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Novel System Inversion Algorithm With Application
to Oversampled Perfect Reconstruction Filter Banks

Sander Wahls, Student Member, IEEE, and Holger Boche, Senior Member, IEEE

Abstract—We derive a novel algorithm for linear (discrete-time)
system inversion with decision delay and frequency weighted �

norm criterion. Complexity of the algorithm grows only linearly
with the decision delay. The algorithm also applies to certain sin-
gular cases where optimal inverses may be nonunique. In that case,
the set of optimal inverses is parametrized. A Scilab implementa-
tion of the algorithm is provided. Applications in oversampled per-
fect reconstruction filter banks are given.

Index Terms—Filter bank, IIR digital filters, inversion, MIMO
systems, perfect reconstruction, state space methods.

NOTATION

Notation in this paper is similar to [1]. In particular,
denotes the space of (discrete-time) stable and

causal rational matrices. We often drop the dimen-
sions when possible. For any , we define
the para-Hermitian and the norm

. If is tall
and has full normal rank, we further set .
The Moore–Penrose pseudoinverse of any is denoted
by .

I. INTRODUCTION

S TABLE inversion of rational matrices is a commonly en-
countered problem in filter bank theory, which arises when

filter banks are described via polyphase representation [2], [3],
[4, Ch. 5.5]. The polyphase representation of a typical anal-
ysis-synthesis filter bank cascade is depicted in Fig. 1. The ra-
tional matrices and are called the (polyphase ma-
trices of the) analysis and synthesis filter bank, respectively. The
filter bank cascade is called oversampled if is a tall ma-
trix, or, equivalently, is wide. When is a (delayed)
left-inverse of , i.e., for some deci-
sion delay , the cascade is said to achieve perfect recon-
struction (PR). A typical task arising in many applications is the
following. Given an analysis filter bank , find the optimal
synthesis filter bank that leads to PR. The computation
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Fig. 1. Analysis-synthesis filter bank cascade (polyphase representation).

of optimal synthesis filter banks achieving PR is an active re-
search topic. Different algorithms arise depending on the class
of inverses [e.g., causal, anticausal or noncausal, finite-impulse
response (FIR) or infinite impulse response (IIR)] and the op-
timality criterion used (e.g., minimal or norm). In this
paper, we consider causal IIR inverses with minimal weighted

norm.
Problem 1 (Weighted Inversion): Suppose we are given

and such that
for is constant for

, and .1 Then, we want to find
such that

and

(1)
Let us review some relevant literature. The delay-free version
of Problem 1 with constant weight
has been solved in [5]. This approach is optimal in terms of
delay but at the same time usually suffers from large minimal
norms. The other extreme, i.e., the noncausal version of Problem
1 , has been solved only very recently in [6]. While
the norms of inverses are often much smaller in the noncausal
approach than for causal inverses, there is the problem that the
synthesis filter banks cannot be implemented in real-time be-
cause the decision delay is infinite, in general.2 Our solution
finds the middle ground between these two extremes, i.e., we let
the filter bank designer choose a tradeoff between decision delay
and norm. Some preliminary results on this case have already
been given by the authors in [8]. However, the assumptions on
the weight in [8] are more restrictive, and some proofs were left
open. To the best of our knowledge, the case considered here is

1Our approach also applies to the case � � � but this requires some straight-
forward modifications which are not treated in this paper. However, note that
the toolbox referenced in Section V implements this case.

2To be precise, it is also possible to implement the filter bank as a causal but
in general unstable system (see, e.g., [7, Ex. 3.7]. However, these are suitable
only for very short input sequences.
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still open. Other inversion problems treated in the literature are,
e.g., causal IIR inverses with minimal unweighted norm [9],
[10] or minimal norm [11], [12]. Causal FIR inverses with
minimal norm are treated in [13], [14]. The para-pseudoin-
verse, which in general is noncausal and IIR, is considered in
[15]–[17]. Anticausal inversion is discussed in [18] and [19].

Similar to [5], [10], and [11], we will choose a state-space
approach to solve the weighted inversion problem. Our al-
gorithm exhibits two interesting features. First, our setting is
quite general, so that there may be multiple optimal solutions.
The algorithm computes the complete set of solutions. This
is an improvement over the results in [5], [6], and [8], where
the assumptions enforced uniqueness of optimal inverses, and
provides more degrees of freedom to the filter bank designer.
Second, the complexity grows only linearly with the decision
delay. Thus, also large decision delays become feasible.

The paper is structured as follows. In Section II, we param-
etrize the stable inverses of , and in Section III we derive
the set of optimal stable inverses. The efficiency of the numer-
ical procedures outlined in Section III is improved in Section IV.
Numerical examples are given in Section V. The paper ends with
a conclusion (Section VI) and an Appendix.

We close this section with a couple of remarks.
Remark 1 (Necessity of Conditions): Not all the assump-

tions in Problem 1 are necessary; only for
is. On the other hand, this condition alone is

not sufficient. Note that we can still solve Problem 1 approxi-
mately if the conditions are not met. If has zeros
on , we can compute an optimal inverse for with
weight , where is small. then minimizes

. If violates the rank condition, we can use
the approach given in the next remark (with weight ).

Remark 2 (MMSE Criterion): There are situations where the
optimal exact inverse is not desired but an approximate inverse
which minimizes the minimum mean-square error (MMSE). In-
terestingly, this problem can be seen as a special case of Problem
1 [8]. (The opposite is not true.) Suppose that we want to esti-
mate from measurements where and are
spatially and temporally white Gaussian random signals. Intro-
duce the auxiliary systems

and

and compute the corresponding solution to Problem
1. Then, is a MMSE estimator for .3

Remark 3 (Inverses With Unstable Poles): In the literature,
many algorithms compute inverses with unstable poles, e.g.,
the para-pseudoinverse [15]–[17]. In the time-domain, these in-
verses can either be implemented as stable systems with two-
sided impulse response or as unstable systems with one-sided
impulse response [7].4 Both variants have their disadvantages.
The former cannot be implemented in real-time because the im-
pulse response is in general bi-infinite, which corresponds to
an infinite decision delay. The usual remedy is to truncate the

3The key facts to note are that the MSE is given by �� ����� �����
and that �� �� � � � iff � � � � ��� [8].

4The latter may require a finite decision delay.

impulse response, which introduces errors. On the other hand,
the latter variant can be implemented in real-time, but the result
usually is unusable because even the slightest error (e.g., finite
precision effects) can be amplified ad infinitum.

Remark 4 (Anticausal Inverses): Some papers also consider
anticausal inverses [18], [19]. The impulse response of an an-
ticausal inverse is always one-sided. This is similar to causal
inverses. The difference is that the impulse response extends
backwards in time instead of forwards. Counterintuitively, also
anticausal inverses can be implemented in real-time when a cer-
tain block processing method is used [18], [19]. (But note that
this method cannot be applied to inverses with bi-infinite im-
pulse response like the stable implementation of the para-pseu-
doinverse.) However, this method needs side information usu-
ally not known at the inverse, i.e., the first systems internal state
sequence decimated by the block length.

Remark 5 (Spectral Factorization Approach): In this paper,
we solve Problem 1 directly. An indirect approach was pre-
sented in our previous work [8]. There, spectral factorization
was used to reduce the weighted system inversion problem to
an unweighted system inversion problem (cf. [8, Prop. 2]). We
want to point out that our new approach offers some advantages.
The spectral factorization approach is only guaranteed to work if
the weight has full row rank on .5 This condition is more
restrictive than the one in Problem 1. Another obvious advan-
tage is that the additional spectral factorization is not necessary,
which decreases the computational burden.

II. PARAMETRIZATION OF THE STABLE INVERSES

A major step in the solution of the inversion problem is to
convert the constrained optimization problem (1) into an un-
constrained optimization problem. Thus, we now derive an ex-
plicit parametrization for the set of inverses. The parametriza-
tion follows the results in [11] very closely, which is why we
only give the main results. Consider a (minimal) state-space re-
alization [1]

(2)

where . Since has full column rank
by assumption, the pseudoinverse is well
defined. We can find a unitary matrix such
that . Then, with , the relation

(3)

holds. Furthermore, a matrix exists such that the
matrix is stable, i.e., all eigen-
values are contained inside the complex unit disc. (A suitable

can be computed using pole placement algorithms.) Now,
we can extend into an invertible rational matrix

(4)

5If the row rank � is lower than �, rank reduced spectral factorizations with
� � � spectral factors may be used [20]. However, the resulting unweighted
system inversion problem no longer has to be solvable. In particular, if � 	 
, it
is always unsolvable because the resulting system is wide.



3010 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010

This extended matrix has the inverse

(5)

where . Analogously to Proposition 4.5
in [11], we now obtain the following parametrization.

Proposition 1: A rational matrix sat-
isfies iff for some

.
Next, we reformulate this parametrization in the optimal con-

trol framework (see, e.g., [1]). This will allow us to use re-
sults from optimal control in order to solve our system inversion
problem.

Theorem 1 (Parametrization of Inverses): Define a
matrix and a matrix via

. . .
. . .

...

as well as a matrix and a matrix via

Furthermore, introduce the state-space system

Then, satisfies iff it is the closed-
loop transfer function of for an internally stabilizing con-
troller

(6)

The proof of this theorem is relatively simple when one notes
that the control inputs actually do not affect the states, which
makes the set of stabilizing controllers, and (3) is
applied to simplify the expressions for , and

.

III. INVERSION WITH WEIGHTED NORM CRITERION

We now derive a solution to the inversion problem. We bring
in a (minimal) state-space realization of the weight

(7)

where . In Theorem 1, we have reformulated
the parametrization in the optimal control frame-
work. In order to obtain an optimal inverse, we have to find

such that is min-
imized. Then, solves the inversion
problem. The following theorem reformulates this solution ap-
proach in the optimal control framework.

Theorem 2 (Parametrization of Weighted Inverses): Define

Then, is a weighted inverse, i.e., and
, iff it is the closed-loop transfer function of

for some internally stabilizing controller (6). Furthermore, the
internally stabilizing controller for that results in the closed-
loop transfer function also internally stabilizes
in Theorem 1. When applied to , the transfer function of the
closed-loop system equals .

Thus, we can compute an optimal by solving the op-
timal control problem in Theorem 2, and then obtain a state-
space realization of an optimal inverse by computing the closed-
loop system which results from application of to as
given in Theorem 1. Regarding the proof of Theorem 2, one
should note that simply is the concatenation of and the
weight . The rest basically carries over from Theorem 1.

Although we have now reformulated the critical step of
computing an optimal parameter as an optimal control
problem, several issues remain. A basic difficulty is that de-
pending on the weight, is not necessarily unique. Standard
optimal control algorithms make additional assumptions such
as having full rank or to ensure uniqueness
of optimal solutions [1], [21]. However, with the weight in
Problem 1, those assumptions may not hold, and thus standard
algorithms cannot always be applied. We solve this problem
by using the singular control results in [21]. The following
algorithm is obtained. (See Appendix A for a derivation.)

Algorithm 1: Naive Inversion Algorithm

Input: as in Problem 1, with realizations (2), (7), and
.

Outp.: s. t.
.

Step 1: Compute a stabilizing solution6 to the
discrete time algebraic Riccati system (DTARS)

=0
=0.

(8)

Here, .
Step 2: Set , and return

The following proposition shows that Problem 1 is always
solvable.

Proposition 2: Let the assumptions in Problem 1 hold. Then,
a stabilizing solution to the DTARS (8) exists.

6i.e.,� � � and �� � �� � � stable
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The proof of Proposition 2 is given in Appendix B. If the
optimal inverse is unique,7 the solution to the DTARS is unique
as well. It can then be computed using [22, Th. 5.5.1]. In the
nonunique case, the more complicated approach in [22, Th.
6.4.4] can be utilized. Once the DTARS is solved, Theorem 4
in [21] implies the following parametrization for the optimal
solutions.

Theorem 3 (Parametrization of Optimal Inverses): Suppose
that is a basis for the co-image of (i.e., has full
and maximal rank and , and set

Then, satisfies (1) iff, for some

(9)

This parametrization may e.g., be used to find an optimal in-
verse with additionally minimal norm.

IV. EFFICIENT INVERSION ALGORITHM

A serious disadvantage of the naive algorithm is that its costs
grow rapidly with the delay because the dimensions of the co-
efficient matrices in the DTARS (8) grow linearly with . Thus,
computational complexity as well as storage requirements for
solving this DTARS grow cubically. In this section, we derive
a more sophisticated algorithm, where complexity (and storage
requirements) grow only linearly with . The key observation
will be that only the first rows of are actually
used in the naive algorithm, and that this part of can be
obtained without solving the large DTARS (8). Instead, only a
small DTARS has to be solved.

For the rest of the section, let us fix a stabilizing solution
to the DTARS (8). We partition as follows,

(10)

Furthermore, let us introduce

(11)

The next proposition shows how and can be obtained
from , and without solving the large DTARS (8).

Proposition 3: A stabilizing solution8 for

(12)

7One can show: the optimal inverse is unique iff �� ��� �� has normal
rank �� �, i.e., �� � s. t. ������� ���� �� �� ��� �� �� 	 �� �.

8i.e., � 	 � and � 
� � 	 stable

exists under the assumptions in Problem 1. Here,
. Furthermore, any stabilizing

solution satisfies , and is
given by

Next, we show that knowing and (without knowing
is already sufficient to compute suitable and .

Proposition 4: Let be a stabilizing solution to the
DTARS (12). Also, set , where is given by
the equation shown at the bottom of the page. Then, is
a stabilizing solution to the DTARS (8). The according in
Algorithm 1 satisfies .

Both propositions are proven in Appendix C. When we incor-
porate these results into Algorithm 1, a more efficient algorithm
is obtained.

Algorithm 2: Efficient Inversion Algorithm

Input: as in Problem 1, with realizations (2), (7), and
.

Outp.: s. t.
.

Step 1: Compute and via Proposition 3.
Step 2: Compute and using Proposition 4.
Step 3: Partition and ,

and return

To see that the storage requirements indeed only grow linearly
with the delay , note that is a
matrix. The matrices and simply are identity matrices
augmented by zeros, which do not have to be stored.

V. NUMERICAL EXAMPLES

In this section, we illustrate the use of our results with some
numerical examples. Following the idea of reproducible re-
search, all software necessary to recreate our results is provided
[23]. In particular, we have implemented the inversion algorithm
in a Scilab9 toolbox available at http://lsitbx.origo.ethz.ch. The
Scilab scripts that where used to create the numerical examples
are additional multimedia content to the paper, which can be
downloaded using IEEE Xplore (http://ieeexplore.ieee.org).
The aforementioned toolbox is required to run them.

9Scilab is an open source platform for numerical computation, see http://
www.scilab.org for more information.
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Fig. 2. Perfect reconstruction analysis-synthesis filter bank cascade.

PR Filter Bank Cascade: We revisit Example 1 in [16], where
PR filter bank cascades as depicted in Fig. 2 are considered. The
sampling factor is . We employ filters. The analysis
filters are

Let us compute the polyphase matrix of the analysis filter bank,
i.e., in Fig. 1. By [16, eq. (31)]

Now, let denote an optimal left-inverse for
(note that depends on the delay ). The synthesis filters

in Fig. 2 then are given by [16,
eq. (9)].

The norms of the optimal inverses are approximately
2.1324, 1.9896, 1.9774, and 1.9771 for ,
and , respectively. (Here, was solved with a
modified version of Algorithm 1. The cases were
solved with Algorithm 2, while for we used the nonre-
alizable para-pseudoinverse from [6].) Thus, the performance
of the nonrealizable para-pseudoinverse can be achieved by
causal inverses even for small delays. In order to visualize
the filter banks, we have plotted normalized versions of the
average polyphase magnitudes of analysis and synthesis filter
banks in Fig. 5, i.e., and

. Note how closely the average
polyphase magnitude of the optimal inverse with delay
already matches the average polyphase magnitude of the non-
realizable para-pseudoinverse .

Multirate Transceiver: We revisit Example 1 in [5] (origi-
nally due to [24, Ex. 2]), where multirate transceivers as de-
picted in Fig. 3 are considered. The are precoding filters,

is a communications channel, and the are the equaliza-
tion filters. The sampling factors are and . The
channel

Fig. 3. Multirate transceiver.

has four polyphase components

The precoding filters are given by
, where

Here, is an initial precoder, and is a
co-spectral factor of with given
by [5, eq. (9)]

i.e., and
. Combination of precoder

and channel gives us the polyphase matrix of a virtual
analysis filter bank, [5, eq. (17)]. Now,
let denote an optimal left inverse for
(note that depends on ). The resulting equalization filters
for Fig. 3 are given by .

In [5, Ex. 1], the equalization filter bank was obtained for
the delay-free case . The resulting norm was 1.7856. In
the case , we obtained a very similar norm of 1.7799.
10 When we use Algorithm 2 to increase the decision delay
to , and , the norms drop further to
1.7481, 1.7375, and 1.7324, respectively. The optimal nonreal-
izable filter bank given in [6, Th. 1] (which corresponds to

) achieves a norm of 1.7321. Thus, the performance of the op-
timal nonrealizable filter bank can again be nearly achieved even
with quite small decision delays. We have also again plotted
normalized versions of the average polyphase magnitudes of
channel, precoder and various equalizers in Fig. 5, i.e.,
and as defined in the previous example, and

. Note that our plots of and (for
) differ from [5, Fig. 2] because the spectral factoriza-

tion used in the computation of the transmitter filter bank is not
unique. Fig. 5 illustrates how the finite-delay equalization filter
banks converge towards the nonrealizable filter bank
when the delay is increased. Also note how close the average
magnitude of the equalization filter bank already is to
that of the optimal nonrealizable filter bank.

10In fact, both errors should be equal. The difference has numerical reasons.



WAHLS AND BOCHE: NOVEL SYSTEM INVERSION ALGORITHM 3013

Fig. 4. Normalized average polyphase magnitudes of analysis filter bank
(dashed) and synthesis filter banks (solid).

Fig. 5. Normalized average polyphase magnitudes of channel (dashed), pre-
coding filter bank (dash-dotted), and equalization filter banks (solid).

Nonunique Optimal Inverses: We consider Problem 1 with
,

Following Section II, we first compute an extension matrix (cf.
(3))

with from the singular value decomposition of
. Since and , we see that

is stable. Thus, we can choose , which

gives . Thus, in light of (5), we have
completed computation of the inverse and its extension matrix

. Next, we compute (11),

Theorem 4.1 in [25] (with perturbation ) shows that

and

solve the DTARS (12). Then, , and, by Proposition 4,

Finally, we can solve for the set of optimal inverses. The ma-
trix and a basis of the co-image are given by

After some further computations, is obtained
[see the equation shown at the bottom of the next page]. The set
of optimal inverses is now given by (9). The canonical choice

gives the optimal inverse .

VI. CONCLUSION

In this paper, optimal stable inversion of rational matrices
with weighted norm criterion was considered. In contrast
to known algorithms, our algorithm allows to tradeoff between
decision delay and norm of the inverse. Linear complexity in the
delay allows implementation also of large delays. Furthermore,
the algorithm handles many singular problems with nonunique
optimal inverses. In such cases, the set of optimal inverses is pa-
rametrized. Numerical examples illustrated applications in filter
bank theory.
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APPENDIX A
DERIVATION OF ALGORITHM 1

In order to solve the optimal control problem in Theorem 2,
we use the results from [21]. According to [21], two full infor-
mation control (FIC) problems have to be solved. It is simple to
check that the triple (notation as
in [21]) is the optimal solution to the first FIC problem

Thus, the second FIC problem is

Polyakov [21] gives a solution in terms of maximal
stabilizing deflating subspaces for the matrix pencil

Theorem 6.4.4 in [22] shows that equivalently the DTARS (8)
can be considered. Thus, we can apply Theorem 3 in [21], which
results in the optimal controller

Finally, we compute the closed-loop system resulting from ap-
plying this controller to as given in Theorem 1 (cf. [22, p.
40]) to obtain Step 2) of the algorithm.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: We have that is con-
stant for all by the assumptions in Problem 1. Now, note
that the kernels of and co-
incide on . To see this, suppose

for some and . Then, with
, we have

Since (5) is the inverse of (4), it follows that

This implies
. On the other

hand,

We see that
for all because

for any .
Since

Theorem 3.2 in [25] now implies that the equation

, where is given in Algorithm 1,
has a solution such that is stable
for some . As noted in [25, p. 840], this solution satisfies

. Thus, by [22,
p. 201], there exists a stabilizing solution to the DTARS (8).

APPENDIX C
PROOF OF THE PROPOSITIONS 3 AND 4

Lemma 1: We have

Proof: Apply (3) to the definition of to see that

(13)

Then, the computation is straightforward.
Proof: (of Proposition 3) Remember that with (10) and

(14)

we have fixed a stabilizing solution to (8). We show
existence of a stabilizing solution to (12) by proving that

is such a solution. Using (13), it is straightforward to
show that as soon as . To see that
solves the small DTARS (12), now check that
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and apply these equations and Lemma 1 to (8). Next, let us
check that is stable. Therefore, note that by
assumption

(15)

is stable. By [26, Lem. 7.1.1], then also is stable.
The fact that follows trivially from . The
partial uniqueness result [22, Pro. 3.6.3] shows that
for every other stabilizing solution .

Now, note that because of Lemma 1 and because
both and are stabilizing solutions
to (12), , and , we have

and
. Additionally using

, we obtain

and
(16)

Next, we derive the recursions for the . Let us partition

where

Then, the first line of (8) for together with (16) gives

(17)

Partition into blocks of size
, and note that and overlap because

is nonsquare,

( and have different sizes.) Thus, is the upper right
block of . Applying (17) shows us a initial condition for the
recursion, i.e.,

(18)

Again using (17), we obtain the remaining via

(19)

Let us finally consider the second line of (8) when the solution
is applied. Using Lemma 1, we see that equivalently

With (14), this gives us expressions for the . Plugging them
into (18) and (19) results in the recursion from the proposition.

Proof (of Proposition 4): Let us first show that
actually solves (8). By Lemma 1 and definition of we have

Since solves the second line of (8), solves
the equation . Then, the least
squares property of the Moore–Penrose pseudoinverse implies
that also solves it. This shows . Since
by the proof of Proposition 3 we already know that

, this implies . Therefore, the second line of (8)
holds for because it holds for . Using that

by the properties of the Moore–Penrose pseudoinverse,
, and , we obtain

for all , which implies . Thus, also
the first line of (8) holds for . To see that is
stabilizing, note that is a stabilizing solution to (12),
and apply (15).

Finally, the formula for follows directly from the fact that
(cf. the proof of Prop. 3) and Lemma 1.
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