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Computer Aided Medical Procedures & Augmented Reality / I16

Contributions to Medical Image Registration

Darko Zikic
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Abstract

Image registration, also known as image alignment, spatial normalization,
or motion estimation, is the process of computing the spatial transformation
between corresponding structures of objects depicted in two or more images.
In medical scenarios, the spatial transformation between corresponding points
can have various causes, such as natural patient movement, different patient
positioning, or anatomical changes. Sometimes, the apparent misalignment is
caused by the task of comparing images of different subjects. Thus, image
registration is often the foundation for further analysis and applications, such as
fusion of different modalities for diagnosis and interventions.

Image registration presents an active field of research, among other reasons
also due to the complex nature of the associated optimization problem. Among
the registration methods, the so called deformable registration problem, which
treats high-dimensional transformation models, is particularly challenging. In
the first part of this work, we present an overview of existing intensity-based
registration methods, with focus on deformable approaches. Our aim is to point
out the relations between the different approaches, and to highlight the common
elements. In the second part of this thesis, we present several of our contributions
to the field of registration of medical images, most of them affecting deformable
registration methods:

1) We propose a simple and efficient preconditioning scheme for improvement
of the convergence speed of gradient-based methods for arbitrary image-based
difference measures in deformable registration. The proposed scheme is especially
useful for deformable multi-modal registration employing statistical difference
measures, since in these cases, the range of applicable efficient optimization
schemes is strongly limited, due to the structure and size of the problem.

2) Alignment of angiographic 3D scans to 2D projections is an important
issue for navigation during interventions. For the common single-view setting, in
which only one 2D projection is available, we introduce a method for deformable
2D-3D registration of vascular structures. Prior to our work, methods employing
a rigid transformation model presented the state of the art for this problem.

3) For linear registration, which is often performed prior to deformable
registration, we discuss the use of Markov Random Field (MRF) modeling
and discrete optimization. The approach is based on the approximation of the
original energy, such that efficient discrete optimization becomes applicable.
The resulting framework allows to transfer the advances from the active field of
discrete optimization to linear registration.

4) For generation of statistical deformation models, we analyze the deforma-
tions resulting from deformable registration and find that they contain significant
linear components. Based on this observation, we propose the use of minimal
deformations, from which the linear transformation components are removed.
We demonstrate that this step is non-optional for creation of accurate models
representing the major deformations within a population.
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Zusammenfassung

Bildregistrierung bezeichnet die Bestimmung der räumlichen Transformation
zwischen korrespondierenden Strukturen eines Objektes, welches in zwei oder
mehreren Bildern dargestellt wird. Die örtliche Verschiebung zwischen korre-
spondierenden Punkten in unterschiedlichen Aufnahmen kann in medizinischen
Anwendungsszenarien vielfältige Ursachen haben, wie zum Beispiel die Bewegung,
unterschiedliche Positionierung, oder anatomische Veränderungen des Patienten.
In manchen Fällen kann die scheinbare Verschiebung daraus resultieren, dass
ein Vergleich von korrespondierenden Strukturen in verschiedenen Patienten
durchgeführt werden soll. Aufgrund der häufigen Problemstellung bildet die
Bildregistrierung den Grundstein für die weitere Verarbeitung von medizini-
schen Bildern in zahlreichen Anwendungen. Eine Beispielanwendung ist die
Überlagerung von Bildern verschiedener Modalitäten, welche für diagnostische
oder interventionelle Zwecke vorteilhaft eingesetzt werden kann.

Die Bildregistrierung bleibt ein aktives Forschungsfeld, unter anderem durch
die anspruchsvolle Natur der damit verbundenen Optimierungsprobleme. Dies
ist insbesondere der Fall für die sogenannte deformierbare Registrierung, welche
hochdimensionale Transformationsmodelle behandelt. Der erste Teil dieser Arbeit
soll eine grobe Übersicht über die existierenden Methoden für deformierbare
Registrierung geben. Hierbei liegt der Schwerpunkt auf den Gemeinsamkeiten und
Parallelen zwischen den verschiendenen Ansätzen. Der zweite Teil der Arbeit fasst
unsere methodologischen Beiträge zum Bereich der Registrierung medizinischer
Daten zusammen, welche im Rahmen dieser Arbeit entstanden sind:

1) Wir stellen ein Vorkonditionierungsschema für die Optimierung beliebiger
Bild-basierter Ähnlichkeitsmaße in Registrierungsproblemen vor. Basierend auf
diesem Schema läßt sich eine einfache und effiziente Optimierung durchführen,
welche für alle weit verbreiteten Registrierungsmethoden eingesetzt werden kann.
Die vorgestellte Methode ist von besonderem Interesse für die deformierbare
multi-modale Registrierung mit statistischen Ähnlichkeitsmaßen. Für diese Klasse
von Registrierungsproblemen können die üblichen effizienten Optimierungsme-
thoden oftmals nicht eingesetzt werden, aufgrund der Größe und Struktur der
entsprechenden Optimierungsprobleme.

2) Die Registrierung von angiograpischen 3D Aufnahmen zu 2D Projektions-
aufnahmen ist notwendig für die Navigation bei intraoperativen Anwendungen.
Für das weit verbreitete “single-view” Szenario, in dem nur eine einzelne 2D
Projektion vorliegt, stellen wir die erste Methode zur deformierbaren 2D-3D
Registrierung von vaskulären Strukturen vor.

3) Wir stellen eine Methode zur linearen (nicht-deformierbaren) Registrierung
vor, welche auf der Markov Random Field Modellierung beruht und diskrete
Optimierungsmethoden verwendet. Die Methode basiert auf der Approximation
der ursprünglichen Energie, die es erlaubt, dass effiziente diskrete Optimierungs-
methoden eingesetzt werden können.

4) Im Kontext der Erstellung von statistischen Deformationsmodellen ana-
lysieren wir Deformationsfelder welche mittels deformierbarer Registrierung
berechnet werden, und stellen fest, dass diese signifikante lineare Anteile ent-
halten. Daher schlagen wir den Einsatz von minimalen Deformationen vor, aus
welchen die linearen Anteile entfernt wurden. Wir zeigen, dass dieser Schritt für
die Erstellung von genauen Deformationsmodellen notwendig ist.
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‘What luck! Here’s a deep, damp ditch on the other side,
which I shall now proceed to fall into.’

Lord Peter Wimsey





Introduction

Image registration describes the task of computing the spatial transformation (i.e.
motion) between corresponding structures of a certain object, which are depicted
in a given set of input images. Here, we use the term image in a general sense,
and it can represent any spatial measurement of a certain signal or quantity. The
measured quantity can be for example the brightness intensity in gray-valued
images, but also higher-dimensional, vector-valued measurements are possible,
for example the different color channels in photographs. Examples of images
are photographs, depth images, or medical images from any arbitrary modality,
such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), or ultrasound (US).

In medical scenarios, there are numerous reasons which cause the misalign-
ment of corresponding structures. These can include natural patient movement,
different patient positioning, or anatomical changes in the patient over time. In
certain applications, we are interested in comparing images of different subjects,
and here, the apparent misalignment of corresponding structures is due to the
actual differences in the subjects.

There are numerous synonyms for image registration, which highlight different
aspects of the problem, such as image-based motion estimation, image alignment,
or spatial normalization of images.

Image registration has been a very active research area in the last four decades.
Its importance stems from the fact that the knowledge about the motion or
correspondence of structures is an important building block and prerequisite for
many applications. Furthermore, images present a very attractive, since non-
invasive and non-obtrusive, type of measurements, from which the information
about the motion and the correspondence can be extracted.

The medical domain offers many examples for applications of image registra-
tion. One wide-spread application is the fusion of complementary information
from different modalities - for example the combination of anatomical informa-
tion (e.g. from CT) and functional information (e.g. from PET). For the correct
fusion of the information, it is crucial that the single images are aligned. To
enable a meaningful fusion, the motion between the two scans has to be undone,
and for that, it first has to be estimated - enter registration.

A further example are so-called longitudinal studies, in which the patient is
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scanned at different points in time, in order to monitor the progress of the illness
or the treatment. Again, in order to facilitate the assessment of the treatment
and allow its quantification, the motion between the single scans has to be
estimated. For some applications, the registration of images of different patients
is required. An example is the field of computational anatomy which treats
the creation of so called atlases of single organs, which describe the average
anatomy and the variation of the given population (thus allowing potential early
detection of diseases). To this end, large sets of images from different patients
have to be registered. For some organs with high variability between individuals
such as the brain, this is an especially challenging task, since the assumption of
corresponding structures in the input images is no longer clearly given. In this
case with no corresponding structures, it is also not possible to assume physical
properties to model plausible deformations.

There are also numerous applications in non-medical domains, for which image
registration is used, such as robotics, surveillance applications, reconstruction
of 3D scenes, video compression, or creation of large panoramic scenes by
image stitching [Szeliski, 2010]. These applications often employ photographs or
single video frames as input images, and the corresponding deformable image
registration problem is often referred to as the optical flow problem.

The registration problem can be formalized as an optimization of a certain
energy model, where the energy is modeled such that it is possibly minimized
by the true transformation. In this case, the registration task boils down to the
definition of energy and performing an optimization. These steps are however
not trivial for image registration, due to the inherent properties of the problem.
Based on the setting of the registration problem, and the employed model, as well
as the used optimization method, there are some widely accepted classifications,
which we briefly discuss next.

The available input images and the application requirements determine the
properties of the registration method to be used. One important classification of
the registration problem is the one into mono-modal and multi-modal registration
scenarios. Mono-modal registration describes a setting in which both input
images are acquired by the same type of device. On the other hand, multi-modal
registration refers to the problem of computing the transformation between
images of different modalities, for example between a CT and a PET image.
Multi-modal registration is of special importance in the medical domain, as it
enables the fusion of the information from different modalities. Therefore, the
applicability in multi-modal scenarios is an important requirement for general
purpose registration methods in medical scenarios.

A further common distinction of registration methods is based on the type
of the transformation to be estimated. Two broad classes are usually identified:
the so called rigid and deformable registration problems. The synonyms for
rigid transformations are global transformation and linear transformations, and
they highlight the different aspects of this class, which describes a comparably
simple motion, which is globally valid for all structures in the image domain.
On the other hand, the class of deformable (or non-rigid, non-linear, or local)
transformations are more complex than rigid transformations and can encode
different independent motions of individual structures in the image domain.
Problems arising from deformable registration result in more complex and
irregular energy functions, and thus pose more and harder challenges than rigid
registration problems, and are thus currently a more active field of research.
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For this reason, most of the work in this thesis is performed in the context of
deformable registration methods.

A further point of discrimination between the methods is the dimensionality
of the input images. While many applications provide input images of same
dimensionality, for example two 2D photographs, or two 3D CT scans, in some
cases, the input images have different dimensions, which can lead to estimation
of the transformation from partially lower-dimensional input. One such example
is the case of 2D - 3D registration in medical settings, where for example the
motion in a 3D volume has to be estimated from an initial 3D CT scan and one
or several corresponding 2D X-ray images.

When it comes to different registration approaches, a commonly accepted
high-level classification of registration methods distinguished between feature-
based and intensity-based algorithms. While approaches from both groups can
be formulated as optimization problems, the modeling of the energy, and the
resulting optimization schemes differ considerably.

The defining characteristic of feature-based registration algorithms is that
they operate based on specific, sparse and spatially localized features. The
three major steps of feature-based approaches are 1) the extraction of features,
2) the subsequent matching of corresponding features, 3) computation of the
transformation based on estimated correspondences. The selection of sufficiently
many precisely localized features, and their correct matching are challenging
tasks. While a number of automatic methods has been proposed for mono-modal
scenarios, the extension to multi-modal scenarios is not straightforward.

In intensity-based registration, on the other hand, there is no explicit ex-
traction of features. The energy model is based on a certain difference measure
between the two input images, which takes into account the complete information
(e.g. the intensity values) from the images, possibly after certain pre-processing
steps. In contrast to feature-based approaches, intensity-based approaches are
commonly applied in multi-modal scenarios. This is possible due to a number of
difference measures, which are able to assess the similarity of images acquired
by different devices.

For the above reasons, in this work we focus on intensity-based methods.

Outline and Overview of the Thesis

In the first part of this work, we provide a brief review of existing deformable
intensity-based registration methods. We base the presentation on the initial
motivation for the single approaches, and discus the following groups of methods

∙ Elastic Variational Registration (Chapter 2)
∙ Large Deformation Registration (Chapter 3)
∙ Demons Registration Approaches (Chapter 4)
∙ Parametric Registration (Chapter 5)

We try to point out the basic principles and the main ideas behind the single
lines of development. Also, since the resulting methods share numerous method-
ological aspects, we attempt to highlight the unifying links between the different
approaches when possible.

In the second part, we discuss a number of contributions to the field of image
registration, which we proposed during this work. While the methodological
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contributions are generally applicable, their development was mostly motivated
by problems arising from medical settings. In the following, we give a short
overview of the main contributions.

Egalitarian Preconditioning: A Preconditioning Scheme for
Difference Measures in Deformable Registration
(Chapter 6)

We propose a preconditioning scheme for efficient optimization of arbitrary
image-based difference measures in the context of deformable registration.

Our scheme is based on the observation and analysis of a fundamental
negative property of steepest gradient descent (SGD) for registration problems:
For image-based difference measures, SGD exhibits slower convergence speed in
areas corresponding to low-gradient regions of the source image. We refer to this
property as Local Gradient Bias, and our approach aims at avoiding the above
effect in a principled way, for all difference measures. Since the key idea behind
our approach is to remove the inequalities of the updates in the different image
regions, we call the resulting approach Egalitarian Preconditioning.

We perform a theoretical analysis of the condition of difference measures
in registration problems, and demonstrate that the proposed scheme improves
the condition of the original problem. Because of the simplicity of the pro-
posed scheme, its application improves the convergence speed while adding only
negligible computational cost, thus resulting in shorter effective runtimes.

The proposed preconditioning is of particular interest for high-dimensional
deformable registration with statistical difference measures such as mutual
information (MI). In these settings, the range of applicable standard methods
for efficient optimization is strongly limited, due to the structure and the size of
the resulting optimization problem. Here, our approach presents a conceptually
simple, yet a theoretically justified alternative, which can easily be integrated
into any gradient-based registration scheme. We demonstrate the application of
the proposed preconditioning for registration in the group of diffeomorphisms,
and for the demons method. For the demons scheme in particular, our approach
can be seen as an efficient generalization to arbitrary difference measures.

Single-View 2D-3D Deformable Registration of Vascular
Structures (Chapter 7)

Alignment of angiographic 3D scans to 2D projections is an important issue
for 3D depth perception and navigation during interventions. The common
single-view setting, in which only one 2D projection is available, is particularly
challenging due to the inherent ill-posedness of the problem. Prior to our work,
methods employing a rigid transformation model have presented the state of
the art for the single-view problem. We introduce a method for deformable
registration of 3D vessel structures to a respective single projection of the
scene. Our approach addresses the inherent ill-posedness of the problem by
incorporating a priori knowledge about the vessel structures into the formulation
in the form of regularization terms.
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Linear Registration with MRFs and Discrete Optimization
(Chapter 8)

We propose a framework for linear intensity-based registration, based on a
discrete Markov Random Field (MRF) formulation. Here, the challenge arises
from the fact that optimizing the associated energy requires a high-order MRF
model. Currently, methods for optimizing such high-order models are less general,
easy to use, and efficient, than methods for the popular second-order models.
The main idea in this work is to perform an approximation to the original
high-order energy by an MRF with tractable second-order terms.

The resulting framework allows to transfer advances from the currently very
active research field of discrete optimization to linear registration problems. We
demonstrate the applicability of the framework by intensity-based registration,
and 2D-3D registration of medical images.

Minimal Deformations (Chapter 9)

Nonlinear registration is mostly performed after initialization by a global, linear
transformation, computed by a linear registration method. For the further
processing of the results, it is mostly assumed that this preregistration step
completely removes the respective linear transformation. We perform an analysis
which demonstrates that in deformable settings, this is not the case. As a
consequence, a significant linear component is still existent in the deformation
computed by the nonlinear registration algorithm. We propose a method which
performs an a posteriori extraction of a similarity transformation from a given
nonlinear deformation field, resulting in what we refer to as minimal deformations.

For certain applications, such as construction of Statistical Shape Models
(SSM) for analysis of shape variability, it is an unwanted property that deforma-
tions contain linear transformation components: SSMs should be invariant to
similarity transformations, since these do not capture information about shape.
Actually, we demonstrate that without the proposed pre-processing, the major
modes of the SSM are corrupted and mostly contain information about the
linear transformation, and not about the actual deformations. This effect is
significantly reduced by the application of the proposed pre-processing step.
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Chapter 1

Introduction and Overview

As defined previously, registration is the process of estimating the spatial trans-
formation between corresponding structures depicted in the input images. More
specifically, in contrast to linear registration, deformable registration is the esti-
mation of more complex, non-linear transformations. Over the last three decades,
many different approaches to perform this task have been proposed, employing
different intuitions, models, and techniques. Thus, the field of deformable reg-
istration is very heterogeneous. At times, this makes it hard to compare the
different methods directly, and it is possible to gain the impression that the single
methods have rather little in common. However this is not the case. Actually,
almost all standard methods for intensity-based deformable registration share
a small set of the same underlying principles and building blocks. First, these
methods all can be formulated as an energy minimization problem. Second, all
of these methods can be described in terms of the major building blocks, namely
the energy model, the transformation model, and the optimization method. These
blocks are not independent. The choice of the energy, and the transformation
models strongly influences the range of applicable optimization schemes.

In this chapter we present a high-level and general introduction to the
intensity-based registration problem, and the mentioned building blocks. In the
following chapters, we then present a brief review of some of the most common
approaches for deformable registration, which have been proposed over the
last decades. We focus on methods developed in the context of medical image
analysis, and present the methods in the following groups: variational elastic
registration, large deformation registration, demons registration methods, and
parametric registration. The boundaries between the single groups of methods
are rather loose, and many approaches can be seen as belonging to several of
these groups. Furthermore, in most cases, specific methodological developments
can be readily transferred between these groups, meaning that modifications of
one particular method can often be applied to other approaches es well.

The following exposition aims at generality and thus we do not distinctly
distinguish between rigid and deformable methods. The presentation mostly
treats the methods in a general way, such that any transformation model can be
employed, such that rigid registration methods result from employing a specific
low-dimensional model.

In order to keep the following exposition simple, we constrain the treatment

9



Chapter 1: Introduction and Overview

to two input images, namely the source image 𝐼S and the target image 𝐼T. Here,
the source image denotes the image to be warped, such that it matches the static
target image. There are numerous synonyms for the input images, for example,
the source image is commonly also denoted by moving image or template image,
and the target image by fixed image, the study, or reference image. Furthermore,
we assume that the input images are of the same dimensionality 𝑑, and that
they map to one-dimensional intensity values, i.e. we have 𝐼S, 𝐼T : Ω ⊂ R𝑑 → R.
Here, Ω denotes a spatial domain, on which the images are defined. The goal of
the registration is now to estimate the transformation 𝜑 : Ω→ Ω, which warps
the source image to 𝐼S ∘ 𝜑, such that it corresponds to the target image 𝐼T.

We assume that the transformation is defined with respect to the reference
frame of the warped source image, i.e., that the transformation maps a point 𝑥
from the warped source image, to the corresponding point 𝜑(𝑥) in the original
source image. The above assumption in particular implies two points. The
first one is that the reference frame, in which the transformation is defined is
changing with the estimate of the transformation, in the course of the registration
process. The second point is that for the final result, in which the warped source is
supposed to correspond to the target image, the final reference frame corresponds
to the reference frame of the target image. Please note that in this setting, the
actual motion of particles in the source image, with respect to its original location
is described by the inverse transformation 𝜑−1. This approach for image warping
is also known as backward warping, and has the advantage of computational
efficiency. The alternative, which is far less frequently employed, is the so called
forward warping can be modeled in our setting by 𝐼 ∘ 𝜑−1.

Representing Deformations There are two major takes on modeling the
deformation function on the infinite-dimensional level: by employing either a
linear space, or by assuming a group structure for deformations. For the actual
implementation, the infinite-dimensional formulation has to be approximated by a
finite-dimensional transformation model. For the choice of the finite-dimensional
model, issues such as the expressiveness of the model, efficiency, and the ease of
implementation play an important role.

For the infinite-dimensional setting, the first approach is to model the de-
formation in terms of the corresponding displacement field 𝑢. In this context,
the transformation is often expressed as 𝜑 = Id + 𝑢, in terms of the identity
transformation Id, with Id : 𝑥 ↦→ 𝑥, and the displacement 𝑢 ∈ H. Here, we
assume the displacement 𝑢 ∈ H to be an element of a certain Hilbert space H.
A common assumption is that H is the space of square integrable functions L2.
Another possibility is to chose H as a Sobolev space with certain smoothness
properties. In this case, the combination of two transformations 𝜑𝑢 = Id + 𝑢
and 𝜑𝑣 = Id + 𝑣 is modeled by the addition of the corresponding displacements,
i.e. by 𝜑𝑢“+”𝜑𝑣 = Id + (𝑢+ 𝑣).

An alternative approach is to assume that deformations are elements of a
certain group 𝒢 with composition as the group operation. A common choice
for 𝒢 is to assume that it is the group of diffeomorphic transformations1. One
advantage of this model is that the composition seems to be a more appropriate
model for a combination of transformations than the addition, since it describes

1A transformation is diffeomorphic iff it is invertible and both the original transformation
and the inverse are continuous.
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exactly the application of one transformation followed by the other. The additive
combination can be seen as an approximation which is only valid in the case of
small displacements.

Actually, diffeomorphisms form a Lie group, that is, a group which addi-
tionally has a structure of a differentiable manifold, with the associated Lie
algebra corresponding to the tangential spaces of the manifold. The tangents
spaces host the derivatives of elements from 𝒢, and thus the update vector
fields 𝑣. The tangent spaces are in general modeled by Sobolev spaces, as this
ensures a certain smoothness of 𝑣, and in consequence results in 𝜑 ∈ 𝒢 being
diffeomorphic [Trouvé, 1995,Dupuis et al., 1998].

In this context, the representation of deformations as a series of composed
updates is commonly employed. It was popularized and heavily used in the
context of methods for large deformation registration. A deformation 𝜑 can be
expressed as a concatenation of small deformations Id+𝑣𝑘, which are represented
by the corresponding update displacement fields or velocities 𝑣𝑘 by

𝜑 = (Id + 𝑣𝑡0) ∘ (Id + 𝑣𝑡1) ∘ . . . ∘ (Id + 𝑣𝑡𝑛) . (1.1)

Following this intuition, the transformation can be extended by a virtual temporal
dimension and formalized by Φ : Ω× [0, 1]→ Ω, with the final transformation
given for 𝑡 = 1 by 𝜑 = Φ(1). The structure of the temporal transformation,
corresponding to (1.1) for a continuous time variable is then described by

dΦ(𝑡)

d𝑡
= 𝑣(𝑡) ∘ Φ(𝑡) . (1.2)

The single velocities are assumed to be elements of a certain Sobolev space, i.e.
𝑣 ∈ H, which is the tangent space of the deformation manifold.

It is interesting to note that this representation naturally resembles the
iterative way in which the transformations are estimated. This point of view
emphasizes the fact that the deformation estimate evolves during the registration
process2. A corresponding time-dependent formulation of the transformation
for linear spaces would be 𝜑𝑡 = Id + 𝑢𝑡. Please note that the formulation of the
transformation as 𝜑 = Id + 𝑢 does not contradict the alternative formulation
of the deformation. It can used to represent any deformation, so it can also be
used to encode any deformation computed by the group-based representation.
However, without further modifications, the assumption of a linear space for 𝑢,
for which the representation Id + 𝑢 was originally used, lacks the theoretical
properties which are required for the derivation of diffeomorphic methods in the
context of large deformations.

An example of a modification which can be used with the assumption of a
linear space to derive algorithms corresponding to the ones naturally arising from
the group assumption, is the treatment of the image domain as a deformable
continuum, and the appropriate employment of the reference frames [Christensen,
1994]. Eulerian and Lagrangian frames are two standard reference frames for
describing phenomena in deforming materials. The Eulerian frame performs the
computation on a fixed spatial grid, which does not change over time and is
not influenced by the deformation. For the computation of derivatives in the

2Please note that this evolution of the transformation in general does not describe an actual
evaluation of the structures in the image. The “time” is a continuous analogon to the discrete
concept of iterations.
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Chapter 1: Introduction and Overview

Eulerian frame, the so called material derivative has to be taken into account.
This has to be considered for registration, since the driving forces are derivatives
of the difference measure, and the iterative updates can be interpreted as the
discretization of the velocity, i.e., the derivative of the displacement field. In
the Lagrangian framework, the bookkeeping is not performed with respect to a
fixed reference frame, but with respect to the original position of the material
particles. The effect in the context of registration is that for a particle originally
located at point 𝑥 = 𝜑(𝑥, 𝑡0), the update at time 𝑡 (that is at the corresponding
iteration) is computed at the current position of the particle, that is 𝜑(𝑥, 𝑡). We
omit further technical details, and refer to the nice descriptions in the context of
registration in [Christensen, 1994, Sec. 9.3] and [Bro-Nielsen, 1996, Sec. 4.3.1].
The major point is that the assumption of the deformable continuum in the
modeling changes the computation of the derivatives/updates, and this leads to
an approach similar to the one resulting from the group assumption.

As previously mentioned, for the actual implementation, finite-dimensional
approximation of the infinite-dimensional formulation is required. This step is
performed by employing a finite-dimensional transformation model. Depending
on the application, transformations with different degrees of complexity can
be required. This requirement is reflected in the choice of the transformation
model for the problem at hand, thereby constraining the space of admissible
transformations, and often reducing the problem complexity by reducing the
number of parameters. We review some common different types of transformation
models in Section 5.2.

The Energy Model With the above prerequisites, the intensity-based reg-
istration is generally formulated as optimization of a certain energy 𝐸, that is
by ̂︀𝜑 = argmin

𝜑∈H
𝐸(𝜑, 𝐼T, 𝐼S) . (1.3)

In the actual implementation, the solution to the registration problem is estimated
by the optimization of the above energy with respect to a finite set of parameters,
which govern the transformation model.

Based on the application requirements and the available input, different
energy models have to be employed. In general, the energy is a weighted sum of
a difference measure 𝐸D and a regularization term 𝐸R

𝐸(𝜑) = 𝐸D(𝐼T, 𝐼S, 𝜑) + 𝜆𝐸R(𝜑) . (1.4)

The difference measure encodes the degree of similarity between the target image
𝐼T and the warped source image 𝐼S ∘𝜑. It is supposed to be minimized, when 𝐼T
and 𝐼S ∘ 𝜑 are perfectly aligned. Arguably the simplest example for a difference
measure is the sum of squared differences (SSD)

𝐸D =
1

2

∫︁
Ω

(𝐼T(𝑥)− 𝐼S(𝜑(𝑥)))2 d𝑥 , (1.5)

which assumes that the correctly warped source image is identical to the target
image, i.e. 𝐼T(𝑥) = 𝐼S(𝜑opt(𝑥)). For the multi-modal registration in medical
settings, a variety of difference measures has been proposed. The two major
classes of difference measures are the point-wise difference measures, which
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compare certain quantities at each image point, independently of the values in
the remaining image, and the statistical difference measures, such as Correlation
Coefficient (CC), Correlation Ratio (CR), or Mutual Information (MI), which
depend on the statistical distribution of image intensities. The purpose and
interpretation of the regularization term 𝐸R are more varied. It can be used to
penalize unlikely transformations, model physically the behavior of the imaged
structures, or in some methods, it is required to make the optimization problem
well posed. In contrast to the difference measure, a regularization term is
not a part of the energy model in all methods. Probably the simplest type
of regularization is the diffusion regularization, which penalizes the first-order
derivatives of the displacement fields, thus imposing smoothness

𝐸R =
1

2

∫︁
Ω

𝑑∑︁
𝑖=1

‖∇𝑢𝑑(𝑥)‖2 d𝑥 . (1.6)

One restrictive assumption we will make in the exposition in the following chapter
is that the regularization term is a quadratic form, i.e. that it can be expressed
as an error term 𝑒R(𝑢) = 𝐿R𝑢, which is linear in 𝑢, and penalized in the squared
L2 norm

𝐸R =
1

2
‖𝐿R𝑢‖2 =

1

2
⟨𝐿R𝑢, 𝐿R𝑢⟩ =

1

2
⟨𝐿*

R𝐿R𝑢, 𝑢⟩ . (1.7)

Here, 𝐿R represents a linear operator, and 𝐿*
R is the corresponding adjunct

operator. Most regularization operators correspond to this assumption, such as
linear elasticity, curvature, or bending energy regularization terms. For simplicity,
we will define

𝐴R = 𝐿*
R𝐿R . (1.8)

As an example, in the case of diffusion regularization, we have 𝐿R = ∇ and
𝐴R = −Δ.

For all intensity-based registration methods, the energy in (1.3) is non-
linear with respect to the unknown transformation, since the transformation
acts through warping of the source image. Because of this non-linearity, in
general the resulting energy in non-convex and we are dealing with numerous
local minima. In consequence, the optimization of (1.3) is local, i.e. it does
not attempt at estimating the global energy minimum, and it depend on the
initialization. In order to reduce the effects of unwanted local minima, registration
is mostly performed by coarse to fine focusing in a scale space setting. Also,
because of the non-linearity of the energy, the optimization is performed by an
iterative optimization process. The choice of the optimization process depends
on the employed energy model and the transformation model. The choice of
optimization method for high-dimensional transformation models is particularly
dependent on the used difference measure. In contrast to point-wise measures
such as SSD, statistical measures such as MI restrict the practically employable
optimization methods due to their global nature.

Derivation of Registration Methods There are two principled ways of
deriving registration methods: the so-called variational and parametric deriva-
tion. They are bot starting from the same energy model, and are schematically
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The Real Problem

The Model Problem
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Assumption: 
parametrized transformation φp
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Figure 1.1: Overview of possible approaches for derivation of algorithms for
estimating the solution to the deformable registration problem.

illustrated in Figure 1.1. While the variational derivation is performed in the
infinite-dimensional setting, with subsequent finite-dimensional parametrization,
the parametric derivation directly assumes a finite-dimensional settings by em-
ploying the parametrization of the transformation, and derives the registration
method directly with respect to the finite-dimensional model.3

It is to be noted that ultimately, and independent of the derivation, for the
actual implementation of the derived methods, a finite-dimensional formulation
must be employed. It is interesting to note that for many of the final, finite-
dimensional formulations, both variational and parametric derivations can be
formulated.

Also, a very important point to keep in mind is the Modeling Gap, cf. Figure
1.1. Registration approaches are generally based on the energy model, which
is always an approximation of the actual real problem. Quite often, due to the
computational and modeling constraints, the energy model is rather simplistic
compared to the infinitely complex reality. The modeling gap describes this
difference between the actual problem, and the model of the problem, which
we employ to estimate a reasonable solution. As an example, consider some

3These different derivations are referred to as optimize-discretize and discretize-optimize
in [Modersitzki, 2009].
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Algorithm 1.1 Basic Generic Intensity-based Registration

Given:
input images 𝐼T and 𝐼S
energy model 𝐸
transformation modelℳ
initial transformation estimate 𝜑0

Goal:
compute ̂︀𝜑 = argmin𝜑∈ℳ 𝐸(𝜑, 𝐼T, 𝐼S)

1: initialize transformation: 𝜑← 𝜑0
2: //perform optimization
3: repeat
4: compute transformation update: 𝑣 ← optimizer(𝐼T, 𝐼S, 𝐸, 𝜑)
5: update transformation estimate: 𝜑← 𝜑⊕ 𝑣
6: until convergence
7: ̂︀𝜑← 𝜑

Note: The symbol ⊕ denotes a generic update scheme.

of the requirements for a perfect registration scheme for estimating human
breathing motion. This would involve an infinitely realistic, and patient specific
body model, including spatially varying regularization, describing the actual
motion of the single organs, as well as their interaction. This again would
require patient specific organ segmentations, realistic (and computationally
expensive) non-linear models of the single organs with the corresponding exact
tissue parameters. Not to forget the sliding motion of the organs, resulting in
discontinuous and anisotropic displacement fields. Keeping in mind that these
are just some of the requirements, it is easy to get the first idea about the depths
of the complexity of the real problem. In practical applications, the body model
is mostly approximated by a regularization term, requiring that the displacement
is smooth in a certain way, mostly assuming homogeneous behaviour in the
whole domain, such as in Equation (1.7). In this light, it is clear, that accuracy
of such a model is limited, and any estimated result is only an approximation to
the actually desired real solution. We believe strongly that the modeling gap
should be kept in mind, when reasoning about the registration process. This is
of particular interest when one considers the quality of the optimization result.
It is often encountered in experiments that the optimization of the model energy
beyond a certain level does not result in a decrease of the actual error. In some
cases, it is even observed that the exact optimization of the model energy results
in worse results in terms of the actual error, compared to an intermediate result
with a higher corresponding energy.

A Generic Gradient-based Deformable Registration Boiled down, all
approaches for deformable registration known to us can be be seen as an iterative
accumulation of updates to the initial deformation estimate. Plainly speaking,
the difference between the approaches consists in the way of estimating the
updates and in the way of composing them, and is a consequence of the chosen
energy, transformation model, and optimization scheme. This generic framework
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is represented by Algorithm 1.1.
Furthermore, most optimization methods used for deformable registration are

based on the gradient of the energy model ∇𝐸, and these approaches were the
focus of our work. In the case of gradient-based registration method, the iterative
updates mentioned above are essentially smoothed versions of the (potentially
pre-processed) energy gradient.

So, although not strictly describing all methods, most deformable registration
algorithms can be thought of in the form of the following pseudo algorithm

𝑣𝑖 ← smooth
(︁
𝑓
(︀
−∇𝐸D(𝐼T, 𝐼S ∘ 𝜑𝑖)

)︀)︁
𝜑𝑖+1 = 𝜑𝑖 ⊕ 𝑣𝑖

. (1.9)

The smoothing step in these approaches either results from the combination
of the numerical method and the regularization term (→˓variational elastic
methods with semi-implicit time discretization, →˓elastic-type demons method),
or is a consequence of the choice of the transformation model (→˓Group of
Diffeomorphisms, →˓Sobolev spaces, →˓low-dimensional transformation models).
The pre-processing of the gradient, denoted above by the function 𝑓 , depends
on the choice of the optimization method.

For gradient based methods, the computation of the energy gradient plays a
central role. It is interesting to note that the energy gradient has some structural
properties which hold for arbitrary energy models. Due to the linearity of the
energy term, the gradient can be computed independently for the difference
measure and the regularization term, so that we have

∇𝐸 = ∇𝐸D + 𝜆∇𝐸R . (1.10)

Furthermore, for linear regularization terms as defined in (1.7), we have

∇𝐸R(𝑢) = 𝐴R𝑢 . (1.11)

And finally, the structure of the gradient of the difference measure also has a
particular structure cf. e.g. [Hermosillo et al., 2002,Chefd’hotel et al., 2002].
Independently of the choice of the difference measure, the gradient can be written
as

∇𝐸D(𝐼T, 𝐼S, 𝜑) = 𝜔𝐷(𝐼T, 𝐼S, 𝜑) ∇𝐼S ∘ 𝜑 . (1.12)

Here, 𝜔𝐷 is a scalar-valued function, and it is the only part of which depends
on the actual choice of the difference measure. Also, please note that the term
∇𝐼S∘𝜑 amounts to either∇(𝐼S∘𝜑) for the assumption of deformations as elements
of linear spaces or (∇𝐼S) ∘ 𝜑, if a group structure is assumed, cf. e.g. [Stefanescu
et al., 2004].

One further point should still be mentioned: the update scheme, which
we denoted until now by ⊕. In the early works on deformable registration,
transformations were mostly assumed to be elements of a linear vector spaces, and
the update operator was chosen simply as the addition of the two corresponding
displacement fields. In the work on large deformation registration, it was
suggested that it is more appropriate to treat transformations as a group. If
this view is taken, then the updates must be performed such that the resulting
transformation is still a member of the group. For transformations, a natural
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operator which fulfills this requirement is the composition of two transformations,
so that we have

𝜑⊕ 𝑣 = 𝜑 ∘ (Id + 𝑣) . (1.13)

Although first discussed in the context of large deformation registration, the
results regarding the update schemes are also transferable to other methods.

1.1 Review of Deformable Registration Methods

While there are many overviews of rigid registration methods which agree on
a consistent framework [Brown, 1992,Van den Elsen et al., 1993,Maintz and
Viergever, 1998,Fitzpatrick et al., 2000,Hill et al., 2001,Hajnal et al., 2001b,Zitova
and Flusser, 2003], the field of deformable registration in much less sorted.

Our goal is to provide an overview of the different approaches for deformable
registration, and include recent developments in the field. We structure the
presentation based on the original motivation and derivation of the single meth-
ods, and discuss the following lines of work: variational elastic approaches,
large deformation registration, demons registration approaches, and parametric
registration. In spite of the highly heterogeneous derivations, all the methods
share the same underlying structure, and many links between the single methods
have been established in the literature. For example, all discussed methods fit
either to the variational or the parametric way of derivation, as illustrated in
Figure 1.1. The elastic, large deformation, and demons registration methods
belong to the variational methods, which are derived in the infinite-dimensional
setting, with a subsequent parametrization step. Parametric methods, on the
other hand, employ the finite-dimensional parametrization of the transformation
directly in the energy model, as the starting point for the derivation of the
algorithm. Please note that rigid approaches are implicitly included in the group
of parametric methods.

In the following we give brief overviews of the single groups of the approaches
and the lines of work on deformable registration, which we will discuss in more
detail in the following chapters.

Elastic Variational Registration (Sec. 2) represents the oldest approaches
for deformable registration. They treat the problem in a continuous infinite-
dimensional setting and postpone the parametrization step to the final stage
of the derivation. Many of these approaches were originally motivated by the
intuition to simulate the behavior of an elastic deformable body, which responds
to a set of forces derived from a difference measure between the input images. For
this reason, this general group of approaches is also known as elastic registration
in the medical domain. An equivalent and more general view to this approach
is to interpret the problem as a minimization of an energy model consisting
of a difference measure 𝐸D and a regularization term 𝐸R. One limitation of
these approaches is the restriction to comparably small deformations. This
behavior is caused by the regularization term, which penalizes large and complex
deformations since they would cause too high regularization energies. While
appropriate in some settings, this behaviour is too constraining in others, for
example for inter-subject brain registration.
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Large Deformation Registration (Sec. 3) was introduced to allow the
estimation of large deformations, in scenarios where elastic methods proved too
restrictive. The first approaches in this direction were based on the idea of
replacing the simulation of an elastic object by the simulation of a viscous fluid.
While preserving certain regularity properties of the resulting transformation,
this approach does not limit the magnitude of the deformations. Because of
this original motivation, this group of approaches is sometimes also referred
to as fluid registration. Further work in this area extended and generalized
this approach by demonstrating that the fluid simulation corresponds to a
minimization of a difference measure, without a regularization term, in the group
of diffeomorphisms. A further set of methods in this group are the so called
Large Deformation Diffeomorphic Metric Mapping (LDDMM) approaches, which
use as the regularization term the geodesic length of the deformation in the space
of diffeomorphisms. Methods for large deformation registration are usually also
classified as belonging to the group of variational methods, as they in mostly
perform the derivation of the algorithms in infinite-dimensional spaces.

Demons Registration Approaches (Sec. 4) were originally introduced as
an efficient and heuristic alternative to the computation-heavy fluid registration
approaches, which were based on the physical simulation of elastic bodies or
fluids. Originally, the demons approach was assuming a mono-modal scenario,
and was implementing an elastic-type strategy. In the meanwhile, the method
has been extended to fluid-type registration problems, and it has been gen-
eralized to arbitrary difference measures and regularization terms. Through
several interpretations, the method is now theoretically well founded, and can
be interpreted as an efficient numerical approach for solving the optimization
problems arising from the elastic or fluid-type registration approaches.

Parametric Registration (Sec. 5) are characterized by employing a finite
and mostly low-dimensional transformation model directly in the definition of
the energy model, and by performing the derivation of the actual algorithm in
the finite-dimensional setting. This is in contrast to the previously considered
variational approaches. The derivation of the registration algorithm is based on
the optimization of the energy with respect to the transformation parameters.
Please note that this group naturally includes the rigid registration approaches.
A motivation for the development of parametric methods was the increase of
robustness and reduction of computation time by employing a comparably low
number of parameters, resulting in low-dimensional problems. Although the
parametric approaches take a different route in deriving the actual algorithms (cf.
Figure 1.1), in general, with appropriate transformation models, same methods
can be derived in this way as with variational derivations. A further advantage
of parametric approaches is their conceptual simplicity. For example, theoretical
questions which occur in infinite-dimensional derivations, such as the existence
of the solution, do not arise in the finite-dimensional context.
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Chapter 2

Elastic Variational Registration

The variational method for optimizing an energy consisting of a difference measure
and a regularization term has been a very popular approach for deformable
registration since its introduction in [Broit, 1981] and [Horn and Schunck,
1980,Horn and Schunck, 1981]. Actually, these works are generally considered to
be the first significant approaches for estimation of non-linear transformations.
Originally, a common motivation for elastic variational approaches in the medical
domain was to model the imaged body as an elastic material, which reacts to
forces derived from the difference measure, cf. e.g. [Broit, 1981]. This process
can be modeled as a partial differential equation (PDE), and following the
variational method1 an equivalent energy formulation is derived, in which the
elastic behavior of the body is represented by the regularization energy, which
in this context is also often called internal energy. The point of view of energy
minimization is equivalent to the simulation intuition and the resulting PDE-
based modeling for the relevant cases, and it has been generally adopted in most
of the subsequent research.

In [Horn and Schunck, 1981] the motivation for the use of a regularization
term is different. Here, the regularization term was employed as a remedy to
the observation that the minimization of the difference measure alone would
result in an under-constrained and thus ill-posed problem (→˓aperture problem).
Please note that it was later observed that while the optimization of the SSD
is under-constrained in L2, it can become a well posed problem if appropriate
Sobolev spaces are chosen [Trouvé, 1995,Dupuis et al., 1998].

So, in summary, the basic idea of the elastic variational approach is to
formulate a global energy model, such as in (1.4), consisting of a difference

1A short note on my understanding of the term Variational Methods: Originally, the term
variational method denotes an approach for solving a certain class of PDEs. Starting with a
given PDE (e.g. (2.2)), the idea is to find a corresponding energy 𝐸 (e.g. (1.4)), such that the
solutions of PDE are critical points of 𝐸. As summarized in [Evans, 1998, Ch. 8]: “The point
is that whereas it is usually extremely difficult to solve [the PDE] directly, it may be much
easier to discover critical points of the functional.” In the context, the energy formulation is
referred to as the variational formulation of the problem. Since most modern registration
approaches start by formulating directly the energy, and not the PDE itself, they do not strictly
correspond to the original variational approach, but take the variational route in the opposite
direction. In context of registration, the term variational is thus nowadays mostly used in a
more general sense, to denote methods which perform the derivation in the continuous setting.
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measure and a regularization term, that is

𝐸(𝑢) = 𝐸D(𝑢) + 𝜆𝐸R(𝑢) , (2.1)

and minimize it with respect to the displacement field 𝑢, representing the non-
linear transformation 𝜑? = Id + 𝑢. The derivation is performed in the infinite-
dimensional continuous setting, and the displacement 𝑢 is assumed to belong to
a certain Hilbert space H - in most works L2 is assumed. Correspondingly, the
necessary condition for a local optimum of the energy is derived in the form of
an Euler-Lagrange partial differential equation (PDE) system

𝜆𝐴R𝑢+ 𝑓D(𝑢) = 0 . (2.2)

The Euler-Lagrange equation corresponds to the derivative of the energy (1.4)
with respect to the displacement [Evans, 1998], that is

∇𝐸(𝑢) = 𝜆𝐴R𝑢+ 𝑓D(𝑢) , (2.3)

so that (2.2) can also be read as ∇𝐸 = 0 and presents a necessary condition
for an extremal point of (1.4). In (2.2), 𝐴R𝑢 corresponds to ∇𝐸R(𝑢), and the
so called force 𝑓D(𝑢) corresponds to ∇𝐸D(𝑢). The Euler-Lagrange equation in
(2.2) is non-linear due to the non-linearity of 𝐸D(𝑢), and 𝑓D(𝑢), in which the
transformation acts through the warping of the source image, which introduces
the non-linearity. Please compare Section 2.1 for more details.

Please note that because of its non-linearity, (2.2) cannot be solved directly.
Thus, while it characterizes the extremal point, it does not directly provide a way
of computing the solution. In order to estimate the transformation satisfying the
Euler-Lagrange equation, a time-dependent process is introduced, which features
an artificial time and corresponds to a gradient descent strategy

𝜕𝑢(𝑡)

𝜕𝑡
= −∇𝐸(𝑢(𝑡)) = − [𝜆𝐴R𝑢(𝑡) + 𝑓D(𝑢(𝑡))] , (2.4)

with a given 𝑢(𝑡0). This step transforms the non-linear Euler-Lagrange PDE
from (2.2) into a dynamic (time dependent) PDE system.

In order to arrive at a formulation which can be practically implemented, a
discretization of the dynamic non-linear PDE system in (2.4) is required. This
discretization is twofold. The first step of the discretization process is the time
discretization, and yields a series of parabolic linear PDE systems of the form

𝐴𝑢(𝑡+ 𝜏) = −𝑓 . (2.5)

The above system is linear, since at time 𝑡, the unknown is 𝑢(𝑡+ 𝜏), and 𝑢(𝑡)
is given, so that 𝑓 = 𝑓D(𝑢(𝑡)) is assumed fixed. So, the result of the time
discretization is an iterative process, which corresponds to the iteration loop
in Algorithm 1.1. Common approaches for time discretization are the explicit
and the semi-implicit discretization schemes. The temporal discretization in
variational approaches loosely corresponds to the choice of the optimization
method in other approaches. For details on the time discretization, please
compare Section 2.3.

The second discretization step is the spatial discretization, which transforms
the linear PDEs from (2.5) into finite dimensional linear equation systems, the
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solution of which can be estimated numerically. The common approaches for
the spatial discretization are the finite difference (FD) and the finite element
(FE) method, please compare Section 2.4 for more details.

For a schematic outline of variational approaches in general, please compare
also Figure 1.1. We now discuss the single components of the elastic variational
approach in some more detail in the following sections.

2.1 Optimality Condition: Euler-Lagrange PDE

Starting with the energy formulation 𝐸 from (1.4) and assuming that the un-
known displacement 𝑢 ∈ H is not parametrized, and an element of an appropriate
function Hilbert space H, the condition for the extremal point 𝑢′ of 𝐸 is charac-
terized by the vanishing of the first variation of 𝑢′ with respect to all possible
test functions 𝑣, that is

0 = 𝛿𝐸(𝑢′, 𝑣) , ∀𝑣 ∈ H . (2.6)

The first variation of 𝐸, at 𝑢 ∈ H, in the direction 𝑣 ∈ H is defined as

𝛿𝐸(𝑢, 𝑣) = lim
𝜖→0

𝐸(𝑢+ 𝜖𝑣)− 𝐸(𝑢)

𝜖

⃒⃒⃒⃒
𝜖=0

=
d𝐸(𝑢+ 𝜖𝑣)

d𝜖

⃒⃒⃒⃒
𝜖=0

. (2.7)

The first variation is also known as the Gâteaux derivative.
The gradient ∇H𝐸(𝑢) of 𝐸 at 𝑢 in H is defined by

𝛿𝐸(𝑢, 𝑣) = ⟨∇H𝐸(𝑢), 𝑣⟩ , ∀𝑣 ∈ H . (2.8)

With the definition of the gradient, one can re-write the optimality condition
(2.6) as

0 = ⟨∇H𝐸(𝑢′), 𝑣⟩ , ∀𝑣 ∈ H , (2.9)

and derive an alternative formulation of the optimality condition

0 = ∇H𝐸(𝑢′) . (2.10)

The above equation system is called the Euler-Lagrange equation, associated
with the energy 𝐸. For convenience, in the following we will simply write ∇𝐸
for ∇H𝐸, where the context is clear.

For the model energy from (1.4), the Euler-Lagrange equation has the general
form

0 = ∇𝐸(𝑢) = ∇𝐸D(𝑢) + 𝜆∇𝐸R(𝑢) . (2.11)

Since the corresponding energy 𝐸 is based on input images, and thus non-linear,
the optimality condition will in general characterize only local critical points.

Based on the linear model of the regularization term in (1.7), we set

𝐴R := ∇𝐸R = 𝐿*
R𝐿R . (2.12)

Furthermore, we use

𝑓D := ∇𝐸D , (2.13)
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Chapter 2: Elastic Variational Registration

for the non-linear derivative of the difference measure∇𝐸D(𝑢), which is commonly
referred to as the force term. We will freely switch between the gradient notation
and the use of 𝐴 and 𝑓 . This denomination of ∇𝐸D as the force is due to the
interpretation of PDEs resulting from simulation of mechanical models, which
are commonly written as

𝐴𝑢 = −𝑓 . (2.14)

Here, the right hand side represents the external forces 𝑓 acting on a certain
object, while the response of the object is modeled by the operator 𝐴. The
resulting displacement in each step 𝑢(𝑡+ 𝜏) = −𝐴−1𝑓(𝑢(𝑡)) can thus be seen as
the result of the simulation of the interaction of the object model, and the set
of external forces. Intuitively, the equation (2.14) is satisfied, when the inner
forces 𝐴𝑢 exercised by the object exactly oppose the external forces 𝑓 . This
simulation point of view presented a motivation for many approaches developed
for deformable registration, cf. e.g. [Broit, 1981].

Please note that while the Euler-Lagrange equation from (2.11) characterizes
the optimality condition, because of its non-linearity, it cannot be directly solved,
and thus it does not directly provide the means to computing the solution.
The following section gives an overview of a standard approach for iterative
estimation of the solution of the Euler-Lagrange equation.

2.2 Estimating the Solution of the
Euler-Lagrange PDE

The Euler-Lagrange equation arising from the deformable registration problem is
non-linear. A standard way of estimating the solution of (2.11), is by introducing
an artificial time, thus transforming the static (time-independent) PDE from
(2.11) to a dynamic (time-dependent) PDE, the steady state of which should
correspond to the equilibrium of the static problem.

To this end, the unknown displacement is augmented by an artificial time to
𝑢 : Ω× R→ R𝑑, and the so called gradient flow is defined by

𝜕𝑢(𝑡)

𝜕𝑡
= −∇𝐸(𝑢(𝑡)) , (2.15)

with the initial displacement 𝑢(0). In the following, we employ the more compact
notation 𝜕𝑡 for the temporal derivative, where convenient. Please note that
(2.15) corresponds to a gradient descent strategy [Hermosillo, 2002, p. 39].

It is also interesting to note that the steady state of (2.15), that is, when the
estimate of 𝑢 does not change any more, i.e. 𝜕𝑡𝑢→ 0, corresponds to the static
PDE from (2.2). In order to compute the steady state of (2.15), a linearization
of the PDE is required. This step is performed by discretization of the time,
which is discussed in the next section.

2.3 Time Discretization

The time discretization transforms the dynamic PDE from (2.15) to an iterative
process with linear PDEs in the single iterations. The idea of time discretization
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2.3 Time Discretization

is to approximate the continuous temporal variable by discrete time steps in
an iterative process. For simplicity, we assume here that a fixed step size 𝜏 is
employed, so that the time 𝑡 corresponding to the iteration 𝑖 can be represented
by 𝑡𝑛 = 𝑛𝜏 (otherwise, we have 𝑡𝑛 =

∑︀𝑛
𝑖=0 𝜏𝑖).

The time discretization step corresponds to the choice of the optimization
method in other approaches. For example, we will see that the explicit time
discretization is equivalent to steepest gradient descent, the semi-implicit scheme
can be seen as steepest descent in varying Sobolev space, and the time discretiza-
tion based on quadratic approximation of the energy in each iteration corresponds
to Newton-type optimization. Thus the time discretization has a major influence
on the behavior of the overall process, for example the convergence speed, and
the quality of the estimated result.

Numerous time discretization schemes are available in the literature. We
discuss the common explicit and semi-implicit time discretization schemes in
the following two sections.

Although usually not presented in the context of classical elastic variational
methods, the smoothing strategy of the elastic-type demons method can be
interpreted as a specific efficient time discretization technique. We discuss this
scheme in Section 2.3.3.

Finally, an important group of time discretization techniques operates by
a quadratic approximation of the difference measure and the corresponding
linearization of the force term, cf. Section 2.3.4. It is important to note that
this strategy is not applicable to all difference measures (e.g. not applicable to
MI). When applicable, however, these approaches result in efficient Newton-type
optimization, which considerably improves the convergence speed compared to
steepest descent strategies.

2.3.1 Explicit Time Discretization

The first step in the time discretization by the explicit time discretization scheme
(also known as (forward Euler)) is the discretization of the temporal derivative
of the displacement, which can be given by

𝜕𝑢(𝑡)

𝜕𝑡
= lim

𝜏→0

𝑢(𝑡+ 𝜏)− 𝑢(𝑡)
𝜏

. (2.16)

The second step is the choice of the point in time at which the energy gradient
is computed. For the explicit time discretization the gradient is computed at
the current time point, that is, we have ∇𝐸(𝑢(𝑡)).

These two choices result in the explicit time discretization scheme

𝑢(𝑡+ 𝜏)− 𝑢(𝑡)
𝜏

= −∇𝐸(𝑢(𝑡)) (2.17)

= − [∇𝐸D(𝑢(𝑡)) + 𝜆∇𝐸R(𝑢(𝑡))] , (2.18)

which can be re-written to

𝑢(𝑡+ 𝜏)− 𝑢(𝑡) = −𝜏 ∇𝐸(𝑢(𝑡)) (2.19)

𝑣 = −𝜏 [∇𝐸D(𝑢(𝑡)) + 𝜆∇𝐸R(𝑢(𝑡))] (2.20)

𝑣 = −𝜏 [𝑓D(𝑢(𝑡)) + 𝜆𝐴R𝑢(𝑡)] . (2.21)
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Here we denote the displacement update by 𝑣, i.e. the difference in the displace-
ment between the current and the next iteration 𝑣 := 𝑢(𝑡+ 𝜏)− 𝑢(𝑡), which is
the discretized approximation to 𝑣 = 𝜕𝑡𝑢.

The first observation to be made in regard to (2.20), is that this iterative
rule for the computation of the update is equivalent to the standard steepest
descent optimization method for non-linear optimization [Nocedal and Wright,
2000]. The update is simply a multiple of the negative energy gradient.

The second striking property of (2.18) is the simplicity of its computation,
and the low computational cost per iteration - only the evaluation of the energy
gradients is required. This simplicity however does come at a price: The explicit
scheme is numerically stable only for small values of 𝜏 . In consequence, a large
number of iterations can be required to achieve convergence. Based on the choice
of the regularization term, a maximal value of 𝜏 for which stable behavior is
achieved can be given analytically.

2.3.2 Semi-implicit Time Discretization

The second standard time discretization approach is the so called semi-implicit
scheme

𝑢(𝑡+ 𝜏)− 𝑢(𝑡)
𝜏

= − [∇𝐸D(𝑢(𝑡)) + 𝜆∇𝐸R(𝑢(𝑡+ 𝜏))] . (2.22)

Same as the explicit method, it assumes the discretization of the time derivative
as in (2.16). The difference between (2.22) and (2.18), is that the semi-implicit
scheme assumes that the gradient of the regularization term is evaluated at the
next point in time. The advantage of the semi-implicit method is that it is
numerically stable for all possible time steps 𝜏 , however, this stability comes at
the cost of increased computational complexity.

Intuitively, the difference between the explicit and the semi-implicit scheme
can be explained as follows. Since the explicit scheme computes the gradient
of the regularization term at the previous point in time 𝑡, the regularization
only reacts to the irregularities which were present in 𝑢(𝑡), and cannot take
into account the irregularities introduced in the current update by 𝜏∇𝐸D(𝑢(𝑡)).
Large irregularities (for large 𝜏) can thus contaminate the estimate beyond repair.
In contrast, the regularization in the semi-implicit approach acts at the future
time point 𝑡+ 𝜏 , and therefore can cope with the irregularities from ∇𝐸D(𝑢(𝑡)).
This makes the semi-implicit scheme stable: No matter how irregular the update
might be, it is taken into account at the future time step. On the other hand,
computing the gradient “at the future point in time” is a more complex operation,
which does not come for free.

It is instructive to re-write (2.22) to the update form as

𝑣 = −𝜏
(︀
Id + 𝜏𝜆𝐴R

)︀−1
[𝜆𝐴R𝑢(𝑡) + 𝑓D(𝑢(𝑡))] (2.23)

= −𝜏
(︀
Id + 𝜏𝜆𝐴R

)︀−1 ∇𝐸(𝑢(𝑡)) . (2.24)

Alternatively, in term of the complete displacement 𝑢 and not the update 𝑣, we
have

𝑢(𝑡+ 𝜏) =
(︀
Id + 𝜏𝜆𝐴R

)︀−1
[𝑢(𝑡)− 𝜏𝑓D(𝑢(𝑡))] . (2.25)
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The obvious difference between the explicit scheme update in (2.20) and
(2.24) is that for the semi-implicit scheme, a solution of the linear system, with
the linear operator (Id + 𝜏𝜆∇𝐸R) is required. It is this step which increases the
computational complexity. Please note that the linear operator depends on the
regularization term 𝐸R, or more precisely, its derivative ∇𝐸R. Also, the resulting
system is only linear with the underlying assumption of 𝐸R being a quadratic
form. For all standard definitions of 𝐸R, the application of (Id + 𝜏𝜆∇𝐸R)

−1

corresponds to a smoothing operation.
On the positive side, there is no numerical restriction on the size of the

time step 𝜏 for the solution of the linear system in (2.24). 2 Consequently, less
iterations are required, which results in faster convergence speed. Usually, the
gain in convergence outweighs the increased cost of single iterations, so that the
resulting overall runtime is also improved when a semi-implicit scheme is used.

Based on the observation that applying (Id+𝜏𝜆∇𝐸R)
−1 in (2.24) corresponds

to a smoothing of the energy gradient, in [Zikic et al., 2010f,Zikic et al., 2010a] we
provide an alternative interpretation of the algorithm resulting from semi-implicit
time discretization as a steepest descent in Sobolev spaces. The argument for
this is rather simple, since for the family of 𝜏 -dependent Sobolev spaces H𝜏 ,
based on the scalar product ⟨𝐿*𝐿(𝜏)𝑢, 𝑢⟩L2 , with 𝐿*𝐿(𝜏) = (Id + 𝜏𝜆∇𝐸R), the
gradient of an energy 𝐸 corresponds to (𝐿*𝐿(𝜏))−1∇𝐸 = (Id + 𝜏𝜆∇𝐸R)

−1∇𝐸,
which is exactly the formulation from (2.24).

2.3.3 Demons Time Discretization

In this section, we briefly sum up a strategy for time discretization, which yields
an algorithm which is equivalent to the elastic demons regularization scheme as
introduced in [Thirion, 1998]. The argument is based on the derivation in [Cahill,
2009]. Please note that in this section, we refer to the elastic demons approach,
in which the smoothing is applied to the complete displacement in each iteration,
and not the fluid demons version, in which the smoothing is performed only on
the displacement updates. We will discuss the difference between elastic and
fluid demons in more detail in Section 4.

While this scheme is not commonly used in traditional variational approaches,
it presents an important concept, which links “classical” variational methods to
the elastic demons approach, which will be discussed in Section 4.

For the demons time discretization scheme for the gradient flow from (2.15),
we assume that in each iteration, the force term is evaluated at the current point
in time 𝑡0, i.e. we have 𝑓D := 𝑓D(𝑢(𝑡0)), while all the other entities are evaluated
at a future time point 𝑡, and get

𝜕𝑡𝑢(𝑡) = −𝜆𝐴R𝑢(𝑡)− 𝑓D(𝑢(𝑡0)) , (2.26)

with the initial value 𝑢0 = 𝑢(𝑡0). Assuming 𝑓D = 𝑓D(𝑢0) fixed, the above can be
re-written in terms of the operator (𝜕𝑡 + 𝜆𝐴R) as

(𝜕𝑡 + 𝜆𝐴R) 𝑢(𝑡) = −𝑓D , (2.27)

2Please note, that this does not mean, that all values of 𝜏 are meaningful. Too large values
of 𝜏 will result in a bad approximation of the temporal evolution of the result, and may result
in jumping over the desired solution estimate. Also, an intuitive setting-dependent step size
limits exist. The maximum reasonable updates in most applications depends on the resolution
of the input data, since the length of the maximal point-wise update ‖𝑣(𝑥)‖ should be in the
order of a pixel spacing.
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where the nature of (2.27) as a linear parabolic PDE becomes more clearly visible.
Please note that the distribution of current and future time points in (2.27)
corresponds to the semi-implicit assumption in (2.22). The major difference to
the semi-implicit scheme is that in (2.27), no numerical approximation of the
temporal derivative 𝜕𝑡 is performed at this point.

We can compute the solution to (2.27) by superposing the solutions of the
homogeneous equation with the original source term 𝑢0 = 𝑢(𝑡0):

(𝜕𝑡 + 𝜆𝐴R) 𝑢(𝑡) = 0 with 𝑢0 = 𝑢(𝑡0) , (2.28)

and the solution of the inhomogeneous equation with a zero source term 𝑢0 = 0:

(𝜕𝑡 + 𝜆𝐴R) 𝑢(𝑡) = −𝑓D(𝑡) with 𝑢0 = 0 . (2.29)

Please compare [Evans, 1998, Sec. 2.3.1, p. 51] for details of the above approach.
The solution to (2.28) is provided by the fundamental solution for the operator
(𝜕𝑡 + 𝜆𝐴R), and (2.29) can be solved by the so called Duhamel’s principle.

The resulting scheme can be written as

𝑢(𝑡) = ΨR(𝜆, 𝑡− 𝑡0) * 𝑢(𝑡0)⏟  ⏞  
solution to (2.28)

−
∫︁ 𝑡

𝑡0

ΨR(𝜆, 𝑡− 𝑠) * 𝑓D(𝑠) d𝑠⏟  ⏞  
solution to (2.29)

(2.30)

Here ΨR(𝜆, 𝑡) is the Green’s function to (𝜕𝑡+𝜆𝐴), i.e. it fulfills (𝜕𝑡+𝜆𝐴)ΨR(𝜆, 𝑡) =
𝛿. As an example, for diffusion regularization, ΨR corresponds to a Gaussian
with the standard deviation of 𝜎 =

√
2𝑡𝜆, that is, we have ΨR(𝜆, 𝑡) = 𝐺√

2𝑡𝜆.
We can approximate the time integral in the solution of the inhomogeneous

part from (2.30), based on the knowledge of 𝑓D(𝑡0), and get∫︁ 𝑡

𝑡0

ΨR(𝜆, 𝑡− 𝑠) * 𝑓D(𝑠) d𝑠 ≈ (𝑡− 𝑡0) ΨR(𝜆, 𝑡− 𝑡0) * 𝑓D(𝑡0) . (2.31)

By substituting (2.31) into (2.30), we obtain

𝑢(𝑡) ≈ ΨR(𝜆, 𝑡− 𝑡0) * 𝑢(𝑡0)− (𝑡− 𝑡0) ΨR(𝜆, 𝑡− 𝑡0) * 𝑓D(𝑡0) (2.32)

= ΨR(𝜆, 𝑡− 𝑡0) * [𝑢(𝑡0)− (𝑡− 𝑡0)𝑓D(𝑡0)] . (2.33)

Finally, the formal connection to the introduced registration framework is
established simply by renaming the future time point from 𝑡 to 𝑡+ 𝜏 and the
initial/current time point from 𝑡0 to 𝑡. This yields the demons time discretization
scheme

𝑢(𝑡+ 𝜏) = ΨR(𝜆, 𝜏) * [𝑢(𝑡)− 𝜏𝑓D(𝑢(𝑡))] . (2.34)

As already mentioned, in the case of diffusion regularization, we have ΨR =
𝐺√

2𝜏𝜆, and the equation from (2.34) is identical to the original elastic demons
scheme from [Thirion, 1998]. The scheme in (2.34) demonstrates how the elastic
demons approach (generalized to arbitrary linear regularization operators) can
be seen in the context of classical variational methods as a particular and
efficient numerical scheme for time discretization. The above derivation for all
regularization terms, for which an appropriate Green’s function to (𝜕𝑡 + 𝜆𝐴R)
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2.3 Time Discretization

Explicit scheme 𝑢(𝑡+ 𝜏) = 𝑢(𝑡)− 𝜏
[︀
𝜆𝐴R𝑢(𝑡) + 𝑓D(𝑢(𝑡))

]︀
Semi-implicit scheme 𝑢(𝑡+ 𝜏) =

(︀
Id + 𝜏𝜆𝐴R

)︀−1 [︀
𝑢(𝑡)− 𝜏𝑓D(𝑢(𝑡))

]︀
Demons scheme (generalized) 𝑢(𝑡+ 𝜏) =

(︀
𝜕𝑡 + 𝜏𝜆𝐴R

)︀−1 [︀
𝑢(𝑡)− 𝜏𝑓D(𝑢(𝑡))

]︀
= ΨR(𝜆, 𝜏) *

[︀
𝑢(𝑡)− 𝜏𝑓D(𝑢(𝑡))

]︀
Table 2.1: Overview of standard time-discretization methods for deformable
registration.

exists. This includes all standard homogeneous regularization terms, i.e. terms
with constant regularization strength in the spatial domain.

It is interesting to note that the scheme from (2.34) corresponds to

𝑢(𝑡+ 𝜏) = (𝜕𝑡 + 𝜆𝐴R)
−1 [𝑢(𝑡)− 𝜏𝑓D(𝑢(𝑡))] , (2.35)

which allows a direct comparison to the semi-implicit scheme from (2.22). Please
compare also Table 2.1 for an overview.

2.3.4 Time Discretization based on
Quadratic Energy Approximation

The last scheme for time discretization which we discuss is based on the quadratic
approximation of the non-linear energy in every iteration. Since the regularization
term is assumed to be quadratic, this approximation only affects the difference
measure, and with the assumption of the L2 norm, the approximation results
in the linearization of the error term of the difference measure. So, with the
current estimate 𝑢′, and 𝑢 = 𝑢′ + 𝑣, we have

𝐸(𝑢) = 𝐸D(𝑢) + 𝜆𝐸R(𝑢) =
1

2
‖𝑒D(𝑢)‖2 + 𝜆

1

2
‖𝐿R𝑢‖2 (2.36)

≈ 1

2
‖𝑒D(𝑢′) + 𝐽𝑒D(𝑢

′)𝑣‖+ 𝜆
1

2
‖𝐿R𝑢‖2 . (2.37)

Such an approximation has been performed in a series of works, with early
examples in [Broit, 1981] and [Horn and Schunck, 1981]. Similar time discretiza-
tion strategies have been also considered in [Brox et al., 2004,Papenberg et al.,
2006]. Also, this scheme applied to SSD corresponds to the computation of
the forces in the original demons approaches [Pennec et al., 1999,Vercauteren,
2008,Vercauteren et al., 2009].

It is interesting to note that the quadratic approximation of the energy by
linearization of the error terms corresponds to the Gauss-Newton optimization
method [Madsen et al., 2004, Sec. 3.1]. In scenarios where it is applicable, this
scheme results in much faster convergence speed than strategies based on steepest
gradient descent [Zikic et al., 2010e,Zikic et al., 2011]. However, one disadvantage
of this scheme is that it is not practically applicable to arbitrary difference
measures, especially statistical difference measures, such as MI [Modat et al., 2010,
Zikic et al., 2010a,Zikic et al., 2011], when high-dimensional parametrizations are
employed. The reason is that for statistical measures such as MI, the Jacobian of
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Chapter 2: Elastic Variational Registration

the error term 𝐽𝑒D , which is needed for the linearization, does not have a sparse
form, in contrast to point-wise measures such as SSD. For high-dimensional
parametrizations and 3D problems, the computation and storage of this Jacobian
become impracticable.

2.4 Spatial Discretization

The result of any of the above time discretization schemes is a linear PDE.
The last step which is required to develop an actual implementation is the
parametrization of the problem, which approximates the infinite dimensional
continuous problem by a finite dimensional version. This step is performed by
a spatial discretization of the said PDE. The most popular strategies for the
discretization are the finite difference (FD) scheme, and the finite element (FE)
scheme.

This section is heavily based on [Strang, 1986].

2.4.1 Finite Difference Method

Compared to the finite element method, the finite difference (FD) method has
the advantage of conceptual simplicity. It is furthermore easier to program and
faster to run than a full FE scheme [Strang, 1986, Ch. 5.4, p.428].

The idea of the finite difference method is to choose a finite number of
points in the spatial domain, and to approximate the required derivatives by
differences between the values at these points. The points are usually arranged in
a regular grid, with distance ℎ𝑖 along the dimension 𝑖. A definition of derivative
operators is required for the construction of the linear system matrix 𝐴, and
it is mostly based on central differences. Higher order, and multi-dimensional
derivative approximations can be constructed from the basic one-dimensional
central difference approximation.

𝜕𝑢(𝑥)

𝜕𝑥𝑖
≈ 𝑢(𝑥+ ℎ𝑖𝑒𝑖)− 𝑢(𝑥− ℎ𝑖𝑒𝑖)

2ℎ𝑖
, (2.38)

with 𝑒𝑖 being the unit vector in dimension 𝑖. Please compare [Strang, 1986, Ch.
5, p.370] for a more detailed example.

The properties of the actual resulting linear operator 𝐴 depend on the choice
of the regularization and the time discretization scheme.

2.4.2 Finite Element Method

The finite element (FE) method is extremely popular in engineering applications.
While its implementation is usually more complex than that of FD, it has the
great advantage that it can be applied in irregular geometries. Also, since it can
employ adaptive sampling mashes, it can reduce the number of parameters in non-
critical areas, thus achieving the same approximation accuracy as FD, however
with less degrees of freedom (i.e. with a lower-dimensional transformation model).

From the theoretical point of view the concept of FE is interesting, since it is
more general than FD. As a matter of fact, FD can be seen as specific instance
of FE [Strang, 1986, Ch. 5.4, p.428].
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2.4 Spatial Discretization

In the context of registration, the concept of FE is interesting, since it
provides a link between the variational derivation and the group of the so
called parametric methods. Many parametric methods can be also obtained by
variational derivation, with the spatial discreization performed by an appropriate
FE method.

In contrast to the FD method, which performs the discretization by choosing
a finite number of sampling points, the finite element (FE) method operates by
choosing a finite number of basis functions, and approximating the exact infinite
dimensional solution by a linear combination of those basis functions [Strang,
1986, Ch. 5.4, p.428]. There are two alternatives for deriving the FE formulation,
which are equivalent for the class of problems arising in image registration3 - the
Galerkin and the Rayleigh-Ritz approach [Strang, 1986, Ch. 5.4, p.432]. We will
focus on the Rayleigh-Ritz formulation in the following.

The linear PDE which results from the time discretization has the general
form

𝐴𝑢 = −𝑓 . (2.39)

Please note that here 𝐴 denotes the complete linear operator resulting from the
time discretization, and not only the derivative of the regularization term 𝐴R,
e.g. 𝐴 = Id + 𝜆𝜏𝐴R. This PDE has the corresponding energy formulation
(variational formulation)

min
1

2
𝑢⊤𝐴𝑢+ 𝑓⊤𝑢 . (2.40)

The FE scheme approximates 𝑢 by a finite linear combination of basis
functions (trial functions) 𝑏𝑖, weighted by parameters 𝑝𝑖

𝑢(𝑥) ≈
∑︁
𝑖

𝑏𝑖(𝑥)𝑝𝑖 . (2.41)

By collecting the basis functions into the operator 𝐵 = [𝑏1, . . . , 𝑏𝑛], and by denot-
ing the parameter vector by 𝑝 = [𝑝1, . . . , 𝑝𝑛]

⊤, we can define the approximation
by

�̃� := 𝐵𝑝 . (2.42)

For implementation, the actual operator 𝐵 is ultimately rendered finite dimen-
sional by sampling of the bases 𝑏𝑖 at discrete locations.

By inserting �̃� into the energy function, we get

min
1

2
(𝐵𝑝)⊤𝐴𝐵𝑝+ 𝑓⊤𝐵𝑝 . (2.43)

The necessary condition for a critical point of the above energy is given by
taking the derivative with respect to the parameters 𝑝. This results in the finite
dimensional linear system

𝐵⊤𝐴𝐵𝑝 = −𝑓⊤𝐵 . (2.44)

The remaining important point is the actual choice of the bases 𝑏𝑖. There are
many different possibilities presented in the FE literature, and a review is beyond

3This is the class of symmetric problems which can be posed as energy minimization.
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Chapter 2: Elastic Variational Registration

the scope of this work. Instead, we will briefly list the important properties of
the bases, and give some examples used for image registration.

The choice of the basis functions depends on many problem specific properties,
such as the geometry of the problem domain Ω, the used regularization term
𝐸R, the chosen time discretization/optimization scheme (which influences the
form of 𝐴), or the properties of the transformation (e.g. its expected form and
complexity).

The requirements for the basis functions can be summed up in the following
way, compare [Strang, 1986, Ch. 5.4, p.433]:

∙ The bases have to be sufficiently expressive to approximate the true solution
with required accuracy

∙ The resulting linear operator 𝐵⊤𝐴𝐵 should be simple to assemble, and
have advantageous properties for further computation, i.e. it should be
sparse and well-conditioned

One large and popular class of basis functions for FE schemes features bases
which are overlapping only in a small part of the domain. The advantage of
these bases is that they result in a sparse matrix 𝐵, and correspondingly, the
linear operator 𝐵⊤𝐴𝐵 is also sparse. A simple example of these functions is
given in 2D by bases which are composed of linear functions, defined on triangles
of a mesh, which covers the spatial domain. The linear functions share the same
weight of 1 at the central, joint node, which is represented by the basis, and
equal to 0 at all other nodes (cf. Fig. 5.2c for a 1D example). A second example
are the B-Spline FFD bases, which are a popular choice in image registration,
and employ a regular mesh cf. Section 5.2.1.

The second popular group of bases, are not necessarily non-overlapping
functions, but functions which “are special to the problem” [Strang, 1986, Ch.
5.4, p.433]. The bases can be chosen, such that they are eigenfunctions to the
regularization operator 𝐴, which leads to a diagonal operator 𝐵⊤𝐵𝐴.

As mentioned earlier, one advantage of FE over FD is to employ problem
specific meshes. On the other hand, the generation of problem specific meshes
is one of the implementational burdens of FE, which does not exist in FD. A
review of the possible techniques is again beyond the scope.

Some examples for the use of FE in image registration are found in following
works [Gee et al., 1994], [Ferrant et al., 1999], [Ferrant et al., 2000], [Ferrant,
2001], [Droske and Rumpf, 2004], [Tustison et al., 2006].

2.5 Some Examples of Elastic Approaches

To provide an example of a complete registration system based on the variational
derivation, we briefly summarize two early approaches from this group.

The first use of the variational approach for registration of medical images
is presented in [Broit, 1981]. In this work, a framework for registration of 2D
and 3D images developed, which performs a global registration with an affine
transformation, followed by a deformable registration. The deformable work is
motivated by the intuition to perform a simulation of an elastic body using a
linear elasticity model. To this end, an energy function corresponding to (1.4) is
defined, which uses the cross-correlation criterion as the difference measure, and
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2.6 Discussion

the linear elasticity regularization term. The optimality criterion is derived as
the Euler-Lagrange equation which corresponds to the Navier-Lamé equation

𝜇Δ𝑢+ (𝜆+ 𝜇)∇(div(𝑢))⏟  ⏞  
𝐴R𝑢

= −𝑓(𝑢) . (2.45)

The estimate of the transformation is computed by an iterative process, which is
derived by the linearization of the force term by a quadratic approximation of
the difference measure.4 The spatial discretization, which transforms the linear
PDEs from the single iterations into linear equation systems, is performed by
the finite difference scheme.

Simultaneously with the work in [Broit, 1981], the seminal method of Horn
and Schunck for the estimation of optical flow (i.e. registration of 2D optical
images) was presented [Horn and Schunck, 1980, Horn and Schunck, 1981],
which also applies a variational approach. One specific of the original Horn and
Schunck method was that only one iteration in time was performed. This was
soon identified as a drawback and altered by subsequent works, cf. e.g. [Nagel,
1983]. Apart from this singularity, the method of Horn and Schunck corresponds
to the standard variational approach as described above. It employs an energy
consisting of the sum of squared differences, and the diffusion regularization
term. The linearization step is performed by a quadratic approximation of
the difference measure, which corresponds to the Gauss-Newton optimization
method, cf. [Zikic et al., 2010e] for a more detailed description.

Since the early work on variational methods for image registration, this scheme
has been commonly employed in the medical domain, for example in [Amit,
1994,Christensen, 1994,Bro-Nielsen, 1996,Modersitzki, 2004] just to name a few.

2.6 Discussion

The goal of this chapter was to provide an overview of the major concepts of
the variational derivation scheme for registration algorithms. We hope that we
also managed to highlight some connections between the variational derivation
and the other groups of registration approaches, which will be discussed in the
following chapters.

The group of variational elastic registration methods has been very popular
in the field of medical image registration, but also in other fields where motion
estimation is required, such as the optical flow problem. Its original advantages
were that it enabled a simple global modeling of the problem on the energy level,
while allowing efficient local estimation of the solution based on the corresponding
Euler-Lagrange PDEs. The relation to PDEs which are commonly used to model
physical problems allows to transfer the physical intuition directly to image
registration methods.

While having many advantages, for certain problems in the field of medical
imaging, such as computational anatomy applications, the elastic registration
framework proved too restrictive since it is limited to comparably small defor-
mations.

This limitation has a number of causes:
4Interestingly, the quadratic approximation of the force term makes this approach very

related to the optical method Horn and Schunck [Horn and Schunck, 1981], and related to the
force computation in the original demons method.
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∙ The major conceptual reason why elastic approaches are not suitable
for treatment of large deformations is that the internal regularization
energy opposes large and complex deformations. Intuitively, it is not
possible to deform an elastic material beyond a certain limit. While it
is possible to recover large linear transformations given an appropriate
boundary treatment and corresponding regularization, recovering variable
and complex deformations which are small in some parts and large in others
is not possible [Christensen, 1994]. Reducing the influence of regularization
can help to a certain degree, but reportedly it is not possible to reduce the
regularization sufficiently to recover the required deformations, without
running into numerical problems.

∙ A further point which might prevent some implementations of elastic meth-
ods from recovering large and complex deformations, is that an appropriate
update scheme must be employed, and the appropriate reference frame
from continuum mechanics theory must be taken into account [Christensen,
1994]. For example, if the additive update scheme (which corresponds
to the assumption that displacements are elements of a linear space) is
employed together with the Eulerian reference frame, then the so called
material derivative should be used to compute the updates. Otherwise, no
re-orientation of the point-wise forces is performed during iterations, which
might limit the capture range of the resulting methods. This issue can be
solved by consistent treatment of the relevant concepts in the design of the
registration algorithm, cf. e.g. [Christensen, 1994,Christensen et al., 1996].

∙ At last, variational elastic registration is susceptible to get trapped in locally
optimal solutions. This is the case since the method is gradient-based,
and it operates on a highly non-convex and high-dimensional space. In
practice, this drawback can be alleviated to a certain extent by employing
a scale-space focusing strategy.

The limitation of elastic approaches to small deformations led to the devel-
opment of fluid registration methods or methods for large deformations, which
is discussed in the next chapter.
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Large Deformation Registration

The line of work on registration methods capable of recovering large deformations
was motivated by the limitation of elastic methods to small displacements. The
reasons for this limitation were discussed in the previous chapter, with the major
obstacle being posed by the internal regularization energy, which opposes large
and complex deformations.

With respect to applications, methods from the large deformation framework
are commonly used in the context of computational anatomy [Grenander and
Miller, 2006]. The field of computational anatomy (CA) studies the variation
of shapes in a certain population. This is done 1) by defining a representative
average image of the population, and 2) by representing the shapes corresponding
to the single images by the deformations which map these images onto the average
image. The CA framework uses the notion of a deformable template, which
describes the action of a group of diffeomorphisms on the fixed representative
image. The comparison between the instances on the orbit of possible images can
then be performed by analyzing the corresponding diffeomorphisms, which relate
the particular instance to the representative image. For CA applications, inter-
subject registration is required, which yields large and complex deformations,
due to large anatomical differences between the subjects (e.g. for brain images).
Since in most cases, no physically correct priors can be employed in these settings,
the assumption of transformations being diffeomorphic is made in order to ensure
the required regularity.

The initial work on registration methods for large deformations was presented
in [Christensen, 1994,Christensen et al., 1996]. The idea in this work was to
model the problem not as a simulation of an elastic body reacting to forces,
but as a simulation of a viscous fluid. In contrast to elastic bodies, fluids
do not accumulate an internal energy when deformed. In consequence, large
deformations can be achieved. The viscosity property of the fluid assures that
the single updates are sufficiently smooth, ensuring the required regularity.

The initial physical motivation of fluid simulation was soon generalized, as it
was demonstrated that the fluid simulation can be interpreted as the optimization
of the difference measure in the group of diffeomorphisms [Trouvé, 1998,Dupuis
et al., 1998]. To this end, a novel representation of deformations as so called
flows was developed, which models deformations as a composition of a series of
small update deformations, which correspond to the so called velocity fields. The
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flow representation can be modeled as an ordinary differential equation (ODE).

As a further development, based on the parametrization of deformations as
flows, a novel regularization term was proposed, which minimizes the geodesic
length of a given deformation in the appropriate manifold [Trouvé, 1995,Dupuis
et al., 1998,Beg et al., 2005].

Furthermore, the work on the large deformation framework raised a number of
interesting issues which were previously not focused on. These include the focus
on obtaining diffeomorphic transformations, the consideration of the appropriate
treatment of deformations in either the Eulerian or Lagrangian reference frame,
and the related question of the appropriate update schemes.

In the following we discuss the different developments in the field of regis-
tration for large deformations. We start with the original fluid registration in
Section 3.1. The parametrization of deformations as flows, i.e. composition
of small deformations corresponding to the driving velocity fields, is discussed
in Section 3.2, and we treat the regularization by the geodesic length of the
deformation in Section 3.3. Finally, we will also briefly discuss the different
approaches for the parametrization of flows via time-varying and stationary
velocity fields in Section 3.4.

3.1 Fluid Registration

The initial work on registration for recovering large deformations in medical
settings was presented in [Christensen, 1994, Christensen et al., 1996]. The
approach was motivated by the goal to retrieve large deformations, and the
observation that classic elastic variational methods were not the able to achieve
this. The idea followed in [Christensen et al., 1996] was to model the registration
as the simulation of a viscous fluid deforming under a set of forces, which are
derived from the difference measure. The fluid model was modified to be not
mass conserving, thus allowing shrinking and expansion of imaged objects. The
simulation of the viscous fluid was governed by the Navier-Stokes equation

𝜇Δ𝑣 + (𝜆+ 𝜇)∇(div(𝑣)) = −𝑓(𝑢) . (3.1)

The force term 𝑓 was computed as the derivative of the SSD difference measure.

Furthermore, the point was addressed that the treatment of a spatial defor-
mation requires an appropriate use of a spatial reference frame as discussed in
the field of continuum mechanics. In [Christensen, 1994], the Eulerian reference
frame is employed. In this case, the velocity cannot be simply computed as the
partial derivative of the displacement, but the so called material derivative has
to be employed, which yields the following formulation

𝑣(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+∇𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) . (3.2)

So in summary, the following PDE system has to be solved

𝜇Δ𝑣 + (𝜆+ 𝜇)∇(div(𝑣)) = −𝑓(𝑢) (3.3)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝑣(𝑥, 𝑡)−∇𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) . (3.4)
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This results in solving (3.1) in every iteration, followed by the Euler integration
step

𝑢(𝑥, 𝑡𝑖+1) = 𝑢(𝑥, 𝑡𝑖) + 𝜏 (𝑣(𝑥, 𝑡)−∇𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)) , (3.5)

for the computation of the new displacement estimate.
In [Christensen, 1994,Christensen et al., 1996], it was observed that for large

curved transformations, the estimates would become singular, and a regridding
scheme was applied to avoid this problem. The regridding scheme was applied
if the Jacobian of the transformation became smaller than a certain value (e.g.
0.5), i.e. |𝐽 | < 𝑐. In these cases, the current transformation was applied to the
source image. Then, the problem was treated as a new one, with the warped
source as the source image, and the current transformation set to identity. The
final result is the concatenation of all the single transformations, which were
computed in the course of the algorithm. This scheme results in diffeomorphic
deformations, however, the computation of the Jacobian in every step is costly.

It is interesting to note that the Navier-Stokes equation in (3.1) is analogue
to the Navier-Lamé equation for linear elasticity, cf. Eq. (2.45), with the
difference, that it is operating on the velocity 𝑣 instead of the displacement 𝑢.
This observation has lead to a generalization of the concept of fluid methods.
Any linear regularization term can in principle be applied to the updates instead
of the complete displacement field. Since in this way, no internal energy is
accumulated, the resulting approaches are able of recovering large deformations
and are classified as fluid.

The fluid registration algorithm proposed in [Christensen, 1994] had the
disadvantage to be comparably slow at the time of publication, requiring massive
parallel hardware for acceptable runtimes. This property caused the development
of faster alternatives. One of these alternatives was the demons method by
[Thirion, 1996], which we will discuss in Chapter 4. A second alternative was
the approach presented in [Bro-Nielsen and Gramkow, 1996], which follows
the same derivation as [Christensen, 1994], but provides a faster numerical
method for solving the arising PDEs. The proposal made in [Bro-Nielsen and
Gramkow, 1996,Bro-Nielsen, 1996] was to solve the linear PDE in each iteration
by convolving the force term by the Green’s function to the corresponding
Navier-Lamé operator. Also, in [Bro-Nielsen and Gramkow, 1996], a relation of
the fluid method to the fluid version of the demons approach is discussed.

3.2 Parametrization of Deformations as Flows

The description of diffeomorphic deformations as flows was proposed in [Trouvé,
1995,Trouvé, 1998,Dupuis et al., 1998]. It presents a generalization of the viscous
fluid algorithm. For the parametrization as a flow, the transformation is treated
as an element of a group of diffeomorphisms 𝒢. The diffeomorphism 𝜑 is encoded
as the solution of the ordinary differential equation (ODE)

𝜕Φ(𝑡)

𝜕𝑡
= 𝑣(𝑡) ∘ Φ(𝑡) , (3.6)

for 𝑡 = 1, that is 𝜑 = Φ(1), for a given time-dependent velocity field 𝑣(𝑡), and
with the initial deformation Φ(0) = Id. This representation employs the fact
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that the group of diffeomorphisms is a Lie group, that is, it has the structure of
a differentiable Riemannian manifold. The velocity field 𝑣(𝑡) ∘ Φ(𝑡) is defined
as an element of the Lie algebra, that is, the corresponding tangent space to
the Riemannian manifold at Φ(𝑡). It has been shown in [Trouvé, 1995,Dupuis
et al., 1998], that if the tangent spaces are chosen as sufficiently smooth Sobolev
spaces, the resulting transformation 𝜑 is diffeomorphic.

A possible intuition to (3.6) is to encode the deformation not directly, but to
express it as a sequence of accumulated small updates [Trouvé, 1998]. These
updates correspond to the velocity fields 𝑣(𝑡). For sufficiently small update
displacements 𝑣(𝑡), their norm can be seen as the first-order approximation to
the distance between Id and Φ(𝑡) = Id + 𝑣(𝑡). This approximation is meaningful
if 𝑣(𝑡) is sufficiently small, and in this case, Φ(𝑡) is also invertible. This concept
is extended to larger deformations, by interpreting 𝜑 as a concatenation of small
deformations 𝜑(𝑡𝑖) = Id + 𝑣(𝑡𝑖), where the time 𝑡𝑖 is assumed to be discretized.
The transformation can then be defined as 𝜑 = Φ(𝑡𝑛), with Φ(𝑡0) = Id and

Φ(𝑡𝑘+1) = 𝜑(𝑡𝑘+𝑖) ∘ Φ(𝑡𝑘) . (3.7)

The sequence Φ(𝑡𝑘) represents a path from Id = Φ(𝑡0) to 𝜑 = Φ(𝑡𝑛), which is
generated by the update displacements 𝑣(𝑡0), ..., 𝑣(𝑡𝑛). Please note that there are
infinitely many such sequences, which result in the transformation 𝜑 = Φ(𝑡𝑛).

The sequence Φ(𝑡) denotes a continuous series of updates, which develops
over an undiscretized time, starting at 𝑡 = 0 with Φ(0) = Id, and evolving until
𝑡 = 1, when it becomes identical to the transformation 𝜑, so that 𝜑 = Φ(1).
With this definition, the continuous version of the definition for the generating
sequence Φ, which corresponds to the discrete version in (3.7), is given by the
ODE

𝜕Φ(𝑡)

𝜕𝑡
= 𝑣(𝑡) ∘ Φ(𝑡) , (3.8)

with Φ(0) = Id. The generating sequences Φ(𝑡) are now time-dependent functions
solving (3.8).

The question remains, how the velocity fields are defined in the case of
registration. This is done by setting the flow equation from (3.6) equal to the
negative gradient of a difference measure 𝐸D, so that we have

𝜕Φ(𝑡)

𝜕𝑡
= 𝑣(𝑡) ∘ Φ(𝑡)

𝑣(𝑡) = −∇H𝐸D(Φ(𝑡))
. (3.9)

We have here ∇H𝐸D = 𝐴−1∇L2𝐸D, where 𝐴 is the differential operator defining
the Sobolev space by ⟨·, ·⟩H = ⟨𝐴·, ·⟩L2 . Often, SSD is employed as the difference
measure [Trouvé, 1998,Beg et al., 2005], however, other measures are applicable as
well, compare for example [Chefd’hotel et al., 2002,Lorenzen et al., 2006,Avants
et al., 2008].

As already mentioned, the solution to the ODE from (3.6) for 𝑣 is not
unique, since the same final diffeomorphism 𝜑 = Φ(1) can reached by several
flows described by 𝑣. This is a negative property for computational anatomy
applications, since a single image is supposed to be represented by one unique
diffeomorphism mapping it to the average image. To this end, a regularization
term was proposed, which penalizes the geodesic length of the flow generating
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the diffeomorphism. This term provides a remedy to the problem of uniqueness,
by distinguishing the “shortest” flow, while at the same time not opposing large
deformations.

3.3 Regularization by Minimization of
Geodesic Length

This regularization scheme [Trouvé, 1995,Trouvé, 1998,Dupuis et al., 1998,Beg
et al., 2005] assumes that the transformations are elements of the group of
diffeomorphisms 𝒢, and penalizes the geodesic distance 𝑑𝒢(Id, 𝜑) between the
identity transformation Id, and the resulting deformation 𝜑, in 𝒢 by

𝐸R =
1

2
𝑑𝒢(Id, 𝜑)

2 . (3.10)

The question is now, how is the distance 𝑑𝒢 defined?
Again, we can follow the finite dimensional intuition from [Trouvé, 1998], and

then make the transition to the infinite-dimensional setting. The distance between
Id and 𝜑 can then be approximated by the length of the shortest generating
sequence Φ(𝑡𝑛), which results in the transformation 𝜑, that is Φ(𝑡𝑛) = 𝜑. The
length of the sequence Φ(𝑡𝑛) is given by the sum of the generating displacements
𝑣(𝑡𝑖), so that we get

𝑑𝒢(Id, 𝜑) ≈ min
Φ(𝑡𝑛)

𝑛∑︁
𝑖=0

‖𝑣(𝑡𝑖)‖H . (3.11)

By making the step to infinitely small update displacements, we arrive at the
continuous and non-approximative formulation

𝑑𝒢(Id, 𝜑) = inf
Φ:Φ(1)=𝜑

𝑙(Φ) with 𝑙(Φ) =

∫︁ 1

0

‖𝑣(𝑡)‖H d𝑡 , (3.12)

where the updates 𝑣(𝑡) can be interpreted as the velocity at time 𝑡.
The combination of a difference measure (originally SSD) and the geodesic

length regularization term yields the energy term which has been originally
studied in [Trouvé, 1995,Trouvé, 1998,Dupuis et al., 1998], and became popular
under the name Large Deformations Diffeomorphic Metric Mapping (LDDMM)
[Beg et al., 2005]. It can be stated as the minimization of the energy

min
𝑣:Φ(1)=𝜑

∫︁ 1

0

‖𝑣(𝑡)‖2Hd𝑡 + ‖𝐼T − 𝐼S(𝜑)‖2L2 . (3.13)

3.4 Time-Varying and Stationary Velocity Fields

Over the last years, two major flavors of the parametrization of diffeomorphisms
as flows have been established [Hernandez et al., 2009]. The first follows the
original derivation and assumes that the velocity fields are time-dependent. The
second group of approaches assumes a single stationary velocity field. While
stationary velocity fields restrict the set of possible diffeomorphisms which can
be expressed, these approaches have the advantage to be more efficient, and the
resulting parametrization can be used for linear statistics on diffeomorphisms in
computational anatomy applications.
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3.4.1 Non-stationary Velocity Fields

The original approach of using the flow formulation from (3.6) employs a time-
dependent velocity function, so that we have 𝑣 : Ω × 𝑡 → Ω, where a single
velocity field 𝑣(𝑡) is an element of an appropriate Sobolev space H [Trouvé,
1995,Dupuis et al., 1998].

The challenge posed by this formulation is the increase in required compu-
tational resources which become necessary since the problem is extended by a
temporal dimension. As an example, if the temporal discretization of the flow
formulation is performed with 𝑛 discrete time steps, then 𝑛 velocity fields are
required to represent one diffeomorphism. In comparison, the representation of
𝜑 as 𝜑 = Id + 𝑢 requires only one displacement field and has correspondingly
less parameters. The complexity of the associated optimization problem rises
accordingly. For large 3D data sets, which often arise in medical applications,
this additional computational burden can be significant.

Because of the complexity of the resulting optimization problem, in [Trouvé,
1995, Trouvé, 1998], the assumption is made that numerical computation of
the LDDMM model in (3.13) is not practical, and a sub-optimal algorithm is
proposed, which performs gradient descent in the group of diffeomorphisms,
defined by the tangent space, which is chosen to be a Sobolev space of certain
smoothness. It is discussed in [Trouvé, 1998] that for the appropriate choice of
the Sobolev space, this corresponds to the fluid method from [Christensen et al.,
1996]. The same strategy is also pursued in [Chefd’hotel et al., 2002]. Starting
with 𝜑(𝑡0) = Id, these approaches basically evolve the flow system from (3.9)
until convergence. This approach avoids the necessity of storing all intermediate
velocity fields, since for the evolution it is sufficient to represent only the most
recent transformation estimate Φ(𝑡𝑘).

On the other hand, in [Beg et al., 2005], a method is developed which actually
performs the optimization of the geodesic distance term from (3.13). In this
approach, all temporal velocity fields are used, and they are optimized by a
gradient descent, such that the geodesic regularization term is minimized. Start-
ing with the initial estimate of 𝜑 = Id, and the corresponding parametrization
𝑣𝑖 = 0, the single velocity fields are modified, such that the energy in (3.13) is
optimized.

3.4.2 Stationary Velocity Fields

As an alternative to the time-varying representation, parametrization of flows
with stationary velocity fields have been proposed. The major difference is that
in this case, the diffeomorphisms is encoded by an ODE which employs a static
velocity field, that is

𝜕Φ(𝑡)

𝜕𝑡
= 𝑣 ∘ Φ(𝑡) . (3.14)

Please note that in contrast to (3.8), the velocity 𝑣 does not depend on the time
in (3.14). This stationary parametrization cannot represent all possible diffeo-
morphisms, but only a one-parameter subgroup. However, the expressiveness
of the model was demonstrated to be sufficient for registration [Vercauteren
et al., 2008,Ashburner, 2007] and seems to provide similar performance as the
time-varying velocity representation. This approach substantially reduces the
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computational requirements compared to the parametrization by time-varying
velocity fields.

It is important to note that in (3.14), the diffeomorphism 𝜑, which is an
element of a non-linear manifold, is represented by a single velocity field 𝑣, which
is an element of the linear tangent space. This makes it possible to perform the
computation of deformation statistics in a linear space, which greatly facilitates
the process.

There are two major approaches for the representation by stationary velocity
fields. The first approach is the so called geodesic shooting strategy, which is
based on the idea of the conservation of momentum [Vaillant et al., 2004,Miller
et al., 2006]. The second approach is based on the Log-Euclidean framework
proposed in [Arsigny et al., 2006]. The Log-Euclidean framework is employed
in different ways in [Ashburner, 2007], [Hernandez et al., 2007], and in the
context of demons approaches in [Vercauteren et al., 2007b,Vercauteren et al.,
2008,Vercauteren et al., 2009].

Overviews of and further details about the approaches for stationary velocity
field parametrization of flows are provided in [Hernandez et al., 2008,Hernandez
et al., 2009,Younes et al., 2009].

3.5 Discussion

The methods for large deformation registration are not precisely a set a specific
methods but rather a wide category. This category encompasses different meth-
ods such as the original fluid registration, different variations of the LDDMM
approach including the greedy implementation [Trouvé, 1998], parametriza-
tion with time-varying velocity fields [Beg et al., 2005], and stationary velocity
fields [Ashburner, 2007].

As a further example, the fluid-type demons method, which is discussed
in the next chapter, is able to recover large deformations, so it could be also
presented in the context of large deformation registration methods. Actually,
it has been demonstrated, that the fluid-type demons method corresponds to
the greedy implementation of the LDDMM approach as performed in [Trouvé,
1998,Chefd’hotel et al., 2002], and thus also to the fluid registration approach,
cf. also [Bro-Nielsen and Gramkow, 1996].

The category of methods for large deformation registration is of great im-
portance for the field of computational anatomy, and is currently a very active
subject of research.
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Chapter 4

Demons Registration Approaches

The so called demons method is an approach for deformable registration originally
proposed in [Thirion, 1995a,Thirion, 1995b,Thirion, 1996,Thirion, 1998]. The
original motivation for the approach was to provide an efficient method for
deformable registration, which was in contrast to the available methods at the
time, most of which were based on simulation of physical processes (such as
elastic, or fluid methods), which were computationally expensive. Due to its
efficiency and simplicity of implementation, the demons method has become
a popular choice in numerous applications. Originally, in [Thirion, 1998], not
a single method, but a general registration framework was proposed, which is
quite similar to the generic algorithm in (1.9), and proposes to perform the
registration by computing a set of forces, and smoothing the resulting updated
displacement field in each iteration. The framework considers a variety of possible
transformation models and different ways of computing the forces, resulting
in a number of variants. The first of these variants, “Demons 1: a complete
grid of demons” emerged as the most popular of the alternatives and has been
established as the original demons method.

In its original form, the demons algorithm iteratively estimates a transforma-
tion 𝜑 = Id + 𝑢 in the following way: In each iteration, the current displacement
estimate 𝑢𝑖 is updated by a set of forces 𝑓 , and subsequently the regularization
is performed by Gaussian filtering of the updated field

𝑓 =
(𝐼T − 𝐼S(𝜑))∇𝐼S(𝜑)

(𝐼T − 𝐼S(𝜑))2 + ‖∇𝐼S(𝜑)‖2
(4.1)

𝑣 = 𝜏 𝑓 (4.2)

𝑢𝑖+1 = 𝐺𝜎 * (𝑢𝑖 + 𝑣) . (4.3)

In the original publication, the scaling with the step size in (4.2) is not performed,
i.e. we have 𝜏 = 1.

The efficiency of the original demons approach is caused by two factors. The
first factor concerns the regularization strategy. Regularization by Gaussian
filtering in (4.3) features a simple implementation, it is numerically robust so
that it allows large time steps, and finally – at the time of original publication –
the computation was significantly faster than solving PDE systems arising from
other approaches [Bajcsy and Kovačič, 1989,Christensen et al., 1996].
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The second, more subtle factor concerns the structure of the force term in
(4.1). The analysis in [Cachier et al., 1999,Pennec et al., 1999,Vercauteren et al.,
2009] demonstrates that the original force term (4.1) represents an approximation
to an update step of a second-order - and thus efficient - optimization of the
sum of squared differences (SSD) as the difference measure. This improves
the convergence speed of the approach, so that a comparably small number of
iterations is required to achieve good results.

Originally, the demons approach was heuristic in nature. However, since
its introduction, several interpretations have been proposed which provide a
theoretically sound derivation of the algorithm. These interpretations include
the formulation of the demons method as an alternating optimization of an
elastic energy, and the demonstration that a certain time discretization scheme is
equivalent to the demons regularization strategy by smoothing. In the following
sections, we discuss these interpretations, as well as the generalizations and
extensions of the demons approach, which have been proposed in the literature.
These include the generalization to a fluid-type method, in order to enable
the computation of large deformations, the extensions to arbitrary difference
measures and regularization terms, as well as modifications assuring that the
resulting transformations are diffeomorphic.

4.1 Interpretation as Alternating Optimization

A useful interpretation [Cachier et al., 2003], which ties in the demons approach
with the variational optimization framework in (1.4) is to see it as optimization
of the energy

𝐸 = 𝐸D(𝐼T, 𝐼S ∘ 𝜑1) + 𝜌‖𝜑1 − 𝜑2‖2 + 𝜆𝐸R(𝜑2) , (4.4)

by alternating optimization of the expressions containing the difference measure
𝐸D and the regularization term 𝐸R

𝜑1 = argmin
𝜑*
1

[︀
𝐸D(𝐼T, 𝐼S ∘ 𝜑*1) + 𝜌‖𝜑*1 − 𝜑2‖2

]︀
(4.5)

𝜑2 = argmin
𝜑*
2

[︀
𝜆𝐸R(𝜑

*
2) + 𝜌‖𝜑1 − 𝜑*2‖2

]︀
. (4.6)

Within this interpretation, the computation of the forces in (4.1) corresponds to a
step of the optimization of (4.5), and the regularization step in (4.3) corresponds
to one step of (4.6).

4.2 Interpretation as Time Discretization Scheme

In [Pennec et al., 1999], it is argued that the Gaussian smoothing can be consid-
ered as a rough simulation of an elastic regularization model. A theoretically
founded interpretation of Gaussian smoothing as a time discretization scheme
for a variational approach is provided in [Cahill et al., 2009,Cahill, 2009]. We
discussed this interpretation in Section 2.3.3. With this interpretation, the
demons method can be seamlessly interpreted in the classical elastic variational
framework. In Section 2.3.3, we provide a detailed derivation of this argument,
including its extension to arbitrary regularization terms besides diffusion.
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4.3 Generalization of Difference Measures

One limitation of the original demons approach was that it was based on the
assumption of identical intensities in the input images - thus implicitly using
SSD as the difference measure - which limits it to mono-modal scenarios.

The relation of the original force computation from (4.1) to the SSD becomes
clearer by rewriting (4.1) to

𝑓 =
(𝐼T − 𝐼S(𝜑))∇𝐼S(𝜑)

(𝐼T − 𝐼S(𝜑))2 + ‖∇𝐼S(𝜑)‖2
=

−∇𝐸SSD(𝜑)

(𝐼T − 𝐼S(𝜑))2 + ‖∇𝐼S(𝜑)‖2
, (4.7)

This reveals that the original force computation can be seen as a modification of
the gradient of the SSD. As already mentioned, it was demonstrated that (4.7)
corresponds to an update step of an approximation of a second-order optimization
scheme on the SSD [Pennec et al., 1999]. Please note that (4.7) does not lead to
meaningful forces for other measures than SSD.

Soon after the initial proposal of the demons method, this approach has been
generalized to other difference measures, cf. e.g. [Chefd’hotel et al., 2002,Gui-
mond et al., 2002, Cachier et al., 2003, Modat et al., 2010]. Most of these
approaches perform this generalization simply by computing the forces by em-
ploying the steepest descent scheme, that is

𝑓 = −∇𝐸D(𝜑) . (4.8)

Please note however, that the force term in (4.8) corresponds to employing the
steepest gradient descent optimization of the difference measure. This is known to
have a slow convergence rate on ill-conditioned optimization problems, requiring
a large number of iterations to achieve satisfying accuracy. An exception to (4.8)
is discussed in [Modat et al., 2010], where the forces are computed based on the
update of the NL-CG method.

In order to provide an efficient formulation of the forces for arbitrary difference
measures, in [Zikic et al., 2011] we propose a general preconditioning scheme,
which can be applied to any image-based difference measures, leading to improved
convergence speed. We will discuss this approach in more detail in Chapter 6.

Finally, we note that – according to our observation – the actual application
of the demons framework in multi-modal settings is still rather rare, compared
to the mono-modal settings based on SSD and the original force formulation.

4.4 Fluid Demons

In the original demons framework, in each iteration the Gaussian smoothing is
applied to the complete displacement field after the incremental update by the
force term, cf. (4.3). An alternative option is to apply the smoothing only the
the force term, before the update is applied. This would result in the following
demons approach (assuming steepest descent for force computation)

𝑓 = −∇𝐸D (4.9)

𝑣 = 𝜏 𝐺𝜎fl
* 𝑓 (4.10)

𝑢𝑖+1 = 𝑢𝑖 + 𝑣 . (4.11)
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The above version of the demons algorithm was considered by [Bro-Nielsen
and Gramkow, 1996], briefly after the original introduction of the demons method
by [Thirion, 1995a]. Furthermore, [Bro-Nielsen and Gramkow, 1996] established
the relation of this demons version to the viscous-fluid approach of [Christensen,
1994]. For this reason, this variant of the demons approach, in which only the
update is regularized is referred to as fluid. In [Bro-Nielsen and Gramkow,
1996] it is proposed to solve the Navier-Lamé equations which arise in the fluid
approach by applying the appropriate Green’s function. It is then further noted
that the Gaussian smoothing, which is applied in the demons method, can be
seen as a rough approximation of the Green’s function to the Navier-Lamé
operator. This insight is developed further in [Trouvé, 1998] and [Chefd’hotel
et al., 2002,Chefd’hotel, 2005], where it is noted that a process equivalent to fluid
demons, with regularization performed by smoothing of the forces, corresponds
to a steepest descent in an appropriate Sobolev space. The Sobolev space can
be based on different linear operators, or alternatively, corresponding Green’s
functions. This point of view makes it possible to generalize the regularization
of updates in the fluid demons approach to any linear, and spatially constant
regularization term, thus replacing the smoothing in (4.10) from 𝑣 = 𝜏 𝐺𝜎fl

* 𝑓
by

𝑣 = 𝜏 ΨH * 𝑓 , (4.12)

where the smoothing kernel depends on the employed space H.
As a further extension, a combination of the elastic and fluid schemes for the

demons approach has been discussed for example in [Pennec et al., 1999], [Cachier
et al., 2003], or [Stefanescu et al., 2004].

4.5 Generalization of Regularization

Fluid approaches differ from elastic-type methods in the point that no regular-
ization term is employed. As discussed in Chapter 3, the regularity in these
approach comes from a choice of a suitable Sobolev space. The choice of the
Sobolev space influences the kernel with which the forces are convolved in Eq.
(4.12). The selection of the Sobolev space which leads to the Gaussian kernel is
discussed in [Chefd’hotel et al., 2002]. A variety of other choices is available, cf.
e.g. [Bro-Nielsen and Gramkow, 1996,Trouvé, 1998,Chefd’hotel et al., 2002].

The interpretations in Sections 4.1 and 4.2 demonstrate that the elastic-type
demons method can be seen as a particular numerical scheme for the optimization
of an energy containing a regularization term, and that the original demons
approach corresponds to employing the diffusion regularization term.

The interpretation of demons as a specific time discretization scheme from
Section 4.2 presents a convenient approach to generalizing elastic-type demons
to other regularization terms. One way of performing this step would consist of
computing the appropriate Green’s functions for the linear operators resulting
from the different regularization terms. This approach would be very much in
line with the work from [Bro-Nielsen and Gramkow, 1996] for fluid approaches.
Although not presented as a demons method, the work in [Beuthien et al., 2010]
discusses implementing the elastic-type registration schemes, by convolution
of the right-hand side with the Green’s function corresponding to the linear
operator, which is based on the employed regularization term. Thus this work can
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be seen as a demons method, and thus presents a generalization of elastic-type
approaches to arbitrary linear and spatially constant regularization terms.

A slightly different approach is followed by [Cahill, 2009], where curvature,
and elastic regularization are implemented by a scheme which employs successive
convolutions by a Gaussian.

A further possible option for a modification of a regularization term is to make
its influence spatially varying. One such approach is discussed in the context of
demons in [Stefanescu et al., 2003,Stefanescu et al., 2004], where a combination
of a fluid and an elastic strategy is employed. The regularization strength in the
fluid part is determined by the confidence about the underlying force estimates,
basically leading to suppression of forces in homogeneous image areas, while the
strength of the elastic regularization is determined by a heuristic simulation of
the stiffness of the structures depicted in the input images. Interestingly, this
implementation of the demons approach does not perform the regularization
steps by convolution, something which is very untypical for methods usually
referred to as demons. The reason for this numerical approach is that the
convolution becomes inefficient, if a Gaussian of non-constant width is employed.
Instead, an inhomogeneous diffusion PDE is solved, as discussed in [Weickert,
1998,Weickert and Schnörr, 2001].

4.6 Update Schemes and Diffeomorphic Demons

A further extension of the demons method considers the update scheme. In
contrast to the assumption that the displacements are elements of a linear vector
space, it has been discussed in a series of works that a more appropriate model
is to treat the transformations as elements of a group [Trouvé, 1998], [Miller and
Younes, 2001], [Chefd’hotel et al., 2002]. If the displacement is treated as an
element of a linear vector space, then the addition of updates as in (4.3) is the
appropriate operation. On the other hand, if the transformations are treated as a
group, then the composition of two transformations is the appropriate operation,
which should ensure that the result is still an element of the group. So, in the
demons framework, the update scheme in (4.3) (or in 4.11 for the fluid case),
can be replaced by a composition, i.e., instead of 𝑢𝑖+1 = 𝑢𝑖 + 𝑣, we get

𝑢𝑖+1 = 𝑢𝑖 ∘ (Id + 𝑣) . (4.13)

This strategy has been employed for example in [Stefanescu et al., 2004], [Ver-
cauteren et al., 2007b,Vercauteren et al., 2009]. In [Vercauteren et al., 2009], an
increase in accuracy for the compositional scheme is reported.

Furthermore, the choice of the update scheme is an important question,
if it is desired that the demons method generates transformations which are
diffeomorphic. While there are several possible ways to achieve this goal, they
all employ the compositional scheme, since in the infinite-dimensional setting,
diffeomorphisms form a group, with the composition as the appropriate operator,
and the composition of two diffeomorphisms yields a diffeomorphism.

One strategy for generating diffeomorphisms is to employ the compositional
scheme with sufficiently small updates [Chefd’hotel et al., 2002,Stefanescu et al.,
2004]. This approach uses the fact that in the finite-dimensional case, which must
be ultimately employed in the implementation, transformations resulting from
sufficiently small and smooth updates are diffeomorphic. The drawback of this
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approach is that it limits the maximal length of the point-wise updates, which
can slow down the convergence speed of the method. Due to our experience, this
limitation is not too severe in practical applications. To assure diffeomorphisms
with sufficiently smooth updates in a discrete setting, one must limit the maximal
point-wise length of the update, i.e. max ‖𝑣(𝑥)‖, to half the element spacing,
which is still an acceptable and meaningful value.

An alternative approach is presented in [Vercauteren et al., 2007b], where
the Log-Euclidean framework from [Arsigny et al., 2006] uses stationary velocity
fields to ensure that the updates are diffeomorphic.1 In this approach, the
computed updates are assumed to lie in the tangential space to the Riemannian
manifold of diffeomorphisms. Then, based on the velocity field (i.e. the update
step) 𝑣, the corresponding diffeomorphic version is computed by applying the
exponential operator, which maps from the tangential space to the manifold of
diffeomorphisms, resulting in the update scheme

𝑢𝑖+1 = 𝑢𝑖 ∘ exp(𝑣) . (4.14)

A further work based on the Log-Euclidean framework is presented in [Ver-
cauteren et al., 2008]. Instead of encoding only the updates by the static velocity
fields, in this work, the resulting deformation at every iteration is represented
by a static velocity. This is advantageous for studies in computational anatomy.
More precisely, given the current deformation 𝜑𝑖, represented by the static ve-
locity field 𝑢 as 𝜑𝑢 = exp(𝑢), and the update transformation 𝜑𝑣 = exp(𝑣), the
task is to compute the static velocity field 𝑤 = 𝑍(𝑢, 𝑣), which represents the
diffeomorphism 𝜑𝑖+1 = exp(𝑤), so that

exp(𝑤) = exp(𝑢) ∘ exp(𝑣) . (4.15)

The static field 𝑤 is approximated from 𝑢 and 𝑣 by 𝑤 ≈ 𝑍(𝑢, 𝑣), where 𝑍
is an approximation to the Baker-Campbell-Hausdorff (BCH) formula. This
approximation holds only for sufficiently small updates 𝑣. The use of the BCH
formula in this context was proposed in [Bossa et al., 2007].

Please note that in all of the above approaches, only the update step is
modified, and the remainder of the standard demons framework stays intact.

4.7 General Demons Framework

Summing up the generalization from previous sections, the following general
demons framework can be stated:

𝑓 = −𝛾opt
(︀
∇𝐸D(𝜑)

)︀
(4.16)

𝑣 = 𝜏 ΨH * 𝑓 (4.17)

𝑤 = update
(︀
𝑢𝑖, 𝑣

)︀
(4.18)

𝑢𝑖+1 = ΨR(𝜏) * 𝑤 . (4.19)

1Although the use of static velocities in the Log-Euclidean framework is not capable of
representing all possible diffeomorphisms, it has been been demonstrated that it is sufficiently
expressive for registration purposes.
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4.8 Further Extensions

Over the last years, numerous further extensions of the demons framework have
also been proposed.

One popular topic is the symmetrization of forces for the case of SSD as the
difference measure. In [Wang et al., 2005] and [Rogelj and Kovacic, 2006], it
has been proposed to compute the force term based on the average of image
gradients from both, the source and the target image. In [Vercauteren et al.,
2007a,Vercauteren et al., 2009], a link between these approaches and the efficient
second order optimization (ESM) scheme [Malis, 2004] is established.

Further extensions include a scheme aiming at inverse-consistency [Ver-
cauteren et al., 2008], and using the demons method for registration on spherical
surfaces in [Yeo et al., 2010].

4.9 Discussion

Since its advent as a heuristic method, the demons approach has been provided a
solid theoretical foundation (in fact several interpretations have been provided),
and generalized from a specific method to a general and powerful framework.
It can be seen as an efficient numerical method for implementing elastic-type
and fluid-type registration models, for arbitrary difference measures, regulariza-
tion terms, and different smoothness assumptions for the underlying groups of
transformations.

One open challenge in the demons framework is the practical and theoretically
justified use of efficient schemes for the optimization of statistical difference
measures such as mutual information in multi-modal scenarios. We address
this point by proposing a general preconditioning scheme in Chapter 6.2, which
enables an efficient optimization and is theoretically justified in the demons
framework.
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Chapter 5

Parametric Registration Methods

The main idea shared by the approaches usually grouped as parametric reg-
istration methods is to employ transformation models with a lower number
of parameters, than the dense and high-dimensional parametrizations, which
are resulting for example from demons algorithms, or from discretization of
variational approaches by finite difference schemes.

The use of lower-dimensional models automatically provides increased ro-
bustness due to the inherent regularization. Furthermore, these models can
simplify or even in the first place practically enable the use of some optimization
methods for statistical difference measures, such as Gauss-Newton optimization
for mutual information, which is not practicable in variational settings, with
dense, high-dimensional transformation models [Zikic et al., 2010a,Zikic et al.,
2011].

Starting from the energy minimization model

min
𝑢∈H

𝐸(𝑢) = min
𝑢∈H

𝐸D(𝑢) + 𝜆𝐸R(𝑢) , (5.1)

parametric methods employ a finite-dimensional approximation 𝑢(𝑝) to the dis-
placement 𝑢. This approximation is governed by a finite number of parameters,
which are combined in the parameter vector 𝑝 = (𝑝1, . . . , 𝑝𝑛)

⊤. The approxima-
tion 𝑢(𝑝) is then substituted into the energy formulation, thus transforming it
into an optimization problem with respect to the parameters

𝑝′ = argmin
𝑝
𝐸(𝑢(𝑝)) = argmin

𝑝
𝐸D(𝑢(𝑝)) + 𝜆𝐸R(𝑢(𝑝)) . (5.2)

As the result of the parametrization, the possible deformations are restricted to a
subset of the space of all possible deformations. The first aspect of this restriction
is the positive aspect that the subspace of parametrized transformations is
always more regular than arbitrary transformations (at least for meaningful
transformations models employed for registration). The second aspect is whether
the restricted space is sufficiently expressive. This of course depends on the
registration task at hand, however it has been demonstrated that models such as
FFDs are well capable of estimating the transformations in deformable medical
scenarios (cf. e.g. [Murphy et al., 2011]), and can be also used for optical flow
problems, which require some strong spatial variation (cf. e.g. [Glocker et al.,
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2008b]). Please note that rigid registration methods naturally fall within the
class parametrized approaches.

In image registration, linear transformation models are by far the most
popular choice for modeling 𝑢(𝑝). They are conceptually simple, and their
linearity with respect to the parameters is an extremely convenient property for
derivation of gradient-based optimization algorithms.

Linear parametric models represent the displacement as a linear combination
of arbitrary basis functions 𝐵𝑘 : Ω→ Ω, resulting in

𝑢(𝑝)(𝑥) =
∑︁
𝑘

𝑝𝑘𝐵𝑘(𝑥) . (5.3)

The parameters 𝑝𝑘∈R𝑑 can be seen as representative displacement vectors. In
many cases, the influence of the parameter vector 𝑝𝑘 can be assigned to a specific
location in space. We refer to this location as the control point 𝑐𝑘 ∈ Ω.

With a matrix 𝐵, obtained the stacking discretized (by sampling on a regular
grid corresponding to the image domain), and vectorized versions of the basis
functions 𝐵𝑘 as 𝐵 = [𝐵1, . . . , 𝐵𝑁 ]⊤, and with the parameter vector 𝑝 containing
the single entries 𝑝𝑘, the definition in (5.3) can also be written as

𝑢(𝑝) = 𝑝⊤𝐵 . (5.4)

This notation further highlights the linearity of the model.
It is interesting to note that the essence of the parametric approach is very

similar to the finite element approach, which we discussed in the context of
variational approaches, cf. Section 2.4.2. The difference in the derivation is that
in the variational approach, the FE scheme is applied after the linearization
of the problem, so that the linear transformation model is inserted into the
quadratic energy, which corresponds to the linear PDE. On the other hand, in
the parametric approach, the transformation model is inserted directly into the
non-linear equation, and then, the optimization is carried out. In general, any
FE model can be used for parametric registration, and vice versa. In contrast to
the general application of FE, for image registration mostly conceptually simpler
transformation models with regular mesh grids are employed.

Furthermore, in order to relate the parametric to variational approaches we
find it instructive to analyze the derivative of the energy with respect to the
parameters, and its connection with the continuous derivative of the energy with
respect to the continuous displacement function, as defined in (2.8). With the
parametrization from (5.4), the derivative energy derivative w.r.t. the parameters
reads

𝜕𝐸

𝜕𝑝
=
𝜕𝐸

𝜕𝑢

𝜕𝑢

𝜕𝑝
(5.5)

= ∇𝐸⊤𝐵 . (5.6)

The above reveals that the derivative of the energy w.r.t. a parameter 𝑝𝑖 is simply
the projection of the dense continuous derivative ∇𝐸 onto the corresponding
basis function 𝐵𝑖, i.e.

𝜕𝐸

𝜕𝑝𝑖
= ∇𝐸⊤𝐵𝑖 . (5.7)

50



5.1 Characterization of Linear Transformation Models

Analogous to the description of deformable registration as accumulation of
smoothed energy gradients, we can intuitively formulate the process of estimating
the corresponding parameters as the accumulation of the projections of the energy
gradient. In Section 5.3, we will briefly discuss how the form from (5.6) can
provide a further way to relate variational approaches to the methods resulting
from the parametric derivation.

In the field of intensity-based deformable registration of medical images,
parametric registration has been first used by [Rueckert et al., 1998,Rueckert
et al., 1999a], where the B-Spline based Free-form deformation (FFD) was
employed as the transformation model. Since this work, B-Spline FFDs have
become a very popular choice and have been commonly employed, cf. e.g.
[Schnabel et al., 2001,Rohlfing and Maurer, 2003,Rohlfing et al., 2003,Glocker
et al., 2008a,Klein et al., 2010b]. B-Splines have also been employed for image
registration in other settings, cf. e.g. [Szeliski and Shum, 1996, Szeliski and
Coughlan, 1997]. Other examples of parametric transformations in the field
of registration include radial basis functions [Rohde et al., 2003], wavelets
[Yoshida, 1998,Wu et al., 2000], or trigonometric functions [Ashburner and
Friston, 1999,Ashburner and Friston, 2004].

The joint property of the most common transformation parametrizations
for image registration is that they all employ a linear model. Therefore, the
definition of the transformations can be boiled down to a description of the
basis functions and the corresponding parameters. In Section 5.1, we perform a
characterization of linear transformation models, and discuss some examples in
Section 5.2.

5.1 Characterization of Linear Transformation
Models

The standard linear transformation models can be characterized based on two
sets of basic properties. The first set describes the spatial configuration of control
points, and can be summarized by the following attributes.

Spatial Configuration of Control Points:

∙ Localization describes whether the influence of the parameters through
basis functions is localized at certain spatial positions (e.g. Free-form
Deformations (FFD)), or whether it is global (e.g. Trigonometric basis
functions such as Discrete Cosine Transform (DCT) or Discrete Sine
Transform (DST)).

∙ Regularity. This attribute applies only to localized models and describes
whether the location of the control points corresponds to a regular grid
or a mesh (e.g. Free-form Deformations), or whether the distribution
of the control points can be arbitrary (e.g. Thin-plate splines (TPS),
Adaptive bases), resulting in irregular control point distributions. Regular
grids have the advantage of conceptual, and implementational simplicity.
On the other hand, irregular approaches allow for adaptive resolution in
the image domain, such that a finer resolution can be used to capture
complex motions only in the areas where required, and lower resolution in
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Localization
of Bk‘s

localized
global

(no localization)

regular grid
irregular 

control points

e.g. Adaptive bases, Thin-plate Splines (TPS)

e.g. Trigonometric bases (Fourier/Sine/Cosine bases)

sparse

e.g. Free-form Deformations (FFD)

dense

e.g. “Non-parametric“ Approaches

Localization

Density

Regularity

Figure 5.1: Characterization of linear transformation models based on the spatial
configuration of the control points.

homogeneous areas. This can lead to a significant reduction of DOFs for
same accuracy levels, compared to regular grids. Also, models based on
irregular localization of sampling points are often employed in feature-based
registration, since in images, features are in general not located on regular
grids.

∙ Density. In the case of regularly localized models, this attribute expresses
the density of the control point grid. Approaches with dense models, in
which the grid resolution is equivalent to the image resolution, correspond
to variational methods, while sparse models such as FFDs require less
parameters.

The above properties, describing the spatial configuration of the control points,
can be organized in the form of a binary tree – please compare also Figure 5.1
for a graphical representation.

The second set of attributes for characterization of linear transformation
models describes the properties of basis functions, and includes the following
attributes.

Properties of Basis Functions:

∙ Support of Basis Functions describes the spatial support for a single basis
function. Possible options are compact support (e.g. B-Spline FFDs), and
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global support (e.g. TPS, DCT). The advantage of functions with compact
support is that their evaluation requires computations on less points from
the image domain, which leads to lower computational costs. This is
especially significant for a high number of DOFs, and higher-dimensional
problems (that is 3D, compared to 2D).

∙ Shape of Basis Functions expresses whether the single basis functions
𝐵𝑘 employed in the model have different forms, or whether they are
identical, translated version of each other, i.e. whether for a representative
basis function 𝐵0, and a control point 𝑐𝑘, we have 𝐵𝑘(𝑥) = 𝐵(𝑐𝑘 − 𝑥). An
example for identically shaped bases are B-Spline FFDs. On the other hand,
trigonometric bases, such as DCT, are an example for a parametrization
in which every basis has a different shape.

In contrast to the properties of the spatial configuration of the control points, the
different values for the attributes describing the basis functions can be combined
in an arbitrary way.

5.2 Examples of Linear Transformation Models

In this section, we present a short overview of some popular transformation
models. Please note that this selection is by no means comprehensive. We
provide some exemplary 1D illustrations of basis functions in Figure 5.2.

5.2.1 B-Spline Free-form Deformations (FFD)

A very popular transformation model for registration of medical images is the
Free-form deformation model based on B-splines. The model consists of B-
spline kernels located at control points in a regular grid. The regularity of the
grid mesh results in a conceptually simple model, and easy implementation.
Due to the limited support, the linear operators resulting from gradient-based
optimization are relatively sparse, and due to the definition as tensor product
efficient implementation is possible by pre-computing the single one dimensional
bases.

The FFD model, which was introduced in [Sederberg and Parry, 1986], was
popularized for intensity-based registration of medical images by [Rueckert et al.,
1998,Rueckert et al., 1999a]. The parametrization of non-linear transformations
by FFDs based on cubic B-Splines is a common technique for registration of
medical images. The method has become very popular and widely used in the
field since its introduction, cf. e.g. [Schnabel et al., 2001, Kybic and Unser,
2003,Rohlfing et al., 2003,Glocker et al., 2008a,Klein et al., 2010b]. In [Rueckert
et al., 2006], the FFD-based registration has been modified, such that it yields
diffeomorphic transformations by construction.

In terms of the characterization from Section 5.1, the FFD model can be
described as localized with a regular and sparse control point grid, featuring
identically shaped basis functions with compact support. The only thing which
remains to be specified is the actual form of the B-Spline basis function.

The 𝑑-dimensional B-Spline basis 𝐵0 is based on the one-dimensional basis
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functions 𝑏, defined as

𝑏(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑏0((𝑥+ 2ℎ)/ℎ) for − 2ℎ ≥ 𝑥 < −ℎ
𝑏1((𝑥+ ℎ)/ℎ) for − ℎ ≥ 𝑥 < 0
𝑏2(𝑥/ℎ) for 0 ≥ 𝑥 < ℎ

𝑏3((𝑥− ℎ)/ℎ) for ℎ ≥ 𝑥 ≥ 2ℎ

, (5.8)

with ℎ being the distance between two control points along the respective
dimension, and with

𝑏0(𝑥) = (1− 𝑥)3/6 (5.9)

𝑏1(𝑥) = (3𝑥3 − 6𝑥2 + 4)/6 (5.10)

𝑏2(𝑥) = (−3𝑥3 + 3𝑥2 + 3𝑥+ 1)/6 (5.11)

𝑏3(𝑥) = 𝑥3/6 . (5.12)

Now, the 𝑑-dimensional B-Spline basis 𝐵0 is constructed as the tensor product
of 𝑏 functions corresponding to the single dimensions, that is

𝐵0(𝑥) =

𝑑∏︁
𝑖=1

𝑏(𝑥𝑖) . (5.13)

The actual bases 𝐵𝑘, located at points 𝑐𝑘, are simply shifted version of 𝐵0 and
can be defined as

𝐵𝑘(𝑥) = 𝐵0(𝑥− 𝑐𝑘) . (5.14)

Please note that the presented definition of B-Splines is chosen to fit the high-
level classification that we employ in this work. Usually, the B-splines are defined
in a slightly different but equivalent manner, without the explicit definition of
𝐵0. This alternative derivation is closer related to the actual implementation
schemes, please compare [Rueckert et al., 1999a,Rohlfing et al., 2003]. More
details on B-Splines can be found in [Unser et al., 1993a,Unser et al., 1993b]
while [Holden, 2008] gives an overview of the historical development.

5.2.2 Trigonometric Functions

Trigonometric functions are a further popular choice for parametrization of
transformations. The basic idea is to model the displacement field as a linear
combination of a finite number of low-frequency trigonometric functions. The
actual choice of the trigonometric function depends on the boundary conditions
which are assumed for the image domain. The homogeneous zero boundary
condition (Dirichlet condition) requires the Discrete Sine Transform (DST)
[Ashburner and Friston, 2004], while an unconstrained boundary can be modeled
with Discrete Cosine Transform (DCT) [Ashburner and Friston, 1999]. A
combination of DST and DCT can be used in order to impose a sliding boundary
condition (Neumann boundary condition). For more details on the boundary
condition treatment with trigonometric bases, see [Ashburner and Friston, 2004].
A further possibility is to employ the Discrete Fourier Transformation (DFT)
[Amit, 1994,Christensen and Johnson, 2001], or Discrete Cosine Transformation
(DCT) [Ashburner and Friston, 1999] basis functions.
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In contrast to localized bases such as FFDs or RBFs, the trigonometric bases
𝐵𝑘 are global and represent a periodic signal of frequency 𝑘. With respect to
the other categories of characterization from Section 5.1, the trigonometric bases
have global support support, and each basis has a different shape.

Theoretically, by using an infinite number of trigonometric bases, any real
continuous function can be exactly represented. For discretized settings, em-
ploying sufficiently many bases is equivalent to a regular sampling of a certain
resolution. In registration applications, however, mostly only a certain num-
ber of low-frequency basis functions is used for parametrization. This has the
advantage to lower the number of parameters, and it provides a restriction of
displacements to a space containing only functions of a corresponding smoothness
by construction.

A further motivation for the use of trigonometric functions is that in some
cases, they are the eigenfunctions to the linear operators which result from
the use of certain regularization operators, and optimization schemes. This
property, facilitates the solution, and combined with fast trigonometric routines
such as the fast-fourier transform (FFT), provides an efficient solver for these
linear systems, cf. e.g. [Modersitzki, 2004].

5.2.3 Radial Basis Functions (RBF)

The class of Radial Basis Functions (RBF) is defined as the set of all real-valued
functions, whose value depends only on the distance of the argument to the
origin. This can be formalized by stating

𝐵(𝑥) = 𝐵(‖𝑥‖) , ∀𝑥 ∈ Ω . (5.15)

As a consequence, all level sets of RBFs are spherical, and the value of the level
set depends on the radius. Popular examples of RBF bases are for instance the
Gaussian function, or the Thin-plate spline (TPS) [Wahba, 1990a,Bookstein,
1989a].

One of the major advantages of RBFs is that they do not require a regular
grid, which allows the reduction of the number of DOFs, and a locally adaptive
resolution. As mentioned earlier, the irregular localization of control points is
beneficial in feature-based registration, which is the reason, why RBFs have been
a popular choice in this area, cf. [Rohr, 2000,Rohr et al., 2001a,Rohr, 2001].

A widely used example of an RBF are the so called Thin-plate splines (TPS).
The TPS function is the fundamental solution to the biharmonic equation, thus
minimizing the bending energy [Bookstein, 1989a]. In 2D, the TPS basis reads

𝐵(𝑥) = ‖𝑥‖2 ln(‖𝑥‖) , (5.16)

and in 3D, we have

𝐵(𝑥) = −‖𝑥‖ , (5.17)

compare also [Rohr, 2001] for further details.
An example of the use of RBF bases with compact support for medical image

registration is given in [Rohde et al., 2003]. The so called Adaptive Bases, which
are used in this work are defined by

𝐵𝑘(𝑥) = [max(1− 𝑟, 0)]4 (3𝑟3 +2 𝑟2 + 6𝑟 + 4) , (5.18)

with 𝑟 = ‖𝑥− 𝑐𝑘‖.
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Figure 5.2: 1D illustrations of some parameterizations. Parameters (vertical
lines) and corresponding basis functions are given. Please note that for the
trigonometric bases (b), the influence of parameters is not localized in space.

5.3 Relation to Other Approaches

When it comes to the relation between variational and parametric approaches, we
have already discussed the spatial discretization step in the variational derivation
as a link between these two groups of methods in 2.4. In this context, especially
the Finite Element method is of interest, since it shares the philosophy of most
classical parametric methods to reduce the number of parameters.

In this section we would like to briefly discuss a further possible way of
thinking about the connection between the methods which result from variational
and the parametric derivations. We will do this by establishing a relation
between the variational approaches which employ a Sobolev space to represent
displacements, and the parametric approaches with linear transformation models.
As we already argued, the setting of Sobolev spaces is related to semi-implicit
time discretization for classical variational approaches (Sec. 2.3.2), as well as
to large deformation registration (Sec. 3.2), and the demons framework (Sec.
4.4). Therefore, the establishment of a relation between Sobolev spaces and
parametric approaches provides a link to the other groups of methods. This
section is based on our work in [Zikic et al., 2010f].

Our argument is based on the interpretation of the energy gradient w.r.t.
parameters as the projection of the continuous gradient w.r.t. the displacement
onto the corresponding bases, as stated in (5.6). For a displacement 𝑢, belonging
to a Sobolev space based on the metric tensor 𝐿*𝐿, the corresponding energy
gradient w.r.t. 𝑢 can be expressed in terms of the L2 gradient ∇𝐸 as [Neuberger,
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1997]

(𝐿*𝐿)−1∇𝐸 . (5.19)

In many cases, this can alternatively be expressed in terms of the Green’s function
Ψ corresponding to (𝐿*𝐿) by

(𝐿*𝐿)−1∇𝐸 = Ψ * ∇𝐸 = ̃︀Ψ * ̃︀Ψ * ∇𝐸 , (5.20)

where we assume that Ψ = ̃︀Ψ * ̃︀Ψ. For example, Ψ can be a Gaussian for an
appropriate choice of the Sobolev space [Chefd’hotel, 2005] with the appropriate

standard deviation 𝜎. Then, ̃︀Ψ is a Gaussian with standard deviation 𝜎/2.

Please note that we do not request Ψ and ̃︀Ψ to be the same type of function.
In general, ̃︀Ψ will have a form of a smoothing kernel, i.e. it can be employed

as a spatially localized and regular basis shape, on a dense control point grid.
Also, the discrete correspondence to the convolution in (5.20) can be written as̃︀Ψ * ∇𝐸 ̂︀= ∇𝐸⊤[𝐵1, . . . , 𝐵𝑁 ]⊤ = ∇𝐸⊤𝐵 , (5.21)

with 𝐵𝑖 = ̃︀Ψ(𝑥 − 𝑐𝑖) referring to the basis function ̃︀Ψ located at the control
point 𝑐𝑖. If we assume that (5.21) gives us the update for the parameters of
a dense transformation model 𝑑𝑝⊤ (cf. (5.6)), then the corresponding update
displacement would read

𝑢(𝑑𝑝) = 𝑑𝑝⊤𝐵 = ∇𝐸⊤𝐵𝐵 . (5.22)

Analogous to (5.21), we see that the above form (5.22) is a discrete formulation
corresponding to the Sobolev gradient of (5.20), which determines the optimiza-
tion scheme, and thus the registration process. In summary, we can state that
a dense parametric transformation model with basis functions 𝐵𝑖 = ̃︀Ψ(𝑥− 𝑐𝑖),
corresponds to a discretized version of a variational approach in the Sobolev
space based associated to the Green’s function Ψ = ̃︀Ψ * ̃︀Ψ.

As a specific example, we can state that a fluid demons, based on filtering
by a Gaussian 𝐺𝜎, which corresponds to the use of a specific Sobolev space
[Chefd’hotel, 2005], with 𝐺𝜎 as the Green’s function, corresponds to a parametric
approach using 𝐺𝜎/2 as the basis function on a dense control point grid.

With this intuition, we can now easily compare a B-Spline FFD approach
(without regularization) to fluid demons. Since a B-Spline basis can be very
accurately approximated by an appropriate truncated Gaussian, the difference
between the FFD and the the fluid demons can be characterized by the density
of the control point grid. While the demons uses a dense grid, the FFD usually
employs a sparse control point grid. Thus, we can see the FFD approach
approximately as an appropriately tuned demons, in which a certain number of
basis functions is omitted.

A similar argument can be made for the approach resulting from variational
derivation with semi-implicit time discretization, through its interpretation to
gradient descent in Sobolev spaces (cf. Sec. 2.3.2).

5.4 Discussion

The group of parametric registration approaches summarizes a large number
of methods which employ a comparably low-dimensional transformation model
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directly in the energy formulation. This approach has a conceptually straight-
forward derivation and due to the reduced dimensionality in comparison to high-
dimensional parametrizations it results in robust methods, which are potentially
computationally more efficient, and which pose less restrictions with respect to
the choice of the optimization method due to the reduced problem size.

It is to be noted however, that the methods resulting from parametric
derivation are not fundamentally different to methods obtained by variational
derivation. All methods have in common, that ultimately a finite-dimensional
formulation must be obtained for implementation, a step, which is performed by
parametrization. The major difference is at which point in the derivation the
transition to the finite-dimensional settings is performed, please compare also
Figure 1.1. In this context, the Finite Element method for spatial discretization
provides a strong link between the variational derivation and the parametric
methods. Also, the interpretation of parameter updates as projections of the
dense energy gradient to the basis functions can provide an interesting insight
into the relation between the different parametric and variational methods. In
this way, many of the classic variational approaches, such as the fluid demons
method, or the variational elastic method with explicit or semi-implicit time
discretization can be also interpreted as parametric approaches and equivalent
implementations can be derived in this manner [Zikic et al., 2010f].
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Chapter 6

Egalitarian Preconditioning:

A General Preconditioning Scheme

for Image-based Difference Measures

in Deformable Registration†

We propose a preconditioning scheme for efficient optimization of arbitrary
image-based difference measures in the context of deformable registration.

Our approach is based on the observation and analysis of a fundamental
negative property of steepest gradient descent (SGD) for registration problems:
For image-based difference measures, SGD locally exhibits slower convergence
speed in areas corresponding to low-gradient regions of the source image. We
refer to this property as Local Gradient Bias, and our approach aims at avoiding
the above effect in a principled way, for all difference measures.

The proposed scheme is simple and computationally efficient: It performs an
approximate normalization of the point-wise vectors of the difference gradient
to unit length. We perform a theoretical analysis of the condition of differ-
ence measures in registration problems, and demonstrate that the our scheme
improves the condition of the original problem. Because of the simplicity of
the scheme, its application improves the convergence speed while adding only
negligible computational cost, thus resulting in shorter effective runtimes. Since
the key idea behind our approach is to remove the inequalities between the
updates in the different image regions, we call the resulting approach Egalitarian
Preconditioning.

The proposed preconditioning is of particular interest for high-dimensional
deformable registration with statistical difference measures such as mutual
information (MI). In these settings, the range of applicable standard methods
for efficient optimization is strongly limited, due to the structure and the size of
the resulting optimization problem. Here, our approach presents a conceptually
simple, yet a theoretically justified alternative, which can easily be integrated
into any gradient-based registration scheme. We demonstrate the application of
the proposed preconditioning for registration in the group of diffeomorphisms,

†This chapter is based on the following publications: [Zikic et al., 2006a, Zikic et al.,
2010d,Zikic et al., 2010a,Zikic et al., 2010e,Zikic et al., 2011].
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and for the demons method. For the demons scheme in particular, our approach
can be seen as an efficient generalization of the demons scheme to arbitrary
difference measures.

6.1 Introduction

The motivation for our work and its potential usefulness are given by the lack
of efficient optimization methods for statistical difference measures for high-
dimensional transformation models. Many standard optimization methods such
as Newton-type approaches, which are applicable for measures such as SSD, can
not be applied for statistical measures such as MI, due to the size and structure
of the required operators. Other approaches such as L-BFGS remain applicable
for some settings, but cannot be applied for example in the demons setting. We
discuss this motivation in more detail in Section 6.1.1.

The key idea of our approach is based on the observation of the effect, to
which we refer as Local Gradient Bias (LGB). The LGB effect describes the fact
that the the steepest gradient descent on image-based difference measures results
in spatially varying convergence speed. More specifically, the local convergence
speed of the registration at the point 𝑥 depends on the underlying intensity
gradient in the source image ∇𝐼S(𝑥), and consequently different points in the
image domain have a different influence. For more details on the LGB effect and
its properties, please see Section 6.1.2

Since the intensity gradient in one of the images cannot provide a meaningful
prior on the magnitude of the corresponding displacement, we consider this
behaviour not to be justified. Therefore, our goal is to find a theoretically sound
approach which removes the inequality of the influence between the different
points in the image domain. We show that our goal results in faster convergence,
and that it can be formulated as a preconditioning scheme.

Since the term Egalitarianism denotes a “philosophy advocating the removal
of inequalities among people” (definition from Merriam-Webster Dictionary),
and our goal is the removal of inequalities in the influence of pixels, we refer to
the resulting preconditioning scheme as Egalitarian Preconditioning. For an illus-
tration of the local gradient bias, and the effect of the proposed preconditioning,
please compare Figure 6.1.

6.1.1 Optimization of Statistical Difference Measures for
High-dimensional Transformation Models

As discussed previously, given the target image 𝐼T and the source image 𝐼S,
the task of registration is to compute the transformation 𝜑, such that 𝜑 maps
between the corresponding points in the input images. Intensity-based deformable
registration is generally formulated as an optimization of an energy 𝐸 combining
a difference measure 𝐸D and a regularization term 𝐸R by

𝐸(𝜑) = 𝛾 𝐸D(𝜑) + 𝜆𝐸R(𝜑) , (6.1)

with positive scalar factors 𝛾 and 𝜆. For high-dimensional deformation models,
the difficulty of efficient optimization of (6.1) depends largely on the choice
of 𝐸D. While many standard methods can be used for point-wise difference
measures such as the sum of squared differences (SSD), alternatives for efficient
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(a) 𝐼S (b) ∇𝐸D (c) 𝑃−1∇𝐸D (d) ‖∇𝐸D‖ (e) ‖𝑃−1∇𝐸D‖

(f) 𝐼S (g) ∇𝐸D (h) 𝑃−1∇𝐸D (i) ‖∇𝐸D‖ (j) ‖𝑃−1∇𝐸D‖

(k) 𝐼S (l) ∇𝐸D (m) 𝑃−1∇𝐸D (n) ‖∇𝐸D‖ (o) ‖𝑃−1∇𝐸D‖

Figure 6.1: Some examples of the local bias effect and the proposed egalitarian
preconditioning. We display the source image 𝐼S, and the gradients of the
difference measure ∇𝐸D and their norm ‖∇𝐸D‖, as well as the preconditioned
versions 𝑃−1∇𝐸D and ‖𝑃−1∇𝐸D‖. The first row demonstrates the effect on a
synthetic example, the second row for a CT thorax image, and the third for an
MR brain image. The energy employed in all cases is the SSD, and the gradient
results from shifting 𝐼S by one pixel in relation to 𝐼T.

optimization of statistical measures such as mutual information (MI) [Wells
et al., 1996,Maes et al., 1997a], or correlation ratio (CR) [Roche et al., 1998] are
more rare and complex. The goal of this work is to provide a simple scheme for
efficient optimization of arbitrary difference measures.

For the treatment of multi-modal registration problems in medical image
analysis, the use of statistical difference measures such as MI or CR is of
particular interest [Pluim et al., 2003a]. These measures operate on the joint
probability distribution of the intensities of the two input images, hereby linking
all points with the same intensities, which results in a non-local character of
the measures. This is in contrast to difference measures which are defined by
point-wise comparisons, such as the sum of squared differences (SSD). The
non-locality of statistical measures has consequences on the structure of the
corresponding Hessian matrix, which is a major building block for many standard
optimization methods. While the Hessian of the SSD measure is a sparse
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matrix with a small number of non-zero diagonals, the Hessian of MI is dense
without any regular sparsity pattern. The size of Hessian matrix 𝐻 for MI
thus becomes prohibitive for practical treatment for high-dimensional settings.
With the number of parameters being equal to the number of voxels times the
dimension of the images, we get sizes of 𝐻 in the order of ((3·106)×(3·106)) for
medium size problems. The same problem holds for the Jacobian 𝐽 of statistical
difference measures. This property rules out the Newton-type methods such as
Gauss-Newton or Levenberg-Marquardt (employing 𝐽⊤𝐽) [Nocedal and Wright,
2000,Madsen et al., 2004], which are good choices for point-wise measures such
as SSD. Please see also [Modat et al., 2010] for a description of this issue. Please
note that the problems related to the size of 𝐽⊤𝐽 might be less prominent for
methods which employ lower-dimensional transformations models, such as e.g.
FFD B-Splines [Rueckert et al., 1999a], depending on the resolution of the
employed control point grid.

Therefore, efficient optimization methods for statistical difference measures
in high-dimensional settings must circumvent the problem of dealing with dense
matrices𝐻 or 𝐽⊤𝐽 . Standard techniques to achieve this goal include quasi-Newton
methods such as L-BFGS (limited memory Broyden–Fletcher–Goldfarb–Shanno),
nonlinear conjugate gradient (NL-CG), or preconditioning techniques [Nocedal
and Wright, 2000].

While both of these methods can in principle be applied for approaches
based on generic optimization of the energy in (6.1), the use of L-BFGS and
NL-CG is not theoretically justified for the standard interpretation of the popular
demons registration method as an alternating optimization process, in which
the optimization steps for 𝐸D are interleaved with smoothing operations, which
correspond to optimization of 𝐸R [Modat et al., 2010]. Since L-BFGS and
NL-CG operate by utilizing the information about the energy gradient from
subsequent iterations, this process for 𝐸D is disturbed by the smoothing step,
which makes this information inconsistent [Modat et al., 2010]. Presumably in
consequence of these properties, optimization of 𝐸D by steepest gradient descent
(SGD) is still the standard choice for multi-modal demons registration, and
research on efficient and justified optimization schemes for the demons method
is a topic of interest [Modat et al., 2010].

A further negative property of L-BFGS and NL-CG in the context of de-
formable registration from the practical point of view, is the requirement of these
methods for a precise step-size estimation, in order to achieve improvement in
convergence [Nocedal and Wright, 2000]. For deformable registration, where the
evaluation of the energy term is comparably costly, this requirement introduces
further computational costs. Finally, L-BFGS requires additional memory to
store the 𝑛-last energy gradients, where 𝑛 depends on the required accuracy.

With respect to the above description, the advantages of our method are that
it is applicable for all gradient-based approaches, including the demons scheme,
it requires no expensive step-size estimation, and no additional memory. Besides,
due to its conceptual simplicity, it offers a simple implementation, and efficient
computation.

6.1.2 Local Gradient Bias

The approach which we introduce in this work, is based on the observation
of an effect, which we refer to as the Local Gradient Bias (LGB). The LGB
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(a) 𝐼T (b) 𝐼S (c) ∇𝐸SSD (d) 𝜔SSD (e) ∇𝐼S

(f) 𝐼T (g) 𝐼S (h) ∇𝐸MI (i) 𝜔MI (j) ∇𝐼S

Figure 6.2: Illustration of the structure of the gradient of the difference measure
∇𝐸D = 𝜔D∇𝐼S for SSD (first row), and MI (second row), on a synthetic example.
Please note the local gradient bias effect for both measures, i.e. that the entries
of ∇𝐸D(𝑥) are considerably lower for points at which the source image has a
low intensity gradient ∇𝐼S(𝑥).

effect describes the fact that the the steepest gradient descent on image-based
difference measures results in spatially varying convergence speed, and that the
convergence speed depends on the underlying intensity-gradients of the source
image.

The reason for this behavior is the structure of the gradient of image-based
difference measures. Since in this case, the energy depends on the transformation
through the source image, by applying the chain rule, we get

𝜕

𝜕𝜑
𝐸D(𝐼S(𝜑)) =

𝜕𝐸D

𝜕𝐼S

𝜕𝐼S
𝜕𝜑

. (6.2)

Point-wise, we can write the above also as

∇𝐸D(𝑥) = 𝜔D(𝑥)∇𝐼S(𝑥) , (6.3)

with the real-valued function 𝜔D : Ω→ R. We illustrate the above equations in
Figure 6.2. Please note that in this work, by point-wise, we do not refer to one
specific entry of a vector, but to the entities assigned to a specific point 𝑥 in the
spatial domain. Therefore, ∇𝐸D(𝑥) ∈ R𝑑 can be seen as a single displacement
vector at location 𝑥. The relation in (6.3) has been discussed previously, for
example in [Chefd’hotel et al., 2002,Hermosillo et al., 2002]. Please note, that
the above derivation holds for all image-based difference measures, and the term
which encodes the specific measure is 𝜔D.

We see from (6.3) that the difference gradient ∇𝐸D(𝑥) at a single point
depends directly on ∇𝐼S(𝑥). Specifically, if not corrected by 𝜔D(𝑥), the length of
∇𝐸D(𝑥) will be directly influenced by the length of ∇𝐼S(𝑥). It is our experimental
observation for all common difference measures, that in general 𝜔D does not
have the effect to correct for the length of ∇𝐼S(𝑥).

To sum up, the length of the point-wise gradient vector ∇𝐸D(𝑥) depends on
the length of ∇𝐼S(𝑥). And since in steepest-descent-based methods, the update
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(a) 𝐼T (b) 𝐼S (c) 𝐼S(𝜑10) (d) 𝐼S(𝜑20) (e) 𝐼S(𝜑30)

(f) 𝐼T (g) 𝐼S (h) 𝐼S(𝜑10) (i) 𝐼S(𝜑20) (j) 𝐼S(𝜑30)

Figure 6.3: Illustration of the Local Gradient Bias effect. The unequal local
convergence speed is caused by the steepest gradient descent optimization scheme.
We demonstrate this behaviour on the synthetic example from Fig. 6.2 for SSD
(first row), and MI (second row). We display the target and source image, as
well as the deformation estimates after 10, 20, and 30 iterations, overlayed with
the warped source image.

depends significantly on the gradient of the difference measure, the length of the
point-wise update 𝑣(𝑥) depends also on ‖∇𝐼S(𝑥)‖. As a consequence, the local
convergence speed of the registration depends on the underlying local intensity
gradient in the source image, and different points in the image domain have a
different influence. Please compare Figure 6.3 for an illustration.

It is our conviction, that the behaviour described above is not justified, since
we believe that the knowledge of the intensity gradient at a particular point in
one of the images cannot provide a meaningful prior on the magnitude of the
corresponding displacement.

To put it differently: Given the information about∇𝐼S(𝑥), and no information
about 𝐼T, we cannot know the displacement 𝑢(𝑥). Consequently, it does not
make sense to make differently large update steps, depending solely on the
information in ∇𝐼S(𝑥).

Since our early observation of the LGB effect in [Zikic et al., 2006b], through
our subsequent work and the analysis, we established that LGB is a fundamental
property of steepest descent approaches for image-based difference measures in
deformable registration, and were able to observe and describe a number of its
properties. Here, we briefly sum up the most important properties of the LGB
effect:

∙ LGB is present for all image-based difference measures. It is specifically
also present for statistical measures such as MI. The strength of the effect
depends on the difference measure through the term 𝜔D, and it is for
example stronger for SSD (where the effect is actually increased by 𝜔SSD)
than for SAD (where 𝜔SAD = ±1 has no effect).

∙ The effect of LGB depends on the structure of the source image, and it
can be more pronounced for some images than for others. The effect is
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strong if 𝐼S contains intensity gradients of largely different magnitudes cf.
Figure 6.1. On the other hand, in a binary image with only two intensities,
all non-zero gradients have the same length, and the LGB effect would not
be present.

∙ LGB is specific to steepest gradient descent and it does not occur in Newton-
type optimization. We performed an experimental and theoretical analysis
of the Gauss-Newton (GN) approach for SSD as difference measure in [Zikic
et al., 2010e,Zikic et al., 2010a], and we observe that the major influence
of GN for motion estimation is exactly the approximate normalization of
the point-wise updates to unit length. We see this as a strong indication
that our intuition about the negative properties of LGB is justified, and
that the removal of this effect can lead to improved results. Furthermore,
in [Zikic et al., 2010d], we introduced a method for deformable registration
based on the idea of natural gradients. In this approach, we also observed
that the length of the point-wise updates was approximately normalized.

∙ Our analysis in Section 6.3 reveals that the LGB effect can be seen as a
consequence of the bad condition of image-based difference measures. The
suboptimal condition of the difference measures can be understood when
one considers that not all variations of the displacement field entries about
the optimum will result in same energy changes. Intuitively, a problem
has a bad condition if the same variation of different parameters results in
strongly differing energy changes. For example, for SSD the change in the
energy corresponds directly to the edge strength at the dislocated edges.

∙ Since the LGB effect leads to slower convergence in areas corresponding
to lower intensity gradients in the source image, it can have particularly
negative effects in medical settings. In many modalities, the inside of
the human body typically exhibits weaker gradients than the body/air
boundary cf. Figure 6.1. If steepest descent is applied, this can result in
slower convergence inside the body, which is often the area of interest.

Led by the above intuition, our goal was to find a theoretically sound approach
which removes the inequality of the influence between the different points in the
spatial domain.

6.1.3 Related Work

With respect to the demons method, most applications are employing it for mono-
modal registration based on SSD, with the original force term, which is based on
the Gauss-Newton method. In some works, multi-modal scenarios are approach
by preprocessing the intensities of the input images, such that the original mono-
modal demons formulation can be applied [Kroon and Slump, 2009]. However,
the demons framework has also been applied in some multi-modal settings
with statistical difference measures. However, most of these works assume the
steepest gradient descent (SGD) update step for the forces [Chefd’hotel et al.,
2002,Guimond et al., 2002]. To our best knowledge, the only exception to the
use of SGD is the work by Modat et al. in [Modat et al., 2010], where the
force is computed as an update of the non-linear conjugate gradient (NL-CG)
optimization method [Nocedal and Wright, 2000]. Boiled down, the NL-CG
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method computes the force term as a specific weighted average of the gradients
of the difference measure from the last two iterations [Nocedal and Wright, 2000].

While NL-CG does not require an approximation of the Hessian, which
would be problematic for statistical difference measures, it has the following
disadvantages (also discussed in [Modat et al., 2010]). First, the usage of NL-CG
is theoretically not justified for demons, since the gradient information about
the difference measure from consecutive iterations is not consistent due to the
interleaved regularization step [Modat et al., 2010]. While, in spite of this point,
NL-CG reportedly can improve the convergence speed compared to the SGD,
no quantitative comparison is performed in [Modat et al., 2010]. Furthermore,
NL-CG requires a precise step size estimation in order to achieve an improvement
in convergence [Modat et al., 2010,Nocedal and Wright, 2000]. Since precise
step-size search in deformable registration is comparably expensive (order of
magnitude of a basic iteration), the increased computational cost can easily
outweigh the improvement in convergence speed.

In the context of high-dimensional elastic registration, the L-BFGS method
[Nocedal and Wright, 2000] has been employed for example in [Modersitzki, 2009].
The essence of L-BFGS is the approximation of the effects of applying 𝐻−1

to the energy gradient, without actually setting up or inverting 𝐻. Since the
approximation in L-BFGS also relies on accumulation of the gradient information
from 𝑛 last iterations, it shares the same disadvantages as NL-CG, which makes
it unsuitable for the demons framework. Actually, since l-BFGS keeps a longer
history of the previous gradients for the approximation of 𝐻−1, this effect is
even more pronounced (specific version of NL-CG can be seen as l-BFGS with
𝑛 = 2 [Nocedal and Wright, 2000]). Compared to NL-CG, the additionally
required storage for the 𝑛 last gradients is a further disadvantage.

To our best knowledge, preconditioning schemes have not been studied widely
for deformable registration. An exception is [Klein et al., 2011], which proposes
a specific scheme for SSD.

In contrast to the above methods, the use of the proposed preconditioning
approach is applicable to arbitrary difference measures, and it is justified also
in the demons setting, since it does not require information from previous
iterations. Also, please note that for the propose scheme, no additional memory
is needed. Furthermore, the proposed method does not require a precise step
size search, and improves the convergence speed already with a simple fixed step
size strategy, thereby directly translating the gain in convergence speed to an
effective improvement of runtime.

6.1.4 Outline

The remainder of this Chapter is organized in the following manner. First, we
introduce the preconditioning scheme and discuss how it can be employed in
different registration frameworks in Section 6.2. After this introduction, we
present a theoretical argument, that the proposed scheme actually improves the
condition for arbitrary image-based difference measures in deformable registration
(Section 6.3). Finally, we present the evaluation for the application of the
preconditioning for the demons framework and for registration in groups of
diffeomorphisms 6.4.
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(a) Source 𝐼S
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Figure 6.4: Example of the effect of the proposed preconditioning scheme for
MI. The point-wise gradient vectors ∇𝐸D(𝑥) are normalized to approximately
same length by 𝑃−1∇𝐸D(𝑥). Our analysis reveals that this simple strategy
improves the condition for arbitrary difference measures 𝐸D, which improves the
convergence speed of gradient descent methods.

6.2 The Egalitarian Preconditioning Scheme

Given a difference measure 𝐸D, a preconditioned gradient descent approach
modifies the descent direction by modifying the gradient ∇𝐸D(𝜑)

𝑃−1∇𝐸D(𝜑) , (6.4)

where 𝑃 is a symmetric positive definite operator [Nocedal and Wright, 2000].
The preconditioning operator 𝑃 , should present a numerically favorable approxi-
mation to the Hessian 𝐻𝐸D

. Preconditioning approaches can thus be seen as an
approximation to the Newton method, which operates by 𝐻−1

𝐸D
∇𝐸D(𝜑).

The art of preconditioning consists in designing such a 𝑃 for a specific
problem, or as [Saad, 2003] puts it “Finding a good preconditioner ... is often
viewed as a combination of art and science.”. The preconditioning term has to
make a compromise between the quality of the approximation of the Hessian
𝐻𝐸D

, and the computational efficiency of evaluating 𝑃−1. On one hand, the
possibly accurate approximation to the Hessian is required in order to improve
the convergence speed. On the other hand, the efficiency of evaluating 𝑃−1 is
needed since otherwise, despite improved convergence, the effective runtime can
increase due to the computational overhead of the inversion in each iteration. As
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an example, using 𝑃 = 𝐻𝐸D , which is equivalent to Newton optimization, would
result in the perfect preconditioning of the problem, however this is not applicable
to high-dimensional registration problems with statistical measures, since 𝐻𝐸D

becomes too full, and its processing impracticable. The Gauss-Newton method
can also be seen as a preconditioning approach with 𝑃 = 𝐽⊤𝐽 . However, for
statistical measures, the same problem remains. A standard simple alternative
for preconditioning is the so called Jacobi preconditioning [Saad, 2003], which
approximates the Hessian by its diagonal, i.e. 𝑃 = diag(𝐻𝐸D

). While this
approach is efficient to compute, in our experiments, it did not yield improved
results, presumably to the numerical issues involved in computing the second
order derivatives for statistical measures.

In this work, we propose a simple preconditioning scheme, which modifies
the magnitudes of ∇𝐸D(𝑥), such that they become possibly similar, please see
Figure 6.4 for an illustration. Point-wise, this can be achieved by defining the
action of the preconditioner 𝑃 as a multiplication of ∇𝐸D(𝜑)(𝑥) with a positive
scalar by

𝑃−1∇𝐸D(𝜑)(𝑥) =
1

‖∇𝐸D(𝜑)(𝑥)‖+ 𝜎
∇𝐸D(𝜑)(𝑥) . (6.5)

This corresponds to a diagonal, positive definite operator 𝑃 , with the 𝑑×𝑑 block
𝑃 |𝑥, corresponding to 𝑥 ∈ Ω defined by a constant diagonal

𝑃 |𝑥 = diag (‖∇𝐸D(𝜑)(𝑥)‖+ 𝜎) . (6.6)

Please note that in our context, the term point-wise refers to a specific point 𝑥
in the spatial domain Ω, and not one vector entry. Thus, the point-wise vector
∇𝐸D(𝑥) ∈ R𝑑 is a sub-vector of ∇𝐸D, assigned to spatial position 𝑥 ∈ Ω, and
not simply one entry of ∇𝐸D. Also, please note that 𝑃 varies with 𝜑.

While P being positive establishes the formal requirements for a proper
gradient descent, it has not yet been shown that the application of 𝑃 will actually
improve the condition of 𝐸D. We will demonstrate this property theoretically
by the analysis in Section 6.3, and confirm it by experiments in Section 6.4.

6.2.1 Application to the Demons Framework

Due to its efficiency and simplicity of implementation, the demons method
[Thirion, 1998] has become a popular choice in numerous applications. We
consider a general demons framework which computes the transformation 𝜑 =
Id + 𝑢 by

𝑓 = compute force(𝐸D ) (6.7)

𝑔 = 𝜏𝛾 𝐺𝜎fl
* 𝑓 (6.8)

𝑢𝑖+1 = 𝐺𝜎el(𝜏,𝜆) * (𝑢𝑖 ∘ (Id + 𝑔)) . (6.9)

Our focus is on the computation of the force term in (6.7). In the original
approach this was performed by

𝑓 =
1

(𝐼T − 𝐼S(𝜑))2 + ‖∇𝐼S(𝜑)‖2
(𝐼T − 𝐼S(𝜑))∇𝐼S(𝜑)⏟  ⏞  

=−∇𝐸SSD(𝜑)

, (6.10)
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which can be seen as a modification of the gradient of the SSD. It was demon-
strated that (6.10) corresponds to a step of a Newton-type optimization scheme
on the SSD [Pennec et al., 1999]. Most current approaches which extend the
demons framework to other difference measures compute the forces by employing
the steepest descent scheme [Chefd’hotel et al., 2002,Guimond et al., 2002], that
is

𝑓 = −∇𝐸D(𝜑) . (6.11)

The only exception to this approach known to us is [Modat et al., 2010], where
the forces are based on the NL-CG method. However, as also discussed in [Modat
et al., 2010], there is no theoretical justification for using the NL-CG method for
force computation in the demons setting.

In this work, we consider the computation of the demons forces based on a
preconditioned gradient descent by

𝑓 = −𝑃−1∇𝐸D(𝜑) , (6.12)

with the operator 𝑃−1 as discussed in Eq. (6.5).
It is interesting to note that in the case of SSD, the proposed scheme from (6.5)

approximates the original demons force in (6.10), since for small displacements,
we have |𝐼T − 𝐼S(𝜑)| ≈ ‖∇𝐼S(𝜑)‖, and

‖∇𝐸SSD(𝜑(𝑥))‖ = ‖ (𝐼T − 𝐼S(𝜑))∇𝐼S(𝜑)‖ (6.13)

≈ 1

2
(𝐼T − 𝐼S(𝜑))2 +

1

2
‖∇𝐼S(𝜑)‖2 (6.14)

Thus our approach can be seen as a natural and generalization of the original
demons to arbitrary difference measures.

6.2.2 Application to Variational and Parametric Approaches

For classic variational methods (cf. Ch. 2), a preconditioned gradient descent
approach can be employed for the energy 𝐸 from (6.1) by incrementally updating
𝜑 by

𝑣 = −𝐾−1∇𝐸(𝜑) , (6.15)

where 𝐾 is a symmetric positive definite operator, which should present a
numerically favorable approximation to 𝐻𝐸 . Since 𝐸 = 𝜇𝐸D + 𝜆𝐸R, we have to
approximate 𝐻𝐸 = 𝜇𝐻𝐸D

+𝜆𝐻𝐸R
. While the difference terms 𝐸D are non-linear,

most regularization terms are of the quadratic form 𝐸R = 1/2⟨𝐴R𝑢, 𝑢⟩, with
the corresponding Hessian being 𝐻𝐸R

=𝐴𝑅. Thus, for these cases, we have to
estimate only the preconditioning term 𝑃 ≈ 𝐻𝐸D

for the difference measure for
the scheme from (6.15), and we get

𝑣 = −(𝜇𝑃 + 𝜆𝐴𝑅)
−1∇𝐸(𝜑) . (6.16)

Also, the application of the preconditioning to parametric approaches with
linear transformations models (as described in Ch. 5) is straight forward.
By employing the fact that the energy derivative for the parametrized model
corresponds to the projection of the dense derivative onto the respective basis
functions (cf. Eq. (5.6)), we can simply incorporate the preconditioning by
projecting (6.16) onto the bases 𝐵 in question, that is by[︀

(𝜇𝑃 + 𝜆𝐴𝑅)
−1∇𝐸(𝜑)

]︀⊤
𝐵 . (6.17)
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6.2.3 Application to Registration in Groups of Diffeomor-
phisms

In [Zikic et al., 2010a], we have discussed a generalization of approaches for
registration in groups of diffeomorphisms, which allows us to incorporate the
proposed preconditioning into this setting in terms of a Riemannian metric.

Approaches for registration in groups of diffeomorphisms (cf. Sec. 3.2)
are based on computing the derivatives of the energy in the tangent space to
the manifold of diffeomorphisms, at the current deformation estimate. Since
the corresponding tangent spaces are Sobolev spaces, the derivative has to be
computed with respect to the employed Sobolev space H. This computation of
the so called Sobolev gradient [Neuberger, 1997] is based on the definition of the
Riemannian metric tensor 𝐿*𝐿 in the respective space, and can be performed by
projection of the L2 gradient ∇𝐸 as

∇H𝐸 = (𝐿*𝐿)−1∇𝐸 . (6.18)

While previous approaches assumed that the metric tensor 𝐿*𝐿 is constant
during registration and only performs a smoothing [Trouvé, 1998,Dupuis et al.,
1998,Chefd’hotel et al., 2002,Beg et al., 2005], in [Zikic et al., 2010a], we make
use of the property of the Riemannian metric tensor, that 𝐿*𝐿 can very in the
manifold with 𝜑, and employ the tensor not only for smoothing but also to
additionally modify the descent direction. So, first, instead of using the standard
definition for the metric tensor for a Sobolev space H𝑘 [Chefd’hotel, 2005],

𝐿*𝐿 =

𝑘∑︁
𝑖=0

(−1)𝑖∇𝑖⊤𝛼𝑖∇𝑖 , (6.19)

we replace the constant scalars 𝛼𝑖 by a potentially variable metric tensors 𝑀𝑖,
by

𝐿*𝐿𝜑 =

𝑘∑︁
𝑖=0

(−1)𝑖∇𝑖⊤𝑀𝑖(𝜑)∇𝑖 . (6.20)

With 𝑀𝑖 restricted to positive definite operators, this modification does not
change the class of functions contained in the Sobolev space. This way, we can
incorporate the proposed preconditioning by setting 𝑀0(𝜑) = 𝑃 , while for the
original approach we had 𝛼0Id for 𝑖 = 0. This modification allows us to modify
the descent direction additionally to performing the smoothing, which in both
approaches is done by the terms corresponding to 𝑖 > 0. Due to the form of
𝑃 , the change of the descent direction results in faster convergence. In [Zikic
et al., 2010a], we actually use a slightly different implementation of (6.6), which
however has the same normalizing effect. For the integration on the manifold,
we applied the small displacement scheme from [Chefd’hotel et al., 2002].

In summary, our idea in this approach is to modify the metric of the underlying
manifold by incorporating the preconditioning term into the definition of the
metric, so that the registration process converges more quickly. We present a
summary of the results of this approach in Section 6.4.2. For more details, please
refer to [Zikic et al., 2010a].
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(a) Ill-conditioned energy (b) Well-conditioned energy

Figure 6.5: Illustration of the model for evaluating the condition of the op-
timization problem. The condition is described by the maximal variation of
⟨∇𝐸D(𝜙𝑖), 𝑣𝑖⟩, cf. Eq. (6.22) and (6.23). For registration, the directions 𝑣
correspond to displacement fields, and 𝜖𝑣 represent permissible small warpings
of the source image about the optimal deformation, compare also Fig. 6.6.

6.3 Analysis of the Preconditioning Scheme

In this section, we perform a theoretical analysis of the proposed preconditioning
scheme, which demonstrates that its application actually improves the condition
in comparison to the original problem. The analysis is performed as follows. First,
we define the model for the analysis of the condition, which operates by measuring
the variation of the energy about the optimum, and is based on the energy
gradients (Sec. 6.3.1). Second, for optimization of difference measures, which is
an under-constrained problem for high-dimensional deformable registration, the
analysis has to be restricted to permissible, meaningful directions (Sec. 6.3.2).
We also restrict the class of preconditioning operators to those which perform a
point-wise rescaling of the gradient. Finally, we perform the condition analysis for
a restricted optimization of difference measures in deformable registration (Sec.
6.3.3). By demonstrating that our scheme approximates the optimal improvement
of the condition for the analyzed model (comprising the restrictions, assumptions
and approximations made by the model), we hope to show that the proposed
scheme improves the condition of the original problem.

6.3.1 Model for Condition Analysis

The condition of an optimization problem can be intuitively seen as the descrip-
tion of the geometry of the energy function about the optimum. The reasoning
about the condition is based on the assumption that the quadratic approximation
of the energy is valid. For non-quadratic energies, this implies the restriction
to the vicinity of the optimum, in which the quadratic Taylor approximation is
sufficient.

The condition 𝜅(𝐸) for the energy 𝐸 is usually defined as the ratio of the
largest and smallest eigenvalues of the Hessian at the optimum 𝜑′. For the
perfect condition, we have 𝜅(𝐸) = 1, which represents a spherical energy, for
which the gradients at all points point toward the optimum.

In order to show that the proposed scheme improves convergence for all image-
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based difference measures, we stray from the standard analysis and propose to
use an alternative model for describing the condition. We introduce this model
in the following.

A well-conditioned energy function has a possibly spherical shape. We employ
this intuition to develop the following model. For a critical point 𝜑′, the perfectly
conditioned problem can be formalized by

𝐸D(𝜑
′ + 𝑣𝑖) = 𝐸D(𝜑

′ + 𝑣𝑗) , (6.21)

where the energy is varied in all possible directions 𝑣 with a fixed length ‖𝑣‖ = 𝑟.
Intuitively, the model states that for a perfectly conditioned problem, the change
of energy about the optimum 𝜑′ should depend only on the distance to 𝜑′ and
not the probing direction 𝑣.

In order to tie the above condition to the gradient of the function, we will
employ the following form

⟨∇𝐸D(𝜑
′ + 𝑣), 𝑣⟩ , (6.22)

which describes a spherical function if (6.22) is constant for all directions 𝑣
with a fixed length ‖𝑣‖ = 𝑟. For a visualization, please see Figure 6.5. Also,
please note that if 𝑣 is sufficiently small (which we assume for condition analysis
anyhow), then (6.22) can be seen as an approximation to the first-order Taylor
approximation of (6.21).

Note that the form from (6.22) is a sufficient condition for a spherical energy,
since we request that it holds for all appropriate 𝑣. To illustrate this, let us
consider the energy 𝐸D = 𝜑⊤𝐻𝐸D

𝜑, and as 𝑣 the rescaled eigenvectors of 𝐻𝐸D
.

If 𝐻𝐸D
is not spherical, then certain eigenvalues of 𝐻𝐸D

will differ, and for the
corresponding eigenvectors, the values of (6.22) will also be different. This shows
that if 𝐸D is quadratic, and (6.22) holds for all 𝑣 with ‖𝑣‖ = 𝑟, then 𝐸D is
spherical and thus perfectly conditioned.

If the energy is not perfectly conditioned, then the term in (6.22) is not equal
for all possible directions 𝑣, e.g. for the eigenvectors of 𝐻𝐸D

. Therefore, we
measure the quality of the shape of 𝐸D by the variation of the values of (6.22)
for all possible directions 𝑣, which is bounded by

̃︀𝜅(𝐸D) =
max𝑣 ⟨∇𝐸D(𝜑

′ + 𝑣), 𝑣⟩
min𝑣 ⟨∇𝐸D(𝜑′ + 𝑣), 𝑣⟩

. (6.23)

We employ ̃︀𝜅 as our model of the condition of the problem. A high ̃︀𝜅 corresponds
to high variation of (6.22) and describes an ill-conditioned problem, while a
perfectly conditioned function yields ̃︀𝜅 = 1.

Our goal will be to determine a preconditioner 𝑃 , which minimizes or at
least reduces the value of

̃︀𝜅𝑃 (𝐸D) =
max𝑣

⟨︀
𝑃−1∇𝐸D(𝜑

′ + 𝑣), 𝑣
⟩︀

min𝑣 ⟨𝑃−1∇𝐸D(𝜑′ + 𝑣), 𝑣⟩
, (6.24)

compared to the original problem, that is to no preconditioning, i.e. 𝑃 = Id.

6.3.2 Restriction of Analysis to Permissible Directions

For optimization of difference measures in deformable registration, we have to
restrict the set of allowed directions 𝑣, since in general, the optimization of the
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(a) valid direction (b) valid direction (c) invalid direction (d) invalid direction

Figure 6.6: Illustration of the restriction to permissible test directions for
condition analysis. Directions 𝑣 are represented by displacements, superimposed
onto the source image warped by a scaling transformation. (a) represents
direction corresponding to the original gradient ∇𝐼S, and (b) illustrates a
general valid field, obtained by point-wise multiplication of ∇𝐼S(𝑥) by 𝛼(𝑥)≥0.
(c) is invalid since its application results in no change of energy. (d) is invalid
as the point-wise vectors ∇𝐼S(𝑥) are re-oriented, thus containing a component
along the image level set lines, which does not change the energy.

unregularized difference measure subject to a high-dimensional deformation is
an under-constrained problem, and the condition is infinitely bad per definition.
However, we are interested in improving the condition along the constrained
dimensions of the problem.

The optimization of a difference measure is under-constrained since not all
deformations result in changes of the energy. For example, this is the case for
deformations in homogeneous image areas or along the level set lines of the
source image. Therefore, we exclude such under-constrained directions from the
analysis, and focus on deformations which do not contain any under-constrained
components. Such “pure” displacements 𝑣 are characterized by being point-
wise parallel to the corresponding intensity gradient of the source image, i.e.
𝑣(𝑥) ‖ ∇𝐼S(𝑥). It is important to note that - with the assumption of group
structure for deformations - the original energy gradient has the above permissible
structure through ∇𝐸D(𝜑)(𝑥) = 𝜔D(𝑥)∇(𝐼S ∘ 𝜑)(𝑥), cf. e.g. [Chefd’hotel et al.,
2002]. For an illustration of the permissible directions, please see Figure 6.6.

Following the above argument, we will restrict the directions 𝑣, in a way
which is a necessary condition for an actual change in the energy. This can
be done by assuring that the point-wise directions 𝑣(𝑥) are aligned with the
point-wise gradient of the source image ∇𝐼S(𝜑′)(𝑥).

𝑣(𝑥) = �̃�(𝑥)∇𝐼S(𝜑′)(𝑥) = 𝛼(𝑥)
∇𝐼S(𝜑′)(𝑥)
‖∇𝐼S(𝜑′)(𝑥)‖

, (6.25)

with 𝛼 : Ω→ R. We define the spatial subset Ω′ = {𝑥 ∈ Ω : ‖∇𝐼S(𝜑)(𝑥)‖ ≠ 0},
and set

𝛼(𝑥) ≥ 0 for 𝑥 ∈ Ω′ (6.26)

𝛼(𝑥) = 0 for 𝑥 ∈ Ω ∖ Ω′ . (6.27)

Scaling by 𝛼 instead of �̃� in (6.25) will facilitate the further analysis. Please
note that, given ∇𝐼S(𝜑′), the directions 𝑣 are completely determined by the
choice of 𝛼.
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In order to restrict the directional vectors 𝑣 to a sphere, such that (6.25)
complies with (6.22), 𝛼 has to be chosen such that ‖𝑣‖ = 𝑟, which gives the
following condition

𝑟2 = ‖𝑣‖2 =
∑︁
𝑥∈Ω′

𝛼(𝑥)2 . (6.28)

It is important to note that the choice of 𝛼 is not unique, and we define the set
of all permissible 𝛼 values as 𝐴. Also, due to the construction in (6.25), 𝐴 is
only dependent on |Ω′|, i.e. the number of non-zero point-wise vectors ∇𝐼S(𝑥),
and not their actual magnitudes or directions.

For the analysis we will employ the directions 𝑣 as defined in (6.25), and
substitute these to the criterion (6.22). Thus, we have to employ the test
deformations 𝜙 with

𝜙 = 𝜑′ + 𝑣 . (6.29)

with 𝑣 and 𝛼 as defined in (6.25) and (6.28).

Also, we restrict the class of preconditioners 𝑃 , such that 𝑃−1∇𝐸D is per-
missible in the above sense. This is achieved by restricting 𝑃 to a point-wise
multiplication, such that

[𝑃−1∇𝐸D](𝑥) = 𝑝(𝑥)−1∇𝐸D(𝑥) , (6.30)

with 𝑝 ∈ R and 𝑝 > 0. Our scheme from (6.5) falls within this class with

𝑝(𝑥)−1 =
1

‖∇𝐸D(𝜑(𝑥))‖+ 𝜎
. (6.31)

It is important to point out that due to this restriction we analyze only precon-
ditioning terms which perform a point-wise multiplication.

6.3.3 Condition Analysis of Difference Measures

Finally, we argue that the proposed scheme actually improves the condition
of the problem, by showing that the proposed 𝑃 reduces the value of (6.24),
compared to the original, un-preconditioned problem (i.e. 𝑃 = Id). Please
note that this result implies that the condition of the original problem was not
optimal to start with.

For the shape of a preconditioned difference measure, we find by applying a
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preconditioned version of (6.22) to directions from (6.25) that

⟨︀
𝑃−1∇𝐸D(𝜙), 𝑣

⟩︀
=
∑︁
𝑥∈Ω′

⟨
𝑃−1∇𝐸D(𝜙), 𝛼

∇𝐼S(𝜑′)
‖∇𝐼S(𝜑′)‖

⟩
(6.32)

=
∑︁
𝑥∈Ω′

⟨
𝑝−1𝜔D(𝜙)∇𝐼S(𝜙), 𝛼

∇𝐼S(𝜑′)
‖∇𝐼S(𝜑′)‖

⟩
(6.33)

=
∑︁
𝑥∈Ω′

𝑝−1𝛼𝜔D(𝜙)

⟨
∇𝐼S(𝜙),

∇𝐼S(𝜑′)
‖∇𝐼S(𝜑′)‖

⟩
(6.34)

≈
∑︁
𝑥∈Ω′

𝑝−1𝛼𝜔D(𝜙)

⟨
∇𝐼S(𝜙),

∇𝐼S(𝜙)
‖∇𝐼S(𝜙)‖

⟩
(6.35)

=
∑︁
𝑥∈Ω′

𝑝−1𝛼𝜔D(𝜙)
‖∇𝐼S(𝜙)‖2

‖∇𝐼S(𝜙)‖
(6.36)

=
∑︁
𝑥∈Ω′

𝑝−1𝛼𝜔D(𝜙)‖∇𝐼S(𝜙)‖ (6.37)

=
∑︁
𝑥∈Ω′

𝑝−1𝛼‖𝜔D(𝜙)∇𝐼S(𝜙)‖ (6.38)

=
∑︁
𝑥∈Ω′

𝑝−1𝛼‖∇𝐸D(𝜙)‖ . (6.39)

In the above we omit the spatial point 𝑥 as an argument from 𝛼(𝑥), 𝜔D(𝑥),
𝑝(𝑥)−1 and ∇𝐸D(𝑥) on the right-hand side for space reasons. The step to (6.35)
is based on the assumption that the displacement 𝑣 is sufficiently small, which
was already required for the standard assumption of condition analysis. For
Eq. (6.38), we assume that 𝜔D(𝑥) ≥ 0 with the following argument. Since 𝑣 is
leading away from the optimum, we know that it must result in an increase of
the energy 𝐸D. For small 𝑣, the linear approximation of 𝐸D is dominating, and
for ‖𝑣‖ → 𝜖 ≈ 0, the following should hold

⟨∇𝐸D(𝜑
′ + 𝑣), 𝑣⟩ = ⟨∇𝐸D(𝜑

′ + 𝑣), �̃�(𝜑′)∇𝐼S(𝜑′)⟩ > 0 . (6.40)

Because of ‖𝑣‖ → 𝜖, also the following approximation should hold

⟨∇𝐸D(𝜑
′ + 𝑣), �̃�(𝜑′ + 𝑣)∇𝐼S(𝜑′ + 𝑣)⟩ > 0 . (6.41)

By expanding ∇𝐸D = 𝜔D∇𝐼S, we get

⟨𝜔D(𝜑
′ + 𝑣)∇𝐼S(𝜑′ + 𝑣), �̃�(𝜑′ + 𝑣)∇𝐼S(𝜑′ + 𝑣)⟩ > 0 . (6.42)

In order to guarantee (6.41) for all ∇𝐼S, and all �̃�, we have to request that

⟨𝜔D(𝑥)∇𝐼S(𝑥), �̃�(𝑥)∇𝐼S(𝑥)⟩ > 0 , (6.43)

with all quantities above evaluated at 𝜑′ + 𝑣 and with ‖𝑣‖ → 𝜖. Since we defined
that �̃�(𝑥) ≥ 0 in (6.26), in order for (6.43) to hold, it is necessary that 𝜔D(𝑥) ≥ 0.

By inserting (6.39) into the condition model from (6.24), we obtain

̃︀𝜅𝑃 (𝐸D) =
max𝛼

∑︀
𝑥∈Ω′ 𝛼(𝑥)‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖

min𝛼
∑︀

𝑥∈Ω′ 𝛼(𝑥)‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖
. (6.44)
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The above expression can be simplified. For the maximization problem in the
numerator in (6.44), we find that

max
𝛼

∑︁
𝑥∈Ω′

𝛼(𝑥)‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖ =
√︃∑︁

𝑥∈Ω′

‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖2 (6.45)

by treating the constrained maximization problem by Lagrange multipliers
(please see Appendix 6.A for details.). Furthermore, the minimization sub-
problem from the denominator of (6.44) boils down to the minimal value of
‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖, since the minimum of a positive linear combination of
positive values is equal to the smallest of these values.

In summary, we get that the optimal value of (6.44) equals

̃︀𝜅𝑃 (𝐸D) =

√︀∑︀
𝑥∈Ω′ ‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖2

min𝑥∈Ω′ ‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖
. (6.46)

Note that (6.46) is independent of 𝛼 or overall scaling of ∇𝐸D. The mini-
mum of (6.46), and thus the optimal condition, is obtained if the magnitudes
of all non-zero point-wise entries are equal: Assuming a constant value for
‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖, for all 𝑥∈Ω′, an increase of ‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖ for any
𝑥 ∈ Ω′ will increase the numerator of (6.46), while the denominator remains
unchanged.

Please note that the constant value of ‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖ for all 𝑥 ∈ Ω′

corresponds to a gradient field obtained by the proposed preconditioning (6.5)
for 𝜎→0. On the other hand, for 𝜎→∞, we arrive at the original energy shape
(i.e. 𝑃 = Id), please compare also Figure 6.7. This shows that for finite values of
𝜎, the proposed scheme improves the condition of the original problem, and for
𝜎→0 it actually approximates the optimal case for the examined model. More
specifically, this shows that for our model two things hold:

∙ the proposed preconditioning improves the condition for any image-based
difference measure

∙ Among all strategies which perform a rescaling of the point-wise gradient
vectors ∇𝐸D(𝑥), our proposed strategy approximates the optimal scheme
for the analyzed model with 𝜎 → 0.

Of the two statements, we are more interested in the first one, since our goal was
to demonstrate the improvement of convergence with our approach. Regarding
the claim about the approximation to the optimal strategy, it is important
to remember that this holds only for our restricted model involving all the
approximations assumed, and therefore cannot be expected to translate to the
general setting. Still, since we consider the model assumptions to be reasonable,
we see the above result as a strong indication that a noticeable improvement of
convergence speed can be expected in real applications.

6.4 Evaluation

In the following, we present the evaluation of the proposed “egalitarian” precon-
ditioning scheme in two registration settings: for the demons method in Section
6.4.1, and for the registration in groups of diffeomorphisms in Section 6.4.2.

78



6.4 Evaluation

(a) Source Image
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(b) Convergence for different values of 𝜎

Figure 6.7: Influence of the value of 𝜎 parameter. Test run with MI, on a
synthetic 3D data set of the pattern as shown in (a). Small values of 𝜎 result
in a stronger preconditioning, and for large 𝜎, the proposed method behaves as
steepest descent.

6.4.1 Evaluation for the Demons Method

This section summarizes the evaluation of the application of the proposed
preconditioning in the demons framework, as presented in [Zikic et al., 2011]. We
first provide an example of the influence of the 𝜎 parameter in Section 6.4.1.1,
and then evaluate the fluid and elastic demons versions on 3D brain data in
Section 6.4.1.2.

6.4.1.1 Influence of the 𝜎 Parameter

The performance of the proposed method depends on the setting of the 𝜎
parameter from Eq. (6.5). For large values of 𝜎, the preconditioning effect
disappears, and the proposed method behaves as SGD. On real data, too low
values of 𝜎 will enhance noise, which will lead to inrobust performance. To
visualize the effect of the 𝜎 parameter in a multi-modal setting, we perform a
test with MI, on a synthetic 3D data set, with the source image 𝐼S shown in
Figure 6.7(a). The corresponding target image was set to 𝐼T = 1 − 𝐼S ∘ 𝜑GT,
and the ground truth 𝜑GT was generated by a B-Spline FFD. Figure 6.7(b)
shows the increasing preconditioning effect for decreasing values of 𝜎. In all our
experiments, the 𝜎 value is given relative to max𝑥 ‖∇𝐸D1(𝑥)‖ in first iteration
by stating 𝜎′, s.t. 𝜎 = 𝜎′ max𝑥 ‖∇𝐸D1(𝑥)‖. The actual choice of 𝜎 depends on
the used difference measure, the level of noise in the input images, and the chosen
amount of regularization. From our experience, smaller 𝜎 values are suited for:
(1) SSD rather than MI (probable reason: approximations in implementation of
MI introduce “noise”); (2) images from same rather than different modalities;
(3) strong regularization, which effectively counteracts noise.

6.4.1.2 Tests on Brain Images

We test on simulated 3D MRI brain images (T1,T2,PD) from the BrainWeb
project [Cocosco et al., 1997], with noise-level of 3%, intensity non-uniformity of
20%, and element spacing of 1mm/vx. We perform the 6 possible registrations
between the different modalities with different algorithm settings.

The target image is created by applying a ground truth displacement 𝑢GT
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Figure 6.8: Fluid Demons. Comparison of proposed method (PC) and steepest
descent (SGD) for fluid demons. As in all following figures, we show the
convergence plot measuring the development of the mean end-point error in
[mm] over iterations.

to one of the input images. The quality of the results is assessed by the mean
end-point error in the region of interest ΩM (the head), measured in millimeters.

The ground truth fields are generated in two steps. This two step approach is
performed to generate random deformations, which do not have high-frequency
displacements in homogeneous areas, which can not be recovered accurately by
any method known to us, and can overshadow the results of the evaluation. While
seemingly complex, such an approach is commonly used, cf. e.g. [Modat et al.,
2010]. First, a combination of cubic B-spline FFDs with different resolutions is
created. This field is used to warp the one of images, and then, a registration
with the DROP software [Glocker et al., 2008a] is performed. The resulting
deformation is employed as the ground truth field in the experiments. The second
step produces deformation fields which are mostly smooth in homogeneous image
regions, and thus reduces the amount of this regularization-related error in the
experiments. We employ DROP since it is based on gradient-free optimization
and thus can be expected to be less affected by the condition of difference
measures.

The implementation of the MI follows [Hermosillo et al., 2002] with chosen
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(b) PD-T2
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(c) T1-PD
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(d) T1-T2
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(e) T2-PD
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Figure 6.9: Elastic Demons #1 (Small Displacement Setting). Compari-
son of proposed method (PC) and steepest descent (SGD) for elastic demons
with point-wise updates limited to 1mm. This setting is relevant for demons
approaches require small updates to generate diffeomorphisms.

histogram size of 40 and the standard deviation of 0.1 for the Parzen windowing.
The tests are performed on two levels to simulate a realistic application setting.

As for 𝜎, the difference weight 𝛾 is defined as 𝛾 = 𝛾′/max ‖∇𝐸D1(𝑥)‖ by
setting 𝛾′. This facilitates the use of different energy measures. We perform no
explicit step size search. The only modification of the step size 𝜏 is performed if
the maximal update exceeds a certain given value 𝜇. Then, 𝜏 is modified, s.t.
max ‖𝑓(𝑥)‖ = 𝜇.

Fluid Demons. The first test is performed with fluid demons. For the coarse
and fine level, the settings are 𝜎fl=4, 4[mm], 𝛾′=1, 2, 𝜏=1, 1, 𝜇=1, 1[mm]. For
the proposed method, we set 𝜎′=0.1, 0.1. The results of the test are summarized
in Figure 6.8.

Elastic Demons #1. (Small Displacement Setting) The first test with
elastic demons is performed with limited update steps, with the limits 𝜇 =
1, 1[mm]. This approach is of particular interest, as several demons approaches
require small updates in order to generate diffeomorphisms, cf. e.g. [Chefd’hotel
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(b) PD-T2
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(c) T1-PD
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(d) T1-T2

10 20 30 40 50 60 70 80 90 100

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 

 

SGD
PC

(e) T2-PD
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Figure 6.10: Elastic Demons #2. Comparison of proposed method (PC) and
steepest descent (SGD) for elastic demons. Point-wise updates are uncontrolled
for PC (however, always smaller than 3mm), and for SGD had to be limited 10
and 2mm on the coarser and finer level respectively, to avoid divergence.

et al., 2002,Vercauteren et al., 2008], and the proposed method could thus yield
a faster convergence for these approaches. The remaining parameters were:
𝜎fl=2, 2[mm], 𝜎el=1.4, 0.7[mm], 𝛾′=1, 2, 𝜏=1, 1. For the proposed method, we
set 𝜎′=0.4, 0.4. The results are given in Figure 6.9.

Elastic Demons #2. The steepest descent method can yield significantly
better results if larger updates are allowed. In this case, the result is improved
since the majority of updates are assigned larger and more meaningful values,
however, the maximal updates become too large and lead to local oscillations,
which results in divergence.

In this experiment, the proposed method (PC) did not have to be limited,
and the maximal occurring updates were always below 3 mm. For SGD, a limit
of 10 and 2 mm had to be imposed for the coarse and the fine level, to avoid
divergent behavior on several data sets. The remaining joint parameters were:
𝜎fl=2, 2[mm], 𝜎el=1.4, 0.7[mm], 𝜏 =1, 1. For SGD, we had 𝛾′=2, 1.3, and for
PC we used 𝜎′=0.4, 0.4, and 𝛾′=1.5, 1.3. See Figure 6.10 for the results.
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Discussion. The results show that in general, the proposed method requires
a smaller number of iterations to reach the same level of error as SGD. We
observe this improvement in convergence speed in almost all tests, compared to a
carefully tuned SGD method. Please note that we use the same preconditioning
parameter 𝜎′=0.1 in all fluid tests, and 𝜎′=0.4 in all elastic tests.

With respect to the actual computation time, the proposed scheme introduces
only a minimal overhead. As an example, for the fluid demons test (cf. Fig 6.8),
SGD takes 114 sec, compared to 116 sec for the PC version (C++ implementation,
CPU: Intel R○CoreTM2 Duo P8700 2.53GHz, RAM: 4GB). For elastic demons,
which features an additional costly smoothing step, the difference in runtime is
even less prominent.

The effect of the preconditioning depends mostly on the distribution of
gradient magnitudes and is more prominent for images with multiple distinct
clusters of gradient magnitudes (CGM). For example, in Figure 6.7, 𝐼S has two
CGMs: one with weaker gradients between most blocks, and one with stronger
gradients resulting from the high-contrast horizontal line. Without the “stronger”
CGM, the preconditioning influence would be less prominent. Consequently, the
effect for real data also depends on its CGMs. We included all results to show
that in some cases the effect can be limited - e.g. for the combination of T1
and PD. Our statement is that our simple technique performs at least as well as
SGD in general, and better in most cases, without requiring tedious tuning.

The results for SGD are better in Figure 6.10 than in Figure 6.9 due to an
extreme tuning of the step sizes. These are on the limit of the robust behavior
for SGD and reaching such performance requires manual tuning for each data
set. Our approach reaches its result with more conservative settings.

A further interesting observation is that the performance of our method
seems to be less dependent on attribution of image modality to source or target:
e.g. the results of PD-T1 and T1-PD should lead to same errors (Figure 6.9:
a,b). This is not too surprising, since for SGD, the process depends heavily on
𝐼S through ∇𝐸D(𝑥) = 𝜔D(𝑥)∇𝐼S(𝑥) (cf. Sec. 6.1.2), and thus on the choice of
𝐼S. In our approach this dependence is strongly reduced by the preconditioning.

6.4.2 Evaluation for Registration in Groups of Diffeomor-
phisms

In the following we summarize our evaluation of the application of the proposed
preconditioning for registration in groups of diffeomorphisms as presented in [Zikic
et al., 2010a].

We compare the standard and the proposed approach for theH1 Sobolev space.
Specifically, for the original approach, the update is based on the gradient as

−𝜏(Id− 𝛼Δ)−1∇𝐸(𝜑) , (6.47)

while the generalized Sobolev flow employs the preconditioning term 𝑃 , and is
based on

−𝜏(𝑃 (𝜑)− 𝛼Δ)−1∇𝐸(𝜑) . (6.48)

We employ regularization energy as a regularization term. To remain of the
manifold of diffeomorphisms, we employ the composition of small updates as
the integration method, as discussed in [Chefd’hotel et al., 2002]. Please note
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Figure 6.11: Random convergence study in a mono-modal setting with SSD.
Results in (e) are the mean of 100 trials, w.r.t. computation time. Displacements
in (b)-(d) are color-coded, c.f. (a). The proposed method clearly outperforms
the standard H1 flow in terms in speed.
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Figure 6.12: Random study in a multi-modal setting, using MI, demonstrates
applicability to statistical similarity measures. (b)-(e) depict entities from
one trial. Again, the proposed scheme exhibits faster convergence speed, and
improved runtime.

that in [Zikic et al., 2010a], we actually use a slightly different implementation
of (6.6), which however has the same normalizing effect.

We perform 2D random studies in a controlled environment with known
ground truth to demonstrate the improvement in convergence and precision,
which result from the proposed approach. Per study, we perform 100 trials in
each of which the source image is warped by a random ground truth deformation
𝜑𝐺𝑇 , generated by B-Spline FFDs, with maximal displacements of 5mm. Method
parameters (𝛼, 𝜏) for the standard H1 approach are carefully tuned for best
possible performance. We monitor the mean euclidean distance between 𝜑𝐺𝑇

and the estimated deformation (end-point error) in every iteration. A standard
multi-level scheme is employed.

The first study is performed on a CT image with SSD as similarity measure,
and the results are summarized in Figure 6.11.

We demonstrate the applicability of the proposed approach to statistical
similarity measures by a study with MI in a multi-modal scenario (Fig. 6.12).
To this end, we employ an MR-T2 image (from http://www.insight-journal.

org/RIRE/), with intensities rescaled to [0, 1] as 𝐼S, and register it to 𝐼S= ̃︀𝐼S∘𝜑GT

which includes a non-linear modification of intensities by ̃︀𝐼S(𝑥)=𝐼S(𝑥)·(1−𝐼S(𝑥)),
in order to simulate a multi-modal scenario.

We observe a clear improvement in terms of convergence speed and the
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6.5 Summary and Discussion

actual runtime for the proposed method. The effectively resulting accuracy is
also drastically improved, especially in low gradient regions. This is consistent
with our choice of the metric with 𝑀0 = 𝑃 . We observed the same behavior in
experiments for SAD and CC as similarity measures.

While the single iterations of the proposed method take longer than for the
standard H1 approach, due to the extreme improvement of convergence rate,
far less iterations are needed, which results in a significant reduction of the
overall runtime. For example, the results in Fig. 6.11 feature 30 iterations for
the proposed, and 550 for the standard H1 method.

It is important to note that the decrease of the energy is very similar for
both approaches. Based on the inspection of energy logs alone, the standard
method might be considered converged even if the actual error is still significant,
cf. Figures 6.11, 6.12. This premature convergence is a serious pitfall for real
applications in which the actual error cannot be measured.

6.5 Summary and Discussion

In this work, we present a simple and theoretically justified preconditioning
scheme for arbitrary difference measures in deformable registration.

Our approach is of particular interest for cases where other standard optimiza-
tion methods become too complex, or are not applicable. Important examples of
such scenarios are multi-modal registration problems with statistical difference
measures (e.g. MI) and high-dimensional deformation models, and especially
the multi-modal demons registration.

Our theoretical analysis demonstrates that the proposed scheme improves
the condition of the problem, and that it actually even approximates the optimal
case for the examined model. More specifically, we show that 1) point-wise
multiplication of ∇𝐸D(𝑥) can be seen as an important class of preconditioners
for deformable registration, and 2) that the strategy to normalize the point-wise
lengths ‖𝑝−1(𝑥)∇𝐸D(𝑥)‖ to the same value is optimal for this class. Our actual
strategy is only an approximation to this optimal case, since it performs a
damped normalization, which makes the process robust to noise.

Due to its simplicity, our scheme is not only easy to implement for any
difference measure, but its application also has only a negligible computational
overhead, such that the improvement in convergence speed is directly transfered
to an improvement of runtime. The fact that the proposed method does not
require any information from previous iteration steps makes it particularly suited
for demons registration - this is in contrast to NL-CG or L-BFGS.

The performed experiments show an improvement of the convergence speed,
and actual runtime, compared to steepest-descent-based schemes, which are
currently the standard approach for the addressed scenarios.

Regarding future work, the proposed scheme constitutes the framework which
can be adapted to specific settings. We see an interesting opportunity to perform
this task by employing a more generalized term for the 𝜎 parameter. In our
work, we used a constant 𝜎 in the complete image domain and mostly focused
on its role to counteract noise. This was done since our primary goal was the
development of the overall framework. However, it is probably more appropriate
to use 𝜎 to express the overall confidence about the update at a certain point
(noise is simply one special characteristic influencing confidence). It is possible
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to generalize 𝜎 by making it spatially varying, and furthermore it might be
possible to learn an a priori 𝜎 for specific settings. This approach would go in
the direction of our original work in [Zikic et al., 2006b], where the confidence
about an update was estimated from is local neighbourhood.
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6.A Appendix: Derivation of Optimal Model
Energy with Lagrange Multipliers

With 𝑒𝑖 = ‖𝑝(𝑥𝑖)−1∇𝐸D(𝑥𝑖)‖, and 𝛼𝑖 = 𝛼(𝑥𝑖), for 𝑥𝑖 ∈ Ω′, the term from (6.45)
can be written as

max
𝛼

𝑁∑︁
𝑖=1

𝑒𝑖𝛼𝑖 with 1 =

𝑁∑︁
𝑖=1

𝛼2
𝑖 (6.49)

We apply the method of Lagrange Multipliers to (6.49), which corresponds
to solving 0 = ∇𝐿 with

𝐿(𝛼, 𝜆) =

𝑁∑︁
𝑖=1

𝑒𝑖𝛼𝑖 + 𝜆

(︃
1−

𝑁∑︁
𝑖=1

𝛼2
𝑖

)︃
(6.50)

By taking the derivative w.r.t. the parameters, we get that 0 = ∇𝐿 corresponds
to

0 = 𝑒𝑖 − 2𝜆𝛼𝑖 (6.51)

and

0 = 1−
𝑁∑︁
𝑖=1

𝛼2
𝑖 (6.52)

Substituting 𝛼𝑖 = 1/(2𝜆)𝑒𝑖 (from (6.51)) to (6.52), we get

𝜆 = ±1

2

√︃∑︁
𝑖

𝑒2𝑖 (6.53)

Substituting (6.53) back to 𝛼𝑖 = 1/(2𝜆)𝑒𝑖, and with the requirement that 𝛼 ≥ 0
from (6.26), we get

𝛼𝑖 =
𝑒𝑖√︀∑︀

𝑖 𝑒
2
𝑖

(6.54)

Now, we can substitute (6.54) to the original maximization of energy from (6.49),
and see that the value does not depend on 𝛼. So, we get

max
𝛼

∑︁
𝑖

𝑒𝑖𝛼𝑖 =
∑︁
𝑖

𝑒𝑖
𝑒𝑖√︀∑︀
𝑘 𝑒

2
𝑘

(6.55)

=
1√︀∑︀
𝑘 𝑒

2
𝑘

∑︁
𝑖

𝑒2𝑖 (6.56)

=
‖𝑒‖2

‖𝑒‖
(6.57)

= ‖𝑒‖ (6.58)

By inserting the original definition 𝑒𝑖 = ‖𝑝(𝑥𝑖)−1∇𝐸D(𝑥𝑖)‖, we get for the
expression from (6.45)

max
𝛼

∑︁
𝑖

𝑒𝑖𝛼𝑖 = ‖𝑒‖ =
√︃ ∑︁

𝑖:𝑥𝑖∈Ω′

𝑒2𝑖 =

√︃∑︁
𝑥∈Ω′

‖𝑝(𝑥)−1∇𝐸D(𝜙)(𝑥)‖2 (6.59)
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Chapter 7

Deformable 2D-3D Registration†

Alignment of angiographic 3D scans to 2D projections is an important issue
for 3D depth perception and navigation during interventions. Currently, in a
setting where only one 2D projection is available, methods employing a rigid
transformation model present the state of the art for this problem. In this work,
we introduce a method capable of deformably registering 3D vessel structures to
a respective single projection of the scene. Our approach addresses the inherent
ill-posedness of the problem by incorporating a priori knowledge about the
vessel structures into the formulation. We minimize the distance between the
2D points and corresponding projected 3D points together with regularization
terms encoding the properties of length preservation of vessel structures and
smoothness of deformation. We demonstrate the performance and accuracy of
the proposed method by quantitative tests on synthetic examples as well as real
angiographic scenes.

7.1 Introduction

Angiographic imaging is a widely used technique for visualization of vessel
anatomy in diagnosis and treatment. During most abdominal catheterizations,
contrasted 2D projections from one view are acquired by a C-arm for catheter
guidance and treatment monitoring. A 3D angiographic scan such as Computed
Tomography Angiography (CTA) or Magnetic Resonance Angiography (MRA)
is usually acquired preoperatively to assess the region of interest and identify
possible complications for the treatment. This 2D/3D setting is sketched in
Figure 7.1. In clinical practice, the available 3D information is currently not
brought to the interventional room. In some interventions, 3D intraoperative
data is available from rotational angiography. This data set, however, is currently
not used for guidance or navigation, where 2D projections are favored since they
capture the temporal changes compared to a static 3D scan. Only guided by
images from one view, it is often very difficult for the physician to find a path
through the patient’s vessel system. This is mainly due to overlap of vessel
structures and breathing deformation.

†This chapter is based on the joint work with Martin Groher, with the related publications:
[Zikic et al., 2008b] and [Groher et al., 2009].
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Figure 7.1: Visualization of the 2D/3D C-arm/patient scenario. The 3D vas-
culature is to be deformably registered to the 2D projection image. The blue
line in the 2D Digitally Subtracted Angiogram (DSA) visualizes the projected
centerline of the rigidly registered 3D vasculature. This projection is visibly
deformed to the projection in the DSA due to breathing motion.

An accurate registration of 3D to 2D vasculature would allow for intraopera-
tive 3D roadmapping or catheter tip backprojection. With this 3D enhancement
of angiographic interventions, an increase in depth perception can be achieved
while the amount of injected contrast agent and radiation dose can be reduced.

In abdominal or thoracic regions that are subject to deformation, this regis-
tration cannot be established by a mere rigid or affine transformation model (for
an example, see Figure 7.9). Instead, it is necessary to create a 3D deformation
field that locally deforms the 3D vasculature such that its projection matches
the 2D vasculature.

For 3D-3D registration of vascular images, methods have been developed to
compute the deformation field from sparse correspondences that are determined
manually or through rigid pre-alignment [Aylward and Jomier, 2004,Charnoz
et al., 2005]. However, the computation of a dense 3D deformation field from
sparse 2D-3D feature correspondences is in general an ill-posed problem: The
displacement of a point along the projection ray cannot be computed without
additional constraints, compare Figures 7.2 and 7.3.

Currently, methods for 2D-3D alignment of vascular images use a rigid
transformation model discarding local motion. Such algorithms tend to be
robust against deformation changes of vessel structures but do not solve for these
deformations, leaving a considerable amount of misalignment, which can be, as
reported for e.g. liver, up to 3 cm [Rohlfing et al., 2004].

In order to overcome the shortcomings of the rigid approach, we propose
a method for computing a meaningful deformation of a 3D structure from a
single 2D projection. Our method combines the correspondence-based approach
and the ideas from intensity-based registration, where the registration problem
is defined as a minimization of an energy consisting of a difference measure
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(a) Input 3D image (b) Ground truth (c) Naive approach (d) Proposed method

Figure 7.2: Visualization of the method results on a simple synthetic example,
with the window-in-window presenting the 2D projection of the respective 3D
structure. (a) is the input 3D vessel graph to be deformed while (b) shows
a vessel graph, which was used to generate the input 2D projection image.
Hence, (b) presents the ground truth for the deformation of (a). The camera
is positioned on the right side of the images, such that the shape change in
ray direction is not observable from the 2D projection image. (c) With the
näıve approach using only the distance measure from a single projection, it is
not possible to recover the full 3D deformation since there are no constraints
along the projection rays. (d) Employing the length preservation and diffusion
regularization terms present additional constraints and thus allows for correct
deformation also in the direction along the projection rays.

and regularization terms, which incorporate the a priori knowledge about the
problem, see Figure 7.2.

The difference term used in our approach penalizes the distance between the
projection of 3D points from the input vasculature, represented as nodes of a
centerline graph, and the corresponding points from the 2D projection image
(Figure 7.4).

Minimizing only the difference term results in what we refer to as the Näıve
approach, which is not able of recovering the deformation in the projection
direction and thus can lead to unnatural results. In order to be able to compute
the 3D displacement, additionally to the difference, we employ a combination of
two regularization terms, which model assumptions about vessel structures and
thus yield more realistic deformations.

The first term describes the assumption that the length of vessels does not
change heavily inside the human body and penalizes large changes of the vessel
length. This term is important since it presents constraints in 3D space and
thus reduces the number of solutions for one node from infinitely many to two
solutions along the projection ray, if one of the neighbors is assumed fixed (Figure
7.3). Also, in our experiments the minimization of this term by steepest gradient
descent results in the nearest solution to the initial position of the respective
point. Figure 7.4 illustrates the idea of using the difference term together with
length preservation.

However, graphs that are extracted from real vessel structures can have
many nodes and large deformations. Here, the length preservation term has the
drawback that the behavior is too local. Although the length preservation itself
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Figure 7.3: Illustrates the reduction of admissible solutions for one node along
the projection ray, by using length preservation. For the fixed node e𝑋𝑖−1, the
position of the node e𝑋𝑖 is constrained to two possible solutions, e𝑋1

𝑖 and e𝑋2
𝑖 ,

if the distance between e𝑋𝑖−1 and e𝑋𝑖 is assumed constant. Without the length
constraint, every position along the ray presents a solution, some of which are
visualized above.

is performed successfully, in these cases the property that the nearest solution to
the initial position is computed introduces unnatural bends in the vessels, thus
leading to unwanted results, compare Figure 7.5. In order to counteract this
effect, we impose a smoothness condition on the resulting displacement field. To
this end, we employ the Diffusion regularization term [Weickert and Schnörr,
2001], which is often used in intensity-based image registration.

So in summary, our method enables meaningful 3D deformations of 3D vessel
structures based on a single 2D projection of the same structure. To the best of
our knowledge this is the first time that this problem is addressed in the field of
medical image processing.

7.1.1 Relation to Prior Work

There is a considerable body of research on rigid 2D-3D registration of vascular
images, which however mostly addresses rigid structures, for example in neuro
surgery, see [Alperin et al., 1994, Feldmar et al., 1995, Kita et al., 1998, Liu
et al., 1998,Kerrien et al., 1999,Chung et al., 2002,Hipwell et al., 2003,Chan
et al., 2004,Florin et al., 2005]. For the case of abdominal or thoracic 2D-3D
image alignment, there exist some methods, which are supplemented by gating
information or robustness against deformations [Turgeon et al., 2005,Groher
et al., 2007b,Jomier et al., 2006,Groher et al., 2007a]. However, although robust
to local transformations, these methods still use a rigid transformation model
and do not account for the occurring deformation.

Within the context of registration of two or more 2D projections to an atlas
or statistical model of bone anatomy, 2D-3D deformable registration has been
addressed by [Fleute and Lavallee, 1999,Benameur et al., 2003,Yao and Taylor,
2003,Zheng, 2006,Tang and Ellis, 2005]. These methods do not focus on vessel
anatomy and do not cope with a single view scenario.

Regarding the usage of the constraint of length preservation of vessel struc-
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Figure 7.4: 2D illustration of the effect of the difference measure and the length
preservation term on the motion of the vessel structure. The difference term 𝐷
measures the distance in the 2D projection image 𝐼𝑝. The length preservation
penalizes the change of length of the 3D graph 𝐺.

tures for image registration, to our knowledge, there is no previous work in the
literature.

In the robotics and graphics community, computing the 3D pose of a model
from a 2D image is regarded as an inverse kinematics problem (see e.g. [Grochow
et al., 2004] and references therein), which is somewhat related to our topic.
However, the model which is used in these approaches often just has a very
limited number of degrees of freedom (DOF) unlike our model, where each
feature point introduces 3 DOF.

7.2 Method

The basic idea of the proposed method is to use a difference term and supplement
it by regularization terms which incorporate a priori knowledge about the problem
and thus impose constraints along the projection rays, which are needed in order
to render the problem well-posed.

Having modeled the problem this way, the solution is computed by using an
optimization method of choice.

In Section 7.2.1, we first briefly describe the setting for the algorithm and
the performed pre-processing steps. We go on by presenting notation and
introducing structures we use in Section 7.2.2. Section 7.2.3 will introduce our
core model, which is split into difference term (Section 7.2.4), length preservation
(Section 7.2.5), and regularization (Section 7.2.6). An algorithmic summary of
our model is given in 7.2.7. For a better understanding of the model, we assume
correspondence information to be given in sections 7.2.3 - 7.2.7. In Section 7.2.8
we extend our algorithm by an iterative assignment of correspondences using
a closest-point criteria. We summarize the overall algorithm in Section 7.2.9
before experimental setups and results are presented in Section 7.3.
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(a) (b) (c) (d)

Figure 7.5: Demonstrates the effect of joint usage of the length preservation and
the diffusion regularization term. (a) Input 3D image. (b) Result with Length
Preservation. (c) Result with Length Preservation and Diffusion Regularization
clearly produces a more natural result. (d) Ground truth.

7.2.1 Setting and Preprocessing

As input for our method we use an extracted model of 2D and 3D vasculature,
as well as a feature-based rigid pre-alignment in a calibrated setting1 yielding
a projection matrix. All of these steps have been previously presented in the
literature and are not within the scope of this work. A graph model is created
in both 2D and 3D from a region growing step yielding vessel segmentations,
followed by topological thinning and bifurcation detection as described in [Selle
et al., 2002,Palágyi et al., 2001]. A rigid 2D-3D registration is computed by
distance minimization of 2D and projected 3D centerline curves as has been
successfully applied to vessels (see e.g. [Feldmar et al., 1995, Groher et al.,
2007b]) solving for a projection matrix. 2D and 3D vessel systems are rather
different due to local and global contrast injection protocols and segmentation
errors. Thus, assigning point correspondences is not straight forward even if
a projection matrix is known. In the first sections (7.2.3 - 7.2.7), however, we
assume corresponding information to be given. In Section 7.2.8 we incorporate
the computation of 2D-3D correspondences into our algorithm by iteratively
updating an assignment matrix, which stores correspondence probabilities of 3D
and 2D points as well as outlier information.

7.2.2 Preliminaries and Notation

We model vessel structures as directed graphs 𝐺𝑑 = (𝑉 𝑑, 𝐸𝑑), with a set of 𝑛
nodes 𝑉 𝑑 ⊂ R𝑑 and the connecting edges 𝐸𝑑 ⊂ 𝑉 𝑑×𝑉 𝑑. Here 𝑑 ∈ {2, 3} denotes
the dimension of the graph. For the following, refer also to Figure 7.6.

1Meaning that intrinsic parameters of the intraoperative imaging device are given. Also,
image distortion can be assumed to be absent due to flat-panel detector technology.
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Figure 7.6: Illustration of the used graph structure.

The nodes are classified either as bifurcation nodes 𝑉 𝑑
𝑏 or sampling nodes

𝑉 𝑑
𝑠 , such that 𝑉 𝑑 = 𝑉 𝑑

𝑏 ∪ 𝑉 𝑑
𝑠 and ∅ = 𝑉 𝑑

𝑏 ∩ 𝑉 𝑑
𝑠 . While the bifurcation nodes

express the topology and the rough geometry of the vessel tree, the sampling
nodes are used to describe the geometry of the vessel segments in more detail.
The bifurcation nodes are abbreviated by e𝐵 and are identified with their spatial
coordinates, such that e𝐵 ∈ 𝑉 𝑑. We denote the sampling nodes by e𝑋 in
3D and e𝑥 in 2D and again identify them with their spatial coordinates. The
correspondences between the 3D and 2D points are represented by 𝐶 ⊂ 𝑉 3 × 𝑉 2.
We define a vessel segment Π𝑖,𝑗 as a path between two neighboring bifurcation
nodes e𝐵𝑖 and e𝐵𝑗 , containing all sampling nodes and edges between e𝐵𝑖 and
e𝐵𝑗 . The number of nodes in Π𝑖,𝑗 is 𝑛𝑖,𝑗 and the number of edges is respectively
𝑛𝑖,𝑗 + 1. The sampling nodes are indexed relative to the vessel segment Π𝑖,𝑗

starting from 1 to 𝑛𝑖,𝑗 , compare Figure 7.6.

The deformation function is encoded by a set of 3D displacement vectors
𝜙 ∈ R3×𝑛 centered in the 𝑛 corresponding graph nodes. The displacement
at the 𝑖-th node e𝑋𝑖 is denoted by 𝜙𝑖, such that the final position of the
node is e𝑌𝑖 = e𝑋𝑖 + 𝜙𝑖.

We also employ a dense version of the displacement function, which we
denote by 𝜙TPS. We obtain 𝜙TPS from 𝜙 by interpolation using Thin-Plate
Splines (TPS) [Wahba, 1990b]. Interpolating as well as approximating TPS
have been successfully applied in deformable registration of medical images, see
for instance [Bookstein, 1989b,Rohr et al., 2001b], the latter one being a good
introductory reference. In our work we merely use the TPS as an interpolation
scheme, i.e. to create a dense displacement field for assigning displacement values
to nodes for which no displacement vectors are defined.2

For projections we use a standard pinhole camera model with the principal
ray in the direction of the positive Z-axis.

2In order to simplify the implementation, correspondences are computed only for sampling
nodes, and thus also the energies are only evaluated there. This technical detail is due to the
need to consider predecessor and successor nodes in some parts of the algorithm. Omitting
the bifurcation nodes, which often have more than only two neighboring nodes, facilitates the
implementation.
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7.2.3 The Model

The deformable registration process is now described as a minimization of the
energy function ℰ with respect to the displacements 𝜙 of the vessel nodes in
order to get the estimate 𝜙′ of 𝜙, that is

𝜙′ = argmin
𝜙
ℰ , (7.1)

with the energy function

ℰ = 𝐷 + 𝛼𝑆𝐿 + 𝛽𝑆𝑆 , (7.2)

where the energy ℰ : (𝐺3, 𝐺2, 𝐶, 𝜙) ↦→ 𝑦 ∈ R consists of a difference term
𝐷 : (𝐺3, 𝐺2, 𝐶, 𝜙) ↦→ 𝑦 ∈ R and regularization terms 𝑆𝐿 : (𝐺3, 𝜙) ↦→ 𝑦 ∈ R
for length preservation of the vessel segments, and 𝑆𝑆 : 𝜙 ↦→ 𝑦 ∈ R for smooth-
ness of the displacement field. For brevity, we will drop the function arguments
in the remainder. The positive scalars 𝛼 and 𝛽 control the influence of the
respective terms.

In the following, we present the energy terms from Equation (7.2). We also
give the respective derivatives which are used in the gradient descent optimization
scheme.

7.2.4 Difference Measure

The difference measure 𝐷 which drives the registration process penalizes the
distance between the projection of 3D points from the input graph and the
corresponding 2D points from the input projection image.

Given point correspondences 𝐶 with a single correspondence 𝐶𝑖 = (e𝑋𝑖, e𝑥𝑖)
and a projection function 𝑓 : R3 → R2, we can define the distance measure

𝐷 =
1

𝑛

𝑛∑︁
𝑖=1

‖e𝑥𝑖 − 𝑓(e𝑋𝑖 + e𝜙𝑖)‖2 . (7.3)

Here, 𝑓 : R3 → R2 is a projection function

𝑓(e𝑋) = (e𝑝⊤1 e�̂�/e𝑝
⊤
3 e�̂�, e𝑝

⊤
2 e�̂�/e𝑝

⊤
3 e�̂�)⊤ , (7.4)

where e𝑝⊤1 , e𝑝
⊤
2 and e𝑝⊤3 constitute the row vectors of the projection matrix

P ∈ R3×4, and e�̂� = [e𝑋⊤, 1]⊤ is the homogeneous 4-vector representation of
the 3D point e𝑋.

For the minimization according to the model (7.2), the derivative of 𝐷 with
respect to 𝜙𝑘 is needed. By using e𝑌𝑘 = e𝑋𝑘 + 𝜙𝑘 the gradient is given by

𝜕𝐷

𝜕𝜙𝑘
= − 2

𝑛
(e𝑥𝑘 − 𝑓(e𝑌𝑘))⊤ e𝐽𝑘 , (7.5)

where e𝐽𝑘 ∈ R2×3 is the Jacobian of 𝑓 with respect to e𝜙𝑘, given by

e𝐽𝑘 =
1

(e𝑝⊤3 e𝑌𝑘)2

⎡⎢⎣ 𝑝11e𝑝⊤3 e𝑌𝑘−𝑝31e𝑝⊤1 e𝑌𝑘 𝑝21e𝑝⊤3 e𝑌𝑘−𝑝31e𝑝⊤2 e𝑌𝑘

𝑝12e𝑝⊤3 e𝑌𝑘−𝑝32e𝑝⊤1 e𝑌𝑘 𝑝22e𝑝⊤3 e𝑌𝑘−𝑝32e𝑝⊤2 e𝑌𝑘

𝑝13e𝑝⊤3 e𝑌𝑘−𝑝33e𝑝⊤1 e𝑌𝑘 𝑝23e𝑝⊤3 e𝑌𝑘−𝑝33e𝑝⊤2 e𝑌𝑘

⎤⎥⎦
⊤

(7.6)

where 𝑝𝑖𝑗 denotes the entries of the projection matrix. For a detailed derivation
of 𝜕𝐷

𝜕𝜙𝑘
please refer to the Supplementary Material.
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7.2.5 Length Preservation Constraint

Since vessel structures are in general enclosed by soft tissue, for example inside
liver, and breathing motion is limited to a certain magnitude, the change of length
of the vessels is limited. We model this observation by imposing a soft length
preservation constraint on the single vessel segments. Thus, we do not impose
constant lengths, which would be a too restrictive and unnatural assumption in
the given setting. Since the vessel length is defined in 3D space, this constraint
is able to induce a deformation orthogonal to projection rays, compare Figure
7.4.

We define the terms 𝑑−𝑖 (𝜙) and 𝑑
+
𝑖 (𝜙), which measure the length of the edges

connected to the sampling node e𝑋𝑖 for a given set of displacements 𝜙 by

𝑑−𝑖 (𝜙) = ‖e𝑌𝑖 − e𝑌𝑖−1‖2 , and (7.7)

𝑑+𝑖 (𝜙) = ‖e𝑌𝑖 − e𝑌𝑖+1‖2 , (7.8)

where we once again set e𝑌𝑖 = e𝑋𝑖 + 𝜙𝑖, compare also Figure 7.6. The initial
length of the edges connected to e𝑋𝑖 is now given by 𝑑−𝑖 (e0) and 𝑑

+
𝑖 (e0) where

e0 is the zero displacement field.
Now we can define a length preserving cost function as

𝑆𝐿 =
1

𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
𝑑−𝑖 (e0)− 𝑑

−
𝑖 (𝜙)

𝑑−𝑖 (e0)

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝑑+𝑖 (e0)− 𝑑

+
𝑖 (𝜙)

𝑑+𝑖 (e0)

⃒⃒⃒⃒2
, (7.9)

which penalizes the relative deviation from the initial length of the two edges
which are directly influenced by the 𝑖-th node.

The derivative of 𝑆𝐿 with respect to 𝜙𝑘 reads

𝜕𝑆𝐿

𝜕𝜙𝑘
=
−8
𝑛

[︀
𝑙−𝑘 (e𝑌𝑘 − e𝑌𝑘−1) + 𝑙+𝑘 (e𝑌𝑘 − e𝑌𝑘+1)

]︀⊤
, (7.10)

with

𝑙−𝑘 =
𝑑−𝑘 (e0)− 𝑑

−
𝑘 (𝜙)

𝑑−𝑘 (e0)
and 𝑙+𝑘 =

𝑑+𝑘 (e0)− 𝑑
+
𝑘 (𝜙)

𝑑+𝑘 (e0)
. (7.11)

The evaluation of the derivative of the length preservation term is performed
independently on single vessel segments Π, since for the computation, ordered
correspondences and nodes with a left and right neighbor each are needed.

7.2.6 Diffusion Regularization

In order to impose a smoothness constraint onto the displacement field, we
employ the regularization term 𝑆𝑆 .

We implemented one of the common choices frequently used in intensity-based
registration, the so-called Diffusion regularization term (compare e.g. [Weickert
and Schnörr, 2001]). Any other standard regularization term, like Bending
Energy, compare e.g. [Rueckert et al., 1999b], can be used instead.

For defining the smoothing regularization energy, we employ the interpolating
Thin-Plate Spline model 𝜙TPS [Wahba, 1990b] to represent a continuous version
of the displacement function, which is explicitly represented at the graph nodes
by the vectors 𝜙𝑖
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𝜙TPS(e𝑋) =

⎡⎢⎢⎢⎣
(︁
𝑎
(𝑥1)
0 + 𝐴(𝑥1)⊤e𝑋 +

∑︀𝑛
𝑘=1 𝜔

(𝑥1)

𝑘 ‖e𝑋𝑘 − e𝑋‖
)︁
− e𝑋(𝑥1)(︁

𝑎
(𝑥2)
0 + 𝐴(𝑥2)⊤e𝑋 +

∑︀𝑛
𝑘=1 𝜔

(𝑥2)

𝑘 ‖e𝑋𝑘 − e𝑋‖
)︁
− e𝑋(𝑥2)(︁

𝑎
(𝑥3)
0 + 𝐴(𝑥3)⊤e𝑋 +

∑︀𝑛
𝑘=1 𝜔

(𝑥3)

𝑘 ‖e𝑋𝑘 − e𝑋‖
)︁
− e𝑋(𝑥3)

⎤⎥⎥⎥⎦ , (7.12)

with 𝐴(𝑥𝑘) =
[︁
𝑎
(𝑥𝑘)
1 , 𝑎

(𝑥𝑘)
2 , 𝑎

(𝑥𝑘)
3

]︁⊤
, where the scalar values 𝑎𝑖 and the vectors

𝜔𝑘 constitute the parameters of the TPS, which are computed to match the 𝑛
given displacement values at the nodes of the graph, located at points e𝑋𝑘.

The Diffusion Regularization cost function is then defined as

𝑆𝑆 =
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦⃦
∇e𝜙

(𝑥1)
TPS(e𝑋𝑖)

⃦⃦⃦2

+
⃦⃦⃦
∇e𝜙

(𝑥2)
TPS(e𝑋𝑖)

⃦⃦⃦2

+
⃦⃦⃦
∇e𝜙

(𝑥3)
TPS(e𝑋𝑖)

⃦⃦⃦2

. (7.13)

The derivative of 𝑆𝑆 is

𝜕𝑆𝑆

𝜕𝜙𝑘
=

𝜕𝑆𝑆

𝜕𝜙TPS(e𝑋𝑘)
(7.14)

= − 2

𝑛
Δ𝜙TPS(e𝑋𝑘) (7.15)

= − 2

𝑛

[︁
Δ𝜙

(𝑥1)
TPS(e𝑋𝑘),Δ𝜙

(𝑥2)
TPS(e𝑋𝑘),Δ𝜙

(𝑥3)
TPS(e𝑋𝑘)

]︁
, (7.16)

where the Laplace operator Δ with Δ𝜙
(𝑑)
𝑘 = 𝜕𝑥1𝑥1

𝜙
(𝑑)
𝑘 + 𝜕𝑥2𝑥2

𝜙
(𝑑)
𝑘 + 𝜕𝑥3𝑥3

𝜙
(𝑑)
𝑘

is evaluated analytically by computing Δ𝜙
(𝑥𝑗)
TPS(e𝑋) to

−
3∑︁

𝑖=1

𝑛∑︁
𝑘=1

𝜔
(𝑥𝑗)

𝑘

⎛⎜⎝ −1

‖e𝑋𝑘 − e𝑋‖𝜖

+

(︁
e𝑋

(𝑥𝑖)

𝑘 − e𝑋(𝑥𝑖)
)︁2

√︀
(e𝑋𝑘 − e𝑋)⊤(e𝑋𝑘 − e𝑋) + 𝜖

3

⎞⎟⎠ . (7.17)

The 𝜖 in the above equation is a small positive scalar, resulting from an
approximation to the second norm ‖e𝑋‖𝜖 =

√
e𝑋⊤e𝑋 + 𝜖, in the TPS model

from Eq. (7.12) in order to ensure its differentiability.

7.2.7 Optimization Scheme

By using all components of the cost function ℰ together with their gradients,
we can give an algorithm based on gradient descent optimization. Since our
parameter space has a rather high dimension, the gradient descent optimization
can get stuck in local minima. In order to avoid this, we incorporate a relaxation
technique into our optimization. In an outer loop, the smoothness parameter 𝛽
is gradually decreased while the inner part minimizes the energy with a given
𝛽 in each iteration. The intuition behind this process is to impose a certain
rigidity to the transformation if we are far away from the optimum, which is
gradually relaxed the nearer we come to the global minimum in order to allow
more local transformations. The relaxation process is controlled by a parameter
𝑇𝑢𝑝𝑑𝑎𝑡𝑒, which is usually set between 0.9 and 0.99. See Algorithm 7.1 for the
pseudo code of our method.

As optimization method for Algorithm 7.1 we tested a steepest gradient
descent as well as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer [Gill
et al., 1986]. The latter one brought a considerable speed-up, which will be

98



7.2 Method

Figure 7.7: Exemplary iteration process of the proposed 2D-3D deformable reg-
istration method with steepest gradient descent optimization. In each figure the
yellow transparent surface represents the ground truth, the green line represents
the centerline of the deformed 3D graph. The 2D graph to which the 3D graph
is to be registered is not shown. The input setting is visualized in (a). The
intermediate result is shown after 85 (b), 1012 (c), 3674 (d), and 7670 (e)
iterations.

discussed in Section 7.4. For BFGS optimization we used the publicly available
C++-routines of Jorge Nodecal3.

The values for the coefficients 𝛼 and 𝛽 are chosen empirically in the current
implementation. For more details on parameter selection and definition of
convergence criteria, please refer to Section 7.3.1.

Figure 7.7 shows an exemplary iteration process of the 2D-3D registration
algorithm with steepest gradient descent optimization on a synthetic example.
Note that the upper and lower part of the “C” shape are bent in the wrong
direction after 85 iterations (Figure 7.7(c)), but the algorithm recovers from this
situation as can be observed in Figures 7.7(d) and 7.7(e).

7.2.8 Solving for 2D-3D Correspondences

We now extend our model to cope with a more general setup where corresponding
information between 2D and 3D graph points is not known a priori.

There are many approaches to solve the correspondence problem while
computing a transformation, possibly the most popular being the Iterative
Closest Point (ICP) [Besl and McKay, 1992,Zhang, 1994], which has been adapted
and applied to medical data rather extensively [Penney et al., 2001,Granger
and Pennec, 2002, Estepar et al., 2004]. We choose the model of [Gold and

3http://www.alglib.net/optimization/lbfgs.php
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Algorithm 7.1 Deformable 2D-3D Registration with Additional Constraints

Given the input graphs 𝐺3 and 𝐺2, ordered point correspondences 𝐶𝑖 =
(e𝑋𝑖, e𝑥𝑖), and a projection matrix P,

1: initialize parameter 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, 𝛽𝑖𝑛𝑖𝑡, 𝛽𝑓𝑖𝑛𝑎𝑙
2: 𝛽 ← 𝛽𝑖𝑛𝑖𝑡
3: repeat
4: {perform optimization}
5: repeat
6: calculate ∇ℰ = ∇𝐷 + 𝛼∇𝑆𝐿 + 𝛽∇𝑆𝑆

7: update displacements via a gradient descent step
8: update the 3D TPS and deform whole graph
9: until convergence

10: {update 𝛽}
11: 𝛽 = 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 * 𝛽
12: until 𝛽 < 𝛽𝑓𝑖𝑛𝑎𝑙

Rangarajan, 1996], which is a soft version of the assignment as proposed by the
ICP, and can be nicely integrated into our model.

Given a variable 𝑚𝑖𝑗 , where

𝑚𝑖𝑗 =

{︂
1 if e𝑥𝑖 corresponds to e𝑋𝑗

0 otherwise
, (7.18)

our energy can be extended to

ℰ̃ = �̃� + 𝛼𝑆𝐿 + 𝛽𝑆𝑆 − 𝜂𝑃 , (7.19)

where the new difference term is defined as

�̃� =

𝑛∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑚𝑖𝑗 ||e𝑥𝑖 − 𝑓(e𝑋𝑗 + 𝜙𝑗)||2 (7.20)

and a penalization term

𝑃 =

𝑛∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑚𝑖𝑗 , (7.21)

which avoids trivial solutions. Our optimization problem thus becomes

(𝜙′,M′) = argmin
𝜙,M
ℰ̃ , (7.22)

with additional parameters in the assignment matrix M = (𝑚)𝑖𝑗 .
In the standard ICP,𝑚𝑖𝑗 is a binary variable, which can only take the values of

0 and 1. If this variable is directly put as a parameter into our optimization, many
local minima arise and the optimization is likely to fail. Gold and Rangarajan
proved that the transition of 𝑚𝑖𝑗 from a binary to a random variable 𝑚𝑖𝑗 ∈ [0; 1],
which takes the values

𝑚𝑖𝑗 = 𝜈 exp
−||e𝑥𝑖 − e𝑥𝑗 ||2

2𝜈
, (7.23)
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will avoid the introduction of too many local minima [Gold et al., 1998].
To guarantee a 1-to-1 mapping, the assignment matrix M has to be doubly

stochastic, i.e. the constraints
∑︀𝑛+1

𝑖=1 𝑚𝑖𝑗 = 1 and
∑︀𝑁+1

𝑗=1 𝑚𝑖𝑗 = 1 must be met,
which can be approximated by row and column normalization [Gold et al., 1998].

Outliers are handled by introducing a slack row and column to ensure the
constraints while being able to assign small probabilities to all entries of a row
or column respectively that do not sum up to 1.

To further ”convexify” the cost function, a deterministic annealing schedule
is proposed, which renders the final energy

ℰ̃ = �̃� + 𝛼𝑆𝐿 + 𝛽𝑆𝑆 − 𝜂𝑃 + 𝜏𝐿 (7.24)

subject to the above constraints where, 𝐿 =
∑︀𝑛

𝑖=1

∑︀𝑁
𝑗=1𝑚𝑖𝑗 log𝑚𝑖𝑗 is a so-

called entropy term and 𝜏 the annealing parameter. The energy is minimized by
an alternating scheme, where each iteration first applies the softassign given a
transformation followed by an update of the transformation given correspondences
[Gold and Rangarajan, 1996]. An outer loop controls the annealing by gradually
decreasing the annealing parameter 𝜏 .

This method of ”softly” assigning correspondences combined with determinis-
tic annealing has been successfully applied in monodimensional rigid point-based
registration [Gold et al., 1998], and has been extended to non-rigid registration
as proposed by [Chui and Rangarajan, 2003], who, to this end, introduce a TPS
transformation model. Similar to our approach, they gradually decrease the
smooting regularization parameter (𝛽) according to the annealing scheme in
order to allow for more local transformations if the algorithm approaches the
global minimum.

7.2.9 Overall Algorithm

We adapt the update of correspondences to the projective case, yielding the final
algorithm, which solves for both 2D-3D transformation and correspondences, see
Algorithm 7.2. The parts, which have been taken from Algorithm 7.1 without
change are held in light gray.

For criteria on convergence please refer to Section 7.3.1. It should be empha-
sized that the row and column normalization includes the slack row and column
to allow for outliers. Please note that the update of the assignment matrix takes
the projection into account and thus evaluates the Euclidean distance in 2D.
Moreover, the 2D correspondences used to compute the transformation are a mix-
ture of all 2D points depending on their respective probabilities (compare [Chui
and Rangarajan, 2003]).

7.3 Results and Evaluation

In order to validate our results, besides visual inspection, we compute two
different quantitative error measures.

The first measure is the 3D euclidean distance between the nodes of a given
graph and the corresponding ground truth (GT) structure. We call this measure
position error, which is given by

1

𝑛

𝑛∑︁
𝑖=1

‖e𝑋𝑖 − e𝑋𝐺𝑇
𝑖 ‖, (7.25)
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Algorithm 7.2 Deformable 2D-3D Registration with Unknown Correspondences

Given the input graphs 𝐺3 and 𝐺2, and a projection matrix P

1: initialize annealing parameters 𝑇𝑖𝑛𝑖𝑡, 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, 𝑇𝑓𝑖𝑛𝑎𝑙, 𝛽𝑓𝑖𝑛𝑎𝑙
2: 𝜏 ← 𝑇𝑖𝑛𝑖𝑡
3: 𝜙(0) ← e0
4: 𝛽 ← 𝑇𝑖𝑛𝑖𝑡 · 𝛽𝑓𝑖𝑛𝑎𝑙
5: repeat
6: {update assignment matrix according to Equation (7.23)}

7: 𝑚𝑖𝑗 =
1
𝜏 exp

−||e𝑥𝑖−P(e𝑋𝑗+𝜙
(𝑡)
𝑗 )||2

2𝜏
8: repeat
9: {row and column normalization}

10: 𝑚𝑖𝑗 =
𝑚𝑖𝑗∑︀𝑛+1

𝑘=1 𝑚𝑘𝑗
, 𝑗 = 1, . . . , 𝑁

11: 𝑚𝑖𝑗 =
𝑚𝑖𝑗∑︀𝑁+1

𝑘=1 𝑚𝑖𝑘
, 𝑖 = 1, . . . , 𝑛

12: until convergence
13: {compute new correspondences}
14: if

∑︀𝑛
𝑖=1𝑚𝑖𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ then

15: e𝑥′𝑗 =
∑︀𝑛

𝑖=1𝑚𝑖𝑗e𝑥𝑖 , 𝑗 = 1, . . . , 𝑁
16: else
17: discard point e𝑋𝑗 as outlier
18: end if
19: {update the transformation on set 𝐶𝑖 = (e𝑋𝑖, e𝑥

′
𝑖), 𝑖 = 1, . . . , 𝑁}

20: repeat
21: calculate ∇ℰ = ∇𝐷 + 𝛼∇𝑆𝐿 + 𝛽∇𝑆𝑆

22: update displacements via a gradient descent step
23: update the 3D TPS and deform whole graph
24: until convergence
25: {update annealing parameter}
26: 𝜏 ← 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 * 𝜏
27: 𝛽 = 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 * 𝛽
28: until 𝜏 < 𝑇𝑓𝑖𝑛𝑎𝑙
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(a) Liver 1 data set (CTA (b) Liver 2 data set (MRA)

Figure 7.8: Visualization of segmented real vessel structures. (a) Liver 1 data
set (CTA) taken from a patient suffering from hepatocellular carcinoma. (b)
Liver 2 data set (MRA) taken from Siebenthal et al. [von Siebenthal et al., 2007].

where e𝑋𝑖 are the positions of all nodes of a graph after registration, and e𝑋𝐺𝑇
𝑖

are the positions of the corresponding nodes from the ground truth graph.
Since this first measure does not take topology into account we also introduce

a second measure, which does not penalize the position, but only evaluates the
shape. At every node, the angle between the two adjacent edges is computed.
This measure is called the shape error, which is given by

1

𝑛− 2

𝑛−1∑︁
𝑖=2

⃒⃒⃒⃒
arccos

e𝐿⊤
𝑖 e𝑅𝑖

‖e𝐿𝑖‖‖e𝑅𝑖‖
− arccos

e𝐿𝐺𝑇 ⊤
𝑖 e𝑅𝐺𝑇

𝑖

‖e𝐿𝐺𝑇
𝑖 ‖‖e𝑅𝐺𝑇

𝑖 ‖

⃒⃒⃒⃒
, (7.26)

where e𝐿𝑖 = e𝑋𝑖−1−e𝑋𝑖, and e𝑅𝑖 = e𝑋𝑖+1−e𝑋𝑖. e𝐿
𝐺𝑇
𝑖 and e𝑅𝐺𝑇

𝑖 are defined
in an analogous manner. However, this error measure is suitable mostly for
cases with a low number of nodes, since for large vessel systems, small random
angle errors sum up to large values not describing the quality of the results in
an appropriate manner.

We perform the tests on synthetic graphs with artificial deformations in order
to test various aspects of the method. To demonstrate the applicability for real
applications, we apply the tests to real vessels segmented from angiographic
images, deformed by both, artificial and natural deformation fields. Moreover,
we conduct a test on patient data coming from a clinical setting.

7.3.1 Parameter Values

The parameter values used for the experiments were determined empirically.
The value of 𝛼 = 0.01, controlling the length preservation term, yields good
results for all input data sets. For the smoothness term, 𝛽𝑓𝑖𝑛𝑎𝑙 = 0.1 was used
as lower boundary of the relaxation scheme, i.e. the smoothness parameter was
not allowed to drop below this value. The initial value for 𝛽 at the beginning
of relaxation was set to 𝛽 = 𝑇𝑖𝑛𝑖𝑡 · 𝛽𝑓𝑖𝑛𝑎𝑙, as described in Algorithm 7.2. The
parameter 𝜂 is not set by the user, since the row and column constraints on the
assignment matrix avoid trivial solutions automatically.

Annealing parameters are chosen such that the final value 𝑇𝑓𝑖𝑛𝑎𝑙 is equal to
the minimal distance between two nodes in 2D. 𝑇𝑖𝑛𝑖𝑡 is set to 500 · 𝑇𝑓𝑖𝑛𝑎𝑙 and
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the update parameter 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, usually between 0.9 and 0.99, is set to 0.93.
The threshold for outlier removal (see Algorithm 7.2) is set to 0.01, i.e. if

the sum of all probabilities in a column is below 1% this 3D point is assumed to
have no corresponding 2D point.

There are two inner loops listed in Algorithm 7.2, one for optimization, one
for row and column normalization of the assignment matrix. Convergence for
the optimization is tested by classical termination criteria, i.e. small parameter
update, and small difference in energy values between successive iterations. The
normalization loop is repeated 60 times, as suggested by [Chui and Rangarajan,
2003].

7.3.2 Tests on Synthetic Data

For these tests, we use two 3D graphs, where one of the graphs is a deformed
version of the other. The deformation is performed such that the length is not
changed. To this end, we employ a dedicated deformation function, which is not
used in our method itself, in order to assure the validness of comparison. The
transformation is computed in the following way. Starting from an initial node,
all remaining nodes are processed in a sequential manner. At every node, a
rotation is performed about an axis passing through the previous node and being
orthogonal to the plane formed by the Y dimension and the projection ray. This
ensures that most displacement happens along the projection rays, which gives
an appropriate test setting for evaluating the role of the regularization terms.
The rotation angle is varied at every node due to a trigonometric function, with
a variable frequency and amplitude. The computed rotation is applied to the yet
unprocessed part of the graph. Same applies also for the deformation used in
Section 7.3.3. The graph, which is not deformed serves as input for the method,
while the deformed one presents the ground truth solution. The 3D ground truth
is not directly used, but we generate a 2D projection of this structure, which is
used as input for the method, together with the projection matrix. For three
exemplary data sets (Synth1, Synth2 and Synth3) quantitative and visual results
are presented in Tables 7.1, 7.2 and Figure 7.11.

7.3.3 Real Data with Artificial Deformation

In order to assess the behavior of the method on natural vessel structures in a
quantitative way, we deform the graphs extracted by segmentation from patient
data sets with a length-preserving deformation function, as described in Section
7.3.2. This way, we are able to perform our method and measure the distance
of the result to a known ground truth in the same way as for synthetic data
sets. A projection matrix computed from a rigid CTA-to-DSA registration of
the respective patient is used to create the input 2D vessel graph. For the
presented tests, we use a liver data set (Liver 1) from a patient who suffers from
hepatocellular carcinoma and was treated with Transarterial Chemoembolization,
compare Tables 7.1, 7.2 and Figure 7.8a.

7.3.4 Real Data with Natural Deformation

Natural deformation fields for human organs are hard to obtain. In order to verify
our method on possibly natural deformations we employ the results presented
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by [von Siebenthal et al., 2007]. The displacement fields provided by this work are
computed from a series of contrasted 4D MR images of the liver. A deformable
registration is performed in [von Siebenthal et al., 2007] between the single 3D
images, where the high time resolution together with the strong texture of the
contrasted images assures the quality and reliability of the resulting deformation
field. We segment the vessel structures from the contrasted MR images used
in [von Siebenthal et al., 2007], and generate the input 3D graph for our method.
Then, we apply the displacement field from [von Siebenthal et al., 2007] to the
3D graph and thus compute the ground truth for the result. A projection matrix
yielding an anterior-posterior image was used for 2D input creation. In the same
way as for the synthetic data sets, the 3D ground truth together with initial and
deformed 3D input graph are used to quantitatively assess the performance of
our method. Despite the small deformation observable in the data set (Liver 2),
a clear improvement is achieved. Compare Tables 7.1, 7.2 and Figure 7.8b.

It can be observed that our method performs slightly better for the Liver 1 and
2 data sets if regularization is turned off and correspondences are known (compare
Table 7.1). This is due to the fact that for these data sets the deformation in ray
direction is minor and regularization prevents the method to fully match in-plane
deformation. Interestingly, however, the method performs better for all data
sets if regularization is turned on and correspondences are not known (compare
Table 7.2). Our proposed regularization prevents the algorithm to assign false
correspondences, which can happen easily when using the näıve method.

7.3.5 Test in a Clinical Setup

This test is performed with known projection matrices and a reference deforma-
tion field for comparison. An important issue for the creation of this reference
deformation field is the correspondence problem on vascular 3D graphs, which
we address in an intuitive manner by resampling and length accumulation in the
first test and through careful manual inspection in the second and third tests.

For all tests we use two 3D graphs extracted from a preoperative CTA and
an intraoperative cone-beam reconstruction of the same patient undergoing a
liver catheterization. Both data sets have been acquired in deep inspiration. The
intraoperative reconstruction is created from 395 views with projection matrices
known from calibration. The 395 projections cover an angular range of 197∘ in
0.5∘ steps on a craniocaudal rotation axis.

First, we rigidly register the two 3D graphs. We manually determine point
correspondences of all bifurcation points visible in both data sets. Unlike
sampling nodes on vessel segments, the location of bifurcations is well-defined
at the junction of a vessel graph and hence correspondency can be established.
Then, we rigidly register the two resulting 3D point sets using the least-squares
method of Umeyama [Umeyama, 1991a].

7.3.5.1 Single Vessel Segment

Here, we test our algorithm in a simplified yet realistic environment by choosing
only one vessel segment of the 3D vasculatures, which emanates from a bifurcation
for which correspondency is known. We run our registration on this vessel
segment only. Thus, we can automatically compute corresponding points using
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Test Type Position Error [mm] Shape Error [rad]
Test Data 𝜇 𝜎 𝜇 𝜎

Synth 1
Input 4.46 3.58 0.5847 0.777
Näıve 0.94 (78.9%) 1.06 0.4115 (29.6%) 0.514
Result 0.87 (80.5%) 0.30 0.1459 (75.0%) 0.143

Synth 2
Input 1.36 1.09 0.3224 0.363
Näıve 0.37 (72.8%) 0.47 0.2883 (10.58%) 0.307
Result 0.17 (87.5%) 0.17 0.0780 (75.8%) 0.072

Synth 3
Input 1.42 0.80 0.3463 0.199
Näıve 0.72 (49.3%) 0.57 0.2448 (29.3%) 0.174
Result 0.84 (40.8%) 0.63 0.2218 (36.0%) 0.154

Liver 1
Input 7.38 2.23 0.1675 0.168
Näıve 3.17 (57.0%) 2.85 0.1266 (24.4%) 0.127
Result 3.70 (49.9%) 3.08 0.1428 (14.75%) 0.157

Liver 2
Input 1.20 0.65 0.0082 0.009
Näıve 0.99 (17.5%) 0.68 0.0057 (30.5%) 0.008
Result 0.99 (17.5%) 0.68 0.0062 (24.4%) 0.008

Liver 3
Input 14.88 15.0 0.2188 0.167
Näıve 8.33 (44.0%) 4.53 0.2274 (-3.9%) 0.221
Result 8.24 (44.6%) 5.17 0.2847 (-30.2%) 0.223

Table 7.1: Results of error evaluation on several synthetic and real data sets
with given correspondences. The position error by euclidean distance, as well
as the shape error by angle measurement is assessed. We give the mean error
𝜇 and in order to show the significance of the improvement also the standard
deviation 𝜎. For the mean, the relative improvement to the input data is given
in percent. For visualization of the settings, compare Figures 7.8, 7.9, and 7.11.

a length preserving constraint and hence reduce a possible bias in ground truth
computation.

For computing a reference deformation field, we extract two vessel segments,
Π𝑖,𝑗 from the CTA graph and Π′

𝑘,𝑙 from the reconstruction graph that are
manually determined to correspond. The chosen segment exhibits a large
deformation, which is assessed after rigid 3D-3D registration of the complete
vessel systems (see Figure 7.9a). We now want to establish correspondences
between all sampling nodes of Π𝑖,𝑗 and Π′

𝑘,𝑙 given the initial correspondences
e𝐵𝑖 ↔ e𝐵′

𝑘.

The nodes on Π𝑖,𝑗 ,Π
′
𝑘,𝑙 cannot be assumed to have the same sampling since

they have been extracted from two different data sets. Thus, we first apply a
resampling to Π′

𝑘,𝑙 to have an inter-node distance which is significantly smaller
compared to the inter-node distance of Π𝑖,𝑗 . Then, we assign correspondences
to the sampling nodes in the following way: For a node e𝑋 ∈ Π𝑖,𝑗 determine its
curve length to e𝐵𝑖, 𝑑(e𝐵𝑖, e𝑋). Walk through Π′

𝑘,𝑙 starting from e𝐵′
𝑘 until the

first node e𝑋 ′ has been found with 𝑑(e𝐵′
𝑘, e𝑋

′) ≥ 𝑑(e𝐵𝑖, e𝑋), which is assigned
as corresponding node to e𝑋. This procedure is repeated for all nodes in Π𝑖,𝑗 .

4

4This sampling technique introduces an error to the assumption of length preservation,
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(a) Overlay of reconstructed vasculature (b) Overlay with intraoperative 2D image

Figure 7.9: Clinical Setup: (a) Rigidly registered CTA (green) and intraoperative
reconstruction (red and purple) of the vasculature. The purple vessel segment
was used for the first clinical test. A large deformation is observable in this
vessel compared to the corresponding, intersecting green vessel. (b) Projection
of vessel segment onto an intraoperative 2D image. The 2D image was used for
the intraoperative 3D reconstruction and a projection matrix is known due to
calibration.

With the set of correspondences {e𝑋ℎ ↔ e𝑋 ′
ℎ}, ℎ = 1, . . . , 𝑛𝑖,𝑗 we can

compute a 3D Thin Plate Spline to align the two vessel segments Π𝑖,𝑗 and Π′
𝑘,𝑙.

The resulting spline is used to deform Π𝑖,𝑗 to Π̃𝑖,𝑗 . With this method - in spite of
the discretization error that is introduced - we observed the difference in length
of Π𝑖,𝑗 and Π̃𝑖,𝑗 to be smaller than 6%.

As input for our registration method, we use the segment Π𝑖,𝑗 , the segment
𝜋′
𝑘,𝑙 which is the projection of Π′

𝑘,𝑙 by the matrix P𝑟𝑒𝑐, and the correspondence
information of the 3D segments. P𝑟𝑒𝑐 is taken from one of the views used for
reconstruction and thus resembles the 2D intraoperative situation, compare
Figure 7.9b.

A considerable improvement in position and shape error can be observed
when applying our algorithm, despite the large deformation of the vessel segment,
compare the entries for Liver 3 in Table 7.1.

A further test has been performed on this vessel segment with unknown
correspondences using our extended Algorithm 7.2. The result is summarized in
the entries for Liver 3 in Table 7.2. It can be observed that the position error
still improves more if regularization terms are incorporated. The shape error
slightly increases, but again the impact of the regularization terms is shown
when comparing to the näıve method.

Please note that the initial errors for the Liver 3 data set have been acquired
after rigid registration.

which is bounded by the inter-node distance of Π′
𝑘,𝑙.
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7.3.5.2 Entire Vasculature without Outliers

In this test, we deformed the entire vessel tree of the 3D reconstruction (red
and purple vessels in Fig. 7.9a) to match the CTA vasculature (green vessels
in Fig. 7.9a). For that we manually identified 3D point correspondences and
computed a 3D TPS. Then we registered this deformed vascular system ”back”
to 395 projections of the non-deformed vasculature using Algorithm 7.2. These
projections were created using the vessel tree extracted from the original intraop-
erative reconstruction and the projection matrices with which it was computed.
We use the graph extracted from original 3D reconstruction as ground truth to
assess the position error.

Please note that, in order to be able to test the algorithm on a complex data
set without outliers, we do not use the CTA vessel system as 3D input graph, but
the intraoperative reconstruction, which is deformed to match the CTA vessel
system. We conducted a test run, which computed 395 registrations. Moreover,
we ran the test once more with both regularization terms set to zero. Both runs
were performed with unknown correspondences.

Figure 7.10a shows the position error of the 2×395 registrations. The horizon-
tal line symbolizes the initial error. It can be observed that a näıve registration
(without regularization) increases the error whereas our method benefits from
the regularization terms to decrease the position error.

For images 180 to 210 and 260 to 280 the results are worse than neighboring
results. These cases suffer from a heavy overlap of major vessels in the projections,
which hampers the assignment of proper correspondences. This overlap is
not present for the images where position errors are smaller after registration.
However, in all cases, an improvement can be observed when comparing to the
initial position error that was determined after rigid registration.

7.3.5.3 Entire Vasculature in the Presence of Outliers

This test is resembling the clinical scenario most realistically and adds the
presence of outliers to the previous test. We used the vessel tree extracted from
the preoperative CTA as 3D input. The 2D input graphs are created by projection
of the 3D reconstruction that has been acquired intraoperatively. Again, the 395
projection matrices, which have been used in the previous test already, are taken
to project the 3D reconstruction. The 3D reference deformation field for error
assessment is computed by evaluating a 3D TPS on inverted correspondences
used in the previous test.

It should be noted that the two data sets used for registration have been
created from global and local injection of contrast agent and thus have a different
level of propagation. Usually, dye propagates further down the vessel tree if
injected locally through a catheter, which makes small vessels visible in the
3d reconstruction, which cannot be visualized in the CTA data set. Since the
extraction of vessel graphs does not change vessel topology, there is a considerable
amount of outliers in this test, compare Figure 7.9.

As in the previous test, we computed 2×395 registrations using Algorithm
7.2, one run was conducted using our proposed model, one run with the näıve
method, where smoothness and length preservation are excluded from the energy.

Figure 7.10b shows the position error of the 2×395 registrations, again, the
horizontal line shows the initial error (after rigid registration). As in the previous
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Figure 7.10: Result of the two tests of (a) deformed 3d reconstruction (no
outliers) and (b) with original CTA and 395 projections of the intraoperative
3D reconstruction (Sections 7.3.5.2, 7.3.5.3). The dots show the error after
registration with our algorithm, the crosses show the error after registration
with the näıve method. The horizontal line symbolizes the initial error. It can
be observed that a näıve registration increases the error whereas our method
benefits from the regularization terms to decrease the position error.

test, a considerable improvement can be observed when using our regularization
techniques, whereas the näıve approach increases the error and cannot recover a
correct solution.

In the 395 registrations that have been performed in the previous and the
current section, the position error can be observed to increase in the first few
registrations, decrease until half of the angular run is reached, and increase again
until the end of the C-arm rotation. This penomenon can be explained with
the geometric distribution of the liver vessel tree, which is mainly on the frontal
plane. Thus, the first and last registrations, which use images of the anatomy
from the left or right side of the patient, ”compress” the geometric distribution
of the vessel tree, which decreases the registration accuracy. However, even
in these situtations our method can still find a solution, which decreases the
position error compared to the initial rigid registration result.

7.4 Discussion

In the previous section we demonstrate that our method performs well in different
scenarios. Even in the most general case where complex vascular systems
are registered with unknown correspondences and in the presence of outliers,
our experiments clearly reveal the impact and importance of our proposed
regularization terms together with the difference term minimizing the euclidean
error in 2D. We will now first briefly comment the clinical necessity of our
proposed deformable registration method, followed by a discussion on the impact
of the necessary previous steps on the accuracy, robustness and clinical feasibility.
Moreover, runtime issues and possible ambiguities in the computed solution will
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Test Type Position Error [mm] Shape Error [rad]
Test Data 𝜇 𝜎 𝜇 𝜎

Synth 1
Input 4.46 3.58 0.585 0.777
Näıve 1.43 (67.74%) 0.94 1.261 (-116%) 1.129
Result 0.81 (81.83%) 0.40 0.126 (78.4%) 0.135

Synth 2
Input 1.36 1.09 0.322 0.363
Näıve 0.36 (75.3%) 0.47 0.288 (10.6%) 0.308
Result 0.31 (77.2%) 0.07 0.023 (77.1%) 0.016

Synth 3
Input 1.42 0.80 0.346 0.199
Näıve 1.21 (14.8%) 0.95 0.513 (-48.2%) 0.616
Result 0.89 (37.5%) 0.67 0.271 (21.9%) 0.155

Liver 1
Input 7.38 2.23 0.168 0.168
Näıve 7.84 (-6.2%) 6.43 0.754 (-350%) 0.636
Result 3.44 (35.4%) 1.92 0.163 (2.69%) 0.163

Liver 2
Input 1.20 0.65 0.008 0.009
Näıve 3.8 (-216%) 2.70 0.977 (<-500%) 0.701
Result 1.15 (4.2%) 0.57 0.007 (9.76%) 0.009

Liver 3
Input 14.88 15.0 0.219 0.167
Näıve 11.5 (22.7%) 6.40 0.283 (-29.3%) 0.208
Result 10.71 (28.0%) 6.69 0.268 (-22.3%) 0.204

Table 7.2: Results of error evaluation on several synthetic and real data sets
without correspondences. The position error by euclidean distance, as well as
the shape error by angle measurement is assessed. We give the mean error 𝜇 and
in order to show the significance of the improvement also the standard deviation
𝜎. For the mean, the relative improvement to the input data is given in percent.
For visualization of the settings, compare Figures 7.8, 7.9, and 7.11.

be addressed.

7.4.1 Vessel Deformation in Clinical Routine

In clinical practice, pre- as well as intraoperative data sets are acquired in
deep inspiration while the patient holds his breath. This will usually cause
the vessel anatomy to be rather similar and only have a minimal amount of
deformation. However, as confirmed by our clinical partners, patients tend to
hold their breath in different breathing states before and during the interventions.
Moreover, inserted instruments like a guide wire or a catheter can also lead to
vessel deformation. These issues can sometimes have a considerable effect on
vessel deformation, which has also been shown in our clinical test setup, see
Section 7.3.5. Thus, we believe that 2D-3D deformable registration is crucial in
this single-view angiographic scenario and will lead to more accurate results in
terms of intraoperative navigation and guidance.
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7.4.2 Segmentation

Our proposed method operates on 2D and 3D vessel features, which are extracted
prior to the registration. The issue of using features rather than intensities for
the registration influences our method in terms of accuracy and robustness.

Registration accuracy is directly dependent on the accuracy of the extracted
vessel features. Since both, preoperative 3D data sets and intraoperative DSAs
have a high intensity gradient (and thus intensity variation) at the vessel bound-
aries, even simple segmentation techniques like region growing yield results, which
can be accurate up to a voxel/pixel precision. As state-of-the-art scanners can
reconstruct volumes up to a submillimetric resolution, the metric segmentation
error is rather small. In order to run our algorithm on the required features, we
need to extract a centerline from the segmentation, which, in our experiments,
employs topological thinning as described in [Palágyi et al., 2001]. This algo-
rithm creates an approximation of a skeleton, which resembles the centerline in
tubular structures. The approximation error is bounded by the radius of the
vessel segments, which is below 2.5 𝑚𝑚 for liver arteries. Assuming an error
made by the skeletonization approximation of 1

4 of the radius, the propagated
feature extraction error will be less than 0.625 𝑚𝑚 corresponding to more than
1 voxel5 in 3D and more than 2 pixels in 2D6. In summary, neither segmentation
nor centerline extraction will introduce a large error. Region growing methods
for vascular segmentation are usually very fast and involve a single seed point,
which does not create much additional user interaction during an intervention.
The process of topological thinning is fully automatic, rendering the feature
extraction step feasible for clinical scenarios.

Due to different application of contrast agent in the 2 data sets (global
injection in preoperative 3D data, local injection through a catheter in 2D
data), our method has to deal with a certain amount of outliers (small vessel
segments, which are only visible in 2D, segmented 3D vessel parts, which are
not contrasted in 2D). This issue is addressed with the slack row/column in
the assignment matrix (Section 7.2.8), which makes the method more robust to
outliers. Moreover, as can be depicted from the results in Figure 7.10, length
preservation and smoothness regularization penalize solutions where outliers
contribute to the computed transformation.

Please note that the error evaluation is not affected by the segmentation error
since the ground truth has always been computed from the 3D input vasculature
using a deformation field.

7.4.3 Rigid 2D-3D Registration

Our method can be carried out after a rigid 2D-3D registration has been per-
formed since the model utilizes a previously computed projection matrix. Many
catheterization interventions provide a preoperative data set from a CTA or
MRA scan. In such a case, methods for rigid 2D-3D registration can be used to
determine the projection matrix to an intraoperative 2D DSA [Turgeon et al.,
2005,Groher et al., 2007b,Jomier et al., 2006,Groher et al., 2007a].

Some hospitals use rotational angiography for acquisition of an intraoperative
3D data set. In this case, a projection matrix that projects the 3D data to match

5a typical voxel resolution in CTA data sets is 0.6×0.6×0.6𝑚𝑚3

6for a typical in-plane pixel resolution of 0.31×0.31𝑚𝑚2
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a currently acquired 2D DSA can be assembled from calibration data and table
position of the imaging device [Gorges et al., 2005].

Please note that our method is not solving for the entries of a projection
matrix, but assumes them to be given in advance. Thus, inaccuracies of the esti-
mated matrix directly affect the performance of our method. For intraoperative
3D data sets the estimated projection matrix is usually very accurate (in the
range of submillimeters in the image plane) due to a precise offline calibration
step [Navab et al., 1996,Livyatan et al., 2002].

2D-3D registration methods for preoperative 3D data sets report in-plane
errors below 5 𝑚𝑚 and out-of-plane errors below 15 𝑚𝑚 in a single-view scenario
[Turgeon et al., 2005,Jomier et al., 2006,Groher et al., 2007a]. We have shown
in the experiments that our method can cope with errors up to 3.8 𝑐𝑚, which
makes a concatenation of rigid and deformable 2D-3D registration feasible.

7.4.4 Runtime

The runtime of our method depends on the number of graph nodes that are used
in the optimization step. The 3D graphs used in the clinical evaluation in Section
7.3.5 have 160 and 320 nodes, respectively, which corresponds to a runtime of 3.2
and 4.3 minutes (averaged over the 395 registrations, executed single-threaded on
a Intel R○CoreTM2 Duo 3 GHz). Together with 2D segmentation and rigid pre-
registration, this sums up to a runtime of ca. 5-7 minutes7, which is acceptable
in an intraoperative situation as confirmed by our clinical partners.

7.4.5 Ambiguities

Our proposed method converges to the right solution in most cases. However,
there are two special initial configurations where the energy function is not
guaranteed to drive the gradient descent scheme to the correct solution. Both
cases only occur if the deformation changes the sign in vessel curvature along
the projection direction.

Typically, a gradient-based optimization algorithm will - given a suitable
step size - converge to the “nearest” local optimum. Even if a vessel segment is
deformed along the projection direction, the algorithm will compute the right
deformation field given a suitable initial position. However, if the vessel segment
either deforms from a straight line, or if it changes the sign of curvature during
deformation, the proposed method is not guaranteed to converge to the right
solution.

A segment, which is a straight line down to the precision of a single voxel is
not very probable to be part of real vessel systems. Moreover, vessel systems
are rather unlikely to invert their sign of curvature if they undergo a natural
deformation due to e.g. patient breathing. Thus, we assume that these special
cases do not occur frequently in real scenarios. Furthermore, if the curvature
is computed for all vessel segments, straight lines can be detected, and the
algorithm can indicate a possible convergence problem.

7runtimes for segmentation and 2D-3D rigid registration have been taken from [Groher
et al., 2007a]
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(a) 3D input (b) Ground truth (c) Our method (d) Näıve

Figure 7.11: Visualization of a selection of tests on synthetic data. Every row
presents a single example setting, with the quantitative assessment of the results
in Table 7.1 (from top to bottom: Synth 1, Synth 2, Synth 3).
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Chapter 8

Linear Registration with MRFs and

Discrete Optimization†

We propose a framework for intensity-based registration of images by linear
transformations, based on a discrete Markov Random Field (MRF) formulation.
Here, the challenge arises from the fact that optimizing the energy associated
with this problem requires a high-order MRF model. Currently, methods for
optimizing such high-order models are less general, easy to use, and efficient,
than methods for the popular second-order models.

Therefore, we propose an approximation to the original energy by an MRF
with tractable second-order terms. The approximation at a certain point 𝑝 in
the parameter space is the normalized sum of evaluations of the original energy
at projections of 𝑝 to two-dimensional subspaces. We demonstrate the quality
of the proposed approximation by computing the correlation with the original
energy, and show that registration can be performed by discrete optimization of
the approximated energy in an iteration loop.

A search space refinement strategy is employed over iterations to achieve
sub-pixel accuracy, while keeping the number of labels small for efficiency. The
proposed framework can encode any difference measure, is robust to the settings
of the internal parameters, and allows an intuitive control of the parameter ranges.
We demonstrate the applicability of the framework by intensity-based registra-
tion, and 2D-3D registration of medical images. The evaluation is performed
by random studies and real registration tasks. The tests indicate increased
robustness and precision compared to corresponding standard optimization of
the original energy, and demonstrate robustness to noise. Finally, the pro-
posed framework allows the transfer of advances in MRF optimization to linear
registration problems.

8.1 Introduction

In the last years, the solution of computer vision problems by Markov Random
Fields (MRFs) [Geman and Geman, 1984,Li, 2001] and discrete optimization has

†This chapter is based on the joint work with Ben Glocker, with the related publications:
[Glocker et al., 2009,Zikic et al., 2010c,Zikic et al., 2010b].
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become increasingly popular. Different image analysis problems have been solved
by this approach, such as segmentation [Boykov and Jolly, 2001] or non-linear
registration [Glocker et al., 2008a], just to name some. Recent advances [Boykov
et al., 2001,Kolmogorov, 2006,Komodakis et al., 2007,Lempitsky et al., 2007] in
discrete optimization methods make this approach very attractive.

However, the MRF-based optimization has not yet been applied to the
classical problem of intensity-based registration of images by linear transforma-
tions [Maintz and Viergever, 1998,Hajnal et al., 2001a,Zitova and Flusser, 2003].
When analyzed closely, this problem turns out to be rather different in nature
from many other problems which have so far been successfully addressed by
MRF-based techniques. The differences are twofold.

For many MRF-based methods, the parameters can be assigned to certain
points in the image domain at which the parameters are located, and the
parameters have a limited local region of influence. In most cases, the parameters
are directly identified with pixels and they only influence a direct neighborhood.
That is, the parameters are localized in space and have local effects. This is in
strong contrast to the parameters of a linear transformation which act globally
and cannot be assigned to a certain point in the image domain. Also, most MRF-
based methods share a similar modeling approach. They employ a second-order
MRF model which is composed of two terms: A first-order term which encodes
a certain cost function (often referred to as data term), and a second-order
term responsible for the regularization (prior term). Due to the mentioned
fundamental difference in the nature of the parameters, the estimation of linear
transformation parameters requires a different modeling, as will be discussed in
Section 8.2.

The second difference originates from the fact that the solution for the linear
registration problem cannot be determined by optimizing the single parameters
independently of each other. In consequence, the original problem of estimating
the linear transformation with 𝑛 degrees of freedom (DOF) requires an 𝑛th-order
MRF model. Compared to the second-order models, the current higher-order
optimization algorithms are often complex to use or pose additional constraints
on the class of energies they can be applied to. Also, the optimization of higher-
order terms was until now mostly only demonstrated for regularization terms - a
setting that does not translate to the linear registration problem. And finally,
as of now, the efficiency of recent methods for second-order models cannot be
matched by methods for higher-order models. This is a major point, since the
single evaluations of the difference measure for the linear registration problem
are computationally demanding.

In order to be able to use the current efficient MRF optimization techniques
for the intensity-based estimation of linear transformations, we present an
approximation of the original energy by a second-order MRF model. This
approximated MRF energy term is optimized by a suitable discrete optimization
method inside an iteration loop. In every iteration, the range of the discrete
search space for the single parameters is refined, eventually resulting in sub-pixel
precision. In order to guarantee convergence, the descent of the original energy
is ensured. The resulting algorithm is outlined in Figure 8.1.

The remainder of this chapter is organized in the following way. In Section
8.2, the actual method is presented. After formulating the general problem
of intensity-based estimation of linear transformations, we introduce the basic
terms of discrete MRF models in Section 8.2.1, and argue that the estimation
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Input: images I,J

Output: transformation parameters p

Algorithm: Basic MRF-based Linear Registration

0: set initial parameters p|;

1: set initial discretization L;

2: set initialize parameter range refinement factor α;
3: until convergence do repeat3: until convergence do repeat

4:     ∆p := optimize_E_approx(I,J,L,p|); 

5:     if (E(p|+∆p)<E(p|)) //test for decrease of original energy

6:         p| := p| + ∆p ;p p p

7: end

8:     L = refine_label_ranges(L,α); 
9: end

Figure 8.1: Outline of the basic algorithm for linear intensity-based registration
by optimization of a discrete MRF energy.

of the transformation parameters of the original energy requires a higher-order
MRF model. Following this, in Section 8.2.2 we introduce the approximation
to the original energy by a tractable second-order model. In order to complete
the description of the actual resulting registration method, the Sections 8.2.3
- 8.2.6 provide details on parameterization, discretization of the search space,
the employed discrete optimization method, and implementation. Section 8.2.7
summarizes and discusses the properties of the proposed method. In Section
8.3, we evaluate the quality of the proposed energy approximation, as well as
the dependency of the method on the settings of the internal parameters. We
demonstrate and evaluate an exemplary application to registration of 3D images
in Section 8.4.1, and an application to 2D-3D registration of medical images in
Section 8.4.2. Finally, the work is summed up in Section 8.5.

8.2 Intensity-based Estimation of Linear Trans-
formations by Markov Random Fields

We consider the task to estimate a linear transformation 𝑇 which aligns the source
image 𝐼 to the target image 𝐽 , such that this alignment optimizes a suitable
difference measure 𝜉. 𝑇𝑝 denotes that the transformation 𝑇 is parameterized by
parameters 𝑝. Thus, the estimation can be written aŝ︀𝑝 = argmin

𝑝
𝜉 (𝐼 ∘ 𝑇𝑝, 𝐽) , (8.1)

where ̂︀𝑝 are the optimal transformation parameters. Furthermore, we express the
parameter 𝑝 in terms of the initial estimate 𝑝′ and an update Δ𝑝 as 𝑝 = 𝑝′+Δ𝑝, so
that the optimal parameters are represented by the optimal update as ̂︀𝑝 = 𝑝′+̂︁Δ𝑝.

For future reference we explicitly define the original energy 𝐸 associated with
the problem as

𝐸(𝑝) ≡ 𝜉 (𝐼 ∘ 𝑇𝑝, 𝐽) . (8.2)
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8.2.1 Discrete Markov Random Fields

Let 𝒱={𝑝1, . . . , 𝑝𝑛} be a set of 𝑛 parameter variables 𝑝𝑖, which are also repre-
sented by the parameter vector p. A clique is a subset of the parameters from
𝒱, and is denoted either by explicitly stating the set, or by the usage of the
multi-index c ⊆ {1, . . . , 𝑛}, which contains the indices of the involved variables,
such that 𝑝c⊆𝒱. The set of all defined cliques is denoted as 𝒞. Then a Markov
Random Field (MRF) can be defined as a hypergraph 𝒢 in which the nodes
correspond to the parameters, and the cliques constitute the hyperedges, that
is 𝒢 = (𝒱, 𝒞). In the case of discrete MRFs, each parameter variable 𝑝𝑖 can
take a discrete value (also referred to as label) from a discrete label set ℒ𝑖 with
ℒ𝑖={ 𝑥 | 𝑥∈R }. The number of labels per parameter is denoted by |ℒ𝑖|=𝑁 .
In the context of MRFs, the term labeling describes a set of labels assigned
to the parameters. A potential is a scalar-valued function 𝜓c, which assigns a
certain energy to a labeling of a clique 𝑝c as 𝜓𝑐 : 𝑝c ↦→ 𝜓𝑐(𝑝c) ∈ R+

0 . The general
discrete MRF energy is a sum of the defined potentials

𝐸MRF(p) =
∑︁
𝑝c∈𝒞

𝜓𝑐(𝑝c) . (8.3)

The order of the MRF model is the maximum size of the involved cliques.
For the following, the model containing exclusively all possible second-order

terms will play an important role, thus we define it explicitly as

𝐸MRF−2(p) =
∑︁

{𝑝𝑖,𝑝𝑗}∈𝒞2

𝜓𝑖𝑗(𝑝𝑖, 𝑝𝑗) . (8.4)

Here, 𝒞2 denotes the set of all possible second-order cliques, and correspondingly,
cliques containing all possible 𝑘th-order cliques will be denoted as 𝒞𝑘.

8.2.1.1 Second- and Higher-order MRF Models

The arguably most common MRF model used in computer vision tasks is the
second-order (pairwise) model containing at most cliques of size two (used
e.g. for segmentation, image denoising, restoration, deformable registration).
Often, second-order MRFs are used synonymously with MRF models, and the
modeling consists of assigning the first-order potentials to the data term, and
the second-order term to the regularization. Presumably, the major reason for
this is that for the second-order MRFs, many efficient and general optimization
methods have been proposed over the last years [Boykov et al., 2001,Kolmogorov,
2006,Komodakis et al., 2007,Lempitsky et al., 2007].

Only recently, optimization methods for higher-order models have been pro-
posed. Compared to the second-order approaches, these methods are still not
as general and efficient, and not as easy to use. Also, these methods have in
common that the higher-order models are applied for implementing regularization
terms. While this is applicable to many computer vision problems, it is not
obvious how this modeling and corresponding optimization can be transfered
to the linear registration problem. Here, we give a brief overview of recent
higher-order optimization methods and discuss their applicability to the problem
at hand. [Kohli et al., 2007,Kohli et al., 2009] consider an efficient optimization
for generalized higher-order Pott’s model [Potts, 1952]. The Pott’s model is
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Figure 8.2: Topology of the proposed MRF model for an affine 2D transformation.
The transformation parameters are represented by the nodes. The edges encode
the costs of the difference measure, associated with the variation of the labeling
of the adjacent nodes.The MRF determines the parameters by optimizing the
sum of the edge costs.

an energy function applicable for regularization by enforcing label consistency
in neighborhoods. However it is not applicable to modeling the linear regis-
tration problem with arbitrary difference measures. The same issue regarding
the regularization term holds also for the applications considered in [Lan et al.,
2006,Potetz and Lee, 2008, Ishikawa, 2009]. [Lan et al., 2006] as well as [Potetz
and Lee, 2008] consider efficient versions of Belief Propagation (BP) algorithm for
encoding label consistency in 2×2 neighborhoods for image denoising. [Ishikawa,
2009] considers the same application with a different optimization strategy, by
combining the reduction of higher-order terms with the fusion-move [Lempitsky
et al., 2007] and quadratic pseudo-boolean optimization (QPBO) [Boros and
Hammer, 2002]. [Rother et al., 2009] address the optimization of sparse higher-
order energies, using soft pattern-based representation of the energy functions,
and by transforming the problem into an equivalent quadratic function minimiza-
tion problem. The linear registration however - in contrast to many others in
image analysis - is not a sparse problem. [Komodakis and Paragios, 2009] employ
a general framework for solving the higher-order model based on a master-slave
decomposition - with many application examples for which the method can be
applied. The proposed decomposition profits from a high degree of independence
of the single slave problems. However, this independence is not given for the
linear registration problem, and the efficient optimization of higher-order slave
potentials is not straight-forward in the case of linear registration.

8.2.1.2 MRF Order for Linear Registration

The order of an MRF model expresses the degree of conditional dependence of
parameters on each other [Bishop, 2006]. Take for example a simple first-order
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model: in this case labeling one parameter with a certain value does not influence
the choice for the labeling of the other parameters inside the MRF energy term.
Thus, the labeling of the single parameters can be performed independently.
Going one step further and looking at a second-order model, we see that the
choice of the label for one parameter 𝑝𝑖 will influence the choice for the labeling
of all the parameters 𝑝𝑗 , which form cliques together with 𝑝𝑖, that is {𝑝𝑖, 𝑝𝑗} ∈ 𝒞.
Finally, we observe that for an MRF model with 𝑛 parameters, the most complex
model is an 𝑛th-order model, in which all the nodes are directly dependent on
all the other nodes. Due to the conditional dependence of the parameters for
the linear registration problem in (8.2), it follows that in general the estimation
of a linear transformation with 𝑛 DOFs requires an 𝑛th-order clique model.

Since direct optimization of this high-order energy is difficult, in the next
section we show how to circumvent this by introducing an approximation to the
original energy 𝐸 which involves only tractable second-order terms.

8.2.2 Energy Approximation for Estimation of Linear Trans-
formations by Second-Order MRFs

The key idea of the proposed approximation is to use the second-order cliques
to encode a cost of a simultaneous variation of two parameters, while the other
parameters are fixed to their current values. This encodes the dependency of
the difference measure on the two respective parameters, while the dependency
on all the other parameters is ignored. However, by simultaneously taking into
account all possible combinations of parameter pairs, we construct the overall
energy term such that the selection of one parameter value depends on all the
others.

Formalized, this results in an MRF model represented by a fully-connected
graph 𝒢*=(𝒱, 𝒞2), where the nodes 𝒱 represent the transformation parameters,
and the edges 𝒞2 are the set of all possible parameter pairs (all possible second-

order cliques). The potential ̃︀𝜓𝑖𝑗 determines the cost of a simultaneous variation
of the transformation parameters 𝑝𝑖 and 𝑝𝑗 while the other parameters are held
fixed at their initial values (the so created parameter set is denoted as 𝑝𝑖𝑗) and
can be written as

̃︀𝜓𝑖𝑗(𝑝𝑖, 𝑝𝑗) = 𝜉
(︀
𝐼 ∘ 𝑇𝑝𝑖𝑗 , 𝐽

)︀
(8.5)

Here, the 𝑘-th entry of 𝑝𝑖𝑗 is explicitly defined as

𝑝𝑖𝑗𝑘 =

⎧⎨⎩ 𝑝𝑖 , 𝑘 = 𝑖
𝑝𝑗 , 𝑘 =𝑗
𝑝′𝑘 , 𝑘 ̸= 𝑖,𝑗

, (8.6)

which simply means that the parameter vector 𝑝𝑖𝑗 takes the value of 𝑝𝑖 as the
𝑖-th entry, and the value of 𝑝𝑗 as the 𝑗-th entry, and has the corresponding
values of the initial parameters 𝑝′ at all other entries. Substituting (8.5) in (8.4),
and normalizing by the number of cliques |𝒞2|, we define the approximative
second-order MRF energy for estimation of linear transformations as

̃︀𝐸(p) =
1

|𝒞2|
∑︁

{𝑝𝑖,𝑝𝑗}∈𝒞2

̃︀𝜓𝑖𝑗(𝑝𝑖, 𝑝𝑗) . (8.7)
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2D 3D
Type Rig. Sim. Aff. Rig. Sim. Aff.
#params (𝑛) 3 5 6 6 9 12
#cliques (|𝒞2|) 3 10 15 15 36 66

Table 8.1: The number of cliques (or potentials/edges) in the approximated
MRF model in Eq. (8.7), for rigid, similarity with anisotropic scaling, and affine
transformations.
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Figure 8.3: Visualization of the energy approximation by a second-order MRF
model for rigid 2D registration. Here, 𝑡𝑥, 𝑡𝑦, 𝜑 denote the translation and
rotation parameters, with initial values 𝑡′𝑥, 𝑡

′
𝑦, 𝜑

′. The evaluation of the original
energy at the parameter point 𝑝 (black) is approximated by the normalized sum
of the energy evaluations at the projections of 𝑝 to the 2D subspaces (red, green,
blue). The subspaces are orthogonal and all pass through the initial point 𝑝′

(gray).

In general, the number of cliques is |𝒞𝑘|=
(︁ 𝑛
𝑘

)︁
, where 𝑘 is the order of the

used terms so that for the second-order model we have 𝑘=2. We give |𝒞2| for
relevant cases in Table 8.1.

In summary, the presented approximation allows us to model the conditional
dependence of the parameters while efficient optimization methods for second-
order models can be used. A simple example of the resulting MRF topology is
illustrated in Figure 8.2. In Section 8.3.1, we evaluate the quality of the proposed
approximation. By sampling of the original and the approximated energy, we
demonstrate that they strongly correlate for reasonable initializations.

8.2.2.1 Interpretation of the Approximation

An interpretation of the approximative energy term (8.7) provides further insight

into the proposed method. In Equation (8.7), the single potentials ̃︀𝜓𝑖𝑗 as defined
in (8.5) are carving out two-dimensional subspaces in the original 𝑛-dimensional
parameter space. These subspaces are parallel to the respective 𝑖𝑗-planes of the
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parameter space and are all passing through the point 𝑝′ representing the initial
parameters. By construction, the subspaces are orthogonal to each other.

The approximated energy can now be compared to the original energy in the
following way. The original energy 𝐸(𝑝) is simply the evaluation of the chosen

difference term at the point 𝑝. The approximated energy ̃︀𝐸(𝑝) is computed
by projecting the point 𝑝 to the single subspaces and averaging the energy
evaluations at the projected points. If we denote the projections of the point 𝑝
to the 𝑖𝑗-subspace by Π𝑖𝑗(𝑝), we can write the approximated energy from (8.7)
also as

̃︀𝐸(p) =
1

|𝒞2|
∑︁
𝑖,𝑗

𝐸(Π𝑖𝑗(𝑝)) . (8.8)

This interpretation is illustrated for the simple case of a rigid 2D transforma-
tion in Figure 8.3.

It is important to notice that the quality of the approximation depends on
the choice of the initialization 𝑝′. Obviously, if we evaluate the approximated
energy at the initial point, that is 𝑝=𝑝′, the approximated energy equals the
original energy, since all the projections of 𝑝 equal to the initial point 𝑝′. With
increasing distance of 𝑝 from 𝑝′, the error made by the projection increases and
deteriorates the approximation. This is demonstrated in Section 8.3.1 where the
quality of the approximation is evaluated.

The stated interpretation can be used to reason about extending the proposed
approximation, by utilizing cliques of higher orders. The approximation would
then read

̃︀𝐸𝑘(p) =
1

|𝒞𝑘|
∑︁

{𝑝𝑖,...,𝑝𝑘}∈𝒞𝑘

̃︀𝜓𝑖...𝑘(𝑝𝑖, . . . , 𝑝𝑘) (8.9)

=
1

|𝒞𝑘|
∑︁
𝑖,...,𝑘

𝐸(Π𝑖...𝑘(𝑝)) , (8.10)

and the order 𝑘 would equal the dimension of the subspaces. For example, using
first-order terms would lead to projecting to lines parallel to the space axes and
passing through the initial point, and third-order terms would imply projecting
to three-dimensional volumes. This generalization might become interesting
since using higher-order building blocks can be expected to increase the quality
of the approximation. Also, efficient optimization for single third-order terms
used as building blocks can be expected to arise earlier than for example for the
12th-order model required for the full 3D affine transformation.

8.2.3 Parameterization

In this section we present the parameterization of linear transformations used in
this work. Linear transformations in homogeneous coordinates can be written in
the form

𝐴 =

⎡⎣ ̂︀𝐴
v⊤ 1

⎤⎦ , (8.11)

where ̂︀𝐴∈R𝑑×(𝑑+1) and 𝑣∈R𝑑 for 𝑑-dimensional problems. Since our work is
motivated by medical applications, in the following we do not consider projective
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Figure 8.4: Number of evaluations of the difference measure needed to compute
the approximated energy at all points in the parameter space. We give an
example for a transformation model with 6 parameters, depending on the order
𝑘∈{1, . . . , 6} of the potentials used for approximation, and with 𝑁={3, . . . , 17}
samples per dimension. The method proposed in this work has 𝑘 = 2, while
the original energy is represented by 𝑘 = 6. Please note that this is only a
theoretical upper bound, and that the actual optimization methods require less
computations.

transformations and we restrict ourselves to affine transformations [Hajnal et al.,
2001a] by assuming that v=0. This results in 6 degrees of freedom in 2D and
12 DOF in 3D.We employ a parameterization in which the affine transformation
is decomposed as

𝐴 =𝑀𝑡 𝑅𝜑 𝑅
−1
𝜃 𝐷𝑠𝑅𝜃 . (8.12)

Here, 𝑀𝑡 represents a translation, 𝑅𝜑 a rotation, and 𝑅−1
𝜃 𝐷𝑠𝑅𝜃 represents the

shearing transformation. For the shearing, 𝑅𝜃 is a rotation and 𝐷𝑠 is a diagonal
matrix, representing anisotropic scaling. We parameterize the single matrices of
Equation (8.12) by respective parameters, compare also [Hartley and Zisserman,
2003]. The 3D rotation matrices are parameterized by Euler angles. The resulting
parameter vectors for the 2D and 3D case are

p = [𝑡𝑥, 𝑡𝑦, 𝜑, 𝑠𝑥, 𝑠𝑦, 𝜃] (8.13)

p = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜑𝑥, 𝜑𝑦, 𝜑𝑧, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧] . (8.14)

Please note that we always consider the parameter 𝑝 in terms of an initial guess
𝑝′ and an update Δ𝑝, such that 𝑝=𝑝′+Δ𝑝.

With this representation, restricting the general affine model from (8.12) to a
more constrained one is simply performed removing the corresponding nodes and
the adjacent edges from the MRF model. Since our implementation performs
these modifications automatically if the search range for one parameter is set
to zero, there is no need for explicit implementation of the registration for the
different transformation types.

8.2.4 Discretization of the Parameter Space

An important part of the proposed method is the discretization of the parameter
search space, that is, the definition of the label space ℒ. On one hand, one would
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N 3 5 7 9 11 13 15 17
FastPD 105 190 300 390 500 600 700 800
exhaust. 135 375 735 1215 1815 2535 3375 4335

Table 8.2: Average number of evaluations of difference measure per iteration for
FastPD, in comparison to exhaustive search. We give an example for the 6 DOF
3D rigid case with 𝑘=2.

like to keep the number of labels small for efficient optimization of Equation (8.7).
On the other hand, we want to avoid a too coarse sampling of the parameter
search space since it might result in inaccurate registration results. To achieve
a trade-off between these two objectives, we employ a successive strategy for
the refinement of the search space. This results in refined parameter updates in
every iteration.

We discretize ℒ in the following manner. For each parameter 𝑝𝑖 we define a
search range which is discretized by uniformly sampling the range between preset
values min𝑝𝑖=𝑝

′
𝑖+minΔ𝑝𝑖 and max𝑝𝑖=𝑝

′
𝑖+maxΔ𝑝𝑖 about the initial value 𝑝′𝑖.

Since the algorithm is guaranteed to reduce the energy in every step (by
explicitly assuring that the new solution decreases the original energy, cf. Figure
8.1), we can assume that the new estimate is closer to the locally optimal solution,
and reduce the search ranges for the parameters. In iteration 𝑘, we rescale the
range delimiters minΔ𝑝 and maxΔ𝑝 by a parameter range refinement factor 𝛼𝑘

(𝛼<1) which defines the new possible values for the parameter updates. The
iterative label space refinement allows us to keep the number of labels small and
we can start with a large parameter range, while being able to achieve sub-pixel
registration accuracy. In practice, the number of labels 𝑁 ranges between 5 and
11 and the maximal possible values for the parameters are used to limit the
parameter ranges (e.g. ±180∘ for rotation), which allows for the fixed setting of
the ranges. We evaluate the performance of the method for different choices of
𝛼 as well as the number of labels 𝑁 in Section 8.3.2.

An interesting observation is that the proposed approximation also strongly
reduces the number of similarity evaluations which would be necessary to evaluate
the energy at all points in the complete parameter space. The discretized 𝑛-
dimensional parameter space with 𝑁 sampling points per dimension contains
altogether 𝑁𝑛 points. Thus, the computation of the original energy at all points
in the parameter space requires 𝑁𝑛 evaluations of the difference measure, since it
is simply evaluated once at every point in the parameter space. On the other hand,
the approximated energy at one point is computed as a sum of |𝒞𝑘| evaluations
of the difference term at points in the two-dimensional subspaces, while the
subspaces require 𝑁𝑘 evaluations each. This means that only |𝒞𝑘|𝑁𝑘 evaluations
have to be performed (with 𝑘 = 2 for our second-order terms).1 From these
evaluations, the approximated energy can be computed for every point by simply
averaging the |𝒞𝑘| scalar values. The number of needed evaluations, depending
on the order 𝑘 of the potentials used as building blocks in the approximation,
and the number of labels 𝑁 , is illustrated in Figure 8.4. This implies that a
brute force exhaustive search would be much more efficient for the approximated

1Actually, slightly less evaluations than |𝒞𝑘|𝑁𝑘 are needed, since the single subspaces share
points where they intersect.
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energy. For small label sets (𝑁 ≈ 5) and low-order (𝑘=2, 3) this might even
be a viable option. Please note that |𝒞𝑘|𝑁𝑘 is only a theoretical upper bound,
and that the actual optimization methods (e.g. FastPD as used in our work)
require less computations. For an example, please refer to Table 8.2. Advances
in discrete optimization, leading to less evaluations, would have a direct impact
on the proposed method.

8.2.5 Optimization

For the optimization of our MRF energy defined in Equation (8.7), we use the
recently proposed FastPD algorithm2 [Komodakis et al., 2007]. FastPD is able
to handle non-submodular functions [Kolmogorov and Rother, 2007], such as
general intensity-based difference measures. Furthermore, FastPD performs well
both in terms of computational efficiency and optimization quality [Komodakis
et al., 2008]. Other optimization methods such as move algorithms based
either on QPBO (Fusion Move [Lempitsky et al., 2007]) or iterative graph-cuts
(e.g Expansion Move, Swap Move [Boykov et al., 2001]), or message-passing
strategies [Pearl, 1988,Weiss and Freeman, 2001] (e.g. Belief Propagation,
TRW-S [Kolmogorov, 2006]) might be considered as well. However, we should
note that due to the non-submodularity of the pairwise energy terms, classical
graph-cut based methods [Boykov et al., 2001] have to be modified to be able to
handle such energies (cf. [Kolmogorov and Rother, 2007]). On the other hand,
message-passing algorithms can handle general energies, however with the cost
of lower computational efficiency [Szeliski et al., 2008].

8.2.6 Implementation Details

The described registration method is implemented with a standard multi-
resolution strategy realized by Gaussian image pyramids with a downsampling
factor of two between levels. No downsampling is performed below 32 voxels per
dimension. The method also supports random subsampling strategies, which are
often used to improve the runtime, cf. e.g. [Pluim et al., 2003b] and references
therein. In terms of performance, the evaluation of the given difference measure
presents the most computationally demanding part of the method. This is
especially the case for large 3D data sets. To this end, we also implemented
the evaluation of the 3D difference measures on the GPU which results in a
significant speedup of the method.

8.2.7 Method Discussion

Formulating the linear registration as an MRF problem shares the advantages of
some standard optimization methods such as Nelder-Mead Simplex or Powell’s
method [Press et al., 1993], that the difference measure is easily interchangeable,
since no derivatives of the measure are required. The integration of novel and
more complex measures – where the derivatives might be complicated to compute
– is simple to achieve in our framework. With freely available discrete optimization
libraries, the implementation of the proposed approach is straight forward.

A possible alternative for decreasing the order of the MRF model is the
usage of high-dimensional labels, where one label encodes the values for multiple

2Available at: http://www.csd.uoc.gr/∼komod/FastPD/.
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parameters. This is done for example in [Glocker et al., 2008a] for encoding the
local translations for deformable registration. For rigid registration for example,
one could encode the translations in x/y/z direction as one parameter with a
high-dimensional label consisting of the combinations of values for 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧,
and rotation as a second one for 𝜑𝑥, 𝜑𝑦, and 𝜑𝑧. Such an MRF model would
be of second-order and have only one clique, which would consist of the two
parameters. The problem with this approach is that the size of the label spaces
increases too much, such that no efficient solution is possible. For the above
example, in which a high-dimensional label represents 3 ordinary labels, the
size-of the high-dimensional label space would be 𝑁3. We performed several
tests following this approach, however, the computation times were prohibitive.

A different possible future line of work would consist of testing different
parameterizations. For example, the label values could be sampled from the
ranges in a non-uniform manner, or different parameterizations of the rotation
angles could be used.

In this work, we only used second-order potentials as building blocks for
the energy approximation. One interesting option would be to also employ
first-order terms, for example to encode the prior probability of the single
parameters. Please note that this way, for the linear registration problem, the
standard MRF philosophy in which the first-order terms encode the data term,
and the second-order terms encode the prior knowledge is reversed. Also, a
possible future modification as efficient, general, and easy to use optimization
methods for third-order MRF models become available would be to build the
proposed approximation on third-order instead of second-order potentials. This
can be expected to improve the approximation quality. The generalization using
𝑘th-order potentials for the approximation is discussed in Section 8.2.2.1.

8.3 Method Evaluation

In this section, we evaluate two important aspects of the proposed framework. In
Section 8.3.1, we evaluate the quality of the proposed energy approximation from
Equation (8.7). In Section 8.3.2, we test the influence of the internal parameters
of the proposed method on the registration results.

All experiments are performed on a standard desktop system with an Intel R○

CoreTM 2 Quad 2.83GHz, 3GB of RAM, and an NVIDIA R○ GeForce R○ GTX 285
GPU with 1GB RAM.

The following stopping criterion is used in all experiments, and for all levels
of the image pyramid. The iterations are stopped when the relative decrease of
the energy (compared to the energy at the initial state) falls below a threshold.
We use a conservative threshold of 0.0001.

8.3.1 Quality of Approximation

In this section we evaluate the quality of the energy approximation, that is how
similar the approximated energy ̃︀𝐸 from Eq. (8.7) is to the original energy 𝐸 in
Eq. (8.2). The idea is to compare the original and the approximated energy by
sampling these functions and computing the correlation coefficient (CC) between
them. This test assesses the error introduced by the approximation, which is
independent of the particular method chosen for the optimization.
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Test Type 𝑛 𝑁 #eval=𝑁𝑛 CC Test 1 CC Test 2

2D rigid 3 80 ∼0.5×106 0.9590 0.9687

2D similarity 5 14 ∼0.5×106 0.8925 0.9169

2D affine 6 9 ∼0.5×106 0.8595 0.8976

3D rigid 6 9 ∼0.5×106 0.8446 0.8510

3D similarity 9 4 ∼2.0×106 0.7864 0.8169

3D affine 12 4 ∼16.8×106 0.7961 0.8120

Table 8.3: Evaluation of the quality of the energy approximation ̃︀𝐸. We compute
the correlation coefficient (CC) between sampled versions of the original and
the approximated energy. This is done for different transformations with 𝑛
parameters, and with 𝑁 sampling points per dimension, resulting in 𝑁𝑛 energy
evaluations per test. Transformation parameters increase from Test 1 to Test 2.
We observe increased approximation quality for simpler models and “smaller”
transformations.

We perform this test for 2D and 3D images, and 3 types of transformations:
rigid, similarity with anisotropic scaling, and general affine transformations.

In 3D, the tests are performed on an MR-T1 volume of the brain from The
Retrospective Image Registration Evaluation Project (RIRE)3 database [West
et al., 1997]. The 2D tests are conducted on a slice from the above 3D volume.
Since the random tests are mono-modal, we employ the sum of squared differences
(SSD) as difference measure. We sample the parameter space equidistantly about
the initial parameters 𝑝′ representing the identity transformation. Two different
ranges are tested, Test 1 representing the larger parameter ranges at the
beginning of the registration process, while Test 2 covers smaller parameter
ranges and represents the setting towards the end of the registration. The ranges
for the sampling of the transformation parameters for Test 1 are as follows:
Translations result from ±10mm, rotations lie between ±45∘, scalings range
between 1±0.2, and the shearing angles 𝜃 are drawn from ±20∘. For Test 2,
the ranges are: ±2mm for translations, ±4∘ for rotations, 1±0.04 for scaling,
±4∘ for shearing angles. The number of sampling points per dimension 𝑁 is
set such that per test at least 500,000 energy evaluations are performed. In
order to keep the computation time reasonable, the tests were performed on the
third finest levels of the image pyramid, that is on 64×64×26 images in 3D and
64×64 images in 2D. Altogether, approximately 21 million energy evaluations
were performed. Details and results of the tests are summarized in Table 8.3.

The tests show that the proposed approximation correlates well for the tested
settings. The average CC over all tests is 0.86, where CC=0 indicates that
two signals are linearly unrelated and CC=1 indicate perfect linear correlation.
As expected, the correlation is higher for simpler models, that is, increases
from affine over similarity to rigid, and it is higher for the 2D than for 3D
transformations. Also, the correlation is higher for the smaller parameter ranges.

These findings are supported by inspecting the energy logs of the original
and approximated energy, acquired during the random registration experiments
performed in Section 8.4.1.1. This results in sampling of the energies along
the paths in the parameter space, which are being traced out by the single

3Available at: http://www.insight-journal.org/rire/
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Figure 8.5: Comparison between the original and approximated energy. (a) A
typical energy log. (b) The CC statistics between the logs of all runs performed
in Section 8.4.1.1 exhibit a high correlation (mean always >0.98), and indicate
that correlation (and thus the approximation quality) increases over iterations
(cf. Section 8.3.1).

registrations. We observe higher correlation coefficient in the logs (CC>0.98),
compared to the coefficients from the 3D evaluation in Table 8.3 (CC<0.85),
caused by a large number of evaluations close to the optimum, which are
performed towards the end of the registration. This shows that the proposed
approximation improves during the registration process. A sample plot of the
logs and the quantitative evaluation is given in Figure 8.5.

8.3.2 Dependency on Parameters

In this section we perform an evaluation on the sensitivity of the proposed method
on the internal parameters: 𝑁 , the number of labels for the discretization of the
parameter space, and 𝛼 the parameter range refinement factor.

We perform the evaluation by varying the setting of the parameters for
1000 random registration tests, and assessing the resulting performance. The
random tests consist in registering a 2D MR-T1 source image to a randomly
displaced target image. The target image is created by applying a random affine
transformation to the source image. The random transformation is generated
by uniformly drawing the transformation parameters from the following ranges:
translations result from ±10mm, rotations lie between ±60∘, scalings range from
1±0.2, and the shearing angles 𝜃 are drawn from ±20∘. We test all possible
combinations for 𝑁 between 3 and 17, and 𝛼 between 0.4 and 0.8, resulting in
40,000 registration runs. For faster computation, the registration is performed
on a downsampled image.

The registration error is computed as the average distance (AD) of the corner
points of a centered 200mm rectangle, which are warped once by the ground
truth transformation and once by the estimated transformation. Please note
that since the AD is measured at the corners, it will in general measure larger
errors, than for the region of interest in the center of the volume.

Figure 8.6 summarizes the results of the experiment. Except for 𝑁 = 3, we
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Figure 8.6: Evaluation of the performance of the proposed framework with
respect to the internal parameters: the number of sampling points per dimension
𝑁 , and the parameter range refinement factor 𝛼. For each different setting of
𝑁 and 𝛼, 1000 random tests are performed. Except for 𝑁 = 3, we observe no
large difference between different parameter settings. The precision is slightly
improved for finer discretization of the search space (higher 𝑁). This however
comes at a higher computational cost.

observe no large difference between the different parameter settings. For 𝑁>3,
the number of failed runs is similar very low (below 0.3%). For finer discretization
of the search space (higher 𝑁) the precision is slightly improved, however, this
comes at a higher computational cost. With respect to the resolution, the
majority of results exhibit a sub-pixel precision. Based on the results of this
evaluation, we set the values to 𝛼=0.6 and 𝑁=5 keep them fixed throughout
the registration experiments in Section 8.4.1.

On a side note, we also performed the same 1000 trials by registration with
optimization of the original energy with the Nelder-Mead Simplex method [Press
et al., 1993] and otherwise same settings. This test resulted with a similar error
distribution as the proposed method, however it had 7 failed trials, which is
inferior to any of the different settings of the MRF-based method for 𝑁>3.

8.4 Applications

8.4.1 Linear Intensity-based Image Registration

In this section, we present results of the direct application of the proposed
framework to the problem of linear intensity-based registration between 3D
images. We test the proposed method by a random study on 3D brain data in
Section 8.4.1.1, and by a series of 3D multi-modal registrations in Section 8.4.1.2.
In this section we use 3D brain images (CT, MR-PD, MR-T1, MR-T2) provided
by the RIRE data base. The CT image has a resolution of 512×512×29 and a
physical voxel size of 0.65×0.65×4mm and the MR images have a resolution of
256×256×26 and a voxel size of about 1.25×1.25×4mm.

8.4.1.1 3D Random Study

The 3D random study is performed by registering a source image to a target
image generated by a random transformation. The source image is an MR-T1
volume. The target image is created by applying a random transformation to
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Test Type Mean Median Std. Dev Failed

Rigid
MRF 0.561 0.422 0.401 0%
Simplex 0.526 0.432 0.403 0%

Similarity
MRF 0.935 0.657 0.805 0.2%
Simplex 1.222 0.931 1.209 1.2%

Affine
MRF 4.277 3.876 2.279 11.2%
Simplex 4.594 4.093 2.395 19.6%

Table 8.4: Summary of the results of the 3D random study from Section 8.4.1.1.
The proposed MRF-based method is compared to Simplex optimization of
original energy. Per transformation type 1000 trials were performed. Results
with an AD error (given in mm) of more than 10mm are discarded as failed,
and excluded from the computation of the statistics. (see also Figure 8.7). For
all runs, the proposed method results in fewer failed runs and exhibits slightly
better accuracy.

the source image, with transformation parameters uniformly drawn from the
following ranges: Translation 𝑡∈ [−30, 30]mm, rotation 𝜑 ∈ [−45, 45]∘, scaling
𝑠 ∈ [0.8, 1.2], and shearing angles 𝜃 ∈ [−20, 20]mm.

Due to the mono-modality of the test, we use the SSD as the difference
measure. The evaluation of the difference term for this test is performed on
the GPU and without a sub-sampling strategy. A multi-resolution approach
with 3 levels is used, and the registration is initialized by aligning the intensity
masses of the two volumes. To speed up the computation and allow for a large
number of tests, the registrations are performed only on the coarsest level of
the image pyramids where the number of voxels in the first two dimensions is
reduced by a factor of four while the number of slices is preserved. Since the tests
are performed at lower pyramid levels at which noise is eliminated, we restrain
from adding noise to the original images in the first place. The registration
error is computed as the average distance (AD), which in 3D is defined on the
corner points of a centered 200mm cube. We perform the study for 3 types of
transformations: rigid, rigid with anisotropic scaling, and affine. For each type
we perform 1000 trials.

We compare the results of the proposed approach to the results obtained
by using the Nelder-Mead Simplex optimization method [Press et al., 1993] on
the original energy function corresponding to the chosen difference measure. To
this end, the same general settings as for our approach are used. In all our
experiments, the internal parameters of the Simplex method (step sizes for the
transformation parameters) are set to the same values as the corresponding
search space ranges of the MRF method. Convergence criteria are thresholds on
the difference of function values at subsequent estimates (1e−20), and changes
in parameters (1e−15), as well as the maximum number of iterations (500). We
have tested these settings for different registration problems, with consistently
good results. The results are summarized in Table 8.4 and the statistics are
represented by box plots4 in Figure 8.7. Please note that due to the chosen

4Box plot notation: The box denotes 50% of data between lower and upper quartiles Q1,
and Q3, i.e. the medians of the upper and lower half of the sorted data; Median denoted
by green line; Whiskers determined by extreme values within Q1−1.5 IRQ and Q3+1.5 IRQ
(interquartile range IRQ=Q3−Q1); The mean and outliers denoted by blue crosses; Red lines
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Figure 8.7: Statistics of the AD error in mm for the 3D random study described
in Section 8.4.1.1, represented by box plots (please see footnote 4 for description).
Please refer to Table 8.4 for a brief description and the numerical representation
of the results. With respect to resolution, all errors less than 4mm indicate
sub-voxel accuracy.

resolution, errors of less than 4mm are below the physical voxel size. In Figure
8.5, we give an exemplary energy log acquired over the iterations, in which we
record the approximated and the original energy. Also, the correlation of the
energy logs for all trials is analyzed.

Two observations can be made from the results of the experiment. The first
one is that the proposed MRF-based method seems to be more robust, such that
more registrations are successful. We classify the registration as successful if the
AD is below 10mm. With this threshold, all experiments for both, the Simplex
and MRF-based optimization, for the rigid case are successful. However, for the
case of similarity with anisotropic scaling, the Simplex method (1.2%) fails 6
times as often as the MRF-based method (0.2%). For the affine case, the Simplex
method (19.6%) fails 1.75 times as often as MRF-based method (11.2%). Similar
results are also obtained by using different thresholds. The second observation
is that for the successful registrations, the MRF-based method yields higher
precision. Generally, the MRF-based method exhibits lower mean and median
errors, and the corresponding standard deviations are also lower. The only
exception is the rigid test, in which the mean error for the Simplex method
is lower. However, the more robust median error is lower for the MRF-based
method also in this case.

With respect to the runtime, one must note that the MRF-based optimization
of the approximated energy is more computationally intensive than the Simplex
optimization of the original energy since it requires more evaluations of the
difference term. Also, the difference is smaller for simpler models, since the
number of evaluations needed for the evaluation of the approximated MRF
energy is smaller. For the performed random tests, the average runtimes were
20.4 seconds for the rigid case, 45.6 seconds for similarity, and 85.6 seconds for
affine transformations.

at Q1−1.5 IRQ, Q1−3 IRQ, Q3+1.5 IRQ, Q3+3 IRQ.
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(a) PD Initial (b) T1 Initial (c) T2 Initial

(d) PD MRF Result (e) T1 MRF Result (f) T2 MRF Result

Figure 8.8: Checkerboard visualization of the multi-modal CT-MR registration
using MRFs on patient P04.

8.4.1.2 3D Multi-Modal Rigid Registration

In this experiment we demonstrate the performance of the proposed approach
for a real multi-modal rigid registration scenario, from the RIRE database. We
perform the registration of CT images to MR-PD, MR-T1, and MR-T2 images.
As the difference measure, we use the entropy correlation coefficient (ECC)
proposed in [Maes et al., 1997b]. A multi-resolution approach with 4 pyramid
levels is used. The transformations are initialized by aligning the intensity masses
of the two volumes.

We perform two tests, the first one on data of one patient with available
ground truth which can be used for training, and an extensive test on 10 patients,
for which the evaluation is performed by the RIRE system. For the training
data set, ground truth transformations between a CT volume and 6 MR images
of one patient (original and rectified scans) are given. We compute the error
by measuring the AD at the corner points of the CT volume, using the ground
truth.

In order to assess the accuracy of the proposed method, we perform the same
tests also by two other methods. The first one is the Simplex optimization on the
original ECC energy term, as discussed in the previous sections. The second one
is the module of rigid registration from the Elastix toolkit5 [Klein et al., 2010a].

5Available at: http://elastix.isi.uu.nl/
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Target Initial pre-al. Simplex Elastix MRF

MR-PD 67.61 26.52 2.79 2.74 2.90

MR-PD rect. 49.64 22.69 4.10 2.85 3.43

MR-T1 46.18 22.49 3.41 3.02 1.82

MR-T1 rect. 65.00 15.63 2.32 1.93 2.66

MR-T2 56.13 22.00 4.08 2.52 3.60

MR-T2 rect. 62.94 22.87 4.43 4.08 4.28

mean 57.92 22.03 3.52 2.86 3.11

median 59.54 22.59 3.75 2.80 3.17

Table 8.5: Results of the 3D multi-modal CT-MR registrations on training data,
described in Section 8.4.1.2. Given is the initial AD (in mm) before registration,
after alignment of the intensity masses, and after registration using the Simplex,
Elastix, and our MRF-based method.

With respect to Elastix parameters, we did our best to provide a setting as similar
as possible to the other two methods, and followed the recommendations from the
Elastix manual for other parameters. We use the same number of image pyramid
levels, and employ the Normalized Mutual Information (NMI) [Studholme et al.,
1999] as the closest fit to the ECC. As the optimization method we selected the
adaptive stochastic gradient descent [Klein et al., 2009], for which the internal
parameters are estimated automatically. The maximum number of iterations
was set to 250. We verified the validity of the settings on the training data. The
results show a similar performance by the methods, with best average results
obtained by Elastix, followed closely by the proposed methods, and then the
Simplex based approach, please compare Table 8.5.

For obtaining comparable runtimes, the evaluation of the difference term
is performed on the CPU in this experiment. To decrease the running time,
we perform a subsampling strategy for all methods, in which 10% of voxels
are uniformly drawn and used for the computation of the difference measure.
Our method performed on average 27 iterations per registration (ca. 7 per
level), resulting in average runtimes of 190 seconds. Elastix on average took 200
seconds, and the Simplex method converged after 30 seconds. Please note that
due to the differences in the implementation of the different methods, this gives
only a rough estimate of the order of magnitude for the runtimes. Furthermore,
since the focus of this work is not on the speed of registration, different tuning
options were not used. For example, while we employ 10% of all voxels in the
sub-sampling, it was shown in [Klein et al., 2007] that already 2000-3000 samples
can yield accurate results, corresponding to ca. 0.15% of all voxels on the finest
level.

For the actual multi-modal test, we used all data sets from the RIRE data base,
for which the MR-PD, MR-T1, and MR-T2 data sets are available, resulting in 10
patients with 3 registrations per patient. All registrations were performed with
the same parameters as for the training data set. The evaluation is performed
by the RIRE system. The tests show a consistent performance of the proposed
method. Table 8.6 summarizes the results and shows that the proposed method
consistently slightly outperforms the other tested methods in terms of accuracy.
See Figure 8.8 for an example of the registration setting. Furthermore, we
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performed the registrations with the MRF-based method also with different
settings of the internal parameters in order to support the findings from Section
8.3.2. For 𝑁=3 and 𝛼=0.6 the error statistics (in mm) are: mean=1.845,
median=1.708, max=4.409. On average, 22 iterations were performed per
registration (ca. 5 per level), resulting in an average computation time of
86 seconds. For 𝑁=17 with 𝛼=0.8, we have: mean=1.746, median=1.695,
max=3.849. On average, 33 iterations were performed per registration (ca. 8
per level), resulting in an average computation time of 858 seconds.

In this scenario, the dependency on parameter settings is even less prominent
than in Section 8.3.2 so that even the smallest possible label set (𝑁=3) leads to
accurate and efficient results.

8.4.2 Intensity-based 2D-3D Registration

The second exemplary application is the 2D-3D registration of medical images,
which shows the applicability of the proposed framework to variations of the
standard registration problem. 2D-3D registration is a challenging task, since a
transformation of 3D space is computed from 2D measurements, so that for the
1-view case, the problem is ill conditioned in the projection direction. In this
application we also demonstrate the robustness of the proposed method to high
noise levels.

The task of 2D-3D registration is to recover a rigid 3D transformation 𝑇
which relates the coordinate frame of the 3D volume 𝐼 to the coordinate system
of the 2D imaging devices, which generate the 2D projection images 𝐽𝑙. The
transformation is estimated by optimizing the difference measure 𝜉 between
the perspective projections of the transformed 3D image 𝑃𝑙(𝐼 ∘ 𝑇𝑝) and the 𝑚
available 2D images 𝐽𝑙

𝐸2D3D(𝑝) =
1

𝑚

𝑚∑︁
𝑙=1

𝜉 (𝑃𝑙(𝐼 ∘ 𝑇𝑝), 𝐽𝑙) , (8.15)

We apply our MRF-framework to the 2D-3D problem, by using Equation
(8.7) and approximate 𝐸2D3D as

̃︀𝐸2D3D(p) =
1

|𝒞2|
∑︁

{𝑝𝑖,𝑝𝑗}∈𝒞2

̃︀𝜓𝑖𝑗(𝑝𝑖, 𝑝𝑗) , (8.16)

with

̃︀𝜓𝑖𝑗(𝑝𝑖, 𝑝𝑗) =
1

𝑚

𝑚∑︁
𝑙=1

𝜉
(︀
𝑃𝑙(𝐼 ∘ 𝑇𝑝𝑖𝑗 ), 𝐽𝑙

)︀
. (8.17)

8.4.2.1 Evaluation

We assess the performance of the proposed approach by comparing it to the
optimization of the original energy by the Simplex method. In order to perform
the evaluation in a controlled setting, we conduct the 2-view tests on real 3D data,
but with synthetically created projections, compare Section 8.4.2.1. This way,
the choice of the difference measure plays a smaller role and we can compare the
performance of the optimization approaches. This also has the advantage that
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(a) 3DCBR (b) DRR View 1 (c) DRR View 2

(d) Fluoroscopic Image (e) Noisy DRR View 1 (f) Noisy DRR View 2

Figure 8.9: Visualization of input data for the 2D-3D tests: (a) 3D cone beam
reconstruction (3DCBR), which is used in all experiments; (b,c) Exemplary
DRRs which are computed in the iterations of the algorithm; (d) Fluoroscopic
image used as target in the 1-view test; (e,f) Exemplary DRRs with 20% uniform
noise used as targets in the 2-view tests.

we can test on a large number of different views with known ground truth, rather
than performing the tests on only a few real views by randomly disturbing the
initialization. The robustness and applicability to real settings is demonstrated
in experiments by adding noise to the projections. Furthermore, we test our
algorithm in a more challenging real 1-view test scenario in Section 8.4.2.1, in
which a real fluoroscopic image is used.

General Setting As input data for the experiments we use a 3D cone beam
reconstruction (3DCBR) of a phantom head with a cerebral vessel structure,
computed from a single sweep of a monoplane stationary C-arm with flat-panel
detector (Siemens Axiom Artis dTA). As 2D input we use a fluoroscopic image
obtained by the same device, with ground truth transformation obtained by
feature-based registration, and verified by careful inspection. An overview of the
data is given in Figure 8.9.

The 2D projections required inside the algorithm and synthetically generated
targets are computed as digitally reconstructed radiographs (DRRs) by GPU
accelerated ray-casting. A conversion operator is used to remap the intensity
values to X-ray energies.

All tests are performed with a set of random offset poses. The poses are
generated by uniform random sampling of the parameters from certain ranges.
For the 2-view test, we have 𝑡∈ [−30, 30]mm, and 𝜑∈ [−80, 80]∘. For the 1-view
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(a) TRE for 2-view test with noise
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(b) TRE of successful runs

Figure 8.10: Results of 400 random 2-view test runs with 20% uniform noise.
The x and y-coordinates of the graph points represent the TRE before and after
registration. The diagonal is the line of no improvement. (b) shows a zoom of
the area of successful test runs.
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(a) Target Registration Error (TRE)
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(b) Projection Error (PE)

Figure 8.11: Results of the 200 random 1-view test runs with fluoroscopic image.
In (a), the TRE is shown, while (b) illustrates the projection error.

test, we use 𝑡∈ [−15, 15]mm, and 𝜑∈ [−40, 40]∘. We evaluate the results by the
Target Registration Error (TRE). The TRE is computed as the mean of the
distances between a set of points transformed by the ground truth transformation
and the same point set transformed by the estimated transformation. The point
set consists of points of a regular 10×10×10, 20cm large grid, centered at the
phantom head.

As the difference measure we use the local version of the Normalized Cross
Correlation [Penney et al., 1998]. We also performed tests with the Gradient
Difference measure [Penney et al., 1998], with very similar results.

The registrations are performed with a standard multi-resolution strategy
using a Gaussian image pyramid. In all 2D-3D experiments, the initial search
space ranges for the MRF-based method are ± 50mm for the translations and
± 90∘ for the rotations. We use 𝑁=7 and 𝛼=0.66. For these settings, the average
registration run takes about 4 minutes. Again, different parameter values were
tested for the parameters, resulting in very similar registration results.

2-View Test with DRRs as Target Image We carry out the 2-view test
by performing 400 runs. In each run, a new pair of orthogonal DRRs 𝐽1,𝐽2
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is generated by applying a random pose to the 3DCBR image. In order to
test the robustness of the approach in a challenging scenario, uniform noise
in the range of 20% of the intensities is added to all generated DRRs, please
compare Figures 8.9e and 8.9f. The same test was also performed without noise,
yielding comparable results. The tests show that both, the Simplex and the
MRF approach perform well, with a small number of failed registrations only for
very large initial misalignments, for details please compare Figure 8.10.

1-View Test with Fluoroscopic Image as Target The second series of
experiments is performed in a 1-view scenario by registering the 3DCBR volume
to a real fluoroscopic image. Here, we use 200 random poses as initial offsets to the
3D transformation. Similar to Section 8.4.1.1, we employ only the two coarsest
levels of a five-level image pyramid to speed up the computation (resulting in
projection images of size 128×128). Additionally to the TRE, we also evaluate
the Projection Error (PE), which is computed by projecting the transformed
3D samples used for TRE computation to the image and computing their mean
distance. The PE measures the pixel error visible in the image, such that it
is not very sensitive to misalignments in the viewing direction. By comparing
the TRE and PE measures in Figure 8.11, we observe that while the PE is
approximately the same for both approaches, the TRE (in mm) is slightly better
for the MRF-based approach (Simplex: mean=27.48, median=15.43, std.=25.09;
MRF: mean=14.7, median=8.86, std.=14.8). With respect to the used resolution,
the minimal errors are within sub-voxel accuracy. This suggests that the MRF
optimization is able to better recover the translation along the viewing direction.

8.5 Conclusion

We present an MRF-based framework for linear intensity-based registration of
medical images. The key idea is to approximate the original energy corresponding
to the chosen difference measure by tractable second-order terms. To our best
knowledge, this is the first time that an approach for linear intensity-based
registration based on MRFs and discrete optimization is presented. The proposed
model deviates from the common MRF problem modeling since it involves only
pairwise terms, which do not encode a regularization term but are used as
building blocks to represent the cost function. While the number of parameters
is lower than for classical MRF problems, the parameters are not localized in
space, and they influence the problem globally and not only in their direct
neighborhood. The experimental evaluation confirms the quality of the proposed
approximation and shows that the method is not sensitive to the setting of the
internal parameters.

Furthermore, we demonstrate the applicability of the method for standard
mono- and multi-modal image registration, as well as 2D-3D image registration.
The registration experiments indicate increased robustness and precision of the
proposed method in comparison to standard optimization of the original energy
function. The 2D-3D experiments show the applicability of the framework also
to less well-conditioned problems, such as 1-view 2D-3D registration. These tests
also demonstrate the robustness of the method to high noise levels.

Regarding the computation time, we find that our method is less efficient than
the Simplex method due to the higher number of evaluations of the difference
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term. However, our running times are similar to the stochastic gradient descent
when using the same number of sub-samples. Further tuning options, such as
reducing the number of sub-samples were shown to decrease the computation
time of the stochastic gradient descent with similar accuracy. This might also
be an option for our method.

Due to the active development in discrete optimization, the proposed method
has a strong further potential as it allows to transfer the advances in MRF
optimization to linear registration problems, for example the integration of faster
methods, or upcoming methods for third-order models.
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Mean Error Median Error Maximal Error
Target Simplex Elastix MRF Simplex Elastix MRF Simplex Elastix MRF
PD - P01 1.831 2.200 1.870 1.743 2.042 1.781 2.387 2.807 2.501
PD - P02 0.972 1.237 1.001 0.952 1.226 0.996 1.460 1.826 1.479
PD - P03 16.438 16.784 16.407 16.569 16.550 16.472 17.427 18.690 17.495
PD - P04 3.359 4.749 3.226 3.260 4.663 3.133 4.052 6.310 3.884
PD - P05 1.706 1.493 1.746 1.724 1.434 1.733 2.047 1.783 2.029
PD - P06 1.534 1.769 1.587 1.506 1.589 1.525 2.819 3.079 2.902
PD - P07 1.880 2.026 1.891 1.924 2.036 1.938 2.047 2.880 2.026
PD - P08 3.069 3.300 3.063 2.959 3.255 2.962 3.711 4.287 3.716
PD - P09 2.591 2.400 2.574 2.398 2.297 2.385 3.668 3.915 3.634
PD - P10 2.180 1.999 2.190 2.262 2.061 2.263 2.416 2.362 2.416

PD overall 2.067 2.226 2.078 2.005 2.018 1.986 4.052 6.310 3.884

T1 - P01 1.218 1.520 1.215 1.313 1.487 1.090 1.680 2.444 1.688
T1 - P02 0.592 0.723 0.608 0.695 0.705 0.690 0.820 1.069 0.872
T1 - P03 1.306 1.205 1.423 1.424 1.286 1.484 1.880 1.937 2.006
T1 - P04 2.080 1.944 2.126 2.206 2.057 2.274 2.873 2.240 3.003
T1 - P05 0.933 0.917 0.956 0.929 0.961 0.953 1.064 1.215 1.084
T1 - P06 1.253 1.288 1.253 1.186 1.327 1.148 2.159 2.088 2.301
T1 - P07 0.908 1.012 0.907 0.874 1.058 0.863 1.054 1.655 1.136
T1 - P08 1.775 2.020 1.886 1.818 1.937 1.954 1.971 2.364 2.068
T1 - P09 1.569 1.737 1.521 1.405 1.553 1.465 2.495 3.172 2.589
T1 - P10 1.417 1.175 1.296 1.416 1.241 1.302 1.458 1.377 1.395

T1 overall 1.275 1.334 1.286 1.259 1.230 1.154 2.873 3.172 3.003

T2 - P01 2.909 2.099 2.247 2.826 1.957 2.268 4.271 2.707 2.835
T2 - P02 2.132 1.370 1.512 1.938 1.364 1.414 3.647 1.898 2.636
T2 - P03 1.224 2.018 1.160 1.236 1.938 1.113 1.536 3.060 1.518
T2 - P04 2.817 3.541 2.899 2.793 3.569 2.696 3.245 4.192 3.647
T2 - P05 1.614 1.828 1.652 1.743 1.879 1.799 2.376 2.678 2.299
T2 - P06 1.266 1.264 1.276 1.210 1.222 1.240 2.094 2.232 2.324
T2 - P07 1.952 1.986 1.842 1.945 1.875 1.840 2.168 2.750 1.877
T2 - P08 2.673 3.053 2.686 2.575 2.975 2.580 3.099 3.748 3.556
T2 - P09 2.218 2.220 1.899 2.104 2.072 1.735 3.331 3.598 2.737
T2 - P10 2.027 2.110 1.799 2.080 2.106 1.804 2.374 2.900 2.076

T2 overall 2.053 2.085 1.856 1.979 1.950 1.853 4.271 4.192 3.647

OVERALL 1.789 1.870 1.729 1.743 1.815 1.739 4.271 6.310 3.884

Table 8.6: Results of the 3D multi-modal CT-MR registrations on patient data,
described in Section 8.4.1.2, with 𝛼=0.6 and 𝑁=5. Given is the mean, median
and maximal error (in mm) after registration using the Simplex, Elastix, and
our MRF-based method. The results for PD - P03 are not taken into account,
since all three methods failed in this case.
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Chapter 9

Minimal Deformations†

Nonlinear registration is mostly performed after initialization by a global, linear
transformation (in this work, we focus on similarity transformations), computed
by a linear registration method. For the further processing of the results, it is
mostly assumed that this preregistration step completely removes the respective
linear transformation. However, we show that in deformable settings, this is
not the case. As a consequence, a significant linear component is still existent
in the deformation computed by the nonlinear registration algorithm. For
certain applications, such as construction of Statistical Shape Models (SSM)
from deformations, this is an unwanted property: SSMs should be invariant to
similarity transformations, since these do not capture information about shape.
We propose a method which performs an a posteriori extraction of a similarity
transformation from a given nonlinear deformation field. To this end, a closed-
form solution minimizing the squared Euclidean norm of the displacement field
subject to similarity parameters is used. Experiments on real inter-subject data
and on a synthetic example show that for application to SSMs, the theoretically
justified removal of the similarity component by the proposed method has a
large influence on the model and significantly improves the results.

9.1 Introduction

This work has two major goals. The first consists of pointing out that deformation
fields resulting from standard registration schemes often contain a significant
amount of linear transformation, and proposing a method to extract this linear
component, thus computing minimal nonlinear deformations. For a visualization
of the setting, please refer to Fig. 9.1. Secondly, we identify the construction of
shape models to be an application for which from the theoretical point of view,
no similarity transformation should be contained in the deformations which are
used to construct the model. If the similarity component is not extracted from
the deformation, the first modes of the constructed model may not describe the
largest variation in shape of the given samples. We show that by the proposed
method, this negative effect can be eliminated, thus resulting in improved shape
models.

†This chapter is based on the work in [Zikic et al., 2008c,Zikic et al., 2008a].
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(a) 2D MRI slice of corpus callosum (b) Original deformation 𝑇𝑙𝑜𝑐𝑎𝑙

(c) Extracted similarity transformation 𝑇𝑙𝑖𝑛 (d) Remaining minimal deformaion 𝑇𝑛𝑙

Figure 9.1: Illustration of the discussed setting. On a set of images of corpus
callosum (a) (see also Section 9.3.1.2), nonlinear registration is performed,
resulting in a deformation field 𝑇𝑙𝑜𝑐𝑎𝑙, see (b). A similarity component 𝑇𝑙𝑖𝑛
(c) is extracted from the original field 𝑇𝑙𝑜𝑐𝑎𝑙, resulting in a minimal nonlinear
transformation 𝑇𝑛𝑙 (d).

In the following, we hope to provide an intuitive understanding why standard
registration methods in general do not compute minimal deformations, and also
why this is an important point when building shape models.

9.1.1 Nonlinear Registration and Resulting Deformations

Nonlinear registration is a technique which has been studied heavily over the
last two decades. The goal of nonlinear registration is to estimate the nonlinear
transformation which relates two given images. This can also be seen as com-
puting the dense point correspondences between the two images. Virtually all
schemes for nonlinear registration proposed in the literature employ a global
linear preregistration step, followed by a nonlinear method accounting for local
differences between the images. We make the observation that global registration
methods cannot fully recover linear transformations in deformable scenarios.
As a consequence, the deformation field which is computed by the local nonlin-
ear registration algorithm contains a linear transformation. This occurs with
intensity-based, as well as with landmark-based linear registration approaches.
The reason for this is that for the exact estimation of the linear part, all point
correspondences must be known. However, the correspondences are not given
for the linear methods, since - as mentioned above - it is the actual task of the
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nonlinear registration method to estimate the dense point correspondences. The-
oretically, landmark-based methods can estimate the linear component correctly,
given dense landmarks. Establishing such landmarks however, is hardly feasible
in practice, and would render the nonlinear registration step superfluous. A very
similar discussion is presented in [Yezzi and Soatto, 2003].

9.1.2 Statistical Shape Models

Statistical Shape Models (SSM) are an emerging technique in the field of medical
image processing and analysis. SSMs are supposed to capture the information
about shape variations of a certain population. SSMs are not only a valuable tool
for studying shape variations of organs and pathologies, but also provide a mean
to capture prior knowledge and thus aid the process of nonlinear registration
in the demanding inter-patient scenario, in which standard methods may easily
fail. For creation of SSMs, two different approaches are used: landmark- and
deformation-based. For the landmark-based approach, corresponding landmarks
have to be computed for all images of the population, compare e.g. [Cootes
et al., 1995]. This can be a very challenging and time-consuming task. Thus, the
idea was developed to create models of shape using deformations which result
from nonlinear registration, compare e.g. [Grenander and Miller, 1998], [Gee and
Bajcsy, 1998], [Joshi, 1998], [Rueckert et al., 2003], or [Cootes et al., 2004].1

With respect to important properties of deformation fields for construction
of SSMs, the literature agrees on the fact that the fields should be free of any
similarity transformation, that is, they should not contain any amount of scaling,
rotation and translation, compare for example [Rueckert et al., 2003, Sec II.A, p.
1016] or [Cootes et al., 2004, Sec. 4, p. 452]. This is a very intuitive goal, since
these parameters do not describe a variation in shape between single subjects
of a population, but a variation in pose and size. Usually, it is supposed that
the global preregistration accounts for this transformation. However, due to the
reasons stated above, in general, linear registration methods cannot fully recover
linear transformations in deformable scenarios, which leads to deformation fields
which contain a linear transformation component. Thus, using these deformation
fields presents a potential source of error for construction of SSMs. The goal of
the presented work is to eliminate this source of error by computing deformation
fields containing no similarity transformation.

Computation of Minimal Deformations. The proposed method decom-
poses a given deformation into a similarity transformation and a minimal non-
linear deformation part. The minimality of the nonlinear part is computed
with respect to the mean squared Euclidean norm of the displacement field
representing the deformation. The actual computation is performed by using a
closed-form solution. The minimization problem is modeled in such way that
the computed minimal deformation is expressed in the reference frame of the
target image. Since the method operates on point correspondences, it can be
applied to dense deformation fields in the complete image domain as well as
only to a region of interest. The method is comparably fast and since it presents

1In the context of computing shape models from deformations, the term Statistical Defor-
mation Models (SDM) is sometimes also used [Rueckert et al., 2003]. The landmark-based
models are also referred to as Active Shape Models (ASM) [Cootes et al., 1995]. For generality,
we employ the term Statistical Shape Models (SSM).

143



Chapter 9: Minimal Deformations

a post-processing step for any given point correspondences, it can be easily
integrated into any existing framework for construction of shape models based
on deformations.

Contribution We consider the following points to be the major contribution
of the presented work.

1. We study the performance of linear registration methods in presence
of nonlinear deformations, and show that for real data, after the global
preregistration, there is a significant linear component of the transformation
which is not retrieved.

2. We propose a method to a posteriori extract the similarity transformation
component from any given deformation field.

3. We theoretically show that using non-minimal deformations for constructing
shape models can be expected to result in models which do not describe
shape variations appropriately.

4. We empirically confirm the results of the theoretical analysis, and show that
the removal of similarity components from deformation fields prior to model
construction leads to improved shape models in terms of interpretability
and compactness.

9.2 Methods

9.2.1 Notation and Basic Definitions

In the context of registration, the transformation which aligns the target and
source images 𝐼𝑇 and 𝐼𝑆 is a function 𝑇 : Ω → Ω where Ω ⊂ R𝑑 is the image
domain of dimension 𝑑 = 2, 3. In most of the current methods for deformable
scenarios, the transformation 𝑇 is composed of a global, linear transformation
𝑇𝑔𝑙𝑜𝑏𝑎𝑙 and the nonlinear local part 𝑇𝑙𝑜𝑐𝑎𝑙, resulting in

𝑇 = 𝑇𝑔𝑙𝑜𝑏𝑎𝑙 ∘ 𝑇𝑙𝑜𝑐𝑎𝑙 , (9.1)

where ∘ denotes composition. In general, the global part is computed prior to
the local component and no joint computation of the two terms is employed.

We model nonlinear transformations as a sum of the identity function Id and
a displacement field 𝑈 , as 𝑇 = Id + 𝑈 . For the local nonlinear transformation
we also apply the notation 𝑇𝑙𝑜𝑐𝑎𝑙(𝑋) = 𝑌 .

9.2.2 Computation of Minimal Deformations

Our goal is to extract the remaining linear transformation component from a
given deformation. To this end, we model the deformation as a composition of a
linear and a nonlinear part

𝑇𝑙𝑜𝑐𝑎𝑙 = 𝑇𝑙𝑖𝑛 ∘ 𝑇𝑛𝑙 . (9.2)

The task now is to estimate 𝑇𝑙𝑖𝑛 and 𝑇𝑛𝑙, such that 𝑇𝑛𝑙 becomes minimal in
some meaningful sense.
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The model from Eq. (9.2) can be reformulated, such that it allows us to
minimize the norm of the displacement field 𝑈𝑛𝑙 of the nonlinear component 𝑇𝑛𝑙
with respect to the linear transformation 𝑇𝑙𝑖𝑛.

𝑇𝑙𝑜𝑐𝑎𝑙(𝑋) = (𝑇𝑙𝑖𝑛 ∘ 𝑇𝑛𝑙)(𝑋) (9.3)

𝑌 = 𝑇𝑙𝑖𝑛(𝑋 + 𝑈𝑛𝑙(𝑋)) (9.4)

𝑇−1
𝑙𝑖𝑛 (𝑌 )−𝑋 = 𝑈𝑛𝑙(𝑋) . (9.5)

Here, in (9.4) we use 𝑇𝑙𝑜𝑐𝑎𝑙(𝑋) = 𝑌 , and express the deformation 𝑇𝑛𝑙 by the
displacement 𝑈𝑛𝑙.

Thus, we can define a cost function, the optimization of which results in a
linear transformation (described by parameters 𝑝), such that the norm of the
vectors of the displacement field becomes minimal with respect to the mean
squared norm. The cost function 𝐸 for the displacement fields discretized by 𝑛
points is given by

𝐸(𝑋,𝑌, 𝑝) =
1

𝑛

∑︁
𝑖

⃦⃦
𝑋𝑖 − 𝑇−1

𝑙𝑖𝑛 (𝑌𝑖; 𝑝)
⃦⃦2

, (9.6)

and the respective minimization is

𝑝 = argmin
𝑝′

𝐸(𝑋,𝑌, 𝑝′) . (9.7)

In other words, the extraction of any other linear transformation would re-
sult in larger displacements (given the reference frame and the type of linear
transformation).

We chose to use the squared norm for several reasons. First, this model has
an exact and fast closed-form solution. Second, for the application to SSMs, the
squared norm is the most common choice in literature, and it is consistent with
the PCA-based shape model.

Once the linear transformation 𝑇−1
𝑙𝑖𝑛 is computed, the corresponding displace-

ment field is resulting from Eq. (9.5) as 𝑈𝑛𝑙(𝑋) = 𝑇−1
𝑙𝑖𝑛 (𝑌 ; 𝑝) − 𝑋, and the

nonlinear remaining part can be constructed by 𝑇𝑛𝑙 = Id + 𝑈𝑛𝑙.
Please note that the minimal deformation 𝑇𝑛𝑙 is expressed in the reference

frame of the target image. This is an important property for the application of the
method to SSMs, compare [Cootes et al., 2004]. Please note also that our method
does not change the results of the complete registration procedure, but rather
computes a different decomposition, that is 𝑇 = 𝑇𝑔𝑙𝑜𝑏𝑎𝑙∘𝑇𝑙𝑜𝑐𝑎𝑙 = 𝑇𝑔𝑙𝑜𝑏𝑎𝑙∘𝑇𝑙𝑖𝑛∘𝑇𝑛𝑙.

Up to this point, the discussion is valid for any invertible linear transformation
𝑇𝑙𝑖𝑛. In the following we constrain the discussion to a similarity transformation.

9.2.2.1 Least-Squares Optimization

For the computation of the similarity transformation which minimizes the mean
squared norm of the displacement field, we employ the closed-form solution of
Umeyama [Umeyama, 1991b], which is shown to give the exact result.

It solves the so called Absolute Orientation Problem, which consists of finding
the similarity transformation which minimizes the mean squared distance between
two point sets 𝐴 and 𝐵 of arbitrary dimension 𝑑, that is

𝑒2(𝑅, 𝑡, 𝑐) =
1

𝑛

𝑛∑︁
𝑖=1

‖𝐵𝑖 − (𝑐𝑅𝐴𝑖 + 𝑡)‖2 , (9.8)
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where 𝑐 is the scaling factor, 𝑡 is the translation vector, and 𝑅 is the rotation
matrix, and 𝑛 is the number of points.

We can apply this method to our problem directly by identifying 𝐵 with points
𝑋 of the image domain, which are the origins of the vectors of the displacement
field, and identifying 𝐴 with 𝑌 = 𝑋 + 𝑈(𝑋), that is, the destination points of
the displacement vectors. The computed entities 𝑅, 𝑡, 𝑐 are used to parametrize
the similarity transformation 𝑇−1

𝑙𝑖𝑛 .
Please note, that for minimization, our method interprets the deformation

as a set of two corresponding point sets. An advantage is that the developed
method is not restricted to dense deformations, but can be applied to arbitrary
point sets. For SSMs, a meaningful choice is to restrict the computation to
regions of interest of the deformation fields [Rueckert et al., 2003].

The computation is comparably fast with the complexity of 𝒪(𝑑𝑛+ 𝑑3) and
has a memory consumption of 𝒪(𝑑𝑛+ 𝑑2). The complexities are linear in 𝑛 and
as we have 𝑑<<𝑛, this makes the method very attractive for our application. In
practice, the runtimes of our Matlab implementation are for example 0.13s for
a 2D example with 𝑛 = 1002 points and 6.27s for 𝑛 = 1003 in 3D.

9.2.3 Statistical Shape Models

Principal component analysis (PCA) is the preferred method for statistical shape
models [Rueckert et al., 2003,Cootes et al., 2004]. The attractive properties of
the PCA for shape modeling include optimal linear reconstruction of the data
set variance, the estimated modes of variation are orthogonal and uncorrelated,
and a closed form solution exists for calculating the principal components at a
relatively low computational cost.

The shape model is built from𝑚 given displacement fields 𝑈 = {𝑈𝑖} represent-
ing the deformations. The 𝑑-dimensional deformation fields with 𝑛 displacement
vectors are linearized as column vectors 𝑢𝑖 ∈ R𝑑𝑛.

From 𝑢𝑖, a linear shape model, which approximates a given field 𝑢 is given
by �̄� and Φ as

𝑢 = �̄�+Φ𝑏 . (9.9)

Here �̄� is the mean of all 𝑚 displacement fields, that is �̄� = 1
𝑚

∑︀𝑚
𝑖=1 𝑢𝑖. The

matrix Φ is constructed from the 𝑘 first eigenvectors Φ𝑖 of the covariance matrix
𝐶, given by 𝐶 = 1

𝑚−1

∑︀𝑚
𝑖=1(𝑢𝑖 − �̄�)(𝑢𝑖 − �̄�)⊤. The eigenvalues corresponding

to Φ𝑖 are denoted by 𝜆𝑖. The vectors Φ𝑖 are also referred to as modes. Finally,
𝑏 ∈ R𝑘 is the parameter vector, describing the contribution of the principal
modes contained in Φ in order to approximate 𝑢 by the employed linear model.
By assuming a Gaussian distribution on the single displacements entries, the
variance of the parameter 𝑏𝑖 can be given by 𝜆𝑖 [Rueckert et al., 2003].

An important measure for evaluating the constructed model is the so called
reconstruction error 𝑒𝑟𝑒𝑐, given by

𝑒𝑟𝑒𝑐(�̄�,Φ, 𝑢, 𝑏) = ‖𝑢− (�̄�+Φ𝑏)‖2 . (9.10)

The reconstruction error measures the error between a given vectorized displace-
ment field 𝑢, and the reconstruction of 𝑢 by using the parameters 𝑏 corresponding
to 𝑢, and the model given by �̄� and Φ. The parameter vector 𝑏 is computed by
a projection of 𝑢 onto the model, that is by 𝑏 = Φ⊤(𝑢− 𝜇𝑢), where 𝜇𝑢 denotes
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Figure 9.2: Example demonstrating how the largest mode used for generation of
data (blue area) is mixed with the remaining modes (red). We measure this by
the amount of the explained variance. This behavior is due to the finite number
of samples used, in which case the PCA does not reconstruct the actual modes
which generate the data, but rather their linear combination. The black curve
shows the true variance of the remaining modes (2nd to last).

the mean of 𝑢. The variance explained by a single mode Φ𝑖 corresponds to the
variance of 𝑏𝑖, which is Var

[︀
Φ⊤

𝑖 (𝑢− 𝜇𝑢)
]︀
.

With respect to the proposed method, the only modification of the standard
model construction process is that instead of the original displacement fields
𝑈 , we use minimal deformation fields 𝑈𝑛𝑙, from which the maximum amount of
similarity transformation is extracted by our method as described in Sec. 9.2.2.

9.2.3.1 Influence of Similarity Transformations in Deformation Fields
on SSMs

In this Section, we argue that if similarity transformation components are not
removed from the deformation fields, this will in general lead to shape models in
which the first modes do not necessarily describe the largest variations in shape.

It is a general property of the PCA that - when operating on a finite number
of samples - it does not compute the actual modes which generate the data, but
rather a linear combination of these. This behavior is illustrated in Fig. 9.2 for a
general example. Here, a model is constructed from 𝑛 = 122 orthogonal samples.
It can be seen how the variance which is actually generated by the first mode
during construction of the samples is explained by the first four reconstructed
modes.

In particular, this general behavior also occurs for data, which can be seen
as generated as a combination of nonlinear deformation and similarity transfor-
mations. This is the case for non-minimal deformations. This means that the
similarity transformations will not be represented by single modes, but their
contribution is distributed over several modes describing nonlinear deformation.
Since similarity transformations are global, the corresponding modes have a large
variance, such that mostly the first modes of the model will be influenced by
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Figure 9.3: Three example instances of the Deformed Spoon.

the effect described above. As a consequence, for non-minimal deformations, in
general we can not expect that the first modes of the model describe the largest
variations in shape. This underlines the importance of using minimal deforma-
tion fields. Our experimental tests on real data (Fig. 9.5) closely resemble the
behavior predicted in Fig. 9.2.

9.3 Results and Evaluation

In this part, we discuss and evaluate the results of the application of the proposed
method to the construction of shape models.

9.3.1 Test Settings

In this section we briefly present the synthetic and the corpus callosum setting,
which are used for evaluation.

9.3.1.1 Synthetic Example

To demonstrate some of the propositions of the presented work on a simple
example, a synthetic data set with ground truth deformations is constructed.
The set consists of 100 deformed versions of an image of a spoon - a selection
is illustrated in Fig. 9.3. The spoons are deformed randomly according to two
deformation modes, one altering the cup-size and the other controlling the grip
width. The outline of the spoons in the target image is equipped with a dense set
of 50 equidistant landmarks. The transformations used for warping the images
are also applied to the landmarks. The deformed spoons are registered by a
similarity transformation which minimizes the squared norm of the errors on the
landmarks.
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9.3.1.2 Test on Real Corpus Callosum Data

We test the proposed method on real data which is part of the LADIS (Leukoaraio-
sis And DISability) study [Pantoni et al., 2005], a pan-European study involving
12 hospitals and more than 600 patients. The data in question consists of 62
2D MR images of the midsagittal cross-section of the corpus callosum brain
structure. The data set is equipped with a set of 72 corresponding landmarks
in each image chosen by physicians. Attention is payed in order to achieve a
possibly accurate and well-distributed set of landmarks. For an example image
of the data set, please refer to Fig. 9.1a.

For the creation of SSMs on the corpus callosum data, nonlinear registration
is performed by two different methods after a linear preregistration. While the
first method (NRM 1) is dedicated and tested for the creation of shape models,
the second (NRM 2) is an alternative method used for comparison in Sec. 9.3.2.

Linear Preregistration. The linear preregistration step is performed by a
similarity transformation based on the landmarks in the images, minimizing the
squared norm.

Nonlinear Registration. The nonlinear registration method (NRM 1)
primarily used for computation of the deformation fields is dedicated to the
construction of shape models and is shown to generate accurate results for the
corpus callosum data in question [Hansen et al., 2007].

The method computes the deformations 𝑇𝑙𝑜𝑐𝑎𝑙𝑖, based on registering the
images 𝐼𝑖 of the data set to the reference image 𝐼𝑅, by solving the following
minimization problem iteratively

𝑇𝑙𝑜𝑐𝑎𝑙 = min
𝑇 ′
𝑙𝑜𝑐𝑎𝑙

∑︁
𝑖

𝒟(𝐼𝑅, 𝐼𝑖 ∘ 𝑇 ′
𝑙𝑜𝑐𝑎𝑙𝑖) + 𝒮(𝑇

′
𝑙𝑜𝑐𝑎𝑙𝑖) , (9.11)

where 𝒟 is a difference measure between images, and 𝒮 is a regularization term
on the transformation. The process is iterative in the sense that starting from
an initial estimate of the reference image 𝐼𝑅, which is simply an average of
all the images, a new, improved estimate is computed in every iteration until
convergence. It can be shown that under an assumption of Gaussian distribution
of the noise, this choice of reference image is optimal with respect to achieving
an unbiased coordinate frame for the shape model [Joshi et al., 2004]. For the
corpus callosum data, 𝒟 is chosen as sum of squared distances and 𝒮 as the L2
norm on the parameter space. The parameterization of the deformation model
is performed by free-form deformation (FFD), based on sine-kernels.

Nonlinear Registration II. This alternative method (NRM 2) is used in
Sec. 9.3.2, in order to demonstrate that the occurrence of similarity components
in deformation fields is independent of the chosen nonlinear method. The method
is based on B-spline FFDs and uses discrete optimization using Markov random
fields. It differs from NRM 1 in choice of parameters, grid resolution, and the
optimization method. For details, please refer to [Glocker et al., 2007].
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Method Param 𝜇𝑎 𝑚𝑎 𝜎𝑎 max𝑎 𝜇 𝜎

NRM 1
(dense)

𝛼 0.816 0.609 0.773 5.224 0.053 1.123
Δ𝑐 0.028 0.022 0.025 0.165 -0.001 0.037
𝑡𝑥 2.08 1.51 2.03 12.46 -1.08 2.70
𝑡𝑦 2.23 1.58 2.20 12.93 -1.07 2.95

NRM 1
(region)

𝛼 1.361 0.972 1.357 10.112 0.090 1.920
Δ𝑐 0.028 0.016 0.034 0.191 -0.002 0.044
𝑡𝑥 2.61 1.83 2.74 18.54 -1.07 3.63
𝑡𝑦 2.60 1.66 2.86 19.47 -1.02 3.73

NRM 1
(boundary)

𝛼 1.293 0.967 1.272 9.312 0.080 1.813
Δ𝑐 0.028 0.015 0.034 0.187 -0.001 0.044
𝑡𝑥 2.60 1.84 2.69 18.21 -1.07 3.59
𝑡𝑦 2.55 1.64 2.83 19.37 -0.99 3.69

NRM 2
(dense)

𝛼 0.698 0.588 0.556 3.955 0.294 0.843
Δ𝑐 0.010 0.008 0.008 0.056 0.001 0.013
𝑡𝑥 1.28 1.15 0.91 6.02 1.03 1.19
𝑡𝑦 1.39 1.23 0.95 5.24 -1.10 1.28

NRM 2
(region)

𝛼 1.458 1.158 1.365 9.034 0.321 1.972
Δ𝑐 0.019 0.011 0.022 0.157 -0.003 0.028
𝑡𝑥 2.10 1.46 2.04 12.80 0.84 2.81
𝑡𝑦 2.07 1.58 2.06 13.36 -1.05 2.72

NRM 2
(boundary)

𝛼 1.408 1.159 1.241 8.226 0.254 1.860
Δ𝑐 0.018 0.011 0.021 0.150 -0.002 0.027
𝑡𝑥 2.07 1.53 1.92 11.76 0.81 2.70
𝑡𝑦 2.01 1.54 1.94 12.25 -0.96 2.62

Table 9.1: Quantification of the similarity transformations extracted for the
corpus callosum data set. The amount of the transformation is described by the
mean (𝜇𝑎), median (𝑚𝑎), standard deviation (𝜎𝑎) and maximum (max𝑎) of the
norm of the parameters. The variation is given by the mean (𝜇) and standard
deviation (𝜎) of the actual parameters. The scaling is expressed as deviation
from 1, that is Δ𝑐 = 𝑐 − 1. The rotation is given in degrees, translation in
millimeters, and scaling is a unit-less factor.

9.3.2 Quantification of Extracted Similarity Transforma-
tion Components

In this section, we quantify the amount of similarity transformations which were
extracted from deformations computed for the corpus callosum example. We
describe the amount of the extracted similarity transformations by computing the
mean, median, standard deviation, and maximum of the norm of the computed
parameters. The variation of the parameters is described by the mean and
standard deviation of the actual parameters (not their norm).

In order to show that the existence of the effect is not dependent on the
nonlinear registration method, we computed the results by (NRM 1) as well as
by an alternative method (NRM 2) described in 9.3.1.2.

Furthermore, the extraction is performed by considering three different regions
of the image domain: 1) the complete dense field on the whole image domain, 2)
only the segmented region of the corpus callosum on the reference image, and 3)
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(a) Synthetic spoon example (rel-
ative error)

(b) Corpus callosum example
(relative error)

(c) Corpus callosum example
(absolute error)

Figure 9.4: Analysis of the relative reconstruction error of the original and
modified shape model on (a) synthetic and (b) on the corpus callosum data
(NRM 1). Please note that the error is scaled by the initial error, such that both
plots start with unit error. This is done to have a fair comparison, since the
absolute error for the original model is always larger, compare (c). Notice the
better reconstruction ability of the modified model when more than the very
first modes are used.

only the boundary of the corpus callosum on the reference image. As discussed
in [Rueckert et al., 2003], the construction of the model based on the region of
interest can be a meaningful choice for a specific part of anatomy. For these
cases (region, boundary), the extracted similarity components are larger than for
the complete dense field, compare Table 9.1.

The results in Table 9.1 demonstrate that there is a large and highly varying
amount of similarity transformation contained in the computed deformation
fields. For a visualization of the extracted similarity transformations (based on
the deformation in the corpus callosum region), please refer to the supplementary
material at http://campar.in.tum.de/personal/zikic/cvpr2008/.

9.3.3 Effects of Proposed Method on SSMs

In the following sections we discuss the impact of using minimal deformations
for construction of shape models and compare the resulting models with original
SSMs.

In Sec. 9.3.3.1 we show that not only the variance, but also the relative
reconstruction error of the modified SSMs is lower. More importantly, in Sec.
9.3.3.2 we inspect the contribution of the single modes to error reduction. We
demonstrate that the original modes contain a similarity transformation, which
is an unwanted property for SSMs, while the modified SSMs are similarity-free
by construction.

9.3.3.1 Reconstruction Ability of the Model

The shape models built from minimal deformations have a reduced variance
compared to the original models - this is equivalent to a larger reconstruction
error, and shown in Fig. 9.4c. As we show in Sec. 9.3.3.2 and Fig. 9.5, this is
due to the original model containing a similarity component. However, we also
investigate how much of the remaining variance can be explained by using the
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(a) Synthetic spoon example (b) Corpus callosum example

Figure 9.5: Analysis of the reconstruction ability of the single modes of the
original and modified shape model on synthetic (a) and the corpus callosum
data (NRM 1). The variance explained by single modes of the respective model
is given. The contribution for the original model is decomposed into the variance
explaining the similarity transformation component and the nonlinear component.
This compares well to our theoretical analysis in Figure 9.2, supporting the
hypothesis that the similarity transformation component is the most significant
in the original deformation data.

model and to this end we compute the relative reconstruction error. Here, the
reconstruction error as defined in Sec. 9.2.3 is divided by the norm of original
error, in order to enable the comparison of relative performance of original and
modified model.

The reconstruction ability is tested by averaging a series of 10 leave-10-out
experiments. It can be seen in Fig. 9.4 that the very first modes of the original
model describe more than the corresponding modes of the modified model. Sec.
9.3.3.2 and Fig. 9.5 reveal that this relative improvement is due to the reduction
of the error in the similarity component of the original model and that actually
more deformation is described by the first mode of the modified model for
both test cases. When more than the very first modes are included - which is
the interesting case for applications - the reduction of the relative error of the
modified model is superior, compare Fig. 9.4.

Please also note that for the simple synthetic example which was generated
from two modes, the relative reconstruction error is reduced to zero by the
modified model by using the first two modes, in contrast to the original model,
compare Fig. 9.4a.

9.3.3.2 Analysis of the Single Modes

To gain further insight into the reconstruction ability of the models, the single
modes of the models are examined. For this, the modes of the original model are
divided into a similarity and a nonlinear component, as described in Sec. 9.2.2.1.
Please note that the modified model does not contain a similarity transformation
by construction. In Fig. 9.5 we visualize the variance explained by the single
components of the original model, and compare this with the modified model.
The results correspond to the theoretical prediction given in Sec. 9.2.3.1 and
Fig. 9.2.
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9.4 Discussion and Conclusion

Several observations favor the minimal model. First, the modified model
is more compact. Second, the first mode of the modified model explains more
nonlinear deformation than the first mode of the original model, which mostly
explains the similarity component. This means that if non-minimal deformations
are used to construct the model, the first mode does not describe the strongest
variation in shape.

9.4 Discussion and Conclusion

In this work, we show that similarity transformations are inherently a part
of the deformation fields obtained by standard nonlinear registration schemes.
This is in contrast to the assumptions usually made. We propose a method
which computes minimal nonlinear deformations by extracting the similarity
transformation components.

We show that using minimal deformations is crucial for the construction of
shape models, since otherwise the models are seen to describe other effects than
changes in shape, which can lead to wrong results for the applications.

The proposed method eliminates the negative effects which can occur for
SSMs based on non-minimal deformations. Existing SSM frameworks based
on deformations can be extended in a straight forward way to make use of our
method and thus benefit from using minimal deformations.
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162



REFERENCES

[Ferrant et al., 1999] Ferrant, M., Warfield, S., Guttmann, C., Mulkern, R.,
Jolesz, F., and Kikinis, R. (1999). 3d image matching using a finite element
based elastic deformation model. In Proc. International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI), volume 99.
30

[Ferrant et al., 2000] Ferrant, M., Warfield, S., Nabavi, A., Jolesz, F., and
Kikinis, R. (2000). Registration of 3d intraoperative mr images of the brain
using a finite element biomechanical model. In Proc. International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI),
volume 1935, pages 19–28. 30

[Fitzpatrick et al., 2000] Fitzpatrick, J., Hill, D., and Maurer Jr, C. (2000).
Image registration. Handbook of medical imaging - Medical Image Processing
and Analysis, 2:447–513. 17

[Fleute and Lavallee, 1999] Fleute, M. and Lavallee, S. (1999). Nonrigid 3-
d/2-d registration of images using statistical models. In Proc. International
Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI), pages 138–147, London, UK. Springer. 92

[Florin et al., 2005] Florin, C., Williams, J., Khamene, A., and Paragios, N.
(2005). Registration of 3D angiographic and X-ray images using sequential
monte carlo sampling. In Computer Vision for Biomedical Image Applications,
First Int’l Workshop, CVBIA ’05, volume 3765 of Lecture Notes in Computer
Science (LNCS), pages 427–436. Springer. 92

[Gee and Bajcsy, 1998] Gee, J. and Bajcsy, R. (1998). Elastic matching: Con-
tinuum mechanical and probabilistic analysis. Brain Warping. 143

[Gee et al., 1994] Gee, J., Haynor, D., Reivich, M., and Bajcsy, R. (1994). Finite
element approach to warping of brain images. In Proc. SPIE Medical Imaging,
pages 327–337. 30

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic re-
laxation, gibbs distributions, and the bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 6(6):721–
741. 115

[Gill et al., 1986] Gill, P. E., Murray, W., and Wright, M. H. (1986). Practical
Optimization. Elsevier. 98

[Glocker et al., 2007] Glocker, B., Komodakis, N., Paragios, N., Tziritas, G., and
Navab, N. (2007). Inter and intra-modal deformable registration: Continuous
deformations meet efficient optimal linear programming. In Information
Processing in Medical Imaging, Kerkrade, Netherlands. 149

[Glocker et al., 2008a] Glocker, B., Komodakis, N., Tziritas, G., Navab, N., and
Paragios, N. (2008a). Dense image registration through mrfs and efficient
linear programming. Medical Image Analysis (MedIA), 12(6):731–741. 51, 53,
80, 116, 126

163



REFERENCES

[Glocker et al., 2008b] Glocker, B., Paragios, N., Komodakis, N., Tziritas, G.,
and Navab, N. (2008b). Optical flow estimation with uncertainties through
dynamic mrfs. Proc. Conference on Computer Vision and Pattern Recognition
(CVPR). 49

[Glocker et al., 2009] Glocker, B., Zikic, D., Komodakis, N., Paragios, N., and
Navab, N. (2009). Linear image registration through mrf optimization. In
Proc. IEEE International Symposium on Biomedical Imaging (ISBI). 115

[Gold and Rangarajan, 1996] Gold, S. and Rangarajan, A. (1996). A graduated
assignment algorithm for graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 18(4):377–388. 99, 101

[Gold et al., 1998] Gold, S., Rangarajan, A., ping Lu, C., and Mjolsness, E.
(1998). New algorithms for 2D and 3D point matching: Pose estimation and
correspondence. Pattern Recognition, 31:957–964. 101

[Gorges et al., 2005] Gorges, S., Kerrien, E., Berger, M.-O., Trousset, Y., Pesca-
tore, J., Anxionnat, R., and Picard, L. (2005). Model of a vascular C-Arm for
3D augmented fluoroscopy in interventional radiology. In Proc. International
Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI), pages 214–222. 112

[Granger and Pennec, 2002] Granger, S. and Pennec, X. (2002). Multi-scale
EM-ICP: A fast and robust approach for surface registration. In Proceedings
of the 7th European Conference on Computer Vision-Part IV (ECCV’02),
pages 418–432, London, UK. Springer-Verlag. 99

[Grenander and Miller, 1998] Grenander, U. and Miller, M. (1998). Computa-
tional anatomy: An emerging discipline. Quarterly of Applied Mathematics,
56:617–694. 143

[Grenander and Miller, 2006] Grenander, U. and Miller, M. (2006). Pattern
Theory: From Representation to Inference. Oxford University Press. 33

[Grochow et al., 2004] Grochow, K., Martin, S. L., Hertzmann, A., and Popovic,
Z. (2004). Style-based inverse kinematics. In ACM Transactions on Graphics
(Proc. of SIGGRAPH 2004). 93

[Groher et al., 2007a] Groher, M., Bender, F., Hoffmann, R., and Navab, N.
(2007a). Segmentation-driven 2D-3D registration for abdominal catheter
interventions. In Proc. International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), volume 4792 of LNCS, pages
527–535. Springer. 92, 111, 112

[Groher et al., 2007b] Groher, M., Jakobs, T., Padoy, N., and Navab, N. (2007b).
Planning and intraoperative visualization of liver catheterizations: New CTA
protocol and 2D-3D registration method. Academic Radiology, 14(11):1324–
1339. 92, 94, 111

[Groher et al., 2009] Groher, M., Zikic, D., and Navab, N. (2009). Deformable 2d-
3d registration of vascular structures in a one view scenario. IEEE Transactions
on Medical Imaging (TMI), 28(6):847–860. 89

164



REFERENCES

[Guimond et al., 2002] Guimond, A., Roche, A., Ayache, N., and Meunier, J.
(2002). Three-dimensional multimodal brain warping using the demons al-
gorithm and adaptive intensity corrections. IEEE Transactions on Medical
Imaging (TMI), 20(1):58–69. 43, 67, 71

[Hajnal et al., 2001a] Hajnal, J., Hawkes, D., and Hill, D. (2001a). Medical
Image Registration. CRC Press. 116, 123

[Hajnal et al., 2001b] Hajnal, J. V., Hill, D. L., and Hawkes, D. J., editors
(2001b). Medical Image Registration. CRC Press. 17

[Hansen et al., 2007] Hansen, M., Hansen, M., and Larsen, R. (2007). Diffeo-
morphic Statistical Deformation Models. Workshop on Non-rigid Registration
and Tracking through Learning - NRTL 2007, in conjunction with ICCV 2007.
149

[Hartley and Zisserman, 2003] Hartley, R. and Zisserman, A. (2003). Multiple
View Geometry in Computer Vision. Cambridge University Press. 123

[Hermosillo, 2002] Hermosillo, G. (2002). Variational Methods for Multimodal
Image Matching. PhD thesis, Université de Nice - Sophia Antipolis. 22
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[Palágyi et al., 2001] Palágyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai,
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