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Abstract

Real-Time detection and pose estimation are two key components in various areas of
computer vision, e.g. in industrial inspection, augmented reality and robotics. The task
is to find the object of interest in an image and to recover its pose without having a priori
knowledge of it. For many applications this has to work robustly and in real-time in order
to be fully operational. While real-time detection of well textured objects has already
reached a high level of maturity, its application on low-textured or texture-less objects is
still an open issue. Unfortunately, those kinds of objects play an important role in man
made environments which makes it necessary and unavoidable to deal with them in an
efficient manner. In this thesis, we therefore present four novel methods for the efficient
and reliable detection of low-textured and texture-less objects.

The first two approaches — made for low-textured objects — are based on fast per-
spective patch rectification. Although both methods follow the same general approach,
one favors fast run-time performance while the other is designed for robustness and fast
real-time learning. Given a reference view of a planar patch, they can quickly recognize
it in new images and accurately estimate the homography between the reference and the
new view. Our methods are more memory-consuming than affine region detectors and
currently limited to a few tens of patches in practice. However, if the reference image is
fronto-parallel to the object and the internal parameters are known, one single patch is of-
ten enough to precisely estimate the pose. As a result, we can efficiently deal with objects
that are significantly less textured than the ones required by state-of-the-art approaches.

To further extend our detection capabilities to texture-less objects, we additionally
propose two novel template matching methods for real-time 3D object detection that
both do not require a time consuming training stage. They allow to consider thousands
of templates in real-time and to represent a 3D object with only a limited set of templates.
While having similar properties, the two methods come in two different flavors: while the
first approach is purely gradient based and extremely fast for small templates, the second
one easily incorporates different modalities and visual cues, can handle differently sized
templates and is much more robust with respect to background clutter. Both approaches
make use of novel representations, either of the template or of the image. Both represen-
tations are invariant to small image deformations which let us test only a small subset
of all possible pixel locations when parsing the image. In combination with discretized
values and their binary representation, they allow us to efficiently scan the image. As a
result, both methods deal with texture-less objects in real-time while being much faster
and much more robust than state-of-the-art approaches.

Keywords: Real-Time Detection, Markerless Tracking, Textureless Objects, Image
based Tracking, Pose Estimation





Zusammenfassung

Detektion und Lageschätzung von Objekten sind zwei Schlüsselkomponenten in unter-
schiedlichen Bereichen des Computer Sehens, wie z.B. in der industriellen Qualitätssiche-
rung, in der erweiterten Realität und in der Robotik. Ihre Aufgabenstellung besteht darin,
ein Objekt in einem Bild ohne a priori Wissen zu finden und seine Lage zu schätzen. Für
viele Anwendungen muss dies robust und in Echtzeit geschehen. Während die Echtzei-
terkennung für gut texturierte Objekte schon ziemlich ausgereift ist, treten bei weniger
texturierten oder texturlosen Objekten immer noch Probleme auf. Leider spielen gerade
diese Objekte in menschlichen Umgebungen eine große Rolle, welche es notwendig macht,
den Umgang mit ihnen effizient zu gestalten. Aufgrund dessen präsentieren wir in dieser
Dissertation vier neue Methoden, um gering texturierte und texturlose Objekte effizient
und verlässlich zu detektieren.

Die ersten beiden Ansätze wurden speziell für weniger texturierte Objekte entwickelt
und basieren auf effizienter, perspektivischer Patch Rektifizierung. Obwohl beide Me-
thoden den selben generellen Ansatz verfolgen, favorisiert die eine ein schnelleres Lauf-
zeitverhalten, während die andere für Robustheit und Echtzeitlernen ausgelegt ist. Hat
man eine Referenzansicht eines planaren Patches, so kann man mit den beiden Methoden
schnell und genau die Homographie zwischen dem Referenzbild und der neuen Ansicht
schätzen. Beide Methoden sind speicherintensiver als Affine Region Detektoren und be-
schränken sich in der Praxis noch auf wenige Dutzend Patches. Jedoch reicht meistens
schon ein einziger Patch aus, um die Lage des Objektes genau genug zu bestimmen, wenn
das Referenzbild fronto-parallel zum Objekt aufgenommen wurde und die internen Ka-
meraparameter bekannt sind. Dadurch kann man u.a. Objekte detektieren, die signifikant
weniger texturiert sind als jene, auf welchen state-of-the-art Methoden arbeiten.

Desweiteren führen wir zwei Template Matching Methoden zur Echtzeiterkennung von
texturlosen 3D Objekten ein, welche keinen zeitaufwendigen Trainingsschritt benötigen.
Sie erlauben es, tausende von Templates in Echtzeit zu behandeln und 3D Objekte mit
einer limitierten Anzahl von Templates zu repräsentiern. Obwohl beide Methoden ähnli-
che Eigenschaften vorweisen, existieren sie in zwei unterschiedlichen Varianten: während
der erste Ansatz Gradienten basiert und besonders für kleine Templates extrem effizient
ist, kann die zweite Methode viele verschiedene Modalitäten miteinbeziehen, ist robus-
ter in Bezug auf Hintergrundrauschen und kann verschieden große Templates effizient
behandeln. Beide Ansätze basieren auf einer neuartigen Template- bzw. Bilddarstellung,
welche sie invariant gegenüber kleinen Bilddeformationen macht. Dies erlaubt es uns, nur
eine kleine Untermenge aller möglichen Pixel Positionen zu betrachten. In Kombination
mit diskretisierten Werten und ihrer binären Darstellung ermöglicht dies uns, das Bild
effizient abzutasten. Dadurch können texturlosen Objekte in Echtzeit detektiert werden,
wobei beide Methoden schneller und robuster sind als alle bisherigen Ansätze.

Schlagwörter: Real-Time Detektierung, Markerloses Tracking, Texturlose Objekte,
Bildbasiertes Tracking, Posenschätzung
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THESIS OUTLINE

While real-time detection and pose estimation of well-textured objects have been subject
to extensive studies in the past years, relatively little effort was spent to improve the real-
time detection of low-textured or texture-less objects. However, especially these kinds
of objects appear quite often in human environments. So it becomes evident that the
success or failure of many vision based applications depends on the capability to handle
these kinds of objects well.

In this context, we present four novel algorithms to provide a solution to that problem
and to initiate the further development of new applications. In the following, we give a
brief outline of the single chapters of this thesis.

Chapter 1: Introduction In our first chapter we introduce real-time object detec-
tion and pose estimation as two key components in computer vision and motivate their
importance on a variety of fundamental vision-based applications like augmented reality,
industrial inspection, robotics and man-machine interfaces. We describe fundamental di-
rections that have been followed and show what kind of objects are still problematic to
detect. Furthermore, we point out some inherent challenges which have to be tackled in
order to guarantee robust real-time behavior. We conclude this chapter by listing our
contributions.

Chapter 2: Real-Time Detection of Low-Textured Objects by Patch Based
Rectification Our second chapter is dedicated to the first part of our main contribution:
the real-time detection and pose estimation of low-textured objects. In this context, we
introduce two different methods — called Leopar and Gepard. Although both methods
have the same general design they come in two different flavors: one emphasizes runtime
efficiency while the other is made for robustness and online training. Before explaining
the single steps of the two methods in detail, we give an introduction and an overview of
related work. This is followed by an explanation of how patch based rectification is done
— starting with the initial coarse pose estimation, continuing with the refinement method
and finishing with the final self-verification. We also show how incremental learning is
performed and give qualitative and quantitative experiments. The chapter is concluded
by discussing possible applications and showing exemplary augmented images.
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Chapter 3: Real-Time Detection of Texture-Less Objects by Template Match-
ing Chapter three covers the second part of our main contribution: the detection of
texture-less objects. The two different methods we present in this chapter — called Dot
and Line — are both based on real-time template matching. After giving a short intro-
duction on the detection of texture-less objects and an overview of related work, we start
explaining our two methods.

We first derive the gradient based similarity measure for Dot. We show how this
measure can be speeded up at runtime by making the template invariant to small defor-
mations and by using a binary representation of the gradient orientations. The efficiency
of this approach can be further increased by applying SSE instructions and by introduc-
ing clustering. We test Dot against current state-of-the-art approaches and conclude by
showing possible fields of application.

In the second part of this chapter, we show the development of Line. In contrast
to Dot, we derive a general framework to enable the simultaneous integration of many
different modalities and visual cues. Again, we first derive the similarity measure and show
how this measure introduces invariance to small image deformations. We explain how our
method can be speeded up by linearizing the memory and by applying SSE instructions.
Furthermore, we show how to preprocess data to incorporate it into our framework and
demonstrate it on the color image and the dense depth map. In a theoretical part we
compute the speed improvement of Line in contrast to its brute force version. This is
followed by an experimental section in which we compare Line against current state-of-
the-art approaches and show its advantages. We finish this chapter by demonstrating the
robustness of Line on exemplary images showing the detection of texture-less objects in
highly cluttered scenes.

Chapter 4: Outlook Chapter four gives an outlook of future fields of research inspired
by the work presented in this thesis. We will discuss open problems like partial occlusion,
scalability, accurate pose estimation for 3D objects, automatic learning from 3D models
and object class detection.

Chapter 5: Conclusion We conclude in chapter five and give some major insights of
this doctoral thesis.



CHAPTER

ONE

INTRODUCTION

In this thesis, we tackle the problem of fast and robust detection of low-textured and
texture-less objects from visual and multimodal data (see Fig. 1.1). The notion detection
refers to the problem of determining whether or not an image contains a specific object.
If the object is detected, pose estimation provides the relative position and orientation
between the camera and the object. The combination of detection and pose estimation
is also often called tracking-by-detection. In this case, no a-priori information about
the current input image is available. This is a much harder problem than the so called
"tracking" approaches [3, 52, 8] which use the a-priori information computed in the
previous images and thus, restrict the search space drastically. However, once these
methods loose track (e.g. due to too fast motions, image blur or simply because the
object is not in the image any more), they fail in giving the correct pose of the object.
In such a case, they have to be reinitialized by above mentioned tracking-by-detection
approaches.

(a) (b)

Figure 1.1: Detection of two texture-less objects with the method introduced in Sec. 3.3. (a) Detection
of an hole-punch. (b) Detection of a toy monkey. Note that the highlighted object contours fit to the
current poses of the objects. In both images detection is performed in front of heavy cluttered background.
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Chapter 1: Introduction

1.1 Motivation
Nowadays, detection and pose estimation of arbitrary objects play an important role in
many application areas. Their main requirements are efficiency, robustness and accuracy.

While for this dissertation we initially focused on the detection of low-textured objects,
we also turned in the course of this work to the much harder problem of detecting texture-
less objects. Although low-textured and texture-less objects have similar object properties,
they fundamentally differ in how they can be robustly detected. In order to understand
what makes them different, we first have to make clear what we understand as low-
textured and texture-less objects. In order to do so, we first have to have a look on what
is called texture.

Although texture is an important term in computer vision, there is no precise definition
of it. The main reason is that natural textures often display different yet contradicting
properties, such as regularity versus randomness, uniformity versus distortion, which can
hardly be described in a unified manner.

For example, the image of the leaves of a tree contains variations of intensities which
form certain patterns called visual texture. However, this pattern is simultaneously ob-
served as a random and a regular one.

The patterns themselves can be the result of physical surface properties such as rough-
ness or oriented strands which often have a tactile quality, or they could be the result of
reflectance differences such as the color on a surface.

Many authors [100, 94, 37, 86, 113] tried to define texture, but up to now no standard
definition has been accepted within the community. Therefore, we fall back to a widely
accepted method: we simply display some exemplary images (see Fig. 1.2) to show what
we understand as texture. In Fig. 1.2(a), we see four objects which are heavily textured.
Informally, textured objects could be well described as objects with accumulated variations
in local image areas of intensity or color.

In contrast to Fig. 1.2(a), Fig. 1.2(b) and (c) show no or only few local areas with in-
tensity or color changes. The mainly consist of homogeneous regions (homogeneous either
in intensity or in color). Therefore, we define objects like the ones shown in Fig. 1.2(b)
as texture-less and the ones shown in Fig. 1.2(c) as low-textured objects. As we will see,
especially those kinds of objects are most difficult to handle.

In the following, we will give a short overview of impacted domains, point out some
inherent difficulties and motivate the need for efficient and robust algorithms to detect
low-textured and texture-less objects (see Fig. 1.2(b) and (c)).

1.1.1 Augmented Reality
One of the most prominent applications for efficient detection and pose estimation is
Augmented Reality (AR). The purpose of augmented reality is to enhance the information
we naturally receive, by superimposing artificial elements in a way that is seamless to the
user. This enables us to bring complementary information and meaning into the real
world that may not be perceived by natural means, making the surrounding real world
interactive and digitally usable.

4



1.1 Motivation

(a) (b) (c)

Figure 1.2: In this figure, we show four objects for each object category: (a) well-textured objects,
(b) texture-less objects and (c) low-textured objects. In case of the low-textured objects, only the logos
provide sufficient texture to detect and estimate the pose of the object.

In order to fulfill this task, real world objects need to be found and tracked, so that the
augmentation can be performed. Initially, this was done using artificial markers. Artificial
markers make it possible to achieve good tracking results even in difficult situations with
illumination change or partial occlusion e.g. by using high contrast colors or by placing
redundant markers in the scene.

Figure 1.3: Artificial paper-based marker encoding additional information (courtesy of ARTag).

Artificial markers usually come in two different flavors: paper-based (Fig. 1.3) and
retro-reflective makers (Fig. 1.4). Paper-based markers are very easy to use and to detect
and allow to encode additional information. However, they need relatively large planar
areas to be attached to, which constrains their usability in real applications. In Fig. 1.5
we show some examples where real world scenes are augmented using the pose provided
by paper-based markers.

In contrast to paper-based markers, retro-reflective markers are smaller, and can be
therefore more easily incorporated into the scene. They have a special coating which
allows reliable detection in the infrared spectrum. This requires infrared cameras which
usually cause additional costs in terms of money and effort. However, once everything is

5



Chapter 1: Introduction

(a) (b) (c)

Figure 1.4: (a) Artificial retro-reflective markers (courtesy of A.R.T.GmbH). (b) Retro-reflective
markers attached to a medical device. (c) Retro-reflective markers attached to a person for action
monitoring (courtesy of TMI Sports Performance).

Figure 1.5: Augmentation of real world scenes with virtual objects. The objects are mainly planar and
do not look realistic after markers have been attached to them (courtesy of ARTag).

set up, the accuracy and the efficiency of retro-reflective markers is usually so good that
they are even applied in medical systems.

Unfortunately, all artificial markers need to be manually placed into the scene which
is not always possible or desirable. Additionally, these markers occlude real world objects,
and it is expensive to revert this occlusion for a realistic impression of the scene.

At this point markerless tracking comes into play: markerless tracking is non intrusive,
i.e. no manual placement of artificial markers is required, and thus no special treatment
for occluded objects is needed. Instead, objects are tracked by using their characteristic
appearance only. While markerless tracking was initially less robust, less reliable and
much slower than maker-based tracking, it has been tremendously improved over the
last few years. Especially in case of well-textured objects, markerless tracking can be
performed fairly satisfactorily now (e.g. [63, 68, 101, 34, 59, 81, 15, 6, 8, 51, 54]).

However, this does not hold for all kind of objects. While markerless tracking of
well-textured objects (see Fig. 1.2(a)) is pretty robust, reliable and efficient nowadays,
low-textured or texture-less objects (see Fig. 1.2(b) and (c)), as they often appear in man-
made environments, still cause a lot of problems: reduced speed or lack of robustness are
only some of the challenges that have to be solved (see Sec. 2.1 and Sec. 3.1 for a more
detailed discussion).
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1.1 Motivation

This is one of the main reasons why the impact of augmented reality in our daily live
is currently not very strong and often limited to fun applications (see Fig. 1.6). However,
we believe that augmented reality can easily be pushed to the next level by developing
methods for the robust and efficient detection of low-textured and texture-less objects.
In this way, we will be able to handle all kinds of objects in human environments which
will significantly extend the possible field of future augmented reality applications.

(a) (b) (c)

Figure 1.6: In this figure we show various products of Augmented Reality companies. (a) Lego box
augmented with a Lego house (courtesy of Metaio GmbH). (b) Baseball card augmented with a baseball
player (courtesy of Total Immersion and Topps). (c) Two augmented robots fighting against each other
(courtesy of Qualcomm). Note that all tracked objects are well textured.

1.1.2 Industrial Inspection
Another prominent domain for real-time detection and pose estimation is industrial image
processing. Here, tracking-by-detection is typically used to find special objects in order to
analyze them, e.g. for visual inspection, visual measuring or visual surveying (Fig. 1.7).
For these applications, the major requirements are robustness, speed and accuracy: to
recognize damaged parts, for instance, the object of interest has to be robustly found and
its pose has to be accurately estimated to allow reliable and precise measurements. This
has to be done as fast as possible to enable a high throughput rate, and thus to reduce
the production costs.

To meet these demands, industrial environments very often allow supportive and con-
strained surroundings. Some of the constraints that can be utilized are lighting conditions,
camera calibration, search space or noise. Using artificial markers, as done in AR applica-
tions (see Sec. 1.1.1), is nevertheless no option because it is most of the time not possible
or efficient to attach them to the objects of interest.

In contrast to marker-based approaches, marker-less tracking provides efficient means
to detect the object reliably without any additional help. However, since industrial ob-
jects usually show only little or almost no texture, are very often non-planar and highly
reflective, state-of-the-art texture based approaches can not be applied. Also, current
methods for the detection of low-textured and texture-less objects exhibit serious prob-
lems in terms of speed and robustness (see Sec. 2.1 and Sec. 3.1 for a more detailed
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discussion). Therefore, alternative solutions for the detection of those kinds of 3D objects
have to be developed.

Figure 1.7: Mechanical components recognition and measurement. Measurements (e.g. euclidean
distances, areas etc.) have to be precise in order to avoid using defect components. One can see that the
objects of interest do not exhibit much texture (courtesy of MVTec).

1.1.3 Robotic Applications
Due to the high computational power of modern computers and the ongoing improvements
in computer vision, artificial intelligence and mechanics, the number of robots used in daily
life has grown during the last decades.

The purpose of robots is to fulfill tasks that humans are not able or willing to do: the
job may be boring, such as domestic cleaning, exhausting or difficult, such as assembling
cars on an automated production line, or dangerous, such as removing landmines. Other
jobs are physically inaccessible, such as exploring the deep sea, cleaning the inside of
narrow tunnels, or performing minimally invasive surgeries.

Robots are often divided into two main categories: dedicated and general-purpose
robots. Dedicated robots are designed to efficiently perform one particular task extremely
well and are used in a wide field of applications, for instance in car production, packaging
and electronics.

On the contrary, general-purpose robots are systems that can perform a variety of
functions independently, however less efficient. Their applications include various services
such as home use, health care, disaster rescue, transportation and many more.

While dedicated robots are already intensively used in industrial environments, inter-
active and general-purpose robots are not yet part of our daily life.

One of the main reasons for it is that general-purpose robots have to interact with
their environment to complete a specific task. This makes it necessary to perceive the sur-
rounding space quickly and to interpret it reliably. In other words, general-purpose robots
need to efficiently detect and recognize arbitrary objects in their direct neighborhood and
estimate their pose. In addition, it is often of great importance to quickly learn new
objects online, since general-purpose robots usually live in fast changing environments in
which never seen objects show up.

Due to the unconstrained human surroundings, this results in handling not only well-
textured but also low-textured and texture-less objects, which is currently one of the main
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problems in robotics and also one of the reasons why autonomous systems are not yet
used in our daily life.

(a) (b) (c)

Figure 1.8: In this figure we show some exemplary robotic applications. (a) The PR2 robot picks a
homogeneous bowl (courtesy of WillowGarage). (b) Visual servoing using a well-textured box (courtesy
of Karlsruher Institut für Technologie). (c) Industrial robot in the car industry detecting the backdoor
of a car (courtesy of Université de Saint Etienne).

1.1.4 Man Machine Interfaces
Another important application for tracking-by-detection is its integration into man-
machine interfaces. Such user interfaces allow humans to operate machines in a more nat-
ural, efficient and intuitive way. This is often achieved by manipulating familiar objects,
and thus taking advantage of their everyday experience [58]. In this context, marker-less
tracking-by-detection is the appropriate technique for seamless interaction with physi-
cal objects, without the need of changing them. For instance, by continuously tracking
the pose of a special hand-held object, the object could be used as an alternative 3D
pointer [58]. It could then serve as what is known as Tangible User Interface [70, 17, 74].
A Tangible User Interface is defined as a new interface type that interlinks the digital and
physical world [93].

Since many man-made objects in human environments show only little or no texture
at all, there is again the need for efficient and robust algorithms to detect those items in
an efficient and reliable way, as discussed in the previous sections.

1.2 Challenges
In contrast to methods based on artificial markers, marker-less approaches do not have
any additional support in the form of attached markers. Therefore, the visual appearance
of the object is the only information that can be used for detection. In case of low-textured
and texture-less items, this visual information is pretty limited.

For instance, low-textured objects, as displayed in Fig. 1.2(c), show texture only in spa-
tially limited areas. With current state-of-the-art algorithms [59, 15, 63, 6, 34, 101] it is
quite difficult to extract enough information from these local areas to efficiently compute
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(a) (b) (c)

Figure 1.9: Possible tangible interfaces are shown in (a) (courtesy of Tangible Media Group, MIT
Media Lab). In (b) and (c) real game board pawns (courtesy of EPFL) and a PDA are used as a
tangible interfaces (courtesy of the University of Cambridge).

the object pose. This is because they usually make extensive use of what is called a con-
sensus set [28] of multiple matched features. A consensus set is defined as a set of data
points that obey the same model (transformation and object model). Since low-textured
objects do not exhibit enough features to form such a reliable consensus set, we have to
find an alternative solution to detect the object reliably.

In contrast to textured or low-textured objects, texture-less objects do not show any
texture at all and consist of homogeneous areas only (see Fig. 1.2(b)). As a result, only
few visual cues are left which are robust to illumination change and noise. One of them
is gradient information. However, although gradients can be robustly extracted, they are
often ambiguous and in case of occluding contours even not attached to a specific object
location. Additionally, gradients are sparse features and only discriminative if seen in a
global context.

Another robust visual cue, well suited for the detection of texture-less objects, is the
dense depth map generated by structured light. However, due to the dense character of
the data it is not obvious how to use, process and integrate it to obtain a robust but very
efficient performance.

As one can see, it is quite challenging to do detection on texture-less objects. In
addition, special care has to be taken to robustly handle the background as strong clutter
or noise might lead to many false positives or false negatives.

While robustness is one of the main topics to be covered for the detection of texture-less
objects, efficiency is another: opposite to texture-based methods, texture-less approaches
can not make use of keypoints to reduce the runtime. Since there is also no a priori
information available about the object pose, the whole image has to be analyzed and all
possible poses and viewpoints have to be considered to recognize the object from different
views. This leads to a combinatorial explosion in the search space which makes it hard
to speed-up the processing without loosing robustness.

While efficiency at runtime is very important, efficiency at learning is another key
feature that many applications require (e.g. see Sec. 1.1.3). Most desirable is real-time
learning — also referred to as online learning — since it allows to adapt to changing situ-
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ations. Yet, it is usually not easy to guarantee online learning and real-time performance
at the same time, as they are oppositional constraints.

To summarize, the challenges of this thesis lie in making the detection of low-textured and
texture-less objects robust and efficient, both at learning and at runtime, while having
only limited visual information available.

1.3 Contributions
In this thesis, we introduce four new real-time detection and pose estimation approaches
for low-textured and texture-less objects which significantly improve currently available
solutions for these kinds of objects. In this line of work, we also focus on making the learn-
ing of our proposed approaches efficient enough to allow their use in online applications.
In the following, we shortly list the different contributions of this dissertation.

Contributions to Real-Time Detection of Low-Textured Objects: we propose
two new real-time detection and pose estimation methods for low-textured objects. Both
methods are designed to handle each single feature separately and independently from all
the others, and compute the pose of the object only based on the local surrounding of
each feature point. Thus, they differ from current state-of-the-art approaches which need
to extract and match [59, 15, 63, 6, 34, 101] multiple feature points in order to compute
the pose with robust estimators [28].

To our best knowledge, we are the first to make use of this concept — which we call
perspective patch rectification — in real-time. Applying it on a single keypoint is then
often enough to estimate the 3-D pose of the object where the keypoint lies on, given
that a fronto-parallel view of the keypoint is provided for training. As a result, both
approaches need significantly less texture than usually required by current state-of-the-
art-approaches. This is because our two new methods operate on spatially limited regions,
and thus only the local areas and not the whole object has to be sufficiently textured.

Both approaches make use of a fast pre-classification, in which — contrary to previous
classification methods — not only the identity but also a coarse pose of the object is
estimated. An additional refinement step based on efficient linear predictors gives then
the exact local pose and enables self-verification by similarity computation. False positives
are reliably removed after this step.

Although both approaches work in real-time and use the same general pipeline, they
come in two different flavors: one method favors runtime speed using a Ferns based
classifier while the other supports robustness and real-time learning by exploiting mean
patches and a precomputed principal component analysis basis for fast learning. Choosing
between the two methods then depends on the application at hand.

Contributions to Real-Time Detection of Texture-Less Objects: we also propose
two novel real-time approaches for the detection of texture-less objects. Since texture-less
objects usually do not show feature points, only methods based on the dense analysis
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of the image can be used. One prominent representative of this class of algorithms is
template matching using a sliding window approach. While being well suited in theory,
current state-of-the-art template matching methods exhibit severe problems in practice:
they are either inefficient [97, 1] or prone to misdetection [12, 30, 50, 90, 48].

This made us developing two new robust approaches based on real-time template
matching, where the templates can both be built and matched very quickly. As we will
show, this makes it very easy and virtually instantaneous to learn new incoming objects
by simply adding new templates to the database while maintaining reliable real-time
recognition. As a result, both approaches are suitable for online applications.

Our novel methods make use of gradient orientations, and thus are much more robust
than efficient binary state-of-the-art approaches [12, 30, 50, 90, 48]. In order to increase
efficiency at runtime, we discretize the gradient orientations which allows us to introduce
invariance to small deformations. This enables us to skip pixel positions during runtime
without loosing robustness, and to represent a 3D object with only a limited number
of templates. In addition, discretization permits the use of bitwise operations and SSE
instructions for a further speed-up. As a result, both approaches presented in this chapter
are significantly more efficient than previous gradient based methods [97, 1].

While the first proposed approach is purely based on image gradients, we generalize
the second one to also incorporate other visual cues like e.g. dense depth data. By using
several different cues, we increase robustness and significantly decrease the number of
false positives.

Our two methods differ in the way how they introduce invariance to small defor-
mations: while the first approach makes the template invariant, the second introduces
invariance to the image. Following the first method turns out to be highly efficient, espe-
cially for small objects where all templates have equal size. The second method, although
less efficient, is much more robust with respect to strong background clutter and can
handle differently sized templates during runtime without loosing efficiency.

Thanks to our novel template and image representation the two proposed methods
show a combination of robustness and efficiency which is superior to current state-of-
the-art algorithms. To our best knowledge, this is the first time that real-time template
matching becomes tractable in a large scale environment.
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CHAPTER

TWO

REAL-TIME DETECTION OF LOW-TEXTURED OBJECTS
BY PATCH BASED RECTIFICATION

For several years retrieving the poses of patches around keypoints in addition to matching
them has been an essential task for many applications such as vision-based robot local-
ization [32], object recognition [88] or image retrieval [19, 85] to constrain the problem
at hand. It is usually done by decoupling the matching process from the keypoint pose
estimation: the standard approach is to first use some affine region detector [68] and then
rely on SIFT [63] or SURF [6] descriptors on the rectified regions to match them.

Recently, it has been shown that taking advantage of a training phase, when possible,
greatly improves the speed and the rate of keypoint recognition tasks [34, 80]. Such a
training phase is possible when the application relies on some database of keypoints, such
as object detection or SLAM. By contrast with Mikolajczyk et al. [68], these learning-
based approaches usually do not rely on the extraction of local patch transformations in
order to handle larger perspective distortions but on the ability to generalize well from
training data. The drawback is that they only provide a 2–D location, while using an
affine region detector provides additional constraints that proved to be useful [88, 19].

Such constraints are especially important if we have to deal with poorly textured
objects which are often found in human environments as seen in Chapter 1. They consist
of large homogeneous areas and show texture only in spatially limited areas. As a result,
state-of-the-art feature point approaches are often not applicable and a correct object
pose can not be computed.

To overcome this problem we introduce an approach illustrated in Fig. 2.1 that is real-
time thanks to a learning stage and that can provide not only an affine transformation but
the full perspective patch rectification based on a limited spatial region. We show that
this is very useful for object detection and SLAM applications: applying our approach
on a single keypoint [38, 63, 95, 87, 57] is often enough to estimate the 3–D pose of the
object that the keypoint lies on, provided that a fronto-parallel view of the keypoint is
given for training. As a result, we can robustly handle strongly occluded or very poorly
textured objects.

More specifically, we propose two variants of this approach. The first method [41]
is called Leopar. It is the faster of the two methods and much more accurate than
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: The advantages of learning for patch recognition and pose estimation. (a) Given a
training images or a video sequence, our method learns to recognize patches and in the same time to
estimate their transformation. (b) The results are very accurate and mostly exempt of outliers. Note
we get the full perspective pose, and not only an affine transformation. (c) Hence a single patch is
often sufficient to detect objects and estimate their pose very accurately. (d) To illustrate the accuracy,
we use the ’Graffiti 1’ image and the ICCV booklet cover respectively to train our method and detect
patches in the ’Graffiti 6’ image and in the real scene respectively. We then superimpose the retrieved
transformations with the original patches warped by the ground truth homography. (e) Even after
zooming, the errors are still barely visible. (f) By contrast, the standard methods retrieve comparatively
inaccurate transformations, which are limited to the affine transformation group.

affine region detectors. However, Leopar needs a long training stage of approximately
one second per patch that avoids its use in online applications. The second method [44]
is called Gepard. Gepard produces more reliable results than Leopar and requires
only a very short training period. Choosing between the two methods depends on the
application at hand.

Both methods are made of two stages. The first stage relies on a classifier to quickly
recognize the keypoints and to provide a first estimate of their poses to the second stage.
This second stage then uses slower but much more accurate template matching techniques
to refine the pose estimate. The difference between the two methods lies in the way the
first stage proceeds.

Leopar first retrieves the patch identity and then a coarse pose using an extended
version of the Ferns classifier [80]: to each keypoint in our database we correspond several
classes, where each class covers its possible appearances for a restricted range of poses.
Due to the Fern structure the computations can be done in almost no time which results
in a very fast runtime performance.
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Unfortunately the Ferns require a long training stage and a large amount of memory.
Gepard dramatically decreases the training time and the memory requirements and is
even more robust; however, it is slower than Leopar at runtime. In Gepard, the Ferns
classifier is replaced by a simple nearest-neighbor classifier, as new classes can be added
quickly to such a classifier. To retrieve the incoming keypoint identities and approximate
poses, each keypoint in the database is characterized in the classifier by a set of “mean
patches”, each of them being the average of the keypoint appearances over a restricted
range of poses. Our mean patches are related to Geometric Blur [9], but we show how to
very quickly compute them, making our approach more efficient.

To retrieve an accurate full perspective transformation, the second stage uses linear
regressors similar to the one described in [52] for template matching. We made this choice
because our experiments proved that for this purpose they converge faster and more
accurately than other least-squares optimizations such as Gauss-Newton. In addition, we
show that these regressors can be trained efficiently. The final pose estimate is typically
accurate enough to allow a final check by simple cross-correlation and a rejection of
incorrect results.

Compared to affine region detectors, the closest competitors in the state-of-the-art,
our two methods have one important limitation: They do not scale very well with the
size of the keypoints database, and our current implementation is limited to a few tens
of keypoints to keep the applications real-time capable. Moreover, they need a frontal
training view and the camera internal parameters to compute the camera pose with respect
to the keypoint. However, as our experiments show, our two methods are not only much
faster but they also provide an accurate 3–D pose for each keypoint, by contrast with
an approximate affine transformation. In practice, a single keypoint is often enough to
compute the camera or target pose, which compensates this limitation on the database
size for the applications we present in this chapter and makes our approaches especially
suitable for low-textured objects as described above.

In the remainder of the first chapter, we first discuss related work. Then, we describe
our two methods, and compare them against affine region detectors [68]. Finally, we
present applications of tracking-by-detection and SLAM using our methods.

2.1 Related Work
Many different approaches often called “affine region detectors” have been proposed to
recognize keypoints under large perspective distortion. For example, [105] generalized the
Förstner-Harris approach, which was designed to detect keypoints stably under transla-
tion, small similarities and affine transformations. However, this method does not provide
the transformation itself. Other approaches attempt to retrieve a canonical affine trans-
formation without a priori knowledge. This transformation is then used to rectify the
image around the keypoint which makes it easier to recognize it. Baumberg [5] was among
the first who proposed such an approach. His method extracts keypoints at several scales
using the Harris detector [38] and then adapts the shape of the point neighborhood to
the local image structure using the iterative procedure proposed by Lindeberg [61].

Since then, many affine region detectors have been developed, e.g. the Intensity-Based-
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Region detector (IBR) [106], the Edge-Based-Region detector (EBR) [107], the Salient-
Region detector [53] and the Harris-Affine region detector [65]. The IBR detector makes
use of the shape constructed by the maxima of intensity profiles on rays originating from
the center of local intensity extrema. Although firing on similar regions, the EBR detector
provides a different solution that is geometric-based and uses corner points and nearby
edges to extract affine regions. In contrast to them, the salient region detector describes
each regions based on the probability density function of intensity values computed over
an elliptical region. Its final outcome is then ranked with respect to scale and with respect
to the magnitude of the derivative of this function. This enumeration is concluded with
the Harris-Affine detector which is based on the approach of Baumberg [5] and extended
by a scale dependent iterative affine shape adaption algorithm.

Although these detectors work reasonably well, Mikolajczyk et al. showed in [68] that
the Hessian-Affine detector of [66] and the MSER detector of [64] are the most reliable
ones. In the case of the Hessian-Affine detector, the retrieved affine transformation is
based on the image second moment matrix. It normalizes the region up to a rotation,
which can then be estimated, for example, by considering the peaks of the histogram
of gradient orientations over the patch as in SIFT [63] or SURF [6]. In the case of the
MSER detector, other approaches exploiting the region shape are also possible [78], and a
common approach is to compute the transformation from the region covariance matrix and
solve for the remaining degree of freedom using local maxima of curvature and bitangents.

While all these detectors are based on the gray value image, Stöttinger et al. [98]
recently introduced a detector based on color saliency which allowed a reduction in the
number of extracted regions while maintaining a high recognition performance.

After rectification, each patch usually needs a proper description of its content in or-
der to be correctly identified. For that reason descriptors like GLOH [67] and SIFT [63]
were developed: once a region is extracted it is first normalized to a canonical repre-
sentation and then described by a robust method. Of the many proposed descriptors,
SIFT is probably the one which is most commonly used. However, SIFT is pretty slow
and for a faster description several approximations have been proposed: SURF [6], for
instance, was among the first approximations of SIFT. It makes intensively use of integral
images and haar features which allow to compute the feature vectors on different scales
in constant time. Another more recent approximation is CHoG [18] which uses a bitwise
compression scheme in order to lower the memory consumption for mobile devices. Its
gradient histogram is represented as a tree structure which can be efficiently compressed
using Gagie-Entropy-Tree coding. As a result, it is 10 times faster than SIFT and reduces
the memory consumption about 20 times.

While all these approaches were developed for a sparse computation, DAISY [103] was
designed for a dense description of the whole image: for example, computing DAISY on
a SVGA image for tasks like 3D reconstruction [104] takes only five seconds.

Once the description process is finished, all image patches need to be properly matched.
For this reason, several efficient data structures have been proposed: the approximate
best-bin-first algorithm [7] on kd-trees [29], for instance, is used on large SIFT feature
databases, while vocabulary trees [77] are often applied on very large image databases.
The latter enables an efficient preliminary search for a small subset of the closest database
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images using hierarchical k-means clustering and an inverted file system. Pairwise compar-
ison of the query image with the images in this subset is then computationally tractable.

Since many different data structures have been proposed for fast matching, Muja et
al. [72] recently presented an automatic framework for providing guidance on selecting
the best algorithm and its parameters for any given dataset.

Above mentioned affine region detectors, feature descriptors and matching data struc-
tures have proven to be the key ingredients for many computer vision tasks. In this
context, the affine region detectors are mainly used to rectify patches to help the recogni-
tion. However, they can also provide some other very useful constraints: [88], for example,
uses them to build and recognize 3–D objects in stereoscopic images, [19] needs them to
add constraints between the different regions to help the matching and [55] applies them
to directly estimate the parameters for conjugate rotation.

Unfortunately, as the experiments presented in this chapter show, the retrieved affine
transformations are often not accurate enough and the algorithms too slow for real-time
processing. As we will show in this thesis, we can reach a much better accuracy at a much
higher speed by exploiting learning-based methods

Learning-based methods to recognize keypoints became quite popular recently, how-
ever most of them provide only the identity of the points, not their pose. For example,
in [59, 81], Randomized Trees are trained with randomly warped patches to estimate a
probability distribution over the classes for each leaf node. The non-terminal nodes con-
tain decisions based on pairwise intensity comparisons which are very fast to compute.
Once the trees are trained an incoming patch is classified by adding up the probability
distributions of the leaf nodes that were reached and by identifying the class with the
maximal probability. As shown in [82], training can be performed incrementally which
simplifies their use on arbitrary well-textured 3D objects. However, it is not real-time
and therefore has to be performed offline, which is problematic for applications such as
SLAM. [111] replaced the Randomized Trees by a simpler list structure and binary values
instead of a probability distribution. These modifications allow it to learn new features
online in real-time. Another approach that enables online feature learning in real-time was
proposed in [34]: it is based on the boosting algorithm presented in [33] and can adapt to
changing scenes. Recently, Calonder et al. presented the concept of Signatures [14] which
uses Randomized Trees, pre-trained on a random set of images, and exploits the returned
probability distributions for an image patch as feature vector. As such, extraction is very
fast which can be even more speeded up by using the bitwise representation of the binary
comparisons directly [15].

Recently, Taylor et al. [101, 102] introduced another learning-based approach that
is closer to the approach presented in this chapter. It is based on what is called “His-
togrammed Intensity Patches” (HIP). The link with our approach is that the HIPs are
reminiscent of our “mean patches” used in Gepard: Each keypoint in the database is
represented by a set of HIPs, each of them computed over a small range of poses. For fast
indexing, an HIP is a binarized histogram of the intensities of a few pixels around the
keypoint. However, while this is in theory possible, estimating the keypoint pose has not
been evaluated nor demonstrated, and this method provides only the keypoint identities,
too.
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Another work related to our two methods is [71], which exploits the perspective trans-
formation of patches centered on landmarks in SLAM applications. However, it is still
very dependent on the tracking prediction to match the landmarks and to retrieve their
transformations, while we do not need any prior on the pose. Moreover, in [71], these
transformations are recovered using a Jacobian-based method while, in our case, a linear
predictor can be trained very efficiently for faster convergence.

In short, to the best of our knowledge, there is no method in the literature that
attempts to reach the exact same goal as ours. Our two methods can estimate quickly
and accurately the pose of keypoints in a database, thanks to a learning-based approach.

(a) (b)

Figure 2.2: Examples of patches used for classification. (a) To estimate the keypoint identity, patches
from the same keypoint are grouped in a single class. (b) To estimate the patch transformation, several
classes for different transformations are created for each keypoint in the database.

2.2 Leopar: A Classifier Favoring runtime Perfor-
mance

In this section we present the first stage of Leopar. It provides the identity and an
approximate pose of a keypoint, given an image patch centered on this keypoint, using an
extension of [80]. The second stage which consists of the keypoint pose refinement and
checking steps is common to our two methods, and will be presented in Section 2.4.

2.2.1 Finding the Keypoint’s Identity
Leopar first recognizes the keypoint to which the patch corresponds to by using the Ferns
classifier presented in [80]. Ferns are trained with patches centered on the keypoints in
the database and seen under different viewing conditions as in Fig. 2.2(a). Formally, for
a given patch P centered on a keypoint we want to recognize, it estimates:

îd = argmax
id

P (Id = id | P) , (2.1)
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Figure 2.3: A first estimate of the patch transformation is obtained using a classifier that provides the
values of the angles ai defined as the angles between the lines that go through the patch center and each
of the four corners. We also tried to recover the length of these four lines by the classifier, however,
this gave no good results. The final rectification is then performed by applying the approach of [52] as
described in Sec. 2.4.1 using the first estimate of the patch transformation as initial guess.

where Id is a random variable representing the identity of the keypoint. The identity is
simply the index of the corresponding keypoint in the database. As described in [80], the
classifier represents the patch P as a set of simple image binary features that are grouped
into subsets, and Id is estimated following a semi-Naive Bayesian scheme that assumes
the feature subsets are independent. This classifier is usually able to retrieve the patch
identity Id under scale, perspective and lighting variations.

2.2.2 Discretizing and Estimating the Keypoint’s Pose
Once Id is estimated, our objective is then to get an estimate of the transformation of the
patch around the keypoint. Because we also want to use a Fern classifier for that due to
its great efficiency, we first need a way to quantize the transformations. We tried various
approaches, and the best results were obtained with the parametrization described in
Fig. 2.3. It is made of the four anti-clockwise arranged angles ai between the horizontal
axis and the semi-lines going from the patch center and passing through the patch corners.
Thus, we parametrize a quadrangle which represents an initial homography. Each angle is
quantized into 36 values (so each angle increases in 10 degree steps), and to both reduce
the required amount of memory and increase the speed at runtime, we estimate each angle
independently as:

∀i = 1 . . . 4 âi = argmax
ai

P (Ai = ai | Id = id,P) , (2.2)
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using four Ferns classifiers specific to the keypoint of identity Id.

Leopar will be evaluated in Section 2.5. Before that, we present our second method
and their common second stage.

2.3 Gepard: A Classifier Favoring Real-Time Learn-
ing and Robustness

(a) (b)

Figure 2.4: The Gepard descriptor. (a) For a feature point ki, this descriptor is made of a set of
mean patches {pi,h}, each computed for a small range of poses Hh from a reference patch pi centered
on the feature point ki. (b) Some other mean patches for the same feature point. The examples shown
here are full resolution patches for visibility, in practice we use downscaled patches.

Leopar was designed for runtime speed, and it requires a slow training phase: It
takes about 1 second for Leopar to learn one keypoint, and this makes it unsuitable for
online applications like SLAM. We therefore propose a second method — called Gepard
in the following, which is slower at runtime but can learn new keypoints much faster. It
is also more robust.

2.3.1 Finding the Keypoint’s Identity and Pose
As depicted by Fig. 2.4, our starting idea to estimate the keypoint’s identity and pose is
to first build a set of “mean patches”. Each mean patch is computed as the average of
the keypoint appearance when the pose varies in the neighborhood of a reference pose.
In praxis, two neighboring poses are approximately 15 degree apart. Then, we can use
nearest-neighbor classification: We assign to an incoming keypoint the pose of the most
similar mean patch as a first estimate of its pose.

Of course, computing a single mean patch over the full range of poses would result
in a blurred irrelevant patch. Because we compute these mean patches over only a small
range of poses, they are meaningful and allow for reliable recognition. Another advantage
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Figure 2.5: Computing a set of our mean patches clearly outperforms simple blurring of a set of warped
patches. Different Gaussian smoothing kernels were tried and we show that our approach improves the
matching rate constantly of about 20%.

is that they are robust to image noise and blur. As the mean patches in Fig. 2.4 look
like blurred image patches, one may wonder if using a uniform blur on warped patches
would be enough. The answer is no: As Fig. 2.5 shows, using mean patches substantially
improves the matching rate by about 20% compared to using blurred warped patches.

Compared to standard approaches [68], we do not have to extract an estimate of
the keypoint’s pose, nor compute a descriptor for the incoming points, and that makes
the approach faster at runtime. The set of means that characterizes a keypoint in the
database can be seen as a descriptor, which we refer to as a “one-way descriptor” since it
does not have to be computed for the new points. This approach increases the number
of vectors that have to be stored in the database, but fortunately, efficient methods exist
for nearest-neighbor search in large databases of high-dimensional vectors [7].

More formally, given a keypoint k in a reference image, we compute a set of mean
patches {ph} where each mean ph can be expressed as

ph =
∫

H∈Hh

w(P∗, H)p(H)dH, (2.3)

where

• H represents a pose, in our case a homography,

• P∗ is the reference patch, the image patch centered on the keypoint k in the reference
image. To be robust to light changes, the pixel intensities in P∗ are normalized so
their sum is equal to 0, and their standard deviation to 1,
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• w(P , H) returns the patch P seen under pose H,

• p(H) is the probability that the keypoint will be seen under pose H, and

• Hh is a range of poses, as represented in Fig. 2.4. The Hh’s are defined so that they
cover small variations around a fixed pose Hh but together they span the set of all
possible poses ⋃hHh.

In practice, the integrals in Eq. (2.3) are replaced by finite sums, the distribution over
the transformations H is assumed uniform and expression (2.3) becomes

ph = 1
N

N∑
j=1

w(P∗, Hh,j), (2.4)

where the Hh,j are N poses sampled from Hh.
Once the means ph are computed, it is easy to match incoming keypoints against

the database, and get a coarse pose. Given the normalized patch p centered on such
an incoming point with assumed identity îd, its coarse pose Ĥ

i=îd,h=ĥ
indexed by ĥ is

obtained by finding:
ĥ = argmax

i=îd,h

p> · ph . (2.5)

However, computing the ph using Eq. (2.4) is very inefficient because it would require
the generation of too many samples w(P∗, Hh,j). In practice, to reach decent results, we
have to use at least 300 samples, and this takes about 1.1 seconds to generate1, which
was not acceptable for interactive applications. We show below that the mean patches
can actually be computed very quickly, independent of the number of samples used.

2.3.2 Fast Computation of the Mean Patches
We show here that we can move most of the computation cost of the mean patches to an
offline stage, so that computing the mean patches at runtime can be done very efficiently.
To this end, we first approximate the reference patch P∗ as:

P∗ ≈ V +
L∑

l=1
αlVl (2.6)

where V and the Vl’s are respectively the mean and the L first principal components of a
large set of image patches centered on keypoints. The αl are therefore the coordinates of
P∗ in this eigenspace, and can be computed as αl = V>l P∗.

Computing V and the Vi’s takes time but this can be done offline once and for all.
Because we consider normalized patches, the mean V is equal to 0, and Eq. (2.3) becomes

ph ≈
1
N

∑
j

w(
L∑

l=1
αlVl, Hj,h) . (2.7)

1All times given in this chapter were reached on a on a standard notebook (Intel(R) Centrino Core(TM)2
Duo with 2.6GHz and 3GB RAM and an NVIDIA quadro FX3600M with 512MB).

22



2.3 Gepard: A Classifier Favoring Real-Time Learning and Robustness

This expression can be simplified by using the fact that the warping function w(·, H)
is a linear function: Warping is mostly a permutation of the pixel intensities between the
original patch and the patch after warping, and therefore a linear transformation. This
fact was used, for example, in [10] for transformation-invariant data modeling. In our
case, because we use perspective transformations, parts that are not visible in the original
one could appear in the generated patch. To solve this issue, we simply take the original
patch larger than the warped patch, and large enough so that there are never parts in the
warped patch which were not present in the original patch. The function w(., H) then
becomes a permutation followed by a projection, and this composition remains a linear
transformation.

Thanks to this property, Eq. (2.7) simplifies easily:

ph ≈
1
N

N∑
j=1

w(
L∑

l=1
αlVl, Hj,h) (2.8)

= 1
N

N∑
j=1

(
L∑

l=1
αlw(Vl, Hj,h)

)
(2.9)

=
L∑

l=1

αl

N

N∑
j=1

w(Vl, Hj,h) (2.10)

=
L∑

l=1
αlvl,h (2.11)

where the vl,h’s are patches obtained by warping the eigenvectors Vl under poses in Hh:

vl,h = 1
N

N∑
j=1

w(Vl, Hj,h) . (2.12)

Like the Vl, the vl,h’s patches can be computed offline. The number of samples N therefore
does not matter for the runtime computations, and we can use a very large number.

In summary, when we have to insert a new keypoint in the database, we simply have
to project it into the eigenspace, and compute its associated mean patches by linear
combinations. The complete process can be written in matrix form:

α = PPCAP∗ , and (2.13)
∀h ph = Vhα , (2.14)

where P∗ is the reference patch seen as a vector, PPCA the projection matrix into the
eigenspace, α the vector of the αl coefficients, and the Vh’s are matrices. The rows of
PPCA are the Vl vectors, and the columns of the Vh’s matrices are the vl,h vectors. This
approach saves significant computation time with respect to the naive way to compute
Eq. (2.7).

To speed-up computation even further, mostly in the evaluation of the similarity be-
tween an incoming patch p and a mean patch ph as in Eq. (2.5), we downsample these
patches. We keep the reference patch P∗ and the eigenvectors Vl at the original resolution
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Figure 2.6: Normalized cross-correlation between approximated mean patches and their exact compu-
tation as a function of the number of principal components. The values are averaged over 100 patches
from the Graffiti image set [68]. In this experiment, the patches are 120× 120 pixels but we need only a
small percentage of the principal components to get a good approximation.

to avoid losing important details. Downscaling is applied only on the result of the sum in
Eq. (2.12), which is performed off-line anyway.

To handle scale efficiently, we compute the mean patches only on one scale level. Then,
the evaluation of the similarity in Eq. (2.5) is done several times for each mean patch with
different versions of the incoming patch p, each version extracted at a different scale.

In practice, as shown in Fig. 2.6, we can keep only a small percentage of the first
principal components and still get a good approximation of the mean patches. The graph
of Fig. 2.7 shows that using only L = 150 principal components and 192 mean patches
over 3 scales—giving a total of 576 mean patches—already gives reasonably good results.
The computation time is then 15 milliseconds for patches downsampled from 71 × 71 to
12× 12 including the computation of α while using Eq. (2.4) directly takes 1.1 seconds.
By using the GPU to compute the matrix form expressions in Eqs. (2.13) and (2.14), we
can reduce the processing time even further to only 5.5 milliseconds1.

2.3.3 Discretizing the Pose Space for Gepard
The quantized pose space used for Leopar represented in Fig. 2.3 was designed to keep
the number of discrete homographies small because a finer discretization does not im-
prove the matching score while slowing down the recognition and increasing the required
memory. In Gepard, however, we can afford a finer discretization and that results in
better recognition rate (see Fig. 2.8).
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Figure 2.7: Recognition rates as a function of the viewpoint angle for different number of principal
components. The values are averaged over 100 patches from the Graffiti image set [68]. We use synthesized
images to generate more views than the original Graffiti image sequence. In this experiment, the patches
are 120× 120 pixels but using only 150 principal components over 14400 gives results comparable to the
full method up to 40 degrees and is more than 70 times faster.

This discretization is done based on the formula:

H = K
(

∆R + δt · n>

d

)
K−1 , (2.15)

which is the expression of the homography H relating two views of a 3–D plane, where
K is the matrix of the camera internal parameters, [n>, d]> the parameters of the plane
in the first view, and ∆R and δt the camera displacement between the two views. For
simplification, we assume that we have a frontal view of the reference patches.

We first tried discretizing the motion between the views by simply discretizing the
rotation angles around the three axes. However, for the nearest-neighbor classification to
work well, it must be initialized as close as possible to the correct solution. We provide
a better solution: as shown by the left image of Fig. 2.9, we found that the vertices of
(almost) regular polyhedrons provide a more regular sampling that is useful to discretize
the angle of the second view includes with the patch plane in Eq. (2.15).

However, there exists only a few convex regular polyhedrons —the Platonic solids—
with the icosahedron the one with the largest number of vertices, 12. As the right image
of Fig. 2.9 illustrates, we obtain a finer sampling by recursively substituting each triangle
into four almost equilateral triangles. The vertices of the created polyhedron give us the
two out-of-plane rotation angles for the sampled pose, that is around the x- and y-axes of
Fig. 2.9. We discretize the in-plane rotation angle with 10° steps to cover the 360° range.
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Figure 2.8: We tried to use in Leopar the homography discretization used in Gepard. As the graph
shows, it does not result in any improvement in terms of matching score compared to the discretization
described in Fig. 2.3. Since it requires more computation time and memory because the number of discrete
homographies is larger, we used the method of Fig. 2.3 for Leopar. The experiment was performed on
the standard Graffiti test set [68].

Figure 2.9: Pose space sampling using almost regular polyhedrons. Left: The red dots represent the
vertices of an (almost) regular polyhedron generated by our recursive decomposition and centered on a
planar patch. The sampled directions of views are given by vectors starting from one of the vertices and
pointing toward the patch center. The green arrow is an example of such a vector. Right: The initial
icosahedron and the result of the first triangle substitution.

26



2.4 Pose Refinement and Final Check

2.4 Pose Refinement and Final Check
Having the output of the first stage of Leopar or Gepard, the keypoint’s identity and
approximate pose, we want to compute a better estimate of the pose in the form of a
homography without quantization. This refinement is based on linear regression, and we
show how the linear predictors can be computed incrementally and how we can improve
the training speed. The refinement is followed by a final check, to suppress keypoints that
were incorrectly recognized.

2.4.1 Linear Prediction for Refinement
The homography Ĥ computed in the first stage is an initial estimate of the true homogra-
phy H. We use the method presented in [52] which is based on linear predictors to obtain
the parameters x̃ of a corrective homography:

x̃ = B
(
w(P , Ĥ)− p∗

)
, (2.16)

where

• B is the matrix of our linear predictor and depends on the retrieved patch identity
îd;

• P is the patch in the incoming image, centered on the keypoint to recognize;

• w(P , Ĥ) is the patch p warped by the current estimate Ĥ and downscaled for
efficiency. Note that we do not actually warp the patch, we simply warp back the
sampled pixel locations;

• p∗ is the reference patch P∗ after downscaling. P∗ is the image patch centered on
the keypoint îd in a reference image as in Section 2.3.

This equation gives us the parameters x̃ of the incremental homography that updates Ĥ
to produce a better estimate of the true homography H:

Ĥ←− Ĥ ◦H(x̃) . (2.17)

For more accuracy, we iterate Eqs. (2.16) and (2.17) using a series of linear predictors
Bi, each matrix being dedicated to smaller errors than its predecessor: Applying these
matrices successively remains fast and gives a more accurate estimate than with a single
level. In order to do an ultimate refinement the ESM algorithm [8] can be applied.

In practice, our vectors w(P , Ĥ) and p∗ contain the intensities at locations sampled
on a regular grid of 13 × 13 over image patches of size 75 × 75 pixels, and we normalize
them to be robust to light changes. We parametrize the homographies by the 2D locations
of the patch’s four corners since this parametrization has proven to be more stable than
others in [2]. In practice, for each patch we train four to ten2 matrices B with different

27



Chapter 2: Real-Time Detection of Low-Textured Objects by Patch
Based Rectification

ranges of variation from coarse to fine, using downscaled patches of 13× 13 = 169 pixels
and 300 to 5000 2 training samples.

For online applications, the B’s matrices must be computed for each new keypoint
inserted in the database at runtime. Thus, learning the Bi’s consists of computing a set
of pairs made of small random transformations Hs and the corresponding warped patches
w(P , H−1

s ) must be fast enough to fulfill the real-time constraints as discussed below. In
order to do so we precompute the transformations Hs and the warped pixel locations in
order to obtain very quickly the w(P , H−1

s ) patches at runtime for an arbitrary incoming
feature point. The whole process thus can be speed up to 29 milliseconds 1 using 300
samples and four B matrices.

2.4.2 Incrementally Learning the Linear Predictor
For some applications it is desirable to improve the tracking by performing online learning.
Since the classification steps in Leopar as well as in Gepard can easily be extended to
do online learning, we only have to concentrate on the linear predictors.

The linear predictor B in Eq. (2.16) can be computed as the pseudo-inverse of the
analytically derived Jacobian matrix of a correlation measure [3, 8]. However, the hyper-
plane approximation [52] computed from several examples yields a much larger region of
convergence. The matrix B is then computed as:

B = XD>
(
DD>

)−1
, (2.18)

where X is a matrix made of xi column vectors, and D a matrix made of column vectors
di. Each vector di is the difference between the reference patch p∗ and the same patch
after warping by the homography parametrized by xi: di = w(p,H(xi))− p∗.

Eq. (2.18) requires all the pairs (xi,di) to be simultaneously available. If it is applied
directly, this prevents incremental learning but this can be fixed. Suppose that the matrix
B = Bn is already computed for n examples, and then a new example (xn+1,dn+1)
becomes available. We want to update the matrix B into the matrix Bn+1 that takes
into account all the n + 1 examples. Let us introduce the matrices Yn = XnD>n and
Zn = DnD>n . We then have:

Bn+1 = Yn+1Z−1
n+1

= Xn+1D>n+1

(
Dn+1D>n+1

)−1

= [Xn|xn+1][Dn|dn+1]>
(
[Dn|dn+1][Dn|dn+1]>

)−1

=
(
XnD>n + xn+1d>n+1

) (
DnD>n + dn+1d>n+1

)−1

=
(
Yn + xn+1d>n+1

) (
Zn + dn+1d>n+1

)−1
(2.19)

2Depending on the application. Using more Bi matrices or more training samples improves the
accuracy but the computation time for this step increases linearly with the number of matrices and
exponentially with the number of training samples.
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where xn+1 and dn+1 are concatenated to Xn and Dn respectively to form Xn+1 and
Dn+1. Thus, by only storing the constant size matrices Yn and Zn and updating them
as:

Yn+1 ←− Yn + xn+1d>n+1 (2.20)
Zn+1 ←− Zn + dn+1d>n+1 , (2.21)

it becomes possible to incrementally learn the linear predictor without storing the previous
examples, and allows for an arbitrary large number of examples.

Since the computation of B has to be done for many locations in each incoming image
and Zn is a large matrix in practice, we need to go one step further in order to avoid the
computation of Z−1

n at every iteration. We apply the Sherman-Morrison formula to Z−1
n+1

and we get:

Z−1
n+1 =

(
Zn + dn+1d>n+1

)−1

= Z−1
n −

Z−1
n dn+1d>n+1Z−1

n

1 + d>n+1Z−1
n dn+1

. (2.22)

Therefore, if we store Z−1
n instead of Zn itself, and update it using Eq. (2.22), no matrix

inversion is required anymore, and the computation of matrix Bn+1 becomes very fast.

2.4.3 Correlation-based Hypothesis Selection and Verification
In Gepard, for each possible keypoint identity i, we use the method explained above
to estimate a fine homography Ĥi,final. Thanks to the high accuracy of the retrieved
transformation, we can select the correct pair of keypoint identity i and pose Ĥi,final
based on the normalized cross-correlation between the reference patch P∗i and the warped
patch w(P , Ĥi,final) seen under pose Ĥi,final. The selection is done by

argmax
i
P∗i
> ·w(P , Ĥi,final) . (2.23)

In Leopar, the keypoint identity i is directly provided by the Ferns classifier.
Finally, we use a threshold τNCC = 0.9 in order to remove wrong matches:

w(P , Ĥi,final)> · P∗i > τNCC . (2.24)

Thus, each patch w(P , Ĥi,final) that gives the maximum similarity score, which exceeds
τNCC at the same time, yields an accepted match.

2.5 Experimental Validation
Here, we compare our approach against affine region detectors on the Graffiti image set
from [68] towards robustness and accuracy. Although affine region detectors are computed
without having a priori information about the target patch, we chose them because they
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are in our opinion the closest state-of-the-art approaches. This is because affine region
detectors are based on local regions only and return a pose estimation of the underlying
structure. While we could have added some pose refinement and final verification to them
— similar to our approaches — we did not perform these extra steps since they are not
part of the official methods.

At the end of this section, we also evaluate the performance of our algorithms with
respect to training time, running time and memory consumption. For each experiment
we give a detailed discussion about the specific advantages of each of our two methods.

2.5.1 Evaluation on the Graffiti Image Set
We first built a database of the most stable 100 Harris keypoints from the first image of
the Graffiti set [68]. We used Harris keypoints because they have proven their robustness
under different viewpoints in various works e.g. in [68]. However, we could easily use other
keypoints like [87, 63, 95, 57]. In this case, one has to make sure that a characteristic of
the keypoint type is to be surrounded by enough texture for doing the matching and the
refinement.

These keypoints were found by synthetically rendering the image under many random
transformations, adding artificial image noise and extracting Harris keypoints. We then
kept the 100 keypoints detected most frequently.

The Ferns classifiers in Leopar were trained with synthetic images as well, by scaling
and rotating the first image for changes in viewpoint angle up to 65 degrees and adding
noise. In the case of Gepard only the first image is needed. We then extracted Harris
keypoints in the other images of the set, and ran Leopar and Gepard to recognize them
and to estimate their poses.

We also ran the different region detectors over the set of images and matched the
regions in the first image against the regions in the other images using the SIFT descriptor
computed on the rectified regions.

2.5.1.1 Robustness

In Fig. 2.10, we compare the matching scores for the different methods. The matching
score is computed as the ratio between the number of correct matches and the smaller
number of regions detected in one of the two images as defined in [68]. Two regions are
said to be correctly matched if the overlap error is smaller than 40%. In our case, the
regions are defined as the patch surfaces warped by the retrieved transformations.

For a fair comparison, we first turned off our final check on the correlation since there
is no equivalent for the affine regions in [68]. This yields the ’Leopar/Gepard without
Correlation’ curves. Even then, our methods perform much better, at least up to an angle
of 50◦ in the case of Leopar. When we turn the final check on, not a single outlier is kept
in this experiment. For completeness, we also show the actual number of correct matches
in Fig. 2.11(a). Note, that we can manually choose how many patches we initially want
to track while affine region detectors can not.

Because the Ferns classifiers consume a large amount of memory that grows linearly
with the number of classes, it is difficult to handle more than 100 keypoints with Leopar.
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Figure 2.10: Comparing the robustness of our methods and of affine region detectors on the Graffiti
image set. (a) Matching score as a function of the viewpoint angle. The results of Leopar and Gepard
are shown with the correlation test of Section 2.4.3 disabled. Even then, our methods compare very
favorably with the affine region detectors. (b) Same with the correlation test turned on. No outlier is
produced.

Gepard in contrast uses a nearest-neighbor classifier and can deal with more keypoints.
We therefore performed – as shown in Fig. 2.11(b) – the same kind of experiment as
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Figure 2.11: Comparing our method against affine region detectors on the Graffiti image set. (a)
Number of correct matches for our approach and the affine region detectors. We trained our methods on
100 keypoints in the first image. (b) Gepard can manage more keypoints, and for this experiment we
trained it on 400 keypoints. For the largest viewpoint we still obtain a matching rate of about 50%.

in Fig. 2.11(a), but with 400 keypoints for Gepard. In that case, for the large view-
point angles, we get more correctly matched keypoints than regions with the affine region
detectors.
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Gepard is also more robust to scale and perspective distortions than Leopar. In
practice we found out that the limiting factor is by far the repeatability of the keypoint
detector. However, once a keypoint is correctly detected, it is very frequently correctly
matched at least by Gepard.

2.5.1.2 2–D Accuracy

In Figs. 2.13(a)-(d), we compare the 2–D accuracy for the different methods. To create
these graphs, we proceed as shown in Fig. 2.12. We first fit a square tangent to the
normalized region, take into account the canonical orientation retrieved by SIFT and
warp these squares back with the inverse transformation to get a quadrangle. To account
for different scales, we proceed as in [68]: We normalize the reference patch and the
back-warped quadrangle such that the size of the reference patch is the same for all the
patches.

Two corresponding regions should overlap if one of them is warped using the ground
truth homography. A perfect overlap for the affine regions cannot be expected since their
detectors are unable to retrieve the full perspective transformation. Since in SIFT several
orientations were considered when ambiguity arises, we decided to keep the one that yields
the most accurate correspondence. In the case of our method, the quadrangles are simply
taken to be the patch borders after warping by the retrieved transformations.

Fig. 2.13(a) evaluates the error based on the overlap between the quadrangles and
their corresponding warped versions. This overlap is between 90% and 100% for our
methods, about 5-10% better than MSER and about 15-25% better for all the other
methods. Fig. 2.13(b) evaluates the error based on the distances between the quadrangle
corners. Our methods also perform much better than the other methods. The error of the
patch corner is less than two pixels in average for Leopar and slightly more for Gepard.
Figs. 2.13(c) and (d) show the same comparisons, this time when taking only the best
100 regions into account. The results are very similar.

2.5.2 3–D Pose Evaluation for Low-Textured Objects
In order to demonstrate the usefulness of our approach especially for low textured objects
and for outdoor environments, we did two other quantitative experiments.

For the first experiment we ran different methods to retrieve the camera pose using the
power outlet of Fig. 2.14 in a sequence of 398 real images. To obtain ground truth data
we attached an artificial marker next to the power outlet and tracked this marker. The
marker itself was then hidden in the reference image. We consider errors on the camera
center larger than 50 units as not correctly matched. For clarity we do not display these
false results. For our approaches we learned only one single patch on the power outlet to
track in order to emphasize the possibility to track an object with only a single patch.
For learning, we created synthetically warped images of the first picture of the dataset.
Gepard achieved a successful matching rate in over 98%, directly followed by Leopar
with 97%.

For the affine region detectors we tried two different methods to estimate the pose of
the power outlet:
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(a) (b) (c) (d) (e)

Figure 2.12: Measuring the overlapping errors and the corners distances. (a) Two matched affine
regions. (b) The same regions, after normalization by their affine transformations displayed with their
canonical orientations. (c) Squares are fitted to the final normalized regions. (d) The squares are warped
back into quadrangles in the original images. (e) The quadrangle of the second region is warped back
with the ground truth homography and compared with the quadrangle of the first image. Ideally the
two quadrangles should overlap. For comparison of different region detectors we normalize the reference
region to a fixed size and scale the warped region correspondingly.

• Method A: For Fig. 2.14(a)-(c) we computed the pose from the 2–D locations of
all the correctly matched affine regions. The correct matches were obtained by
computing the overlap error between the regions that were matched by SIFT. In
order to compute the overlap error we used the ground truth transformations. Note
that this gives a strong advantage to the affine region detectors since the ground
truth is usually not available. Each pair of regions was labeled as correctly matched
if the overlap error was below 40%. The IBR detector obtained the best results with
a 18% matching rate.

• Method B: For Fig. 2.14(d)-(f), we used the shape of two matched affine regions
in order to determine the current pose of the object. In order to obtain the miss-
ing degree of freedom, the orientation was obtained by determining the dominant
orientation within the patch [63]. Since for each image several transformations are
available due to several extracted affine regions, we chose the transformation that
corresponds best to the ground truth. The MSER and the Hessian-Affine detector
perform best with a matching rate of 43% and 35%.

For the second experiment, shown in Fig. 2.15, we tracked a foot print in a snowy
ground in a sequence of 453 images. The results are very similar to the first experiment’s
results. The success rates of our algorithms are around 88%. Again, Method A with
the IBR detector performs best among the affine region detectors with a matching rate of
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Figure 2.13: Comparing the accuracy of our methods and of affine region detectors on the Graffiti
image set. (a) Average overlapping area of all correctly matched regions. Our method is very close to
100% and always more accurate than the other methods. (b) Average sum of the distances from the
ground truth for the corner points. Our method is also more accurate in that case.

12%. All other detectors had success rates of below 1% (see Fig. 2.15(a)-(c)). For Method
B, all affine region detectors performed around 5% except the EBR detector which had a
matching rate below 1% (see Fig. 2.15(d)-(f)).
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Figure 2.13 (cont.): Comparing the accuracy of our methods and of affine region detectors on the
Graffiti image set. (c),(d) Same experiments as in (a), (b) but with only the best 100 regions kept.

2.5.3 Speed

Below, we give the computation times for training and runtime for both of our methods.
All times given were obtained on a standard notebook 1. Our implementations are written
in C++ using the Intel OpenCV and IPP libraries.
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Figure 2.14: Camera trajectories retrieved by different methods for a video sequence of the power outlet
of Fig. 2.23. For clarity we do not display results if the error on the camera center is larger than 50 units.
(a),(b) X and Y coordinates of the camera center over the sequence in a coordinates system centered
on the power outlet. For the affine region detectors, the camera pose was retrieved using Method A as
explained in Section 2.5.2.

37



Chapter 2: Real-Time Detection of Low-Textured Objects by Patch
Based Rectification

50 100 150 200 250 300 350

−250

−200

−150

−100

−50

image number

z 
tr

aj
ec

to
ry

 

 
GroundTruth
LEOPAR
GEPARD
Harris Affine
Hessian Affine
MSER
IBR
EBR

(c)

50 100 150 200 250 300 350

−100

−80

−60

−40

−20

0

20

40

60

80

100

image number

x 
tr

aj
ec

to
ry

 

 
GroundTruth
LEOPAR
GEPARD
Harris Affine−Shape
Hessian Affine−Shape
MSER−Shape
IBR−Shape
EBR−Shape

(d)

Figure 2.14 (cont.): Camera trajectories retrieved by different methods for a video sequence of the
power outlet of Fig. 2.23. For clarity, we do not display results if the error on the camera center is larger
than 50 units. (c) Z coordinates of the camera center over the sequence in a coordinates system centered
on the power outlet. For the affine region detectors, the camera pose was retrieved using Method A as
explained in Section 2.5.2. (d) Same as (a) but using Method B.

2.5.3.1 Training

Table 2.1 shows the advantage of Gepard over Leopar: It is much faster than Leopar.
When the GPU is used, learning time drops to 5.5 milliseconds, which is largely fast
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(f)

Figure 2.14 (cont.): Camera trajectories retrieved by different methods for a video sequence of the
power outlet of Fig. 2.23. For clarity we do not display results if the error on the camera center is larger
than 50 units. (e),(f) Same as (b)and (c) but using Method B for the affine region detectors as explained
in Section 2.5.2.

enough for frame rate learning. This is, for instance, important for SLAM applications.
Computing the B matrices for the refinement stage can be done in additional 29 ms on
the CPU.
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Harris-Affine MSER

Hessian-Affine IBR

Figure 2.14 (cont.): Typical results for different methods on the example of the power outlet of
Fig. 2.23. The blue quadrangle is the ground truth, the green one was retrieved using Gepard, the red
one using one of the affine region detectors.

Leopar [41] 1.05 seconds
Gepard (CPU) [44] 15 milliseconds
Gepard (GPU) [44] 5.5 milliseconds

Table 2.1: Average learning time per feature for the first step of our different approaches. Gepard is
more than 70 times faster when the GPU is used.

2.5.3.2 runtime

Our current implementation of Gepard runs at about 10 frames per second using 10
keypoints in the database and 70 candidate keypoints in the image. A better runtime
performance is achieved with Leopar: Our implementation runs at about 10 frames per
second using a database of 50 keypoints and 400 image candidate keypoints. Note that
for Leopar the runtime is almost constant with respect to the size of the database and
only depends on the number of candidate keypoints. For Gepard the runtime is not only
influenced by the number of candidate keypoints but also behaves linearly in the number
of patches in the database. The single times for one patch in the database with respect
to the number of candidate keypoints in the current image are given in Fig. 2.16. We
do not use any special data structure for nearest neighbor search and using, for example,
KD-trees [7] would speed it up. However, due to the method’s robustness and accuracy,
one detected keypoint is already enough to detect the target object and to estimate its
pose reliably. This can considerably speed up the processing time if the object is seen
in the image and the result of only one extracted patch is enough to start a non-linear
optimization process. Thus, the processing of all remaining keypoints in an image can be
skipped as soon as one keypoint is extracted.
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(b)

Figure 2.15: Camera trajectories retrieved by different methods for a video sequence of a footprint in
snow. For clarity we do not display results if the error on the camera center is larger than 50 units.
(a),(b): X and Y coordinates of the camera center over the sequence in a coordinates system centered
on the footprint in snow. For the affine region detectors, the camera pose was retrieved using Method A
as explained in Section 2.5.2.
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(c)
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(d)

Figure 2.15 (cont.): Camera trajectories retrieved by different methods for a video sequence of a
footprint in snow. For clarity we do not display results if the error on the camera center is larger than
50 units. (c): Z coordinates of the camera center over the sequence in a coordinates system centered on
the footprint in snow. For the affine region detectors, the camera pose was retrieved using Method A as
explained in Section 2.5.2. (d): Same as (a) but using Method B.

2.5.4 Memory
Typically, Leopar needs about 8 MB per keypoint, while Gepard needs only 350 KB.
The actual amount depends on several parameters, but these values are representative. In
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(e)
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(f)

Figure 2.15 (cont.): Camera trajectories retrieved by different methods for a video sequence of a
footprint in snow. For clarity we do not display results if the error on the camera center is larger than
50 units. (e),(f): Same as (b)and (c) but using Method B for the affine region detectors as explained
in Section 2.5.2.

particular the ratio between the two methods is typical: Leopar trades a large amount
of memory for runtime speed.
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Harris-Affine MSER

Hessian-Affine IBR

Figure 2.15 (cont.): Typical results for different methods shown on the example of a footprint in snow.
The blue quadrangle is the ground truth, the green one was retrieved using Gepard, the red one using
one of the affine region detectors.
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Figure 2.16: We compare the maximal runtime per keypoint of both of our methods with respect to
the number of keypoints extracted in the image. For Leopar we give two different runtimes: The first
one uses the same matching scheme as Gepard which is more robust but slower. If we use the patch
preclassification described in Eq. 2.1 the runtime is decreased even more. Few hundreds of patches can
be handled in real-time if the preclassification is switched on.
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Figure 2.17: Training framework. We incrementally train the classifiers and the linear predictors over
the frames of a training sequence as shown in this figure. To this end, the object is automatically registered
in each incoming frame using the current state of these classifiers and linear predictors. The outcome of
the single registration steps is shown by the quadrangles.

2.6 Applications

2.6.1 Training Framework
Our methods can be trained using either a small set of training images or a video sequence.
In the first case, we synthesize images by warping the original patches with random
homographies and adding noise to train the classifiers and the linear predictors. A video
sequence and a 3D model could also be used if available. In this case we proceed as
proposed in [82]: The first image is registered manually and approximately. It is used
to partially train the classifiers and the linear predictors. Assuming a small interframe
displacement in the training sequence, this is enough to recognize feature points in the
next image, and to register it. The procedure is iterated to process the whole sequence
as shown in Fig. 2.17.

2.6.2 Examples
In Figs. 2.18, 2.19, 2.20, and 2.21, we apply Leopar to object detection and pose esti-
mation application using a low-quality camera. Leopar is robust and accurate even in
presence of drastic perspective changes, light changes, blur, occlusion, and deformations.
For each of these objects we learned the patches from an initial frontal view. In Figs. 2.20
and 2.21 we additionally used the template matching-based ESM algorithm [8] to refine
the pose obtained from a single patch. As one can see, one extracted patch is already
good enough to obtain the pose of the object reliably.

Several applications using Gepard are shown in Figs. 2.23, 2.24, 2.25, and 2.22,
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showing SLAM relocalization using a single keypoint, SLAM relocalization in a room,
poorly textured object detection, and deformable object detection, respectively.

For the experiment shown in Fig. 2.23, we considered an image sequence that is typ-
ically very challenging for existing SLAM systems as very few feature points can be
detected, and in which the camera moves very quickly. We used a frontal view of the
power outlet to train Gepard, which was then able to detect it and provide the camera
pose throughout the 372 images of the sequence.

Fig. 2.22 shows another example on a larger scene. We walked around in an office space
and learned a few key landmarks which were then reliably redetected in the next frames
when visible, even under new viewpoints. While scalability is an issue in our current
application, as we cannot handle too many patches simultaneously, this is balanced by
the fact that each patch provides all six degrees-of-freedom of the camera. We currently
ignore the spatial relations between patches, and the camera pose is only computed in
the local frame of each patch. It should however be possible to build a SLAM system
that estimates the geometric transformations between the local frames of the patches and
computes the camera pose in a global coordinates system.

In Fig. 2.24 we applied Gepard to detect and estimate the 3–D pose of three poorly
textured objects, under different scales and poses. This shows the potential of our ap-
proach for object recognition.

For Fig. 2.25 we tried our approach on a deformable surface. We learned five patches on
the book cover from an initial frontal view. Although the book is then strongly deformed
and we do not model the deformation within our recognition pipeline, most of the learned
patches are reliably recognized. The local frames also fit well to the local deformations,
at least visually. This provides very strong constraints on the shape of the surface that
could be exploited to retrieve the deformations, for example using a global deformation
model such as the one developed in [91].

A clear limitation of our approach is that it relies on feature point detection. If the
feature point corresponding to the patch center is not detected in the first place, because
of image noise or some imperfection of the feature point detector, our approach fails.
Skipping the feature point detection step, for example, by parsing the complete image
and looking for the patches, is part of our future work.

Another part of future work is the integration of Leopar and Gepard into the
Computer Vision Cad Model (CV-CAD) [73]. The CV-CAD incorporates computer vision
methods and 3D data and is highly scalable with respect to the number of object parts.
Its goal is the easy composition of object parts — each described by a single CV-CAD
model — to a new object without the need of relearning and retraining computer vision
methods. Instead, the computer vision functionality of the new object is built by fusing
the vision functionality of the single CV-CAD entities.

This is made possible by using Natural 3D Markers (N3M’s) [40]. N3M’s are local
entities that are able to autonomously estimate and self-verify the pose of the object
they belong to only based on spatially limited regions and independently of all remaining
features. Since Leopar and Gepard show these properties, they can be clearly classified
as N3M’s.

For the new composition of an object, one then has to apply only the following steps:
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determining which of the N3M’s are still visible, deactivating invisible N3M’s, computing
the new relative pose of the single N3M’s and updating the global geometry of the new
object. This can be done fully automatically by simply taking some images of the new
object and computing the relative pose of the attached N3M’s. It then immediately allows
for the efficient computation of all remaining steps. As a result, the new composition of
single object parts becomes highly efficient and uncomplicated. Even non-expert users
are expected to be able to create new objects which can be handled with computer vision
techniques, if the corresponding CV-CAD models for the single parts exist.

(a) (b) (c) (d)

Figure 2.18: Robustness of Leopar to deformation and occlusion. (a) Patches detected on the book
in a frontal view. (b) Most of these patches are detected even under a strong deformation. (c) The book
is half occluded but some patches can still be extracted. (d) The book is almost completely hidden but
one patch is still correctly extracted. No outliers were produced.

(a) (b) (c) (d)

Figure 2.19: Accuracy of Leopar of the retrieved transformation. For each of these images, we draw
the borders of the book estimated from a single patch. This is made possible by the fact we estimate a
full perspective transform instead of only an affine one.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.20: Some frames of a Tracking-by-Detection with Leopar sequence shot with a low-quality
camera. (a)-(g) The book pose is retrieved in each frame independently at 10fps. The yellow quadrangle
is the best patch obtained by Leopar. The green quadrangle is the result of the ESM algorithm [8]
initialized with the pose obtained from this patch. The retrieved pose is very accurate despite drastic
perspective and intensities changes and blur. (h) When the book is not visible, our method does not
produce a false positive.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.21: Another example of a Tracking-by-Detection sequence with Leopar. The book pose is
retrieved under (b) scale changes, (c-d) drastic perspective changes, (e) blur, (f) occlusion, and (g-h)
deformations.
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Figure 2.22: An example of SLAM relocalization with Gepard, using 8 different patches.
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Figure 2.23: Tracking a power outlet with Gepard. We can retrieve the camera trajectory through
the scene despite very limited texture and large viewpoint changes. Since the patch is detected and its
poses estimated in every frame independently, the method is very robust to fast motion and occlusion.
The two graphs show the retrieved trajectory.

50



2.6 Applications

Figure 2.24: Application to tracking-by-detection of poorly textured objects under large viewing changes
with Gepard.

Figure 2.25: Application to a deformable object with Gepard. We can retrieve an accurate pose even
under large deformations. While it is not done here, such cues would be very useful to constrain the 3D
surface estimation.
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CHAPTER

THREE

REAL-TIME DETECTION OF TEXTURE-LESS OBJECTS
BY TEMPLATE MATCHING

At least since the seminal work of Viola and Jones [108], the dominant approach to real-
time object recognition is to train a classifier offline to achieve fast online performance [21,
26, 13, 27]. This is remarkably effective when the target objects are known a priori but
inappropriate when new objects have to be learned online. In robotic applications for
instance, autonomous systems continuously have to adapt to a changing and unknown
environment which makes it necessary to learn and recognize new objects in runtime.
Therefore, statistical-learning techniques are often not adequate, since they tend to require
many samples and to be too computationally intensive for real-time performance.

When the object is textured enough for keypoints to be found and recognized on
the basis of their appearance, this difficulty has been successfully addressed by defining
patch descriptors that can be computed quickly and used to characterize the object [63].
However, this kind of approach will fail on texture-less objects such as those of Fig. 3.1,
whose appearance is often dominated by their projected contours. To overcome this
problem, we propose a novel approach based on real-time template recognition, where the
templates can both be built and matched very quickly. We will show that this makes it
very easy and virtually instantaneous to learn new incoming objects by simply adding
new templates to the database while maintaining reliable real-time recognition.

However, we also wish to keep the efficiency and robustness of statistical methods, as
they learn how to reject unpromising image locations very quickly and tend to be very
robust, because they can generalize well from the training set. For these reasons, we
describe two new approaches in this theses — the one consisting of a new template [46]
and the other consisting of a new image representation [43] — which both hold local
image statistics and are fast to compute. In short, they are designed to be invariant
to small translations and deformations, which has been shown to be a key factor to
generalization [63]. In addition, they also allow us to quickly parse the image by skipping
many locations without loss of reliability.

The first presented approach — called Dot (for Dominant Orientation Templates)
— is a gradient-based template representation that is invariant enough to make search
in the images very fast and generalizes well (see Fig. 3.1). As a result, we can almost
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Figure 3.1: Dot Overview. Our templates can detect non-textured objects over little cluttered back-
ground in real-time without relying on feature point detection. Adding new objects is fast and easy, as
it can be done online without the need for an initial training set. Only a few templates are required to
cover all appearances of the objects.

Figure 3.2: Line Overview. Upper Row: Our method can detect texture-less 3D objects in real-time
under different poses over heavily cluttered background using spread gradient orientations. Lower Row:
it can also be generalized using multiple different modalities which increases the robustness and decreases
the number of false positives.

instantaneously learn new objects and recognize them in real-time without requiring much
time for training or any feature point detection at runtime.

The representation of Dot is related to the Histograms-of-Gradients (HoG) based
representation [21] that has proved to generalize well. Instead of local histograms, it relies
on locally dominant orientations, and is made explicitly invariant to small translations.
Our experiments show that it is in practice comparable discriminant as HoG, while being
much faster. Because it is explicitly made invariant to small translations, we can skip
many locations while parsing the images without the risk of missing the targets. Moreover
we developed a bit-coding method inspired by [101] to evaluate an image location for the
presence of a template. It mostly uses simple bit-wise operations, and is therefore very
fast on modern CPUs. Our similarity measure also fulfills the requirements for recent
branch-and-bound exploration techniques [56], speeding-up the search even more.

While Dot works remarkably well for small objects over little cluttered background,
it has its problems with strong background clutter and significantly slows down when the
size of the templates increases.
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Therefore, we present a second approach — called Line (for LINEarizing the memory)
— that addresses this issue while being much faster for larger templates. While initially
designed for gradient orientations only, we show in this thesis how to generalize this
method to make use of multiple different visual cues or modalities simultaneously once a
proper quantization of the input data is available.

Instead of making the templates invariant to small deformations and translations as
in Dot, Line builds a representation of the input images which has similar invariance
properties. This allows us to consider all quantized values in local image neighborhoods
instead of the dominant ones only. By introducing a novel similarity measure taking
them into account, we can now avoid the problems due to too strong background clutter
as illustrated by Figure 3.2.

To avoid slowing down detection when using this finer method, we have to make careful
considerations about how modern CPUs work. A naive implementation would result in
many “memory cache misses”, which slow down the computations, and we thus show how
to structure our image representation in memory to prevent them and to additionally
exploit heavy SSE parallelization. We consider this as an important contribution: Because
of the nature of the hardware improvements, it is not guaranteed anymore that legacy code
will run faster on the new versions of CPUs [11]. This is particularly true for Computer
Vision, which algorithms are often computationally expensive. It is now required to take
the CPU architecture into account, which is not an easy task.

In the remainder of this chapter we first discuss related work before we explain Dot
and Line and show how their similarity measures can be evaluated very fast. For each
method we additionally show quantitative experiments and real world applications.

3.1 Related Work
Template Matching has played an important role in tracking-by-detection applications for
many years. This is due to its simplicity and its capability to handle different types of
objects. It neither needs a large training set nor a time-consuming training stage, and
can handle low-textured or texture-less objects, which are, for example, difficult to detect
with feature points-based methods [63, 45]. Unfortunately, this increased robustness often
comes at the cost of an increased computational load that makes naïve template matching
inappropriate for real-time applications. So far, several works have attempted to reduce
this complexity.

An early approach to Template Matching [79] and its extension [30] include the use of
the Chamfer distance between the template and the input image contours as a dissimilarity
measure. For instance, Gavrila and Philomin [30] introduced a coarse-to-fine approach in
shape and parameter space using Chamfer Matching [12] on the Distance Transform of
a binary edge image. The Chamfer Matching minimizes a generalized distance between
two sets of edge points. Although being fast when using the Distance Transform (DT),
the disadvantage of the Chamfer Transform is its sensitivity to outliers which often result
from occlusions.

Another common measure on binary edge images is the Hausdorff distance [90]. It
measures the maximum of all distances from each edge point in the image to its nearest
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neighbor in the template. However, it is sensitive to occlusions and clutter. Huttenlocher
et al. [50] tried to avoid that shortcoming by introducing a generalized Hausdorff distance
which only computes the maximum of the k-th largest distances between the image and
the model edges and the l-th largest distances between the model and the image edges.
This makes the method robust against a certain percentage of occlusions and clutter.
Unfortunately, a prior estimate of the background clutter in the image is required but
not always available. Additionally, computing the Hausdorff distance is computationally
expensive and prevents its real-time application when many templates are used.

Both Chamfer Matching and the Hausdorff distance can easily be modified to take
the orientation of edge points into account. This drastically reduces the number of false
positives as shown in [79], but unfortunately also increases the computational load.

A more recent approach that speeds up the oriented Chamfer Matching uses binary
depth-edges generated by a multi-flash camera [62]. This method computes the distance
transform on the different orientation channels of the binary depth-edge map and uses
a line-based integral image to enable the quick computation of the similarity measure.
While this approach seems to be quite robust in cluttered environments, it needs special
hardware to be robust.

[48] is also based on the Distance Transform, however, it is invariant to scale changes
and robust enough against planar perspective distortions to do real-time matching. Un-
fortunately, it is restricted to objects with closed contours, which are not always available.

Another class of algorithms for object recognition is based on the generalized Hough
transform [4]. Its advantage is its robustness to occlusion and clutter. Unfortunately, the
generalized Hough Transform in its conventional form requires large amounts of memory
and long computation times to recognize an object. Additionally, it is very sensitive to
the quantization of the accumulator space and to correct edge detection which makes it
inappropriate for real-time detection.

All these methods use binary edge images obtained with a contour extraction algo-
rithm, using the Canny method [16] for example, and they are very sensitive to illumina-
tion changes, noise and blur. For instance, if the image contrast is lowered, the number
of extracted edge pixels progressively decreases which has the same effect as increasing
the amount of occlusion.

The method proposed in [97] tries to overcome these limitations by considering the
image gradients in contrast to the image contours. It relies on the dot product as a simi-
larity measure between the template gradients and those in the image. Unfortunately, this
measure rapidly declines with the distance to the object location, or when the object ap-
pearance is even slightly distorted. As a result, the similarity measure must be evaluated
densely, and with many templates to handle appearance variations, making the method
computationally costly. Using image pyramids provides some speed improvements, how-
ever, fine but important structures tend to be lost if one does not carefully sample the
scale space.

Amit [1] also proposed a coarse to fine approach, however, in contrast to [97], by
making use of spreading gradient orientations in local neighborhoods. The amount of
spreading is learned for each object part in an initial stage. While this approach — used
for license plate reading — achieves high recognition rates, it is not real-time capable.
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If the image has to be parsed only with a small number of templates, another method
which is fast but simple is commonly used: the Fast Fourier Transform [20] provides
efficient means to match a single template in real-time with an image, given that the
Fourier transforms of both are given. In order to make the FFT applicable the underlying
similarity measure has to be formulated in a correlation based scheme [69]. However, as
soon as some tens of templates have to be shifted over the image, this approach becomes
quickly intractable.

Histogram of Gradients (HoG) [21] is another related and very popular method. It
statistically describes the distribution of intensity gradients in localized portions of the
image. The approach is computed on a dense grid with uniform intervals and uses overlap-
ping local histogram normalization for better performance. It has proven to give reliable
results but tends to be slow due to the computational complexity.

Ferrari et al. [27] provided a learning based method that recognizes objects via a
Hough-style voting scheme with a non-rigid shape matcher on object boundaries of a
binary edge image. The approach applies statistical methods to learn the model from few
images that are only constrained within a bounding box around the object. While giving
very good classification results, the approach is neither appropriate for object tracking in
real-time due to its expensive computation nor is it precise enough to return the accurate
pose of the object. Additionally, it is sensitive to the results of the binary edge detector,
an issue that we discussed before.

Grabner and Bischof [35, 36] developed another learning based approach that put more
focus on online learning. In [35, 36] it is shown how a classifier can be trained online in
real-time, with a training set generated automatically. However, [35] was demonstrated
on textured objects, and [36] cannot provide the object pose.

Opposite to the above mentioned learning based methods, there are also approaches
that are specifically trained on different viewpoints. As with our template-based approach,
they can detect objects under different poses but typically require a large amount of
training data and a long offline training phase. For example, in [109, 49, 83], one or
several classifiers are trained to detect faces or cars under various views.

More recent approaches for 3D object detection are related to object class recognition.
Stark et al. [96] rely on 3D CAD models and generate a training set by rendering them
from different viewpoints. Liebelt and Schmid [60] combine a geometric shape and pose
prior with natural images. While these approaches are able to generalize to the object
class they are not real-time capable and require expensive training.

From the related works which take into account multi-modal data information there are
mainly approaches related to pedestrian detection [24, 25, 31, 112]. They use three kinds
of clues: image intensity, depth and motion (optical flow). The most recent approach of
Enzweiler et. al [24] builds part based models of pedestrians in order to handle occlusions
caused by other objects and not specifically self occlusions which are modeled in other
approaches [25, 112]. Besides pedestrian detection, there has been an approach to object
classification, pose estimation and reconstruction introduced by [99]. Similar to us, the
training data set is composed of depth and image intensities while the object classes
are detected using the modified Hough transform. While being quite effective in real
applications these approaches still require exhaustive training using large training data
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sets. This is usually prohibited in robotic applications where the robot has to explore an
unknown environment and learn new objects online.

The first method presented in this chapter — called Dot [46] — has the strength of
the similarity measure of [97], the robustness of [21] and the online learning capability
of [35, 36]. In addition, by binarizing the template representation and using a recent
branch-and-bound method of [56] this method becomes very fast, making possible the
detection of untextured 3D objects in real-time.

However, we noticed that Dot degrades significantly when the gradient orientations
are disturbed by strong gradients of different orientations coming from background clutter
in the input images. In practice, this often happens in the neighborhood of the silhouette
of an 3D object, which is unfortunate as the silhouette is a very important cue especially
for texture-less objects.

The second method we present in this chapter — called Line [43] — does not suffer
from this problem while running at the same speed. This is made possible by aligning for
each feature the local neighborhood exactly to the associated location whereas in Dot [46],
BiGG [72], HoG [21] or SIFT [63], the features are adjusted only to some regular grid.
This can be done efficiently by spreading image features to their local neighborhood and
by precomputing for each feature so called response maps which are shared between the
templates. As such, the similarity measure for each image location is evaluated only once,
and by making use of the architecture of modern computers we obtain a great speed-up
at runtime.

Furthermore, we show how Line can make use of multiple different modalities which
increases robustness even further and significantly decreases the number of false positives.
We also show how input data has to be processed on the example of color image and dense
depth data.

3.2 Dot: Dominant Orientation Templates
In this section, we describe our Dominant Orientation Templates, and how they can be
built and used to parse images to quickly find objects. We will start by deriving our
similarity measure, emphasizing the contributions of each aspect of it. We then show how
to use a binary representation to compute the similarity using efficient bit-wise operations.
We finally demonstrate how to use it within a branch-and-bound exploration of the image.

3.2.1 Initial Similarity Measure
Our starting idea is to measure the similarity between an input image I, and a reference
image O of an object centered on a location c in the image I by comparing the orientations
of their gradients.

We chose to consider image gradients because they proved to be more discriminant
than other forms of representations [63, 97] and are robust to illumination change and
noise. For even more robustness to such changes, we use their magnitudes only to retain
the orientations of the strongest gradients, without using their actual values for matching.
Also, to correctly handle object occluding boundaries, we consider only the orientations
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of the gradients, by contrast with their directions (thus, two vectors with a 180deg angle
between them have the same orientation). In this way, the measure will not be affected
if the object is over a dark background, or a bright background. Moreover, as in SIFT or
HoG [21], we discretize the orientations to a small number no of integer values.

Our initial energy function E1 counts how many orientations are similar between the
image and the template centered on location c, and can be formalized as:

E1(I,O, c) =
∑

r

δ
(
ori(I, c+ r) = ori(O, r)

)
, (3.1)

where

• δ(P ) is a binary function that returns 1 if P is true, 0 otherwise;

• ori(O, r) is the discretized gradient orientation in the reference image O at location
r which parses the template. Similarly, ori(I, c + r) is the discretized gradient
orientation at c shifted by r in the input image I.

3.2.2 Robustness to Small Deformations
To make our measure tolerant to small deformations, and also to make it faster to compute,
we will not consider all possible locations, and will decompose the two images into small
squared regions R over a regular grid. For each region, we will consider only the dominant
orientations. Such an approach is similar to the HMAX pooling mechanism [92]. Our
similarity measure can now be modified as:

E2(I,O, c) =
∑
R in O

δ
(
do(I, c+R) ∈ DO(O,R)

)
, (3.2)

where DO(O,R) returns the set of orientations of the strongest gradients in region R of
the object reference image. In contrast, do(I, c + R) returns only one orientation, the
orientation of the strongest gradient in the region R shifted by c in the input image.

The reason why we chose each region in O to be represented by the strongest gradients
is that the strongest gradients are easy and fast to identify and very robust to noise and
illumination change. Moreover, to describe uniform regions, we introduce the symbol ⊥
to indicate that no reliable gradient information is available for the region. The DO(.)
function therefore returns either a set of discretized gradient orientations of the k strongest
gradients in the range of [0, no − 1] or {⊥}, and can be formally written as:

DO(O,R) =
{
S(O,R) if S(O,R) 6= ∅,
{⊥} otherwise (3.3)

with
S(O,R) = {ori (O, l) : l ∈ maxmagk(R) ∧mag(O, l) > τ} (3.4)

where

• l is a pixel location in R,
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Figure 3.3: Similarity measure E4. Our final energy measure E4 counts how many times a local dominant
orientation for a region R in the image belongs to the corresponding precomputed list of orientations
L(O,R) for the corresponding template region. Each list is made of the local dominant orientations that
are in the region R when the object template is slightly translated.

• ori(O, l) is the gradient orientation at l in image O, and mag(O, l) its magnitude,

• maxmagk(R) is the set of locations for the k strongest gradients in R. In practice
we take k = 7 but the choice of k does not seem critical.

• τ is a threshold on the gradient magnitudes to decide if the region is uniform or not.

The function do(I, c+R) is computed similarly in the input image I. However, to be
faster at runtime, in do(I, c+R), k is restricted to 1, and therefore do(I, c+R) returns
only one single element.

3.2.3 Invariance to Small Translation
We will now explicitly make our similarity measure invariant to small motions. In this
way, we will be able to consider only a limited number of locations c when parsing an
image and save a significant amount of time without increasing the chance of missing the
target object. To do so, we consider a measure that returns the maximal value of E2 when
the object is slightly moved, which can be written as:

E3(I,O, c) = max
M∈M

E2(I,w(O,M), c)

= max
M∈M

∑
R in O

δ
(
do(I, c+R) ∈ DO(w(O,M),R)

)
,

(3.5)

where w(O,M) is the image O of the object warped using a transformation M . In
practice, we consider for M only 2D translations as it appears sufficient to handle other
small deformations, andM is the set of all (small) translations in the range [− t

2 ; + t
2 ]2.

There is of course a limit for the range t. A large t will result in high speed-up but
also in a loss of discriminative power of the function. In practice, we found that t = 7 for
640× 480 images is a good trade-off.
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3.2.4 Ignoring the Dependence between Regions
Our last step is to ignore the dependence between the different regions R. This will
simplify and significantly speed-up the computation of the similarity. We therefore ap-
proximate E3 as given in Eq.(3.5) by:

E4(I,O, c)
=

∑
R in O

max
M∈M

δ
(
do(I, c+R) ∈ DO(w(O,M),R)

)
. (3.6)

The speed-up comes from the fact that, for each region R, we can precompute a list
L(O,R) of the dominant orientations in R when O is translated overM. As illustrated
by Fig. 3.3, the measure E4 can thus be written as:

E4(I,O, c) =
∑
R in O

δ
(
do(I, c+R) ∈ L(O,R)

)
, (3.7)

and L(O,R) can formally be written as:

L(O,R)
= {o : ∃M ∈M such that o ∈ DO(w(O,M),R)} . (3.8)

The collection of lists over all regions R in O forms the final object template.

3.2.5 Using Bitwise Operations
Inspired by [101], and as shown in Fig. 3.4, we efficiently compute the energy function
E4 using a binary representation of the lists L(O,R) and of the dominant orientations
do(I, c+R). This allows us to compute E4 with only a few bitwise operations.

By setting no, the number of discretized orientations, to 7 we can represent a list
L(O,R) or a dominant orientation do(I, c +R) with one byte i.e. a 8-bit integer. Each
of the 7 first bits corresponds to an orientation while the last bit stands for ⊥.

More exactly, to each list L(O,R) corresponds a byte L whose ith bit with 0 ≤ i ≤ 6
is set to 1 iff i ∈ L(O,R), and whose 7th bit is set to 1 iff ⊥ ∈ L(O,R). A byte D can be
constructed similarly to represent a dominant orientation do(I, c + R). Note that only
one bit of D is set to 1. Now the term δ

(
do(I, c + R) ∈ L(O,R)

)
in Eq.(3.7) can be

evaluated very quickly. We have:

δ
(
do(I, c+R) ∈ L(O,R)

)
= 1 iff L⊗D 6= 0 , (3.9)

where ⊗ is the bitwise AND operation.

3.2.6 Using SSE Instructions
The computation of E4 as formulated in Section 3.2.5 can be further speeded up using SSE
operations. In addition to bitwise operations, which are already very fast, SSE technology
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L(O,R) :

do(I,c+R) :

10011001  01000110   11100001  00100100
 

10000000  00010000  01000000  00000100

10000000  00000000  01000000  00000100
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Figure 3.4: Computing the similarity E4 using bitwise operations and a lookup table that counts how
many terms δ() as in Eq.(3.9) are equal to 1.

int energy_function4 ( __m128i lhs , __m128i rhs )
{

__m128i a = _mm_and_si128 (lhs ,rhs);
__m128i b = _mm_cmpeq_epi8 (a, _mm_setzero_si128 ());

return lookuptable [ _mm_movemask_epi8 (b)];
}

Listing 3.1: C++ Energy function for 16 regions with 3 SSE instructions and one look-up in a 16-
bit-table. Since in SSE there is no comparison on non-equality for unsigned 8-bit integers we have—in
contrast to Fig. 3.4—to compare the AND’ed result to zero and count the "0" instead.

allows to perform the same operation on 16 bytes in parallel. Thus, by using the function
given in Listing 3.1, the similarity score for 16 regions can be computed with only 3 SSE
operations and one lookup-table with 16-bits entries.

Thus, if n denotes the number of regions R, we only have to use 3
⌈

n
16

⌉
SEE instruc-

tions,
⌈

n
16

⌉
uses of a lookup table with 16-bits entries and additional

⌈
n
16

⌉
−1 "+" operations

if the number of regions n is larger than 16. Assuming that each operation has the same
computational cost we need 5

⌈
n
16

⌉
−1 operations for n regions which results in only ≈ 0.3

operations per region.
This method is extremely cache friendly because only successive chunks of 128 bits are

processed at a time which holds the number of cache misses low. This is very important
because SSE technology is very sensitive to optimal cache alignment. This is probably
why, although our energy function is slightly more computationally expensive in theory
than [101], we found that our formulation performed 1.5 times faster in practice.

Another advantage of our algorithm compared to [101], however, is that it is very
flexible with respect to varying template sizes without loosing the capability of using the
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computational capacities very efficiently. In our method, the optimal processor load is
reached by multiples of 16 in contrast to [101] that needs multiples of 128 in a possible dy-
namic SSE implementation. The probability of wasting computational power is therefore
much lower using Dot.

3.2.7 Clustering for Efficient Branch and Bound
We can further improve the scalability of our method by exploiting the similarity between
different templates representing different objects under different views. The general idea
is to build clusters of similar templates—each of them being represented by what we will
refer to as a cluster template. A cluster template is computed as a bitwise OR operation
applied to all the templates belonging to the same cluster. It provides tight upper bounds
and can be used in a branch and bound constrained search as described in [56]. By first
computing the similarity measure E4 between the image and the cluster templates at run-
time, we can reject all the templates that belong to a cluster template not similar enough
to the current image.

We use a bottom-up clustering method: To build a cluster, we start from a template
picked randomly among the templates that do not yet belong to a cluster and iteratively
search for the templates T that fulfill:

argmin
T /∈Clusteri

max(dh(C or T, T ), dh(C or T,C)), (3.10)

where dh is the hamming distance, "or" the bitwise OR operation and C the cluster
template before OR’ing. We proceed this way until the cluster has a given number of
templates assigned or no templates are left. In the first case, we continue building clusters
until every template is assigned to a cluster.

For our approach, this clustering scheme allows faster runtime than the binary tree
clustering suggested in [101], as will be shown in Section 3.2.8.3.

3.2.8 Experimental Validation
In the experiments, we compared our approach called Dot (for Dominant Orientation
Templates) to Affine Region Detectors [68] (Harris-Affine, Hessian-Affine, MSER, IBR,
EBR), to patch rectification methods [44, 41, 39] (Leopar, Panter, Gepard) and to the
Histograms-of-Gradients (HoG) template matching approach [21].

For HoG, we used our own SSE optimized implementation. In order to detect the
correct template from a large template database we replaced the Support Vector Machine
mentioned in the original work of HoG by a nearest neighbor search since we want to
avoid a training phase and to look for a robust representation instead.

For Dot and HoG we also applied an additional refinement method [8] after detection,
as it was done for [44, 41, 39].

We did the performance evaluation on the Oxford Graffiti and on the Oxford Wall
image set [68]. Since no video sequence is available, we synthesized a training set by
scaling and rotating the first image of the dataset for changes in the viewpoint angle up
to 75 degrees and by adding random noise and affine illumination change.
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3.2.8.1 Robustness

The matching scores of the different methods are shown in Fig. 3.5(a) for the Graffiti
dataset, and in Fig. 3.5(b) for the Wall dataset. As defined in [68], these scores are
the ratios between the numbers of correct matches and the smaller numbers of regions
detected in one of the two images.

For the affine regions, we first extract the regions using different region detectors and
match them using SIFT. Two of them are said to be correctly matched if the overlap
error of the normalized regions is smaller than 40%. In our case, the regions are defined
as the patches warped by the retrieved transformation. For a fair comparison, we used the
same numbers and appearances of templates for the Dot and HoG approaches. We also
turned off the final check on the correlation for all patch rectification approaches (Leopar,
Panter, Gepard) since there is no equivalent for the affine regions.

Dot and HoG clearly outperform the other approaches by delivering optimal matching
results of 100% on the Graffiti image set. For the Wall image set, Dot performs opti-
mal again with a matching rate of 100% while HoG performs worse for larger viewpoint
changes.

These very good performances can be explained by the fact that Dot and HoG scan
the whole image while the affine regions approach is dependent on the quality of the region
extraction. As it will be shown in Section 3.2.8.3, even if it parses the whole image, Dot
is fast enough to compete with affine region and patch rectification approaches in terms
of computation times.

3.2.8.2 Detection Accuracy

As it was done in [41], in Fig. 3.5(c), we compare the average overlap between the ground
truth quadrangles and their corresponding warped versions obtained with Dot, HoG, the
patch rectification methods and with the affine regions detectors. We did the experiments
for overlap and accuracy on both image sets but due to the similarity of the results and the
lack of space we only show the results on the Graffiti image set. Since the Affine Region
Detectors deliver elliptic regions we fit quadrangles around these ellipses by aligning them
to the main gradient orientation as it was done in [41].

The average overlap is very close to 100% for Dot and HoG, about 10% better than
MSER and about 20% better than the other affine region detectors.

In Fig. 3.5(d), we compare the average error between the quadrangle corners. Once
again, Dot, HoG and the patch rectification methods perform similar and thus much
better than the affine region detectors. The error of the patch corner is less than three
pixels in average.

3.2.8.3 Speed

Although performing similar in terms of robustness and accuracy, Dot clearly outper-
forms HoG in terms of speed by several magnitudes. In order to compare both ap-
proaches, we trained them on the same locations and appearances on a 640× 480 image
with |R| = 121. The experiment was done on a standard notebook with an Intel Cen-
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Figure 3.5: Methods comparisons on the Graffiti and Wall Oxford datasets. (a),(b): Matching scores
for Graffiti and Wall sets when increasing the viewpoint angle. Our method is referred as “Dot”, and
reaches a 100% score on both sets for every angle. These results are discussed in Section 3.2.8.1.

trino Processor Core2Duo with 2.4GHz and 3GB RAM where unoptimized training of one
template took 1.8ms and the clustering of about 1600 templates 0.76s. As one can see
in Fig. 3.6, when using about 1600 templates Dot is about 310 times faster at runtime
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Figure 3.5 (cont.): Methods comparisons on the Graffiti and Wall Oxford datasets. (c) shows the
overlaps between the retrieved and expected regions as an accuracy measure for Graffiti. (d) shows
the localization error in terms of distance between regions corners. These results are discussed in Sec-
tion 3.2.8.2.

than our SSE optimized HoG implementation. The reason for this is both the robustness
to small deformations that allows Dot to skip most of the pixel locations and the binary
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Figure 3.6: Comparison of different methods and cluster schemes with respect to speed. Our method
with our cluster scheme performs superior over all other methods and cluster schemes as discussed in
Section 3.2.8.3.
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Figure 3.7: In Section 3.2.8.4 we discuss the linear behavior of our method with respect to occlusion.

representation of our templates that enables a fast similarity evaluation.
We also compared our similarity measure to a SSE optimized version of Taylor’s ver-
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Figure 3.8: t = 7 is a good trade-off between speed and robustness (Section 3.2.8.5).

sion [101]. Our approach is constantly about 1.5 times faster than Taylor’s. We believe it
is due to the cache friendly formulation of E4 where we successively use sequential chunks
of 128 bits at a time while [101] has to jump back and forth within 1024 bits (in case
|R| = 121) for successively OR’ing pairs of 128 bit vectors and accumulating the result
(for a closer explanation of Taylor’s similarity measure please refer to [101]) in a SSE
register.

We also did experiments with respect to the different clustering schemes. We compared
the approach where no clustering is used to the binary tree of [101] and our clustering
described in Section 3.2.7. Surprisingly, our clustering is twice as fast as the binary tree
clustering at runtime. Although the matching should behave in O(log(N)) time, our
implementation of the binary tree clustering behaves linearly up to about 1600 templates
as it was also observed by [101]. As the authors of [101] claim, the reason for this might
be that there are not enough overlapping templates to fully exploit the potential of their
tree structure.

3.2.8.4 Occlusion

Occlusion is a very important aspect in template matching. To test Dot towards occlusion
we selected 100 templates on the first image of the Oxford Graffiti image set, added
small image deformation, noise and illumination changes and incrementally occluded the
template in 2.5% steps from 0% to 100%. The results are displayed in Fig. 3.7. As
expected the similarity of our method behaves linearly to the percentage of occlusion.
This is a desirable property since it allows to detect partly occluded templates by setting
the detection threshold with respect to the tolerated percentage of occlusion.
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Figure 3.9: Failure Case. When the object does not exhibit strong gradients, like the blurry image on
the left, our method performs worse than HoG.

3.2.8.5 Region Size

The size of the region R is another important parameter. The larger the region R gets
the faster the approach becomes at runtime. However, at the same time as the size of
the region increases the discriminative power of the approach decreases since the number
of gradients to be considered rises. Therefore, it is necessary to choose the size of the
region R carefully to find a compromise between speed and robustness. In the following
experiment on the Graffiti image set we tested the behavior of Dot with respect to the
matching score and the size of the region R. The result is shown in Fig. 3.8. As the
matching score is still 100% for regions of 7 × 7 pixels, one can see that the robustness
decreases with increasing region size. Although dependent on the texture and on the
density of strong gradients within one region R, we empirically found on many different
objects that a region size of 7× 7 gives very good results.

3.2.8.6 Failure Cases

Fig. 3.9 shows the limitation of our method: To obtain such optimal results as in Fig. 3.5,
the templates have to exhibit strong gradients. In case of too smooth or blurry template
images, HoG tends to perform better.

3.2.8.7 Applications

Due to the robustness and the real-time capability of our approach, Dot is suited for
many different applications including untextured object detection as shown in Fig. 3.11,
and planar patches detection as shown in Fig. 3.12. Although neither a final refinement
nor any final verification, by contrast with [41] for example, was applied to the found 3D
objects, the results are very accurate, robust and stable. Creating the templates for new
objects is easy and illustrated by Fig. 3.10.
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Figure 3.10: Templates creation. To easily define the templates for a new object, we use Dot to detect
a known object—the ICCV logo in this case—next to the object to learn in order to estimate the camera
pose and to define an area in which the object to learn is located. A template for the new object is created
from the first image, and we start detecting the object while moving the camera. When the detection
score becomes too low, a new template is created in order to cover the different object appearances when
the viewpoint changes.

Figure 3.11: Detection of different objects at about 12 fps over a moderately cluttered background.
The detections are shown by superimposing the thresholded gradient magnitudes from the object image
over the input images.
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Figure 3.11 (cont.): Detection of different objects at about 12 fps over a moderately cluttered back-
ground. The detections are shown by superimposing the thresholded gradient magnitudes from the object
image over the input images.

3.3 Line: Response Maps for Real-Time Detection
of Texture-Less Objects

While Dot works very well for normal scenes, it suffers — similar to previous template
matching approaches [12, 50, 30, 79] — from severe degradation of performance in presence
of strong background clutter.Therefore, we describe in this section an alternative template
representation that is much more robust with respect to strong background clutter than
Dot and handles templates of different size much more efficiently.

In this context, we will show how a new representation of the input image can be
built and used to parse the image to quickly and robustly find objects. We will also
demonstrate how several different visual cues and modalities can be incorporated into
this schema to increase the robustness and to significantly decrease the number of false
positives. Additionally, we will show how we implement Line to use modern processor
architectures and how to preprocess the different modalities efficiently — i.e. a color
image and its registered depth map — to enable real-time performance.
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Figure 3.12: Patch 3D orientation estimation. Like Gepard [44], Dot can detect (low-textured) planar
patches and provide an estimate of their orientations. Dot is however much more reliable as it does
not rely on feature point detection, but parses the image instead. Even in case of deformations it works
reliably.
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3.3.1 Similarity Measure
Our unoptimized similarity measure can be seen as the measure defined by Steger in [97]
modified to be robust to small translations and deformations. Steger suggests to use:

ESteger(I, T , c) =
∑
r∈P
|cos(ori(O, r)− ori(I, c+ r))| , (3.11)

where ori(O, r) is the gradient orientation in radians at location r in a reference image
O of an object to detect. Similarly, ori(I, c + r) is the gradient orientation at c shifted
by r in the input image I. We use a list, denoted by P , to define the locations r to
be considered in O. This way we can deal with arbitrarily shaped objects efficiently. A
template T is therefore defined as a pair T = (O,P).

Considering only the gradient orientations and not their norms makes the measure
robust to contrast changes, and taking the absolute value of the cosine allows it to correctly
handle object occluding boundaries: It will not be affected if the object is over a dark
background, or a bright background.

The similarity measure of Eq. (3.11) is very robust to background clutter, but not to
small shifts and deformations. A common solution is to first quantize the orientations and
to use local histograms like in SIFT [63] or HoG [21]. However this can be unstable when
strong gradients are close to the boundaries of the bins. In Dot [46], we kept the dominant
orientations of a region. This was faster than building histograms but suffers from the
same instability. Another option is to apply Gaussian convolution to the orientations like
in DAISY [103], but this would be too slow for our purpose.

We therefore propose a more efficient solution. While we initially designed the new
similarity measure to operate on the gradient image [43] only, we recently proposed a gen-
eralized framework [42] where we showed how other modalities can be easily incorporated.
Therefore, we will directly propose the generalized framework instead of the specialized
one.

Given a set of aligned reference images {Om}m∈M of the object from a set M of
modalities we redefine a template as T = ({Om}m∈M,P). P is a list of pairs (r,m)
made of the locations r of a discriminant feature in modality m. "Discriminant feature"
in this context means that the feature can be well recognized even if it is seen under some
viewpoint changes. E.g. in terms of image gradients the larger the norm of the gradient
the more discriminant this feature is. Each template is created by extracting for each
modality a small set of its most discriminant features from the corresponding reference
image and by storing their locations. As shown in Fig. 3.13, the modalities we use in our
experiments come from a standard camera and a depth sensor aligned with the camera.

Our similarity measure is a generalization of the measure defined in [43] which is robust
to small translations and deformations. It can be formalized as:

E({Im}m∈M, T , c) =
∑

(r,m)∈P

(
max

t∈R(c+r)
fm(Om(r), Im(t))

)
, (3.12)

where R(c+r) =
[
c+ r − T

2 , c+ r + T
2

]
×
[
c+ r − T

2 , c+ r + T
2

]
defines the neighborhood

of size T centered on location c+r in the input image Im and the function fm(Om(r), Im(t))
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Figure 3.13: A toy duck with different modalities. Left: Image gradients are mainly found on the
contour. The gradient location ri is displayed in pink. Middle: Surface normals are found on the body
of the duck. The normal location rk is displayed in pink. Right: Line can combine multiple cues which
are complementary: gradients are usually found on the object contour while surface normals are found
on the object interior

computes the similarity score for modality m between the reference image at location r
and the input image at location t. Thus, for each feature we align the local neighborhood
exactly to the associated location whereas in DOT [46], BiGG [72], HoG [21] or SIFT [63],
the features are adjusted only to some regular grid. As a result, we tremendously gain
robustness when using the silhouette of the object. We show below how to compute this
measure efficiently.

3.3.2 Spreading the Features
In order to avoid evaluating the max operator in Eq. (3.12) every time a new template must
be evaluated against an image location, we first introduce a new binary representation
— denoted by Jm — of the features of modality m around each image location. We will
then use this representation together with lookup tables to efficiently precompute these
maximal values.

The computation of Jm is depicted in Fig. 3.14. We first quantize the input data for
each modality into a small number of no values as done in previous approaches [63, 21, 46].
This allows us to “spread” the data of the input image Im around their locations to obtain
a new representation of the original image.

For efficiency, we encode the possible combinations of quantized input data spread to a
given image location l using a binary string: Each individual bit of this string corresponds
to one quantized value, and is set to 1 if this value is present in the neighborhood of l. The
strings for all the image locations form the image Jm on the right part of Fig. 3.14. These
strings will be used as indices of lookup tables for fast precomputation of the similarity
measure, as it is described in the next subsection.
Jm can be computed very efficiently: We first compute a map for each quantized
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Figure 3.14: Spreading demonstrated on the example of gradient orientations. For simplicity we omit
modality m. Left: The gradient orientations and their binary code. We do not consider the direction
of the gradients. (a) The gradient orientations in the input image, shown in orange, are first extracted
and quantized. (b) Then, the locations around each orientation are also labeled with this orientation,
as shown by the blue arrows. This allows our similarity measure to be robust to small translations and
deformations. (c) J is an efficient representation of the orientations after this operation, and can be
computed very quickly. For this figure, T = 3 and no = 5. In practice, we use T = 8 and no = 8.

feature value, whose values are set to 1 if the corresponding pixel location in the input
image has this feature value, and 0 if it does not. Jm is then obtained by shifting these
maps over the range of

[
−T

2 ,+
T
2

]
×
[
−T

2 ,+
T
2

]
and merging all shifted versions with an

OR operation.

3.3.3 Precomputing Response Maps
As shown in Fig. 3.15, Jm is used together with modality dependent lookup tables to
precompute the value of the max operation in Eq. (3.12) for each location and each
possible quantized value i in the template. We store the results into 2D maps Si,m where
m is the specific modality. Then, to evaluate the similarity function, we will just have to
sum values read from these Si,ms.

We use a lookup table τi,m for each modality and for each of the no quantized orien-
tations, computed offline as:

τi,m[Lm] = max
l∈Lm

fm(i, l) , (3.13)

where

• i is the index of the quantized value of modality m. To keep the notations simple,
we also use i to represent the corresponding value;

• Lm is a list of values of a special modality m appearing in a local neighborhood
of a value i as described in Section 3.3.2. In practice, we use the integer value
corresponding to the binary representation of Lm as an index to the element in the
lookup table.
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Figure 3.15: Precomputing the Response Maps Si on the example of gradient orientation. For simplicity
we omit modality m. (a): There is one response map for each quantized orientation. They store the
maximal similarity between their corresponding orientation and the orientations orij already stored in
the “Invariant Image”. (b): This can be done very efficiently by using the binary representation of the
list of orientations in J as an index to lookup tables of the maximal similarities.

For quantized value i we can now compute the value at each location c of the response
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Figure 3.16: Restructuring the way the response images Si,m are stored in memory. For simplicity we
omit modality m within the figure. The values of one image row that are T pixels apart on the x axis
are stored next to each other in memory. Since we have T 2 such linear memories per response map, and
no quantized orientations, we end up with T 2 · no different linear memories.
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Figure 3.17: Using the linear memories on the example of gradient orientation. We can compute the
similarity measure over the input image for a given template by adding up the linear memories for the
different orientations of the template, shifted by an amount depending on the locations in the template.
Performing these additions with parallel SSE instructions further speeds up the computation.

map Si,m as:
Si,m(c) = τi,m[Jm(c)] . (3.14)

Finally, the similarity measure of Eq. (3.12) can be evaluated as:

E({Im}m∈M, T , c) =
∑

(r,m)∈P
SOm(r),m(c+ r) . (3.15)

Since the maps Si,m are shared between the templates, matching several templates against
the input image can be done very fast once they are computed.
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3.3.4 Linearizing the Memory for Parallelization
Thanks to Eq. (3.15), we can match a template against the whole input image by only
adding the values in the response maps Si,m. However, one of the advantages of spreading
the quantized values as was done in Section 3.3.2 is that it is sufficient to do the evalu-
ation only every T th pixel without reducing the recognition performance. If we want to
exploit this property efficiently, we have to take into account the architecture of modern
computers.

Modern processors do not only read one data value at a time from the main memory
but several ones simultaneously, called a cache line. Accessing the memory at random
places results in a cache miss and slows down the computations. On the other hand,
accessing several values from the same cache line is very cheap. As a consequence, storing
data in the same order as they are read speeds up the computations significantly. In
addition, this allows parallelization: For instance, if 8-bit values are used as it is the case
for our Si,m maps, SSE instructions can perform operations on 16 values in parallel.

Therefore, as shown in Fig. 3.16, we store the precomputed response maps Si,m into
memory in a cache-friendly way: We restructure each response map so that the values
of one row that are T pixels apart on the x axis are now stored next to each other in
memory. We continue with the row which is T pixels apart on the y axis once we finished
with the current one.

Finally, as described in Fig. 3.17, computing the similarity measure for a given tem-
plate at each sampled image location can be done by adding the linearized memories with
an appropriate offset computed from the locations r in the templates.

3.3.5 Modality Extraction
We now turn to how we handle the different modalities and demonstrate this on image
and depth data.

3.3.5.1 Image Cue

We chose to consider image gradients because they proved to be more discriminant than
other forms of representations [63, 97] and are robust to illumination change and noise.
Additionally, image gradients are often the only reliable image cue when it comes to
texture-less objects. Considering only the orientation of the gradients and not their norms
makes the measure robust to contrast changes, and taking the absolute value of cosine
between them allows it to correctly handle object occluding boundaries: It will not be
affected if the object is over a dark background, or a bright background.

To increase robustness, we compute the orientation of the gradients on each color
channel of our input image separately and for each image location use the gradient ori-
entation of the channel whose magnitude is largest. Given an RGB color image I, we
compute the gradient orientation map IG(x) at location x with

IG(x) = ori(Ĉ(x)) (3.16)

78



3.3 Line: Response Maps for Real-Time Detection of Texture-Less
Objects

   
   

  

    
    

     
   

                

    
       
   

  

           
   

  
   

   
  

0 
deg

180 
deg

90 deg α

Figure 3.18: Upper Left: Quantizing the gradient orientations: the pink orientation is closest to
the second bin. Upper right: A toy duck with a calibration pattern Lower Left: The gradient image
computed on a gray value image. The object contour is hardly visible. Lower right: Gradients computed
with our method. Details of the object contours are clearly visible.

where

Ĉ(x) = argmax
C∈{R,G,B}

∥∥∥∥∥∂C∂x
∥∥∥∥∥ (3.17)

and R,G,B are the RGB channels of the corresponding color image. Our similarity
measure is then:

fG(OG(r), IG(t)) = |cos(OG(r)− IG(t))| (3.18)

where OG(r) is the gradient orientation map of the reference image at location r and IG(t)
the gradient orientation map of the current image at location t respectively.

In order to quantize the gradient orientation map we omit the gradient direction,
consider only the gradient orientation and divide the orientation space into n0 equal
spacings as shown in Fig. 3.18. To make the quantization robust to noise, we assign
to each location the gradient whose quantized orientation occurs most often in a 3 × 3
neighborhood. We also keep only the gradients whose norms are larger than a small
threshold. The whole unoptimized process takes about 31ms on the CPU for a VGA
image.

3.3.5.2 Depth Cue

Similar to the image cue, we decided to use quantized surface normals computed on a
dense depth field for our template representation as shown in Fig. 3.19. They allow us to
represent both close and far objects while fine structures are preserved.

In the following, we propose a method for the fast and robust estimation of surface
normals in a dense range image. Around each pixel location x, we consider the first order
Taylor expansion of the depth function D(x):

D(x+ dx)−D(x) = dx>∇D + h.o.t. (3.19)

Within a patch defined around x, each pixel offset dx yields an equation that constrains
the value of ∇D, allowing to estimate an optimal gradient ∇̂D in a least-square sense.
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Figure 3.19: Upper Left: Quantizing the surface normals: the pink surface normal is closest to the
precomputed surface normal v4. It is therefore put into the same bin as v4. Upper right: A person
standing in an office room. Lower Left: The corresponding depth image. Lower right: Surface normals
computed with our approach. Details are clearly visible and depth discontinuities are well handled. We
removed the background for visibility reasons.

This depth gradient corresponds to a 3D plane going through three points X,X1 and X2:
X = ~v(x)D(x), (3.20)
X1 = ~v(x+ [1, 0]>)(D(x) + [1, 0]∇̂D), (3.21)
X2 = ~v(x+ [0, 1]>)(D(x) + [0, 1]∇̂D). (3.22)

where ~v(x) is the vector along the line of sight that goes through pixel x and is computed
from the internal parameters of the depth sensor. The normal to the surface at the 3D
point that projects on x can be estimated as the normalized cross-product of X1−X and
X2 −X.

However this would not be robust around occluding contours, where the first order
approximation of Eq. (3.19) no longer holds. Inspired by bilateral filtering, we ignore the
contributions of pixels whose depth difference with the central pixel is above a threshold.
In practice, this approach effectively smooths out quantization noise on the surface, while
still providing meaningful surface normal estimates around strong depth discontinuities.
Our similarity measure is then defined as the dot product of the normalized surface
normals:

fD(OD(r), ID(t)) = OD(r)>ID(t) (3.23)
where OD(r) is the normalized surface normal map of the reference image at location r
and ID(t) the normalized surface normal map of the current image at location t.

Finally, as shown in Fig. 3.19, we measure the angles between the computed normal
and a set of precomputed vectors to quantize the normal directions into n0 bins. These
vectors are arranged in a right circular cone shape originating from the peak of the cone
pointing towards the camera. To make the quantization robust to noise, we assign to each
location the quantized value that occurs most often in a 5× 5 neighborhood. The whole
process is very efficient and needs only 14ms on the CPU and less than 1ms on the GPU.

3.3.6 Computation Time Study
In this section we compare the numbers of operations required by the original method
from [97] and the Line method we propose. In order to do a fair comparison, we only
assume one modality used in Line.
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The time required by ESteger from [97] to evaluate R templates over anM×N image is
M ·N ·R ·G · (S+A), where G the average number of gradients in a template, S the time
to evaluate the similarity function between two gradient orientations and, A the time to
add two values.

Changing ESteger to Eq. (3.12) and making use of JG leads to a computation time of
M ·N · T 2 ·O + M ·N

T 2 ·R ·G · (L+ A), where L is the time needed for accessing once the
lookup tables τi and O is the time to OR two values together. The first term corresponds
to the time needed to compute JG, the second one to the time needed to actually compute
Eq. (3.12).

Precomputing the response maps Si,G further changes the complexity of Line to M ·
N · (T 2 ·O + no · L) + M ·N

T 2 ·R ·G · A.
Linearizing our memory allows the additional use of parallel SSE instructions. In order

to run 16 operations in parallel, we approximate the response values in the lookup tables
using bytes. The final complexity of our algorithm is then M ·N · (T 2 ·O+ (no + 1) ·L) +
M ·N
16T 2 ·R ·G · A.

In practice we use T = 8, M = 480, N = 640, R > 1000, G ≈ 100 and no = 8. If we
assume for simplicity that L ≈ A ≈ O ≈ 1 time unit, this leads to a speed improvement
compared to the original energy formulation ESteger of a factor T 2 · 16(1 +S) if we assume
that the number of templates R is large. Note that we did not incorporate the cache
friendliness of Line since it is very hard to model. Still, since [97] evaluates the similarity
of two orientations with the normalized dot product of the two corresponding gradients,
S can be set to 3 and we obtain a theoretical gain in speed of at least a factor of 4096.

3.3.7 Experimental Validation
We compared our approaches, which we call Line-MOD [42] (for “multimodal-Line”),
Line-2D as introduced in [43], which uses only the image intensities and a variant that
we call Line-3D, that uses only the depth map, to DOT [46] and HOG [21]. For HOG,
we used our own optimized implementation and replaced the Support Vector Machine
mentioned in the original work of HOG by a nearest neighbor search. In this way, we
can use it as a robust representation and quickly learn new templates as with the other
methods. The experiments were performed on one processor of a standard notebook with
an Intel Centrino Processor Core2Duo with 2.4 GHz and 3 GB of RAM. For obtaining
the image and the depth data we used the Primesense(tm) PSDK 5.0 device.

3.3.8 Robustness
We used six sequences made of over 2000 real images each. Each sequence presents
illumination and large viewpoint changes over heavy cluttered background. Ground truth
is obtained with a calibration pattern attached to each scene that enables us to know the
actual location of the object. The templates were learned over homogeneous background.

We consider the object to be correctly detected if the location given back is within a
fixed radius of the ground truth position. As depicted in the left columns of Fig. 3.24 and
Fig. 3.25, Line-MOD always outperforms all the other approaches and shows only few
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Figure 3.20: Combining many modalities results in a more discriminative response function. Here
we compare Line-MOD against Line-2D on the shown image. We plot the response function of both
methods with respect to the true location of the monkey. One can see that the response of Line-MOD
exhibits a single and discriminative peak whereas Line-2D has several peaks which are of comparable
height. This is one explanation why Line-MOD works better and produces fewer false positives.

false positives. We believe that this is due to the complementarity of the object features
that compensate for the weaknesses of each other. The superiority of Line-MOD becomes
even more obvious in Table 3.1: If we set the threshold for each approach to allow for 97%
true positive rate and only evaluate the hypothesis with the largest response, we obtain
for Line-MOD a high detection rate with a very small false positive rate. This is in
contrast to Line-2D, where the true positive rate is often over 90%, but the false positive
rate is not negligible, which makes expensive post-processing necessary. In Line-MOD,
using only the response with the largest value might be sufficient in most cases.

One reason for this high robustness is the good separability of the multimodal ap-
proach as shown in the middle of Fig. 3.24 and Fig. 3.25: one can see that a specific
threshold—about 80 in our implementation—separates almost all true positives well from
almost all false positives. This has several advantages. First, we will detect almost all in-
stances of the object by setting the threshold to this specific value. Second, we also know
that almost every returned template with a similarity score above this specific value is a
true positive. And third, the threshold is always around the same value which supports
the conclusion that it might also work well for other objects. One hint why the novel
multimodal approach has such a good separability property is given in Fig. 3.20. One can
see that the response function has only one clear peak around the true location of the
object while Line-2D shows other peaks with almost the same height.

3.3.9 Speed
Learning new templates only requires extracting and storing multimodal features, which
is almost instantaneous. Therefore, we concentrate on runtime performance.

The runtimes given in Fig. 3.21 show that the general Line approach is real-time and
can parse a VGA image with over 3000 templates with about 10 fps on the CPU. The
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Figure 3.21: Line runs in real-time and can parse a 640×480 image with over 3000 templates with
about 10 fps.
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Figure 3.22: Line-MOD is linear with respect to occlusion.

small difference of computation times between Line-MOD and Line-2D and Line-3D
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Figure 3.23: Average recognition score of Line-MOD for the six objects of Sec.3.3.8 with respect to
occlusion.

Sequence (# pics) Line-MOD Line-2D Line-3D HOG DOT
Monkey (2164) 97.9%–0.3% 50.8%–49.1% 86.1%–13.8% 51.8%–48.2% 8.6%–91.4%
Camera (2173) 97.5%–0.3% 92.8%–6.7% 61.9%–38.1% 18.2%–81.8% 1.9%–98.0%
Car (2162) 97.7%–0.0% 96.9%–0.4% 95.6%–2.5% 44.1%–55.9% 34.0%–66.0%
Cup (2193) 96.8%–0.5% 92.8%–6.0% 88.3%–10.6% 81.1%–18.8% 64.1%–35.8%
Duck (2223) 97.9%–0.0% 91.7%–8.0% 89.0%–10.0% 87.6%–12.4% 78.2%–21.8%
Holepunch (2184) 97.0%–0.2% 96.4%–0.9% 70.0%–30.0% 92.6%–7.4% 87.7%–12.0%

Table 3.1: True and false positive rates for different thresholds on the similarity measure of different
methods. In some cases no hypotheses were given back so the sum of true and false positives can be lower
than 100%. Line-MOD obtains very high recognition rates at the cost of almost no false positives, and
outperforms all the other approaches. The corresponding best values are shown in bold print.

comes from the slightly slower preprocessing step that includes the two preprocessing
steps of Line-2D and Line-3D.

DOT is initially faster than Line but becomes slower as the number of templates
increases. This is because the runtime of Line is independent of the template size whereas
the runtime of DOT is not. Therefore, to handle larger objects DOT has to use larger
templates which makes the approach slower once the number of templates increases.

3.3.10 Occlusion
We also tested the robustness of Line-MOD with respect to occlusion. We added synthetic
noise and illumination changes to the images, incrementally occluded the six different ob-
jects of Section 3.3.8 and measured the corresponding response values. As expected, the
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Figure 3.24: Comparison of Line-MOD with Line-2D, which is based on gradients [43], Line-3D,
which is based on normals, DOT [46] and HOG [21] on real 3D objects. Each row corresponds to a
different sequence (made of over 2000 images each) on heavy cluttered background: A monkey, a duck
and a camera. The approaches were learned on a homogeneous background. Left: Percentage of true
positives plotted against the average percentage of false positives. The multimodal templates provide
about the same recognition rates for all objects while the other approaches have a much larger variance
depending on the object type. Line-MOD outperforms the other approaches in most cases. Middle:
The distribution of true and false positives plotted against the threshold. They are well separable from
each other. Right: One sample image of the corresponding sequence shown with the object detected by
Line-MOD.

similarity measure used by Line-MOD behaves linearly in the percentage of occlusion
as reported in Fig. 3.22. This is a desirable property since it allows detection of partly
occluded templates by setting the detection threshold with respect to the tolerated per-
centage of occlusion. We also experimented with real scenes where we first learned our
six objects in front of a homogeneous background and then added heavy 2D and 3D back-
ground clutter. For recognition we incrementally occluded the objects. We define our
object as correctly recognized if the template with the highest response is found within
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Figure 3.25: Same experiments as shown in Fig. 3.24, however for different objects: a cup, a car and
a hole punch. For each object we tested the approaches on over 2000 images each.

a fixed radius of the ground truth object location. The average recognition result is dis-
played in Fig. 3.23: Even with over 30% occlusion Line-MOD is still able to recognize
objects.
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Objects

Figure 3.26: Different texture-less 3D objects are detected with Line-2D in real-time under different
poses on heavily cluttered background with partial occlusion.
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Figure 3.27: Different texture-less 3D objects detected simultaneously in real-time by our Line-MOD
method under different poses on heavily cluttered background with partial occlusion.
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CHAPTER

FOUR

OUTLOOK

Although the results of the methods presented in this thesis are a good start towards the
robust and efficient detection of low-textured and texture-less objects, they need further
improvement. In the following, we will identify open questions and define possible future
research fields.

Low-Textured Objects: One major issue with Leopar and Gepard is their reduced
capability to handle a large amount of patches at the same time. This is especially
important for SLAM (Simultaneous Localization and Matching) approaches [22, 54, 23, 76]
where the system has to be reinitialized once it lost track. Since one of the major goals of
SLAM is to build up large maps of the environment, initialization should work anywhere
in these maps. Therefore, it is necessary to simultaneously deal with a large number of
patches. Currently, Leopar is only able to deal with few hundreds and Gepard with
only some dozens of patches in real-time. These numbers need to be drastically increased.
Concerning Leopar, it would be worth evaluating the use of Signatures [14], BRIEF [15]
and ORB [89] since they are similar to the Ferns classifier [81] we use and able to handle a
large amount of keypoints. Gepard, on the other hand side, could be made more efficient
by using the approximate best-bin-first algorithm on KD-trees [7] which is now often
applied to SIFT descriptors of size 128, a size similar to the size of our mean patches.

Another direction of future research concerning patch perspective rectification ap-
proaches could be opened up by the generalization of our planar patch-based methods to
arbitrary 3D patch shapes. This gives the chance to handle not only planar objects well
but also non-planar ones which would drastically increase the application field of these
approaches.

Texture-less Objects: Despite the robustness of Dot and Line (and its variants), the
two methods still suffer some major problems. These problems restrict the professional
use of Dot and Line in challenging scenarios like industrial assembly lines or robotic
applications in households. Partial occlusion, sensitivity to missing depth data, scalability,
learning from 3D models and accurate pose estimation of the detected objects are some
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of the main problems and challenges. In the following, we will discuss each of these points
more in detail.

Partial occlusion is generated if other objects occlude parts of the object to be found.
As partial occlusion is one of the main points that hinder current detection approaches to
be applied in challenging environments like industrial or daily human environments, we
consider research in this direction as most important.

In addition to partial occlusion, another open research direction addresses missing
depth data on local parts of the object. This effect is similar to partial occlusion but usu-
ally generated by highly reflective or black surfaces that don’t allow low cost commodity
hardware like the Kinect to compute valid depth data. Possible solutions to this are (a)
using an additional stereo-setup that computes the depth where the Kinect fails or by (b)
intelligently interpolate the depth for missing data.

Another very important issue to be solved is the scalability of the two approaches.
Although, we can currently detect and estimate the pose of few objects in (almost) real-
time, our system scales linearly with the number of detected objects. This avoids using
our methods in settings where many different objects have to be detected simultaneously.
Here, the challenge is to keep the runtime sublinear w.r.t. the number of objects while
producing only few false negatives. A first trial to speed up the processing time could
consist in employing the graphical unit of modern computers. However, although quite
promising especially for the highly linearized and parallelized Line, this approach would
not make the runtime sublinear. In this context, it would be of value to evaluate Line-
MOD against an extended version of Dot where we also other modalities (e.g. depth)
are added (Dot would then turn to Dot-MOD). Current research is showing promising
results with Dot-MOD and this might be important since Dot uses a different matching
strategy as Line: Dot is evaluating all templates at one image position first before it
moves on to the next location whereas Line computes the similarity of one template for
the whole image first before moving on to the next template. Here, the matching strategy
of Dot could be advantageous in terms of speed since it could simply use additional
constraints (e.g. using the current depth at a position compared with the depths from
which the templates were generated) to drastically speed up the template search without
breaking the efficient matching pipeline.

The versions of Line (and its variants) and Dot have some additional disadvantages.
First, templates are learned online, which is difficult to control and results in spotty
coverage of viewpoints. Second, the pose output by Line and Dot is only approximately
correct, since a template covers a range of views around its viewpoint. And finally, the
performance, while extremely good, still suffers from the presence of false positives.

To cover these points, our main idea is that a 3D model of the object can be exploited
to remedy these deficiencies. Note that accurate 3D models can now be created very
quickly [75, 84, 110, 76], and requiring a 3D model beforehand is not a disadvantage
anymore. For industrial applications, a detailed 3D model often exists before the real
object is even created.

Given a 3D model of an object, we could generate templates that cover a full view
hemisphere by regularly sampling viewpoints of the 3D model. We could also use the
3D model to obtain a fine estimate of the object pose, starting from the one provided
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Figure 4.1: We created the synthetic 3D models of these 15 texture-less objects in order to test our
detection framework.

by the templates. In addition, having the 3D model would allow us to perform simple
checks on depth and color to remove false positives, by checking if the object under the
recovered pose aligns well with the depth map and the color is consistent with the model.
This would result in a system that significantly improves the original Dot and Line
implementations in performance, while providing accurate pose for applications.

In Fig. 4.2, you can observe first results of using 3D models in the Line-MOD frame-
work. As you can see, 15 different objects 4.1 are correctly detected under large viewpoint
and strong illumination changes. Here, we make use of an automatic template learning
approach which uses only the synthetic 3D model of the object. In addition, this 3D
model is also used to remove false positives by checking the depth and the color values.
The preliminary results were sent to [47].

Finally, another related field of future research w.r.t. Dot and Line is the topic of
object class detection. While in this thesis we have mainly covered object instance detec-
tion, it would be interesting to apply Dot and Line to object class recognition. This is
reasonable because Dot and Line can be seen as descriptors and thus be employed in
existing object class recognition frameworks. In addition, the inherent invariance of these
two methods to small deformations could help a lot to increase the robustness of such
generic detection schemes.
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Figure 4.2: In this figure we use the 3D models of 15 different texture-less 3D objects. Once they
are automatically learned, we simultaneously detected them under different poses on heavy cluttered
background with partial occlusion and illumination changes. Each detected object is augmented with its
3D model. We also show the corresponding coordinate systems.
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CHAPTER

FIVE

CONCLUSION

In this thesis, we have introduced four novel real-time detection and pose estimation
approaches for low-textured and texture-less objects. We have also presented the charac-
teristics and challenges of these types of objects and discussed their application in various
fields. In the following, we will summarize our contributions and insights w.r.t. each
corresponding object type.

Low-Textured Objects: In this line of work we showed that one available feature
point and the close surrounding is already enough to detect an object and to estimate
its pose. This is in contrast to state-of-the-art approaches where usually many correctly
matched feature points are needed to provide robust detection.

Furthermore, we showed that including pose estimation within the recognition process
considerably improves the robustness and the accuracy of the results of object detection,
and this makes our approaches highly desirable. Thanks to a two-step algorithm, it is
possible to get matching sets that usually contain no outliers and are only dependent on
spatially limited data. Even low-textured objects can therefore be well detected and their
pose well estimated.

We also showed that a Fern based classifier is able to recognize the keypoints pose
in a very fast manner that allows to track several hundred patches very accurately in
real-time. We also showed that the simultaneous estimation of keypoint identities and
poses is more reliable but slower than the two separate steps undertaken consecutively.
In addition, we showed how to build a one-way descriptor based on geometric blur in
real-time that quickly, robustly and accurately estimates the pose of feature points and
therefore is appropriate for applications where real-time learning is mandatory.

We demonstrated in various experiments the improved performance compared to pre-
vious state-of-the-art methods and demonstrated our approach on many applications in-
cluding simple 3D tracking-by-detection, SLAM applications, low-textured object detec-
tion and deformable objects registration. However, many other applications could also
benefit from it, such as object recognition, image retrieval or robot localization.
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Chapter 5: Conclusion

Texture-less Objects: In this line of work we showed that template matching in com-
bination with an efficient sliding window approach considerably improves the recognition
rate of texture-less objects. Hereby, we put emphasis on both gradient based and multi
modality templates.

We introduced a new binary template representation — called Dot — based on locally
dominant gradient orientations that is invariant to small image deformations. It can
very reliably detect untextured 3D objects using relatively few templates from different
viewpoints in real-time. An efficient clustering allows high-speed detection of objects even
the template database is large.

We also presented another method — called Line — and demonstrated how it is
able to exploit different modalities for robust real-time object detection. It is able to
correctly detect 3D texture-less objects in real-time under heavy background clutter,
illumination changes and noise with almost no false positives. We showed how to efficiently
preprocess image and depth data to robustly integrate both cues. Additionally, we showed
how we take advantage of the architecture of modern computers to build a fast but
very discriminant representation of the input images that can be used to consider a few
thousands of arbitrarily sized and arbitrarily shaped templates in real-time. This leads
us to another important contribution of this thesis i.e. the insight that nowadays we can
not neglect the power of modern hardware when we want to find new solutions to existing
real-time computer vision problems. For that, one has to extensively use new concepts of
modern computer architecture like caching, parallelization or vector programming.

We have shown that our two new approaches perform superior to state-of-the-art
methods with respect to the combination of recognition rate and speed. Moreover, the
template creation is fast and easy in both cases, does not require a training set, only a
few exemplars, and can be done interactively. While Dot has proven to be considerably
faster than Line when using only small templates, we have also demonstrated that Line
outperforms Dot with respect to the combination of recognition rate and speed espe-
cially when using large templates in heavily cluttered environments. Furthermore, we
have shown that using multiple different modalities drastically improves the recognition
performance and significantly reduces the number of false positives in regard to single
modality template matching.

Finally, we gave an outlook to future work based on the approaches presented here in
this thesis. Among others, we discussed the partial occlusion problem, the missing depth
value problem and the scaling issue. We also proposed an detection framework for general
texture-less objects based on synthetic 3D models and showed some preliminary results.
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patches and in the same time to estimate their transformation. (b) The
results are very accurate and mostly exempt of outliers. Note we get the
full perspective pose, and not only an affine transformation. (c) Hence
a single patch is often sufficient to detect objects and estimate their pose
very accurately. (d) To illustrate the accuracy, we use the ’Graffiti 1’ image
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