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Abstract—We study the problem of minimizing the sum transmit
power in mutliple-input multiple-output (MIMO) downlink chan-
nels with linear transceivers if per-user quality of service (QoS)
constraints (expressed in terms of rates) have to be fulfilled. To
find a suboptimal solution of the arising non-convex optimization
problem, we introduce new auxiliary variables representing the di-
vision of the per-user rate constraints into per-stream rate targets,
and we optimize these variables by means of gradient-projection
steps. This new method is combined with alternating updates of the
transmit and receive filters. Furthermore, the proposed algorithm
ensures that the mean square error (MSE) matrices of all users
are diagonal, and in the course of the execution of the algorithm,
it is possible that inactive streams get activated if this leads to a
decreased sum transmit power. In numerical simulations, the new
algorithm turns out to be superior to the various existing methods
since these methods either lead to a higher sum transmit power
than the proposed scheme or have a higher computational com-
plexity or make restrictive assumptions on the system parameters.

Index Terms—Broadcast channels, gradient methods, linear
transceivers, multiple-input multiple-output (MIMO), quality of
service.

I. INTRODUCTION

T HE problem of (weighted) sum rate maximization under a
sum power constraint has attained considerable interest in

the recent literature on multiple-input multiple-output (MIMO)
communication systems (e.g., [1]–[6]). However, the solution
of the weighted sum rate maximization problem cannot guar-
antee that all users in the system are served with an accept-
able quality of service (QoS). In this paper, we will therefore
study the problem of minimizing the sum transmit power sub-
ject to QoS constraints for all users, where we express the QoS
in terms of achievable per-user rates. Note that the per-user rate
requirements are assumed to be rigid, i.e., there is no possibility
to perform user selection or scheduling. Instead, all users with
non-zero rate requirement have to be served simultaneously.

The optimal solution to this problem relies on non-linear
dirty-paper coding (DPC) and on time-sharing and was derived
in [7]–[9]. An earlier solution approach presented in [10] was
claimed to be suboptimal by the authors of [7]. Suboptimal
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DPC solutions with reduced complexity were proposed in [11]
and [12] based on a method called block-diagonal geometric
mean decomposition and in [13] based on zero-forcing and
successive allocation.

However, in practice, even approximate DPC as in [14] has
prohibitive complexity for online implementation. Thus, many
researchers have focused on linear transceivers, which are sig-
nificantly easier to implement in a practical system even though
the optimization of the transmit strategy might become more in-
volved.

Apart from the successive scheme in [13], which was also
extended to systems with linear precoding, the DPC based ap-
proaches cannot be directly applied to systems with linear trans-
ceivers due to the fundamental differences between DPC and
purely linear precoding. In particular, globally optimal solutions
to the power minimization problem with linear transceivers are
not known due to the non-concavity of the rate equations. Sub-
optimal solutions to this non-convex problem were proposed in
[15]–[20]. The approach from [15] and [16] is based on the as-
sumption that time-sharing between different operation points is
allowed, which is an assumption that will not be adopted in this
paper. In [17], a hybrid algorithm that combines block-diago-
nalization [21] and interference balancing (e.g., [22]) was pro-
posed. As it is limited to the special case that the total number
of receive antennas is not larger than the number of transmit an-
tennas, it cannot be applied in the general case with arbitrary
numbers of antennas. Nevertheless, we will include a system
that can be solved with this method in our numerical simula-
tions. A suboptimal solution for the general case was proposed
in [18] and [19] based on a geometric programming (GP) formu-
lation. However, despite its promising performance, this method
does not seem applicable in a practical system since repeatedly
solving geometric programs leads to a high computational com-
plexity. In [20], the per-user rate, which can be exactly related
to the determinant of the mean-square error (MSE) matrix [cf.
(6)] for minimum mean-square error (MMSE) equalizers, has
been lower-bounded using the trace of this matrix, yielding in-
active rate constraints and, therefore, a sum transmit power far
from the optimal value.

To overcome the various drawbacks of these existing algo-
rithms, we propose a new gradient-based scheme that performs
close to the optimal solution without having a high compu-
tational complexity and without being restricted to the case
with more transmit than receive antennas. After presenting the
system model in Section II, we will derive the different parts
of this algorithm in Sections III through V before the method
is summarized in Section VI. In the numerical simulations
presented in Section VII, the performance of the new algo-
rithm is studied and compared to the aforementioned existing

1053-587X/$26.00 © 2011 IEEE
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approaches, and in Section VIII, we discuss the computational
complexity of the considered algorithms.

In [2] and [23], algorithms to optimize the sum transmit
power in MIMO broadcast channels under per-stream QoS
constraints have been considered. However, these approaches
are not applicable to the problem considered in this work as
there is no explicit relation between per-stream QoS measures
and per-user rates if multiple data streams per user are allowed.
The same is true for the power minimization with per-user
MMSE requirements proposed in [24].

A problem related to the power minimization problem is the
rate balancing problem [25], which aims at maximizing the sum
throughput subject to a sum power constraint and to the con-
straint that the rates of the individual users need to have certain
fixed ratios, which are specified by a set of relative rate require-
ments. This problem was studied for MIMO broadcast channels
with DPC in [26] and for systems with linear transceivers in [18]
and [19]. In our companion work [27], we show how the algo-
rithm presented in this paper can be adapted such that it can be
applied to the rate balancing problem.

Another closely related problem is the weighted sum rate
maximization under a sum power constraint and per-user rate
constraints. Next to the globally optimal solutions based on DPC
[28] and DPC-based heuristic solutions [29]–[31], this problem
has been studied in [13], [19], and [32] for linear transceivers.
In principle, the suboptimal approach from [32], which is based
on a framework called signomial programming [33], can be ex-
tended to the power minimization problem. However, the ex-
ponential computational complexity of the monomial approxi-
mation from [33], which is used to solve the arising signomial
programs, makes this approach unsuitable for practical imple-
mentation.

Notation: In this work, vectors are typeset in boldface lower-
case letters and matrices in boldface uppercase letters. We write

for the zero matrix or vector and for the identity matrix
of size . The vector is the all-ones vector, and the vector

is the th canonical unit vector, which has a one as the th
entry and zeros elsewhere. is used to denote the element
in the th row and th column of the matrix . We use to
denote the transpose of a vector or matrix and for the con-
jugate transpose. The notation is used for the cardinality of
a set, and for the Euclidean norm of a vector. Further-
more, is the Kronecker delta, which is 1 whenever
and 0 otherwise. The order relation has to be understood
element-wise, and is the closed positive orthant of the ,
i.e., . We use the shorthand notation

for . For notational brevity in expressions
involving variables with a superscript index and an exponent,
we write for . The same notation is used with op-
erators that are written like an exponent, e.g., for .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a -user downlink system, where the base
station is equipped with antennas while the th receiver is
equipped with antennas. The frequency flat channel be-
tween the base station and user is denoted by ,
and these channels are assumed to be known. The data trans-
mission in this setting can be described by

(1)

where is additive circularly symmetric complex
Gaussian noise, i.e., , which is assumed to
be independent across users and independent of the transmitted
data symbols. We aim at minimizing the sum transmit power

(2)

where is the covariance matrix of the transmit signal of
user , i.e., , while ensuring that the rates

(3)

with fulfill the quality of
service requirements . Here, is a given non-
zero minimum rate requirement for user . Written in terms of
a mathematical optimization problem, we have to solve1

(4)

Note that this optimization problem does not always have a so-
lution. In particular, infeasibility might occur if the number of
users is larger than the number of base station antennas
and the rate requirements of the users are too demanding [34].
Therefore, a feasibility test, e.g., by means of the method pro-
posed in [34], should be performed before the optimization pro-
cedure is started. In the remainder of this paper, we will assume
that the rate requirements are chosen such that the problem
is feasible.

A. Downlink Model With Transmit and Receive Filters

To create a transmit signal with a covariance matrix
whose rank is at most , we can apply a beamforming matrix

to a vector of i.i.d. Gaussian
unit-power data symbols with . The
beamforming matrix has to fulfill the equation ,
i.e., for any given covariance matrix , we can find infinitely
many beamforming matrices that only differ in a unitary
rotation from the right. With , problem (4)
is equivalent to

(5)

where .
The components of can be interpreted as independent

data streams that are to be transmitted to user . If these streams
are encoded and decoded separately, the achieved rate of user

is the sum of the per-stream rates , i.e., .
Such a separate coding can be assumed without any loss in per-
formance as long as MMSE equalization is employed and we
ensure that the MSE matrix

(6)

1Note that � and � � � � � � � are functions of ������ � � � � ������� ; cf. (2) and
(3).
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Fig. 1. Downlink system model with decomposition of user � into � data
streams.

of each user is diagonal [35]. In (6), is the vector
of estimates given by

(7)

where we have applied receive filters . Without
loss of generality, we can choose the receive filters to be

, where is a square matrix that fulfills

. This yields a system

(8)

with decorrelated noise , where we have

considered the matrices as parts of the channels

of the whitened system. We define the

matrix of normalized beamformers
with , and we introduce the downlink powers

such that . Then, the achievable rate of the th
stream of user is given by

with

(9)

where is the th row of .
The data transmission in the whitened system is visualized in

Fig. 1 both for a stream-wise and a user-wise perspective. The
notation used at the receiver side for the stream-wise perspective
will be introduced in Section III.

B. Optimization Problem

Just like the rates , we can also partition
the rate requirements into per-stream rate targets that
fulfill . Eventually, this leads to the following
reformulation of (4)2:

2Note that each rate � is a function of ���� ���� � ��� � ; cf. (9).

and

and and

and (10)

where we have grouped the powers into vectors
, and the rate targets into vec-

tors . Apart from finding optimal filters,
the main challenge is now to find the optimal rate-targets,
i.e., the optimal distribution of the per-user rate requirements
among the multiple data streams of each user. This difficulty
has already been mentioned in [17], but no satisfying solution
was given. Instead, the authors used the per-stream rates that
are obtained by solving the power minimization problem with
block diagonalization [21] as per-stream rate targets and kept
these targets fixed throughout the execution of their algorithm.
In this paper, the problem of optimizing the per-stream rate
targets will be tackled by a gradient-projection approach.

To propose an algorithmic solution, we will discuss the fol-
lowing steps.

i) Computation of the optimal transmit power for given re-
ceive filters and per-stream rate targets
(cf. Section III). This problem can be solved in a globally
optimal manner and will be used as an inner optimization
within the other steps.

ii) Gradient-projection update of the per-stream rate targets
for given receive filters (cf. Section IV).

iii) Update of the filters. This update consists of several sub-
steps, which will be explained in Section V.

The steps ii) and iii) are repeated in an alternating manner
while i) is solved as a subproblem at certain points within the
other steps.

C. Dual Uplink Model

The steps i) and ii) as well as parts of step iii) will be per-
formed in the dual uplink, where the uplink channel matrices
are given by and the noise is :

(11)

The dual uplink is depicted in Fig. 2. The visualization also
includes a stream-wise perspective, which will be introduced in
Section III.

Choosing the columns of to be the re-
spective scaled columns of and the uplink receive filters

such that their rows are the scaled rows of ,
the same per-user rates can be achieved in the uplink and in
the downlink with the same sum transmit power if the down-
link MSE matrices (6) or the uplink MSE matrices

(12)

are diagonal [35].
As an update of equalizers can be performed more easily than

an update of beamformers, we compute the receive filter ma-
trices in the downlink (cf. Section V), but the beamforming
matrices are found by computing the equalizers in the
uplink (cf. Section V).
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Fig. 2. Uplink system model with decomposition of user � into � data
streams.

While most steps of the algorithm are performed stream-wise,
a user-wise perspective will be taken for the uplink-to-down-
link transformation, which is performed as a part of the filter
update. Resorting to a user-wise perspective once per iteration
suffices for the result to be meaningful for the original user-wise
problem (4).

III. OPTIMAL SUM POWER FOR GIVEN FILTERS AND

PER-STREAM RATE TARGETS

In this section, we will compute the optimal sum power for
given values of and . One way to obtain this sum
power is to solve the subproblem3

and

and (13)

Since the downlink equalizers are assumed to be fixed
in this section, we can define the effective downlink channel

(14)

for the th stream of user , so that we get an equivalent mul-
tiple-input single-output (MISO) broadcast channel with

virtual users , each with a corresponding rate target
. The noise for the th stream of user in the effective

channel is . The decomposition of a user into
effective single-antenna users can also be seen in Fig. 1.

In this equivalent setting, problem (13) is the well-investi-
gated problem of power minimization under per-user rate con-
straints in a vector broadcast channel. After testing the feasi-
bility of the problem using the method of [34] and [36], the
globally optimal solution can be found by the algorithm from
[22], which is an iterative approach based on a coupling matrix
describing the crosstalk between users, or by the fixed point it-
eration proposed in [20].

Both methods make use of a dual uplink formulation (cf. [37]

and Fig. 2) with the uplink channel vectors and an uplink
noise covariance matrix equal to the identity matrix . In the
dual uplink, the rates can be expressed in a way that they only

3Note that each rate � is a function of the optimization variables
���� ���� � and of the fixed variables ���� � ; cf. (9).

depend on the uplink channels and the transmit powers of
the SIMO uplink:

(15)

with

(16)

From [37], it is known that a set of rates can be achieved in
the downlink with a certain sum power if and
only if the rates can be achieved in the dual uplink
with appropriately chosen uplink powers fulfilling

(17)

Consequently, the optimization (13) can also be performed
using the uplink powers as optimization variables4:

and (18)

where . The power can be consid-
ered as the scalar precoder of the stream in the effective
SIMO uplink. The corresponding precoding matrices in the dual
uplink of the original MIMO system are related to these powers
by [cf. Equation (14)]5

(19)

Having solved problem (18), the solution to (13) can be
obtained by computing the optimal uplink equalizers and
performing an uplink-to-downlink transformation. However, in
this section, we are only interested in finding the minimal sum
power for fixed and . Thus, there is no need to
immediately perform the transformation. Instead, due to (17),
knowing the uplink powers suffices to also know the
sum power in the downlink without even knowing the downlink
strategy. Consequently, when optimizing the rate targets and
filters in the next sections, the solution of problem (18) will
be used to evaluate the sum power for the updated rate targets
and downlink receive filters. For later reference, we define the
function as

and

if feasible

otherwise

(20)

4Note that for fixed effective channels ����� � � � � � ���� � , each uplink rate
	 is a function of the uplink powers �


 � ; cf. (15).

5In this equation, ���� is used for the uplink beamforming matrix (instead of
��� ) as we will later apply a unitary rotation to this matrix in order to obtain the
eventual uplink beamforming matrix ��� ; see (31).
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which encapsulates the implementation of the solver of
problem (18).

IV. GRADIENT-BASED UPDATE OF THE

PER-STREAM RATE TARGETS

We propose to update the per-stream rate targets by a gradient
step

(21)

followed by a projection to the set of valid rate targets. In the
following, we will state and proof the calculation rule of the
gradient as well as the projection operation. Afterwards, we will
discuss the choice of the step size .

To calculate the gradient of the sum transmit power with re-
spect to the per-stream rate targets , we choose a dual uplink
formulation as in Section III, i.e., we express the sum power
by and calculate its partial derivatives
with respect to the rate targets. To do so, the following proposi-
tion is helpful.

Proposition 1: The Jacobian matrix of the
rates with respect to the uplink powers , defined as

(22)

is inverse-positive, i.e., exists and has only non-negative
entries.

Proof: See Appendix A.
Now, we can formulate the main Theorem of this section,

which states the calculation rule of the gradient.
Theorem 1: The partial derivatives of the sum power

with respect to the rate targets are given
by

(23)

where is the Jacobian matrix defined in (22), and
.

Proof: See Appendix B.
Since all partial derivatives are non-negative, the sum

of the new rate targets of user obtained from the
gradient update (21) is smaller than the per-user rate require-
ment in general, and the following projection is necessary.

Lemma 1: The projection of the per-stream rate targets
to the set of per-stream rate targets feasible for

user in the sense of minimal Euclidean distance is given by
the waterfilling equation

(24)

with the water level

(25)

where is the set of active streams of user .
Proof: See [38] or Appendix C.

Fig. 3. Development of the per-stream rate targets of a user during three itera-
tions: (G)radient steps, (P)rojections, and adaptations after the (F)ilter updates.

Sorting the streams with respect to , the optimal
water level can be found by a linear search for

.
In Fig. 3,6 we can observe that the gradient step (G) reduces

all per-stream rate targets. Therefore, a projection back to the
set of valid rate targets, i.e., to the diagonal line segment repre-
senting the per-user rate requirement , is necessary. This cor-
responds to the step that follows right after (G) in Fig. 3.
After the gradient step (G) and the projection , the sum
transmit power is lower than it was before these steps if the step
size is chosen properly.

A proper choice of the step size is necessary since the gra-
dient-projection update makes a step in an improving direction,
but the improvement can be guaranteed only locally. Therefore,
the sum transmit power, which can be computed by means of
the function defined in (20), might be increased after the gra-
dient-projection step, which indicates that a too large step size

was used. To avoid this situation, we introduce the following
step size adaptation: we start with an initial step size , and
if the gradient-projection leads to a degradation instead of an
improvement,7 we repeatedly reduce the step size by a factor
of two and retry the gradient-projection step until a decrease in
sum power is eventually achieved. The method is robust to the
choice of the initial step size, but the execution of the algorithm
can be slow if a very large or very small initial value is chosen.
The choice worked well in our simulations. If the sum
transmit power cannot be decreased even with a very small step
size (smaller than a given limit , which was set to in
our simulations), an improvement is locally no longer possible,
and a stationary point with respect to the per-stream rate tar-
gets has been reached. In this case, the old rate targets are kept,
and the algorithm proceeds to the filter update without having
changed the rate targets.

V. UPDATE OF THE FILTERS

In this section, we will propose an update procedure for the
transmit and receive filters. First, we will discuss four main steps
of the filter update. Afterwards, we will explain how the per-
stream rate targets can be adapted after the filter update in order
to achieve a reduction of the sum transmit power.

6This figure corresponds to iteration 5 through 7 of the numerical results that
will be presented later in Fig. 5

7Since the function� maps infeasible rate targets to infinite transmit power,
they are only a special case of an increased sum transmit power.
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A. Update of the Uplink Receive Filters

When calculating the optimal uplink powers based on the rate
expression (15) in Section III, it was implicitly assumed that the
uplink receive filters are chosen such that they deliver sufficient
statistics for the intended parts of the received signals. As our
considerations are stream-wise, a sufficient statistic has to be
delivered for each stream individually, which is fulfilled by the
optimal receivers in the MMSE sense given by8

(26)

with

(27)

where , , and

is given by (14). Note that the computation of with (26)
corresponds to an update of the respective downlink precoding
matrix .

B. Diagonalization of the MSE Matrices

We will now make use of the following result from [35]:
Lemma 2: Decoding the received signal of a user in a stream-

wise manner is optimal if and only if the uplink MSE matrix

(28)

(29)

is diagonal. Moreover, if this is the case, a stream-wise up-
link-to-downlink transformation preserves the per-user rates.

Sketch of Proof: For the sum rate of user , we have

(30)

where are the per-stream rates in the uplink and the right-
hand side of the inequality is the per-user sum rate achievable
in the uplink with joint decoding of the streams of user [39].
Equality holds in (30) if and only if is diagonal.9 As

holds for the per-stream rates in the downlink after a
stream-wise uplink-to-downlink transformation [37], the same
per-user sum rate is achievable in the downlink. The proof is
completed by also showing the converse, i.e., showing that no
higher rate can be achieved in the downlink with joint decoding
of the streams of user ; cf. [35].

To diagonalize , the filters of the MIMO uplink have to be
chosen according to [cf. (19) and (26)]

(31)

8In this equation, ���� is used for the uplink receive filter (instead of ��� ) as
we will later apply a unitary rotation to this matrix in order to obtain the eventual
uplink receive filter ��� , see (32).

9Using the fact that ���� ��� ���� � ���� ���� ��� ���� holds if

��� is diagonal, the right side of the inequality can be written as���� 	
�

� ���� ��� ���� �, and equality can be shown by applying (15), (46), and
(45) to the left side of the inequality.

(32)

where is the modal matrix of the eigenvalue
decomposition

(33)

When calculating the MSE matrix and the optimal filters of the
other users, cancels out, i.e., the diagonalization of the MSE
matrix of user does not have any influence on the streams
of other users. Furthermore, since is a unitary matrix, the
sum of the transmitted power is not changed, i.e.,

, and the right-hand side of the inequality in (30) is in-
variant to the unitary rotation in (31) and (32). Thus, the diago-
nalization of the MSE matrix increases the current per-user
rate of user achievable with separate de-
coding.

C. Uplink-to-Downlink Transformation

After the diagonalization, the system can be transformed to a
downlink system by choosing

and (34)

and calculating the downlink powers
using

(35)

with and

...
. . .

... (36)

where for and

were in-
troduced in [35].

D. Update of the Downlink Receive Filters

Note that the equalizers resulting from the uplink-to-
downlink transformation do not deliver sufficient statistics for
the respective data streams. Therefore, we optimize the down-
link receive filters such that they minimize the MSE by choosing

(37)

for all with , where

(38)

The rates of the individual streams and, consequently, the sum
rate of each user, is increased by this update.

Applied to inactive streams with , the filter update
would set the filters of these streams to zero vectors so that the
definition of an effective MISO channel in (14) would
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be impossible for these streams. Therefore, we propose to ex-
clude the filters of inactive streams from the update (37) and to
perform the procedure described in Appendix D instead. This
method is based on computing a generalized eigenvalue decom-
position (GEVD) for each inactive stream.

Recall that we have diagonalized the uplink MSE matrices in
(31) and (32) after the update of the uplink equalizers in (26).
This was done for two reasons: optimality of stream-wise coding
in the case of diagonal MSE matrices and the necessity of the
diagonalization as a part of the uplink-to-downlink transforma-
tion described in [35]. In the downlink, such a diagonalization
is not necessary. For the MSE matrices to be diagonal after con-
vergence, one diagonalization per iteration is sufficient, and for
the downlink-to-uplink transformation, the shape of the MSE
matrices is not important since the transformation is meant to
be stream-wise (cf. Section III) and not user-wise.

E. Adaptation of the Per-Stream Rate Targets

At this point, the sum transmit power still equals the value it
had at the beginning of the filter update, but the per-user rates
of all users are increased by the diagonalization of the MSE ma-
trices and by the filter update in the downlink. Thus, a reduced
transmit power would be sufficient to fulfill the per-user rate re-
quirements with equality. To this end, the power allocation has
to be recomputed with the function defined in (20). How-
ever, the unitary rotations needed to diagonalize the MSE ma-
trices have destroyed the mapping between the per-stream rate
targets and the actual data streams since the streams might
have been resorted or even recombined. We therefore make a
new choice for the per-stream rate targets in a way that the total
power is reduced.

To this end, we simply set the per-stream rate targets
to the currently achieved per-stream

rates for all users . The sum of these
new rate targets is higher than the per-user rate constraint, as
can also be observed in step (F) in Fig. 3. Recomputing the
uplink powers corresponding to these per-stream rate targets

by means of the function , we would get the same sum
transmit power as before. However, if we apply the orthogonal
projection from Lemma 1, which is called in Fig. 3, all
per-stream rate targets are reduced since the rate target vector
after step (F) lies above the line segment of feasible targets.
Consequently, evaluating the function with the projected
targets for all users delivers a
sum transmit power that is guaranteed to be lower than or equal
to the power before the whole filter update.

VI. THE ALGORITHM AT A GLANCE

Having discussed all ingredients of the method, we can now
summarize it in Algorithm 1. The general concept can be de-
scribed as follows.

• The per-stream rate targets , the downlink transmit fil-
ters , and the downlink receive filters are updated
in an alternating manner.

• While a gradient-projection step is performed for the rate
targets, the filters are computed as MMSE equalizers in the
uplink and in the downlink, respectively.

• The optimization of the power allocation, which was intro-
duced in Section III, is not a step on its own, but rather an

inner optimization, which is solved at certain points within
the other steps. In particular, it is used to compute the cur-
rent sum power within the gradient-projection step in order
to allow a step size adaptation, and it is solved after the up-
date of the filters in order to benefit from the new filters in
terms of a reduced transmit power.

Algorithm 1: Gradient-Based QoS Algorithm for MIMO BC

Require: , , , , ,

(1) from (14)

(2) repeat

(3)

(4) compute the uplink receivers using (26)

(5) diagonalize the MSE matrices using (31) and (32)

(6) perform UL to DL transformation using (34) and (35)

(7) compute the downlink receivers of active streams
using (37)

(8) compute the new per-stream rates using (9)

(9) compute the rate targets by applying projection
rule (24) to

(10) from (14)

(11) compute the downlink receivers of inactive
streams by repeatedly solving (68)

(12) compute the gradient using (23)

(13)

(14) loop

(15) compute by performing the gradient step (21)
with step size

(16) compute the rate targets by applying
projection rule (24) to

(17)

from (14)

(18) if then

(19)

(20) break

(21) else if then

(22) break

(23) end if

(24)

(25) end loop

(26) until

(27) transform the obtained strategy to the downlink

Convergence of the algorithm with respect to the sum
transmit power is guaranteed since neither the gradient-pro-
jection step from Section IV nor the filter update from Section V
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can increase the sum power and, on the other hand, the sum
power is bounded from below by the optimal value. To detect
convergence, the decrease in sum power between the last and
the current iteration is compared to a small constant . We
chose in our simulations.

The downlink receive filters and the rate targets
have to be initialized such that the innermost problem (18) has
a feasible solution in the first iteration. In our simulations, we
have used

if
otherwise

(39)

which is a reasonable choice since any feasible rates can be
achieved with single-stream transmission in a MIMO broadcast
channel with linear transceivers [34]. However, the result from
[34] only states that it is possible to find filters for which the
per-stream rate targets (39) are feasible. Thus, the initial receive
filters have to be chosen properly, too. In particular, feasibility
might be impaired if the downlink receive filters are chosen

such that the effective channels violate the regularity con-
dition [36]

(40)

where is a matrix whose rows are the effec-
tive channel vectors for all streams of all users with

.10 In the special case that the channel matrices have
i.i.d. Gaussian entries, the regularity condition is fulfilled almost
surely if we choose (random or deterministic) initial filter vec-
tors such that all filters of a user are linearly independent.
In this case, a possible choice, which was also used in our sim-
ulations, is

(41)

VII. DISCUSSION AND NUMERICAL RESULTS

In this section, we will evaluate the performance of the pro-
posed method by means of numerical simulations. As trans-
mitting more data streams than the base station has degrees of
freedom leads to an interference limited setup, three qualita-
tively different scenarios can be considered:

1) , i.e., more transmit antennas than the total
number of receive antennas. If this is the case, block-diag-
onalization [21] can be performed, and each user can be
served with up to data streams. In our simulations, we
will consider a system with base station antennas,

users, and receive antennas for each user
.

2) , i.e., less transmit antennas than the number of
users. To keep the number of data streams as close as pos-
sible to the number of degrees of freedom , we expect
the algorithm to converge to a solution where each user is
served with only one data stream. Indeed, this is what hap-
pens in numerical simulations. However, the novel tech-

10In the case where there are already singularities in the original channel ma-
trices, i.e., no filter vectors fulfilling the regularity condition on the effective
channels exist, different choices of filters will still yield a different number of
rank deficiencies and, thus, different feasibility regions.

Fig. 4. Transmit power for different per-user rate requirements.

niques used in the algorithm, i.e., the gradient-based adap-
tation of the per-stream rate targets and the possibility to
activate inactive streams, do not have any effect in the case
of a single data stream per user. Consequently, for ,
the algorithm is nothing but an alternating optimization of
the transmit and receive filters for single-stream transmis-
sion. We, therefore, do not consider this case in the simula-
tions. Also note that in the case , the problem might
be infeasible if the rate requirements are too high [34].

3) , i.e., more transmit antennas than the
number of users, but less than the total number of receive
antennas. Now, more than one data stream can be used for
some users, but it is not possible to serve all users with
streams. This scenario will be considered for a four-user
system with and as well as for a three-
user system with and .

We perform the simulations with and
for various values of , where is ignored in case

of a three-user system. All channel coefficients are i.i.d. circu-
larly symmetric complex Gaussian with zero mean and unit vari-
ance, and the noise covariance matrices are always assumed to
be . The resulting powers are averaged over 1000 re-
alizations of the involved random variables by means of the geo-
metric mean, which is equivalent to taking the arithmetic mean
in the dB domain.

In Fig. 4, we consider the four-user MIMO system with
transmit antennas and receive antennas for each user

. For comparison, we have implemented a zero-forcing (ZF)
scheme with greedy user allocation (cf. [13]), the geometric pro-
gramming (GP) based method from [19], and the MSE-based
QoS optimization from [20]. Out of these three schemes, the
GP-based method is the only one that achieves an average sum
transmit power comparable to the power achieved by the gra-
dient-projection approach. However, as will be discussed in the
next section, the computational complexity of the GP-based al-
gorithm is significantly higher. The MSE-based scheme sys-
tematically underestimates the achieved rates, i.e., after conver-
gence, the per-user rates are higher than requested, which is one
of the reasons for the high transmit power of this scheme. Ob-
viously, this effect is particularly strong for cases with very de-
manding rate requirements.
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Fig. 5. Development of the per-stream rate targets and the sum transmit power
in a three-user system with � � � bits per channel use.

The last curve in the plot is the optimal solution when DPC
and time-sharing is allowed. This solution can be computed by
means of convex optimization methods as described in [7]–[9].
It is not clear which portion of the power gap between the gra-
dient-based scheme and the DPC optimum is a result of the sub-
optimality of the gradient-based method and which portion is
due to the restriction to linear transceivers without time-sharing.
Nevertheless, it can be seen that the gap is relatively small,
which means that the method proposed in this paper performs
close to the globally optimal solution.

In Fig. 5, we can observe how the per-stream rate targets of
the various streams behave from one iteration to the next for a
typical channel realization in a system with base station
antennas, users, antennas at each user terminal

, and bits per channel use. Note that as requested, the
sum of the per-stream rate targets of user
is in each iteration while the sum of the per-stream rate tar-
gets of user is always . In this plot, we can observe
that the algorithm can indeed activate inactive streams if this
leads to a decreased sum transmit power. As can be seen, such
an activation of an additional data stream can even lead to situ-
ations where the number of active streams exceeds the degrees
of freedom . However, in the simulation shown in Fig. 5, a
stream is deactivated later during the execution of the algorithm
so that after convergence, the number of active streams is not
larger than .

In Fig. 5, we can also observe that the sum transmit power
is monotonically non-increasing from one iteration to the next
and eventually converges. The resulting sum transmit power is
again relatively close to the optimal DPC solution, which we
have plotted as a lower bound. However, we can observe in
Fig. 5 that the per-stream rate targets might oscillate. In fact, in
Section VI, we have only shown convergence of the cost func-
tion, which does not necessarily imply convergence of the op-
timization variables. Based on the plot, we cannot tell whether
or not the rate targets eventually converge for a higher number
of iterations. However, from a practical point of view, there is
no need to wait for converged rate targets since all strategies
that appear in the oscillation have nearly the same sum transmit
power, i.e., any of them can be used.

Fig. 6. Transmit power for different per-user rate requirements.

Note that Fig. 5 does not show the development of the per-
stream rate targets within one iteration. Therefore, we have vi-
sualized the targets and of user 1 during iteration 5
through 7 in Fig. 3, which was discussed earlier in this paper.

In order to be able to compare the proposed algorithm to
the method from [17], we have also performed simulations
in a setting with users and receive antennas
for all users , where the number of transmit antennas is
increased to . In this scenario, the base
station has a sufficiently high number of degrees of freedom
to perform block-diagonalization [21]. The results can be
seen in Fig. 6. The additional methods considered in this
figure are block-diagonalization with interference balancing
(BD-IB) and block-diagonalization with iterative interference
balancing (BD-IIB). The block-diagonalization method with
interference balancing [17] computes the per-stream rate targets
and the downlink receive filters using the block-diagonaliza-
tion scheme [21] while the downlink beamformers (including
the power allocation) are found by an interference balancing
method. This balancing is equivalent to the evaluation of the
function defined in (20) and can thus be performed, e.g.,
using the method from [22]. In the block-diagonalization algo-
rithm with iterative interference balancing [17], the downlink
receive filters are optimized as well. This is done by iteratively
performing updates of the transmit and receive filters in an
alternating manner. While the authors of [17] did not observe
a notable performance difference between the two schemes, a
significant decrease in sum transmit power is achieved by the
BD-IIB scheme in our simulation setup.

In fact, the BD-IIB scheme performs close to the solution
of the gradient-based and the GP-based method. The reason
is that the per-stream rate targets obtained from the block-di-
agonalization are a quite good choice in most cases, and the
filter update procedure is similar as in the proposed algorithm
(apart from the missing diagonalization of the MSE matrices).
However, block-diagonalization can only be applied to systems
where the number of transmit antennas is at least as high as the
total number of receive antennas . This as-
sumption, which is not necessarily fulfilled in practical systems,
is not needed for the proposed gradient-based algorithm.

The performance of the BD-IB method without the additional
iteration is similar to the solution found by the MSE-based
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Fig. 7. Convergence of the GP-based and the gradient-based algorithm for
� � � bits per channel use.

power minimization from [20]. Also note that the latter has
lost its disastrous behavior for high rate requirements due to
the increased number of degrees of freedom in the system with

base station antennas.

VIII. COMPUTATIONAL COMPLEXITY

Due to the complicatedness of the considered algorithms, a
detailed quantitative complexity analysis would go beyond the
scope of this paper. Instead, the aim of this section is to qual-
itatively discuss the speed of convergence of the various algo-
rithms (measured by the number of iterations), and to investigate
the complexity of the steps within one iteration.

The reduction of the transmit powers during the execution of
the gradient-projection algorithm and the geometric program-
ming based algorithm is plotted for the system with ,

, in Fig. 7, averaged over 1000 channel re-
alizations. It can be seen that the new gradient-based algorithm
arrives at small values of the sum transmit power with less iter-
ations than the GP-based method from [19].

In addition, the authors of [19] acknowledge that “power al-
location with GP has high complexity.” This fact might be sur-
prising at the first glance since it is well known that geometric
programs can be solved in reasonable time by converting them
to equivalent convex programs. However, the problem of the
GP-based method is that not only one geometric program has to
be solved, but the solution to a geometric program in
variables has to be found in each iteration. Therefore, the com-
plexity of solving a geometric program does not have to be com-
pared with the overall complexity of the proposed algorithm,
but with the complexity of the operations within one iteration.
Indeed, these operations of the proposed algorithm can be exe-
cuted in significantly less time. The computationally most com-
plex subproblem of the gradient-based approach is the repeated
evaluation of the function defined in (20). This function is
evaluated up to times. Depending on the required ac-
curacy, this can be about ten to twenty times, but in most iter-
ations, this limit is not reached. The fixed point iteration from
[20], which can be used to evaluate the function, converges in
a very small number of iterations (typically five to ten), and the
inversion of a matrix is the most complex operation
in each iteration. In our numerical simulations, this needed sig-
nificantly less execution time than the rather complex procedure

Fig. 8. Convergence of the BD-IIB scheme and the gradient-based algorithm
with different initializations for � � � bits per channel use.

of solving a geometric program. The same is true for the inver-
sion of a matrix in the computation of the gradient
in (23) and of a matrix of the same size in the uplink-to-down-
link transformation in (36), which are both performed once per
outer iteration.

Clearly, another computationally complex step in the gra-
dient-projection algorithm is the update of the filters of currently
inactive streams, which comprises the inversion of a matrix

and a matrix , where is the number of
active streams, and the repeated computation of GEVDs. How-
ever, firstly, as the GEVDs involve matrices with moderate di-
mensions of less than , this step is also much less com-
plex than the solution of the geometric program, and secondly,
the filter update for inactive streams can even be skipped if a
further complexity reduction is desired. By instead leaving the
filters of inactive streams as they were in the previous iteration,
the resulting sum transmit power was increased on average by
no more than 0.15 dB in our numerical simulations.

Consequently, the gradient-projection algorithm proposed in
this paper achieves the same performance as the geometric pro-
gramming based method from [19] with a much lower computa-
tional complexity. Clearly, the actual difference in computation
time depends on the solver used for the geometric programs.

Fig. 8 refers to the system with , , .
Here, it can be seen that the sum transmit power resulting from
the gradient-projection algorithm rapidly falls below the solu-
tion of the BD-IIB algorithm, even though the basic initializa-
tion that was proposed for the gradient scheme in Section VI is
much worse than the initialization from the block-diagonaliza-
tion. Furthermore, it turns out that initializing also the gradient-
based method using the block-diagonalization scheme does not
lead to a decreased sum transmit power on average, i.e., the
changed initialization does not lead to more preferable solu-
tions. Nevertheless, it speeds up the convergence of the algo-
rithm.

It can also be seen from the plot that the number of itera-
tions needed by the BD-IIB algorithm to come close to the final
value lies in the same order as for the gradient-based scheme.
However, as the BD-IIB does not update the per-stream rate tar-
gets and refrains from diagonalizing the MSE matrices, it has a
lower complexity than the gradient-based scheme in each itera-
tion. This gain in computational efficiency comes at the cost of
an increased sum transmit power and the restriction to systems
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with . Note that systems with
can be solved with the new gradient-based scheme, but not with
the BD-based methods.

IX. CONCLUSION

The problem of power minimization in MIMO broadcast
channels with linear transceivers, which was considered in this
paper, is a non-convex optimization problem. For non-convex
problems, optimization techniques based on gradient steps or
on alternating optimization are not able to find the globally
optimal solution in general as they risk to converge to a solution
that is far from the global optimum. On the other hand, such
algorithms are interesting from a practical point of view as
they can be implemented with a reasonable computational
complexity.

Therefore, we have proposed a new power minimization al-
gorithm, which is based on gradient-projection steps for new
auxiliary variables called per-stream rate targets, and on an al-
ternating optimization of the filters in the downlink and in the
dual uplink. Although such an approach is suboptimal in gen-
eral, we could demonstrate in numerical simulations that the av-
erage sum transmit power achieved by the gradient-based algo-
rithm lies close to the lower bound given by the DPC solution.
This implies that it also lies close to the globally optimal solu-
tion for linear transceivers.

A good performance was also observed for the algorithm
from [18] and [19] based on a geometric programming formula-
tion and for the block-diagonalization method with iterative in-
terference balancing from [17]. However, the former has a high
computational complexity, and the latter is restricted to broad-
cast channels with at least as many base station antennas as the
total number of receive antennas. Both drawbacks do not apply
to the gradient-based method proposed in this paper.

APPENDIX A

Proof of Proposition 1: We prove the equivalent state-
ment that is inverse-positive. Since is a -matrix, i.e.,

for [40, Ch. 6], it suffices to show that there
exists a positive diagonal matrix such that is strictly
diagonally dominant, i.e., .
Having shown this, it can be concluded, that is a nonsin-
gular -matrix, and thus, it is inverse-positive [40, Ch. 6,
Theorem 2.3].

The partial derivatives can be computed from (15) by

means of standard matrix calculus as

(42)

and

(43)

for , where is defined in (16). Using
the matrix defined in (27) and applying the matrix inversion
lemma,11 we get

(44)

with

(45)

where the inequality can be shown by applying the matrix in-
version lemma in (45). From (44), we find

(46)

and

(47)

Now consider the matrix , where is the positive diagonal
matrix , and is a diagonal
matrix with

(48)

As can be easily verified,

(49)

and

(50)

for , and due to

(51)

is strictly diagonally dominant.

11��������������� � ��� � ��� ��� ���� ������� ���� ������ (e.g.,
[41]).
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APPENDIX B

Proof of Theorem 1: The partial derivatives can be written
as

(52)

with

(53)

where is defined in (20). Using the chain rule and the fact that
all rate constraints are fulfilled with equality in the solution of
(18) [42], i.e., , we have that

(54)

for all . Since the derivatives are known [see (42)

and (43)], we have equations of the form (54) with the

same number of unknowns . In matrix notation, this can

be written as

(55)

where is the Jacobian matrix of the powers with respect
to the rate targets , i.e.,

(56)

Due to Proposition 1, a solution exists, and this
solution has non-negative entries. The desired partial derivatives

are given by the column sums of , which are non-

negative.

APPENDIX C

Proof of Lemma 1: To perform the projection to the set of
per-stream rate targets feasible for user , we have to minimize
the Euclidean distance, i.e., the convex optimization problem

and (57)

has to be solved (cf., e.g., [43] and [44]). Introducing La-
grangian multipliers and , the KKT
conditions (cf., e.g., [44]) of this problem read as

(58)

and and (59)

and (60)

From (58) and (59), we get the waterfilling equation

(61)

where the optimal water level can be obtained
from (60) as

(62)

with being the set of active streams of user .

APPENDIX D
FILTER UPDATE FOR INACTIVE STREAMS

In this Appendix, we propose an update method for the fil-
ters belonging to currently inactive streams, i.e., streams with

. Non-zero equalizers are necessary
for these streams in order to provide effective MISO channels

. The aim of the update is to create streams that are likely
to be activated in the next rate target update and do not interfere
with other streams of the same user.

The demand of zero interference, i.e., for
and for all that correspond to inactive streams obviously

makes sense: this condition is the counterpart of the requirement
of a diagonal MSE matrix, which we imposed for the active
streams. Note that the condition is automatically fulfilled for all

that correspond to currently inactive streams with

since in this case. Let denote a matrix

of basis vectors of the null space of . Then, any downlink
receive filter fulfilling the condition of zero interference can be
expressed as , where is a vector of appropriate
size without special structure.

We want that there is at least one stream that has good chances
to get active during the next update of the rate targets, which
is the case if the derivative is small. Let us reorder the

columns and rows of the Jacobian matrix defined in (22)
such that the reordered version can be partitioned into

(63)

where the first letter in the second subscript refers to rows be-
longing to active (a) or inactive (i) streams, and the second letter
refers to the columns. For instance, contains the deriva-

tives with corresponding to inactive and corre-

sponding to active streams. As can be easily verified,

if is inactive and . Thus, [45]

(64)
with the diagonal matrix

(65)
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Applying Theorem 1 and using to denote the accordingly
reordered version of , we get for an inactive stream :

(66)

where is the canonical unit vector that identifies the stream

among all inactive streams, and is given by

(67)
where is the canonical unit vector that identifies the stream

among all active streams.
Thus, in order to find a good filter for the first considered inac-

tive stream of a user, we have to solve the optimization problem

(68)

which is a generalized eigenvalue problem, i.e., the
optimal is the generalized eigenvector of the ma-
trices and

that belongs to the smallest
generalized eigenvalue. Here, denotes the

dimensionality of the null space of . Without loss of
generality, we can scale to unit norm. Having found the
filter for an inactive stream, we replace with a matrix
of basis vectors of the null space of to ensure
that a different direction is chosen for the next considered
inactive stream of a user, and so on.
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