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Abstract

The Cramér-Rao bound (CRB) plays an important role in DOA estimation because it is

always used as a benchmark for comparison of the different proposed estimation algorithms.

In this paper, using well-known techniques of global analysis and differential geometry, four

necessary conditions for the maximum of the log-likelihood function are derived, two of which

seem to be new. The CRB is derived for the general class of sensor arrays composed of

multiple arbitrary widely separated subarrays in a concise way via a coordinate free form of

the Fisher Information. The result derived in [1] is confirmed.
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1 Introduction

The maximum likelihood technique is a widespread used tool for directions of arrival (DOA)

estimation. Many log-likelihood functions and estimation algorithms have been proposed in the

literature depending on the structure of the noise covariance matrix which make them sensitive

to the assumed noise model. In most practical situations, the noise model is unknown and to

effectively handle unknown noise environments several methods have been proposed. The most

recent one consists in spacing the array geometry in certain ways. In this paper, the general case

of sensor arrays composed of multiple arbitrary widely separated subarrays [1] is considered. In

such arrays, intersubarray spacings are substantially larger than the signal wavelength and the

noise covariance matrix of the whole array is block-diagonal.

The classical way for deriving the maximum likelihood estimate of the DOA is by setting the

derivative of the log-likelihood function with respect to the DOA parameters to zero and solving

the formed equation set. Note, that two different types of data models are used in applications

for DOA estimation. The so-called conditional model, where the signal is supposed to be non-

random and the unconditional model, where the signal is assumed to be random [2]. Since the

results derived in this paper are extensions of previous results derived in [1], we exclusively focus

on the first case, the conditional model and the corresponding likelihood function.

To assess the performance of these derived maximum likelihood estimators the CRB play an

important role because it is always used as a benchmark for comparison. The derivation of closed

form expressions for the CRB for the general unknown noise model have been approached in [3],

[4], [5] and obtained for the uniform and nonuniform white noise case in [6], [7]. An extension of

the work provided in [6] was used in [8] to derive a closed form expressions for the CRB in the

most general case of an arbitrary unknown noise field.

In this paper we consider the general class of sensor arrays composed of multiple arbitrary widely

separated subarrays [1]. Using well-known techniques of global analysis and differential geometry,

the derivative and the Hessian form of the log-likelihood function are computed. The latter one is

used to derive a coordinate free form of the Fisher information. In contrast to earlier approaches,
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this allows to directly compute the CRB of linear transformations for the DOA. Choosing a

standard basis yields the results obtained in [1].

The rest of this paper is organized as follows. Some basics in differential geometry are provided

in Section II. Necessary conditions for the existence of the maximum likelihood are derived in

Section III. In Section IV, the general closed form expression for the CRB is derived and the

relation with the particular case of [1] is discussed. A conclusion is given in section V.

2 Preliminaries on Differential Geometry

We recall some basic facts and definitions on global analysis, cf. [9] and [10]. Let M be a smooth

manifold of dimension n. A curve through x ∈M is a smooth map

γ : I −→M,

where I ⊂ R is an open interval containing 0 and γ(0) = x. Let U be a neighborhood of x and

let φ : U −→ Rn be a chart. Then

φ ◦ γ : I −→ φ(U) ⊂ Rn

is differentiable. Two curves γ1 and γ2 through x ∈M are said to be equivalent, if (φ ◦ γ1)′(0) =

(φ ◦ γ2)′(0) holds for some and therefore any chart φ. This defines an equivalence relation on

the set of all curves through x. A tangent vector at x is then an equivalence class ξ := [γ] of a

curve γ and the tangent space TxM is the set of all tangent vectors. It can be shown to be an

n-dimensional real vector space.

A trivial example of a manifold is an open subset U of Rn together with the identity mapping as

the chart. In this case, the tangent space at any point of U can be identified with Rn.

Now let M,N be manifolds and let f : M −→ N be smooth. If γ is a curve through x ∈M , then

f ◦ γ is a curve through f(x) ∈ N and equivalent curves through x are mapped to equivalent

curves through f(x). We can therefore define the derivative of f at x ∈M as the linear map

Df(x) : TxM −→ Tf(x)N
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given by Df(x)[γ] = [f ◦ γ] for all tangent vectors [γ] ∈ TxM . If f : M −→ R is a smooth real

valued function, we identify Ty(R) = R for all y ∈ R and define a critical point of f as a point

x ∈M such that Df(x)ξ = 0 for all ξ ∈ TxM . The Hessian of f at a critical point x then is the

symmetric bilinear form

Hf (x) : TxM × TxM −→ R,

(ξ1, ξ2) 7−→1
2

(
Hf (x)(ξ1 + ξ2, ξ1 + ξ2)

−Hf (x)(ξ1, ξ1)−Hf (x)(ξ2, ξ2)
)
,

(1)

where Hf (x)([γ], [γ]) := (f ◦ γ)′′(0). It can be shown that this definition is independent of the

choice of the representative γ only if γ(0) is a critical point of f . The Hessian is therefore only well

defined at critical points of f . A critical point is nondegenerate, if its Hessian is nondegenerate.

If x is a local maximum (minimum), then Hf (x) is negative (positive) semidefinite. On the other

hand, if Hf (x) is negative (positive) definite, then x is a local maximum (minimum).

3 The Log-Likelihood function

Let an array of n sensors having unknown gains and phases receive signals from m (m < n)

narrowband far-field sources with unknown DOAs {θ1, ..., θm}. The n× 1 array snapshot vectors

can be modelled as [1]

y(t) = Γ(λ)A(θ)x(t) + v(t) t = 1, ..., N (2)

where θ = [θ1, ..., θm]> is the m × 1 vector of signal DOAs, A(θ) = [a(θ1), ..., a(θm)] is the

n ×m source direction matrix, a(θ) is the n × 1 steering vector, x(t) = [x1(t), ..., xm(t)]> is the

m × 1 vector of the source waveforms, v(t) = [v1(t), ..., vm(t)]> is the n × 1 vector of sensor

noise, Γ(γ) is a diagonal matrix containing the unknown complex-valued sensor responses, i.e.

Γ(λ) =diag{λ1, ..., λn}, (·)> denotes transpose and N is the number of statistically independent

snapshots. In this case, the array model can be rewritten as [11], [1]

Y = Γ(λ)A(θ)X + V = ΓAX + V (3)
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where Y = [y(1), ..., y(N)], X = [x(1), ..., x(N)], V = [v(1), ..., v(N)] are the n × N array data

matrix, the m×N source waveform matrix, and the n×N sensor noise matrix, respectively.

In this paper we consider the case of sparse arrays composed of q arbitrary subarrays whose

intersubarray displacements are substantially larger than the signal wavelength. As a result,

sensor noises can be assumed to be statistically independent between different subarrays. This

leads to a noise covariance matrix, say Q, that has a block form. The size of each block, say ni,

corresponds to the numbers of sensors in the corresponding subarray (n =
∑q

i=1 ni). In other

words, Q ∈ Q with

Q :=




Q1

. . .

Qq

 | Qi ∈ Cni×ni , Qi > 0

 ,

=: bdiag(Q1, ..., Qq) = E{v(t)v(t)†}

(4)

where we write shortly Qi > 0 for the positive definite noise covariance matrix of the ith subarray

Qi, bdiag{} denotes the block-diagonal matrix operator, (·)† denotes conjugate transpose, and

E{} is the statistical expectation. Note, that Q is open in the set of Hermitian blockdiagonal

matrices of appropriate blocksize and therefore a manifold whose tangentspace at each point can

be identified with

TQQ = {bdiag(H1, ...,Hq),Hi ∈ Cni×ni ,H†
i = Hi}. (5)

Taking into account the special structure of the (n ×m) source direction matrix, it varies over

the set [12]

A :=





1 . . . 1

z1 . . . zm
...

...

zn−1
1 . . . zn−1

m


| zi ∈ C, |zi| = 1


, (6)
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which is diffeomorphic to the m-torus via the obvious mapping

Φ: (z1, . . . , zm) 7→



1 . . . 1

z1 . . . zm
...

...

zn−1
1 . . . zn−1

m


and hence a smooth and compact manifold. In the following, the tangent space is derived accord-

ing to Section 2. To this end let A = Φ(a1, . . . , am) ∈ A and let γ be a curve through A given

by

γ : I → A, t 7→ Φ(a1 exp(itθ1), . . . , am exp(itθm)), (7)

where θ := (θ1, . . . , θm) ∈ Rm and i :=
√
−1. Differentiating with respect to t and setting t = 0

yields the tangent space

TAA = {iA� nθ>, θ ∈ Rm}, (8)

where � denotes the matrix Hadamard product and the vector

n := (0, 1, . . . , n− 1)> ∈ Rn.

Similarly, the normalized diagonal matrix Γ that contains the unknown sensor responses varies

over

T := {diag(z1, . . . , zn) | zi ∈ C, |zi| = 1}, (9)

which is diffeomorphic to the n-torus with tangent space

TΓT = {iΓD | D ∈ Rn×n is diagonal} (10)

at Γ ∈ T . Let the array data matrix Y ∈ Cn×N be given. The conditional Log-Likelihood

function (LL-function) is given by [11]

f : Q× T ×A× Cm×N → R

(Q,Γ, A,X) 7→

−N log detQ− tr[(Y − ΓAX)†Q−1(Y − ΓAX)].

(11)
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For convenience, we further shortly write

G := Y − ΓAX.

The derivatives of f with respect to Q will be denoted by DQf and similar the notation DΓf,DAf

and DXf is used. In what follows <(z) represents the real part of z.

Lemma 1: The partial derivatives of the LL-function are given by

DQf : TQQ → R, H 7→ tr[Q−1GG†Q−1H]

−Ntr[Q−1H] (12)

DΓf : TΓT → R, ξ 7→ 2<tr[G†Q−1ξAX] (13)

DAf : TAA → R, ψ 7→ 2<tr[G†Q−1ΓψX] (14)

DXf : Cm×N → R, S 7→ 2<tr[G†Q−1ΓAS]. (15)

Proof. Equations (13)-(15) follow straightforwardly by the product rule since the second term of

the LL-function is the squared norm of G with respect to the real inner product <tr[G†
1Q

−1G2]

with G1, G2 ∈ Cn×N . Since they all are derived in a very similar way, we restrict ourself to

deduce Equation (14). Let γ be given as in (7) with ψ := γ̇(0) ∈ TAA. Then

DAf(ξ) = d
dt |t=0f(Q,Γ, γ(t), X)

= −<tr[(−Γγ̇(0)X)†Q−1(Y − Γγ(0)X)]

−<tr[(Y − Γγ(0)X)†Q−1(−Γγ̇(0)X)]

= 2<tr[G†Q−1ΓψX].

(16)

For Eq. (12), note that log detQ = tr log Q, implying

DQ(log detQ)(H) = tr[DQ(log Q)(H)] = tr[Q−1H]

and differentiating QQ−1 = I on both sides yields

DQQ(H) ·Q−1 +Q ·DQ(Q−1)(H) = 0,
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and hence DQ(Q−1)(H) = −Q−1HQ−1. �

From the above Lemma, we immediately have the following theorem, where part 1) and 4)

have already been derived in a different way in [8]. These results have been used in [1] to derive

an algorithm that iteratively estimates the DOA.

Theorem 1: Let p denote the orthogonal projection from the set of Hermitian n × n-matrices

onto TQQ with respect to the inner product tr[Q1Q2]. Necessary conditions for a critical point

(Q0,Γ0, A0, X0) of the LL-function are

1. p(G0G
†
0) = NQ0;

2. the diagonal entries of Γ0A0X0G
†
0Q

−1
0 are real;

3. the vector (A>
0 �X0G

†
0Q

−1
0 Γ0) · n has real entries;

4. A†
0Γ

†
0Q

−1
0 Γ0A0X0 = A†

0Γ
†
0Q

−1
0 Y , which simplifies if and only if A has full rank into

X0 = (A†
0Γ

†
0Q

−1
0 Γ0A0)−1A†

0Γ
†
0Q

−1
0 Y.

Note, that since A is a Vandermonde matrix, it has full rank if and only if the entries zi are

pairwise distinct.

Proof. We will drop the index “0” during the proof. At a critical point (Q,Γ, A,X), all partial

derivatives have to vanish.

1) For DQf ≡ 0, this means that

tr[(Q−1GG†Q−1 −NQ−1)H] = 0

for all H ∈ TQQ, implying

p(Q−1GG†Q−1 −NQ−1) = 0.

Now taking into account the block structure of Q−1, this is equivalent to p(GG†)−NQ = 0 and

1) is shown.

2) Setting DΓf ≡ 0 and using the special structure of the tangent space elements (10), one

has

<tr[iAXG†Q−1D] = 0
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for all real diagonal (n× n)-matrices D.

3) Note, that for three matrices of appropriate size the identity

tr(A� B)C> = tr(A� C)B>

holds, cf. [9]. Hence DAf ≡ 0 yields

<tr[iXG†Q−1Γ(A� nθ>)] = 0

for all θ ∈ Rm, which is equivalent to

<tr[i(A> �XG†Q−1Γ)nθ>] = 0

for all θ ∈ Rm.

4) For DXf ≡ 0, we have equivalently

A†Γ†Q−1G = 0 ⇔ A†Γ†Q−1Y = A†Γ†Q−1ΓAX.

Now let A have full rank and let x ∈ Cm \ {0}. Then y := ΓAx 6= 0 and by the positive

definiteness of Q−1 we obtain x†A†Γ†Q−1ΓAx > 0. Therefore A†Γ†Q−1ΓA is positive definite

and hence invertible. If, on the other hand, A does not have full rank, there exists x ∈ Cm \ {0}

such that ΓAx = 0 and in this case, A†Γ†Q−1ΓA has eigenvalue 0 and is not invertible. �

4 The Cramér-Rao Bound

To derive the Cramér-Rao bound, the Hessian at the critical point p0 = (Q0,Γ0, A0, X0) has to

be computed. We shortly denote

DQQf(H1,H2) = DQ

(
DQf(p0)(H1)

)
(H2)

and similarDQAf(H,ψ) = DQ

(
DAf(p0)(ψ)

)
(H) and so on. Note, that the Hessian is symmetric,

i.e. DQAf(H,ψ) = DAQf(ψ,H) etc. Again, the index 0 for indicating the critical point is dropped

in the following. From equations (12)-(15) we derive

DQQf(H1,H2) = Ntr[Q−1H2Q−1H1]−

− tr[Q−1H2Q−1GG†Q−1H1]− tr[Q−1GG†Q−1H2Q−1H1].
(17)
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With ξi = iΓDi as in Eq. (10), i = 1, 2, one obtains

DΓΓf(ξ1, ξ2) = DΓΓf(D1, D2) =

− 2<tr[(ΓD2AX)†Q−1ΓD1AX]

− 2<tr[G†Q−1ΓD2D1AX].

(18)

For ψi = iA� nx>i as in (8), i = 1, 2,

DAAf(ψ1, ψ2) = DAAf(θ1, θ2) =

− 2<tr[(Γ(A� nθ>2 )X)†Q−1Γ(A� nθ>1 )X]

− 2<tr[G†Q−1Γ(A� nθ>2 � nθ>1 )X]

(19)

holds and

DXXf(S1, S2) =− 2<tr[(ΓAS2)†Q−1ΓAS1]. (20)

Moreover,

DQΓf(H,D) =− 2<tr[G†Q−1HQ−1iΓDAX], (21)

DQAf(H, θ) =− 2<tr[G†Q−1HQ−1iΓ(A� nθ>)X], (22)

DQXf(H,S) =− 2<tr[G†Q−1HQ−1ΓAS], (23)

DΓAf(D, θ) =− 2<tr[(ΓDAX)†Q−1Γ(A� nθ>)X]

− 2<tr[G†Q−1ΓD(A� nθ>)X],
(24)

DΓXf(D,S) =2<tr[i(ΓDAX)†Q−1ΓAS]

+ 2<tr[iG†Q−1ΓDAS],
(25)

and, finally,

DAXf(θ, S) =2<tr[i(Γ(A� nθ>)X)†Q−1ΓAS]

+ 2<tr[iG†Q−1Γ(A� nθ>)S].
(26)
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In order to derive the Fisher Information Matrix, we have a look at the expectation value E[·]

of the above terms Eq. (17) – (26). Using the fact, that at the maximum E[G] = 0 and

E[G†G] = NQ, immediately yields

E[DQQf(H1,H2)] = −Ntr[Q−1H2Q−1H1]

E[DΓΓf(D1, D2)] = −2<tr[(ΓD2AX)†Q−1ΓD1AX]

E[DAAf(θ1, θ2)] =

= −2<tr[(Γ(A� nθ>2 )X)†Q−1Γ(A� nθ>1 )X]

E[DXXf(S1, S2)] = −2<tr[(ΓAS2)†Q−1ΓAS1]

E[DQΓf(H,D)] = 0

E[DQAf(H, θ)] = 0

E[DQXf(H,S)] = 0

E[DΓAf(D, θ)] =

= −2<tr[(ΓDAX)†Q−1Γ(A� nθ>)X]

E[DΓXf(D,S)] = 2<tr[i(ΓDAX)†Q−1ΓAS]

E[DAXf(θ, S)] = 2<tr[i(Γ(A� nθ>)X)†Q−1ΓAS]

(27)

Gathering the derived results yields the following theorem.
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Theorem 2: The bilinear form corresponding to the Fisher Information is given by

F
(
(H1, D1, θ1, S1), (H2, D2, θ2, S2)

)
=

Ntr[Q−1H2Q−1H1] + 2<tr[(ΓD2AX)†Q−1ΓD1AX]

+ 2<tr[(Γ(A� nθ>2 )X)†Q−1Γ(A� nθ>1 )X]

+ 2<tr[(ΓAS2)†Q−1ΓAS1]

+ 2<tr[(ΓD1AX)†Q−1Γ(A� nθ>2 )X]

+ 2<tr[(ΓD2AX)†Q−1Γ(A� nθ>1 )X]

− 2<tr[i(ΓD1AX)†Q−1ΓAS2]

− 2<tr[i(ΓD2AX)†Q−1ΓAS1]

− 2<tr[i(Γ(A� nθ>1 )X)†Q−1ΓAS2]

− 2<tr[i(Γ(A� nθ>2 )X)†Q−1ΓAS1].

(28)

Clearly, a matrix representation of F depends on the choice of a basis B of the tangent space

at the maximum, which is given by TQQ× TΓT × TAA× Cm×N . Let BH ,BD,Bθ,BS be basis of

TQQ, TΓT , TAA, Cm×N , respectively. If B is chosen to be

B := (Bθ,BD,BS ,BH), (29)

then the matrix representation of F takes the form

FB =



Fθθ FθD FθS 0

F>
θD FDD FDS 0

F>
θS F>

DS FSS 0

0 0 0 FHH


. (30)

The matrices Fij depend on the choice of the basis Bi and Bj for i, j ∈ {θ,D, S,H}. Using the

partitioned matrix inversion formula, the (m×m) CRB-matrix for θ is given by

Cθ =

Fθθ −
[
FθD FθS

]FDD FDS

F>
DS FSS


F>

θD

F>
θS



−1

(31)
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Now denote by ei,fi,gi the standard basis vectors of Rm, Rn, RN , respectively, i.e. having

i-th entry 1 and zeros elsewhere. By choosing the basis

Bθ = (iA0 � ne>i , i = 1, . . . ,m)

BD = (iΓ0fif
>
i , i = 1, . . . , n)

BS = (eig>j , ieig
>
j , i = 1, . . . ,m, j = 1, . . . , N),

(32)

Eq. (31) is equivalent to Eq. (89) in [1]. More general, if T ∈ Rm×m is a change of coordinates

in TAA, i.e.

B̃θ := iA0 � n((Te1)>, . . . , (Tem)>), (33)

then the CRB-matrix with respect to this new basis is given by

C̃θ = T−1CθT
−>. (34)

Example:

We illustrate the above by means of a simple example. Let the source direction matrix A0 = 1 1

a1 a2

 be given, where a1 = eiθ1 and a2 = eiθ2 and θ1, θ2 are the directions of arrival. Differ-

entiating A0 with respect to θi yields d
dθi
A0 = iA0�

0

1

 e>i θi which corresponds to the canonical

basis Bθ in Eq. (32) that finally gives the CRB Cθ for (θ1, θ2) as in [1]. Assume now that we are

interested in θ̃1, θ̃2 such that

T

θ̃1
θ̃2

 =

θ1
θ2

 (35)

for some invertible 2× 2 matrix T . Then

d

dθ̃i

A0 = iA0 �

0

1

 (Tei)>θ̃i. (36)

Hence choosing a basis

Bθ̃ =

iA0 �

0

1

 (Tei)>, i = 1, 2

 (37)

in Eq. (29) leads to the CRB Cθ̃ for (θ̃1, θ̃2) for which Cθ̃ = T−1CθT
−> holds, without explicitely

computing T−1.
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5 Conclusion

Using well-known techniques of global analysis and differential geometry, the determination of

the derivatives of the maximum likelihood function is easy and concise.

The Fisher information has been derived in terms of a coordinate free bilinear form. Different

choices of basis in the tangent space at the maximum of the log likelihood function lead to different

Fisher-Information matrices and hence to different CRBs. The connections between these CRBs

have been explained in Eq. (34).

One of the benefits of the proposed approach is, that in order to derive the CRB for θ̃, satisfying

T θ̃ = θ, the matrix T−1 does not have to be computed explicitly.
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