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Abstract i

Zusammenfassung

Diese Arbeit befasst sich mit dem Wechselspiel zwischen analoger und diskreter Welt.
Die Umwandlung von zeitdiskreten in zeitkontinuierliche Signale ist essenziell, da
Informationen heutzutage fast ausschließlich digital verarbeitet werden, während
reale Signale analog sind. Neben der bandbegrenzten Interpolation wird die Rekon-
struktion von bandbegrenzen Signalen anhand ihrer Abtastwerte für verschiedene
Signalräume untersucht. Es werden fundamentale Grenzen aufgezeigt und zahlreiche
neue Resultate gewonnen, z.B. für nichtäquidistante Abtastung, Überabtastung und
stochastische Prozesse. Für Anwendungen ist die Verarbeitung von Signalen durch
lineare zeitinvariante Systeme von großer Bedeutung. Das klassische und distribu-
tionelle Konvergenzverhalten von verschiedenen Faltungs-Systemrepräsentationen
wird analysiert. Im Fokus stehen Abtast-Systemrepräsentationen, die nur die Ab-
tastwerte des Eingangssignals zur Berechnung des Systemausgangs verwenden. Ab-
schließend wird der Einfluss von Quantisierung auf die Signalrekonstruktion und die
Systemapproximation untersucht.

Abstract

This dissertation analyzes the interplay between the analog and the digital worlds.
The conversion between discrete-time signals and continuous-time signals is impor-
tant because today most information is processed digitally while real world signals
are analog. Bandlimited interpolation is studied, as well as the reconstruction of
bandlimited signals from their samples for different signal spaces. Fundamental limits
are discovered and results are obtained in several directions, e.g., for non-equidistant
sampling, oversampling, and stochastic processes. The processing of signals with
linear time-invariant systems is important for applications. The classical and distri-
butional convergence behavior of different convolution-type system representations
is analyzed. Attention is paid to sampling-type representations that use only the
samples of the input signal to compute the system output. Finally, the effects of
quantization on the signal reconstruction and the system approximation are studied.
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1
Introduction

1.1 Motivation

Claude Shannon’s fundamental paper “Communication in the Presence of Noise” was
published in 1949 [1,2]. A central part of this paper was the sampling theorem, which
states that certain bandlimited signals are uniquely determined by their equidistant
samples if the samples are taken at least at the Nyquist rate, and that these signals
can be perfectly reconstructed from the samples using a series, which is nowadays
called Shannon’s sampling series.

More precisely, the Shannon sampling theorem states the following. Given a signal
f with finite energy and bandlimited to σ, i.e., a signal f that has the representation

f(t) = 1
2π

∫ σ

−σ
g(ω) eiωt dω, t ∈ R,

for some g ∈ L2[−σ, σ], then the samples of the signal {f(kπ/σ)}k∈Z uniquely
determine the continuous-time signal f , and f can be reconstructed using the series

f(t) =
∞∑

k=−∞
f

(
kπ

σ

) sin
(
σ
(
t− kπ

σ

))
σ
(
t− kπ

σ

) , t ∈ R. (1.1)

Although this sampling theorem is often called the Shannon sampling theorem,
Shannon was not the first to discover this sampling theorem. It was already known
in the mathematical literature [3]. However, its significance in many engineering
applications and theoretical concepts made it famous.

Today, most information is processed digitally. In our daily life we are surrounded
by devices that operate with digital signals: computers, mobile phones, portable
media players, and many more. However, the real world signals are not digital but
analog in nature, and therefore we need to convert the signals back and forth between
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the analog and digital domains. The sampling theorem established the basis for
performing this conversion, and thus the work of Shannon can be seen as the starting
point of the information and communication age in which we are living.
The current technological advance in digital devices is driven by Moore’s law,

which states that the complexity of electronic circuits, measured in the number of
transistors on a chip, doubles approximately every two years. It was postulated in
1965 by Gordon Moore, who originally stated, based on the development between
1959 and 1965, a doubling every year, which would continue for at least ten years [4].
In 1975, he corrected his prediction to the current two year statement.

The prediction of Moore’s law is astonishingly precise, and indeed, this remarkable
progress in technology could be observed over the last 50 years. However, it is clear
that the miniaturization cannot be continued forever due to physical limitations of
atomic structure or power density. Regardless of whether this driving force will stop
in 10 or 20 years, by then we need to find other methods and concepts to maintain
the technological progress.
In this thesis we study the interplay between the analog and the digital worlds.

We will find many results that go beyond Shannon’s sampling theorem and discover
fundamental limits. It is important to better understand the basic principles, because
knowing the theoretically feasible can help improve future systems.

1.2 Contribution and Organization of this Thesis

There are many applications where the conversion between digital and analog signals
is important. For example in modern wireless communications, the information to
be transmitted to the receiver is present in the form of a digital signal at the sender.
In order to be able to physically transmit this signal through the air we have to
convert it into an analog signal, and later at the receiver we have to convert it back
to a digital signal.
The digitization of an analog signal, which is visualized in Fig. 1.1, consists of

sampling and quantization. Some authors already call the discrete-time signal a
“digital signal”. However, in this thesis we distinguish between these terms and call a
discrete-time signal a “digital signal” only if it is additionally quantized. Further, we
will use the terms analog signal and continuous-time signal synonymously.

It is well known that the sampling step is reversible if the signal and the sampling
pattern satisfy certain properties. For example, from Shannon’s sampling theorem
we know that the sampling step is fully reversible if the analog signal is bandlimited,
has finite energy, and is sampled equidistantly at least at the Nyquist rate. In
contrast, the quantization step inevitably entails a loss of information and thus is
not reversible in general.
While for finite-energy bandlimited signals the conversion from the analog signal

to the discrete-time signal and the conversion back from the discrete-time signal to
the analog signal can be performed without problems by sampling and interpolation
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Analog signal Discrete-time signal Digital signal

Sampling

Approximation

Reconstruction,
Interpolation

Quantization

Figure 1.1: Analog to digital conversion and reconstruction.

with the Shannon sampling series, the latter transition can be problematic for other
signal spaces. In the first part of this thesis we will analyze the interpolation problem,
which is depicted in Fig. 1.1, for larger signal spaces.

Another essential question is, whether certain properties of the signal in one domain
carry over to the other domain. It is a well-known fact that if the discrete signal
has finite energy, then the bandlimited continuous-time signal, which is obtained
by interpolation with Shannon’s sampling series, also has finite energy. Conversely,
the sampled version of a bandlimited signal with finite energy has finite energy. By
sampling and interpolation one can switch between both representations and the
finite-energy property of the signal is preserved. We will analyze whether a similar
correspondence is also true for general bounded bandlimited signals.

Further, in applications it can occur that the sampling process is not ideal. Then
the samples of the signal are disturbed in one or both of the following ways:

1. The sample positions are changed.

2. The sample values are changed.

Consideration of the first disturbance leads directly to the problem of non-
equidistant sampling. Although the sampling points are often chosen equidistantly
for ease of reconstruction, imperfections in the sampling procedure inevitably lead to
a jitter in the sampling positions. The influence of non-equidistant sampling patterns
will also be studied in this thesis.

A special case of the second disturbance is quantization, where the sample values
are changed according to a specific quantization rule. Quantization is important
because—as an integral part of digitization—it is present in any real system. We
examine quantization and thresholding, which is closely related to quantization, and
study their effects on signal reconstruction. In this thesis the quantization operator
is treated deterministically. The deterministic analysis is difficult because of the
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non-linear nature of the quantization operator, but it reveals some properties of the
quantization process, which cannot be analyzed with an additive noise description of
the quantization error.

Another big part of this thesis is devoted to the analysis of representations of stable
linear time-invariant (LTI) systems. There we are not interested in the reconstruction
of a bandlimited signal from its samples but in the calculation of the output signal
of a stable LTI system. This problem is interesting because the processing of signals
by systems is at the heart of signal processing and, for applications, is probably
even more important than the mere reconstruction of signals. We will analyze
the convergence of certain time domain convolution-type system representations.
Further, since bandlimited signals are determined by their samples, we also consider
sampling-type system representations, which only use the samples of the bandlimited
input signal to compute the continuous-time output signal of a stable LTI system.
A priori it is not clear whether such a sampling based signal processing can be
performed in a stable way.

Outline

The outline of this thesis is as follows.
In Chapter 2 we introduce some notation and definitions. Further, we define

different spaces of bandlimited signals and state their basic properties.
In Chapter 3 we treat the interplay between discrete-time and continuous-time

signals. First, in Section 3.1, the bandlimited interpolation is studied. Then, in
Section 3.2, the reconstruction of bandlimited signals from their equidistant samples
is analyzed. After reviewing the Shannon sampling theorem for different spaces
of bandlimited signals, we analyze the convergence behavior of a whole class of
axiomatically defined Nyquist-rate reconstruction processes for signals in PW1

π. It is
shown for this very general class, which contains all common sampling series including
the Shannon sampling series, that a reconstruction that is uniformly convergent
on compact subsets of the real line and uniformly bounded on the entire real line
is not possible. Further, we consider oversampling and give a sufficient condition
for the uniform convergence of the Shannon sampling series without oversampling.
Additionally, we analyze the convergence behavior of the non-symmetric sampling
series and a variant of the Shannon sampling series which is truncated symmetrically
around t. Finally, in Section 3.3, non-equidistant sampling series are studied for
general bounded bandlimited signals. We consider sampling patterns that are given
by the zeros of sine-type functions and analyze the local and global convergence
behavior of the sampling series. It is shown that the series converge locally uniformly
for bounded bandlimited signals that vanish at infinity. Moreover, we discuss the
influence of oversampling on the global approximation behavior and the convergence
speed of the sampling series. Parts of the results are published in [5–13] or will be
published in [14].
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In Chapter 4 we analyze time domain convolution-type representations of stable
linear time-invariant (LTI) systems operating on bandlimited signals. Although a
frequency domain representation of such systems is always possible, a time domain
representation can be problematic. Two convolution integrals as well as the discrete
counterpart, the convolution sum, are treated. We identify the differences in the
convergence behavior of the two convolution integrals, and show that there exist stable
LTI systems operating on the Paley–Wiener space PW1

π for which the convolution
integral representation does not exist because the integral is divergent, even if the
convergence is interpreted in a distributional sense. Furthermore, we compare the
classical and the distributional convergence behavior and completely characterize all
stable LTI systems for which a time domain convolution representation is possible by
giving a necessary and sufficient condition for convergence. For the sampling-type
system representation we consider, in addition to equidistant sampling at Nyquist
rate, non-equidistant sampling patterns and oversampling. Parts of the results are
published in [13,15,16] or will be published in [14].
In Chapter 5 we analyze the convergence behavior of the symmetric and the

non-symmetric Shannon sampling series for bandlimited continuous-time wide-sense
stationary stochastic processes that have absolutely continuous spectral measure.
We completely characterize the processes for which the approximation error variance
of the symmetric sampling series is uniformly bounded on the whole real axis
and the processes for which the symmetric as well as the non-symmetric sampling
series converge in the mean square sense uniformly on compact subsets of the real
axis. Moreover, it is shown that there are I-processes for which the mean square
approximation error of the non-symmetric sampling series diverges pointwise. This
shows that there is a significant difference between the convergence behavior of the
symmetric and the non-symmetric sampling series. Parts of the results are published
in [17].

In Chapter 6 we analyze the approximation behavior of sampling series where the
sample values are disturbed either by the nonlinear threshold operator or the nonlinear
quantization operator. We perform the analysis for several spaces of bandlimited
signals and completely characterize the spaces for which an approximation is possible.
Additionally, we study the approximation of outputs of stable linear time-invariant
systems operating on PW1

π by sampling series that use only the samples of the input
signal, for the case where the samples are disturbed by the threshold operator or the
quantization operator. We show that there exist stable systems that become unstable
under thresholding and quantization and that the approximation error is unbounded
irrespective of how small the quantization step size is chosen. Further, we give a
necessary and sufficient condition for the pointwise and the uniform convergence of
the series. Surprisingly, the condition for the uniform convergence is the well-known
condition for bounded-input bounded-output (BIBO) stability. Parts of the results
are published in [9, 15,18].
Finally, in Chapter 7 we conclude the thesis and point out open problems and

possible future research directions.
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Further Results that are not Part of this Thesis

During my time as a research assistant at the Technische Universität Berlin and the
Technische Universität München we obtained further interesting results, which are
not included in this thesis:

• In [19] the convergence behavior of the Shannon sampling series was analyzed
for Hardy spaces. It was shown that there exist signals in the Hardy space
such that the peak value of the Shannon sampling series diverges unboundedly.

• In [20] the convergence behavior of a convolution representation of stable linear
time-invariant (LTI) systems operating on the Zakai class of bandlimited signals
was analyzed. It was shown that the convergence of the convolution integral is
problematic if the system is the Hilbert transform or the ideal low-pass filter
with bandwidth less than or equal to the signal bandwidth. Moreover, using a
previously obtained result of Habib [21], it was proved that the class of stable
LTI systems that map the Zakai class into itself does not include the Hilbert
transform and the ideal low-pass filter with bandwidth less than or equal to
the signal bandwidth.

• In [22] sampling series that are disturbed by the non-linear threshold operator
were studied. The set of PW1

π-signals for which the sampling series diverges
as the threshold goes to zero was characterized, and it was shown that this set
is a residual set.

• In [23] the approximation of the outputs of linear time-invariant systems by
sampling series that use only the samples of the input signal was analyzed for
the case where the samples are disturbed by the threshold operator. It was
shown for the Hilbert transform that the peak approximation error can grow
arbitrarily large for some signals in PW1

π when the threshold approaches zero.
Furthermore, a game theoretic interpretation of the problem in the setting of
a game against nature was given.

• In [24] the existence of efficient bandpass-type systems for the space of bounded
bandlimited signals was analyzed. Here efficient means that the system fulfills
the following properties: every output signal contains only frequencies within
the passband; every input signal that has only frequencies within the passband
is not disturbed by the system; and the system is stable. It was proved that
a linear realization cannot exist; however, a nonlinear realization is possible.
Further, it was shown that a splitting of bounded bandlimited signals according
to their frequency content can be problematic.

A complete list of publications is given in Appendix B.
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2
Notation

For t1, t2 ∈ R, C[t1, t2] denotes the space of all continuous functions on [t1, t2], and
C∞0 [t1, t2] the space of all infinitely differentiable functions on R whose support is
contained in [t1, t2].
Lp(X), 1 ≤ p <∞, is the space of complex-valued measurable functions, defined

on X ⊂ R that are Lebesgue integrable to the pth power, and ‖ · ‖Lp(X) denotes
the usual Lp-norm. If X = R we use the abbreviation ‖ · ‖p := ‖ · ‖Lp(R). Moreover,
L∞(X) denotes the space of all complex-valued functions defined on X ⊂ R for which
the essential supremum norm ‖ · ‖L∞(X) is finite. If X = R we use the abbreviation
‖ · ‖∞ := ‖ · ‖L∞(R). λ denotes the Lebesgue measure. lp, 1 ≤ p <∞, is the space of
sequences x = {xk}k∈Z ⊂ C, for which ‖x‖lp :=

(∑∞
k=−∞|xk|p

)1/p
< ∞. Moreover,

l∞ is the space of all bounded sequences, i.e., sequences for which the supremum
norm ‖ · ‖l∞ is finite.
Further, let f̂ denote the Fourier transform of a function f . For functions in

L1(R) the Fourier transform is defined in the classical sense, according to f̂(ω) =∫∞
−∞ f(t) e−iωt dt, for functions in Lp(R), 1 < p ≤ 2 as the limit of

∫N
−N f(t) e−iωt dt

in Lq(R), 1/p + 1/q = 1, and for functions in Lp(R), p > 2, in the distributional
sense.
Throughout the thesis, we denote by C and C1, C2, . . . positive constants unless

otherwise stated. The numbering of the constants is by chapter.

2.1 Bandlimited Signals

The two most important families of spaces of bandlimited signals that we will deal
with are the Bernstein spaces Bpσ and the Paley–Wiener spaces PWp

σ, 1 ≤ p ≤ ∞,
0 < σ <∞.
The following definition shows that the concept of bandlimited signals is closely

related to entire functions of exponential type [25, p. 4]. For 0 < σ <∞ the space
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Bσ is defined to be the set of all entire functions f with the property that for all
ε > 0 there exists a constant C(f, ε) with

|f(z)| ≤ C(f, ε) e(σ+ε)|z|

for all z ∈ C. For 1 ≤ p ≤ ∞, the Bernstein space Bpσ consists of all functions in
Bσ whose restriction to the real line is in Lp(R). The norm for Bpσ, 1 ≤ p ≤ ∞ is
given by ‖f‖Bpσ = ‖f‖p. A function in Bpσ is called bandlimited to σ. B∞σ is the
space of bandlimited signals that are bounded on the real axis. We call a signal
in B∞π a bounded bandlimited signal. By B∞σ,0 we denote the set of all signals
f ∈ B∞σ with the property lim|t|→∞ f(t) = 0. It is well known that Bpσ ⊂ Bsσ for
1 ≤ p ≤ s ≤ ∞ [26, p. 49]. Hence, every signal in Bpσ, 1 ≤ p ≤ ∞, is bounded on the
real axis. An important inequality for functions f ∈ Bpσ, 1 ≤ p ≤ ∞, is Bernstein’s
inequality ‖f (r)‖p ≤ σr‖f‖p, r ∈ N [26, p. 49], which gives an upper bound on the
norm of the r-th derivative of f .

As we can see from the above definition, all signals in Bpσ, 1 ≤ p ≤ ∞, 0 < σ <∞,
are defined on the complex plane and are entire functions of exponential type at
most σ. However, in practical applications the signals are usually considered to be
a function of a real variable, which often represents time. Since all signals in Bpσ
are entire functions, they are uniquely determined by their values on the real line.
Therefore, we will not distinguish between signals defined on the complex plane and
signals defined on the real axis in the following. For example, if f is a function
defined on the real axis and we write f ∈ Bpσ, we mean that f can be extended to an
entire function, defined on the complex plane, which is in Bpσ. In the same way, if f
is an entire function and we write f ∈ Lp(R), we mean that the restriction of f to
the real axis is in Lp(R).
The special case p = 2 gives the commonly used space B2

σ of bandlimited signals
with finite energy. The Paley–Wiener theorem [27, p. 13], [26, p. 68] provides a
connection between the exponential type σ of a function f ∈ B2

σ and the support of
the Fourier transform f̂ of f .

Paley–Wiener Theorem. Let f ∈ L2(R). Then f has an analytic extension to C
which belongs to Bσ if and only if supp f̂ ⊂ [−σ, σ].

Thus, the Paley–Wiener theorem shows that

B2
σ =

{
f ∈ L2(R) : supp f̂ ⊂ [−σ, σ]

}
can alternatively be used to define the space B2

σ.
For 0 < σ < ∞ and 1 ≤ p ≤ ∞ we denote by PWp

σ the Paley–Wiener space of
signals f with a representation

f(z) = 1
2π

∫ σ

−σ
g(ω) eizω dω, z ∈ C, (2.1)
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for some g ∈ Lp[−σ, σ]. If f ∈ PWp
σ then g(ω) = f̂(ω). The norm for PWp

σ,
1 ≤ p <∞, is given by

‖f‖PWp
σ

=
( 1

2π

∫ σ

−σ
|f̂(ω)|p dω

)1/p
.

Remark 2.1. The nomenclature we have introduced so far concerning the Bernstein
and Paley–Wiener spaces is not consistent in the literature. Sometimes the space
that we call the Bernstein space is called the Paley–Wiener space [28]. We adhere to
the notation used in [26] by Higgins.
From (2.1) we see that

|f(z)| ≤ 1
2π

∫ σ

−σ
|g(ω)| e− Im(z)ω dω ≤

‖g‖L1[−σ,σ]
2π

eσ|z|,

which shows that every signal f ∈ PWp
σ, 1 ≤ p ≤ ∞, also belongs to Bσ. Thus,

the Hausdorff–Young inequality leads to Bqσ ⊃ PWp
σ for 1 < p ≤ 2, 1/p+ 1/q = 1.

For p = q = 2 we see from Parseval’s equality and the Paley–Wiener theorem that
every signal f ∈ B2

σ has the representation (2.1) for some g ∈ L2[−σ, σ], and hence
is in PW2

σ. Thus, we have B2
σ = PW2

σ. Furthermore, Hölder’s inequality leads to
‖f‖PWp

π
≤ ‖f‖PWs

π
for f ∈ PWs

π, 1 ≤ p < s ≤ ∞, and consequently to the inclusion
PWp

σ ⊃ PWs
σ, 1 ≤ p < s ≤ ∞. Moreover, for f ∈ PW1

σ we have ‖f‖∞ ≤ ‖f‖PW1
π
,

which implies that every signal in PWp
σ, 1 ≤ p ≤ ∞, is bounded on the real axis.

The above facts show that

PW2
σ = B2

σ ⊂ PW1
σ ⊂ B∞σ .

This inclusion relation will be intensely used in this thesis.
Note that without loss of generality we can restrict our further investigations to

signals with bandwidth σ = π, because every bandlimited signal with bandwidth
different to π can be scaled such that the resulting signal is bandlimited to π.





3
Discrete-Time and
Continuous-Time Signals

In this chapter we treat the topics which are visualized in the left part of Fig. 1.1,
that is, we analyze the conversion of analog signals into discrete-time signals and,
vice versa, the conversion of discrete-time signals into analog signals.

The effects of quantization, which are important for practical applications, are
neglected for the moment in order to focus on the main ideas and problems of
sampling and interpolation. The impact of quantization on signal reconstruction
will be analyzed in Chapter 6. Since quantization is not considered in this chapter,
we refer to analog signals as continuous-time signals to emphasize the difference to
discrete-time signals.
Modern signal processing is performed nearly exclusively with digital processors

while the physical quantities of the real world are analog. Therefore, the conversion
of continuous-time signals into discrete-time signals and the conversion of discrete-
time signals back into continuous-time signals is essential. The first conversion is
done by sampling and the second one by a reconstruction process. The Shannon
sampling series (1.1) is probably the most prominent example of a reconstruction
process. However, many other reconstruction processes are possible, for example
processes designed for non-equidistant samples and non-bandlimited or non-linear
reconstruction processes.
A very natural requirement for applications is the boundedness of the involved

signals. Hence, both conversions should be stable in the sense that a bounded signal
in one domain is converted into a bounded signal in the other domain. Thus, for
signal processing applications it would be useful to have a correspondence between
the space B∞π of bounded and bandlimited continuous-time signals and the space l∞
of bounded discrete-time signals, in the sense that
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i) every continuous-time signal f ∈ B∞π leads to a bounded discrete-time signal
x = {f(tk)}k∈Z ∈ l∞ if it is sampled at the sampling points {tk}k∈Z ⊂ R, and

ii) for every discrete-time signal x = {xk}k∈Z ∈ l∞ there exists a continuous-time
signal f ∈ B∞π such that f(tk) = xk for all k ∈ Z.

Since signals are usually considered to be functions on the real axis—the time
axis—we restrict ourselves to sampling point sequences of real numbers.
In order to further motivate the importance of ii), we consider an example from

mobile communications. In orthogonal frequency-division multiplexing (OFDM)
systems, where complex trigonometric polynomials are the baseband signals, high
peak-to-average power ratios (PAPRs) are problematic because high peak values can
overload the power amplifier, which in turn leads to undesired out-of-band radiation.
Thus, the relation between the peak value of the discrete-time signal and the peak
value of the bandlimited continuous-time signal is of interest.

For bandlimited signals that are, in particular, continuous, the sampling process
does not create any problems. Obviously, if f ∈ B∞π , then we have supt∈R |f(t)| <∞,
by definition. As a consequence, given any sequence of sampling points {tk}k∈Z ⊂ R,
the sampled signal x = {f(tk)}k∈Z satisfies ‖x‖l∞ ≤ ‖f‖∞ < ∞ and thus is in
l∞. This shows that the sampling operation is unproblematic for all signals in the
large signal space B∞π . Sampling of any bounded bandlimited signal leads to a
discrete-time signal that is also bounded.
However, the inverse problem of sampling—bandlimited interpolation—is more

intricate. It is not clear a priori whether for every bounded discrete-time signal
x ∈ l∞ it is possible to construct a bounded bandlimited continuous-time signal
f ∈ B∞π that interpolates x at the points {tk}k∈Z. Whether this is possible depends
strongly on the sequence {tk}k∈Z. But even for equidistant interpolation points
tk = k, k ∈ Z, it will turn out that for general bounded discrete-time signals the
existence of the bounded bandlimited interpolation cannot be guaranteed. Only if the
set of discrete-time signals is further restricted is bounded bandlimited interpolation
always possible. We will analyze the existence of bandlimited interpolation under
various aspects in Section 3.1.

One possible way to further restrict the set of discrete-time signals is to only
consider those which are created by sampling certain continuous-time signals. This
restriction immediately leads to the following question: which continuous-time signals
can be reconstructed from their samples? In Sections 3.2 and 3.3 we analyze this
question, which covers both sampling and interpolation and hence the whole circle
in the left part of Fig. 1.1.
We distinguish between equidistant (or uniform) sampling, where the distance

between every pair of consecutive sampling points is the same, and non-equidistant
(or non-uniform) sampling, where we do not have this restriction on the distances
between the sampling points. Equidistant sampling will be treated in Section 3.2
and non-equidistant sampling in Section 3.3.
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For a reconstruction process like, for example, the Shannon sampling series, the
type of convergence is important. For practical applications it is desirable to have a
reconstruction process that converges uniformly on all of R to the sampled signal
f . In this case the supremum of the approximation error can be bounded and goes
to zero. However, global uniform convergence is a very demanding property for
a reconstruction process. A weaker condition, which is also a necessary condition
for global uniform convergence, is local uniform convergence and global uniform
boundedness. The uniform convergence on bounded intervals is important for the
reconstruction behavior in the time interval of interest, and the bounded peak value
on R assures that the reconstructed signal is well behaved outside the interval.

3.1 Bandlimited Interpolation

In this section we study the interpolation of discrete-time signals, i.e., the procedure
which is represented by the upper left arrow in Fig. 1.1.

We say a signal f interpolates a sequence {xk}k∈I ⊂ C at the points {tk}k∈I ⊂ R,
where I is an arbitrary index set, if f(tk) = xk for all k ∈ I. There are numerous ways
to interpolate a given sequence: piecewise constant interpolation, linear interpolation,
or spline interpolation, for example. However, the interpolants obtained by these
methods are generally not bandlimited. In this thesis we focus on bandlimited
interpolants because bandlimited signals have several nice properties which are
important in many applications. For example, the bandlimitedness guarantees that
the interpolant is smooth.

3.1.1 Bandlimited Interpolation for Discrete-Time Signals

Next, we analyze the question whether for every bounded discrete-time signal
x = {xk}k∈Z ∈ l∞ it is possible to construct a bounded bandlimited continuous-time
signal f ∈ B∞π which interpolates x at the integers.

Definition 3.1. We call a signal f ∈ B∞π bounded bandlimited interpolation of a
discrete-time signal (sequence) {xk}k∈Z ∈ l∞ if f(k) = xk for all k ∈ Z.

For the subspaces lp, 1 ≤ p <∞, this question can be answered in the affirmative,
and the Shannon sampling series

f(t) =
∞∑

k=−∞
xk

sin(π(t− k))
π(t− k) (3.1)

provides a way to obtain the bandlimited interpolation. This can be easily seen. For
t = l ∈ Z we have f(l) = xl because

sin(π(l − k))
π(l − k) =

{
1, k = l

0, k ∈ Z \ {l},
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and for t ∈ R \ Z, 1 ≤ p < ∞, and 1/p+ 1/q = 1 it follows by Hölder’s inequality
that ∣∣∣∣∣∣

∞∑
k=−∞

xk
sin(π(t− k))
π(t− k)

∣∣∣∣∣∣ ≤
 ∞∑
k=−∞

|xk|p
 1

p
 ∞∑
k=−∞

∣∣∣∣∣sin
(
π(t− k)

)
π(t− k)

∣∣∣∣∣
q
 1

q

.

The first term is finite by assumption and the finiteness of the second term follows from
the convergence of ∑∞k=−∞ 1/kq, q > 1. Thus, equation (3.1) can be used to obtain
the bounded bandlimited interpolation of any discrete-time signal {xk}k∈Z ∈ lp,
1 ≤ p <∞.

As is well known, for arbitrary discrete-time signals x = {xk}k∈Z ∈ l∞ the series
(3.1) cannot be used to obtain the bandlimited interpolation, because the Shannon
sampling series is divergent for certain bounded discrete-time signals [5,29]. A simple
example of a discrete-time signal in l∞ which creates divergence is given by

x̃k =

0, k ≤ 0
(−1)k

log(1+k) , k ≥ 1.
(3.2)

For this signal we have

lim
N→∞

∣∣∣∣∣∣
N∑

k=−N
x̃k

sin(π(t− k))
π(t− k)

∣∣∣∣∣∣ =∞ (3.3)

for all t ∈ R \ Z. Equation (3.3) will be proved later in Theorem 3.27.
The result that (3.1) diverges for all points between two integers shows that the

Shannon sampling series does not produce a signal f ∈ B∞π out of x̃. In order to
prove that for x̃ there exists no f ∈ B∞π such that x̃k = f(k) for all k ∈ Z, we need
the Valiron interpolation series [30, p. 12], which is sometimes called Tschakaloff’s
series [26, p. 60].
The Valiron interpolation series

f(t) = f(0) + f ′(0)sin(πt)
π

+ t
∞∑

k=−∞
k 6=0

f(k)− f(0)
k

sin(π(t− k))
π(t− k) (3.4)

is a valid representation for all signals f ∈ B∞π , i.e., every signal f ∈ B∞π can be
represented in the form of the right-hand side of equation (3.4). Conversely, for every
sequence x = {xk}k∈Z = {f(k)}k∈Z that is constructed out of the samples {f(k)}k∈Z
of a signal f ∈ B∞π , the series

∞∑
k=−∞
k 6=0

xk − x0
k

sin(π(t− k))
π(t− k) (3.5)
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converges, and the function

fx(t) := t
∞∑

k=−∞
k 6=0

xk − x0
k

sin(π(t− k))
π(t− k) (3.6)

is a function in B∞π .
The Valiron interpolation series enables us to prove the following theorem.

Theorem 3.2. Given the discrete-time signal x̃ = {x̃k}k∈Z ∈ l∞ as defined in (3.2),
there exists no signal f ∈ B∞π with x̃k = f(k) for all k ∈ Z.

Proof. The idea for the proof is as follows. We show that the signal fx̃, which is
constructed according to (3.6), is not in B∞π . This implies that the sequence x̃ cannot
be obtained by sampling any signal f ∈ B∞π , since otherwise fx̃ would be in B∞π . In
other words, there exists no signal f ∈ B∞π such that x̃k = f(k) for all k ∈ Z. Hence,
we have proved Theorem 3.2.

By Hölder’s inequality, the series ∑∞k=1 1/k2 = π2/6, and Parseval’s equality it
follows that

∞∑
k=−∞
k 6=0

∣∣∣∣x(k)
k

sin(π(t− k))
π(t− k)

∣∣∣∣ ≤
 ∞∑
k=−∞
k 6=0

|x(k)|2
k2

 1
2
 ∞∑
k=−∞

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣2
 1

2

≤ π√
3
‖x‖l∞ .

Thus, the series (3.5) converges pointwise for every x ∈ l∞. It remains to show that
fx̃ /∈ B∞π . Although fx̃(k) = x̃k for all k ∈ Z and consequently supk∈Z |fx̃(k)| =
‖x̃‖l∞ <∞, we can show that for N ∈ N we have

lim
N→∞

fx̃
(
2N + 1

2

)
= +∞

and

lim
N→∞

fx̃
(
2N + 3

2

)
= −∞.
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Let N ∈ N be arbitrarily but fixed. Then we have

fx̃
(
N + 1

2
)

=
(
N + 1

2

) ∞∑
k=1

(−1)k
log(1 + k)k

sin
(
π(N + 1

2 − k)
)

π
(
N + 1

2 − k
)

=
[(
N + 1

2

) N∑
k=1

1
log(1 + k)k

(
N + 1

2 − k
)


︸ ︷︷ ︸
=R1

N

+
(
N + 1

2

) ∞∑
k=N+1

1
log(1 + k)k

(
N + 1

2 − k
)


︸ ︷︷ ︸
=R2

N

]
·

sin
(
π
(
N + 1

2

))
π

.

(3.7)

Since

R1
N >

N∑
k=1

1
log(1 + k)(1 + k)

and
1

log(1 + k)(1 + k) >
∫ k+1

k

1
log(1 + τ)(1 + τ) dτ,

we obtain

R1
N >

∫ N+1

1

1
log(1 + τ)(1 + τ) dτ > log(log(N + 2)). (3.8)

The modulus of the second term R2
N can be bounded from above by

|R2
N | =

(
N + 1

2

) ∞∑
k=N+1

1
log(1 + k)k

(
k −

(
N + 1

2

))
≤ N + 1

2
log(2 +N)

∞∑
k=N+1

1
k
(
k −

(
N + 1

2

))
= 1

log(2 +N) lim
M→∞

 M∑
k=N+1

1
k − (N + 1

2)
−

M∑
k=N+1

1
k

 . (3.9)

Since
1

k −
(
N + 1

2

) < ∫ k

k−1

1
τ −

(
N + 1

2

) dτ



3.1 Bandlimited Interpolation 19

for k ≥ N + 2, it is possible to find an upper bound for the first sum in (3.9), namely

M∑
k=N+1

1
k −

(
N + 1

2

) = 2 +
M∑

k=N+2

1
k −

(
N + 1

2

)
≤ 2 +

∫ M

N+1

1
τ −

(
N + 1

2

) dτ

= 2 + log(2M − 2N − 1).

The second sum in (3.9) can be bounded from below by

M∑
k=N+1

1
k
≥

M∑
k=N+1

∫ k+1

k

1
τ

dτ =
∫ M+1

N+1

1
x

dx = log
(
M + 1
N + 1

)
.

Combining both bounds yields

|R2
N | ≤

1
log(N + 2) lim

M→∞

[
2 + log(2M − 2N − 1)− log

(
M + 1
N + 1

)]
= 1

log(N + 2) lim
M→∞

[
2 + log (N + 1) + log

(2M − 2N − 1
M + 1

)]
= 2 + log (N + 1) + log(2)

log(N + 2) . (3.10)

Now we are in the position to evaluate fx̃(2N + 1/2) and fx̃(2N + 3/2). Combining
(3.7), (3.8), and (3.10) we obtain

fx̃
(
2N + 1

2

)
≥ 1
π

[
log(log(2N + 2))− 2 + log (2N + 1) + log(2)

log(2N + 2)

]
and consequently limN→∞ fx̃(2N + 1/2) =∞. For fx̃(2N + 3/2) we obtain

fx̃
(
2N + 3

2

)
≤ − 1

π

[
log(log(2N + 3))− 2 + log (2N + 2) + log(2)

log(2N + 3)

]
and thus limN→∞ fx̃(2N + 3/2) = −∞. Therefore, we have fx̃ /∈ B∞π .

In Theorem 3.2 we have seen that there exist discrete-time signals in l∞ that have
no bounded bandlimited interpolation in B∞π . Discrete-time signals that lead to
divergence, like the signal x̃ above, can emerge from discrete-time signals that have
a bounded bandlimited interpolation when simple signal processing operations are
applied. For example, the discrete-time signal x̃ can be obtained by truncating the
discrete-time signal y = {yk}k∈Z ∈ l∞, given by

yk =

0, k = 0
(−1)|k|

log(1+|k|) , |k| ≥ 1.
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It is easy to see that y has a bandlimited interpolation, because y can be obtained
by sampling the bounded and bandlimited signal f2 ∈ PW1

π ⊂ B∞π , given by

f2(t) = 1
2π

∫ π

−π
f̂2(ω)eiωt dω, (3.11)

where
f̂2(ω) = 2

∞∑
k=1

(−1)k
log(1 + k) cos(kω), |ω| ≤ π.

A short calculation shows that f2(k) = yk, k ∈ Z. The bandlimitedness of f2 is
obvious, and so it remains to show that f̂2 ∈ L1[−π, π]. Since

ĝ(ω) =
∞∑
k=1

cos(kω)
log(1 + k)

is in L1[−π, π] [31, p. 183], it follows that the function Ĝ, Ĝ(eiω) = ĝ(ω), is in
L1(∂D), ∂D = {z ∈ C : |z| = 1}. Now, if we rotate Ĝ by π we obtain the function

Ĝ(ej(ω+π)) =
∞∑
k=1

cos
(
k(ω + π)

)
log(1 + k) =

∞∑
k=1

(−1)k cos(kω)
log(1 + k) ,

which also is in L1(∂D). Therefore, f̂2 is in L1(−π, π).
This shows that even simple signal processing operations like truncation can lead

to discrete-time signals that have no bounded bandlimited interpolation. It would
be interesting to know the operations that behave well with respect to the bounded
bandlimited interpolation.

3.1.2 Bandlimited Interpolation for Continuous-Time Signals

A problem closely related to the one analyzed in Section 3.1.1 is the following. Given
an arbitrary continuous and bounded, but not necessarily bandlimited signal g,
we want to find a bandlimited signal f ∈ B∞π which interpolates {g(k)}k∈Z at the
integers. In the literature, f is known as the bandlimited interpolation of g [32, p.
144].

The bandlimited interpolation is a frequently used concept in signal processing.
Therefore it would be interesting to know the largest signal space which possess
a bounded bandlimited interpolation. The Banach algebra W that consists of all
continuous functions g with the property that ĝ ∈ L1(R) exists in the distributional
sense and

g(t) = 1
2π

∫ ∞
−∞

ĝ(ω) eiωt dω

is—to the best of our knowledge—the largest known space of signals, all of which
have a bounded bandlimited interpolation. However, as we have seen in Section 3.1.1,
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simple signal processing operations like truncation of the discrete-time signal are not
stable, i.e. the bandlimited interpolation of the new signal can be unbounded.

Next, we show that for all signals g ∈ W there exists a bandlimited interpolation
f ∈ PW1

π. To this end, let g ∈ W be arbitrary but fixed and consider

f̂(ω) =
{∑∞

k=−∞ ĝ(ω + 2kπ), |ω| ≤ π
0, |ω| > π,

(3.12)

where the series in (3.12) converges for almost all ω ∈ [−π, π]. Since ĝ ∈ L1(R), we
have ∫ ∞

−∞
|f̂(ω)| dω ≤

∫ π

−π

∞∑
k=−∞

|ĝ(ω + 2kπ)| dω =
∫ ∞
−∞
|ĝ(ω)| dω <∞,

which shows that f̂ ∈ L1(R) and therefore f ∈ PW1
π ⊂ B∞π . Furthermore, a simple

calculation reveals that f(k) = g(k), k ∈ Z. Thus f̂ is indeed the Fourier transform of
the bandlimited interpolation f . The result that all signals in W have a bandlimited
interpolation, which is in PW1

π, was already obtained by Brown in [33].
Because the bandlimited interpolation is a frequently used concept in signal

processing it would be important to know the largest space of signals which possess a
bounded, bandlimited interpolation, even when common signal processing operations
like truncation are performed.
Remark 3.3. In the definition of the bounded bandlimited interpolation (Definition 3.1
on page 15) we required the bandwidth of the interpolant to be π, that is, the rate
of the interpolation points is the Nyquist rate of the interpolant. If we relax the
bandwidth constraint on the interpolant, i.e., if we allow f to be in B∞aπ for some
1 < a <∞, then the bounded bandlimited interpolation exists for every bounded
discrete-time signal.

3.2 Equidistant Sampling

The goal of sampling based signal reconstruction is to reconstruct a signal f from its
samples {f(tk)}k∈Z, where {tk}k∈Z ⊂ R is the sequence of sampling points. Clearly,
a reconstruction of a signal from its samples can only be successful if we put further
restrictions on the signal. For an arbitrary non-continuous signal there is no hope of
successful reconstruction if we know only the samples of the signal, because the signal
can take arbitrary values between the sampling points, and thus is not uniquely
determined by the samples.
In this section we analyze the reconstruction of bandlimited signals from their

equidistant samples, i.e., we assume that tk = k/a, k ∈ Z, where a ≥ 1 denotes
the oversampling factor. Without loss of generality the bandwidth of all signals is
assumed to be π.
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3.2.1 The Classical Shannon Sampling Theorem

Sampling theory has its roots in the mathematical literature. Several mathematicians
dealt with that topic: Borel, Hadamard, La Vallée Poussin and E. T. Whittaker are
the most famous. The Shannon sampling series as it is known today was probably
first described in 1915 by Whittaker in [3], where he called it the cardinal function.
However, Kotel’nikov [34], Raabe [35], and Shannon [1] where the first to introduce
the theory in the realm of communications.
Kotel’nikov published it in 1933 [34], Raabe in 1939 [35, 36] and Shannon in

1949 [1, 2]. Since the work by Kotel’nikov was published in Russian and Shannon’s
paper was already written in 1940 [37], it is reasonable to assume that all three
publications were created independently. The reader who is further interested in the
historical development of the sampling theorem is referred to [37–40], [41, Chapter 1],
and [26, Chapter 1], where several historical notes can be found.
Shannon introduced the sampling theorem for bandlimited signals in L2(R). In

its original form the Shannon sampling theorem makes two assertions. First, it
states that a finite-energy signal with bandwidth σ > 0, i.e. a signal f ∈ PW2

σ, is
uniquely determined by its samples {f(kπ/σ)}k∈Z. And second, it states that the
Shannon sampling series (1.1) can be used to reconstruct the continuous-time signal
f from the samples {f(kπ/σ)}k∈Z. The Shannon sampling series converges to f in
the PW2

σ-norm and uniformly on R.
The Nyquist rate rNy = σ/π is the lowest possible sampling rate r for which all

signals f ∈ PW2
σ can be reconstructed without error from the samples {f(k/r)}k∈Z.

If the signal is sampled at a rate larger than the Nyquist rate then the convergence
speed of the Shannon sampling series can be increased by choosing other kernels
which decay faster than the sinc-kernel [42–45]. Oversampling will be treated in
Section 3.2.4.

As we restrict the bandwidth to σ = π in this section, the Shannon sampling series
without oversampling takes the form

∞∑
k=−∞

f(k)sin(π(t− k))
π(t− k) . (3.13)

Since the initial publishing of Shannon’s sampling theorem for bandlimited finite-
energy signals, much effort has been put in extending these results to a broader class
of signals [46–51], and in analyzing the effects of changing the positions of the samples
[52–61], of changing the sample values [62], or of truncating the series [63–67]. For
an overview of various developments in sampling theory, see for example [38, 68–70].

3.2.2 Sampling Theorems for Larger Signal Spaces

Next, we review the convergence of the Shannon sampling series for signal spaces
larger than the commonly used space PW2

π of bandlimited signals with finite energy.
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A very useful tool in the convergence analysis of the Shannon sampling series is
the Plancherel–Pólya theorem [71, p. 48], [72, p. 22], [73].

Theorem 3.4 (Plancherel–Pólya Theorem). Let 1 < p < ∞. There exist two
constants CL(p) > 0 and CR(p) > 0, depending only on p, such that for all f ∈ Bpπ

CL(p)

 ∞∑
k=−∞

|f(k)|p
 1

p

≤
∫ ∞
−∞
|f(t)|p dt

 1
p

≤ CR(p)

 ∞∑
k=−∞

|f(k)|p
 1

p

. (3.14)

Note that the first inequality in (3.14) also holds for p = 1 and p =∞, whereas,
as is known in the mathematical literature, the second inequality (3.14) cannot be
valid for p = 1 and p = ∞ (see corresponding remarks in [72, p. 11 and p. 22]
and [73, p. 130]).

Convergence Behavior of the Shanon Sampling Series for Bpπ, 1 ≤ p <∞

For signals f ∈ Bpπ, 1 ≤ p < ∞, the uniform convergence on all of R of the
Shannon sampling series can be easily shown by using the Plancherel–Pólya theorem
(Theorem 3.4). Let 1 < p <∞ and f ∈ Bpπ be arbitrary but fixed. Since

(SNf)(t) :=
N∑

k=−N
f(k)sin(π(t− k))

π(t− k) , (3.15)

is a finite linear combination of sinc functions, f − SNf is in Bpπ too. Therefore, we
have

‖f − SNf‖p ≤ CR(p)

 ∞∑
k=−∞

|f(k)− (SNf)(k)|p
 1

p

≤ CR(p)

 ∑
|k|>N

|f(k)|p
 1

p

,

and consequently limN→∞‖f − SNf‖p = 0. Note that ‖f − SNf‖∞ ≤ C1(p)‖f −
SNf‖p, for some constant C1(p). Thus, for f ∈ Bpπ, 1 < p <∞, the peak value of the
approximation error ‖f − SNf‖∞, made by the truncation of the Shannon sampling
series to N summands, can be bounded above and goes to zero for N →∞. Since
B1
π ⊂ B2

π, this result is also valid for p = 1.
Thus, we have proved the following well-known theorem about the convergence

behavior of the Shanon sampling series for Bpπ, 1 ≤ p <∞ [30, p. 9].

Theorem 3.5. For all f ∈ Bpπ, 1 ≤ p <∞, we have

f(t) =
∞∑

k=−∞
f(k)sin(π(t− k))

π(t− k) .

The series converges absolutely for t ∈ R and uniformly on R.
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Furthermore, we have the uniform convergence of the Shannon sampling series
for the Paley–Wiener spaces PWp

π, 1 < p ≤ ∞, because Bqπ ⊃ PWp
π for 1 < p ≤ 2,

1/p+ 1/q = 1, and PWp
σ ⊂ PW2

σ for p > 2.
Theorem 3.5 makes no statement about the convergence of the Shannon sampling

series for the Bernstein space B∞π and the Paley–Wiener space PW1
π. As for the

Bernstein space B∞π , it is easy to see that the Shannon sampling series (3.13) cannot
reconstruct all signals in this space by considering the signal f1(t) = sin(πt). For this
signal we have f1(k) = 0 for all k ∈ Z and consequently (SNf1)(t) ≡ 0 for all N ∈ N.
The convergence behavior of the Shannon sampling series for the space PW1

π ⊂ B∞π
will be discussed next.

Global Convergence Behavior of the Shannon Sampling Series for PW1
π

A well-known fact [30,33,37] about the convergence behavior of the Shannon sampling
series is its uniform convergence on compact subsets of R for all f ∈ PW1

π.
Theorem 3.6 (Brown’s Theorem). For all f ∈ PW1

π and τ > 0 fixed we have

lim
N→∞

max
t∈[−τ,τ ]

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ = 0.

This theorem plays a fundamental role in applications because it establishes the
uniform convergence on compact subsets of R for a large class of signals, namely
PW1

π, which is the largest space within the scale of Paley–Wiener spaces. The space
PW1

π is interesting, because this space is larger than the commonly used PW2
π-space

of signals with finite energy and because the convergence behavior of sampling series
for signals in PW1

π is closely related to the convergence behavior of sampling series
for bandlimited wide-sense stationary stochastic processes [74].
Although the Shannon sampling series is locally uniformly convergent for all

f ∈ PW1
π, the series is not globally uniformly convergent in general. This could be

expected for the following reason: For signals f ∈ PW1
π we have lim|t|→∞ f(t) = 0

by the Riemann–Lebesgue lemma. Furthermore, the finite Shannon sampling series
vanishes for infinite t, too. Thus, both the signal and the partial sums are zero
for infinite t. Together with the good (uniform) local convergence behavior of the
Shannon sampling series, one could conjecture the same good (uniform) convergence
behavior of the Shannon sampling series on the whole real axis.

However, this is not the case. The next theorem shows that the peak value ‖SNf‖∞
can increase unboundedly for certain signals f ∈ PW1

π as N tends to infinity. Thus,
the Shannon sampling series as a reconstruction process is not globally uniformly
convergent, not even globally uniformly bounded.
Theorem 3.7. There exists a signal f1 ∈ PW1

π, such that

lim sup
N→∞

max
t∈R

∣∣∣∣∣∣
N∑

k=−N
f1(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ =∞.
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Theorem 3.7 shows that the suggested argumentation at the beginning of this
section, namely that the Shannon sampling series could be uniformly convergent on
all of R for all f ∈ PW1

π, is indeed wrong. We will not prove Theorem 3.7 directly,
but a more general result in Theorem 3.11, which also contains Theorem 3.7 as a
special case.

3.2.3 General Reconstruction Processes

As the Shannon sampling series is not uniformly convergent for PW1
π, the question

arises whether there are other reconstruction processes which are uniformly convergent
on all of R, or, at least locally uniformly convergent and globally uniformly bounded
for all signals in PW1

π. In the following we will analyze this question for a very
general class of reconstruction processes and show that none of the reconstruction
processes in this class is globally uniformly bounded.
Certainly, for f ∈ PW1

π the set Z is a set of uniqueness, i.e., given any two
signals f, g ∈ PW1

π, f(k) = g(k) for all k ∈ Z and implies f ≡ g. Thus, every
signal f ∈ PW1

π is uniquely determined by its samples {f(k)}k∈Z. But here the
question is whether a locally uniformly convergent and globally uniformly bounded
reconstruction is possible for PW1

π by using only the signal samples.
For the analysis we consider reconstruction processes of the general structure

(Tf)(t) +
∞∑

k=−∞
f(k)φk(t), (3.16)

where T : PW1
π → B∞π is a linear and continuous operator and φk ∈ B∞π , k ∈ Z.

Furthermore, we make three assumptions, which the reconstruction process must
satisfy:

P1) The expression (3.16) shall converge for all t ∈ R and all f ∈ PW2
π to f(t).

P2) φk ∈ B∞π and ‖φk‖∞ ≤ C2 for all k ∈ Z, where C2 is a positive constant.

P3) The operator T : PW1
π → B∞π is linear and has the property that there exists

a number R > 0 and a constant C3 > 0, such that for all f ∈ PW1
π

sup
t∈R
|(Tf)(t)| ≤ C3 max

|z|≤R
|f(z)|.

Definition 3.8. A reconstruction process is called to be of type P if it has the
structure (3.16) and satisfies the assumptions P1–P3.

Remark 3.9. Assumptions P1 and P2 are no real restrictions for the practical use of
the reconstruction processes. They are easily satisfied by all relevant reconstruction
processes. In contrast, assumption P3 poses a real restriction. The goal is to control
the global behavior of the reconstruction process by using only finitely many local
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samples, which is feasible for f ∈ PW2
π. Therefore it is reasonable to require a good

local concentration of the operator T . It is possible that there are reconstruction
processes that do not satisfy assumption P3. However, all reconstruction processes
that are commonly analyzed in the literature satisfy P1–P3. A necessary and
sufficient condition for assumption P1 to hold is

∞∑
k=−∞

|φk(t)|2 <∞. (3.17)

For the examples i)–iii) in the next section we have (3.17). For the reconstruction
processes i) and ii) we even have ∑∞k=−∞ |φk(t)| <∞.

Possible Nyquist Set Reconstruction Processes

Next, we present and analyze some reconstruction processes that satisfy the assump-
tions P1–P3. Series of the type i) and ii) are called Valiron interpolation series [30, p.
12] or Tschakaloff’s series [39, p. 53] [26, p. 60]. A special case of the reconstruction
processes i) and ii) is discussed in [26, p. 60].

i) Let t0 ∈ R \ Z arbitrary but fixed and consider the series

f(t) = f(t0) sin(πt)
sin(πt0) + (t− t0)

∞∑
k=−∞

f(k)
k − t0

sin(π(t− k))
π(t− k) .

ii) The second series of concern is, for m ∈ Z,

f(t) =f(m)sin(π(t−m))
π(t−m) + f ′(m)sin(π(t−m))

π

+ (t−m)
∞∑

k=−∞
k 6=m

f(k)
k −m

sin(π(t− k))
π(t− k) .

iii) And the third is the well-known Shannon sampling series

f(t) =
∞∑

k=−∞
f(k)sin(π(t− k))

π(t− k) .

All those reconstruction processes possess the structure (3.16), i.e.,

f(t) = (Tf)(t) +
∞∑

k=−∞
f(k)φk(t),

where the functions φk, k ∈ Z, and the linear operator T are given by
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i) φa
k(t) =

(
t− t0
k − t0

) sin
(
π(t− k)

)
π(t− k) ,

(T af)(t) = f(t0) sin(πt)
sin(πt0) ,

ii) φb
k(t) =

(
t−m
k −m

) sin
(
π(t− k)

)
π(t− k) , k 6= m,

(T bf)(t) = f(m)
sin
(
π(t−m)

)
π(t−m) + f ′(m)

sin
(
π(t−m)

)
π

,

and

iii) φc
k(t) =

sin
(
π(t− k)

)
π(t− k) ,

(T cf)(t) ≡ 0.

Note, all reconstruction processes i)–iii) have the properties that

i) they are concentrated in the Nyquist points,

ii) they are locally uniformly convergent for all f ∈ PW1
π, and

iii) they are of type P.

Observation 3.10. The operators T a, T b and T c have the Property P3.

For completeness the proof is given in Appendix A.1.

Characterization of the Approximation Behavior

The next theorem states that a uniformly convergent reconstruction of signals
f ∈ PW1

π with reconstruction processes of type P is not possible in general.

Theorem 3.11. There exists a universal signal f1 ∈ PW1
π such that for all recon-

struction processes of type P we have

lim sup
N→∞

sup
t∈R

∣∣∣∣∣∣(Tf1)(t) +
N∑

k=−N
f1(k)φk(t)

∣∣∣∣∣∣ =∞.

Theorem 3.11 applied to the Shannon sampling series gives Theorem 3.7, which
shows that Brown’s theorem (Theorem 3.6) cannot be extended to uniform conver-
gence on all of R. Thus, Theorem 3.7 is a special case of Theorem 3.11.
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Proof of Theorem 3.11. Let f ∈ PW1
π be fixed and consider the finite Shannon

sampling series

(SNf)(z) =
N∑

k=−N
f(k)sin(π(z − k))

π(z − k) , z ∈ C.

Then, for all f ∈ PW1
π and all R > 0, we have [33]

lim
N→∞

max
|z|≤R

|f(z)− (SNf)(z)| = 0.

Since

(SNf)(k) =
{
f(k), |k| ≤ N
0, |k| > N,

for k ∈ Z, we obtain the decomposition
N∑

k=−N
f(k)φk(t) + (Tf)(t)

=
N∑

k=−N
(SNf)(k)φk(t) + (Tf)(t)

=
N∑

k=−N
(SNf)(k)φk(t) + (TSNf)(t) + (Tf)(t)− (TSNf)(t)

=
∞∑

k=−∞
(SNf)(k)φk(t) + (TSNf)(t) + (Tf)(t)− (TSNf)(t)

= (SNf)(t) + (Tf)(t)− (TSNf)(t). (3.18)

The last equality is due to Property P1 and the fact that for f ∈ PW1
π the finite

Shannon sampling series SNf is a signal in PW2
π. Since the sequence (SNf)N∈N is

uniformly convergent on {z ∈ C : |z| ≤ R} for a given finite R > 0 and all f ∈ PW1
π,

it follows from the Banach–Steinhaus theorem that there exists a constant C4 > 0,
depending only on R, such that max|z|≤R |(SNf)(z)| ≤ C4‖f‖PW1

π
for all f ∈ PW1

π

and all N ∈ N. Together with Property P3 it follows that

|(TSNf)(t)| ≤ C3 max
|z|≤R

|(SNf)(z)| ≤ C5‖f‖PW1
π

(3.19)

for all t ∈ R and all f ∈ PW1
π. Hence, combining (3.18) and (3.19) and using

Property P3 again leads to∣∣∣∣∣∣
N∑

k=−N
f(k)φk(t) + (Tf)(t)

∣∣∣∣∣∣ ≥ |(SNf)(t)| − C3 max
|z|≤R

|f(z)| − C5‖f‖PW1
π

≥ |(SNf)(t)| − (C3 exp(Rπ) + C5)‖f‖PW1
π
,



3.2 Equidistant Sampling 29

where the last inequality follows from

|f(z)| ≤ 1
2π

∫ π

−π
|f̂(ω)||eiωz| dω ≤ exp(Rπ) ‖f‖PW1

π
(3.20)

for |z| ≤ R.
Next we will construct a signal f1 ∈ PW1

π, such that lim supN→∞ ‖SNf1‖∞ =∞
and thus complete the proof. LetM > 1 be an arbitrary natural number and consider
the function gM ∈ PW1

π with

ĝM (ω) =

M, π
(
1− 1

M

)
< |ω| < π

0, otherwise.

Then we have ‖gM‖PW1
π

= 1,

gM (t) =

1, t = 0
M
πt

[
sin(πt)− sin

(
π
(
1− 1

M

)
t
)]
, t 6= 0,

and

gM (k) =

1, k = 0
1
π

(−1)k sin( k
M
π)

k
M

, k 6= 0,

after using the identity sin(π(t − k)) = sin(πt)(−1)k for t ∈ R, k ∈ Z. Next, the
partial sum SNgM , given by

(SNgM )(t) =
N∑

k=−N
gM (k)sin(π(t− k))

π(t− k)

=sin(πt)
π

1
t

+
N∑

k=−N
k 6=0

sin
(
k
M π

)
k
M π

1
t− k

 ,
is analyzed. For t = N + 1/2 we obtain

(SNgM )
(
N + 1

2

)
=

sin
((
N + 1

2

)
π
)

π

 1(
N + 1

2

) +
N∑

k=−N
k 6=0

sin
(
k
M π

)
k
M π

(
N + 1

2 − k
)
 .
(3.21)

First, the case 1 ≤ N ≤ M/2 is considered. The term in parentheses on the
right-hand side of (3.21) can be bounded from below by using the inequality

sin
(
k
M π

)
k
M π

≥
sin
(
N
M π

)
N
M π

≥ sin
(
π
2
)

π
2

= 2
π
,



30 3 Discrete-Time and Continuous-Time Signals

which holds for |k| ≤ N . We have

1(
N + 1

2

) +
N∑

k=−N
k 6=0

sin
(
k
M π

)
k
M π

(
N + 1

2 − k
) > 2

π
(
N + 1

2

) + 2
π

N∑
k=−N
k 6=0

1
N + 1

2 − k

= 2
π

2N∑
k=0

1
k + 1

2

>
2
π

2N∑
k=0

∫ k+1

k

1
τ + 1

2
dτ

= 2
π

∫ 2N+1

0

1
τ + 1

2
dτ

>
2
π

log (4N + 1) .

If N is even, then sin((N + 1/2)π) = 1, and we obtain

(SNgM )
(
N + 1

2

)
>

1
π3 log(4N + 1), (3.22)

for all 1 ≤ N ≤M/2.
Now, we examine the behavior of SNgM for t = N + 1/2 and M ≤ N . The sum

in equation (3.21) can be bounded from above by

N∑
k=−N
k 6=0

sin
(
k
M π

)
k
M π

(
N + 1

2 − k
) ≤ M

π
(
N + 1

2

) N∑
k=−N
k 6=0

(
1
k

+ 1
N + 1

2 − k

)
.

But since
N∑

k=−N
k 6=0

1
|k| = 2

N∑
k=1

1
k
< 2 + 2

N∑
k=2

∫ k

k−1

1
τ

dτ < 2 + 2 log(N + 1),

and
N∑

k=−N
k 6=0

1
N + 1

2 − k
<

2N∑
k=0

1
k + 1

2
≤ 2 +

2N∑
k=1

∫ k

k−1

1
τ + 1

2
dτ

= 2 +
∫ 2N

0

1
τ + 1

2
dτ = 2 + log(4N + 1)

< 2 + 4 log(N + 1), (3.23)

it follows that∣∣∣(SNgM )
(
N + 1

2

)∣∣∣ < 1
N + 1

2
+ M

π
(
N + 1

2

)(4 + 6 log(N + 1)). (3.24)



3.2 Equidistant Sampling 31

In order to continue the proof, we need to define the sequence Mk = 2(k2), k ∈ N,
and the signal

f1(t) =
∞∑
k=1

1
k

3
2
gMk

(t).

First note that f1 ∈ PW1
π because

‖f1‖PW1
π
≤
∞∑
k=1

1
k

3
2
‖gMk

‖PW1
π
≤
∞∑
k=1

1
k

3
2
<∞.

Now, let l ∈ N, arbitrary. Then∣∣∣(SMl
f1)

(
Ml + 1

2

)∣∣∣ =
∣∣∣∣∣
∞∑
k=l

1
k

3
2

(SMl
gMk

)
(
Ml + 1

2

)
+

l−1∑
k=1

1
k

3
2

(SMl
gMk

)
(
Ml + 1

2

)∣∣∣∣∣
≥
∣∣∣∣∣
∞∑
k=l

1
k

3
2

(SMl
gMk

)
(
Ml + 1

2

)∣∣∣∣∣−
l−1∑
k=1

1
k

3
2

∣∣∣(SMl
gMk

)
(
Ml + 1

2

)∣∣∣
≥

∞∑
k=l+1

1
k

3
2

(SMl
gMk

)
(
Ml + 1

2

)
−

l−1∑
k=1

1
k

3
2

∣∣∣(SMl
gMk

)
(
Ml + 1

2

)∣∣∣ .
(3.25)

The last inequality is due to the fact, that (SMl
gMk

)
(
Ml + 1

2

)
is non-negative for

all k ≥ l. For k ≤ l − 1 we get from equation (3.24) that∣∣∣(SMl
gMk

)
(
Ml + 1

2

)∣∣∣ < 1
2(l2) + 1

2
+ 2(k2)

π
(
2(l2) + 1

2

) (4 + 6 log
(
2(l2) + 1

))

< 2 + 2k2−l2

π

(
4 + 6[log(2) + l2 log(2)]

)
≤ 2 + l2

2(l−1)2−l2

π
(4 + 12 log(2))

= 2 + l2 2 (4 + 12 log(2))
22l π

≤ 2 + 2
π

(4 + 12 log(2)) =: C6, (3.26)

where the last inequality is due to l2/22l ≤ 1.
On the other hand, for k ≥ l+ 1 we can use equation (3.22) because Ml is even to

obtain

(SMl
gMk

)
(
Ml + 1

2

)
>

log
(
4 · 2(l2) + 1

)
π3 > l2

log(2)
π3 . (3.27)

Inserting (3.26) and (3.27) into equation (3.25) gives∣∣∣(SMl
f1)

(
Ml + 1

2

)∣∣∣ > l2
log(2)
π3

∞∑
k=l

1
k

3
2
− C6

l−1∑
k=1

1
k

3
2
.
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But since
∞∑
k=l

1
k

3
2
>
∞∑
k=l

∫ k+1

k

1
τ

3
2

dτ =
∫ ∞
l

1
τ

3
2

dτ = 2√
l

and
l−1∑
k=1

1
k

3
2
< 1 +

l−1∑
k=2

∫ k

k−1

1
τ

3
2

dτ = 1 + 2
(

1− 1√
l − 1

)
< 3

we arrive at ∣∣∣(SMl
f1)

(
Ml + 1

2

)∣∣∣ ≥ l 3
2

2 log(2)
π3 − 3C6. (3.28)

Finally, because (3.28) is valid for all l, it follows lim supN→∞ ‖SNf1‖∞ =∞, which
concludes the proof.

Remark 3.12. Despite all φk in the examples i)–iii) on page 26 have the interpolation
property

φk(l) =
{

1 l = k

0 l 6= k,

it is important to note that throughout the proof we do not require it. Therefore
the divergence behavior of the reconstruction processes is not a consequence of the
interpolation property.

Upper and Lower Bounds

In this section the behavior of the reconstruction processes is further examined. We
will analyze the influence of N on the peak value of the finite sampling series and
derive a lower and an upper bound. In the proof of Theorem 3.13 we will employ
the same decomposition (3.18) that was used in the proof of Theorem 3.11.

Theorem 3.13. Given a reconstruction process of type P, then there exist three
constants C3, C5, R > 0, such that

i) for all N ∈ N and f ∈ PW1
π

sup
t∈R

∣∣∣∣∣∣(Tf)(t) +
N∑

k=−N
f(k)φk(t)

∣∣∣∣∣∣ <
[
2 + 2

π
+ 2
π

log(2N) + C3 exp(Rπ) + C5

]
‖f‖PW1

π
,

ii) for all N ∈ N

sup
‖f‖PW1

π
=1

sup
t∈R

∣∣∣∣∣∣(Tf)(t) +
N∑

k=−N
f(k)φk(t)

∣∣∣∣∣∣ > 1
π

log(4N + 1)− (C3 exp(Rπ) + C5).
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Remark 3.14. In Theorem 3.11 we had one single signal f1, such that the divergence
was universal for all reconstruction processes of type P . In contrast, the constants C3,
C5 and R in Theorem 3.13 depend on the specific process used for the reconstruction,
i.e., they are not universal.

Proof of Theorem 3.13. As a consequence of the equations (3.18), (3.19) and (3.20)
and Property P3 it follows for f ∈ PW1

π that∣∣∣∣∣∣(Tf)(t) +
N∑

k=−N
f(k)φk(t)

∣∣∣∣∣∣ ≤ |(SNf)(t)|+ (C3 exp(Rπ) + C5)‖f‖PW1
π

(3.29)

and∣∣∣∣∣∣(Tf)(t) +
N∑

k=−N
f(k)φk(t)

∣∣∣∣∣∣ ≥ |(SNf)(t)| − (C3 exp(Rπ) + C5)‖f‖PW1
π
. (3.30)

Hence it is sufficient to analyze SNf . We have

sup
‖f‖PW1

π
=1
‖SNf‖∞ ≥ ‖SNgM‖∞ ≥

∣∣∣(SNgM )
(
N + 1

2

)∣∣∣ ,
where gM , M > 1, are the functions that were defined in the proof of Theorem 3.11
on page 29. Due to equation (3.21) it follows that

sup
‖f‖PW1

π
=1
‖SNf‖∞ ≥

1
π
(
N + 1

2

) + 1
π

N∑
k=−N
k 6=0

sin
(
k
M π

)
k
M π

(
N + 1

2 − k
)

for all M > 1. In the limit M →∞ we obtain

sup
‖f‖PW1

π
=1
‖SNf‖∞ ≥

1
π

N∑
k=−N

1
N + 1

2 − k
>

1
π

log(4N + 1).

Thus, assertion ii) follows immediately from (3.30).
On the other hand we have

|(SNf)(t)| =
∣∣∣∣∣∣

N∑
k=−N

f(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣
≤ max
−N≤k≤N

|f(k)|
N∑

k=−N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣
≤ ‖f‖PW1

π

N∑
k=−N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣ .
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For t ∈ Z, |(SNf)(t)| = |f(k)| ≤ ‖f‖PW1
π
and for t ∈ R \ Z, three cases have to be

distinguished: 1) t > N , 2) −N < t < N and 3) t < −N .
1) For t > N we have

N∑
k=−N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣ < 1 +
N−1∑
k=−N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣
≤ 1 + 1

π

N−1∑
k=−N

1
t− k ≤ 1 + 1

π

N−1∑
k=−N

1
N − k

= 1 + 1
π

2N∑
k=1

1
k
< 1 + 1

π
+ 1
π

log(2N),

where the last inequality is obtained by the same technique as in (3.23).
2) For −N < t < N let L(1)(t) be the largest integer k with k < t and L(2)(t) the

smallest integer k with k > t. Then we have

N∑
k=−N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣ =
L(1)(t)−1∑
k=−N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣+
∣∣∣∣∣sin(π(t− L(1)(t)))

π(t− L(1)(t))

∣∣∣∣∣
+
∣∣∣∣∣sin(π(t− L(2)(t)))

π(t− L(2)(t))

∣∣∣∣∣+
N∑

k=L(2)(t)+1

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣
≤ 2 + 1

π

L(1)(t)−1∑
k=−N

1
t− k +

N∑
k=L(2)(t)+1

1
k − t


≤ 2 + 1

π

L(1)(t)−1∑
k=−N

1
L(1)(t)− k +

N∑
k=L(2)(t)+1

1
k − L(2)(t)


= 2 + 1

π

L(1)(t)+N∑
k=1

1
k

+
N−L(2)(t)∑

k=1

1
k


≤ 2 + 2

π

2N∑
k=1

1
k
< 2 + 2

π
+ 2
π

log(2N),

where the last inequality is obtained analogously to (3.23).
3) For t < −N the same estimate holds as in 1).
It follows that

|(SNf)(t)| ≤
(

2 + 2
π

+ 2
π

log(2N)
)
‖f‖PW1

π

for all t ∈ R and N ∈ N. This, together with (3.29), proves assertion i).

Using the following definition we can characterize the asymptotic behavior of the
reconstruction process.
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Definition 3.15. We call two functions f(t) and g(t) asymptotically equivalent
f(t) ∼ g(t) for t→∞ if there exists a t0 and two positive constants A and B such
that Ag(t) ≤ f(t) ≤ Bg(t) for all t > t0.

Corollary 3.16. Given a reconstruction process of type P, then

sup
‖f‖PW1

π
=1

sup
t∈R

∣∣∣∣∣∣(Tf)(t) +
N∑

k=−N
f(k)φk(t)

∣∣∣∣∣∣ ∼ logN.

Discussion

We have shown in Theorem 3.11 that there exists a universal signal f1, such that
the peak value of all reconstruction schemes of type P, in particular, the processes
i)–iii) on page 26, diverges unboundedly. Although the set Z is a set of uniqueness
for PW1

π, it is not sufficient to have the samples on this set for a locally uniformly
convergent and globally uniformly bounded signal reconstruction.
This result may be disappointing. However, there is a solution to this dilemma.

If the requirement of sampling at the Nyquist rate is relaxed, i.e. if we allow for
oversampling, then a uniformly convergent reconstruction is possible. Of course this
nice convergence behavior does not come for free. Oversampling in real applications
always comes with the price of storing and processing more samples. We will treat
oversampling in Section 3.2.4.
Further, a modified series that is symmetric around t converges uniformly on the

whole real axis even at Nyquist rate. This centered sampling series will be analyzed
in Section 3.2.9.

3.2.4 Signal Reconstruction with Oversampling

In this section the stability of reconstruction processes with oversampling is analyzed.
Oversampling creates a degree of freedom in the choice of the reconstruction kernel
[75], and if the kernel is chosen appropriately then, in general, the convergence
behavior of the reconstruction process is improved [42,43,45,76].
There are other topics of signal theory where oversampling is essential. One

example is the estimation of the peak value ‖f‖∞ of a signal f ∈ B∞π by its samples
on the lattice k/a, a > 1, k ∈ Z [77]. The best possible estimate is given by

‖f‖∞ ≤
1

cos
(
π
2a
) sup
k∈Z

∣∣∣∣f (ka
)∣∣∣∣ . (3.31)

It is interesting to note that the expression 1/ cos (π/(2a)) will also appear in the
analysis of the Shannon sampling series with oversampling.
As we will see, application of oversampling leads to a uniformly convergent

reconstruction processes for all signals in PW1
π. Further, it will turn out that an

elaborate kernel design is not necessary as far as only convergence is important.
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In Theorem 3.17 we will see that even the Shannon sampling series with slightly
increased bandwidth is uniformly convergent on all of R for all signals in PW1

π when
oversampling is applied.

Theorem 3.17. Let a > 1 be fixed. Then for all f ∈ PW1
π we have

lim
N→∞

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ = 0.

In order to prove Theorem 3.17 we need the Lemmas 3.18 and 3.19.

Lemma 3.18. Let a > 1 be fixed. Then for all f ∈ PW1
π and all N ∈ N we have

max
t∈R

∣∣∣∣∣∣
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ ≤ 2

(
1 + 2

π cos
(
π
2a
)) ‖f‖PW1

π
.

Proof. We have∣∣∣∣∣∣
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ ≤ 1

2π

∫ π

−π
|f̂(ω)|

∣∣∣∣∣∣
N∑

k=−N
eiωk/a sin

(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ dω

≤ max
ω∈[−π,π]

|gN (t, ω, a)| ‖f‖PW1
π

≤ 2
(

1 + 2
π cos

(
π
2a
)) ‖f‖PW1

π
,

where we introduced the abbreviation

gN (t, ω, a) :=
N∑

k=−N
eiωk/a sin

(
aπ
(
t− k

a

))
aπ
(
t− k

a

) (3.32)

and used Lemma 3.19 for the last inequality.

Lemma 3.19. For gN (t, ω, a) as defined in (3.32) and all a > 1, t ∈ R, ω ∈ [−π, π],
and N ∈ N we have

|gN (t, ω, a)| ≤ 2
(

1 + 2
π cos

(
π
2a
)) .

Proof. Let ω ∈ [−π, π] and a > 1 be arbitrary but fixed. Only the case t > 0 has
to be analyzed. For t = 0 we have gN (0, ω, a) = 1 and the case t < 0 is treated
analogously to the case t > 0. If t ∈ A := {k/a : k ∈ N} then

gN (t, ω, a) =
{

eiωt, |t| ≤ N/a
0, |t| > N/a,
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and therefore |gN (t, ω, a)| ≤ 1. Hence, t > 0, t /∈ A can be assumed. Let N ∈ N be
arbitrary but fixed. Obviously,

gN (t, ω, a) = sin(aπt)
aπ

N∑
k=−N

eik(ω/a+π) 1
t− k

a

= sin(aπt)
aπ

N∑
k=−N

ck dk, (3.33)

where ck = eik(ω/a+π) and dk = 1/(t− k/a). Let Ck = ∑k
l=−N cl, |k| ≤ N . Then we

have

|Ck| =
∣∣∣∣∣∣

k∑
l=−N

eil(ω/a+π)

∣∣∣∣∣∣ =
∣∣∣∣∣e−iN(ω/a+π)

N+k∑
l=0

eil(ω/a+π)
∣∣∣∣∣

=
∣∣∣∣∣1− ei(N+k+1)(ω/a+π)

1− ei(ω/a+π)

∣∣∣∣∣ ≤ 2∣∣1 + eiω/a
∣∣

≤ 1
cos
(
π
2a
) .

We begin with the case t > (N + 1)/a. Summation by parts gives∣∣∣∣∣∣
N∑

k=−N
ck dk

∣∣∣∣∣∣ ≤ |CNdN |+
N−1∑
k=−N

|Ck(dk − dk+1)|

≤ 1
cos
(
π
2a
)
 1
t− N

a

+
N−1∑
k=−N

∣∣∣∣∣ 1
t− k

a

− 1
t− k+1

a

∣∣∣∣∣


= 1
cos
(
π
2a
)
 1
t− N

a

+
N−1∑
k=−N

(
1

t− k+1
a

− 1
t− k

a

)
≤ 1

cos
(
π
2a
)
a+

N−1∑
k=−N

(
1

t− k+1
a

− 1
t− k

a

) . (3.34)

The right-hand side of (3.34) can be further simplified by evaluating the telescoping
series

N−1∑
k=−N

(
1

t− k+1
a

− 1
t− k

a

)
= 1
t− N

a

− 1
t+ N

a

≤ a (3.35)

for t > (N + 1)/a. Combining equations (3.33), (3.34) and (3.35) leads to

|gN (t, ω, a)| ≤ 2
π cos

(
π
2a
) .



38 3 Discrete-Time and Continuous-Time Signals

Next, the case t < (N + 1)/a is treated. Let Nt be the largest natural number
such that Nt/a < t. Then

gN (t, ω, a) = sin(aπt)
aπ

 Nt−1∑
k=−N

ckdk + eiNt(ωa+π) 1
t− Nt

a

+ ei(Nt+1)(ωa+π) 1
t− Nt+1

a

+
N∑

k=Nt+2
ckdk


and

|gN (t, ω, a)| ≤ 1
aπ

∣∣∣∣∣∣
Nt−1∑
k=−N

ckdk

∣∣∣∣∣∣+
∣∣∣∣∣∣

N∑
k=Nt+2

ckdk

∣∣∣∣∣∣
+ 2. (3.36)

The fist sum on the right-hand side of equation (3.36) can be bounded from above
by ∣∣∣∣∣∣

Nt−1∑
k=−N

ckdk

∣∣∣∣∣∣ ≤ 2a
cos
(
π
2a
)

exactly in the same way as before and the second sum by

∣∣∣∣∣∣
N∑

k=Nt+2
ckdk

∣∣∣∣∣∣ ≤ 2a
cos
(
π
2a
) .

This completes the proof.

Now we are in the position to prove Theorem 3.17.

Proof of Theorem 3.17. Let f ∈ PW1
π be arbitrary but fixed and ε > 0. Then there

exists a fε ∈ PW2
π such that fε(k) is different from zero for only finitely many k ∈ Z

and ‖f − fε‖PW1
π
< ε. Obviously, fε ∈ PW2

π ⊂ PW2
aπ. Therefore, there exists a

N0 = N0(ε) such that

max
t∈R

∣∣∣∣∣∣fε(t)−
N∑

k=−N
fε

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ < ε
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for all N ≥ N0. Moreover, for all N ≥ N0 we have∣∣∣∣∣∣f(t)−
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣f(t)− fε(t) + fε(t)−

N∑
k=−N

fε

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
+

N∑
k=−N

(
fε

(
k

a

)
− f

(
k

a

)) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣

< ε+ ε+ 2ε
(

1 + 2
π cos

(
π
2a
))

= 4ε
(

1 + 1
π cos

(
π
2a
)) , (3.37)

where Lemma 3.18, applied to fε − f , has been used for the last inequality. Since
(3.37) holds for all ε > 0 the proof is complete.

A crucial part in the proof was Lemma 3.18, which can be used to analyze the
influence oversampling on the peak value of the partial sum of the Shannon sampling
series. It is interesting to note that the 1/ cos(π/(2a)) term from equation (3.31)
reappears as integral part of Lemma 3.18.

Convergence Speed

Theorem 3.17 shows that if oversampling is used we can have global uniform con-
vergence for all f ∈ PW1

π even with the Shannon sampling series. An interesting
question concerns the rate of convergence of the sampling series: Given some a > 1
and f ∈ PW1

π, can we find two constants γ = γ(f, a) > 0 and C7 = C7(f, a) < ∞
such that

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ ≤ C7N

−γ?

Is it even possible to find a γ independently of f? The answer to both questions is
given by the next theorem.

Theorem 3.20. Let a > 1 be fixed. For each arbitrary sequence {εN}N∈N of positive
numbers that converges to zero, there exists a f ∈ PW1

π such that

lim sup
N→∞

1
εN

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣
 =∞.
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Proof. For N ∈ N we introduce the operators RN : PW1
π → B∞π ,

(RNf)(t) := f(t)−
N∑

k=−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

) .

Obviously we have

‖RN‖ = sup
‖f‖PW1

π
≤1
‖RNf‖∞

≥ sup
‖f‖PW1

π
≤1
|(RNf)(t)|

= sup
‖f‖PW1

π
≤1

∣∣∣∣∣∣ 1
2π

∫ π

−π
f̂(ω)

eiωt−
N∑

k=−N
eiωk/a sin

(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
 dω

∣∣∣∣∣∣
= max
|ω|≤π

∣∣∣∣∣∣eiωt−
N∑

k=−N
eiωk/a sin

(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ . (3.38)

Since (3.38) is valid for all t ∈ R, we can choose t = (N + 1)/a. Then we have

N∑
k=−N

eiωk/a sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

) = 0

and consequently
‖RN‖ = sup

‖f‖PW1
π
≤1
‖RNf‖∞ ≥ 1.

Moreover, the operators R̃N : PW1
π → B∞π , N ∈ N, defined by

(R̃Nf)(t) := 1
εN

(RNf)(t),

are linear and bounded, and we have

lim
N→∞

‖R̃N‖ ≥ lim
N→∞

1
εN

=∞.

Hence, by the Banach–Steinhaus theorem [78, p. 98] there exists a signal f1 ∈ PW1
π

such that
lim sup
N→∞

‖R̃Nf1‖∞ =∞,

which completes the proof.

Theorem 3.20 shows that the convergence speed of the Shannon sampling series
with oversampling for the space PW1

π can be arbitrarily slow and that no convergence
rates can be given.
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3.2.5 A Sufficient Condition for Uniform Convergence Without
Oversampling

In Theorem 3.7 it has been shown that, for some f1 ∈ PW1
π, the Shannon sampling

series
∞∑

k=−∞
f1(k)sin(π(t− k))

π(t− k)

does not converge uniformly on all of R to f1. Next, we will use the results from
Section 3.2.4 to analyze the convergence behavior of the Shannon sampling series
for signals in PW1

π without oversampling and to find a sufficient condition for
the uniform convergence of the reconstruction process. If f̂(ω) satisfies certain
integrability conditions in the vicinity of ω = ±π then the Shannon sampling series
without oversampling converges uniformly on all of R.

Theorem 3.21. If f ∈ PW1
π has the property that there exists a δ > 0 and a p > 1,

such that ∫
π−δ≤|ω|≤π

|f̂(ω)|p dω <∞,

then we have

lim
N→∞

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ = 0.

Proof. Two auxiliary bandlimited signals f1 and f2 defined by

f̂1(ω) =
{
f̂(ω), |ω| < π − δ,
0, |ω| ≥ π − δ

and

f̂2(ω) =
{
f̂(ω), π − δ ≤ |ω| ≤ π,
0, |ω| ∈ R\[π − δ, π]

are needed for the proof. Obviously, f1 ∈ PW1
π−δ and f(t) = f1(t) + f2(t), t ∈ R.

Furthermore, by assumption we have that

1
2π

∫ π

−π
|f̂2(ω)|p dω <∞.

Therefore, f2 ∈ PWp
π. Let ε > 0 be arbitrarily chosen. Then there exists a

N0 = N0(ε), such that

max
t∈R

∣∣∣∣∣∣f2(t)−
N∑

k=−N
f2(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ < ε
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for all N ≥ N0. Since f1 ∈ PW1
π−δ, there exists, according to Theorem 3.17, a

N1 = N1(ε), such that

max
t∈R

∣∣∣∣∣∣f1(t)−
N∑

k=−N
f1(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ < ε

for all N ≥ N1. Consequently, for all N ≥ max(N0, N1) we have∣∣∣∣∣∣f(t)−
N∑

k=−N
f(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣f1(t)−

N∑
k=−N

f1(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣
+

∣∣∣∣∣∣f2(t)−
N∑

k=−N
f2(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
≤2ε. (3.39)

Since ε > 0 was arbitrary and inequality (3.39) is valid for all t ∈ R, the proof is
complete.

Theorem 3.21 shows that the divergence of the peak value of the Shannon sampling
series for signals f ∈ PW1

π is only a consequence of the behavior of f̂(ω) in the
vicinity of ω = π. If certain integrability conditions are satisfied in this region, then
the divergence does not occur.

3.2.6 Oversampling and Reconstruction Bandwidth

In this section we want to examine whether oversampling is really a universal remedy
for circumventing convergence problems. We start with the following observation:
The finite Shannon sampling series

1
aπ

N∑
k=−N

f

(
k

a

) sin
(
aπ
(
t− k

a

))
t− k

a

(3.40)

with oversampling factor a > 1 is not bandlimited to π, but to aπ. Can we use
reconstruction functions in the approximation formula that are bandlimited to π
itself?
For f ∈ PW2

π this is obviously possible. By expanding f̂ into a Fourier series in
the interval [−aπ, aπ], a > 1, we have

lim
N→∞

∫ aπ

−aπ

∣∣∣∣∣∣f̂(ω)− 1
a

N∑
k=−N

f

(
k

a

)
e−iωk/a

∣∣∣∣∣∣
2

dω = 0.

Moreover, using the definition

χπ(ω) :=


1, |ω| < π,
1
2 , |ω| = π,

0, |ω| > π
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of the characteristic function χπ, it holds that

f(t)− 1
aπ

N∑
k=−N

f

(
k

a

) sin
(
π
(
t− k

a

))
t− k

a

= 1
2π

∫ aπ

−aπ

f̂(ω)− 1
a

N∑
k=−N

f

(
k

a

)
e−iωk/a

χπ(ω) eiωt dω

and, using the Cauchy–Schwarz inequality, it follows that∣∣∣∣∣∣f(t)− 1
aπ

N∑
k=−N

f

(
k

a

) sin
(
π
(
t− k

a

))
t− k

a

∣∣∣∣∣∣
≤

 1
2π

∫ aπ

−aπ

∣∣∣∣∣∣f̂(ω)− 1
a

N∑
k=−N

f

(
k

a

)
e−iωk/a

∣∣∣∣∣∣
2

dω


1
2 ( 1

2π

∫ π

−π
1 dω

) 1
2
.

Therefore, we have

lim
N→∞

max
t∈R

∣∣∣∣∣∣f(t)− 1
aπ

N∑
k=−N

f

(
k

a

) sin
(
π
(
t− k

a

))
t− k

a

∣∣∣∣∣∣ = 0.

As a consequence, for f ∈ PW2
π it is possible to use

1
aπ

N∑
k=−N

f

(
k

a

) sin
(
π
(
t− k

a

))
t− k

a

(3.41)

for signal reconstruction. This has the advantage that f ∈ PW2
π can be approximated

according to equation (3.41) by a signal which is bandlimited to π. The sampling
series (3.41) can be obtained filtering the signal generated by the sampling series in
equation (3.40) with a low-pass filter with bandwidth π.

Since for all signals f ∈ PW1
π the series in (3.40) converges uniformly on all of R

to the signal f , it is reasonable to ask whether a low-pass filtering of (3.40) preserves
the uniform convergence, even for f ∈ PW1

π. Then, this would be the projection
on the desired frequency interval. However, the following theorem gives a negative
answer.

Theorem 3.22. There is a f1 ∈ PW1
π such that

lim sup
N→∞

max
t∈R

∣∣∣∣∣∣ 1
aπ

N∑
k=−N

f1

(
k

a

) sin
(
π
(
t− k

a

))
t− k

a

∣∣∣∣∣∣ =∞. (3.42)
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Proof. For t ∈ R, a > 1, N ∈ N fixed, we have

sup
‖f‖PW1

π
≤1

∣∣∣∣∣∣ 1
aπ

N∑
k=−N

f

(
k

a

) sin
(
π
(
t− k

a

))
t− k

a

∣∣∣∣∣∣
= sup
‖f‖PW1

π
≤1

∣∣∣∣∣∣ 1
2π

∫ π

−π
f̂(ω)

N∑
k=−N

eiωk/a sin
(
π
(
t− k

a

))
aπ
(
t− k

a

) dω

∣∣∣∣∣∣
= max

ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
eiωk/a sin

(
π
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ .

Next,

qN (t, ω, a) :=
N∑

k=−N
eiωk/a sin

(
π
(
t− k

a

))
aπ
(
t− k

a

)
is analyzed. For ω = π and tN = (N + 1/2)/a we get

qN (tN , π, a) = 1
2iπ

 N∑
k=−N

eiπtN eik(π/a−π/a)

N + 1
2 − k

−
N∑

k=−N
e−iπtN eik(π/a+π/a)

N + 1
2 − k


= 1

2iπ

eiπtN
N∑

k=−N

1
N + 1

2 − k
− e−iπtN

N∑
k=−N

eik2π/a

N + 1
2 − k


and

|qN (tN , π, a)| ≥ 1
2π

∣∣∣∣∣∣
N∑

k=−N

1
N + 1

2 − k

∣∣∣∣∣∣−
∣∣∣∣∣∣

N∑
k=−N

eik2π/a

N + 1
2 − k

∣∣∣∣∣∣
 (3.43)

>
1

2π log(N)− 4
sin
(
π
a

) .
The second sum in equation (3.43) was evaluated in the same way as the sum in
(3.33). Consequently, for tN = (N + 1/2)/a we have

sup
‖f‖PW1

π
≤1

∣∣∣∣∣∣ 1
aπ

N∑
k=−N

f

(
k

a

) sin
(
π
(
tN − k

a

))
tN − k

a

∣∣∣∣∣∣ > 1
2π log(N)− 4

sin
(
π
a

) .
Hence, by the Banach–Steinhaus theorem [78, p. 98] there exists a signal f1 ∈ PW1

π

that fulfills (3.42).

The result of Theorem 3.22 is interesting. It shows that a low-pass filtering destroys
the uniform convergence. Not even the uniform boundedness is preserved. This
means that the sole redundancy in the set {f(k/a)}k∈Z, a > 1, is not sufficient
for uniform convergence. It is necessary to use a proper kernel. Consequently, a
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simultaneous projection onto the space PW1
π during reconstruction is not possible

without the peak value of the reconstruction process becoming divergent.
It is easy to see that for f ∈ PW1

π no reconstruction process of the form
N∑

k=−N
f

(
k

a

)
φ

(
t− k

a

)
(3.44)

and with the property that (3.44) is bandlimited to π can be uniformly bounded. If
(3.44) is bandlimited to π then the Fourier transform

1
a

N∑
k=−N

f

(
k

a

)
eiωk/a(aφ̂(ω)

)
is supported in [π, π]. Since ∑N

k=−N f (k/a) eiωk/a has only isolated zeros, φ̂(ω) = 0
for |ω| > π must hold. Moreover, the assumed convergence of (3.44) implies that
aφ̂(ω) = 1 for |ω| < π. Hence, φ(t) = (sin(πt))/(aπt). But Theorem 3.22 has shown
that the reconstruction process for this kernel is neither uniformly convergent nor
uniformly bounded on all of R.

Thus, it is impossible to have a locally uniformly convergent and globally uniformly
bounded reconstruction for all f ∈ PW1

π on the basis of the samples {f(k/a)}k∈Z
if the reconstruction process is of the form (3.44) and φ is bandlimited to π. It
is possible to approach the bandwidth π arbitrarily closely, but to have φ exactly
bandlimited with π is impossible if uniform boundedness is desired.

3.2.7 Oversampling with General Kernels

Due to oversampling many different reconstruction kernels are possible, not only the
sinc-kernel of the Shannon sampling series without oversampling [42,43,45,76]. In
particular, all kernels φ inM(a) can be used.

Definition 3.23. M(a), a > 1, is the set of functions φ ∈ B1
aπ with φ̂(ω) = 1/a for

|ω| ≤ π.
The functions in φ ∈M(a), a > 1, are suitable kernels for the sampling series

(SaN,φf)(t) =
N∑

k=−N
f

(
k

a

)
φ

(
t− k

a

)

because for all f ∈ PW2
π we have limN→∞‖f − SaN,φf‖PW2

aπ
= 0 [79], and conse-

quently
lim
N→∞

‖f − SaN,φf‖∞ = 0. (3.45)

Example 3.24. Two well-known classes of kernels inM(a), a > 1, are the kernels
with a trapezoidal shape in the frequency domain and the kernels with a cosine
roll-off characteristic in the frequency domain.
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One important property of the kernels φ ∈M(a), a > 1, is stated in the following
lemma.

Lemma 3.25. For all a > 1 and φ ∈ B1
aπ there exists a constant C8 such that

∞∑
k=−∞

∣∣∣∣φ(t− k

a

)∣∣∣∣ ≤ C8‖φ‖B1
aπ

for all t ∈ R.

Lemma 3.25 is a direct consequence of Nikol’skĭı’s inequality [26, p. 49]. Neverthe-
less, for the sake of a self contained presentation, we have included the short proof
in Appendix A.2.

We have seen in (3.45) that the sampling series SaN,φf converges uniformly on all
or R for all signals in PW2

π. The next theorem shows that we also have the uniform
convergence for all signals in PW1

π.

Theorem 3.26. Let φ ∈M(a), a > 1. Then we have

lim
N→∞

∥∥∥∥∥∥f −
N∑

k=−N
f

(
k

a

)
φ

(
· − k

a

)∥∥∥∥∥∥
∞

= 0

for all f ∈ PW1
π.

We could prove Theorem 3.26 directly, however, using Theorem 4.40, which is
stated later in Section 4.6 on p. 122, the proof can be considerably shortened. Hence,
we base the proof of Theorem 3.26 on Theorem 4.40.

Proof. Let φ ∈M(a), a > 1, be arbitrary but fixed. Then, according to Lemma 3.25,
we have

sup
t∈R

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωk/a φ

(
t− k

a

)∣∣∣∣∣∣ ≤ sup
t∈R

N∑
k=−N

∣∣∣∣φ(t− k

a

)∣∣∣∣ ≤ C8‖φ‖B1
aπ
,

and the assertion follows from Theorem 4.40 for T = Id.

3.2.8 Non-Symmetric Sampling Series

Many attempts have been made to prove convergence results that are true for the
symmetric sampling series for the non-symmetric case. However, often the non-
symmetric sampling series exhibits a significantly different convergence behavior
compared to the symmetric sampling series. This is particularly true for the Shannon
sampling series and the space PW1

π: In this section we will show that there exists a
signal f2 ∈ PW1

π such that for all t ∈ R \ Z

lim sup
M,N→∞

∣∣∣∣∣∣
N∑

k=−M
f2(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ =∞,
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which means that the non-symmetric Shannon sampling series diverges for all
t ∈ R \ Z. Consequently, a theorem stating the uniform convergence of the non-
symmetric Shannon sampling series on compact subsets of R, similar to Theorem 3.6,
which states exactly this for the symmetric Shannon sampling series, cannot exist.

The double limit limM,N→∞ in the equation above is defined as usual [80]. For
a double sequence {aMN}M,N∈N ⊂ C we write limM,N→∞ aMN = c if for all ε > 0
there exists a n ∈ N such that |aMN − c| < ε for all M > n and N > n. Moreover,
we write lim supM,N→∞ aMN =∞ if for all K > 0 there exist two natural numbers
M and N such that aMN ≥ K.
For the proof we use the same signal f2 ∈ PW1

π that was used in the proof of
Theorem 3.2 and defined in (3.11) on page 20. We need the fact that the samples of
f2 are given by

f2(k) =

0, k = 0
(−1)|k|

log(1+|k|) , |k| ≥ 1.

Theorem 3.27. Let f2 be defined as in equation (3.11). Then, for all t ∈ R \Z, we
have

lim
N→∞

∣∣∣∣∣
N∑
k=1

f2(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣ =∞.

Proof. For N ∈ N, N > 1, consider the finite sums

(ANf2)(t) :=
N∑
k=1

f2(k)sin(π(t− k))
π(t− k) .

First, we prove that limN→∞(ANf2)(−1/2) =∞. We have

(ANf2)
(−1

2
)

= sin
(
−π2

) N∑
k=1

f2(k) (−1)k

π
(
−1

2 − k
)

>
1
π

N∑
k=1

1
log(1 + k)

1
1 + k

,

where we used the identity sin(π(t− k)) = sin(πt)(−1)k for t ∈ R, k ∈ Z, in the first
line. But, since

1
log(1 + k)(1 + k) >

∫ k+1

k

1
log(1 + x)(x+ 1) dx,

we obtain

(ANf2)
(−1

2
)
>

1
π

N∑
k=1

∫ k+1

k

1
log(1 + x)(x+ 1) dx

= 1
π

∫ N+1

1

1
log(1 + x)(x+ 1) dx > 1

π
log

( logN
2

)
,
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and hence limN→∞(ANf2)(−1/2) =∞.
Now, let t1, t2 ∈ R \ Z be arbitrarily chosen and consider

D := (ANf2)(t1)
sin(πt1) − (ANf2)(t2)

sin(πt2)

= 1
π

N∑
k=1

f2(k)(−1)k
( 1
t1 − k

− 1
t2 − k

)

= t2 − t1
π

N∑
k=1

f2(k) (−1)k
(t1 − k)(t2 − k) .

The modulus of D can be bounded above as follows:

|D| ≤ |t2 − t1|
π

N∑
k=1
|f2(k)| 1

|t1 − k||t2 − k|

≤
|t2 − t1|‖f2‖PW1

π

π

∞∑
k=1

1
|t1 − k||t2 − k|

= ‖f2‖PW1
π
C9(t1, t2),

with a constant C9(t1, t2), which depends only on t1 and t2. Thus, it follows from
limN→∞(ANf2)(−1/2) =∞ that limN→∞ |(ANf2)(t)| =∞ for all t ∈ R \ Z.

Theorem 3.27 also answers the question of how the non-symmetric Shannon
sampling series behaves for signals f ∈ PW1

π.

Corollary 3.28. Let f2 be defined as in equation (3.11). Then, for all t ∈ R \ Z,
we have

lim sup
M,N→∞

∣∣∣∣∣∣
N∑

k=−M
f2(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ =∞.

The preceding considerations have been made for the case where the samples
are taken at Nyquist rate, i.e., where no oversampling is applied. The convergence
behavior of the non-symmetric Shannon sampling series changes completely if we use
oversampling. A closer look on the proof of Lemma 3.19 shows that the inequality∣∣∣∣∣∣

N∑
k=−M

eiωk/a sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ ≤ 2

(
1 + 2

cos
(
π
2a
))

holds for allM,N ∈ N, t ∈ R and |ω| ≤ π. Therefore, it is possible to get an analogous
result to Lemma 3.19 for the non-symmetric sampling series. Consequently, a theorem
similar to Theorem 3.17 can be derived for the non-symmetric sampling series.
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Theorem 3.29. Let a > 1 be fixed. Then we have for all f ∈ PW1
π

lim
M,N→∞

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−M
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

)
∣∣∣∣∣∣ = 0.

Proof. Analogously to Theorem 3.17.

We have seen that for f ∈ PW1
π there are differences in the convergence behavior

between the symmetric Shannon sampling series and the non-symmetric Shanon
sampling series when no oversampling is applied. However, with oversampling both
have the same good convergence behavior, i.e., both are uniformly convergent on all
of R. Here we see that oversampling, which is applied in practice for several reasons,
is also theoretically justified by the reconstruction behavior of the non-symmetric
Shannon sampling series for signals in PW1

π.

3.2.9 Centered Sampling Series

In Theorem 3.11 we have seen that a whole class of reconstruction processes, including
the Shannon sampling series, is not uniformly convergent on R and not even uniformly
bounded on R for signals in PW1

π in general. One further possible way of truncating
the series (3.13), which was considered in [63, 64, 75, 81], is to truncate the series
(3.13) symmetrically around t ∈ R. Including oversampling with oversampling factor
a > 1, the reconstruction process is then given by

(AaNf)(t) :=
K(t)+N∑

k=K(t)−N
f

(
k

a

) sin
(
aπ
(
t− k

a

))
aπ
(
t− k

a

) , (3.46)

where K(t) denotes the largest integer that is smaller than or equal to t+ 1/2. For
every fixed point in time only 2N + 1 signal values are needed, but as t ranges from
−∞ to ∞, infinitely many samples are necessary to reconstruct the whole signal.

In the case where a > 1, one can use other kernels than the sinc-kernel sin(aπ(t−
k/a))/(aπ(t− k/a)) that is used in (3.46) [68]. In [75] kernels that are the product
of sin(aπ(t − k/a))/(aπ(t − k/a)) and a function h0 with certain properties were
considered in order to reduce the reconstruction error.
In [63] an upper bound was given for ‖f − AaNf‖∞. However, as pointed out

in [75], for the important case a→ 1 this bound tends to infinity. We will show that
this bound does not reflect the true behavior of ‖f −AaNf‖∞ for a→ 1 because the
bound is not tight. In fact, it holds that supN∈N ‖f − A1

Nf‖∞ ≤ C10 < ∞ for all
f ∈ PW1

π with ‖f‖PW1
π
≤ 1.

In this section we analyze the convergence behavior of

(ANf)(t) := (A1
Nf)(t) =

K(t)+N∑
k=K(t)−N

f(k)sin(π(t− k))
π(t− k) .
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It is shown that ANf converges uniformly on all of R to f for all f ∈ PW1
π. This

fact is expressed in Theorem 3.30, the proof of which is postponed until we have
discussed Theorem 3.30 and compared it with our previous results.

Theorem 3.30. For all f ∈ PW1
π we have

lim
N→∞

max
t∈R

∣∣∣∣∣∣f(t)−
K(t)+N∑

k=K(t)−N
f(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ = 0.

At first glance, Theorem 3.30 seems to be a contradiction to the result given in
Theorem 3.11, but a closer examination of AN reveals that the reconstructed signal
ANf is not bandlimited. This fact permits the good convergence properties.

Theorem 3.31. ANf is not bandlimited for f ∈ PW1
π in general.

Proof. Consider for example a function f ∈ PW2
π ⊂ PW1

π with f(k) = 0 for |k| ≥M
and f(k) 6= 0 for |k| < M for some M ∈ N. Then (ANf)(t) = 0 for all |t| > M +N .
If ANf was bandlimited then it would follow that ANf ≡ 0, which would be a
contradiction to (ANf)(k) = f(k), k ∈ Z.

Despite the good convergence behavior, AN has two drawbacks for practical
applications:

1. The resulting functions ANf are not bandlimited;

2. Infinitely many samples are needed for the calculation of (ANf)(t) as t ranges
over the whole real axis.

The proof of Theorem 3.30 requires two lemmas, namely Lemma 3.32 and
Lemma 3.33.

Lemma 3.32. Let DN (x) = 1/2 +∑N
k=1 cos(kx) be the Dirichlet kernel. Then we

have ∣∣∣∣∫ τ

−π
DN (ω − ω1) dω1

∣∣∣∣ ≤ 3π

for all N ∈ N, ω ∈ R and |τ | ≤ π.

Proof. Using

∫ τ

−π
DN (ω − ω1) dω1 = 1

2(τ − π) +
N∑
k=1

sin(k(ω + π))
k

−
N∑
k=1

sin(k(ω − τ))
k

together with ∣∣∣∣∣
N∑
k=1

sin(kx)
k

∣∣∣∣∣ ≤ π for all x ∈ R,
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which is a consequence of Gibb’s phenomenon [82, p. 61], gives∣∣∣∣∫ τ

−π
DN (ω − ω1) dω1

∣∣∣∣ ≤ π + π + π = 3π

for all N ∈ N, ω ∈ R and |τ | ≤ π.

Lemma 3.33. For all f ∈ PW2
π we have

lim
N→∞

max
t∈R

∣∣∣∣∣∣f(t)−
K(t)+N∑

k=K(t)−N
f(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ = 0.

Proof. Let f ∈ PW2
π and t ∈ R be arbitrary but fixed and N ≥ 2. Then we have∣∣∣∣∣∣f(t)−

K(t)+N∑
k=K(t)−N

f(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

|k−K(t)|>N
f(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
≤
 ∑
|k−K(t)|>N

|f(k)|2
 1

2
 ∑
|k−K(t)|>N

∣∣∣∣sin(π(t− k))
π(t− k)

∣∣∣∣2
 1

2

≤
 ∞∑
k=−∞

|f(k)|2
 1

2
 ∑
|k−K(t)|>N

1
π2(t− k)2

 1
2

,

and the upper bound

∑
|k−K(t)|>N

1
(t− k)2 =

K(t)−N−1∑
k=−∞

1
(t− k)2 +

∞∑
k=K(t)+N+1

1
(t− k)2

≤
K(t)−N−1∑
k=−∞

1
(K(t)− k − 1)2 +

∞∑
k=K(t)+N+1

1
(k −K(t)− 1)2

=
−N∑

k=−∞

1
k2 +

∞∑
k=N

1
k2 ≤

2
N − 1

leads to

|f(t)− (ANf)(t)| ≤ ‖f‖PW2
π

( 2
N − 1

) 1
2
.

Therefore, we have limN→∞ ‖f −ANf‖∞ = 0 for all f ∈ PW2
π.

Now we are in the position to proof Theorem 3.30.
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Proof of Theorem 3.30. Let f ∈ PW1
π be arbitrary but fixed. Then we have

(ANf)(t) =
K(t)+N∑

k=K(t)−N
f(k)sin(π(t− k))

π(t− k)

= 1
2π

∫ π

−π
f̂(ω)

 K(t)+N∑
k=K(t)−N

eiωk sin(π(t− k))
π(t− k)

 dω

= 1
2π

∫ π

−π
f̂(ω) qN (t, ω) dω. (3.47)

Next, we analyze

qN (t, ω) :=
K(t)+N∑

k=K(t)−N
eiωk sin(π(t− k))

π(t− k) .

Since
sin(π(t− k))
π(t− k) = 1

2π

∫ π

−π
eiω1(t−k) dω1,

we obtain

qN (t, ω) = 1
2π

∫ π

−π
eiω1t

K(t)+N∑
k=K(t)−N

eik(ω−ω1) dω1

= 1
2π

∫ π

−π
eiω1t eiK(t)(ω−ω1)

N∑
k=−N

eik(ω−ω1) dω1

=
eiK(t)ω

π

∫ π

−π
eiω1(t−K(t))

(
1
2 +

N∑
k=1

cos(k(ω − ω1))
)

dω1

=
eiK(t)ω

π

∫ π

−π
eiω1(t−K(t))DN (ω − ω1) dω1, (3.48)

and denote by DN (x) the Dirichlet kernel 1/2 + ∑N
k=1 cos(kx). The integral on

the right-hand side of (3.48) is further analyzed. Integration by parts and using∫ π
−πDN (ω − ω1) dω1 = π gives∫ π

−π
eiω1(t−K(t))DN (ω − ω1) dω1

= π eiπ(t−K(t))−
∫ π

−π

∫ τ

−π
DN (ω − ω1) dω1 i(t−K(t)) eiτ(t−K(t)) dτ

and∣∣∣∣∫ π

−π
eiω1(t−K(t))DN (ω − ω1) dω1

∣∣∣∣ ≤ π +
∫ π

−π

∣∣∣∣∫ τ

−π
DN (ω − ω1) dω1

∣∣∣∣ · |t−K(t)| dτ.
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By Lemma 3.32, we have ∣∣∣∣∫ τ

−π
DN (ω − ω1) dω1

∣∣∣∣ ≤ 3π

for all N ∈ N, ω ∈ R and |τ | ≤ π. Since |t−K(t)| ≤ 1/2 for all t ∈ R, we obtain∣∣∣∣∫ π

−π
eiω1(t−K(t))DN (ω − ω1) dω1

∣∣∣∣ ≤ π + 3π2

and as a consequence
|qN (t, ω)| ≤ 1 + 3π (3.49)

for all N ∈ N, t ∈ R and |ω| ≤ π. Finally, equations (3.47) and (3.49) can be used
to derive the upper bound

|(ANf)(t)| ≤ 1
2π

∫ π

−π
|f̂(ω)| |qN (t, ω)| dω

≤ (1 + 3π) 1
2π

∫ π

−π
|f̂(ω)| dω

= (1 + 3π)‖f‖PW1
π
, (3.50)

which is valid for all N ∈ N, all t ∈ R, and all f ∈ PW1
π.

In order to continue the proof we fix an arbitrary ε > 0. Then, there exists a
function fε ∈ PW2

π such that ‖f − fε‖PW1
π
< ε. Furthermore,

|f(t)− (ANf)(t)| = |f(t)− fε(t) + fε(t)− (ANfε)(t) + (AN (f − fε))(t)|
≤ |f(t)− fε(t)|+ |fε(t)− (ANfε)(t)|+ |(AN (f − fε))(t)|
≤ ‖f−fε‖PW1

π
+|fε(t)−(ANfε)(t)|+ (1+3π)‖f−fε‖PW1

π
(3.51)

< ε(2 + 3π) + |fε(t)− (ANfε)(t)|,

holds for all N ∈ N and t ∈ R. To obtain (3.51) we applied (3.50) on f − fε and
used the inequality |f(t)| ≤ ‖f‖PW1

π
, which holds for all t ∈ R and f ∈ PW1

π. Due
to Lemma 3.33, there is a N0 = N0(ε) such that |fε(t)− (ANfε)(t)| < ε for all t ∈ R
and all N ≥ N0. Hence,

|f(t)− (ANf)(t)| < ε(3 + 3π)

for all t ∈ R and all N ≥ N0. Since ε > 0 was arbitrary, the proof of Theorem 3.30
is complete.

As we have seen in Theorem 3.30, the reconstruction process ANf converges
uniformly on all of R to f for all f ∈ PW1

π.
Now we analyze the non-symmetric version

(AM,Nf)(t) :=
K(t)+N∑

k=K(t)−M
f(k)sin(π(t− k))

π(t− k) . (3.52)
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We have seen in Corollary 3.28 that there are signals in PW1
π, such that the non-

symmetric Shannon sampling series

(SM,Nf)(t) :=
N∑

k=−M
f(k)sin(π(t− k))

π(t− k)

diverges unboundedly for all t ∈ R \ Z. Since for certain f ∈ PW1
π the symmetric

Shannon sampling series SNf is not uniformly convergent on all of R and the
reconstruction process ANf is uniformly convergent on all of R for all f ∈ PW1

π, we
might expect a better behavior of AM,Nf compared to the non-symmetric Shannon
sampling series SM,Nf .
However, this is not the case, as shown by the following result.

Theorem 3.34. There exists a signal f2 ∈ PW1
π, such that for all t ∈ R \ Z

lim sup
M,N→∞

∣∣∣∣∣∣f2(t)−
K(t)+N∑

k=K(t)−M
f2(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ =∞.

Proof. For the proof we use the same signal f2 ∈ PW1
π that was used in the proof of

Theorem 3.2 and defined in (3.11) on page 20.
To simplify the notation, we use the abbreviation (AM,Nf)(t) that was defined in

(3.52). Let t1, t2 ∈ R\Z arbitrary but fixed. We will show that there is a constant
C11(t1, t2) <∞ such that for all f ∈ PW1

π and all M,N ∈ N we have∣∣∣∣(AM,Nf)(t1)
sin(πt1) − (AM,Nf)(t2)

sin(πt2)

∣∣∣∣ ≤ C11(t1, t2)‖f‖PW1
π
. (3.53)

Suppose (3.53) has been proved, then it is enough to show that

lim sup
M,N→∞

|(AM,Nf2)(1/4)| =∞, (3.54)

in order to finish the proof. But equation (3.54) follows directly from Corollary 3.28,
because (AM,Nf2)(1/4) = (SM,Nf2)(1/4).
It remains to show that (3.53) is true. Without loss of generality, we assume

t1 < t2. Next,

D = (AM,Nf)(t1)
sin(πt1) − (AM,Nf)(t2)

sin(πt2)

= 1
π

 K(t1)+N∑
k=K(t1)−M

f(k) (−1)k
t1 − k

−
K(t2)+N∑

k=K(t2)−M
f(k) (−1)k

t2 − k

 (3.55)

is analyzed. We have to distinguish two cases.
The first is the case where K(t1) + N < K(t2) −M . In this case, both M and

N must be smaller than K(t2) − K(t1), which implies that both sums in (3.55)
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can be bounded from above by some constant independently of M and N . Thus
|D| ≤ C12(t1, t2)‖f‖PW1

π
.

In the second case, i.e. the case where K(t1) +N ≥ K(t2)−M , we rearrange the
sums and obtain

D = 1
π

K(t2)−M−1∑
k=K(t1)−M

f(k) (−1)k
t1 − k

+
K(t1)+N∑

k=K(t2)−M
f(k)(−1)k

( 1
t1 − k

− 1
t2 − k

)

−
K(t2)+N∑

k=K(t1)+N+1
f(k) (−1)k

t2 − k

 . (3.56)

The modulus of the first sum in (3.56) can be bounded from above according to

∣∣∣∣∣∣
K(t2)−M−1∑
k=K(t1)−M

f(k) (−1)k
t1 − k

∣∣∣∣∣∣ ≤ sup
t∈R
|f(t)|

K(t2)−1∑
k=K(t1)

1
|t1 − k +M | ≤ C13(t1, t2)‖f‖PW1

π
,

because the number of summands does not depend on M . Applying the same
arguments to the third sum in (3.56) gives

∣∣∣∣∣∣
K(t2)+N∑

k=K(t1)+N+1
f(k) (−1)k

t2 − k

∣∣∣∣∣∣ ≤ C14(t1, t2)‖f‖PW1
π
.

The modulus of the second sum in (3.56) can be upper bounded by

∣∣∣∣∣∣
K(t1)+N∑

k=K(t2)−M
f(k)(−1)k

( 1
t1 − k

− 1
t2 − k

)∣∣∣∣∣∣ ≤ ‖f‖PW1
π

K(t1)+N∑
k=K(t2)−M

t2 − t1
|t1 − k| · |t2 − k|

= C15(t1, t2)‖f‖PW1
π
.

Therefore |D| ≤ C11(t1, t2)‖f‖PW1
π
, which finishes the proof.
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3.3 Non-Equidistant Sampling

In many practical applications non-equidistant sampling patterns are of interest
[58,61,83]. In this case, sampling series like

∞∑
k=−∞

f(tk)φk(t), (3.57)

where φk, k ∈ Z, are certain reconstruction functions, and {tk}k∈Z is the sequence of
sampling points, can be used for the reconstruction of the signal f from its samples
{f(tk)}k∈Z. Of course the convergence of the series cannot be taken for granted and
has to be checked from case to case.

Throughout this thesis we assume that the sequence of sampling points {tk}k∈Z ⊂ R
is real, and, without loss of generality, we further assume that t0 = 0 and that the
sequence of sampling points is ordered strictly increasingly, i.e.,

. . . < t−N < t−N+1 < . . . < t−1 < t0 = 0 < t1 < . . . < tN−1 < tN < . . . . (3.58)

Sensor networks are one example where non-equidistant sampling is important. In
a sensor network a large number of sensors is used to monitor some physical quantity,
e.g., the temperature or the electric field intensity. This physical quantity varies
continuously in space and, thus, can be viewed as a signal in space. In general, the
sensors are placed non-equidistantly according to the given spacial settings. Thus,
in sampling theoretic terminology, the sensors perform a non-equidistant sampling
of the signal. At the fusion center, where the data from all sensors is gathered, the
task is to reconstruct the signal from the samples.

In this section we discuss under what conditions on the sampling patterns and the
signals it is possible to use (3.57) for the reconstruction.
The convergence behavior of (3.57) certainly depends strongly on the signal

space under consideration. There is a vast amount of literature discussing the
properties of sampling series with non-equidistant sampling points for the space of
bandlimited signals with finite energy: The papers [84] and [85] analyze the stability
of such sampling series, and [86] derives series representations. Sampling series
involving derivatives are considered in [87], and the case where only a finite number
of sampling points differs from the integer grid is considered in [88]. Aspects of
numerical computation in the reconstruction of bandlimited signals with finite energy
from irregular samples are treated in [89–91].
Only few papers [54, 92] discuss non-equidistant sampling for larger signal spaces

than the space of bandlimited signals with finite energy. In [92] Seip proves the
uniform convergence of (3.57) on all compact subsets of the complex plane for
bounded bandlimited signals if oversampling is used and the sequence {tk}k∈Z of
real sampling points satisfies

sup
k∈Z
|tk − k| ≤ D
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for some D < 1/4. Hinsen [54] analyzes (3.57) without oversampling for bandlimited
signals that are in Lp, 1 ≤ p < ∞, when restricted to the real line. He gives
a condition on D which is sufficient for (3.57) to be uniformly convergent on all
compact subsets of the complex plane.

3.3.1 Complete Interpolating Sequences

An important class of sampling patterns are complete interpolating sequences.

Definition 3.35. We say that a sequence {tk}k∈Z is a complete interpolating se-
quence for PW2

π if the interpolation problem f(tk) = ck, k ∈ Z has exactly one
solution f ∈ PW2

π for every sequence {ck}k∈Z satisfying ∑∞k=−∞|ck|2 <∞.

Complete interpolating sequences are useful sampling patterns because every signal
f ∈ PW2

π is completely determined by its sample values {f(tk)}k∈Z if {tk}k∈Z is a
complete interpolating sequence for PW2

π. Throughout this section we assume that
the sequence of sampling points {tk}k∈Z ⊂ R is a complete interpolating sequence
for PW2

π.
If the sequence of sampling points {tk}k∈Z is a complete interpolating sequence

for PW2
π, it follows by definition that, for each k ∈ Z, there is exactly one function

φk ∈ PW2
π that solves the interpolation problem

φk(tl) =
{

1, l = k

0, l 6= k.
(3.59)

Moreover, the product

φ(z) = z lim
R→∞

∏
|tk|≤R
k 6=0

(
1− z

tk

)
(3.60)

converges uniformly on |z| ≤ R for all R < ∞ and φ is an entire function of
exponential type π [25, p. 134, Theorem 4]. It can bee seen from (3.60) that φ,
which is often called a generating function, has the zeros {tk}k∈Z. Since {tk}k∈Z is a
complete interpolating sequence, it follows that

φk(t) = φ(t)
φ′(tk)(t− tk)

(3.61)

is the unique function in PW2
π that solves the interpolation problem (3.59). For

further details we would like to refer the reader to [58, Chapter 3].
If {tk}k∈Z is a complete interpolating sequence for PW2

π then φk is a Riesz basis
for PW2

π.
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Definition 3.36. A sequence of vectors {φk}k∈Z in a separable Hilbert space H is
called a Riesz basis if {φk}k∈Z is complete in H and there exist positive constants A
and B such that for all M,N ∈ N and arbitrary scalars ck we have

A
N∑

k=−M
|ck|2 ≤

∥∥∥∥∥∥
N∑

k=−M
ck φk

∥∥∥∥∥∥
2

≤ B
N∑

k=−M
|ck|2.

If {tk}k∈Z is a complete interpolating sequence for PW2
π then it follows from

Definition 3.36 that there exist two constants 0 < CRiesz
L , CRiesz

R <∞ such that

CRiesz
L ‖f‖PW2

π
≤
 ∞∑
k=−∞

|f(tk)|2
1/2

≤ CRiesz
R ‖f‖PW2

π
(3.62)

for all f ∈ PW2
π.

The norm equivalence (3.62) is very useful for the convergence analysis of the
sampling series (3.57). For f ∈ PW2

π we have∥∥∥∥∥∥f −
N∑

k=−N
f(tk)φk

∥∥∥∥∥∥
PW2

π

≤ 1
CRiesz

L

 ∞∑
l=−∞

∣∣∣∣∣∣f(tl)−
N∑

k=−N
f(tk)φk(tl)

∣∣∣∣∣∣
2


1/2

= 1
CRiesz

L

 ∑
|k|>N

|f(tk)|2
1/2

,

where we used (3.62) in the first inequality and (3.59) in the last equality. Since ∞∑
k=−∞

|f(tk)|2
1/2

≤ CRiesz
R ‖f‖2PW2

π
<∞,

according to (3.62), it follows that

lim
N→∞

 ∑
|k|>N

|f(tk)|2
1/2

= 0

and consequently

lim
N→∞

∥∥∥∥∥∥f −
N∑

k=−N
f(tk)φk

∥∥∥∥∥∥
PW2

π

= 0 (3.63)

for all f ∈ PW2
π. Moreover, since ‖f‖∞ ≤ ‖f‖PW2

π
, this implies that

lim
N→∞

∥∥∥∥∥∥f −
N∑

k=−N
f(tk)φk

∥∥∥∥∥∥
∞

= 0 (3.64)

for all signals f ∈ PW2
π.
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Example 3.37. The Shannon sampling series is a special case of the general sampling
series that are considered in this section. Let φ(t) = sin(πt) with zeros tk = k, k ∈ Z.
Then φ′(tk) = π cos(πtk) = π(−1)k and

φk(t) = φ(t)
φ′(tk)(t− tk)

= (−1)k sin(πt)
π(t− tk)

= sin(π(t− k))
π(t− k)

is the well-known sinc-kernel of the Shannon sampling series.

Remark 3.38. A well-known fact concerning the relationship between Riesz bases
and frames is the following [93, p. 157]. A sequence of vectors {φk}k∈Z in a separable
Hilbert space H is a Riesz basis if and only if it is an exact frame. For further
information about frames see for example [94].

3.3.2 Sine-Type Sampling Patterns

For arbitrary complete interpolating sequences, the functions φ can have a compli-
cated behavior, which makes an analysis of (3.57) difficult. Therefore we restrict
our analysis to sampling point sequences {tk}k∈Z ⊂ R that are given by the zeros
of functions of sine type in this section. In Lemma 3.41 we will see that all these
sequences are also complete interpolating sequences, which means that we restrict
our analysis to a subclass of complete interpolating sequences. The use of sine-type
functions makes the analysis easier because they have several helpful properties. In
order to illustrate them we discuss equivalent definitions and characterizations, and
state some of their key properties. For further information about sine-type functions
see [93] and [25].

Definition 3.39. An entire function f of exponential type π is said to be of sine
type if

i) the zeros of f are separated and simple, and

ii) there exist positive constants A, B, and H such that A eπ|y| ≤ |f(x + iy)| ≤
B eπ|y| whenever x and y are real and |y| ≥ H.

We use Definition 3.39 to define sine-type functions in this thesis. In addition to
Definition 3.39 there are other possible equivalent definitions that have advantages
as well. However, Definition 3.39 explicitly states the structure of sine-type functions
that we need to obtain our main results.
An equivalent definition [95] of sine-type functions is obtained if i) and ii) are

replaced by the conditions that

i’) the zeros of f are separated and lie in {z ∈ C : |Im(z)| ≤ h} for some h > 0,
and

ii’) there is a y0 ∈ R and A′, B′ > 0 such that A′ ≤ |f(x+ iy0)| ≤ B′ for all x ∈ R.
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The definitions presented so far are valid for arbitrary functions of sine type with
complex zeros. However, in this thesis we assume that all zeros are real. With this
restriction it is easier to characterize functions of sine type, because we can determine
whether a function φ is a function of sine type solely based on its behavior on the real
axis. We assume that {tk}k∈Z is a real complete interpolating sequence. Then the
generating function φ is not necessarily bounded on the real axis. However, according
to part ii) of Definition 3.39 and the Phragmén–Lindelöf Theorem [93, pp. 68], φ
has to be bounded on the real axis in order to be a sine-type function. This is the
first condition on φ, which refers only to its behavior on the real axis. Additionally,
we require that for every ε > 0 there is a constant C16(ε) > 0 such that

|φ(t)| ≥ C16(ε) (3.65)

for all t ∈ R \ ⋃k∈Z(tk − ε, tk + ε). Of course, every sine-type function fulfills
(3.65) [25, p. 163]. However, the converse is nontrivial and contained in the following
interesting result [96].

Let φ be the generating function of a real complete interpolating sequence {tk}k∈Z.
Then all zeros are simple, and we can assume without loss of generality that φ(t) > 0
for t ∈ (t0, t1). Next, consider the sequence {ck}k∈Z defined by

ck =
{

maxt∈(tk,tk+1) φ(t), for k even,
mint∈(tk,tk+1) φ(t), for k odd.

We have ck(−1)k > 0 for all k ∈ Z. φ is a function of sine type if and only if there
exist two constants A,B such that

0 < A ≤ |ck| ≤ B <∞ (3.66)

for all k ∈ Z [96]. Condition (3.66) implies that φ is bounded on the real axis and
that the maximum of |φ(t)| on [tk, tk+1] is bounded from below by a positive constant,
which is independent of k ∈ Z. Of course, the requirement (3.66) is weaker than
requirement (3.65) plus boundedness. Nevertheless, both conditions are sufficient
to characterize sine-type functions with real zeros that are a complete interpolating
sequence.

Example 3.40. sin(πz) is a function of sine type and its zeros are tk = k, k ∈ Z.

There is an important connection between the set of zeros {tk}k∈Z of a function of
sine type, the basis properties of the system of exponentials {eiωtk}k∈Z, and complete
interpolating sequences [93, pp. 143–144].

Lemma 3.41. If {tk}k∈Z ⊂ R is the set of zeros of a function of sine type, then
the system {eiωtk}k∈Z is a Riesz basis for L2[−π, π], and {tk}k∈Z is a complete
interpolating sequence for PW2

π.



3.3 Non-Equidistant Sampling 61

Proof. This lemma is a simple consequence of Theorems 9 and 10 on pages 143 and
144, respectively, in [93].

Lemma 3.41 implies that if φ is a function of sine type with zeros {tk}k∈Z ⊂ R
then {φk}k∈Z, where φk is given by (3.61), is a Riesz basis for PW2

π [25, p. 169,
Theorem 1].

In this section we analyze the convergence behavior of (3.57) for sampling points
{tk}k∈Z ⊂ R that are the zeros of some sine-type function. Since {tk}k∈Z is a also
complete interpolating sequence for PW2

π according to Lemma 3.41, it follows that
the product (3.60) converges uniformly on |z| ≤ R for all R <∞, and that φ is an
entire function of exponential type π. Moreover, it follows that (3.61) is the unique
function in PW2

π that solves the interpolation problem (3.59).
Although we restrict the sampling patterns to the zeros of functions of sine type,

there are many possible sampling patterns since the class of sine-type functions is
very large. In Section 3.3.6 we will present a possibility to construct such functions.

Two important properties of sine-type functions, which will be used in the proofs,
are stated in Lemmas 3.42 and 3.43.

Lemma 3.42. Let f be a function of sine type, whose zeros {λk}k∈Z are ordered
increasingly according to their real parts. Then we have

inf
k∈Z
|λk+1 − λk| ≥ δ > 0 (3.67)

and
sup
k∈Z
|λk+1 − λk| ≤ δ <∞ (3.68)

for some constants δ and δ.

Proof. Equation (3.67) follows directly from Definition 3.39 and the proof of (3.68)
can be found in [25, p. 164].

Lemma 3.43. Let f be a function of sine type. For each ε > 0 there exists a number
C17 > 0 such that

|f(x+ iy)| ≥ C17 eπ|y|

outside the circles of radius ε centered at the zeros of f .

Proof. A proof of Lemma 3.43 can be found in [93, p. 144].

For further information about sine-type functions see for example [25] and [93].
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3.3.3 Convergence Behavior without Oversampling

In this and the next section we analyze the sampling series (3.57) for signals from the
Bernstein spaces B∞βπ and B∞βπ,0. β = 1 corresponds to the case where no oversampling
is used and 0 < β < 1 to the case where oversampling is used. The case β = 1 is
analyzed in this section, whereas the case 0 < β < 1 is treated in Section 3.3.4.
The following lemma, which gives an upper bound on the increase of a function

f ∈ B∞βπ parallel to the imaginary axis, will be important to obtain the results.

Lemma 3.44. Let f ∈ B∞βπ, 0 < β ≤ 1. Then we have

|f(x+ iy)| ≤ eβπ|y|‖f‖∞ (3.69)

for all x, y ∈ R.

Proof. Lemma 3.44 is a consequence of the Phragmén–Lindelöf principle. For a proof
see [25, Lecture 6].

Lemma 3.44 enables us to derive some interesting convergence results for signals
from the Bernstein spaces B∞βπ and B∞βπ,0, 0 < β ≤ 1.

Local Convergence Behavior

Our first theorem shows that the approximation error is locally uniformly bounded
for all signals in B∞π .

Theorem 3.45. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58). Furthermore, let φk be defined as in
(3.61). Then, for all τ > 0 there exists a constant C18 = C18(τ) such that

sup
N∈N

max
t∈[−τ,τ ]

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ C18‖f‖∞

for all f ∈ B∞π .

For the proof of Theorem 3.45 we need the following lemma.

Lemma 3.46. Let φ be a function of sine type, whose zeros are all real, and Y0 > 0.
Then there exists a constant C19 such that, for all 0 < β ≤ 1, |Y | ≥ Y0, A,B ∈ R,
A ≤ B, t ∈ R, and f ∈ B∞βπ, we have

∫ B

A

∣∣∣∣f(x+ iY )
φ(x+ iY )

φ(t)
x+ iY − t

∣∣∣∣ dx ≤ (B −A)‖f‖∞‖φ‖∞
C19|Y |

.
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Proof. For all x, Y ∈ R, we have |f(x+ iY )| ≤ eβπ|Y |‖f‖∞ according to Lemma 3.44.
Furthermore, since φ is a function of sine type with all zeros being real, it follows from
Lemma 3.43 that there exists a positive constant C19 such that |φ(x+iY )| ≥ C19 eπ|Y |
for all x ∈ R and all |Y | ≥ Y0. Therefore, we obtain∫ B

A

∣∣∣∣f(x+ iY )
φ(x+ iY )

φ(t)
x+ iY − t

∣∣∣∣ dx ≤ ‖f‖∞‖φ‖∞
C19

∫ B

A

e−π(1−β)|Y |

|x+ iY − t| dx

≤ (B −A)‖f‖∞‖φ‖∞
C19|Y |

,

which completes the proof.

Proof of Theorem 3.45. Let τ > 0 and f ∈ B∞π be arbitrary but fixed and let

t̃n =
{

(tn+1 + tn)/2, for n ≥ 1
(tn−1 + tn)/2, for n ≤ −1.

(3.70)

Furthermore, consider, for N ∈ N and Y > 0, the path PN (Y ) in the complex plane
that is depicted in Fig. 3.1. For all N ∈ N and t ∈ R we have the equality

N∑
k=−N

f(tk)φk(t) = 1
2πi

∮
PN (Y )

φ(ζ)− φ(t)
ζ − t

f(ζ)
φ(ζ) dζ. (3.71)

Equation (3.71) can be easily seen by using the method of residues. Note that by the
choice of PN (Y ) we have φ(ζ) 6= 0 for all ζ ∈ PN (Y ). Furthermore, for all N ∈ N
and t ∈ R with t̃−N < t < t̃N , we have

1
2πi

∮
PN (Y )

φ(ζ)− φ(t)
ζ − t

f(ζ)
φ(ζ) dζ = 1

2πi

∮
PN (Y )

f(ζ)
ζ − t dζ − 1

2πi

∮
PN (Y )

φ(t)
ζ − t

f(ζ)
φ(ζ) dζ

= f(t)− 1
2πi

∮
PN (Y )

φ(t)
ζ − t

f(ζ)
φ(ζ) dζ. (3.72)

Combining (3.71) and (3.72), it follows that

f(t)−
N∑

k=−N
f(tk)φk(t) = 1

2πi

∮
PN (Y )

φ(t)
ζ − t

f(ζ)
φ(ζ) dζ (3.73)

for all N ∈ N and t ∈ R with t̃−N < t < t̃N .
According to Lemma 3.42 there exist two positive constants δ and δ such that (3.67)

and (3.68) are fulfilled. Next choose YN = Nδ, N ∈ N. Since |K|δ < |t̃K | < (|K|+1)δ,
K ∈ Z \ {0}, it follows that there are two positive constants C20 and C21 such that

Y|K|
C20

< |t̃K | <
Y|K|
C21

(3.74)
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iY

−iY

t−N−1 t−Nt̃−N tN+1tN t̃N

PN (Y ) z-plane

Figure 3.1: Path PN (Y ) in the complex plane.

for all K ∈ Z \ {0}.
Let N0 be the smallest natural number for which min(tN0 , |t−N0 |) > τ . By using

the identity (3.73), we obtain∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ 1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N + iy)
φ(t̃N + iy)

∣∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy

+ 1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃−N + iy)
φ(t̃−N + iy)

∣∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy

+ 1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )
φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx

+ 1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )
φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx (3.75)

for all N ≥ N0 and t ∈ [−τ, τ ]. Next, we will bound the right-hand side of (3.75)
from above by analyzing each integral separately. It is important that this bound is
independent of N .
For all x, y ∈ R, we have |f(x + iy)| ≤ eπ|y|‖f‖∞ according to Lemma 3.44.

Furthermore, since φ is a function of sine type it follows from (3.67) and Lemma 3.43
that there exists a constant C22 such that |φ(t̃K + iy)| ≥ C22 eπ|y| for all K ∈ Z \ {0}
and all y ∈ R. Consequently, for the first term on the right-hand side of (3.75) we
have

1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N + iy)
φ(t̃N + iy)

∣∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy ≤ ‖f‖∞‖φ‖∞

C22

1
2π

∫ YN

−YN

1
|t̃N + iy − t| dy

≤ ‖f‖∞‖φ‖∞
C22

YN
π(t̃N − τ)

≤ ‖f‖∞‖φ‖∞
C22

t̃NC20
(t̃N − τ)

for all N ≥ N0 and t ∈ [−τ, τ ], where we used (3.74) in the last inequality. Similarly,
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for the second term we obtain

1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃−N + iy)
φ(t̃−N + iy)

∣∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy ≤ ‖f‖∞‖φ‖∞

C22

YN
π(|t̃−N | − τ)

≤ ‖f‖∞‖φ‖∞
C22

|t̃−N |C20
(|t̃−N | − τ)

for all N ≥ N0 and t ∈ [−τ, τ ]. The third term on the right-hand side of (3.75) can
be bounded from above by using Lemma 3.46. For all N ≥ N0 we have

1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )
φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx ≤ ‖f‖∞‖φ‖∞
πC22

(t̃N − t̃−N )
2YN

≤ ‖f‖∞‖φ‖∞
πC22C21

,

where we used (3.74) again in the last inequality. Similarly, we obtain for the fourth
term that

1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )
φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx ≤ ‖f‖∞‖φ‖∞
πC22C21

for all N ≥ N0. Next, we choose N1 ≥ N0 such that

max
(

t̃N1

t̃N1 − τ
,
|t̃−N1 |
|t̃−N1 | − τ

)
≤ 2.

Note that N1 depends only on τ and not on f . Consequently, for all N ≥ N1 and
t ∈ [−τ, τ ], we have ∣∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ C23‖f‖∞,

where C23 is some constant.

Theorem 3.45 shows that the approximation error∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ (3.76)

is uniformly bounded on all compact subsets of R as N tends to infinity. If we
further assume that lim|t|→∞ f(t) = 0, i.e., that f ∈ B∞π,0, we can prove that the
approximation error (3.76) converges to zero uniformly on all compact subsets of R.
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Theorem 3.47. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58). Furthermore, let φk be defined as in
(3.61). Then, for all τ > 0 and all f ∈ B∞π,0 we have

lim
N→∞

max
t∈[−τ,τ ]

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ = 0.

Theorem 3.47 generalizes Brown’s Theorem (Theorem 3.6), where the uniform
convergence on compact subsets of R was stated for equidistant sampling and signals
in PW1

π, towards non-equidistant sampling and the larger signal space B∞π,0.

Proof of Theorem 3.47. Let τ > 0 and f ∈ B∞π,0 be arbitrary but fixed. Since
B∞π,0 ⊂ B∞π , it follows by Theorem 3.45 that there exists a constant C18 such that∣∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ C18‖f‖∞ (3.77)

for all N ∈ N and t ∈ [−τ, τ ]. In order to complete the proof, we use (3.77), the
fact that PW2

π is dense in B∞π,0, and the uniform convergence of the series for PW2
π.

Let ε > 0 be arbitrary but fixed. There exists a function fε ∈ PW2
π such that

‖f − fε‖∞ < ε. As a consequence, we have∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣f(t)− fε(t)−

N∑
k=−N

(f(tk)− fε(tk))φk(t)
∣∣∣∣∣∣+

∣∣∣∣∣∣fε(t)−
N∑

k=−N
fε(tk)φk(t)

∣∣∣∣∣∣
≤ C18‖f − fε‖∞ +

∣∣∣∣∣∣fε(t)−
N∑

k=−N
fε(tk)φk(t)

∣∣∣∣∣∣
≤ C18ε+

∣∣∣∣∣∣fε(t)−
N∑

k=−N
fε(tk)φk(t)

∣∣∣∣∣∣ (3.78)

for all N ∈ N and all t ∈ [−τ, τ ]. Furthermore, since fε ∈ PW2
π, we can use (3.64),

i.e., the uniform convergence of the series. It follows that there exists a natural
number N2(ε) such that ∣∣∣∣∣∣fε(t)−

N∑
k=−N

fε(tk)φk(t)

∣∣∣∣∣∣ < ε (3.79)

for all N ≥ N2(ε) and t ∈ R. Combining (3.78) and (3.79) gives

max
t∈[−τ,τ ]

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ (C18 + 1) ε
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for all N ≥ N2(ε), which completes the proof, because ε was arbitrary.

Although Theorem 3.47 states the local uniform convergence for all f ∈ B∞π,0, it
makes no assertion about the convergence speed. We have the following conjecture.

Conjecture 3.48. The convergence speed in Theorem 3.47 can be arbitrarily slow.
That is, for every τ > 0 and every positive sequence εN converging to zero, there
exists a signal f1 ∈ B∞π,0 such that

lim sup
N→∞

1
εN

max
t∈[−τ,τ ]

∣∣∣∣∣∣f1(t)−
N∑

k=−N
f1(tk)φk(t)

∣∣∣∣∣∣ =∞.

In Section 3.3.4 we will see that the situation is different if oversampling is used.
With oversampling it is possible to specify the convergence speed.

The next conjecture, Conjecture 3.49, makes a statement about the local conver-
gence behavior of the sampling series (3.57) for sampling patterns that are complete
interpolating sequences but where the sampling points are not the zeros of a sine-type
function.

Conjecture 3.49. For all τ > 0 there exist a complete interpolating sequence
{tk}k∈Z for PW2

π and a signal f1 ∈ B∞π,0 such that

lim
N→∞

max
t∈[−τ,τ ]

∣∣∣∣∣∣f1(t)−
N∑

k=−N
f1(tk)φk(t)

∣∣∣∣∣∣ =∞.

If Conjecture 3.49 is true, it shows the importance of the assumption in Theo-
rem 3.47 that φ is a sine-type function.

Global Convergence Behavior

In Theorem 3.11 we have shown for the space PW1
π and a large class of reconstruc-

tion processes that neither a globally uniformly convergent nor a locally uniformly
convergent and globally bounded signal reconstruction is possible if the samples are
taken equidistantly at Nyquist rate. In contrast, for non-equidistant sampling the
global convergence behavior of sampling based reconstruction processes is unknown
in general. By using non-equidistant sampling, an additional degree of freedom is
created, which may help to improve the convergence behavior. However, we suspect
that non-equidistant sampling is not capable to improve the global convergence
behavior.

In Theorem 3.47 we have seen that the sampling series (3.57) is locally uniformly
convergent for all signals in B∞π,0. Next, we show that the global behavior is different.
There are signals in B∞π,0 for which the peak value of the approximation error diverges.
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Theorem 3.50. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58). Furthermore, let φk be defined as in
(3.61). Then there exists a signal f1 ∈ B∞π,0 such that

lim sup
N→∞

max
t∈R

∣∣∣∣∣∣f1(t)−
N∑

k=−N
f1(tk)φk(t)

∣∣∣∣∣∣ =∞.

Proof. Let N ∈ N be arbitrary but fixed. For the operator AφN : B∞π,0 → B∞π,0, defined
by

(AφNf)(t) :=
N∑

k=−N
f(tk)φk(t), (3.80)

we analyze the operator norm

‖AφN‖ = sup
f∈B∞π,0
‖f‖∞≤1

‖AφNf‖∞.

For 0 < ε < 1, let
fε(t) = φ((1− ε)t)sin(επt)

επt
.

Note that fε ∈ B∞π,0. A simple calculation shows that limε→0 f
′
ε(t) = φ′(t) for all t ∈ R.

Next, choose a constant C24 > 0, so large that ‖f ′ε‖∞/C24 ≤ 1 for all 0 < ε < 1. It
follows that

‖AφN‖ ≥ lim
ε→0

1
C24

∣∣∣∣∣∣
N∑

k=−N
f ′ε(tk)φk(t̃N )

∣∣∣∣∣∣
= lim

ε→0

1
C24

∣∣∣∣∣∣
N∑

k=−N

f ′ε(tk)φ(t̃N )
φ′(tk)(t̃N − tk)

∣∣∣∣∣∣
= 1
C24

∣∣∣∣∣∣φ(t̃N )
N∑

k=−N

1
t̃N − tk

∣∣∣∣∣∣ , (3.81)

where t̃N = (tN+1+tN )/2. Because of (3.67) and Lemma 3.43, there exists a constant
C25 > 0 such that |φ(t̃N )| ≥ C25 for all N ∈ N. Furthermore, according to (3.68),
we have t̃N − tk ≤ (N + 1− k)δ for all |k| ≤ N , and it follows that

N∑
k=−N

1
t̃N − tk

≥
N∑

k=−N

1
(N + 1− k)δ

= 1
δ

2N+1∑
k=1

1
k
≥ 1
δ

log(2N + 2). (3.82)

Combining (3.81) and (3.82) gives

‖AφN‖ ≥
C25

C24δ
log(2N + 2).
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Thus, the Banach–Steinhaus theorem [78, p. 98] implies that there exists a signal
f1 ∈ B∞π,0 such that

lim sup
N→∞

max
t∈R

∣∣∣∣∣∣
N∑

k=−N
f1(tk)φk(t)

∣∣∣∣∣∣ =∞. (3.83)

Since ∣∣∣∣∣∣f1(t)−
N∑

k=−N
f1(tk)φk(t)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

N∑
k=−N

f1(tk)φk(t)

∣∣∣∣∣∣− ‖f1‖∞,

the proof is complete.

3.3.4 Convergence Behavior with Oversampling

Local Convergence Behavior

In Theorem 3.45, where we analyzed the sampling series (3.57) for signals in B∞π , we
could only prove the boundedness of the approximation error on compact subsets of
R, but not the convergence of the series. However, if we consider oversampling, i.e.,
signals in B∞βπ, 0 < β < 1, then the sampling series (3.57) is uniformly convergent on
all compact subsets of R.

Theorem 3.51. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58). Furthermore, let φk be defined as in
(3.61) and 0 < β < 1. Then, for all τ > 0 and all f ∈ B∞βπ we have

lim
N→∞

max
t∈[−τ,τ ]

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ = 0.

Proof. Let τ > 0 be arbitrary but fixed. We start with the same identity as in the
proof of Theorem 3.45, namely

f(t)−
N∑

k=−N
f(tk)φk(t) = 1

2πi

∮
PN (Y )

φ(t)
(ζ − t)

f(ζ)
φ(ζ) dζ, (3.84)

which is valid for all N ∈ N, Y > 0, and t ∈ R with t̃−N < t < t̃N . t̃N is defined
as in (3.70), and the integration path PN (Y ) is depicted in Fig. 3.1. Let N0 be the
smallest natural number for which N0δ > τ . Since t̃N ≥ Nδ for all N ∈ N, it follows
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that t̃N0 > τ . Furthermore, let YN = Nδ. By using the identity (3.84), we obtain∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ 1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N + iy)
φ(t̃N + iy)

∣∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy

+ 1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃−N + iy)
φ(t̃−N + iy)

∣∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy

+ 1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )
φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx

+ 1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )
φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx (3.85)

for all N ≥ N0 and all t ∈ [−τ, τ ]. Next, we will analyze each integral on the
right-hand side of (3.85) separately for N ≥ N0 and t ∈ [−τ, τ ].

Because of (3.67) and the definition of t̃N , it follows that the distance between t̃N
and the nearest zero of φ is at least δ/2. Hence, according to Lemma 3.43, there
exists a constant C26 > 0 such that |φ(t̃N + iy)| ≥ C26 eπ|y|. Therefore, for the first
integral we obtain

1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N + iy)
φ(t̃N + iy)

∣∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy ≤ ‖f‖∞‖φ‖∞2πC26(δ/2)

∫ YN

−YN

e−π(1−β)|y|

|t̃N + iy − t| dy, (3.86)

by using (3.69). Furthermore, we have
∫ YN

−YN

e−π(1−β)|y|

|t̃N + iy − t| dy ≤ 2
t̃N − τ

∫ YN

0
e−π(1−β)|y| dy

≤ 2
t̃N − τ

1− e−π(1−β)YN

π(1− β)

≤ 2
(Nδ − τ)π(1− β) . (3.87)

Combining (3.86) and (3.87) gives

1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N + iy)
φ(t̃N + iy)

∣∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy ≤ ‖f‖∞‖φ‖∞

π2C26(Nδ − τ)(1− β) . (3.88)

Similarly, for the second integral, we obtain

1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃−N + iy)
φ(t̃−N + iy)

∣∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy ≤ ‖f‖∞‖φ‖∞

π2C26(Nδ − τ)(1− β) .

Next, we treat the third integral on the right-hand side of (3.85). Since all zeros of φ
are real and YN = Nδ ≥ δ, it follows from Lemma 3.43 that there exists a constant
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C27 > 0 such that |φ(x+ iYN )| ≥ C27 eπYN for all x ∈ R. Thus, we obtain

1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )
φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx ≤ ‖f‖∞‖φ‖∞2πC27

∫ t̃N

t̃−N

e−π(1−β)YN

|x+ iYN − t|

≤ ‖f‖∞‖φ‖∞(t̃N − t̃−N )
2πC27YN

e−π(1−β)YN

≤ 2‖f‖∞‖φ‖∞
πC27

e−π(1−β)Nδ . (3.89)

by using Lemma 3.44 and the fact that t̃N − t̃−N ≤ (2N + 1)δ and YN = Nδ. For
the fourth integral we obtain the same upper bound

1
2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )
φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx ≤ 2‖f‖∞‖φ‖∞
πC27

e−π(1−β)Nδ . (3.90)

Finally, combining the partial results (3.88)–(3.90) with (3.85) yields∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ ‖f‖∞‖φ‖∞
(

2
π2C26(Nδ − τ)(1− β) + 4 e−π(1−β)Nδ

πC27

)
(3.91)

for N ≥ N0 and t ∈ [−τ, τ ]. Taking the maximum maxt∈[−τ,τ ] and the limit N →∞
on both sides of (3.91) completes the proof.

The proof of Theorem 3.51 shows the significance of oversampling. In (3.91) we
have an upper bound on the approximation error, which decreases asymptotically
like 1/N . In contrast, in Theorem 3.45, where we treated the situation without
oversampling, we only have the boundedness of the approximation error and no
statement whether the approximation error converges to zero as N goes to infinity.
Even in Theorem 3.47, where we proved the local uniform convergence for the subspace
B∞π,0 ⊂ B∞π , we have no such convergence speed. As formulated in Conjecture 3.48,
we conjecture that the convergence in Theorem 3.47 can be arbitrarily slow.

Global Convergence Behavior

The next two theorems treat the global convergence behavior of the sampling series
(3.57) if oversampling is used. For signals in B∞βπ, 0 < β < 1, the approximation
error is globally uniformly bounded.
Theorem 3.52. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58). Furthermore, let φk be defined as in
(3.61) and 0 < β < 1. Then, there exists a constant C28 such that

sup
N∈N

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ C28‖f‖∞

for all f ∈ B∞βπ.
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iY

−iY

t−M−1 t−Mt̃−M tN+1tN t̃N

PM,N (Y ) z-plane

Figure 3.2: Path PM,N (Y ) in the complex plane.

For the proof of Theorem 3.52 we need the following lemma.

Lemma 3.53. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58), 0 < β < 1, and t̃n as defined in (3.70).
Then there exist a constant C29 such that for all K ∈ Z \ {0}, Y > 0, t ∈ R with
|t− t̃K | ≥ δ, and f ∈ B∞βπ we have

∫ Y

−Y

∣∣∣∣∣f(t̃K + iy)
φ(t̃K + iy)

φ(t)
t̃K + iy − t

∣∣∣∣∣ dy ≤ 2‖f‖∞‖φ‖∞
πC29δ(1− β) .

Proof. For all x, y ∈ R, we have |f(x+ iy)| ≤ eβπ|y|‖f‖∞ according to Lemma 3.44.
Furthermore, since φ is a function of sine type it follows from Lemma 3.43 and (3.67)
that there exists a constant C29 such that |φ(t̃K + iy)| ≥ C29 eπ|y| for all K ∈ Z \ {0}
and y ∈ R. Therefore, we obtain

∫ Y

−Y

∣∣∣∣∣f(t̃K + iy)
φ(t̃K + iy)

φ(t)
t̃K + iy − t

∣∣∣∣∣ dy ≤ ‖f‖∞‖φ‖∞
C29

∫ Y

−Y

∣∣∣∣∣ e−π(1−β)|y|

t̃K + iy − t

∣∣∣∣∣ dy

≤ 2‖f‖∞‖φ‖∞
C29δ

∫ Y

0
e−π(1−β)y dy

≤ 2‖f‖∞‖φ‖∞
πC29δ(1− β) ,

which completes the proof.

Proof of Theorem 3.52. Let 0 < β < 1 and f ∈ B∞βπ be arbitrary but fixed. Further-
more, let t̃n be defined as in (3.70) and consider, for M,N ∈ N and Y > 0, the path
PM,N (Y ) in the complex plane that is depicted in Fig. 3.2.
For all M,N ∈ N and t ∈ R we have

N∑
k=−M

f(tk)φk(t) = 1
2πi

∮
PM,N (Y )

φ(ζ)− φ(t)
ζ − t

f(ζ)
φ(ζ) dζ. (3.92)
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Note that by the choice of PM,N (Y ) we have φ(ζ) 6= 0 for all ζ ∈ PM,N (Y ). If
t ∈ (t̃−M , t̃N ), we have

1
2πi

∮
PM,N (Y )

φ(ζ)− φ(t)
ζ − t

f(ζ)
φ(ζ) dζ = f(t)− 1

2πi

∮
PM,N (Y )

φ(t)
ζ − t

f(ζ)
φ(ζ) dζ, (3.93)

and, by combining (3.92) and (3.93), it follows that

f(t)−
N∑

k=−M
f(tk)φk(t) = 1

2πi

∮
PM,N (Y )

φ(t)
ζ − t

f(ζ)
φ(ζ) dζ (3.94)

for all M,N ∈ N and t ∈ (t̃−M , t̃N ). If t ∈ R \ [t̃−M , t̃N ] we have∮
PM,N (Y )

f(ζ)
ζ − t dζ = 0,

and it follows that
N∑

k=−M
f(tk)φk(t) = −1

2πi

∮
PM,N (Y )

φ(t)
ζ − t

f(ζ)
φ(ζ) dζ (3.95)

for all M,N ∈ N and t ∈ R \ [t̃−M , t̃N ].
Let N ∈ N, N > 2 be arbitrary, but fixed. According to Lemma 3.42 there exist

two positive constants δ and δ such that (3.67) and (3.68) are fulfilled. Next choose
YN = Nδ, N ∈ N. Without loss of generality, we can assume that t > 0, because
negative t are treated analogously to positive. We have to distinguish two cases, first
0 ≤ t ≤ t̃N , and second t > t̃N .
For 0 ≤ t ≤ t̃N we have∣∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ |f(tN+1)φN+1(t)|+
∣∣∣∣∣∣f(t)−

N+1∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣
≤ ‖f‖∞‖φN+1‖∞ +

∣∣∣∣∣∣f(t)−
N+1∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ . (3.96)

Furthermore, by using the identity (3.94), we obtain∣∣∣∣∣∣f(t)−
N+1∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ 1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N+1 + iy)
φ(t̃N+1 + iy)

∣∣∣∣∣ |φ(t)|
|t̃N+1 + iy − t| dy

+ 1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃−N + iy)
φ(t̃−N + iy)

∣∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy

+ 1
2π

∫ t̃N+1

t̃−N

∣∣∣∣f(x+ iYN )
φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx

+ 1
2π

∫ t̃N+1

t̃−N

∣∣∣∣f(x− iYN )
φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx. (3.97)
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Since t̃N+1 − t ≥ δ and t− t̃−N > δ, we can use Lemma 3.53 to bound the first and
second term on the right-hand side of (3.97) from above. In particular we get

1
2π

∫ YN

−YN

∣∣∣∣∣f(t̃N+1 + iy)
φ(t̃N+1 + iy)

∣∣∣∣∣ |φ(t)|
|t̃N+1 + iy − t| dy ≤ ‖f‖∞‖φ‖∞

π2C29δ(1− β) (3.98)

and
1

2π

∫ YN

−YN

∣∣∣∣∣f(t̃−N + iy)
φ(t̃−N + iy)

∣∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy ≤ ‖f‖∞‖φ‖∞

π2C29δ(1− β) , (3.99)

where C29 is some constant, which is independent of N . The third term on the
right-hand side of (3.97) is bounded from above by

1
2π

∫ t̃N+1

t̃−N

∣∣∣∣f(x+ iYN )
φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx ≤ (t̃N+1 − t̃−N )‖f‖∞‖φ‖∞
2πC19YN

≤ (2N + 3)δ‖f‖∞‖φ‖∞
2πC19Nδ

≤ C30‖f‖∞‖φ‖∞, (3.100)

because of Lemma 3.46 and (3.68). C30 is a constant, which is independent of N .
Analogously, the fourth term on the right-hand side of (3.97) is bounded above by

1
2π

∫ t̃N+1

t̃−N

∣∣∣∣f(x− iYN )
φ(x− iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx ≤ C30‖f‖∞‖φ‖∞. (3.101)

Combining (3.98), (3.99), (3.100), and (3.101) gives∣∣∣∣∣∣f(t)−
N+1∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ C31‖f‖∞‖φ‖∞,

which inserted in (3.96) leads to∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ ‖f‖∞(‖φN+1‖∞ + C31‖φ‖∞) (3.102)

if 0 < t ≤ t̃N . The constant C31 depends on β. Since we assumed β to be fixed
throughout the proof we suppress this dependence.
Next, we treat the case t > t̃N . We have∣∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ ‖f‖∞(1 + ‖φN‖∞) +

∣∣∣∣∣∣
N−1∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ . (3.103)

Using (3.95) and Lemma 3.53, the sum on the right-hand side of (3.103) can be
bounded from above, similarly to the previous case, by∣∣∣∣∣∣

N−1∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ C32‖f‖∞‖φ‖∞,
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where the constant C32 is independent of N . The dependence of C32 on β is
suppressed, because we assumed β to be fixed throughout the proof. Moreover, by
(3.103), we finally obtain∣∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ ‖f‖∞(1 + ‖φN‖∞ + C32‖φ‖∞). (3.104)

if t > t̃N .
From (3.102) and (3.104) we see that∣∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣∣ ≤ C33‖f‖∞

for all t > 0, with some constant C33 that is independent of t and N . Since N > 2
was arbitrary and the same upper bound holds for negative t, it follows that

sup
N∈N

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ C28‖f‖∞. (3.105)

Next, we can use Theorem 3.52 to derive the uniform convergence of the sampling
series (3.57) for signals in B∞βπ,0, 0 < β < 1.

Theorem 3.54. Let φ be a function of sine type, whose zeros {tk}k∈Z are all real
and ordered increasingly according to (3.58). Furthermore, let φk be defined as in
(3.61) and 0 < β < 1. Then, for all f ∈ B∞βπ,0, we have

lim
N→∞

max
t∈R

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ = 0.

Proof. From Theorem 3.52 we know that there exists a constant C28 such that∣∣∣∣∣∣f(t)−
N∑

k=−N
f(tk)φk(t)

∣∣∣∣∣∣ ≤ C28‖f‖∞

for all N ∈ N and all t ∈ R. Finally, the uniform convergence of the sampling
series (3.57) for PW2

βπ and the fact that PW2
βπ is dense in B∞βπ,0 together imply the

assertion.

Since PW1
βπ ⊂ B∞βπ,0, 0 < β < 1, the previous theorem also implies the global

uniform convergence of the sampling series (3.57) for signals in PW1
βπ, 1 < β < 1.

Remark 3.55. For the proof it was important to find the upper bound (3.105). A
closer look at the proof of Theorem 3.52 reveals that oversampling, i.e., β < 1, is
essential for the approach that was used to obtain (3.105). The same approach
cannot be used for β → 1 because the right-hand sides of (3.98) and (3.99) diverge.
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3.3.5 Discrete-Time Signals, Continuous-Time Signals, and Two
Interesting Open Questions

At the beginning of Chapter 3 we have discussed the correspondence between the
space B∞π of bounded bandlimited continuous-time signals and the space l∞ of
bounded discrete-time signals. We argued that a correspondence in the following
sense would be desirable:

i) Every continuous-time signal f ∈ B∞π leads to a bounded discrete-time signal
x = {f(tk)}k∈Z ∈ l∞ if it is sampled at the sampling points {tk}k∈Z, and

ii) for every discrete-time signal x = {xk}k∈Z ∈ l∞ there exists a continuous-time
signal f ∈ B∞π such that f(tk) = xk for all k ∈ Z.

However, ii) is not true in general. For equidistant sampling at Nyquist rate, a simple
bounded discrete-time signal x̃ = {x̃k}k∈Z ∈ l∞ was given in Theorem 3.2, for which
there exists no signal f ∈ B∞π such that f(k) = x̃k for all k ∈ Z. A valid question is
whether the situation improves if non-equidistant sampling patterns are used.

For convenience, we denote by S the set of all sampling patterns {tk}k∈Z ⊂ R that
are made of the zeros of sine-type functions.

Using Theorem 3.45, it follows immediately that the situation does not improve if
we consider non-equidistant sampling patterns from S. To see this, let t ∈ (t0, t1)
and choose the sequence {x∗k}k∈Z = {sgn(φk(t))}k∈Z, where sgn denotes the signum
function. We suppose there exists a signal f∗ ∈ B∞π such that f∗(tk) = x∗k for all
k ∈ Z and construct a contradiction. According to Theorem 3.45 there exists a
constant C18 such that ∣∣∣∣∣∣

N∑
k=−N

f∗(tk)φk(t)

∣∣∣∣∣∣ ≤ C18‖f∗‖∞ (3.106)

for all N ∈ N. On the other hand, for N ∈ N, we have

N∑
k=−N

f∗(tk)φk(t) =
N∑

k=−N
xkφk(t) =

N∑
k=−N

|φk(t)|

≥ |φ(t)|
π‖φ‖∞

N∑
k=−N

1
|t− tk|

≥ |φ(t)|
π‖φ‖∞

N∑
k=1

1
tk − t0

≥ |φ(t)|
δπ‖φ‖∞

N∑
k=1

1
k

≥ |φ(t)|
δπ‖φ‖∞

log(N + 1),

which is a contradiction to (3.106). This shows that the correspondence, which was
discussed above, does not exist, regardless what sampling pattern is chosen from S.
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First Open Question We have seen that ii) is not true in general. Next, we ask
whether at least a less stringent version of ii) is true. Does there exist a constant
C34 such that

‖f‖∞ ≤ C34 sup
k∈Z
|f(tk)| (3.107)

for all f ∈ B∞π,0? A relation like inequality (3.107) would be extremely helpful in
all applications where the peak value of the continuous-time signal ‖f‖∞ has to be
estimated from the peak value of the the samples supk∈Z|f(tk)|.
A potential application where the estimation of the peak value is relevant are

sensor networks that monitor the temperature in some area. It has to be ensured
that the peak temperature in the whole area is below some critical temperature
ϑc. If (3.107) was true we could conclude that the peak value of the temperature is
below ϑc if supk∈Z|f(tk)| < ϑc/C34, i.e., if the peak value of the samples is less than
ϑc/C34.

As explained before, OFDM transmission systems are another example where we
are interested in the peak value of the continuous-time signal.
Note the simplicity of the peak value estimation via (3.107). We do not have to

reconstruct the continuous-time signal according to some complicated reconstruction
process involving reconstruction functions that are difficult to compute in order to
obtain the peak value of the continuous-time signal.
Unfortunately, not even the weakened version of ii) as formulated above is true.

Using the results from Theorem 3.50, we can easily construct a contradiction, which
shows that (3.107) cannot be true. Let AφN be defined as in (3.80) and assume that
(3.107) is true for all f ∈ B∞π,0. From (3.83) in the proof of Theorem 3.50 we know
that there exists a signal f1 ∈ B∞π,0 such that

lim sup
N→∞

‖AφNf1‖∞ =∞. (3.108)

Since AφNf1 ∈ B∞π,0, we have

‖AφNf1‖∞ ≤ C34 sup
k∈Z
|(AφNf1)(tk)| ≤ C34 sup

k∈Z
|f1(tk)| ≤ C34‖f1‖∞

for all N ∈ N, according to the assumption and the fact that |(AφNf1)(tk)| ≤ |f1(tk)|,
N ∈ N. However, this is a contradiction to (3.108).
As we have seen in Theorems 3.51 and 3.54, oversampling can help improve the

convergence behavior of sampling series. So it is natural to ask whether the inequality
(3.107) is true if oversampling is used.

Question 3.56. Let 0 < β < 1 and {tk}k∈Z ∈ S. Does there exist a constant
C35 = C35(β) such that

‖f‖∞ ≤ C35 sup
k∈Z
|f(tk)| (3.109)

for all f ∈ B∞βπ?
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Of course, the peak value of f can be determined with arbitrarily high precision
from the samples {f(tk)}k∈Z because for 0 < β < 1 we know from Theorem 3.54
that limN→∞‖f −AφNf‖∞ = 0 for all f ∈ B∞βπ,0. Nevertheless, since this procedure
requires the computation of the reconstruction AφNf , it would be favorable to have
the relation (3.109).

For the special case of equidistant sampling it has been shown in [77] that (3.109)
is true. Moreover, the implication of this result on the PAPR problem of OFDM
systems has been analyzed in [97].

Example 3.57. Let 0 < β < 1 and tk = k, k ∈ Z. Then we have

‖f‖∞ ≤
1

cos
(
βπ
2

) sup
k∈Z
|f(k)|

for all f ∈ B∞βπ,0.

However, we do not know whether the relation (3.109) does also hold for arbitrary
sampling patterns {tk}k∈Z ∈ S.

Second Open Question A further interesting open question concerns the stability
of the sampling patterns with respect to jitter in the sampling points. Assume that
{tk}k∈Z is a given sampling pattern that is made of the zeros of some sine-type
function and consider the new sampling pattern {t∗k}k∈Z which is generated by
changing the location of each sampling point tk by some small amount εk, the
absolute value of which is bounded above by some constant δ. That is, consider
t∗k = tk + εk, where |εk| < δ for all k ∈ Z. The question is whether, for small enough
δ, the assertion of Theorem 3.47 is still true for this disturbed sampling pattern.
More precisely:

Question 3.58. Let {tk}k∈Z ∈ S. Does there exist a δ > 0 such that, given any
sampling point sequence {t∗k}k∈Z with |t∗k − tk| < δ for all k ∈ Z, we have

lim
N→∞

max
t∈[−τ,τ ]

∣∣∣∣∣∣f(t)−
N∑

k=−N
f(t∗k)φ∗k(t)

∣∣∣∣∣∣ = 0

for all τ > 0 and all f ∈ B∞π,0, where the φ∗k are constructed according to (3.61) and
(3.60), using the disturbed sapling points {t∗k}k∈Z.

Remark 3.59. For the sampling pattern tk = k, k ∈ Z, and δ < 1/4 we have
|t∗k − k| < δ, and, according to Kadec’s 1/4-theorem [93, p. 36], {t∗k}k∈Z is a
complete interpolating sequence for PW2

π. Thus, for this specific sampling pattern
the property of {tk}k∈Z being a complete interpolating sequence is preserved under
slight jitter of the sampling points. Certainly, this does not answer the question
whether {tk}k∈Z ∈ S implies {t∗k}k∈Z ∈ S.
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3.3.6 Construction of Sine-Type Functions and Sampling Patterns

In this section we present a method to construct sine-type functions and hence
possible sampling patterns.
Consider for an arbitrary function g ∈ PW1

π that is real on the real axis, with
‖g‖PW1

π
< 1, the function

φg(t) = g(t)− cos(πt). (3.110)

Functions of this kind were analyzed for example in [98], [99] and [100]. The next
theorem shows that the function φg is a function of sine type.

Theorem 3.60. Let g ∈ PW1
π be a function that is real on the real axis. Then

φg(t) = g(t)− cos(πt) is a function of sine type.

Proof. The zeros {tk}k∈Z of φg are all real and simple, because we assumed that
g is real-valued and ‖g‖∞ ≤ ‖g‖PW1

π
< 1 [101]. Moreover, we have φ′g(t) =

π sin(πt) + g′(t) and consequently, for 0 < ε < 1/2 and k ∈ Z,

|φ′g(k + ε)| ≥ π cos(πε)− |g′(k + ε)| ≥ π cos(πε)− π‖g‖∞.

Now, we choose ε1 > 0 such that π cos(πε1)− π‖f‖∞ > 0. Hence we have

max
t∈[k−ε1,k+ε1]

|φ′(t)| > 0

for all k ∈ Z. This shows that φ is either strictly increasing or strictly decreasing in
[k − ε1, k + ε1], and therefore has at most one zero in this interval. Furthermore, by
the Riemann–Lebesgue lemma, we have limt→∞ f(t) = 0. It follows that there exists
a T0 such that for all k with |tk| ≥ T0 there exists a nk ∈ Z such that |tk − nk| < ε1.
But, we know already that there is at most one zero in every interval [nk−ε1, nk+ε1],
k ∈ Z. This implies that nk+1 − nk ≥ 1 for all k with |tk| ≥ T0. It follows that
tk+1 − tk ≥ nk+1 − ε1 − (nk + ε1) ≥ 1 − 2ε1 for all k with |tk| ≥ T0. Since φg has
only finitely many zeros in [−T0, T0], we have infk∈Z|tk+1 − tk| > 0, i.e., the zeros
{tk}k∈Z are separated. Thus, item i) of Definition 3.39 is fulfilled.
Further, φg has the representation

φg(t) = 1
2π

∫ π

−π
ĝ(ω) eiωt dω − 1

2π

∫ π

−π
eiωt dµ1(ω)

= 1
2π

∫ π

−π
eiωt dµ2(ω)

as a Lebesgue–Stieltjes integral with

µ1(ω) =


0, ω < −π
− 1

2i , −π ≤ ω < π

0, ω ≥ π
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g(t)
cos(πt)
φg(t)

Figure 3.3: Construction of possible sine-type sampling patterns. φg is a sine-type
function and the black dots mark the positions of a possible sampling
pattern.

and µ2(ω) = −µ1(ω) + (1/(2π))
∫ ω
−π ĝ(ω1) dω1. The total variation Vµ2 [−π, π] of µ2

satisfies

Vµ2 [−π, π] ≤ Vµ1 [−π, π] + 1
2π

∫ π

−π
|ĝ(ω1)| dω1

≤ 1 + ‖g‖PW1
π

<∞,

which shows that µ2 is of bounded variation on [−π, π]. Moreover, µ2 has jump
discontinuities at each of the endpoints of the interval. Thus, it follows from [93, p.
143] that φg also satisfies item ii) of Definition 3.39, and hence is a sine-type
function.

Thus, by equation (3.110) we have a method to construct arbitrarily many functions
of sine type φg and hence arbitrarily many sampling patterns {tk}k∈Z for which the
theorems in Sections 3.3.3 and 3.3.4 are valid. The sampling points {tk}k∈Z are
nothing else than the crossings of some bandlimited function g ∈ PW1

π that is real
on the real axis and satisfies ‖g‖PW1

π
< 1, with the cosine function.

Example 3.61. In Fig. 3.3 the construction of a sine-type function and a sampling
pattern is illustrated. For the example we have chosen the function

g(t) = 9
10

sin
(

2
10πt− 1

)
2
10πt− 1

.



4
System Representations

In signal processing applications a main goal is to process signals. A widely used
method to perform such a processing is to use filters, i.e., linear time-invariant (LTI)
systems.
In general, a system T takes a signal f from some input space and produces an

output signal Tf in some output space. If the input and the output space consist
of analog signals—as it is the case in analog signal processing—we have to use an
“analog” system TA that maps analog signals in analog signals. This analog signal
processing is depicted in the upper half of Fig. 4.1.

The first question that we treat concerns the representation of stable LTI systems. A
common representation of stable LTI systems on PW2

π is the time domain convolution
representation where the system output signal is given by the convolution of the
system input signal with the impulse response of the system. However, this is not the
only possible representation. The problem of finding representations of stable LTI
systems has been studied for a long time, and several results for spaces of bandlimited
signals, which are larger than the space of bandlimited, finite energy signals, have
been presented [21, 47, 102–104]. In [21] Habib derived a convolution integral and
a series representation for systems operating on bandlimited signals in the Zakai
space [47,105]. In this chapter we analyze different system representations for the
spaces PW1

π and Bpπ, 1 < p <∞.
The second question that we treat is whether “analog” systems can be implemented

digitally. That is, given a stable “analog” system TA, can we implement this system
by a “digital” system TD that uses only the quantized samples of the signal. The
operation of the “digital” system is illustrated in the lower half of Fig. 4.1. In this
chapter we treat the simplified version of this question where the quantization is not
present. Quantization effects in the context of systems, i.e., the full problem, will be
analyzed in Section 6.3.
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f T Af

{xk}k∈Z

T A

Sampling,
Quantization

T D

“Analog” system

“Digital” system

?

Input signal space
(analog)

Output signal space
(analog)

Discrete-time signal space
(digital)

Figure 4.1: Analog versus digital signal processing.

4.1 Definitions and Notation

Before we continue the discussion, we briefly review some definitions and facts about
stable LTI systems. A linear system T : A → B, mapping signals from the input signal
space A to the output signal space B is called stable if the operator T is bounded,
i.e., if ‖T‖ = sup‖f‖A≤1‖Tf‖B < ∞. Furthermore, it is called time-invariant if
(Tf( · − a))(t) = (Tf)(t− a) for all f ∈ A and t, a ∈ R.
Remark 4.1. Note that our definition of stability is with respect to the norms
of the spaces A and B, and thus is different from the concept of bounded-input
bounded-output (BIBO) stability in general.
One important class of systems is the set of all stable LTI systems T : PW1

π →
PW1

π that map PW1
π into PW1

π. Important LTI systems like the Hilbert transform
and the ideal low-pass filter belong to this class. For every stable LTI system
T : PW1

π → PW1
π there exists exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) = 1
2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω (4.1)

for all f ∈ PW1
π. The operator norm of T is given by ‖T‖ = ‖ĥT ‖∞ and the impulse

response hT by hT = T sinc, where sinc(t) = sin(πt)/(πt) for t 6= 0 and sinc(t) = 1
for t = 0. Conversely, every function ĥT ∈ L∞[−π, π] defines a stable LTI system
T : PW1

π → PW1
π. Thus, the space of all stable LTI systems defined on PW1

π is
isometrically isomorphic to L∞[−π, π].

Furthermore, it can be shown that the representation (4.1) with a unique function
ĥT ∈ L∞[−π, π] is also valid for all stable LTI systems T : PW2

π → PW2
π and that
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all ĥT ∈ L∞[−π, π] define a stable LTI system T : PW2
π → PW2

π. Consequently, we
do not have to distinguish between stable LTI systems that map PW1

π into PW1
π

and stable LTI systems that map PW2
π into PW2

π, because both can be identified
with ĥ ∈ L∞[−π, π]. Therefore, every stable LTI system that maps PW1

π in PW1
π

maps PW2
π in PW2

π and vice versa.
Note that ĥT ∈ L∞[−π, π] ⊂ L2[−π, π] and consequently hT ∈ PW2

π. We always
assume that T is non-trivial, i.e., we assume that T is not the operator that maps
all input signals to the zero function.
Before we continue, we introduce the Hilbert transform and the ideal low-pass

filter, which will be needed subsequently and which serve as illustrative examples of
two stable LTI systems. Both systems are important in theoretical analyses [106,107].
Although it is not possible to realize them exactly in practice, they can be seen
as the limit case of realizable systems. The Hilbert transform Hf of a signal f is
defined by

(Hf)(t) := 1
2π

∫ ∞
−∞

(−i sgn(ω)
)
f̂(ω) eiωt dω,

where sgn denotes the signum function. It is well known that the Hilbert transform
H is a translation invariant, linear, and bounded operator that maps PWp

π into
PWp

π, 1 ≤ p ≤ ∞, and that ‖H‖ = sup‖f‖PWpπ≤1 ‖Hf‖PWp
π

= 1 for 1 ≤ p ≤ ∞.
This implies that H is a stable LTI system.

The Hilbert transform has many applications [106–108]. For example, in commu-
nication theory the Hilbert transform is used to define the analytical signal

f+ = f + iHf.

One of the key properties of the analytical signal is the fact that its Fourier transform
f̂+ is zero for negative frequencies. For f ∈ PW2

π the analytical signal f+ is well
defined, and we have

‖f+‖PW2
π
≤ ‖f‖PW2

π
+ ‖Hf‖PW2

π
= 2‖f‖PW2

π
.

The ideal low-pass filter Lωg : PW2
π → PW2

ωg with bandwidth 0 < ωg ≤ π is
defined by

(Lωgf)(t) := 1
2π

∫ ωg

−ωg
f̂(ω) eiωt dω.

Obviously, Lωg : PW2
π → PW2

ωg is, like the Hilbert transform, a stable LTI system
with ‖Lωg‖ = sup‖f‖PW2

π
≤1‖Lωgf‖PW2

π
= 1.

Remark 4.2. The mathematical theory of multipliers is closely related to the problems
analyzed in this chapter. The theory of multipliers studies integrals of the form (4.1)
or, more generally, linear operators that are defined in the frequency domain by a
multiplication of the Fourier transform of the signal with some other function. For
more information about multipliers we would like to refer the reader to [109].
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4.2 Possible Representations

Mathematically, a system is an operator, i.e., a rule by which an input signal is
transformed into an output signal. This operator can have different representations.
For example, one possible representation for stable LTI systems operating on signals
in PW2

π is the frequency domain representation (4.1).
In addition to the frequency domain representation, there are other representations

for stable LTI systems operating on signals in PW2
π. One is the following time

domain representation in the form of a convolution integral. For every stable LTI
system T : PW2

π → PW2
π we have

(Tf)(t) =
∫ ∞
−∞

f(t− τ)hT (τ) dτ =
∫ ∞
−∞

f(τ)hT (t− τ) dτ (4.2)

for all f ∈ PW2
π, where hT = T sinc ∈ PW2

π. Another representation is the discrete
counterpart of (4.2), the convolution sum

(Tf)(t) =
∞∑

k=−∞
f(k)hT (t− k). (4.3)

The representation (4.3) has the advantage that it uses only the samples {f(k)}k∈Z
of the input signal f to compute the system output Tf . We therefore call it
sampling-type representation.
However, for stable LTI systems operating on other signal spaces, a convolution

integral representation like (4.2) and a convolution sum representation like (4.3) do
not necessarily exist, because of convergence problems of the integrals and the sum.

In the next sections we will analyze the convergence behavior of (4.2) and (4.3) for
larger signal spaces than PW2

π. In Section 4.3 we analyze (4.2) and (4.3) for signals
in PW1

π. It will turn out that a time domain representation in the form of (4.2) or
(4.3) is not always possible for PW1

π, even in a distributional setting. Further, in
Section 4.4 we will show that the convolution sum (4.3) is a valid representation for
all stable LTI systems on Bpπ, 1 < p <∞.

4.3 Convolution-Type System Representations for
PW1

π

Many engineering books [110,111] give the impression that any LTI system T can
be represented as a convolution integral in the form

(Tf)(t) =
∫ ∞
−∞

f(τ)hT (t− τ) dτ, (4.4)

where hT is the impulse response of the system and f is the input signal. Of course
this is true for example for stable LTI systems operating on bandlimited signals with
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finite energy. However, it is not necessarily true for stable LTI systems acting on
other signal spaces. In [104] it has been shown that the integral in (4.4) is generally
not convergent for signals from the Paley–Wiener space PW1

π.
Although the integral in (4.4) does not necessarily exist in the classical sense

for PW1
π, it might be possible that it can still be meaningfully interpreted in a

distributional sense. Indeed, distributions can provide a way out of many convergence
problems that are present in the classical non-distributional setting. One example is
given by the convergence of Fourier series: It is well known that there are signals in
L1[−π, π] whose Fourier series diverge almost everywhere. In a distributional sense
however, the Fourier series converges for all signals in L1[−π, π]. This example shows
that there are situation where a distributional interpretation can resolve convergence
problems. Unfortunately, many engineering textbooks about LTI systems do not
treat distributions in a rigorous mathematical manner. Often heuristic arguments
prevail.
Another problem which has gained a lot of attention concerns the existence of

the impulse response for stable LTI systems operating on general, not necessarily
bandlimited, spaces, and the question whether the impulse response gives a complete
description of the system [112–115]. In [112] it was shown that the class of stable
(with respect to the L∞-norm) LTI systems that map bounded uniformly continuous
signals into bounded uniformly continuous signals contains systems whose impulse
response is the zero function, but which take certain inputs into nonzero outputs.
Consequently, there exist two different stable LTI systems that have the same impulse
response. [113] treats systems operating on bounded signals and finds a necessary
and sufficient under which a systems has the representation (4.4).
The fact that the impulse response hT may not exist is one reason why a rep-

resentation of the form (4.4) can be problematic. In [114, 115] LTI systems were
studied in a distributional way. The authors proved that in a distributional setting
and under certain assumptions, it is possible to define in a certain sense an impulse
response for every stable LTI system. One assumption that was made in order
to obtain their results was that the space of input signals contains the space of
test functions D. Since functions in D are compactly supported, they cannot be
bandlimited. Therefore, the results are not applicable for systems operating on
spaces of bandlimited signals.
Fortunately, we do not have to face these problems here: Since we consider

bandlimited input signals, the impulse response is always a well-defined bandlimited
function, which uniquely determines the system. However, although the impulse
response exists, it will turn out that stable LTI systems can generally not be
represented in the form (4.4) because the integral diverges. In contrast to the common
perception, this divergence cannot be circumvented by considering a distributional
setting.
In this section we analyze the distributional convergence behavior of the two
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convolution integrals

(ATNf)(t) :=
∫ N

−N
f(τ)hT (t− τ) dτ (4.5)

and
(BT

Nf)(t) :=
∫ N

−N
f(t− τ)hT (τ) dτ, (4.6)

and the convolution sum

(STNf)(t) :=
N∑

k=−N
f(k)hT (t− k) (4.7)

for signals f in the Paley–Wiener space PW1
π and stable LTI systems T : PW1

π →
PW1

π. We show that the perception that any stable LTI system acting on bandlim-
ited signals can—at least in a distributional setting—be represented as a convolution
integral is problematic and not justified in general. Moreover, we completely char-
acterize all stable LTI systems for which the approximation processes (4.5), (4.6),
and (4.7) converge to Tf for all f ∈ PW1

π as N tends to infinity, and compare the
distributional convergence behavior and the classical convergence behavior.

For practical applications we need the convergence of an approximation process for
all signals from the signal space because generally it is not known in advance which
signal from the signal space occurs in the application at hand. This is the reason
why we want to characterize the stable LTI systems T for which the approximation
processes (4.5), (4.6), and (4.7) converge for all f ∈ PW1

π.

4.3.1 Distributions and Convergence

In order to be able to state our key results, we additionally need the concept of
distributions. Distributions are continuous linear functionals on some space of test
functions. In this thesis we deal with two different test functions spaces. The first
one is the space D of all functions ϕ : R → C that have continuous derivatives of
all orders and are zero outside some finite interval. D′ denotes the dual space of
D, i.e., the space of all distributions that can be defined on D. The other space of
test functions that we use in this thesis is the Schwartz space S of all continuous
functions ϕ : R→ C that have continuous derivatives of all orders and fulfill

sup
t∈R
|taϕ(b)(t)| <∞

for all a, b ∈ N0 = N ∪ {0}. S ′ denotes the dual space of S. From the definition of
the spaces D and S, it follows immediately that D is a proper subspace of S, and
that S ′ is a proper subspace of D′. Furthermore, we have ‖ϕ‖∞ <∞ and ‖ϕ‖1 <∞
for all ϕ ∈ S, and consequently for all ϕ ∈ D. The Fourier transform maps the space
S onto itself. These properties of ϕ will be used extensively in the proofs.
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For a locally integrable functions g we can define the linear functional

ϕ 7→
∫ ∞
−∞

g(t)ϕ(t) dt (4.8)

on the space D. It can be proved that this functional is continuous and thus defines
a distribution [116]. If g further fulfills

∫ ∞
−∞
|g(t)|(1 + |t|)−m dt <∞

for some m ≥ 0 then (4.8) also defines a continuous linear functional on S. Distribu-
tions of the type (4.8) are called regular distributions.

A sequence of distributions {fk}k∈N in D′ is said to converge in D′ if for every ϕ ∈ D
the sequence of numbers {fkϕ}k∈N converges. Similarly, a sequence of distributions
{fk}k∈N in S ′ is said to converge in S ′ if for every ϕ ∈ S the sequence of numbers
{fkϕ}k∈N converges. Thus, a sequence of regular distributions, which is induced by
a sequence of functions {gk}k∈N according to (4.8), converges in S ′ if for every ϕ ∈ S
the sequence of numbers {∫∞−∞ gk(t)ϕ(t) dt}k∈N converges.
Convergence in S ′ and convergence in D′ are connected in the following way.

Observation 4.3. If {fk}k∈Z is a sequence in S ′ it is also a sequence in D′, and,
since D ⊂ S, convergence in S ′ implies convergence in D′.

For further details about distributions, and for a definition of convergence in the
test spaces, we would like to refer the reader to [116].

4.3.2 Convolution Integral

In this section we analyze the convergence behavior of the two convolution integrals
(4.5) and (4.6) for stable LTI systems T . Note that, for all N ∈ N, ATNf and BT

Nf
are bounded and continuous functions and therefore can be identified with a regular
distribution according to (4.8).
The theory for stable LTI systems operating on bandlimited signals with finite

energy is simple. It is well known that every stable LTI system T : PW2
π → PW2

π

has the representation

(Tf)(t) =
∫ ∞
−∞

f(t− τ)hT (τ) dτ =
∫ ∞
−∞

f(τ)hT (t− τ) dτ

with hT = T sinc ∈ PW2
π. That is, the system output is the convolution of the

system input with the impulse response hT of the system T .
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Example 4.4. For the ideal low-pass filter Lωg with bandwidth 0 < ωg ≤ π and the
Hilbert transform H we have the impulse responses

hLωg (t) = (Lωg sinc)(t) = sin(ωgt)
πt

and
hH(t) = (H sinc)(t) =

sin2 (π
2 t
)

π
2 t

.

However, the situation for signals f ∈ PW1
π is more difficult. In [104] it has been

shown that the convolution integrals (4.5) and (4.6) have a significantly different
convergence behavior. For example, it has been shown for the Hilbert transform that
(4.6) is globally uniformly convergent for all f ∈ PW1

π, but that there are signals
in PW1

π for which the peak value of (4.5) diverges. Further, the class of systems
for which (4.5) and (4.6) converge pointwise has been completely characterized. It
turned out that there are stable LTI systems for which the integrals (4.5) and (4.6)
diverge pointwise. More precisely, for every t ∈ R there is a stable LTI systems T
such that (4.5) diverges for some signal f ∈ PW1

π as N tends to infinity. The same
is true for the convolution integral (4.6).
Although the convolution integrals are not necessarily convergent in the classical

(pointwise) sense, it may be possible that (4.5) and (4.6), interpreted as a sequence of
regular distributions, converge in the distributional sense for all stable LTI systems
T and all f ∈ PW1

π. If this were true the common conception that every stable LTI
system has a time domain representation in the form of a convolution integral would
have a rigorous theoretical foundation for the space PW1

π, at least in a distributional
sense.

In this section we analyze this question and show that there are stable LTI systems
and signals in PW1

π for which (4.5) and (4.6) diverge even in the distributional sense.
Furthermore, we completely characterize all stable LTI systems for which we have
convergence in the distributional sense by giving a necessary and sufficient condition
for convergence. By characterizing the distributional convergence behavior we extend
the results from [104].

Convergence Behavior of the Convolution Integral I

We start our analysis with the convergence behavior of the convolution integral (4.5).
For notational convenience, we introduce the abbreviation

ATN,ϕf :=
∫ ∞
−∞

(ATNf)(t)ϕ(t) dt.

In the following theorem we completely characterize the stable LTI systems for
which (ATNf)(t) converges in the classical (pointwise) sense to (Tf)(t) for all f ∈ PW1

π.
Moreover, we characterize the stable LTI systems for which ATNf converges in the
distributional sense to Tf for all f ∈ PW1

π.



4.3 Convolution-Type System Representations for PW1
π 89

Theorem 4.5. Let T : PW1
π → PW1

π be a stable LTI system.

i) For all t ∈ R and all f ∈ PW1
π we have

lim
N→∞

|(Tf)(t)− (ATNf)(t)| = 0

if and only if there exists a constant C1 <∞ such that

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C1 (4.9)

for all N ∈ N. In addition, if (4.9) is not fulfilled, then for every t ∈ R there
exists a signal f1 ∈ PW1

π such that

lim sup
N→∞

|(ATNf1)(t)| =∞. (4.10)

ii) Moreover, we have

lim
N→∞

∣∣∣∣ATN,ϕf − ∫ ∞
−∞

(Tf)(t)ϕ(t) dt
∣∣∣∣ = 0 (4.11)

for all f ∈ PW1
π and all ϕ ∈ S if and only if for all ϕ ∈ S there exists a

constant C2 = C2(ϕ) <∞ such that

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)ϕ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C2(ϕ) (4.12)

for all N ∈ N. In addition, if (4.12) is not fulfilled for some ϕ ∈ S, then there
exists a signal f1 ∈ PW1

π such that

lim sup
N→∞

|ATN,ϕf1| =∞. (4.13)

Remark 4.6. Since (4.9) does not depend on t, we have the special situation that the
convergence of (ATNf)(t) for some t ∈ R and all f ∈ PW1

π implies the convergence of
(ATNf)(t) for all t ∈ R and all f ∈ PW1

π. Due to this special behavior we are able to
derive the interesting result in Theorem 4.16 that pointwise convergence for some
t ∈ R and all f ∈ PW1

π is equivalent to distributional convergence for all f ∈ PW1
π.

Moreover, we will see in Section 4.3.3 that the convolution sum does not possess this
behavior.

In addition to the pointwise convergence behavior, Theorem 4.5 characterizes the
convergence of ATNf in S ′. ATNf converges to Tf in S ′ for all f ∈ PW1

π if and only
if for all ϕ ∈ S there exists a constant C2(ϕ) such that (4.12) is fulfilled for all
N ∈ N. Moreover, if (4.12) is not fulfilled for some ϕ ∈ S then we have distributional
divergence of ATNf1 for some f1 ∈ PW1

π in the sense of (4.13).
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Remark 4.7. Note that
∫∞
−∞(Tf)(t)ϕ(t) dt is always some finite number because

Tf ∈ PW1
π is bounded. For this reason (4.13) implies that

lim sup
N→∞

∣∣∣∣ATN,ϕf1 −
∫ ∞
−∞

(Tf1)(t)ϕ(t) dt
∣∣∣∣ =∞.

For the proof of Theorem 4.5 we need Lemma 4.8, Lemma 4.9, and Lemma 4.11,
which in turn is based on Lemma 4.10. The proofs of Lemmas 4.8 and 4.9 are given
in Appendices A.3 and A.4.

Lemma 4.8. Let T : PW1
π → PW1

π be a stable LTI system, t ∈ R, and N ∈ N.
Then we have

sup
‖f‖PW1

π
≤1

∣∣∣(ATNf)(t)
∣∣∣ = max

ω∈[−π,π]

∣∣∣∣∣
∫ t+N

t−N
hT (τ) e−iωτ dτ

∣∣∣∣∣ .
Lemma 4.9. Let T be a stable LTI system, f ∈ PW1

π with ‖f‖PW1
π
≤ 1, t ∈ R, and

N ∈ N. Then we have

|(ATNf)(t)| ≤ ‖T‖ 2
π

(
π + 2

π
+ 2
π

log(2N − 1)
)
.

Lemma 4.10. For the operator U : PW1
π → C defined by

Uf = 1
2π

∫ π

−π
f̂(ω)K(ω) dω,

where K ∈ L∞[−π, π], we have

sup
‖f‖PW1

π
≤1
|Uf | = ‖K‖L∞[−π,π].

Proof. Lemma 4.10 is a direct consequence of Lemma 17 in [9].

Lemma 4.11. Let T : PW1
π → PW1

π be a stable LTI system, ϕ ∈ S, and N ∈ N.
Then we have

sup
‖f‖PW1

π
≤1
|ATN,ϕf | = max

ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)ϕ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ .
Proof. Let ϕ ∈ S, N ∈ N, and the stable LTI systems T be arbitrary but fixed. For
f ∈ PW1

π we have

ATN,ϕf =
∫ ∞
−∞

∫ N

−N
f(τ)hT (t− τ)ϕ(t) dτ dt

=
∫ ∞
−∞

∫ N

−N

1
2π

∫ π

−π
f̂(ω) eiωτ hT (t− τ)ϕ(t) dω dτ dt

= 1
2π

∫ π

−π
f̂(ω)

∫ N

−N
eiωτ

∫ ∞
−∞

hT (t− τ)ϕ(t) dt dτ dω,
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where the order of the integrals was interchanged according to Fubini’s theorem,
which is applicable because∫ ∞

−∞

∫ N

−N

1
2π

∫ π

−π
|f̂(ω) eiωτ hT (t− τ)ϕ(t)| dω dτ dt

≤ 2N‖hT ‖∞
∫ ∞
−∞

1
2π

∫ π

−π
|f̂(ω)ϕ(t)| dω dt

≤ 2N‖T‖ ‖f‖PW1
π
‖ϕ‖1 <∞. (4.14)

Moreover, since hT ∈ L2(R) and ϕ ∈ L2(R), we obtain∫ ∞
−∞

hT (t− τ)ϕ(t) dt = 1
2π

∫ π

−π
ĥT (ω1)ϕ̂(−ω1) e−iω1τ dω1

by applying the generalized Parseval equality. Thus, it follows that

ATN,ϕf = 1
2π

∫ π

−π
f̂(ω) 1

π

∫ π

−π
ĥT (ω1)ϕ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1 dω,

and the assertion is a direct consequence of Lemma 4.10

Now we are in the position to prove Theorem 4.5.
Remark 4.12. Part i) of Theorem 4.5 was proved in [104] by abstractly showing
the existence of the signal f1 using the Banach–Steinhaus theorem. In this thesis
we give an alternative proof, in which the divergence-creating signal f1 is explicitly
constructed.

Proof of Theorem 4.5. The proof is divided into two parts. In the first part we prove
the “⇐” direction of the first “if and only if” statement, and (4.10), which implies
the “⇒” direction of the first “if and only if” statement. In the second part we prove
the “⇐” direction of the “if and only if” statement, and second, the “⇒” direction
as well as (4.13).
First part, “⇐” direction: Let T be a stable LTI system and t ∈ R be arbitrary

but fixed. Now suppose (4.9) is true. Since∣∣∣∣∣
∫ t+N

t−N
e−iωτ hT (τ) dτ

∣∣∣∣∣
=
∣∣∣∣∣
∫ N

−N
e−iωτ hT (τ) dτ +

∫ t+N

N
e−iωτ hT (τ) dτ −

∫ t−N

−N
e−iωτ hT (τ) dτ

∣∣∣∣∣
≤
∣∣∣∣∣
∫ N

−N
e−iωτ hT (τ) dτ

∣∣∣∣∣+ 2|t| · ‖T‖

=
∣∣∣∣∣
∫ N

−N
e−iωτ 1

2π

∫ π

−π
ĥT (ω1) eiω1τ dω1 dτ

∣∣∣∣∣+ 2|t| · ‖T‖

=
∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣+ 2|t| · ‖T‖, (4.15)
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equation (4.9) implies that

max
ω∈[−π,π]

∣∣∣∣∣
∫ t+N

t−N
e−iωτ hT (τ) dτ

∣∣∣∣∣ ≤ C1 + 2|t| · ‖T‖ =: C3(t). (4.16)

Furthermore, let f ∈ PW1
π and ε > 0 be arbitrary. Since PW2

π is dense in PW1
π,

there exists a signal fε ∈ PW2
π with ‖f − fε‖PW1

π
< ε. Thus, according to (4.16) we

obtain

|(ATN (f − fe))(t)| =
∣∣∣∣∣
∫ N

−N
(f(τ)− fε(τ))hT (t− τ) dτ

∣∣∣∣∣
=
∣∣∣∣∣ 1
2π

∫ π

−π
(f̂(ω)− f̂ε(ω)) eiωt

∫ t+N

t−N
hT (τ) e−iωτ dτ dω

∣∣∣∣∣
≤ ‖f − fε‖PW1

π
max

ω∈[−π,π]

∣∣∣∣∣
∫ t+N

t−N
e−iωτ hT (τ) dτ

∣∣∣∣∣
< εC3(t)

for all N ∈ N. Moreover, we have∣∣∣(Tf)(t)− (ATNf)(t)
∣∣∣

=
∣∣∣∣∣(Tf)(t)− (Tfε)(t) + (Tfε)(t)− (ATNfε)(t) + (ATN (fε − f))(t)

∣∣∣∣∣
≤ ‖T‖‖f − fε‖PW1

π
+
∣∣∣(Tfε)(t)− (ATNfε)(t)

∣∣∣+ εC3(t). (4.17)

Since fε, hT ∈ PW2
π we obtain for fixed t ∈ R and all N ∈ N∫ N

−N
|fε(τ)||hT (t− τ)| dτ ≤ ‖fε‖2‖hT ‖2 <∞,

i.e. the function fε(τ)hT (t−τ) is absolutely integrable with respect to τ . Furthermore,
application of Parseval’s equation gives∫ ∞

−∞
fε(τ)hT (t− τ) dτ = 1

2π

∫ π

−π
f̂ε(ω)ĥT (ω) eiωt dω = (Tfε)(t),

where the last equality is due to (4.1). Thus, there exists a N0 = N0(ε, t) such that

∣∣∣(Tfε)(t)− (ATNfε)(t)
∣∣∣ =

∣∣∣∣∣(Tfε)(t)−
∫ N

−N
fε(τ)hT (t− τ) dτ

∣∣∣∣∣ < ε

for all N ≥ N0(ε, t). Consequently, using (4.17), we obtain∣∣∣(Tf)(t)− (ATNf)(t)
∣∣∣ < (‖T‖+ C3(t) + 1)ε
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for all N ≥ N0(ε, t), which completes the proof of the “⇐” direction of the first part.
First part, “⇒” direction: Let T be a stable LTI system and t ∈ R be arbi-

trary but fixed. We prove this direction by proving (4.10), i.e., by showing that
lim supN→∞

∣∣∣(ATNf1)(t)
∣∣∣ =∞ for some signal f1 ∈ PW1

π follows from

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ =∞. (4.18)

Since ∣∣∣∣∣
∫ t+N

t−N
e−iωτ hT (τ) dτ

∣∣∣∣∣ ≥
∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣− 2|t| · ‖T‖,

by the same considerations as in (4.15), equation (4.18) implies that

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣∣
∫ t+N

t−N
e−iωτ hT (τ) dτ

∣∣∣∣∣ =∞.

Thus, there exists a strictly increasing sequence {MN}N∈N of natural numbers such
that

C(N) := max
ω∈[−π,π]

∣∣∣∣∣
∫ t+MN

t−MN

e−iωτ hT (τ) dτ
∣∣∣∣∣

tends monotonically to infinity, i.e., we have limN→∞C(N) = ∞. Furthermore,
since PW2

π is dense in PW1
π, there is, according to Lemma 4.8, for every N ∈ N a

function fN ∈ PW2
π with ‖fN‖PW1

π
= 1 such that∣∣∣(ATMN

fN )(t)
∣∣∣ ≥ C(N)− 1. (4.19)

Moreover, since fN ∈ PW2
π, there exists for every ε > 0 a natural number K0 =

K0(ε,N) such that for all K ≥ K0 we have∣∣∣(ATKfN )(t)− (TfN )(t)
∣∣∣ < ε.

Next, we consider a sequence {Nk}k∈N of natural numbers that satisfies

C(Nk+1) ≥ 2C(Nk), (4.20)

√
C(Nk+1) ≥

√
2√

2− 1
5 log(2MNk), (4.21)

and for 1 ≤ l ≤ k − 1 ∣∣∣(ATMNk
fNl)(t)− (TfNl)(t)

∣∣∣ ≤ 1. (4.22)
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A direct consequence of (4.20) is the inequality

∞∑
k=1

1√
C(Nk)

≤ 1√
C(N1)

∞∑
k=0

1
2k/2

= 1√
C(N1)

√
2√

2− 1
. (4.23)

Furthermore, we define the signal f1 by

f1(t) :=
∞∑
k=1

1√
C(Nk)

fNk(t),

and since

‖f1‖PW1
π
≤
∞∑
k=1

1√
C(Nk)

‖fNk‖PW1
π
≤ 1√

C(N1)

√
2√

2− 1
,

where we used (4.23) in the last inequality, we have f1 ∈ PW1
π. For r ∈ N arbitrary,

we obtain

∣∣∣(ATMNr
fl)(t)

∣∣∣ =
∣∣∣∣∣
r−1∑
k=1

(ATMNr
fNk)(t)√

C(Nk)
+

(ATMNr
fNr)(t)√

C(Nr)
+

∞∑
k=r+1

(ATMNr
fNk)(t)√

C(Nk)

∣∣∣∣∣
≥

∣∣∣(ATMNr
fNr)(t)

∣∣∣√
C(Nr)

−
∣∣∣∣∣
r−1∑
k=1

(ATMNr
fNk)(t)√

C(Nk)

∣∣∣∣∣−
∣∣∣∣∣∣
∞∑

k=r+1

(ATMNr
fNk)(t)√

C(Nk)

∣∣∣∣∣∣ .
(4.24)

Next, the individual terms on right-hand side of (4.24) are analyzed. For the first
term we have ∣∣∣(ATMNr

fNr)(t)
∣∣∣√

C(Nr)
≥ C(Nr)− 1√

C(Nr)
,

because of (4.19). The second term is bounded above by∣∣∣∣∣
r−1∑
k=1

(ATMNr
fNk)(t)√

C(Nk)

∣∣∣∣∣ ≤ (1 + ‖T‖)
r−1∑
k=1

1√
C(Nk)

≤ (1 + ‖T‖) 1√
C(N1)

√
2√

2− 1

where we used inequality (4.23) and the fact that∣∣∣(ATMNr
fNk)(t)

∣∣∣ ≤ ∣∣∣(ATMNr
fNk)(t)− (TfNk)(t)

∣∣∣+ |(TfNk)(t)|
≤ 1 + ‖TfNk‖PW1

π
≤ 1 + ‖T‖,
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which is due to (4.22). Finally, using Lemma 4.9, we obtain∣∣∣∣∣∣
∞∑

k=r+1

(ATMNr
fNk)(t)√

C(Nk)

∣∣∣∣∣∣ ≤
∞∑

k=r+1

∣∣∣(ATMNr
fNk)(t)

∣∣∣√
C(Nk)

≤
∞∑

k=r+1

1√
C(Nk)

‖T‖ 2
π

(
π + 2

π
+ 2
π

log(2MNr − 1)
)

≤
∞∑

k=r+1

‖T‖5 log(2MNr)√
C(Nk)

for the third term. This can be further simplified according to
∞∑

k=r+1

‖T‖5 log(2MNr)√
C(Nk)

≤ ‖T‖5 log(2MNr)
∞∑

k=r+1

1√
C(Nr+1)

1√
2k−(r+1)

≤ ‖T‖5 log(2MNr)√
C(Nr+1)

∞∑
l=0

1
2l/2

= ‖T‖5 log(2MNr)√
C(Nr+1)

√
2√

2− 1
≤ ‖T‖,

by using (4.20) and (4.21). Summarizing we have∣∣∣(ATMNr
f1)(t)

∣∣∣ ≥ C(Nr)− 1√
C(Nr)

− (1 + ‖T‖) 1√
C(N1)

√
2√

2− 1
− ‖T‖. (4.25)

Since (4.25) is valid for arbitrary r ∈ N it follows that limr→∞
∣∣∣(ATMNr

f1)(t)
∣∣∣ =∞,

which completes the proof of the “⇒” direction of the first part.
Second part, “⇐” direction: Let f ∈ PW1

π, ϕ ∈ S, and ε > 0 be arbitrary but fixed.
Since PW2

π is dense in PW1
π, there exists a function fε ∈ PW2

π with ‖f−fε‖PW1
π
< ε.

According to Lemma 4.11 and the assumption (4.12) we have

ATN,ϕ(f − fε) ≤ ‖f − fε‖PW1
π

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)ϕ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ εC2(ϕ)

for all N ∈ N. Therefore, we obtain∣∣∣∣∫ ∞
−∞

(Tf)(t)ϕ(t) dt−ATN,ϕf
∣∣∣∣

=
∣∣∣∣∫ ∞
−∞

(T (f − fε))(t)ϕ(t) dt+
∫ ∞
−∞

(Tfε)(t)ϕ(t) dt−ATN,ϕfε −ATN,ϕ(f − fε)
∣∣∣∣

< ‖T‖ ‖f − fε‖PW1
π

∫ ∞
−∞
|ϕ(t)| dt+

∣∣∣∣∫ ∞
−∞

(Tfε)(t)ϕ(t) dt−ATN,ϕfε
∣∣∣∣+ εC2(ϕ)

< ε‖T‖ ‖ϕ‖1 +
∣∣∣∣∫ ∞
−∞

(Tfε)(t)ϕ(t) dt−ATN,ϕfε
∣∣∣∣+ εC2(ϕ). (4.26)
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Further, we have

ATN,ϕfε =
∫ ∞
−∞

(ATNfε)(t)ϕ(t) dt

=
∫ ∞
−∞

∫ N

−N
fε(t)hT (t− τ) dτϕ(t) dt.

Since fε, hT ∈ PW2
π,∣∣∣∣∣

∫ N

−N
fε(t)hT (t− τ) dτϕ(t)

∣∣∣∣∣ ≤
∫ ∞
−∞
|fε(t)hT (t− τ)| dτ |ϕ(t)|

≤ ‖fε‖2‖hT ‖2|ϕ(t)|,

and ϕ ∈ L1(R), we can apply Lebesgue’s dominated convergence theorem, which
leads to

lim
N→∞

ATN,ϕfε =
∫ ∞
−∞

∫ ∞
−∞

fε(t)hT (t− τ) dτϕ(t) dt

=
∫ ∞
−∞

(Tfε)(t)ϕ(t) dt,

where the last equality follows from∫ ∞
−∞

fε(τ)hT (t− τ) dτ = 1
2π

∫ π

−π
f̂ε(ω)ĥT (ω) eiωt

= (Tfε)(t),

according to the generalized Parseval equality. Thus, there is a N0 = N0(ε) such that∣∣∣∣∫ ∞
−∞

(Tfε)(t)ϕ(t) dt−ATN,ϕfε
∣∣∣∣ < ε (4.27)

for all N ≥ N0(ε). Combining (4.26) and (4.27), we obtain∣∣∣∣∫ ∞
−∞

(Tf)(t)ϕ(t) dt−ATN,ϕf
∣∣∣∣ < ε(‖T‖ ‖ϕ‖1 + C2(ϕ) + 1)

for all N ≥ N0(ε). This completes this part of the proof, because ε > 0 was arbitrary.
Second part, “⇒” direction: Let ϕ ∈ S be arbitrary but fixed. Since

|ATN,ϕf | ≤
∣∣∣∣ATN,ϕf − ∫ ∞

−∞
(Tf)(t)ϕ(t) dt

∣∣∣∣+ ∣∣∣∣∫ ∞
−∞

(Tf)(t)ϕ(t) dt
∣∣∣∣

for all N ∈ N and all f ∈ PW1
π, equation (4.11) and the fact that∣∣∣∣∫ ∞

−∞
(Tf)(t)ϕ(t) dt

∣∣∣∣ ≤ ‖T‖ ‖f‖PW1
π
‖ϕ‖1 <∞
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imply that supN∈N|ATN,ϕf | < ∞ for all f ∈ PW1
π. From (4.14) we see that ATN,ϕ :

PW1
π → C is a bounded linear operator for all N ∈ N. It follows from the Banach–

Steinhaus theorem [78, p. 98] that

sup
N∈N

sup
‖f‖PW1

π
≤1
|ATN,ϕf | <∞.

Consequently, we have

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)ϕ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ <∞,
by Lemma 4.11, which completes this part of the “if and only if” statement.
On the other hand if (4.12) is not fulfilled, i.e., if

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)ϕ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ =∞,

we have
sup
N∈N

sup
‖f‖PW1

π
≤1
|ATN,ϕf | =∞

according to Lemma 4.11. Thus, the Banach–Steinhaus theorem [78, p. 98] implies
that there exists a signal f1 ∈ PW1

π such that (4.13) is true. Using the same steps as
in the proof of the first part, it would be even possible to construct such a divergence
creating signal f1.

Remark 4.13. In the previous theorem we have seen that if (4.12) is not fulfilled
then there exists a signal f1 ∈ PW1

π such that ATNf1 diverges in S ′. In this case,
there is not only one single divergence creating signal. In fact, the set of signals for
which we have divergence is large: It is a residual set, i.e., the complement of a set
of the first category, and therefore it is dense in PW1

π [117, p. 12].
From the proof of part ii) of Theorem 4.5 we see that the same arguments hold if

we replace ϕ ∈ S with ϕ ∈ D. Thus, part ii) of Theorem 4.5 is also true if we replace
ϕ ∈ S with ϕ ∈ D. With that we also have a characterization of the convergence of
ATNf in D′.

Corollary 4.14. Part ii) of Theorem 4.5 remains true if ϕ ∈ S is replaced with
ϕ ∈ D.

In Theorem 4.17 we will show that there really exists a stable LTI system such
that (4.12) is not fulfilled for some ϕ ∈ D, i.e., that there exists a stable LTI system
T1 such that AT1

N f1 diverges in D′ for some f1 ∈ PW1
π.

It would be interesting to have a connection between the pointwise convergence
of ATNf , the convergence of ATNf in D′, and the convergence of ATNf in S ′. The
following lemma, the proof of which is given in Appendix A.5, is the main step
towards Theorem 4.16, where we identify this connection.
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Lemma 4.15. Let T : PW1
π → PW1

π be a stable LTI system.

i) If for all ϕ ∈ D there exists a constant C2 = C2(ϕ) < ∞ such that (4.12) in
Theorem 4.5 is fulfilled for all N ∈ N then there exists a constant C1 < ∞
such that (4.9) in Theorem 4.5 is fulfilled for all N ∈ N.

ii) Further, if there exists a constant C1 <∞ such that (4.9) in Theorem 4.5 is
fulfilled for all N ∈ N then, for all ϕ ∈ S there exists a constant C2 = C2(ϕ) <
∞ such that (4.12) in Theorem 4.5 is fulfilled for all N ∈ N.

Theorem 4.16 establishes the connection between the classical (pointwise) conver-
gence and the distributional convergence of ATNf .

Theorem 4.16. Let T : PW1
π → PW1

π be a stable LTI system. The following
statements are equivalent.

i) ATNf converges in D′ for all f ∈ PW1
π.

ii) ATNf converges in S ′ for all f ∈ PW1
π.

iii) (ATNf)(t) converges pointwise for some t ∈ R and all f ∈ PW1
π.

iv) (ATNf)(t) converges pointwise for all t ∈ R and all f ∈ PW1
π.

Proof. “iii) ⇒ ii)”: This follows from Theorem 4.5 i), Lemma 4.15 ii), and Theo-
rem 4.5 ii). “ii)⇒ i)”: Observation 4.3. “i)⇒ iv)”: This follows from Corollary 4.14,
Lemma 4.15 i), and Theorem 4.5 i). “iv)⇒ iii)”: Obvious.

In general, convergence in S ′ is a stronger statement than convergence in D′,
because the former implies the latter. However, in Theorem 4.16 we have the
situation that ATNf converges in S ′ if and only if it converges in D′.
Moreover, Theorem 4.16 shows that we do not gain anything regarding the

convergence behavior of ATNf for stable LTI systems T and signals f in PW1
π if we

consider the more relaxed concept of distributional convergence. If (ATNf)(t) diverges
in the classical (pointwise) sense for some signal f ∈ PW1

π and some t ∈ R then
ATNf diverges also in D′ and consequently in S ′ for some signal f ∈ PW1

π.
The following theorem states that there exists a stable LTI system T1 and a signal

f1 ∈ PW1
π such that AT1

N f1 diverges in D′ as N tends to infinity.

Theorem 4.17. There exists a stable LTI system T1 : PW1
π → PW1

π and a signal
f1 ∈ PW1

π such that
lim sup
N→∞

|AT1
N,ϕ1

f1| =∞ (4.28)

for some ϕ1 ∈ D.
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Proof. We can prove this theorem by finding an explicit system T1 such that

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT1(ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ =∞. (4.29)

Then it follows by Lemma 4.15 i) that there exists a ϕ1 ∈ D such that

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT1(ω1)ϕ̂1(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ =∞,

which in turn implies, by Corollary 4.14, that there exists a signal f1 ∈ PW1
π such

that (4.28) is true.
Next, we construct the system T1. To this end, consider

hH(t) = 1
2π

∫ π

−π
(−i sgn(ω)) eiωt dω =

sin2 (π
2 t
)

π
2 t

.

and the function hN , defined by

hN (τ) = hH(τ +N)− hH(τ −N)
2 .

It follows that
ĥN (ω) = sin(Nω) sgn(ω), |ω| ≤ π,

and ∫ N

−N
hN (τ) dτ = 1

2π

∫ π

−π
ĥN (ω)

∫ N

−N
eiωτ dτ dω

= 1
π

∫ π

−π
sin(Nω) sgn(ω)sin(Nω)

ω
dω

= 2
π

∫ π

0

sin2(Nω)
ω

dω

>
1
π

log(2N),

because

2
π

∫ π

0

sin2(Nω)
ω

dω =
∫ 2N

0

sin2 (π
2 τ
)

π
2 τ

dτ

>
2
π

2N−1∑
k=0

1
k + 1

∫ k+1

k
sin2

(
π

2 τ
)

dτ

= 1
π

2N−1∑
k=0

1
k + 1

>
1
π

log(2N). (4.30)
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Now let Nk = 2nk , k ∈ N, be a sequence of dyadic numbers, where {nk}∞k=1 is a
sequence of natural numbers satisfying nk+1 > nk, k ∈ N, and let {εk}∞k=1 be a
sequence of positive numbers with ∑∞k=1 εk <∞. Consider the function

ĥT1(ω) =
∞∑
k=1

εkĥNk(ω). (4.31)

Since
‖ĥT1‖L∞[−π,π] ≤

∞∑
k=1

εk‖ĥNk‖L∞[−π,π] ≤
∞∑
k=1

εk <∞,

the operator T1 defined by

(T1f)(t) = 1
2π

∫ π

−π
f̂(ω)ĥT1(ω) eiωt dω

is a stable LTI system, and the impulse response hT1 is a well defined continuous
function. Next, we analyze the integral

∫M
−M hT1(τ) dτ for arbitrary dyadic numbers

M ≥ 2. We have∫ M

−M
hT1(τ) dτ = 1

π

∫ π

−π
ĥT1(ω)sin(Mω)

ω
dω

=
∞∑
k=1

εk
1
π

∫ π

−π
sgn(ω) sin(Nkω)sin(Mω)

ω
dω

=
∞∑
k=1

εk
2
π

∫ π

0
sin(Nkω)sin(Mω)

ω
dω. (4.32)

The right-hand side of (4.32) is further analyzed. For all k ∈ N and M = Nk we
have

2
π

∫ π

0
sin(Nkω)sin(Mω)

ω
dω ≥ 1

π
log(2Nk).

Furthermore, for every k ∈ N and M 6= Nk we can decompose the integral into three
parts by splitting the integration interval and using the identity for the product of
sine functions

2
π

∫ π

0
sin(Nkω)sin(Mω)

ω
dω = 2

π

∫ δ

0
sin(Nkω)sin(Mω)

ω
dω

+ 1
π

∫ π

δ

cos((M −Nk)ω)
ω

dω

− 1
π

∫ π

δ

cos((M +Nk)ω)
ω

dω.

By choosing δ̄k,M = π/(2|Nk −M |) it can be shown that, for all k ∈ N and Nk,M
dyadic with Nk 6= M , ∣∣∣∣∣ 2π

∫ δ̄k,M

0
sin(Nkω)sin(Mω)

ω
dω
∣∣∣∣∣ ≤ 1,
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∣∣∣∣∣ 1π
∫ π

δ̄k,M

cos((M −Nk)ω)
ω

dω
∣∣∣∣∣ ≤ C4

and ∣∣∣∣∣ 1π
∫ π

δ̄k,M

cos((M +Nk)ω)
ω

dω
∣∣∣∣∣ ≤ C5.

Hence, for Nk,M dyadic and Nk 6= M we have∣∣∣∣ 2π
∫ π

0
sin(Nkω)sin(Mω)

ω
dω
∣∣∣∣ ≤ C6

for all k ∈ N. By setting M = Nr, we obtain∣∣∣∣∣
∫ Nr

−Nr
hT1(τ) dτ

∣∣∣∣∣ ≥ εr 1
π

log(2Nr)− C6

∞∑
k=1
k 6=r

εk.

The function hT1 , which was defined in (4.31), certainly depends on the concrete
choice of the sequences {εk}∞k=1 and {Nk}∞k=1. We can choose εk = 1/k2 and
Nk = 2(k3). Then the function hT1 satisfies∣∣∣∣∣

∫ Nr

−Nr
hT1(τ) dτ

∣∣∣∣∣ ≥ 1
π

1
r2 log

(
2(r3)

)
− C6

∞∑
k=1
k 6=r

1
k2 ≥

log(2)
π

r − C6
π2

6

and consequently

lim sup
N→∞

∣∣∣∣∣
∫ N

−N
hT1(τ) dτ

∣∣∣∣∣ =∞.

Moreover, since

lim sup
N→∞

∣∣∣∣∣
∫ N

−N
hT1(τ) dτ

∣∣∣∣∣ ≤ lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣∣
∫ N

−N
e−iωτ hT1(τ) dτ

∣∣∣∣∣
= lim sup

N→∞
max

ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT1(ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ,
we have (4.29).

Theorem 4.17 shows that a convolution-type representation of stable LTI systems
in the form (4.5) is not possible in general for the space PW1

π, even if the convergence
is treated in the distributional sense. In Theorem 4.23 we will see that the same is
true for the second convolution integral (4.6).
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Test Signals

Before we treat the second convolution integral, we give an interesting interpretation
of condition (4.9) in terms of test signals. Since

1
π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1 =

∫ N

−N
eiωτ hT (−τ) dτ

= (ATN eiω · )(0) (4.33)

we see that (4.9) is equivalent to

max
ω∈[−π,π]

|(ATNf test
ω )(0)| ≤ C1,

where f test
ω (t) = eiωt. Thus, we can regard the exponential function eiωt as a test

signal. If |(ATNf test
ω )(0)| is uniformly bounded for all test signals f test

ω , where the
parameter ω ranges from −π to π, and all N ∈ N, then ATNf converges pointwise,
and due to Theorem 4.16 also in S ′, for all f ∈ PW1

π. That is, we have

lim
N→∞

∣∣∣∣ATN,ϕf − ∫ ∞
−∞

(Tf)(t)ϕ(t) dt
∣∣∣∣ = 0

for all f ∈ PW1
π and all ϕ ∈ S.

However, the converse statement might be more useful in practice. If we find one
test signal f test

ω1 , ω1 ∈ [−π, π], such that

lim
N→∞

|(ATNf test
ω1 )(0)| =∞

then we have both pointwise divergence and divergence in D′. That is, there exists a
signal f1 ∈ PW1

π such that

lim sup
N→∞

|ATN,ϕ1f1| =∞

for some ϕ1 ∈ D.
Although the test signals do not belong to the signal space PW1

π, they have an
appealingly simple structure. They are just scaled versions of one basic function eit.

Convergence Behavior of the Convolution Integral II

Now we treat (4.6), i.e., the second convolution integral.
The next theorem analyzes the global convergence behavior of BT

N and the dis-
tributional convergence behavior of BT

N in S ′. For each type of convergence, we
completely characterize the stable LTI systems T for which BT

Nf converges to Tf
for all f ∈ PW1

π, by giving a necessary and sufficient condition for convergence.
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Theorem 4.18. Let T : PW1
π → PW1

π be a stable LTI system.

i) For all f ∈ PW1
π we have

lim
N→∞

‖Tf −BT
Nf‖∞ = 0 (4.34)

if and only if there exists a constant C7 <∞ such that

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C7 (4.35)

for all N ∈ N. In addition, if (4.35) is not fulfilled, then there exists a signal
f1 ∈ PW1

π such that
lim sup
N→∞

‖BT
Nf1‖∞ =∞.

ii) Moreover, we have

lim
N→∞

∣∣∣∣BT
N,ϕf −

∫ ∞
−∞

(Tf)(t)ϕ(t) dt
∣∣∣∣ = 0

for all f ∈ PW1
π and all ϕ ∈ S if and only if for all ϕ ∈ S there exists a

constant C8 = C8(ϕ) <∞ such that

max
ω∈[−π,π]

∣∣∣∣ϕ̂(−ω) 1
π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C8(ϕ) (4.36)

for all N ∈ N. In addition, if (4.36) is not fulfilled for some ϕ ∈ S, then there
exists a signal f1 ∈ PW1

π such that

lim sup
N→∞

|BT
N,ϕf1| =∞.

The proof of Theorem 4.18 is done analogously to the proof of Theorem 4.5.
We see that the conditions (4.9) and (4.35) are the same. Therefore, ATNf converges

pointwise for all f ∈ PW1
π if and only if BT

Nf converges uniformly for all f ∈ PW1
π.

Example 4.19. For the Hilbert transform H and the ideal low-pass filter Lωg with
bandwidth 0 < ωg ≤ π, the condition (4.35) is fulfilled. Thus, for all f ∈ PW1

π, we
have (4.34), i.e., uniform convergence of BH

N f and BLωg
N f .

Moreover, Theorem 4.18 gives a necessary and sufficient condition for the conver-
gence of BT

Nf in S ′. BT
Nf converges to Tf in S ′ for all f ∈ PW1

π if and only if for
all ϕ ∈ S there exists a constant C8(ϕ) such that (4.36) is fulfilled for all N ∈ N.

Since the proof of part ii) of Theorem 4.18 is analogous to the proof of Theorem 4.5,
we have the same situation here and can replace ϕ ∈ S with ϕ ∈ D. This observation
leads to the next corollary about the convergence of BT

Nf in D′.
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Corollary 4.20. Part ii) of Theorem 4.18 remains true if ϕ ∈ S is replaced with
ϕ ∈ D.

Corollary 4.20 provides a necessary and sufficient condition for the convergence of
BT
Nf in D′. BT

Nf converges to Tf in D′ for all f ∈ PW1
π if and only if for all ϕ ∈ D

there exists a constant C8(ϕ) such that (4.36) is fulfilled for all N ∈ N.
Of course we are again interested in a connection between the uniform convergence

of BT
Nf , the convergence of BT

Nf in D′, and the convergence of BT
Nf in S ′. The

following lemma, the proof of which is given in Appendix A.6, is the main step
towards Theorem 4.22, where we identify this connection.

Lemma 4.21. Let T : PW1
π → PW1

π be a stable LTI system.

i) If for all ϕ ∈ D there exists a constant C8 = C8(ϕ) < ∞ such that (4.36) in
Theorem 4.18 is fulfilled for all N ∈ N then there exists a constant C7 < ∞
such that (4.35) in Theorem 4.18 is fulfilled for all N ∈ N.

ii) Further, if there exists a constant C7 <∞ such that (4.35) in Theorem 4.18
is fulfilled for all N ∈ N then, for all ϕ ∈ S, there exists a constant C8 =
C8(ϕ) <∞ such that (4.36) in Theorem 4.18 is fulfilled for all N ∈ N.

Theorem 4.22 shows that again we do not have to distinguish between convergence
in D′ and convergence in S ′ because they are equivalent.

Theorem 4.22. Let T : PW1
π → PW1

π be a stable LTI system. The following
statements are equivalent.

i) BT
Nf converges in D′ for all f ∈ PW1

π.

ii) BT
Nf converges in S ′ for all f ∈ PW1

π.

iii) BT
Nf converges uniformly on all of R for all f ∈ PW1

π.

Proof. “iii) ⇒ ii)”: This follows from Theorem 4.18 i), Lemma 4.21 ii), and The-
orem 4.18 ii). “ii) ⇒ i)”: Observation 4.3. “i) ⇒ iii)”: This follows from Corol-
lary 4.20, Lemma 4.21 i), and Theorem 4.18 i).

With Corollary 4.20 we have completely characterized all stable LTI systems T
for which BT

Nf converges in D′ for all f ∈ PW1
π. Next we show that there actually

exists a stable LTI system T1 such that BT1
N f1 diverges in D′ for some f1 ∈ PW1

π.

Theorem 4.23. There exists a stable LTI system T1 : PW1
π → PW1

π and a signal
f1 ∈ PW1

π such that
lim sup
N→∞

|BT1
N,ϕ1

f1| =∞ (4.37)

for some ϕ1 ∈ D.
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Proof. In the proof of Theorem 4.17 we have constructed a stable LTI system T1
such that

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT1(ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ =∞.

It follows from Lemma 4.21 i) that there exists a ϕ1 ∈ D such that

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ϕ̂1(−ω) 1
π

∫ π

−π
ĥT1(ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ =∞,

which in turn implies, by Corollary 4.20, that there exists a signal f1 ∈ PW1
π for

which (4.37) is true.

Comparison of the Convergence of the Convolution Integrals I and II

In general, the convolution integrals (4.5) and (4.6) have a different convergence
behavior. This can be seen for example, if the stable LTI system is the Hilbert
transform H. For the Hilbert transform, BH

N f is uniformly convergent for all
f ∈ PW1

π. In contrast, AHNf is not uniformly convergent for all f ∈ PW1
π because

the peak value of AHNf1 diverges for some signal f1 ∈ PW1
π.

Theorem 4.24. We have
lim
N→∞

‖Hf −BH
N f‖∞ = 0

for all f ∈ PW1
π, but there exists a signal f1 ∈ PW1

π such that

lim sup
N→∞

‖Hf1 −AHNf1‖∞ =∞.

For completeness, the proof of Theorem 4.24 is given in Appendix A.7.
Next, we compare the distributional convergence behavior of the convolution

integrals. Since the conditions (4.9) and (4.35) are the same, i.e., since ATNf converges
pointwise for all f ∈ PW1

π if and only if BT
Nf converges uniformly on all of R for all

f ∈ PW1
π, we can combine Theorem 4.16 and Theorem 4.22 to obtain the following

interesting result about the distributional convergence behavior of the convolution
integrals ATNf and BT

Nf .

Corollary 4.25. Let T : PW1
π → PW1

π be a stable LTI system. The following
statements are equivalent.

i) ATNf converges in S ′ for all f ∈ PW1
π.

ii) ATNf converges in D′ for all f ∈ PW1
π.

iii) BT
Nf converges in S ′ for all f ∈ PW1

π.

iv) BT
Nf converges in D′ for all f ∈ PW1

π.
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Corollary 4.25 shows that both convolution integrals ATNf and BT
Nf have the

same distributional convergence behavior. Thus, there is a difference between the
classical convergence behavior of the convolution integrals and the distributional
convergence behavior. In the classical setting, the integrals (4.5) and (4.6) exhibit
a different convergence behavior, whereas in the distributional setting we do not
have to distinguish between the integrals because both have the same convergence
behavior.

4.3.3 Convolution Sum

The discrete counterpart of the convolution integral (4.5), which is given by the
convolution sum (4.7), naturally emerges from the finite Shannon sampling series

(SNf)(t) :=
N∑

k=−N
f(k) sinc(t− k)

when some LTI operator T is applied because

(TSNf)(t) =
N∑

k=−N
f(k)(T sinc( · − k))(t)

=
N∑

k=−N
f(k)hT (t− k)

= (STNf)(t).

The sum in (4.7) is important for practical applications because it uses only the
samples {f(k)}k∈Z of the signal f . If (STNf)(t) converges to (Tf)(t) for all t ∈ R as
N tends to infinity, then (STNf)(t) can be used to approximate (Tf)(t). Of course
the convergence of (STNf)(t) is not guaranteed and depends on the signal f and the
stable LTI system T .
For signals in PW2

π the situation is simple, because we have

(Tf)(t) =
∞∑

k=−∞
f(k)hT (t− k)

for all stable LTI systems T : PW2
π → PW2

π and all signals f ∈ PW2
π. This is due to

the convergence of the Shannon sampling series in the PW2
π-norm and the continuity

and linearity of T .
Unfortunately, for signals f ∈ PW1

π and stable LTI systems T operating on PW1
π,

(STNf)(t) does not always converge to (Tf)(t). There are stable LTI systems T for
which (STNf)(t) diverges for some signal f ∈ PW1

π [13,118]. In part i) of Theorem 4.26
we characterize the stable LTI systems T for which (STNf)(t) converges pointwise to
(Tf)(t) for all f ∈ PW1

π.
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Further, we analyze the distributional convergence behavior of STNf . For this
purpose we introduce the abbreviation

STN,ϕf :=
∫ ∞
−∞

(STNf)(t)ϕ(t) dt.

In part ii) of Theorem 4.26 we characterize the stable LTI systems T for which the
convolution sum STNf converges in S ′ for all f ∈ PW1

π.
Theorem 4.26. Let T : PW1

π → PW1
π be a stable LTI system.

i) For all t ∈ R and all f ∈ PW1
π we have

lim
N→∞

|(Tf)(t)− (STNf)(t)| = 0

if and only if there exists a constant C9 = C9(t) <∞ such that

max
ω∈[−π,π]

∣∣∣∣∣ 1
2π

∫ π

−π
ĥT (ω1) eiω1t

sin
[(
N + 1

2
)

(ω − ω1)
]

sin
(ω−ω1

2
) dω1

∣∣∣∣∣ ≤ C9(t) (4.38)

for all N ∈ N. In addition, if (4.38) is not fulfilled, then there exists a signal
f1 ∈ PW1

π such that
lim sup
N→∞

|(STNf1)(t)| =∞.

ii) Moreover, we have

lim
N→∞

∣∣∣∣STN,ϕf − ∫ ∞
−∞

(Tf)(t)ϕ(t) dt
∣∣∣∣ = 0

for all f ∈ PW1
π and all ϕ ∈ S if and only if for all ϕ ∈ S there exists a

constant C10 = C10(ϕ) <∞ such that

max
ω∈[−π,π]

∣∣∣∣∣ 1
2π

∫ π

−π
ĥT (ω1)ϕ̂(−ω1)

sin
[(
N + 1

2
)

(ω − ω1)
]

sin
(ω−ω1

2
) dω1

∣∣∣∣∣ ≤ C10(ϕ) (4.39)

for all N ∈ N. In addition, if (4.39) is not fulfilled for some ϕ ∈ S, then there
exists a signal f1 ∈ PW1

π such that

lim sup
N→∞

|STN,ϕf1| =∞.

Part i) of Theorem 4.26 was proved in [118], and the proof of part ii) is done
analogously to the proof of part ii) of Theorem 4.5.

Like the proofs of the Theorems 4.5 and 4.18, the proof of Theorem 4.26 does not
rely on the fact that ϕ ∈ S. All these arguments also hold if ϕ ∈ D. This observation
leads to the following corollary about the convergence of STNf in D′.
Corollary 4.27. Part ii) of Theorem 4.26 remains true if ϕ ∈ S is replaced with
ϕ ∈ D.

In Theorem 4.30 we will use the characterization that is provided by Corollary 4.27
to show that there exists a stable LTI system T1 for which ST1

N f1 diverges in D′ for
some f1 ∈ PW1

π.
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4.3.4 Differences Between the Convolution Integral and the
Convolution Sum

In Theorem 4.5 we have the special situation that the convergence of (ATNf)(t) for
one t ∈ R and all f ∈ PW1

π implies the convergence of (ATNf)(t) for all t ∈ R and
all f ∈ PW1

π. In this section we investigate the question whether the convolution
sum exhibits the same behavior, i.e., whether the convergence of (STNf)(t) for one
t ∈ R and all f ∈ PW1

π implies the convergence of (STNf)(t) for all t ∈ R and all
f ∈ PW1

π. Despite the obvious similarities between the convolution integral and the
convolution sum, the surprising answer to this question is no.

Theorem 4.28. For every t ∈ R and every t∗ ∈ R \ (t+Z) there exists a stable LTI
system T1 : PW1

π → PW1
π such that

lim
N→∞

|(T1f)(t)− (ST1
N f)(t)| = 0 (4.40)

for all f ∈ PW1
π and

lim sup
N→∞

|(ST1
N f1)(t∗)| =∞ (4.41)

for some f1 ∈ PW1
π.

Proof. Let t ∈ R and t∗ ∈ R\(t+Z) be arbitrary but fixed. According to Theorem 4.26
i) and the equality

1
2π

∫ π

−π
ĥT (ω1) eiω1t

sin
[(
N + 1

2
)

(ω − ω1)
]

sin
(ω−ω1

2
) dω1

= 1
2π

∫ π

−π
ĥT (ω1) eiω1t

N∑
k=−N

eik(ω−ω1) dω1

=
N∑

k=−N
hT (t− k) eiωk,

we have (4.40) for all f ∈ PW1
π if and only if

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
hT1(t− k) eiωk

∣∣∣∣∣∣ <∞. (4.42)

Furthermore, we have (4.41) for some f1 ∈ PW1
π if and only if

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
hT1(t∗ − k) eiωk

∣∣∣∣∣∣ =∞. (4.43)

Thus, we have to show that there exists a stable LTI system T1 such that (4.42) and
(4.43) is true.
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To this end, we consider the space K that consists of all functions h with a
representation h(τ) = 1/(2π)

∫ π
−π ĥ(w) eiωτ dω, t ∈ R, for some ĥ ∈ C[−π, π] and

with finite norm

‖h‖K,t := ‖ĥ‖∞ + sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
h(t− k) eiωk

∣∣∣∣∣∣ .
The space K, equipped with the norm ‖ · ‖K,t is a Banach space. We prove this
fact, which will become important at the end of this proof, in Appendix A.8. Next,
we consider the sequence of bounded linear operators {UN}N∈N that map K into
(C[−π, π], ‖ · ‖L∞[−π,π]), defined by

(UNh)(ω) =
N∑

k=−N
h (t∗ − k) eiωk .

Further, we need the functions hn, n ∈ N, given by

hn(τ) = sin(π(τ − n− t))
2π(τ − n− t)

and the fact that
hn (t∗ − k) = (−1)k+n sin(π(t∗ − t))

2π(t∗ − t− k − n)
for all k ∈ Z. Since

‖hn‖K,t = 1
2 + sup

N∈N
max

ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N

sin(π(k + n))
2π(k + n)

eiωk

∣∣∣∣∣∣ = 1,

we have

‖UN‖ = sup
‖h‖K,t≤1

max
ω∈[−π,π]

|(UNh)(ω)|

≥ max
ω∈[−π,π]

|(UNhN )(ω)|

= max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N

(−1)k+N sin(π(t∗ − t))
2π(t∗ − t− k −N)

eiωk

∣∣∣∣∣∣
≥
∣∣∣∣∣∣sin(π(t∗ − t))

2π

N∑
k=−N

(−1)k
t∗ − t− k −N eiπk

∣∣∣∣∣∣
=

∣∣∣∣∣∣sin(π(t∗ − t))
2π

N∑
k=−N

1
t∗ − t− k −N

∣∣∣∣∣∣
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for all N ∈ N. Moreover, for K0 = max(dt∗ − te, 1) and N ≥ K0 we obtain∣∣∣∣∣∣
N∑

k=−N

1
t∗ − t− k −N

∣∣∣∣∣∣ =
∣∣∣∣∣

2N∑
k=0

1
k − (t∗ − t)

∣∣∣∣∣
≥

2N∑
k=K0

1
k − (t∗ − t) −

∣∣∣∣∣∣
K0−1∑
k=0

1
k − (t∗ − t)

∣∣∣∣∣∣
≥

2N∑
k=K0

∫ k+1

k

1
τ − (t∗ − t) dτ − C11

=
∫ 2N+1

K0

1
τ − (t∗ − t) dτ − C11

= log
(2N + 1− (t∗ − t)

K0 − (t∗ − t)

)
− C11.

Since C11 is some constant, which is independent of N , we see that

lim
N→∞

∣∣∣∣∣∣
N∑

k=−N

1
t∗ − t− k −N

∣∣∣∣∣∣ =∞,

which implies that supN∈N‖UN‖ = ∞. Thus, according to the Banach–Steinhaus
theorem [78, p. 98] there exists a function hT1 ∈ K such that

lim sup
N→∞

‖UNhT1‖L∞[−π,π] = lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
hT1(t∗ − k) eiωk

∣∣∣∣∣∣ =∞.

By the definition of the space K, hT1 fulfills

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
hT1(t− k) eiωk

∣∣∣∣∣∣ <∞.
So T1 is the desired stable LTI system.

According to Theorem 4.28 we cannot conclude the convergence of (STNf)(t) for all
t ∈ R and all f ∈ PW1

π from the convergence of (STNf)(t) for some fixed t ∈ R and all
f ∈ PW1

π. This is in contrast to the situation in Theorem 4.5 (compare Remark 4.6)
where exactly this was possible. Consequently, for (STNf)(t) we cannot obtain an
equivalence like the equivalence between item iii) and item iv) in Theorem 4.16.
Nevertheless, it would be satisfying if the convergence types

S1) STNf converges in D′ for all f ∈ PW1
π,

S2) STNf converges in S ′ for all f ∈ PW1
π,
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S3) (STNf)(t) converges pointwise for all t ∈ R and all f ∈ PW1
π, and,

S4) (STNf)(t) converges uniformly on all compact subsets of R for all f ∈ PW1
π

could be related to each other. In general, the analysis of the convolution sum
(STNf)(t) is more intricate than the analysis of the convolution integral, because of
the periodicity of the Dirichlet kernel

sin
[(
N + 1

2
)

(ω)
]

sin
(
ω
2
) .

We do not fully know the relation between S1), S2), S3), and S4). However, we have
the following connections.

Theorem 4.29. Let T : PW1
π → PW1

π be a stable LTI system.

i) S2) implies S1).

ii) S2) implies S3).

iii) S4) implies S1).

Proof. i): Observation 4.3.
ii): Let t ∈ R be arbitrary but fixed. Since STNf converges in S ′ for all f ∈ PW1

π

there exists, according to part ii) of Theorem 4.26, for every ϕ ∈ S a constant C10(ϕ)
such that (4.39) is true for all N ∈ N. For the specific ϕ1 ∈ S with ϕ̂1(ω) = e−iωt

for ω ∈ [−π, π] we obtain

max
ω∈[−π,π]

∣∣∣∣∣ 1
2π

∫ π

−π
ĥT (ω1) eiω1t

sin
[(
N + 1

2
)

(ω − ω1)
]

sin
(ω−ω1

2
) dω1

∣∣∣∣∣ ≤ C10(ϕ1)

for all N ∈ N. Thus, the assertion follows from part i) of Theorem 4.26.
iii): Let ϕ ∈ D be arbitrary but fixed. Since ϕ is concentrated on some compact

set I ⊂ R, we have

STN,ϕf =
∫ ∞
−∞

(STNf)(t)ϕ(t) dt =
∫
I
(STNf)(t)ϕ(t) dt.

It follows that

lim
N→∞

STN,ϕf =
∫
I

lim
N→∞

(STNf)(t)ϕ(t) dt

=
∫
I
f(t)ϕ(t) dt

=
∫ ∞
−∞

f(t)ϕ(t) dt,

because (STNf)(t) converges uniformly on I by assumption. Since ϕ ∈ D was arbitrary,
the proof is complete.
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From the results in [13,118] it can be seen that there exists a stable LTI system
T1 such that (ST1

N f1)(t) diverges for some t ∈ R and f1 ∈ PW1
π. Hence, item ii) of

Theorem 4.29 implies that ST1
N f1 diverges in S ′ for some f1 ∈ PW1

π. This shows
that there are stable LTI systems for which the convolution sum diverges even in
S ′. However, since we do not know whether S1) implies S3), we cannot immediately
conclude the divergence of ST1

N f1 in D′. Regardless, the following theorem shows
that we have this divergence.
Theorem 4.30. There exists a stable LTI system T1 : PW1

π → PW1
π and a signal

f1 ∈ PW1
π such that

lim sup
N→∞

|ST1
N,ϕ1

f1| =∞

for some ϕ1 ∈ D.
Proof. Using the characterization that was provided by Corollary 4.27, we have to
show that there exists a stable LTI system T1 and a function ϕ1 ∈ D such that

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣ 1
2π

∫ π

−π
ĥT1(ω1)ϕ̂1(−ω1)

sin
[(
N + 1

2
)

(ω − ω1)
]

sin
(ω−ω1

2
) dω1

∣∣∣∣∣ =∞. (4.44)

Let
ĥT,N (ω1) = sgn

(
sin
[(
N + 1

2
)

(ω1)
]

sin
(ω1

2
) )

,

and choose some ϕ1 ∈ D such that ϕ̂1 is real valued and ϕ̂1(ω) ≥ 1 for all ω ∈ [−π, π].
Next, we analyze the sequence of bounded linear functionals KN : L∞[−π, π]→ C,
N ∈ N, given by

KNf = 1
2π

∫ π

−π
f(ω1)ϕ̂1(−ω1)

sin
[(
N + 1

2
)

(ω1)
]

sin
(ω1

2
) dω1.

For N ∈ N, we have

|KN ĥT,N | =
1

2π

∫ π

−π
ϕ̂1(−ω1)

∣∣∣∣∣sin
[(
N + 1

2
)

(ω1)
]

sin
(ω1

2
) ∣∣∣∣∣ dω1

≥ 1
2π

∫ π

−π

∣∣∣∣∣sin
[(
N + 1

2
)

(ω1)
]

sin
(ω1

2
) ∣∣∣∣∣ dω1

≥ 2
π2 log(1 +N),

where the last inequality follows from the well-known divergence of the L1-norm of
the Dirichlet kernel [78, p. 102]. It follows that

‖KN‖ = sup
‖ĥT ‖L∞[−π,π]≤1

|KN ĥT |

≥ |KN ĥT,N |

≥ 2
π2 log(1 +N)
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for all N ∈ N, and consequently that supN∈N‖KN‖ = ∞. Thus, the Banach–
Steinhaus theorem [78, p. 98] implies that there exists a ĥT1 ∈ L∞[−π, π] such
that

sup
N∈N

∣∣∣∣∣ 1
2π

∫ π

−π
ĥT1(ω1)ϕ̂1(−ω1)

sin
[(
N + 1

2
)

(ω1)
]

sin
(ω1

2
) dω1

∣∣∣∣∣ =∞. (4.45)

The proof is complete because (4.45) implies (4.44).

Although we cannot say whether S3) is a necessary condition for S1), we see from
Theorem 4.30 that there are stable LTI systems and signals in PW1

π such that the
convolution sum (4.7) diverges in D′. In this regard, we have the same situation as
in Section 4.3.2, where we analyzed the convolution integral: The divergence of the
convolution sum in the classical, non-distributional setting cannot be circumvented
by considering the more relaxed concept of distributional convergence. Therefore,
a convolution-type representation of stable LTI systems in the form (4.7) is not
possible in general for the space PW1

π, even if the convergence is treated in the
distributional sense.

4.3.5 Discussion

In this section we analyzed the convergence behavior of three commonly used time
domain convolution-type system representations—two convolution integrals (4.5),
(4.6) and one convolution sum (4.7)—for the Paley–Wiener space PW1

π. Although
the convolution integrals have a different classical convergence behavior, it turned out
that they have the same distributional convergence behavior. Unfortunately, there
exist stable LTI systems and signals for which the convolution integrals diverge even
in a distributional sense. The same holds for the convolution sum. Hence, the more
relaxed concept of distributional convergence cannot circumvent the convergence
problems of the convolution integrals and the convolution sum that are encountered
in the classical, non-distributional setting. This result is interesting because it shows
that a convolution-type time domain representation of stable LTI systems operating
on PW1

π is not always possible, even though such systems always have a frequency
domain representation. Further, we completely characterized all stable LTI systems
for which a convolution-type system representation is possible.
Although the convergence of the analyzed convolution-type system representa-

tions (4.5)–(4.7) is problematic, it is not obvious what other—more complicated—
representations exist, which are convergent for all stable LTI systems and all signals
in PW1

π. To find such representations, especially for important systems like the
Hilbert transform, would be a challenging task for further research.
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4.4 Sampling-Type System Representations for Bpπ,
1 < p <∞

Although for PW1
π, a sampling-type representation does not necessarily exist for all

stable LTI systems, because STNf diverges even in a distributional sense for some
signal f ∈ PW1

π and some stable LTI system T : PW1
π → PW1

π, we can find a
positive result for signals from the spaces Bpπ, 1 < p <∞.

The next theorem shows that STNf can be used to approximate Tf for all signals
f ∈ Bpπ, 1 < p <∞ and all stable LTI systems T : Bpπ → Bpπ.

Theorem 4.31. Let 1 < p < ∞. For all f ∈ Bpπ and all stable LTI systems
T : Bpπ → Bpπ we have

lim
N→∞

‖STNf − Tf‖Bpπ = 0.

Proof. According to (3.14) we have

‖SNf − f‖Bpπ ≤ CR(p)

 ∑
|k|>N

|f(k)|p
1/p

and consequently
lim
N→∞

‖SNf − f‖Bpπ = 0 (4.46)

because  ∞∑
k=−∞

|f(k)|p
1/p

≤ ‖f‖B
p
π

CL(p) .

Since T is linear and continuous (4.46) implies that

lim
N→∞

‖STNf − Tf‖Bpπ = 0.

Remark 4.32. For signals f ∈ Bpπ, 1 < p < ∞, the convergence of TSNf is in the
Bpπ-norm, and, due to ‖f‖∞ ≤ C12(p)‖f‖Bpπ , also globally uniform.

4.5 Non-Equidistant Sampling

In Theorem 4.28 we have seen that for every t ∈ R there exists a stable LTI system
T1 : PW1

π → PW1
π and a signal f1 ∈ PW1

π such that

lim sup
N→∞

∣∣∣∣∣∣
N∑

k=−N
f1(k)hT1(t− k)

∣∣∣∣∣∣ =∞.

Next, we consider more flexible sampling patterns. By using non-equidistant sampling,
an additional degree of freedom is created, which may help to improve the convergence
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behavior. We will analyze whether this additional degree of freedom can be exploited
to construct approximation processes that are convergent for all signals in PW1

π and
all stable LTI systems. More precisely, we analyze the convergence behavior of the
sampling series

N∑
k=−N

f(tk)(Tφk)(t), (4.47)

for stable LTI systems T : PW1
π → PW1

π and signals f ∈ PW1
π. We consider

sampling patterns {tk}k∈Z ⊂ R that are a complete interpolating sequence for PW2
π.

The reconstruction functions φk, k ∈ Z, are defined as in (3.61).
Before we treat (4.47) for PW1

π we review the situation for signals in PW2
π. If the

sequence of sampling points {tk}k∈Z is a complete interpolating sequence for PW2
π,

sampling based signal processing is possible for f ∈ PW2
π, because for all stable LTI

systems T : PW2
π → PW2

π and f ∈ PW2
π we have∥∥∥∥∥∥Tf −

N∑
k=−N

f(tk)Tφk

∥∥∥∥∥∥
PW2

π

=

∥∥∥∥∥∥T
f −

 N∑
k=−N

f(tk)φk

∥∥∥∥∥∥
PW2

π

≤ ‖T‖
∥∥∥∥∥∥f −

N∑
k=−N

f(tk)φk

∥∥∥∥∥∥
PW2

π

, (4.48)

and the right-hand side of (4.48) converges to zero as N →∞ according to (3.63).
Thus, we have

lim
N→∞

∥∥∥∥∥∥Tf −
N∑

k=−N
f(tk)Tφk

∥∥∥∥∥∥
PW2

π

= 0 (4.49)

and, due to ‖f‖∞ ≤ ‖f‖PW2
π
, that

lim
N→∞

∥∥∥∥∥∥Tf −
N∑

k=−N
f(tk)Tφk

∥∥∥∥∥∥
∞

= 0 (4.50)

for all signals f ∈ PW2
π.

Equations (4.49) and (4.50) show that, for f ∈ PW2
π, the sampling series with

transformed kernel (4.47) converges to the transformed signal Tf in the PW2
π-norm

and in the maximum-norm. This means, the transformed signal Tf can be arbitrarily
well approximated by the finite sampling series (4.47).

For PW1
π the situation is different. Theorem 4.33 gives a necessary and sufficient

condition for the convergence of (4.47) to the transformed signal Tf for all f ∈ PW1
π.

Later, in Theorem 4.36, we will see that for every sampling pattern {tk}k∈Z ⊂ R
that is a complete interpolating sequence for PW2

π there exists a stable LTI system
T : PW1

π → PW1
π and a signal f ∈ PW1

π such that (4.47) diverges for a fixed t ∈ R.
Thus, it will turn out that the additional degree of freedom in the choice of the
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sampling points, compared to equidistant sampling, cannot prevent the approximation
process (4.47) to diverge for some stable LTI system T : PW1

π → PW1
π and some

signal f ∈ PW1
π.

Theorem 4.33. Let {tk}k∈Z ⊂ R be a complete interpolating sequence for PW2
π,

φk, k ∈ Z, the corresponding reconstruction functions as defined in (3.61), T a stable
LTI system, and I a closed subset of R. For all f ∈ PW1

π we have

lim
N→∞

max
t∈I

∣∣∣∣∣∣(Tf)(t)−
N∑

k=−N
f(tk)(Tφk)(t)

∣∣∣∣∣∣ = 0

if and only if there exists a constant C13 <∞ such that

max
t∈I

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωtk(Tφk)(t)

∣∣∣∣∣∣ ≤ C13 (4.51)

for all N ∈ N. If (4.51) is not fulfilled, then there exists a signal f1 ∈ PW1
π such

that

lim sup
N→∞

max
t∈I

∣∣∣∣∣∣(Tf1)(t)−
N∑

k=−N
f1(tk)(Tφk)(t)

∣∣∣∣∣∣ =∞. (4.52)

Remark 4.34. Note that due to the generality of the set I, Theorem 4.33 comprises
several results for different types of convergence. If the set I contains only a single
point then the theorem makes a statement about the pointwise convergence, and
if I = R then Theorem 4.33 deals with uniform convergence. Uniform convergence
on all of R is important whenever the peak value of the reconstruction has to be
controlled over the whole real axis.

For the proof of Theorem 4.33 we need Lemma 4.35, the proof of which is similar
to the proof of Lemma 4.8 and therefore omitted.

Lemma 4.35. Let {tk}k∈Z ⊂ R be a complete interpolating sequence for PW2
π, φk,

k ∈ Z, the corresponding reconstruction functions as defined in (3.61), T a stable
LTI system, t ∈ R, and N ∈ N. Then we have

sup
‖f‖PW1

π
≤1

∣∣∣∣∣∣
N∑

k=−N
f(tk)(Tφk)(t)

∣∣∣∣∣∣ = max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωtk(Tφk)(t)

∣∣∣∣∣∣ ,
Proof of Theorem 4.33. The proof consists of two parts. The first part proves the
“⇐” direction of the “if and only if” assertion and the second part the second assertion
of the theorem. Since the second assertion implies the “⇒” direction of the “if and
only if” assertion, the whole theorem is proved.
For the proof we introduce the abbreviation

(TNf)(t) :=
N∑

k=−N
f(tk)(Tφk)(t).
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First part, “⇐”: Let (4.51) be fulfilled, and f ∈ PW1
π be arbitrary but fixed. For

each ε > 0 there exists a g ∈ PW2
π such that ‖f − g‖PW1

π
< ε and consequently

maxt∈I |(Tf)(t)− (Tg)(t)| < ε‖T‖. Furthermore,

max
t∈I
|(TN (g − f))(t)| = max

t∈I

∣∣∣∣∣∣ 1
2π

∫ π

−π

(
ĝ(ω)− f̂(ω)

) N∑
k=−N

eiωtk(Tφk)(t) dω

∣∣∣∣∣∣
≤ max

t∈I

1
2π

∫ π

−π
|ĝ(ω)− f̂(ω)|

∣∣∣∣∣∣
N∑

k=−N
eiωtk(Tφk)(t)

∣∣∣∣∣∣ dω

≤ max
t∈I

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωtk(Tφk)(t)

∣∣∣∣∣∣ ‖g − f‖PW1
π
≤ C13ε,

where we used the assumption (4.51) in the last inequality. Moreover, because of
(4.50), there exists a N0 = N0(ε) such that maxt∈I |(Tg)(t) − (TNg)(t)| < ε for all
N ≥ N0. Since

max
t∈I
|(Tf)(t)− (TNf)(t)| = max

t∈I
|(Tf)(t)− (Tg)(t) + (Tg)(t)

− (TNg)(t) + (TN (g − f))(t)|
≤ max

t∈I
|(Tf)(t)− (Tg)(t)|+ max

t∈I
|(Tg)(t)− (TNg)(t)|

+ max
t∈I
|(TN (g − f))(t)|,

we obtain maxt∈I |(Tf)(t)− (TNf)(t)| < (1 + ‖T‖+ C13)ε for all N ≥ N0, and the
proof of the first part is complete because ε was arbitrary.
Second part: If (4.51) is not fulfilled we have

lim sup
N→∞

max
t∈I

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωtk(Tφk)(t)

∣∣∣∣∣∣ = lim sup
N→∞

max
t∈I

sup
‖f‖PW1

π
≤1
|(TNf)(t)| =∞,

because

sup
‖f‖PW1

π
≤1
|(TNf)(t)| = max

|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωtk(Tφk)(t)

∣∣∣∣∣∣ ,
by Lemma 4.35. Thus, the Banach–Steinhaus theorem [78, p. 98] implies that there
exists a signal f1 ∈ PW1

π such that

lim sup
N→∞

max
t∈I
|(TNf1)(t)| =∞

Since maxt∈I |(Tf1)(t)| ≤ ‖Tf1‖∞ <∞, we have (4.52) and the proof is complete.
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In Theorem 4.33 we have completely characterized the cases where (4.47) converges
to the signal Tf for all f ∈ PW1

π.
In [14] it was shown that for every sampling pattern {tk}k∈Z ⊂ R that is a

complete interpolating sequence for PW2
π there really exists a stable LTI system

T : PW1
π → PW1

π such that (4.47) diverges for some f ∈ PW1
π. For the proof, which

uses a deep result by Szarek [119], we would like to refer to [14].

Theorem 4.36. Let {tk}k∈Z ⊂ R be a complete interpolating sequence for PW2
π and

φk, k ∈ Z, the corresponding reconstruction functions as defined in (3.61). Then,
for all t ∈ R there exists a stable LTI system T1 with continuous ĥT1 and a signal
f1 ∈ PW1

π such that

lim sup
N→∞

∣∣∣∣∣∣(T1f1)(t)−
N∑

k=−N
f1(tk)(T1φk)(t)

∣∣∣∣∣∣ =∞.

Theorem 4.36 shows that, in general, it is not possible to approximate the output
of a stable LTI system Tf by the sampling series (4.47), because for some arbitrary
given t ∈ R, we can find a signal f ∈ PW1

π and a stable LTI system T such that
(4.47) diverges.

4.6 Oversampling

In this section we discuss the system approximation problem for PW1
π if oversampling

is applied. In Section 4.3.3 we have seen that STNf diverges pointwise for some signal
f ∈ PW1

π and some stable LTI system T : PW1
π → PW1

π. Although oversampling
can improve the convergence behavior of sampling series, as shown in the case of the
Shannon sampling series for PW1

π in Section 3.2.4, it will turn out that oversampling
cannot correct the divergence of STNf .
Using oversampling, the approximation process takes the form

(ST,aN,φf)(t) :=
N∑

k=−N
f

(
k

a

)
(Tφ)

(
t− k

a

)
. (4.53)

As in Section 3.2.7, a > 1 denotes the oversampling factor and φ ∈M(a) are suitable
reconstruction kernels.
The following theorem shows that the convergence behavior of ST,aN,φf , i.e., the

approximation process with oversampling, is not improved compared to the approxi-
mation process STNf without oversampling.

Theorem 4.37. Let t ∈ R and φ ∈ M(a), a > 1. Then there exists a stable LTI
system T1 : PW1

π → PW1
π and a signal f1 ∈ PW1

π such that

lim sup
N→∞

|(T1f1)(t)− (ST1,a
N,φ f1)(t)| =∞.
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For the proof of Theorem 4.37 we need Lemma 4.38.

Lemma 4.38. For a > 1 and N ∈ N, N ≥ (2a− 1)/2, we have

∫ π/a

0

sin2
((
N + 1

2

)
ω
)

sin
(
ω
2
) dω > log

(2N + 1
2a − 1

)
.

Proof. Let LN,a be the largest natural number such that 2LN,aπ/(2N + 1) ≤ π/a,
which implies LN,a ≤ (2N + 1)/(2a). Then we obtain

∫ π/a

0

sin2
((
N + 1

2

)
ω
)

sin
(
ω
2
) dω ≥

LN,a−1∑
k=0

∫ 2(k+1)π
2N+1

2kπ
2N+1

sin2
((
N + 1

2

)
ω
)

sin
(
ω
2
) dω

>

LN,a−1∑
k=0

1
sin
(

(k+1)π
2N+1

) ∫ 2(k+1)π
2N+1

2kπ
2N+1

sin2
((

N + 1
2

)
ω

)
dω

= 2
2N + 1

∫ π

0
sin2 ω dω

LN,a−1∑
k=0

1
sin
(

(k+1)π
2N+1

)
>

LN,a−1∑
k=0

1
k + 1 ,

where we used the fact that sin x < x for all x > 0 in the last inequality. But since

LN,a−1∑
k=0

1
k + 1 ≥ log(LN,a) > log

(2N + 1
2a − 1

)
,

the proof is complete.

Proof of Theorem 4.37. Due to the translation invariance of T we can assume t1 = 0
without loss of generality. Clearly,

(ST,aN,φf)(0) = 1
2π

∫ π

−π
f̂(ω)

N∑
k=−N

eiωk/a (Tφ)
(
−k
a

)
dω.

Since Tφ has the representation

(Tφ)(t) = 1
2π

∫ aπ

−aπ
φ̂(ω)ĥT (ω) eiωt dω
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with some ĥT (ω) ∈ L∞[−aπ, aπ], we obtain
N∑

k=−N
(Tφ)

(
−k
a

)
= 1

2πa

∫ π

−π
ĥT (ω)

N∑
k=−N

eiωk/a dω

+ 1
2π

∫
π≤|ω|≤aπ

ĥT (ω)φ̂(ω)
N∑

k=−N
eiωk/a dω︸ ︷︷ ︸

=:RN

= 1
2πa

∫ π

−π
ĥT (ω)

sin
((
N + 1

2

)
ω
a

)
sin
(
ω
2a
) dω +RN ,

where we identified ∑N
k=−N eiωk/a as the Dirichlet kernel. The modulus of RN can

be bounded above independently of N by

|RN | ≤ C14
‖φ̂‖∞‖ĥT ‖∞
|1− eiπ/a| .

We use the test function

ĝN (ω) = sin
((

N + 1
2

)
ω

a

)
ĝ(ω),

where ĝ is an even, continuous function with ĝ(ω) = 1, 0 ≤ |ω| ≤ π and ĝ(ω) = 0,
|ω| ≥ aπ. Then, using Lemma 4.38, we obtain

1
2πa

∫ π

−π
ĝN (ω)

sin
((
N + 1

2

)
ω
a

)
sin
(
ω
2a
) dω = 1

πa

∫ π

0

sin2
((
N + 1

2

)
ω
a

)
sin
(
ω
2a
) dω

= 1
π

∫ π/a

0

sin2
((
N + 1

2

)
ω
)

sin
(
ω
2
) dω

>
1
π

log
(2N + 1

2a − 1
)

for N ≥ (2a− 1)/2. By the Banach–Steinhaus theorem there exists a function ĥT1

such that

lim sup
N→∞

∣∣∣∣∣∣ 1
2πa

∫ π

−π
ĥT1(ω)

sin
((
N + 1

2

)
ω
a

)
sin
(
ω
2a
) dω

∣∣∣∣∣∣ =∞

Since

lim sup
N→∞

sup
‖f‖PW1

π
≤1
|(ST1,a

N,φ f)(0)| ≥ lim sup
N→∞

∣∣∣∣∣∣
N∑

k=−N
(T1φ)

(
−k
a

)∣∣∣∣∣∣
=∞,

we can again apply the Banach–Steinhaus theorem, which states the existence of a
signal f1 ∈ PW1

π such that lim supN→∞|(ST1,a
N,φ f1)(0)| =∞.
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Theorem 4.37 reveals the very intricate convergence behavior of the approximation
processes. We have shown that there is no universal approximation process of the
shape (4.53) that is convergent for all stable LTI systems T : PW1

π → PW1
π and all

signals f ∈ PW1
π. It would be useful to have a simple criterion for checking whether

an approximation process is convergent for a given operator or not. Next, we will
provide a simple test for convergence.

Theorem 4.39. Let φ ∈ M(a), a > 1, t ∈ R, and T : PW1
π → PW1

π be a stable
LTI system. Then we have:

lim
N→∞

(ST,aN,φf)(t) = (Tf)(t)

for all f ∈ PW1
π if and only if there exists a constant C15 = C15(t) such that

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωk/a(Tφ)

(
t− k

a

)∣∣∣∣∣∣ ≤ C15(t)

for all N ∈ N.

Proof. First part, “⇒”: Let t ∈ R be arbitrary but fixed. Then, by assump-
tion, limN→∞|(Tf)(t) − (ST,aN,φf)(t)| = 0 for all f ∈ PW1

π, which implies that
supN∈N sup‖f‖PW1

π
≤1|(ST,aN,φf)(t)| <∞. This together with

sup
‖f‖PW1

π
≤1
|(ST,aN,φf)(t)| = max

|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωk/a(Tφ)

(
t− k

a

)∣∣∣∣∣∣
completes the first part.

Second part, “⇐”: Let t ∈ R be arbitrary but fixed. For each ε > 0 there exists a
g ∈ PW2

π such that ‖f − g‖PW1
π
< ε and consequently |(Tf)(t)− (Tg)(t)| < ε‖T‖.

Obviously, we have

|(Tf)(t)− (ST,aN,φf)(t)|
= |(Tf)(t)− (Tg)(t) + (Tg)(t)− (ST,aN,φg)(t) + (ST,aN,φ(g − f))(t)|
≤ |(Tf)(t)− (Tg)(t)|+ |(Tg)(t)− (ST,aN,φg)(t)|+ |(ST,aN,φ(g − f))(t)|.

Furthermore, we have

|(ST,aN,φ(g − f))(t)| =
∣∣∣∣∣∣ 1
2π

∫ π

−π

(
ĝ(ω)− f̂(ω)

) N∑
k=−N

eiωk/a(Tφ)
(
t− k

a

)
dω

∣∣∣∣∣∣
≤ max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωk/a(Tφ)

(
t− k

a

)∣∣∣∣∣∣ ‖g − f‖PW1
π

≤ C15(t)ε,
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where we used the assumption in the last inequality. Moreover, there exists a
N0 = N0(ε) such that |(Tg)(t)− (ST,aN,φg)(t)| < ε for all N ≥ N0. Therefore, we have

|(Tf)(t)− (ST,aN,φf)(t)| < (1 + ‖T‖+ C15(t))ε

for all N ≥ N0 and the proof is complete because ε was arbitrary.

Similar to Theorem 4.39, where the pointwise convergence was treated, we can give
a necessary and sufficient condition for the uniform convergence of the approximation
process (4.53).

Theorem 4.40. Let φ ∈ M(a), a > 1, and T : PW1
π → PW1

π be a stable LTI
system. Then we have:

lim
N→∞

‖Tf − ST,aN,φf‖∞ = 0

for all f ∈ PW1
π if and only if there exists a constant C16, independently of t, such

that

sup
t∈R

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωk/a(Tφ)

(
t− k

a

)∣∣∣∣∣∣ ≤ C16

for all N ∈ N and t ∈ R.

Proof. Analogously to the proof of Theorem 4.39.

Example 4.41. As an example, we investigate the convergence behavior of the
approximation process ST,aN,φf for T = D, where D is the differential operator, and
φ ∈M(a), a > 1. For φ ∈M(a), a > 1, we have Dφ ∈ B1

aπ and

sup
t∈R

max
|ω|≤π

∣∣∣∣∣∣
N∑

k=−N
eiωk/a

(
k

a

)
(Dφ)

(
t− k

a

)∣∣∣∣∣∣ ≤ sup
t∈R

N∑
k=−N

∣∣∣∣(Dφ)
(
t− k

a

)∣∣∣∣
≤ C8‖φ‖B1

aπ
,

where we used Lemma 3.25 in the last inequality. Thus, Theorem 4.40 implies that
SD,aN,φf converges uniformly on R to Df for all f ∈ PW1

π and all φ ∈M(a), a > 1.



5
Stochastic Processes

In addition to the reconstruction of deterministic signals from their samples, the
reconstruction of stochastic processes is important because they often appear in
the modeling of physical processes. By now many results for the reconstruction of
stochastic processes have been presented. In [120] Balakrishnan gave a rigorous proof
that the Shannon sampling series converges in the mean square sense for bandlimited
wide-sense stationary stochastic processes that have either a spectral density or a
spectral distribution which is continuous at the endpoints of the spectrum. The
almost sure convergence of the Shannon sampling series with oversampling was
proved in [121] for wide-sense stationary processes. Zakai [47] generalized the notion
of bandlimited processes and proved almost sure convergence for this new class.
Later, [122] and [123] extended the results to hold for a broader classes of non-
stationary second order processes. In [124] Brown analyzed the truncation error
for bandlimited wide-sense stationary stochastic processes with continuous power
spectral density, and in [51] upper bounds for the truncation error were derived for
stochastic processes which are bandlimited in the sense of Zakai under the assumption
of a guard band. The problem of reconstructing a bandlimited stochastic processes
from non-equidistant samples was investigated in [125]. In [21] Habib analyzed
sampling representations of bounded linear operators acting on stochastic processes
that are bandlimited in the sense of Zakai [47] and Lee [126]. For a general overview
of sampling theorems for stochastic processes see for example [38], [68, Chapter 9],
and [30].
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5.1 Notation

We restrict our analyses to wide-sense stationary processes, i.e., the class of continuous-
time, complex valued stochastic processes X = X(t) with zero mean E(X(t)) = 0
and finite second moment E(|X(t)|2) < ∞ for all t ∈ R, and whose correlation
function Γ(t, t′) = E(X(t)X∗(t′)), where ∗ denotes the complex conjugate, is only a
function of the difference t− t′. This enables us to define the correlation function as
a function of one variable

R(τ) := E(X(τ)X∗(0)),

and it can be easily seen that R is nonnegative definite. Furthermore, we assume
that X is mean square continuous, which implies that R is continuous. Then the
correlation function R has the representation

R(τ) = 1
2π

∫ ∞
−∞

eiωτ dµ(ω),

for a positive and finite measure µ. For details and further facts about wide-sense
stationary processes we refer to the standard literature, for example [127] or [128].
We additionally assume that the measure µ is absolutely continuous with respect
to the Lebesgue measure λ, which implies that there exists a function S ∈ L1(R)
such that dµ = S dλ. Furthermore, since µ is positive, it follows that S(ω) ≥ 0
almost everywhere (a.e.). S is called the power spectral density. We say the wide-
sense stationary process X is bandlimited with bandwidth σ > 0, if R can be
extended to an entire function, and for all ε > 0 there exists a constant C(ε) with
|R(z)| ≤ C(ε) exp((σ+ ε)|z|) for all z ∈ C. It follows that almost all sample functions
are entire functions of exponential type at most σ [121].

Definition 5.1. We call a bandlimited wide-sense stationary mean square continuous
process an I-process if its correlation function R has the representation

R(τ) = 1
2π

∫ π

−π
S(ω) eiωτ dω, (5.1)

for some S ∈ L1[−π, π]. Further, if R has the representation (5.1) then the function
S is unique. Note that the fact S(ω) ≥ 0 a.e. will be essential for the proofs. “I”
stands for integrability.

5.2 Behavior of the Mean Square Error

In this section we analyze the reconstruction of I-processes X from their samples
{X(k)}k∈Z using the symmetric Shannon sampling series

N∑
k=−N

X(k)sin(π(t− k))
π(t− k) , (5.2)
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N ∈ N, and the non-symmetric Shannon sampling series

N∑
k=−M

X(k)sin(π(t− k))
π(t− k) , (5.3)

M,N ∈ N.
One basic question, which has been studied from the beginning, is how well the

I-process can be approximated in the mean square sense by using (5.2) or (5.3), and
whether the approximation error converges to zero if more and more samples are
used for the approximation, i.e., if N , or M and N , tend to infinity in equations
(5.2) and (5.3), respectively. Of course, such a behavior would be desirable and is
intuitively expected for the symmetric as well as the non-symmetric sampling series.
The early researchers who studied the convergence behavior of the Shannon sampling
series for stochastic processes were probably also led by this intuition, and therefore
thought that there is no difference in the convergence behavior of the symmetric and
the non-symmetric sampling series [65,124,129].

As for the symmetric sampling series, it is well known [124] that for all I-processes
X and 0 < τ <∞ fixed, we have

lim
N→∞

max
t∈[−τ,τ ]

E

∣∣∣∣∣∣X(t)−
N∑

k=−N
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

= 0, (5.4)

i.e., the variance of the reconstruction error of the symmetric Shannon sampling
series is bounded on all compact subsets of R and converges to zero as N →∞. It
was believed that this result is equally true for the non-symmetric Shannon sampling
series.

Disregarding the differences between the symmetric and the non-symmetric Shan-
non sampling series, Brown claims in the introduction to [124] that

E

∣∣∣∣∣∣X(t)−
N∑

k=−M
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

(5.5)

converges to zero for all I-processes X. In Theorem 5.5 we will see that this is not true.
However, the theorems in [124] concerning the upper bounds on the mean square
approximation error are correct, because in the theorems additional assumptions on
the I-processes are made. One assumption is that S is continuous, and the other
is that a guard band is present. So, for a restricted class of I-processes we have
the mean square convergence of the non-symmetric Shannon sampling series. In
Theorem 5.5 we will completely characterize this subclass, i.e., the I-processes for
which the “claim” in the introduction to [124] is true, by giving a necessary and
sufficient condition for the convergence of (5.5).
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5.2.1 Symmetric Shannon Sampling Series

In this section we analyze the convergence behavior of the mean square approximation
error of the symmetric sampling series.

Theorem 5.2. Let X be an I-process. We have

sup
N∈N

max
t∈R

E

∣∣∣∣∣∣X(t)−
N∑

k=−N
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

<∞

if and only if the power spectral density S satisfies∫ π

−π
S(ω)

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣2 dω <∞. (5.6)

If (5.6) is not satisfied, then we have

lim
N→∞

max
t∈R

E

∣∣∣∣∣∣X(t)−
N∑

k=−N
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

=∞.

We have seen in (5.4) that the variance of the reconstruction error converges to zero
on all compact subsets of R. However, this is not enough in order to characterize the
global approximation behavior of the Shannon sampling series. Although E|X(t)|2
is constant, there are I-processes such that

max
t∈R

E

∣∣∣∣∣∣
N∑

k=−N
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

is unbounded as N goes to infinity.
Theorem 5.2 shows that the variance of the reconstruction error is uniformly

bounded on all of R if and only if the power spectral density satisfies (5.6). Conse-
quently, if (5.6) is satisfied, we do not only have perfect local convergence, but also
good global convergence behavior.
Remark 5.3. Of course we can neither expect the symmetric nor the non-symmetric
sampling series to be globally uniformly convergent in the mean square sense. This
is because X is an I-process and hence

E|X(t)|2 = 1
2π

∫ π

−π
S(ω) dω = C1,

where C1 is a constant that is independent of t ∈ R. Thus, for all M,N ∈ N we have

lim
t→∞

E

∣∣∣∣∣∣X(t)−
N∑

k=−M
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

= 1
2π

∫ π

−π
S(ω) dω,
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and consequently

max
t∈R

E

∣∣∣∣∣∣X(t)−
N∑

k=−M
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

≥ 1
2π

∫ π

−π
S(ω) dω.

In order to prove the theorems, we need Lemma 5.4, the proof of which is given in
Appendix A.9.

Lemma 5.4. There exists a constant C2 such that∣∣∣∣∣
N∑

k=M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣ ≤ 2
π

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣+ C2

for all t ∈ R, M,N ∈ Z, M ≤ N , and ω ∈ [−π, π].

Now we are in the position to prove Theorem 5.2.

Proof of Theorem 5.2. First, we prove the “⇐” part of the “if and only if” assertion.
Then we prove the second assertion of the theorem. But the second assertion implies
the “⇒” part of the first assertion. Then the entire theorem will be proved. Note
that the fact that S(ω) ≥ 0 a.e. is essential for the proof.
“⇐”: Suppose (5.6) is true. Then we have

E
∣∣∣∣∣∣X(t)−

N∑
k=−N

X(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣
2


1/2

=

 1
2π

∫ π

−π
S(ω)

∣∣∣∣∣∣eiωt−
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

≤
( 1

2π

∫ π

−π
S(ω) dω

)1/2
+

 1
2π

∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

≤ C3.

The last inequality follows by Lemma 5.4, the assumption (5.6), and the fact that
S ∈ L1[−π, π]. This completes the proof of the “⇐” part of the first assertion.
“⇒”: Now suppose (5.6) is not satisfied, i.e.,

∫ π

−π
S(ω)

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣2 dω =∞.
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Let N ∈ N be arbitrary. SinceE
∣∣∣∣∣∣X(t)−

N∑
k=−N

X(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣
2


1/2

=

 1
2π

∫ π

−π
S(ω)

∣∣∣∣∣∣eiωt−
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

≥

 1
2π

∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

−
( 1

2π

∫ π

−π
S(ω) dω

)1/2
, (5.7)

it is sufficient to analyze∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

.

For tN = N + 1
2 and 0 < δ < π we have

∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(tN − k))

π(tN − k)

∣∣∣∣∣∣
2

dω =
∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk (−1)N−k

π(N + 1
2 − k)

∣∣∣∣∣∣
2

dω

=
∫ π

−π
S(ω)

∣∣∣∣∣
2N∑
k=0

eiωk (−1)k

π(k + 1
2)

∣∣∣∣∣
2

dω

≥
∫ π−δ

−π+δ
S(ω)

∣∣∣∣∣
2N∑
k=0

eiωk (−1)k

π(k + 1
2)

∣∣∣∣∣
2

dω

and consequently

max
t∈R

∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

≥

∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(tN − k)

π(tN − k)

∣∣∣∣∣∣
2

dω


1/2

≥
∫ π−δ

−π+δ
S(ω)

∣∣∣∣∣
2N∑
k=0

eiωk (−1)k

π(k + 1
2)

∣∣∣∣∣
2

dω

1/2

≥
∫ π−δ

−π+δ
S(ω)

∣∣∣∣∣
2N∑
k=1

eiωk (−1)k
πk

∣∣∣∣∣
2

dω

1/2

− C4,
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because ∣∣∣∣∣
2N∑
k=1

eiωk (−1)k
πk

∣∣∣∣∣ ≤
∣∣∣∣∣

2N∑
k=1

eiωk(−1)k
π

(
1
k
− 1
k + 1

2

)∣∣∣∣∣+
∣∣∣∣∣

2N∑
k=1

eiωk(−1)k

π(k + 1
2)

∣∣∣∣∣
=
∣∣∣∣∣

2N∑
k=1

eiωk(−1)k
2π

1
k(k + 1

2)

∣∣∣∣∣+
∣∣∣∣∣

2N∑
k=1

eiωk(−1)k

π(k + 1
2)

∣∣∣∣∣
≤ C5 +

∣∣∣∣∣
2N∑
k=0

eiωk (−1)k

π(k + 1
2)

∣∣∣∣∣ .
It follows that

lim inf
N→∞

max
t∈R

∫ π

−π
S(ω)

∣∣∣∣∣∣
N∑

k=−N
eiωk sin(π(t− k)

π(t− k)

∣∣∣∣∣∣
2

dω


1/2

≥ lim inf
N→∞

∫ π−δ

−π+δ
S(ω)

∣∣∣∣∣
2N∑
k=1

eiωk (−1)k
πk

∣∣∣∣∣
2

dω

1/2

− C4

≥ 1
π

(∫ π−δ

−π+δ
S(ω)

(
log

(
2 cos

(
ω

2

)))2
dω
)1/2

− C6, (5.8)

where we used Fatou’s Lemma [78, p. 23] and

lim inf
N→∞

∣∣∣∣∣
N∑
k=1

eiωk (−1)k
πk

∣∣∣∣∣
2

≥ 1
π2

(∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣− π

2

)2
(5.9)

for |ω| < π. Equation (5.9) follows from

−
∞∑
k=1

eiωk

k
= 1

2 log(2− 2 cos(ω)) + i
2 sgn(ω)(|ω| − π)

= log
(
1− eiω

)
for ω ∈ [−π, π], ω 6= 0, which is a consequence of 1.441 in [130], the identity

sin
(
ω + π

2

)
= cos

(
ω

2

)
, (5.10)

and the fact that

|log(1− eiω)| ≥
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣− π

2
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for ω ∈ [−π, π], ω 6= 0. Combining (5.7) and (5.8) leads to

lim inf
N→∞

max
t∈R

E
∣∣∣∣∣∣X(t)−

N∑
k=−N

X(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣
2


1/2

≥
(

1
2π3

∫ π−δ

−π+δ
S(ω)

(
log

(
2 cos

(
ω

2

)))2
dω
)1/2

− C7. (5.11)

Since (5.11) is valid for all 0 < δ < π, the proof is complete.

5.2.2 Non-Symmetric Shannon Sampling Series

The convergence of the non-symmetric sampling series is treated in the next theorem.

Theorem 5.5. Let X be an I-process. Then for all 0 < τ <∞ we have

lim
N,M→∞

max
t∈[−τ,τ ]

E

∣∣∣∣∣∣X(t)−
N∑

k=−M
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

= 0

if and only if the power spectral density S satisfies (5.6). If (5.6) is not satisfied,
then we have

lim sup
N,M→∞

E

∣∣∣∣∣∣X(t)−
N∑

k=−M
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

=∞ (5.12)

for all t ∈ R \ Z.

Theorem 5.5 gives a necessary and sufficient condition for the local uniform
convergence in the mean square sense of the non-symmetric sampling series. That
is, the non-symmetric sampling series is locally uniformly convergent in the mean
square sense if and only if the condition (5.6) on the power spectral density is
satisfied. This highlights the difference between the non-symmetric and the symmetric
Shannon sampling series, where we always have—according to (5.4)—local uniform
convergence, regardless of the power spectral density S.
The symmetric sampling series is a special case of the non-symmetric sampling

series with M = N . Thus, some properties of the symmetric sampling series can
be inferred from the properties of the non-symmetric sampling series. For example,
according to the definition of the convergence of the non-symmetric sampling series,
the convergence of the symmetric sampling series follows directly from the convergence
of the non-symmetric sampling series. However, the divergence of the non-symmetric
sampling series does not imply the divergence of the symmetric sampling series.
This is because M and N can tend independently to infinity in the non-symmetric
sampling series. In Section 5.3 we will give an example of a power spectral density
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for which the mean square approximation error of the non-symmetric sampling series
diverges for all t ∈ R \ Z, whereas the mean square approximation error of the
symmetric sampling series converges to zero uniformly on all compact subsets of R.
For the proof of Theorem 5.5 we need Lemma 5.6, the proof of which is given in

Appendix A.10.

Lemma 5.6. Given any ε > 0, 0 < δ < π, and τ > 0, there exist two natural
numbers N0 = N0(ε, δ, τ) and M0 = M0(ε, δ, τ) such that for all N ≥ N0, M ≥M0,

max
t∈[−τ,τ ]

max
|ω|≤π−δ

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ < ε.

Proof of Theorem 5.5. “⇐”: Let τ ∈ R with 0 < τ < ∞ be arbitrary but fixed.
Since (5.6) is satisfied, for any ε > 0 there exists a 0 < δ0 < π such that

1
2π

∫
π−δ0≤|ω|≤π

S(ω)
∣∣∣∣log

(
2 cos

(
ω

2

))∣∣∣∣2 dω < ε2 (5.13)

and ∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣ > 1

for all |ω| ∈ [π − δ0, π] . Now let δ0 be fixed. Then for t ∈ [−τ, τ ] we haveE
∣∣∣∣∣∣X(t)−

N∑
k=−M

X(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣∣
2


1
2

=

 1
2π

∫
|ω|≤π−δ0

S(ω)

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

dω


1
2

+

 1
2π

∫
π−δ0≤|ω|≤π

S(ω)

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

dω


1
2

. (5.14)

The first term on the right-hand side of (5.14) can be upper bounded as follows: By
Lemma 5.6 we know that, given any ε > 0, there are two constants N0 = N0(ε, δ, τ)
and M0 = M0(ε, δ, τ) such that for all N ≥ N0 and M ≥M0

max
t∈[−τ,τ ]

max
|ω|≤π−δ0

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ < ε.

It follows that 1
2π

∫
|ω|≤π−δ0

S(ω)

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

dω


1
2

≤ C8ε.
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The second term on the right-hand side of (5.14) gives
 1

2π

∫
π−δ0≤|ω|≤π

S(ω)

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

dω


1
2

≤
(

1
2π

∫
π−δ0≤|ω|≤π

S(ω) dω
) 1

2

+

 1
2π

∫
π−δ0≤|ω|≤π

S(ω)

∣∣∣∣∣∣
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

dω


1
2

.

The first term is smaller than ε, and for the second term we obtain 1
2π

∫
π−δ0≤|ω|≤π

S(ω)

∣∣∣∣∣∣
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

dω


1
2

≤
(

1
2π

∫
π−δ0≤|ω|≤π

S(ω)
( 2
π

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣+ C2

)2
dω
) 1

2

≤ C9ε,

were we used Lemma 5.4 in the second to last inequality and (5.13) in the last
inequality. Combining all partial results, we get

E

∣∣∣∣∣∣X(t)−
N∑

k=−M
X(k)sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
2

≤ (C8 + 1 + C9)2ε2

for all N ≥ N0, M ≥ M0, and t ∈ [−τ, τ ]. Since ε was arbitrary, this part of the
proof is complete.
“⇒”: Analogously to the proof of Theorem 5.2 it is shown that if (5.6) is not

satisfied then

lim
N→∞

1
2π

∫ π

−π
S(ω)

∣∣∣∣∣eiωt−
N∑
k=1

eiωk sin(π(t− k))
π(t− k)

∣∣∣∣∣
2

dω =∞

for all t ∈ R \ Z. This is equivalent to

lim
N→∞

E
∣∣∣∣∣X(t)−

N∑
k=1

X(k)sin(π(t− k))
π(t− k)

∣∣∣∣∣
2

=∞ (5.15)

for all t ∈ R \ Z, and (5.15) implies the assertion (5.12).
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5.3 Discussion

As we have seen, is important to know when (5.6) is satisfied and when it is not.
There are several special cases where (5.6) is true. One important case is when S is
continuous and another is the case when S ∈ Lp[−π, π], 1 < p ≤ ∞. According to
Hölder’s inequality we have for 1 < p ≤ ∞, 1/p+ 1/q = 1,∫ π

−π
S(ω)

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣2 dω

≤
(∫ π

−π
(S(ω))p dω

)1/p
(∫ π

−π

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣2q dω
)1/q

. (5.16)

In both of the cases—S is continuous or S ∈ Lp[−π, π]—the first term on the
right-hand side of (5.16) is finite. It remains to show that the second term on the
right-hand side of (5.16) is finite. For r ≥ 1 we have∫ π

−π

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣r dω

=
∫ 3π

4

− 3π
4

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣r dω + 2
∫ π

3π
4

[
− log

(
2 cos

(
ω

2

))]r
dω. (5.17)

Since |log (2 cos (ω/2))|r is continuous on [−3π/4, 3π/4], the first summand on the
right-hand side of (5.17) is finite. Furthermore, since cos(ω/2) ≥ 1 − ω/π for all
ω ∈ [3π/4, π], it follows that

2
∫ π

3π
4

[
− log

(
2 cos

(
ω

2

))]r
dω ≤ 2

∫ π

3π
4

[
− log

(
2− 2ω

π

)]r
dω

=
∫ ∞

log(2)
ur e−u du <∞, (5.18)

where we used the substitution u = − log(2− 2ω/π) in the second to last line. So
we have (5.6) if S is continuous or if S ∈ Lp[−π, π], 1 < p ≤ ∞.

On the other hand there are power spectral densities S ∈ L1[−π, π] for which (5.6)
is not satisfied. One example is given by

S1(ω) = 1

(ω + π)
(
log

(
4π
ω+π

))2 .

The short calculation ∫ π

−π
|S1(ω)| dω =

∫ 2π

0

1

ω
(
log

(
4π
ω

))2 dω

=
∫ ∞

log(2)

1
u2 du

= 1
log(2) <∞
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shows that S1 ∈ L1[−π, π]. Next, we show that (5.6) is not satisfied for S1. We have∫ π

−π
S1(ω)

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣2 dω

=
∫ − 3π

4

−π

∣∣log
(
2 cos

(
ω
2
))∣∣2

(ω + π)
(
log

(
4π
ω+π

))2 dω +
∫ π

− 3π
4

∣∣log
(
2 cos

(
ω
2
))∣∣2

(ω + π)
(
log

(
4π
ω+π

))2 dω.

The second integral is finite because
∫ π

− 3π
4

∣∣log
(
2 cos

(
ω
2
))∣∣2

(ω + π)
(
log

(
4π
ω+π

))2 dω ≤
∫ π

− 3π
4

∣∣log
(
2 cos

(
ω
2
))∣∣2

π
4 (log(2))2 dω <∞,

according to (5.18). Furthermore, since

∫ − 3π
4

−π

∣∣log
(
2 cos

(
ω
2
))∣∣2

(ω + π)
(
log

(
4π
ω+π

))2 dω ≥
∫ − 3π

4

−π

|log (ω + π)|2

(ω + π)
(
log

(
4π
ω+π

))2 dω

=
∫ ∞

log(16)

(u− log(4π))2

u2 dω

≥
∫ ∞

log(16)

u− 2 log(4π)
u

dω

≥ [log(16)− 2 log(4π)]
∫ ∞

log(16)

1
u

dω

=∞,

where we used the inequality cos(ω/2) ≤ (ω + π)/2, ω ∈ [−π,−3π/4], and the
substitution u = log(4π/(ω + π)), we obtain that∫ π

−π
S1(ω)

∣∣∣∣log
(

2 cos
(
ω

2

))∣∣∣∣2 dω =∞.

Further discussion about the differences of the symmetric and the non-symmetric
sampling series, together with a review of the historical development of this problem
in the literature can be found in [17].



6
Impact of Thresholding and
Quantization

The principle of digital signal processing relies on the fact that certain bandlimited
signals can be perfectly reconstructed from their samples. This is only true if the
sample values are known exactly. However, in real applications this can never be
realized. One reason is that the quantization process in analog to digital conversion
only has limited resolution and thus the samples of the digital signal are always
disturbed by a quantization error in practice [131,132]. In addition to this quantiza-
tion error, there are often other reasons, which lead to disturbed samples, and thus
render a perfect signal reconstruction impossible.

In this chapter, we consider two non-linear distortions of the samples and analyze
their effect on the reconstruction behavior of the sampling series. The first is the
threshold operator and the second is the quantization operator.
The threshold operator that we consider here differs from the often analyzed

clipping operator [100, 133, 134]. We do our analysis for the threshold operator
that sets all sample values whose absolute value is smaller than some threshold to
zero, because few results are available for it, and because it has several interesting
applications.
One application where the threshold operator is important is sensor networks. It

is most natural to employ sampling theory in the performance analysis of sensor
networks [135, 136], because the measurements of the sensors are nothing but a
spatio-temporal sampling of the signal. The sensors sample some bandlimited signal
in space and time and transmit the samples to the receiving signal processing unit.
Then, using these samples, the receiver tries to reconstruct the signal, perfectly or
at least approximately if a perfect reconstruction is not possible. In order to save
energy, the sensors transmit only if the absolute value of the signal exceeds some
threshold δ > 0. Thus, the receiver has to reconstruct the signal by using only the
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samples whose absolute value is larger than or equal to the threshold δ.
The second distortion that we consider is the quantization operator. Due to its

high practical importance, the analysis of the quantization error has gained a lot
of attention in research. Often, the quantization operation is modeled as additive
white noise [137, 138]. However, it turned out that this noise model is not always
satisfactory because it can lead to false predictions [139,140].

Since quantization is a deterministic process it is interesting to have a deterministic
analysis in addition to the statistical approaches. The deterministic analysis is difficult
because of the non-linear nature of the quantization operator, but it reveals some
properties of the quantization process, which cannot be analyzed with the additive
noise description of the quantization error.
There are numerous publications discussing the approximation error of sampling

series in the presence of additive noise in the samples [70, 138]. However these
publications do not consider the deterministic nature of the quantization. Only
few publications treat the quantization error deterministically. One is [141], where
the quantization error is analyzed for absolutely integrable bandlimited signals and
certain non-bandlimited signals. Another paper is [142]. There the accuracy of analog
to digital converters with oversampling is analyzed for bandlimited signals with finite
energy. In [62,79] the interpolation problem is analyzed for non-uniform quantized
samples and a subset of the bandlimited signals with finite energy. Moreover,
oversampled analog to digital conversion in shift-invariant spaces is treated in
[143]. [132] discusses the effect of quantization threshold uncertainties in pulse code
modulation and Σ∆ modulation analog to digital converters. An extensive account
of the history of quantization and the discussion of several developments can be
found in [131].

Those of the above publications which treat the quantization deterministically all
concentrate on bandlimited signals with finite energy, or subspaces thereof. We do
the analysis for the spaces Bpπ, 1 < p <∞, and PWp

π, 1 ≤ p ≤ ∞, i.e., in particular
we also treat the signal spaces PW1

π and Bpπ, 2 < p < ∞, which are larger than
PW2

π.

6.1 Threshold and Quantization Operator

The first distortion is the threshold operator. For complex numbers z ∈ C, the
threshold operator κδ, δ > 0, is defined by

κδz =
{
z, |z| ≥ δ,
0, |z| < δ.

The thresholding characteristic for real numbers is depicted in Fig. 6.1. Furthermore,
for continuous signals f : R → C, we define the threshold operator Θδ pointwise,
i.e., (Θδf)(t) = κδf(t), t ∈ R. The threshold operator κδ is applied on the samples
{f(k)}k∈Z of bandlimited signals f , which gives the disturbed samples {κδf(k)}k∈Z.
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Figure 6.1: Thresholding characteristic.

This is, of course, equivalent to applying the threshold operator Θδ on the signal f
itself and then taking the samples, i.e., {(Θδf)(k)}k∈Z.
The resulting samples {(Θδf)(k)}k∈Z are used to build an approximation

(Aδf)(t) :=
∞∑

k=−∞
(Θδf)(k)sin(π(t− k))

π(t− k)

=
∞∑

k=−∞
|f(k)|≥δ

f(k)sin(π(t− k))
π(t− k) (6.1)

of the original signal f . By Aδ we denote the operator that maps f to Aδf according
to (6.1).
In general, Aδf is only an approximation of f , and we want the reconstructed

signal Aδf to be close to f if δ is sufficiently small. Since the series in (6.1) uses
all “important” samples of the signal, i.e., all samples that are larger than or equal
than δ, one could expect Aδf to be a good approximation for f , at least if δ is small.
However, we will see that this is true only for certain signal spaces.
The second non-linear operator that we consider in this thesis is the simple but

frequently used uniform mid-tread quantization, where each complex number z ∈ C
is quantized to qδz, depending on the quantization step size 2δ > 0, according to the
rule

qδz =
⌊Re z

2δ + 1
2

⌋
2δ +

⌊ Im z

2δ + 1
2

⌋
2δi, (6.2)
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Figure 6.2: Quantization characteristic.

where bxc denotes the largest integer smaller than or equal than x. As can be seen
in (6.2), the quantization is done separately for the real and the imaginary part of z.
The quantization characteristic for real numbers is depicted in Fig. 6.2. Furthermore,
for continuous signals f : R→ C, we define the quantization operator Υδ pointwise,
i.e., (Υδf)(t) = qδf(t), t ∈ R. For example, if the sample f(k) is a real number and
f(k) ∈ [(2l − 1)δ, (2l + 1)δ) for some l ∈ Z then (Υδf)(k) = 2lδ.

As in the case of the threshold operator, the resulting samples {(Υδf)(k)}k∈Z are
used to build an approximation

(Bδf)(t) :=
∞∑

k=−∞
(Υδf)(k)sin(π(t− k))

π(t− k) (6.3)

of the original signal f .
The convergence of the series in (6.1) and (6.3) for signals f ∈ Bpπ, 1 ≤ p < ∞,

and signals f ∈ PWp
π, 1 ≤ p ≤ ∞, is unproblematic. All these signals have the

property that lim|t|→∞ f(t) = 0, i.e., for every signal in these spaces and every δ > 0
there exists a t0 = t0(δ) such that |f(t)| < δ for all |t| ≥ t0. As a consequence,
we have (Θδf)(k) = 0 and (Υδf)(k) = 0 for all |k| ≥ t0. Hence the series in (6.1)
and (6.3) have only finitely many summands, which implies that Aδf ∈ PW2

π and
Bδf ∈ PW2

π. In general, Aδf and Bδf are only approximations of f , and we want
the approximation to be close to f if δ is sufficiently small.
The effect that Aδf and Bδf have only finitely many samples can be interpreted
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as a truncation of the Shannon sampling series
∞∑

k=−∞
f(k)sin(π(t− k))

π(t− k) .

This truncation is controlled in the codomain of the signal because only the samples
f(k), k ∈ Z, whose absolute value is larger than or equal to some threshold δ > 0
are taken into account. As δ tends to zero, more and more samples are used for
the approximation. Normally, the Shannon sampling series is truncated in the
domain of the signal by considering only the samples f(k), k = −N, . . . , N . For this
kind of truncation and signals f ∈ PW1

π we have according to Brown’s Theorem
(Theorem 3.6) that

(SNf)(t) =
N∑

k=−N
f(k)sin(π(t− k))

π(t− k) (6.4)

converges uniformly on compact subsets of R as N goes to infinity. It follows that
for all τ > 0 there exists a constant C1 such that

sup
‖f‖PW1

π
≤1

sup
N∈N
|(SNf)(t)| ≤ C1

for all t ∈ [−τ, τ ].
In contrast, we will see in Corollary 6.23 that, for f ∈ PW1

π, Aδf and Bδf behave
completely different compared to (6.4). This shows that for signals in PW1

π there
is a significant difference between the truncation of the Shannon sampling series
controlled in the codomain and the truncation controlled in the domain.
The approximation processes (6.1) and (6.3) are difficult to analyze because the

threshold operator Θδ and the quantization operator Υδ are both non-linear. As a
consequence, Aδ and Bδ are non-linear operators. Further properties of Aδ and Bδ
are as follows. We only state and prove them for Aδ, nevertheless, they are equally
true for Bδ.

1. For every δ > 0, Aδ is a non-linear operator.

2. For every δ > 0, the operator Aδ : (PW1
π, ‖ · ‖PW1

π
) → (PW1

π, ‖ · ‖∞) is
discontinuous, i.e., there exist a signal f ∈ PW1

π and a constant C2 > 0 such
that for every ε > 0 there exists a signal gε ∈ PW1

π satisfying ‖f − gε‖PW1
π
< ε

and ‖Aδf −Aδgε‖∞ ≥ C2.

3. Property 2 implies that Aδ : (PW1
π, ‖ · ‖PW1

π
)→ (PW1

π, ‖ · ‖PW1
π
) is discontin-

uous for every δ > 0.

4. For some f ∈ PW1
π, the operator Aδ is also discontinuous with respect to δ,

i.e., there exist a signal f ∈ PW1
π and a t ∈ R such that

lim
h→0

(Aδ+hf)(t) 6= (Aδf)(t).
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Proof. The proof is straightforward, but included for completeness. Proof of Prop-
erty 1: For f(t) = δ sin(πt)/(πt) ∈ PW1

π we have

0 =
(
Aδ
f

2

)
(t) 6= 1

2(Aδf)(t) = 1
2
δ sin(πt)

πt
.

Proof of Property 2: Let f(t) = δ sin(πt)/(πt) ∈ PW1
π and ε > 0 arbitrary but fixed.

Then, for

gε(t) =
{

(1− ε
2δ )f(t), ε < 1,

(1− 1
2δ )f(t), ε ≥ 1,

we have ‖f − gε‖PW1
π
≤ ε

2δ‖f‖PW1
π
< ε and ‖Aδf −Aδgε‖∞ = ‖Aδf‖∞ = ‖f‖∞ = δ.

Proof of Property 4: Take f(t) = δ sin(πt)/(πt) ∈ PW1
π. Then, for all h > 0, we

have (Aδ+hf)(t) ≡ 0, but (Aδf)(t) = δ sin(πt)/(πt).

6.2 Signal Approximation under Thresholding and
Quantization

According to the previous discussion, for fixed δ > 0 and f ∈ Bpπ, 1 ≤ p < ∞, or
f ∈ PWp

π, 1 ≤ p ≤ ∞, we always have Aδf ∈ B∞π and Bδf ∈ B∞π and consequently
‖Aδf‖∞ < ∞ as well as ‖Bδf‖∞ < ∞. However, it is not clear whether, for fixed
δ > 0, ‖Aδf‖∞ and ‖Bδf‖∞ are bounded on all bounded sets of signals. This
would be a necessary precondition for the practical application of the approximation
processes Aδ and Bδ, because otherwise the peak value of Aδf and Bδf could increase
arbitrarily, even though the norm of f is bounded by some fixed constant.

The following theorem shows that the norms ‖Aδf‖Bpπ and ‖Bδf‖Bpπ are uniformly
bounded on all bounded sets of signals f ∈ Bpπ, 1 < p <∞.

Theorem 6.1. Let 1 < p <∞. For all f ∈ Bpπ and all δ > 0 we have

‖Aδf‖Bpπ ≤ C3(p)‖f‖Bpπ (6.5)

and

‖Bδf‖Bpπ ≤ C4(p)‖f‖Bpπ , (6.6)

where C3(p) and C4(p) are constants that depend only on p.
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Proof. Let f ∈ Bpπ, 1 < p <∞, and δ > 0 be arbitrary but fixed.
First, we prove (6.5). According to (3.14) we have

‖Aδf‖Bpπ ≤ CR(p)

 ∞∑
k=−∞

|(Θδf)(k)|p
1/p

= CR(p)

 ∑
|f(k)|≥δ

|f(k)|p
1/p

≤ CR(p)

 ∞∑
k=−∞

|f(k)|p
1/p

≤ CR(p)
CL(p) ‖f‖B

p
π
,

which completes the proof of (6.5).
Next, we prove (6.6). By the definition of the quantization operation, we have

|(Υδf)(k)| ≤ 2|f(k)| (6.7)

for all k ∈ Z, and it follows that

‖Bδf‖Bpπ ≤ CR(p)

 ∞∑
k=−∞

|(Υδf)(k)|p
1/p

≤ 2CR(p)

 ∞∑
k=−∞

|f(k)|p
1/p

≤ 2CR(p)
CL(p) ‖f‖B

p
π
,

where we used (3.14) again.

Remark 6.2. The Plancherel–Pólya theorem, which we used twice in the proof, is
only true for 1 < p <∞. Therefore, the spaces Bpπ with p = 1 and p =∞ cannot be
treated with the above proof technique. In fact, it is true that Theorem 6.1 does not
hold for B1

π and B∞π .

An immediate consequence of Theorem 6.1 is the following corollary, which shows
that, for 1 < p < ∞, the peak value of Aδf and Bδf is bounded on the set
{f ∈ Bpπ : ‖f‖Bpπ ≤ 1}. This behavior cannot be taken for granted. We will see in
Theorem 6.9 that we do not have this nice behavior for the signal space PW1

π.
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Corollary 6.3. Let 1 < p <∞. For all δ > 0 we have

sup
‖f‖Bpπ≤1

‖Aδf‖∞ <∞

and
sup

‖f‖Bpπ≤1
‖Bδf‖∞ <∞.

Due to the boundedness of the operators Aδ : Bpπ → Bpπ and Bδ : Bpπ → Bpπ for
1 < p < ∞ and all δ > 0, it is—in principle—possible to approximate f ∈ Bpπ,
1 < p <∞, by Aδf and Bδf .

Further, the following theorem shows that for fixed f ∈ Bpπ, 1 < p <∞, Aδf and
Bδf have a good behavior with respect to δ. The approximation error tends to zero
as δ goes to zero. This is in accordance with the common intuition that a decreased
quantization step size and a decreased threshold improves the approximation accuracy.
Theorem 6.4 is important because we will use it in Section 6.3.1 to prove Theorem 6.16.

Theorem 6.4. Let 1 < p <∞. For all f ∈ Bpπ we have

lim
δ→0
‖f −Aδf‖Bpπ = 0 (6.8)

and
lim
δ→0
‖f −Bδf‖Bpπ = 0. (6.9)

Proof. Let f ∈ Bpπ, 1 < p <∞ be arbitrary but fixed.
First, we prove (6.8). For δ > 0 we have

‖f −Aδf‖Bpπ ≤ CR(p)

 ∞∑
k=−∞

|f(k)− (Θδf)(k)︸ ︷︷ ︸
=uδ(k)

|p
1/p

, (6.10)

according to (3.14). Moreover, since |uδ(k)| ≤ |f(k)|, for all k ∈ Z and all δ > 0, we
see that uδ(k) is dominated by |f(k)|, and since

∞∑
k=−∞

|f(k)|p ≤
(
‖f‖Bpπ
CL(p)

)p
<∞, (6.11)

where we used (3.14) again, it follows that {|f(k)|}k∈Z is in lp. Using Lebesgue’s
Dominated Convergence Theorem [144, p. 463] and the fact that limδ→0 uδ(k) = 0
for all k ∈ Z gives

lim
δ→0

 ∞∑
k=−∞

|uδ(k)|p
1/p

=

 ∞∑
k=−∞

|lim
δ→0

uδ(k)|p
1/p

= 0.
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Therefore, we obtain

lim
δ→0
‖f −Aδf‖Bpπ ≤ CR(p) lim

δ→0

 ∞∑
k=−∞

|uδ(k)|p
1/p

= 0,

which completes the proof of (6.8).
The proof of (6.9) is analogously. For δ > 0 we have

‖f −Bδf‖Bpπ ≤ CR(p)

 ∞∑
k=−∞

|f(k)− (Υδf)(k)︸ ︷︷ ︸
=vδ(k)

|p
1/p

. (6.12)

Since

|vδ(k)| = |f(k)− (Υδf)(k)|
≤ |f(k)|+ |(Υδf)(k)|
≤ 3|f(k)|,

for all k ∈ Z and all δ > 0, we see that vδ(k) is dominated by 3|f(k)|. Clearly,
{|f(k)|}k∈Z is in lp by (6.11), and we have limδ→0 vδ(k) = 0 for all k ∈ Z. Thus,
application of Lebesgue’s Dominated Convergence Theorem gives

lim
δ→0

 ∞∑
k=−∞

|vδ(k)|p
1/p

=

 ∞∑
k=−∞

|lim
δ→0

vδ(k)|p
1/p

= 0,

which, together with (6.12), leads to (6.9).

Remark 6.5. For the proof it was important that we used (3.14) twice. Thanks to
the inequality on the right-hand side of (3.14) we were able to derive (6.10) and
(6.12), which transfer the difficult continuous-time approximation problem into an
easier to solve discrete-time problem that involves only the samples of the signal.
The left-hand side of (3.14) was used in (6.11) to show that {|f(k)|}k∈Z is in lp.

Up to now we have discussed the approximation behavior of Aδf and Bδf for the
spaces Bpπ, 1 < p <∞. Next, we will analyze their behavior for the Paley–Wiener
spaces PWp

π, 1 < p ≤ ∞. It will turn out that similar results to the above are
possible for these spaces.

Theorem 6.6. Let 1 < p ≤ ∞. For all f ∈ PWp
π and all δ > 0 we have

‖Aδf‖∞ ≤ C5(p)‖f‖PWp
π

and
‖Bδf‖∞ ≤ C6(p)‖f‖PWp

π
,

where C5(p) and C6(p) are constants that depend only on p.
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Proof. We only need to prove the case 1 < p ≤ 2, because the statement for
2 < p ≤ ∞ follows from the result for p = 2 and the facts that PWp

π ⊂ PW2
π for all

2 < p ≤ ∞ and ‖f‖PW2
π
≤ ‖f‖PWp

π
for all f ∈ PWp

π and all 2 < p ≤ ∞.
Let δ > 0 and 1 < p ≤ 2 be arbitrary but fixed. Since f ∈ PWp

π, it follows from
the Hausdorff–Young inequality [26, p. 19] that f ∈ Bqπ and

‖f‖Bqπ ≤ C7(q)‖f‖PWp
π
, (6.13)

where 1/p+ 1/q = 1. According to Theorem 6.1, which is applicable because f ∈ Bqπ,
we have

‖Aδf‖Bqπ ≤ C3(p)‖f‖Bqπ
≤ C3(p)C7(q)‖f‖PWp

π
(6.14)

and

‖Bδf‖Bqπ ≤ C4(p)‖f‖Bqπ
≤ C4(p)C7(q)‖f‖PWp

π
, (6.15)

where we used (6.13) in the last inequality of (6.14) and (6.15). Since

‖f‖∞ ≤ C8(p)‖f‖Bqπ (6.16)

for all f ∈ Bqπ, the proof is complete.

An immediate consequence of Theorem 6.6 is the following corollary.

Corollary 6.7. Let 1 < p ≤ ∞. For all δ > 0 we have

sup
‖f‖PWpπ≤1

‖Aδf‖∞ <∞

and
sup

‖f‖PWpπ≤1
‖Bδf‖∞ <∞.

Exactly as for the spaces Bpπ, 1 < p <∞, we have the pleasant result that, for all
signals in PWp

π, 1 < p ≤ ∞, the approximation error tends to zero as δ goes to zero.

Theorem 6.8. Let 1 < p ≤ ∞. For all f ∈ PWp
π we have

lim
δ→0
‖f −Aδf‖∞ = 0

and
lim
δ→0
‖f −Bδf‖∞ = 0.
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Proof. We only need to prove the case 1 < p ≤ 2, because the statement for
2 < p ≤ ∞ follows from the result for p = 2 and the fact that PWp

π ⊂ PW2
π for all

2 < p ≤ ∞.
Let 1 < p ≤ 2 be arbitrary but fixed. Since f ∈ PWp

π, it follows from the
Hausdorff–Young inequality [26, p. 19] that f ∈ Bqπ, 1/p+ 1/q = 1, and Theorem 6.4
implies that

lim
δ→0
‖f −Aδf‖Bqπ = 0

as well as
lim
δ→0
‖f −Bδf‖Bqπ = 0.

Due to (6.16), the proof is complete.

6.2.1 Signal Approximation for PW1
π

We have seen that both Aδf and Bδf can be used to approximate f if f belongs
to one of the Bernstein spaces Bpπ, 1 < p <∞, or one of the Paley–Wiener spaces
PWp

π, 1 < p ≤ ∞. In contrast, for PW1
π, Aδ : PW1

π → B∞π and Bδ : PW1
π → B∞π

are unbounded operators for all 0 < δ < 1/3 as the next theorem shows, and thus
cannot be used to approximate signals f ∈ PW1

π.

Theorem 6.9. For all 0 < δ < 1/3 we have

sup
‖f‖PW1

π
≤1
‖Aδf‖∞ =∞ (6.17)

and
sup

‖f‖PW1
π
≤1
‖Bδf‖∞ =∞. (6.18)

We do not prove Theorem 6.9 here because it is a simple consequence of a more
general result, stated in Theorem 6.17 and Corollary 6.23 in Section 6.3.2.
Remark 6.10. Although Aδf ∈ PW2

π and Bδf ∈ PW2
π, for all f ∈ PW1

π, we
have (6.17) and (6.18), which is no contradiction, because the maps f 7→ Aδf and
f 7→ Bδf are non-linear. Moreover, since ‖f‖∞ ≤ ‖f‖PW1

π
≤ 1, the peak value of f

in Theorem 6.9 is bounded. Nevertheless, the peak value of Aδf and Bδf can grow
arbitrarily large.
Remark 6.11. Theorem 6.9 gives the nice additional result that Theorem 6.1 cannot
be true for f ∈ B∞π . Since PW1

π ⊂ B∞π , it follows that

sup
‖f‖PW1

π
≤1
‖Aδf‖∞ ≤ sup

‖f‖B∞π ≤1
‖Aδf‖∞,

and Theorem 6.9 implies that sup‖f‖B∞π ≤1‖Aδf‖∞ =∞ for all 0 < δ < 1/3.
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A direct consequence of Theorem 6.9 is the following corollary, which shows that
the peak approximation error can grow arbitrarily large on the set of signals f ∈ PW1

π

with ‖f‖PW1
π
≤ 1, regardless of how small the threshold δ is.

Corollary 6.12. For all 0 < δ < 1/π we have

sup
‖f‖PW1

π
≤1
‖f −Aδf‖∞ =∞

and
sup

‖f‖PW1
π
≤1
‖f −Bδf‖∞ =∞.

Theorem 6.9 and Corollary 6.12 demonstrate that Aδ and Bδ cannot be used to
approximate signals f ∈ PW1

π. For any given error level, we can find a signal with
norm ‖f‖PW1

π
≤ 1 such that the peak approximation error exceeds this level.

For signals in PW1
π, we have analyzed, so far, the behavior of Aδ and Bδ for fixed

δ. The next theorem describes the behavior of Aδf and Bδf as the threshold δ tends
to zero.

Theorem 6.13. There exists a signal f1 ∈ PW1
π such that

lim sup
δ→0

‖Aδf1‖∞ =∞.

and
lim sup
δ→0

‖Bδf1‖∞ =∞.

Hence a reduction of the threshold δ leads to an unbounded increase of the peak
reconstruction error for some signals in PW1

π. This behavior is counterintuitive
because one would suspect that the reconstruction behavior of Aδf and Bδf gets
better as the threshold δ is reduced.
Remark 6.14. The divergence in Theorem 6.13 is with respect to the supremum
norm. However, for Aδf it is also possible to strengthen the result to pointwise
divergence for every t ∈ R \ Z as the threshold δ tends to zero. It can be shown
that (Aδf)(t), t ∈ R \ Z, diverges as δ → 0 for some signal in f ∈ PW1

π [22]. The
divergence of (Aδf)(t) between the integers is remarkable because the approximation
behavior on the integer grid is best possible. For all t ∈ Z, f ∈ PW1

π, and δ > 0 we
have |f(t)− (Aδf)(t)| < δ.

Proof of Theorem 6.13. We give the proof for the quantization operator, i.e., for Bδ.
The proof for Aδ can be done analogously.

In order to construct the signal f1 we use the functions

hN (t) =
∞∑

k=−∞
hN (k)sin(π(t− k))

π(t− k) ,
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where hN (k) = (−1)kgN (k) and

gN (k) =


1, |k| ≤ N,
2
(
1− |k|

2N

)
, N < |k| < 2N,

0, |k| ≥ 2N.

as basic building blocks. Next, a sequence {nl}l∈N of natural numbers is inductively
constructed. Let n1 = 1 and N(k) = 2(k3), k ∈ N. Furthermore, let nl+1 be the
smallest natural number that is larger than nl and fulfills

1
n2
l

N(nl)− 1
N(nl)

+ 1
nl+1 − 1 <

1
n2
l

.

We define the signal

f1(t) =
∞∑
l=1

1
n2
l

hN(nl)(t).

First, note that f ∈ PW1
π, because

‖f1‖PW1
π
≤
∞∑
l=1

1
n2
l

‖hN(l)‖PW1
π
≤ 3

∞∑
l=1

1
n2
l

<∞.

Next, f1(k), k ∈ Z, is analyzed. Let r ∈ N be arbitrary and |k| ≥ N(nr) + 1.
For m < r we have nr ≥ nm + 1 and consequently n3

r ≥ n3
m + 1. It follows that

N(nr) = 2(n3
r) ≥ 2(n3

m+1) = 2 · 2(n3
m) = 2N(nm), which implies that |k| ≥ 2N(nm).

Thus, for m < r, hN(nm)(k) = 0 and

|f1(k)| =
∣∣∣∣∣
∞∑
l=r

1
n2
l

hN(nl)(k)
∣∣∣∣∣

=
∣∣∣∣∣(−1)k

∞∑
l=r

1
n2
l

gN(nl)(k)
∣∣∣∣∣

= 1
n2
r

gN(nr)(k) +
∞∑

l=r+1

1
n2
l

gN(nl)(k)

≤ 2
n2
r

(
1− N(nr) + 1

2N(nr)

)
+

∞∑
l=r+1

1
n2
l

≤ 1
n2
r

N(nr)− 1
N(nr)

+
∞∑

l=nr+1

1
l2

<
1
n2
r

N(nr)− 1
N(nr)

+ 1
nr+1 − 1 .

For δr with
1
n2
r

N(nr)− 1
N(nr)

+ 1
nr+1 − 1 < δr <

1
n2
r
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we have (Υδrf1)(k) = 0 for |k| ≥ N(nr) + 1. For |k| ≤ N(nr) and k even, we have

f1(k) =
∞∑
l=1

1
n2
l

gN(nl)(k) ≥ 1
n2
r

gN(nr)(k) = 1
n2
r

and
(Υδrf1)(k) ≥ 2δr ≥

1
n2
r

,

because δr ≥ 1/(2n2
r). Similarly, it can be shown that for |k| ≤ N(nr) and k odd

(Υδrf1)(k) ≤ − 1
n2
r

holds. This implies that

(Bδrf1)(t) =
N(nr)∑

k=−N(nr)
(Υδrf1)(k)

sin
(
π(t− k)

)
π(t− k)

and

∣∣∣(Bδrf1)(N(nr) + 1
2)
∣∣∣ =

∣∣∣∣∣∣
N(nr)∑

k=−N(nr)
(Υδrf1)(k) (−1)k

π(N(nr) + 1
2 − k)

∣∣∣∣∣∣
≥ 1
πn2

r

N(nr)∑
k=−N(nr)

1
N(nr) + 1

2 − k

≥ 1
πn2

r

log(N(nr))

= nr
π

log(2).

Therefore, we have
‖Bδrf1‖∞ ≥ nr log(2)/π

and
lim sup
δ→0

‖Bδf1‖∞ ≥ lim sup
r→∞

‖Bδrf1‖∞ =∞.

6.2.2 Oversampling

We have seen that the threshold operator leads to a bad reconstruction behavior of
the Shannon sampling series for PW1

π if the samples are taken at Nyquist rate. It is
well known that oversampling with oversampling factor a > 1 can help to resolve
convergence problems, because better reconstruction kernels than the sinc-kernel
can be used [42, 43, 61, 76]. Indeed, as shown in Theorem 3.17, for f ∈ PW1

π, the
sampling series with oversampling and suitable kernel converges uniformly on the
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whole real axis to the signal f . As we will see in Theorem 6.15, oversampling can
also improve the approximation behavior in our problem, where the samples are
disturbed by the non-linear threshold operator.
However, often interest is not restricted to just reconstruction of signals, but

includes the approximation of outputs of stable linear time-invariant systems from
the samples of the input signals. This problem in connection with the threshold
operator is studied in Section 6.3. In Theorem 6.29 we will prove that oversampling
does not resolve the convergence problems in this case.
Next, we will analyze what happens in the case of oversampling, i.e., we consider

f ∈ PW1
π and a > 1. Using kernels φ ∈ M(a), the reconstruction process with

thresholding has the form

(Aaδ,φf)(t) :=
∞∑

k=−∞
(Θδf)

(
k

a

)
φ

(
t− k

a

)
.

Again, as in the case without oversampling, the series has only finitely many samples,
which implies Aaδ,φf ∈ PW2

aπ ⊂ PW1
aπ.

Now, we can show that Aaδ,φf exhibits a good approximation behavior for f ∈ PW1
π.

Theorem 6.15. For all a > 1 and φ ∈M(a) we have

lim
δ→0

sup
f∈PW1

π

‖f −Aaδ,φf‖∞ = 0.

Proof. For all t ∈ R and all f ∈ PW1
π we have

|f(t)− (Aaδ,φf)(t)| =
∣∣∣∣∣∣f(t)−

∞∑
k=−∞

(Θδf)
(
k

a

)
φ

(
t− k

a

)∣∣∣∣∣∣
=
∣∣∣∣∣
∞∑

k=−∞
|f( k

a
)|<δ

f

(
k

a

)
φ

(
t− k

a

)∣∣∣∣∣
≤ δ

∞∑
k=−∞

∣∣∣∣φ(t− k

a

)∣∣∣∣
≤ δC8‖φ‖B1

aπ
. (6.19)

Since the right-hand side of (6.19) neither depends on t nor on f , we obtain

sup
f∈PW1

π

‖f −Aaδ,φf‖∞ ≤ δC8‖φ‖B1
aπ
, (6.20)

and the assertion follows immediately after taking the limit on both sides of (6.20).
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Theorem 6.15 shows that oversampling leads to a reconstruction process that is
uniformly convergent on all of R for all signals in PW1

π, even if the samples are
disturbed by the threshold operator. This is in contrast to the situation without
oversampling where we have supf∈PW1

π
‖f − Aδf‖∞ = ∞ for all 0 < δ < 1/3,

according to Theorem 6.9.
Thus, with oversampling we can use Aaδ,φf to approximate signals f ∈ PW1

π.
Equation (6.20) gives an upper bound on the peak approximation error. This bound
can be made arbitrarily small by decreasing the threshold δ. The constant C8 does
not depend on f , it only depends on the kernel φ and the oversampling factor a.
For practical applications where a certain φ is given, it is possible to compute this
constant and consequently the upper bound in (6.20).

6.3 System Approximation under Thresholding and
Quantization

In Chapter 4 we already motivated the system approximation problem. If the samples
{f(k)}k∈Z are known perfectly we can use

N∑
k=−N

f(k)T (sinc( · − k))(t) =
N∑

k=−N
f(k)hT (t− k) (6.21)

to obtain an approximation of Tf . The conditions under which (6.21) converges to
Tf for f ∈ PW1

π as N goes to infinity were analyzed in Theorem 4.26. In this section
we analyze the signal approximation problem, where the samples are disturbed either
by the non-linear threshold operator or by the non-linear quantization operator.
More concretely, we want to approximate Tf either by

(ATδ f)(t) := (TAδf)(t) =
∞∑

k=−∞
(Θδf)(k)hT (t− k) (6.22)

or by

(BT
δ f)(t) := (TBδf)(t) =

∞∑
k=−∞

(Υδf)(k)hT (t− k). (6.23)

In the following we will use the abbreviations ATδ := TAδ and BT
δ := TBδ.

The analysis of the approximation processes (6.22) and (6.23) is difficult, because
the operators ATδ and BT

δ have several properties, which complicate its treatment.
Even though we list these properties only for ATδ , they are equally true for BT

δ .

1. For every δ > 0, ATδ : PW1
π → PW2

π is a non-linear operator.

2. For every δ > 0, the operator ATδ : PW2
π → PW2

π is discontinuous, i.e., there
exist a signal f ∈ PW2

π and a constant C9 such that for every ε > 0 there exists
a signal gε ∈ PW2

π satisfying ‖f − gε‖PW2
π
< ε and ‖ATδ f −ATδ gε‖PW2

π
≥ C9.



6.3 System Approximation under Thresholding and Quantization 151

3. Property 2 implies that ATδ : PW1
π → PW2

π is discontinuous for every δ > 0.

4. For some f ∈ PW1
π, the operator ATδ is also discontinuous with respect to δ,

i.e., there exist a signal f ∈ PW1
π and a t ∈ R such that

lim
h→0

(ATδ+hf)(t) 6= (ATδ f)(t).

The proofs are very similar to the proofs of the analogous statements for the operators
Aδ and Bδ in Section 6.2 on page 139, and thus are omitted here.

6.3.1 System Approximation for Bpπ, 1 < p <∞

In this section we show that it is possible to approximate Tf by ATδ f and BT
δ f for

all f ∈ Bpπ, 1 < p <∞.

Theorem 6.16. Let 1 < p < ∞. For all f ∈ Bpπ and all stable LTI systems
T : Bpπ → Bpπ we have

lim
δ→0
‖Tf −ATδ f‖Bpπ = 0

and
lim
δ→0
‖Tf −BT

δ f‖Bpπ = 0.

Proof. From Theorem 6.4 we know that limδ→0‖f − Aδf‖Bpπ = 0 and limδ→0‖f −
Bδf‖Bpπ = 0. Since T : Bpπ → Bpπ is a continuous operator, it follows that limδ→0‖Tf−
ATδ f‖Bpπ = 0 and limδ→0‖Tf −BT

δ f‖Bpπ = 0.

According to Theorem 6.16 it is possible to use the series (6.22) and (6.23) to
approximate Tf for all f ∈ Bpπ, 1 < p <∞, and all stable LTI systems T : Bpπ → Bpπ.
Here, the intuition that a decreased quantization step size and a decreased threshold
improves the approximation accuracy is true for f ∈ Bpπ, 1 < p <∞. However, in
Section 6.3.2 we will see that, for f ∈ PW1

π, the behavior is completely different.

6.3.2 System Approximation for PW1
π

In this section we analyze ATδ and BT
δ for signals in PW1

π. Since it would be
cumbersome to write every sentence for ATδ and BT

δ we subsequently write ATδ in the
text. Nevertheless, every information in this section that is true for ATδ is equally
true for BT

δ .
Again, we are interested in knowing whether sup‖f‖PW1

π
≤1|(ATδ f)(t)| < ∞. The

following theorem gives a necessary and sufficient condition for this expression to be
finite. In Theorem 6.20 we will see that the same condition is sufficient for a good
approximation behavior of (ATδ f)(t).
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Theorem 6.17. Let T : PW1
π → PW1

π be a stable LTI system, 0 < δ < 1/3, and
t ∈ R. Then we have

sup
‖f‖PW1

π
≤1
|(ATδ f)(t)| <∞

and
sup

‖f‖PW1
π
≤1
|(BT

δ f)(t)| <∞

if and only if
∞∑

k=−∞
|hT (t− k)| <∞. (6.24)

We defer the proof of Theorem 6.17 and present a corollary and a theorem, which
further discuss the approximation behavior of ATδ and BT

δ .
Remark 6.18. Note that (6.24) is nothing else than the BIBO stability condition for
discrete-time systems.

Theorem 6.17 implies that the pointwise approximation error |(Tf)(t)− (ATδ f)(t)|
cannot be bounded on {f ∈ PW1

π : ‖f‖PW1
π
≤ 1} if the stable LTI system T does

not fulfill (6.24).

Corollary 6.19. Let T : PW1
π → PW1

π be a stable LTI system, 0 < δ < 1/3, and
t ∈ R. If (6.24) is not fulfilled then we have

sup
‖f‖PW1

π
≤1
|(Tf)(t)− (ATδ f)(t)| =∞

and
sup

‖f‖PW1
π
≤1
|(Tf)(t)− (BT

δ f)(t)| =∞.

Proof. We have

sup
‖f‖PW1

π
≤1
|(Tf)(t)− (ATδ f)(t)| ≥ sup

‖f‖PW1
π
≤1

(|(ATδ f)(t)| − ‖T‖ ‖f‖PW1
π
)

≥ sup
‖f‖PW1

π
≤1
|(ATδ f)(t)| − ‖T‖

and Theorem 6.17 implies that sup‖f‖PW1
π
≤1|(ATδ f)(t)| =∞ .

Thus, if (6.24) is not fulfilled, the pointwise approximation error cannot be
controlled, regardless of how small the threshold δ is. Clearly, for fixed f ∈ PW1

π,
|(ATδ f)(t)| is bounded. However, according to Corollary 6.19, for any level L > 0 we
can find a signal f1 ∈ PW1

π with ‖f1‖PW1
π
≤ 1 such that |(Tf1)(t)− (ATδ f1)(t)| > L.

On the other hand, if (6.24) is fulfilled, then we have a good pointwise approxima-
tion behavior because the approximation error converges to zero as the threshold δ
decreases.
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Theorem 6.20. Let T : PW1
π → PW1

π be a stable LTI system and t ∈ R. If (6.24)
is fulfilled then we have

lim
δ→0

sup
f∈PW1

π

|(Tf)(t)− (ATδ f)(t)| = 0

and
lim
δ→0

sup
f∈PW1

π

|(Tf)(t)− (BT
δ f)(t)| = 0.

Proof. Let t ∈ R be arbitrary but fixed. From Theorem 4.31 we know that (TSNf)(t)
converges to (Tf)(t) for all f ∈ PW2

π. Let U : PW2
π → C denote the continuous

linear operator

Uf = (Tf)(t) =
∞∑

k=−∞
f(k)hT (t− k).

Moreover, we have∣∣∣∣∣∣
∞∑

k=−∞
f(k)hT (t− k)

∣∣∣∣∣∣ ≤
∞∑

k=−∞
|f(k)| |hT (t− k)|

≤ ‖f‖PW1
π

∞∑
k=−∞

|hT (t− k)|

<∞
for all f ∈ PW1

π, because (6.24) is fulfilled by assumption. Thus,

Ûf =
∞∑

k=−∞
f(k)hT (t− k)

defines a continuous linear operator Û : PW1
π → C. Since Ûf = Uf = (Tf)(t) for

all f in PW2
π, which is dense in PW1

π, we can conclude that Û is the unique linear
extension of U , and consequently Ûf = (Tf)(t), i.e.,

(Tf)(t) =
∞∑

k=−∞
f(k)hT (t− k)

for all f ∈ PW1
π. Taking the supremum on both sides of

|(Tf)(t)− (ATδ f)(t)| =
∣∣∣∣∣∣
∞∑

k=−∞
f(k)hT (t− k)−

∞∑
k=−∞

(Θδf)(k)hT (t− k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=−∞
(f(k)− (Θδf)(k))hT (t− k)

∣∣∣∣∣∣
≤ δ

∞∑
k=−∞

|hT (t− k)| (6.25)

proves the statement for ATδ . The proof for BT
δ is the same.
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Remark 6.21. With (6.25) we have a universal bound for the approximation error
which is independent of f .

In order to prove Theorem 6.17 we need Lemma 6.22.

Lemma 6.22. For all stable LTI systems T : PW1
π → PW1

π, 0 < δ < 1/3, and
t ∈ R we have

δ

2

∞∑
k=−∞

|hT (t− k)| ≤ sup
‖f‖PW1

π
≤1
|(ATδ f)(t)| ≤

∞∑
k=−∞

|hT (t− k)| (6.26)

and

δ

2

∞∑
k=−∞

|hT (t− k)| ≤ sup
‖f‖PW1

π
≤1
|(BT

δ f)(t)| ≤ 2
∞∑

k=−∞
|hT (t− k)|. (6.27)

Proof. The right inequality in (6.26) follows directly from

|(ATδ f)(t)| =
∣∣∣∣∣
∞∑

k=−∞
(Θf)(k)hT (t− k)

∣∣∣∣∣
≤

∑
|f(k)|≥δ

|f(k)||hT (t− k)|

≤ ‖f‖PW1
π

∞∑
k=−∞

|hT (t− k)|,

and the right inequality in (6.27) from

|(BT
δ f)(t)| =

∣∣∣∣∣
∞∑

k=−∞
(Υδf)(k)hT (t− k)

∣∣∣∣∣
≤

∞∑
k=−∞

|2f(k)||hT (t− k)|

≤ 2‖f‖PW1
π

∞∑
k=−∞

|hT (t− k)|,

where we used (6.7) in the first inequality.
The left inequality in (6.26) needs some more reasoning. Let 0 < δ < 1/3 and

t ∈ R be arbitrary but fixed. Furthermore, let Z+ = {k ∈ Z : hT (t − k) ≥ 0} and
Z− = {k ∈ Z : hT (t− k) < 0}. For 0 < η < 1 and N ∈ N, consider the function

h+(t, η,N) :=
2N−1∑

k=−2N+1
h+(k, η,N)sin(π(t− k))

π(t− k) ,
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where

h+(k, η,N) =


1 + η, k ∈ Z+ ∩ [−N,N ],
1− η, k ∈ Z− ∩ [−N,N ],
2− |k|N , N < |k| < 2N.

We have

h+(t, η,N) = h+(t, 0, N) + η
N∑

k=−N
k∈Z+

sin(π(t− k))
π(t− k)

︸ ︷︷ ︸
=:u+

N (t)

−η
N∑

k=−N
k∈Z−

sin(π(t− k))
π(t− k)

︸ ︷︷ ︸
=:u−N (t)

,

and it follows that

‖h+( · , η,N)‖PW1
π
≤ ‖h+( · , 0, N)‖PW1

π
+ η‖u+

N‖PW1
π

+ η‖u−N‖PW1
π
.

Since ‖h+( · , 0, N)‖PW1
π
< 3, which is proved in the Appendix A.11, and ‖u+

N‖PW1
π
<

∞ as well as ‖u−N‖PW1
π
< ∞ for all N ∈ N, there exists an η0 = η0(N) with

0 < η0 < 1 such that ‖h+( · , η0, N)‖PW1
π
< 3. Now, let g+(t) := δh+(t, η0, N). Note

that ‖g+‖PW1
π
< 1. We have

(ATδ g+)(t) =
∞∑

k=−∞
|g+(k)|≥δ

g+(k)hT (t− k)

= (1 + η0)δ
N∑

k=−N
k∈Z+

hT (t− k)

> δ
N∑

k=−N
k∈Z+

hT (t− k)

and consequently

sup
‖f‖PW1

π
≤1

(ATδ f)(t) ≥ δ
∞∑

k=−∞
k∈Z+

hT (t− k). (6.28)

Analogously to h+(t, η,N) we define

h−(t, η,N) :=
2N−1∑

k=−2N+1
h−(k, η,N)sin(π(t− k))

π(t− k) ,

where

h−(k, η,N) =


−(1 + η), k ∈ Z− ∩ [−N,N ],
−(1− η), k ∈ Z+ ∩ [−N,N ],
−(2− |k|N ), N < |k| < 2N,
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and the function g−(t) := δh−(t, η1, N), where η1 = η1(N), 0 < η1 < 1, is chosen
such that ‖h−( · , η1, N)‖PW1

π
< 3, which implies that ‖g−‖PW1

π
< 1. Moreover, we

have

(ATδ g−)(t) =
∞∑

k=−∞
|g−(k)|≥δ

g−(k)hT (t− k)

= −(1 + η1)δ
N∑

k=−N
k∈Z−

hT (t− k)

= (1 + η1)δ
N∑

k=−N
k∈Z−

|hT (t− k)|

> δ
N∑

k=−N
k∈Z−

|hT (t− k)|

and consequently

sup
‖f‖PW1

π
≤1

(ATδ f)(t) ≥ δ
∞∑

k=−∞
k∈Z−

|hT (t− k)|. (6.29)

Combining (6.28) and (6.29) finally gives

2 sup
‖f‖PW1

π
≤1

(ATδ f)(t) ≥ δ
N∑

k=−N
k∈Z+

hT (t− k) + δ
N∑

k=−N
k∈Z−

|hT (t− k)|

= δ
∞∑

k=−∞
|hT (t− k)|,

which completes the proof of the left inequality in (6.26).
The proof of the left inequality in (6.27) is essentially the same as the proof of the

left inequality in (6.26).

Proof of Theorem 6.17. Theorem 6.17 follows directly from Lemma 6.22.

The following corollary illustrates Theorem 6.17 and shows that even for common
stable LTI systems like the ideal low-pass filter there are problems because (6.24) is
not fulfilled.

Corollary 6.23. Let Lπ denote the ideal low-pass filter with hLπ(t) = sin(πt)/(πt).
Then we have for all t ∈ R \ Z and 0 < δ < 1/3 that

sup
‖f‖PW1

π
≤1
|(ALπδ f)(t)| = sup

‖f‖PW1
π
≤1
|(Aδf)(t)| =∞
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and

sup
‖f‖PW1

π
≤1
|(BLπ

δ f)(t)| = sup
‖f‖PW1

π
≤1
|(Bδf)(t)| =∞.

Proof. We have ∑∞k=−∞|hLπ(t− k)| =∞ for all t ∈ R \Z, and the statement follows
from Theorem 6.17.

Here we see that the behavior of Aδf for f ∈ PW1
π is completely different to

the behavior for f ∈ PWp
π, 1 < p ≤ ∞, where we have sup‖f‖PWpπ≤1‖Aδf‖∞ < ∞,

according to Corollary 6.7.
Corollary 6.23 shows that, for t ∈ R \ Z and any δ with 0 < δ < 1/3, the

approximation error |(Lπf)(t) − (ALπδ f)(t)| = |f(t) − (Aδf)(t)| can be arbitrarily
large depending on the signal f ∈ PW1

π, ‖f‖PW1
π
≤ 1. This result is interesting

because on the integer lattice t = n ∈ Z we have a good approximation behavior
of Aδf . More precisely, for n ∈ Z we have (Aδf)(n) = (Θf)(n), which implies
that supn∈Z|f(n)− (Aδf)(n)| ≤ 2δ and limδ→0 supn∈Z|f(n)− (Aδf)(n)| = 0. Thus,
(Aδf)(n) converges to f(n) for all n ∈ Z and all f ∈ PW1

π. However, for t ∈ R \ Z,
Corollary 6.23 shows that |f(t)− (Aδf)(t)| can grow arbitrary large.
Remark 6.24. With Corollary 6.23 we have also proved Theorem 6.9, the proof of
which was open until now.

Similar to Theorem 6.17, which characterizes the pointwise boundedness of
sup‖f‖PW1

π
≤1|(ATδ f)(t)|, we can also give a necessary and sufficient condition for

the uniform boundedness on the whole real axis.

Theorem 6.25. Let T : PW1
π → PW1

π be a stable LTI system and 0 < δ < 1/3.
We have

sup
‖f‖PW1

π
≤1
‖ATδ f‖∞ <∞ (6.30)

and
sup

‖f‖PW1
π
≤1
‖BT

δ f‖∞ <∞ (6.31)

if and only if

sup
0≤t≤1

∞∑
k=−∞

|hT (t− k)| <∞. (6.32)

Proof. Theorem 6.25 follows directly from Lemma 6.22 by taking the supremum
supt∈R of all parts of (6.26) and (6.27) and the fact that∑∞k=−∞|hT (t−k)| is periodic
with period 1.

Corollary 6.26. Let T : PW1
π → PW1

π be a stable LTI system and 0 < δ < 1/3.
We have (6.30) and (6.31) if and only if hT ∈ B1

π, i.e., if and only if∫ ∞
−∞
|hT (τ)| dτ <∞. (6.33)
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Proof. According to Nikol’skĭı’s inequality [26, p. 49], (6.32) is true if and only if∫∞
−∞|hT (τ)| dτ <∞.

Remark 6.27. Note that (6.33) is nothing but the BIBO stability condition for
continuous-time systems.

The next corollary shows the good global approximation behavior of ATδ f if (6.33)
is fulfilled.

Corollary 6.28. Let T : PW1
π → PW1

π be a stable LTI system. If (6.33) is fulfilled
then we have

lim
δ→∞

sup
f∈PW1

π

‖Tf −ATδ f‖∞ = 0

and
lim
δ→∞

sup
f∈PW1

π

‖Tf −BT
δ f‖∞ = 0.

Proof. Analogously to the proof of Theorem 6.20.

We have seen that, for f ∈ PW1
π, the class of stable LTI systems T that can be

uniformly approximated by ATδ and BT
δ is given by the set of LTI systems with

hT ∈ B1
π. This means that the class of stable LTI systems that are robust under

thresholding and quantization is exactly the class of bounded-input bounded-output
(BIBO) stable LTI systems.

6.3.3 Oversampling

In Section 6.2.2 we have seen that oversampling can be used to improve the con-
vergence behavior of the sampling series and to reduce the reconstruction error for
the case where the samples are disturbed by the quantization operator. However,
oversampling cannot remove the instability encountered in Theorem 6.17 and Corol-
lary 6.19. In [9] the following theorem was proved for the approximation process
with oversampling

(AT,aδ,φ f)(t) =
∞∑

k=−∞
(Θδf)

(
k

a

)
(Tφ)

(
t− k

a

)
(6.34)

and the Hilbert transform T = H.

Theorem 6.29. For all a > 1, φ ∈M(a), and 0 < δ < 1/π we have

sup
‖f‖PW1

π
≤1
‖AH,aδ,φ f‖∞ =∞

and consequently
sup

‖f‖PW1
π
≤1
‖Hf −AH,aδ,φ f‖∞ =∞.
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Theorem 6.29 shows that the Hilbert transform cannot be approximated using
(6.34) and the samples of f ∈ PW1

π, because the peak approximation error is not
bounded on the set of signals f ∈ PW1

π with ‖f‖PW1
π
≤ 1. For any given error level,

we can find a signal with norm ‖f‖PW1
π
≤ 1 such that the peak approximation error

exceeds this level.
In Theorem 6.29 we used the Hilbert transform as one specific stable LTI system,

however, the result is not restricted to the Hilbert transform but is also valid for
other stable LTI systems. Of course there are stable LTI systems for which the error
is bounded and goes to zero as the threshold δ goes to zero. For example, if T is the
identity operator Id, we have according to Theorem 6.15 that

lim
δ→0

sup
f∈PW1

π

‖Idf −AId,aδ,φ f‖∞ = lim
δ→0

sup
f∈PW1

π

‖f −Aaδ,φf‖∞ = 0.

Hence the class of stable LTI systems for which Theorem 6.29 is valid, is a subset of
all stable LTI systems.

6.4 Discussion

All the results in this chapter were obtained for equidistant sampling. It would
be interesting to extend the results to non-equidistant sampling. Ordinary non-
equidistant sampling series without quantization or thresholding were analyzed
in Section 3.3. However, the more general problem which treats the convergence
behavior of non-equidistant sampling series with sample values that are disturbed by
the threshold operator or the quantization operator is difficult to analyze and still
open. A first partial result towards the solution of this problem was obtained in [9].





7
Conclusion and Outlook

In this work we have studied the interplay between the analog and the digital worlds.
The goal was to better understand the fundamentals of signal reconstruction and
system approximation. We showed that many of the classical results can be extended,
e.g., to larger signal spaces or to non-equidistant sampling patterns, but also that
new problems occur.

The signal reconstruction and the system approximation problem in combination
with quantization, which is essential for practical applications, turned out to be
difficult to analyze because of the non-linearity of the quantization operator.
We have seen that the presence of stable linear time-invariant systems in the

approximation process in general negatively affects the convergence behavior when
compared to the signal reconstruction process without such a system. The conver-
gence of system representations cannot be guaranteed and has to be checked from
case to case. We provided sufficient and necessary conditions for the convergence.

Oversampling is generally known to resolve convergence problems and to improve
the convergence behavior of sampling series. Although it turned out that this is also
true for the reconstruction of signals in PW1

π, we have seen that oversampling cannot
correct the divergence that occurs in the sampling based system approximation.
The main contributions of this thesis are as follows.

• We identified limits.
We showed that the property of boundedness does not carry over from the
discrete-time signals to the continuous-time signals because there exist bounded
discrete-time signals for which a bounded bandlimited interpolation does not
exist. Even simple signal processing operations like truncation can lead to such
discrete-time signals.
We analyzed a large class of Nyquist set reconstruction processes, containing
the Shannon sampling series and the Valiron sampling series as spacial cases,
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and showed that a reconstruction that is uniformly convergent on compact
subsets of the real line and uniformly bounded on the entire real line is not
possible for PW1

π.
We studied representations of stable LTI systems on PW1

π. It turned out that
there exist stable LTI systems and signals for which the convolution integral
system representation diverges even in a distributional sense.
We showed that quantization and thresholding can lead to unexpected effects.
In particular, there exist signals in PW1

π such that the peak value of the
reconstruction error increases unboundedly as the quantization step size is
reduced. Moreover, it was shown that oversampling can improve this behavior.

• We extended classical results.
We showed that the sampling series with oversampling is uniformly convergent
on the entire real line for all signals in PW1

π, and that an elaborate kernel design
is not necessary as far as only convergence is concerned—even the Shannon
sampling series with slightly increased bandwidth has this good convergence
behavior.
We proved sampling theorems for non-equidistant sampling patterns and the
signal spaces B∞π,0 and B∞π . These results extended the classical sampling
theorems towards more flexible sampling points and larger signal spaces.
We incorporated quantization and thresholding in the signal reconstruction and
the system approximation process and analyzed their behavior with respect
to the quantization step size. For the spaces Bpπ, 1 < p < ∞, and PWp

π,
1 < p ≤ ∞, we could prove that the reconstruction error goes to zero as the
quantization step size is decreased.

• We characterized border cases.
For PW1

π we found a sufficient condition for the uniform convergence of the
Shannon sampling series without oversampling.
We completely characterized all the stable LTI systems on PW1

π for which a
convolution-type system representation is possible.
We identified the differences in the convergence behavior of the symmetric
and the non-symmetric Shannon sampling series for signals in PW1

π as well as
bandlimited stochastic processes (I-processes).
We characterized all I-processes for which the non-symmetric Shannon sampling
series converges locally uniformly in the mean square sense and for which the
variance of the reconstruction error of the symmetric Shannon sampling series
is globally uniformly bounded.
We completely characterized the stable LTI systems on PW1

π for which the
system approximation process with quantization or thresholding behaves well
with respect to the quantization step size.
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7.1 Outlook and Open Problems

There are also open problems that require further research.

• In this thesis we derived several results for sine-type sampling patterns. How-
ever, the convergence behavior of sampling series for general non-equidistant
sampling patterns is open in general, and the characterization of suitable
sampling patterns for different signal spaces is certainly a challenging task.
In particular the following open problems dealing with non-equidistant sam-
pling patterns were addressed in this thesis: In Section 3.3.5 we raised two
interesting unsolved questions. The first concerns the estimation of the peak
value of a general bounded bandlimited signal from its non-equidistant samples
and the second the stability of non-equidistant sine-type sampling patterns.
Another open problem was implicitly formulated in Conjecture 3.49, where
we conjectured convergence problems of the signal reconstruction process for
bounded bandlimited signals that vanish at infinity if the restriction to sine-type
sampling patterns is loosened and general complete interpolating sequences
are allowed. A confirmation of this conjecture would show the importance of
the restriction to sine-type sampling patterns for obtaining our results.

• Our analysis of the signal reconstruction and the system approximation with
quantization and thresholding in Chapter 6 was done only for equidistant
sampling points. Considering non-equidistant sampling patterns in this setting
seems to be even more intricate. It would be interesting to know whether there
exist complete interpolating sequences {tk}k∈Z such that

lim
δ→0

∥∥∥∥∥∥Tf −
∞∑

k=−∞
(Θδf)(tk)Tφk

∥∥∥∥∥∥
∞

= 0

for all f ∈ PW1
π and all stable LTI systems T : PW1

π → PW1
π. If this is true,

it would imply that the problems that we encountered in Theorem 6.13 for
equidistant sampling and the identity operator could be avoided by cleverly
choosing the positions of the sampling points.

• The behavior of the system approximation process with thresholding and
oversampling (6.34) was studied in Section 6.3.3 for fixed threshold δ and
varying signals in PW1

π. Its behavior for a fixed signal and a threshold δ
tending to zero is unknown.

• In Chapter 4 we have analyzed convolution-type system representations for
stable LTI systems operating on PW1

π. We showed that there are systems and
signals for which we have divergence even in a distributional sense. It would
be important to find other representations that are convergent for all stable
LTI systems and all signals in PW1

π.





A
Supplementary Proofs

A.1 Proof of Observation 3.10

Proof. i) Obviously,

|(T af)(t)| ≤ 1
| sin(πt0)| |f(t0)| ≤ 1

| sin(πt0)| max
|z|≤t0

|f(z)|.

Choosing R = t0 and C3 = | sin(πt0)|−1 and taking the supremum completes the
proof for i).
ii) Since f ∈ PW1

π is analytic on the whole complex plane we can use Cauchy’s
integral formula to obtain

f ′(m) = 1
2πi

∮
|ξ|=R

f(ξ)
(ξ −m)2 dξ, |m|+ 1 < R

and as a consequence, the inequality

|f ′(m)| ≤ 1
2π

∫ π

−π
|f(Reiθ)| R

|Reiθ −m|2 dθ ≤ R max
|ξ|=R

|f(ξ)|.

Using this inequality, we obtain

|(T bf)(t)| ≤ |f(m)|+R max
|ξ|=R

|f(ξ)| ≤ (1 +R) max
|ξ|=R

|f(ξ)|,

which finishes the proof for ii) after taking the supremum and applying the maximum
modulus principle. iii) Obvious.
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A.2 Proof of Lemma 3.25

Proof. For g with ĝ ∈ C∞0 [−(a+ 1)π, (a+ 1)π] and ĝ(ω) = 1, |ω| ≤ aπ, we have

φ(t) =
∫ ∞
−∞

φ(τ)g(t− τ) dτ

and
N∑

k=−N

∣∣∣∣φ(t− k

a

)∣∣∣∣ ≤ ∫ ∞
−∞
|φ(τ)|

N∑
k=−N

∣∣∣∣g (t− k

a
− τ

)∣∣∣∣ dτ. (A.1)

Furthermore, since ĝ ∈ C∞0 [−(a+ 1)π, (a+ 1)π], it follows that |g(t)| ≤ C1/(1 + t2)
and consequently

N∑
k=−N

∣∣∣∣g (t− k

a
− τ

)∣∣∣∣ ≤ C8, (A.2)

where C1 and C8 are some constants. Inserting (A.2) in (A.1) gives
∞∑

k=−∞

∣∣∣∣φ(t− k

a

)∣∣∣∣ ≤ C8‖φ‖B1
aπ
.

A.3 Proof of Lemma 4.8

Proof. Let t ∈ R and N ∈ N arbitrary but fixed. For convenience we introduce the
function

g(ω) :=
∫ t+N

t−N
hT (τ) e−iωτ dτ.

We have ∣∣∣∣∣
∫ N

−N
f(τ)hT (t− τ) dτ

∣∣∣∣∣ =
∣∣∣∣ 1
2π

∫ π

−π
f̂(ω) eiωt g(ω) dω

∣∣∣∣
≤ 1

2π

∫ π

−π
|f̂(ω)||g(ω)| dω

≤ max
|ω|≤π

|g(ω)| ‖f‖PW1
π
, (A.3)

because g is continuous. Taking the supremum on both sides of (A.3) gives

sup
‖f‖PW1

π
≤1

∣∣∣∣∣
∫ N

−N
f(τ)hT (t− τ) dτ

∣∣∣∣∣ ≤ max
|ω|≤π

|g(ω)|. (A.4)

Furthermore, since g is continuous on the compact interval [−π, π], |g| attains its
maximum in some point ω∗ ∈ [−π, π]. For n ∈ N let

En =
{
ω : |g(ω)| ≥ |g(ω∗)| − 1

n

}
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and choose
fn(τ, t) := 1

2π

∫ π

−π

2π
λ(En)1En(ω) eiφ(ω) e−iωt eiωτ dω,

where φ(ω) = − arg(g(ω)), and 1E denotes the indicator function of the set E.
Obviously, ‖fn‖PW1

π
= 1 for all n ∈ N. It follows that∣∣∣∣∣

∫ N

−N
fn(τ, t)hT (t− τ) dτ

∣∣∣∣∣ =
∣∣∣∣ 1
2π

∫ π

−π
f̂n(ω, t) eiωt g(ω) dω

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

−π

2π
λ(En)1En(ω) eiφ(ω) g(ω) dω

∣∣∣∣
= 1
λ(En)

∫
En
|g(ω)| dω ≥ |g(ω∗)| − 1

n
,

and

sup
‖f‖PW1

π
≤1

∣∣∣∣∣
∫ N

−N
f(τ)hT (t− τ) dτ

∣∣∣∣∣ ≥ lim
n→∞

∣∣∣∣∣
∫ N

−N
fn(τ, t)hT (t− τ) dτ

∣∣∣∣∣
≥ |g(ω∗)| = max

|ω|≤π
|g(ω)| . (A.5)

Combining (A.4) and (A.5) completes the proof.

A.4 Proof of Lemma 4.9

Proof. We have

|(ATNf)(t)| =
∣∣∣∣∣
∫ N

−N
f(τ)hT (t− τ) dτ

∣∣∣∣∣ ≤ max
ω∈[−π,π]

∣∣∣∣∣
∫ t+N

t−N
hT (τ) e−iωτ dτ

∣∣∣∣∣ ,
according to (A.3) because ‖f‖PW1

π
≤ 1. Furthermore,∫ t+N

t−N
hT (τ) e−iωτ dτ = 1

2π

∫ π

−π
ĥT (ω1)

∫ t+N

t−N
eiτ(ω1−ω) dτ dω1

= 1
π

∫ π

−π
ĥT (ω1) eit(ω1−ω) sin

(
N(ω1 − ω)

)
ω1 − ω

dω1

and consequently∣∣∣∣∣
∫ t+N

t−N
hT (τ) e−iωτ

∣∣∣∣∣ dτ ≤ 1
π

∫ π

−π
|ĥT (ω1)|

∣∣∣∣∣sin
(
N(ω1 − ω)

)
ω1 − ω

∣∣∣∣∣ dω1

≤ ‖ĥT ‖L∞[−π,π]
1
π

∫ π

−π

∣∣∣∣∣sin
(
N(ω1 − ω)

)
ω1 − ω

∣∣∣∣∣ dω1

≤ ‖T‖ 2
π

(
π + 2

π
+ 2
π

log(2N − 1)
)
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because for ω ∈ [−π, π],∫ π

−π

∣∣∣∣∣sin
(
N(ω1 − ω)

)
ω1 − ω

∣∣∣∣∣ dω1 =
∫ N(ω+π)

N(ω−π)

∣∣∣∣sin(τ)
τ

∣∣∣∣ dτ

≤
∫ 2πN

−2πN

∣∣∣∣sin(τ)
τ

∣∣∣∣ dτ

= 2
∫ 2N

0

∣∣∣∣sin(πτ)
τ

∣∣∣∣ dτ

≤ 2
(
π +

2N−1∑
k=1

∫ k+1

k

∣∣∣∣sin(πτ)
τ

∣∣∣∣ dτ
)

≤ 2
(
π +

2N−1∑
k=1

1
k

∫ k+1

k
|sin(πτ)| dτ

)

= 2
(
π + 2

π

2N−1∑
k=1

1
k

)

≤ 2
(
π + 2

π
+ 2
π

log(2N − 1)
)
.

A.5 Proof of Lemma 4.15

Proof. First, we derive a preliminary statement, which will be used in the proof of i)
and ii). For ω ∈ [−π, π] and φ ∈ S consider the difference

DN (ĥT , φ, ω) :=
∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)φ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

−φ̂(−ω) 1
π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
=
∣∣∣∣∣ 1π
∫ π

−π
ĥT (ω1) φ̂(−ω1)− φ̂(−ω)

ω − ω1
sin(N(ω − ω1)) dω1

∣∣∣∣∣ . (A.6)

Since φ ∈ S it follows that φ̂ ∈ S and φ̂′ ∈ S. In particular, φ is Lipschitz continuous
because ‖φ̂′‖∞ <∞, and we have∣∣∣∣∣ φ̂(−ω1)− φ̂(−ω)

ω − ω1

∣∣∣∣∣ ≤ ‖φ̂′‖∞
for all ω ∈ [−π, π] and ω1 ∈ [−π, π]. Therefore, we obtain

DN (ĥT , φ, ω) ≤ 2‖φ̂′‖∞‖ĥT ‖L∞[−π,π] = C2(ĥT , φ) (A.7)

for all ω ∈ [−π, π] and all φ ∈ S, where C2(ĥT , φ) is some positive constant that
does not depend N . Since D ⊂ S, (A.7) is also true for all φ ∈ D.
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“i)”: Let N ∈ N be arbitrary but fixed. Since (4.12) is true for all φ ∈ D it is in
particular true for the specific function φ1 ∈ D with real valued φ̂1 and φ̂1(ω) > 0
for ω ∈ [−π, π]. Therefore, it follows from (A.6) and (A.7) that

φ̂1(−ω)
∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ C2(ĥT , φ1) +

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)φ̂1(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
for all ω ∈ [−π, π]. Dividing by φ̂1(−ω) and taking the maximum on both sides
yields

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ max

ω∈[−π,π]

1
φ̂1(−ω)

C2(ĥT , φ1)

+ max
ω∈[−π,π]

1
φ̂1(−ω)

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)φ̂1(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤M(φ1)C2(ĥT , φ1) +M(φ1)C2(φ1)
<∞,

where M(φ1) = maxω∈[−π,π] 1/φ̂1(−ω).
“ii)”: Let N ∈ N be arbitrary but fixed. Suppose (4.9) is true, and let φ ∈ S be

arbitrary but fixed. From (A.6) and (A.7) it follows that

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)φ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ C2(ĥT , φ) + |φ̂(−ω)|

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ C2(ĥT , φ) + ‖φ̂‖∞C1

for all ω ∈ [−π, π]. Taking the maximum on both sides yields

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)φ̂(−ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C2(ĥT , φ) + ‖φ̂‖∞C1

<∞,

which completes the proof.
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A.6 Proof of Lemma 4.21

Proof. “i)”: Let N ∈ N be arbitrary but fixed. Since (4.36) is true for all φ ∈ D it is
in particular true for the specific function φ1 ∈ D with φ̂1(ω) > 0 for ω ∈ [−π, π].
Therefore, we have∣∣∣∣ 1π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤M(φ1)

∣∣∣∣φ̂1(−ω) 1
π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ,
where M(φ1) = maxω∈[−π,π] 1/φ̂1(−ω). Taking the maximum on both sides yields

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤M(φ1) max

ω∈[−π,π]

∣∣∣∣φ̂1(−ω) 1
π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤M(φ1)C8(φ1) <∞.

“ii)”: Let N ∈ N be arbitrary but fixed. Suppose (4.35) is true, and let φ ∈ S be
arbitrary but fixed. Then we have

max
ω∈[−π,π]

∣∣∣∣φ̂(−ω) 1
π

∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ ‖φ̂‖∞ max

ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π
ĥT (ω1)sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣
≤ ‖φ̂‖∞C7 <∞,

which completes the proof.

A.7 Proof of Theorem 4.24

Proof. We have∣∣∣∣∣
∫ N

−N
hH(τ) eiωτ dτ

∣∣∣∣∣ =
∣∣∣∣∣2i
∫ N

0

sin2 (π
2 τ
)

π
2 τ

sin(ωτ) dτ
∣∣∣∣∣

=
∣∣∣∣∣2i
π

∫ N

0

1− cos(πτ)
τ

sin(ωτ) dτ
∣∣∣∣∣

≤
∣∣∣∣∣ 2π
∫ N

0

sin(ωτ)
τ

dτ
∣∣∣∣∣+

∣∣∣∣∣ 1π
∫ N

0

sin((π − ω)τ)
τ

dτ
∣∣∣∣∣+

∣∣∣∣∣ 1π
∫ N

0

sin((π + ω)τ)
τ

dτ
∣∣∣∣∣

≤
∣∣∣∣∣ 2π
∫ ωN

0

sin(τ)
τ

dτ
∣∣∣∣∣+

∣∣∣∣∣ 1π
∫ (π−ω)N

0

sin(τ)
τ

dτ
∣∣∣∣∣+

∣∣∣∣∣ 1π
∫ (π+ω)N

0

sin(τ)
τ

dτ
∣∣∣∣∣

< C3
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for all N ∈ N and all ω ∈ [−π, π], because
∫ x

0 sin(τ)/τ dτ < π, independently of
x ∈ R. Using (4.33) and Theorem 4.18 gives limN→∞‖Hf −BH

N f‖∞ = 0.
Similar to Theorem 4.5 it can be shown that lim supN→∞‖Hf −AHNf‖∞ =∞ if

and only if

sup
t∈R

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣
∫ t+N

t−N
hH(τ) e−iωτ dτ

∣∣∣∣∣ =∞.

But choosing t = N and ω = 0, and using∫ 2N

0
hH(τ) dτ =

∫ 2N

0

sin2 (π
2 τ
)

π
2 τ

dτ > 1
π

log(2N),

where the last inequality follows from (4.30), shows exactly this.

A.8 Supplement to the Proof of Theorem 4.28

In the proof of Theorem 4.28 we used the fact that K equipped with the norm ‖ · ‖K,t
is a Banach space for all t ∈ R. The proof thereof is given here.

Proof. We have to show that (K, ‖ · ‖K,t) is complete. Let t ∈ R be arbitrary but
fixed, and let U denote the set of all functions h with a representation h(τ) =
1/(2π)

∫ π
−π ĥ(w) eiωτ dω, τ ∈ R, for some ĥ ∈ C[−π, π]. Now, suppose {hn}n∈N is a

Cauchy sequence in (K, ‖ · ‖K,t). Then, for every ε > 0 there exists a N0 = N0(ε) ∈ N
such that ‖hm − hn‖K,t < ε for all m,n ≥ N0. It follows that

‖ĥm − ĥn‖∞ < ε for all m,n ≥ N0 (A.8)

and

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
(hm(t− k)− hn(t− k)) eiωk

∣∣∣∣∣∣ < ε for all m,n ≥ N0. (A.9)

From (A.8) we see that {ĥn}n∈N is a Cauchy sequence in (C[−π, π], ‖ · ‖∞). Since
(C[−π, π], ‖ · ‖∞) is complete, the sequence {ĥn}n∈N has a limit ĥ ∈ C[−π, π]. Thus,
there exists a N1 ∈ N such that

‖ĥn − ĥ‖∞ < ε for all n ≥ N1. (A.10)

Moreover, since ‖f‖∞ ≤ ‖f̂‖∞ for all f ∈ U , it follows that |hn(t− k)− h(t− k)| ≤
‖hn − h‖∞ ≤ ‖ĥn − ĥ‖∞ for all n ∈ N, k ∈ Z, and consequently limn→∞ hn(t− k) =
h(t− k) for all k ∈ Z.
It remains to show that h ∈ K and that limm→∞‖hm − h‖K = 0. From (A.9) it

follows that |∑N
k=−N (hm(t− k)− hn(t− k)) eiωk| < ε for all m,n ≥ N0, N ∈ N, and

ω ∈ [−π, π]. Taking the limit n→∞, we obtain

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣∣∣
N∑

k=−N
(hm(t− k)− h(t− k)) eiωk

∣∣∣∣∣∣ ≤ ε for all m ≥ N0. (A.11)



172 A Supplementary Proofs

From (A.10) and (A.11) we see that hm − h ∈ K for all m ≥ M0, where M0 =
max(N0, N1). Since h = h − hM0 + hM0 , it follows that h ∈ K. Moreover, using
(A.10) and (A.11) again, we obtain ‖hm − h‖K ≤ 2ε for all m ≥M0, which implies
that limm→∞‖hm − h‖K = 0.

A.9 Proof of Lemma 5.4

The proof of Lemma 5.4 requires two more lemmas, namely Lemma A.1 and
Lemma A.2.

Lemma A.1. There exists a positive constant C4, such that∣∣∣∣∣
N∑
k=1

eikω

k

∣∣∣∣∣ ≤
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣+ C4

for all N ∈ N and ω ∈ [−π, π].

Proof of Lemma A.1. We analyze ∑M
k=N

eiωk

k for ω ∈ [−π, π], ω 6= 0, and N,M ∈ N,
N < M , using summation by parts. For k ≥ N , let

Dk,N (ω) :=
k∑

l=N
eiωl .

Then, using summation by parts, we obtain

M∑
k=N+1

eiωk

k
= DM,N+1(ω)

M
+

M−1∑
k=N+1

Dk,N+1(ω)
k(k + 1) . (A.12)

Since

|Dk,N+1(ω)| =
∣∣∣∣∣∣

k∑
l=N+1

eiωl

∣∣∣∣∣∣ =
∣∣∣∣∣1− eiω(k−N)

1− eiω

∣∣∣∣∣ ≤ 1∣∣sin (ω2 )∣∣ ,
the first term in (A.12), i.e., DM,N+1(ω)/M , converges to zero for M →∞. Addi-
tionally, for M > N + 1, we have

M−1∑
k=N+1

|Dk,N+1(ω)|
k(k + 1) ≤ 1∣∣sin (ω2 )∣∣

M−1∑
k=N+1

1
k(k + 1) <

1∣∣sin (ω2 )∣∣N .

Thus, the sum in (A.12) is convergent for M →∞, and we obtain∣∣∣∣∣∣
∞∑

k=N+1

eiωk

k

∣∣∣∣∣∣ ≤ 1∣∣sin (ω2 )∣∣N (A.13)
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for ω ∈ [−π, π], ω 6= 0, and N ∈ N. Further, since
∞∑
k=1

eiωk

k
=
∞∑
k=1

cos(kω)
k

+ i
∞∑
k=1

sin(kω)
k

,

it follows from 1.441 in [130] that

−
∞∑
k=1

eiωk

k
= 1

2 log(2− 2 cos(ω)) + i
2 sgn(ω)(|ω| − π)

= log
(
1− eiω

)
for ω ∈ [−π, π], ω 6= 0. Thus, we have∣∣∣∣∣log

(
1− eiω

)
+

N∑
k=1

eiωk

k

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

k=N+1

eiωk

k

∣∣∣∣∣∣
<

1∣∣sin (ω2 )∣∣N , (A.14)

where we used (A.13) in the last inequality.
Next, we have to distinguish two cases. First, we analyze the case 2 sin(1/(2N)) ≤
|ω| ≤ π. We have

1∣∣sin (ω2 )∣∣N ≤
π

|ω|N ≤
π2

2 .

Thus, using (A.14), we obtain∣∣∣∣∣
N∑
k=1

eiωk

k

∣∣∣∣∣ ≤ π2

2 +
∣∣∣log

(
1− eiω

)∣∣∣
≤ π2

2 + π

2 +
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣ (A.15)

for 2 sin(1/(2N)) ≤ |ω| ≤ π, because∣∣∣log
(
1− eiω

)∣∣∣ ≤ ∣∣∣∣log
(

2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣+ π

2 .

The second case is 0 < |ω| ≤ 2 sin(1/(2N)). We have∣∣∣∣∣
N∑
k=1

eiωk

k

∣∣∣∣∣ ≤
N∑
k=1

1
k
< 1 + log(2N).

Furthermore, a simple calculation shows that

log(2N) ≤ log(2) +
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣ ,
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and thus, it follows that∣∣∣∣∣
N∑
k=1

eiωk

k

∣∣∣∣∣ < 1 + log(2) +
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣ (A.16)

for 0 < |ω| ≤ 2 sin(1/(2N)). Combining (A.15) and (A.16), we have∣∣∣∣∣
N∑
k=1

eiωk

k

∣∣∣∣∣ ≤ π2

2 + π

2 +
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣
for ω ∈ [−π, π], ω 6= 0, and N ∈ N. For ω = 0 the assertion of the lemma is trivially
fulfilled.

Lemma A.2. There exists a positive constants C5, such that∣∣∣∣∣
N∑

k=M

eiωk

k + 1
2

∣∣∣∣∣ ≤ 2
∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣+ C5.

for all M,N ∈ Z, M ≤ N , and ω ∈ [−π, π].

Proof of Lemma A.2. Let M,N ∈ Z, M ≤ N arbitrary but fixed. We have

N∑
k=M

eiωk

k + 1
2
−

N∑
k=M
k 6=0

eiωk

k
= cM,N −

1
2

N∑
k=M
k 6=0

eiωk

k
(
k + 1

2

) ,
where

cM,N =
{

2, M ≤ 0 ≤ N,
0, otherwise,

and consequently∣∣∣∣∣∣∣∣
N∑

k=M

eiωk

k + 1
2
−

N∑
k=M
k 6=0

eiωk

k

∣∣∣∣∣∣∣∣ ≤ 2 + 1
2

N∑
k=M
k 6=0

1
k
(
k + 1

2

) ≤ 4. (A.17)

We proceed with the convention that an empty sum, i.e., a sum where the upper
summation index is less than the lower summation index, is zero. Obviously,∣∣∣∣∣∣∣∣

N∑
k=M
k 6=0

eiωk

k

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣
−M∑
k=1

eiωk

k

∣∣∣∣∣+
∣∣∣∣∣
N∑
k=1

eiωk

k

∣∣∣∣∣
≤ 2

(∣∣∣∣log
(

2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣+ C4

)
, (A.18)
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where we used Lemma A.1 in the last inequality. Combining (A.17) and (A.18) we
obtain ∣∣∣∣∣

N∑
k=M

eiωk

k + 1
2

∣∣∣∣∣ ≤ 2
(∣∣∣∣log

(
2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣+ C4

)
+ 4,

which completes the proof.

Now we are in the position to prove Lemma 5.4

Proof of Lemma 5.4. Since the assertion of the lemma is obviously true for t ∈ Z,
we can restrict our analysis to the case t ∈ R \ Z. Let btc denote the largest integer
that is smaller or equal to t. This implies that |btc + 1/2 − t| < 1/2. Using the
abbreviation

qM,N (t, ω) :=
N∑

k=M
eiωk sin(π(t− k))

π(t− k) ,

we have∣∣∣∣∣qM,N (t, ω)
sin(πt) − qM,N (btc+ 1

2 , ω)
sin(π(btc+ 1

2))

∣∣∣∣∣ =
∣∣∣∣∣ 1π

N∑
k=M

eiωk(−1)k
(

1
t− k −

1
btc+ 1

2 − k

)∣∣∣∣∣
≤ C6 + 1

|t− btc| + 1
|t− bt+ 1c| .

It follows that

|qM,N (t, ω)| ≤ C6| sin(πt)|+ |qM,N (btc+ 1
2 , ω)|| sin(πt)|

| sin(π(btc+ 1
2))| + | sin(πt)|

|t− btc| + | sin(πt)|
|t− bt+ 1c|

≤ C6 + |qM,N (btc+ 1
2 , ω)|+ 2. (A.19)

Furthermore, we have

|qM,N (btc+ 1
2 , ω − π)| =

∣∣∣∣∣∣ 1π
btc−M∑
k=btc−N

eiωk

k + 1
2

∣∣∣∣∣∣ ≤ 2
π

∣∣∣∣log
(

2
∣∣∣∣sin(ω2

)∣∣∣∣)∣∣∣∣+ C7,

where the last inequality follows by Lemma A.2. Using (5.10) it follows that

|qM,N (btc+ 1
2 , ω)| ≤ 2

π

∣∣∣∣log
(

2
∣∣∣∣cos

(
ω

2

)∣∣∣∣)∣∣∣∣+ C7.

and, using (A.19), that

|qM,N (t, ω)| ≤ 2
π

∣∣∣∣log
(

2
∣∣∣∣cos

(
ω

2

)∣∣∣∣)∣∣∣∣+ C2,

which completes the proof.
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A.10 Proof of Lemma 5.6

Proof. Let 0 < δ < π and τ > 0 be arbitrary but fixed. From the identity

sin(π(t− k))
π(t− k) = 1

2π

∫ π

−π
eiωt e−iωk dω

we see that
sin(π(t− k))
π(t− k) , k ∈ Z

are the Fourier coefficients of the function g(ω, t) that is 2π-periodic in ω and identical
to eiωt for −π ≤ ω < π, where |t| ≤ τ is a parameter. Now, if

AM,N (ω, t) :=
N∑

k=−M
eiωk sin(π(t− k))

π(t− k) , M,N ∈ N

converges for M,N → ∞ to a function g̃(ω, t) for |t| ≤ τ and |ω| ≤ π − δ, then
g̃(ω, t) = g(ω, t) = eiωt for |t| ≤ τ and |ω| ≤ π − δ by the representation theorem for
Fourier series and the fact that eiωt is continuous differentiable in [−π + δ, π − δ]. It
remains to show that AM,N (ω, t) is uniformly convergent with respect to t and ω for
|t| ≤ τ and |ω| ≤ π − δ as M,N →∞.
In the following analysis we always assume that |t| ≤ τ and |ω| ≤ π − δ. For

N1, N,M1,M ∈ N with N1 > N > τ and M1 > M > τ we have

|AM1,N1(ω, t)−AM,N (ω, t)|

≤
∣∣∣∣∣∣
−M−1∑
k=−M1

eiωk sin(π(t− k))
π(t− k)

∣∣∣∣∣∣+
∣∣∣∣∣∣

N1∑
k=N+1

eiωk sin(π(t− k))
π(t− k)

∣∣∣∣∣∣ . (A.20)

It is sufficient to analyze the case t /∈ Z, because AM1,N1(ω, t)−AM,N (ω, t) = 0 for
t ∈ Z, |t| ≤ τ . The second term on the right-hand side of (A.20) can be bounded
from above by ∣∣∣∣∣∣

N1∑
k=N+1

eiωk sin(π(t− k))
π(t− k)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

N1∑
k=N+1

ei(ω+π)k

π(t− k)

∣∣∣∣∣∣ . (A.21)

Defining Dk,N+1(ω) = ∑k
l=N+1 ei(ω+π)l and using summation by parts in the same

way as in (A.12), we have

N1∑
k=N+1

ei(ω+π)k

k − t = DN+1,N+1
N1 − t

+
N1−1∑
k=N+1

Dk,N+1(ω)
(k − t)(k + 1− t) ,
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and since |Dk,N+1(ω)| ≤ 1/
∣∣sin (ω+π

2
)∣∣, we obtain∣∣∣∣∣∣

N1∑
k=N+1

ei(ω+π)k

k − t

∣∣∣∣∣∣ ≤ 1∣∣sin (ω+π
2
)∣∣
 1
N1 − t

+
N1−1∑
k=N+1

1
(k − t)(k + 1− t)


≤ 1

sin
(
δ
2

)
 1
N − τ +

∞∑
k=N+1

1
(k − τ)2

 . (A.22)

The right-hand side of (A.22) converges to zero for N →∞. Thus, combining (A.21)
and (A.22) we see that for all ε > 0 there exists a natural number N0 = N0(ε, δ, τ)
such that ∣∣∣∣∣∣

N1∑
k=N+1

eiωk sin(π(t− k))
π(t− k)

∣∣∣∣∣∣ < ε

2

for all N ≥ N0, N1 > N , |ω| ≤ π − δ, and |t| ≤ τ . The first term on the right-hand
side of (A.20) can be treated in the same way.

Consequently, for all ε > 0, τ > 0, and 0 < δ < π there exist two natural numbers
N0 = N0(ε, δ, τ) and M0 = M0(ε, δ, τ) such that for all |ω| ≤ π − δ and |t| ≤ τ we
have

|AM1,N1(ω, t)−AM,N (ω, t)| < ε

for all N ≥ N0, N1 > N , and M ≥M0, M1 > M . It follows that

lim
N,M→∞

max
|t|≤τ

max
|ω|≤π−δ

∣∣∣∣∣∣eiωt−
N∑

k=−M
eiωk sin(π(t− k))

π(t− k)

∣∣∣∣∣∣ = 0,

and, therefore, the assertion of the lemma is proved.

A.11 Proof of ‖h+( · , 0, N)‖PW1
π
< 3

Proof. The Fourier coefficients FN (k), k ∈ Z, of the Fejér kernel

F̂N (ω) = 1
N + 1

sin2((N + 1)ω2 )
sin2(ω2 )

are given by

FN (k) =
{

1− |k|N , |k| < N,

0, |k| ≥ N.
Thus, h+(k, 0, N) = 2F2N (k)− FN (k), k ∈ Z and the Fourier transform of

h+(t, 0, N) =
2N−1∑

k=−2N+1
h+(k, 0, N)sin(π(t− k))

π(t− k)
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is
ĥ+(ω, 0, N) = 2F̂2N (ω)− F̂N (ω), |ω| ≤ π.

As a consequence we obtain

‖h+( · , 0, N)‖PW1
π

= 1
2π

∫ π

−π
|2F̂2N (ω)− F̂N (ω)| dω

<
1

2π

∫ π

−π
2F̂2N (ω) + F̂N (ω) dω = 3.

In the last line we can write “<” instead of “≤” because F̂2N and F̂N are both
non-negative.
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