation layer. The resulting upper metallic strips are short-circuited with the metallic
ground plane by lateral via holes, which define the transverse dimension of the modified
waveguide and replace metallic side walls of the rectangular hollow waveguide equivalent.
The currents flow along the lateral vias and induce shunt inductances as represented in
the EQC in Fig. 8.2. The horizontal geometry not only specifies the cut-off frequency of
the H10 mode of the host waveguide but also assigns the frequency of the shunt resonance
of the EQC. The longitudinal dimensions determine the series resonance. The equiva-
lences are depicted in Fig. 8.2. For this reason, establishing the balanced condition [CI06]
is very convenient since the decisive parameters are decoupled from each other. Once,
having fixed the transverse geometry, balancing remains the task of adjusting the length
∆l of a cell and the overlapping area covered by the bars on the top and the metal tongue
below. Fig. 8.1a pictures the unit cell. In the balanced state, the series and the shunt
resonant frequencies are identical.

8.1.1 Simulation Results

The antenna configuration [WE08a] is simulated with CST MWS [CST11] in time do-
main with the transient solver for 2 − 7 GHz. A magnetic symmetry plane along the
propagation axis is set in accordance to the electric field distribution within the SIW
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∆w

∆l

(a) Elementary cell

(b) EQC of the original RH H10 mode.

Figure 8.1: Open CRLH waveguide in SIW technology.

known from the regular rectangular waveguide equivalence. It promotes the modes which
are interesting for the very application. The simulation model follows in Fig. 8.3. With
respect to economic fabrication, the low-cost substrate FR-4 is used known for common
planar printed circuit board (PCB) production. Its permittivity is εr = 4.5 and generates
with tan δ = 0.025 relatively high losses. The Kapton foil as separation layer features
an εr = 2.8 with tan δ = 0.003. The thicknesses are 1.7 mm and 70 µm, respectively.
Especially the physical values of the latter are not reliable due to its fineness and its
frequency-dependency. The total composition is accomplished by 50 unit cells in repeti-
tion. The fabricated prototype can be inspected in Fig. 8.4. It has been produced by
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Figure 8.2: Correspondence of dimensions of the SIW LWA and circuit model equivalences.
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common planar printed technology.

Figure 8.3: Simulation model: Metallic structure.

Figure 8.4: Fabricated prototype.

Since the waveguide width has already been fixed it remains to tune the series resonance
by modifying the length of a unit cell. With it, the distance the current has to flow varies
affecting the value of the serial inductance. The gap between the rectangular strips makes
up the serial capacitance. The capacitor area is increased by the metal tongue below.
The arrangement can be understood as two capacitances in series resulting in half of
the value of one capacitance. The effect of varying ∆l becomes visible in the Smith
chart as Fig. 8.5 shows. The dotted red curve of the reflection coefficient belongs to a
unit cell length of 3.6 mm and encircles the matching point, thus broadband matching
is confirmed. Referring to transmission line theory, the relevant characteristic impedance
ideally becomes independent of frequency for a balanced structure as stated in [CI06]. As
additional verification, the magnitude of the reflection coefficient is presented in Fig. 8.6.
The periodic cell continuation is matched to a 50 Ω microstrip line by a tapered transition
section (see Fig. 8.3).

8.1.2 Bloch Impedance

For matching and integration reasons, it is important to know the Bloch impedance of a
periodic structure in any arbitrary cross sectional plane. The value of the Bloch impedance
varies only within the periodic unit cell cf. section 3.3. It is retrieved from the field solution
obtained by the simulation. The field data is extracted from a unit cell in the middle of
the antenna, where reflections from the transitions at both ends are faded away and the
field can be considered as steady-state. As explained in section 3.2, the Bloch impedance
differs within a unit cell and for the three definitions (5.139) to (5.141) as can be seen in
Fig. 8.7, which is plotted along the unit cell. In Fig. 8.8, ZB is calculated depending on
frequency at the input interface. Notable is that the imaginary part changes from positive
to negative values at about 4 GHz, which is designed as the balanced frequency, and the
imaginary part is about | Im | . 5 Ω.
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Figure 8.5: S11 of structures with different unit cell size lengths.

3 4 5 6

�40

�30

�20

�10

0
|S11| 

[dB]

f [GHz]

CST MWS

measured

3.6 mml� =

Figure 8.6: S11 of the antenna structure with unit-cell length 3.6 mm.
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8.1.3 Dispersion Diagram

The diagram discloses the fast and the slow wave regions of this antenna, in which radi-
ation and bound waves occur, respectively, cf. section 3.4.2. The dispersion behaviour
is computed by various methods, as demonstrated in Fig. 8.9. The border between fast
and slow waves is given by the light line representing the wavenumber of free space. In
the slow wave part, a mode is to notice which first approaches the light line. This mode
is a perturbed plane wave above the antenna structure, which eventually inclines to a
bound LH mode around 3 GHz with anti-parallel group and phase velocities. Since the
wavelength is relatively long at low frequencies the mode just perceives a metallic plate.
While the wavelength reduces with increasing frequency the mode begins to interact with
the configuration of the LWA and converts into a LH mode. Nevertheless, the wave is
purely bound through its entire pathway because its propagation constant is bigger than
the constant of free space. The values are calculated with the eigenmode solver of the
commercial software tool Ansoft HFSS [Ans11] working in the frequency domain. As long
as the wave is not bound, i.e. outside the structure, it is not found by the matrix pencil
algorithm, which processes the field data of the driven entire antenna configuration. The
unit cell modeled as periodic unit in the eigenmode solver of HFSS is shown in Fig. 8.10.
As upper boundary condition, a perfectly matched layer (PML) is placed while the lateral
boundaries are defined as periodic with a phase shift between them. Despite the name
the PML does not operate perfectly and physically reasonable modes have to be selected
from unphysical modes.

The transition frequency 4 GHz is clearly confirmed by both methods, by simulation
and by the numerical estimation technique, where ideally β = 0 and with it λ → ∞.
Infinite wavelength entails a homogeneous phase so the field is evenly distributed along
the antenna, and moreover broadside radiation occurs. Similarly, the graphs of the LH
mode and the RH mode are well consistent in both computational methods. The light
line intersects both modes. Up to a phase of β∆l ≈ 0.22, the LH mode leaks energy while
propagating along the antenna. The RH mode radiates up to a phase of β∆l ≈ 0.31.
In contrast to HFSS, the matrix pencil method also delivers the attenuation constant α,
which is α∆l < 0.05 and includes dielectric and metal losses but also radiated energy.
The three attenuation shares are non-separable within the matrix pencil computations.
To emphasise is that the antenna is operated only in its fundamental mode and not in
higher space harmonics ensuring reliable and predictable operation.

8.1.4 Measurement Results

Fig. 8.11 reveals that the simulation results and the measurement results agree well for
the transmission parameter S21, which is below −10 dB up to 5 GHz, promising good
radiation performance. The amount of the accepted energy at the input is consumed suf-
ficiently by radiation but also by losses. At the same time, gradual energy consumption
is to establish while the wave travels along the antenna. This leads to a large aperture
and thus to a high gain. Fig. 8.12a illustrates the measured gain over the elevation angle
in accordance to the IEEE definition for ϕ = 0◦ corresponding to the E-plane. For the
depicted frequencies, the maximum is reached at 4.4 GHz with 9.15 dBi. At radiation
perpendicular to the aperture at 4 GHz, a gain of 8.64 dBi is accomplished. With in-
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creasing propagation constant and increasing frequency the radiation angle turns toward
endfire while the antenna is operated in the RH mode. Scanning the radiation angle only
by a change in frequency is therefore possible from backfire to endfire including broadside
direction. The side lobe level is thereby satisfactory. In Fig. 8.12b, the radiation patterns
by simulation and measurement are compared for 4.0 GHz, 4.4 GHz and 5 GHz. The
main beam directions are in good agreement as are their shapes.

For the same plane at ϕ = 0◦, the maximum gain is reported over frequency in Fig. 8.13.
Measured and simulated data accord in a pleasant manner with each other. The tendency
is the same, the gain increases slightly with increasing frequency. Measurements 1 figure
out the maximum gain to be at 5.3 GHz with 10.15 dBi, which is a good value but the
shape of the beam becomes rather broad. The efficiency over frequency obtained from
the 3D measurement and gain calculation is given in Fig. 8.14. It shows a maximum
efficiency η of 69% at 3.8 GHz. The efficiency from the simulation is compared with the
measurements. If a less lossy substrate was employed the efficiency could be enhanced.
The 3D radiation pattern at broadside for ϑ = 0◦ is visualised in Fig. 8.15, which stems
from the farfield calculation in CST MWS. In Fig. 8.16, the contiguous radiation pattern
is remarkable over frequency and scanning range as presented in [WE08a].
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Figure 8.11: Transmittance of the LWA for ∆l = 3.6 mm.

1The author appreciates the work and thanks Dipl.-Ing. Claudius Löcker, Fraunhofer Institute for High
Frequency Physics and Radar Techniques FHR (former FGAN, Wachtberg, Germany), for performing
the antenna whole-sphere measurements.
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Figure 8.12: Radiation patterns.
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Figure 8.13: Maximum gain from simulation and measurements versus frequency.
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Figure 8.14: Radiation efficiency obtained by measurement and simulation.



8.1 CRLH Leaky-Wave Antenna: Slotted Substrate Integrated Waveguide 105

Figure 8.15: The 3-dimensional pattern in the farfield while radiating at broadside.
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Figure 8.16: Frequency-dependent scan behaviour from −90◦ to 90◦.
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8.2 CRLH Leaky-Wave Antenna: Interdigital Design

The concept to realise the CRLH TL by a periodically modified dielectric-filled rectan-
gular hollow waveguide has already been proven to work successfully by the prototypes
presented in [WE07b],[WE07a]. The antennas exhibit a considerable gain while having a
low conformal profile. Fabrication remains economic and easy to handle. By substrate
integrated waveguide technology the design of a rectangular hollow waveguide is relieved
and the final product is of compact size and light weight.

The second open configuration further simplifies manufacturing substantially since this
time single-layer printed technology has been used. The required series capacitance is
yet still attained while a unit cell can be maintained relatively short in relation to the
operating wavelength. This time however, a slightly longer unit cell is the goal with the
aim to reach a longer aperture, a more gradual radiation process and thus a higher gain.
The dielectric substrate Rogers RO4003 with εr = 3.38 and tan δ = 0.0027 is sandwiched
between the ground plane and the top plate. The upper metallic is slotted in interdigital
form. It appears as if two metallic rows of “teeth” interdigitate with each other leaving a
gap between them. In this manner, a longer capacitive slot is accomodated within little
area and a substantial capacitance is reached. The interdigital slot is repeated periodi-
cally as can be seen in Fig. 8.17a showing one periodic cell and Fig. 8.17b is an extract
of the periodical composition, which also displays the tapered input section. Observable
is that the teeth are narrower in the middle of the structure and become broader towards
the sides. The field strength of the fundamental mode of the host waveguide is more con-
centrated in the center and more slits can incorporate more field. Otherwise, the surface
currents would be forced to flow laterally which would distort their natural flowing form
and thus, the EQC would deviate from the original one. For the same argumentation, the
slots continue until the very edges unlike in Fig. 8.18a from [DI09]. In [DI09], the slots
end in front of the lateral rows of vias and are thus not adapted to the corresponding field
distribution. Thus, extra longitudinal currents are created and an additional shunt induc-
tance Lp to the series capacitance is generated as depicted in Fig. 8.18b. By respecting the
introduced parasitic inductance in the perfect CRLH TL EQC, the opening between the
LH and the RH mode in the dispersion diagram becomes closer and the frequency range
above the light line, where radiation is possible, becomes smaller. A smaller bandwidth
of the radiation operation ensues. In [DI09], less periodic cells achieve a comparable gain
but the working frequency range is higher with the balanced frequency at 10 GHz and
the unit cells are also longer leading to a larger aperture and theoretically to a higher gain.

Eventually, a prototype (Fig. 8.19) based on the cell concept in Fig. 8.17a has been
manufactured with 30 cells. A tapered transition section again serves as connection to a
common 50 Ω microstrip line.

8.2.1 Comparison of Measurement and Simulation Results

In Fig. 8.20 and 8.21, the reflection and the transmission parameters are shown obtained by
simulation and measurement. The |S11| of the prototype even reveals slightly better input
matching with |S11| ≤ 15 dB at some frequencies in the interval of 2.5−5 GHz than in the
simulation. The outcome from simulation and measurement is overall in good agreement
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(a) Unit section with a slot in interdigital
design.

(b) Detail from the LWA showing the tapered
transition from the feed to the structure.

Figure 8.17: Antenna structure with interdigitally slotted metallic top layer.

and deviations are in the range of under-etching effects and material inaccuracies. The
plot of the measured transmission is shifted by 0.5 GHz to lower frequencies but both
graphs follow the same course. Compared to the realisations in sections 7.2 and 8.1,
which are based on the same idea, one periodic cell is longer with 5.9 mm compared to
3.6 mm in order to obtain a more gradual radiation. A larger aperture arises with the
potential to achieve a higher gain. The resulting transmission alludes to a low leakage
constant along the LWA being prerequisite for a large effective aperture.

8.2.2 Numerical Computation Results by Modal Series Expansion
Approach

To apply the modal series expansion approach, the simulation results of one unit cell are
required. The magnitude of some S-parameters at some frequencies seem to be physically
not reasonable. With view to Fig. 8.22, illustrating a typical data set for the unit cell
of the interdigitally slotted LWA, values above 0 dB attract attention although no active
elements are included in the cell. The contributions of the first two modes are visualised as
indicated in the parentheses next to the port numbers in the legend. Higher order modes
are not indicated because they are hardly excited due to the low port size. The first
and second mode do not propagate below their cut-off frequencies 4.3 GHz and 13 GHz,
respectively. Modes below cut-off only contribute real energy if by superposition a phase
difference exists and if the modes have not decayed to zero. In addition, the S-parameters
of evanescent modes are defined with respect to complex power. Consequently, energy

(a) Prototype with terminating slots in
front of the via rows.

Lp

(b) Parasitic parallel induc-
tance in the CRLH EQC.

Figure 8.18: Leaky-wave antenna from [DI09].
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Figure 8.19: Prototype fabricated by single-layer printed circuit board design.
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Figure 8.20: The reflection coefficient of the simulation model and the measured prototype.
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Figure 8.21: The transmission coefficient simulated and measured.
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conservation is not necessarily violated for |S| above 0 dB. By this reasoning, the peak
at 5.3 GHz can be explained. However, another peak occurs at the cut-off frequency of
the first mode of the homogeneous waveguide. At the cut-off frequency, the propagation
constant is zero. When an ansatz to the eigenproblem is posed the forward directed
wave is not to distinguish from the backward directed wave, which can be considered as
degeneracy cf. section 4.1. The S-parameters however are defined as relation from the
backward to the forward oriented waves and are therefore not exactly declared. Therefore,
physical events may occur which seem weird at first sight. In the vicinity of cut-off, the
S-matrix is ill-conditioned causing numerical problems.
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Figure 8.22: S-parameters showing values above 0 dB.

8.2.3 Dispersion Diagram and Radiation Performance

The open configuration leads to a continuous spectrum of eigenvalues. By evaluating the
problem with a series expansion, only an approximation is to expect. The waveguide ports
only cover the waveguiding structure. Hence, the eigensolutions serving as basis functions
in the modal series expansion merely refer to the structure and do not incorporate the
adjacent free space. In the following the modal series expansion is abbreviated as SMA.
The simulation model in CST MWS is pictured in Fig. 8.23. Again, the decisive advantage
of the reformulation of the eigenvalue problem with the T -matrix in Eq. (4.11) is that
it can be conveniently solved in a driven simulation by CST MWS. For this model, the
frequency solver is employed delivering fast results for certain frequency points. The unit
cell as simulation model is meshed with tetrahedra. To account for the non-symmetry
of the model, the excitation at both ports is required. The simulation model has been
excited by five modes. The outcome where the S- or T -matrix, respectively, is composed
of just one mode agrees best with the reference data generated by the matrix pencil
method cf. section 9.4, which evolves the eigensolution from the field data of the com-
plete periodic antenna obtained by the time domain solver. This is to observe in Fig. 8.24.
The balanced frequency is about at 3.75 GHz. The matrix pencil method only reveals
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Figure 8.23: The unit cell of the interdigitally slotted LWA.

approximate balancing. Below 3.75 GHz, LH wave propagation is to note characterised
by anti-parallel phase and group velocity. By constituting the matrix by two modes, the
graph is perturbed around 4.5 GHz, what corresponds with the cut-off frequency of the
first mode in this particular simulation. Compared to the other LWA realisation with
a periodic length of 3.6 mm, the unit cell length of this model is 5.9 mm. The vertical
vias indeed function as metallic side walls of a conventional waveguide but the field can
penetrate between the vias in particular for the longer cell length. The balanced frequency
3.75 GHz approximately corresponds to an equivalent waveguide width of 22.05 mm with
solid side walls, which is larger than the opening width of 18 mm between the vias.
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Figure 8.24: The dispersion behaviour computed by matrix pencil and SMA technique.
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MP and SMA deliver the attenuation as plotted in Fig. 8.25, which the eigenmode solver
of CST MWS or Ansoft HFSS do not provide. Nevertheless, the value of α is composed
of losses and radiation. Both diminish the energy of the wave that travels from the input
to the end of the LWA. The SMA reveals high attenuation around 3.75 GHz due to a
little bandgap, which appears in the infinite structure but it is not that obvious for the
finite antenna. Even though the modal series expansion only provides an approximation
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Figure 8.25: The attenuation.

for the open periodic SIW the dispersion graph agrees well with the results of the matrix
pencil method. The fact that the modal series expansion method functions well for this
antenna can be explained by the configuration of the antenna. Despite the slots, the
upper metallisation can be treated as a compact metal layer which clearly separates the
waveguiding structure from the surrounding free space. Therefore, the eigensolutions of
the waveguiding structure together with the information contained in the S-parameter
results of the unit cell, as illustrated in Fig. 8.23, reveal a dispersion behaviour which also
predicts the radiation performance. It is to observe that, if more modes than one con-
stitute the S-matrix, the results are distorted. The cause is that the vertical dimension
of the port is low and higher order modes are far below cut-off in the frequency interval
3− 5 GHz of interest, in which the fundamental mode operates, and are thus insignificant.
Therefore, few modes deliver better results than more modes.

It can be summarised that an LH mode is established leading to backfire radiation
as well as an RH wave turning the radiation angle towards endfire. Broadside radiation
meaning radiation perpendicular to the antenna is achieved. That is testified and visu-
alised in the diagrams Fig. 8.26 to Fig. 8.28. Fig. 8.28 shows very well the scanning
capability of the antenna ranging from backfire to endfire. The measured prototype ver-
ifies the scanning capability in Fig. 8.26. At the lower frequencies belonging to the LH
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frequency domain, the radiation beam points towards backfire, which is the feeding side
and equivalent with 0◦. The measurements reveal broadside radiation at 3.65 GHz differ-
ing from the simulation result by 0.1 GHz. There, the beam points towards broadside at
3.75 GHz. In Fig. 8.27, the forms of the radiation patterns are compared. The patterns
from simulation are shifted by 15◦ because the measurements let assume an offset since
the radiation angle was not calibrated in the measurement set-up. The shapes of the
radiation patterns are in good agreement. In Fig. 8.29, the cross- and co-polarisation of
the simulation is to observe. They are pictured for broadside radiation (3.75 GHz) in the
H-plane. To highlight is the very low cross-polarisation and the smooth and symmetric
co-polarisation. In addition, the cross-polarisation is negligible in the E-plane.
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Figure 8.26: Scan for 3 GHz, 3.1 GHz, 3.3 GHz, 3.6 GHz, 3.7 GHz, 4.1 GHz and 4.8 GHz (from
right to left) in the E-plane.
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Figure 8.27: Measured and simulated radiation patterns in the E-plane.

The gain over frequency measured as well as simulated is depicted in Fig. 8.30, where
both data are comparable for a 30-cell antenna. The gain in the simulation attains more
than 10 dB at 4 GHz and can maintain the value for higher frequencies whereas the gain
of the prototype begins to fluctuate. For comparison, the gain of a 40-cell antenna is
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simulated, which proves an extendable gain up to 12 dB. The overall measured gain
over frequency and over elevation angle ϑ is shown in Fig. 8.28. The diagram verifies
contiguous radiation performance and a gain up to 11 dB.
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Figure 8.28: The measured gain over elevation angle and frequency.
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Figure 8.29: Cross- and co-polarisation in the H-plane.
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Figure 8.30: The measured and the simulated gain in comparison.

8.2.4 Bloch Impedance and Modal Field Distribution

For matching and for validation reasons, the Bloch impedance is computed for the input
interface of a unit cell. An equivalent current and power is computed from the field
solution of the driven entire antenna structure as described for the other structures. It is
to observe in Fig. 8.31a that the real part is in the range of 20 Ω. The imaginary part
tends to be | Im {ZB} | . 5 except for the jump discontinuities at 3.75 GHz and 4.3 GHz.
The first jump is at the transition where the LH mode converts to the RH mode. The
second one is the cut-off of the H10 mode in the homogeneous background waveguide of
the underlying simulation. The imaginary part as well shows peaks in the graph at the
same positions. Except for the irregularities, | Im {ZB} | . 5 Ω. A real wave impedance
signifies wave propagation whereas an imaginary impedance is an indication of purely
evanescent waves. Fig. 8.31b confirms ZB to vary within a periodic unit cell showing the
magnitude of it.

The field distributions for the dominant mode are shown in Figs. 8.32a-8.32c at the LH
frequency 3.4 GHz. The components do not deviate much from the field solution of the
TE10 mode of the background waveguide except that they are present below the former
cut-off. The similarity is no surprise since the profile is low and any higher order modes
are unlikely to propagate.

Next, the ZB gained from the simulated unit cell is compared with the one computed
with the field solutions of the total LWA for the same cross sectional plane. The unit
cell simulation yields modal solutions of two dominant waves. They travel in forward
and in backward direction. ZB is defined according to power flow in positive direction
and computed by taking the mean value of both waves. The Bloch impedance from the
complete antenna is computed for the transversal plane identical to the port plane of the
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Figure 8.31: The Bloch impedance of a unit cell in the entire antenna structure.

unit cell. The field is extracted in the middle of the periodic structure where reflections
from the transitions at both ends are assumed to have mainly faded away. The reflection
coefficient gained by the MP method has also been taken into account but has not altered
the result significantly. The results for ZB for the unit cell simulation as well as for the
antenna are contrasted in Figs. 8.33 and 8.34. Equivalences can be observed.
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Figure 8.32: Modal field distributions in the port plane.
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Figure 8.33: Real part of ZB by simulation of a unit cell and of the complete structure in
comparison.
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Figure 8.34: Imaginary part of ZB by simulation of a unit cell and of the complete structure in
comparison.
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8.3 Periodically Modulated Grounded Dielectric Slab

The considered periodically modulated grounded dielectric slab is an open configuration,
whose full-wave dispersion analysis is a challenging problem. In this work, it serves in
particular to demonstrate the capabilities of the extended scattering matrix approach as
proposed in chapter 6. The periodically modulated grounded dielectric slab is a conven-
tional waveguide functioning as a leaky-wave antenna. However, as a leaky-wave antenna
it is operated in higher order space harmonics which exhibit metamaterial-like behaviour.

8.3.1 Design Data

One way to periodically modulate the grounded dielectric slab is to form corrugations.
According to the design rules given in [SP83], the following antenna has been developed.
The frequency range of operation is aimed at 9.4 − 14 GHz. In [SP83], the frequencies
are higher by a factor of 10, where they commonly use substrates with a higher dielectric
constant e.g. εr = 12 exhibited by silicon mostly employed in integrated optical circuits.
For the frequency range 9.4−14 GHz, the dielectric substrate Rogers TMM4 with εr = 4.5
and tan δε = 0.002 is adequate. In [SP83], a height of the homogeneous dielectric slab
h/λ = 0.2 is recommended whereas here, the thickness h/λ = 0.35 is chosen which is
slightly increased to compensate the lower permittivity in order to attract the waves more
to the dielectric layer. The reference wavelength λ = 20 mm corresponds to an effective
β = 315 m−1 at 10 GHz, which is obtained from the 2D eigensolution of the uniform port
cross section from CST MWS. The periodical length p should equal p = λ since radiation
is achieved by the periodic perturbation of the waves guided by the uniform waveguiding
structure. A suitable periodic length can be obtained from Eq. (6) in [SP83]

λ√
β/k0 + 1

≤ p ≤ 2λ√
β/k0 + 1

. (8.1)

The expression follows from the requirement of single-beam operation such that only the
n = −1 harmonic wave radiates. Hence, the transverse propagation constant in z-direction
must be real for n = −1 and simultaneously, the transverse wavenumbers of the other
space harmonics with n 6= −1 must result as imaginary according to the expression

kzn = k0

[
1 −

(
β

k0
+
nλ

d

)2
]1/2

(8.2)

cf. section 3.4. For a good and and preferably gradual radiation performance, the length of
the corrugation is determined as d = 0.5p and the depth of the corrugation is ascertained
as t = 0.0035 m = 0.175λ with view to the scattering parameters. The measures of the
unit cell are depicted in Fig. 8.35, which is also the cell model in the simulation. The
reached transmission coefficient and the reflection coefficient of a 25-cell continuation are
depicted in Fig. 8.36.

8.3.2 Modal Solutions and Radiation Behaviour

The dispersion behaviour obtained by the extended scattering matrix approach (SMA),
according to section 6.2, is plotted in Fig. 8.37 for the frequency range of interest. The
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Figure 8.35: A periodic unit cell of the grounded dielectric corrugated slab antenna with an
absorber-covered PEC shield at the top according to section 6.2.

phase constant does hardly not differ if one or four modes constitute the S-matrix. It is
clearly smaller than the wavenumber of free space meaning radiation occurs. Although it
is stated in [SP83] that dielectric grating antennas do not feature radiation at broadside
direction β vanishes at 9.4 GHz, promising radiation perpendicular to the aperture. Ac-
cording to [SP83] an internal resonance shall cause a stopband. The reflection coefficient
rises at 9.4 GHz but is still ≤ −10 dB in Fig. 8.36. The conventional operation in the
right-handed sense turns into left-handed wave behaviour at 12.7 GHz according to the
graph in Fig. 8.37. At the transition, the matching behaviour reaches the maximum value
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Figure 8.36: Reflection and transmission coefficient for the corrugated dielectric slab antenna.
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Figure 8.37: Confirmed dispersion characteristic.
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−6 dB (Fig. 8.36). The slope of the dispersion curve above 12.7 GHz is negative indicating
anti-parallel group and phase velocities. The matrix pencil method [HS88] additionally
agrees well with the results. The matrix pencil algorithm processes the field data of a
25-unit-cell structure. Attenuation is pictured in Fig. 8.38, where the number of modes
building the S-matrix clearly makes a difference. By considering just one mode the at-
tenuation is the highest with 18.1 m−1 at 12.5 GHz. If the results of the matrix pencil
method are taken as reference data four modes appear as converged because the result by
five modes is almost identical. The maximum of attenuation is reached with 15.19 m−1

at 12.53 GHz.
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Figure 8.38: The attenuation behaviour can be considered as converged with four modes.

The results are obtained by employing the good absorbing layer as designed in sec-
tion 6.2, comprised by six sublayers (Fig. 8.35), which are placed in front of the PEC top
boundary. In Fig. 8.39 and Fig. 8.40, the outcome with the good absorption layer is com-
pared with the results obtained by employing the worse absorption layer (cf. section 6.2),
which is also constituted by six sublayers but with only a fourth of the absorbing capac-
ity. The phase constant is hardly influenced (Fig. 8.39) while the attenuation constant
is affected with view to Fig. 8.40, for which the weaker absorbing layer leads to a higher
attenuation.

To visualise the 2π-periodic behaviour of the phase constant with respect to relation
(3.34), the frequency range 0 − 25 GHz is depicted in Fig. 8.41. The values of the phase
constants of higher order modes or of the fundamental mode at higher frequencies can
always be reduced to the Brillouin zone with |β| ≤ 157 m−1. The 2D eigensolutions of the
port cross section from CST MWS (unperturbed waveguide) are compared to the SMA
results of the perturbed structure with four modes. In CST MWS, higher order modes
below cut-off are close to the light line as to see in Fig. 8.41. These modes mainly reside
in the absorbing layers cf. Fig. 6.10 in section 6.2.3. In the analytical solution where
no absorbing layer is present these modes appear as leaky modes, which is to observe
in Fig. 8.42. The cut-off frequency of the lowest mode of the unperturbed structure is
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Figure 8.39: The dispersion behaviour with four modes.
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Figure 8.40: The weakly absorbing layer causes a higher attenuation with four modes included.
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Figure 8.41: The dispersion behaviour found by using CST MWS for the unperturbed waveguide
and by the SMA for the perturbed waveguide.
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5.72 GHz, where one mode (dash-dotted) in Fig. 8.41 converts from the leaky state into
a guided surface mode and turns away from the light line. In Figs. 8.43 and 8.44, the
amplitude of the transverse Ex component is plotted over the configuration perpendicular
to the aperture of the dielectric slab at 10.5 GHz. The figures depict the field distribution
for the perturbed dielectric waveguide in the plane of the port cross section. In Fig. 8.43,
one mode can be observed which is located in the substrate, so it is a guided surface wave,
whereas the others are mainly in the air or in the absorbing layers. At the position of the
PEC shield, the tangential E component vanishes and the performance of the absorption
layer is satisfactory. In Fig. 8.44, corresponding modes can be noted but the influence of
the weaker absorption capacity is also to observe because reflections at the PEC boundary
result in standing waves. In [DOdZvdB01], a similar mode characterisation is pictured
but the modes are valid for the homogeneous waveguide configuration treated there. In
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Figure 8.43: Guided, evanescent and absorber modes with good absorbing layer.

Figs. 8.45a-8.45c, the modal field distribution of the fundamental mode above cut-off is
visualised in the port plane for the periodically corrugated dielectric slab. In Figs. 8.46a-
8.46c, the modal field is shown at the same conditions for a higher order mode in the
perturbed structure at the same frequency 10.5 GHz. Figs. 8.47a and 8.47b confirm the
radiation performance at broadside direction. The frequency agrees with 9.4 GHz where
β vanishes in the dispersion diagram. Although periodic antennas are not supposed to
radiate at broadside direction according to [SP83], the corrugated dielectric slab featur-
ing 25 cells exhibits 8.9 dBi at ϑ = 0◦. It is to note that the radiation characteristic is
remarkably symmetric with respect to the longitudinal axis.
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Figure 8.44: Guided, evanescent and absorber modes with weaker absorbing layer.
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Figure 8.45: Modal field distribution of the fundamental mode at 10.5 GHz.
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Figure 8.46: Modal field distribution of a higher order mode at 10.5 GHz.
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9 Appendix

9.1 Singular Value Decomposition

For every matrix A, a scalar τ as singular value and corresponding singular vectors u and
v fulfill the following expression

Av = τu. (9.1)

In form of matrices, the singular values are to find on the diagonal of the matrix D. The
corresponding singular vectors constitutes the columns of V and U , and it is

AV = UD. (9.2)

The singular value decomposition (SVD) of A is

A = UDV T (9.3)

with the orthogonal matrices U and V . D has the form

D =




τ1 0 · · · · · · 0
0 0 · · · · · · 0

0
. . .

. . . 0
...

... 0 τr
. . . 0

...
... 0 0

...
...

...
...

...
...

0 0 0 0 0




. (9.4)

The rank r of D gives the number of linearly independent rows or columns of a full matrix
coming along with r nonequivalent to zero different singular values. They are the square
roots of the eigenvalues τi =

√
Γi in ascending order with i = 1, 2, . . . , r. The Γi are the

eigenvalues of ATA. Normally neither the eigenvectors of ATA to the eigenvalue Γ = 0
nor the corresponding vectors from the matrix U are needed.

9.2 Eigenvalue Decomposition

Considering the eigenvalue decomposition, A describes a mapping of a vector v being
equal to the mapping of its eigenvalue Γ with the eigenvector v

Av = Γv (9.5)
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but A needs to be square in contrast to the SVD. The eigenvalue decomposition (EVD)
is similar to (9.3) and can be written as

A = V DV −1 (9.6)

if V is nonsingular. In contrast to the SVD, A in the EVD describes a mapping from a
vector space into itself like in an ordinary differential equation. In an SVD, the mapping
from one vector space into another one is regarded, also with different possible dimensions.
That is mostly the case for systems of simultaneous linear equations. The EVD and SVD
of A are identical if the matrix is square, symmetric and positive definite.

9.3 Pseudoinverse

The condition number is the relation from the minimum to the maximum singular value.
For matrices with large condition numbers meaning they are ill-conditioned, the pseudoin-
verse is to prefer which treats SVs less than a tolerance as zero. For the SV-decomposed
matrix A the pseudoinverse A+ is

A+ = V D+UT (9.7)

with

D+ : D′
ij =





1√
Γi

for i = j and i = 1, ..., rang(A)

0 else
(9.8)

Thus, for an appropriate threshold ε, an SVD is to compute first to get the maximum SV.
It follows a definition of ε > 0 such that D′

ii = 0 for 1√
Γi
< ε.

9.4 Matrix Pencil Algorithm

The matrix pencil method is a particular case of a matrix prediction approach for the
estimation of signal parameters like frequencies and attenuation factors, of exponentially
damped and/or undamped sine waves in noise. It has been mainly developed by Sarkar et
al. [HS88] and [HS89]. In the latter reference, it has been generalised for electromagnetic
systems but its origin dates back to 1974, where Jain [Jai74] employs it in the area of
filters and signal processing. Furthermore, it has been applied in [Rul99], to decompose
a one-dimensional complex signal with time-harmonic time dependence in forward and
backward propagating wave terms. The main principle is the following. A set of “informa-
tion” vectors is grouped into L overlapping intervals or pencils, where L is also referred
to as free-moving window length. The intervals are assembled in two matrices, which are
arranged in a form of an eigenvalue problem. Each time an eigenvalue is found the char-
acteristic value also serves as rank-reducing number or in other words, every eigenvalue
helps to decrease the dimension of the space the set of pencils span.
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9.4.1 Determination of the Propagation Constants

The matrix pencil method is used to identify a system’s properties with the purpose in this
case to extract the propagation constants and the amplitudes of waves contained in the
one-dimensional complex field solution with harmonic time dependence. The propagation
constants or poles are estimated via the matrix pencil method. After these values are
known the corresponding amplitudes are determined according to the principle of least
mean squares.

The goal is to obtain the eigenvalues corresponding to the complex structure under
investigation, which is simulated within a full-wave simulation. Therefore, the field values
are equidistantly sampled in propagation direction along the architecture with sample
distance κ. To keep the numerical noise low, it is advantageous if the discretisation on
which the field is computed corresponds to an integer multiple of κ.

As a first step the sampled signal is represented by

yk = xk + nk (9.9)

=
M∑

t=1

|At|e(αt+jβt)κk+jϕt + nk. (9.10)

The index k runs from 0 to N − 1, with N as number of samples and M the number of
exponentials. Further

At = |At|ejϕt (9.11)

zt = eγtκ, (9.12)

where At is the tth complex amplitude and zt the tth complex pole with the complex
propagation constant γ = α + jβ. The overlying noise is nk. The matrix pencil method
is based on the peculiar traits of undisturbed exponentials, which can be represented by
means of special matrices. First, a set of the first and the last sampled values are cut to
eliminate reflections nearby the in- and output feed-ins. Column vectors are formulated

y0,y1, . . . ,yL, (9.13)

where

yt = (yt, . . . , yN−L+t−1)T (9.14)

with which the (N − L) × L matrices Y1 and Y2

Y1 = (y0,y1, . . . yL−1) (9.15)

Y2 = (y1,y2, . . . yL) (9.16)

are created. To note is that one matrix is built up by the sample values shifted by
one pencil compared to the second one. The parameter L denotes the pencil parameter,
giving the number of pencils. A beneficial choice is found in [HS90] to be 2L = N . The
distinctive feature of the two matrices becomes obvious by the subsequent decomposition

Y1 = Z1BZ2 (9.17)

Y2 = Z1BZ0Z2, (9.18)
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where

Z1 =




1 1 · · · 1
z1 z2 · · · zM
...

... · · · ...
zN−L−1

1 zN−L−1
2 · · · zN−L−1

M



, (9.19)

Z2 =




1 z1 · · · zL−1
1

· · ·
1 zM · · · zL−1

M


 , (9.20)

Z0 = diag(z1, z2, . . . , zM ), (9.21)

B = diag(b1, b2, . . . , bM ). (9.22)

For verifying the capability of zt to reduce the matrix pencil Y2 − zY1, note

Y2 − zY1 = Z1BZ0Z2 − zZ1BZ2 = Z1B(Z0 − zI)Z2 (9.23)

as in [Rul99]. It is shown in [GvL96] that if M ≤ L ≤ N −M the poles {zt; t = 1, . . . ,M}
are the generalised eigenvalues of the matrix pencil Y2−zY1. Videlicet, if M ≤ L ≤ N−M ,
z = zt is a rank-reducing number of Y2 − zY1 by one since the ttth-element of the matrix
Z0 − zI is zero. With it, the effects of the tth column of Z1 and the tth row of Z2 are
eliminated. For noisy data, it is important to formulate the truncated pseudo-inverse Y +

1

of Y1 with τ1, . . . , τM the M largest singular values of Y1. M is chosen such that τ/τM is
larger than a defined threshold. So, the singular value decomposition of Y1 is used

Y1 =
M∑

t=1

τtuiv
H
i (9.24)

= UDV H (9.25)

Y +
1 = V D−1UH (9.26)

with U = (u1, . . . ,uM ), V = (v1, . . . ,vM), and D = diag(τ1, . . . τM ). The superscript
H denotes the conjugate transpose of a matrix, also referred to as Hermitian, and −1 the
(regular) inverse of a matrix. U and V are left and right singular vectors, respectively.
For explanation of the algorithm yielding the generalised eigenvalues of the matrix pencil,
it is useful to consider

Y +
1 Y2 = Z+

2 B
−1Z+

1 Z1BZ0Z2 (9.27)

= Z+
2 Z0Z2. (9.28)

From Eq. (9.28), it can be seen that vectors {pt; t = 1, . . . ,M} exist such that

Y +
1 Y1pt = pt, and (9.29)

Y +
1 Y2pt = ztpt. (9.30)

The latter originates from the generalised eigenvalue problem

(Y2 − zY1)p = 0 (9.31)



9.4 Matrix Pencil Algorithm 133

where p are the generalised eigenvectors and which is left multiplied by Y +
1 . Employing

Y +
1 Y1 = V V H and V HV = I and substituting Eq. (9.26) into Eq. (9.30), further left

multiplying Eq. (9.30) by V H gives

(Z − ztI)zt = 0 (9.32)

with t = 1, . . . ,M and

Z = D−1UHY2V (9.33)

and

zt = V Hpt. (9.34)

Z is an M ×M matrix and zt and zt are respectively eigenvalues and eigenvectors of Z.
Solving for the M complex eigenvalues, the attenuation and propagation constants are
obtained from Eq. (9.12) with

α = − ln(|zt|) and (9.35)

β = ∠(zt) (9.36)

after having divided the exponent by the sample distance κ. The corresponding ampli-
tudes Eq. (9.11) are computed according to the least mean square.

9.4.2 Determination of the Amplitudes

After having established the propagation constants the corresponding amplitudes At are
to ascertain, which fulfill the expression

x(κk) =
M∑

t=1

Ate
γκk (9.37)

as close as possible to the given N samples y(κk) within the least mean square. First,
under the assumption of the equality of wave representation and sample values on the
sample locations, it is

Fa = y (9.38)

a system of equations. The vector composed of the amplitudes is

a = (A1, . . . , AM )T (9.39)

and the vector of the data is

y = (y1, . . . , yN )T (9.40)

and the drafted matrix

F =




1 · · · 1
z1 . . . zM
...

...
...

zM
1 · · · zN

M




(9.41)
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with Eq. (9.12) included. Since N > M the system of equation is over-determined and
inconsistent. Now, the quantity

χ2 = ||Fa− y||2 (9.42)

is to minimise. The singular value decomposition of F

F = Udiag(ω1, . . . , ωM−ν ; 0M−ν+1, . . . , 0M )V H (9.43)

is helpful thereby. Is is presumed that ν of the ordered by sized singular values is zero.
Numerically small singular values are set to zero as well. The solution of the system of
equations arises as

a = V diag(1/ω1, . . . , 1/ωM−ν ; 0M−ν+1, . . . , 0M )UHy. (9.44)

The proof is to find in [Rul99]. The determination of the maximum coefficients of a yields
the number M . With the known number the corresponding propagation constants are to
choose and the least mean square computation of amplitudes are proceeded again but now
with the knowledge of M . To prove the solution, a small variation with a′ of the solution
a is assumed. Due to orthonormality of the column vectors which span the co-domain, it
can be demonstrated that no better solution than the solution a is yet found.
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