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Abstract

A two-way coupled simulation technique for a dilute suspension of rigid fibers in turbulent flows is
developed. It is based on an Eulerian direct numerical simulation of the incompressible Navier-Stokes
equations and a Lagrangian direct Monte-Carlo simulation of the fiber conformation. The numerical
methods are explained in detail and are implemented in an existing flow solver. A simple benchmark,
for which an analytical solution exists, is designed. It is used to validate the two-way coupled solver.
The developed simulation tool is employed to study the turbulent drag reduction by rigid fibers in a
channel flow at a nominal shear Reynolds number Reτ = 180. We use 1283 grid cells to resolve the
Eulerian field and 65 536000 Lagrangian particle clusters each of which containing 100 fibers. This
results in a total number of 6553 600000 fibers. All known features of a fibrous drag-reduced channel
flow are reproduced in the reported simulation. We present the mean flow quantities. Especially,
turbulence intensities are investigated by considering the probability density function of the fluctuating
velocities. In order to explain the modification in the anisotropy of the Reynolds stress tensor, we study
the pressure-strain correlation and analyze it by the use of a Green’s function solution of the underlying
Poisson equation. It turns out that the reduction in pressure fluctuations is partly and the reduction in
strain fluctuations is mainly responsible for the reduction in the pressure-strain correlation. The budget
of the strain fluctuations is also presented. The decrease in the strain fluctuations is mainly due to the
reduction in contributions from the self-interaction and local vorticity effects. Ultimately, we study the
vorticity field of the drag-reduced flow by presenting the vorticity fluctuations, the distribution of the
tilting angle and the budget of the near-wall enstrophy.
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Zusammenfassung

In vorliegender Dissertation wurde ein voll gekoppeltes Verfahren zur Simulation verdünnter Suspen-
sionen starrer Faser in turbulenten Strömungen entwickelt. Es basiert auf einer direkten numerischen
Simulation der inkompressiblen Navier-Stokes-Gleichungen für das Trägerfluid im Euler-Kontext und
einer direkten Monte-Carlo-Simulation der stochastischen Faserorientierungen im Lagrange-Kontext.
Die numerischen Methoden werden im Detail erläutert, in einen bestehendes Strömungslöser umge-
setzt und in einem eigens entwickelten einfachen Strömungsfall für den eine analytische Lösung ex-
istiert validiert. Das entwickelte Simulationswerkzeug wird eingesetzt, um die Widerstandsverringerung
durch starre Fasern in einer turbulenten Kanalströmung bei einer Scher-Reynoldszahl von Reτ = 180 zu
studieren. Das Eulersche Strömungsfeld wird dabei mit 1283 Gitterzellen aufgelöst während der nicht-
Newtonische Faseranteil am Spannungstensor auf 65 536000 Lagrangen Bahnen, die jeweils über 100
Fasern repräsentieren, dargestellt wird. Daraus ergibt sich eine Gesamtzahl von 6553 600000 Fasern.
Alle bekannten Eigenschaften einer widerstandsreduzierten verdünnten Fasersuspension werden durch
die hier vorgestellten Simulationen reproduziert und bestätigt. Wir dokumentieren statistische Größen
des Geschwindigkeitsfeldes, insbesondere die Wahrscheinlichkeitsdichtefunktionen der fluktuierenden
Geschwindigkeitskomponenten. Die Anisotropie der Schwankungsgrößen steigt durch die Änderung
der Druck-Scherkorrelationen an. Um dies zu erklären werden diese mit Hilfe einer Lösung basierend
auf Greenschen Funktionen der zu Grunde liegenden Poisson analysiert. Es zeigt sich, dass die Ver-
ringerung der Druck-Scherkorrelationen zu einem kleinen Teil auf reduzierte Druckschwankungen, zu
einem wesentlichen Teil jedoch auf eine Reduktion der Fluktuationen des Deformationstensors zurück-
zuführen ist. Die Analyse der Fluktuationen des Deformationstensors zeigt, dass diese hauptsächlich
durch Beiträge der Selbstinteraktion sowie durch lokale Interaktionen mit dem Wirbelstärkefeld re-
duziert werden. Letztendlich untersuchen wir das Wirbelstärkefeld der widerstandsreduzierten Strö-
mung an Hand der Wirbelstärkefluktuationen, der Häufigkeitsverteilung der Inklinationswinkel der
Wirbel und den Haushalt der wandnahen Enstrophie.
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1. Introduction

1.1. Motivation and Literature Review

Hydro(aero)dynamic drag is often a parasitic effect that decreases the technical and/or eco-
nomical efficiency of engineering devices and vehicles involving fluid flows. Therefore, drag
reduction, even at small amounts, will result in a considerable reduction in the operating costs
of the machinery. One can classify the drag in different categories. The shape drag is due to
the pressure distribution around the body. The wave drag is associated with the wave phe-
nomena that occur in fluid flows, e.g. surface waves in free-surface flows and sound waves
in supersonic/hypersonic flows. Frictional drag is a result of viscous friction of the fluid at
the wall. Due to the no-slip boundary condition, the velocity is zero at the wall and grows
continuously by distance from it. Such a velocity distribution imposes a velocity gradient at
the wall which, in turn, introduces a wall shear stress τw, according to the Newton’s law of
viscosity

τw = µ
∂ U

∂ n

�

�

�

�

w

, (1.1)

in which µ, U and n are the dynamic viscosity of fluid, the velocity component tangential to
the wall and the direction normal to the wall, respectively. The integral of the wall shear stress
over the surface of a plain wall yields a net drag force

FD =

∫∫

∂Ωw

τw dS, (1.2)

where ∂Ωw is the wall-bounded part of the flow boundary.
Momentum transfer is stronger in turbulent flows due to the fluctuations in flow quantities.

As a consequence, the tangential velocity tends to the free-stream value at a closer distance
to the wall, i.e. the mean velocity gradient is greater at the wall. This results in a higher
wall shear stress and hence a dramatic increase in the frictional drag as compared to the
laminar counterpart. Near-wall coherent structures are considered responsible for this effect.
One can achieve turbulent drag reduction by controlling the near-wall vortical structures.
Such a modulation of turbulence can be obtained by a variety of methods; polymer additives
[67, 131], microbubbles [133], surfactants [135], riblets [13], active control techniques [14],
etc. Recently, Zhao et al. [137] have investigated the possibility of turbulent drag reduction
by a suspension of spherical particles.
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2 Introduction

Skin friction drag reduction in turbulent wall-bounded flows induced by polymer addi-
tives has been known for over half a century, since the discovery of Toms in 1948 [127].
Flexible polymers typically lead to higher drag reduction than rigid rod-like polymers (fibers)
at a certain concentration. However, flexible polymers are sensitive to shear degradation,
as pointed out by Paschkewitz [102] and as seen in the experiments of den Toonder et al.
[20]. It is also known that a mixture of both flexible polymers and fibers lead to higher drag
reduction than each of them alone (see [102] and references therein). The drag reducing
behavior of flexible polymers has been more extensively studied than that of fibers. For a
review of experimental studies refer to the recent publications of Mungal’s group [52, 119]
and the references therein. Numerical simulations can be also browsed in the literature, e.g.
the works of the Beris’ group ([123, 22, 10], etc.), De Angelis et al. [18], the works of
the Stanford group ([25, 125, 126, 21], etc.), Benzi et al. [9]. In the following we review
the previous experimental and numerical researches on fiber-induced turbulent drag reduc-
tion.

Frattini and Fuller [33] have experimentally investigated the orientation of small Brow-
nian rod-like and disk-like particles in simple shear flow. Sasaki [114, 115] has performed
experiments on the drag reducing effect of rod-like additives using xanthan polysaccharide
and schizophyllum polysaccharide in a turbulent pipe flow. Experimental study of drag reduc-
tion by rigid fibers in a turbulent boundary-layer flow has been performed by the Stanford
group [103]. More recently, Amarouchene et al. [4] have performed experimental and theo-
retical studies on the effect of the Reynolds number on the drag reducing behavior of rod-like
particles.

Den Toonder et al. [20] have performed numerical investigation of drag reduction by
rod-like additives in a turbulent pipe flow using a simplified model due to the computational
limitations at that time. They have assumed that the fibers are oriented in the direction of the
local velocity vector of the background flow. Despite this simplified model, they were able to
reproduce the basic features of the drag-reduced flow. They have also performed experiments
on drag reduction caused by a dilute polymer solution (Superfloc A110) in a turbulent pipe
flow at Reτ = 1035. One of the most important goals of their work was to investigate the effect
of elasticity (due to Brownian motion) on drag reduction. They have concluded that increasing
the elasticity has an adverse effect on drag reduction.

Manhart [71] has developed a direct Monte-Carlo solver for the fiber conformation, and
used it to study the rheology of a dilute suspension of fibers in a turbulent channel flow
through one-way coupled simulations. Fibers were treated in a Lagrangian framework. He has
especially studied the effect of the fiber aspect ratio and Brownian motion on the mean fiber
stress and the root-mean-square of fiber stress fluctuations. He has found that increasing the
elasticity, increases the non-Newtonian shear stress level, which explains the decrease in the
drag-reducing effectiveness of fibers by increasing the elasticity. He has also investigated the
viscoelastic energy transfer in such a suspension [72]. Manhart [74] has also performed a two-
way coupled simulation with the Monte-Carlo method. It was partly successful. However, due
to computational limitations, no conclusion could be drawn.



Introduction 3

The first fully successful two-way coupled simulations have been performed by Shaqfeh’s
group at Stanford [102, 104]. They have employed an Eulerian moment approximation
method with two closure models, i.e. hybrid and invariant-based optimal fitted (IBOF) clo-
sures. The effects of the fibers’ concentration, aspect ratio, Brownian motion, closure model,
etc. on the drag reduction have been studied. They have also presented the joint proba-
bility density of fiber stresses with various flow quantities. Later, they have performed one-
way coupled Lagrangian simulations and studied the drag-reduced flow by means of condi-
tional statistics [105]. The flow field in the Lagrangian simulations was the one obtained by
Eulerian two-way coupled simulations. They have proposed a mechanism of fiber-induced
drag reduction that was supported by their simulations and Lagrangian conditional statis-
tics. They have postulated that the fibers align in the intervortex regions and produce non-
Newtonian stress fluctuations that oppose the vortical motion and eventually dampens out
the vortex. This process continues to the next vortex and so fourth. Fiber-induced drag re-
duction in a turbulent boundary-layer flow has been also investigated by the same group
[103].

Eulerian two-way coupled and Lagrangian one-way coupled methods have been also de-
veloped by the TU-Delft and NTNU groups; Gillissen et al. [38] have investigated the per-
formance of the eigenvalue-based optimal fitted (EBOF) closure by comparison with a di-
rect Fokker-Planck solver. The direct Fokker-Planck solver uses a spectral method based
on the spherical harmonics. Due to the computational limitations, the simulation was re-
stricted to relatively low Péclet numbers (strong Brownian motion). They also studied the
non-Newtonian stresses generated by non-Brownian fibers in a turbulent channel flow [39].
Gillissen et al. [40] have numerically investigated the drag reduction in turbulent channel
flow at various Reynolds numbers. Gillissen [37] has compared the drag reducing behavior of
rigid fibers and flexible polymers in a channel flow, and concluded that the polymer elasticity
plays a marginal role in the drag reduction.

Recently, Procaccia et al. [107] have developed a theory of drag reduction by flexible
and rod-like polymers. Benzi et al. [8] have performed numerical simulation of drag re-
duction by rod-like particles and compared it with the theoretical predictions in [107]. All
the simulations have been done using the moment approximation approach in an Eulerian
framework.

In all the simulations reported above, authors assumed neutrally buoyant fibers, i.e. fibers
with the same density as the carrier fluid. To the best knowledge of the author, there ex-
ists no two-way coupled simulation of inertial fibers in turbulent flows to date. However,
a number of one-way coupled simulations can be found in the literature, e.g. Fan and
Ahmadi [29], Zhang et al. [136], Mortensen et al. [91, 92, 93], and Marchioli et al.
[77].

Significant advances have been made in stochastic simulation of polymers in the recent
years, see for example the excellent monograph authored by Öttinger [100]. Since then, the
Brownian dynamics have become a standard simulation technique. Here, we mention a few
relevant publications. Somasi et al. [120] have developed a Brownian dynamics simulator for
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bead-rod and bead-spring chains. Zhou and Akhavan [138] have performed one-way coupled
simulation of the FENE and FENE-P dumbbell and chain models in a turbulent channel flow.
Manhart has developed a stochastic solver for fiber orientation dynamics and have performed
one-way coupled simulation in a turbulent channel flow. Terrapon et al. [126] have performed
one-way coupled Brownian dynamics simulation of polymer stretch in a turbulent channel
flow. More recently, Cyron and Wall [17] have developed a Brownian dynamics solver for
polymers in the context of the finite element methods.

All the two-way coupled simulations reported so far were fully Eulerian. The only two
exceptions are the following two works; the simulation of Manhart [74] using a Lagrangian
Monte-Carlo simulation of fibers, which was partly successful due to the computational lim-
itations, and the simulation of Terrapon [125], where he used a Lagrangian treatment of
polymers using the FENE-P model, i.e. the FENE model with the Peterlin closure. Further-
more, all the reported two-way coupled simulations so far were using closure models with the
exception of the work of Gillissen et al. [38]. They developed a direct Fokker-Planck solver,
but it was restricted to relatively low Péclet numbers.

On the authors knowledge, to date, there is no fully successful two-way coupled direct
simulation of turbulent drag reduction by fibrous (at high Péclet numbers) or flexible poly-
mers that requires no closure. In this thesis, we study the turbulent drag reduction in a
channel induced by rigid fiber additives by means of a direct numerical simulation tech-
nique without needing a closure model. The flow field is obtained by a direct solution of
the Navier-Stokes equations in an Eulerian framework. The fibers are treated in a Lagrangian
framework using a particle tracking scheme. The conformation of the suspended fibers is
computed by a direct Monte-Carlo method developed by Manhart [71]. Such a direct ap-
proach is required as the performance of closures in complex turbulent flows is question-
able.

A so-called minimal channel [55] has been used in the Paschkewitz et al. work to study the
drag reduction. They have checked the domain size effect and concluded that such effects are
modest. However, it is well known that the minimal channel leads to reliable statistics only in
the near-wall region [55]. Another aim of this work is to use a larger channel to make sure
that there is no artifact concerning the use of a small domain. We report results of a turbulent
channel flow at Reτ = 180. Of course, one could gain more insight by simulating flows at
higher Reynolds numbers, as for example done by Paschkewitz et al. [104] (flow at Reτ =
300). However, due to the selection of a large domain, and the expense of directly computing
fiber conformation, we were able to afford a relatively low Reynolds number channel flow
(Reτ = 180).

Another issue in the previous two-coupled simulations was that they were all done in an
Eulerian framework. Resolution of the non-Newtonian stresses in a fully Eulerian simulation
is questionable, as the governing equation is of a pure convective nature. Theoretically, this
cannot be resolved on any Eulerian grid. In this work, we chose to use a Lagrangian approach
for the suspended microstructure.

Paschkewitz et al. [104] have reported that the streamwise vorticity fluctuations are de-
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creased in a fibrous drag-reduced flow as compared to the Newtonian flow counterpart. In
the present thesis, we perform a detailed analysis of the vorticity dynamics, especially in the
near-wall region, by looking at the velocity-gradient fluctuations, the partial enstrophy, the
correlation coefficients and the distribution of the vorticity inclination angle across the chan-
nel.

Recently, Frohnapfel et al. [35] have investigated the anisotropy of the Reynolds stress ten-
sor in different kinds of drag-reduced flows, e.g. polymeric, fibrous, supersonic, etc., and con-
cluded that the modifications in the Lumley anisotropy map in all these flows are similar. They
concluded that it is a universal feature of these drag-reduced flows. In this work, we study the
anisotropy in more details by looking at the pressure-strain correlation. This analysis shows us
that there are some differences in the underlying physics of the modification in the anisotropy
of the fibrous flow as compared to the supersonic flow.

We especially investigate the following open questions. How is the turbulence anisotropy
modified in the drag-reduced flow? And how is the vorticity structure changed in the drag-
reduced flow?

1.2. Contributions

The aim of this thesis is to answer some of the problems and issues explained in the above
paragraphs. In particular, the contributions of this work to the field of turbulent drag reduction
by rigid fibers are as follows.

1. Development of a Lagrangian simulation strategy for fiber suspensions combined with
an Eulerian DNS solver.

2. Implementation of the developed method as a computer code that can be run on mas-
sively parallelized supercomputers.

3. Design of a benchmark problem with an analytical solution that can be used to validate
two-way coupled simulations of fiber suspensions.

4. The first successful two-way coupled direct Monte-Carlo simulation of turbulent drag
reduction by rigid fibers in a channel flow at Reτ = 180.

5. Direct simulation of fiber conformation in turbulent channel flow at high rotary Péclet
numbers (weak rotary Brownian motion) for the first time. This is important because
Paschkewitz et al. [104] have shown that the drag reduction is maximum at the non-
Brownian limit. The rotary Péclet number in the reported simulation is Per = Ub/hDr =
1000. It is equivalent to a rotary Péclet number based on the mean wall shear stress
Per = u2

τ/νeffDr ≈ 10000, which is relatively very high as compared to Per = u2
τ/νeffDr =

50 achieved by Gillissen et al. [38] using a direct Fokker-Planck solver. νeff is the
effective kinematic viscosity at the wall, i.e. the kinematic viscosity by taking the fiber
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non-Newtonian shear stress into account:

νeff = ν +

¬

τNN
13

¶

|w
d 〈U〉/dz|w

. (1.3)

The developed method has been also used to simulate the drag reduction by non-
Brownian fibers successfully. However, the results are not presented in this thesis.

6. Presentation of turbulence statistics of the drag-reduced flow at high Per obtained by a
direct method.

7. Detailed analysis of the modification in turbulence intensities by studying the probability
density function (PDF) of the fluctuating velocity components.

8. Quadrant analysis of the Reynolds shear stress.

9. Analysis of the pressure-strain correlation using a Green’s function solution of the corre-
sponding Poisson equation to explain the modifications in turbulence intensities.

10. Detailed analysis of the vorticity field.

11. Finding the reduction in strain fluctuations as the reason for the reduction in the pressure-
strain correlation and the streamwise vorticity fluctuations.

12. Presenting the budget of the strain fluctuations.

1.3. Outline

This thesis is organized as follows.
Chapter 2 briefly presents the basic concepts and underlying equations of turbulent incom-

pressible flows. The incompressible Navier-Stokes equations and their dimensionless form are
mentioned. The scales of turbulent motion and the spectral representation of turbulence are
presented. This is followed by the Kolmogorov’s statistical theory of turbulence. The numer-
ical techniques that are nowadays in use for the simulation of turbulent flows are reviewed.
Ultimately, the fully-developed turbulent channel flow is discussed in more detail, because it
is the testcase used throughout this thesis.

The rheology of a dilute suspension of rigid, Brownian, neutrally buoyant fibers is pre-
sented in chapter 3. First, the basic assumptions and definitions of the theory are given. It
is followed by a discussion on the role of Brownian motion in dilute fiber suspensions. The
orientation dynamics of the suspended fibers is reviewed. The Fokker-Planck equation which
governs the orientation distribution function and the moment approximation equation are
discussed. The vastly used moment closure models are then presented. Brenner’s rheological
theory that provides the basis to compute the non-Newtonian fiber stress tensor is presented.
The limit of zero rotary Péclet number is investigated, which provides a benchmark problem
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with an analytical solution in the case of a channel flow. Finally, we compare Brenner’s theory
with Hinch and Leal’s theory.

Chapter 4 contains the numerical methods. First, the principles of the DNS solver used in
this work are explained. Then, the numerical algorithms developed for the fiber suspension
flows are presented. The coupling of the developed schemes with the existing finite-volume-
based DNS solver (called MGLET) is discussed. The parallelization strategy is also described.
The last section of this chapter is the validation of the numerical tools, which is done in three
subsections. First, the validation of the DNS solver for a Newtonian channel flow is performed
by comparison with the reference DNS data of Kim et al. [58] and Moser et al. [94]. Second,
the validation of the fiber conformation solver is presented by comparison with the existing
analytical solution of Okagawa et al. [98]. Third, the two-way coupled fiber suspension solver
is validated by simulating a channel flow at the limit of zero rotary Péclet number (very strong
rotary Brownian motion).

In chapter 5, we present the results of the direct Monte-Carlo simulation of fiber-induced
drag reduction in a turbulent channel flow. It starts with the numerical and physical param-
eters used in the reported simulation. The results are presented in the following subsections;
mean velocity profile, turbulence intensities and the Reynolds shear stress, total shear stress
balance, quadrant analysis, probability density function (PDF) of the fluctuating velocities,
Lumley anisotropy map, pressure-strain correlation and its analysis by means of a Green’s
function solution of the corresponding Poisson equation, vorticity field, the near-wall partial
enstrophy and the budget of the strain fluctuations.

The conclusions and outlook for further extention of this work are presented in chapter
6.

This thesis has three appendices. Appendix A gives the fitting coefficients of the IBOF clo-
sure. The transport equations of the Reynolds stress tensor and the turbulent kinetic energy
of a turbulent non-Newtonian flow are derived in appendix B. The pressure-strain term is also
shown in appendix B. Derivation of the Poisson equation for the fluctuating pressure in turbu-
lent flow of a non-Newtonian fluid is presented in appendix C.

The thesis ends with a bibliography of the used literature.
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2. Basics of Turbulent Flows

“I am an old man now, and when I die and go to heaven there are two matters on which I hope for
enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids.
And about the former I am rather optimistic.”

Sir Horace Lamb, 1932

Fluid motions are encountered in nature and technology as well as in our bodies. Flows
with low velocities are smooth and regular. They are called laminar flows. At higher veloc-
ities, irregularities in the flow field appear and the flow reaches a state of chaotic motion.
This is a turbulent flow. Turbulent flows are characterized by their unsteadiness, random
fluctuations, three-dimensional vortical structures, fast mixing, broad range of spatial and
temporal scales, etc. Most of the flows appearing in natural and technological processes are
turbulent.

Over a century of studying the turbulent motion of fluids starts with the experimental
observations of O. Reynolds in 1883 [109]. Since then, there has been a numerous amount
of theoretical, experimental and later numerical research on turbulence. The theoretical ap-
proach is extremely difficult as reflected by the famous quotation of Lamb, written above.
The difficulty is due to the complexity of the governing equations of fluid dynamics. A theo-
retical breakthrough has been achieved by Kolmogorov [60, 61] in 1941, by postulating the
statistical analysis of turbulence. Experimental studies have been the core of turbulence re-
search before the invention of modern digital computers. Since this invention in mid-twenties,
computational fluid dynamics (CFD) has been increasingly employed in turbulence research
hand in hand with laboratory experiments. However, it was only after the introduction of
powerful supercomputers that detailed investigations of turbulent flows became feasible [85].
Owing to the fast growth of computational power and improvements in numerical algorithms,
detailed turbulence simulations are more frequently used, in both fundamental and applied
research.

Turbulent flows are in some cases favorable. For example, they enhance the mixing of
fuel and oxidizer in internal combustion engines. In some other cases, turbulent flows are not
desirable. For example, turbulence in a boundary layer increases the drag dramatically. This
is of paramount importance in air and water transportation, where the increase in drag re-
sults in more fuel consumption and hence less economical efficiency and more environmental
pollution.

9
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In this chapter, the basic concepts and underlying equations of turbulent flows are briefly
reviewed. The chapter is organized as follows. Section 2.1 explains the continuum description
of fluid motion. In section 2.2 the incompressible Navier-Stokes equations and their dimen-
sionless form are presented. Section 2.3 is devoted to the scales of turbulent motion and is
followed by section 2.4 on Kolmogorov’s theory of turbulence. Statistical quantities of turbu-
lence are presented in section 2.5. Section 2.6 contains the turbulence simulation strategies.
The turbulent channel flow is introduced in section 2.7 as it is the benchmark used throughout
this thesis.

2.1. Continuum Description of Fluid
Flow

Fluids are composed of atoms/molecules which interact with each other as well as with
atoms/molecules of other surrounding materials. They are also affected by external fields
such as gravitational and electromagnetic forces. The microscopic particles move as a result
of all these interactions and forces. The fluid motion can be simulated by considering these
microscopic details [3, 42]. But in order to obtain meaningful macroscopic averaged quan-
tities like temperature and pressure, one needs to simulate a huge number of microscopic
particles. Hence, molecular dynamics (MD) simulations are prohibitively expensive and can
only be afforded in very small domains and within very short time intervals. However, such
a detailed information is not often required in engineering applications. Therefore, engineers
try their best to refrain from such a computational burden unless it is well justified for a
specific purpose.

Instead of the molecular description, the continuum approach has been traditionally cho-
sen by engineers to analyze problems of classical physics, e.g. fluid dynamics. In this way,
the macroscopic quantities are averaged over a sufficient number of microscopic particles. To
clarify the concept, the averaging of velocity is presented here. Consider the fluid element
dm as shown in figure 2.1. The element is sufficiently small to be the subject of infinitesimal

dri

i

dmx

ri

O

Figure 2.1: Schematic of a fluid element dm composed of many microscopic particles.
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calculus, and yet, it is sufficiently large to contain enough microscopic particles. The number
of particles N is enough if it allows for the calculation of meaningful macroscopic averages
within the element. The i-th particle has the position vector ri with respect to the origin O.
The center of mass x of the element is given by

x=

∑N
i=1 miri
∑N

i=1 mi

, (2.1)

where mi is the mass of the i-th particle, and dm =
∑N

i=1 mi is the mass of the element.
Differentiating equation (2.1) with respect to time yields

ẋ=

∑N
i=1 mi ṙi
∑N

i=1 mi

, (2.2)

or

Udm=
N
∑

i=1

mivi, (2.3)

in which vi is the velocity of the i-th particle. The above discussion can be summarized
as follows. The continuum velocity U at a point x is obtained by equating the continuum
momentum Udm to the total microscopic momentum

∑N
i=1 mivi of all particles located in an

infinitesimal neighborhood of x.
The continuum motion of a fluid can be observed in two different manners. In the first

viewpoint, the observer E has a fixed position xE in space. E describes the flow quantities,
e.g. velocity, as continuous fields over space and time. This means that E assigns a velocity
U (x, t) to every and each point x at the time instant t. In other words, the fluid element
which passes through the point x at time t possesses the velocity U (x, t). This is the Eulerian
framework of describing flow kinematics. In the second point of view, the observer L follows
a fluid particle P which has passed through some point x0 at some former time t0. For L, the
flow quantities are functions of the initial conditions x0 and t0, and the current time t. This
particle tracking view is referred to as the Lagrangian framework. In the present work, both
Eulerian and Lagrangian frameworks are used.

2.2. Navier-Stokes Equations

The dynamics of fluids are mathematically described by a set of partial differential equations,
derived independently more than 150 years ago by the French engineer Claude Navier and the
Irish mathematician George Stokes. These equations, known as the Navier-Stokes equations,
are the mathematical formulation of the conservation laws of physics for an infinitesimal ele-
ment of fluid. For example, the conservation laws of mass and linear momentum respectively
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read

Dρ

Dt
+∇ ·

�

ρU
�

= 0, (2.4)

ρ
DU

Dt
=−∇p+∇ ·τ, (2.5)

where ρ (x, t), p (x, t), U (x, t) and τ (x, t) are the fluid density, pressure, velocity and total
stress, respectively. D/Dt = ∂ /∂ t+U ·∇ is the material time derivative.

Due to the lack of a link to the microscopic details of the material, the obtained PDE’s
are not mathematically closed. This necessitates the use of a constitutive model relating the
stress tensor τ to the flow kinematics (and perhaps some other physical phenomena). For
the simplest fluids, this is a linear relation referred to as the Newton’s law of viscosity. Such
fluids are called Newtonian fluids. However, there exist more complex fluids which behave
differently and possess more complicated constitutive equations. For such complex fluids, the
total stress tensor τ can be written as the sum of a Newtonian part τN and a non-Newtonian
part τNN:

τ = τN+τNN. (2.6)

The modification of turbulence by such non-Newtonian effects is the subject of the present
thesis. However, the determination of the non-Newtonian stress τNN is discussed in the next
chapter, and in this chapter we restrict ourselves to Newtonian fluids with τ = τN. The
Newtonian stress τN is linearly related to the flow kinematics via the generalized Newton’s
law of viscosity:

τN = 2µD+ ζ (∇ ·U)1, (2.7)

in which µ and 1 are the dynamic viscosity of fluid and the identity tensor, respectively. ζ is
the bulk viscosity of the fluid, which is immaterial in incompressible flows as ∇ ·U= 0 due to
the continuity equation (2.9). In compressible flows, the bulk viscosity is often related to the
dynamic viscosity using the Stokes’ hypothesis 2µ+ 3ζ = 0 which expresses local thermody-
namic equilibrium. The strain-rate tensor D is defined as

D=
1

2

�

∇U+∇UT
�

, (2.8)

where ∇U is the velocity gradient tensor.
Under the assumption of incompressible (ρ = constant) flow of a Newtonian fluid, the

conservation laws of mass (2.4) and linear momentum (2.5) combined with the constitutive
law (2.7) and the kinematic relation (2.8) reduce to

∇ ·U= 0, (2.9)
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ρ
DU

Dt
= ρ

∂U

∂ t
+ρ (U ·∇)U=−∇p+µ∇2U, (2.10)

where∇2 =∇ ·∇= ∂ 2/∂ x i∂ x i is the Laplacian operator. Moreover, the constitutive law (2.7)
reduces to

τN = 2µD, (2.11)

for incompressible flows by taking into account the continuity equation (2.9).
Equations (2.9) and (2.10) are a system of four coupled nonlinear differential equations

for four flow unknowns, i.e. the pressure and three components of the velocity vector. These
equations are referred to as the incompressible Navier-Stokes equations.

2.2.1. Dimensionless Form of the Navier-Stokes
Equations

The Navier-Stokes equations (2.9) and (2.10) are often written in the dimensionless form.
The parameters are non-dimensionalized as follows:

x∗ =
x

h
, U∗ =

U

Ub
, t∗ =

tUb

h
, (2.12)

where h is a characteristic length, e.g. the channel half-width and Ub is a characteristic veloc-
ity, e.g. the bulk velocity in the channel. Inserting these dimensionless parameters into the
Navier-Stokes equations yields

∇∗ ·U∗ = 0, (2.13)

DU∗

Dt∗
=
∂U∗

∂ t∗
+ (U∗ ·∇∗)U∗ =−∇∗p∗+

1

Re
∇2∗U∗, (2.14)

where ∇∗ = h∇, ∇2∗ = h2∇2, p∗ = p/ρU2
b and

Re=
ρUbh

µ
=

Ubh

ν
, (2.15)

is the Reynolds number (with ν = µ/ρ being the kinematic viscosity). The Reynolds number
is the ratio of the inertial force to the viscous force in the fluid flow. A large value of Re
implies that the inertial effects are dominant, and inversely, a small value of Re implies that
the viscous effects are dominant. Turbulent flows occur at high Reynolds numbers. For every
and each flow configuration, there exists a critical Reynolds number above which the distur-
bances are amplified and the flow becomes turbulent. Below this critical Reynolds number the
disturbances are dampened out via viscous dissipation.

By looking at equation (2.14) one deduces that the viscous term vanishes in flows with
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high Re and hence, the viscosity is ineffective in turbulent flows. This argument does not
really hold. Because turbulence is a multiscale problem and there are scales at which the fluid
viscosity is indeed effective. In order to understand this, the scales of turbulent motion are
explained in the following section.

2.3. Scales of Turbulent Motion

Turbulent flows contain a broad range of spatial and temporal scales. The largest flow struc-
tures scale with the integral length of the problem, e.g. the channel width. The smallest scales
can be several orders of magnitude smaller than the largest scales. The ratio of the largest
length scales to the smallest ones is a function of the Reynolds number. This relation is given
in subsection 2.6.1.

There is a continuous range of scales between the smallest and the largest scales in a fully-
developed turbulent flow. In order to explain the production of various scales, we examine the
nonlinear term in the Navier-Stokes equations, namely the advective term (U ·∇)U. For the
sake of simplicity, we consider the x-component of the advective term in a two-dimensional
flow:

U
∂ U

∂ x
+ V

∂ U

∂ y
. (2.16)

Furthermore, the velocity components U and V are assumed to be harmonic functions of x
and y with wavenumbers kx

u , k y
u , kx

v and k y
v :

U = ei(kx
u x+k y

u y), V = ei(kx
v x+k y

v y). (2.17)

Substituting (2.17) into (2.16) yields

ikx
u ei(2kx

u x+2k y
u y) + ik y

u ei[(kx
u+kx

v )x+(k y
u+k y

v )y]. (2.18)

Expression (2.18) implies that smaller scales (greater wavenumbers), e.g.
�

kx
u + kx

v

�

, are
created by the nonlinear term, and that all these scales are interacting with each other. On the
other hand, introducing U and V in equation (2.17) to the viscous term∇2U does not produce
any new scale. The process of producing smaller scales by the advective term is essentially an
inviscid process.

Now the question is: when does the viscosity come into play? In order to answer this
question, it is worthwhile to assign a Reynolds number to the flow structures based on their
length scale. For large structures, we observed that the viscosity is ineffective. The process of
structure breakdown produces smaller and smaller scales until the structure Reynolds number
becomes very small. At such small scales, the viscosity becomes effective. It dissipates the ki-
netic energy of the small structures into the heat. Therefore, the structure breakdown process
stops here and the dissipation scales are the smallest flow structures that are energetically sig-
nificant. This process is referred to as the Richardson’s energy cascade [111]: kinetic energy
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is transferred from the large scales to the small scales and it is dissipated at the smallest scales
due to viscosity.

In practice, the scales of turbulence are studied by using the Fourier transform of the
velocity field

Û (k, t) =

∫∫∫

Ω

U (x, t) e2πi(k ·x)d3x, (2.19)

where k =
�

kx , ky , kz

�T
is the three-dimensional wavenumber and Ω is the flow domain.

Û (k, t) is the velocity as a function of the size of the flow structures L that is related to the
magnitude of the wavenumber via L = 2π/k in which k = ‖k‖. The spectrum of the turbulent
kinetic energy is defined as

E (k, t) =

∫∫∫

|k′|=k

Û
�

k′, t
�

· Û
�

k′, t
�

d3k′. (2.20)

Instead of this three-dimensional spectrum, a one-dimensional spectrum is usually considered.
The one-dimensional spectrum is defined using one component of the velocity vector mea-
sured in one direction. Moreover, in flows with homogeneous direction(s), e.g. the channel
flow, the spectrum can be averaged over the homogeneous direction(s). Figure 2.2 shows the
one-dimensional energy spectrum Euu in the near-wall region of a turbulent channel flow in
the streamwise direction x versus the wavenumber kx . It can be seen that the energy density
of large scales (small wavenumbers) is several decades higher than that of the small scales.
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Figure 2.2: A typical one-dimensional energy spectrum Euu.
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These large scales contain most of the kinetic energy in a turbulent flow. Therefore, they are
called energy-containing scales. The part of the spectrum proportional to k−5/3

x is called the
inertial subrange. This proportionality is discussed in the following section. In this subrange,
the kinetic energy is transferred from larger scales to the smaller ones with negligible dissipa-
tion. This region hardly exists in figure 2.2 which is typical for low Reynolds number turbulent
flows. The part of the spectrum that is proportional to k−8

x is called the dissipation range. The
spectrum drops off very fast in this region which indicates the dissipation of kinetic energy
into heat.

It is notable that the scales of turbulence are frequently related to the term “eddy”. Eddy
is somewhat difficult to define. It can be explained as a coherent patch of fluid that possesses
distinct length, velocity and time scales. Eddies are assumed to be the construction blocks of
turbulence.

2.4. Kolmogorov’s Theory of
Turbulence

Kolmogorov [60, 61] has made an ingenious contribution to the theory of turbulence. He
postulated that, at sufficiently high Reynolds numbers, the small scales of turbulence are sta-
tistically isotropic [106]. Furthermore, he has made the following two hypotheses that are of
paramount importance in the development of modern turbulence theory. The first hypothe-
sis addresses the small scales of turbulence at which the dissipation takes place. The second
hypothesis considers the inertial subrange, i.e. the scales at which the dissipation is negligi-
ble and inertial effects are dominant. In the following, we briefly present the Kolmogorov’s
hypotheses and their implications.

Kolmogorov’s first hypothesis: At sufficiently high Reynolds number turbulent flows, the
small scales statistics are determined by the dissipation rate ε and the viscosity ν .
Using this postulate and dimensional arguments, Kolmogorov obtained the length scale η, the
velocity scale uη and the time scale τη of the smallest eddies in turbulence:

η=

�

ν3

ε

�1/4

, uη = (νε)
1/4 , τη =

�ν

ε

�1/2

, (2.21)

where η is called the Kolmogorov length scale. Based on η and uη one can define the Reynolds
number of the smallest eddies:

Reη =
ηuη
ν
= 1. (2.22)

This explains why the viscosity is dominant at small scales and hence the name dissipation
scale.

Kolmogorov’s second hypothesis: At sufficiently high Reynolds number turbulent flows,
the statistics of the scales much smaller than the energy-containing scales and much larger than
the Kolmogorov scale (i.e. inertial subrange) are solely determined by the dissipation rate ε.
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This hypothesis along with dimensional analysis leads to a universal energy spectrum model
for the inertial subrange by additionally introducing a length scale (l ∼ 1/k), where k is the
wavenumber:

E (k) = Cε2/3k−5/3. (2.23)

The proportionality of the energy spectrum to k−5/3 in the inertial subrange can be seen in fig-
ure 2.2, though it is not very clear due to the low Reynolds number considered.

2.5. Turbulence Statistics

An instantaneous turbulent flow field is irregular and random. Therefore, it is useful to intro-
duce statistical quantities that can be reproduced in experiments and simulations. The random
velocity field can be described by a probability density function (PDF) f (U;x, t). The first and
second statistical moments of the PDF are defined by

〈U〉 (x, t) =

∫∫∫

U (x, t) f (U;x, t)d3U, (2.24)

〈UU〉 (x, t) =

∫∫∫

U (x, t)U (x, t) f (U;x, t)d3U. (2.25)

The higher-order moments are defined similarly. The first moment of the PDF (2.24) is the
mean velocity. The velocity field is then decomposed as

U= 〈U〉+ u, (2.26)

in which u is the fluctuating velocity with 〈u〉= 0. Equation (2.26) is often called the Reynolds
decomposition.

An important statistical quantity is the Reynolds stress tensor 〈uu〉 defined as

〈uu〉 (x, t) =

∫∫∫

u (x, t)u (x, t) f (U;x, t)d3U= 〈UU〉 − 〈U〉 〈U〉 . (2.27)

〈uu〉 appears in the Reynolds equation for the mean flow [106], and is a measure for the
intensity and anisotropy of turbulent fluctuations. The diagonal components of 〈uu〉 are called
turbulence intensities. The square roots of the turbulence intensities are the root-mean-square
(r.m.s.) values of the velocity fluctuations, i.e. urms, vrms and wrms. The turbulence intensities
and anisotropy are discussed in more details in section 2.7.

The definition of statistical moments, e.g. equation (2.24), based on the PDF of the velocity
field is useful to derive relations between the moments such as relation (2.27). In simulation
practice however, different strategies are used to compute the turbulence statistics. These
strategies are discussed in the following section.
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2.6. Turbulence Simulation

Analytical solution of the Navier-Stokes equations is extremely difficult due to their nonlin-
earity, and a general analytical solution for turbulent flows does not yet exist. On the other
hand, the experimental study of turbulent flows is expensive and time consuming. Therefore,
numerical solutions of the Navier-Stokes equations are of great importance to theoretical and
industrial researchers in turbulence community. There are mainly three numerical approaches
to turbulence [106, 34]:

1. Direct Numerical Simulation (DNS),

2. Large-Eddy Simulation (LES),

3. Statistical Turbulence Modeling (STM).

The principles of each method are discussed in the following. The DNS is explained in more
details as it is the approach we take in this thesis.

2.6.1. Direct Numerical Simulation

We have seen in section 2.3 that a turbulent flow contains a broad and continuous range of
spatial and temporal scales. A direct numerical simulation (DNS) is a numerical experiment
in which all the spatiotemporal scales of turbulence are resolved. This means that the compu-
tational box must be large enough to accommodate the largest scales of the turbulent motion.
On the other hand, the numerical grid and the time step must be sufficiently fine to resolve
the smallest scales of turbulence at which the dissipation of the turbulent kinetic energy takes
place. These two requirements impose a great demand on the computational resources. This
is the main difficulty in performing DNS. On the other hand, DNS provides invaluable data
regarding the detailed structure of turbulent flows. This information has been used to study
the physics of turbulence, statistical turbulence models, mechanisms of transition from lam-
inar to turbulent flow, turbulent combustion, compressible turbulence, etc. See for example
the reviews in [86, 34, 66, 129] and references therein.

The resolution requirement of the DNS can be explained as follows. The ratio of the
integral to the Kolmogorov length scale in a turbulent flow depends on the Reynolds number
[106]:

L

η
∼ Re3/4. (2.28)

By taking the three spatial dimensions and the time steps into account, the computational cost
of a DNS roughly scales with Re3. However in practice, the Kolmogorov scale η does not need
to be resolved. The spatial resolution has to be O

�

η
�

. The required grid spacing depends
on the spectral resolution of the numerical scheme. Generally, a grid spacing of 15η to 20η
would be sufficient [96]. This explains why DNS has been so far restricted to relatively low
Reynolds number flows, and there is no hope for the application of DNS to industrial problems
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in the near future. Therefore, DNS must be seen as a research tool rather than a brute force
solution of the Navier-Stokes equations [86].

In addition to the resolution requirements, high fidelity numerical methods are needed for
the DNS. For example, methods with significant numerical diffusion are not appropriate for
DNS as the dynamics of small scales might be modified by the numerical diffusion. Spectral
and pseudospectral methods have been traditionally employed, e.g. [99, 58, 94]. Despite their
high order of accuracy, they are limited to relatively simple domains and boundary conditions.
Therefore, other numerical methods, mainly based on finite differences and finite volumes,
have been successfully applied to DNS of the Navier-Stokes equations, e.g. second-order [43]
and compact high-order finite differences [65], second-order [75] and compact fourth-order
finite volumes [51], to name a few.

A careful treatment of the boundary conditions is also important. At a smooth wall, no-slip
boundary condition can be applied without difficulty. The problem arising here is the reso-
lution of the wall layer which imposes restrictions on the grid spacing in the vicinity of the
wall and thus on the time step size. Simulation of a rough wall requires modeling. If the
flow possesses homogeneous direction(s) then periodic boundary condition can be applied.
In this case, the length of the computational box in the periodic direction(s) must be large
enough to contain a sufficient number of coherent structures. A good criterion to verify the
appropriateness of the domain length is the decay of the velocity two-point correlation func-
tion [58, 34]. The main difficulty lies in the application of in- and outflow conditions [34].
In this thesis however, we simulate a turbulent channel flow that only involves no-slip and
periodic boundary conditions. Therefore, we do not go into the details of in- and outflow
conditions.

2.6.2. Large-Eddy Simulation

The large-eddy simulation (LES) technique is based on two assumptions. First, the large scales
of turbulence that contain virtually all of the turbulent kinetic energy, highly depend on the
problem. Secondly, the small scales of turbulence reveal universal behavior and are indepen-
dent of the dynamics of the large scales. These postulates are supported by experiment and
also by the success of LES to predict complex flows [83, 113, 69].

In the LES approach, the large, energy-containing scales are resolved while the effect of
the unresolved small scales is modeled by the so-called subgrid scale (SGS) model. This is
done by solving the filtered Navier-Stokes equations

∇ · eU= 0, (2.29)

∂ eU

∂ t
+
�

eU ·∇
�

eU=−
1

ρ
∇ep+ ν∇2

eU−∇ ·τSGS, (2.30)

using a low-pass filter, i.e. a filter that passes small wavenumbers (large scales) and attenuates
large wavenumbers (small scales). An over-tilde in equations (2.29) and (2.30) denotes a
filtered quantity. The subgrid scale stress tensor τSGS is to be modeled. The Smagorinsky



20 Basics of Turbulent Flows

model [118] is usually used for this purpose:

τSGS =−2νT
eD, (2.31)

in which

eD=
1

2

�

∇eU+∇eUT
�

, (2.32)

is the filtered strain-rate tensor and

νT =
�

Cs∆g

�2
p

2 eD : eD, (2.33)

is the turbulent viscosity. Cs and ∆g are the model constant and the grid spacing, respectively.
The computational grid acts as the filter in the Smagorinsky model.

Due to the lack of a full resolution, the complete energy spectrum cannot be recovered
in LES. One-dimensional spectra obtained from DNS and LES of turbulent channel flow are
shown in figure 2.3. It is seen that the LES spectrum follows the DNS one up to some
wavenumber and then, deviates and drops off faster. However, by improving the resolution,
the contribution of the SGS model reduces and the quality of the solution eventually increases.
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Figure 2.3: Typical one-dimensional energy spectra Euu obtained by DNS and LES. The spectra are
normalized by the energy of the first mode.
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2.6.3. Statistical Turbulence Modeling

In this approach, which is also known as the Reynolds-averaged Navier-Stokes simulations
(RANS), only the mean quantities are computed. Hence, the most loss of information on
turbulence is associated with this approach. Application of the averaging operator on the
nonlinear Navier-Stokes equations results in a closure problem. Therefore, turbulence model-
ing plays a vital role in the RANS context. However, due to its inexpensive computations as
compared to LES and DNS, RANS is still the preferred simulation strategy in industrial appli-
cations of CFD. There has been an increasing tendency in recent years to use LES and coupled
RANS/LES methods in industries [12].

2.7. Turbulent Channel Flow

The flow between two parallel plates of infinite span due to a constant pressure gradient is
called the plane channel flow. Simulation of such an infinitely large domain is difficult, if
not impossible. In practice, the simulation is conducted inside a box of finite size. The wall-
normal direction z is bounded by the two walls with distance 2h. Periodicity is assumed in
the other two directions, i.e. the streamwise (x) and spanwise (y) directions. It is important
that the box size in periodic directions be large enough to contain a representative of the
flow structures. Jiménez and Moin [55] have investigated the minimal box that is required
to sustain the turbulence. For example, they have found out that it is not possible to sustain
turbulence in domains with a spanwise length of less than 100 wall units. The wall units
are to be explained later in this section. The flow is driven by a constant (negative) mean
pressure gradient d




p
�

/dx . This flow configuration is schematically sketched in figure 2.4.

The turbulent channel flow was the first wall-bounded turbulent flow studied by DNS [86].
Surprisingly, DNS of turbulent flow in a channel with curved walls [96] preceded that of a
plane channel [58]. Since then, the turbulent channel flow has been a standard benchmark

2 h

Lx

L y

x

y
z

Figure 2.4: Schematic sketch of plane channel flow with dimensions Lx , L y and 2h in streamwise,
spanwise and wall-normal directions, respectively.
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to study the physics of turbulent wall-bounded flows. In this thesis, we present the dynamics of
elongated spheroidal particles in a turbulent channel flow using DNS.

In the following we introduce some basic concepts and non-dimensional parameters used
to describe and characterize the channel flow statistics. For a more comprehensive discussion,
the reader is referred to [106].

The bulk Reynolds number is defined as

Reb =
Ubh

ν
, (2.34)

with Ub, h and ν being the bulk velocity, channel half-width and the kinematic viscosity, respec-
tively. The bulk velocity is computed from the mean velocity profile:

Ub =
1

2h

∫ 2h

0

〈U〉 (z)dz. (2.35)

The mean shear stress exerted by the flow on the wall reads

τw = µ
d 〈U〉

dz

�

�

�

�

w

, (2.36)

in which the velocity gradient is calculated at the wall. The mean shear stress relates to the
mean pressure gradient via

τw =−h
d



p
�

dx
. (2.37)

The friction velocity is defined as

uτ =

r

τw

ρ
. (2.38)

The wall distance and the velocity are non-dimensionalized using the kinematic viscosity and
the friction velocity:

z+ =
zuτ
ν

, 〈U〉+ =
〈U〉
uτ

, (2.39)

in which z+ is called wall (viscous) coordinate. Such a non-dimensionalization is referred to
as inner scaling. The friction Reynolds number is defined based on the friction velocity and
the channel half-width:

Reτ =
uτh

ν
. (2.40)

For example, the first DNS of a plane channel flow [58] was performed at Reτ = 180. The
Kolmogorov length scale η in a turbulent channel flow can be estimated by knowing uτ
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[113]:

η=

�

ν3

ε

�1/4

, ε=
u2
τUb

h
. (2.41)

The mean velocity profile in the channel can be divided in various regions. The region
z+ < 5, the viscous sublayer, where the viscosity is dominant and the Reynolds shear stress
is negligible. The mean velocity profile is well approximated by the linear law in the viscous
sublayer:

〈U〉+ = z+. (2.42)

The viscous sublayer has to be well resolved in a DNS. The thickness of the viscous sublayer
decreases with increasing the Reynolds number. Thus, the resolution of the wall layer in high
Reynolds number flows is a computational challenge.

For z+ > 30 and z/h < 0.3, the following logarithmic law holds as a good approximation
to the mean velocity profile:

〈U〉+ =
1

κ
ln z++ B, (2.43)

where the von Kármán constant κ = 0.4, and B = 5.5. The mean velocity profile 〈U〉+ of the
turbulent channel flow at Reτ = 180 is plotted versus z+ in figure 2.5 along with the guidelines
(2.42) and (2.43). It is generally accepted that the linear law is valid for z+ < 5, and that the
logarithmic law holds between z+ > 30 and z/h< 0.3 [106].

The mean velocity 〈U〉 is a first-order statistical quantity. Beside the first-order statistics, it
is useful to look at the second-order statistics. The Reynolds stress tensor 〈uu〉 is an important
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Figure 2.5: Mean velocity profile 〈U〉+ versus z+ of turbulent channel flow at Reτ = 180.
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second-order quantity. It is the unclosed term in the RANS approach. Furthermore, 〈uu〉
is a measure of the intensity and anisotropy of turbulence. The diagonal components of
〈uu〉, i.e. the Reynolds normal stresses 〈uu〉, 〈vv〉 and 〈ww〉 are called turbulence intensities.
The square root of the turbulence intensities is the root-mean-square (r.m.s.) or standard
deviation of velocity fluctuations. Figure 2.6 shows the r.m.s. of velocity fluctuations as a
function of the wall distance z+. The r.m.s. values are normalized by the shear velocity uτ:

u+rms =

p

〈uu〉
uτ

, v+rms =

p

〈vv〉
uτ

, w+rms =

p

〈ww〉
uτ

. (2.44)

Half of the trace of 〈uu〉, i.e.

TKE=
1

2
tr {〈uu〉}=

1

2
〈uu〉 : 1=

1

2
(〈uu〉+ 〈vv〉+ 〈ww〉) (2.45)

is the turbulent kinetic energy (TKE), which is plotted in figure 2.7 for a turbulent channel
flow at Reτ = 180 as a function of the wall distance z+. The turbulent kinetic energy vanishes
at the wall and is maximum in the buffer layer.

Together with turbulence intensities, the anisotropy of turbulence is also reflected by the
Reynolds stress tensor 〈uu〉. The anisotropy is often represented by the Lumley anisotropy
map [68]. In this approach, the anisotropic part of the Reynolds stress tensor 〈uu〉 is defined
in the following manner:

a=
〈uu〉
〈uu〉 : 1

−
1

3
1=

〈uu〉
2TKE

−
1

3
1. (2.46)
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Figure 2.6: Root-mean-square (r.m.s.) of velocity fluctuations u+i,rms versus z+ in turbulent channel
flow at Reτ = 180.
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a is a symmetric tensor similar to 〈uu〉. The two scalar invariants of the anisotropy tensor a
are given by

IIa = a : a, (2.47)

IIIa = (a ·a) : a. (2.48)

In figure 2.8, IIa is plotted versus IIIa for a turbulent channel flow at Reτ = 180. The Lumley
triangle is sketched by the dashed line. All possible realizations lie within this triangle. The
upper line defined by

IIa =
2

9
+ 2 IIIa, (2.49)

describes the two-component turbulence state. The right and left lines are defined by the
following nonlinear function:

IIa =
3

2

�

4

3

�

�IIIa

�

�

�2/3

. (2.50)

They describe the axisymmetric turbulence state, i.e. when two values of the turbulence
intensities are equal and the third component is different. In more details, the left curve
represents a state in which the different intensity is smaller than the two equal intensities, the
so-called oblate spheroidal state of turbulence. Conversely, the right curve stands for the state
in which the different turbulence intensity is greater than the other two equal intensities, the
so-called prolate spheroidal state of turbulence. In the center of the channel, urms is greater
than vrms and wrms, and the curve falls on the right guideline. The limiting cases reside on
the corners of the Lumley triangle. The intersection of the two-component and the oblate
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Figure 2.7: Turbulent kinetic energy (TKE) versus z+ in turbulent channel flow at Reτ = 180. TKE is
normalized by u2

τ.
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spheroidal curves represents the two-component isotropic turbulence. The one-component
turbulence state is located at the intersection of the two-component and the prolate spheroidal
curves. Finally, the intersection of the two axisymmetric turbulence curves describes the three-
component isotropic turbulence.

The continuous curve in figure 2.8 shows the anisotropy of turbulent channel flow at Reτ =
180. Point A is at the wall (z+ = 0), point B is in the buffer layer (at about z+ = 8) and point C
is at the center plane of the channel (z+ = 180). A two-component turbulence state is found in
the viscous sublayer. In the buffer layer, turbulence tends towards a one-component state, and
after that, a nearly prolate spheroidal state of turbulence can be seen. This tends towards an
isotropic turbulence state in the center plane of the channel.

By integrating the streamwise mean momentum equation we find out that the sum of the
viscous and Reynolds shear stresses is balanced on a straight line:

µ
d 〈U〉

dz
−ρ 〈uw〉= τw

�

1−
z

h

�

, (2.51)

or alternatively

ν
d 〈U〉

dz
− 〈uw〉= u2

τ

�

1−
z

h

�

. (2.52)

The contribution of the viscous and Reynolds stresses to the total shear stress along the wall-
normal direction is shown in figure 2.9. The stresses in figure 2.9 are normalized by the
wall shear stress τw, and the wall distance z is normalized by the channel half-width h. At
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Figure 2.8: Lumley anisotropy map obtained by DNS of turbulent channel flow at Reτ = 180.
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Figure 2.9: The viscous and Reynolds contributions to the total shear stress obtained by a DNS of
turbulent channel flow at Reτ = 180.

the wall, the viscous stress is maximum while the Reynolds stress vanishes. Farther from the
wall, the viscous stress reduces monotonically. The Reynolds stress reaches a maximum at
a wall distance of about z/h = 0.2, at the considered Reτ, and drops off afterwards. Both
contributions vanish at the channel center plane z/h= 1.
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3. Rheology of a Dilute Suspension of
Brownian Spheroidal Particles

“τα παντα ρει (everything flows)”

Heraclitus of Ephesus, 535-475 BC

A piece of rubber extends considerably under the application of a moderate tensile force
while a piece of steel only shows an infinitesimal extension under the same loading. Stir a
glass of water and a bowl of yoghurt for a while. No change is seen in the water viscosity
while the yoghurt flows more easily with a reduced viscosity. Materials behave differently
under loading of external forces. Based on these differences, we can classify the engineer-
ing materials in categories such as elastic solids, Newtonian fluids, viscoelastic materials, etc.
The science of rheology studies the flow of matter. The name rheology comes from the fa-
mous quotation of Heraclitus written above: ta panta rhei. The Greek word rhei means to
flow.

In this chapter, the rheology of a dilute suspension of Brownian spheroidal particles is pre-
sented. A suspension consists of small solid particles suspended in a liquid. Thus, a suspension
flow is an example of a two-phase flow. In simulation practice however, the two-phase flow
of the fluid-particle system is exchanged with a single-phase flow in which the effect of the
suspended particles is modeled by additional forces and stresses. This process is called ho-
mogenization. Einstein’s work [27, 28] is regarded as a pioneering theoretical breakthrough
in the mechanics of suspension flows. He studied the dilute suspension of small spherical
particles in a Newtonian fluid and concluded that the effect of the suspended particles can be
described by an increase in the viscosity:

µeff = µ
�

1+
5

2
φ

�

, (3.1)

where φ is the volume fraction of the suspended particles and µeff is the effective viscosity
of the homogenized single-phase fluid. This means that the homogenized system behaves
similar to a Newtonian fluid with an increased viscosity. If the shape of the suspended particles
deviates from a sphere, then the fluid reveals anisotropic behavior and is classified as a non-
Newtonian fluid. Calculation of the non-Newtonian stress due to the presence of spheroidal
particles is the main subject of this chapter.

29
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The chapter is organized as follows. The underlying assumptions and definitions of the
rheological theory that is used throughout this thesis are presented in section 3.1. Brownian
motion is briefly noted in section 3.2. Then, we turn to the orientation dynamics of rigid
fibers in section 3.3 by explaining Jeffery’s theory, Fokker-Planck equation for the orientation
distribution function and the moment approximation approach. Some moment closure mod-
els are also presented. Brenner’s rheological theory of dilute Brownian fiber suspensions is
detailed in section 3.6. This theory enables us to compute the non-Newtonian stress tensor
from the orientation distribution of fibers. The behavior of the non-Newtonian stress in the
limit of very strong Brownian motion is investigated in subsection 3.6.1 using Brenner’s the-
ory. This, in the case of a channel flow, provides us with an analytical benchmark that will
be used later to validate the numerical methods and their computer implementation. Finally,
we denote Hinch and Leal’s rheological theory in section 3.7 and present its link to Brenner’s
theory.

3.1. Basic Assumptions and Definitions

Throughout this thesis, the terms carrier fluid and solvent refer to the Newtonian fluid in
which the particles are suspended. The spheroidal particles are assumed to be rigid and
neutrally buoyant. The latter means that the suspended particles have the same density as the
carrier fluid. This assumption implies that the suspended particles affect the flow field only via
an extra non-Newtonian stress [11]. Moreover, the particles are assumed to be smaller than
the smallest flow structures, i.e. the Kolmogorov’s scale in a turbulent flow. This means that
every individual particle experiences a linear creeping flow and hence, the particle orientation
is described by the Jeffery’s theory. These assumptions imply that all the inertial effects are
neglected in this work.

The term inertial effects needs to be clarified. It can be referred to the carrier fluid and/or
to the suspended particles. The inertial effect of the carrier fluid means that whether a
creeping flow is assumed around the particles. If a creeping flow is assumed, the inertial
term (i.e. the convective term) of the Navier-Stokes equation is neglected, and the parti-
cle orientation is described by solving the Stokes equation. This is the basic assumption of
Jeffery’s [54] and Brenner’s [11] theories. Subramanian and Koch [122] have studied the
fiber motion in a simple shear flow by taking into account the fluid inertia. On the other
hand, the particle inertial effects are due to the translational and rotational inertia of the
particle. Of course, a real fiber possesses both. According to the author’s knowledge, only
one-way coupled simulations of inertial fibers in turbulent flows have been available to date
[29, 136, 91, 92, 93, 77].

The particles considered in this work have a spheroidal shape. A spheroid is a special case
of an ellipsoid. An ellipsoid is a quadratic surface (as shown in figure 3.1a) defined by the
following quadratic equation:

�

x − xC
�2

a2 +

�

y − yC
�2

b2 +

�

z− zC
�2

c2 = 1, (3.2)
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where
�

xC , yC , zC
�

is the Cartesian coordinate of the centroid of the ellipsoid. a, b and c are
the equatorial radii of the ellipsoid in x , y and z directions, respectively. The case a = b =
c = R defines a sphere of radius R as depicted in figure 3.1b, while the case a = b 6= c gives
a spheroid with the aspect ratio r = L/a in which L = c. The spheroids are twofold. First,
prolate spheroids with a = b < L, i.e. 1 < r <∞, as sketched in figure 3.1c. The case r →∞
defines a slender rod-like particle, i.e. a rigid fiber. Second, the oblate spheroids with a = b >
L or 0 < r < 1, as shown in figure 3.1d. The case r → 0 defines a thin disk-like particle.

(a) (b) (c) (d)

Figure 3.1: Sketch of (a) ellipsoid (b) sphere (c) prolate spheroid and (d) oblate spheroid.

x

y

z

n

(a)

n

(b)

Figure 3.2: Schematic sketch of (a) prolate and (b) oblate spheroidal particle and their orientation
vector n.

The spheroidal particles are identified by their orientation unit vector n. The definition of n
is different for prolate and oblate spheroids. n is parallel to the rod major axis for the former
while it is perpendicular to the disk plane for the latter. The definition of n for both prolate
and oblate spheroids is schematically shown in figure 3.2. Since n is a unit vector, the space of
all possible orientations is the surface of the unit sphere S. At any position x within the flow
field and at any time instant t, the probability density of finding a particle with orientation n is
given by the orientation distribution functionΨ(n;x, t). We shall come back to the orientation
distribution function in more details in section 3.3.

Furthermore, we assume that the suspension is dilute. In order to define a dilute suspen-
sion, one needs to define a measure of particle concentration. One typical measure is the



32 Rheology of Spheroidal Suspensions

particle number density:

n=
NP

Vt
, (3.3)

where NP is the number of particles and Vt is the total volume occupied by the particles and
the carrier fluid. Another measure which is frequently used in rheological theories of particle
suspensions is the volume fraction:

φ =
NP VP

Vt
= nVP , (3.4)

in which VP is the volume of a single particle. Thus, the volume fraction φ is the ratio of the
total volume of particles NP VP to the total volume of particles and carrier fluid Vt . The volume
of a spheroidal object reads

VP =
4

3
πa2 L. (3.5)

For a prolate spheroidal particle (fiber), the following relation between the volume fraction φ
and the number density n can be derived:

φ =
4πnL3

3r2 , (3.6)

where a = L/r is used. nL3 is called the concentration parameter.
Based on the volume fraction φ and the aspect ratio r, three distinct concentration regimes

can be realized in a fiber suspension flow (see for example [23]). A fiber suspension is consid-
ered dilute if φr2 < 1. In a dilute suspension, both hydrodynamic and mechanical interactions
between particles are negligible. Hydrodynamic interaction is the remote mutual influence of
particles through the hydrodynamic field of the carrier fluid. The mechanical interaction is
due to the mechanical contact of individual particles. In case where φr < 1 < φr2 the sus-
pension is in a semi-dilute regime. In this case, the mechanical interactions are still negligible
while the hydrodynamic interactions are to be considered. Finally, when φr > 1 we have
a concentrated suspension in which both hydrodynamic and mechanical interactions are sig-
nificant. These regimes can also be expressed in terms of the concentration parameter nL3

in the following way. The suspension is dilute if nL3 < 1, semi-dilute if 1 < nL3 < r and
concentrated if nL3 > r. The concentration regimes are schematically sketched in figure 3.3,
in which an ellipse represents a fiber and a hatched circle stands for the hydrodynamic inter-
action zone.

Due to the above-mentioned assumptions, the rheological theory of a dilute suspension of
Brownian spheroidal particles in a Newtonian carrier fluid is employed in the present study.
This theory is explained in the following sections.
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Figure 3.3: Schematic of three concentration regimes: a) dilute regime without hydrodynamic and
mechanical interactions, b) semi-dilute regime with hydrodynamic and without mechani-
cal interactions, c) concentrated regime with hydrodynamic and mechanical interactions.
An ellipse represents a fiber and a hatched circle represents the hydrodynamic interaction
zone.



34 Rheology of Spheroidal Suspensions

3.2. Brownian Motion

A tiny particle that is suspended in a quiescent fluid moves in a seemingly random manner. A
good example is the motion of dust particles suspended in the air when seen in the light ray
inside a dark room. The reason is the collision with a huge number of fluid atoms/molecules
that are typically much smaller and lighter than the suspended particles. A typical simulated
Brownian path of a particle is shown in figure 3.4. The random and fluctuating nature of the
motion can be observed.
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Figure 3.4: A typical simulated Brownian path of a particle, ◦ start point, ∗ end point.

Einstein [26] has formulated that the intensity of the Brownian motion experienced by a
spherical particle is characterized by the Brownian diffusivity

D =
kB T

γ
, (3.7)

where kB ≈ 1.381× 10−23J/K , T and γ are the Boltzmann constant, the absolute tempera-
ture of the fluid and the Stokes’ drag coefficient of the suspended particle, respectively. The
orientation of spherical particles is indefinite and hence immaterial. For elongated particles
however, the orientation is important. Therefore, we should distinguish between their spa-
tial and rotary Brownian motions. The former takes place in the physical space and exists
for both spherical and elongated particles. The latter is a random motion in the orientation
space of the elongated particles. The spatial and rotary Brownian diffusivities of fibers scale
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as

Ds ∝
kB T

µl
, (3.8)

Dr ∝
kB T

µl3 , (3.9)

respectively. In equations (3.8) and (3.9), l = 2L is the fiber length. The ratio of the spatial
to the rotary Brownian diffusivities reads

Ds

Dr
∝ l2. (3.10)

Since we consider microfibers (with l � 1) in the present work, Ds is negligible as compared to
Dr . Thus, the spatial Brownian motion is neglected throughout this thesis.

The intensity of the rotary Brownian motion is quantified by a dimensionless group, the
rotary Péclet number:

Per =
γ̇

Dr
, (3.11)

where γ̇ is a characteristic shear rate of the flow. Table 3.1 shows the rotary Péclet number
of rigid fibers suspended in a turbulent channel flow at Reτ = 180 and temperature T =
300K , as a function of the fiber length l. The rotary and spatial Brownian diffusivities are
shown as well. The bulk velocity and the channel half-width are Ub = 1m/s and h = 1m,
respectively. It is seen that depending on the fiber length, the Péclet number ranges from
relatively small to very large numbers. A shorter fiber leads to a smaller Per and vice versa.

Table 3.1: Rotary Péclet number Per of rigid fibers in turbulent channel flow at Reτ = 180 and tem-
perature T = 300K with Ub = 1m/s and h = 1m, as a function of the fiber length l. The
rotary and spatial Brownian diffusivities are also shown.

l [m] 1× 10−3 1× 10−4 1× 10−5 1× 10−6

Per 8.6× 109 8.6× 106 8.6× 103 8.6

Dr 1.16× 10−10 1.16× 10−7 1.16× 10−4 1.16× 10−1

Ds 1.16× 10−16 1.16× 10−15 1.16× 10−14 1.16× 10−13
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3.3. Orientation Dynamics of Rigid
Fibers

In this section, we present the differential equations that govern the orientation dynamics
of rigid fibers within a given flow field. The orientation of a rigid fiber is solely described
by its unit axial vector n. Therefore, one needs an evolution equation for n. Jeffery [54]
has analytically studied the Stokes flow around a neutrally buoyant non-Brownian ellipsoidal
particle. This means that the inertial effects of the fluid and the particle were both neglected.
He derived a differential equation for the time evolution of the orientation vector n of a non-
Brownian ellipsoid:

Dn

Dt
= Ω ·n+κ [D ·n− (n ·D ·n)n] , (3.12)

where Ω and D are the rotation-rate and strain-rate tensors, respectively. κ is the particle
shape factor:

κ=
r2− 1

r2+ 1
. (3.13)

The term Ω ·n is a rigid body rotation of the orientation vector n. Therefore, it preserves the
length of n. The term D ·n is a straining of n and hence changes its length. The last term
(n ·D ·n)n projects back the straining of n so that the length of n is preserved. Note that n is
a unit vector with ‖n‖ = 1. It means that equation (3.12) preserves the length of n [88]. In
order to verify this preservation property, we calculate the inner product of n to both sides of
equation (3.12):

1

2

Dn ·n
Dt

= n ·Ω ·n+κ [n ·D ·n− n · (n ·D ·n)n]

= Ω : nn+κ [n ·D ·n− (n ·D ·n)n ·n]

= κ (n ·D ·n) (1− n ·n) ,

(3.14)

where n ·Ω ·n = Ω : nn = 0, because Ω is skew-symmetric and nn is symmetric. Equation
(3.14) implies that if the initial condition of the Jeffery equation (3.12) satisfies n ·n= ‖n‖2 =
1, then the condition n ·n= ‖n‖2 = 1 is satisfied for all times.

Often in a suspension, there exists a huge number of particles that are influenced by the
carrier flow field as well as the Brownian motion. Thus, the particle orientation is described via
a distribution function Ψ(n;x, t) which is the probability density of finding a particle with the
orientation n at the position x in space and at the time instant t. The conservation of probabil-
ity is expressed in the form of a Fokker-Planck equation [71]:

DΨ
Dt
=
∂Ψ
∂ t
+U ·∇Ψ=−∇n ·

�

Ψ
Dn

Dt

�

+ Dr∆nΨ, (3.15)

where ∇n and ∆n are the Nabla and Laplacian operators defined on the surface of the unit
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sphere. The time derivative of the orientation vector ṅ = Dn/Dt that appears in equation
(3.15) is given by the right-hand side of the Jeffery equation (3.12). Equation (3.15) consists
of a drift term∇n · (Ψṅ) and a diffusion term Dr∆nΨ. The drift term envelopes the effect of the
carrier flow field through Ω and D in equation (3.12). The diffusion term contains the effect
of the rotary Brownian motion. This means that the probability is convected by the flow field
and is diffused by the rotary Brownian motion. This convection-diffusion process occurs on the
surface of the unit sphere. The advective term U ·∇Ψ shows that the probability is advected
in the physical space by the carrier flow field. Thus, the Fokker-Planck equation (3.15) is
defined in the physical space as well as in the conformation space, i.e. Ψ = Ψ(n;x, t) =
Ψ
�

ϕ,ϑ, x , y, z, t
�

. ϕ and ϑ are the azimuth and zenith angles of the spherical coordinate
system, respectively. The spherical coordinate system is used because the conformation space
is the surface of the unit sphere. The Fokker-Planck equation is subjected to periodic boundary
conditions in both azimuthal and zenithal directions. The total stochastic mass over the sphere
must be unity for all times:

∫∫

S

Ψ dS (n) = 1. (3.16)

Equation (3.15) fulfills this condition. This can be verified by integrating both sides of equa-
tion (3.15) over S:

D

Dt

∫∫

S

Ψ dS (n) =−
∫∫

S

∇n ·
�

Ψ
Dn

Dt
− Dr∇nΨ

�

dS (n)

=−
∫∫

S

∇n ·JΨ dS (n) ,
(3.17)

in which JΨ = Ψṅ − Dr∇nΨ is the probability flux. Equation (3.17) is conservative over a
periodic domain [90]. This means that if one starts with an initial condition which satisfies
equation (3.16), the Fokker-Planck equation (3.15) guarantees the satisfaction of (3.16) for
all times.

In the rheological theory of dilute suspensions, as discussed later in section 3.6, the non-
Newtonian stress due to the presence of particles depends on the statistical moments of the ori-
entation distribution functionΨ, namely its second and fourth moments:

〈nn〉Ψ (x, t) =

∫∫

S

nn Ψ(n;x, t)dS (n) , (3.18)

〈nnnn〉Ψ (x, t) =

∫∫

S

nnnn Ψ(n;x, t)dS (n) , (3.19)

where the dyadic products nn (or 〈nn〉Ψ) and nnnn (or 〈nnnn〉Ψ) are second and fourth rank
tensors, respectively. All odd-ordered moments vanish due to the symmetry of the orien-
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tation distribution function. The moments are weighted averages over the sphere with the
orientation distribution function Ψ as the weighting kernel. The subscript 〈· · ·〉Ψ is introduced
to distinguish between the ensemble average of turbulent quantities and the averaging with
respect to the orientation distribution function Ψ. The integrals (3.18) and (3.19) can be
computed once the orientation distribution function is known. From definitions (3.18) and
(3.19) we conclude that the second and fourth moments are fully symmetric. Furthermore,
the following properties for the second and fourth moments can be easily derived from their
definitions:

tr
�

〈nn〉Ψ
	

= 1 : 〈nn〉Ψ =
∫∫

S

1 : nn Ψ(n;x, t)dS (n)

=

∫∫

S

Ψ(n;x, t)dS (n) = 1,

(3.20)

1 : 〈nnnn〉Ψ =
∫∫

S

1 : nnnn Ψ(n;x, t)dS (n)

=

∫∫

S

nn Ψ(n;x, t)dS (n) = 〈nn〉Ψ ,

(3.21)

in which the relation 1 : nn= n ·n= ‖n‖2 = 1 is used.

3.4. Moment Approximation

Since the non-Newtonian stress depends on the second and fourth moments of the orientation
distribution function (see section 3.6), it could be of advantage to directly compute these mo-
ments without computing the orientation distribution function. In this approach, an evolution
equation for the desired moment is required. To this aim, we first differentiate the definition of
the desired moment, e.g. equation (3.18), with respect to time:

D 〈nn〉Ψ
Dt

=

∫∫

S

nn
DΨ
Dt

dS (n) . (3.22)

Introducing the Fokker-Planck equation (3.15) into equation (3.22) yields

D 〈nn〉Ψ
Dt

=

∫∫

S

nn
�

−∇n ·
�

Ψ
Dn

Dt

�

+ Dr∆nΨ
�

dS (n) . (3.23)
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Integrating by parts and using the normalization condition (3.16) give

D 〈nn〉Ψ
Dt

= Ω · 〈nn〉Ψ+ 〈nn〉Ψ ·ΩT

+κ
�

D · 〈nn〉Ψ+ 〈nn〉Ψ ·D− 2D : 〈nnnn〉Ψ
�

+ 2Dr
�

1− 3 〈nn〉Ψ
�

.

(3.24)

Equation (3.24) is obviously not closed, i.e. the fourth moment 〈nnnn〉Ψ appears in the evo-
lution equation for the second moment 〈nn〉Ψ. This poses a closure problem that occurs in
the passage from the distribution function to the moments in nonlinear systems [101]. One
can derive an evolution equation for the fourth moment. But then, it depends on the sixth
moment and so fourth.

3.5. Moment Closure Models

In order to solve equation (3.24), a closure model expressing the fourth moment in terms of
the second moment is required. The closure model for the fourth moment 〈nnnn〉Ψ can be
written either explicitly as

〈nnnn〉Ψ = F
�

〈nn〉Ψ
�

, (3.25)

or implicitly as

D : 〈nnnn〉Ψ = f
�

〈nn〉Ψ
�

, (3.26)

where F and f are fourth- and second-rank tensor-valued functions, respectively. There exist
several closure models in the literature. Some of them are briefly presented in the follow-
ing.

1. Linear closure:

In this closure model which was proposed by Hand [44], the fourth moment 〈nnnn〉Ψ is
expanded in terms of the identity tensor and the second moment 〈nn〉Ψ. The dependence
on 〈nn〉Ψ is linear.

D : 〈nnnn〉Ψ =−
2

35
D+

1

7

�

2 〈nn〉Ψ ·D+ 2D · 〈nn〉Ψ+
�

〈nn〉Ψ : D
�

1
�

. (3.27)

This model is exact for a random distribution of fiber orientations (i.e., an isotropic
suspension).

2. Quadratic closure:

The fourth moment 〈nnnn〉Ψ is a quadratic function of the second moment 〈nn〉Ψ in this
model:

〈nnnn〉quad
Ψ = 〈nn〉Ψ 〈nn〉Ψ , (3.28)
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i.e. the fourth moment 〈nnnn〉Ψ equals the dyadic product of the second moment 〈nn〉Ψ
by itself. This closure deserves attention for its simplicity and stability. It is exact when
the fibers are fully aligned.

3. Hybrid closure:

The hybrid closure approximation of Advani and Tucker [1] reads

〈nnnn〉hyb
Ψ =

�

�

1− f
�

〈nnnn〉linΨ + f 〈nnnn〉quad
Ψ

�

, (3.29)

which is a weighted average of the linear and quadratic closures and the scalar f is to
be chosen. It is a measure of orientation, since f = 0 gives an exact closure (linear) if
the suspension is isotropic while f = 1 gives an exact closure (quadratic) if the fibers
are fully aligned. The scalar parameter f in three-dimensional flows is often defined as

f = 1− 27 det
�

〈nn〉Ψ
�

. (3.30)

4. Hinch & Leal closure:

Hinch and Leal [48, 49] proposed a closure which is an interpolation between some
known solutions of the Fokker-Planck equation in two-dimensional flows:

〈nnnn〉HL
Ψ : D=

1

5

h

6 〈nn〉Ψ ·D · 〈nn〉Ψ− 〈nn〉Ψ 〈nn〉Ψ : D

−2 1 〈nn〉2Ψ : D+ 2 1 〈nn〉Ψ : D
i

.
(3.31)

It is a quadratic polynomial in the components of 〈nn〉Ψ. It has the drawback that it gives
non-physical results in some flows, e.g. in biaxial elongational flow [2]. Therefore, it
cannot be trusted in complex three-dimensional turbulent flows.

5. Invariant-Based Optimal Fitting closure (IBOF):

The IBOF closure of Chung and Kwon [16] is one of the best closures available to date.
The fourth moment 〈nnnn〉Ψ is expressed in terms of the symmetric parts of the dyadic
products of the identity tensor 1 and the second moment 〈nn〉Ψ:

〈nnnn〉IBOF
Ψ = β1S {11}+ β2S

�

1 〈nn〉Ψ
	

+ β3S
�

〈nn〉Ψ 〈nn〉Ψ
	

+ β4S
�

1
�

〈nn〉Ψ · 〈nn〉Ψ
�	

+ β5S
�

〈nn〉Ψ
�

〈nn〉Ψ · 〈nn〉Ψ
�	

+ β6S
��

〈nn〉Ψ · 〈nn〉Ψ
��

〈nn〉Ψ · 〈nn〉Ψ
�	

.

(3.32)

The tensor operator S returns the symmetric part of its argument T= Ti jkleie jekel:

S {T}= 1
24

�

Ti jkl + T jikl + Ti jlk + T jilk + Tkli j + Tlki j + Tkl ji + Tlk ji + Tik jl

+ Tki jl + T jl ik + Tl jik + T jlki + Tl jki + Til jk + Tl i jk + Tilk j + Tl ik j

+T jkil + Tk jil + T jkl i + Tk jl i + Tikl j + Tkil j
�

eie jekel ,

(3.33)
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where Ti jkl ’s are the Cartesian components of the fourth rank tensor T, and ei ’s are the
Cartesian orthonormal basis vectors. The coefficients β1 to β6 are functions of the second
and third invariants of the second moment 〈nn〉Ψ, denoted by I I and I I I , respectively.
Analytical expressions for β1,2,5 in terms of β3,4,6 and the invariants of 〈nn〉Ψ can be
derived [16]:

β1 =
3
5

h

−1
7
+ 1

5
β3

�

1
7
+ 4

7
I I + 8

3
I I I
�

− β4

�

1
5
− 8

15
I I − 14

15
I I I
�

−β6

�

1
35
− 4

35
I I − 24

105
I I I + 16

15
I I (I I I) + 8

35
I I2
��

,
(3.34)

β2 =
6
7

�

1− 1
5
β3 (1+ 4I I) + 7

5
β4

�

1
6
− I I

�

−β6

�

−1
5
+ 4

5
I I + 2

3
I I I − 8

5
I I2
��

,
(3.35)

β5 =−
4
5
β3−

7
5
β4−

6
5
β6

�

1− 4
3
I I
�

. (3.36)

β3, β4 and β6 are obtained by fifth-order polynomial fitting in terms of the invariants:

βi = a (i, 1) + a (i, 2) I I + a (i, 3) I I2+ a (i, 4) I I I + a (i, 5) I I I2

+ a (i, 6) I I (I I I) + a (i, 7) I I2I I I + a (i, 8) (I I) I I I2

+ a (i, 9) I I3+ a (i, 10) I I I3+ a (i, 11) I I3I I I + a (i, 12) I I2I I I2

+ a (i, 13) (I I) I I I3+ a (i, 14) I I4+ a (i, 15) I I I4+ a (i, 16) I I4I I I

+ a (i, 17) I I3I I I2+ a (i, 18) I I2I I I3+ a (i, 19) (I I) I I I4

+ a (i, 20) I I5+ a (i, 21) I I I5, (i = 3,4, 6) .

(3.37)

The 3×21= 63 fitting coefficients a
�

i, j
�

with i = 3,4, 6 and j = 1, . . . , 21 are obtained
by using least-square fitting to the exact solutions of the Fokker-Planck equation in a
number of simple flows. The numerical values of the fitting coefficients are given in
appendix A.

6. Normalization scheme:1

The normalization scheme is a computationally efficient alternative to existing closure
models. In the following, we present the principles of this model.

It is already pointed out in section 3.3 that the trace of 〈nn〉Ψ, noted I , must always be
1.0 (see equation (3.20)). Here, we check whether this condition is held by the moment
evolution equation (3.24). We first recall relations used in the subsequent derivation. 1 :
A ·B= A : B holds for two arbitrary second-order tensors A and B, and the identity tensor
1. Here the symbols : and · stand for contraction and scalar multiplication of tensors,
respectively. The contraction of a symmetric tensor with an antisymmetric tensor is
zero, i.e. Ω : 〈nn〉Ψ = 〈nn〉Ψ : ΩT = 0. Due to the symmetry of D and 〈nn〉Ψ, the relation
D : 〈nn〉Ψ = 〈nn〉Ψ : D holds. It is proved that 〈nnnn〉Ψ : 1 = 〈nn〉Ψ in equation (3.21).

1Materials presented here have been published in [88].
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Then, it is straightforward to show that 1 : D : 〈nnnn〉Ψ = D : 〈nn〉Ψ.

Contracting both sides of equation (3.24) with the identity tensor 1 gives

DI

Dt
= Ω : 〈nn〉Ψ+ 〈nn〉Ψ : ΩT

+κ
�

D : 〈nn〉Ψ+ 〈nn〉Ψ : D− 21 : D : 〈nnnn〉Ψ
�

+ 6Dr (1− I) ,
(3.38)

where I is the trace of 〈nn〉. Using all relations mentioned above, the terms in the square
bracket of (3.38) cancel and equation (3.38) reduces to

DI

Dt
= 6Dr (1− I) , (3.39)

whose general solution reads

I (t) = 1− C exp
�

−6Dr t
�

, (3.40)

where C is the integration constant. The initial condition I (t = 0) = 1.0 thus guarantees
I (t) = 1.0 for all times. The above discussion also shows that any closure model that
fulfills the property 〈nnnn〉Ψ : 1= 〈nn〉Ψ ensures the conservation of I in time.

From the evolution equation (3.39), it turns out that a closure model has to fulfill the
condition 〈nnnn〉Ψ : 1= 〈nn〉Ψ in order to ensure the conservation of I in time. Here we
present a computationally efficient scheme that guarantees this condition.

If we omit the term containing the fourth moment in equation (3.24), a closure model
is no longer required. However, the trace of 〈nn〉∗Ψ is not conserved anymore and the
evolution equation (3.39) for I∗ reads

DI∗

Dt
= 2κ D : 〈nn〉∗Ψ+ 6Dr (1− I∗) . (3.41)

()∗ denotes the quantities that are obtained by removing the closure term in equation
(3.24). Equation (3.41) means that the norm of the orientation vector n differs from
1.0. Therefore, a normalization procedure is required at each time step: the second
moment 〈nn〉Ψ is rescaled so that its trace is 1.0. In the most trivial way, this can be
done by dividing all components of 〈nn〉Ψ by its trace I . The algorithm thus reads

a) The second moment is advanced one step in time by using the modified evolution
equation

D 〈nn〉∗Ψ
Dt

= Ω · 〈nn〉∗Ψ+ 〈nn〉∗Ψ ·Ω
T+

κ
�

D · 〈nn〉∗Ψ+ 〈nn〉∗Ψ ·D
�

+ 2Dr

�

1− 3 〈nn〉∗Ψ
�

.

(3.42)

This yields the intermediate second moment 〈nn〉∗Ψ which does not satisfy the con-
dition tr

¦

〈nn〉∗Ψ
©

= 1.0.
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b) The trace of 〈nn〉∗Ψ, i.e. I∗ = tr
¦

〈nn〉∗Ψ
©

, is computed.

c) The second moment 〈nn〉Ψ at the new time level is computed by

〈nn〉Ψ =
〈nn〉∗Ψ

I∗
. (3.43)

Here, we analytically prove that the above algorithm is equivalent to the solution of
equation (3.24) using the quadratic closure model

〈nnnn〉quad
Ψ = 〈nn〉Ψ 〈nn〉Ψ . (3.44)

Differentiating equation (3.43) with respect to time yields

D 〈nn〉Ψ
Dt

=
I∗ D 〈nn〉∗Ψ /Dt − 〈nn〉∗Ψ DI∗/Dt

I∗2
. (3.45)

The right-hand side is evaluated at 〈nn〉∗Ψ = 〈nn〉Ψ and I∗ = 1.0. This is the point at
which the result of the new scheme is physical. Substituting D 〈nn〉∗Ψ /Dt with equation
(3.42) and DI∗/Dt with equation (3.41), and evaluating the resulting expression at
〈nn〉∗Ψ = 〈nn〉Ψ and I∗ = 1.0 gives

D 〈nn〉Ψ
Dt

= Ω · 〈nn〉Ψ+ 〈nn〉Ψ ·ΩT

+κ
�

D · 〈nn〉Ψ+ 〈nn〉Ψ ·D− 2D :
�

〈nn〉Ψ 〈nn〉Ψ
��

+ 2Dr
�

1− 3 〈nn〉Ψ
�

,

(3.46)

in which the identity 〈nn〉Ψ
�

D : 〈nn〉Ψ
�

= D :
�

〈nn〉Ψ 〈nn〉Ψ
�

is used. Equation (3.46)
is exactly the same as equation (3.24) with 〈nnnn〉Ψ replaced by the quadratic closure
model (3.44). This equivalence between the quadratic model and the normalization
scheme is numerically checked in [88].

The normalization scheme needs less computational effort than any closure model as (a)
it advances a simpler differential equation in time, and (b) the closure approximation is
replaced by two simple computations, i.e. steps 2 and 3 in the above algorithm.

3.6. Brenner’s Rheological Theory

As pointed out in the previous chapter (in section 2.2), the momentum equation for the flow
of a non-Newtonian fluid reads

ρ
DU

Dt
=−∇p+∇ ·

�

τN+τNN
�

. (3.47)

The Newtonian stress τN is given by the generalized Newton’s law of viscosity given by equa-
tion (2.11) for an incompressible flow. A constitutive equation for the non-Newtonian stress
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τNN is still required in order to fully describe the flow of a non-Newtonian fluid. This is the
central role of the rheology to provide such constitutive models. The non-Newtonian stress
due to the spheroidal particles depends on the strain-rate tensor and the particles confor-
mation [7]. The particles conformation is described by the orientation distribution function
Ψ. Brenner [11] has developed a rheological theory for dilute suspensions of Brownian ax-
isymmetric particles, e.g. spheroids, symmetric double cones, circular cylinders and spherical
dumbbells. The main message of his work can be summarized as the following. The rhe-
ological properties of a dilute suspension of the aforementioned bodies subjected to rotary
Brownian motion can be expressed in terms of the second and fourth moments of the orienta-
tion distribution function, the viscosity of the carrier fluid, the volume fraction of suspended
particles and five dimensionless scalar material constants. These material constants depend
only on the shape of the suspended particles and are hydrodynamic in origin. The latter
means that they can be derived from the solution of the creeping flow around the suspended
particles.

In what follows, we briefly present the Brenner’s theory [11], in which the non-Newtonian
stress tensor reads

τNN = 2µ0D+µ11
�

D : 〈nn〉Ψ
�

+µ2D : 〈nnnn〉Ψ

+ 2µ3

�

〈nn〉Ψ ·D+D · 〈nn〉Ψ
�

+ 2µ4Dr
�

3 〈nn〉Ψ− 1
�

,
(3.48)

with 1 and Dr being the identity tensor and the rotary Brownian diffusivity, respectively. τNN

depends on the second and fourth moments of the orientation distribution function given by
equations (3.18) and (3.19). µi, i = 0, · · · , 4 are the five material constants which depend on
the aspect ratio of the spheroidal particles r, their volume fraction φ and the viscosity of the
carrier fluid µ [11]:

µ0 = 5µφQ0, (3.49a)

µ1 = 5µφQ1, (3.49b)

µ2 = 5µφQ2, (3.49c)

µ3 = 5µφQ3, (3.49d)

µ4 = 5µφQ4, (3.49e)

with

Q0 =
1

5α′q
, (3.50a)
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Q1 =
2

15α′q

�

1−
α′′q

α′′⊥

�

, (3.50b)

Q2 =
�

−3Q1− 4Q3

�

, (3.50c)

Q3 =
1

5α′q

�

2rα′q
�

r2+ 1
�

α′⊥
− 1

�

, (3.50d)

Q4 =
2
�

r2− 1
�

5
�

r2αq+α⊥
� , (3.50e)

in which

αq =
2

r2− 1

�

r2β − 1
�

, (3.51a)

α⊥ =
r2

r2− 1

�

1− β
�

, (3.51b)

α′q =
r2

4
�

r2− 1
�2

�

3β + 2r2− 5
�

, (3.51c)

α′⊥ =
r

�

r2− 1
�2

�

r2+ 2− 3r2β
�

, (3.51d)

α′′q =
r2

4
�

r2− 1
�2

�

2r2+ 1−
�

4r2− 1
�

β
�

, (3.51e)

α′′⊥ =
r2

�

r2− 1
�2

��

2r2+ 1
�

β − 3
�

, (3.51f)

and

β =
cosh−1 r

r
�

r2− 1
�1/2

, for r > 1 (prolate spheroid), (3.52a)

β =
cos−1 r

r
�

1− r2
�1/2

, for r < 1 (oblate spheroid). (3.52b)

Brenner [11] has shown that for the case of spherical particles (r = 1) we have

µ0 =
5

2
µφ, µ1 = µ2 = µ3 = µ4 = 0. (3.53)

Inserting these values into the constitutive equation (3.48) yields the following expression for
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the total stress

τ = τN+τNN = 2
�

µ+µ0

�

D. (3.54)

This relation defines a Newtonian fluid with an increased effective viscosity:

µeff = µ+µ0 = µ
�

1+
5

2
φ

�

. (3.55)

Equation (3.55) is the well-known Einstein’s formula (equation (3.1)) [27, 28] for the viscos-
ity of a dilute suspension of spherical particles in a Newtonian carrier fluid. Equation (3.54)
implies that when r → 1, the fiber suspension shows no anisotropy and behaves like a New-
tonian fluid with a higher viscosity (flow at a lower Reynolds number). Moreover, equation
(3.54) shows that the effect of rotary Brownian motion vanishes at r → 1, which is intuitively
expected for spherical particles.

3.6.1. Limit of Zero Rotary Péclet Number

It is always useful to have a testcase for which an analytical solution exists. Then, it can
be used for the validation of numerical methods and computer codes. For this purpose,
in this section, we investigate the limiting case of the zero rotary Péclet number (i.e., very
strong Brownian motion) which gives us a testcase with an analytical solution in the channel
flow.

Due to the strong Brownian motion, the orientation of fibers tends to the isotropic state
and thus, the orientation distribution function is given by

Ψ(n;x, t) =
1

4π

�

1+
nn : D (x, t)

2Dr
+ · · ·

�

. (3.56)

Equation (3.56) states that Ψ takes the isotropic value 1/4π plus correction terms. However,
the correction terms have Dr in their denominator and thus, at the limit Per → 0 (Dr →∞),
they become negligible. The orientation distribution function given in equation (3.56) yields
the following second moment:

〈nn〉Ψ =
1

3
+

D

15Dr
+ · · · . (3.57)

Again, Dr appears in the denominator of the correction term and at the limit Dr →∞, we get
the isotropic form of the second moment:

〈nn〉Ψ =
1

3
. (3.58)

The linear closure of Hand [44] is exact in an isotropic situation. Thus, the fourth moment
contracted with the strain-rate tensor D is given by equation (3.27). Substitution of equation
(3.57) in the Brownian contribution to the stress, i.e. the last term of equation (3.48), gives
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the following expression:

2µ4Dr
�

3 〈nn〉Ψ− 1
�

= 2µ4Dr

�

1+
D

5Dr
− 1
�

=
2

5
µ4D. (3.59)

Inserting equations (3.58), (3.27) and (3.59) into the Brenner’s stress formula (3.48) yields
the following relation for the non-Newtonian stress:

τNN
isotropic =

�

2µ0+
2

15
µ2+

4

3
µ3+

2

5
µ4

�

D. (3.60)

The total stress then reads

τ = τN+τNN
isotropic = 2

�

µ+µ0+
1

15
µ2+

2

3
µ3+

1

5
µ4

�

D= 2µeffD. (3.61)

Equation (3.61) shows that the suspension flows like an isotropic Newtonian fluid with a
higher viscosity

µeff = µ+µ0+
1

15
µ2+

2

3
µ3+

1

5
µ4

= µ
�

1+
5

2
φ

�

2Q0+
2

15
Q2+

4

3
Q3+

2

5
Q4

��

,

(3.62)

and, thus, at a lower Reynolds number. Recalling the Einstein’s relation (3.55), equation
(3.62) is analogous to the case of a dilute suspension of spherical particles in a Newtonian
carrier fluid with the effective volume fraction

φeff = φ
�

2Q0+
2

15
Q2+

4

3
Q3+

2

5
Q4

�

, (3.63)

This means, for example, that a suspension of fibers with the aspect ratio r = 100 at Per → 0
is 237.5 times more effective (in increasing the viscosity) than a suspension of spheres with
the same volume fraction. The ratio of the effective volume fraction to the actual volume
fraction φeff/φ is a function of the particle aspect ratio r. This function is plotted in figure 3.5
for fibers with r ≤ 100. As it has been already shown that the Brenner’s stress reduces to the
Einstein’s formula for r = 1, equation (3.62) also reduces to the Einstein’s viscosity formula
(3.55).
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Figure 3.5: Effective volume fraction φeff of fiber suspension versus fiber aspect ratio r at Per → 0.

3.7. Hinch and Leal’s Rheological
Theory

Hinch and Leal have derived the following relation for the non-Newtonian stress in a series of
publications [47, 48, 49]:

τNN = 2µφ
�

2AD : 〈nnnn〉Ψ+ 2B
�

〈nn〉Ψ ·D+D · 〈nn〉Ψ
�

+ C D+ F Dr 〈nn〉Ψ
�

,
(3.64)

where the material coefficients A, B, C and F are functions of the fiber aspect ratio r. They
are given for the limiting case of r →∞ by [46]:

A=
r2

4 (ln (2r)− 1.5)
, (3.65a)

B =
3 ln (2r)− 5.5

r2 , (3.65b)

C = 2, (3.65c)

F =
3r2

ln (2r)− 0.5
. (3.65d)

These asymptotic forms correspond to the Brenner’s material coefficients Q i (see equation
(3.50)) by the following relations:

A≡ 1.25Q2, B ≡ 2.5Q3, C ≡ 5Q0, F ≡ 15Q4. (3.66)

This correspondence is shown in figures 3.6a to 3.6d. The asymptotic coefficients of the Hinch
and Leal’s theory are accurate for aspect ratios greater than 10. This has been also reported
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by Kim and Karrila [59]. The comparison of the material coefficients implies that the full
formulation of Brenner has to be considered if one studies the effect of finite aspect ratios.
The Brenner’s theory is also required to study the rheology of oblate spheroidal particles with
r ∈ (0,1). Paschkewitz et al. [104] have used the Hinch and Leal’s stress formula (3.64) to
study the turbulent drag reduction induced by slender fibers.

Figures 3.6a to 3.6d imply that for slender fibers (i.e., fibers with r � 1), Q3 (B) vanishes
and Q0 (C) tends to 0.4 (2). The coefficient Q2 (A) is dominant for non-Brownian slen-
der fibers. The coefficient Q4 (F) is significant and has to be taken into account for Brownian
fibers. Therefore, the non-Newtonian stress can be approximated by

τNN = 2µφ
�

2AD : 〈nnnn〉Ψ+ F Dr 〈nn〉Ψ
�

. (3.67)
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Figure 3.6: Material coefficients of Brenner’s theory and Hinch & Leal’s theory versus fiber aspect ratio
r.
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Gillissen et al. [39] have employed a stress model based on this assumption.
Another difference between the two models lies in the Brownian contribution to the non-

Newtonian stress, i.e. Brenner’s formulation has 2µ4Dr
�

3 〈nn〉Ψ− 1
�

whereas Hinch and
Leal’s model gives 2µφF Dr 〈nn〉Ψ. However, these two seemingly different models, when in-
serted in the momentum equation (3.47), lead to the same flow field. This can be proved
by considering that the divergence of the non-Newtonian stress tensor appears in the mo-
mentum equation (3.47), that is ∇ ·τNN, which for the Brownian contribution of the Bren-
ner’s formulation yields 2µ4Dr∇ ·

�

3 〈nn〉Ψ− 1
�

= 2µ4Dr
�

3∇ · 〈nn〉Ψ−∇ ·1
�

. The identity
tensor 1 is a constant whose divergence vanishes and thus, the two models are indeed the
same when substituted in the momentum equation (3.47). It can also be proved in another
way. From tensor calculus we know that ∇ ·1 = ∇ (1), i.e. the divergence of the identity
tensor equals the gradient of the scalar 1 (which is also zero). Applying this to the momen-
tum equation (3.47), we observe that ∇ (1) is absorbed in the pressure-gradient term, that is
∇p− 2µ4Dr∇ (1) =∇

�

p− 2µ4Dr
�

=∇p1 with p1 being a new pressure. We know that in an
incompressible flow, the absolute value of pressure is immaterial and the pressure gradient is
important. Therefore, the addition of a constant to the pressure field is immaterial as well and
does not affect the flow field.



4. Numerical Methods

The governing equations of turbulent flows, as reviewed in chapter 2, are complicated enough
to prevent analytical solutions. Thus, their numerical solution is used in turbulence research.
Still, a direct numerical simulation can be prohibitively expensive. In the present work ad-
ditionally, we have to compute the fiber orientation and then, to couple the flow solver with
the fiber orientation solver. Therefore, one needs well-suited numerical methods which are
efficiently implemented in the form of a computer code. Due to the tremendous amount of
computations, such simulations are often performed on massively parallelized supercomput-
ers.

In this chapter, we describe the existing numerical methods used for the DNS of the non-
Newtonian flow in section 4.1. In section 4.2, we discuss the numerical methods developed
for the computation of the fiber orientation. Section 4.3 describes the parallelization strategy.
Finally, we present the validation of the numerical methods and the computer codes in section
4.4.

4.1. DNS Solver

A three-dimensional unsteady incompressible flow solver (called MGLET) which has been de-
veloped for DNS and LES of turbulent flows is used in this work. The code is written in FOR-

TRAN and belongs to the Fachgebiet Hydromechanik at the Technische Universität München. In
the following, we briefly present the numerical methods implemented in this code.

4.1.1. Projection Method

The projection method of Chorin [15] and Temam [124] is used for the solution of the un-
steady incompressible Navier-Stokes equations:

∂U

∂ t
= C+D+ P, (4.1)

where C, D and P are symbolic notations for the convective, diffusive and pressure terms,
respectively. Here, an explicit Euler integration of equation (4.1) is presented. Any other
explicit time integration scheme can be applied similarly. Application of the explicit Euler
scheme on equation (4.1) yields

Ũn+1 = Un+∆t [Cn+Dn+ Pn] , (4.2)
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in which the superscript n means the current (known) time step and n+ 1 stands for the next
(unknown) time step. The provisional velocity field Ũn+1 is not divergence-free, i.e. it does
not fulfill the continuity equation (2.9). The pressure has to be implicitly evaluated at the
next time level in order to get a solenoidal velocity field Un+1:

Un+1 = Un+∆t
�

Cn+Dn+ Pn+1
�

, (4.3)

Subtracting equation (4.2) from equation (4.3) gives

Un+1− Ũn+1 =∆t
�

Pn+1− Pn
�

=∆t ·dPn+1.
(4.4)

Taking the divergence of equation (4.4) and considering∇ ·Un+1 = 0, we have

−∇ · Ũn+1 =∆t∇ ·dPn+1. (4.5)

dPn+1 is related to the gradient of the pressure correction dpn+1 via

dPn+1 =−
1

ρ
∇dpn+1 (4.6)

Substituting equation (4.6) into equation (4.5) yields the following Poisson equation for the
pressure correction dpn+1:

∇2dpn+1 =
ρ

∆t
∇ · Ũn+1. (4.7)

Once the Poisson equation (4.7) is solved and the pressure correction dpn+1 is known, the pres-
sure and the solenoidal velocity fields are obtained by the following correction steps:

pn+1 = pn+ dpn+1, (4.8)

Un+1 = Ũn+1−
∆t

ρ
∇dpn+1. (4.9)

The solution algorithm can thus be summarized as follows:

1. Compute the provisional velocity field using equation (4.2).

2. Solve the Poisson equation (4.7).

3. Update the pressure and velocity fields using equations (4.8) and (4.9), respectively.

All these three steps involve spatial discretization, i.e. for convective, diffusive and pressure
terms in step 1, for the Laplacian and divergence operators in step 2, and for the gradient
operator in step 3. The spatial discretization is discussed in subsection 4.1.2. Step 1 involves
the time integration for which a third-order low-storage Runge-Kutta scheme [132] is used in
the present work. The steps 2 and 3 are performed for every Runge-Kutta substep. The time
integration is addressed in subsection 4.1.3. The solution of the Poisson equation in step 2 is
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often the most expensive part in an incompressible flow solver. This is shortly presented in
subsection 4.1.4.

4.1.2. Spatial Discretization

MGLET uses a cell-centered finite volume method for the spatial discretization. The finite vol-
ume method is based on the integral form of the conservation laws. Therefore, the method
is locally and globally conservative. The conservation property is very advantageous in com-
putational fluid dynamics applications. The integral form of the incompressible Navier-Stokes
equations reads

∫∫

∂Ω

U ·dS= 0, (4.10)

∂

∂ t

∫∫∫

Ω

ρUdV +

∫∫

∂Ω

ρUU ·dS=−
∫∫

∂Ω

p 1 ·dS+

∫∫

∂Ω

�

τN+τNN
�

·dS, (4.11)

where Ω is the solution domain and ∂Ω is the surface surrounding Ω. Equations (4.10) and
(4.11) are valid globally and locally. This means that Ω can be the whole computational
domain or a finite volume cell. Considering the Newton’s law of viscosity for incompressible
flow (2.11), equation (4.11) reduces to

∂

∂ t

∫∫∫

Ω

ρUdV +

∫∫

∂Ω

ρUU ·dS=−
∫∫

∂Ω

p 1 ·dS

+

∫∫

∂Ω

2µD ·dS+

∫∫

∂Ω

τNN ·dS.

(4.12)

In the finite volume method, the change in the volume-averaged quantity is related to the
surface fluxes and possibly source term(s).

As can be deduced from equation (4.12), the finite volume discretization involves a numer-
ical approximation of volume and surface integrals, as well as the first derivative. These opera-
tions can be done in different ways, resulting in different orders of accuracy. The details can be
found in [30]. Currently, two versions of MGLET are available. A second-order version has been
under development for more than two decades [76, 73]. Recently, Hokpunna has developed a
fourth-order finite volume method in MGLET [50, 51]. The second-order version is used for the
Monte-Carlo simulations in the present work (see chapter 5).

4.1.3. Time Integration

An explicit Euler time stepping of the Navier-Stokes equations has been explained in section
4.1.1. The explicit Euler is only first-order accurate and has a small stability region for the
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convection-diffusion equation while it is unstable for a pure convection problem. Therefore, it
is desirable to employ a high-order method which has better stability properties. To this aim, a
low-storage third-order Runge-Kutta scheme (RK3) [132] is used for the time advancement of
the momentum equation. Such a low-storage Runge-Kutta scheme for the generic differential
equation

du

dt
= f (u) , u (t = 0) = u0, (4.13)

reads

1st substep : S1 = f (u0), u11 = u0+
1

3
∆tS1, (4.14a)

2nd substep : S2 = f (u11)−
5

9
S1, u12 = u11+

15

16
∆tS2, (4.14b)

3rd substep : S3 = f (u12)−
153

128
S2, u1 = u12+

8

15
∆tS3. (4.14c)

The stability diagrams of the third-order Runge-Kutta and the explicit Euler schemes for
the model ordinary differential equation

dy

dt
= λy, λ= λR+ iλI , (4.15)

with i2 = −1, are plotted in figure 4.1. The stability region of the Runge-Kutta method
is extended over the imaginary axis, i.e. the Runge-Kutta scheme is conditionally stable
for convection-dominated problems. This is an important feature which makes the Runge-
Kutta method a good candidate for simulation of high Reynolds number flows. The incom-
pressibility is enforced at each Runge-Kutta substep by solving the Poisson equation (4.7),
the pressure correction (4.8) and the velocity correction (4.9). In all simulations reported
in this work, the time step ∆t is chosen such that the Courant-Friedrichs-Lewy number

CFL=max
j

(
�

�

�

�

�

U j∆t

∆x j

�

�

�

�

�

)

, j = 1, 2,3, (4.16)

is below 0.5.

4.1.4. Solution of the Poisson Equation

The Poisson equation (4.7) can be solved either directly or iteratively. Although iterative
solvers are generally preferred in computational fluid dynamics applications, an efficient direct
solver based on the fast Fourier transform (FFT) can be tailored for the channel flow. In
this thesis, we tested both iterative and direct solvers whose principles are explained in the
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sequel.
The iterative solver used in this work is the strongly implicit procedure (SIP) of Stone

[121]. It is based on an incomplete LU decomposition. The SIP usually converges in a few
iterations and hence, it is vastly used in computational fluid dynamics. The details of the SIP
can be found in [121, 30]. FORTRAN implementations of SIP for two- and three-dimensional
problems are provided as supplementary materials to [30].

The direct solution of the Poisson’s equation (4.7) in three-dimensional simulations with
a large number of grid cells, which is typical for DNS, is prohibitively expensive. For the case
of a channel flow however, one can take the advantage of the two periodic directions, i.e. the
streamwise and the spanwise directions. These directions have to be equidistantly discretized,
which is often the case in the simulation of a turbulent channel flow. Fast Fourier transforming
its both sides, the three-dimensional Poisson equation (4.7) reduces to a tridiagonal system
in the wall-normal direction for each wavenumber. A tridiagonal system can be efficiently
solved by the TDMA algorithm. The details of such an FFT-based solver can be found in
[24, 81].

Our numerical experiments show that the SIP solver is faster than the direct solver, though
the latter leads to a smaller divergence of the velocity field. Therefore, we chose to use the
SIP solver due to its computational efficiency.

4.1.5. Numerical Grid

MGLET uses a staggered arrangement of variables within an orthogonal non-equidistant Carte-
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Figure 4.1: Stability diagrams for explicit Euler and third-order Runge-Kutta (RK3) methods.
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sian grid. A staggered arrangement of flow variables means that the pressure and the passive
scalars (if any) are stored at the cell centers, while the velocity components are stored at the
cell faces. This situation is shown in figure 4.2. In our implementation, the non-Newtonian
stress τNN is also stored at pressure nodes, i.e. at the cell centers. Let

�

x i, y j, zk

�

and
�

x i+1, y j+1, zk+1

�

denote the position of the pressure nodes
�

i, j, k
�

and
�

i+ 1, j+ 1, k+ 1
�

,
respectively. The Cartesian components of the velocity vector Ui jk, Vi jk and Wi jk are respec-
tively stored at

�

x i+1/2, y j, zk

�

,
�

x i, y j+1/2, zk

�

and
�

x i, y j, zk+1/2

�

with

x i+1/2 =
x i + x i+1

2
, (4.17)

y j+1/2 =
y j + y j+1

2
, (4.18)

zk+1/2 =
zk + zk+1

2
. (4.19)

The use of staggered grids in computational fluid dynamics has been introduced by Harlow
and Welch in 1965 [45]. Since then, it has been extensively used in numerical simulations of
the Navier-Stokes equations, especially for incompressible flows. It has two main advantages
as compared to a collocated arrangement of the flow variables. First, it does not lead to the
even-odd decoupling and spurious oscillations in pressure. These oscillations can occur in a
collocated grid if the central difference scheme is used, though they can be avoided by the
Rhie-Chow interpolation scheme [110]. Second, the use of a staggered grid allows us not to
specify explicit boundary conditions for the solution of the Poisson equation in the projection
method [57]. There are also flow solvers based on spectral methods that do not require ad
hoc boundary conditions for pressure on non-staggered grids [82]. But this is not often the
case for non-spectral flow solvers.
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Figure 4.2: Cartesian grid with staggered arrangement of flow variables. Shown is the cell i, j, k.
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4.2. Fiber Dynamics Solver

A framework for the simulation of fiber dynamics has been implemented and merged with
MGLET, and has been coupled to the existing DNS solver explained above. It consists of several
parts that are described in this section.

4.2.1. General Framework

The general framework of the fiber suspension simulator is explained in this subsection, and its
constituents are presented in more detail in the subsequent subsections.

The fibers are treated in a Lagrangian manner. The Lagrangian particles are initialized
within the flow domain. At each time step, the velocity vector and the velocity gradient ten-
sor at the position of every particle are computed by interpolating and differentiating from
the Eulerian velocity field. Using the velocity gradient tensor, the conformation of fibers is
computed by a Monte-Carlo method. We have also developed a moment approximation solver
which requires a moment closure model. Since the performance of the closure model is ques-
tionable (see subsection 4.4.2), we chose to use the direct Monte-Carlo solver in this thesis.
The fiber conformation is used to calculate the Lagrangian field of the non-Newtonian stress at
particle positions. The Lagrangian field of the non-Newtonian stress is then transferred to the
pressure nodes to obtain the Eulerian field of the non-Newtonian stress, which is supplied to
the DNS solver. At this point, the position of the Lagrangian particles is advanced by using the
Lagrangian velocity field. Afterwards, the boundary conditions are enforced to the particles.
Finally, one time step of the DNS solver is performed. The same time step size ∆t is used for
the time advancement of the flow field, fiber conformation and particle position. These steps
are explained in details in the subsequent subsections.

4.2.2. Particle Tracking Method

Our Lagrangian simulation of fibers is based on a particle tracking method. The translational
inertia and the spatial Brownian motion of particles are neglected in the present work, as
discussed in section 3.1. Therefore, the change in the position of a particle is governed by the
following kinematic relation:

dxp

dt
= U

�

xp, t
�

, (4.20)

with the initial condition

xp (t = 0) = xp,0. (4.21)

U
�

xp, t
�

is the fluid velocity at the particle position xp and at the time instant t. Equation
(4.20) is integrated in time using an explicit Euler scheme:

xn+1
p = xn

p +∆t ·U
�

xn
p, tn
�

, (4.22)
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where n is the known time level and n+1 is the unknown time level.
The carrier fluid velocity field is given by the DNS solver on an Eulerian grid. However,

at each time step, the Lagrangian velocity field at the position of all particles is required for
the solution of equation (4.20). The Lagrangian velocity field is obtained by interpolating
from the Eulerian DNS field. Various interpolation schemes can be used for this purpose. The
effect of such interpolation has been studied in the literature. Yeung and Pope [134] have
studied interpolation schemes based on Taylor series expansion and cubic splines in a spec-
tral simulation of isotropic turbulence, and concluded that accurate estimates of Lagrangian
statistics can be obtained by either third-order Taylor series interpolation or cubic splines. Bal-
achandar and Maxey [5] have investigated the Lagrangian velocity interpolation in a spectral
simulation of isotropic turbulence with different schemes. They found out that for poorly re-
solved simulations, one needs a highly accurate interpolation scheme. But if the simulation is
well resolved, a lower order scheme performs well. Kontomaris et al. [62] have studied the
velocity interpolation scheme in a spectral simulation of turbulent channel flow. They used
Lagrange polynomials up to order six in the periodic directions and Chebyshev polynomials
in the wall-normal direction, and found out that the particle statistics is well represented in
the channel. Terrapon [125] has studied the effect of different interpolation schemes on the
Lagrangian simulation of polymer-induced turbulent drag reduction in a channel flow. His
observation was that the difference between various schemes is modest in contrary to the
above-mentioned reports. His argument was that his flow solver uses a second-order finite
difference method while the studies before were all using spectral methods. In the present
work, we use a second-order mass-conservative interpolation scheme developed by Meyer
and Jenny [79], and implemented in MGLET by Gobert [41].

The velocity gradient tensor at each particle position is needed in order to compute the
fiber conformation. It is computed at the cell corners by using a fourth-order scheme. Then,
third-order Lagrange polynomials are used to interpolate the velocity gradient tensor at the
particle positions. This scheme ensures the continuity of the velocity gradient tensor in time. It
has been developed and implemented in MGLET by Manhart [71].

The boundary conditions for particles are the following. Periodicity is assumed in stream-
wise and spanwise directions. This means that if a particle leaves the computational domain
from one side, it enters the domain from the opposite side. In the wall-normal direction, a
bouncing condition is enforced at the walls. This means that if a particle hits the wall, it comes
back to the domain with opposite velocity in the wall-normal direction, i.e. a fully elastic im-
pact to the wall is assumed. This is justified because fluid particles are being transported in
our simulations.

4.2.3. Monte-Carlo Simulation

Our approach to compute the fiber conformation in the present work is the Monte-Carlo
method. It is basically a stochastic simulator of the Fokker-Planck equation (3.15). The
method has been developed by Manhart [71, 72]. It has been validated in simple flows
[70, 71], and used in one-way coupled simulations to study the rheology [71] and viscoelastic
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behavior [72] of dilute Brownian fiber suspensions in a turbulent channel flow. The validation
has been done by comparing the results with the analytical solution of Okagawa et al. [98],
and the experiments of Frattini and Fuller [33]. In the following, we present the principles of
the Monte-Carlo solver.

The Monte-Carlo simulator is based on the Jeffery equation

Dn

Dt
= Ω ·n+κ [D ·n− (n ·D ·n)n] +Γ (t) , (4.23)

to which a stochastic term Γ (t) is added. The stochastic term represents the rotary Brownian
motion. Strictly speaking, the stochastic process that is used to simulate a Brownian motion
is not differentiable. Therefore, equation (4.23) should be written in the form of a Langevin
equation:

dn= µ (n, t)dt +σ (n, t)dWt , (4.24)

where the first and the second terms in the right-hand side represent the drift and the diffusion
terms in the Fokker-Planck equation (3.15), respectively. They are given by

µ (n, t) = Ω ·n+κ [D ·n− (n ·D ·n)n] (4.25)

σ (n, t) =
p

2Dr . (4.26)

In equation (4.24), dWt is the increment of a three-dimensional Wiener process Wt that is
used to numerically simulate the diffusion term in the Fokker-Planck equation (3.15) [100].
A Wiener process Wt has the following properties:




Wt
�

= 0,
¬

Wt1
Wt2

¶

=min
�

t1, t2

	

1, t1 6= t2. (4.27)

The increment of a Wiener process dWt possesses the following properties:




dWt
�

= 0,



dWt dWt
�

= |dt|1, dWt =Wt+dt −Wt . (4.28)

The second moment (the mean-square) of the increment of a Wiener process grows linearly
with the time interval dt. This means that it describes a diffusion process [100]. A single
realization of a one-dimensional Wiener process is shown in figure 4.3. It can be seen that the
Wiener process Wt belongs to the class of C 0 functions, i.e. it is continuous in time while it is
not differentiable with respect to time.

A Wiener process is a Markov process [63] and hence, the orientation vector n (t) obtained
by solving equation (4.24) is also a Markov process. A Markov process is a stochastic process
whose state at a next time level t + dt does not depend on the history of the process on
[0, t], but only on the current time level t. This means that in order to integrate equation
(4.24), we do not need to store the whole history of the orientation vector n, but rather use
a standard single step time integrator, e.g. the explicit Euler scheme, to numerically integrate
from n (t) to n (t + dt). The solution of the Langevin equation (4.24) at time instant t is given
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Figure 4.3: One realization of a one-dimensional Wiener process.

by

n (t) = n0+

∫ t

0

µ
�

n, t ′
�

dt ′+

∫ t

0

σ
�

n, t ′
�

dWt ′ , (4.29)

where n0 is the initial condition. Equation (4.29) defines an Itô process with the drift term
expressed as an integral in time:

∫ t

0

µ
�

n, t ′
�

dt ′,

and the diffusion term expressed as an Itô integral, i.e. an integral with respect to the Wiener
process:

∫ t

0

σ
�

n, t ′
�

dWt ′ .

A single explicit Euler time step of the Langevin equation (4.24) is obtained by integrating
from t to t +∆t:

n (t +∆t) = n (t) +µ (n (t) , t)∆t +σ (n (t) , t)dWt . (4.30)

The increment of the Wiener process dWt can be simulated by a random number generator
with a uniform distribution [100, 71]. Such a random number generator is usually available
in computer programming languages, e.g. the random_number subroutine in FORTRAN. Other-
wise, one can implement his own random number generator subroutine, as is done in MGLET.
The intensity of the uniform random numbers used to simulate the Wiener process in equation
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(4.30) is given by [100, 71]

Buni =
p

12∆t . (4.31)

This means that the diffusion term σdWt in equation (4.30) can be simulated by a set of
uniform random numbers with the intensity

Buni,d = σBuni =
p

24∆tDr , (4.32)

which solely depends on the Brownian diffusivity Dr and the time step size∆t.
We have proved in section 3.3 that the Jeffery equation preserves the length of the orien-

tation vector n. It shall be noted here that this does not hold in general when the stochastic
term Γ is added to the Jeffery equation, i.e.

1

2

Dn ·n
Dt

= Γ ·n. (4.33)

This means that the length of n is preserved if the stochastic term and the orientation vector
are orthogonal, i.e. Γ⊥ n or Γ ·n= 0. Alternatively, one can normalize the orientation vector
n at each time step so that its length remains unity. This approach is taken in the present
work and it is proved in [71] that it yields the exact solution of the Fokker-Planck equation in
simple flows. There is also a possibility to write the Langevin equation (4.24) in such a way
that it preserves the length of n. We do not use such an approach in this work and thus, it is
not discussed any further.

From the rheological theory of Brenner [11], as discussed in section 3.6, the non-Newtonian
stress tensor that is needed for the momentum equation (4.12) depends on the second and
fourth moments of the fiber orientation distribution function. Thus, one has to compute
the second and fourth moments which depend on the orientation distribution function. Our
Monte-Carlo simulator solves the Langevin equation (4.24) for an ensemble of Nf sampling
fibers. The orientation distribution function Ψ can be computed from the ensemble of the
sampling fibers via

Ψ(ñ) =
1

Nf

N f
∑

i=1

δ
�

ñ− ni
�

, (4.34)

where δ is the Dirac delta function, ñ is a specific orientation at which the orientation distribu-
tion function is evaluated, and ni is the orientation of an individual sampling fiber. Definition
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(4.34) satisfies the normalization condition (3.16), namely

∫∫

S

Ψ(ñ)dS (ñ) =

∫∫

S

1

Nf

N f
∑

i=1

δ
�

ñ− ni
�

dS (ñ)

=
1

Nf

N f
∑

i=1

∫∫

S

δ
�

ñ− ni
�

dS (ñ)

=
1

Nf

N f
∑

i=1

1=
1

Nf
·Nf = 1.

(4.35)

Introducing the orientation distribution function (4.34) to the definition of the second moment
(3.18) yields

〈nn〉Ψ =
∫∫

S

ññ Ψ(ñ)dS (ñ) =

∫∫

S

ññ
1

Nf

N f
∑

i=1

δ
�

ñ− ni
�

dS (ñ)

=
1

Nf

N f
∑

i=1

∫∫

S

ññ δ
�

ñ− ni
�

dS (ñ) =
1

Nf

N f
∑

i=1

ni ni

(4.36)

The derivation is similar for the fourth moment. Thus, the second and fourth moments of
the orientation distribution function which are required to compute the non-Newtonian stress
tensor are given by

〈nn〉Ψ =
1

Nf

N f
∑

i=1

ni ni, (4.37)

〈nnnn〉Ψ =
1

Nf

N f
∑

i=1

ni ni ni ni. (4.38)

In our implementation, we directly compute D : 〈nnnn〉Ψ instead of 〈nnnn〉Ψ. This is done for
the sake of CPU-time efficiency and reduction in memory requirements.

Equations (4.37) and (4.38) mean that the moments are computed by ensemble averaging
over the set of the sampling fibers. The number of sampling fibers Nf has to be sufficiently
large in order to obtain accurate moments. The accuracy of the method depends on the num-
ber of samples, like any other Monte-Carlo method. Manhart [71] has studied the convergence
with respect to the number of samples Nf .

The initial condition of the fiber orientation in all simulations presented in this work is a
uniform (isotropic) state which corresponds to the following constant orientation distribution
function

Ψ=
1

4π
. (4.39)
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This is achieved by uniformly distributing the sampling fibers over the surface of the unit
sphere S.

At each Lagrangian particle, the non-Newtonian stress tensor and hence the second and
fourth moments are to be computed. This task requires an ensemble of Nf fibers to be trans-
ported with the Lagrangian particles. It means that the Lagrangian Monte-Carlo simulation
consists of Np Lagrangian particles (pathlines), each of which carrying an ensemble of Nf sam-
pling fibers. This strategy is schematically depicted in figure 4.4.

4.2.4. Moment Approximation Simulation

The second and fourth moments of the orientation distribution function are needed for the
computation of the non-Newtonian stress tensor. Therefore, one can use the moment evolu-
tion equation (3.24) to directly compute the required moments at a cheaper computational
cost. The problem is that the moment evolution equation (3.24) is not mathematically closed,
and one has to seek an appropriate closure model. There exist several such models, as al-
ready discussed in subsection 3.5. The accuracy of these closures in a complicated, three-
dimensional, unsteady, vortical, turbulent flow is indeed questionable. The numerical solution
of the moment approximation equation (3.24) is performed in a Lagrangian frame of refer-
ence. This means that each Lagrangian particle (on a pathline) carries the second moment
〈nn〉Ψ of the orientation distribution function. This concept is schematically shown in figure
4.5.

Here, we present the time integration of the moment approximation equation (3.24) us-
ing the explicit Euler scheme. We have implemented the second- and third-order Runge-Kutta
schemes as well. Our numerical tests show that the explicit Euler scheme is stable and pro-
duces accurate results. Therefore, we chose to use the explicit Euler method due to its lower
computational cost. A single explicit Euler time step of the moment approximation equation
(3.24) reads

〈nn〉n+1
Ψ = 〈nn〉nΨ+∆t

h

Ωn · 〈nn〉nΨ+ 〈nn〉nΨ ·Ω
T,n

+κ
�

Dn · 〈nn〉nΨ+ 〈nn〉nΨ ·D
n− 2Dn : 〈nnnn〉nΨ

�

+ 2Dr
�

1− 3 〈nn〉nΨ
�

i

,

(4.40)

where the superscripts n and n + 1 indicate the known quantities at the current time level
and the unknown quantities at the next time level, respectively. The rotation-rate tensor Ωn

and the strain-rate tensor Dn are provided by the DNS, and then interpolated to the particle
positions, similar to the Monte-Carlo solver. The fourth moment 〈nnnn〉nΨ is computed from
the second moment 〈nn〉nΨ using a moment closure model, as discussed in subsection 3.5. The
uniform orientation state described by the constant orientation distribution function (4.39)
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Figure 4.4: Schematic sketch of the Lagrangian Monte-Carlo simulation within the background Eule-
rian DNS grid. Shown is the Lagrangian path of a particle which carries an ensemble of
sampling fibers.

corresponds to the following isotropic second moment
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, (4.41)

which is used as the initial condition to solve the second moment evolution equation (3.24).

<nn>

Figure 4.5: Schematic sketch of the Lagrangian moment approximation simulation within the back-
ground Eulerian DNS grid. Shown is the Lagrangian path of a particle which carries the
second moment 〈nn〉Ψ.
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4.2.5. Computation of Non-Newtonian Stress

Once the second and fourth moments of the orientation distribution function are computed, ei-
ther by the Monte-Carlo solver or by the moment approximation method, the non-Newtonian
stress tensor at each particle position is computed using the constitutive equation (3.48)
of Brenner [11], as discussed in section 3.6. Equation (3.48) is a tensorial algebraic equa-
tion and hence, the non-Newtonian stress is computed in a straightforward manner without
any difficulty. This leads to the Lagrangian field of the non-Newtonian stress. However, our
DNS solver works in an Eulerian frame and requires the Eulerian field of the non-Newtonian
stress.

Transition from the Lagrangian to the Eulerian field of τNN can be done in a multitude of
ways, e.g. interpolation and averaging procedures. Manhart [74] has employed an interpola-
tion scheme for this purpose. In the present work, we use an averaging procedure. A similar
approach has been used by Terrapon [125] for the Lagrangian simulation of turbulent drag
reduction by flexible polymers. In the following, the averaging procedure for a generic finite
volume cell is explained.

Consider a two-dimensional finite volume cell, as depicted in figure 4.6. We use a two-
dimensional cell for the sake of simplicity. The three-dimensional situation will be similar.
Assume that Npc Lagrangian particles exist in this specific cell at a specific time step. The non-
Newtonian stress tensor τNN

p is known at each particle position. The non-Newtonian stress
tensor assigned to the pressure node (cell center) is obtained by averaging over all particles
within the cell:

τNN =
1

Npc

Npc
∑

p=1

τNN
p . (4.42)

The averaging procedure is justified because the nodal value represents the cell-averaged

Figure 4.6: Two-dimensional finite volume cell. Filled circle represents the pressure node and the
hollow circles represent the Lagrangian particles.
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quantity in a finite volume context.
This procedure needs at least one Lagrangian particle per finite volume cell. There are

different ways to guarantee this requirement. Terrapon [125] used a particle construction-
destruction algorithm. In this manner, if a computational cell contains a lot of particles, the
redundant particles are removed in order to reduce the computational overhead. On the
other hand, if a computational cell contains too few particles, the additional particles are con-
structed from the neighboring particles. Another approach, which is used in this work, is to
start with a sufficiently large number of particles to ensure the existence of the minimum re-
quired particles in each and every finite volume cell. The former procedure is computationally
more efficient, but it introduces numerical diffusion [125].

4.3. Parallelization

The direct numerical simulation reported in this work is performed using 2097 152 grid cells
with the second-order version of MGLET. The Monte-Carlo simulations contain 65 536000 par-
ticle clusters with each cluster having 100 sampling fibers. This results in a total number of
6553 600000 fibers. Each fiber has three degrees of freedom, i.e. three components of n.
These numbers show that the reported simulation demands a great amount of computational
resources. It cannot be done on a serial machine in a timely manner. For example, Gillissen et
al. [39] have pointed out that 100 years of CPU time are required to accomplish a Lagrangian
simulation of fiber-induced drag reduction in a channel flow on a single AMD Opteron 2 GHz
processor using their code. Thus, we have performed the simulations on a massively paral-
lelized machine, SGI-Altix HLRB2, available at the Leibniz supercomputing center (LRZ) in
Munich. We have used 128 processing elements for the Monte-Carlo simulation. The paral-
lelization strategy is explained in the sequel.

We parallelize the code based on the Lagrangian paths. This means that each processing
element computes a DNS of the whole Eulerian field plus a portion of the Lagrangian par-
ticles. This is justified because most of the CPU-time is spent in the Lagrangian part of the
computation. A complete time step of our parallel solver is done in the following way. All pro-
cessing elements perform a time step of the Lagrangian calculation and compute the Eulerian
field of the non-Newtonian stress by averaging. Then, they communicate the Eulerian field of
the non-Newtonian stress so that all processors receive the complete field. At this stage, each
processor is able to perform a time step of the Eulerian DNS. Since the communication is over
the Eulerian non-Newtonian stress, it does not depend on the number of particles, but rather
on the number of finite volume cells. This means that we have a constant communication
time regardless of the number of particles, if the number of finite volume cells does not vary.
The parallelization is done in this manner because the number of particles can be orders of
magnitude more than the number of finite volume cells. The message passing interface (MPI)
library is used in this work for the parallelization.

Table 4.1 shows the CPU-time of the different parts of the computation in a single time
step of the Monte-Carlo simulation. In this table, search index is the procedure to find the
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cell in which a specific particle is located. This is done for all particles at each time step.
It can be seen that most of the CPU-time in the Monte-Carlo simulation is dedicated to the
communications (32.6%) and the computation of the second and fourth moments (16.4%
each) by ensemble averaging.

Table 4.1: CPU-time profile of the Monte-Carlo solver with 1283 grid points on 128 processing ele-
ments each of which computing 512000 particle clusters, each cluster having 100 sampling
fibers.

Procedure CPU-time [s]

Search index 0.10
Lagrangian velocity 0.54
Lagrangian velocity gradient 1.39
Jeffery’s equation 1.80
Second moment 〈nn〉Ψ 4.53
Fourth moment 〈nnnn〉Ψ 4.53
Lagrangian non-Newtonian stress 0.10
Eulerian non-Newtonian stress 1.51
Communication 9.02
Non-Newtonian stress statistics 1.0
Particle position advancement 0.004
Particle boundary condition 0.004
DNS 3.10
Total 27.63

4.4. Validation

Validation of the numerical methods and the computer code implementation of the above-
mentioned algorithms is done in three stages. In subsection 4.4.1, we present the DNS of a
Newtonian channel flow at a nominal shear Reynolds number Reτ = 180, and compare its
results with reference data from the literature. The validation of the Monte-Carlo solver in a
simple shear flow is presented in subsection 4.4.2. The results of the moment approximation
solver are also shown in subsection 4.4.2 for comparison. Finally, in subsection 4.4.3, we
validate our proposed two-way coupled solver for fiber suspensions in a channel flow at the
limit of zero rotary Péclet number.

4.4.1. DNS of Newtonian Turbulent Channel
Flow

A fully-developed turbulent channel flow at a nominal shear Reynolds number Reτ = 180 is
directly simulated. This specific Reynolds number is chosen to match the reference DNS data
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of Kim et al. [58] (referred to as “KMM 1987” hereafter) and Moser et al. [94] (referred to
as “MKM 1999” hereafter) for which an online statistical database is available [95]. The sim-
ulation is performed using the second-order version of MGLET. The size of the computational
box and the grid resolution of the simulation are reported in table 4.2, and compared with
those of the reference DNS’s. ∆z+min is very small in the reference spectral simulations due to
the Chebyshev-tau formulation they have used.

The mean velocity profile in inner layer scaling is plotted in figure 4.7, and compared with
the reference DNS data. A good agreement among the profiles is observed. The guidelines
in figure 4.7 are the linear law 〈U〉+ = z+ and the von Kármán logarithmic law 〈U〉+ =
2.5 ln z++ 5.5.

In order to validate the second-order statistics, turbulence intensities u+rms, v+rms and w+rms

are plotted in figures 4.8, 4.9 and 4.10, respectively. The agreement between our results and
the reference solution is good but not excellent. It should be noted that the reference solution

Table 4.2: Computational domain size and grid resolution for DNS of turbulent channel flow at Reτ =
180.

Simulation Lx L y Lz Nx Ny Nz ∆x+ ∆y+ ∆z+min

Present 3πh 2πh 2h 128 128 128 13.25 8.84 0.675

KMM 1987 4πh 2πh 2h 192 160 129 11.78 7.07 0.054

MKM 1999 4πh 4
3
πh 2h 128 128 129 17.67 5.89 0.054
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Figure 4.7: Mean velocity profiles in inner layer scaling compared with reference DNS data of KMM
1987 [58] and MKM 1999 [94] at Reτ = 180.
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is obtained by a highly resolved spectral simulation.
Figure 4.11 shows the one-dimensional energy spectrum in the streamwise direction at

wall distance z+ = 10, compared with the reference DNS of MKM 1999 [94]. The spectra are
normalized by the energy of the first wavenumber, and averaged in the spanwise direction.
The agreement is good. At the end of the spectrum, at high wavenumbers, the spectrum of our
second-order code drops much faster than that of the spectral code. This behavior is typical
for low-order methods [51].

Finally, in table 4.3, we present the bulk flow variables obtained from our DNS and com-
pare them with the DNS data of Kim et al. [58]. The reference DNS data have been validated
by comparison with the experimental data compiled by Dean [19]. The agreement between
our results and the reference DNS data is good within less than 2% relative error. The only
exception is the Reynolds number Rec based on the centerline velocity Uc with 2.62% relative
error. The source of errors is mainly conjectured to be the difference between the codes and
grid resolutions. Kim et al. used a fully spectral code with about 4×106 grid points (spectral
modes) while we use a second-order finite volume code with 2.1×106 computational cells.
The other difference is that their code adjusts the mean pressure gradient such that a nomi-
nally constant bulk velocity is achieved. Our code however, works with a constant pressure
gradient.

Some terms in table 4.3 have to be clarified. Uc is the mean centerline velocity. C f and C f0
are the friction coefficients based on the bulk and centerline velocities, respectively. δ∗ and θ
are the displacement and momentum thicknesses of the boundary layer, respectively, and are
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Figure 4.8: Streamwise turbulence intensity in inner layer scaling compared with reference DNS data
of KMM 1987 [58] and MKM 1999 [94] at Reτ = 180.
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Figure 4.9: Spanwise turbulence intensity in inner layer scaling compared with reference DNS data of
KMM 1987 [58] and MKM 1999 [94] at Reτ = 180.
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Figure 4.10: Wall-normal turbulence intensity in inner layer scaling compared with reference DNS
data of KMM 1987 [58] and MKM 1999 [94] at Reτ = 180.

defined by

δ∗ =

∫ h

0

�

1−
〈U〉
Uc

�

dz, θ =

∫ h

0

〈U〉
Uc

�

1−
〈U〉
Uc

�

dz. (4.43)

H = δ∗/θ is the boundary-layer shape factor.
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Figure 4.11: One-dimensional energy spectrum in streamwise direction at z+ = 10, compared with
reference DNS data of MKM 1999 [94] at Reτ = 180. Spectra are normalized by the
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Figure 4.12: Schematic geometry of simple shear flow.
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Table 4.3: Bulk flow variables compared with DNS data of Kim et al. [58].

Variable Present DNS Kim et al. DNS Relative error

Reτ =
uτh

ν
178.17 180 1.01%

Rec =
Uch

ν
3214 3300 2.62%

Reb =
Ub2h

ν
5543 5600 1.01%

Ub

uτ
15.556 15.63 0.48%

Uc

uτ
18.037 18.20 0.90%

Uc

Ub
1.1595 1.16 0.04%

C f =
τw

1
2
ρU2

b

8.265× 10−3 8.18× 10−3 1.04%

C f0 =
τw

1
2
ρU2

c

6.148× 10−3 6.04× 10−3 1.79%

δ∗

h
0.139 0.141 1.62%

θ

h
0.0873 0.087 0.38%

H =
δ∗

θ
1.59 1.62 1.95%
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4.4.2. Validation of the Fiber Orientation
Solvers

In this subsection, we validate the developed fiber orientation solvers in a simple shear flow,
i.e. the flow between two parallel walls in the absence of a pressure gradient. The bottom
wall is kept at rest while the top wall is moving with a constant velocity U in x direction. The
flow depth in y direction is infinity. The distance between two walls is h. In a simple shear
flow, the only non-zero velocity component is the streamwise one, and it is a linear function
of the wall distance z, i.e. u = γ̇z, in which γ̇ = U/h is the constant shear rate. This flow
configuration is schematically sketched in figure 4.12.

For the case of non-Brownian fibers, Jeffery [54] has analytically shown that a suspended
fiber rotates periodically with the time period

T =
2π
�

r + r−1�

γ̇
. (4.44)

Okagawa et al. [98] have analytically solved the Fokker-Planck equation for a dilute suspen-
sion of non-Brownian fibers in a simple shear flow. They have obtained the following orien-
tation distribution as a function of time and the azimuthal and zenithal angles of spherical
coordinate:

Ψ =
1

4π
�

cos2 ϑ+Λ2 sin2 ϑ
� , (4.45)

Λ2 = Λ1 sin2ϕ+
1

2
Λ2 sin2ϕ+Λ3 cos2ϕ, (4.46)

Λ1 =
1

2

�

1+
1

r2 +
�

1−
1

r2

�

cos
4πt

T

�

, (4.47)

Λ2 =
�

1

r
− r
�

sin
4πt

T
, (4.48)

Λ3 =
1

2

�

1+ r2+
�

1− r2
�

cos
4πt

T

�

, (4.49)

where T is the Jeffery period given by equation (4.44). The analytical solution (4.45) corre-
sponds to a uniform initial condition Ψ(t = 0) = 1/4π. This can be verified by setting t = 0
in equations (4.45) to (4.49).

Figure 4.13 shows the distribution of the sampling fibers over the unit sphere for non-
Brownian fibers in a Jeffery half-period, obtained by the Monte-Carlo solver. Starting from a
uniformly distributed state, as shown in figure 4.13a, we observe that the fibers are getting
more and more oriented with the shear direction in time. This behavior continues until t =
T/4 (see figure 4.13d) and then, the fiber orientation changes towards a uniform state again.
The orientation state exactly reaches the initial condition at time t = T/2. This periodicity
is observed only for non-Brownian fibers corresponding to Per → ∞, with the rotary Péclet
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number defined as

Per =
γ̇

Dr
. (4.50)

At this stage, we present the second moment 〈nn〉Ψ computed by the Monte-Carlo and the
moment approximation solvers, and compare it with the analytical solution (4.45). The fiber
aspect ratio is r = 5. The Monte-Carlo solver runs with 1000 sampling fibers. The moment ap-
proximation solver runs with the quadratic, hybrid and IBOF closure models. Figures 4.14 and
4.15 show the




n1n1

�

Ψ and



n1n3

�

Ψ components of 〈nn〉Ψ. The Monte-Carlo result perfectly
matches the analytical solution. The IBOF result can be hardly seen as it almost coincides with
the Monte-Carlo solution. Hybrid closure overpredicts




n1n1

�

Ψ and under predicts the Jeffery
period. The quadratic closure also overpredicts




n1n1

�

Ψ, even more than the hybrid closure,
but it correctly predicts the Jeffery period. The same behavior is seen in other components of
〈nn〉Ψ and hence, are not presented here.

The performance of fiber orientation solvers in the presence of Brownian motion is in-
vestigated by looking at the fiber orientation in a simple shear flow at Per = 100. In this
case, the fiber orientation is not periodic in time. Figures 4.16 and 4.17 show the




n1n1

�

Ψ

and



n1n3

�

Ψ components of 〈nn〉Ψ for Per = 100. None of the closure models can reproduce
the Monte-Carlo results. Still, the IBOF closure yields the most accurate results among all
investigated closure models at the highest computational cost. The noise in the Monte-Carlo
result is due to the stochastic term (Wiener process) which is simulated by random numbers.
A smoother curve can be obtained by using more sampling fibers, at a higher computational
cost.

More detailed results on the validation of the Monte-Carlo solver including the effect of
time step size and the number of samples can be found in [70, 71]. Further information
on the performance of the closure models in simple and turbulent flows can be found in
[102, 104, 38, 89, 87]
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Figure 4.13: Instantaneous orientation distribution of non-Brownian particles on the unit sphere ob-
tained by the direct Monte-Carlo simulation with 500 particles in a Jeffery half period
T/2.
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Figure 4.13: Instantaneous orientation distribution of non-Brownian particles on the unit sphere ob-
tained by the direct Monte-Carlo simulation with 500 particles in a Jeffery half period
T/2 (continued).
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4.4.3. Validation of the Two-Way Coupled
Solver

It has been shown in subsection 3.6.1 that the fiber suspension behaves similar to a Newtonian
fluid with a higher viscosity at the limit of Per → 0. The increase in viscosity is given by
equation (3.62). The fiber aspect ratio and volume fraction can be chosen such that the
increased viscosity in the limit of Per → 0 results in a laminar flow. The analytical solution of
the Navier-Stokes equations for laminar channel flow reads

〈U〉 (z) =−
1

µeff

d



p
�

dx
hz
�

1−
z

2h

�

. (4.51)

Equation (4.51) shows that a negative pressure gradient d



p
�

/dx results in a positive velocity
〈U〉 in the streamwise direction x .

This provides a benchmark with an analytical solution that can be used to validate our two-
way coupled fiber suspension solver. To this aim, a simulation is conducted by setting r = 150
and φ = 0.01 at the limit of Per → 0. In the following simulation, the Brownian contribution
to the stress, i.e. the term proportional to Q4 in equation (3.62), has been switched off and
thus, the relative effective viscosity reads

µeff

µ
=
�

1+
5

2
φ

�

2Q0+
2

15
Q2+

4

3
Q3

��

. (4.52)

This is justified because we do not extract physical arguments on this flow here, and it is only
used for the validation of the coupling algorithm and parallelization. Equation (4.52) yields a
numerical value of µeff/µ= 4.584 for the above-mentioned parameters.

The computed bulk velocity is Ub = 0.835 m/s which is in line with the analytical value of
Ub = 0.829 m/s within 0.72% relative error. The analytical value is obtained by

Ub =
1

2h

∫ 2h

0

〈U〉 (z)dz =−
1

3µeff

d



p
�

dx
h2. (4.53)

The computed maximum velocity at the centerline is Uc = 1.245 m/s which is within 0.12%
relative error to the analytical value Uc = 1.2435 m/s. The analytical value is evaluated from
the analytical solution (4.51):

Uc = 〈U〉 (z = h) =−
1

2µeff

d



p
�

dx
h2. (4.54)

The laminar parabolic velocity profile obtained from the developed DNS solver is plotted in
figure 4.18, and compared with the analytical solution (4.51). A very good agreement is
observed.

In addition to the velocity profile, one can inspect the shear stress profiles across the
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Figure 4.18: Velocity profile of fiber suspension in channel flow with volume fraction φ = 0.01 and
fiber aspect ratio r = 150 at Per → 0, compared with the analytical solution.

channel width. The total shear stress
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, (4.55)

is composed of the Newtonian contribution

¬

τN
13

¶

= µ
d 〈U〉

dz
, (4.56)

and the non-Newtonian contribution
¬

τNN
13

¶

. At the limit of Per → 0, which is investigated
here, we have

¬

τNN
13

¶

= µNN d 〈U〉
dz

, (4.57)

in which µNN = µeff−µ. The computed shear stress profiles are shown in figure 4.19, and are
compared with the corresponding analytical profiles. The shear stress balance can be used as
an indicator of the statistical steady state [58]. Thus, the match between the computed and
the analytical profiles also indicates that the statistical steady state has been reached in our
simulation.

4.5. Summary

A numerical algorithm is presented for the simulation of dilute fiber suspensions in turbulent
flows. It is based on an Eulerian DNS solver for the non-Newtonian incompressible Navier-
Stokes equations and a Lagrangian particle tracking solver for the suspended fibers. Two
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Figure 4.19: Shear stress profiles of fiber suspension in channel flow with volume fraction φ = 0.01
and fiber aspect ratio r = 150 at Per → 0, compared with the analytical solution.

particle solvers have been developed to compute the fiber conformation, i.e. a direct Monte-
Carlo solver and a moment approximation one. The Eulerian DNS and the particle solvers
are two-way coupled. The principles of the solvers and the coupling procedure are explained.
Due to the tremendous amount of computational burden, the code is parallelized. The paral-
lelization algorithm and the time profiling of the simulation are presented. Finally, the method
and the code are validated. The validation is shown in three parts for the flow solver, fiber
conformation solvers and the two-way coupled solver.
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5. Monte-Carlo Simulation of Turbulent
Drag Reduction in Channel Flow

In this chapter, we present the results of the Monte-Carlo simulation of turbulent drag reduc-
tion by rigid fibers in a channel flow at Reτ = 180. The numerical algorithm has been ex-
plained in the previous chapter. For the Monte-Carlo simulation, we use the second-order ver-
sion of MGLET with the SIP iterative solver for the Poisson equation.

This chapter is organized as follows. The simulation parameters including the fiber param-
eters, computational domain and grid resolution are presented in the next section. Section
5.2 contains the results of the direct Monte-Carlo simulation of turbulent drag reduction in
a channel flow using rigid fibers. The results are presented in the following subsections;
The mean velocity profile in subsection 5.2.1, turbulence intensities and the Reynolds shear
stress in subsection 5.2.2, the total shear balance in subsection 5.2.3, the quadrant analy-
sis in subsection 5.2.5, the probability density function of fluctuating velocities in subsection
5.2.6, the Lumley anisotropy map in subsection 5.2.7, the pressure-strain correlation in sub-
section 5.2.8, the analysis of the pressure-strain correlation using a Green’s function solution
of the Poisson equation in subsection 5.2.9, the analysis of the strain fluctuations in subsection
5.2.10, the vorticity field in subsection 5.2.11 and the near-wall partial enstrophy in subsec-
tion 5.2.12.

5.1. Simulation Parameters

This section contains detailed information on numerical and physical parameters of the pre-
sented simulation.

The reported simulation is performed on 128 processing elements of the SGI-Altix HLRB2
machine at the Leibniz Supercomputing Center (LRZ) in Munich. A fully-developed Newto-
nian channel flow at a nominal shear Reynolds number Reτ = 180 is used as the initial condi-
tion for the fibrous flow. After the introduction of fibers, the flow has developed over a period
of 30 flow-through time units tFT = Lx/Ub. Following this development time, turbulence
statistics have been collected for a period of about 65 flow-through time units. The sampling
is performed at every 40th time step. The non-dimensional time step size is ∆t ·Ub/h= 0.01
that ensures CFL< 0.5 during the simulation.

83
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5.1.1. Fiber Parameters

Geometrical and rheological properties of the suspended fibers are defined in chapter 3. In this
subsection, we tabulate the numerical values of these properties for the presented simulation
in table 5.1.

The chosen concentration parameter (volume fraction) does not fit into the range of dilute
suspensions. However, we use the model of a dilute suspension in our simulation. Although
it is not rigorously correct, it is often used by researchers in the field. For example, the
concentration parameter in simulations of Paschkewitz et al. [104] and Gillissen et al. [38]
was nL3 = 18 and nL3 = 50, respectively. But, they still used the dilute suspension model.
Paschkewitz [104] also used the semi-dilute model of Shaqfeh and Fredrickson [117] for
non-Brownian fibers and concluded that, for high aspect ratio fibers, the semi-dilute model
qualitatively behaves similar to the dilute model.

The choice of 100 fibers per cluster is a good compromise between accuracy and numerical
effort. It leads to relatively smooth solutions along a Lagrangian path [74]. With a number of
6.55× 107 Lagrangian paths (clusters), we can estimate the density of clusters in the closest
grid cells to the wall, i.e. the smallest cells. This cell has a height of 0.0075h and thus, on
average, we have

6.55× 107

128× 128× 2h/0.0075h
= 15,

particle clusters in each of these cells, which adds up to about 1500 fibers in a cell. This
guarantees a smooth stress field. If the Lagrangian paths are initialized randomly, the average
density is maintained because the flow is incompressible and the particles follow the flow
instantaneously.

Table 5.1: Fiber properties of the reported simulation

Parameter Symbol/Relation Value

Aspect ratio r 100

Shape factor κ= r2−1
r2+1

0.9998

Concentration parameter nL3 18

Volume fraction φ = 4πnL3

3r2 7.54× 10−3

Brownian diffusivity Dr 0.001

Rotary Pećlet number Per =
Ub

hDr
1000

Number of fiber clusters Np 6.55× 107

Number of fibers per cluster Nf 100

Total number of fibers Nt = Nf ·Np 6.55× 109



Monte-Carlo Simulation of Turbulent Drag Reduction in Channel Flow 85

5.1.2. Computational Domain and Grid
Resolution

The computational domain is a box with dimensions given in table 4.2. This choice of domain
is made based on the previous simulations in the literature. Table 5.2 shows the computational
box size, grid resolution and Reynolds number of the previous simulations. The letters E and
L in table 5.2 stand for Eulerian and Lagrangian simulations, respectively. Paschkewitz et al.
[104] have used the minimal channel of Jiménez and Moin [55] for a simulation at Reτ = 300.
Gillissen et al. [38] have used a domain for Eulerian simulations which is comparable to our
domain. In the same reference, they have used a smaller domain for Lagrangian one-way
coupled simulations. In another reference, Gillissen et al. [39] had the minimal channel.
However, their domain was larger than the minimal channel in spanwise direction by a factor
of 1.5.

The comparison made in table 5.2 justifies our choice of domain size. Moreover, we look at
the two-point velocity correlations in streamwise and spanwise directions. The two-point cor-
relation function Ri j in streamwise and spanwise directions is defined as

Ri j

�

r+x , z+
�

=
¬

ui

�

x++ r+x , y+, z+
�

u j
�

x+, y+, z+
�

¶

, (5.1)

Ri j

�

r+y , z+
�

=
D

ui

�

x+, y++ r+y , z+
�

u j
�

x+, y+, z+
�

E

. (5.2)

Ri j is independent of x+ and y+ due to the statistical homogeneity of the flow in streamwise
and spanwise directions. Figures 5.1a to 5.1d show the two-point velocity correlation func-
tions in the streamwise and spanwise directions at z+ = 10.5 and at the channel centerline.
All the two-point correlations fall to nearly zero within the first half of the computational
domain in x and y directions. This affirms the adequacy of the domain size. The two-point
correlation R11 in the wall region shown in figure 5.1c is specifically interesting as it shows the

Table 5.2: Comparison of the computational domain size and grid resolution of the present work with
previous simulations for DNS of turbulent drag-reduced channel flow.

Simulation Coupling Reτ Lx L y Lz Nx Ny Nz

Present work, L 2-way 180 3πh 2πh 2h 128 128 128

Paschkewitz et al. [104], E 2-way 300 πh h 2h 80 80 141

Paschkewitz et al. [105], L 1-way 300 πh h 2h 80 80 141

Gillissen et al. [38], E 2-way 180 10h 5h 2h 96 96 96

Gillissen et al. [38], L 1-way 180 6h 3h 2h 96 96 96

Gillissen et al. [39], E 2-way 180 3h 1.5h 2h 48 48 192

Gillissen et al. [39], L 1-way 180 3h 1.5h 2h 48 48 192



86 Monte-Carlo Simulation of Turbulent Drag Reduction in Channel Flow

mean streak spacing. The first negative minimum of R11 for Newtonian flow occurs at r+y ≈ 52
which is consistent with the findings of Kim et al. [58]. This corresponds to a mean streak
spacing of 104 in wall units. The first negative minimum of R11 for the drag-reduced flow
takes place at r+y ≈ 76 which implies a mean streak spacing of 152 in wall units. This means
that the streaks are coarsened by a factor of nearly 1.5 in the drag-reduced flow as compared
to the Newtonian flow. This is in line with the findings of Paschkewitz et al. [102, 104].
Figure 5.2 shows the mean streak spacing in the spanwise direction as a function of the wall
distance z+ for Newtonian and fibrous flows. The DNS data of MKM 1999 are also plotted for
comparison. Our results for Newtonian flow matches well with the reference DNS data. The
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Figure 5.1: Two-point velocity correlations in streamwise and spanwise directions at z+ = 10.5 and
at channel centerline for the Newtonian and fibrous flows.
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coarsening of the streaks is obvious from figure 5.2.
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Figure 5.2: Variation of mean spanwise streak spacing in wall units estimated from the two-point
correlation Ruu
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The increase in streak spacing is a well-known feature of polymeric drag-reduced flows
that is shown in figures 5.3a and 5.3b for Newtonian and drag-reduced flows, respectively.
The black rectangles plotted in figure 5.3b show the domain size in the x-y plane of the
previously published simulations of fiber suspension flows (compare with table 5.2). The
minimal channel can hardly accommodate a repetitive pattern which is a representative of the
near-wall streaks. Thus, one can argue that the minimal channel is not the optimal choice
to study the drag reduction at this low Reynolds number, though it offers a great reduction
in the computational burden. Paschkewitz et al. [104] have used a minimal channel for the
simulation of drag reduction at Reτ = 300. In that case, the extent of the domain in the
spanwise direction is 300 wall units, instead of 180 wall units at Reτ = 180. It means that
their domain extent is nearly twice the mean streak spacing.

The one-dimensional power spectra Euu, Evv, Eww, EτNN
11

, EτNN
13

and EτNN
33

are plotted in figures
5.4a to 5.4l. The spectra in streamwise direction are averaged in the spanwise direction and
vice versa. The power spectra of Euu in the streamwise direction, especially in the channel
centerline, decay faster and have a slope greater than -8. This is a result of the second-
order spatial discretization scheme which is used in our finite volume DNS solver. The power
spectrum of the wall-normal velocity Eww in the spanwise direction in the near-wall region
shows about one decade of decay. Also in the reference DNS of Kim et al. , this spectrum has
the least decay. Generally, the velocity spectra of the fibrous flow decay faster than those of
the Newtonian flow. This indicates that we are on the safe side regarding the grid resolution
for velocities. The velocity power spectra tend to become horizontal at their very end. Also,
the velocity power spectra of the drag-reduced flow have a steeper slope than −5/3 in the
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inertial subrange. These two effects are observed in the experimental findings of McComb
and Chan [78] using an aqueous asbestos fiber suspension in a pipe flow at Re = 1.4 ×
104.

The power spectra of EτNN
13

decay by about two decades, similar to the observations of
Paschkewitz [102]. The exception is again the spectrum in spanwise direction in the wall
region z+ = 10.5 which only shows about one decade of decay. This is comparable with the
spectrum obtained by Paschkewitz et al. [104] using the local artificial dissipation (LAD)
scheme. The power spectra of other components of the non-Newtonian stress tensor are also
presented for the sake of completeness. Generally, the decay of the stress power spectra is not
as good as those of velocities. The reason, as pointed out by Paschkewitz et al. [104], is that
the fiber conformation is governed by a pure convective equation without any diffusion. As
a consequence, the non-Newtonian stress field develops scales smaller than the Kolmogorov’s
scale. This situation is similar to the transport of passive scalars at high Schmidt numbers (the
Batchelor’s microscale).
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(a) Newtonian flow

(b) Drag-reduced flow

Figure 5.3: Streak patterns in x-y plane at z+ = 10.5 for (a) Newtonian and (b) drag-reduced flows.
Rectangles show the domain size of previous simulations: —, minimal channel (πh, h, 2h);
– – –, (3h, 1.5h, 2h); – ·–, (6h, 3h, 2h).
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Figure 5.4: Power spectra of velocity components and non-Newtonian stress. The spectra are normal-
ized by the energy of the first mode.
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Figure 5.4: Power spectra of velocity components and non-Newtonian stress. The spectra are normal-
ized by the energy of the first mode (continued).



92 Monte-Carlo Simulation of Turbulent Drag Reduction in Channel Flow

10
-3

10
-2

10
-1

10
0

 1  10  100

E
τ 1

3

kx

z+
 = 10.5

centerline

(i) EτNN
13

in streamwise direction

10
-2

10
-1

10
0

 1  10  100
E

τ 1
3

ky

z+
 = 10.5

centerline

(j) EτNN
13

in spanwise direction

10
-3

10
-2

10
-1

10
0

 1  10  100

E
τ 3

3

kx

z+
 = 10.5

centerline

(k) EτNN
33

in streamwise direction

10
-2

10
-1

10
0

 1  10  100

E
τ 3

3

ky

z+
 = 10.5

centerline

(l) EτNN
33

in spanwise direction

Figure 5.4: Power spectra of velocity components and non-Newtonian stress. The spectra are normal-
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5.2. Results

In this section, we present the results of the direct Monte-Carlo simulation of turbulent drag
reduction by rigid fibers in a channel flow at a nominal shear Reynolds number Reτ = 180.
The known features of the polymeric drag-reduced turbulent channel flow can be summarized
as:

1. Increased spacing and coarsening of streamwise streaks

2. Enhanced streamwise turbulence intensity

3. Reduced spanwise and wall-normal turbulence intensities

4. Reduced Reynolds shear stress

5. Parallel shift of the logarithmic law in low drag reduction

6. Increase in the slope of the logarithmic law in high drag reduction

7. Damping of small spatial scales

8. Reduced streamwise vorticity fluctuations

The first item is reflected in figures 5.2, 5.3a and 5.3b. Other items are investigated in the
sequel.

Our simulation tool works with a constant mean pressure gradient which acts as the driv-
ing force for the flow. A constant mean pressure gradient implies a constant total wall shear
stress:

τw = µ
d 〈U〉

dz

�

�

�

�

w

+
¬

τNN
13

¶

�

�

�

w
=−h

d



p
�

dx
, (5.3)

where
¬

τNN
13

¶�

�

w is the mean non-Newtonian shear stress at the wall.
Additionally, a constant mean pressure gradient means that the drag reduction is seen as

an increase in the bulk streamwise velocity. This is in contrast to the approach where the bulk
streamwise velocity is set constant and the drag reduction is observed as a decrease in the
required driving mean pressure gradient. The former approach has been used, for example,
by den Toonder et al. [20] while the latter has been employed by Paschkewitz et al. [104].
The development of the bulk velocity Ub over the sampling time is shown in figure 5.5. It can
be assumed that a statistical steady state is reached in both cases. An increase of about 9.1% in
the bulk velocity is observed which is attributed to the drag-reducing effect of the suspended
fibers. The percentage drag reduction (DR%) is 15.99%. Paschkewitz et al. [104], for a
channel flow at Reτ = 300, have obtained percentage drag reductions of 18.5% and 13.4%
using hybrid and IBOF closure models, respectively. The aspect ration and volume fraction of
the fibers, and the Péclet number was similar to ours in their simulations. Our result lies in
between the results of the hybrid and IBOF closures.
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Figure 5.5: Bulk streamwise velocity of the Newtonian and fibrous flows versus the flow-through time
unit tFT. Shown is the time span used for turbulence statistics.

5.2.1. Mean Velocity Profile

The mean streamwise velocity profile is plotted in figure 5.6 as a function of wall distance z/h.
The increase in mean velocity is indicative of drag reduction, as reflected by the bulk velocity
diagram presented in figure 5.5.

More instructive than the mean velocity profile in the physical coordinates is the mean
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Figure 5.6: Mean streamwise velocity profile of the Newtonian and fibrous flows versus the wall dis-
tance z/h.
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velocity profile in inner scaling which is plotted in figure 5.7. We observe that the velocity
profile of the drag-reduced flow starts to deviate from that of the Newtonian flow in the
buffer layer. The logarithmic region is shifted which is an indication of the thickened viscous
sublayer. Furthermore, the slope of the logarithmic region changes from 2.5 to about 3.0 (see
the guideline 〈U〉+ = 3.0 ln

�

z+
�

+ 6.5 in figure 5.7).
Often in wall bounded flows, the overlap region between the inner and outer scalings

is approximated by a logarithmic law due to Millikan [80]. George and Castillo [36] and
Barenblatt et al. [6] have proposed a power law fit for the overlap region. Moser et al. [94]
have analyzed the power law fit in DNS of turbulent channel flows at Reτ = 180, 395 and 590,
by looking at the diagnostic quantities γ and β defined via

γ = z+
d 〈U〉+

dz+
, (5.4)

β =
z+

〈U〉+
d 〈U〉+

dz+
. (5.5)

If γ equals a constant γ̄ in a region, then a logarithmic profile with the von Kármán constant
κ = 1/γ̄ can be fitted. If β is constant (= β̄) in a region, then a power law profile 〈U〉+ =
A
�

z+
�n with n= β̄ can be fitted.

At the low Reynolds number we are considering, the logarithmic law region hardly exists
[94]. For the Newtonian flow, figure 5.8 shows that the region with modest variation in γ
grows linearly with a small positive slope. This is consistent with findings of Moser et al. [94].
For the drag-reduced flow, we observe two effects. First, the region with modest variation in
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γ exists at a higher value of γ, approximately 3, which corresponds to a higher slope of the
logarithmic profile (lower value of the von Kármán constant κ). The logarithmic profile with
slope 3 is shown in figure 5.7. This means that the slope of the logarithmic region in the fibrous
drag-reduced flow is slightly increased, though it is not as pronounced as that of the flexible
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polymers. The second observation is that, unlike the Newtonian counterpart, γ has a small
negative slope in the nominally constant region. The negative slope implies that if we assume
various logarithmic profiles tangent to the velocity profile at each z+, their slope decreases
with increasing z+. This fact can be seen in figure 5.7.

The diagnostic parameter β is plotted in figure 5.9 for the Newtonian and fibrous flows.
Similar to the γ curve, β shows a negative slope in the region with modest variation. From
the behavior of both γ and β one can conclude that the fit to both logarithmic and power law
profiles is deteriorated in the drag-reduced flow. This is not surprising as the number of scales
is reduced.

5.2.2. Turbulence Intensities and Reynolds Shear
Stress

From experimental and numerical data compiled on polymer-induced turbulent drag reduc-
tion, it is well known that the turbulence intensities (root-mean-square of velocity fluctua-
tions) and the Reynolds shear stress 〈uw〉 are modified in the following manner. The stream-
wise turbulence intensity increases while the spanwise and wall-normal intensities decrease.
The Reynolds shear stress 〈uw〉 decreases as well. Figure 5.10 shows the turbulence intensi-
ties normalized by the shear velocity uτ, and denoted by u+rms, v+rms and w+rms in streamwise,
spanwise and wall-normal directions, respectively. The behavior explained above is observed.
Also, an outward shift in the peak of u+rms is seen which is indicative of the viscous sublayer
thickening. This shift has been observed in the previous polymer-induced drag reduction sim-
ulations.
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The Reynolds shear stress 〈uw〉 profiles of the Newtonian and the drag-reduced flows are
plotted in figure 5.11 in inner scaling. The shear stress level of the drag-reduced flow is de-
creased compared to that of the Newtonian flow. This trend is in agreement with previous
findings on polymer-induced turbulent drag reduction. The Reynolds shear stress 〈uw〉 is re-
sponsible for the production of the turbulent kinetic energy in the wall region of the turbulent
channel flow. The reduction in the level of 〈uw〉 in fibrous flow indicates a weakening of the
turbulence production mechanism. This is also in agreement with the previous findings. The
flow relaminarization in the near-wall region resulting in the thickening of the viscous sub-
layer can be attributed to the reduction in the level of 〈uw〉. We shall revisit the 〈uw〉 profile
in subsection 5.2.3 when considering the total shear stress balance across the channel width.
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Figure 5.11: Reynolds shear stress profile of the Newtonian and fibrous flows in inner scaling versus
the wall distance z+.

Now, we turn to the reduction in the peak of 〈uw〉. Such a reduction can be a result of one
or a combination of the following reasons:

1. Reduction in urms.

2. Reduction in wrms.

3. Reduction in the correlation coefficient between u′ and w′, defined as

R
�

u′, w′
	

=
−〈uw〉
urmswrms

. (5.6)

We study these three possibilities to find out which one(s) is (are) responsible for the change
in the Reynolds shear stress 〈uw〉. Profiles of urms and wrms are plotted in figure 5.10. One
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observes that urms is increased while wrms is decreased. The correlation coefficient is shown
in figure 5.12 for the Newtonian and drag-reduced flows. The reference DNS data of MKM
1999 are also plotted for comparison. Kim et al. [58] have discussed that the correlation coef-
ficient is relatively insensitive to the Reynolds number. Here, we observe that the correlation
coefficient is relatively insensitive to drag reduction. Thus, one can argue that the effect of
the correlation coefficient on the reduction in Reynolds shear stress is modest. The effect of
the increase in urms is overwhelmed by the influence from the reduction in wrms. To verify this
argument, we rearrange equation (5.6) in the following form:

|〈uw〉|= urmswrms

�

�R
�

u′, w′
	

�

� , (5.7)

and hence
�

�

�

�

�

〈uw〉NN

〈uw〉N

�

�

�

�

�

=
uNN

rms wNN
rms

uN
rms wN

rms

�

�

�

�

RNN {u′, w′}
RN {u′, w′}

�

�

�

�

. (5.8)

The influence of the correlation coefficient is neglected by assuming
�

�RNN/RN
�

� = 1. Thus, the
reduction in the peak of 〈uw〉 at z+ = 30 is predicted by formula (5.8) to be 〈uw〉NN / 〈uw〉N =
0.90 which is within 4.4% of the actual value 0.862 (see figure 5.11). wrms is relatively
stronger reduced than urms increased.

5.2.3. Total Shear Stress Balance

The balance of the total shear stress across the channel width is a good indication of the
accuracy of the simulation and the quality of the turbulence statistics. It also affirms that the
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Figure 5.12: Correlation coefficient between u′ and w′ of the Newtonian and fibrous flows versus the
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statistical steady state is achieved [58] and the mean flow field fulfills the integral momentum
balance. Integration of the mean momentum (Reynolds) equation in wall-normal direction
yields

τtotal
13 = µ

d 〈U〉
dz
−ρ 〈uw〉+

¬

τNN
13

¶

= τw +
d



p
�

dx
z =−h

d



p
�

dx

�

1−
z

h

�

. (5.9)

Thus, the total shear stress τtotal
13 is composed of the following contributions: the viscous shear

stress µd 〈U〉/dz, the Reynolds (turbulent) shear stress −ρ 〈uw〉 and the non-Newtonian
stress

¬

τNN
13

¶

. We observe in figure 5.13 that the sum of these three nonlinear contribu-
tions balances on the theoretical straight line. This confirms that the flow is statistically in
equilibrium.

Using the shear stress balance (5.9), we can construct a simple model to investigate the
effect of the non-Newtonian shear stress

¬

τNN
13

¶

. Here, we study a vanishing non-Newtonian

contribution, i.e.
¬

τNN
13

¶

= 0. Furthermore, we assume that the Reynolds shear stress is the
same as the one of the drag-reduced flow, shown in figure 5.13. Integrating the shear stress
balance equation (5.9) along the channel width yields the modified velocity profile plotted
in figure 5.14. Obviously, we reach higher drag reduction by assuming

¬

τNN
13

¶

= 0. The
modified velocity profile has a greater slope of the logarithmic law, 5.5 as compared to 2.5
for the Newtonian flow, and it is moved towards the Virk’s maximum drag reduction profile
〈U〉+ = 11.7 ln z+ − 17 [130]. The change in the profile due to neglecting

¬

τNN
13

¶

can be

explained as follows. Due to the vanishing
¬

τNN
13

¶

, the velocity profile has to change in order
to establish the total stress balance (5.9). Because of the reduced Reynolds shear stress, the
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Figure 5.13: Shear stress balance of drag-reduced flow versus the global coordinate z/h. Stresses are
normalized by the wall shear stress.
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profile also differs from the Newtonian one. The modification in the velocity profile modifies
the viscous shear stress and compensates the vanishing

¬

τNN
13

¶

. The modified and unmodified
viscous shear stresses are plotted in figure 5.15 along with the Reynolds shear stress and the
total shear stress.

Another observation is that the mean velocity profiles of both drag-reduced flows do not
lie, even partly, on the maximum drag reduction (MDR) line. This is somewhat different
from the observation in the drag reduction induced by flexible polymers, where the mean
velocity profile follows the MDR line up to a cross-over point which depends on the polymer
concentration and the Reynolds number, and then crosses back to a Newtonian-like profile
[9, 107].

This simplified model can explain the drag-reducing effectiveness of high-aspect-ratio
fibers. Manhart [71] has shown, in one-way coupled simulations, that low-aspect-ratio fibers
lead to high levels of




τ13

�

, and argued that they are not suitable for drag reduction. Later,
Paschkewitz et al. [104] have demonstrated, using two-way coupled simulations, that this
argument holds, which is also in line with experimental findings of Radin et al. [108]
who observed that particles with aspect ratios less that 25 to 35 do not lead to drag reduc-
tion.
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5.2.4. Non-Newtonian Stresses

The mean non-Newtonian stresses are presented in figure 5.16, and are compared with the
results obtained by the moment approximation approach using the hybrid closure model.
The moment approximation simulation is also done by the developed code, as explained in
chapter 4. The normal stress differences N1 =

¬

τNN
11

¶

−
¬

τNN
33

¶

and N2 =
¬

τNN
33

¶

−
¬

τNN
22

¶

are shown instead of the normal stresses themselves. The non-Newtonian shear stress τNN
13

is also shown. All values are normalized by the viscosity of the carrier fluid and the volume
fraction of the suspended fibers. The results of the hybrid closure differ from those of the
direct simulation, quantitatively as well as qualitatively. The only exception is the second
normal stress difference N2, for which a good agreement is established. These observations
are in line with the findings of Paschkewitz et al. [102, 105]. The direct simulation predicts
a higher level of shear stress at the wall, which results in a lower amount of drag reduction,
as compared to the prediction of the hybrid closure. These observations confirm the need for
a direct method to simulate the drag reduction, whose results are independent of any closure
model.

5.2.5. Quadrant Analysis

We have observed that the Reynolds shear stress 〈uw〉 decreases in the drag-reduced flow
(see figure 5.11). This decrease modifies the total shear stress balance, as shown in subsec-
tion 5.2.3. It also reduces the turbulent kinetic energy production −〈uw〉d 〈U〉/dz [106].
We have already examined the reduction in 〈uw〉 by analyzing its correlation coefficient, see
equation (5.8). In this subsection, we perform a quadrant analysis of the Reynolds shear
stress. This helps us to find out how the quadrant events contribute to the reduction in 〈uw〉.
The u-w plane consists of four quadrants, as shown in figure 5.17. The first (Q1) and third
(Q3) quadrants contribute positively to 〈uw〉 and hence negatively to the turbulent produc-
tion. Conversely, the second (Q2) and fourth (Q4) quadrants produce negative Reynolds shear
stress and hence lead to positive turbulent production. A Q1 event (u > 0 and w > 0) corre-
sponds to an outward motion of high-speed fluid away from the wall. An event with u < 0

u

Q3

Q1Q2

Q4

w

Outward

SweepInward

Ejection

Figure 5.17: Four quadrants of the u-w plane.
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and w > 0 (Q2) describes an ejection of low-speed fluid into the high-speed stream. The third
quadrant Q3 represents events with u < 0 and w < 0, i.e. inward motion of low-speed fluid
to the wall. Finally, an event with u > 0 and w < 0 falls into the fourth quadrant Q4 and
describes the sweep of low-speed region by high-speed fluid.

For the Newtonian turbulent channel flow, it is well known that the Q2 and Q4 events are
more frequent than the Q1 and Q3 events. In the near-wall region, the sweep (Q4) events
are dominant. At a specific wall distance, both sweep and ejection events contribute equally
to the Reynolds shear stress. Above this wall distance, the ejections are more frequent than
the sweeps. Figure 5.18 shows the contributions from each quadrant to the Reynolds shear
stress 〈uw〉. Our results generally match well with the DNS of KMM 1987, as shown in figure
5.18.

The differences between the Newtonian and drag-reduced flows are as follows. In the
drag-reduced flow, both Q1 and Q3 events contribute less to the Reynolds shear stress in the
near-wall region. Away from the wall their contributions become comparable to those of the
Newtonian flow. Ejections (Q2 events) generally contribute more to the Reynolds shear stress
across the channel, especially in the near-wall region. Conversely, contribution of sweeps (Q4
events) is less. Their contribution especially decreases near the wall. The reduction in the
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Figure 5.18: Quadrant contributions to Reynolds shear stress 〈uw〉 versus the wall distance z+, New-
tonian with Í and fibrous without symbol.
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peak of the Reynolds shear stress 〈uw〉 at z+ ≈ 30 (see figure 5.11) is mainly due to the
reduction in the sweep events contribution. Also, the crossing point of the sweep and ejection
events is moved towards the wall, which is due to the reduction in sweep and the increase in
ejection contributions.

The turbulent frictional drag can be attributed to the near-wall domination of the sweep
events. Because, a sweep event is an inrush of high-speed fluid towards the wall, which locally
increases the wall shear rate and hence the wall shear stress. Therefore, the drag reducing
effect of the suspended fibers can be related to the decrease in the near-wall sweep events. To
study this conjecture in more detail, we look at the fractional contributions of the quadrants
to the Reynolds shear stress at different wall distances.

Figure 5.19 shows the fractional contribution of the four quadrants to the Reynolds shear
stress at z+ = 8. The results of the Newtonian flow are validated by comparing to the results
of KMM 1987 at z+ = 7.8. The modification in the Q1 and Q3 contributions is small. The
contribution of ejections (Q2 events) is increased. However, the contributions from intense
uw events, say −uw > 3urmswrms, in both Newtonian and drag-reduced flows coincide. The
total contribution of the sweeps (Q4 events) are decreased, as already shown in figure 5.18
and discussed above. Interestingly, the contribution from intense uw events is increased, in
contrast to that of the ejections.

Figure 5.20 presents the fractional contributions of the quadrants to −〈uw〉 at a wall
distance z+ = 12.5. The difference between the Newtonian and fibrous flows for Q1 and Q3
events is marginal. At this wall distance, the total contributions of Q2 and Q4 events are
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Figure 5.19: Fractional contribution to −〈uw〉 versus the threshold of u and w fluctuations at z+ = 8
for Newtonian and fibrous flows (KMM 1987 results at z+ = 7.8).
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almost equal. Kim et al. [58] have shown that for the Newtonian channel flow, when the
total contributions of sweeps and ejections are equal, their fractional contributions are also
the same. In contrary to the Newtonian flow, we see in figure 5.20 for the drag-reduced flow
that the fractional contributions are not similar, and deviate from each other for events with
−uw > 1.5urmswrms.

The quadrant fractional contributions to −〈uw〉 at z+ = 50 are shown in figure 5.21. The
contributions from inward and outward interactions are similar to those of the Newtonian
flow. At this wall distance, the ejections are dominant with about 80% contribution to the
total Reynolds shear stress. The Q2 and Q4 contributions from intense uw events are not
changed as compared to the Newtonian flow.

From figures 5.19, 5.20 and 5.21 we conclude that the suspended fibers mainly affect
sweep and ejection events in the near-wall region, i.e. they increase the contribution of ejec-
tions and decrease that of sweeps.

5.2.6. Probability Density Function of the Fluctuating
Velocity

We have observed that the suspended fibers decrease the contribution of sweeps and increase
that of ejections by using quadrant analysis. Here, we continue the analysis by using the prob-
ability distribution function (PDF) of the fluctuating velocities. Figures 5.22, 5.23 and 5.24
show the PDF of the fluctuating streamwise, spanwise and wall-normal velocities, respectively.
We observe that, for the streamwise velocity, stronger fluctuations are more probable, espe-
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Figure 5.20: Fractional contribution to −〈uw〉 versus the threshold of u and w fluctuations at z+ =
12.5 for Newtonian and fibrous flows.
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Figure 5.21: Fractional contribution to −〈uw〉 versus the threshold of u and w fluctuations at z+ = 50
for Newtonian and fibrous flows.

cially events with negative u. This is consistent with the increase in ejection contribution, as
shown by the quadrant analysis in the previous subsection. It also confirms the increase in
urms as the events with greater u have a larger weight. The situation is the other way around
for the spanwise and wall-normal velocity fluctuations. Their PDF is narrower affirming the
reduction in vrms and wrms. This picture is also consistent with the reduction in the Reynolds
shear stress 〈uw〉. In the drag-reduced flow, we have stronger streamwise velocity fluctuations
whose corresponding wall-normal velocity fluctuations are decreased, and this leads to a re-
duction in 〈uw〉. This is better shown in figure 5.25 which presents the distribution of u+ and
w+ at z+ = 20. We have already demonstrated that the reduction in wrms is more effective
than the increase in urms for decreasing 〈uw〉.
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Figure 5.22: Probability distribution function (PDF) of the fluctuating streamwise velocity at z+ = 20
(MKM 1999 data at z+ = 19).
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Figure 5.24: Probability distribution function (PDF) of the fluctuating wall-normal velocity at z+ = 20
(MKM 1999 data at z+ = 19).
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Figure 5.26: Fractional contributions to r.m.s. streamwise velocity fluctuations at z+ = 20 (MKM
1999 data at z+ = 19).

In order to demonstrate how the increase in urms can be explained by the change in the
PDF, we turn to the definition

�

u+rms

�2
= 〈uu〉+ =

∫ +∞

−∞
u+u+ PDF

�

u+
�

du+. (5.10)

The integrand u+u+ PDF
�

u+
�

is plotted in figure 5.26. Obviously, the area under the curve is
increased in the fibrous flow, as compared to the Newtonian flow. Furthermore, the contribu-
tion of the events with negative u is considerably increased which is consistent with the prior
discussions.

5.2.7. Lumley Anisotropy Map

We have already observed in subsection 5.2.2 that the Reynolds stress tensor is modified
in the drag-reduced flow. This modification can be clearly shown by means of the Lumley
anisotropy map [68]. Paschkewitz [102] has presented the Lumley anisotropy map of the
drag-reduced flow and compared it with that of the carrier fluid alone. Frohnapfel et al. [35]
have shown that this modification is a general feature of drag-reduced flows, caused by flexible
polymers, fibers, surfactants, riblets, highly accelerated compressible supersonic effects and
forced boundary conditions. They have found that there are mainly four modifications in
the anisotropy map as compared to the Newtonian flow. First, the wall value moves along
the two-component turbulence line towards the one-component turbulence state. Second,
the right tip (at about z+ = 7.5) moves towards the one-component turbulence state. Third,
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away from the wall, the drag-reduced flow reveals more prolate axisymmetry compared to the
Newtonian flow. Fourth, the drag-reduced flow is less isotropic in the channel centerline, as
compared to the solvent alone.

Figure 5.27 shows the Lumley anisotropy map of the fibrous flow compared to that of
the Newtonian flow. All the above-mentioned modifications are observed. Different guide-
lines plotted in figure 5.27 are explained in section 2.7. In order to explain the change
in the anisotropy, we analyze the pressure-strain correlation in the following subsection.
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Figure 5.27: Lumley anisotropy map of the Newtonian and fibrous flows, open symbols for Newtonian
flow and filled symbols for fibrous flow.

5.2.8. Pressure-Strain Correlation

It is shown in appendix B that the pressure-strain correlation redistributes the turbulent ki-
netic energy among components of the Reynolds stress tensor. Thus, it can explain the change
in turbulence intensities, as shown in figure 5.10. Foysi et al. [32] studied the compress-
ible turbulent channel flow using DNS. They also observed a change in the Reynolds normal
stresses at high Mach numbers, similar to that of the drag-reduced flow. This modification
was explained by analyzing the pressure-strain correlation. In this subsection, we study the
pressure-strain correlation in order to analyze the modification in turbulence intensities, as
reflected by figure 5.10.
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In what follows, the pressure-strain correlation

Ri j =
1

ρ

®

p′
�

∂ ui

∂ x j
+
∂ u j

∂ x i

�¸

=
1

ρ

D

p′s′i j

E

, (5.11)

is normalized by the wall shear stress τw, the bulk velocity Ub and the channel half-width h
[32]:

R+i j =
ρh

τwUb
Ri j =

h

u2
τUb

Ri j. (5.12)

The diagonal terms of the pressure-strain correlation tensor, obtained by the DNS, are plotted
in figure 5.28. We theoretically know that the pressure-strain correlation tensor is traceless
due to the continuity of the fluctuating velocity field, i.e. Rii = 0 (see appendix B). This is
checked in our numerical results where the maximum absolute value of Rii is 1.6×10−8 (R+ii =
2.2× 10−5) for the Newtonian flow, and 9.2× 10−8 (R+ii = 4.0× 10−6) for the drag-reduced
flow. These small numbers confirm the small divergence of the computed velocity field, i.e. the
convergence of the Poisson iterative solver at each time step.

First we explain the Newtonian flow, and then compare it with the drag-reduced flow.
The R11 component is negative across the channel and thus, acts as a sink of energy for 〈uu〉,
especially in the near-wall region. R22 is positive across the channel and acts as a source
of energy for 〈vv〉. R33 is negative in the vicinity of the wall, say z+ < 11, and is positive
elsewhere. This means that R33 is a sink of energy for 〈ww〉 in the vicinity of the wall and a
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Figure 5.28: Diagonal components of the pressure-strain correlation for the Newtonian and fibrous
flows versus the wall distance z+, Newtonian with Í and fibrous without symbol.
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source of energy for 〈ww〉 elsewhere.
In the drag-reduced flow, the behavior of R11, R22 and R33, as explained above, remains

unchanged, while the magnitude of sources and sinks changes. R11’s sink is weaker, which
explains the increase in 〈uu〉. R22’s source is also weaker. This is consistent with the reduction
in 〈vv〉. Weakening of the energy source due to R33 is also in line with the decrease in 〈ww〉.
All the peaks of the diagonal components of the pressure-strain correlation are moved away
from the wall, which is consistent with the thickening of the viscous sublayer. Also, R33 =
0 takes place at z+ ≈ 15. Generally, the diagonal components of Ri j in the drag-reduced
flow are scaled down up to a wall distance z+ ≈ 60 as compared to those of the Newtonian
flow.

The aforementioned modifications in the pressure-strain correlation R{ii} = 〈 p′s′{ii} 〉 can
be due to one or a combination of the following reasons:

1. Change in p′rms

2. Change in s′{ii},rms

3. Change in the correlation coefficient between p′ and s′{ii}

R
n

p′, s′{ii}
o

=
R{ii}

p′rms s′{ii},rms

, (5.13)

where the subscript {ii}means that the Einstein’s summation convention does not hold. In the
following, we study the above possibilities for the three diagonal components of the pressure-
strain correlation tensor.

Figure 5.29 presents the r.m.s. pressure fluctuations for the Newtonian and fibrous flows.
The fluctuating pressure is normalized by the wall shear stress:

p′+rms =
p′rms

τw
=

p′rms

ρu2
τ

. (5.14)

It is observed that pressure fluctuations are decreased in the near-wall region, and are slightly
increased in the channel center. This behavior is consistent with the reduction in the pressure-
strain correlation in the near-wall region. A similar trend was observed by Foysi et al. [32] in
compressible turbulent channel flow at Ma= 1.5, with Ma being the Mach number. In order to
assess the reduction in r.m.s pressure fluctuations, we plot the PDF of the fluctuating pressure
in figure 5.30. We observe that the PDF is narrower, meaning that strong pressure fluctuations
are attenuated in the drag-reduced flow, as compared to the Newtonian flow. To verify that
this attenuation explains the reduction in the r.m.s. pressure fluctuations, we perform the
following analysis. The ratio of the r.m.s pressure fluctuations of the Newtonian flow to that
of the non-Newtonian flow can be computed from the PDF via

�

p′+rms

�2
=



p′p′
�+ =

∫ +∞

−∞
p′+p′+ PDF

�

p′+
�

dp′+. (5.15)



114 Monte-Carlo Simulation of Turbulent Drag Reduction in Channel Flow

At z+ = 20, equation (5.15) yields
�

p′+rms

�

N
/
�

p′+rms

�

NN
= 1.1615 which is in good agreement

with the actual value 1.1758 obtained by the DNS statistics (see figure 5.29) within 1.2%
relative error. The integrand p′+p′+ PDF

�

p′+
�

is plotted in figure 5.31. The fractional contri-
butions show that the area under the integrand is decreased in the drag-reduced flow which
is indicative of the reduction in p′rms.

The root-mean-square strain fluctuations (∂ u/∂ x)rms,
�

∂ v/∂ y
�

rms and (∂ w/∂ z)rms are
plotted in figures 5.32, 5.33 and 5.34. They are normalized by the wall shear stress and the
viscosity of the carrier fluid via

�

∂ ui

∂ x j

�+

rms

=
µ

τw

�

∂ ui

∂ x j

�

rms

=
ν

u2
τ

�

∂ ui

∂ x j

�

rms

. (5.16)

It is observed that all r.m.s. strain fluctuations are considerably reduced in the fibrous flow, as
compared to the Newtonian flow, which is consistent with the reduction in the pressure-strain
correlation. This is not similar to what is observed in compressible flows [31, 32], where
the reduction in the pressure-strain correlation is mainly due to the reduction in pressure
fluctuations. We conclude that the modification in the energy redistribution process in mainly
a result of the reduction in r.m.s. strain fluctuations. In the near-wall region additionally,
the reduction in r.m.s. pressure fluctuations also reduces the energy redistribution via the
pressure-strain term.

This analysis shows that the change in anisotropy is due to a change in structure of the
strain-rate tensor, and cannot be explained by pressure alone.
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Figure 5.29: Root-mean-square pressure fluctuations in inner scaling for the Newtonian and fibrous
flows versus the wall distance z+.



Monte-Carlo Simulation of Turbulent Drag Reduction in Channel Flow 115

 0

 0.01

 0.02

 0.03

 0.04

-8 -6 -4 -2  0  2  4  6  8

P
D

F
(p

’+
)

p’+

Newtonian

Fibrous

MKM 1999

Figure 5.30: Probability distribution function (PDF) of the fluctuating pressure at z+ = 20 (MKM
1999 data at z+ = 19).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-8 -6 -4 -2  0  2  4  6  8

(p
+
)2

 P
D

F
(p

+
)

p+

Newtonian

Fibrous

MKM 1999

Figure 5.31: Fractional contributions to r.m.s. pressure fluctuations at z+ = 20 (MKM 1999 data at
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Figure 5.32: Root-mean-square strain fluctuations (∂ u/∂ x)rms in inner scaling for the Newtonian and
fibrous flows versus the wall distance z+.
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Figure 5.34: Root-mean-square strain fluctuations (∂ w/∂ z)rms in inner scaling for the Newtonian and
fibrous flows versus the wall distance z+.

5.2.9. Analysis of Pressure-Strain Correlation

We further analyze the pressure-strain correlation by using the following Poisson equation for
pressure fluctuations, written here for a turbulent channel flow:

1

ρ

∂ 2p′

∂ x j∂ x j
=−2

∂ 〈U〉
∂ z

∂ w

∂ x
−

∂

∂ x i∂ x j

�

uiu j −
¬

uiu j

¶�

+
∂ 2τ

′NN
i j

∂ x i∂ x j
, (5.17)

as derived in appendix C. This analysis will hopefully lead to a better understanding of the
redistribution process of the Reynolds stresses. Kim [56] have investigated the pressure-strain
term using a Green’s function solution of the Poisson equation in a Newtonian incompress-
ible turbulent channel flow. Foysi et al. [32] have analyzed the pressure-strain term in a
compressible turbulent channel flow using a similar approach.

For convenience, the Poisson equation (5.17) can be written as

1

ρ

�

∂ 2p′

∂ x2 +
∂ 2p′

∂ y2 +
∂ 2p′

∂ z2

�

= f
�

x , y, z
�

= f N �x , y, z
�

+ f NN �x , y, z
�

, (5.18)
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in which

f N �x , y, z
�

= −2
∂ 〈U〉
∂ z

∂ w

∂ x
︸ ︷︷ ︸

f1

−
∂

∂ x i∂ x j

�

uiu j −
¬

uiu j

¶�

︸ ︷︷ ︸

f2

, (5.19)

f NN �x , y, z
�

=
∂ 2τ

′NN
i j

∂ x i∂ x j
, (5.20)

are the Newtonian and non-Newtonian source terms, respectively. One can take advantage
of the periodicity of the channel flow in streamwise and spanwise directions, and take the
Fourier transform of the Poisson equation (5.18):

1

ρ

�

d2

dz2 −
�

k2
x + k2

y

�

�

p̂′
�

kx , ky , z
�

= f̂
�

kx , ky , z
�

, (5.21)

where p̂′
�

kx , ky , z
�

and f̂
�

kx , ky , z
�

are the Fourier transforms of p′
�

x , y, z
�

and f
�

x , y, z
�

,
respectively. kx and ky are the wavenumbers in streamwise and spanwise directions, re-
spectively. We define k =

p

k2
x + k2

y for future use. The exact boundary condition of equation
(5.21) at the wall can be obtained from the Navier-Stokes equation:

dp̂′

dz

�

�

�

�

w

= µ
d2w

dz2 . (5.22)

According to Kim [56], this boundary condition can be included in a so-called Stokes pressure
which is the solution of a Laplace equation. By doing so, the Poisson equation (5.21) is sub-
jected to the following homogenous boundary condition at the wall

dp̂′

dz

�

�

�

�

w

= 0. (5.23)

However, we adopt the boundary condition (5.22) in the following analysis.
For each kx and ky , the ordinary differential equation (5.21) can be solved. The inverse

Fourier transform of the results will yield the pressure fluctuations. The solution of the lin-
ear differential equation (5.21) can be obtained by using the Green’s function approach.
The Green’s function of a differential operator is the solution of the corresponding differ-
ential equation under the action of a Dirac delta function as the source term. The Green’s
function of the differential operator in equation (5.21) is given by Kim [56]. A detailed
derivation of the Green’s function can be found in [31]. For k 6= 0, the Green’s function
reads

Ĝ
�

k, z, z′
�

= −
cosh [k (z′− 1)] cosh [k (z+ 1)]

2k cosh (k) sinh (k)
, for z < z′, (5.24)

Ĝ
�

k, z, z′
�

= −
cosh [k (z′+ 1)] cosh [k (z− 1)]

2k cosh (k) sinh (k)
, for z > z′. (5.25)
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For k = 0, the Green’s function is defined as

Ĝ
�

z, z′
�

=
1

2

�

z′− z
�

, for z < z′, (5.26)

Ĝ
�

z, z′
�

=
1

2

�

z− z′
�

, for z > z′. (5.27)

From the theory of Green’s functions, the solution of the Poisson equation (5.21) is given by
the following convolution integral:

p′
�

x , y, z
�

=

∫

Lz

G ∗ f
�

x , y, z, z′
�

dz′, (5.28)

where the integral is performed over the channel width Lz and the convolution G ∗ f is the
inverse Fourier transform of Ĝ (k, z, z′) f̂

�

kx , ky , z′
�

. The Fourier transform and its inverse can
be efficiently done using the fast Fourier transform (FFT) algorithm. Similarly, the pressure-
strain correlation is computed via [56]

Ri j (z) =
1

ρ

D

p′s′i j

E

(z) =
1

ρ

∫

Lz

D

G ∗ f s′i j

E

�

z, z′
�

dz′, (5.29)

The above-mentioned solver has been implemented in FORTRAN. In order to check that it is
implemented properly, another iterative Poisson solver has been developed. The comparison
between the two solvers verifies the implementation. In the following, we present the results
obtained by the Green’s function solver.

Figure 5.35 shows the R11 component of the pressure-strain correlation as obtained by
equation (5.29). It agrees well with DNS statistics. We observe that the influence of the non-
Newtonian source term f NN is to reduce R11. However, its magnitude is small and does not
explain the reduction in R11. Actually, the pressure-strain computed by only considering f N is
very close to the one obtained by DNS statistics. We observe a similar situation for R22 and
R33 components and therefore, they are not presented here.

We now consider the contributions to f N, namely f1 and f2 (equation (5.18)) in the New-
tonian and drag-reduced flows, as shown in figure 5.36. As can be seen, both f1 and f2

contributions are generally less in the fibrous flow in comparison with the Newtonian coun-
terpart. Therefore, the reduction in f N contribution is a result of the reduction in f1 and f2

contributions.
This analysis shows that the reduction of the pressure-strain correlation cannot be at-

tributed to the direct action of the non-Newtonian stresses.
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Figure 5.35: Diagonal components of the pressure-strain correlation for the Newtonian and fibrous
flows versus the wall distance z+, Newtonian with Í and fibrous without symbol.
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5.2.10. Strain-Rate Fluctuations

We have seen that the reduction in the pressure-strain correlation R11 is mainly due to the
reduction in strain-rate fluctuations (∂ u/∂ x)rms. In this subsection, we analyze the budget of
¬

(∂ u/∂ x)2
¶

= (∂ u/∂ x)2rms. Moreover, we know that ∂ u/∂ x = ∂ U/∂ x in a fully-developed
channel flow due to homogeneity in the streamwise direction. A transport equation for the
strain-rate tensor can be derived from the Navier-Stokes equations, for example see equation
(2.2) of [97] for an incompressible Newtonian flow. For an incompressible non-Newtonian
flow, this equation reads

DDi j

Dt
=−DikDk j

︸ ︷︷ ︸

A1

−
1

4

�

ωiω j −δi jωkωk

�

︸ ︷︷ ︸

A2

−
1

ρ

∂ 2p

∂ x i∂ x j
︸ ︷︷ ︸

A3

+ν
∂ 2Di j

∂ xk∂ xk
︸ ︷︷ ︸

A4

+
1

ρ

∂ 2τNN
ik

∂ x j∂ xk
︸ ︷︷ ︸

A5

, (5.30)

where A1 to A5 are the self-interaction, effect of local vorticity, local and non-local action
through the pressure field, viscous dissipation [97] and the non-Newtonian effects, respec-
tively. From equation (5.30), one can derive the following transport equation for the average
fluctuation level of the strain rate, here in streamwise direction




f 2� =
¬

(∂ U/∂ x)2
¶

, using a
procedure similar to that of the Reynolds stress transport equation (see for example [106]).

D



f 2�

Dt
=−

®

uk

∂ f 2

∂ xk

¸

︸ ︷︷ ︸

B0

−
¬

2 f
�

f 2+ D2
12+ D2

13

�¶

︸ ︷︷ ︸

B1

+
1

4

�D

2 f
�

ω2
y +ω

2
z

�E�

︸ ︷︷ ︸

B2

−
1

ρ

®

2 f
∂ 2p

∂ x2

¸

︸ ︷︷ ︸

B3

+ν

®

2 f
∂ 2 f

∂ xk∂ xk

¸

︸ ︷︷ ︸

B4

+
1

ρ

®

2 f
∂ 2τNN

1k

∂ x∂ xk

¸

︸ ︷︷ ︸

B5

,

(5.31)

in which B1 to B5 correspond to A1 to A5 in equation (5.30), respectively. B0 is the transport of



f 2� by velocity fluctuations uk. These contributions are plotted in figure 5.37 versus the wall
distance z+. We observe that main contributions are due to the self-interaction (B1) and the
local vorticity (B2) terms. The self-interaction term contributes positively while the vorticity
term contributes negatively to the budget of

¬

(∂ U/∂ x)2
¶

. The contributions of other terms
are small as compared to those of B1 and B2. Figure 5.38 shows the contributions of B3,
B4 and B5 terms. Like other budgets, the non-Newtonian contribution B5 is very small and
negligible. All other contributions are smaller in the drag-reduced flow in comparison with
the Newtonian flow. The most pronounced effect is the reduction in B1 and B2 contributions
by a factor of about 2.

Again, we can observe that the direct interaction of the non-Newtonian stresses on the
strain-rate fluctuations is very weak and cannot be used to explain drag reduction.
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5.2.11. Vorticity Field

We investigate in detail the vorticity field of the drag-reduced flow compared with that of the
Newtonian flow. The vorticity vector is defined as ω = ∇× U with the following Cartesian
components:

ωx =
∂W

∂ y
−
∂ V

∂ z
, (5.32)

ωy =
∂ U

∂ z
−
∂W

∂ x
, (5.33)

ωz =
∂ V

∂ x
−
∂ U

∂ y
. (5.34)

Due to the statistical homogeneity of the turbulent channel flow, we have



ωx
�

= 0,



ωz
�

= 0
and

¬

ωy

¶

= d 〈U〉/dz. Therefore, the mean spanwise vorticity
¬

ωy

¶

has the same behavior
as the viscous shear stress shown in figure 5.13, and is not explained here. It is well known
from previous experimental and numerical studies on polymer-induced drag reduction that
the root-mean-square of the fluctuations in streamwise vorticity decreases in a drag-reduced
flow as compared to its Newtonian counterpart. This is shown in figure 5.39, in which the
r.m.s. streamwise vorticity fluctuations is normalized via ω′+x ,rms = ω

′
x ,rmsν/u

2
τ. Although

the shapes of the profiles are generally similar, the fluctuation level is lower in the drag-
reduced flow. This is confirmed by the simulation of Paschkewitz et al. [102, 104]. The
r.m.s. of the spanwise and wall-normal vorticity components are presented in figures 5.40
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Figure 5.39: Root-mean-square of streamwise vorticity fluctuations of the Newtonian and fibrous
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Figure 5.40: Root-mean-square of spanwise vorticity fluctuations of the Newtonian and fibrous flows
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Figure 5.41: Root-mean-square of wall-normal vorticity fluctuations of the Newtonian and fibrous
flows in inner scaling versus the wall distance z+, ω′+z,rms =ω
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and 5.41, respectively. The profiles of the spanwise vorticity fluctuations in Newtonian and
drag-reduced flows are similar with the exception of the value at the wall. The fluctuation
level of the wall-normal component is lower than that of the Newtonian flow in the wall
region (z+ < 30). Further away from the wall, the two profiles nearly show the same level of
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fluctuations.
The reduction in streamwise vorticity fluctuations is known as one of the main features

of polymer-induced drag-reduced turbulent wall flows. In the following, we investigate this
reduction in more detail. To this aim, we derive an equation for the r.m.s. of streamwise
vorticity fluctuations from equation (5.32):

�

ω′x ,rms

�2
=
¬

ω′xω
′
x

¶

=

®

�

∂W

∂ y

�2
¸

+

®

�

∂ V

∂ z

�2
¸

− 2
�

∂W

∂ y

∂ V

∂ z

�

. (5.35)

These three contributions are plotted in figures 5.42, 5.43 and 5.44, respectively.
All three contributions are in favor of reducing the streamwise vorticity fluctuations. This

means that the reduction in the streamwise vorticity fluctuations can be attributed to the re-
duction in the second moments of the strain rates




∂W/∂ y ∂W/∂ y
�

, 〈∂ V/∂ z ∂ V/∂ z〉 and



∂W/∂ y ∂ V/∂ z
�

. Furthermore, the reduction in



∂W/∂ y ∂ V/∂ z
�

can be a result of re-
duction in

�

∂W/∂ y
�

rms, (∂ V/∂ z)rms and/or reduction in the correlation coefficient between
them:

R
�

∂W

∂ y
,
∂ V

∂ z

�

=
−
D

∂W
∂ y

∂ V
∂ z

E

� ∂W
∂ y

�

rms

� ∂ V
∂ z

�

rms

. (5.36)

The correlation coefficient across the channel width is shown in figure 5.45 for both Newto-
nian and drag-reduced flows. It is observed that the modification in the correlation coefficient
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due to the fibers is modest. Therefore, the reduction in



∂W/∂ y ∂ V/∂ z
�

is mainly due to
the reduction in

�

∂W/∂ y
�

rms and (∂ V/∂ z)rms.
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We conclude that the reduction in r.m.s. streamwise vorticity fluctuations is mainly due to
the reduction in r.m.s. velocity gradient fluctuations, i.e.

�

∂W/∂ y
�

rms and (∂ V/∂ z)rms.
Finally, we consider the inclination angle associated with the tilting of vorticity vector in

the x-z plane. The definition of the inclination angle and its measurement is schematically
depicted in figure 5.46. The main observations are as follows. In the wall region, the tilting
angles are more populated about 0◦ and the compliment angles, −180◦ and 180◦, in the drag-
reduced flow compared to the Newtonian flow. In the fibrous flow, the distributions possess
stronger peaks further away from the wall. In the Newtonian flow, above z+ = 25, the tilting
angles are more populated about 45◦ and−135◦. This is a well-known result in the Newtonian
turbulent channel flow [84]. We observe that the drag-reduced flow reveals such behavior at a
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Figure 5.46: Convention for the vorticity tilting angle in x − z plane.
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wall distance of about z+ = 90. Ultimately, the tilting angle reaches at an almost uniform dis-
tribution at the channel centerline in both flows. However, the distribution in the fibrous flow
is less uniform. This is conjectured to be a consequence of the fibrous flow being less isotropic
at the centerline, see the Lumley anisotropy map in figure 5.27.

It seems that up to the buffer layer, the fibrous flow is more organized and it has higher
peaks. However, these peaks are more away from 45◦/− 135◦ than in the Newtonian flow.
This indicates that less effective vortices (45◦) are there.
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Figure 5.47: Distribution of the inclination angle of the vorticity vector in x-z plane.
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Figure 5.47: Distribution of the inclination angle of the vorticity vector in x-z plane (continued).
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5.2.12. Near-Wall Partial Enstrophy

We now consider the dynamics of near-wall vorticity. Similar to the work of Lee and Kim [64],
our approach is to investigate the near-wall partial enstrophy. To this aim, we consider the
vorticity transport equation

∂ω

∂ t
=−U ·∇ω+ω ·∇U+ ν∇2ω+

1

ρ
∇×∇ ·τNN, (5.37)

which is obtained by taking the curl of the Navier-Stokes equation, and noting thatω=∇×U.
The advective term U ·∇ω transports the vorticity by the velocity field. It does not contribute
to the production and dissipation of vorticity, and is disregarded in the following analysis. The
term ω ·∇U describes the tilting and stretching of vorticity. The third term in the right-hand
side of equation (5.37) is the viscous dissipation of vorticity. The above-mentioned terms exist
in a Newtonian flow. The last term is additionally present in a fibrous flow. Here, we consider
the streamwise and wall-normal vorticity components. Because, the spanwise vorticity of the
fibrous flow does not considerably differ from that of the Newtonian flow. In a fully-developed
channel flow, ωx and ωz have only fluctuating components.

In the streamwise vorticity equation, the tilting termω ·∇U in the near-wall region reduces
to [116, 64]

ωx

∂ U

∂ x
+ωy

∂ U

∂ y
+ωz

∂ U

∂ z
=−

∂ V

∂ x

∂ U

∂ z
. (5.38)

Similarly, the tilting term of the wall-normal vorticity equation in the near-wall region can be
written as [64]

ωx

∂W

∂ x
+ωy

∂W

∂ y
+ωz

∂W

∂ z
=−

∂W

∂ y

∂ U

∂ z
. (5.39)

Therefore, the streamwise and wall-normal vorticity equations can be written as (by neglect-
ing the advective term):

∂ωx

∂ t
≈ −

∂ V

∂ x

∂ U

∂ z
+ ν

∂ 2ωx

∂ x j∂ x j
+

1

ρ
ε1ik

∂ 2τNN
jk

∂ x i∂ x j
, (5.40)

∂ωz

∂ t
≈ −

∂W

∂ y

∂ U

∂ z
+ ν

∂ 2ωz

∂ x j∂ x j
+

1

ρ
ε3ik

∂ 2τNN
jk

∂ x i∂ x j
, (5.41)

where εi jk is the Levi-Civita permutation symbol [128]. By multiplying equations (5.40) and
(5.41) by ωx and ωz, respectively, and then adding them together, we obtain an equation
for ω2

x +ω
2
z . Averaging over the homogenous streamwise and spanwise directions yields an

equation for the near-wall partial enstrophy
¬

ω2
x

¶

+
¬

ω2
z

¶

:

∂
�¬

ω2
x

¶

+
¬

ω2
z

¶�

∂ t
≈ Pωx

+ Pωz
+ εω+ fx + fz, (5.42)
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in which

Pωx
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�
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∂ x

�

d 〈U〉
dz

, (5.43)
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d 〈U〉
dz

, (5.44)
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fx =
1

ρ

�®

ωx

∂ 2τNN
13

∂ x∂ y

¸

+

®

ωx

∂ 2τNN
23

∂ y2

¸

+

®

ωx

∂ 2τNN
33

∂ y∂ z

¸

−
®

ωx

∂ 2τNN
12

∂ x∂ z

¸

−
®

ωx

∂ 2τNN
22

∂ y∂ z

¸

−
®

ωx

∂ 2τNN
23

∂ z2

¸�

,

(5.46)
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(5.47)

Pωx
and Pωz

are the production terms, εω is the viscous dissipation, and fx and fz are the
non-Newtonian contributions. All these contributions are shown in figures 5.48 and 5.49
for the Newtonian and drag-reduced flows. The enstrophy production of the Newtonian
flow is positive everywhere except for Pωx

in the region adjacent to the wall (z+ < 2 for the
Newtonian and z+ < 3.2 for the drag-reduced flows). The extended negative zone of Pωx

in
the drag-reduced flow can be explained by the thickened viscous sublayer . The wall-normal
enstrophy production Pωz

is almost twice as large as the streamwise enstrophy production Pωx
.

These are in agreement with the findings of Lee and Kim [64] for a Newtonian channel flow at
Reτ = 110. Both production terms are decreased in the drag-reduced flow as compared to the
Newtonian flow. The amount of dissipation has been also reduced. The direct non-Newtonian
contribution is very small and can be neglected.

The partial enstrophy production terms Pωx
and Pωz

are proportional to



ωxωz
�

d 〈U〉/dz
[64]. Therefore, the one-point correlation




ωxωz
�+ =




ωxωz
�

h2/u2
τ

is plotted in figure 5.50
for the Newtonian and drag-reduced flows versus the wall distance z+.




ωxωz
�

is negative in
the vicinity of the wall (z+ < 5 for Newtonian and z+ < 6.7 for the fibrous flows) and is posi-
tive elsewhere. Streamwise and wall-normal vorticities decay where




ωxωz
�

is negative and
grow where




ωxωz
�

is positive [64]. Our simulation shows that, in the drag-reduced flow, the
structures with opposite signs ofωx andωz exist in a thicker region near the wall as compared
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to the Newtonian counterpart, i.e. vortical structures are decayed in a thicker wall layer. This
is consistent with the thickening of the viscous sublayer, and also indicates the movement of
the streaky structures away from the wall. Note that the wall-normal vorticity is a representa-
tive of the streamwise streaks observed in the near-wall region.
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The reduction in



ωxωz
�

can be a result of reduction in ωx ,rms, ωz,rms and/or reduction in
the correlation coefficient between them:

R
�

ωx ,ωz
	

=




ωxωz
�

ωx ,rms ωz,rms
. (5.48)

We have observed in subsection 5.2.11 that, in the drag-reduced flow, ωx ,rms is substantially
decreased while the change in ωz,rms is modest, as compared to the Newtonian counterpart.
The correlation coefficient R

�

ωx ,ωz
	

is plotted in figure 5.51. We see that the correlation co-
efficient is decreased up to a wall distance of z+ = 140. Above this wall distance, R

�

ωx ,ωz
	

is increased. This can be explained by the distribution of the vorticity inclination angle θ pre-
sented in figures 5.47a to 5.47p. In the Newtonian flow, most of the vorticity inclination angles
are populated about θ = 45◦/−135◦, from the buffer layer up to about z+ = 140. On the con-
trary, in the fibrous flow, the population around θ = 45◦/−135◦ happens above about z+ = 90.
That is why the correlation coefficient of the Newtonian flow is higher than that of the fibrous
flow in the region between the buffer layer up to about z+ = 90. Above z+ = 90, the correla-
tion coefficients of both flows are close to each other up to about z+ = 140. Above this wall dis-
tance, the correlation coefficient of the fibrous flow is greater than that of the Newtonian flow.
This is because the inclination angles in the Newtonian flow tend to an isotropic state, while
they are still, to some extent, anisotropic in the fibrous flow.

Considering both figures 5.39 and 5.51, we conclude that the reduction in



ωxωz
�

, in
z+ < 140 region, is due to reduction in both ωx ,rms and the correlation coefficient R

�

ωx ,ωz
	

.
Above z+ = 140, we observe that the




ωxωz
�

curves of both flows are close to each other.
This means that, in the fibrous flow, the reduction in ωx ,rms is compensated by the increase in
R
�

ωx ,ωz
	

.

5.3. Summary

In this chapter, we have presented the results of the direct Monte-Carlo simulation of turbulent
drag reduction by rigid fibers in a channel flow at a nominal shear Reynolds number Reτ =
180. The suspended fibers have an aspect ratio r = 100 and a rotary Péclet number Per =
1000. We have studied the turbulence statistics. The classical features of a polymeric drag-
reduced flow were observed. Especially, we look at the pressure-strain correlation which
explains the change in the anisotropy of the drag-reduced flow. It turns out that the reduction
in
¬

p′s′11

¶

is mainly due to the reduction in
¬

(∂ U/∂ x)2
¶

. We have analyzed the budget of
¬

(∂ U/∂ x)2
¶

. Finally, we have investigated the vorticity field of the fibrous flow in comparison
with the Newtonian flow.
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6. Conclusions and Outlook

A two-way coupled solver for the simulation of fiber suspension flows has been developed. The
incompressible non-Newtonian Navier-Stokes equations are solved using an existing finite-
volume-based DNS solver. The suspended microstructure is treated in a Lagrangian manner
using a particle tracking scheme. On each Lagrangian path, a cluster of sampling fibers are
followed. The conformation of each cluster is computed using a direct Monte-Carlo method,
i.e. a stochastic simulation of the Fokker-Planck equation. This direct solver is in contrast to
the moment approximation simulation approach which requires a closure model. The numer-
ical methods have been presented in detail. A benchmark with an analytical solution has been
developed and used to validate the two-way coupled solver.

The developed numerical method has been employed to study the turbulent drag reduction
caused by rigid fibers in a channel flow at a nominal shear Reynolds number Reτ = 180. To the
best of the author’s knowledge, this is the first two-way coupled direct simulation of turbulent
drag reduction by rigid fibers at a high Péclet number regime. This is achieved by using 1283

Eulerian grid cells and 6 553600 000 suspended fibers. The simulation demands a tremendous
amount of computational resources. The code is parallelized over the Lagrangian particles,
similar to the approach used by Manhart [74]. We have used 128 processing elements for the
reported simulation.

Turbulence statistics of the drag-reduced flow are presented. All known features of a fi-
brous drag-reduced channel flow have been reproduced. The main results are as follows.
Two-point correlations of velocity components in streamwise and spanwise directions are pre-
sented. Based on the two-point correlation of the streamwise velocity in the spanwise direc-
tion, the mean streak spacing is computed as a function of the wall distance. This shows about
50 wall units increase in the mean streak spacing. The power spectra of the velocity and the
non-Newtonian stress components in streamwise and spanwise directions are also presented.
The least decay among the velocity power spectra belongs to the wall-normal component in
the spanwise direction, in the near-wall region. The decay of the stress spectra is not as fast
as those of velocities.

The mean velocity profile has a slightly increased slope in the logarithmic-law region.
Streamwise turbulence intensity is increased while the spanwise and wall-normal ones are
decreased. The Reynolds shear stress is also reduced. Our quadrant analysis showed that the
fibers mainly modify the contribution of the ejection and sweep events; ejections contribute
more and sweeps contribute less. The probability density function (PDF) of the fluctuating
velocities are shown. We have found out that the PDF of the streamwise velocity fluctuations
is wider and those of the spanwise and wall-normal velocity fluctuations are narrower. This is
consistent with the increased urms and the decreased vrms and wrms.
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The Lumley anisotropy map has been presented and we have observed that the fibrous
flow is more anisotropic. This is in line with the findings of Paschkewitz [102] and Frohnapfel
et al. [35]. In order to explain the modification in the anisotropy map, we have considered
the pressure-strain correlation which is responsible for the redistribution of the turbulent ki-
netic energy among different components. We have demonstrated that, in the drag-reduced
flow, the sink term for urms and the source terms for vrms and wrms are weaker. This means
that the redistribution process is less effective and hence, the turbulence is more anisotropic.
We have found that the reduction in the streamwise component of the pressure-strain term
is mainly due to the reduction in the strain fluctuations and partly due to the reduction in
the pressure fluctuations. The pressure-strain correlation has been further analyzed by means
of a Green’s function solution of the Poisson equation for pressure fluctuations. We deduce
that the direct effect of the non-Newtonian stresses is very small. This is similar to the di-
rect contribution of the non-Newtonian stresses to the budget of the turbulent kinetic energy
as described by Paschkewitz et al. [104]. The modification of the pressure-strain correla-
tion, which is responsible for the most pronounced modification of the anisotropy comes
from the modified terms in the budget that are present in the Newtonian flow budget as
well.

We have also investigated the vorticity field of the turbulent drag-reduced flow. The
streamwise vorticity fluctuations are reduced, similar to the result of Paschkewitz et al. [104].
The reduction in the root-mean-square streamwise vorticity fluctuations is mainly due to the
reduction in the strain fluctuations, similar to the reduction in the pressure-strain correlation.
The distribution of the vorticity tilting angle at different distances from the wall have been pre-
sented. It has been observed that the peaks in the distribution of the tilting angle are stronger
in the fibrous flow. Another observation is that the tilting angle of the drag-reduced flow
tends to 45◦ at a considerably higher distance from the wall as compared with the Newtonian
flow.

Possible extentions to this thesis are suggested in the following directions. So far, only one-
way coupled simulations of inertial fibers in turbulent flows have been available. Two-way
coupled simulation of fibers in turbulent flows is an interesting extention to this work, which
allows us to study the effect of the fiber inertia on the drag reduction. To this aim, one needs
a rheological theory for suspension of inertial fibers. Another extention would be the direct
simulation of a mixture of fibers and flexible polymers. This has been done by Paschkewitz
[102] using the moment approximation model for fibers and the FENE-P model for flexible
polymers. One can perform a direct simulation using the Monte-Carlo simulation of fibers
and the FENE simulation of polymers. The simulation of turbulent fibrous flows in complex
geometries would be another interesting extention to this work. Richter et al. [112] have
pioneered a work in this direction using the FENE-P model for flexible polymers in viscoelatic
flow around a circular cylinder at Re= 100 and 300.



A. Fitting Coefficients of IBOF Closure

In this appendix, the 3× 21 = 63 fitting coefficients of the IBOF closure model, i.e. a
�

i, j
�

with i = 3, 4,6 and j = 1, . . . , 21, are presented. These values are obtained by Chung and
Kwon [16].

i = 3
______________________________________________

a(3, 1) = +0.249409081657860E02

a(3, 2) = −0.435101153160329E03

a(3, 3) = +0.372389335663877E04

a(3, 4) = +0.703443657916476E04

a(3, 5) = +0.823995187366106E06

a(3, 6) = −0.133931929894245E06

a(3, 7) = +0.880683515327916E06

a(3, 8) = −0.991630690741981E07

a(3, 9) = −0.159392396237307E05

a(3, 10) = +0.800970026849796E07

a(3, 11) = −0.237010458689252E07

a(3, 12) = +0.379010599355267E08

a(3, 13) = −0.337010820273821E08

a(3, 14) = +0.322219416256417E05

a(3,15) = −0.257258805870567E09

a(3,16) = +0.214419090344474E07

a(3,17) = −0.449275591851490E08

a(3,18) = −0.213133920223355E08

a(3,19) = +0.157076702372204E10

a(3,20) = −0.232153488525298E05

a(3,21) = −0.395769398304473E10
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i = 4
______________________________________________

a(4, 1) = −0.497217790110754E00

a(4, 2) = +0.234980797511405E02

a(4, 3) = −0.391044251397838E03

a(4, 4) = +0.153965820593506E03

a(4, 5) = +0.152772950743819E06

a(4, 6) = −0.213755248785646E04

a(4, 7) = −0.400138947092812E04

a(4, 8) = −0.185949305922308E07

a(4, 9) = +0.296004865275814E04

a(4,10) = +0.247717810054366E07

a(4,11) = +0.101013983339062E06

a(4,12) = +0.732341494213578E07

a(4,13) = −0.147919027644202E08

a(4,14) = −0.104092072189767E05

a(4,15) = −0.635149929624336E08

a(4,16) = −0.247435106210237E06

a(4,17) = −0.902980378929272E07

a(4,18) = +0.724969796807399E07

a(4,19) = +0.487093452892595E09

a(4,20) = +0.138088690964946E05

a(4,21) = −0.160162178614234E10
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i = 6
______________________________________________

a(6, 1) = +0.234146291570999E02

a(6, 2) = −0.412048043372534E03

a(6, 3) = +0.319553200392089E04

a(6, 4) = +0.573259594331015E04

a(6, 5) = −0.485212803064813E05

a(6, 6) = −0.605006113515592E05

a(6, 7) = −0.477173740017567E05

a(6, 8) = +0.599066486689836E07

a(6, 9) = −0.110656935176569E05

a(6, 10) = −0.460543580680696E08

a(6, 11) = +0.203042960322874E07

a(6, 12) = −0.556606156734835E08

a(6, 13) = +0.567424911007837E09

a(6, 14) = +0.128967058686204E05

a(6,15) = −0.152752854956514E10

a(6,16) = −0.499321746092534E07

a(6,17) = +0.132124828143333E09

a(6,18) = −0.162359994620983E10

a(6,19) = +0.792526849882218E10

a(6,20) = +0.466767581292985E04

a(6,21) = −0.128050778279459E11
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B. Evolution of Reynolds Stress Tensor
and Turbulent Kinetic Energy

In this appendix, we derive differential equations governing the evolution of the Reynolds
stress tensor and turbulent kinetic energy in non-Newtonian turbulent flows. These equations
are derived from the incompressible non-Newtonian Navier-Stokes equations. The derivation
for Newtonian flows can be found in [106].

First, we turn to the evolution of Reynolds stresses. A transport equation in the following
form is sought:

D
¬

uiu j

¶

Dt
= · · · , (B.1)

in which

D

Dt
=
∂

∂ t
+



Ui
� ∂

∂ x i
, (B.2)

is the mean material derivative. From the definition of the material derivative, one can readily
derive

�

ui

Du j
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+ u j

Dui

Dt

�

=
D
¬

uiu j

¶

Dt
+
∂

∂ xk

¬

uiu juk

¶

. (B.3)

The following transport equation for fluctuating velocities is obtained by subtracting the mean
flow (Reynolds) equation from the Navier-Stokes equation:
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=−uk
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′NN
k j
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, (B.4)

where τ
′NN
k j is the fluctuating non-Newtonian stress. Substituting equation (B.4) into equation

(B.3) yields

D
¬

uiu j

¶

Dt
+
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= Pi j + Ri j − εi j + Fi j, (B.5)

where
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is the Reynolds stress flux,

Pi j =−



uiuk
�
∂
¬

U j

¶
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−
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u juk

¶ ∂
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�

∂ xk
, (B.7)

is the production term,
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1

ρ

®

p′
�

∂ ui

∂ x j
+
∂ u j

∂ x i

�¸
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ρ
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, (B.8)

is the pressure-strain correlation,

εi j = 2ν

®

∂ ui

∂ x j

∂ u j

∂ x i

¸

, (B.9)

is the dissipation term, and

Fi j =

*

ui

∂ τ
′NN
k j

∂ xk
+ u j

∂ τ
′NN
ki

∂ xk

+

, (B.10)

is the non-Newtonian term. s′i j in the pressure-strain term (B.8) is the fluctuating strain-rate
tensor

s′i j =
∂ ui

∂ x j
+
∂ u j

∂ x i
, s′ii = ∂ iv ui = 0. (B.11)

A transport equation for the turbulent kinetic energy can be derived by simply changing
u j to ui in equation (B.5):

D



uiui
�

Dt
+
∂ Tkii

∂ xk
= Pii − εii + Fii. (B.12)

Note that Rii vanishes due to the continuity of the fluctuating velocity field:

Rii =
1

ρ

�

p′
�

∂ ui

∂ x i
+
∂ ui

∂ x i

��

=
1

ρ

¬

p′s′ii
¶

= 0. (B.13)

The pressure-strain correlation Ri j appears in the transport of the Reynolds stresses (B.5),
but does not appear in the transport of the turbulent kinetic energy (B.12). This means that Ri j

does not act as a source or sink of the turbulent kinetic energy, but rather as a redistribution
term for the Reynolds stresses. Redistribution is referred to the exchange of energy among
different components of the Reynolds stress tensor.



C. Poisson Equation for Fluctuating
Pressure

In this appendix, we derive a Poisson equation for the fluctuating pressure p′ from the non-
Newtonian Navier-Stokes equations. The derivation for the Newtonian case can be found
in [106]. The non-Newtonian Navier-Stokes equations for incompressible flow in indicial
notation read

∂ Ui

∂ x i
= 0, (C.1)

ρ
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. (C.2)

Taking the divergence of the momentum equation (C.2), one has the following Poisson equa-
tion for pressure:

1
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=−
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The mean flow (Reynolds) equations are obtained by Reynolds averaging the above Navier-
Stokes equations:
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A detailed analysis of the Reynolds-averaged equations applied to polymeric flows can be
found in [53]. By taking the divergence of the mean momentum equation (C.5) we obtain a
Poisson equation for the mean pressure:
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Finally, subtracting equation (C.6) for



p
�

from equation (C.3) for p and noting that p′ =
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p−
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, we obtain
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which is a Poisson equation for the fluctuating pressure. Considering the statistical homo-
geneity, equation (C.7) can be written in the following form for a fully-developed turbulent
channel flow:
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Equation (C.8) can be alternatively written as
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by taking into account the continuity of the fluctuating velocity field:

∂ ui

∂ x i
= 0. (C.10)
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