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Abstract

We propose a portfolio credit risk model with dependent loss given default (LGD)

which allows for a reasonable economic interpretation and can easily be applied to

real data. We build up a precise mathematical framework and stress some general

important issues when modeling dependent LGD. Finally, we calibrate the model

based on American bond data from 1982 to 2001 and compare the results with

recently published alternative models.

1 Introduction

Most credit risk models assume as loss given default (LGD) a constant proportion of any

credit loss and ignore the fact that LGD is itself an important driver of the portfolio

credit risk because of its possible dependence on economic cycles. The Basel Committee

for Banking Supervision (2004) acknowledged this importance by starting a discussion

with the banking industry aiming at the investigation of this issue.

Empirical evidence for dependent LGD is indeed provided by data presented in Altman

et al. (2003) and Moody’s (2003). Approaches of modeling dependent LGD have been

suggested during the past five years, but none of them seem to have had an impact on

present practice. In fact, it is very hard to obtain a model that� has a reasonable economic interpretation� can be calibrated by available data� is based on a proper statistical setting.
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In particular, a proper statistical model should incorporate the observation that ex-

pected LGD and default probability are, conditional on the economic cycle, dependent

but not comonotonous. Hence, a stochastic dependence and not a deterministic functional

relation should be modeled. In this article we discuss the up to date proposed models in

this context and suggest a new model, which addresses these issues.

We start with a homogeneous portfolio of m credits, for simplicity each with exposure

1. We are interested in the loss L of the portfolio within one year. A statistician’s approach

would be to take past losses of this portfolio, and calculate quantities, which allow for

risk assessment and prediction. To estimate a Value-at-Risk, methods from extreme value

theory can be applied to estimate quantiles outside the range of observations. Such purely

data and simulation driven methods, however, require a certain data sample size which has

not been available for LGD yet. Also, one might miss important economic mechanisms,

which influence future losses, and may not yet be visible in past data.

To analyze such an economic mechanism of loss we consider the loss net of recovery

Li of a single credit i. The observed Li contains two features:� the default event Di := 11{Li>0}, where PDi = P(Di=1) is the probability of default,

and� the loss given default LGDi := Li|Di=1.

These quantities characterize the loss

Li = LGDi 11{Di=1}.

For the expected loss we obtain

ELi = P(Di=1) · E(Li|Di=1) = PDi · E(LGDi).

As PDi = PD and LGDi11{Di=1}
d
= LGD11{D=1} for all i = 1, . . . , m, we obtain, for a

standardized homogeneous portfolio L(m) = 1
m

∑m

i=1 Li, as the expected loss:

EL(m) = PD
1

m

m∑

i=1

E(Li|Di=1) = PD · E(LGD).

For estimating the risk of the portfolio in terms of the Value-at-Risk (VaR) dependence

comes into play. While it is common practice only to model dependence between the

Di, one can imagine that incorporating dependence between the LGDi may increase the

portfolio risk. How to model this dependence is the topic of the next section.

Our paper is organized as follows. In Section 2 we present first approaches to model

PD and LGD as jointly dependent on economic factors. Section 3 is devoted to our model,
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for a homogeneous portfolio we derive its almost sure (a.s.) limit. We show that it can

be embedded in a regression model, which opens the way to statistical calibration. We

also investigate the Value-at-Risk based on our model and compare it to a model with

constant LGD. In Section 4 we compare our model with Tasche’s and Giese’s model. In

Section 5 we explain, how our model extends to non-homogeneous portfolios and draw

some conclusions in Section 6.

2 Modeling Dependent Loss Given Default

Economic reasoning suggests that LGD and PD may both depend on the economic cycle:

macroeconomic development such as a decrease of consumption or investment which leads

to a downturn period and hence increased PD may also cause a decrease of market value of

collateral resulting in a higher LGD. The general idea in most of the proposed models is a

common dependence of LGD and PD on a systematic factor Y and assuming independence

of the conditional random variables Li|Y for all i = 1, . . . , m. Then, with the homogeneity

assumption that LGDi|Y d
= LGD|Y and PDi|Y d

= PD|Y for all i = 1, . . . , m), a strong

law of large numbers holds for L(m) = 1
m

∑m

i=1 Li; for a proof see e.g. Proposition 2.5.4 in

Bluhm et al. (2003)). For L = L1 we formulate this as

P

(
lim

m→∞

[
L(m) − E(L|Y )

]
= 0
)

= 1. (2.1)

For all y ∈ R we have

E(L|Y =y) = P(D=1|Y =y) · E(L|D=1, Y =y)

= PD(y) · E(LGD|Y =y),

leading to

E(L|Y ) = PD(Y ) · E(LGD|Y ). (2.2)

Hence we can reduce the problem of modeling the portfolio loss to the problem of finding

functions PD(Y ) and G(Y ) := E(LGD|Y ) = E(L|D=1, Y ).

Following Merton’s model (compare e.g. Bluhm et al. (2002)), company i defaults in

time period [0, T ], if the log return of the asset value Ai falls below some threshold si:

Di = 11{Ai<si}

Choosing the time period [0, T ] being one year and assuming the log returns being

standard normally distributed, we obtain

si = Φ−1(PDi).
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We model Ai by a normal factor model, then for some macroeconomic factor Y and

some idiosyncratic factor (or noise term) εi, both independent and standard normally

distributed, for 0 ≤ βi ≤ 1:

Ai = βiY +
√

1 − β2
i εi (2.3)

We obtain

PD(Y ) = P (Di = 1|Y )

= P(βY +
√

1 − β2εi ≤ si)

= Φ

(
si − βY√

1 − β2

)
.

For the sake of simplicity we take si = s for all i = 1, . . . , m, and set c = s/
√

1 − β2 and

e = β/
√

1 − β2. Then

PD(Y ) = Φ(c − eY ). (2.4)

Remark. This model includes a multifactor setting: PD may be dependent on a linear

combination of systematic factors Y1, . . . , YK in the sense that

Y =

K∑

k=1

wkYk (2.5)

with
∑K

k=1 w2
k = 1. Then (2.4) still holds. 2

So we concentrate on the function G. We normalize it by requiring

lim
y→−∞

G(y) = 1 and lim
y→∞

G(y) = 0.

This means that a worst case economic scenario would imply total loss, while in a perfect

economy default would be rare and the LGD negligible.

There have been several approaches of modeling dependent LGD based on (2.2). Early

linear modeling by Frye (2000a and 2000b) and extensions by Pykhtin (2003) suggest

models, which involve knowledge of the systematic factor Y , which is – as it is a latent

variable – rarely available.

Tasche (2004) extends Merton’s model above by assuming that LGD is driven by the

value of the undershoot of the asset value log return below the liability s. This yields the

model

G(y) = (PD(Y ))−1

∫ c−ey

−∞
F ∗

µ,σ

(
PD − Φ(βy +

√
1 − β2x)

PD

)
ϕ(x) dx, y ∈ R.
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Figure 1: Annual default frequencies (horizontal axis) versus average LGD (vertical axis) of American

bonds from 1982 to 2001.

where F ∗
µ,σ is the inverse of a distribution function on (0, 1); he suggests the beta distribu-

tion with mean µ and variance σ2. Fitting this model means then estimating expectation

and variance of LGD, but there is no free parameter to adjust the dependence of LGD on

Y .

Giese (2005) addresses this problem directly in modeling a non-linear dependence

structure. Considering the data set of Figure 1, he suggests as a link function

E(LGD|Y ) = 1 − a0 (1 − PD(Y )a1)a2

for parameters a0, a1, a2 ∈ R+, leading in the Merton framework to

G(y) = 1 − a0

(
1 − Φ

(
Φ−1(PD) − βy√

1 − β2

)a1
)a2

This model has two weaknesses. First, the parameter estimation requires a nontrivial

optimization procedure. Second, the link function seems rather arbitrary from an economic

as well as from a statistical point of view. In particular, it does not explain the data spread

which is observed in the data. Instead, as in Tasche’s model, a comonotonous relation is

assumed.

3 A New Model

Guided by our requirements in the introduction we suggest a new model based on the

following assumptions.
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� Analogously to (2.5), we allow LGD to be dependent on a linear combination of

standard normally distributed systematic factors Y1, . . . , YK by means of Z :=∑K

k=1 vkYk, where
∑K

k=1 v2
k = 1. Hence, Z is standard normally distributed.� We also assume that the conditional random variables Li|Y, Z are independent for

all i = 1, . . . , m.

Remark. Recently, several data analyses estimating the dependence of LGD on a

set of macroeconomic factors such as in Altman et al. (2003) have been published. But

these studies require large data sets which are often not available for calibrating region

or industry specific portfolios. We introduce dependent LGD modeling into a multifactor

latent variable framework because it requires the estimation of fewer parameters and hence

also works with smaller data sets. 2

This setting allows for a rather flexible dependence structure between PD and E(LGD):

Besides a comonotonous influence of factors on both variables, some factors may have

converse influences (weights may be negative), or factors may have influence only on one

of both variables (weights may be zero). E.g. a (regional) real estate index may influence

LGD but not PD of an export oriented small company.

Similarly as in (2.1) a strong law of large numbers holds.

Theorem 1. Consider a homogeneous portfolio L(m) = 1
m

∑m
i=1 Li. Then

P

(
lim

m→∞

[
L(m) − E(L|Y, Z)

]
= 0
)

= 1. (3.1)

As in (2.2) we obtain

E(L|Y, Z) = PD(Y ) · G(Z). (3.2)

Based on the Merton model we model PD(Y ) by (2.4). Note that G(Z) = E(L|D =

1, Z) = E(LGD|Z). Again, the question is how to model G. If we transform the data by

the probit function Φ−1 we obtain a linear structure in the data; see Figure 2.

The corresponding model for G is given by

G(z) = Φ(a − bz), z ∈ R, (3.3)

for parameters a, b ∈ R.

Since we assume–in the tradition of the standard Merton model–the systematic factors

Y1, . . . YK to be latent (i.e. not observable) variables, it suffices to regard the aggregated

factors Y and Z. We can decompose Z into Y and a second independent factor X as

follows: Define d := cov(Y, Z) and X := 1/
√

1 − d2(Z − dY ). Then X is by definition

standard normally distributed and independent of Y , and

Z = dY +
√

1 − d2X (3.4)
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Figure 2: Probit transformed annual default frequencies (horizontal axis) versus average LGD (vertical

axis) of American bonds from 1982 to 2001.

holds. X can be regarded as aggregated influence of systematic factors on E(LGD|Z)

which is independent of the systematic influence on PD(Y ).

Model equations (2.4), (3.3) and (3.4) provide a linear model for the data shown in

Fig. 2 as follows:

From (3.3) and (3.4) we obtain

Φ−1(E(LGD|Z)) = a − bdY − b
√

1 − d2X. (3.5)

Plugging equation (2.4) into (3.5) yields the linear regression equation

Φ−1(E(LGD|Z)) = a − b d c

e
+

b d

e
Φ−1(PD(Y )) − b

√
1 − d2 X, (3.6)

where Φ−1(E(LGD|Z)) is the response variable, Φ−1(PD(Y )) the predictor variable and

X the residual.

Model Calibration Issues

For this regression model, we obtain estimates for intercept a − b d c/e, slope b d/e, and

standard deviation b
√

1 − d2 of the residuals. For known values c and e this yields esti-

mates for a, b, and d. For unknown values c and e, we estimate them first, and then get

plug-in estimates for a, b, and d.

With these estimates we can estimate the downturn LGD at level α ∈ (0, 1) from (3.3)

by

E(LGD|Z = zα)̂ = Φ(â − b̂ · zα), (3.7)
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where zα is the standard normal α-quantile.

For a proper risk assessment, we need the asymptotic distribution of the portfolio loss.

The following result gives an analytic form for the relevant ranges of parameters.

Theorem 2. With the model assumptions as above let L = Φ(c − eY )Φ(a − bZ), where

Z = dY +
√

1 − d2X, for e > 0 and bd > 0. Then

P
(

lim
m→∞

∣∣L(m) − L
∣∣ = 0

)
= 1, (3.8)

and the distribution function of L has the form

P(L ≤ l) = 1 −
∫ A(l)

−∞
Φ(B(l, y))ϕ(y) dy, l ∈ R,

where

A(l) :=
c − Φ−1(l)

e
and B(l, y) :=

1

b
√

1 − d2

(
a − bdy − Φ−1

(
l

Φ(c − ey)

))
.

Proof.

The strong law of large numbers in (3.8) follows directly from Theorem 3.1 and (3.2).

From (2.4), (3.4), (3.2) and (3.3) we obtain

E(L|Y, Z) = Φ(c − eY ) · Φ(a − b d Y − b
√

1 − d2 X).

Taking advantage of the monotonicity of distribution functions, we have the equivalences

E(L|X, Y ) ≤ l

⇐⇒
{

Φ(c − eY ) ≤ l

or Φ(c − eY ) > l and Φ(c − eY ) · Φ(a − b d Y − b
√

1 − d2 X) ≤ l.

With this we calculate

P(L ≤ l) = P(E(L|X, Y )) ≤ l) = E11{E(L|X,Y ))≤l}

= E

(
11{Φ(c−eY )≤l} + 11{Φ(c−eY )>l}11{Φ(c−eY )Φ(a−b d Y −b

√
1−d2 X)≤l}

)

= 1 − E

(
11{Φ(c−eY )>l}

(
1 − 11{Φ(c−eY )Φ(a−b d Y −b

√
1−d2 X)≤l}

))

= 1 − E

(
11{Φ(c−eY )>l}11{Φ(c−eY )Φ(a−b d Y −b

√
1−d2 X)>l}

)
.

Using the independence of X and Y we calculate for e > 0 and bd > 0,

P(L ≤ l) = 1 −
∫ A(l)

−∞
Φ(B(l, y))ϕ(y)dy,
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where A(l) and B(l, y) are the functions in the assertion. 2

Observe that, if LGD ≡ 1, then

P(L ≤ l) = 1 − Φ(A(l)),

which allows for a comparison of a deterministic LGD with the stochastic LGD in our

model.

Fitting the Model

We fit the data of Altman et al. (2003) as shown in Figure 1. It consists of n = 20 data

points of annual default frequencies and average LGD of American bonds from 1982 to

2001. We want to fit them to our model.

First, we fit the Merton model to the default frequency data. As PD = PDi = EDi,

we estimate it by the empirical mean of the annual default frequency. To estimate β we

use relation (2.4):

β =

√
var (Φ−1(PD(Y )))

1 + var (Φ−1(PD(Y )))
.

Hence β can be estimated as a function of the empirical variance of the probit transformed

annual default frequencies. This yields

P̂D = 0.035 and β̂ = 0.336.

To estimate the remaining parameters of the model we use the regression model (3.6)

with the plug-in parameters c and e. This yields

â = 0.220, b̂ = 0.300 and d̂ = 0.620.

Kolmogorov-Smirnov test, Durbin-Watson test, and White test support the assumption

of normally distributed homoscedastic and not autocorrelated residuals. It turns out that

all estimated parameters yield e > 0 and bd > 0, hence we can apply Theorem 2. Figure 3

shows the calibrated function Φ(â − b̂ · zα) as a function of α.
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Figure 3: Expected LGD dependent on systematic factors.

Consequences of Dependent LGD

With Theorem 2, we can compute the loss distribution of a large homogeneous portfolio.

Figures 4 and 5 show the portfolio loss distribution of our model compared with Merton

models with constant loss given default: LGD ≡ 0.65 and LGD ≡ 1 which can be regarded

as lower and upper bounds for LGD in the right tail of the loss distribution.

For confidence level α, we define the portfolio Value-at-Risk (VaR) as usual by by

VaRα(L) = inf{x ≥ 0|P(L ≤ x) ≥ α},

where L has representation L = Φ(c − eY )Φ(a − bZ) as given in Theorem 2.

There are suggestions to estimate LGD and PD quantiles separately and obtain a

portfolio loss VaR by multiplication (see e.g. [2]). This implies the assumption that PD

and LGD are comonotonous. In our modeling framework, it means that quantiles of

Φ(c − eY ) and Φ(a − bZ) are calculated separately, assuming comonotonicity of Y and

Z. This leads to a systematic overestimation of risk as seen in Table 3.1.

VaRα α = 99% α = 99.5% α = 99.9%

Dependent LGD 0.107 0.126 0.171

LGD ≡ 0.65 0.089 0.102 0.134

LGD ≡ 1 0.137 0.157 0.206

Comonotonous LGD 0.112 0.132 0.180

Table 3.1: Portfolio Value-at-Risk for different confidence levels.

10



0.00 0.05 0.10 0.15

0
10

20
30

40

Relative Loss

0.00 0.05 0.10 0.15

0
10

20
30

40

Relative Loss

0.00 0.05 0.10 0.15

0
10

20
30

40

Relative Loss

dependent LGD
LGD ≡ 0.65
LGD ≡ 1

Figure 4: Portfolio loss distribution densities.

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Relative Loss

Dependent LGD

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Relative Loss

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Relative Loss

LGD ≡ 0.65
LGD ≡ 1

Figure 5: Portfolio loss distribution tails.

4 Comparing the Models

The problem with comparing the different models is that we estimate extreme losses lying

far outside the sample. For our data of yearly default frequencies and average LGD, we

calculate yearly losses within the range of 0.004 to 0.077. A comparison with Table 3.1

shows that no data point corresponds to such a high VaR.

What we can do is, of course, show the fit of the different models within the sample

range. The most interesting part when comparing the fit of the models would be at the

upper end of the sample.

An excellent method to investigate exactly this part of the sample are quantile plots,

also called QQ-plots. In a QQ-plot the quantiles of a theoretical model are plotted against

the empirical quantiles. Ideally, the quantiles should be match (at least for large sam-

ples), i.e. the plot should lie on the 45 degree line. If the plot is linear with differ-

ent slope/intercept, then the location/scale family of the model is correctly chosen, but

scale/location parameters have to be adjusted. If the plot has negative curvature at the

right end, the estimated distribution has heavier tails than the empirical distribution. For

more details, see, e.g., Embrechts et al. (1997), Section 6.2, and references therein.

In Figure 6 we observe that our model seems to provide a good estimate, while Giese’s

model systematically overestimates large quantiles. This is caused by the fact that Giese

models E(LGD) and PD(Y) to be comonotonous. This means that high E(LGD) and

PD always occur at the same time leading to a higher probability of extreme losses.

On the other hand, Tasche’s model systematically underestimates for this data set the

11



0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Altman’s corporate bond data

Hillebrand
Giese
Tasche

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

E
st

im
at

ed
Q

u
an

ti
le

s
of

L

Empirical Quantiles of L

Figure 6: Q-Q-plots of the estimated loss distribution for different models. The plotted 45 degree line

indicates the quality of the fit.

scale parameter. The reason for this lies in the model, which implies a functional relation

between PD and E(LGD) that is too weak. There is no additional parameter to remedy

this weakness.

To investigate the quality of our model further we also calibrate it to data of defaulted

corporate bonds gathered by Moody’s (2003). It consists of annual default frequencies

and average LGD of bonds and preferred stocks from 1982 to 2003. The result is simply

summarized in a QQ-plot; see Figure 7.

5 Nonhomogeneous Portfolios

In the preceeding considerations we made two simplifications. We assumed exposure at

default (EAD) of 1 and equal distributions of the single losses Li. This is a good approx-

imation for large portfolios with exposures of same magnitude. If this is not the case,

one has to take into account the individual randomness, also known as idiosyncratic or

unsystematic risk.

This can be done analogously to the approaches of e.g. Tasche (2004) or Giese (2005):

for each credit class k for k = 1, . . . , K with the same industry sector, global region and

company size, the systematic risk is estimated by calibrating PDk(Y ) and E(LGDk|Z) as

shown in the preceeding section. Individual randomness is then modeled by introducing

for instance a beta function with scaling parameters σk, which yields the model
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Figure 7: QQ-plot of Moody’s data.

Di
d
= Binomial(PDk(Y ))

LGDi
d
= Beta(E(LGDk|Z), σk)

(5.1)

for all credits i = 1, . . . , m and corresponding credit classes k = 1, . . . , K to obtain a

simulated portfolio loss

L(m) =

m∑

i=1

EADi · Di · LGDi.

The parameter σk models the variances of LGDi|Y of obligors in credit class k, it can

be estimated by the average of empirical annual LGD variance in that credit class, see

e.g. Schuerman (2004) for more details. The portfolio loss distribution function is then

obtained by a Monte Carlo simulation as follows:

1. Simulate X, Y .

2. For each sector k: calculate PDk(Y ) and E(LGD|Z), where

Z = dY +
√

1 − d2X.

3. For each obligor i: simulate Di and LGDi according to (5.1).

4. Calculate the aggregated loss L(m).

5. Repeat steps 1-4 sufficiently often.
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Remark. This algorithm also works in a multifactor framework. Then the first two

steps look as follows:

1. Simulate X, Y1, . . . , Yl.

2. For each sector k: Calculate Y :=
∑l

j=1 wjYj and Z = dY +
√

1 − d2X. Then

calculate PDk(Y ) and E(LGD|Z).

2

An alternative to Monte Carlo simulations with a reduced computational effort is

calculating a granularity adjustment to the VaR obtained from the model of the preceeding

section, see e.g. Giese (2005) for a short description and further references.

6 Conclusion

Default probability and loss given default are features of the portfolio loss with a special

stochastic relationship, which – when ignored – can easily lead to biased estimators.

A model for the portfolio loss including dependence of PD and LGD on the economic

cycle has to take account for this and should also be transparent in terms of model risk.

Our proposed model integrates the possibility of economic interpretation, a proper

statistical setting and easy calibration. Compared to other models, it provides an excellent

fit of corporate bond data.

Our model also addresses the observation that the probability of default and the ex-

pected LGD do not necessarily vary comonotonously over the economic cycle, but require

at least two different factors for an appropriate fit.

Some experts suggest to estimate “downturn LGD” and “downturn PD” separately

and obtain a portfolio loss VaR by multiplication (see e.g. [2], a document of the Basel

Committee (2004)). Based on the insight achieved from the investigation we cannot sup-

port this suggestion. As we need at least two factors to explain the data spread, we suggest

to use a complete model for the portfolio loss such as the one presented in this paper.
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