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Abstract

The amount of functions that are realized by software is increasing in modern
automobiles. Most innovations in the automotive industry are driven by such
functions today. Many of these functions, especially safety-relevant functions,
must fulfill strict timing constraints. This thesis introduces a new development
approach for automotive real-time systems.
Traditionally, the overall vehicle electrical system is designed and integrated
by the car manufacturer (Oem). Suppliers actually develop different subsys-
tems in a so-called distributed development process. The Oem specifies the
desired functionality, and suppliers develop their subsystem according to its
specification. End-to-end car functions are often realized by software compo-
nents that are distributed over several electronic control units (Ecu), which
exchange data via communication busses. Ecus and software components are
typical subsystems. The control and data paths of functions thus often cross
several subsystems, which are typically provided by different suppliers.
The response times of functions, which must fulfill given timing constraints,
include execution and transmission times along their control and data paths.
In such a distributed development process of distributed automotive real-
time systems, Oems today face a challenging system integration task. First,
they must ensure that the combined timing behavior – i. e. execution and
transmission times – of all supplied subsystems fulfills all function timing
constraints of the system. Second, if a timing constraint is not fulfilled, the
Oems need to know which subsystem causes the problem and how the problem
can be solved.
This thesis proposes a solution to that system integration challenge. In our ap-
proach, the specifications for the suppliers include requirements for the desired
subsystem timing behavior. However, the subsystem timing requirements are
not independent from each other. Rather they are derived from the function
timing constraints. The timing behavior of a supplied subsystem is reported
back to the Oem in a way that abstracts from the underlying implementa-
tion details by providing data path-related timing behavior guarantees. By
comparing the timing requirements with the reported guarantees of all sub-
systems, timing problems can be localized and an according reaction in terms
of an intelligent modification of the timing requirements can be triggered. In
an iterative process the approach tries to find a suitable timing specification
for all subsystems, until all function timing constraints are fulfilled.
The process is based on Timex, a new timing model for the specification of
both function timing constraints and derived subsystem timing requirements.
Further, the Timex development methodology describes and formalizes an
algorithm to derive and iteratively maintain subsystem timing requirements.
The benefit of the methodology is that the timing behavior of subsystems
can be analyzed independently from each other. Timing problems that cause
unfulfilled function timing constraints can be identified in the model. They
are then repaired by a structured, systematic redistribution of time budgets
between subsystems.
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Zusammenfassung

Die Anzahl Software-basierter Funktionen in Fahrzeugen nimmt stetig zu.
Viele der Funktionen müssen strikte zeitliche Anforderungen erfüllen. Die
Software-Komponenten solcher Funktionen sind zunehmend über kommu-
nizierende Steuergeräte verteilt. Wegen der für die Automobilindustrie typi-
schen verteilten Entwicklung, in der mehrere Zulieferer verschiedene Steuer-
geräte oder Software-Komponenten liefern, müssen zeitliche Anforderungen
während der Entwicklung zwischen dem Automobilhersteller und den Zulie-
ferern koordiniert werden. Diese Arbeit stellt einen neuen Ansatz vor, um
zeitliche Anforderungen von Funktionen auf Subsysteme abzubilden und
während der Entwicklung Zeitbudgets für Subsysteme zu koordinieren. Ba-
sis des Ansatzes ist das in der Arbeit eingeführte Modell für zeitliche An-
forderungen Timex. Die Regeln zur Abbildung von Funktions- auf Subsystem-
anforderungen werden mittels Prädikatenlogik formalisiert und deren Anwen-
dung an einer typischen Automobilfunktion demonstriert.
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Introduction

1.1 Background

Today’s automobiles include an increasing number of functions that are re-
alized by electronics and especially by software [8, 14]. These functions are
typically provided by interactive distributed real-time systems. The develop-
ment of these vehicle electrical systems is a complex task mainly due to the
following five reasons:

1. Software-based car functions are often distributed across the system and
can involve several electronic control units (Ecus), sensors, actuators and
communication busses for their execution.

2. Each Ecu can be involved in the realization of many different functions.
This leads to a mutual influence of the functions on each Ecu.

3. Subsystems are often developed by different teams and suppliers. The car
manufacturer (Oem, Original Equipment Manufacturer) must integrate
the subsystems to a fully functioning system.

4. The Ecus realize an increasing number of functions. This leads to a higher
degree of integration on each Ecu.

5. The distributed functions in an automobile’s real-time system often have
to fulfill stringent timing constraints to function properly.

The main drivers for the increasingly challenging development of automotive
systems are depicted in Figure 1.1. In the beginning of software and electronics
in cars each function was realized by software that was exclusively executed on
one dedicated Ecu. This era is shown as phase I in Figure 1.1. An example for
such an early software-based function is the electronic fuel injection. Later,
airbags and automatic door openers followed. In the early 1990s, denoted
by phase II, more functions and Ecus were introduced in the system. The
characteristic of this phase is that for the first time several functions were
brought onto one Ecu and the functions started to become distributed. This
increasing function connectedness was driven by the introduction of the CAN
bus in cars in the early 1990s (Davis et al. [23]).
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Several years ago, the current phase III of automotive system development
started, which is characterized by the fact that the number of Ecus is not
growing further but even tends to decrease. However, new innovative software-
based functions still are continuously introduced. This causes a broadening
integration gap on each Ecu. From the viewpoint of real-time system devel-
opment, the increasing complexity results in more and more functions that a)
have to fulfill timing constraints, b) are developed by different suppliers and
c) highly influence each other’s timing behavior in the system.
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number of electronic/
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n
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Fig. 1.1. The increasing complexity of vehicle electrical systems (based on Negele
[67]).

A continuation of software-based functional innovations, markedly in the re-
gions of safety, comfort and chassis functions, as well as further growth of
system design and integration complexity are expected for future automobile
generations [14, 47, 13, 87]. The industry as well as the research community
is searching for methods and new approaches to cope with the increasing
complexity of automotive system design.

A new branch of system design and software engineering has emerged in com-
puter science in the last decade, which is focusing on the challenges of the
automotive industry. This new research field called Automotive Software En-
gineering – see for example Broy et al. [8, 14, 13] or Schäuffele et al. [85] –
both brings well-understood methods of traditional software engineering to
the automotive domain and develops new solutions especially for the needs
that arose with modern automotive system design. Other research groups like
Ernst et al. [74, 43, 71] have developed methods for the correct design and
analysis of vehicle electrical real-time systems. However, some challenges still
remain to be solved as we will explain in the next section.
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In the automotive industry a new spirit of collaboration has emerged in recent
years. To be prepared for the increasing complexity of automotive embed-
ded systems, major car manufacturers and suppliers founded the Autosar
development partnership in the year 2003. Today, many car manufacturers,
suppliers, software and hardware companies as well as service providers par-
ticipate in this partnership [33]. The main goal of the initiative is to define a
common development methodology and a standardized software architecture
for Ecus with well-defined component interfaces [31]. Autosar allows for a
standardized formal description of a system model that consists of application
software components, communication, basic software and the mapping of soft-
ware to Ecus. This information can be exchanged between car manufacturers
and suppliers if necessary, i.e. between different development teams.

We identified the lack of a timing model in Autosar in [76]. Later, we pre-
sented a proposal for such a timing-augmented system model in [82] and ideas
for its application in [83], [72] and [81]. Finally, since its version release 4.0
(Dec. 2009), the desired timing behavior can be described with Autosar and
exchanged between development teams [4]. The structural system, Ecu and
component models can be extended to carry a variety of timing constraints.
The remaining prime challenge however is, how timing constraints for teams,
or subsystems, can be managed during system design. This is the main prob-
lem focus of our work, which we state more precisely in the following section.

1.2 Problem Statement

As outlined in the previous section, a vehicle electrical system is a so-called
real-time system, because many of the functions that are realized with the sys-
tem have to fulfill timing constraints. As these timing constraints characterize
a function and are independent of any function realization using hardware and
software, we call them function-triggered timing constraints. The realization
of one function is often carried out by several application software components
on several Ecus that share data over a common communication bus. We call
all these components subsystems. Thus, the realization of one function often
involves several subsystems in modern automobiles. The functions are there-
fore often called distributed functions, because they are "distributed" over
several subsystems across the system.

Traditionally, and further driven by the Autosar development partnership,
the automotive industry is working in a distributed development process. That
is, the subsystems are typically developed by suppliers according to the car
manufacturer’s specification of the subsystem’s desired functionality and tim-
ing behavior. The car manufacturer has the role of a system designer and
system integrator in that distributed development process. The suppliers usu-
ally only exchange information with the car manufacturer and not among
each other, although they collaboratively develop the same automotive sys-
tem. Furthermore, the car manufacturer, who has a view on the entire system,
has the knowledge of all function-triggered timing constraints and must ensure
their fulfillment after all subsystems have been integrated into the overall sys-
tem. The suppliers only develop and bear for their subsystem and its timing
requirements.
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As functions often are distributed over several subsystems, different suppliers
indirectly collaborate on the development of one function. Function-triggered
timing constraints thus can lead to mutual timing dependencies of different
suppliers in such a distributed development process.

There are many examples for such timing dependencies between subsystems
in both the typical time-triggered and event-triggered networks of automo-
biles. In a synchronous time-triggered FlexRay [32] network the Ecu and bus
schedules are tightly coupled if they use the same synchronized time base. A
change of the bus schedule influences the data availability for software that is
executed on an Ecu, which is connected to that network. In an asynchronous
event-triggered CAN [50] network all sending Ecus can influence the sending
behavior of each other dynamically, because messages with a higher prior-
ity delay messages with a lower priority sent by another subsystem. Another
example for timing dependencies in both types of networks is the synchro-
nization of the timing behavior of one or more functions. The synchronization
of events on different Ecus implies the synchronization of the schedules of
different Ecus developed by different suppliers.

Every subsystem developer is responsible for the timing behavior of his par-
ticular subsystem. However, as the above explanation clarifies, the subsys-
tem implementations also influence the timing behavior of other subsystems.
Thereby they influence the timing behavior of the entire system. Thus, every
single subsystem takes part in fulfilling the overall function-triggered timing
constraints of the system. As the suppliers of the subsystems do not collabo-
rate with each other, but only with the system designer, the system designer
must control the timing behavior of the subsystems by coordinated subsystem
timing requirements. These subsystem timing requirements must be derived
from the given function-triggered timing constraints of the system.

To tackle this problem, we define a special timing model called Timex and
an according methodology for distributed development of automotive real-
time systems based on function-triggered timing constraints. Furthermore we
develop algorithms to iteratively generate timing requirements for the different
development teams according to the function-triggered timing constraints.

1.3 Solution Outline and Thesis Contributions

To solve the above-mentioned system integration problem for large automo-
tive systems that are developed by several different teams we first propose
a new timing model called Timex. Timex basically serves for two purposes.
First, it is used to capture function-triggered timing constraints in a formal
way by a so-called function timing model. Function timing models are an
implementation-independent formalization of function-triggered timing con-
straints. When it comes to a system implementation, Timex provides a for-
malism to abstract from low-level timing properties of subsystems to a more
abstract level to specify subsystem timing requirements. This is called the
system timing model. Each timing requirement is accompanied by an accord-
ing timing guarantee, which is provided by the subsystem developer to the
system designer (Oem) as a response to the timing requirement.
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The main goal of the Timex model is that the fulfillment of the system-wide
function-triggered timing constraints shall be ensured on subsystem level.
That means the subsystem timing requirements must be fulfilled by their
according timing guarantees. Therefore it is important that the timing re-
quirements have been derived from the function-triggered timing constraints
such that the later validation can be performed on subsystem level. To enable
this, we formalize timing requirement derivation and modification rules by
predicate logic, based on constraint logic programming (CLP) techniques.

The timing requirement derivation rules and the rules for iterative timing bud-
get redistribution for unfulfilled requirements differ for the two main system
types of today’s automobiles, which are event-triggered and time-triggered sys-
tems. Therefore we developed two different formalization approaches, which
we also formalized using predicate logic. For event-triggered systems, we devel-
oped the shifting approach. It basically works by redistributing time budgets
iteratively in a Timex system timing model by shifting unused time budget
either along a data path from one subsystem to another (we call it horizontal
shifting), or by shifting unused time budgets on one resource, i. e. an Ecu or a
communication bus (we call it vertical or diagonal shifting). For time-triggered
systems, we developed the windowing approach. It is used to define time bud-
gets as time windows according to a Timex function timing and move and
resize these windows iteratively until all function-triggered timing constraints
are fulfilled, according to the fulfillment of subsystem timing requirements by
their guarantees. Shifting and window moving are precisely defined reactions
to local timing problems that occur when timing requirements of subsystems
are not fulfilled by their timing guarantees.

The Timex model and its according methodology proposed in this thesis
are beneficial for automotive system development due to the following rea-
sons. The model is suited as exchange format between Oems and suppliers
in distributed development. Its abstraction technique enables the sharing of
timing constraint and behavior information, without revealing implementa-
tion details, which are considered as intellectual property of the suppliers.
The reasoning about the fulfillment of function-triggered timing constraints
can be performed on this abstraction level by explicitly considering subsys-
tem boarders. The iterative subsystem timing requirement – or time budget
– derivation, which we formalized by the shifting and windowing approach,
allows for a systematic solving of local timing problems of subsystems.

1.4 Structure of this Thesis

Figure 1.2 shows the organization of this thesis as a flow chart. The main
topics and contributions are displayed as rectangles that are grouped by the
thesis chapters in which they are discussed or presented. Arrows indicate
dependencies between these topics.

In Chapter 2 we describe the fundamentals for this thesis that are necessary
to understand our work, such as an introduction to the automotive domain
and real-time systems. We introduce our main thesis concepts and definitions
(e. g. function-triggered timing constraints, our system model) in Chapter 3.



6 1 Introduction

In Chapter 4 we describe related work in the area of embedded real-time sys-
tems and analyze its limitations. Our Timex model and methodology, which
we use to overcome these limitations, are introduced in Chapter 5. We pro-
vide an informal description as well as a predicate logic formalization for both
the shifting and the windowing approach in Chapter 6. An evaluation of the
Timex model and methodology is provided in Chapter 7. Finally, we conclude
this thesis in Chapter 8.
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Fig. 1.2. Structure of this thesis.
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Fundamentals

This chapter provides the fundamentals of real-time systems theory and prac-
tice. Further we introduce the reader to the automotive systems domain and
some techniques that we use in our work, such as model-based development
and constraint logic programming.

2.1 Real-time Systems

In this section we provide an overview of real-time system theory. We make
some basic assumptions and definitions for our thesis and explain the general
concepts of such systems.

Throughout this section we make some references to other publications to
confirm our statements. However, the reader finds surveys of related work
also in other chapters. We give an overview of related work regarding types
of timing constraints in Section 3.5.1. Our survey of scheduling and timing
analysis approaches can be found in Chapter 4, where we explain the so-called
global scheduling problem.

2.1.1 Introduction and Definitions

Real-time Systems

The correctness of usual computer systems basically is defined by the correct-
ness of the calculations, or operations that these systems perform. In real-time
systems additionally the timeliness of such operations is important for the
overall correctness.

Definition 2.1. A system is called a real-time system if the overall correct-
ness of an operation provided by the system depends not only upon the logical
correctness of its operations by providing the correct output values, but also it
depends upon the time in which the output is provided.
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Real-time systems can be found in many different areas of our everyday life.
The focus of this thesis however is on real-time systems in automobiles. The
concepts though are the same for other real-time system domains as well.
Examples for other domains are avionics, industrial automation, medical en-
gineering, consumer electronics, and many more. The magnitude of time that
is relevant in a real-time system, i. e. the time duration after which some ac-
tion or reaction is expected, varies and depends on the domain. In vehicle
electrical systems the magnitude typically is milliseconds or even microsec-
onds. Other domains could also have seconds, minutes or even days as their
temporal magnitude.

Timing Constraints

According to Definition 2.1 real-time systems have to provide correct output
values for given input values within certain time bounds. This time bounds
can be manifold. We call such time bounds timing constraints.

Definition 2.2. A timing constraint is a time bound that has to be fulfilled
by a real-time system to function correctly.

To evaluate the correctness of a real-time system, a clear specification of its
timing constraints is mandatory.

Many different semantics and levels of abstraction to express timing con-
straints exist in practice. We provide a comprehensive survey of timing con-
straints in real-time systems literature in Section 3.5.1.

In literature timing constraints are often divided into two classes, called hard
and soft timing constraints. Again, many definitions of hard and soft timing
constraints exist in literature. However, they basically have the same meaning.
Liu [60] defines hard and soft timing constraints as follows.

Definition 2.3. A timing constraint is called hard if it must always be ful-
filled by the real-time system. A timing constraint is called soft if it must not
necessarily be fulfilled by the real-time system, but its fulfillment increases the
system’s quality.

The relation of hard and soft timing constraints and the quality of the system
is depicted in Figure 2.1. A hard timing constraint must necessarily fulfill its
time bounds within a certain tolerance, indicated by the min and max values
on the time line. When a hard timing constraint is not fulfilled the system’s
quality drops to null. A soft timing constraint can have a specific influence on
the quality, depending on the fulfillment of the time bound.

Hard timing constraints can typically be found in safety-relevant systems,
where non-fulfillment can cause severe damage to the system itself, its users
or its environment. In a car for example the chassis control can be classified as
such kind of system. Soft timing constraints can be found in systems, where
non-fulfillment "only" leads to a reduced quality, but no severe consequences.
Often, body electronics have soft timing constraints in a car.
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Fig. 2.1. Hard and soft timing constraints and the relation between their time
bounds and the system quality (based on Mächtel [63, page 30]).

Assumption 2.1 In this work we assume that all timing constraints are hard
timing constraints. The real-time system, in our case the vehicle electrical
system, must always fulfill all timing constraints.

Tasks and Frames

So far we defined real-time systems rather abstract as systems, which perform
operations under certain timing constraints. In the automotive context (as
well as other contexts) the system can be divided in two types of subsystems,
namely processors and busses. The subsystems share similar concepts but
have a different terminology. Basically, in both kinds of subsystems there is a
shared resource. The shared resource either is a processor or a communication
bus. In both cases special entities concurrently compete for the resource.

On a processor these entities are typically called tasks. The processor executes
tasks. Thereby they probably have to fulfill timing constraints. A single pro-
cessor can always only execute just one task at the same time. The automotive
real-time operating system standard OSEK [70] defines a standard state model
for tasks, which is depicted in Figure 2.2. We will refer to task states in this
thesis according to OSEK’s standard state model. A task is suspended when
its execution has finished and no subsequent execution is currently required.
When a task is activated it changes its state to ready. When it is started, i. e.
during its actual execution on the processor, its state is running. While a task
is preempted as described in Section 2.1.2 its state changes from running back
to ready in the meantime. After termination the task state again is suspended.
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activate suspended ready4 A new task is set into the ready state by a system 
service. The OSEK operating system ensures that the 
execution of the task will start with the first 
instruction. 

start ready running A ready task selected by the scheduler is executed. 
preempt running ready The scheduler decides to start another task. The 

running task is put into the ready state. 
terminate running suspended The running task causes its transition into the 

suspended state by a system service. 

Figure 4-4 States and status transitions for basic tasks 

4.2.3 Comparison of the task types 
Basic tasks have no waiting state, and thus only comprise synchronisation points at the 
beginning and the end of the task. Application parts with internal synchronisation points shall 
be implemented by more than one basic task. An advantage of basic tasks is their moderate 
requirement regarding run time context (RAM). 
                                                 
4 Task activation will not immediately change the state of the task in case of multiple activation requests. If the 
task is not suspended, the activation will only be recorded and performed later. 

Fig. 2.2. The basic task state model according to OSEK [70].

On a communication bus the entities that concurrently compete for the re-
source are typically called frames. Frames are transmitted over the communi-
cation bus and have one sender and one or more receivers. Again, the trans-
mission probably has to fulfill timing constraints. A communication bus can
only transmit one frame at the same time. Basically, the task state model
of Figure 2.2 also fits for frames, except that frames cannot be interrupted,
or preempted, once they are currently transmitted, i. e. running according to
OSEK’s terminology for task states.

Scheduling

The concept of task scheduling and frame scheduling in general is not only ap-
plied in real-time systems. Rather, scheduling is performed in every computer
system, in which several processes compete with each other for a common re-
source. For example, every personal computer performs scheduling to handle
several concurrent applications. In real-time systems though scheduling ex-
ceedingly attracts the researcher’s attention, because it highly influences the
fulfillment of the system’s timing constraints.

Definition 2.4. Scheduling is performed by an operating system to sequence
the execution of several concurrently activated tasks that are ready to be exe-
cuted. The processor can execute only one of these tasks. In the context of com-
munication, scheduling is the sequencing of several concurrently active frame
transmissions, where just one frame can actually be transmitted at once.

In a real-time operating system, scheduling is actually carried out by a sched-
uler, which is part of the operating system. In the case of a real-time commu-
nication network, the scheduler is part of the communication controller. The
dispatcher is also a part of an operating system. The dispatcher starts and
stops tasks that have been chosen by the scheduler to be started or preempted.
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2.1.2 Scheduling Concepts and Strategies

In general there exist several concepts and strategies that a scheduler can
be based on in its decision algorithm. Some of the described concepts and
strategies can be applied to processor scheduling as well as bus scheduling. To
emphasize this, we explain each strategy for both resource types, if possible.
The list we provide here is not complete but contains the concepts that are
important for this thesis.

Time-triggering and Event-triggering

For embedded systems (see Definition 2.2.1), which are discussed in this the-
sis, there exist two main scheduling strategies. The first one is time-triggering,
which we explain in Section 2.1.4. The second and very different strategy is
event-triggering, which we explain in Section 2.1.5. Event-triggering and time-
triggering are concepts that affect the whole real-time system development,
analysis and runtime behavior. All these aspects are investigated in the follow-
ing sections. For this thesis both strategies are important. Today’s automotive
functions still rely on both strategies. Some functions fit for event-triggering,
others for time-triggering. This leads to heterogeneous systems in cars.

All techniques we investigate for both of these strategies assume that all
scheduling entities like tasks and frames are known in advance and static.
This assumption is appropriate for vehicle electrical systems as well as other
embedded system domains. Other strategies of course also can deal with arbi-
trary task sets. These so-called online scheduling strategies are typical for PC
systems. In Section 2.1.2 we explain an example of such an online scheduling
strategy.

So-called hybrid systems combine time-triggered and event-triggered schedul-
ing concepts. For practical applications this is a very convenient way to benefit
from the advantages of both system types. Hybrid systems are not considered
in this thesis. Our work concentrates on either purely time-triggered or purely
event-triggered systems.

Preemption

Scheduling strategies can be divided into preemptive and non-preemptive
strategies. In a preemptive scheduling strategy a running task can be inter-
rupted during its execution. This happens, if another task wants to run and
thereby would occupy the same resource at the same time and that task is –
for whatever reason, mostly due to a higher priority – selected to run by the
scheduler. In the non-preemptive case a task finishes its execution once it is
running. It can usually not be interrupted by another task.

The reason why the above explanation explicitly focuses on tasks is that the
preemption concept only fits for scheduling of tasks on processors. In a com-
munication network usually a frame transmission cannot be interrupted once
it was started. That is, frame scheduling by default is non-preemptive.
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First in first out

A very simple scheduling strategy for processes is scheduling by the order
of the activation of the tasks. In this case the scheduler maintains a simple
queue of currently activated tasks that are in the ready state (see Figure 2.2).
A newly activated task is added to the end of that queue. When the currently
running task finished its execution and terminates, the task on top of the
queue is selected to run. This strategy is often referred to as first in first out
strategy, or short Fifo.

In a communication network the above-mentioned queue usually can only be
maintained locally on one connected communication controller. The queue
then contains all frames to be sent by this single local controller. A Fifo
strategy is only applied to a local frame set by one controller.

Priorities

Priority-based scheduling is a widely used scheduling strategy for both proces-
sors and communication networks that follow the event-triggered paradigm.
In this strategy, the scheduled entities are characterized by a priority at-
tribute. Based on the priorities of all currently activated scheduled entities,
the scheduler selects the one with the highest priority and allows it to ac-
cess the resource. Eventually, an entity with lower priority is displaced, or
preempted as described above. If more than one entities with the same pri-
ority are active, additionally a Fifo strategy (or any other, for example also
random selection) can be applied by the scheduler.

An additional differentiation can be made for priority-based scheduling strate-
gies. The priorities can either be assigned before or during system runtime. In
the former case the strategy is referred to as fixed priority scheduling. Prior-
ity assignment then is engineering work and part of the system development
phase. Researchers have studied many priority assignment strategies. We look
into some important strategies of that kind in Section 4.5. The latter case
is called dynamic priority assignment and is performed by the scheduler it-
self. The scheduler therefore needs some kind of priority assignment algorithm
that is executed at runtime. Those are also called online scheduling algorithms.
This causes additional runtime scheduling overhead compared to fixed priority
scheduling.

An example for such an online scheduling algorithm is the Earliest Deadline
First scheduling (short Edf, see for example [20, 18, 25, 96]). The scheduler
in this case always selects the task with the closest completion deadline for
execution. The selection is performed every time a task is activated or finishes
its execution. As online scheduling is not common in the automotive domain,
such strategies are not further mentioned or investigated in this thesis. At this
point Edf is solely mentioned as one online scheduling example.
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Time Slots

All scheduling concepts and strategies mentioned above are only needed if
several scheduling entities want to claim the shared resource at the same time.
Time slot scheduling however is a strategy that is used to avoid concurrent
execution of tasks or concurrent transmission of communication frames. In this
case, all scheduling entities are actually scheduled before runtime, i. e. they are
scheduled statically instead of dynamically. Therefore, so-called time slots are
defined for their execution or transmission, which must not be exceeded. In
a pure time slot scheduling, the scheduler almost becomes superfluous during
runtime. Time slot scheduling requires an absolute time base on the resource
to activate and terminate tasks or frames at the right time. The remaining
job of the actual scheduler is to monitor that time slots are not exceeded. The
task activation or frame transmission in time slot scheduling is done by the
dispatcher according to a so-called schedule table.

Definition 2.5. In a time-triggered system a schedule table is used to precisely
describe at which point in time according to the absolute time base which action
is performed. Actions to be performed are the activation and termination of
tasks and the transmission of frames on a bus.

In practice often additionally priority based scheduling must be performed for
entities, which have no assigned time slot. This concept is used for example
in hybrid systems, which we already mentioned in Section 2.1.2.

2.1.3 Timing Analysis

Timing Behavior

A real-time system has a specific dynamic behavior that depends on its im-
plementation. The dynamic behavior can be observed at system runtime or
predicted using an appropriate model of the system (see Section 2.3).

The entire system implementation in our understanding consists of the fol-
lowing parts:

• the system’s concrete software implementation, basically consisting of ap-
plication software

• the hardware topology that executes the software, consisting of Ecus and
busses

• a mapping of the software to the hardware (which processor executes which
part of the software organized as tasks)

• and especially the system’s timing properties, i. e. all configuration param-
eters like task schedules and bus schedules
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Timing properties are all configuration parameters that influence the schedul-
ing effects of a real-time system. The available timing properties depend on
the real-time system type and its scheduling strategy, i. e. event-triggering
or time-triggering. During runtime, these timing properties influence the sys-
tem’s so-called timing behavior. The timing behavior can be observed at run-
time. However, if the real-time system is represented by an appropriate model,
its timing behavior can even be determined before runtime based on that
model. Timing properties are then captured and collected in a model, usually
along with the other system implementation parts listed above. We define
such a model as a timing-augmented system model in Section 2.3.3.

Besides the functional behavior, especially a system’s timing behavior is part
of the above-mentioned dynamic behavior. The timing behavior is the most
important part in the context of our work.

As mentioned before, a system model can be used to analyze the timing be-
havior before runtime, i. e. without an actual system implementation. This is
done using so-called timing analysis methods.

Definition 2.6. Timing analysis is the method of determining the expected
runtime timing behavior of a real-time system. Timing analysis can be per-
formed using an appropriate model of the system.

Especially in the context of event-triggered real-time systems timing analysis
is often also called schedulability analysis.

Note that timing analysis is typically carried out using an appropriate model
of the real-time system. The model is analyzed statically, i. e. without actually
running the system. The principles of model-based development are discussed
in Section 2.3. In this thesis we assume model-based timing analysis methods
to be used to determine the timing behavior. As we show in Chapter 4, many
such model-based analysis approaches exist in literature.

Other methods to gather and analyze a system’s timing behavior are:

• simulation, i. e. actually executing the model of a system and observing
the behavior

• runtime testing and monitoring, i. e. executing the real system itself (not
a model) and observing the behavior

Both simulation and runtime testing are not considered in this thesis.

According to Definition 2.1, real-time systems usually have to meet timing
constraints additionally to other functional requirements. The correctness of
the functional behavior is verified using well-established methods known from
software engineering, such as software tests. However, for real-time systems
especially the fulfillment of its timing constraints is important and must be
verified. Timing analysis is a means to timing constraint verification. Usually
timing analysis is performed to verify the fulfillment of its timing constraints.
Besides that, timing analysis can also be used to determine intermediate tim-
ing properties.
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An example for such an intermediate timing property is the so-called worst
case response time (Wcrt) of a task or frame (see Section 4.5.2). Another
example is the latency – or Wcrt – of a data path through the system, like
the path from a sensor that produces some data to an actuator.

Timing Analysis Areas

In this section we further refine the term timing analysis to several subar-
eas. According to Montag et al. [65] timing analysis consists of the following
subareas:

• Worst case execution time analysis

• Ecu schedulability analysis

• System schedulability analysis

The worst case execution time (short Wcet) of a task is the time it takes on a
specific processor to execute the task without interruption. The determination
of a task’s Wcet can be performed using different methods of worst case
execution time analysis. In contrast to simple runtime measuring methods,
static Wcet analysis promises safe upper bounds. These methods analyze
the Wcet based on two main factors, namely the task’s internal control flow
and the hardware it is executed on. A lot of work exists in this area. For
example, Montag et al. [65] present a tool for static analysis based on hardware
models of the processors. Tavares et al. [91] present a method to express a
Wcet independently from a certain hardware and to map it onto a concrete
hardware with a concrete Wcet later. The Wcet is the most basic timing
property of a task and the basis of all other timing analysis methods.

Assumption 2.2 In this work we assume that all worst case execution times
are given input and do not change. Worst case execution times are a timing
property of tasks or of runnables (runnables are software containers that are
mapped to tasks, see Section 3.3).

The other two areas of timing analysis mentioned above correspond to the
classification made by Richter [73]. In his work, these two analysis areas are
called component scheduling analysis and system scheduling analysis. They
basically have the same meaning as in the definition of Montag et al. [65].

Component analysis focuses on one individually scheduled component, which
is either a processor or a communication bus. Montag et al. neglect timing
analysis for a communication bus as single component. In the work of Montag
et al. , communication-related timing analysis is considered as part of the
system timing analysis. According to Richter and other researchers however,
component analysis concepts often match for both types of components. The
models in use are very similar and just depend on the specific scheduling
strategy as discussed in Section 2.1.2.
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One basic property of a set of periodic tasks or frames is the resource utiliza-
tion. Liu and Layland [59] define resource utilization as follows. Given a set
of n strict periodic tasks, let Ci be the constant Wcet of task i and Pi the
period of task i. Accordingly, if applied for a set of frames, Ci is the transmis-
sion time for frame i and Pi is its period. The resource utilization is defined
by Equation (2.1).

U =

n∑
i=1

Ci/Pi (2.1)

The utilization of a component must be lower or equal than 1. Otherwise
no schedule can exist that guarantees a successful execution of the task set,
because the processor is overloaded, regardless of the execution order of the
tasks.

System timing analysis is used to analyze the timing behavior of a complete
system that consists of single components, such as processors and busses.
System timing analysis introduces some additional challenges. Systems of-
ten perform distributed functionality. This leads to complex interferences and
dependencies of the timing behavior of the single components. Different ap-
proaches to system timing analysis exist. We will look into some approaches
in Chapter 4.

2.1.4 Time-triggered Systems

One of the two main paradigms for real-time systems is time-triggering. Com-
prehensive studies of such systems have been provided by Kopetz et al. [54, 28].
The concepts can be applied to both processors and communication busses.
In a pure time-triggered system all actions are triggered solely by the progres-
sion of time. Therefore the complete execution and transmission schedules
are defined before runtime to perform a time slot scheduling as explained in
Section 2.1.2. The resulting schedule table is cyclically processed and used
to trigger transmission or execution based on an absolute time line. Trigger-
ing cannot be influenced at runtime by the system itself or by any dynamic
application behavior.

In a pure time-triggered operating system each task has a pre-defined absolute
time window and a period. It is executed strictly cyclic with that period in
that time window. The task is guaranteed not to be interrupted during its
execution, at least within its assigned time window.

In a time-triggered communication schedule, each frame on the bus also has
a fixed period and a transmission time and can only be transmitted by the
sending component at these predefined time instances cyclically. All receiving
components share the same schedule table and can catch the transmitted data
at the correct time.
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Scheduling of Time-triggered Systems

As already indicated in Section 2.1.2, scheduling of a time-triggered system
as defined in Definition 2.4 is rather trivial. In the case of time-triggering
there is no runtime scheduler responsible to make the right decisions. Instead
it just has to follow a pre-defined schedule table (see Definition 2.5) that
indicates when which task must be activated or terminated. In fact, the work
to establish and maintain such a schedule table has to be done before runtime
by engineering work. Because of that, the term scheduling in the context of
time-triggered systems often actually is used to describe the process of creating
such a schedule table. This understanding of scheduling differs from the one
of Definition 2.4.

Creating a schedule table can be performed manually by an engineer or by
using algorithms that compute schedule tables. The process of setting up a
schedule table is often called scheduling as described above. Furthermore,
schedule generation denotes time-triggered scheduling if it is realized by algo-
rithms.

Definition 2.7. The creation of a schedule table for a time-triggered system
using algorithms instead of manual engineering work is called schedule gener-
ation.

A schedule table is often also just called schedule. Such a schedule is a set of
tasks in case of a processor schedule, or a set of frames in case of a bus schedule.
In both cases each of these entities virtually has an individual window for its
execution. Each window has the following timing properties that completely
describe a time-triggered schedule:

• Each window has a certain window size. In case of a processor schedule
the window size should be at least the task’s Wcet to prevent the task
from exceeding its execution window even in the worst case. In case of
a bus schedule the window size is the maximum frame length. In typical
time-triggered communication networks the maximum frame length is a
constant. This means all transmission windows have the same size.

• The period defines the exact cycle time of every window. A task is exe-
cuted cyclically with that period. A frame is transmitted cyclically with
that period.

• Additionally, each window has an offset. This timing property determines
the absolute position in time of the execution window. To apply offsets,
the already mentioned absolute time base is mandatory for time-triggered
systems.

Note that we make the following Assumption 2.3 for the relation of period
and offset values.

Assumption 2.3 We assume that in a time-triggered system the offset of
a task, frame, event, or any other timing entity cannot be greater than the
entity’s period. The offset refers to a time instance within the entity’s period.
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A schedule as defined above only lists the timing properties for each window.
At runtime a time-triggered system repeats that schedule again and again.
Therefore a repetition period must be defined per system. We call this period
the overall system cycle.

Definition 2.8. The system cycle is the overall repetition period of a time-
triggered system after which the entire schedule is repeated.

In fact, setting up such a static schedule table before runtime for a time-
triggered system – i. e. defining the above-mentioned three timing properties
for each window – is not trivial.

There are usually many boundary conditions that must be met by a valid
schedule. In the following we list some of the most important conditions for
time-triggered schedules:

• Each reserved schedule window appears periodically in any case, because
of the system cycle. So, each task must be executed periodically and each
frame must be transmitted periodically. The period of a task or frame
must be an integer divisor of the system cycle. For example, if the system
cycle is 300 milliseconds, a correct task or frame period is 100 ms, which
conforms to a divisor of 3.

• Often time-triggered systems have a base cycle, which narrows the possible
periods for tasks and frames by defining the base cycle as their minimum
period. The periods must be an integer multiple of the base cycle.

• Only one task can be executed by a processor and only one frame can
be transmitted by the bus at once. That means the schedule must ensure
that there are no overlaps of tasks on a processor and no concurrent frame
transmissions on the bus. This means that the offsets of all tasks or frames
must be chosen correctly.

• The no-overlap-condition also imposes additional limitations on the peri-
ods used in a schedule. To have a valid schedule it is not only sufficient
that the periods are integer divisors and multiples as already described.
Additionally all periods of a schedule must be in a way, that they do not
inevitably cause overlaps regardless of the according offsets. For example
consider a system cycle of 35 and a base cycle of 1. The periods 5 and 7
that might be used for two tasks are both integer multiple of 1 and integer
divisor of 35. Though there exists no offset combination without a clash
of two particular instances of two tasks. The periods of all tasks or frames
of a schedule must be what we call harmonic (see Definition 2.9).

• Static schedules are not really flexible with respect to changes of any sched-
ule properties. That especially means that all task Wcets and frame sizes
must already be known and must not vary. Variation can cause the sched-
ule to become invalid, because for example a Wcet increase can lead to
an overlap with another task. This would imply a redesign of the sched-
ule. The same applies for changed to offsets and periods, as such changes
automatically also affect other tasks or frames.
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• The processor and bus utilization according to Equation (2.1) must be
lower or equal than 1 for every set of periodic tasks and frames on a
processor or bus. The higher the utilization is, the more difficult it is to
find a valid schedule for the task or frame set.

• Depending on the application, the system and thus the schedules must
ensure the fulfillment of timing constraints additionally to all basic condi-
tions mentioned so far. This is the most challenging condition that must
be met by a schedule table. How this can be achieved is part of our work
and intensively discussed later.

Definition 2.9. A task or frame set has harmonic periods, if all periods are
an integer multiple of the smallest period.

Despite, or even because of its determinism, time-triggered scheduling has
some disadvantages. First, static schedules can cause a waste of processor
or bus resource capacities. This can happen due to an oversize execution
window for tasks or frames already at design time. The cause for this can
be an initially overestimated Wcet of tasks, for example. The waste can also
happen when a task or frame does not need the complete assigned time window
in a specific execution instance at runtime. The wasted resource time cannot
be used dynamically, at least in a pure time-triggered system. The second
major drawback of time-triggered scheduling is its inflexibility with respect
to changes as already indicated in the list above. If a schedule table gets
corrupted because it contains overlaps of execution or transmission windows
due to a change of a Wcet or an offset, the schedule table often requires a
complete redesign.

A task’s Wcet and period usually are given constants. As described above
a change of these values during system development can happen in practice.
However, when a schedule table is developed, the Wcet and period of each
task must be known or at least assumed and are input for the schedule gen-
eration. The output of schedule generation for a time-triggered system is the
offset of each task (or frame), such that a) all boundary conditions and b)
additional timing constraints are met.

Setting up a static schedule table that fulfills all conditions and especially
all additional timing constraints is known to belong to the class of so-called
NP-complete problems, see Garey et al. [35]. Those problems can be solved
efficiently only by using heuristics. Nossal and Galla [68] for example presented
an genetic algorithm approaches to find a time-triggered bus schedule based
on the time-triggered protocol TTP according to Kopetz et al. [55].

Analysis of Time-triggered Systems

The pre-defined schedules of a time-triggered system imply a completely de-
terministic timing behavior. All scheduling actions and therefore the system’s
runtime behavior are known in advance, which makes the system predictable.
Because of their determinism such systems fit very well for safety-relevant
functions in a car, such as chassis functions like steering or breaking.
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Timing analysis of time-triggered systems can be done comparatively easy
using static analysis. All processor and bus schedules are given and represent
the input to timing analysis. Time-triggered systems are characterized by the
fact, that the single component schedules are tightly coupled. Because of that,
all these component schedules of potentially networked processors and busses
together are also called global system schedule especially for time-triggered
systems. Two cases can be distinguished for such time-triggered global system
schedules:

1. The components, i. e. processors and busses, share a common time base
and thus have synchronized schedules.

2. Each component maintains its own time base and thus has an unsynchro-
nized schedule.

Timing analysis is used to verify end-to-end timing constraints. Analysis de-
tails differ in each of these cases as follows. In case 1, the knowledge of a
common and always synchronized time base can be exploited to construct
coupled schedules. For example, the producer of data can be scheduled in a
way that it finishes its computation right before the transmission of its out-
put to the consumer is scheduled. The transmission in turn is scheduled right
before the consumer starts its computation. It is obvious that all task com-
putations and frame transmissions can be scheduled such that the resulting
data paths through the system fulfill timing constraints by default. Timing
analysis solely must check such path timings statically. We investigated static
analysis of time-triggered distributed systems with coupled schedules in our
prior work [80] and [82].

The ease of timing analysis of time-triggered systems makes clear, why they
fit so well for safety-relevant systems. Timing analysis enables a safe and easy
way to obtain a proof of timing constraint fulfillment. This is mandatory
for safety-relevant systems, because non-fulfillment cannot be tolerated at
all. However there is the drawback of complex schedule table setup and the
system’s inflexibility with respect to changes of schedule basics like Wcets,
periods and offsets.

2.1.5 Event-triggered Systems

Despite their determinism, which is great for safety-relevant applications, pure
time-triggered systems do not fit for all functions and subsystems of a car due
to the mentioned disadvantages. Ringler [75] and Kopetz [53, 54] see time-
triggered system as ideal for all automotive functions. However, in practice
still also event-triggered systems are used due to the existence of functions
with a clear "event-like character", for example in the area of body electronics
of a car. Furthermore, the use of time-triggered systems tends to result in
higher costs per unit. One reason for this is that resources are potentially
not fully utilized at runtime because of the inflexible static schedule, which
often leaves space between tasks or frames (see Section 2.1.4). This leads
to a potentially over-sized and more expensive hardware. The high quantity
of units in the automotive domain however demands low unit costs, which
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cannot be achieved by using only time-triggered systems. The existence of
event-triggered systems is therefore expected for future cars as well.

In pure event-triggered systems all actions are triggered by events. In contrast
to time-triggered systems, a static schedule is not part of the implementation.
Scheduling is done dynamically at runtime by the scheduler. Thereby some of
the different scheduling strategies that are discussed in Section 2.1.2 can be
applied. The task scheduling concept in event-triggered automotive systems
typically has fixed priorities and allows preemption. Therefore it is often called
FPPS (Fixed-Priority Preemptive Scheduling).

On an event-triggered communication bus the frames compete for the com-
mon bus resource. Multiple-access and arbitration methods are used to solve
conflict situations. On an event-triggered operating system, concurrent tasks
compete for the common processor resource. We introduce the term scheduling
entity for tasks and frames together in Section 2.1.1.

Scheduling of Event-triggered Systems

Similar to time-triggered systems, the term scheduling here does not refer to
the action performed by the actual scheduler at runtime. Rather it means the
configuration of a real-time system. In the context of FPPS it basically means
the assignment of priorities to the scheduling entities. Depending on the task
or frame model, the entities might also need a period to be assigned.

Definition 2.10. The assignment of priorities for tasks or frames of a system
is called scheduling in the context of event-triggering.

The priority assignment can be performed following certain rules. Researchers
have developed several such assignment strategies in the last decades. The
first such strategy was Rate Monotonic Scheduling (RMS) by Liu and Lay-
land [59], which we describe in Section 4.5.1. According to RMS, priorities are
assigned according to the arrival rate of the tasks. Another approach is Dead-
line Monotonic Scheduling (DMS) by Audsley et al. [1, 3, 2], where priorities
are assigned according to the criticality of the task’s deadlines. We describe
DMS in Section 4.5.3.

Solely assigning priorities and other timing properties does not ensure the
fulfillment of timing constraints, especially in the context of an entire sys-
tem. Therefore timing analysis is used. We outline timing analysis for event-
triggered systems in the following section.

Analysis of Event-triggered Systems

For time-triggered systems we already explained that the main effort in de-
velopment must be spent on finding a valid static schedule. The analysis of
the resulting system behavior is rather simple, as no complex runtime effects
must be taken into account. At runtime the schedule is processed exactly as
statically defined.
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The analysis of event-triggered systems however takes a lot more effort com-
pared to time-triggered systems. Given an event-triggered schedule, i. e. a set
of tasks or frames with their according timing properties like Wcet and prior-
ity, analysis methods are used to investigate runtime effects and to verify the
fulfillment of timing constraints. A given schedule is often called schedulable,
if it can be executed and fulfills all timing constraints. Such analysis meth-
ods are therefore also called schedulability analysis in event-triggered systems.
Schedulability analysis can be applied to a component (processor or task) or
a whole system, according to the categorization made in Section 2.1.3. We
investigate some of the most prominent analysis methods for event-triggered
systems separately in Section 4.5.

All analysis methods assume a certain task or frame model. This model es-
pecially must include information about the actual triggering of the tasks
and frames. A periodic model, for example, assumes periodic triggering of the
according entities. The triggering information is essential for the analysis pro-
cess, because otherwise no statements can be made, how often a certain entity
is interrupted by other higher priority entities. If the system does not provide
any information about the triggering then assumptions must be made. In an
automotive system, for example, a source of unpredictable triggering behavior
is a button that can be pressed by the user or any other external interrupt. The
schedulability analysis methods however abstract these practical limitations
by assuming a certain triggering.

2.2 Automotive Embedded Systems

2.2.1 Distributed Embedded Real-time System

The functions of a modern car are realized using software and hardware that
make up the so-called vehicle electrical system. Often the functions have to
fulfill timing constraints. Thus, the resulting system can be characterized as
a distributed embedded real-time system. In contrast to usual computer sys-
tems, like PCs and other business computers, an embedded system is designed
to perform just one or a few dedicated functions. Its hardware and software
are embedded as one complete device, which often does not even have a user
interface or it has a user interface with only a very dedicated purpose (for
example some special buttons).

The system is called distributed, because it consists of several autonomous
computing units that are coupled to communicate with each other to provide
a certain distributed functionality, i. e. functionality that is enabled by the
interaction of these computing units [90]. The computing units are called
Electronic Control Unit, or short Ecu. The distributed character of modern
vehicle electrical systems enables innovative new functions. However this also
implies several additional challenges for the development of such systems.
Some challenges are mentioned in Section 2.2.2. This thesis in particular covers
one of these challenges, which is the distributed development of such real-time
systems.
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Embedded systems generally are so-called reactive or interactive systems.
Harel and Pnueli [44] define reactive systems as computer systems that con-
tinuously react to their environment. Thereby they are triggered by their
environment. In contrast, interactive systems also continuously interact with
their environment, but the speed of interaction, i. e. the interaction rate, is de-
fined by the system and not dictated by the environment. Both system types
however share one important fact: they both interact with their environment.
Therefore such systems have sensors and actuators. Both of these component
types represent the system’s border to its environment.

Halbwachs [42] names some very important main features of reactive systems,
however these features indeed fit for interactive systems as well:

• Reactive systems involve concurrency. First, there is a concurrency be-
tween the system and its environment. Second, the systems often consist
of a set of parallel cooperating components.

• Reactive systems have to fulfill strict timing constraints, typically both on
their input rate and on their input/output response time.

• Reactive systems are deterministic, because their outputs depend on the
given input values and the input values’ occurrence times.

• Reactive systems are made by software and by hardware.

All hardware and software components perform different tasks. We distinguish
the following three main types of such components, which are integrated to
the system as part of an Ecu:

• Sensors measure a physical quantity to collect some information from their
environment and convert it into an electrical signal. The signal can be read
by an electronic system and thus becomes available inside the system. In a
car, sensors typically are used to measure temperature, location, or speed,
or to recognize the activation of a button.

• Actuators are devices for moving or controlling a mechanism. Actuators
convert energy into mechanical work. Using actuators, a vehicle electrical
system can influence its environment. In a car, actuators typically move
an electric motor or activate light.

• Controllers perform the actual control algorithms of functions. They usu-
ally take sensor data and calculate according output values. Typically con-
trollers are responsible for the control of actuators, depending on certain
input data.

• Bus networks are used to realize communication between different elec-
tronic control units that are connected to the same communication bus.

• Gateways are used to interconnect different sub-networks. The networks
may have different communication protocols. Gateways must therefore
translate the protocols.
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All busses, sensors, actuators and Ecus together are the overall vehicle elec-
trical system. This system, or rater the action and interaction of all its com-
ponents, provides all distributed functions of the car.

The overall vehicle electrical system often is divided into several so-called
clusters. A cluster basically is one bus and the Ecus connected to it. Gate-
ways are used to connect clusters. Gateways forward frames from one cluster
network to another. Often clusters are dedicated to a specific system domain.
Domains group automotive functions by their scope. Historically, the following
five domains exist in cars (based on Simonot-Lion and Trinquet [87]).

• The Chassis Domain contains functions related to the wheels and
dampers of the car. These functions control the wheels’ position and move-
ment, e. g. by steering, braking and controlling the dampers.

• The Power Train domain contains functions related to the longitudinal
propulsion. It basically includes the engine and transmission control.

• The Body Domain includes functions and subsystems, which do not
belong to the vehicle dynamics, but that support the driver, e. g. airbag,
wiper, lighting or the door opener.

• TheHMI Domain includes all systems and functions, which enable infor-
mation exchange between the car and the car driver. Therefore, displays,
buttons and switches are used.

• The Telematic Domain covers components, which allow information ex-
change between the car and the outside world.

In the following section we will have a closer look on the software development
for such automotive real-time systems.

2.2.2 Automotive Software Engineering

Until the 1970s cars were primarily driven by mechanics. During the last 30
years more and more software and electronics were used in cars. Until to-
day the amount of software has been growing exponentially, and this trend is
expected to continue for the next 20 years at least [8]. Decreasing hardware
costs and especially the demand for new innovative functions with every new
car generation are the main drivers of this trend. In fact, software is con-
sidered as the most essential driver for innovations in modern cars. Software
is used to both realize new functions and replace traditional realizations of
functions or function parts that used to be based on mechanics or electronic
circuits. Furthermore, software-based functions can easily be combined and
correlated to again create new functional innovations. Premium cars have up
to 80 controllers that are connected by up to five different bus systems [9].
Many examples for such innovations exist in modern cars, like park assistants
or active front steering.

The importance of software for the automotive industry increased significantly
over the past decade. As a result, a dedicated computer science discipline
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called Automotive Software Engineering has emerged (see for example [85] or
[14]). Researchers are eager to adopt existing development methods to the
car industry and even develop new individual solutions due to its specific en-
gineering requirements. However, still many challenges remain for software
development in automotive domain. The most important challenges are sum-
marized by Broy [8] in a comprehensive survey. According to this survey,
research challenges from a computer scientist’s viewpoint are found in the
development of the system’s architecture, reduction of the overall complex-
ity, improvement of development processes and tools, standardization, and
seamless model-driven development.

This thesis covers some of these typical automotive-specific development chal-
lenges. The automotive industry is characterized by distributed development
[8]. Car manufacturers and different types of suppliers cooperate and collab-
oratively develop the entire system. The approach presented in this thesis
focuses on this fact with respect to the development of real-time systems.
The methods presented are entirely based on model-driven concepts and also
use standards that are already well established, like for example Autosar
[17, 33].

2.2.3 Operating Systems and Communication Busses

In this section we shortly introduce typical real-time systems and commu-
nication busses used in cars today. Our methods are built up on the basic
principles of these systems. A general overview of typical automotive systems,
especially the communication techniques that are used today, was presented
by Navet et al. [66].

OSEK and AUTOSAR OS

In the early phase of vehicle electrical systems several car manufacturers and
suppliers developed a standard for real-time embedded operating systems in
cars. The standard, called OSEK [70], is very well established today and dif-
ferent compliant products exist. With the raise of time-triggered systems in
cars, also a time-triggered OSEK specification was released [69]. The basic
task model of an event-triggered OSEK is shown in Figure 2.2.

The industry standard Autosar (see Section 2.3.2) also includes an operating
system standard specification, called Autosar OS [6]. The standard basically
matches the OSEK specification and also supports time- and event-triggering
(see Section 2.1.2). The event-triggered system basically is a typical fixed
priority preemptive scheduling (FPPS) system. A time-triggered Autosar
OS monitors the execution times of tasks to ensure that they do not exceed
their limits. The task models of real-time systems literature can widely be
mapped to Autosar OS.

Assumption 2.4 In our work, we assume an Autosar OS compliant oper-
ating system, either purely time-triggered or purely event-triggered.
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Controller Area Network

The CAN bus (Controller Area Network [50]) was developed in the 1980s
by Bosch and came into cars in the early 1990s. At this time the amount
of interconnected controllers that share data in cars has reached a level that
raised the demand for a common communication system between them. CAN
uses a CSMA/CR arbitration. Each frame has a unique integer identifier,
exact one sender and an arbitrary number of receivers. Identifiers are used
both for frame addressing, i. e. configuring sender and receiver relations, and
frame prioritization.

According to the scheduling strategies mentioned in Section 2.1.2, CAN fol-
lows a fixed priority non-preemptive scheduling. Each connected node follows
the arbitration process of CAN before sending a frame. The process is de-
signed to negotiate the node that is allowed to transmit, because its current
frame to send has the highest priority. Of course, this scheduling strategy can
lead to several typical effects regarding the dynamic timing behavior at system
runtime. Most notably message transmission is not deterministic. The sending
delay caused by the scheduling strategy depends on the sending behavior of
other connected controllers at runtime. This non-determinism basically has
two consequences. CAN is typically used for event-triggered applications, like
the body domain in a car, which contains many user functions with lower
timing criticality. Or, if used in safety-relevant domains, assumptions about
the sending behavior are necessary that enable upper bounds of such schedul-
ing delays. Today a lot of work already exists where researchers analyzed the
timing behavior of CAN networks, an overview is given by Davis et al. [23].
We will review some of these approaches in Section 4.5.

Assumption 2.5 In our work, we assume a CAN network for event-triggered
clusters in cars.

FlexRay

FlexRay is a modern bus system for in-vehicle communication [32]. Several
car manufacturers and semiconductor companies initiated its development in
2000. The main differences to CAN networks are a higher bandwidth and espe-
cially the support for a time-triggered protocol. FlexRay implements the time
slot scheduling strategy mentioned in Section 2.1.2. The cyclically applied
schedule table for frame transmissions is called a FlexRay cycle. The cycle is
divided in a static segment that is used for strict time-triggered frame trans-
mission, and a dynamic segment for event-triggered frame transmission. Both
segments are used to find a trade-off between an event-triggered network’s
flexibility and a time-triggered network’s determinism. Static and dynamic
segment sizes can be freely configured. Even complete time- or event-triggering
is possible.

Ecus that are connected to a FlexRay network can synchronize their internal
clocks with the FlexRay clock. This leads to a common, global time base and
enables FlexRay’s tight coupling of Ecu and communication schedules.
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Assumption 2.6 In our work, we assume a FlexRay network for time-
triggered clusters in cars. Furthermore, we assume a completely time-triggered
configuration with no dynamic segment.

We make Assumption 2.6 for simplicity reasons and thus assume to have the
whole bus time available for statically scheduled frames. Considering also the
dynamic segment for our approach solely would mean not to have the whole
bus time available, because the other part is reserved for the dynamic segment,
according to the FlexRay protocol specification [32]. Thus the assumption is
no limitation for our approach.

2.3 Model-based Development

2.3.1 Overview of System Modeling

Model-based development is a modern approach for efficient software and
systems engineering. The basic idea is to use so-called models as main devel-
opment artifacts instead of the actual code of the software. This idea can be
applied in all phases of the development process. In an ideal model-based de-
velopment the code is finally generated automatically using appropriate code
generators that take models as their input. Models are artifacts on a higher
level of abstraction compared to code. Models can be designed to fit for the
needs of different engineering viewpoints individually, such as the software ar-
chitecture, the system dynamics, system component structure, or the system’s
timing.

In general, model-based development is a promising approach to increase both
the quality of software systems and the development productivity by a) raising
the level of abstraction during development, b) enabling easy integration of
automation and code generation, and c) coupling system design and system
implementation on a formal basis.

The work in our thesis also assumes a model-based development approach.
That is, the automotive system under development is assumed to be available
as an appropriate model instead of its actual hardware and software, i. e. code,
realization. Component-based system models are widely used in software and
systems engineering. Broy et al. [11, 15, 13] developed a component model,
which we will investigate in Section 3.3, where we also introduce our system
model used in this thesis. In the automotive industry, Autosar has been
developed as a standardized component model, which we briefly outline in
Section 2.3.2. Our system model is a subset of Autosar that contains all
model elements that are necessary for our approach.

Autosar is a component model developed especially for the automotive in-
dustry. In contrast to other system models, however, Autosar does not con-
tain a model of the system behavior. It covers the description of the system’s
static software architecture by means of communicating components. The dy-
namics of the internal behavior of these components is not part of the model.
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Other models that do include behavior exist and are common also in the auto-
motive industry, especially for the development of control functions. Examples
for such models are ASCET [7] or Simulink [62, 52]. As described above, these
models are used to generate the actual target code for the control function
based on mathematical models.

2.3.2 Autosar

Methodology and Concepts

Major car makers and tier-1 suppliers founded the Autosar development
partnership [46, 31, 33] in the year 2003. Today many automotive OEMs,
suppliers as well as software and hardware developers and service providers
participate in a global partnership. The main goal of the initiative is to define
a methodology that supports a distributed development process and to create
a standard for the software architecture of automobile Ecus and entire vehicle
electrical systems. The standardized architecture includes several structural
concepts on different layers, such as:

• application software components,

• basic software, including communication, sensor/actuator access, operat-
ing system services etc.,

• a runtime environment that connects application and basic software,

• standardized interfaces between these components.

By using a standardized formal specification model for the structure (not
the behavior) of automotive software that all development participants have
committed to, Autosar brings several benefits to the industry with respect to
the increasing systems development complexity. Some of the proposed benefits
of the standard are:

• smooth integration of third party software

• smooth integration of supplier subsystems

• easier reuse of software and hardware components

• seamless application of diverse development tools based on a common sys-
tem model

As stated above, in this work we present an own dedicated system model
in Section 3.3. It can be seen as a simple subset mainly of the Autosar
application software component layer and communication stack.
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Timing Extensions

When Autosar started to be applied by the industry in its first releases,
the specification of the system’s timing constraints was not yet covered. How-
ever, to fulfill some of the main requirements of Autosar [5], such as the
Protection of Timing Requirements, timing needs to be addressed as well.
Therefore, we proposed a proper extension of the standard in [82], based on
the concepts of so-called observable events and event chains. We explain these
concepts in Section 3.2. Since Release 4.0 Autosar supports the specifica-
tion of timing constraints, which is realized as so-called Timing Extension (see
Definition 5.1) for a given Autosar system model [4].

The timing model of Autosar is very generic. It enables the specification of
timing constraints for the five main so-called views of Autosar:

• Software Component Timing: timing constraints for one software compo-
nent type

• Vfb (Virtual Function Bus) Timing: timing constraints for a network of
software components without mapping to Ecus

• System Timing: timing constraints for a concrete system

• Ecu Timing: timing constraints for one Ecu in a system

• Basic Software Timing: timing constraints for a basic software module

For each of these five views a certain set of different timing constraint types can
be used to describe the desired timing behavior of the targeted model elements.
The whole timing model is very generic and leaves a lot of modeling freedom,
especially with respect to the use and refinement of event chains. In this
thesis we present a special timing methodology for distributed development
that makes use of the generic timing model of Autosar and we present
a more concrete timing model, which we call Timex. Both Timex and the
methodology are explained in Chapter 5.

2.3.3 Timing-augmented System Model

System models are always created for a dedicated purpose. That means they
abstract system details that are not in the scope of the system model user and
highlight details that are of special interest. Throughout this thesis we often
use the term timing-augmented system model, which we introduced in [82].

Definition 2.11. A timing-augmented system model is a model of a system
that additionally includes all information that is necessary to specify, analyze,
and verify the system’s correct timing behavior. This additional information
is called the system’s timing information.

We divide timing information into the two groups timing properties and timing
constraints. Timing properties define the timing behavior of the system at
runtime. Timing constraints constrain this behavior to certain bounds.



30 2 Fundamentals

2.4 Constraint Logic Programming

In Chapter 6 we explain our approach to generate and iteratively modify
timing requirement values for subsystems of an automotive network based
on system-wide timing constraints (we call them function-triggered timing
constraints, Section 3.5). The approach is formalized by predicate logic and
implemented by constraint logic programming techniques. Therefore we briefly
outline some basics of constraint logic programming in this section.

Constraint programming is a programming paradigm. Relations between vari-
ables are expressed by the use of so-called constraints over these variables.
That is, the value of one variable is bound to the values of other variables. In
contrast to the imperative programming paradigm of standard programming
languages, where a sequence of steps describes how the way to a solution looks
like, constraint programming describes how a solution looks like. Constraint
programming is a form of declarative programming.

Different kinds of constraints can be used to describe solutions. Examples for
such kinds are mathematical equations (likeX = Y +3) or predicate logic (like
A⇒ B and C). The constraint programming paradigm and logic program-
ming share several conceptual similarities and features like logical variables
and backtracking. Therefore constraint programming was first embedded into
Prolog, which is a logic programming language. Constraints are expressed
as logical formulas in Prolog as host language, for which reason it is called
Constraint Logic Programming in this context, or short CLP.

Constraint variables can be of several typical domains, such as boolean (only
true and false values), integer (natural number values), linear (linear functions
are described and analyzed) or finite (finite sets of values) domain.

Today there are several implementations of Prolog-based constraint logic lan-
guages. One very popular such language is ECLiPSe [19], which we use in our
work. We build up a system of variables with an integer domain to formu-
late our timing problem and use a constraint solver provided by ECLiPSe to
search for viable solutions.

In general, a CLP program contains the following three steps (see for example
[27, 19]):

1. The variables and their domains are set up. This spans the entire space
of possible solutions. Every combination of possible instantiations of vari-
ables with values of their domains is one possible solution.

2. A set of constraints over these variables is formulated. The formulation
expresses the concrete problem model and thus narrows the space of pos-
sible solutions to the ones that fit the solution description, modeled by
the constraints.

3. The search for one or more solutions is performed. A constraint solver is
used for this purpose, which implements a specific search technique.
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A constraint solver uses propagation to reduce the search space during search.
Propagation means that additional knowledge of the domains of all variables
is gained recursively by considering the constraints. The knowledge is used to
narrow the domains by removing values that cannot be part of a solution. By
backtracking, the constraint solver tries to iteratively find sub-solutions, and
if one sub-solution cannot be part of the whole solution, the sub-solution and
all depending sub-solutions are removed by "backtracking" to a sub-solution
that did not contain invalid values.
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Fig. 2.3. Representation of a search tree for three boolean variables A, B, and C.

Different search strategies can be applied by constraint solvers. A common
strategy is tree-based search. In this case the solution space is represented
as a so-called search tree [19]. Backtracking in this case represents a depth-
first search in this search tree. Figure 2.3 shows a search tree of a problem
that consists of three boolean variables. Each level of the tree represents the
possible instantiations of one variable. We use tree-based search over integer
variables in our constraint solver, what we explain in Chapter 7.
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Basic Concepts Used in this Thesis

In this chapter we introduce all basic concepts that are used throughout this
thesis. These basic concepts are:

• main roles in an automotive system design process

• collaboration workflows in distributed development

• the idea of observable events and event chains

• the system model that is used in this thesis

• the idea of function-triggered timing constraints

• our concept of timing requirements and timing guarantees

If appropriate, we give an overview of related work for each of the concepts,
and show in what way our ideas and models are different.

3.1 Distributed Development of Automotive Systems

3.1.1 Process Roles in Distributed Development

The automotive industry frequently follows a distributed development process.
Broy et al. [13] call the automotive industry a complex ecosystem of highly
interdependent organizations which collaborate in all phases of the vehicle life
cycle. This work focuses on the development phase of a vehicle. Many different
teams develop the overall vehicle electrical system. The teams have different
roles in the process and therefore bear responsibility for different parts of the
system and different phases of the project. We identified three main roles that
are important for our proposed new design methodology, which we describe
in Section 5.5. In fact, this classification is a simplification compared to actual
development processes in the automotive domain. Depending on the respective
definition, there can also be more or different role definitions and many people
actually may represent each role. Our classification however is appropriate in
the context of this thesis.
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System Designer

The system designer designs, specifies and finally integrates the vehicle elec-
trical system. The system designer is typically an Oem or first-tier supplier.
The specification of the entire system comprises the parts that are itemized
in the following list. Note that before such a specification can be developed,
the functionality of the system must be defined. The list contains the specifi-
cation of the implementation of the system by means of Ecus, networks and
software.

• the system’s network consisting of sensors, controllers, actuators, and com-
munication busses

• the software architecture consisting of communicating software compo-
nents as part of the implementation of all desired car functions

• the mapping of software components to Ecus

• the bus configuration, i. e. communication matrix and bus scheduling

The system designer is responsible for the fulfillment of the system’s functional
and non-functional requirements. In the context of this thesis we are especially
interested in the system’s correct timing behavior, which has to be ensured
by the system designer.

Ecu Developer

Each Ecu is actually developed by an Ecu developer. This role typically is a
first-tier supplier. An Ecu developer integrates the entire software of an Ecu
according to the system designer’s specification. According to Autosar the
entire software consists of application software components and basic software,
as described in Section 2.3.2. We focus on the application software part and
neglect basic software other than communication specific basic software. The
Ecu developer supplies the Ecu to the system designer, who integrates it into
the rest of the system.

Software Component Supplier

As one of Autosar’s proposed benefits, software components may be deliv-
ered by third party software component suppliers. This is a rather new role
in the automotive industry. Such software components often realize function-
ality that is not necessarily bound to specific hardware. This enables a free
mapping of the component to an Ecu which in turn means, it can potentially
be developed by a third party company. An (application) software component
developed by this role is integrated into the Ecu of an Ecu developer.
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3.1.2 Collaboration Workflows

It is the system designer’s task to integrate all delivered Ecus to a functioning
system. It is the Ecu developer’s task to integrate all software components
on an Ecu according to the Ecu specification. To avoid inconsistencies and
misunderstandings in the collaboration between the three roles, a common
specification format is required. Therefore Autosar offers its standardized
software architecture and its standardized exchange format [33]. Since release
4.0 also timing constraints can directly be added to the specification [4].
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Fig. 3.1. Roles, collaboration workflows and development contexts in distributed
development of automotive real-time systems.

Based on the three roles defined above we can identify two typical collabora-
tion workflows in the automotive domain. The three roles and two collabora-
tion workflows are depicted in Figure 3.1.

Ecu Integration

Ecu integration is the integration of one Ecu into a vehicle electrical system.
System designer and Ecu developer have to collaborate in this use case.

Software Component Integration

Software component integration is rather new for the automotive industry and
mainly enabled by the Autosar approach. The standardized software com-
ponent interfaces enables the integration of third-party software components
into an Ecu . Therefore, system and Ecu developers have to collaborate with
the software component supplier.



36 3 Basic Concepts Used in this Thesis

3.1.3 Role Responsibilities Regarding Timing

In Section 2.1 we described how various implementation properties influence
the timing behavior of a real-time system. This behavior must always lead
to the fulfillment of a system’s timing constraints. Each timing property is
controlled by one of the defined roles, which we say is responsible for that
property. In the following we describe the responsibility assignment for roles
and timing properties.

The system designer is responsible for the whole system. This role must also be
aware of the system’s function-triggered timing constraints (see Section 3.5).
In our approach these constraints are considered as the basis of system devel-
opment from a real-time viewpoint. The system designer chooses the network
of communicating software components, the hardware topology (Ecus and
communication busses) and the mapping of software components to Ecus.
The mapping is one of the most important design decisions with influence
on the timing behavior. The system designer is also responsible for the bus
design. Bus design covers the mapping of signals to bus frames, often called
frame packing, and the frame scheduling (Section 2.1.1).

The Ecu developer configures the basic software and application software
components on an Ecu according to the specification. In our work we focus
on application software. Timing constraints for basic software modules are
not taken into account. Software components, or more precisely the runnable
entities in software components, have to be mapped to operating system tasks
with an appropriate task schedule. The schedule as implementation property
of course highly influences the timing behavior.

The software component supplier cannot directly influence the runtime timing
behavior of his software component as it is integrated by the Ecu developer
and executed at runtime. Typical timing effects at runtime depend on the inte-
gration context on the target Ecu. However, the software component supplier
can provide component-based timing properties like execution times, required
execution periods or execution order constraints to the Ecu developer.

3.2 Observable Events and Event Chains

Our timing specification approach is based on the concept of so-called ob-
servable events and event chains, sometimes also called timing chains. In this
thesis we use the term event chain. We already mentioned observable events
and event chains in previous publications [82, 83]. The industry standard Au-
tosar adopted the concepts in its current Release 4.0 [4]. In this section we
provide a clear definition of observable events and event chains.

Events have been studied and used all across timing analysis literature and
development since its very beginning. However, the common understanding of
the term event differs. In this section we explain the difference of the semantics
of events in a) standard real-time system theory in literature, b) practical
real-time system development and implementation, and c) our definition of
observable events.



3.2 Observable Events and Event Chains 37

3.2.1 Events in Real-time System Literature

In real-time system theory, event models are a widely-used concept to describe
the occurrence behavior of events. One single event occurrence is often also
just called event. The concrete occurrence behavior leads to a so-called event
stream (see for example Gresser [39]). The available event models use different
parameters to describe event streams.

A simple example is a strict periodic event model that can be described by
using one parameter called the event period. A possible extension to this pe-
riodic event model can be achieved by adding an additional parameter jitter
that allows a standard deviation from the strict period. Such periodic event
models are the basis for many theories, for example Rate Monotonic Schedul-
ing by Liu and Layland [59] and Deadline Monotonic Scheduling by Audsley
et al. [3].

Other typical event models are sporadic events and burst events. The model
of a sporadic event as described by Sprunt et al. [88] only contains a so-called
minimum inter-arrival time. More complex streams descriptions of sporadic
events can be modeled using the event stream concept of Gresser [39]. Gresser
defines an event stream as a set of event tuples. An event tuple contains two
parameters. First the distance of an event occurrence from time point zero,
second the interval of the subsequent occurrences. Thiele et al. [92] propose a
concept called real-time calculus. It is based on arrival curves of events. For a
given time interval, such arrival curves model upper and lower bounds for the
number of event occurrences. Finally, Richter et al. [74] developed a method
to couple event model streams using event model interfaces. They define a
basic set of supported event models. Communicating components are coupled
strictly using these models. The coupling enables a new approach to system
level timing analysis [49].

3.2.2 Events in Real-time System Development

In real-time system development and implementation, an event often is un-
derstood as a programmatic means to actively trigger some kind of system
action at runtime. A real-time operating system can use events to trigger some
execution or to communicate messages or control between operating system
execution entities, like tasks. In an Autosar system for example, there exists
a predefined set of so-called timing events that can trigger the execution of
runnable entities. These events are part of the implementation of the runtime
environment.

3.2.3 Definition of Observable Events

We first mentioned observable events in [82] as a basis for systematic timing
analysis and explained that a well-defined set of possible observable events of a
system must be defined. Additionally, it is important for timing analysis that
the event occurrences can exactly be determined. In [83] we add the informa-
tion that an observable event represents some kind of action in the system at
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which data or control is handed over from one component to another. In this
section we provide a clear definition of observable events as used in our work.

For a definition of the term, we first need to clearly distinguish between an
observable event and its occurrences. The event models mentioned in Sec-
tion 3.2.1 describe an event’s occurrence behavior. Each event instance of an
event stream represents one event occurrence. The event itself consequently
is the abstraction of single occurrences. It just denotes that events of this
type can be observed, without describing when the observation can be made.
To highlight the difference, we call this abstraction an observable event. It
is a concept to abstract from concrete system behavior, which leads to the
concrete time instances of event observations.

In summary, observable events differ from the two before mentioned usages in
literature and development as follows:

• Observable events do not trigger any action like operating system events.
We use the concept to represent certain system behavior that can be ob-
served from outside the system passively.

• Observable events do not describe a certain occurrence behavior like event
streams but represent a class of events. An event stream leads to the obser-
vation of single event instances (or occurrences) of that class at runtime.

We define observable events as follows:

Definition 3.1. An observable event is an action performed by a system that
can be observed and measured from outside the system. An occurrence of an
observable event can be observed every time the system performs that action
during execution.

For timing specification and analysis especially data and control paths through
the system are focused. Thus, in our context especially the observable events
are of interest, where data or control is handed over from one system compo-
nent to another [83]. More precise, in our work the set of possible observable
events is limited to observable behaviors that may be objective for timing
constraints. According to our used system model described in Section 3.3
we provide a well-defined set of system states and corresponding observable
events for that system in Section 3.4.

Finally, to depict the difference between operating system events, observable
events, event models and their occurrences consider Example 3.2.

Example 3.2. Let task X activated be an observable event. It is defined as
the transition from the state task X suspended to the state task X ready,
according to the task state model shown in Figure 2.2. Every time when task
X is activated an occurrence of that event can be observed as a certain instance
of the defined observable event. However, neither the observable event nor its
occurrences are an operating system event that actually activates the task.
The occurrence behavior of the task activation can be described using any of
the available event models.
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3.2.4 Definition of Event Chains

We already showed in a previous publication how the event chain concept can
be used for timing analysis of a time-triggered system [82]. After we defined
observable events in the previous section, we now provide the definition of an
event chain. Event chains make use of observable events.

Definition 3.3. An event chain refers to two observable events, namely the
chain’s stimulus event and the chain’s response event. The semantics of an
event chain is that an occurrence of the response occurs as causal consequence
of each occurrence of the stimulus. Stimulus and response thus also have a
clear temporal order.

Note the causality of the stimulus and response events in this definition. Ac-
cording to Broy [10] we define causality as a logical dependency between the
two events of an event chain. More precisely, we define it according to the live-
ness definition, i. e. the stimulus occurrence leads to the response occurrence.

Event chains can be refined with so-called sub-chains. A sub-chain itself is an
event chain. Using sub-chains, a chain of sequential events can be modeled.

Example 3.4. Additionally the Example 3.2, let task X terminated be the ob-
servable event of the termination of task X. This observable event occurs
each time after and occurrence of the observable event task X activated as a
causal consequence. This can be expressed with an event chain that has task
X activated as its stimulus and task X terminated as its response.

3.3 System Architecture Model Used in this Thesis

3.3.1 System Definition

Our methodology follows the model-based development approach as described
in Section 2.3. The term system in our understanding actually denotes a sys-
tem model that contains all information needed for our approach. The system
model is similar to other models known from literature and industry. For
example, Autosar has established as system modeling method in the auto-
motive industry [17]. The system model presented in this section is the basis
for the rest of this thesis. It is similar to Autosar but neglects a lot of details,
which are not necessary for our work.

Figure 3.2 depicts a system that is embedded into its environment with a
proper interface. Such systems, which have an interface to their environment,
are called open systems. In contrast, closed systems do not have such an inter-
face. That means they can neither react to input from their environment nor
influence the environment. Of course, automotive systems rather are consid-
ered as open systems, because they have sensors and actuators as interfaces
to their environment. In the context of this thesis we only mean electric/elec-
tronic interfaces of a system that are represented by sensors and actuators.
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Fig. 3.2. A system, its interface and the environment.

According to Broy et al. [13], a system is a group of interacting, interrelated, or
interdependent elements forming a complex whole and providing a set of ser-
vices that are used by a user to carry out a specific purpose. The user can be a
person or a group of persons, an enterprise or another system. In our case, the
user of an automotive system is the driver who uses system services, which are
also called functions or functionalities. A lot of such modern software-based
or software-enabled automotive functions exist (see Section 2.2). A system
is clearly separated from its environment (or context) and thus has a sys-
tem boundary or interface. A system can interact with its environment at its
boundary. The interaction with the environment can be in terms of force or
energy, carried out using actuators and made available to the system using
sensors (see Section 2.2.1).

When real-time systems are modeled and analyzed, this is mostly done to
answer questions regarding time, timing constraints or timing behavior of the
system. Therefore a precise definition of the concept of time as it is used in
the system is necessary. There are mainly two different time concepts, namely
continuous time and discrete time [10]. Time continuous systems assume a
natural process of time and events can occur at arbitrary points in time.
Computer systems however are executed technically on a digital time discrete
machine. That is, most models of time of embedded systems are time discrete
systems. Our system model is assumed to be time discrete. The time line is
built up by equal intervals. Time advances in ticks. The model abstracts from
the actual unit (e. g. seconds, milliseconds, or microseconds) of such ticks.

3.3.2 System Architecture Description Overview

For our methodology, a software architecture model, i. e. a model of the static
structure of the system, is sufficient. The system’s dynamic behavior, i. e.
its expected runtime actions and interactions, is not in our scope. Thus, our
system model does not contain a model of the system behavior. Furthermore,
the model only contains the elements and attributes that are important for
our approach. Other models of a static system architecture may be more
comprehensive. Autosar for example offers a lot more such elements and
attributes.
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Because of the growing complexity of modern automotive systems, models
(i. e. formal descriptions) of the systems architecture become more and more
important. In their comprehensive survey at different levels of system architec-
tures Broy et al. [13] state that the introduction of an architecture paradigm
is a proven way to reduce this complexity. The standardization effort done
for Autosar [17] is an evidence for the increasing importance of system ar-
chitecture models for the automotive industry. Such architecture models are
required in projects, where large systems are developed by many different
organizations, as in the automotive industry. They are used to describe and
evaluate the system, communicate such descriptions among stakeholders and
organizations, managing the development activities and of course to verify the
compliance of the system’s implementation.

Broy et al. [13] define system architectures on six levels of generality. From the
most concrete architecture to the most generic one, these are the following.

1. Product Architectures define the architecture for a concrete product.

2. Product-line Architectures define the architecture for a specific product
line.

3. Organization-specific Architectures tailor a domain-specific architecture
for a concrete company.

4. Domain-specific Architectures collect concepts, which are specific to a do-
main. Autosar is such an architecture for the automotive industry.

5. Common Architecture Frameworks define concepts which are necessary
for any kind of system.

6. Meta Architecture Frameworks introduce common terms like component
or interface, which are fully independent of any kind of system.

The introduction of architectural terms by a formal meta architecture frame-
work (level 6) is not explicitly done in this thesis. However, our system model
is based on a common architecture framework (level 5), which is similar to
the one presented by Broy et al. in [13] and [12]. Autosar is one example
of a domain-specific architecture (level 4) that is used in the automotive in-
dustry. Because the Autosar model is very complex and offers a lot more
details than necessary for our approach, we use an own system model as such
a domain-specific architecture. Our system model and our approach can be
mapped to Autosar. Furthermore, we show how our model differs from the
one by Broy et al. in this section. The three most concrete architectures (levels
1 to 3) are not further investigated. Our approach is applied only to a more
abstract domain-specific architecture.

The system architecture model used in this thesis is partitioned into three
main parts, also called layers. These layers represent an automotive system
on three levels of abstraction. The relation of the three layers is shown in
Figure 3.3, which is borrowed from Feilkas et al. [30]. The expression "low
detail" in Figure 3.3 refers to the highest level of abstraction and a coarse
granularity of modeling, high detail refers to the opposite.
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In Figure 2 we intuitively present the three abstraction layers. As we will describe in the rest
of this paper, the different layers are defined such that the specific challenges in developing
software for embedded systems can be addressed. The level of abstraction decreases from the
top to the bottom ranging from the (partial) description of the system based on its requirements
to the description of its deployment on a technical platform. Each layer should make use of
suitable models which allow the description of the relevant development aspects in an adequate
manner. Furthermore, the models should be carefully chosen and seamlessly integrated in order
to support the transition between the layers without loss of information.

Figure 2: Abstraction layers intuition

The functional layer is responsible for a formalization of functional requirements, representing
them hierarchically and additionally illustrating their dependencies. By using formally founded
models, this layer provides the basis to detect undesired interactions between functions at an
early stage of the development process. Due to the high level of abstraction, this layer is a step
towards closing the gap to the informal requirements. Thus, it provides the starting point of
a formally founded model-based development process.

The logical layer addresses the logical component architecture. Here, the functional hierarchy
is decomposed into a network of interacting components that realize the observable behaviour
described at the functional layer. Due to this layer’s independence from an implementation,
the complexity of the model is reduced and a high potential for reuse is created.

The technical layer describes the hardware platform in terms of electronic control units (ECUs)
that are connected to busses. A deployment mapping is specified that maps the logical compo-
nents (defined in the logical layer) onto these ECUs. Thus, a physically distributed realization
of the system is defined and the complete middleware which implements the logical commu-
nication can be generated. Additionally, the interaction between the logical system and the
physical environment via sensors and actuators is modeled.

3 The Functional Layer

The starting point for the functional layer is a set of requirements for the behavior of the system.
These requirements can have different forms, for example the form of a textual documentation
of a set of individual requirements (e. g., text documents in Telelogic DOORS) or of a collection
of Use Cases. Assuming that all requirements to the system have already been collected in an

5

Fig. 3.3. Three abstraction layers of the system architecture model according to
Feilkas et al. [30].

• Functional Architecture: description of functions and their external
interfaces from a black box perspective, as they are provided by the system
to its environment

• Logical Architecture: description of components and the component
network, which is formed by their communication and realizes the func-
tions of the system

• Technical Architecture: description of the technical realization using
Ecus, communication busses and appropriate execution models for both

Figure 3.4 shows an overview of the system architecture model that we use for
our approach. It structures the entire system model by the above-mentioned
three views, namely function, logical and technical architecture.

We define a separate timing model called Timex to specify timing constraints
for a system. Timex is described in Section 5.3. In this section we describe
the basic system model we use throughout this thesis. The observable events
that are provided by that model for the later use in Timex are described in
the subsequent Section 3.4.
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Fig. 3.4. Overview of the system architecture model used in this thesis.
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3.3.3 Functional Architecture Model

Description of the Functional Architecture

The functional architecture model used in this thesis is quite simple. Basically,
it is used to model solely two things:

• functions that are realized by the system

• the interface of each function to its environment

Later, the modeled functions are used to define function-triggered timing con-
straints. Therefore it is neither necessary to introduce a concept for function
decomposition nor to provide the possibility to capture other than timing
constraints. Functional decomposition, dependencies to other functions, and
a comprehensive model of functional requirements is available in the architec-
ture framework of Broy et al. [13, 12, 93], for example. Harhurin et al. [45]
and Gruler et al. [41] describe a formal foundation for service hierarchies to
model functional architectures and function compositions. For our approach
we neglect this level of detail for the functional architecture.

A behavioral model for functions is not required in our system model. The
functional architecture focuses on the input and output, i. e. the interfaces, of
each function using sensors and actuators. The model thus can only be used
for a black box description of functions, which is sufficient for our approach.

FunctionalArchitecture

SoftwareComponentFunction

Interface

Sensor Actuator

+interface 0..*

+realization

1..*

+function 0..*

Fig. 3.5. The functional architecture of the system model.
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An overview of the functional architecture is depicted in Figure 3.5. The
functional architecture contains a set of functions. Each function is modeled
as a black box. Later it is realized by at least one component of the logical
architecture. The whole functional architecture defines the boundary of the
system to its environment from the user perspective. Each function can have
sensors and actuators as interface to the environment.

Formal Definition of Functions

A function f with sensor interfaces si ∈ Sf and actuator interfaces aj ∈ Af

is denoted by a tuple

f = 〈Sf , Af 〉

Sf is the set of all sensor interfaces and Af is the set of all actuator inter-
faces. Sf and Af thus define the syntactic interface of function f . Semantic
interfaces define which input values result in which output values, i. e. the func-
tional behavior. A semantic interface definition is not required in our model,
because the model does not contain the behavior of functions. Furthermore,
the function interfaces do not have a type. Sensor interfaces make a message
available to the function. Actuator interfaces make a message available to the
environment. The message type is not relevant in our system model.

The functional architecture FA is the set of all functions fk provided by the
system.

FA = {fk}

Figure 3.5 shows the reference called realization from function to component.
This reference actually is the link between functional architecture and logical
architecture because it determines the components that realize each function.
This realization relation is formally denoted as a function from the set of all
functions FA to the power set of all components C.

realization : FA→ C∗

3.3.4 Logical Software Architecture Model

Description of the Logical Software Architecture

The logical architecture is used to define a set of interconnected and communi-
cating components, which realize the functions of the functional architecture.
Usually, like in the model of Broy et al. [13, 12], technical details of such
components are not further specified. Especially, the logical architecture ab-
stracts from a technical realization using software or hardware, i. e. electronic
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or mechanical/electrical realization. In our case however, we assume that all
components are realized as software components.

All functions of the functional architecture must be represented by an equiv-
alent network of components. That means each function must be represented
by a set of components that has the same interface. A behavior model for com-
ponents is not necessary, because the purpose of the model is not to execute
or simulate the components. Therefore, a model of the component dynamics
would be a prerequisite, which is offered by other logical architecture models,
e.g. Broy etal. [13, 12] or Harhurin et al. [45].

The structuring of functions in practice can follow various patterns. Functions
can be structured by technical, organizational, semantical, or other aspects.
Such patterns are not in the scope of this thesis. Furthermore, a single com-
ponent can be used to participate in the realization of one or several functions
in practice. For simplification, we assume that every component is only used
once in the realization of exactly one function.
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ChannelFunction

Runnable
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Fig. 3.6. The logical software architecture of the system model.

Figure 3.6 shows the logical software architecture model. The basic entity
to model a software architecture is a software component (Swc). The soft-
ware architecture of the system is modeled as a set of interconnected software
components. Communication between software components is modeled using
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channels and ports, which are described later. A software component is of one
of the types application, actuator or sensor software component. The logical
software architecture contains all interconnected Swc. For simplicity reasons,
the software architecture in our model is not structured hierarchically to refine
software components internally again with a network of components. Thus our
model solely reflects the flattened result of a previously potentially hierarchi-
cally modeled structure. Harhurin et al. [45] describe a formal foundation for
hierarchical component networks.

Each Swc references a set of so-called runnables that model pieces of exe-
cutable code and cannot be further refined. Runnables make up the internal
structure of a software component. They are therefore part of the technical
architecture.

Three special types of software components exist. Sensor and actuator Swc
can be used to model sensor and actuator access. Each sensor of an Ecu
needs a corresponding sensor Swc and each actuator needs a corresponding
actuator Swc. For every sensor interface of the functional architecture one
sensor Swc exists on the logical architecture. Accordingly, for every actuator
interface of the functional architecture one actuator Swc exists on the logical
architecture. Thus sensor and actuator Swc represent the function interfaces
on the logical component architecture. Application Swc are used for software-
based realizations without sensor or actuator access.

A Swc can have so-called ports. On an input port messages are received by
the Swc. On an output port messages are sent by the Swc. If one Swc sends
a message on one of its output ports to an input port of another Swc, this
is modeled with a channel between these two ports. The channel actually
contains the sent message. For our approach, we neglect data types of mes-
sages. We are only interested in the existence of a message that is exchanged
between two components. For all connectors we assume direct asynchronous
communication, often also called sender-receiver communication. A message
is just pushed from a sender to a receiver without any synchronization. That
means the sender does not wait for any answer of the receiver and continues
its execution asynchronously to the receiver.

Formal Definition of Components

A component c with input ports ii ∈ Ic and output ports oj ∈ Oc is denoted
by a tuple

c = 〈Ic, Oc〉

Ic is the set of all input ports and Oc is the set of all output ports. Ic and
Oc thus define the syntactic interface of component c. A semantic interface
definition is not required, because the model does not contain the behavior
of components. Furthermore, the component ports do not have a type. Input
ports make a message available to the component by receiving it from the
sender component that shares the same channel. Output ports send a message
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to the receiver component that shares the same channel. The message type is
not relevant in our system model.

A channel l that connects input port i and output port o with message m is
denoted by a tuple

l = 〈i, o,m〉

The logical architecture LA contains the set of all components cm ∈ C of
the system that are used to realize all system functions of the functional
architecture and the set of all channels ln ∈ L that connect the components
to a component network. LA is denoted by the following tuple.

LA = 〈C,L〉

Figure 3.6 shows the reference called implementation from component to
runnable. This reference actually is the link between logical architecture and
technical architecture because it determines the runnables that are the imple-
mentation of a component. This implementation relation is formally denoted
as a function from the set of all components C to the power set of all runnables
R.

implementation : C → R∗

Of course, we assume some side conditions for the logical architecture. First,
the network of all components C must be a valid realization of all functions
FA. That implies the following conditions.

• Each sensor interface of a function must be represented by a sensor Swc
with an according input port.

• Each actuator interface of a function must be represented by an actuator
Swc with an according output port.

• Each function must unambiguously be realized with components.

Second, we assume that every component is properly implemented by at least
one runnable. Each runnable can only be used for the implementation of one
component.

3.3.5 Technical Architecture Model

The technical architecture describes the realization of the system using soft-
ware and hardware. As depicted in Figure 3.7 the technical architecture in
our model consists of the four sub-models hardware topology model, deploy-
ment model, execution model, and communication model. Basically, the entire
technical architecture is used to refine the following aspects of the logical ar-
chitecture.
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• It models the mapping of software components of the logical architecture
to the Ecu network of the technical architecture.

• It models the structure within a Swc of the logical architecture, where
only its port interfaces are visible, with runnables.

• It refines the communication between two Swc when remote communica-
tion over a bus is necessary with the concept of signals in frames.

TechnicalArchitecture

DeploymentModel HardwareTopologyModel ExecutionModelCommunicationModel

111 1

Fig. 3.7. The technical architecture of the system model consists of four sub-models.

We describe each of the four sub-models shown in Figure 3.7 in detail in the
following four subsections.

Hardware Topology Model

The hardware topology of the system is modeled as a network of Ecus con-
nected to exactly one communication bus. In practice of course, networks
with several busses exist, which are linked with gateways. For simplification,
we assume only one communication bus.

In our context, an Ecu solely serves as a container for software components.
Ecu specific basic software (i. e. not application software components) as de-
fined by Autosar and hardware details are neglected. Sensor and actuator
usage is sufficiently modeled using sensor and actuator Swc in the model of
the functional software architecture. Figure 3.8 displays the hardware topol-
ogy model.

There are two types of busses supported in the hardware topology model,
namely an event-triggered (ET) and a time-triggered (TT) bus. We assume
a CAN network for the event-triggered bus and a FlexRay network for the
time-triggered bus. In a FlexRay network, the connected Ecus can either be
synchronized to the bus or unsynchronized (see Section 2.1.4). So there are
three different system types:

• event-triggered system

• synchronized time-triggered system

• unsynchronized time-triggered system
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Fig. 3.8. The hardware topology model of the system model.

Later, the differentiation between the three system types is important for the
generation of subsystem timing requirements from the given function-triggered
timing constraints.

Formally, a hardware topology model HM consists of Ecus ei ∈ E and a bus
b. HM is denoted by the tuple

HM = 〈E, b〉

E is the set of all Ecus.

The boolean attribute synchronized that indicates whether a TTBus b offers
a synchronous time base for all Ecus is denoted by the following function.

synchronized : b→ B

Deployment Model

The model of a complete system consists of a software architecture, a hardware
topology and, most notably, the software mapping of software components to
Ecus, often also called deployment. Our deployment model, which is also part
of the technical architecture, is depicted in Figure 3.9.

A software component mapping describes which software component is exe-
cuted on which Ecu. As a result, all connectors of the logical software archi-
tecture model can now be identified as local or remote connectors. For local
connectors immediate data transmission is assumed. In practice, synchronous
local communication can be realized as local function calls. Asynchronous lo-
cal communication can be realized as shared memory access. The messages of
remote connectors however have to be transmitted over a communication bus
that connects both Ecus, which run the communicating software components.
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Fig. 3.9. The deployment model of the system model.

Formally, a software component mapping d that maps Swc c to Ecu e is
denoted by the following tuple.

d = 〈c, e〉

A deployment model DM is the set of all mappings di of the system.

DM = {di}

As every software component can only be mapped to exactly one Ecu, the
following condition for the cardinal number of a set of components C holds (we
do not support several so-called instantiations of components, like Autosar
for example).

|C| = |DM |

Communication Model

Each message that is remotely exchanged between two software components
that are mapped to different Ecus in the technical architecture, is represented
by a so-called signal. The communication model is depicted in Figure 3.10.

The communication model contains the set of all frames. A set of messages is
mapped into a frame that is transmitted over the communication bus. Such
messages are then called signals. This is represented by the according reference
called signal in Figure 3.10. A frame is sent by exactly one Ecu and can be
received by all Ecus that are connected to the bus. The contained signals
be handed to the software components on the receiver Ecus if required. We
assume that each signal can only be mapped to a frame once. Our model does
not support multiple signal transmissions over several frames.

Every frame has some timing properties, which depend on the bus type. For
an event-triggered (i. e. CAN) frame we assume the following timing relevant
attributes in our communication model:
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Fig. 3.10. The communication model of the system model.

• set of mapped signals

• frame size as result of the contained signals

• frame period

• the frame’s start offset from the schedule start

• frame priority

Given the set of all frames F , the timing properties size, period, offset, and
priority of an ETFrame fET ∈ F are denoted by function frameET as follows.

frameET : F → N× N× N× N

Note that not necessarily all timing properties must be set for event-triggered
frames. Especially the period and offset properties are not always necessary.
We investigate several task models of different scheduling approaches in Chap-
ter 4 that make use of only some of the provided properties. Unset proper-
ties can be indicated by the value ⊥ of the according property of function
frameET . Our system model is able to cover all task models.

The size of a FlexRay frame is static and depends on the FlexRay configura-
tion. As described in Section 2.7, we assume two static configuration param-
eters base cycle and system cycle for a FlexRay network. The base cycle is
the minimum possible period of each frame. The system cycle is the overall
cycle of the network after which all execution and transmission action repeats.
The system cycle thus is the maximum possible period of each frame. For a
time-triggered (i. e. a FlexRay) frame we assume the following timing relevant
attributes in our communication model:
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• set of mapped signals

• frame size as result of the contained signals

• frame period

• the frame’s start offset from the system start (common time base)

Given the set of all frames F , the timing properties size, offset, and period of
a TTFrame fTT ∈ F are denoted by function frameTT follows.

frameTT : F → N× N× N

The so-called communication matrix models, which Ecu reads or writes which
frame and thus reads or writes which signal. This information can be gained
from the software architecture model, which provides connectors between
Swc, and the software mapping given by the deployment model, which deter-
mines remote connectors. Thus, the communication matrix is not explicitly
modeled.

Given the set of channels L of a logical architecture, the set of all messages
M is defined as follows.

M = {m | ∃〈in, out,m〉 ∈ L}

The mapped signals of each frame f ∈ F are formally denoted by the function
signals, where M∗ is the power set of all messages M .

signals : F →M∗

Formally, a communication model CM is a set of frames fj that are remotely
transmitted over the bus.

CM = {fj}

Execution Model

The software components that are mapped onto an Ecu are executed by the
operating system running on that Ecu. More precisely, the runnables that
implement the components have to be executed by the operating system.
Therefore, a set of runnables is mapped to operating system tasks. The exe-
cution model contains all runnables that implement the systems components.
A task is the actual operating system element that executes runnables on one
specific Ecu. A task has different timing properties, depending on the oper-
ating system type. However, independently of this type, each tasks contains a
set of mapped runnables. As runnables model pieces of executable code, they
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Fig. 3.11. The execution model of the system model.

have an attribute called Wcet. This is the runnable’s Wcet on the target
Ecu.

Similar to the supported communication bus types, our execution model,
which is shown in Figure 3.11, supports two types of operating systems. An
event-triggered operating system is assumed for an Ecu in an event-triggered,
i. e. CAN-based, network. A pure time-triggered operating system is assumed
for an Ecu in a time-triggered, i. e. FlexRay-based, network.

In an event-triggered network also an event-triggered operating system for
Ecus is assumed. Its tasks thus have the following timing-relevant attributes.

• set of mapped runnables

• task worst case execution time, which is the sum of the Wcet of the
contained runnables

• task period

• task offset from the schedule start

• task priority

The timing properties worst case execution time and priority of an ETTask
tET ∈ T are denoted by function taskET as follows.

taskET : T → N× N× N× N

As described in the previous section for event-triggered frames, not all timing
properties must be set for event-triggered tasks, depending on the applied
task model.
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Accordingly, we assume a simple time-triggered operating system for Ecus
on a time-triggered network. The following timing properties are available for
time-triggered tasks:

• set of mapped runnables

• task worst case execution time, which is the sum of the Wcet of the
contained runnables

• task period, which must be an integer divisor of the system cycle and a
multiple of the base cycle

• the task’s offset from its cycle start time

The timing properties worst case execution time, offset, and period of a TT-
Task tTT ∈ T are denoted by function taskTT follows.

taskTT : T → N× N× N

The timing property Wcet of a runnable is denoted by function wcet, where
R is the set of all runnables.

wcet : R→ int

The mapped runnables of each task t ∈ T are denoted by function runnables,
where R∗ is the power set of all runnables R.

runnables : T → R∗

The Wcet of a task is defined as the sum of the Wcet of all contained
runnables.

Formally, an execution model is a tuple EM of a set of runnables R = {ri}
and a set of tasks T = {tj}.

EM = 〈R, T 〉

3.3.6 Example System Model

To summarize the system model section, we now define an example system
model using the introduced formalism. Figure 3.12 shows a visualization of
the system model, which is formally specified thereafter (execution model and
communication model are omitted in the figure).

The system consists of only one function damperControl, which controls a
chassis damper according to a tilt sensor input to stabilize the car. The func-
tion has only one sensor interface tiltSensor and only one actuator interface
damper.
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Fig. 3.12. Visualization of the formally specified system model example.

damperControl = 〈Sensors,Actuators〉
Sensors = {tiltSensor}

Actuators = {damper}

The functional architecture of our example is

FA = {damperControl}

The function is realized by three components in the logical architecture
LA. These are a sensor component sensorComp, an application component
controllerComp and an actuator component actuatorComp. The set of com-
ponents thus is

Components = {sensorComp, controllerComp, actuatorComp}

The realization relation, which maps a function to components, is defined by

realization(damperControl) = {sensorComp, controllerComp, actuatorComp}

The three components are further defined by.

sensorComp = 〈�, {sensorOut}〉
controllerComp = 〈{controllerIn}, {controllerOut}〉
actuatorComp = 〈{actuatorIn},�〉

To define the network of these communicating components, the set of channels
is required as follows.
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Channels = {c1, c2}
c1 = 〈sensorOut, controllerIn,m1〉
c2 = 〈controllerOut, actuatorIn,m2〉

This completes the logical architecture of the example.

LA = 〈Components, Channels〉

The hardware topology model HM consists of three Ecus and one time-
triggered bus.

HM = 〈{sensorEcu, controllerEcu, actuatorEcu}, ttbus〉

The Ecus are synchronized to the bus.

synchronized(ttbus) = true

The deployment model DM consists of three mappings, one for each compo-
nent.

DM = {d1, d2, d3}
d1 = 〈sensorComp, sensorEcu〉
d2 = 〈controllerComp, controllerEcu〉
d3 = 〈actuatorComp, actuatorEcu〉

The communication model CM of the example system contains two time-
triggered frames.

CM = {f1, f2}

Remotely exchanged messages are mapped to the frames as follows.

signals(f1) = {m1}
signals(f2) = {m2}

The two frames have the following timing properties, which must be specified
for time-triggered frames (size, offset and period).

frameTT (f1) = 〈64, 2, 10〉
frameTT (f2) = 〈64, 6, 10〉

The execution model EM of the example system contains three runnables
and three tasks.
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EM = (Runnables, Tasks)

Runnables = {r1, r2, r3}
Tasks = {t1, t2, t3}

The execution times of the runnables are

wcet(r1) = 1

wcet(r2) = 2

wcet(r3) = 1

The runnables are mapped to the tasks as defined by function runnables.

runnables(t1) = {r1}
runnables(t2) = {r2}
runnables(t3) = {r3}

The tasks have the following timing properties, which must be specified for
time-triggered tasks (size, offset and period).

taskTT (t1) = 〈1, 0, 10〉
taskTT (t2) = 〈2, 3, 10〉
taskTT (t3) = 〈1, 7, 10〉

The implementation relation, which maps a component to runnables, is de-
fined by

implementation(sensorComp) = {sensorRunnable}
implementation(controllerComp) = {controllerRunnable}
implementation(actuatorComp) = {actuatorRunnable}

The technical architecture in summary is

TA = 〈HM,DM,CM,EM〉

3.4 Observable Events of the System Model

The set of observable events in a system can be very large depending of the
accuracy of the system model. The more details a system model has got, the
more events can potentially be observed in that system model. It is useful to
concentrate on those events that are important for the specification of timing
constraints and thus for the definition of event chains.

According to the supported types of function-triggered timing constraints
(Section 3.5.3), the collaboration workflows that we cover (Section 3.1.2),
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and our system model (Section 3.3) we propose the following set of observable
events. They are grouped by the three abstraction layers of the system model.
On each layer individual observable events exist.

We define the observable events of our system model based on the concept of
actions as introduced by the system specification method of Broy et al. [11].
Actions represent basic activities in a system as well as at its boundary to the
environment. Examples for actions are sending messages between components
or pressing a button at the system’s interface.

3.4.1 Observable Events of the Functional Architecture

As defined in Section 2.2.1, the system’s interface is represented by its sensors
and actuators. These are the boundary of the system to its environment, also
called the system’s interface. In the functional architecture model defined in
Section 3.3.3 the system’s functionality is partitioned to a group of functions.
Each function can have sensor and actuator interfaces. All these interfaces
together represent the systems interface to its environment. All observable
events of the functional architecture thus represent the whole set of observable
events of the system from a user’s viewpoint, i. e. with the system seen as a
black box.

In our functional architecture there are two types of observable events.

• A sensor observable event can be observed at a sensor interface of a func-
tion when data is made available to the system through this interface.

• An actuator observable event can be observed at an actuator interface of
a function when interaction with the environment is carried out through
this interface.

According to Broy et al. [11], we define so-called environmental actions for
the function interfaces. These are actions that occur at the system’s boundary.
For a sensor interface, we define one action that makes data available to the
system through the sensor. Accordingly, we define one action for an actuator
interface that represents the interaction of the system with its environment.

Given a function f = 〈Sf , Af 〉. For every s ∈ Sf we denote the environmental
input action, which we briefly call sensor event, by

sensor(s)

For every a ∈ Af we denote the environmental output action, which we briefly
call actuator event, by

actuator(a)

Given a functional architecture FA. We can now define the set of all its sensor
events Sensor(FA).
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Sensor(FA) = {sensor(s) | ∃〈S,A〉 ∈ FA : ∃s ∈ S}

The set of all its actuator events Actuator(FA) is defined as follows.

Actuator(FA) = {actuator(a) | ∃〈S,A〉 ∈ FA : ∃a ∈ A}

The set of all observable events of the functional architecture Interface(FA)
is defined as the following set union.

Interface(FA) = Sensor(FA) ∪Actuator(FA)

3.4.2 Observable Events of the Logical Architecture

Additionally to the observable events at the system interface, the logical ar-
chitecture reveals some more observable events within the system. More pre-
cisely, the observable events of the logical architecture occur at the ports of
its software components.

Again, we rely our definition of observable events on the action concept of Broy
et al. [11], who also call this kind of actions system actions, in contrast to the
environmental actions of the functional architecture that we defined before.
Components communicate via output and input actions asynchronously with
each other, as we defined in Section 3.3.4. In our system model this is indicated
by the message that is contained by each channel. A channel connects one
output port with one input port. Input and output actions occur when a
software component sends or receives a message on its input and output port
on the according channel.

Accordingly, we define two types of observable events for the logical architec-
ture.

• A send message observable event can be observed at an output port every
time the software component sends the message of the connected channel.

• A receive message observable event can be observed at an input port ev-
ery time the software component receives the message of the connected
channel.

Given a component c = 〈I,O〉 and a channel l = 〈in, out,m〉. We denote the
port output action "component c sends message m on port out", which we
briefly call send event, by

send(m, c) : out ∈ O

We denote the port input action "component c receives message m on port
in", which we briefly call receive event, by
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receive(m, c) : in ∈ I

Given a logical architecture LA = 〈C,L〉. We define the set of all its send
events Send(LA) as follows.

Send(LA) = {send(m, c)|∃〈in, out,m〉 ∈ L : ∃c = 〈In,Out〉 ∈ C : out ∈ Out}

We define the set of all its receive events Receive(LA) as follows.

Receive(LA) = {receive(m, c)|∃〈in, out,m〉 ∈ L : ∃c = 〈In,Out〉 ∈ C : in ∈ In}

The set of all observable events of the logical architecture Port(LA) is defined
as the following set union.

Port(LA) = Send(LA) ∪Receive(LA)

3.4.3 Observable Events of the Technical Architecture

The technical architecture enables further refinement of the system model
and thus reveals additional observable events. These can be observed focusing
on remotely exchanged messages between two Ecus , which we called signals
in Section 3.3.5. Of course, our system model would enable the definition of
additional observable events of the technical architecture, for example when
focusing on runnables. However, as we explain in Section 5.3, these are not
necessary for our Timex model. Our supported collaboration workflows (Sec-
tion 3.1.2) do not require the timing model to disclose internals of software
components. Therefore, observable events for the hand over of actions to or
from runnables are not necessary.

The concept of actions was introduced by Broy et al. [11] basically to describe
interaction between components and interaction of the system with its envi-
ronment. For the definition of observable events of the technical architecture
we stick to the action concept and extend it to signals that are sent over a
bus.

A signal represents a message that is remotely exchanged between software
components using a communication bus. Two important events can be ob-
served during the transmission of a signal.

• A signal queued for transmission observable event can be observed when
a signal is ready to be transmitted by the sending Ecu on the bus. Tech-
nically this is the time when the frame that contains the signal is present
in the send buffer of the according Ecu’s communication controller.
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• A signal transmitted observable event can be observed when a signal has
been transmitted on the bus and thus simultaneously been received by all
Ecus that are connected to the bus. Technically this is the time when the
frame that contains the signal is present in the receive buffer all according
Ecus’ communication controllers.

For simplification, we first define the set Lremote that contains all channels
of the logical architecture, which are realized as remote communication on
the technical architecture. Given a logical architecture LA = (C,L) and a
deployment model DM . The set of all remote channels Lremote is defined as
follows.

Lremote = {〈in, out,m〉 ∈ L |
∃c1 = 〈In1, Out1〉 ∈ C ∧ ∃c2 = 〈In2, Out2〉 ∈ C :

in ∈ In1 ∧ out ∈ Out2 :

∃〈c1, ecu1〉 ∈ DM ∧ 〈c2, ecu2〉 ∈ DM :

ecu1 6= ecu2}

Every signal is sent by exactly one Ecu and received by all Ecus, which are
connected to the bus. Thus, similar to the input and output actions of mes-
sages at component ports, we define transmit and receive actions for signals
at Ecus.

Given a deployment model DM , an Ecu ecu and a message m. We denote the
transmit action "Ecu e transmits message m", which we briefly call queued
event, by

queued(m, ecu) : ∃〈in, out,m〉 ∈ Lremote : ∃〈〈In,Out〉, ecu〉 ∈ DM : out ∈ Out

The formula literally states that the queued event can be observed for every
message that is remotely transmitted and whose sending component is on the
according Ecu.

A signal is received by all Ecus at the same time. From the timing viewpoint
it is thus sufficient to define only one receive action. Therefore the common
bus instead of each single Ecu as reference is appropriate. Given a hardware
topology model HM = (E, b) and a message m. We denote the receive action
"message m received by all Ecus on bus b", which we briefly call transmitted
event, by

transmitted(m, b) : ∃〈in, out,m〉 ∈ Lremote

The formula literally states that the transmitted event can be observed on the
bus for every message that is remotely transmitted.

Given logical architecture with a set of Channels L and a technical architecture
TA with a deployment model DM and a hardware topology model HM =
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(E, b). The set of all queued events of the technical architecture Queued(TA)
is defined as follows.

Queued(TA) = {queued(m, ecu) |m ∈ Lremote ∧
∃〈〈In,Out〉, ecu〉 ∈ DM :

∃〈in, out,m〉 ∈ L : out ∈ Out}

The set of all transmitted events Transmitted(TA) of the technical architec-
ture TA with bus b is defined as follows.

Transmitted(TA) = {transmitted(m, b) |m ∈ Lremote}

The set of all observable events of the technical architecture Signal(TA) is
defined as the following set union.

Signal(TA) = Queued(TA) ∪ Transmitted(TA)

3.4.4 Example for all Observable Events of a System Model

Based on the formalism for observable events, we can now define all such
events for the example system model of Section 3.3.6. Figure 3.13 shows the
temporal order of all these observable events. Note that this ordering of events
is only possible, because all events belong to the same data path of the system.
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Fig. 3.13. The temporal order of all observable events of the system model example.

Given the functional architecture FA, the following sensor and actuator events
exist.

Sensor(FA) = {sensor(tiltSensor)}
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Actuator(FA) = {actuator(damper)}

The set of all available sensor and actuator events thus is

Interface(FA) = {sensor(tiltSensor), actuator(damper)}

Given the logical architecture LA = 〈Components, Channels〉, the following
send and receive events exist.

Send(LA) = {send(m1, sensorComp), send(m2, controllerComp)}

Receive(LA) = {receive(m1, controllerComp), receive(m2, actuatorComp)}

The set of all available send and receive events thus is

Port(LA) = {send(m1, sensorComp), receive(m1, controllerComp),

send(m2, controllerComp), receive(m2, actuatorComp)}

Given the technical architecture TA, the following queued and transmitted
events exist.

Queued(TA) = {queued(m1, sensorEcu), queued(m2, controllerEcu)}

Transmitted(TA) = {transmitted(m1, ttbus), transmitted(m2, ttbus)}

The set of all available queued and transmitted events thus is

Signal(TA) = {queued(m1, sensorEcu), transmitted(m1, ttbus),

queued(m2, controllerEcu), transmitted(m2, ttbus)}

The set of all available observable events of the example system model is
Interface(FA) ∪ Port(LA) ∪ Signal(TA). We use these observable events
later within our Timex model to define both temporal relations of the system
and its timing constraints. Timex is introduced in Section 5.3.
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3.5 Function-triggered Timing Constraints

In this section we introduce the most basic concept of our thesis, namely
function-triggered timing constraints. Before that, it is necessary to under-
stand the different meanings of timing constraints in real-time systems liter-
ature. There are many ways and different abstraction levels to describe such
“time bounds” for a real-time system. We summarize these methods in Sec-
tion 3.5.1, provide our definition of function-triggered timing constraints in
Section 3.5.2 and describe the types of function-triggered timing constraints
used in this thesis in Section 3.5.3.

3.5.1 Timing Constraints in Real-time Systems Literature

Due to Definition 2.1 of a real-time system timing constraints play a decisive
role in real-time systems and timing analysis literature. However, the under-
standing of what a timing constraint is differs depending on the particular
theory and its scope and individual modeling approach. This section provides
an overview of the types and meanings of timing constraints in real-time sys-
tems literature. Note that the terms timing constraint and timing requirement
are often used somewhat mixed up, even within one publication. Mostly they
have the same meaning. In this literature survey we stick to the term timing
constraint. However, we explicitly distinguish between a timing constraint and
a timing requirement later in our work. Both terms have their own explicit
meaning. The difference is explained in Section 3.6.

Basically, all available timing constraints can be divided into two groups,
according to their scope:

• component level timing constraints

• system level timing constraints

On both levels, another differentiation can be done according to the real-time
system type that is investigated, i. e. a time-triggered or an event-triggered
system.

Component Level Timing Constraints

Component level timing analysis focuses on the timing behavior on one re-
source, i. e. one processor or one bus. Timing constraints on that level mostly
target single tasks or frames. Effects of task interaction and communication
can only – if at all – be taken into account on that component.

In their fundamental work, Liu and Layland [59] proof that Rate Monotonic
Scheduling (RMS) is an optimal priority assignment method for strictly peri-
odic tasks. The component in that case is a single processor. The only timing
constraint for a task is a task deadline. A task deadline is the maximum time
interval that may elapse after a task starts until the task execution has to
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be finished. In their work they assume a fixed task deadline that is equal to
the task period. Of course this is a very restrictive assumption. Audsley et al.
[3] relaxed that assumption later and also allowed deadlines smaller than the
task periods. They proved that also Deadline Monotonic Scheduling with task
deadlines smaller than the task’s periods is an optimal scheduling strategy.
However, the focus of the timing constraints is still just on the level of a single
task. There are several other single processor scheduling analysis approaches
that assume similar task models and focus on single task completion as the
only timing constraint (for example Earliest Deadline First, compared with
RMS by Buttazzo [18]; Least Laxity First analyzed for example by Uthaisom-
but [96]).

Ekelin and Jonsson [27, 26] group task specific timing constraints to four
categories:

• Intra-task timing constraints are constraints that restrict the time limits
within which a single task must execute. This group contains task period,
deadline, release time as well as input and output jitter.

• Inter-task timing constraints express time limits within which two tasks
should execute in temporal relation to each other. Constraints of this group
originate from the application requirements. They are called distance (due
to input/output delay), freshness (due to aging of data), correlation (due to
limits on the allowed time-skew in concurrent operations) and harmonicity
(divisible sender and receiver periods) constraints.

• Intra-task execution constraints are local to a single task and determine
on what processor and with what resources the task should execute.

• Inter-task execution constraints determine in what order, on what proces-
sor, and with what resources two or more tasks should execute in temporal
relation to each other.

For each of their defined timing constraints Ekelin and Jonsson explain its tax-
onomy. A constraint thus is natural, implementation-based or artificial. Nat-
ural constraints are derived from the system requirements. Implementation-
based constraints are a consequence of the chosen hardware, software and
its scheduling. Artificial constraints are a result of adapting to limitations in
existing scheduling algorithms.

Most constraints used for the analysis of bus scheduling also belong to the
group of component level timing constraints. The analysis concepts and mod-
els often resemble the ones known from task scheduling on a processor. Mar-
ques et al. [61] propose two heuristics for frame packing, i. e. packing sig-
nals into communication frames and find a feasible priority assignment for
the frames. Thereby, the frame packing has to fulfill a couple of constraints,
amongst them are also timing constraints. Each signal has a predefined trans-
mission period and a transmission deadline. Similar to the task scheduling
problems discussed above, the deadlines are just constraining the timing be-
havior of a single signal. Saket and Navet [78] assume the same timing con-
straints for signals. In their proposed frame packing strategy, they transform
the deadline constraints of the signals in a frame to a deadline constraint of the
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frame itself. This enables the exploitation of established schedulability tests
for frame scheduling, in this case a priority allocation algorithm proposed by
Audsley [2]. Still the used timing constraints are frame-specific and thus on a
component level.

Typical timing constraints for time-triggered real-time systems differ from
the ones mentioned above. In a purely time-triggered system, tasks are sched-
uled without preemption on a time line in sequential order. Chung and Dietz
[21] propose an algorithm to schedule tasks – they call them instructions –
in this way. A schedule generated by that algorithm is only valid, if some
timing constraints are fulfilled. Therefore, they define four kinds of standard-
ized precedence constraints for instructions. These are before constraint (an
instruction must be scheduled before another instruction), after constraint
(an instruction must be scheduled after another instruction), concurrent con-
straint (an instruction must be scheduled at a certain time instance) and
exclusive constraint (an instruction must not be scheduled at a certain time
instance). Timing constraints in this approach also refer to single tasks, called
instructions here, and thus are component level timing constraints.

Though considering component timing, Gerber et al. [37] take more complex
timing constraints into account than the models discussed so far. The tasks
are organized as a so-called task graph. A path of that graph can represent
an end-to-end dependency between an input (sensor) and an output (actua-
tor) of the modeled system. Three kinds of timing constraints can be defined
for such end-to-end paths. A maximum input to output delay, called fresh-
ness constraint, constrains the time that may elapse between the sensor input
and the according actuator output. The sensor input can be constrained with
an input sampling constraint that bounds the maximum time-skew between
inputs, called correlation constraint. A separation constraint can be used to
constrain the maximum allowed jitter between consecutive value updates on
an output channel. In their publication they present a method to derive in-
termediate timing properties from the constraints. These properties are task
periods, offsets and deadlines, i. e. task-based constraints as used in the other
component level approaches described before.

System Level Timing Constraints

Although categorized as component level timing constraints, the work of Ger-
ber et al. presents an example of more complex timing constraints than just
constraining task properties. However, in contrast to their work, such end-
to-end timing constraints are also often considered on a system level and ex-
pressed over end-to-end paths across different resources (processors and com-
munication busses). Task- or message-based timing constraints are considered
as so-called timing properties, like in the definition of a timing augmented
system model in Section 2.3.3. The overall timing behavior, given by such
timing properties, must fulfill the end-to-end constraints defined on system
level.

Saksena [79] defines timing constraints on three levels (see Figure 3.14). The
first level are requirements for the performance of a system. Timing con-
straints are rather implicit on that level and represent requirements that stem
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from physics of the system or from customer requirements. Typical timing
constraints are specified on the second level, which is called system level, to
ensure that the desired performance requirements are fulfilled. System level
timing constraints are derived from performance requirements. The author
identifies typical kinds of such constraints. These are end-to-end delays, sen-
sor sampling, output jitter and maximum activation periods for computations.
As third level for timing constraints the author identifies some task level tim-
ing attributes that where already investigated in Section 3.5.1. These are for
example task specific periods, deadlines and phases (i. e. offsets). Task level
timing constraints are derived from system level timing constraints. The de-
pendency of these different constraint types is shown in Figure 3.14, which
is taken from [79]. The figure also shows backward arrows. According to the
authors these arrows indicate that new task level or system level constraints
must be derived, if no scheduling can be found. The performance requirements
remain invariant.

Performance Specifications

Scheduling
& Implemetation

(Periods and Deadlines)
Task Level Constraints

System Level Constraints

Modify
Constraints

Figure 1. Resource-Consious Design.

latency from a sensor to an actuator, (2) maximum time skew
between multiple sensor input readings needed for an actu-
ator output, (3) minimum and maximum output jitter, and
(4) maximum activation period for a computation, etc.
Task Level Timing Attributes: At the lowest level, the
timing constraints are expressed in terms of task specific pe-
riods, deadlines, and phases. Such constraints are amenable
to schedulability analysis, using techniques developed in
real-time scheduling theory [7, 2].

In general, the performance requirements of a system al-
low many possibilities for system-level timing constraints
(as expressed above), which in-turn allow many possibili-
ties for task-level timing constraints. Thus, from a design
perspective, the objective is to systematically derive a set of
task-level timing constraints that not only meets the perfor-
mance specifications of the system, but also can be scheduled
on a given hardware platform to meet the constraints.

The procedure for transforming performance specifica-
tion to the task-level timing constraints can be viewed as a
complex non-linear constraint satisfaction problem. In or-
der to deal with the complexity of the problem, our approach
has been to solve it as a series of sub-problems, each aimed
at maximizing schedulability. Also, given the complexity of
the problems, heuristic solutions are often the only choice,
allowing for iterations to reach a satisfactory solution.

In [10, 5], we proposed a systematic procedure of decom-
posing system-level end-to-end timing constraints into task-
level timing constraints. Given (1) a task graph structure
of a system, with associated producer-consumer relation-
ships between tasks for data communication, and (2) a set
of system level timing constraints, a set of task-level timing

constraints were obtained which, simultaneously meeting
the system-level constraints and schedulability conditions.
The problem was solve by decomposing it into two sub-
problems: period assignment, which derived task activation
periods, and phase and deadline assignment, which derived
the task phasing and deadlines. For period assignment,
we used the technique of variable elimination to focus on
constraints on task periods, and then used overall system uti-
lization as a heuristic to find a suitable period assignment.
Given period assignments, the second problem reduced pri-
marily to decomposing end-to-end deadlines into task-level
deadlines, which was solved using a heuristic method taking
into account schedulability conditions.

The problem of taking the performance specifications
and transforming them into task-level constraints is consid-
erably harder, and necessarily dependent on the nature of
the system. However, given a sufficiently accurate math-
ematical model of the performance requirements and their
dependence on task-level timing constraints, it is possible to
develop heuristic algorithms that can automate this process.
In [8], we presented a heuristic approach that was applied
in transforming performance specifications of a CNC con-
trol system to task-level timing constraints. In practice, the
transformation process may not be completely automatic,
and may be guided by a designer.

3 Event-Driven Software

In contrast to time-driven software style, the event-driven
software style has evolved largely to deal with the complex-
ity arising from asynchrony, concurrency, and the inherent
non-determinism due to the two. The system must respond
to asynchronous events in the external world, and the reac-
tion must depend on the system state. In order to deal with
this complexity, various modeling languages have evolved
using modeling features such as (1) object-orientation, with
finite state machines to model object behavior, (2) visual
modeling, with formal semantics (enabling executability of
models), (3) use-cases or scenarios to model system be-
havior, and (4) associated CASE tools to facilitate model
development, provide executability of models, as well as
partially or completely automate code generation. One such
product is the modeling language "ROOM" (Real-Time Ob-
ject Oriented Modeling), and its CASE tool "ObjecTime"
developed by ObjecTime Inc. The real-time counterpart
(UML-RT) of newly emerging standard Unified Modeling
Language [4] is another effort in the same direction.

However, while such tools and methodologies provide
extensive support to model and analyze reactive system
behavior, they have very limited support for timing and
schedulability analysis, required for the hard real-time as-
pects of a system. This is, in large part, due to the very
nature of event-driven software – that is the asynchrony and
non-determinism. In the absence of deterministic arrival of

Fig. 3.14. Constraint types and their relation according to Saksena [79].

A real system level end-to-end view on timing constraints is considered by
Schild and Würtz [84]. They focus on strictly time-triggered systems with sev-
eral distributed processing units that are connected with exactly one commu-
nication bus. The software system consists of a task graph with asynchronous
communication between tasks (graph nodes), modeled as graph edges. End-
to-end latency constraints can be used to express a maximum latency between
one task’s start time and another task’s end time, including potential bus com-
munication. The paths through the resulting static task and frame schedules
must fulfill their latency constraints. Again, this approach uses system level
timing constraints to generate appropriate task level timing constraints.

Richter et al. [74, 49] developed a scheduling and timing analysis method based
on event model interfaces between system components. Components are tasks
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and messages. Basically, the approach does timing analysis of the given sys-
tem. The approach enables verification of and reasoning about end-to-end
paths through an event-triggered system with respect to path latencies. The
analysis output answers the question whether end-to-end latency constraints
are fulfilled. In a recent work, Feiertag et al. [29] further investigated the
semantics of such end-to-end latency constraints. The authors explain, how
so-called over- and undersampling effects can occur along a communication
path. These effects basically stem from read and write access to an exchanged
signal through registers and bus messages, if read and write cycles have dif-
ferent cycle times. Thus, four different path delay semantics can be identified.
The maximum data age semantics (or maximum path delay) and the first
observable reaction semantics are the two timing constraint semantics with
most practical importance.

These two semantics for latency constraints are also implemented by the Au-
tosar Timing Specification [4]. It provides a very generic concept to a) model
timing dependencies in an Autosar system and b) specify timing constraints
for the system. An overview of the Autosar Timing Specification is provided
in Section 2.3.2.

A perspective on timing constraints in automotive real-time systems, espe-
cially for body electronics, is given by Gehrke et al. [36]. For the body functions
the authors investigated they define four types of such timing constraints.
These can be categorized as system level constraints, although the authors
do not distinguish the constraint types, like we do in this survey. The first
two rather similar constraint types are maximum and exact execution time.
According to the examples given, these types basically denote latency con-
straints, namely a maximum and an exact (with tolerance) latency between
two events. Their third type is synchronicity of several events within a tempo-
ral tolerance. The fourth type are conditional timing constraints for complex
runtime scenarios, where the existence of an event requires the existence of an-
other event within a defined time bound. In a car’s body electronics especially
latency and synchronicity timing constraints are typical.

3.5.2 Definition of Function-triggered Timing Constraints

As the related work survey in Section 3.5.1 shows, two basic understandings
of timing constraints emerged in real-time systems theory. Component level,
or task level timing constraints are used to imply local bounds to a process,
task, frame or any other local component. System-level timing constraints
are used to constrain different inter-component end-to-end relations of mostly
distributed real-time systems. Especially Schild and Würtz [84] as well as
Saksena [79] share a similar idea of separating system level end-to-end timing
constraints and task level timing properties, which are derived from the end-
to-end constraints.

Both ideas, however, already assume a certain software system, hardware
topology and software mapping. This is information that – in our sense –
already is part of the system implementation. That means according to these
author’s definitions, timing constraints can be captured if the system imple-
mentation is already known and just task level timing properties need to be
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derived. Function-triggered timing constraints take the idea of different levels
of constraint semantics one step further, as described now.

As described in Section 2.2, an automotive system is developed to realize a set
of automotive functions. These mostly are customer functions, i. e. functions,
which the car provides to the driver and which are recognizable by the driver.
The execution of these functions – however implemented – often is tied to
some timing related boundaries.

In our understanding, timing constraints are either a result of functional
physics or requirements from a customer’s perspective. Timing constraints
in our context refer to a function, regardless of the function’s implementation
in the car. Therefore we call such kind of timing constraints function-triggered
timing constraints.

Definition 3.5. A function-triggered timing constraint constrains a timing
attribute of an automotive function by means of an end-to-end relation, ab-
stracting from all implementation details and their timing properties.

An implementation by means of hardware and software must then be chosen
in a way that all function-triggered timing constraints are always fulfilled.
An implementation contains a lot of so-called timing properties that influ-
ence the timing behavior. Focusing on software, such properties are execution
times, task and frame periods, task and frame priorities. Also the software
composition itself as well as its mapping to the car’s hardware are part of
the implementation. Basically, a complete timing-augmented system model
as defined in Section 2.3.3 represents the system implementation.

The resulting implementation’s timing behavior must be correct with respect
to the function-triggered timing constraints. Thus the properties itself must
be chosen with respect to these constraints. Timing properties are implemen-
tation details and shall not be the target of such invariant, global timing
constraints. In other words, the timing constraints in our methodology (see
Section 5.5) are not implementation-driven but, as mentioned before, function-
triggered. Two examples of function-triggered timing constraints are given in
Example 3.6.

Example 3.6. The damper of a car must always be actuated not later than 25
milliseconds after a sensor has read the sensor input. The sensor input must
be read every 10 milliseconds.

3.5.3 Function-triggered Timing Constraint Types

As shown in Section 3.5.1 there are many different types and semantics of
timing constraints in real-time systems literature. Basically, such constraints
can be divided into system level and component level timing constraints. In
Section 3.5.2 we introduced the definition of function-triggered timing con-
straints. On the implementation-independent level of an automotive function
we identified three typical timing constraint types. These three types cover
most timing constraints for automotive functions in practice.
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In our work, we support the following three types of function-triggered timing
constraints:

Latency Constraint

A latency constraint constrains the latency between two successive observable
events. Given an event chain with a stimulus event and a response event, a
latency constraint refers to this event chain. The stimulus and response events
must be "end events" of a function, for example external sensor and actuator
events, as defined in Section 3.4.

Example 3.7. From reading the acceleration sensor until the execution of the
damper actuator there must be a maximum latency of 10 milliseconds for the
damper control function.

Triggering Constraint

A triggering constraint constrains the occurrence behavior of an observable
event. If the targeted event is the stimulus of an event chain that models the
end-to-end path of a function, then the triggering constraint constrains the
occurrence behavior of that function.

Example 3.8. The damper control function must be triggered with a period of
10 milliseconds, i. e. it must be executed every 10 milliseconds.

Synchronization Constraint

A synchronization constraint relates the temporal synchronicity of several
observable events. Using this kind of function-triggered timing constraint,
several event chains can be synchronized, either on their stimulus or their
response event. Synchronization is useful, if several event chains represent a
function in the system.

Example 3.9. All four dampers of the car have to react synchronously, after
the common stimulus sensor event has been read.

As these examples illustrate, the concept of observable events as introduced
in Section 3.2.3 is essential for our timing model. In Section 5.3 we formalize
our timing model and further detail the usage of such events.

3.6 Requirements and Guarantees

In our work we concentrate on the fact that several different teams develop
one automotive real-time system, i. e. it is developed in a distributed develop-
ment process. This fact induces some interesting challenges regarding timing
constraints:
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1. End-to-end timing constraints, which in our case are function-triggered
timing constraints, are initially defined disregarding information which
team is responsible for which part of the system. Mostly, such team al-
locations of subsystems are not even known when timing constraints are
defined.

2. Every team focuses on the development of its own subsystem. A team
eventually does not know the complete implementation context of its sub-
system. For example the development of an Ecu must start, before the
rest of the network is completely known, especially before the network
scheduling is completely implemented.

3. Often, not all implementation details of a subsystem are given to the
system designer due to protection of intellectual property (IP). However,
from a timing viewpoint it is necessary to reveal at least the timing be-
havior of the subsystem. It must be possible to do this without violation
of IP protection.

4. The subsystem specifications must include a clear specification of its de-
sired timing behavior, i. e. subsystem specific timing constraints.

5. The desired timing behavior of a subsystem depends on the timing be-
havior of its context. If for whatever reasons the context timing behavior
changes, the subsystem’s desired timing behavior may change, too.

6. The system designer is the only one who knows the complete system
context. Thus, this role must manage the system’s timing behavior as
a central instance.

7. The implementation of a subsystem, done by the according team, leads
to a certain timing behavior. This behavior must be reported by the team
to the system designer, who integrates all subsystems.

To provide a solution for all these challenges enumerated above, a concept
for subsystem specific timing constraints is necessary. We call such subsystem
specific timing constraints timing requirements.

Definition 3.10. A timing requirement is a subsystem specific timing con-
straint that constrains the timing behavior of the sub-function that is imple-
mented by the subsystem. Timing requirements are derived from function-
triggered timing constraints. Timing requirements can vary during develop-
ment when the subsystem’s context timing behavior changes.

We use timing requirements for subsystems as basis for a solution to challenges
1 to 6 in the list above. The solution details are discussed in Chapter 5. To
report a subsystem’s timing behavior back to the system designer, we use the
concept of timing guarantees.

Definition 3.11. Every timing requirement is accompanied by its according
timing guarantee, which must fulfill the requirement.
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Our concept of requirements and guarantees has similarities with a general
approach called contract-based design [64]. In computer science this is an ap-
proach to develop software systems based on a component model. The in-
terfaces of components are precisely described in a formal and verifiable way.
For different aspects of functional or non-functional behavior components give
assertions based on assumptions about the environment. This creates a con-
tract between components. Brunel et al. [16] proposes a contract-based design
approach motivated by an automotive example. Safety and timing proper-
ties (latency, triggering) can be expressed in a language similar to Linear
Temporal Logic. The approach however considers neither function-triggered
timing constraints nor an iterative finding of appropriate requirements as pro-
posed by our work. Rich Components of Damm et al. [22] are another concept
to add non-functional requirements to component models. The difference of
our timing requirement/guarantee approach is that requirements and guar-
antees always are a pair that is valid for a data path through a subsystem.
A guarantee is used to give feedback to the system designer about the cur-
rent timing behavior of that subsystem. The other subsystems however do not
use that guarantee as an assertion (like in contract-based design). All subsys-
tem developers only take their requirements as input, which must be fulfilled.
Requirements and guarantees are isolated for the subsystems.

3.7 Summary and Comparison of Timing Constraint
Types

3.7.1 Summary of Related Work on Timing Constraints

Table 3.1 summarizes the related work on timing constraint types discussed
in Section 3.5.1. The related work is categorized by two dimensions. The
first one is the scope of the timing constraints used in the according model,
either system level or component level. The second dimension is the type of
real-time system that is supported by the approach, either event-triggered or
time-triggered systems.

hhhhhhhhhhhhhhConstraint scope
System type Event-triggered Time-triggered

Component level Liu and Layland [59]
Audsley et al. [3]
Marques et al. [61]
Saket and Navet [78]

Chung and Dietz [21]
Gerber et al. [37]
Saksena [79]

System level Richter et al. [74, 49]
Feiertag et al. [29]

Schild and Würtz [84]

Table 3.1. Categorization of timing constraints in related work.

Table 3.1 should make two things clear. All related work focuses on one specific
system type. Timing constraints are always defined for and used in either an
event-triggered or a time-triggered system. Second, if system level constraints
are used, this is done to directly derive component level constraints (or timing
properties for components) from them.
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3.7.2 Comparison of Constraint Types

In this section we finally compare related work on timing constraints with
our concept of function-triggered timing constraints and timing requirements
and guarantees for development teams. Figure 3.15 depicts these types. The
figure orders constraints by their level of abstraction, ranging from imple-
mentation specific (constraints for actual timing properties) to very abstract
performance requirements. A similar constraint ordering was already discussed
in Figure 3.14, which is borrowed from [79].
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Fig. 3.15. Comparison of timing constraints in this thesis and in related work.

The approach proposed in this thesis differs from the related work as fol-
lows. First, function-triggered timing constraints are declared as implementa-
tion independent end-to-end constraints. That means, they abstract from all
implementation details of a function, especially the system type. Our work
explicitly targets time-triggered and event-triggered real-time systems.

Second, our approach introduces the new intermediate level of timing con-
straints, which we call timing requirements and timing guarantees, as intro-
duced in Section 3.6. These are derived from the function-triggered timing con-
straints and belong to the responsibility of one development team. Whereas
related work concentrates on the derivation of component level constraints
(i. e. for timing properties) from system level timing constraints, our approach
introduces the concept of requirements and guarantees.
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The Global Scheduling Problem

In this chapter we show how the scheduling of a system can be developed
using the techniques that current real-time literature offers. Developing the
scheduling of a system means to define, or configure, all timing properties of
the system. The result of this process is a specific timing behavior, which must
fulfill the system’s timing constraints.

We describe a typical system timing development and some assumptions that
we make for such systems. The so-called global scheduling problem is described
both for an event-triggered and for a time-triggered system. After that we
explain why the standard global scheduling approaches are not sufficient for
a distributed development environment, which is typical for the automotive
industry as described in detail in Section 3.1.

4.1 Usage of our System Model

4.1.1 Assumptions

In Section 3.3 we already introduced our system architecture model. The
description of the global scheduling problem presented in this chapter is
also based on that system model. The system model is part of the overall
timing-augmented system model. It consists of several sub-models, which rep-
resent system model information on different abstraction layers. For the global
scheduling problem we focus on the technical architecture model. We assume
the functional architecture as given, because the available functionality of the
car is already known. Also the software architecture model, i. e. the realiza-
tion of the functionality by means of software components, is assumed to be
given. In the technical architecture the hardware topology is also assumed
to be completely available. That means it is not in the scope of our global
scheduling problem to find an optimal hardware design.

During system development in a typical automotive design flow as described
in Section 2.2, the mapping of the software components onto the available
hardware is a very complex step. The outcome of this step is the deployment
model. The deployment model influences the system’s timing behavior be-
cause the software component mapping defines which communication paths
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between components are local or remote communication. Especially remote
communication over a bus network can lead to considerable high time con-
sumption and depends on the schedule design. For the description of the global
scheduling problem, we take a deployment model as a basis. So there are two
remaining sub-models, which span the configuration space of the problem:

• execution model, which defines the mapping of runnables to tasks and the
scheduling of tasks

• communication model, which defines the mapping of signals to frames and
the scheduling of frames

Assumption 4.1 For the global scheduling problem as well as for our ap-
proach to improve distributed development, the functional architecture and log-
ical software architecture models are assumed to be given. Further the hardware
topology and deployment model are assumed to be given. The global scheduling
is influenced by the design decisions made in the communication model and
execution model.

Developing a deployment model is often referred to as allocation. Tindell et
al. [94] developed a method to allocate tasks to processors. Given a set of
tasks with mutual dependencies. That means one task can consume data pro-
duced by another task. The method assigns deadlines to the tasks depending
on the kind of task communication, which is either local or remote. Locally
communicating tasks are assigned a deadline equal to their period. Remotely
communication tasks have shorter deadlines, because the message produces an
additional sending delay. The approach is somewhat different to our system
understanding, because the authors assume the task mapping to be performed
before allocation. Nevertheless they show an interesting approach to the allo-
cation problem, which we explicitly do not consider in our work.

According to our system architecture model (see Section 3.3) software com-
ponents of the logical architecture are refined on the technical architecture
using runnables. These runnables actually are part of the execution model. So
it is special engineering work to define the set of runnables for each software
component. However for the global scheduling problem we assume that the
set of runnables is already given. The definition of the execution model here
means defining tasks, assigning the runnables, and finding appropriate timing
properties for the tasks.

Concluding, we state that task and communication scheduling have the great-
est influence on the timing behavior of an automotive real-time system.

The vehicle electrical system of modern cars consists of several sub-networks
that are interconnected with gateway components. The different networks
potentially have a different system type, i. e. they are event-triggered or time-
triggered. Gateway components must be able to interlink all these different
types to enable cross-network communication. Each of these networks in a
car often is dedicated to a specific domain, e. g. solely for chassis or solely
for body electronics. Therefore sub-networks are often also called clusters.
Each cluster is realized using one specific system type, because the domains
have different demands with respect to real-time behavior and criticality. A
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chassis network typically requires a time-triggered system, because chassis
functions are classical closed loop control systems and have to fulfill hard
real-time constraints. A body domain network typically is realized using an
event-triggered approach, because it mainly contains driver-triggered comfort
functions with predictive triggering behavior.

In our work we concentrate on the differentiation of the two main system types,
which are event-triggered or time-triggered systems. We show how function-
triggered timing constraints are translated into requirements for subsystems,
depending on the system type. Therefore, it is not necessary to include gate-
ways, because the concepts for each system type can easily be combined for
more complex networks.

Assumption 4.2 A system in our context has one of the two main types,
event-triggered or time-triggered. A system has only one communication bus
that connects all Ecus.

Gateways are not in our scope and a system in our meaning is what is usually
referred to as cluster.

In this work we distinguish local and remote communication between soft-
ware components. Local communication is technically realized with shared
variables or local function calls. Basically, shared variables could also be used
for inter processor communication on one Ecu. However, we exclude such
multiprocessor Ecus from our considerations.

Assumption 4.3 We assume that each Ecu has exactly one processor that
executes the software. Each Ecu thus needs one processor schedule for the
task set it executes.

Concluding, global scheduling means to develop exactly one task schedule
per Ecu and a communication schedule for the one available bus. The bus
schedule is captured in the communication model, which carries all frames
and their according timing properties. The processor schedules in our system
model are merged in one system wide execution model, which contains the
tasks of all processors. In practice, such an execution model would probably
be split by the available Ecus.

4.1.2 Timing Properties

The available timing properties depend on the system type. For both sup-
ported types special timing properties in the communication model and exe-
cution model exist for tasks and frames. Our system model contains all these
timing properties.

The mapping of signals to frames is realized by the signals function in our
system model. Messages are directly mapped to bus frames and then called
signals. In practice often the intermediate container concept called PDU is
part of the communication model. That is, signals are grouped to PDUs, which
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in turn are mapped to frames. The concept of a PDU (protocol data unit)
stems from the layered network architecture models. Simply put, a PDU adds
network layer and communication protocol specific data to a group of signals.
Autosar for example supports three such layers in its communication stack,
which are represented by signals, PDUs and frames. PDUs there are groups of
remotely exchanged signals with an abstraction of the concrete bus type. The
concept of the PDU adds additional complexity to the entire communication
configuration process, which we neglect in our work.

Assumption 4.4 In our communication model, signals are directly mapped
to bus frames, without the intermediate concept of PDUs (protocol data units).

4.1.3 System Model Example

We presented an example system model in Section 3.3.6 using our formalism to
describe all six sub-models. For the global scheduling problem description we
now focus on the two basic sub-models execution model and communication
model of that example. In the initial example we added random values for the
basic timing properties of the system’s tasks and frames just to demonstrate
the formalism.

In this chapter we now show, which techniques from the literature can be used
to a) determine real timing property values of frames and tasks and b) how the
timing behavior of the system, which is induced by these timing properties,
can be analyzed.

For the global scheduling problem we assume variables instead of random
values for the main timing properties of the example model. The output of
global scheduling is an appropriate instantiation of these variables with respect
to the timing constraints, which must be defined for the realized function.

In addition to these timing properties, also the mapping relations signals
and runnables must be defined as part of the execution and communication
models. In the example system model of Section 3.3.6 there are two frames
and one task per Ecu, which we also chose randomly. Actually the definition
of these mapping relations is part of the global scheduling problem.

We sum up all steps that are necessary to be performed in the global schedul-
ing problem in Section 4.3.

4.2 Timing Constraints

To point up the global scheduling problem, the system also needs to have
some timing constraints that it must fulfill. The system model only contains
timing properties in the communication and execution models. As we show the
problem of global scheduling for a system, all timing constraints are considered
as system level timing constraints, as described in the literature survey in
Section 3.5.1. The timing properties must lead to a timing behavior, which
fulfills the constraints.
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Several types of possible timing constraints exist, as we described in Sec-
tion 3.5.1. To demonstrate the global scheduling problem, a type of system
level constraint is appropriate, which involves the entire system model exam-
ple. Therefore the most typical type is a latency constraint for a function,
which also is the most commonly used timing constraint in other scheduling
and timing analysis literature.

For the purpose of this chapter, an informal description of the timing con-
straints is sufficient. We developed a timing model for a formal specification
of function-triggered timing constraints, which we present in Chapter 5 based
on the results of the analysis of the global scheduling problem, especially with
a focus on distributed development.

4.3 Global Scheduling Problem Description

4.3.1 Definition of Global Scheduling

Based on a system model as described in Section 3.3 and the assumptions
made in Section 4.1.1 we now formulate the single steps of the Global Schedul-
ing Problem. Therefore, a definition of global scheduling is required.

Definition 4.1. Given a system model that consists of a functional architec-
ture model, a software architecture model, a hardware topology model, and a
deployment model, Global Scheduling is the process of finding both the exe-
cution model of each Ecu and the communication model of the bus network
such that global, i. e. system-wide, end-to-end timing constraints are fulfilled.
Additionally also basic schedulability requirements must be fulfilled, which are
independent from timing constraints.

The origin of the global scheduling problem is the distributed character of
automotive networks. Modern car functions are distributed over several Ecus
(see Section 2.2). Timing constraints on a function level thus influence the
consideration of the timing behavior of the whole system, not only of single
components like a single Ecu or only the bus. The schedules of these com-
ponents automatically get coupled, i. e. changes of one components schedule
can influence the system’s timing behavior and thus induce the necessity of a
different schedule for another component. We will describe this in more detail
for event-triggered systems in Section 4.5 and for time-triggered systems in
Section 4.6. These observations lead to Assumption 4.5.

Assumption 4.5 In a distributed system, the timing property configurations
of the system’s components (Ecus and bus) are coupled because they jointly
influence the system’s timing behavior.

The result of the global scheduling process as defined above is a complete
timing-augmented system model as described in Section 2.3.3. The Ecu ex-
ecution models, which are merged in the one execution model of our system
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architecture model, and the bus communication model comprise all timing
properties of the system model. As described in Section 2.1.3, these timing
properties influence the system’s timing behavior to a great extent, besides the
deployment model, which we assume as given according to Assumption 4.1.
The timing behavior in turn must fulfill the given timing constraints. This
correlation is depicted in Figure 4.1.
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Fig. 4.1. Timing-augmented system model as input and output of global scheduling.

Timing properties have been defined as part of the system implementation in
Section 2.1.3. Global scheduling thus is used to accomplish the overall system
implementation to a complete timing-augmented system model and to find
appropriate timing properties. This part of the system implementation is also
referred to as timing configuration. Global scheduling is the process of finding a
timing configuration for a system to accomplish the timing-augmented system
model in a way that timing constraints are fulfilled.

Global Scheduling can be automated, as we will see at the related work ap-
proaches we analyze later in this chapter. According to Assumption 4.1 it is the
scope of our work to support the development of such a timing configuration
that fulfills all timing constraints. It is not in the scope to find an appro-
priate deployment, or even to automatically define a software architecture.
Early work on deploying software to hardware, often also called allocation,
was presented by Tindell et al. [94]. We already outlined their approach in
Section 4.1.1.
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Before we explain global scheduling in detail we make one temporary assump-
tion for the analysis of the problem. For the analysis of the global scheduling
problem we neglect roles, teams and the subsystems they account for. So,
Assumption 4.6 particularly means that no typical distributed development
limitations are induced.

Assumption 4.6 For the global scheduling related work analysis, we assume
that the system is completely developed by one team and we temporarily neglect
distributed development limitations.

After we explained related work approaches to all or some steps of the global
scheduling problem in Section 4.5 and Section 4.6, we point out where dis-
tributed development limitations take effect in these approaches in Section 4.7.
That is why Assumption 4.6 is not admissible and just temporarily valid to
explain the other approaches. In the automotive practical systems engineering
all these limitations exist. The related work however does not take those into
account. We show our approach and solution to these limitations in Chapter 5
and Chapter 6.

4.3.2 Global Scheduling Steps

Regardless of the system type that is actually used, several abstract global
scheduling steps have to be performed. According to Assumption 4.1 we define
the following steps, which make up the global scheduling process based on our
system architecture model.

1. Task Mapping is the step of mapping a given set of runnables to a set
of operating system tasks. The deployment model defines, which soft-
ware components belong to which Ecu. Because of Assumption 4.3 all
runnables of the software components of one Ecu are executed by one
processor. To be executed by the operating system, the runnables must
be contained in tasks. Task mapping is performed for each Ecu. In our
system model the execution model collects all task mappings of all Ecus.
The deployment model implicitly gives the allocation of tasks to proces-
sors. One common attribute of both task types in our system model is the
task Wcet. It is the sum of the Wcets of the contained runnables.

2. Task Scheduling is the step of assigning appropriate timing properties
to the tasks. The concrete timing properties of the tasks depend on the
system type, i. e. on the task type, which is either an ETTask or a TTTask
in our system model (see Section 3.3.5). Task mapping is also actually
performed per Ecu, although the one execution model here collectively
captures all tasks.

3. Frame Mapping is the step of mapping signals to frames. The deployment
model defines which connectors between software components are remote
connectors, namely the ones where sending and receiving Swc are de-
ployed to different Ecus. Exchanged messages of remote connectors are
represented by a signal. Actually the concept of signals only exists im-
plicitly in our system model by referencing a message from a frame. The
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remote transmission of signals is realized using frames. Frame mapping
is performed for the system’s communication bus to be able to transmit
signals. According to Assumption 4.2 we assume only one communication
bus in our network. One common attribute of both frame types in our
system model is the frame size. Because we assume the same size of all
signals in a frame, the frame size actually is the maximum number of
contained signals.

4. Frame Scheduling is the step of assigning appropriate timing properties to
bus frames. Again, the concrete timing properties depend on the system
type. We call the two available frame types ETFrame and TTFrame in
our system model (see Section 3.3.5). The communication model holds all
frames and thus contains all timing properties of the one available bus.

5. After steps 1 to 4 the system model is completed and all timing properties
are set. Timing Analysis and Verification is the next step to check the
fulfillment of timing constraints of the timing-augmented system model.
Especially in the context of system level timing constraints, a so-called
timing analysis must be performed based on the timing-augmented system
model. On component level some available scheduling approaches already
comprise the fulfillment of task or frame level timing constraints, as we will
explain in the next sections. System level constraints are usually verified
by timing analysis.

timing analysis 

and verification

task scheduling frame scheduling

task mapping frame mapping

required forrequired for

required for required for

Fig. 4.2. Dependency of the five global scheduling steps.

The dependency of all five steps is shown in Figure 4.2. The result of these
steps is a complete system model according to Definition 4.1 and as depicted
in Figure 4.1. We describe the concrete, system type dependent realizations of
each of these steps in Section 4.5 and Section 4.6 and we provide an overview
of related work, which covers these steps.
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4.4 Task Mapping and Frame Mapping Approaches

Before all standard scheduling and timing analysis techniques can be applied
to our system model, task mapping and frame mapping must be performed.
The basic software execution entities of our model are runnables. All ap-
proaches however expect tasks to be scheduled. The same applies for signals
and frames.

A very simple approach to task and frame mapping would be to define every
runnable as a task and every signal as a frame and then proceed with the
task and frame scheduling steps. This approach however has some practical
disadvantages:

• The amount of tasks that an operating system can handle is often limited.
The software complexity of real automotive systems would exceed such
upper bounds and thus engineers are forced to group runnables to tasks.
Similar, the amount of remotely exchanged signals in practice is far beyond
the amount of configurable frames on a typical bus system.

• At runtime, task switching produces time and memory overhead for the
operating system. The state of a task must be stored when it is preempted
to be able to continue its execution later. On a bus network every frame
carries protocol information additionally to the actual data. For that rea-
son the amount of data that is exchanged on the bus is more than the
actual signal data. Signal groups that are mapped to a frame produce less
data overhead.

• After task and frame mapping the according scheduling steps follow. All
task or frame timing properties must be assigned. The complexity of such
scheduling approaches depends on the amount of tasks or frames to be
scheduled.

Because of these three reasons, engineers need a sophisticated method of map-
ping runnable entities to tasks and signals to frames. Some simple practical
rules are obvious and can be applied by engineers both for event-triggered and
time-triggered systems:

• Periodically executed runnables and periodically transmitted signals can
only be assigned to the same task, if the smallest period is a divider of all
other periods, i.e. the periods must be harmonic (see Definition 2.9).

• If the execution of a runnable B depends on the execution of another
runnable A, then A should be scheduled before B within the task.

• Runnables with shared memory access should be mapped to the same task
to avoid race conditions.

Frame mapping has attracted only a little attention in real-time systems litera-
ture [78]. In the following we outline one approach for event-triggered systems.

Navet et al. [78, 61] developed a method for frame mapping (they call it frame
packing) of a priority-based communication network such as CAN. The prob-
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lem they solve with their approach is the following. They assume a complete
system with several Ecus and one bus. Every Ecu sends signals over the bus.
Every signal has the three given timing properties size, production period and
a deadline. The approach seeks for a frame mapping such that all signal dead-
line constraints are met. A period and a priority is assigned to the frames,
i. e. the approach also performs the frame scheduling step. Additionally, the
approach aims for a minimization of the bandwidth consumption, which is an
issue of frame mapping in general as described above.

Approach Step Input Output Conditions
Navet et al.
Frame
Packing

frame
mapping

and
scheduling

signals:
period

frames:
period • signal deadlines

knowndeadline priority
size

Table 4.1. Frame Packing according to Navet et al. [78, 61].

Table 4.1 summarizes the input and output of the frame mapping approach
by Navet et al. [78, 61]. All output frame properties are also available in our
communication model. However, we do not explicitly provide such properties
for signals, because we only assume timing requirements for signals, like re-
quirements for signal periods and offsets. The system model does not contain
such timing requirements. These are covered by our new Timex timing model
presented in Chapter 5.

4.5 Scheduling Approaches for Event-triggered Systems

In this section we analyze related work approaches to the scheduling and anal-
ysis of event-triggered systems. According to Assumption 4.6 we temporarily
neglect the fact that automotive systems are developed in a collaboration of
several teams and apply the concepts and approaches to the global scheduling
problem of our system model as defined in Definition 4.1. All related work
approaches can be grouped in component level and system level approaches
(see Section 3.5.1). We consider both types in this survey.

4.5.1 Rate Monotonic Scheduling

In their fundamental contribution to scheduling analysis, Liu and Layland
[59] proposed Rate Monotonic Scheduling (RMS) and proofed that it is a
so-called optimal scheduling approach for assigning static priorities to tasks.
Optimality in this sense means that if RMS does not find a scheduling solution
then no other scheduling approach will find a solution as well. Further, no
other priority assignment strategy can yield better schedulability.

To work properly RMS defines some assumptions for the task model:

• Tasks are strictly periodic.
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• Tasks have a fixed Wcet.

• All tasks are preemptive.

• A task’s deadline is equal to its period.

The assignment strategy of RMS is simple. RMS assigns the task priorities
according their periods. The task with the smallest period (i. e. the highest
rate) is assigned the highest priority. Given the above assumptions RMS is
optimal. The authors proofed that such a system is schedulable if the processor
utilization (see Equation (2.1)) is below a certain bound. The bound depends
on the number of tasks. Lehoczky et al. [57], Sha et al. [86] as well as other
researchers published less pessimistic and exact schedulability tests based on
the processor utilization.

According to our classification made in Section 3.5.1, RMS is a component
level scheduling approach. The component in that case is a single processor.
The concept however does also fit for communication busses that also fulfill
the model assumptions listed above.

Approach Step Input Output Conditions
Rate
Monotonic
Scheduling

task or
frame

scheduling

period priority • deadline equals
perioddeadline

wcet

Table 4.2. Rate Monotonic Scheduling by Liu and Layland [59].

In Table 4.2 we summarize the input and output of RMS. Both our communi-
cation model and our execution model (Section 3.3) provide these properties.
An ETTask has got the wcet and period attributes, which are the input pa-
rameters of RMS. Further it has the priority attribute, which is the output
according to RMS. The same applies for the attributes of an ETFrame. Also
the task deadline is implicitly covered by our model, because of the assumption
that the task deadline is equal to its period. However, the deadline assump-
tion of RMS is the most restrictive one. We will discuss deadline limitations
of RMS and other approaches in Section 4.7.1.

4.5.2 Response Time Calculation

Joseph and Pandya [51] published a response-time calculation based on RMS.
The worst case response time (Wcrt) of a task is the actual time it takes to
execute a task, including potential interruptions by other tasks with higher
priorities. The authors based the response time calculation on the concept of
the critical instant. This is the case when all tasks are activated at the same
time. The authors showed that the critical instant leads to the worst case
response time of all tasks and presented a recursive calculation formula.

We summarize the input and output of the response time calculation according
to Joseph and Pandya [51] in Table 4.3. The input is all worst case execution
times, priorities and periods of the tasks, the output is the worst case response
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Approach Step Input Output Conditions
RMS
Resposne
Times

timing
analysis

period wcrt • deadline equals
periodpriority

wcet

Table 4.3. Response time calculation based on Rate Monotonic Scheduling, Joseph
and Pandya [51].

time of each task. We call the worst case response time a scheduling analysis
result that abstracts the underlying timing properties, which were input to
the approach.

Tindell et al. [95] developed a method to calculate response times for CAN
messages. The approach is similar to the one of Joseph and Pandya [51] but
takes CAN specific aspects into account, such as message transmission times,
message jitter and message blocking times. The result also is a guaranteed
Wcrt for all CAN messages.

4.5.3 Deadline Monotonic Scheduling

The basic restriction of the RMS approach is that every task has a deadline
that is equal to its period. RMS soon disadvantages especially tasks with low
frequency, because they probably get a very low priority. After the initial
publication of RMS several researchers improved the RMS concept to also
allow task deadlines smaller than and greater than the task periods.

Audsley et al. [1, 3, 2] relaxed the "deadline equals period restriction" and
also allowed deadlines smaller than the task periods. According to this priority
assignment strategy, which is called Deadline Monotonic Scheduling (DMS),
the task with the shortest deadline gets the highest priority. The authors
proved that also DMS is an optimal scheduling strategy. Leung andWhitehead
[58] proofed that the response time formula of Joseph and Pandya [51] also
applies for arbitrary deadlines and developed enhanced schedulability tests
for DMS. However, the focus of the timing constraints is still just on the level
of a single task or, if the concept is applied to a communication bus with a
similar model, a single frame.

Allowing deadlines greater than task periods was investigated by Lehoczky
[56, 57]. The basic consequence of this task model is that a new task execution
can be triggered before the last one has finished. This leads to multiple task
instances. Lehoczky introduced the concept of a busy period. This concept
generalizes the principle of a critical instant described in Section 4.5.2 by
using an extended response time calculation formula.

Approach Step Input Output Conditions
Deadline
Monotonic
Scheduling

task or
frame

scheduling

period priority
• deadline knowndeadline wcrt

wcet

Table 4.4. Deadline Monotonic Scheduling, Audsley et al. [1, 3, 2].
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The input an output of DMS, summarized in Table 4.4, is the same as we
already explained for RMS. The deadline restriction of RMS does not exist for
DMS. The necessary input and output attributes of ETTask and ETFrame
are also available in our system model except Wcrt, which we defined as
timing analysis result.

4.5.4 Compositional Scheduling Analysis

Richter et al. [74, 49] developed a system level timing analysis method called
Compositional Scheduling Analysis. It is based on event model interfaces be-
tween system components. Components are tasks and frames. The method
enables verification of and reasoning about end-to-end paths through an event-
triggered system. Basically, the approach does timing analysis, i. e. all compo-
nent level timing properties for tasks and frames like priorities, periods, etc.
are assumed to be given. The analysis output is the worst case response time
of paths, i. e. maximum path latencies and jitters. The result can be used to
answer the question whether end-to-end latency constraints are fulfilled.

The authors developed a method to couple event model streams using event
model interfaces. Communicating components are coupled using a certain set
of defined event models. This leads to a structured and modularized analysis
technique that decouples complex global dependencies.

The analysis model of this approach captures the system level interactions in
simple event models, which are attached to the output and input "port" of
every component (task or frame). These event models interface the compo-
nents. A path in the system basically is a sequence of components that trigger
each other. For example, an initial task is triggered (e. g. by the operating
system or an external interrupt). It sends a message over a frame and thus
triggers the frame transmission. Thereby the task induces an event model to
the frame, because they are connected with an event interface. At the end
of the path a final output event model results from the initial input event
model. On the way through the path, a lot of local scheduling effects in the
particular components (on an Ecu or the bus) influence the transformation
from the input to the output event model. The final output event model and
the latency of the path represent the analysis result.

Approach Step Input Output Conditions

Compositional
Scheduling
Analysis

timing
analysis

priority path Wcrt,
• all timing prop-

erties known
period output
wcet event model
offset

Table 4.5. Compositional Scheduling Analysis according to Richter et al. [74, 49].

Table 4.5 summarizes the input and output of the Compositional Scheduling
Analysis approach. The initial event models are based on the standard at-
tributes for tasks and frames that are also available in our system model. If all
task and frame attributes are given, the dynamics of local and global schedul-
ing effects along paths can be computed with Compositional Scheduling Anal-
ysis. The analysis output can be compared to given timing constraints.
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4.5.5 Generating Intermediate Task Deadlines

Gerber et al. [37] presented an approach to derive intermediate task level
properties and constraints from given system level constraints (we describe
their constraint types in more detail in Section 3.5.1). The scope of their
approach is a single Ecu without remote communication over a bus. The tasks
of the Ecu are represented as a so-called task graph. A path through the graph
represents an end-to-end sensor actuator dependency. These dependencies can
have three kinds of timing constraints, namely latency, input rate and value
update jitter for inter-task communication.

In their publication Gerber et al. present an automated design method based
on intermediate timing properties. These properties are task periods, offsets
and deadlines. Their constraint logic programming approach is used to gen-
erate the resulting task set and check a) that the task set is feasible with
respect to the processor utilization and b) the intermediate timing properties
fulfill the end-to-end constraints. Based on these properties they use other
fixed priority preemptive scheduling (FPPS) techniques to check whether a
priority-based schedule can be found with the generated properties that ful-
fills all task constraints. Such other techniques are for example RMS or DMS,
which we described in Section 4.5.1 and Section 4.5.3, respectively. If no solu-
tion can be found with the current intermediate properties then the algorithm
tries to identify potential bottlenecks and generates new periods.

The result of the algorithm is a schedulable set of tasks, which minimizes
processor utilization and fulfills all end-to-end constraints.

Approach Step Input Output Conditions
Gerber et al.
Intermediate
Task
Deadlines

task
scheduling
and timing
analysis

path:
deadline

task:
deadline,

• only one Ecu
• all properties ac-

cessiblerate offset
jitter period

Table 4.6. Generating intermediate task deadlines according to Gerber et al. [37].

In Table 4.6 we summarize the approach of Gerber et al. The approach is in-
teresting to mention because of the fact that it is somehow related to our ap-
proach of generating subsystem timing requirements based on end-to-end con-
straints, which we call function-triggered timing constraints (see Section 6).
However it is limited compared to our work in some respects. First the au-
thors only support one priority-driven Ecu. Second their approach searches
exhaustingly for a global solution, whereas our approach tries to solve tim-
ing conflicts locally as far as possible. Finally Gerber et al. assume to have
full access and insight to the entire system timing properties. Our approach
solely works on the abstraction layer of subsystem timing requirements and
guarantees, without deeper insight into the underlying timing properties.
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4.6 Scheduling Approaches for Time-triggered Systems

In the time triggered paradigm the entire distributed system typically has a
common global time line and all task activations and frame transmissions are
triggered at certain predefined points in time. Scheduling time-triggered sys-
tems is often also referred to as schedule generation. The challenge of schedule
generation is to find a suitable line up of all cyclic tasks and frames using ap-
propriate task and frame offsets from a common reference point in time. This
schedule must be in a way, so that every single task has exclusive processor
resource access during his execution time and every frame is transmitted on
the bus without interruption. The so-called non-preemptive static task sched-
ule has to be developed per Ecu and for the bus. As described in Section 2.1.4
finding such a static schedule is an NP-complete problem.

As additional challenge the tasks and frames potentially have to meet dead-
lines that can be derived from different dependencies amongst the tasks.
Mostly the deadlines are derived from end-to-end constraints. The main chal-
lenge of schedule generation for static time-triggered systems is that the Ecu
and bus schedules are tightly coupled with each other (see Section 2.1.4).
Thus the effort of schedule generation rises drastically with the number of
interconnected remotely communicating tasks.

4.6.1 Frame Mapping and Scheduling

Grenier et al. [38] developed a frame mapping and scheduling approach for
time-triggered systems. They target the configuration of the static part of
a FlexRay schedule. The authors assume some given timing properties for
all signals in the network, which are the production period, offset, size, and
deadline. The deadline is the maximal age a signal must have from its pro-
duction by a sender until it is received. The authors present an algorithm that
takes these signal timing properties as input and calculates both an according
frame mapping and frame scheduling according to the FlexRay technology.
The resulting static schedule leads to a maximum age of every signal.

Approach Step Input Output Conditions
Grenier et al.
Frame
Scheduling

frame
mapping

and
scheduling

signals:
period

frames:
period

• signal produc-
tion offset given

• signal deadline
known

offset offset
size signals age

deadline

Table 4.7. Frame scheduling according to Grenier et al. [38].

Table 4.7 summarizes the necessary input and output of the approach. Sim-
ilar to the approach of Navet et al. , which we described in Section 4.4, our
system model covers only the frame timing properties, not the signal timing
properties.
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4.6.2 Frame Scheduling

Nossal and Galla [68] also developed an approach to solve the scheduling
problem for one time-triggered bus. Their approach uses a genetic algorithm
to obtain a feasible static message schedule for a synchronous communication
bus. The approach does not directly target an automotive network but a real-
time LAN. The basic concept of that network however is similar to other time-
triggered networks, like the static part of the automotive-specific FlexRay bus.
Every signal, which they call message, has got a maximum update period,
i. e. a maximum sending frequency. The algorithm searches an assignment of
these messages to bus slots, such that all messages are transmitted with their
required period. Thereby a lot of side conditions have to be met, for example
to avoid interference of messages with different periods. We explained such
time-triggered specific side conditions along with the idea of cycle harmony
in Definition 2.9. A bus slot in the approach of Nossal and Galla actually can
also be expressed as an offset from the bus cycle start, similar to our system
model. The authors neglect frame mapping and thus assume every message
to be mapped to an own frame.

Approach Step Input Output Conditions
Nossal and
Galla Message
Scheduling

frame
scheduling

period offset • no signal dead-
lines supported

Table 4.8. Message scheduling according to Nossal and Galla [68].

Table 4.8 summarizes the approach of Nossal and Galla. Note that no deadline
constraints are considered by the approach. The output offsets solely are used
to schedule all signals with their given period such that no signal collisions
occur.

4.6.3 Instruction Precedence Scheduling

Chung and Dietz [21] consider different kinds of precedence constraints of
single instructions. The approach however can also be extended to tasks
precedence constraints. These constraints solely set up a temporal order of
instructions by expressing "before" and "after" relations for pairs of instruc-
tions. They propose an adaptive genetic algorithm to schedule all instructions
such that all these constraints are fulfilled. Therefore the initial precedence
constraints are transformed into standardized timing constraints of the form
"instruction X must occur after instruction Y with an offset of n". Note that
these offset values are relative, because they are defined for one instruction
relating to another instruction.

If the problem consists of n instructions there are n! potential schedules, i. e.
sequences of instructions. Only a few of them fulfill all precedence constraints
and finding those is an NP-complete problem [21]. Therefore the authors use
a genetic algorithm to find one of these solutions. According to our system
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Approach Step Input Output Conditions
Chung and
Dietz
Instruction
Precedence
Scheduling

task
scheduling

relative
instruction

offsets

absolute
instruction

offsets

• no periods
• no deadline con-

straints

Table 4.9. Instruction precedence scheduling according to Chung and Dietz [21].

model, the resulting sequences actually are absolute offset values for instruc-
tions. The authors do not consider periods of the instructions. They obvi-
ously assume the same period of all instructions. Table 4.9 summarizes their
approach and its input and output.

4.6.4 System Scheduling of Tasks and Messages

System level task and message scheduling for time-triggered systems with
end-to-end timing constraints is considered by Schild and Würtz [84]. They
assume a system consisting of several distributed processing units that are
connected with exactly one synchronized communication bus. That means,
the entire system shares one common time line.

The tasks executed by the processing units are organized as a task graph. End-
to-end latency constraints express a maximum latency between one task’s
start time and another task’s end time. Between these two tasks also bus
communication and other intermediate tasks are allowed. The authors neglect
frame mapping and directly schedule messages on the bus.

Approach Step Input Output Conditions
Schild and
Würtz System
Scheduling

task and
frame

scheduling

task wcet task offset • system schedule
generated as a
whole

task period message offset
message size
message
period

Table 4.10. System scheduling according to Schild and Würtz [84].

The authors use a constraint logic programming approach to generate appro-
priate task and frame timing properties such that given end-to-end constraints
are fulfilled. Table 4.10 summarizes their approach. The authors assume both
synchronous communication, where all tasks and messages along a path have
the same frequency, and asynchronous communication, where so-called over-
and undersampling occurs. The task and frame timing properties apply to our
execution and communication model, except that the authors use a different
terminology (e. g. start time instead of offset) and our communication model
does not consider different signal sizes.
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4.6.5 System Scheduling with Frame Mapping

Ding et al. [24] proposed a scheduling algorithm for time-triggered systems
that explicitly targets automotive systems based on FlexRay. The authors
assume to have the software system that has to be scheduled available as a
task graph. Each node of the graph is one task and each edge is one message
that is exchanged between the two connected tasks. The tasks initially are
not allocated to one of the available processors. Task allocation is part of the
overall problem. For our survey however we concentrate on the task and frame
scheduling part of their approach.

Approach Step Input Output Conditions
Ding et al.
System
Scheduling

task and
frame

scheduling

task wcet task offset • system schedule
generated as a
whole

• task deadlines
given

task period frame offset
task deadline
message size
message
period

Table 4.11. System scheduling according to Ding et al. [24].

Table 4.11 summarizes the system scheduling approach by Ding et al. [24]. The
authors take several kinds of end-to-end latency and synchronicity constraints
as input for their approach. Further the deadline, period and Wcet of each
task are known. Messages have a certain size and are mapped to frames, which
in turn are scheduled in a certain FlexRay slot. Such slots are identified by
their offset. Task and frame offsets are the output of their approach.

4.7 Limitations of Related Work

The approaches and the timing models that are used in the above-mentioned
scheduling approached have some limitations in practice. The limitations ba-
sically stem from the fact that automotive systems are developed collabora-
tively. That is, our temporary Assumption 4.6 is not valid in practice. In the
following sections we summarize these limitations, which are the motivation
for our new timing model and methodology called Timex, which we describe
in the subsequent chapter.

4.7.1 Derivation of Subsystem Constraints

Some of the approaches find feasible scheduling solutions based on given task
or frame level deadlines. Navet et al. [78, 61] for example developed a sophisti-
cated frame mapping approach where the signals must have signal deadlines,
which are transformed into frame deadlines. Deadline Monotonic Scheduling
by Audsley et al. [1, 3, 2] has been proven to be a simple and straightforward
way of assigning periods to tasks such that they fulfill their deadlines. Its
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precursor Rate Monotonic Scheduling by Liu and Layland [59] assumes that
the task or frame level periods are already known and equal to the deadlines.
For time-triggered systems also the approach of Grenier et al. [38] is based on
known signal production rates and signal deadlines. Further Ding et al. [24]
assumed statically given task deadlines. Nossal and Galla [68] do not support
deadlines at all and rather concentrate on period-based message scheduling.

A practical problem remains unsolved in these approaches. The approaches
do not answer the question, where the deadlines and periods come from and
how they can be determined. Often task and frame level deadlines depend on
more complex system-wide dependencies, such as end-to-end deadlines. Also
the origin of task and frame level periods remains unclear. The industry needs
an approach to derive all those lower level constraints from the real system-
wide timing constraints, which we call function-triggered timing constraints.
The actual challenge, which is not tackled by the approaches summarized in
this chapter, is the challenge of deriving these lower level constraints, which
we call timing requirements for subsystems.

The task scheduling method of Gerber et al. [37] is based on the generation
of intermediate task level constraints from end-to-end constraints. It tries to
find a task level constraint setup that leads to a fulfillment of the system level
constraints. This procedure is somewhat related to our approach. However the
task level constraints in this case are just a technique of storing temporary
results until a valid solution is found. They are not used as exchange data
between development teams like in our approach. Further the method does
not consider feedback loops and appropriate responses to unfulfilled task level
constraints. Our approach concentrates on such a process using appropriate
iterative requirement scheduling algorithms.

4.7.2 Visibility of Timing Properties

Some approaches are not based on statically given task or frame deadlines,
but rather they consider system scheduling with system-wide deadlines. An
interesting example of such an approach is the work of Schild and Würtz
[84], who directly generate an entire and detailed system schedule with all its
necessary timing properties. The compositional scheduling analysis by Richter
et al. [74, 49] works vice versa. Given a complete system schedule consisting
of all timing properties like task and frame periods and offsets, compositional
scheduling analysis can determine worst case end-to-end delays of data paths
through the system. The results can be compared to given timing constraints
for those paths.

These approaches also have an important drawback regarding their practical
application. We already described the distributed development environment
that the automotive industry is facing in Section 3.1. Distributed develop-
ment implies some specific requirements for timing models and scheduling
approaches, which the investigated approaches and scheduling methods do
not fulfill. The system schedule cannot be generated or analyzed at once,
because several teams, which are responsible for the timing configuration of
only one subsystem, for example one Ecu or the communication bus, develop
the huge automotive network. Thus a scheduling approach that is applicable
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for distributed development must support a timing model with a higher level
of abstraction than the pure timing properties, because these are not neces-
sarily visible. According to our assumed collaboration workflows described in
Section 3.1 several suppliers develop subsystems that are integrated by the
system designer.

Assumption 4.7 We assume that the suppliers do not reveal all technical
details of their subsystems, like the concrete task or frame scheduling, because
these are part of their intellectual property.

All approaches we investigated in this chapter assume to have all timing prop-
erties available and visible. None of them provides any means of abstracting
from timing property details. In the typical automotive collaboration work-
flows today the system designer has a central role. The suppliers of Ecus pro-
vide him an implementation that fulfills given requirements, amongst those
also timing requirements. The suppliers keep their intellectual property as
described in Assumption 4.7, which means here the internal timing configu-
ration like task or frame mapping and scheduling. A more abstract level is
required as "exchange language" between a central system integrator and the
suppliers.

The concept of response times of tasks (Joseph and Pandya [51]) and CAN
frames (Tindell et al. [95]) can be seen as abstraction of the underlying timing
properties, because a Wcrt is a scheduling analysis result that hides those
details. Our timing model however is even more abstract, because it is based
on the concept of events and event chains, regardless of the actual underlying
schedule elements.

4.7.3 Consequences of Changes

The usual pure low-level timing properties that all models of the literature
survey are based on do not qualify as target for timing requirements that are
exchanged between development teams, because they are too unstable. During
development such details are changed rather often. A typical development
cycle of a car takes several years. During that time a lot of changes happen to
the system under development. The more abstract timing requirements are,
the greater is the degree of freedom of the underlying timing properties and
the more stable the entire timing configuration is.

The same argumentation also applies for the reuse of subsystems. If a sub-
system is integrated in a new environment, it is not necessary to know all
exact implementation and timing configuration details. It should be possible
to perform timing analysis of the system based on abstract guarantees of the
subsystems. The approach of Gerber et al. [37] to generate intermediate task
deadlines from end-to-end deadlines is an interesting approach at a glance,
because timing analysis is then performed on the level of that deadlines using
standard analysis approaches like RMS [59] or DMS [1, 3, 2]. However the
approach only focuses on one Ecu instead of a system including a communi-
cation bus. Further the deadlines are not kept as negotiation basis between
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development teams, because the authors do not consider the problem of dis-
tributed development.

4.7.4 Conclusion of the Related Work Analysis

To overcome these limitations of scheduling and timing analysis related work
with respect to distributed development we created a new timing model and
a development methodology. We introduce the timing model and the method-
ology in Chapter 5. The methodology is based on an iterative subsystem
requirements generation process. The algorithms to generate such require-
ments from function-triggered end-to-end timing constraints is explained in
Chapter 6. Table 4.12 summarizes our approach.

Approach Step Input Output Conditions
Timex
Model and
Methodology

abstract
system level
scheduling

function- subsystem • iterative ap-
proach

• abstraction from
low-level timing
properties

triggered timing
timing requirements

constraints

Table 4.12. System scheduling approach addressed by our work.
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Timex - A new Timing Model for Distributed
Development

In this chapter we introduce Timex and its according development methodol-
ogy. Timex is our new timing model we use for our approach to tackle some of
the current development challenges and limitations of recent real-time systems
research. Our focus are challenges that are induced by distributed develop-
ment, which we described in the previous Chapter 4.

5.1 Need for a new Timing Model

As described in Section 2.2.1, automotive systems are so-called distributed
systems. This means that functions, which are provided by the car, can be
distributed across the system. Several Ecus and communication busses may
be involved in the realization of a function. These functions often have to
fulfill hard timing constraints, because automotive systems are also real-time
systems, as described in Section 2.1.1. Additionally, in Section 3.1 we depicted
the distributed development process of the automotive industry. Different roles
with different responsibilities even across different companies collaboratively
cooperate during development. Subsystems are developed by single teams and
integrated to a complete system by the car manufacturer. The integrated sys-
tem has to fulfill many functional and non-functional requirements. Amongst
these also are function-triggered timing constraints, which we explained in
Section 3.5.2.

Because of the distributed functions being developed by different teams,
function-triggered timing constraints can lead to mutual timing dependencies
of the different teams and roles in a distributed development process. In the
following we give some examples for such timing dependencies in distributed
development.

• In a synchronous FlexRay network the Ecu and bus schedules are tightly
coupled because they use the same time base.

• In an asynchronous CAN network all sending Ecus may influence the
sending behavior of each other dynamically on the shared bus.
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• A certain software component’s implementation leads to a concrete exe-
cution time when integrated on an Ecu.

• The synchronization of events on different Ecus can imply the synchro-
nization of the work of different Ecu developers.

In this thesis we focus on the role system integrator. The system integrator
has the responsibility to ensure the system’s correct timing behavior. That
means he must coordinate the previously mentioned timing dependencies of
the various teams in the distributed development process. ECU developers
and especially software component developers do not necessarily know the
function-triggered timing constraints. Therefore they need a clear specification
of the desired subsystem’s timing requirements.

There are many examples for such kinds of collaboration dependencies regard-
ing a system’s timing behavior in a distributed development process. These
dependencies of subsystems cause some additional challenges with respect to
timing in such a distributed development process. We summarize these chal-
lenges later in this section.

Based on our role definitions in Section 3.1.1 we assume the mapping of roles
and developed subsystems according to Table 5.1.

Development Role Developed
Subsystem

Development
Scope

Timing
Properties

Swc developer software
component

software
component without
execution context

execution time

Ecu developer Ecu Ecu without
network

task properties,
Ecu latency,
Wcrt

system designer communication bus complete system
with network and
Ecus

bus frame
properties

Table 5.1. Subsystems developed by the different roles in distributed development
of automotive systems.

Swc developers only focus on one Swc, Ecu developers only focus on one
Ecu. These subsystems are delivered to the system integrator and to the Ecu
developer, respectively. The system integrator develops the communication
bus scheduling and additionally integrates the system. The term development
may technically mean different things depending on the subsystem type. In our
context it is only important to point out who is responsible for the resulting
timing behavior of which subsystem type.

Note that the system designer plays a special role in our assumed development
process. Additionally to developing the communication bus he is the central
role that integrated the entire system. From a timing viewpoint, we therefore
assume the system designer as the central mediator of timing budgets for the
system. The other roles only focus on the subsystem developed by them. This
is summarized in Assumption 5.1.
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Assumption 5.1 The scope of Swc developer and Ecu developer solely is
the subsystem, which is developed by the role (i. e. a single Swc or Ecu
respectively). These two roles do neither know any development details (e. g.
timing behavior) of another party’s subsystem nor of the overall function that
their subsystem participates in. The system integrator however is the central
role that coordinates the entire system’s timing.

Based on Assumption 5.1 and the development process described in this sec-
tion, which in fact conforms to today’s practice in automotive development,
some challenges with respect to timing arise.

• The timing behavior of subsystems developed by different teams can de-
pend on each other or influence each other. Some examples for such de-
pendencies are already given in the beginning of this section.

• When the system timing is evaluated, every subsystem’s timing behavior
must be considered. If the system timing is not correct, i. e. if function-
triggered timing constraints are not fulfilled, it is often difficult to point
to a specific subsystem that causes the incorrect behavior.

• A subsystem’s timing behavior can only be evaluated with respect to a cer-
tain context definition, sometimes also called guarantees of the rest system.
Due to the fact that we assume subsystems to be developed independently
from each other, the context must be specified explicitly, because the rest
of the system is not necessarily visible to the subsystem developer.

• Once a given system implementation has successfully been analyzed and
the fulfillment of all its function-triggered timing constraints has been en-
sured, the analysis result can become invalidated if changes of one or more
subsystems occur. The changed subsystems furthermore must not even be
part of the functions whose behavior is influenced by the change. The ef-
fect of such changes with respect to function-triggered timing constraints
is not always clearly visible and predictable.

• Often subsystems are reused in other systems with a different context. The
reuse is clearly more difficult and costly if the subsystems timing is not
known or not formally specified.

• Often subsystems delivered by suppliers are subject to regulations regard-
ing the protection of intellectual property (IP) of the supplier. Such IP of
subsystems often is not disclosed to the carmaker, who holds the role of
the system integrator in our collaboration scenarios. The system integra-
tor however needs certain information to be able to analyze the system’s
timing behavior.

• The definition of constraints and later analysis of the timing behavior of a
system can be a very challenging task, because typical automotive systems
today are very complex. For timing analysis, an abstraction of the system
complexity is necessary.

• Following the Autosar approach every delivered subsystem must be ac-
companied by an according formal specification. This approach should be
extended to the subsystem’s timing behavior. An additional, abstract, for-
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mal, and standardized way to develop and maintain a timing specification
is therefore mandatory.

• A collection of such timing description specifications should enable model-
based timing analysis of the whole system. Incompatible description for-
mats or semantics can impede successful and correct system timing anal-
ysis.

• It is not possible to analyze function-triggered timing constraints of dis-
tributed functions on subsystem level. A mediator needs to collect sub-
system timing specifications and decide about the fulfillment of such con-
straints.

To tackle these challenges, we define a special timing model, because none of
the existing approaches and models described in Chapter 4 is suitable for all
these demands. Additionally we define a methodology for distributed devel-
opment of automotive real-time systems based on function-triggered timing
constraints that makes use of our new timing model. We describe both the
timing model and the methodology in this chapter.

In the subsequent Chapter 6 we present our constraint logic programming ap-
proach to generate timing requirements for the different subsystems according
to the function-triggered timing constraints.

5.2 Timex - Timing Extension

5.2.1 Timing Extension Definition

As described in Section 3.3 a system model in our case is used to capture the
static structure of an automotive software system. The description or modeling
of the system behavior is not in the model’s scope. Furthermore the system
model includes some implementation details regarding its timing for tasks and
frames in the technical architecture, which we call timing properties.

Given such a system model, model-based timing analysis can be performed to
determine the system’s expected timing behavior. However, to decide whether
the expected timing behavior of the system is acceptable, it must be compared
with the timing constraints that the system has to fulfill. The constraints
are not part of the actual system model itself. Rather they are modeled, or
specified, independently of the system model. Therefore we use a concept that
we call timing extension.

Definition 5.1. A timing extension is a model or specification dedicated to a
real-time system’s timing constraints that is provided additively to the actual
system model.

To capture timing constraints, a timing extension must have the following
three characteristics.
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1. A timing extension must provide an appropriate technical means for tim-
ing constraint modeling.

2. A timing extension must precisely define its model semantics.

3. To enable constraint verification after model-based system timing analysis,
also the relation – or mapping – of the independent timing extension to
the according system model elements must be clear.

We briefly explain how our timing extension model called Timex fulfills each
of these three characteristic requirements in the subsequent section. Timex
and its methodology are described in detail in the remainder of this chapter.

5.2.2 Timex

The timing extension defined in this thesis is called Timex. A Timex model
is used to attach a timing extension to a given system model. It conforms to
the characteristic requirements mentioned before as follows.

Timex is used to describe the static timing relations of elements within a
given system. It is founded on the basic principles of observable events and
event chains, which are described in Section 3.2. Summarized, an event chain
is a sequential temporal order of observable events along a data path through
the system. Timex offers model elements to describe such paths. Of course
the system model itself often directly exposes those paths. For example the
logical and technical architectures of our system model reveal the data paths
across the complete system by channels, which connect components, and by
tasks and frames, which describe on which Ecu components are executed and
which frames are used to exchange messages. The purpose of Timex however
is a) to abstract from the underlying system model, and b) to describe also
such paths that are not completely visible in the system model. This could be
for different reasons. Possible reasons are for example IP protection, a (yet)
incomplete model, or distributed development where only a subsystem model
is available. Three different types of timing constraints can be defined for
the data path definitions using Timex. Observable events (later called hops),
event chains (later called function event chains and segments), and timing
constraints thus are the technical means for timing modeling with Timex.
These concepts are formally described in Section 5.3.

As described in the overview of current real-time systems and timing analysis
literature in Section 3.2 and Section 3.5.1, different meanings and semantics
of events and timing constraints exist. The semantics of Timex thus must
be precisely defined to avoid misunderstandings. This is important for all
parts of Timex. The semantics of observable events was already formally
defined in Section 3.4. Function chains and segments, i. e. event chains built
up with observable events, are also formally defined later in this section. A
clear semantics of such event chains is crucial for the formal definition of
timing constraints provided by Timex. The semantics of the provided timing
constraints is defined in Section 5.3.3.



102 5 Timex - A new Timing Model for Distributed Development

system model

Timex – timing extension

observable events

Fig. 5.1. Observable events as our concept to connect a system model with a timing
extension like Timex.

Timex uses the concept of observable events and event chains to capture
timing constraints additionally to a given system model. Thereby Timex is
an abstraction of various system model details, e. g. details of the technical
and logical architecture. For a successful round trip of system modeling, tim-
ing constraint specification and model-based timing analysis, the connection
of Timex and the underlying system model must be clear. The concept of
observable events represents this connection, or "the glue", between system
model and timing extension, as depicted in Figure 5.1.

The special focus of Timex is distributed development. As described in Sec-
tion 3.4 observable events are available on all three architecture layers of our
system model. Using these observable events and the provided event chains
in Timex, timing modeling on different abstraction layers is enabled.

• Observable events of the functional architecture are used to model function
event chains and function-triggered timing constraints, which we defined
in Section 3.5.

• Observable events of the logical and technical architecture are used to
refine function event chains to segments and thus build up event chains
from a sensor event to an actuator event of a function.

• Segments indicate the parts of a data path, which are assigned to a specific
subsystem in a distributed development process. This enables the mapping
of function-triggered timing constraints to requirements for subsystems,
see Section 3.6.

The abstraction of the underlying system model together with the formal
definition of the mapping between Timex and the system model are a great
benefit, because reasoning about the system’s timing can be performed on
the more abstract and more controllable level of Timex. Therefore all Timex
model elements are described in detail in the following.
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5.3 Timex Model Elements Formalization

Timex is a special timing model for a distributed development process, which
is addressed by this thesis. As described in the previous section Timex is a
timing extension that extends a system model by additional timing informa-
tion. Summarizing, Timex is able to capture the following two very essential
kinds of information that are important for our approach to overcome the
challenges described in Section 5.1 of the distributed development process
outlined in Section 3.1.

1. Timex enables the modeling of function-triggered timing constraints. Ac-
cording to Definition 3.5 such constraints are independent of a concrete im-
plementation. According to our approach, the system model must not be
completely known to define timing constraints for functions. In a pure top-
down development process this is a mandatory feature, because function-
triggered timing constraints are known prior to their implementation,
which is expressed by the system model. The Timex model particularly
supports this, as we will explain later.

2. Once a system model – i. e. the implementation details of the functions
– is complete, the already modeled function-triggered timing constraints
can be refined to requirements for the subsystems, as we described in
Section 3.6. In the Timex model this is realized by the segmentation (see
Definition 5.5) of the system function event chains to subsystem segments,
which will be detailed later. This refined timing model enables a clear
responsibility assignment (see Section 3.1.3).

The first part is covered by what we call the function timing of Timex . The
second part is covered by what we call the system timing. Function timing and
system timing together are the Timex timing extension for a given system
model.

In the next section we present an example that is used to explain Timex and
its model elements. The single elements of Timex that we use in the example
as well as their relations, semantics and formal definition are described in
detail afterwards.

5.3.1 Timex Example

In Section 3.3.6 we already formally specified an example of a system model
that we also visualized in Figure 3.12. The system model offers several ob-
servable events, which we defined in Section 3.4.4. All these events belong
to one data path. They can therefore be ordered temporarily, as depicted in
Figure 3.13.

Based on this example and its observable events we now define a Timex model,
which makes use of the given observable events. This way we define a timing
extension for the system model example. The timing extension relates certain
observable events to each other to create event chains and to specify timing
constraints for the system’s function damperControl.
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Fig. 5.2. Timing extension of the example system model using Timex on both
function level and implementation level.

Figure 5.2 depicts the Timex model example. The upper part shows the before
mentioned function timing. It contains one so-called function event chain,
which is an event chain according to Definition 3.3. It also contains a latency
timing constraint for the function event chain. The lower part of the figure
shows the system timing of the Timex model. It is used to refine the function
event chain by so-called segments. Segments are also event chains according
to Definition 3.3.

Some of the observable events offered by the example are used in this timing
extension. These observable events thus are called hops. By the definition
of hops, observable events are made available to the Timex model and can
be used for function event chain and segment definitions. The system timing
reuses the two hops of the function timing here (indicated by the dotted
ellipse).

All these Timex elements are explained in the two subsequent Sections 5.3.3
and 5.3.4.

5.3.2 Hand Over Points

As one can see in Section 3.4, a complex system model can reveal many ob-
servable events on all three layers. For our methodology (see Section 5.5),
some of the many observable events are of special interest, namely the ones
that are needed for function event chains and segments in the timing exten-
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sion and, after all, to express timing constraints. Not necessarily all available
events must belong to this group. It depends on the decomposition of the
system to subsystems and the collaboration workflows that are realized in the
development process (see Section 3.1.2).

To achieve an identification of important observable events, every observable
event can be characterized as a hand over point in Timex , or short as a hop.

Definition 5.2. A hand over point, or hop, is an observable event that is pro-
vided by the system model and that is made available to the timing extension.
A hop is an observable event that can be observed at the interface of a system
or at the border of two subsystems.

Given an observable event e, the corresponding hop h in Timex that references
the event is denoted by

hop h = 〈e〉

The referenced event can be accessed with the operator .event. The set H is
the set of all hops hi of the Timex model.

H = {hi}

Every hop hi ∈ H is of a certain type that depends on the referenced ob-
servable event. According to the six different types of observable events on all
three layers of the system model, which are described in Section 3.4, we define
the type of a hop as follows. Let T be the data type of all available hop types.
T contains the following elements.

T = {sensor, actuator, send, receive, queued, transmitted,⊥}

The function hoptype determines the type of hop h = 〈e〉 as follows, based on
the different sets of observable events of Section 3.4 on the three layers of the
system model FA, LA and TA.

hoptype : H → T

hoptype(h) =



sensor if h.event ∈ Sensor(FA)

actuator if h.event ∈ Actuator(FA)

send if h.event ∈ Send(LA)

receive if h.event ∈ Receive(LA)

queued if h.event ∈ Queued(TA)

transmitted if h.event ∈ Transmitted(TA)

⊥ else
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5.3.3 Function Timing

Hand Over Points in Function Timing

For the function timing part possible hops are all observable events of function
interfaces, i. e. sensor and actuator events of the set FA, because they are used
to model function event chains later. For all interfaces of available functions
of a functional architecture a hop can be defined.

The set Hfunction ⊆ H is the set of all hops of the function timing. HInterface

is defined as follows.

Hfunction = {〈e〉 | e ∈ Interface(FA)}

The set Hsensor ⊆ Hfunction contains all hops that reference sensor events.
For these hops the following condition holds.

∀h ∈ Hsensor : hoptype(h) = sensor

The setHactuator ⊆ Hfunction contains all hops that reference actuator events.
Again, for all actuator hops the following condition holds.

∀h ∈ Hactuator : hoptype(h) = actuator

Sensor and actuator hops together represent all available hops of the function
timing in Timex .

Hfunction = Hsensor ∪Hactuator

Function Chains

Function timing is used to capture all function-triggered timing constraints
as explained in Section 3.5. Therefore, the function timing part of Timex
contains a set of so-called function event chains, which are the basis for timing
constraint specification.

A function event chain, which we also briefly call chain, is an event chain as
defined in Definition 3.3 with a special semantics. It references a stimulus hop
and a response hop and thus models an end-to-end timing dependency of a
function. According to Definition 3.3, the semantics of a function event chain
is that the event of its response hop can be observed as a causal consequence
after every observation of the event referenced by its stimulus hop.

A function event chain f with stimulus hop s and response hop r is denoted
by the tuple
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chain f = 〈s, r〉, with s ∈ Hsensor and r ∈ Hactuator

The stimulus and response hops can be accessed with the operators .stimulus
and .response. The set F contains all function event chains fi of the function
timing.

F = {fi}

When function event chains are specified it is not necessary to already know
exactly what happens in between these two hops of a function event chain.
However, according to the semantics definition of an event chain there must be
a data path through the system from the stimulus to the response in the final
implementation. Otherwise timing analysis is not possible, because no relation
between certain stimulus and response occurrences can be determined. Broy
et al. [11] call such dependencies between actions that belong to different
components interactions. Because our observable event definitions are also
based on the action concept, a function event chain is similar to such an
interaction.

Function-triggered Timing Constraints

Based on all function event chains, which were introduced in the previous
section, function timing also contains the set of function-triggered timing
constraints. These can be used to constrain the timing behavior of the func-
tion event chains. Function-triggered timing constraints are independent of a
concrete implementation, i. e. independent of a concrete system with already
known logical and technical architecture. Therefore, function timing only uses
those observable events, which are provided by the functional architecture,
namely sensor and actuator events. Function event chains, whose timing be-
havior is constrained by function-triggered timing constraints, reference these
events. The specification thus is what we call implementation-independent.

Note that for our methodology (Section 5.5) as well as for our algorithms to
determine subsystem timing requirements based on function-triggered timing
constraints (Chapter 6) it would make no difference, if the set of hops in func-
tion timing would be extended by hops for events of the logical or technical
architecture. However, this restriction is necessary to ensure the before men-
tioned independence of implementation details, which is a basic assumption
for function-triggered timing constraints (Section 3.5.2).

In Section 3.5.3 we already defined the three main types of function-triggered
timing constraints. These types can also be specified within the function tim-
ing of Timex.

A function-triggered latency timing constraint, or short latency constraint,
references one function event chain and constrains the minimum and maxi-
mum latency between each of this chain’s stimulus and response occurrences.
That means that after every occurrence of the stimulus an occurrence of the
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response must follow within the specified time. A latency constraint l that
constrains the latency of function event chain f to a minimum min and a
maximum max is denoted by the tuple

latency l = 〈min,max, f〉, with min,max ∈ N

The minimum and maximum attributes can be accessed using the operators
.minimum and .maximum. The referenced target chain is accessed with op-
erator .target.

The set LC contains all latency constraints li of the function timing.

LC = {li}

A function-triggered synchronization timing constraint, or short synchroniza-
tion constraint, references two or more function event chains and constrains
the synchronicity of either all stimulus or all response hop occurrences of these
function event chains. A synchronization constraint s that constraints the syn-
chronicity of several function event chains fi ∈ T – the target set – within a
tolerance t is denoted by the tuple

synch s = 〈T, t, scope〉, with t ∈ N and scope ∈ {stimulus, response}

The scope attribute indicates whether the stimulus or the response of the set
of function event chains shall be synchronized within tolerance interval t. All
attributes can be accessed with the operators .target, .tolerance and .scope
for each synchronization constraint.

The set SC contains all synchronization constraints si of the function timing.

SC = {si}

A function-triggered triggering timing constraint, or short triggering con-
straint, references one function event chain and constrains the occurrence
behavior of the stimulus of that function event chain, also called its triggering.

For simplicity reasons we only assume strict periodic triggering constraints in
our Timex model. We assume that for example jitter and other special event
models that we discussed in Section 3.2.1 are not specified as triggering timing
constraints for a function. Such triggerings however may of course occur as a
result of a certain system implementation. We do not provide timing analysis
semantics that define in which cases a strict periodic triggering constraint is
fulfilled by which non-strict periodic timing behavior. The scope of our work
is not to define a new analysis method but a mapping between subsystem
timing requirements and function-triggered timing constraints.

A triggering constraint t that references function event chain f and constrains
a triggering period p is denoted by the following tuple.
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triggering t = 〈p, f〉, with p ∈ N

The period can be accessed with the operator .period, the operator .target
can be used to access the target function event chain.

The set TC contains all triggering constraints ti of the function timing.

TC = {ti}

Finally, we can define the set C, which contains all function-triggered timing
constraints of a Timex timing extension for a system model.

C = LC ∪ SC ∪ TC

5.3.4 System Timing

Based on a function timing model of Timex a certain system timing can be
defined. If a functional architecture is further used in a system model and
refined by a logical and technical architecture model, as described in 3.3, a
lot of additional implementation details appear that are not visible in a pure
functional architecture. Examples of such details are the component structure
of functions, component mapping to Ecus or of course the mapping of mes-
sages, or signals, to frames. Another important implementation detail is the
type of the communication bus, i. e. time-triggered or event-triggered commu-
nication. This is a basic information when it comes to the mapping procedure
of function-triggered timing constraints to subsystem timing requirements,
which is explained in Section 6.3.

Definition 5.3. We call all facts that lead to additional implementation de-
tails in a system model design decisions. A Timex system timing reflects all
timing relevant design decisions.

Design decisions influence the refinement of function event chains in a sys-
tem timing model using additional hops and segments, which are described
in this section. The design decisions influence what types of segments are
needed for function event chain segmentation (see Definition 5.5). In section
Section 6.2.1 we summarize important design decisions and their influence on
timing requirements. Because function timing, as we defined it, is not influ-
enced by such kinds of design decisions, a system timing model is a means to
capture the effects of all design decisions in Timex.

Hand Over Points in System Timing

According to our methodology and our understanding of distributed develop-
ment (see Section 3.1) the system designer is able to determine which sub-
systems of the overall system are developed by which team. According to
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Definition 5.2 hops are used to represent observable events in Timex and
characterize them with the special semantics, which is an observation at the
border of two subsystems. Thus the system designer can identify system tim-
ing hops additionally to the ones already known from the function timing.
These are observable events on the border of two responsibilities of different
teams, or roles. They mark the places in the system model where data is
handed over from one subsystem to another, for example from an Ecu to the
communication bus.

All these additional hops that stem from observable events of the logical and
technical architecture are collected in the system timing, because they are
no more implementation-independent as the ones of the function timing. All
these hops must reference send and receive events of the set PortLA, or queued
and transmitted events of the set SignalTA.

The set Hsystem ⊆ H is the set of all hops of the system timing. For all these
hops the following condition holds.

Hsystem : {h | h.event ∈ Port(LA) ∨ h.event ∈ Signal(TA)}

The set Hsend ⊆ Hsystem contains all hops that reference send events. For
these hops the following condition holds.

∀h ∈ Hsend : hoptype(h) = send

The set Hreceive ⊆ Hsystem contains all hops that reference receive events.
For all these hops the following condition holds.

∀h ∈ Hreceive : hoptype(h) = receive

The set Hqueued ⊆ Hsystem contains all hops that reference queued events.
The following condition holds for them.

∀h ∈ Hqueued : hoptype(h) = queued

The set Htransmitted ⊆ Hsystem contains all hops that reference transmitted
events. For all these hops the following condition holds.

∀h ∈ Htransmitted : hoptype(h) = transmitted

These four sets of hops together represent all available hops of the system
timing.

Hsystem = Hsend ∪Hreceive ∪Hqueued ∪Htransmitted
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Segments

All hops of both function timing and system timing, which together we de-
noted by set H, can be used to model a set of so-called segments. Similar
to function event chains, a segment is also a special event chain according
to Definition 3.3 with a stimulus and a response hop. In a consistent Timex
model every function event chain is refined by an arbitrary number of seg-
ments without gaps and also without overlaps. One segment however can be
used for the refinement of many function event chains. Furthermore, one seg-
ment can be part of several function event chains. We precisely describe and
formalize Timex model consistency in Section 5.4.

The semantics of a segment is that it is an event chain according to Defini-
tion 3.3, which represents a sub-path of a function event chain’s data path.
The sub-path spans the entire subsystem, from on border as data input to the
other border as data output. Note that there must be a causal dependency be-
tween input and output. Otherwise whatever timing constraints are specified
in Timex, a later timing analysis cannot relate the analyzed timing behavior
to the constraints. In other words, a segment belongs to the responsibility
of the one team that develops the according subsystem. Similar to function
event chains, segments again could also be called interactions, according to
Broy et al. [11], because they represent causal dependencies between actions
that belong to different components.

A segment s with stimulus hop s and response hop r is denoted by the tuple

segment s = 〈s, r, res〉, with s, r ∈ H

The hops can be accessed with the operators .stimulus and .response. The
attribute res references the subsystem that the segment belongs to. It can
be accessed with the operator .res. The set S contains all segments si of the
system timing.

S = {si}

System timing consists of all additional system timing hops Hsystem and all
segments S that use system timing hops as well as function timing hops.

We will assign some timing attributes to segments and hops later, namely
the already mentioned requirements and guarantees. However, these timing
attributes within the Timex model are not meant to be modeled by an engi-
neer, but generated during the process of mapping function-triggered timing
constraints to requirements. Manual timing modeling is done only on the level
of function timing by specifying timing constraints.

A detailed description of our methodology is presented in Section 5.5. Our
approach to automated segment and hop requirement generation is described
in Chapter 6.
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5.3.5 Timex Example Formalization

Based on the formalism introduced in Section 5.3.3 and Section 5.3.4, we now
provide a formalization of the Timex model example of Section 5.3.1. The
example uses some of the observable events provided by the example system
model, which we already introduced in Section 3.4.4 and thereby specified a
function-triggered timing constraint for the example system model.

Example Function Timing

There is one function event chain in the example. It needs two hops, which
are the chain’s stimulus and response hops.

hop chainStimulus = 〈sensor(tiltSensor)〉
hop chainResponse = 〈actuator(damper)〉

The sets of hops of the function timing thus simply are as follows.

Hsensor = {chainStimulus}
Hactuator = {chainResponse}

Based on these hops the function event chain of the example is formalized by

chain damperControlChain = 〈chainStimulus, chainResponse〉

The set of function event chains only contains one element.

F = {damperControlChain}

According to the example there is one latency constraint for the chain
damperControlChain with a minimum of 1 and a maximum of 25 millisec-
onds.

latency damperLatency = 〈1, 25, damperControlChain〉

The set of latency constraints contains latencyDamperControl.

LC = {damperLatency}
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Example System Timing

Based on the function timing model, we now formalize the system timing
model of the example.

As one can see in Figure 5.2 there are four additional hops. These are formal-
ized as follows.

hop queuedM1 = 〈queued(m1, sensorEcu)〉
hop transmittedM1 = 〈transmitted(m1, ttbus)〉
hop queuedM2 = 〈queued(m2, controllerEcu)〉
hop transmittedM2 = 〈transmitted(m2, ttbus)〉

The following hop sets of the example system timing exist.

Hsend = �
Hreceive = �
Hqueued = {queuedM1, queuedM2}

Htransmitted = {transmittedM1, transmittedM2}

Note that HSend and HReceive are empty sets, because this Timex model does
not use any observable events of the logical architecture.

Based on the set of all hops H of function timing and system timing we now
formalize the set of segments as follows.

segment sensor = 〈chainStimulus, queuedM1, ecu1〉
segment transmitM1 = 〈queuedM1, transmittedM1, bus〉
segment controller = 〈transmittedM1, queuedM2, ecu2〉
segment transmitM2 = 〈queuedM2, transmittedM2, bus〉
segment actuator = 〈transmittedM2, chainResponse, ecu3〉

In the example, we assume that the system consists of three Ecus (sensor
Ecu, controller Ecu, actuator Ecu) that are connected to one bus. This is
modeled by the res attributes of each segment.

The set S contains all segments.

S = {sensor, transmitM1, controller, transmitM2, actuator}
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5.4 Consistency of a Timex Model

The Timex model example of the previous section is structurally correct.
While we introduced Timex and its formalism we already mentioned a few
conditions that every Timex model must meet. In fact, there are several such
rules that can be applied to check such a model’s structural correctness.

Definition 5.4. The structural correctness of a Timex model is called con-
sistency.

The consistency of each Timex model is very important for its later use in
the automated generation of timing requirements for hops and segments. The
rather generic Timex model allows for the specification of inconsistent models
as well. A set of consistency rules shall be used to obviate model inconsistency.
In this section we highlight and formalize all such consistency rules.

A complete Timex model as timing extension of a system model consists of
function-triggered timing constraints C and function event chains F modeled
as function timing, and the implementation-specific segments S modeled as
system timing. Additionally, it of course contains the sets of hops for both
function timing Hfunction and system timing Hsystem. We define all consis-
tency rules based on these element sets of a Timex model.

As one can see in the example Timex model in Figure 5.2, a function event
chain is refined by a set of segments.

Definition 5.5. The complete representation of a function event chain by
means of segments is called the function event chain’s segmentation.

Many of the consistency rules we present in the following refer to the seg-
mentation of function event chains. Other rules refer to the type of hops that
are used by the model or to the usage of constraints. The Timex example of
Section 5.3.1 meets all these consistency rules.

5.4.1 Reasonable Hops

As already indicated in Section 3.4 the set of possible observable events of a
system model can be very large. Virtually every action of the system, whose
occurrences can clearly be temporarily exposed by an analysis method, qual-
ifies as an observable event and thus as a potential hop for Timex. However
for the intended purpose of Timex only certain observable events make sense.
This purpose is distributed development and, more precisely, a support for
the collaboration workflows of the three main roles described in Section 3.1.2.

For this reason we already restricted the set of observable events to the six
types mentioned in Section 3.4, although there were more events possible (e. g.
the observation of starting or stopping runnables). There are two types for
each level of the system model. Two of which regard functions, two others
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components, and the last two regard Ecu communication. These are exactly
the events needed to reflect the two main collaboration workflows, namely
Ecu integration and Swc integration.

In Section 5.3.2 we introduced a function type that assigns a certain type to
a hop, depending on the event the hop references. For the purpose of Timex
only the six above-mentioned events make sense in the timing extension. For
this reason, for every hop in Timex one of the six types must assignable using
function type. This rule is formalized by consistency Rule (5.1)

∀h ∈ H : hoptype(h) 6= ⊥. (5.1)

These are the reasonable hops for a consistent Timex model. This is a rule
for the validity of possible types of hops.

5.4.2 Loose Hops

Another rule to apply to the set of hops regards so-called loose hops.

Definition 5.6. A loose hop is a hop, which is not used as stimulus or as
response in any segment.

Definition 5.6 only caters to the usage of every hop in at least one segment,
not in chains. However, every hop, which is used in a function event chain is
also used in at least one segment, given that the Timex model is consistent,
especially according to Rule (5.6). Thus Definition 5.6 is sufficient.

For a consistent Timex model we require that no hop is a loose hop, because
a hop only shall be declared, if the referenced observable event is needed for
the definition of timing constraints and thus needed for segments and chains.
A loose hop does not serve any purpose in Timex.

The loose hop rule is formalized by Rule (5.2).

∀h ∈ H : ∃s ∈ S : s.stimulus = h ∨ (5.2)
s.response = h.

5.4.3 Outer Hops

The set of hops H can be divided into the two disjoint sets of so-called inner
hops and outer hops, according to Definition 5.7 and Definition 5.8.

Definition 5.7. An outer hop is a hop, which is only used as stimulus or as
response of any segment.
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Definition 5.8. An inner hop is a hop, which is used as stimulus of a segment
and as response of another segment.

As another consistency rule, we require that every outer hop is used in a
function event chain, either as a stimulus or as a response hop. The reason for
this rule is that an outer hop marks the end of a row of segment, i. e. the end
of a chain segmentation. Therefore there must be a chain that is segmented
by this row of segments.

The set Hout ⊆ H contains all outer hops of a Timex model. It is defined as
follows.

Hout = { h ∈ H |
(∃s ∈ S : s.stimulus = h ∧ ¬∃s ∈ S : s.response = h)

∨
(∃s ∈ S : s.response = h ∧ ¬∃s ∈ S : s.stimulus = h) }

Based on this definition, the formalization of the rule for outer hops is given
by Rule (5.3).

∀h ∈ Hout : ∃f ∈ F : f.stimulus = h ∨ (5.3)
f.response = h.

The usage of inner hops is not further restricted by rules.

5.4.4 Segment Types

We already motivated the six available hop types of Timex in Section 5.4.1.
These are the six observable events of the system model that are relevant with
respect to our considered collaboration workflows in Section 3.1.2. Based on
these six hop types all segments of the Timex model are constructed. However,
not every hop of a certain type qualifies for the role of a stimulus hop given a
hop of another certain hop types in a response role. The possible combinations
of stimulus and response hop types used in segments is restricted, as we will
point out in this section. This restriction thus can be formulated as another
appropriate Timex consistency rule.

The semantics of a segment is that a response hop occurrence can be observed
as a causal consequence every time after a stimulus hop occurrence has been
observed. Therefore, of course, there must in fact be a causal dependency
between the two hops. This can be ruled out for a couple of hop type combi-
nations. We will now identify possible hop type combinations for the different
possible subsystem types.

First, consider solely the communication bus as a subsystem. The bus always
belongs to the responsibility of the system designer independently of the two
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collaboration workflows and represents an own subsystem. An own segment
type represents paths through this subsystem. For communication over a bus
only one combination of stimulus and response hop types makes sense. A
queued event can be observed, when data is handed over from an Ecu to the
bus, i. e. when the data "enters" the bus subsystem. A transmitted event can
be observed, when data is handed over from the bus to an Ecu, i. e. when data
"leaves" the bus subsystem. So, a segment that covers data transmission over
a bus can only have these two types as stimulus and response respectively.
We call such a segment transmission segment.

Let T∗ be the data type of all segment types. Given function

segtype : S → T∗

The transmission type for a segment s = 〈stimulus, response〉 is defined by
the function segtype as follows.

segtype(s) = transmission if hoptype(stimulus) = queued ∧
hoptype(response) = transmitted.

Second, consider the collaboration workflow "Ecu Integration". In this case
an Ecu is an integrated subsystem. Reasonable observable events for this use
case are the ones, which can be observed at the border of an Ecu. These are
sensor and actuator events, where the border of the system, i. e. its interface,
also is the border of an Ecu. Furthermore, queued and transmitted events
belong to the border between an Ecu and the bus. So there are four hop
types to consider for segments over an Ecu as subsystem. With these four
hop types there exist three reasonable segment types for Ecus as subsystems.

segtype(s) = sensortobus if hoptype(stimulus) = sensor ∧
hoptype(response) = queued.

segtype(s) = overecu if hoptype(stimulus) = transmitted ∧
hoptype(response) = queued.

segtype(s) = bustoactuator if hoptype(stimulus) = transmitted ∧
hoptype(response) = actuator.

A sensortobus segment is used to cover the first possible data path over an Ecu
as subsystem. At a sensor interface data is handed over from the environment
to the Ecu, i. e. the data "enters" the Ecu subsystem. When the Ecu software
has computed the sensor data internally, it is handed over to the bus and
"leaves" the Ecu subsystem. The corresponding observable event is a queued
event. An overecu segment is used for the case, when an Ecu receives data
from a bus, calculates a response to that data and send the response again
over the bus. The data is handed over to the Ecu when it is transmitted. The
response is handed over to the bus when it is queued for transmission. The
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third reasonable segment type for an Ecu as subsystem is a bustoactuator
segment. Such a segment covers a data path from the reception of data on
the bus to the action of an actuator that is controlled based on the received
data. Again, the data is handed over to the Ecu at a transmission event and
handed over from the Ecu to the system’s environment in form of mechanical
work when the actuator action is observed.

Third, consider the collaboration workflow "Swc Integration", where a soft-
ware component is integrated in an Ecu. Basically in this case some of the
already introduced segments can be refined with more precise segments, be-
cause the system timing is able to reveal more details of the corresponding
data path than before. A transmission segment of course cannot be further
refined. The other three segment types introduced so far include the execution
of software components between their stimulus and response hops. They can
therefore be refined with special segment types, if that Swc are an own sub-
system and belong to the responsibility of another team, which then is in the
role of a Swc developer. Five more reasonable segment types appear, when
send and receive events come into play.

segtype(s) = sensortoswc if hoptype(stimulus) = sensor ∧
hoptype(response) = receive.

segtype(s) = overswc if hoptype(stimulus) = receive ∧
hoptype(response) = send.

segtype(s) = swctobus if hoptype(stimulus) = send ∧
hoptype(response) = queued.

segtype(s) = bustoswc if hoptype(stimulus) = transmitted ∧
hoptype(response) = received.

segtype(s) = swctoactuator if hoptype(stimulus) = send ∧
hoptype(response) = actuator.

A sensortobus segment can be refined into three segments, when the Swc on
the data path shall be reflected in Timex. This can be done by introducing
a hop, where data is handed over to the Swc, which is a receive event, and
another hop when data is handed over from the Swc, which is a send event.
This procedure results in the three segment types sensortoswc, overswc and
swctobus, as formalized above. The refinement of a bustoactuator segment
by making the involved actuator Swc visible in Timexalso results in three
segments. Again the segments use the receive and send events of the Swc
port. The result are the segment types bustoswc, overswc and swctoactuator,
as formalized above.

In all other cases function segtype returns ⊥, which indicates an undefined
segment type.

segtype(s) = ⊥ else

Summarizing, T∗ contains the following elements.
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T∗ = { transmission, sensortobus, overecu,

bustoactuator, sensortoswc, overswc,

swctobus, bustoswc, swctoactuator,⊥ }

All segments of a system timing model must be of one of these nine types. Oth-
erwise the Timex model is not consistent. This rule is formalized by Rule (5.4).

∀s ∈ S : segtype(s) 6= ⊥. (5.4)

5.4.5 Segment Sequences

Based on the defined set of possible segment types another consistency rule
comes up when chains of segments are considered. That is, after a segment of
a certain type only certain other types make sense. For example, after data
transmission on a bus, modeled as a transmission segment with a hop of type
transmitted as response in Timex, there must follow a segment that uses that
hop as stimulus. Of course this induces a certain type of the following segment.

First we define the functions successors and predecessors, which determine
the next and previous segments of a given segment in a system timing. Note
that segments are collected in a set by a system timing model. Chaining of
segments is modeled implicitly by the relations that unfold by the common
use of hops as stimuli and responses in several segments.

For a segment s = 〈stimulus, response〉 function successors is defined as
follows.

successors(s) : s→ {s}
successors(s) = { succ ∈ S |

s.response = succ.stimulus}

Function predecessors for a segment s = 〈stimulus, response〉 is defined as
follows.

predecessors(s) : s→ {s}
predecessors(s) = { pred ∈ S |

pred.response = s.stimulus}

Using the functions segtype, successors and predecessors we can formulate a
couple of conditions for the types of consecutive segments, which are collected
in Rule (5.5).
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segtype(s) = sensortobus⇒ ∀succ ∈ successors(s) : (5.5)
segtype(succ) = transmission.

segtype(s) = sensortobus⇒ predecessors(s) = ∅.
segtype(s) = bustoactuator ⇒ successors(s) = ∅.
segtype(s) = bustoactuator ⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = transmission.

segtype(s) = transmission⇒ ∀succ ∈ successors(s) :

segtype(succ) = bustoactuator ∨
segtype(succ) = overecu ∨
segtype(succ) = bustoswc.

segtype(s) = transmission⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = sensortobus ∨
segtype(pred) = overecu ∨
segtype(pred) = swctobus.

segtype(s) = overecu⇒ ∀succ ∈ successors(s) :

segtype(succ) = transmission.

segtype(s) = overecu⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = transmission.

segtype(s) = sensortoswc⇒ ∀succ ∈ successors(s) :

segtype(succ) = overswc.

segtype(s) = sensortoswc⇒ predecessors(s) = ∅.
segtype(s) = swctoactuator ⇒ successors(s) = ∅.
segtype(s) = swctoactuator ⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = overswc.

segtype(s) = swctobus⇒ ∀succ ∈ successors(s) :

segtype(succ) = transmission.

segtype(s) = swctobus⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = overswc.

segtype(s) = bustoswc⇒ ∀succ ∈ successors(s) :

segtype(succ) = overswc.

segtype(s) = bustoswc⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = transmission.

segtype(s) = overswc⇒ ∀succ ∈ successors(s) :

segtype(succ) = swctobus.

segtype(s) = overswc⇒ ∀pred ∈ predecessors(s) :

segtype(pred) = bustoswc ∨
segtype(pred) = sensortoswc.

Note that for simplicity reasons we do not allow the following two types of
segments in Timex, although they would exist according to our collaboration
workflows of Section 3.1.2:
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• It is possible that sensor and actuator interfaces are exposed to the en-
vironment technically by the same Ecu, i. e. the function is completely
provided by one Ecu. If that function has a function-triggered timing con-
straint there must be an according function event chain and a constraint
for that chain in the function timing model of Timex. The segmentation
in that case would be simple. It would just be one segment with the same
stimulus and response hops as the chain itself, because the function is
provided by only one subsystem. Such kind of segments would have an
own type, sensortoactuator segment, that is not in the segment types T ∗

defined above. Additionally Rule (5.5) would have to be extended for that
case.

• Another example that is not supported by the Timex model is the sending
of data from one Swc to another on the same Ecu. The segment types
above assume that a Swc always sends its data either to the bus or to an
actuator. Accordingly a Swc receives its data either from a sensor or the
bus. Again, it would be possible to introduce a new segment type swctoswc
for that case and to extend Rule (5.5).

We focus on function event chains, which involve several subsystems to show
our methodology. This is not the case for the sensortoactuator segment exam-
ple above. The other swctoswc segment type does involve several subsystems,
because each of these Swc is an own subsystem if they are represented in
Timex. However, in our approach of Chapter 6 we especially focus on the col-
laboration between an Ecu developer and a system designer. Therefore the
communication between two Swc is not relevant.

5.4.6 Chain Segmentation

As already mentioned the actual chain segmentation is not explicitly modeled
in Timex. Rather the model holds segments and function event chains both
as separate lists. Segments reference hops as their stimulus and response hops.
Hops can be referenced multiple times by several segments. Furthermore hops
can be referenced in the role of a stimulus hop and in the role of a response hop
at the same time. Thereby the segmentation of all chains is built up implicitly.
Consider the example Timex model of Figure 5.2 and its formalization in
Section 5.3.5. The segmentation of the chain damperControlChain by the five
segments is obvious although it is not explicitly modeled. It solely unfolds by
the relation of the segments through their hop usage.

Our approach for modeling segments and chains is kind of a loose binding
between these two element types. The connecting model element between
a) several segments and b) segments and chains are hops and their multiple
usage. There is no explicit "linking element". This approach has the advantage
of modeling freedom and model simplicity. An n-to-m-relation of chains and
segments can easily be assembled. The disadvantage however is that the model
can become structurally inconsistent and incorrect. For this reason another
consistency rule is set up.

We declare that in a consistent Timex model every function event chain must
be refined by a path of segments (also called a chain of segments), such that
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1. the stimulus hop of every chain is used as stimulus hop in a segment;

2. starting from this segment there is a chain of segments, connected by
the usage of a common hop as one segment’s response hop and the other
segment’s stimulus hop;

3. and the chain of segments ends when one segment’s response hop is equal
to the chain’s response hop;

4. so that there are no gaps and overlaps in the segmentation of the chain.

To formalize the requirement of a consistent segmentation of all chains we first
declare the Timex structure as a graph and then make use of well-proven
graph analysis techniques known from graph theory. Similar to a directed
acyclic graph (DAG), the set of hops H is a set of vertices and the set of
segments S is a set of edges. Every chain f is a path through the graph, from
one vertex (the chain’s stimulus hop) to another (the chain’s response hop),
passing several edges along the way. So, a chain is consistently modeled and
refined with a set of segments, if a path through the graph from the stimulus
hop to the response hop exists.

The idea to figure out whether each chain is segmented consistently is to
calculate the transitive closure of the Timex graph and to find every chain
in that transitive closure. Given a directed acyclic graph G = (H,S) with a
set of vertices H (in our case all hops) and a set of edges S (in our case all
segments). The transitive closure is a graph G∗ = (H,S∗), whose set of edges
S∗ contains all edges of S and additionally an edge 〈s, r〉, if there is path from
s to r in G. The graph G∗ is called transitive closure of graph G. If every
chain is an element of S∗ then the segmentation is consistent.

The algorithm to find the transitive closure of a Timex graph is based on the
Floyd-Warshall algorithm [97], which is used for finding the shortest paths
between every pair of vertices in a weighted and potentially directed graph.
Given a Timex graph G = (H,S) the following pseudocode algorithm 5.4.1
calculates the transitive closure G∗ = (H,S∗).

Algorithm 5.4.1: calcTransitiveClosure(H,S)

S∗ := S

for each i ∈ H

do


for each j ∈ H

do

for each k ∈ H

do
{
if 〈i, k〉 ∈ S∗ and 〈k, j〉 ∈ S∗ and not 〈i, j〉 ∈ S∗

then add(〈i, j〉, S∗)

return (S∗)

Based on the transitive closure G∗ = (H,S∗) of a given Timex model the
consistency rule for chain segmentation is given by Rule (5.6).
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∀〈s, r〉 ∈ F : ∃〈s, r〉 ∈ S∗ (5.6)

5.4.7 Chain Constraints

The purpose of Timex finally is to capture function-triggered timing con-
straints for a given system model. The target model elements to do this are
function event chains. These basically are modeled, because constraints shall
be captured. In other words in a Timex model it does not make sense, to
model function event chains, which are not used by any timing constraint. A
model, which contains such unconstrained function event chains, actually is
incomplete or incorrect. Therefore the final consistency rule we suggest is that
every function event chain must be the target of at least on timing constraint.

For every chain f there must be one constraint of any of the three constraint
type specific sets that targets f . The consistency rule for constrained function
event chains is formalized by Rule (5.7).

∀f ∈ F : (5.7)
∃l ∈ LC : l.target = f ∨
∃t ∈ TC : t.target = f ∨
∃s ∈ SC : f ∈ s.target.

5.5 Development Methodology based on Timex

In this section we describe our methodology for automotive system develop-
ment based on the Timex model presented before. The methodology focuses
on the role system designer as described in Section 3.1.1. This means that
the system designer performs all mentioned steps. The methodology is mainly
following an idealized top-down approach for system development, which was
already outlined in Section 2.2. In addition to the rather general design flow
overview of that section, the methodology description now details the devel-
opment process and most notably adds a distributed development and timing
focus to it. In practice of course system development is more complex and is
subject to many restrictions and prerequisites. Here, the idealized methodol-
ogy is sufficient to reflect the basic problem, embed our proposed approach
using Timex, and apply our constraint logic programming solution, which is
presented in the subsequent Chapter 6.

Figure 5.3 depicts our methodology. It consists of six steps. The first three
steps are performed manually by engineering work and basically cover the
development of the main parts of the system model (functional architecture,
logical architecture, hardware topology model, and deployment model) and
the definition of an according Timex function timing model and system tim-
ing model. The technical founding of the manual part is covered by the system
model description in Section 3.3 and the Timex model described in this Chap-
ter 5. Steps 4, 5 and 6 are performed automatically, i.e. using algorithms. The
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result of these last three steps is an appropriate mapping of the previously,
manually defined function-triggered timing constraints to subsystem timing
requirements and, based on the requirements, the rest of the system model,
namely the communication model and the execution model. Steps 5 and 6
are performed iteratively, because it is expected that a set of requirements,
which is fulfilled by all subsystems, is not found instantly after one iteration
in practice. Another reason for the iteration is that changes during the sys-
tem design process can force a re-design of the system’s timing configuration,
which is driven by a new requirement value generation in our approach. Steps
5 and 6 represent our formalization approach of today’s informal negotiation
process between a system designer and the suppliers. The technical details of
the automated and iterative part of our methodology is described in detail in
Chapter 6.

The single steps in Figure 5.3 are visualized in a way that emphasizes the
dependency between the steps. The temporal order of the methodology steps is
somewhat implicit along with the dependency information. Temporal relations
like ordering or concurrency of the steps are not further investigated here. In
the following each step is described in detail.

5.5.1 Define Function Timing

The first step is the definition of the function timing model as described
in Section 5.3.3 where all function-triggered timing constraints for a given
functional architecture are collected. Function-triggered timing constraints
are implementation-independent, so no logical architecture and no technical
architecture is necessary in this step. A functional architecture however is
needed to define its according function timing.

Function timing usually is defined early in the system development process.
Thus we assume that also the functional architecture is developed in an early
stage and before all following implementation details. Therefore the functional
architecture offers its interface events, which are available for the function tim-
ing model. Each such event can be characterized as a hop for the function tim-
ing model. These can be used for the definition of function event chains, which
in turn are target of function-triggered timing constraints. In function timing
these hops typically are "end-events" of signal paths like external events at
sensors and actuator, i. e. the system’s interface. For simplicity reasons we
do not support other than interface events as hops for function timing. Our
functional architecture model however could easily be extended in a way that
more than only sensor and actuator interfaces are available for functions. In
the methodology as described here, in the first step 1 no other hops than
sensor and actuator hops are available, thus the function timing model also
does not support other hops.

A function timing model always defines timing constraints for the functional
architecture model to which it is attached, or which it references. However,
the functional architecture model can be used for a refinement in several
system models and the according function timing model thus is re-used. This
concept makes function timing independent from an implementation, i. e. from
a concrete completed system model.
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Fig. 5.3. Methodology for distributed development of automotive real-time systems
based on Timex and our system model.
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5.5.2 Develop Deployment Model

The second step is to develop the deployment model according to Section 3.3.5.
The input of this step is the logical architecture and the hardware topology
model. As indicated by the cloud symbol in Figure 5.3 and already brought
up in Section 3.3.4 there is rather complex engineering work necessary to
develop the logical software architecture for a given functional architecture.
We neglect this step and simply assume an appropriate logical architecture
model as well as the hardware topology model as given input for step 2.

The development of the deployment model however is explicitly mentioned as
a step in our methodology although at a glance it is not directly related to
timing. The reason however is that it indirectly influences the timing behav-
ior and this step’s output – the deployment model – is an essential artifact
of the methodology and influences the subsequent timing related steps. In
Definition 5.3 we call such kind of engineering work a design decision, which
influences the system timing.

This step also reveals which message must be represented as a signal to be sent
over a remote connector. The output of this step is the deployment model.
Signals do not explicitly exist in the model. However the deployment model
implicitly defines the information, which message must be represented as a
signal. Therefore we defined the set of remotely exchanged messages Lremote

in Section 3.4.3.

5.5.3 Define System Timing

A deployment model and the according function timing model are input for
the definition of the system timing as described in Section 5.3.4. A logical ar-
chitecture and the most important parts of the technical architecture (namely
the hardware topology model and the deployment model) are now available
for Timex. These reveal additional observable events at software component
ports and regarding the communication of signals. These observable events
can be used as hops by the system timing.

All additional hops of the system timing must be on the signal path between
the interface hops of the function timing. We assume that the system designer
as central role knows the responsibilities and subsystems within the entire
system and thus can identify which observable events separate two teams.
These qualify as hops and finally the function event chain segmentation can
be performed. Each segment created that way belongs to one responsibility,
i.e. to one development team, and covers this team’s subsystem.

The output of step 3 is the Timex system timing that makes up the Timex
model together with the function timing developed in step 1.

5.5.4 Initialize Requirement Types

The first automated yet not iterative step is what we call the initialization of
requirement types.
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Definition 5.9. All function-triggered timing constraints of a Timex func-
tion timing model are implementation-independent. A Timex system timing
provides an implementation-dependent, i. e. system-specific, segmentation of
function event chains. The goal of our approach is to get subsystem require-
ments that can be distributed independently from the function-triggered timing
constraints. Therefore the needed types of requirements for selected hops and
segments must be determined once. It depends on the function-triggered timing
constraints and the system details, which hops and segments must have which
types of requirements. This determination process is called initialization of
requirement types.

The initialization of requirement types must be performed once for each use of
a function timing in a specific system context. The initialization follows clear
rules and can therefore be perfectly automated. The process and the different
types of available requirements are described in Section 6.2.

Technically, every hop and every segment can be target of a requirement and
its according guarantee. The assignment of these types is formally described in
Section 6.2. This way a system timing model carries the requirement and guar-
antee values, which are necessary later in the methodology. The initialization
solely determines which of all hops and segments must get which requirement
type, so that a mapping of function-triggered timing constraints to require-
ments is technically possible. The goal is to be able to express all function-
triggered timing constraints by system timing requirements. The mapping
process also enables a tracing from function-triggered timing constraints to
requirements later.

5.5.5 Generate Requirement Values

In the previous step 4 the needed system-specific requirement types have al-
ready been initialized, which is important for deriving subsystem specific re-
quirements. These requirements are derived, we also say generated, in this
methodology step 5. In other words, the hops and segments, which have been
selected to carry requirement and guarantee values now get these values as-
signed automatically, i. e. using an algorithm.

So far during our methodology, all relevant design decisions have been cap-
tured in steps 1 to 3 and the Timex model has been prepared in step 4.
Because it is expected that a kind of negotiation process is necessary until all
subsystem requirements are fulfilled by according guarantees, steps 5 and 6
are performed iteratively.

The goal of this methodology step is to generate the values for all timing re-
quirements of segments and hops of the Timex model that have been assigned
a requirement type in the previous step 4. The requirement values must be
chosen in a way that the fulfillment of all function-triggered timing constraints
is ensured if all requirements are fulfilled by their guarantees.

There are many formal rules that can be applied in the value generation pro-
cess. For this step we decided to use a constraint logic programming approach.
Chapter 6 is dedicated to this generation process.
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5.5.6 Generate Communication Model

In the last step 6 of the methodology the communication model, as described
in Section 3.3.5, is generated. We assume that the system designer is responsi-
ble for the development of the system’s communication model. For that reason
this is an explicit step in the methodology, which is described from the per-
spective of the system designer. We declared the bus as an own subsystem.
Because it is developed by the system designer, this step it is not part of the
work done during the cloud called "develop subsystem" in Figure 5.3. The
input of step 6 is the Timex model, which already contains the requirement
values of the current iteration. The output of step 6 is a communication model
according to the requirements that target the bus subsystem. Another output
are the guarantees of the bus subsystem that, eventually, fulfill the require-
ments. The consequences of fulfillment and non-fulfillment of requirements is
discussed in Chapter 6.

The communication model, or more precisely the requirements of the com-
munication model, then is the basis for the work of all other teams, because
their own requirements have been aligned to the rest system’s requirements
in step 5. They assume that the bus subsystem fulfills its requirements and
concentrate on the fulfillment of their own subsystem-specific requirements.
The communication model usually is used as common exchange specification
between the system designer, who develops the bus network configuration,
and the other subsystem developers, who are dependent from the communi-
cation model. In our methodology, this dependency is taken from the pure
communication model to the requirements level.

Primarily, three tasks have to be performed in this step. First, all signals have
to be grouped in frames. Second, a communication matrix must be gener-
ated using the communication information gathered from the logical software
architecture and the deployment model. A communication matrix specifies
which frame is sent and received by which Ecu. Third, a scheduling of the
frames, i. e. a communication model, has to be generated according to the
communication type (FlexRay or CAN) and with respect to the requirement
values generated before. The resulting communication model must fulfill all
communication-related requirements.

5.5.7 Iterative Steps

After the last methodology step, each involved team develops its subsystem.
This is indicated by the cloud in Figure 5.3, which takes subsystem require-
ments as input and has according guarantees as output. A subsystem is either
an Ecu, if the according segment belongs to a team in the role of an Ecu
developer, or a single software component, if the according segment belongs to
a team in the role of a software component supplier. For each subsystem there
are segments or hops that carry timing requirements that must be fulfilled.
The teams must implement and configure their subsystem according to these
requirements, if possible. Otherwise the system’s correct timing behavior can-
not be ensured. Again, the consequences of non-fulfillment are discussed in
Chapter 6.
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When the teams have implemented the subsystems, timing guarantees for
each subsystem are handed back to the system designer. The guarantees are
evaluated with respect to their requirements. If all requirements are met by
the guarantees no action is required and the system is expected to fulfill all
its function-triggered timing constraints. Otherwise all guarantees are input
for the next iteration of steps 5 and 6 of the methodology and a new set of
requirement values must be generated.

Today, this negotiation process takes place in an informal way. The Timex
model and our proposed methodology formalize it. This is explained in the
subsequent chapter.





6

Generating Subsystem Requirements in Timex
with Constraint Logic Programming

This chapter is dedicated to the automated part of our methodology depicted
in Figure 5.3. First we introduce three basic requirement types for the Timex
model in Section 6.1. In Section 6.2 we explain the initialization of the nec-
essary requirement types according to Definition 5.9, which is performed in
methodology step 4. Furthermore our constraint logic programming solution
to step 5 of the methodology is presented in Sections 6.3, 6.4 and 6.5, which
is used for iterative requirement generation based on function-triggered tim-
ing constraints. The generation of a communication model as postulated by
methodology step 6 is outlined in Section 6.6.

6.1 Requirements and Guarantees in a Timex Model

6.1.1 Possible Types of Requirements and Guarantees

The goal of the automated part of our methodology, i. e. steps 4 to 6, is
to derive subsystem-specific requirements from the function-triggered timing
constraints. The Timex model, as introduced and formalized in Section 5.3,
does not provide any means to conveniently capture or express such require-
ments. Hops and segments are the Timex elements that shall carry require-
ment and guarantee information in the model. The reason for this is that
hops and segments, in contrast to function event chains, are elements that
refer to subsystems rather than the entire system. According to our method-
ology, system-wide timing constraints are specified manually by engineers.
In this section we develop a formal concept to capture the requirement and
guarantee information on a subsystem level in Timex, which is automatically
generated in step 5.

First, we define the three possible types that can be used as requirements and
guarantees for segments or hops. As we will explain in the subsequent Sec-
tion 6.2 these types are adequate to map all three types of function-triggered
timing constraints to subsystem requirements.
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Latency Type

The first type is latency. Latency is a tuple of two integers, which are called
min and max.

latency = 〈N,N〉

Given a variable of type latency, the two values can be accessed with the two
operators .min and .max.

latency l = 〈1, 5〉
minimum = l.min

maximum = l.max

Offset Type

The second type is offset. An offset is a tuple of two integers, which are
called min and max.

offset = 〈N,N〉

Given a variable of type offset, its min and max values can be accessed with
the two operators .min and .max.

offset o = 〈0, 1〉
minimum = o.min

maximum = o.max

Triggering Type

The third type is triggering. A triggering is a tuple of one integer, which is
called period.

triggering = 〈N〉

Given a variable of type triggering, the period can be accessed with the oper-
ator .period.

triggering t = 〈10〉
period = t.period

6.1.2 Assigning the Types to Segments and Hops

The Timex model as defined in the previous chapter must be extended in a
way that segments and hops can carry requirement and guarantee information,
if this is necessary. Therefore the three possible types of requirements and
guarantees defined before are assigned to the according elements, using an
appropriate formalism.
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Assigning a Latency to a Segment

Each segment of a system timing can potentially have a latency requirement
and an accompanying latency guarantee. Therefore two additional attributes
of type latency are added to the definition of a segment. The semantics of a
segment’s latency requirement is the same as the semantics of a function event
chain’s latency constraint. It means that an occurrence of the response hop of
the segment must be observed every time after a stimulus hop occurrence has
been observed, within the minimum and maximum time duration given by
the latency. Given a segment s, its latency requirement and latency guarantee
can be accessed using the operators s.latr and s.latg.

segment s = 〈stimulus, response〉
latency latencyRequirement = s.latr

latency latencyGuarantee = s.latg

Assigning an Offset to a Hop

Each hop – except sensor hops – of a Timex model, i. e. function timing
and system timing hops, can potentially have an offset requirement and an
accompanying offset guarantee. Sensor hops cannot have an offset because of
Assumption 6.1.

Assumption 6.1 We assume that sensor events occur nondeterministically
at the system’s border and are triggered by the environment, not by the system.
The system can take notice of sensor events using a sensor interface. It cannot
influence the occurrence of sensor events.

Two additional attributes of type offset are added to the definition of a hop,
namely an offset requirement and an offset guarantee. The semantics of a
hop’s offset requirement is that if an occurrence of the hop is observed, then
it must be within the time duration specified by the minimum and maximum
values of the offset requirement after a certain reference point.

In all our examples the reference point is always the cycle start of the time-
triggered network. Thus, all offsets are expressed relatively to the cycle start
event. Therefore we omit the explicit specification of the offset reference event
for simplicity reasons.

Given a hop h, its offset requirement and offset guarantee can be accessed
using the operators h.offr and h.offg.

hop h = 〈someEvent〉
offset offsetRequirement = h.offr

offset offsetGuarantee = h.offg
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Assigning a Triggering to a Hop

Each hop of a Timex model, i. e. in function timing and system timing, can
potentially have a triggering requirement and an accompanying triggering
guarantee. Therefore two additional attributes of type triggering are added
to the definition of a hop. The semantics of a hop’s triggering requirement
is the same as the semantics of a function event chain’s triggering constraint
for that chain’s stimulus. It means that the occurrences of the hop must
be observed with the period specified by the triggering. Given a hop h, its
triggering requirement and triggering guarantee can be accessed using the
operators h.trigr and h.trigg.

hop h = 〈someEvent〉
triggering triggeringRequirement = h.trigr

triggering triggeringGuarantee = h.trigg

Note that there is no synchronization requirement possible on system timing
level for segments and hops, although a synchronization constraint in function
timing exists. Synchronization always requires several function event chains
to be referenced. This is not possible for segments and hops, because their
requirements shall be independent from other segments and thus only affect
the corresponding subsystem. That is, synchronization constraints for function
event chains must be mapped to the three requirement types given above,
similar to the other two constraint types, latency and triggering constraint.

6.1.3 Fulfillment of Requirements with Guarantees

In methodology step 5 a new set of requirement values is generated for the
whole system timing model. As we will explain later in Section 6.3, these new
values in each iteration of the process do not only depend on the timing con-
straints of the function timing, which they must fulfill. They also depend on
the set of guarantees that is delivered to the system integrator by the subsys-
tem developers. The whole re-generation process however is only initiated, if
any requirement is not fulfilled by its guarantee, because otherwise the entire
system timing is expected to be correct and no action is required.

It is thus necessary to formalize a fulfillment relation of a requirement and its
guarantee, i. e. a definition when a guarantee fulfills its requirement. In the
following we formalize this relation for all three requirement types.

Fulfillment of a Latency Requirement

A latency requirement specifies a minimum and a maximum latency for a
segment. These values represent a required time interval for the valid segment
latency. The guaranteed time interval must be within the required interval.
Thus, the guaranteed minimum must be greater than or equal to the required
minimum. The guaranteed maximum must be lower than or equal to the
required maximum.
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The fulfillment condition for a latency requirement and its guarantee is for-
malized by a predicate over a segment. Given a segment s Predicate (6.1)
formalizes the fulfillment condition.

Fulfills_Latency(s) ≡ s.latr.min ≤ s.latg.min ∧ (6.1)
s.latr.max ≥ s.latg.max

Fulfillment of an Offset Requirement

An offset requirement specifies a minimum and a maximum offset for a hop.
Again these values are a time interval. The offset guarantee time interval must
be within the offset requirement time interval. That again means the guaran-
teed minimum must be greater than or equal to the required minimum. The
guaranteed maximum must be lower than or equal to the required maximum.

The fulfillment condition for an offset requirement and its guarantee is for-
malized by a predicate over a hop. Given a hop h Predicate (6.2) formalizes
the fulfillment condition.

Fulfills_Offset(h) ≡ h.offr.min ≤ h.offg.min ∧ (6.2)
h.offr.max ≥ h.offg.max

Fulfillment of a Triggering Requirement

An event triggering requirement for a hop specifies a period. The guaranteed
period must be exactly the same as the required period. A special case for trig-
gering requirements and guarantees occurs when the guaranteed period is an
integer multiple or an integer divisor of the required period. If the guaranteed
period is a multiple, i. e. n-times the required period, then the requirement is
obviously not fulfilled, because only every n-th required hop occurrence can
actually be observed according to the guarantee. If the guaranteed period is
an integer divisor though, every required occurrence can indeed be observed.
However there are superfluous and not explicitly required occurrences "in be-
tween". We also define this case as non-fulfillment, because superfluous event
occurrences potentially cause a waste of processor or bus resources. Further
we neglect a jitter of the period and assume that only the basic period is
target of timing requirements.

The fulfillment condition for a triggering requirement and its guarantee is
formalized by a predicate over a hop. Given a hop h Predicate (6.3) formalizes
the fulfillment condition.

Fulfills_Triggering(h) ≡ h.trigr.period = h.trigg.period (6.3)
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6.2 Initializing Requirement Types

6.2.1 Initialization Basics

First we summarize the basics of the requirement type initialization process.
After that we formalize its goal. As defined earlier there are three possible
timing constraint types in Timex that have to be mapped to a set of timing
requirements, which also are available in three types. The initialization of
necessary types is mandatory for further methodology steps. From an exclusive
function-timing perspective it is not clear, which segments and hops of the
system timing must have which type of requirement if at all.

Several design decisions, which are captured by a system timing model, influ-
ence the necessary requirement types.

• The logical architecture provides a refinement of functions to software com-
ponents and thus reveals more data path details from the functions’ sensor
interfaces to their actuator interfaces.

• The deployment model of the technical architecture again offers more de-
tails of that data path, because now local and remote communication can
be identified. So parts of the data path potentially include bus communi-
cation.

• The collaboration workflows influence which part of the data path is pro-
vided by which subsystem, what is reflected by the segment structure in
the Timex system timing.

• Finally and most notably, the bus type of the hardware topology model in-
fluences which segments and hops of the system timing must be initialized
with which type of requirement.

The entire tracing from function view to system view is possible with Timex.
The details of the last point are discussed in this section. In Section 6.2.2 we
show the initialization for an event-triggered system and in Section 6.2.3 for
a time-triggered system.

For each of the three requirement types we assume a predicate that is true, if
segment s or hop h has the requirement assigned to it.

Has_Latency(s) ≡

{
segment s has a latency
requirement and guarantee.

(6.4)

Has_Offset(h) ≡

{
hop h has an offset
requirement and guarantee.

(6.5)

Has_Triggering(h) ≡

{
hop h has a triggering
requirement and guarantee.

(6.6)
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Definition 6.1. The task of the initialization process is to define the pred-
icates Has_Latency, Has_Offset and Has_Triggering, i. e. to assign a
true/false value for each s ∈ S and each h ∈ H for the according predicates.

The initialization process defined in Definition 6.1 is mandatory for the overall
goal of the Timex methodology:

Definition 6.2. The goal of the Timex methodology is to ensure the system
function’s correct timing behavior on subsystem level instead of system level.
In other words, if every single subsystem requirement is fulfilled, the fulfillment
of all function-triggered timing constraints shall be assured.

Definition 6.2 can be formalized as follows.

Given a Timex model with a set of hops H and a set of segments S. We
define a predicate All_Requ_Fulfilled that is true, if the requirements of all
segments in S and all hops in H are fulfilled. Predicate (6.7) formalizes this.

All_Requ_Fulfilled(S,H) ≡ ∀s ∈ S : Has_Latency(s)⇒ (6.7)
Fulfills_Latency(s)

∧
∀h ∈ H : Has_Offset(h)⇒

Fulfills_Offset(h)

∧
∀h ∈ H : Has_Triggering(h)⇒

Fulfills_Triggering(h).

Further the Timex methodology shall ensure the fulfillment of all timing
constraints C of the function timing model. Consider Predicate (6.8), which
is informally described.

All_Constraints_Fulfilled(C) ≡ all constraints in C are fulfilled. (6.8)

We do not provide a formal description of Predicate (6.8) because of Defini-
tion 6.2. Rather the following implication shall be assured.

All_Requ_Fulfilled(S,H)⇒ All_Constraints_Fulfilled(C). (6.9)

Following our approach, the fulfillment of a single timing constraint is not
clearly visible later. Rather timing constraints are mapped to timing require-
ments once. A timing requirement can influence several timing constraints,
because segments can be used in several function event chains. The expres-
siveness of all constraints and all requirements of course shall be the same,
because this is the key prerequisite to enable the goal of Definition 6.2.
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For the formalization of the initialization process we introduce some constructs
and helper functions.

We already mentioned that an entire Timex model actually represents a di-
rected acyclic graph. A consistent segmentation of a function event chain (see
Definition 5.5) leads to one or more paths of segments from the event chains’s
stimulus hop to its response hop. A path formally is a set of segments with the
property that the contained segments represent a continuous sequence from
the chain’s stimulus to its response. The set of all possible paths for a set of
segments S is the power set of S, denoted by:

P(S)

To gather all paths of a function event chain we assume the following helper
function paths, which returns the set of paths of a function event chain. The
returned type thus is the power set of P(S), for a given function event chain.

paths : F → P(P(S)). (6.10)

Based on this background information for the initialization process we now
explain the details for each of the three timing constraint types for both event-
triggered and time-triggered systems.

6.2.2 Initialization for Event-triggered Systems

For the mapping of timing constraints to timing requirements in an event-
triggered system we make the following very basic assumption.

Assumption 6.2 For an event-triggered system we assume that the control
flow is always the same as the data flow.

Assumption 6.2 means that along a data path, which is modeled as a chain
of hops in Timex, data and control is handed over from one hop to another.
Within the semantics of Timex the consequence of Assumption 6.2 is that the
triggering of a segment’s stimulus hop always triggers the segment’s response
hop. If the response hop is at the same time the stimulus of another segment,
this in turn triggers the next according response hop. This way the triggering
of a function event chain’s stimulus hop reaches the function event chain’s
response hop transitively.

Latency Constraint Mapping

A latency constraint references a function event chain as its target and con-
strains the minimum and maximum latency of that chain. Due to the fact that
every chain is segmented to one or more paths using segments, the latency
constraint actually must be fulfilled by each of these potentially more than
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one paths of the chain. Because of Assumption 6.2 we can assume that the la-
tency of a path is equal to the accumulated latency of its segments. Therefore
the initialization in this case assigns a latency requirement to every segment
of every path of the chain of every latency constraint.

Given a set of latency constraints LC of a Timex model. Based on Pred-
icate (6.4) the following condition holds in an event-triggered system and
thereby initializes the mapping of all latency constraints to requirements.

∀l ∈ LC : ∀P ∈ paths(l.target) : ∀s ∈ P : Has_Latency(s). (6.11)

Synchronization Constraint Mapping

According to Assumption 6.2 – and as already utilized for the latency con-
straint mapping – the latencies of the single segments of a path accumulate to
a path latency. Latency is a tuple of two integers, the minimum and maximum
latency.

Definition 6.3. Minimum and maximum latencies of segments accumulate
in a path of segments in an event-triggered system because of Assumption 6.2.
So a path itself actually has an accumulated minimum and maximum latency,
which we call the jitter of the path.

A synchronization constraint references a set of function event chains and a
tolerance. According to its scope either all stimuli or all responses of the chains
must occur within the specified tolerance. According to Definition 6.3 every
path has a jitter. The jitter of every path must be within the specified toler-
ance. Therefore every segment that is affected by a synchronization constraint
must have a latency requirement, similar to Equation (6.11).

Given a set of synchronization constraints SC of a Timex model. Based on
Predicate (6.4) the following condition holds in an event-triggered system and
thereby initializes the mapping of all synchronization constraints to require-
ments.

∀s ∈ SC : ∀f ∈ s.target : ∀P ∈ paths(f) : ∀s ∈ P : Has_Latency(s).(6.12)

Note that the initialization of latency and synchronization constraints poten-
tially can lead to a redundant latency requirement assignment to a segment.
This is the case, when a chain path is affected by both a latency and a syn-
chronization constraint.

Triggering Constraint Mapping

Due to Assumption 6.2 the triggering of all hops of a path of segments im-
plicitly is the same. In each segment of the path the stimulus hop triggers the
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response hop and thus implies the same triggering to the response. Note that
in practice the triggering along such a data path basically remains the same
and keeps the period. However in event-triggered systems a deviation from
the strict period often occurs due to path jitters. Richter et al. [73, 74, 29]
developed a timing analysis approach for event-triggered systems, which ex-
plicitly respects such jitter effects along data paths. We neglect this deviation
for our triggering constraints and just focus on the basic strict period. As a
consequence, for requirements initialization of triggering constraints it is suf-
ficient, to assign a triggering requirement to the stimulus hop of the function
event chain, which is the target of the constraint.

TC is the set of triggering constraints. Based on Predicate (6.6) the follow-
ing condition holds in an event-triggered system and thereby initializes the
mapping of all triggering constraints to requirements.

∀t ∈ TC : Has_Triggering(t.target.stimulus). (6.13)

6.2.3 Initialization for Time-triggered Systems

Note that the initialization for an event-triggered system does not make use of
the offset type. Offsets can only be applied in time-triggered systems, because
they need a reference hop, which in our case is the cycle start in a time-
triggered system. Basically, an offset is used like a latency in a time-triggered
system, because there the control flow is not equal to the data flow. Actions
like data transmission or software execution are triggered by the progression
of time and not by the data itself.

Assumption 6.3 In a time-triggered system the control flow is not directly
given by the data flow because data transmission is triggered by the progress
of time.

Because of Assumption 6.3 it must be exactly specified when data is expected
to be queued for transmission and when it is transmitted on the bus using
appropriate requirements. Therefore an offset requirement can perfectly be
used. Besides the minimum and maximum values, a general offset require-
ment could also specify a reference hop. As already mentioned we omit this
reference, because in a time-triggered network, the reference hop typically is
the cycle start of the network. This is sufficient for our approach, as expressed
in Assumption 6.4.

Assumption 6.4 Offset requirements to the cycle start of a time-triggered
network are sufficient for our approach. We neglect general hop offsets, which
relate a hop to another arbitrary hop other than the cycle start.

Concluding, the main difference of requirement initialization for a time-
triggered in contrast to an event-triggered system is the following. The trans-
mission latency of each segment of type transmission in a time-triggered sys-
tem is expressed my means of offset requirements, instead of latency require-
ments. Because of the cyclic repetition of time-triggered communication, also
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a triggering must be specified for each queued and transmitted hop. Therefore
an additional triggering requirement is necessary to map the initial constraints
to a time-triggered network.

Latency Constraint Mapping

In a time-triggered system the data path of a chain, i. e. the chain of segments,
can contain transmission segments. According to Assumption 6.3, these seg-
ments cannot be initialized with a latency requirement, because it does not fit
to the control flow concept of such a network. The response does in this case
not occur as a causal consequence of each occurrence of the stimulus hop,
but because of the progression of time and the underlying static schedule.
Instead those segment’s stimulus and response hops are initialized with an
offset and a triggering requirement. These require both hops’ events to occur
always at a certain time after the cycle start (i. e. at a certain so-called slot)
and with a certain period. The time distance between stimulus and response
hop of a transmission segment is expressed with offset requirements instead
of a latency requirement.

Given a set of latency constraints LC of a Timex model. Based on Predi-
cate (6.4), Predicate (6.5) and Predicate (6.6) the following condition holds
in a time-triggered system and thereby initializes the mapping of all latency
constraints to requirements.

∀l ∈ LC : ∀P ∈ paths(l.target) : ∀s ∈ P : (6.14)

segtype(s) = transmission⇒


Has_Offset(s.stimulus)∧
Has_Offset(s.response)∧
Has_Triggering(s.stimulus)∧
Has_Triggering(s.response)

segtype(s) 6= transmission⇒ Has_Latency(s).

Synchronization Constraint Mapping

As mentioned in Section 5.5.1 and already formalized in Section 5.3.3 we only
support sensor and actuator hops in the function timing model. These two hop
types thus are the only possible types as stimuli and responses, respectively,
that can be synchronized. Further there are the two collaboration workflows
to be considered for requirements initialization in a time-triggered network.
Table 6.1 summarizes the four possible cases and the segment types that must
be synchronized.

The difference to synchronization constraint mapping in an event-triggered
network is that there exists no continuous path of latency requirements that
accumulate. In the time-triggered case the path is interrupted by the first
transmission segment, which is not getting initialized with a latency but with
two offset requirements, as described above. As a consequence, the offset re-
quirement can already be used as a reference to calculate the path jitters
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Ecu Integration Swc Integration
Stimulus
Synchronization:

sensortobus sensortoswc

Response
Synchronization:

bustoactuator swctoactuator

Table 6.1. Possible types of the first and last segment of a function event chain in
the two possible collaboration scenarios.

later. We detail the necessary requirements and the according initialization
formalization for each of the four cases in the following.

Case 1: Stimulus Synchronization in Ecu Integration
The first segment of a chain in this case is a sensortobus segment. Thus the
segment itself needs a latency requirement, its response, which is a hop of
type queued, needs an offset requirement.

Case 2: Response Synchronization in Ecu Integration
The last segment of a chain in this case is a bustoactuator segment. Thus the
segment itself needs a latency requirement, its stimulus, which is a hop of type
transmitted, needs an offset requirement.

Case 3: Stimulus Synchronization in Swc Integration
The first segment of a chain in this case is a sensortoswc segment. Thus
the segment itself needs a latency requirement. The next segment is of type
overswc and also needs a latency requirement. The next segment is of type
swctobus and also needs a latency requirement, its response, which is a hop
of type queued, needs an offset requirement.

Case 4: Response Synchronization in Swc Integration
The last segment of a chain in this case is a swctoactuator segment. Thus the
segment needs a latency requirement. The previous segment is of type overswc
and also needs a latency requirement. Again the previous segment is of type
bustoswc and also needs a latency requirement, its stimulus, which is a hop
of type transmitted, needs an offset requirement.

Equation (6.17) formalizes the four cases described above as a condition that
holds for time-triggered systems and thus initializes the requirement types
needed for synchronization constraints.

For the formalization of Equation (6.17) we assume the two helper functions
next(s), which determines the next segment of s ∈ S in a path of segments,
and prev(s), which determines the previous segment.

next : S → S. (6.15)

prev : S → S. (6.16)
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∀s ∈ SC : ∀f ∈ s.target : ∀P ∈ paths(f) : ∀s ∈ P : (6.17)

segtype(s) = sensortobus⇒

{
Has_Latency(s)∧
Has_Offset(s.response)

∧

segtype(s) = bustoactuator ⇒

{
Has_Latency(s)∧
Has_Offset(s.stimulus)

∧

segtype(s) = sensortoswc⇒


Has_Latency(s)∧
Has_Latency(next(s))∧
Has_Latency(next(next(s)))∧
Has_Offset(next(next(s)).response)

∧

segtype(s) = swctoactuator ⇒


Has_Latency(s)∧
Has_Latency(prev(s))∧
Has_Latency(prev(prev(s)))∧
Has_Offset(s.stimulus)

Triggering Constraint Mapping

For a triggering constraint in an event-triggered network it was sufficient to
assign a triggering requirement only to the first hop of the data path, because
of Assumption 6.2. In a time-triggered network however the hops do not get
triggered one after another transitively through the chain. It is thus neces-
sary to initiate some hops with additional triggering requirements. Because of
Assumption 6.3 again stimulus and response hops of transmission segments
must be initialized with triggering requirements.

∀t ∈ TC : ∀P ∈ paths(t.target) : ∀s ∈ P : (6.18)

segtype(s) = transmission⇒

{
Has_Triggering(s.stimulus)∧
Has_Triggering(s.response)

Note that the initialization can again be redundant for the different constraint
types. Some types may be mapped to the same requirements for segments
and hops. Or in other words, the same requirement can be a part of several
constraints.

6.2.4 Example

Consider the Timex example of Figure 5.2. The only function event chain
damperControlChain is already segmented to five segments, based on the
software mapping design decision and the fact that all three Ecus are de-
livered by individual Ecu developers. There is no Swc supplier involved in
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this example. The communication bus type as another design decision finally
also influences the type of requirements that segments and hops of the system
timing have to fulfill.

We initialize the requirement types both for the event-triggered and the time-
triggered case according to the rules of this section.

Example Initialization as an Event-triggered System

First we assume an event-triggered bus in the hardware topology model. For
the latency constraint in the example we have to ensure that Predicate (6.11)
becomes true. This can be achieved by the following formal definition of Pred-
icate (6.4), which we only defined informally before.

Has_Latency(sensor) := true.

Has_Latency(transmitM1) := true.

Has_Latency(controller) := true.

Has_Latency(transmitM2) := true.

Has_Latency(actuator) := true.

For all hops of the set of Timex hops H of the example Predicate (6.5) and
Predicate (6.6) simply are defined as follows.

∀h ∈ H : Has_Offset(h) := false.

∀h ∈ H : Has_Triggering(h) := false.

Predicate (6.12) and Predicate (6.13) must not be fulfilled, because neither
synchronization nor triggering constraints exist in the example and need to
be mapped.

Example Initialization as a Time-triggered System

If we assume a time-triggered network in the hardware topology model, other
requirement types are necessary to map the same timing constraint to the
same elements of the system timing. To fulfill Predicate (6.14) the following
initialization of Predicate (6.4), Predicate (6.5), and Predicate (6.6) must be
applied.
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Has_Latency(sensor) := true.

Has_Latency(transmitM1) := false.

Has_Latency(controller) := true.

Has_Latency(transmitM2) := false.

Has_Latency(actuator) := true.

Has_Offset(sensor(tiltSensor)) := false.

Has_Offset(queued(m1, sensorEcu)) := true.

Has_Offset(transmitted(m1, ttbus)) := true.

Has_Offset(queued(m2, controllerEcu)) := true.

Has_Offset(transmitted(m2, ttbus)) := true.

Has_Offset(actuator(damper)) := false.

Has_Triggering(sensor(tiltSensor)) := false.

Has_Triggering(queued(m1, sensorEcu)) := true.

Has_Triggering(transmitted(m1, ttbus)) := true.

Has_Triggering(queued(m2, controllerEcu)) := true.

Has_Triggering(transmitted(m2, ttbus)) := true.

Has_Triggering(actuator(damper)) := false.

Predicate (6.17) and Predicate (6.18) again must not be fulfilled because nei-
ther synchronization nor triggering constraints exist and thus the predicate
initializations above are sufficient.

6.3 Generating Requirement Values - General Approach

6.3.1 Problem Analysis

In this section we analyze the problem of step 5 of our methodology depicted
in Figure 5.3. Thus, we assume that function timing (step 1) as well as sys-
tem timing (step 3) have been specified using Timex and that the necessary
requirement types have been initialized (step 4) using the predicates of Sec-
tion 6.2.

First we reemphasize our terminology, which is fundamental for this section.
Timing constraints are system-wide, function-triggered and invariant. They
must be fulfilled by an implementation. In contrast, timing requirements al-
ways refer to a single segment or a hop. Requirement values are generated and
derived from the constraints. They are valid for one methodology iteration of
steps 5 and 6. They are accompanied by an according guarantee that must
fulfill the requirement. The suppliers of the according subsystem provide the
guarantee values.
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The problem of methodology step 5 is to transform the function-triggered tim-
ing constraints into single timing requirements for those segments and hops,
which have been selected to have such requirements before in step 4, such
that the fulfillment of all requirements by their according guarantees implies
the fulfillment of all function-triggered timing constraints. If the transforma-
tion is done right, then the great advantage is that the timing correctness can
be ensured on subsystem requirement level, rather than on system constraint
level. In the so-called requirement generation also the provided guarantees
shall be considered. The reason is that the output of each iteration shall not
be an arbitrary or random new setup of requirement values. The new set of
requirements shall be optimized with respect to the latest guarantees. The
optimization yields to a fair distribution of time budgets across all involved
subsystems and a termination of the iterative negotiation process.

6.3.2 General Algorithm Description

We propose a constraint logic programming approach to find the new require-
ment values as output of each iteration of methodology step 5. The algorithm
differs for event-triggered and time-triggered systems, because different tech-
nical assumptions are made and also different requirement types are necessary,
as described earlier in this chapter. The general algorithm overview that ap-
plies for both system types is depicted in Figure 6.1.

The general, system type-independent algorithm works as follows. For the
first time when methodology step 5 is entered, all requirements have not yet
been initialized with a value. Only the necessary types have been initialized
in step 4. That means at the very first time of the iterative process, we call
it iteration 0, an initial set of requirement values must be determined for
all subsystems. All subsystem developers and suppliers now have to analyze
their subsystem with respect to the given requirements and determine the
according guarantees. This is indicated by the manual step called determine
subsystem guarantees in Figure 6.1. These guarantees might or might not fulfill
the requirements, or they might even be "better" than the requirement. Note,
in Section 6.1.3 we defined fulfillment predicates in a way that both exact and
better fulfillment are treated the same way and just mean "fulfilled". This is
just sufficient for the algorithm step called all requirements fulfilled. In the
next step called generate new requirements the distinction between exact and
better fulfillment becomes important. In the detailed algorithm description we
will clarify the meaning of fulfilling a requirement better, because the system
types differ in that meaning. In any case, the guarantees are handed back
to the system designer, who uses them as input for the next iteration. So
in every further iteration, which we all call iteration n, the procedure is the
same. The given guarantees are checked against the according requirements,
which we already formalized in Section 6.1.3. If all requirements are fulfilled
by their guarantees the entire timing setup of all subsystems is correct and
thus all function-triggered timing constraints are fulfilled. Otherwise at least
one subsystem cannot fulfill its requirement. So a new iteration is mandatory
to fix that particular problem with the generation of a new set of requirement
values that is more likely to be fulfilled by every subsystem. This is done by
the following three steps, which are also illustrated in the algorithm overview
in Figure 6.1.
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requirements
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all requirements

fulfilled?
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guarantees

generate new requirements

1. set up output model

2. set up CLP constraints

3. search

a) timing constraint fulfilment

b) system timing invariants

c) consider guarantees

Fig. 6.1. Flowchart representing the algorithm to iteratively generate and modify
subsystem requirements according to function-triggered timing constraints.

1. The output model, which is described in Section 6.3.3, is generated from
the Timex system timing and the available segments and hops with re-
quirements. The output model thus is the collection of all search variables
and spans the whole solution space. A single solution is one instantiation
of all segment and hop requirements with values for all their different re-
quirement types. Which segments and hops need requirements at all was
already initialized in methodology step 4, and formulated in Section 6.2.

2. All constraints (in the sense of CLP constraints) are set up over the search
variables to narrow down the solution space reasonably. Some variable
value instantiations do not make sense in practice for three reasons:

a) The requirement values must imply the fulfillment of all function-
triggered timing constraints.

b) The system supports the concept of so-called system timing invariants,
which represent fixed guarantees and thus variables, whose values are
static, i. e. invariant.
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c) The new requirement values must be reasonable with respect to the
current guarantees.

Especially the third case, relating the new requirement values reasonably
with the current guarantees of all subsystems, is the most interesting part
of the algorithms with respect to constraint logic programming.

3. Standard tree search methods are used to search within the solution space
for solutions that fulfill all CLP constraints. Thereby two strategies are
possible and discussed in Chapter 7. Either one is interested in only one
suitable solution or in the best of all possible solutions. In the first case the
first solution that is found is returned. In the latter case the whole search
tree or at least whole sub-trees are searched by the search algorithm to
be able to find more than one possible solutions and to apply additional
optimization metrics. We outline such metrics and optimization strategies
in Chapter 8.2.

The processing step called consider guarantees plays an important role in the
overall algorithm. Later we present two essential CLP approaches that realize
this step. We developed one approach for event-triggered systems, called shift-
ing approach, and another one especially for time-triggered systems, called
windowing approach. Because of the importance of this step in general we
emphasize some terminology at this point. The step consider guarantees of
iteration n takes as input the old requirement values generated in iteration
n-1 and the according guarantee values. The output for iteration n+1 are the
new requirement values, which are instantiated in the output model by our
search algorithm. Figure 6.2 visualizes the input and output relation.

old

requirements

consider guarantees

guarantees

new

requirements

output model for 

iteration n+1

input model of 

iteration n

Fig. 6.2. The input and output of the processing step consider guarantees.

Technically, the difference between the two processing steps called generate
initial requirements and generate new requirements is just the CLP constraint
setup that is done before search. Such constraints that consider the current
guarantees do not make sense in iteration 0. The fulfillment of timing con-
straints must be ensured by the output of both processing step variants, as
well as the consideration of system timing invariants. Because of this difference
Figure 6.1 depicts the variants explicitly as two different processing steps.
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The implementation of the algorithm behind the processing step generate
new requirements in Figure 6.1 differs for the two main system types. Espe-
cially the sub-steps called timing constraints and consider guarantees differ
for both system types. Setting up the output model for our CLP approach
and the definition of system timing invariants practically is the same for both
event-triggered and time-triggered systems. These two common sub-steps are
therefore explained in this section. The CLP constraint setup though com-
pletely differs for event-triggered and time-triggered systems. We explain both
CLP implementations in the subsequent sections for each of the system types.
The sub-step of triggering the search over all variables and finding a solution
or an optimal solution is also discussed per system type.

6.3.3 Set up Output Model

The output model is the set of all variables that shall be instantiated in the
search phase of the algorithm. For every requirement value of a segment or
hop one integer variable is added to the output model. We denote all variables
of the output model similar to the requirement and guarantee values of the
usual Timex model with an additional asterisk (∗) to indicate that the new
requirement value of the output model is meant, not the old requirement
value of the previous iteration n− 1 and not the guaranteed value. The entire
output model thus again comprises the sets of segments S and hops H and
represents a "copy" of the original model. The suffixes r and g indicate the
old requirement value and the guarantee value in the normal Timex model as
already introduced in Section 6.1.2. Summarizing, the following triple exists
for each requirement value:

• suffix r: old requirement value

• suffix g: old guarantee value

• asterisk ∗: new requirement value within the output model

In constraint logic programming, an initial domain must be assigned to
each such variable. Furthermore, some general problem-specific but system-
independent constraints can be defined for all variables.

As initial domain for each variable we define the entire domain of positive
integer values. That is, every latency, offset and triggering requirement can
have an arbitrary positive integer value as its minimum and maximum or
period value, respectively.

As first general problem-specific constraint we define that the minimum value
of each latency requirement must be lower than or equal to the corresponding
maximum value of that requirement. This is formalized by Constraint (6.19)
over the set of all segments S.

Output_Model_Latencies(S) ≡
∀s ∈ S : s.lat∗.min ≤ s.lat∗.max.

(6.19)
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Further we define a constraint that ensures that only a certain set of possible
triggering requirement values a, b, c, ... ∈ N is allowed. The background for
this constraint is that the problem complexity is drastically reduced by it.
In practice it is also common only to allow a certain standard set of possible
periods, especially in time-triggered systems. Constraint (6.20) formalizes this
over the set of hops H.

Output_Model_Triggerings(H) ≡
∀h ∈ H : h.trig∗.period ∈ {a, b, c, ...}.

(6.20)

As offset requirements cannot be used in event-triggered systems, Con-
straint (6.19) and Constraint (6.20) are sufficient output model constraints
for those systems. The two constraints are also valid for the output model in
case of a time-triggered system. For those additionally a constraint for offset
requirements must be defined.

Similar to latency requirements, the minimum value of every offset require-
ment must be lower than or equal to the according maximum value of that
requirement. Constraint (6.21) formalizes this over the set of hops H.

Output_Model_Offsets(H) ≡
∀h ∈ H : h.off∗.min ≤ h.off∗.max.

(6.21)

The usage of Constraint (6.19), Constraint (6.20), and Constraint (6.21) as
CLP constraints narrows the solution space reasonably for time-triggered sys-
tems.

6.3.4 System Timing Invariants

Often some parts of the system are reused parts of previous developments.
If such parts are used as black-boxes (for example an Ecu) there is no con-
figuration freedom and thus their timing guarantees are static and known
in advance. Thus it is pointless to generate other requirement values than
the ones known from the guarantees. Such requirements are called invariant.
The system designer can be sure not to receive other guarantee values than
the predefined ones. The subsystem developer can be sure not to get other
requirement values than the ones known from the invariant definition. Our
timing model as well as our requirement generation algorithm is capable of
the concept of invariants.

System timing invariants can be defined to set certain requirements to a fixed
value. This narrows the solution space, because the variable cannot take any
other values. We assume a predicate Invariant which determines if invariant
requirement values exists for the min and max latency of a certain segment
s, the min and max offset of a certain hop h, or the triggering period of a
certain hop h of the output model.

The predicate Invariant is used in the following three CLP constraints
Invariant_Latencies(S) over all segments, Invariant_Triggerings(H) over
all hops and Invariant_Offsets(H) over all hops.
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Invariant_Latencies(S) ≡ (6.22)
∀s ∈ S : Invariant(s,minlatency,maxlatency)⇒

s.lat∗.min = minlatency ∧ s.lat∗.max = maxlatency.

Invariant_Triggerings(H) ≡ (6.23)
∀h ∈ H : Invariant(h, period)⇒

h.trig∗.period = period.

Invariant_Offsets(H) ≡ (6.24)
∀h ∈ H : Invariant(h,minoffset,maxoffset)⇒

h.off∗.min = minoffset ∧ h.off∗.max = maxoffset.

Constraint (6.24) can only be used for time-triggered systems, because we
do not support offsets in event-triggered systems. Constraint (6.22) and Con-
straint (6.23) can be used for both system types.

6.4 Generating Requirement Values for Event-Triggered
Systems

In the description of the requirement generation algorithm we suppose the step
generate new requirements to be performed iteratively. We assume that all cur-
rent subsystem guarantees are available before each iteration. The initiatory
check whether all requirements are fulfilled by their guarantees is performed
using Predicate (6.7), which is called All_Requ_Fulfilled(S,H).

If Predicate (6.7) is false then the processing step generate new requirements
is triggered. We describe this step using predicate logic. We denote those pred-
icates, which act as a CLP constraint, by "Constraint XY" in our algorithm
description.

6.4.1 Timing Constraint Fulfillment

According to Equation (6.11) every segment of a function event chain with
latency constraint has got a latency requirement. So, for an event-triggered
network we define the following Constraint (6.25) over the set of latency con-
straints LC, which is true, if the requirement values fulfill all latency constraint
maximum and minimum values. As a CLP constraint, Constraint (6.25) nar-
rows the solution space reasonably, because only requirement value variable
instantiations are allowed, which fulfill all latency constraints.
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Requirements_Fulfill_Latency_Constraints_ET (LC) ≡ (6.25)

∀l ∈ LC : ∀P ∈ paths(l.target) :
∑
s∈P

s.lat∗.max ≤ l.max

∧
∀l ∈ LC : ∀P ∈ paths(l.target) :

∑
s∈P

s.lat∗.min ≥ l.min.

By defining Equation (6.12) we already formalized that every segment of a
function event chain with synchronization constraint needs a latency require-
ment. The segment latencies of a segment path accumulate. The resulting jit-
ter of several paths must meet the tolerance of the synchronization constraint.
We define Constraint (6.26) over the set of synchronization constraints SC to
formalize the fulfillment of all such timing constraints.

Requirements_Fulfill_Synch_Constraints_ET (SC) ≡ (6.26)
∀sc ∈ SC : maxpath(sc)−minpath(sc) ≤ sc.tolerance

The functions maxpath(sc) and minpath(sc) determine the maximum and
minimum path latency of all paths of all function event chains in the target
set of a synchronization constraint sc. They are defined as follows.

maxpath(sc) =

maxof
(
max : ∀f ∈ sc.target : ∀P ∈ paths(f) : max =

∑
s∈P

s.lat∗.max
)

minpath(sc) =

minof
(
min : ∀f ∈ sc.target : ∀P ∈ paths(f) : min =

∑
s∈P

s.lat∗.min
)

Also triggering constraints shall be fulfilled if all requirements are fulfilled
by their guarantees. This can only be the case, if the triggering requirements
for the according stimulus hops get the right period value. According to the
requirement type instantiation condition given by Equation (6.13) every stim-
ulus hop in a chain of segments has got a triggering requirement. The correct
triggering requirement value instantiation is formalized by Constraint (6.27)
over the set of triggering constraints T .

Requirements_Fulfill_Triggering_Constraints_ET (TC) ≡ (6.27)
∀t ∈ TC : ∀P ∈ paths(t.target) : ∀s ∈ P :

s.stimulus.trig∗.period = t.period.

6.4.2 Consider Guarantees - The Shifting Approach

In this sub-procedure of our requirement generation algorithm the given guar-
antees are included. Before we explain our approach to express this inclusion
by CLP constraints, we first summarize how requirement and guarantee values
can relate to each other.
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Note that we focus on the maximum values of latency requirements in the
shifting approach, because we see them as the crucial negotiation target. Off-
set requirements are not used in event-triggered networks. Triggering require-
ments are usually not negotiated because they are not as flexible in the system
configuration as latencies. They are rather statically defined beforehand. Our
algorithm checks the correctness of triggering guarantees, but it does not ne-
gotiate them.

For a maximum latency requirement/guarantee pair of a single segment there
are three possible cases:

1. The guarantee value is equal to the requirement value. This means the
guarantee exactly fulfills the requirement for that segment.

2. The guarantee value is greater than the requirement value. This means the
requirement for that segment is not fulfilled (violated), because it takes
longer than required.

3. The guarantee value is smaller than the requirement value. This means
the requirement is "over-fulfilled", because the guaranteed latency is even
better, i. e. faster, than required.

Especially the third case is based on the fundamental Assumption 6.5 for our
approach.

Assumption 6.5 If the latency for a segment of a subsystem is smaller than
required, we assume that the according subsystem developer does report this
"over-fulfillment" in the segment’s latency guarantee.

Description of the Shifting Approach

Assumption 6.5 is fundamental because in our approach we try to redistribute
spare latency to equalize not fulfilled latency requirements that might happen
elsewhere in the system.

To formalize the problem of relating the new latency requirement values with
the current latency guarantee values we introduce the concept of shifting,
which is an abstraction of the underlying requirement values that actually are
affected by the shifting procedure.

Case I: Horizontal Shifting
Consider a chain of segments, each of which having a latency requirement
and an according guarantee. If one segment of the chain does not fulfill the
latency requirement with its guarantee, this can be solved by using the spare
latency of another segment in the same chain, which over-fulfills its require-
ment. Such an example is depicted in Figure 6.3. The latency constraint for
the chain in this example is 20. The numbers above the segments are the old
latency requirement value (first number) and the according guarantee value
(second number). Segment A exactly fulfills its requirement. Segment B over-
fulfills its requirement with some spare latency, whereas segment C violates
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its requirement. The idea of horizontal shifting is to use over-fulfillment "hor-
izontally" in the same chain. A solution of the timing problem for the next
iteration in the example is to use the spare latency of segment B and pro-
vide it to segment C in the next iteration’s latency requirement, because it
is expected that segment C then can also fulfill its requirement and thus in
the next iteration the timing problem most probably is solved. We call this
procedure horizontal shifting.

segment A segment B segment C

r: 8 / g: 8 r: 6 / g: 3 r: 6 / g: 8

shifting from B to C

latency constraint: 20

Fig. 6.3. Example for horizontal shifting.

The horizontal shifting example is summarized in Table 6.2. The table addi-
tionally shows the sum of requirement and guarantee values. Note that the
guarantee sum of iteration n actually does not violate the latency constraint,
which in this example is 20. The timing problem was locally at segment C,
but it could be solved using the horizontal shifting approach.

segment iteration n iteration n+1
requirement guarantee requirement guarantee

A 8 8 8 8
B 6 3 3 3
C 6 8 8 8

sum 20 19 19 19

Table 6.2. Complete example for horizontal shifting for an iteration i and the
subsequent iteration i+1.

Case II: Vertical Shifting
Consider two chains of segments, again each with a latency requirement and
an according guarantee. If a segment of one of the chains does not fulfill the
latency requirement with its guarantee, this can be solved by using the spare
latency of a segment of another chain on the same resource, which over-fulfills
its requirement, as depicted in Figure 6.4. The latency constraint for both
chains in this example is 20. Segments A, B, D and E exactly fulfill their
requirements. Segment F over-fulfills its requirement with some spare latency,
whereas segment C violates its requirement. The idea of vertical shifting on
the same resource is to use over-fulfillment "vertically" on the same resource.
In the example a solution of the timing problem for the next iteration is to
use the spare latency of segment F and provide it to segment C in the next
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iteration’s latency requirement, because it is expected that segment C then
can also fulfill its requirement and this timing problem is expected to be solved
in the next iteration. Note that this vertical shifting is only possible, because
the upper chain still fulfills its latency constraint, although segment C violates
its requirement. In other words, the old requirement values were too strict,
i. e. the overall latency requirement sum of the upper chain was smaller than
the latency constraint. We call this procedure vertical shifting. It is based on
Assumption 6.6.

Assumption 6.6 If one resource holds several segments with latency require-
ments then we assume that the overall latency budget on that resource can be
redistributed among all segments without causing fulfillment problems on that
resource.

segment A segment B segment C

r: 8 / g: 8 r: 4 / g: 4 r: 6 / g: 8

s
h

if
ti
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 t
o

 C

segment D segment E segment F

r: 8 / g: 8 r: 6 / g: 6 r: 6 / g: 4

resource 1 resource 2 resource 3

latency constraint: 20

Fig. 6.4. Example for vertical shifting on the same resource for an iteration i and
the subsequent iteration i+1.

The vertical shifting example is summarized in Table 6.3. The timing problem
was locally at segment C, but it could be solved using the vertical shifting
approach.

Case III: Diagonal Shifting
Similar to case II consider two chains of segments. If a segment of one of the
chains does not fulfill the latency requirement with its guarantee, this can in
some cases be solved by using the spare latency of a segment of another chain
even on a different resource, which over-fulfills its requirement, as depicted
in Figure 6.5. The latency constraint for both chains in this example again
is 20. Segments A, B, D and F exactly fulfill their requirements. Segment E
over-fulfills its requirement, whereas segment C violates its requirement. The
idea of diagonal shifting across different resources is to use over-fulfillment
"diagonally" from one resource on another one. In the example a solution of
the timing problem for the next iteration is to use the spare latency of segment
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segment iteration n iteration n+1
requirement guarantee requirement guarantee

A 8 8 8 8
B 4 4 4 4
C 6 8 8 8

sum 18 20 20 20

D 8 8 8 8
E 6 6 6 6
F 6 4 4 4

sum 20 18 18 18

Table 6.3. Complete example for vertical shifting on the same resource for an
iteration i and the subsequent iteration i+1.

E and provide it to segment C in the next iteration’s latency requirement,
because it is expected that segment C then can also fulfill its requirement and
the timing problem is expected to be solved in the next iteration. However
in this case the spare latency cannot be directly given to segment C, because
they both neither share the same chain, as in horizontal shifting, nor the same
resource, as in vertical shifting. Rather in this case segment B can be used
to "transfer" the spare latency, because it connects segments E and C (it
shares the same resource as E and the same chain as C). So if the requirement
for B is reduced, C can keep its guarantee without causing a chain latency
constraint violation. A reduction of the requirement of segment B however is
only possible, because the requirement for E is increased on the same resource.
We call this procedure diagonal shifting. It is based on Assumption 6.5 and
Assumption 6.6.

segment A segment C

r: 8 / g: 8 r: 6 / g: 8
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segment D segment E segment F

r: 8 / g: 8 r: 6 / g: 4 r: 6 / g: 6

resource 1 resource 2 resource 3

segment B

r: 6 / g: 6

latency constraint: 20

Fig. 6.5. Example for diagonal shifting across different resources for an iteration i
and the subsequent iteration i+1.
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The diagonal shifting example is summarized in Table 6.4. The timing problem
was locally at segment C, but it could be solved using the spare latency of
segment E over segment B.

segment iteration n iteration n+1
requirement guarantee requirement guarantee

A 8 8 8 8
B 6 6 4 4
C 6 8 8 8

sum 20 22 20 20

D 8 8 8 8
E 6 4 6 6
F 6 6 6 6

sum 20 18 20 20

Table 6.4. Complete example for vertical shifting on different resources for an
iteration i and the subsequent iteration i+1.

Note that the shifting approach is used to find a new set of requirement val-
ues, which has the potential to solve a timing problem with a high probability.
The approach tries to solve timing problems (i. e. non-fulfillments) by redis-
tributing free resources that come from over-fulfillments in a clever way. There
is no certainty that the new requirements are fulfilled in the next iteration.
However the approach helps in finding a reasonable requirement setup for the
next iteration if a problem exists.

CLP Implementation of the Shifting Approach

The three examples of the previous section illustrate the idea behind our
shifting approach. The three cases, horizontal, vertical and diagonal shifting,
can be combined to redistribute latency budgets within a set of segments in an
event-triggered system. The segments of course must be connected by either
sharing the same chain or the same resource, which is supposed to be the case
for usual automotive networks.

The description of the shifting approach so far is rather informal and example-
driven. In this section we present our constraint logic programming implemen-
tation. It lines up with the other constraints of this Section 6.4 to accomplish
the CLP constraint setup of the processing step generate new requirements
depicted in Figure 6.1 for event-triggered systems.

The goal of the CLP realization is to express the entire shifting function-
ality on the level of a single segment. For each segment a set of individual
constraints shall be constructed so that in total all three shifting cases are
captured by CLP constraints. Note, the examples above still allow for many
different solutions and thus many redistribution scenarios. The solutions that
follow the rules of shifting shall be the ones that fulfill all constraints over the
segments.
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To construct the CLP constraint setup for each segment, we define a couple of
predicates over a segment s, which are combined to form the overall constraint
afterwards. For the constraints we use the following terminology:

• A segment has got a buffer, if the guaranteed latency is smaller than the
old required latency.

• A segment has got a backlog, if the guaranteed latency is greater than
the old required latency.

• The new latency requirement of a segment is relaxed, if it is greater than
the guaranteed latency.

• The new latency requirement of a segment is tightened, if it is smaller
than the guaranteed latency.

The following four predicates formalize each of these cases.

Has_Buffer(s) ≡ s.latr.max > s.latg.max (6.28)

Has_Backlog(s) ≡ s.latr.max < s.latg.max (6.29)

Relaxed(s) ≡ s.latg.max < s.lat∗.max (6.30)

Tightened(s) ≡ s.latg.max > s.lat∗.max (6.31)

The backlog and buffer predicates can recursively be extended from a single
segment to a chain of segments, i. e. a path of a function event chain. Therefore
we assume two helper functions next(s) and prev(s), which determine the next
and previous segment of a segment path, as defined in Section 6.2.3. The pred-
icates Has_Next(s) and Has_Prev(s) are true, if segment s has got a next
and previous segment in a path. Given a path P , with s, next(s), prev(s) ∈ P
the following two conditions hold for the two functions:

Has_Next(s)⇒ s.response = next(s).stimulus

Has_Prev(s)⇒ s.stimulus = prev(s).response

Using the two helper functions we formulate the extended versions of the
predicates Has_Buffer and Has_Backlog that are applied for paths as
follows.

Path_Buffer(s) ≡ Has_Buffer(s) ∨ (6.32)
Path_Buffer(next(s)) ∨
Path_Buffer(prev(s)).

Path_Backlog(s) ≡ Has_Backlog(s) ∨ (6.33)
Path_Backlog(next(s)) ∨
Path_Backlog(prev(s)).
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We define the following Predicate (6.34) and Predicate (6.35), which are true
if another segment exists on the same resource, whose latency will be relaxed
or tightened, respectively, in the output model.

Relaxed_Res(s) ≡ ∃s2 : s2.res = s.res ∧ (6.34)
Relaxed(s2).

T ightened_Res(s) ≡ ∃s2 : s2.res = s.res ∧ (6.35)
Tightened(s2).

The shifting approach can now be expressed using all the defined predicates
over a single segment, and thus form the final predicate that expresses our
shifting approach in predicate logic. The predicate Fulfills_Latency(s) was
already introduced by Predicate (6.1).

The following predicate over the set of all segments S formalizes the shifting
approach. We explain all CLP constraints used in the predicate afterwards.

Shifting(S) ≡ ∀s ∈ S :

Tightened(s)⇒ Path_Backlog(s) ∧ (6.36)
Relaxed_Res(s)

∧
Relaxed(s)⇒ Path_Buffer(s) ∧ (6.37)

Tightened_Res(s)

∧
¬Fulfills_Latency(s)⇒ s.lat∗.max = s.latr.max ∨ (6.38)

s.lat∗.max = s.latg.max.

Constraint (6.36) expresses that if any segment is tightened, then there must
be a backlog in a path, which uses the segment. This means requirements
are only tightened, if there is a reason. Further another segment on the same
resource must be relaxed, because this increases the possibility of successful
requirement fulfillment in the next iteration.

Similarly, Constraint (6.37) in turn expresses that if any segment is relaxed,
then this can only be done because there is a path buffer. Otherwise there
would be available buffer for the relaxing and the path latency would be
exceeded. Further there must be another segment, which is tightened instead.
Basically this constraint prevents random requirement relaxing.

The basic Constraint (6.38) initiates the entire shifting approach. It says that if
a segment does not fulfill its latency requirement – i. e. the guaranteed latency
is too long – then an action must be performed. Either the requirement is
repeated or the guarantee is taken over. Either of these possibilities potentially
leads to other actions and effects on other segments on the same resource or
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on the same chain. If the old requirement is repeated although the guarantee
wanted to have a greater latency, then another segment on the same resource
must be relaxed instead. This can be found by vertical or diagonal shifting,
which is implemented by the shifting predicate. If the guaranteed value is
accepted, then as a consequence the overall path latency is too long and
another segment in the chain must have a buffer. The buffer can be found by
horizontal shifting. The triggered effects themselves have to follow the rules
implied by the first two constraints.

6.4.3 Search

To search for a solution in the output model for an event-triggered system, all
constraints must finally be connected. Given a set of segments S and a set of
hops H as well as all function triggered timing constraints LC, SC and TC,
which must be fulfilled if all requirements of S and H are fulfilled, a solution
is only valid, if all the following constraints are met.

Search_ET (S,H,LC, SC, TC) ≡ (6.39)
Output_Model_Latencies(S) ∧

Output_Model_Triggerings(H) ∧
Invariant_Latencies(S) ∧

Invariant_Triggerings(H) ∧
Requirements_Fulfill_Latency_Constraints_ET (LC) ∧
Requirements_Fulfill_Synch_Constraints_ET (SC) ∧

Requirements_Fulfill_Triggering_Constraints_ET (TC) ∧
Shifting(S).

6.5 Generating Requirement Values for Time-Triggered
Systems

The processing steps called timing constraints, consider guarantees and search
of the general algorithm depicted in Figure 6.1 are formalized differently for
time-triggered systems. Basically this is due to the completely different timing
behavior of such systems, which we already mentioned in Assumption 6.2 and
Assumption 6.3.

Before we specialize these processing steps for time-triggered systems, we in-
troduce some general rules for requirement values, which arise due to the basic
Assumption 6.3 for time-triggering.

6.5.1 General Rules for Requirement Values in Time-triggered
Systems

An offset requirement has a minimum and a maximum value. The two values
specify a time interval, in which a hop must occur. We call this time interval
the window of the according hop.
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Because offset requirements are only defined for the stimulus and response
hops of transmission segments, two types of such windows exist: queuing and
transmission windows. These are the offset intervals for queued and transmit-
ted hops, respectively.

The general rules for requirement values in time-triggered systems can be
expressed according to the possible segment types.

For an externaltobus segment the maximum latency must be greater than
the period of its response. The reason for this is that external events occur
potentially at any time. This means that in the worst case the sensor event just
occurs right at the time the sensor Swc reads its sensor data. Thus it takes
one more period to get the updated data. The maximum latency is in any case
greater than the period. A smaller requirement can never be fulfilled. Further
we define that the maximum latency of such a segment must be lower than
twice the response period, because otherwise potentially sensor data could be
overwritten. Furthermore the queuing window of externaltobus segments shall
have a size of 0. In combination the requirements for an externaltobus mean
that the sensor data shall be queued for transmission at a certain time point
(offset) and with a certain maximum age (latency). Given the set of segments
S Predicate (6.40) formalizes this.

General_TT_Externaltobus(S) ≡ (6.40)
∀s ∈ S : segtype(s) = externaltobus⇒
s.lat∗.max > s.response.trig∗.period ∧

s.lat∗.max < 2 ∗ s.response.trig∗.period ∧
s.response.off∗.min = s.response.off∗.max

For transmission segments there are also some rules that the requirement
values must apply to. One obvious rule is that it is pointless to require an offset
value, which is greater than the period of a hop, because such a requirement
could never be fulfilled (see Assumption 2.3). Given the set of segments S
Rule (6.41) formalizes this.

General_TT_Transmission(S) ≡ (6.41)
∀s ∈ S : segtype(s) = transmission⇒

s.stimulus.off∗.max < s.stimulus.trig∗.period ∧
s.response.off∗.max < s.response.trig∗.period

For overecu segments a useful rule is that the input data must not be over-
written, or queued. This means that the maximum calculation latency after
the input data has been read must be lower than the period of input data
reception. Similar to externaltobus segments the queuing window shall have a
size of 0. Again, Rule (6.42) formalizes these rules for a set of segments S.

General_TT_Overecu(S) ≡ (6.42)
∀s ∈ S : segtype(s) = overecu⇒

s.lat∗.max < s.stimulus.trig∗.period ∧
s.response.off∗.min = s.response.off∗.max
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As last general rule for requirement values in time-triggered systems we de-
fine that all triggerings of all transmission segment hops along a function
event chain must have the same period. Otherwise so-called over- and under-
sampling effects would appear. Such effects are discussed for example by
Feiertag et al. [29]. In our requirements generation algorithm we want to
exclude such effects. The basic principle of our approach can also be ex-
plained without the additional complexity, which is induced by over- and
under-sampling effects. Rule (6.43) over a set of chains F formalizes the con-
dition that all triggerings along a path must be equal.

General_TT_Triggering(F ) ≡ (6.43)
∀f ∈ F : ∀P ∈ paths(f) : ∀s ∈ P :

segtype(s) = transmission⇒
s.stimulus.trig∗.period = s.response.trig∗.period

6.5.2 Timing Constraint Fulfillment

All three kinds of timing constraints must be fulfilled by the system, which
we now assume to be realized according to the time-triggered paradigm.

As described in Section 6.2.3 latency requirements cannot directly be ex-
pressed for transmission segments in a time-triggered network. According to
Rule (6.14) every transmission segment of a function event chain with latency
constraint has got an offset and a triggering requirement for its stimulus and
response hop. The other segments are initialized with latency requirements.
The calculation of the overall latency of a path of segments thus mixes latency
requirements and offset requirements, which indirectly express latencies. The
following Constraint (6.44) over the set of latency constraints LC is true, if the
requirement values fulfill all maximum latency constraints in a time-triggered
system.

Requirements_Fulfill_Latency_Constraints_TT (LC) ≡ (6.44)

∀l ∈ LC : ∀P ∈ paths(l.target) :
∑
s∈P

latency(s) ≤ l.max.

The function latency(s) determines the latency of segment s as follows. The
"transmission latency" is actually the time interval between the maximum
offset of the stimulus, which is a queued hop, and the maximum offset of the
response, which is a transmitted hop.

latency(s) =


s.response.off∗.max−
s.stimulus.off∗.max

if segtype(s) = transmission

s.lat∗.max else

With Equation (6.17) we already introduced the four different cases that have
to be distinguished for synchronization constraints. They arise from stimu-
lus or response synchronization in either of the collaboration scenarios Ecu
integration or Swc integration.
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Constraint (6.45) over the set of synchronization constraints uses helper func-
tions to check, whether the requirements fulfill all synchronization constraints.
The helper functions distinguish the four cases for synchronization constraints
in a time-triggered network.

Requirements_Fulfill_Synch_Constraints_TT (SC) ≡ (6.45)
∀sc ∈ SC : maxdelay(sc)−mindelay(sc) ≤ sc.tolerance

maxdelay(sc) = maxof
(
max : ∀f ∈ sc.target :

∀P ∈ paths(f) : ∀s ∈ S : max = maxdelay(s)
)
.

mindelay(sc) = minof
(
min : ∀f ∈ sc.target :

∀P ∈ paths(f) : ∀s ∈ S : min = mindelay(s)
)
.

maxdelay(s) =



s.response.off∗.max

−s.lat∗.min
if

segtype(s) =

sensortobus
s.stimulus.off∗.max

+s.lat∗.max
if

segtype(s) =

bustoactuator
next(next(s)).response.off∗.max

−next(s).lat∗.min− s.lat∗.min
if

segtype(s) =

sensortoswc
prev(prev(s)).response.off∗.max

+prev(s).lat∗.max+ s.lat∗.max
if

segtype(s) =

swctoactuator

mindelay(s) =



s.response.off∗.min

−s.lat∗.max
if

segtype(s) =

sensortobus
s.stimulus.off∗.min

+s.lat∗.min
if

segtype(s) =

bustoactuator
next(next(s)).response.off∗.min

−next(s).lat∗.max− s.lat∗.max
if

segtype(s) =

sensortoswc
prev(prev(s)).response.off∗.min

−prev(s).lat∗.min− s.lat∗.min
if

segtype(s) =

swctoactuator

According to Equation (6.18) every stimulus and response hop of each trans-
mission segment of a function event chain, which has to fulfill a triggering
constraint, has a triggering requirement. These requirements must be the
same as the triggering constraint. Constraint (6.46) formalizes this for the
generation of requirements over a set of triggering constraints TC.

Requirements_Fulfill_Triggering_Constraints_TT (TC) ≡ (6.46)
∀t ∈ TC : ∀P ∈ paths(t.target) : ∀s ∈ P :

segtype(s) = transmission⇒ s.stimulus.trig∗.period = t.period.
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6.5.3 Consider Guarantees - The Windowing Approach

The new requirement values that are generated in each iteration must not
only ensure the fulfillment of all timing constraints. Again they must also be
related to the previous guarantees to not randomly generate the new values.
Similar to the event-triggered case with its shifting approach, we developed
an abstraction for the time-triggered case, which is used to explain the re-
generation process more precisely using predicate logic over segments. We call
our approach for time-triggered systems windowing approach.

Note that in the following we focus on the collaboration scenario ECU Inte-
gration to describe the windowing approach. It is thus used to negotiate time
budgets between the system designer (bus configuration) and Ecu developers.

Similar to Assumption 6.5, also for the windowing approach we make the
following basic Assumption 6.7

Assumption 6.7 We assume that unused window buffer is reported back to
the system designer.

Description of the Windowing Approach

When focusing on the collaboration scenario Ecu Integration, every path of
each function event chain consists of the four possible segment types sensor-
tobus, transmission, overecu, and bustoactuator. A sequence of segments in a
path follows a certain pattern, which is as follows:

• A sensortobus segment is always followed by a transmission segment and
has no predecessor.

• A transmission segment is always followed by either an overecu or a bus-
toactuator segment. Its predecessor is always either an overecu or a sen-
sortobus sogment.

• An overecu segment only has transmission segments as possible successor
and predecessor segments.

• A bustoactuator segment has no successor segment. Its predecessor is al-
ways a transmission segment.

All hops of a chain only have one of four possible types, which are sensor,
actuator, queued, and transmitted hops. Based on these observations it turns
out that every hop along a chain path has got an offset requirement except
the chain’s stimulus and response hops, because those are sensor and actuator
hops. In other words, every inner hop of a chain (see Definition 5.8) separates
two segments with an offset.

According to the windowing approach we understand every segment of a chain
path as a window, which is assigned to the respective resource for their exe-
cution/transmission. Every window thereby has three parameters:
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• position in the time line

• size from its start position to its end

• period of repetition

The position is absolute, because of the observations summarized above, i. e.
the offsets of inner hops define an absolute position. Because time-triggered
systems have a common absolute time base, the windowing approach is pos-
sible. Otherwise no positions could be assigned to windows. The end of a
window results from its start position and size, and thus also marks an ab-
solute position in the time line. The chain of the example Timex model of
Figure 5.2 thus can be represented as five windows, as depicted in Figure 6.6.
The period is assumed to be equal for all windows of a chain.

sensor transmitM1 controller actuatortransmitM2

size size size size size

position position position positionposition

time

latency of chain damperControlChain

Fig. 6.6. Window representation of the Timex example.

The advantage of the windowing approach is that reasoning about requirement
and guarantee values can be done solely based on the three attributes size,
position and period for all windows. The approach abstracts from the concrete
segment types that exist underneath the window and especially from their
offset, latency and triggering requirement and guarantee values. Size, position
and triggering are "coded" into the requirement and guarantee values. Both
the demands to new requirement values of the output model as well as the
effects of violated requirements can be described more abstract and unique for
all segments by the windowing approach. A transformation from the window
parameters to the segment and hop requirement and guarantee values and vice
versa can easily be performed automatically. We did this in our prototypic
implementation of the approach, which we describe in Chapter 7. For the
description of the windowing approach we stick to the abstracted view.

The requirement values must be in a way such that the following two condi-
tions hold:

1. There shall be no gaps between subsequent windows, because this is a
waste of scheduling flexibility for the subsystem implementers. A gap is
potential calculation/transmission time that neither of the two close-by
windows can use.
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2. There shall be no overlaps of subsequent windows, because this means that
in the worst case a complete period is lost until the data is processed. This
extends the overall chain latency by the time of one period.

The two unwanted situations are depicted in Figure 6.7.

a) gap b) overlap

! !

Fig. 6.7. Unwanted situations of windows: a) gap b) overlap.

The new requirement values of each iteration must ensure two things: perfect
window match and the fulfillment of the underlying function event chain’s
timing constraints. The example of Figure 6.6 fulfills these two demands, as
indicated by the length of the row of windows and the according length of the
latency constraint depicted above. Also the CLP constraints over the output
model variables of our CLP approach already ensure these two conditions.
The perfect window match of the generated requirement values is ensured
by the several constraints of Section 6.5.1. The constraints presented there
prevent the values from causing gaps and overlaps. The fulfillment of all timing
constraints is ensured by the constraints presented in Section 6.5.2.

The size and position of each window is handed to the subsystem developers
by means of offset and latency (and triggering) requirements. For all these
requirements a response window size and position in terms of guarantees is
given back to the system designer. By collecting all guarantees, the system
designer can create a comprehensive picture of the entire window situation.
The guarantee values again can lead to unwanted cases, which are the same
as already discussed for the requirement values before. The guarantees must
not produce gaps and overlaps, as depicted in Figure 6.7. They also must not
cause non-fulfillment of timing constraints.

If all guarantees exactly fulfill their requirement, no unwanted guarantee sit-
uations occur and the system fulfills all timing constraints, because the re-
quirements were already generated accordingly. Otherwise, if some guarantees
over- or under-fulfill their requirement, then a new requirement generation is
initiated to "repair" the window situations that cause gaps, overlaps, or non-
fulfillment of timing constraints in general.

When focusing on one window, four non-fulfillment situations can occur be-
tween old requirement values and guarantee values, which we describe in the
following. In general two terms are important here: backlog and buffer. The
concepts can be used for both the beginning – called stimulus – and the end
– called response – of a window. The four possible situations of a required
window against its guaranteed window are visualized in Figure 6.8.

1. A response backlog occurs when the guaranteed end of the window exceeds
the required end, i. e. the guaranteed end is after the required end.
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2. A response buffer occurs when the guaranteed end of the window under-
exceeds the required end, i. e. the guaranteed end is before the required
end.

3. A stimulus backlog occurs when the guaranteed beginning of the window
exceeds the required beginning, i. e. the guaranteed beginning is before
the required beginning.

4. A stimulus buffer occurs when the guaranteed beginning of the window
under-exceeds the required beginning, i. e. the guaranteed beginning if
after the required beginning.

One stimulus situation can occur simultaneously with one response situation.
For example, a guaranteed window can have a stimulus backlog and a response
buffer. If either the window stimulus or the window response exactly fulfills
its requirement, none of the above-mentioned situations for that particular
window stimulus or window response exists.

1. response backlog

2. response buffer

3. stimulus backlog

4. stimulus buffer

required window guaranteed window

Fig. 6.8. Four possible situations how the old required window can relate to its
guaranteed window.

Based on these four cases for one guaranteed window, the above-mentioned
unwanted gap and overlap situations between two guaranteed windows can
occur. A guarantee overlap for example can occur, when the left window has
a response backlog and the right window has a neither a stimulus buffer nor
a stimulus backlog, but exactly fulfills its requirement window.

If any window does not fulfill its required size and position and thus can cause
either a gap or an overlap, a next iteration of the processing step generate new
requirements is initiated to repair the situation. Similar to the description of
the relation between old requirements and guarantees for a window presented
above, also the guarantees relate to the new requirements for a window ac-
cordingly. However we use a different terminology to clearly distinguish the
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two relations. The following four situations can occur with respect to the
guarantees when new window requirements are generated.

1. The response is relaxed if the new requirement shifts the end of the window
"rightward", i. e. the new required end is after the guaranteed end.

2. The response is tightened if the new requirement shifts the end of the
window "leftward", i. e. the new required end is before the guaranteed
end.

3. The stimulus is relaxed if the new requirement shifts the beginning of the
window "leftward", i. e. the new required beginning is before the guaran-
teed beginning.

4. The stimulus is tightened if the new requirement shifts the beginning
of the window "rightward", i. e. the new required beginning if after the
guaranteed beginning.

The four situations between guaranteed window and new required window are
visualized in Figure 6.9.

1. response relaxed

3. stimulus relaxed

4. stimulus tightened

guaranteed window new required window

2. response tightened

Fig. 6.9. Four possible situations how the guaranteed window can relate to its new
required window.

So far we neglected one specific detail of time-triggered systems in our ap-
proach. All actions, such as transmission of data and execution of software,
are performed periodically. Therefore each window has another property be-
sides position and size, namely its window period. We assume that all windows
of a segment path have the same period. This is ensured by Constraint (6.43).

As in a time-triggered system all actions repeat with a certain period, the
relaxing and tightening actions described above are subject to several condi-
tions. So far we assumed that time is continuously advancing. In fact, from
the viewpoint of a single window, time is only advancing until the window
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period P . So time is relative to the period start time of a window. When a
new instance of a window’s period starts we call that point in time a period
switch.

i * P
time

(i+1) * P

i * P
time

(i+1) * P

i * P
time

(i+1) * P

!

required window

Fig. 6.10. All window requirements must be in a way that a period switch does not
occur during a window.

With respect to the period, we can formulate additional demands for required
windows. To simplify matters all requirement values must be in a way that
every window does not overlap its period switch. Because of the other con-
dition that no gaps are allowed for requirement values, the period switch of
several windows that belong to one segment path can only be exactly between
two successive windows. Basically this condition stems from Assumption 2.3.
It is already incorporated into the Timex model by Predicate (6.41). Fig-
ure 6.10 visualizes the described situations for a single window at an allowed
position, for two successive windows with allowed period switch, and for a
single window with not allowed period switch. Note that this condition is not
required for windows of type externaltobus due to Predicate (6.40). The size of
such windows is always greater than one period and thus inevitably overlaps
a period switch.

CLP Implementation of the Windowing Approach

A variable instantiation within the whole solution space of the output model
must fulfill all basic windowing conditions described above (no gaps and over-
laps, period switch) and must repair potential problems with the guarantees.
Therefore we now describe our CLP solution of the windowing approach with
predicate logic.

First we set up some basic predicates over old and new requirements and
guarantees (see Figure 6.2) based on the three window attributes position,
size and period.
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We use these basic predicates to formulate composite predicates. All predicates
are then used to formulate the constraints that represent the CLP realization
of the windowing approach. We use the suffix r for the old requirement, g

for the guarantee and ∗ for the new requirement of the according window
parameter position, size or period in our constraint formalization.

Relating Old Requirements and Guarantees:

First we define the following predicates for the four situations depicted in
Figure 6.8. Let s ∈ S be a segment with appropriate offset and/or latency re-
quirements. The following predicates are true if the according situation occurs
for the window guarantees and the old requirement.

Response_Backlog(s) ≡ positionr + sizer < positiong + sizeg. (6.47)
Response_Buffer(s) ≡ positionr + sizer > positiong + sizeg.

Stimulus_Backlog(s) ≡ positionr > positiong.

Stimulus_Buffer(s) ≡ positionr < positiong.

Relating Guarantees and New Requirements:

The following predicates represent the four situations depicted in Figure 6.9
for a segment s ∈ S and relate the guaranteed window to the new required
window.

Response_Relaxed(s) ≡ positiong + sizeg < position∗ + size∗. (6.48)
Response_Tightened(s) ≡ positiong + sizeg > position∗ + size∗.

Stimulus_Relaxed(s) ≡ positiong > position∗.

Stimulus_Tightened(s) ≡ positiong < position∗.

Relating Old Requirements and New Requirements:

The new requirement values can also be related to the old requirement values
without taking the guarantees into account. In this case we say the require-
ments are repeated for a window, if the new requirement is the same as the
old requirement. The window stimulus and response requirements can be re-
peated. Again, the actual stimulus and response positions are a result of the
underlying requirement values.

Repeat_Stimulus(s) ≡ positionr = position∗. (6.49)
Repeat_Response(s) ≡ positionr + sizer = position∗ + size∗.

Start and End Positions of a Window:

As depicted in Figure 6.10 a window must not overlap its own period switch.
It can only end right before or start right after the period switch. Given a
segment s that represents a window with its three attributes position, size
and period. The following predicate is true if a window is at the end position
or start position, respectively.

End_Position(s) ≡ position+ size = period. (6.50)
Start_Position(s) ≡ position = 0.
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Freeing the Resource for a Window:

Each segment has a resource attribute that indicates to which resource (pro-
cessor or bus) the segment belongs. Thus we also can assign windows to re-
sources. The position and size attributes of a window mark a time span in
which the segment may utilize the resource (not necessarily the entire time
span). This means either task execution or frame transmission by the resource
on the technical architecture. It is more likely that a requirement of a window
can be fulfilled, if as less as possible other windows occupy the resource at the
same time. Therefore we are interested in knowing whether a resource is freed
by the new requirement values compared to the old ones. Predicate (6.51)
is true, if during the time span of window s less windows from other chains
occupy the resource (i. e. have overlapping time spans) according to the new
requirements than according to the old requirements.

Resource_Freed(s) ≡ less windows overlap s. (6.51)

Note again that the windowing approach abstracts from the underlying actual
requirements and guarantees, i. e. latency, offset and triggering values. The
mapping from the predicates over windows and their movements to the real
requirements and guarantees of the segment and hops depends on the segment
type. Therefore we stick to the pure window-based CLP constraints for the
sake of better understandability of the CLP implementation.

Constructing Composite Predicates:

Based on the basic Predicates 6.48 that relate guarantees and new require-
ments, another composite predicate can be formulated. Given a segment s ∈ S,
Keep_Guarantee_Window(s) is true, if the new requirement values just take
over the guaranteed values, i. e. they do not change the window with respect
to its guarantee at all.

Keep_Guarantee_Window(s) ≡ ¬Response_Relaxed(s) ∧ (6.52)
¬Response_Tightened(s) ∧
¬Stimulus_Relaxed(s) ∧
¬Stimulus_Tightened(s).

The following composite predicates can be formulated based on the stimulus
and response repetition basic Predicates 6.49.

Repeat_Stimulus_Only(s) ≡ Repeat_Stimulus(s) ∧ (6.53)
¬Repeat_Response(s).

Repeat_Response_Only(s) ≡ Repeat_Response(s) ∧
¬Repeat_Stimulus(s).

Repeat_Complete(s) ≡ Repeat_Stimulus(s) ∧
Repeat_Response(s).

Consider Predicates 6.50 and functions next(s) and prev(s). The following
predicates are true, if there is a period switch between two windows in a path
of segments prev(s), s, next(s) ∈ S.
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Period_Switch_Right(s) ≡ End_Position(s) ∧ (6.54)
Start_Position(next(s)).

P eriod_Switch_Left(s) ≡ Start_Position(s) ∧
End_Position(prev(s)).

A window’s stimulus or response can be moved to the left or right, respectively,
by the new requirements. This can be either with respect to the guarantee
or with respect to the old requirement. In both cases we call such a position
change window shifting. Based on the already presented predicates the shifting
of a window can be expressed as follows.

Shift_Right(s) ≡ Stimulus_Buffer(s) ∨ (6.55)
Stimulus_Tightened(s) ∨
Period_Switch_Right(s).

Shift_Left(s) ≡ Response_Buffer(s) ∨
Response_Tightened(s) ∨
Period_Switch_Left(s).

Using All Window Predicates to Formulate Constraints:

Let next, prev ∈ S be the next and previous segment of segment s in a segment
path. Given segment s both can be determined by the functions next(s) and
prev(s).

Based on all these predicates over single segments, which are understood as
windows, our windowing approach to generate new requirements based on the
guarantees and old requirements of the previous iteration is formulated by the
following predicate. It consists of the Constraints 6.56 to 6.65. We explain the
meaning and consequences of each constraint thereafter.
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Windowing(S) ≡ ∀s ∈ S :

Response_Backlog(s)⇒ Keep_Guarantee_Window(s) ∨ (6.56)
Repeat_Response_Only(s) ∨
Repeat_Complete(s)

∧
Stimulus_Backlog(s)⇒ Keep_Guarantee_Window(s) ∨ (6.57)

Repeat_Stimulus_Only(s) ∨
Repeat_Complete(s)

∧
Response_Backlog(s) ∧ Keep_Guarantee_Window(s)⇒ (6.58)

Shift_Right(next) ∨
Shift_Right(prev)

∧
Response_Backlog(s) ∧ Repeat_Response_Only(s)⇒ (6.59)

Stimulus_Relaxed(s) ∧
Shift_Left(prev)

∧
Response_Backlog(s) ∧ Repeat_Complete(s)⇒ (6.60)

Resource_Freed(s)

∧
Stimulus_Backlog(s) ∧ Keep_Guarantee_Window(s)⇒ (6.61)

Shift_Left(prev) ∨
Shift_Left(next)

∧
Stimulus_Backlog(s) ∧ Repeat_Stimulus_Only(s)⇒ (6.62)

Response_Relaxed(s) ∧
Shift_Right(next)

∧
Stimulus_Backlog(s) ∧ Repeat_Complete(s)⇒ (6.63)

Resource_Freed(s)

∧
Response_Tightened(s)⇒ Stimulus_Relaxed(s) ∨ (6.64)

Stimulus_Buffer(s) ∨
Resource_Freed(s)

∧
Stimulus_Tightened(s)⇒ Response_Relaxed(s) ∨ (6.65)

Response_Buffer(s) ∨
Resource_Freed(s).

There are two basic constraints that control the entire re-generation process,
because there also are two situations that must be repaired by the algorithm.
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First, Constraint (6.56) expresses three mutually exclusive reaction possibili-
ties to a response backlog. If such a backlog occurs then either the guaranteed
window can be kept by the new requirements, or the response requirement
is repeated despite the backlog, or the stimulus and response requirement is
repeated for that window.

Second, Constraint (6.57) expresses three mutually exclusive reaction possi-
bilities to a stimulus backlog. Similar to the response backlog described above,
the guaranteed window can be kept, i. e. granted to the segment, the stimulus
requirement can be repeated despite the backlog, or the window requirement
is repeated entirely.

Each of the three or -linked reaction possibilities for a response backlog is
bound to additional constraints.

If the guarantee window is kept (Constraint (6.58)) there is a potential overlap
at the window response because of the response backlog. To fix this overlap the
next window must be shifted to the right (recursively until a buffer is found
somewhere on the path). If there is no next window the previous window
must be shifted to the right (recursively), because otherwise the overall path
latency would be exceeded.

If a response backlog exists but the response requirement of the window is
repeated (although it is known that there is a problem), then the stimulus of
the window must be relaxed and the previous window must be shifted to the
left. The according Constraint (6.59) formalizes this.

Finally, if a response backlog exists but the required window is repeated com-
pletely despite that, then the resource must be freed at this place in the
schedule (Constraint (6.60)). The freeing of the schedule reduces the proces-
sor utilization and increases the probability of requirement fulfillment.

Similar, each of the three or -linked reaction possibilities for a stimulus backlog
is bound to additional constraints.

If the guarantee window is kept (Constraint (6.61)) there is a potential over-
lap at the window stimulus because of the stimulus backlog. So the previous
window must be shifted to the left. If there is no previous window the next
window must be shifted to the left (recursively), because otherwise the overall
path latency would be exceeded.

If a stimulus backlog exists but the stimulus requirement of the window is
repeated despite that (Constraint (6.62)), then the response of the window
must be relaxed and the next window must be shifted to the right.

Finally, if a stimulus backlog exists but the required window is repeated com-
pletely despite that, then again the resource must be freed at this place in the
schedule (Constraint (6.63)).

Some of the implications defined above are only possible, if the stimulus or
response of the respective next or previous windows is tightened. To finalize
our windowing approach CLP realization, additional constraints are necessary
for stimulus and response tightening.
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If one end of a window is tightened, then one of three possible conditions
must hold to compensate the stricter requirement: either the other window
end must be relaxed, or the resource must be freed, or the window must have
a buffer at the other end. Constraint (6.64) and Constraint (6.65) formalize
this implications.

6.5.4 Search

We connect all constraints in a search predicate for time-triggered systems to
find a solution in the output model that fulfills all constraints of the windowing
approach. Given a set of segments S, a set of hops H, a set of chains F and
all function triggered timing constraints LC, SC and TC, which have the be
fulfilled if all windows fulfill their requirements. Predicate (6.66) is the search
predicate for time-triggered systems.

Search_TT (S,H, F, LC, SC, TC) ≡ (6.66)
Output_Model_Latencies(S) ∧

Output_Model_Triggerings(H) ∧
Output_Model_Offsets(H) ∧

Invariant_Latencies(S) ∧
Invariant_Triggerings(H) ∧

Invariant_Offsets(H) ∧
General_TT_Externaltobus(S) ∧
General_TT_Transmission(S) ∧

General_TT_Overecu(S) ∧
General_TT_Triggerings(F ) ∧

Requirements_Fulfill_Latency_Constraints_TT (LC) ∧
Requirements_Fulfill_Synch_Constraints_TT (SC) ∧

Requirements_Fulfill_Triggering_Constraints_TT (TC) ∧
Windowing(S).

6.6 Generating a Communication Model

After a successful run of our requirement generation algorithm presented in
the previous three sections the necessary set of system timing requirements is
available. Some of these requirements, namely the ones that affect the trans-
mission segments, have to be fulfilled by the system designer. In Section 3.1.1
we defined that this role is responsible for the network design. For that reason
we explicitly point out the generation of the communication model as an own
step in our methodology.

The communication model generation again depends on the system type. Ac-
cording to Section 3.3.5 the communication model offers different attributes
for frames in both types. However there are some observations that apply for
both types:
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• Multiple signals are mapped to one frame. The timing properties of a frame
determine its timing behavior (e. g. worst case response time, transmission
offset). All contained signals literally share the same timing behavior and
thus automatically have the same timing guarantee. As a consequence, it
makes sense to group those signals to the same frame, which also have the
same (or at least "compatible") timing requirements, because otherwise
not all of them can be fulfilled at once.

• A frame can only be sent by one Ecu. Thus only signals that are sent by
the same Ecu can be mapped to the same frame.

• In most systems, the size of a frame is limited. Especially in time-triggered
systems a static slot size is configured, where each slot holds one frame. If
the signal size (or length) is assumed equal, a static number of signals fits
in one frame.
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Evaluation

In Section 4.7 we summarize three basic limitations of related work in the area
of timing modeling and timing analysis. We developed the Timex model, its
methodology and especially the shifting and windowing approach presented
in this thesis to overcome these limitations. In this chapter we demonstrate
and discuss how the limitations are overcome by our work and how the Timex
model and methodology are applied in practice.

7.1 Standardization of the Timex Model

Most timing models used today consist of system and schedule attributes on
the lowest level of schedulable entities like task and frame properties. They
do not support appropriate abstraction techniques that enable more abstract
modeling and analysis methods. We discussed this limitation of timing models
of related work in Section 4.7.2.

We discussed several reasons for a new more abstract timing model in Sec-
tion 5.1. The Timex timing model solves the limitation mentioned above and
allows for a) a more abstract modeling of system timing, b) the specification
of timing constraints on a functional level, and c) timing analysis on the ab-
stracted level of requirements and guarantees for segments and hops. The goal
of the Timex model is to support timing modeling and timing analysis in a
distributed development process. The other timing models are not suitable
for that purpose, because they reveal too much information about the sys-
tem, what often shall not be shared between several development teams and
organizations.

The basic concept of the Timex model is our concept of observable events and
event chains (Section 3.2). During the work on this thesis, the basic concept
of events and event chains has also been discussed in an expert group within
the Autosar development partnership. The concept finally has been adopted
to the Autosar model and published as timing model for Autosar Release
4.0. The model thus is now part of the automotive industry’s specification
standard for embedded hardware and software architecture. Figure 7.1 shows
the according Autosar meta-model extract for the event and event chain
concept.
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Fig. 7.1. Autosar timing model: events and event chains [4].

Another basic concept of Timex is the concept of requirements and guaran-
tees. They represent two different roles, or semantics, of timing constraints
in a Timex system timing. This concept has also been adopted by the Au-
tosar timing model. An Autosar timing constraint has one of the two men-
tioned roles. The idea of distributed development model support provided by
Timex thus found its way to practice by the standardization in the Autosar
model. However, Timex and Autosar timing constraints have some differ-
ences, which we list later in this section. Figure 7.2 depicts the Autosar
meta-model extract for the requirement and guarantee roles of a timing con-
straint.

Fig. 7.2. Autosar timing model: timing requirements and timing guarantees [4].

With the increasing acceptance and usage of the Autosar standard, the need
for a common timing model arose recently. Moreover Autosar offers an ideal
modeling basis for such a timing model, because it consists of a lot of com-
mon model elements and terminology used throughout the industry already.
For that reason the event and event chain concept was incorporated into the
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Autosar model. Before that only company- or tool-specific timing models ex-
isted, which complicated the exchange of data between organizations. Now the
Autosar timing model is being rolled out in the companies and increasingly
used to model and exchange timing specifications, for example between an
Oem and its suppliers. To ease the usage of the timing model, a specification
tool has been developed based on the textual modeling editor prototype of
this thesis, which we show in Appendix A. The specification tool has already
been published as part of the Autosar tool platform Artop [48, 77].

As already described, the Autosar timing model and Timex share a) the
concept of observable events and event chains and b) the two different seman-
tics of timing constraints, namely requirements and guarantees. Above that
similarities however there are certain differences in how the two models utilize
these concepts. The three most important differences are:

1. The main difference of the two models is that the Autosar timing model
is more generic, whereas Timex is rather problem specific. The Autosar
timing model offers only one type of event chain, which is the general
causal connection of two events. This generic event chain is used for ev-
ery stimulus and response relationship of two events. There are no rules
that constrain the usage of certain event types in the stimulus or response
roles. Further the Autosar timing model does not restrict or regulate the
refinement of event chains with sub-chains. This means that according to
the standard basically every timing-based relation can be specified and
arbitrarily refined. The Timex model however offers two specific event
chains, namely a function event chain and a segment. Segments are the
only possible refinement level for event chains. Further Timex offers cer-
tain types of segments that are identified by their types of stimulus and
response events (called hops). The reason for this is that the Timex model
is designed for the use in a distributed development process and to over-
come the limitation of related work that standard timing models are not
very well suitable for that usage. Therefore the concept of well-defined
segment types as a refinement for function event chains based on sub-
system boarders fits for such processes. Further Timex uses the concept
of hops, which are used to characterize observable events as such event
that can be observed at the interface of a system or at the border of two
subsystems (see Definition 5.2).

2. The Autosar timing model and the Timex model (more precisely the
system model underneath the Timex model) are based on a set of pos-
sible event types. The granularity and completeness of the system model
basically determines, which event types can be observed in such a sys-
tem. Autosar has a very large and comprehensive system model and
thus offers more different types of observable events than Timex. How-
ever, our system model is appropriate to demonstrate the usage of the
Timex model and methodology to improve distributed development of
automotive systems.

3. Both timing models basically have the same timing constraint types, which
are latency, triggering and synchronization constraints. In the Autosar
model, these constraints can be used for every available event or event
chain, respectively. The target elements for timing constraints is not lim-
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ited or restricted. Similar to the definition and refinement of event chains,
also with respect to timing constraints the Autosar timing model is very
generic. Timex however only has one semantics of a timing constraint,
namely the usage of a timing constraint as a function-triggered and im-
plementation independent timing constraint in a so-called Timex function
timing. Such a function-timing is not possible in Autosar at all, because
Autosar does not contain the concept of functions. Autosar software
components are already implementation-specific and Autosar does not
have a mapping from functions to software components. However, as we
discuss in Section 3.5, timing constraints basically should not be specified
for a certain system implementation in terms of hardware and software
in the first place. Rather they should be defined on the implementation-
independent level of functions.

Concluding, the Autosar timing model and the Timex model are struc-
turally equal. Timex has a problem-specific focus for managing time budgets
in distributed development. The Autosar timing model is very generic and
comprehensive. Timex models can be transformed to Autosar timing models
with appropriate generators and vice versa.

We implemented such a generator in a tool prototype for this thesis. The pro-
totype also contains the before mentioned textual modeling editor that helps
engineers to create Timex models, the CLP implementation and a visualiza-
tion of Timex. The prototype is outlined in Appendix A.

7.2 Application of the Timex Methodology

We discuss the application of our Timex methodology based on the running
example of this thesis. The example is depicted in Figure 5.2. In particular, we
focus on methodology step 5, i. e. the iterative generation of new requirement
values according to our constraint logic programming approach presented in
Chapter 6. Thereby, we first assume an event-triggered realization and then a
time-triggered realization of the system model of the running example. Given
a set of old requirement values and according guarantee values of an iteration
n we show how both the shifting approach (Section 6.4.2) and the windowing
approach (Section 6.5.3) work to compute appropriate new requirement values
for iteration n+1. The new values are the solution to the CLP problem, which
we formalized using predicate logic.

7.2.1 Discussion of the Shifting Approach

For the discussion of our shifting approach we assume an event-triggered sys-
tem that implements the system timing model of the example in Figure 5.2.

Analysis of Horizontal Shifting:

First we demonstrate horizontal shifting. For simplicity reasons we therefore
assume that the whole system only consists of the one function chain of the
running example. Figure 7.3 depicts the situation that we analyze.
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sensor transmitM1 controller

r: 9 / g: 6 r: 3 / g: 3 r: 4 / g: 5

damperControlChain latency: 25

transmitM2 actuator

r: 4 / g: 5 r: 5 / g: 5

r: 6 r: 3 r: 5 r: 5 r: 5
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Fig. 7.3. Example with one solution by horizontal shifting.

The input to the CLP system are the old requirements r and the according
guarantees g of iteration n, which are displayed above the segments. The seg-
ment named sensor has an old requirement of 9 and got a guarantee of 6.
The requirement therefore is over-fulfilled and the segment has got a buffer.
The buffer is indicated by the green color. The segments called transmitM1
and actuator both fulfill their requirement exactly. The segments called con-
troller and transmitM2 both do not fulfill their requirement. They have got
a backlog. The backlog is indicated by the red color.

The sum of the old requirement values is 25, what is exactly the latency
constraint of the overall function chain. The sum of the guarantee values is
24. That would also fulfill the latency constraint of a maximum of 25. However,
there are two local timing conflicts at segments controller and transmitM2.
The latency constraint is considered as not fulfilled, until all local timing
conflicts are solved. Such situations can be handled with horizontal shifting.

The search for new requirement values is triggered by Predicate (6.39).
The predicate applies the rules for the horizontal shifting approach by
Shifting(S).

The application of all rules of the shifting approach Shifting(S) over the
segments S leads to one solution for the CLP problem here. The solution is
shown in the lower part of Figure 7.3 as the new requirements r below all
segments. First, the two backlogs are repaired according to Constraint (6.38),
which leads to taking over the guarantee values. This is possible, because
also the guarantee value of the segment sensor, which has got a buffer, is
taken over as new requirement. So the new overall latency of the function
chain is 24 and thus fulfills the latency constraint of 25. All five segments
must neither be tightened nor relaxed, because their guarantees are taken as
new requirements. Therefore Constraint (6.36) and Constraint (6.37) are not
applied in this example.

Analysis of Vertical and Diagonal Shifting:

For a demonstration of vertical and diagonal shifting we must extend the run-
ning example. We need an additional function chain, whose segments share
resources with the original function chain, because vertical and diagonal shift-
ing are based on the redistribution of resource utilization.
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resource: 

ECU 1

resource: 

bus

resource: 

ECU 2

sensor transmitM1 controller

r: 9 / g: 9 r: 3 / g: 3 r: 4 / g: 4

damperControlChain latency: 25

transmitM2 actuator

r: 4 / g: 4 r: 5 / g: 7

r: 9 r: 2 r: 3 r: 4 r: 7

in
p

u
t

solution 1

solution 2

resource: 

bus

resource: 

ECU 3

S1

r: 5 / g: 5

S2 S3

r: 4 / g: 2 r: 6 / g: 6

randomChain latency: 15

r: 6 r: 3 r: 6

r: 9 r: 2 r: 4 r: 3 r: 7

r: 5 r: 4 r: 6

r: 9 r: 1 r: 4 r: 4 r: 7

solution 3

solution 4

r: 5 r: 4 r: 6

r: 9 r: 3 r: 3 r: 3 r: 7

r: 6 r: 3 r: 6

solution 5

r: 9 r: 3 r: 2 r: 4 r: 7

r: 7 r: 2 r: 6

r: 9 r: 3 r: 4 r: 2 r: 7

solution 6

solution 7

r: 5 r: 4 r: 6

r: 9 r: 3 r: 4 r: 4 r: 5

r: 5 r: 2 r: 8

Fig. 7.4. Example with seven solutions by diagonal shifting.

As shown in Figure 7.4, we add a function chain called randomChain to the
example. The new function chain consists of three segments:

• The first segment S1 is of type externaltobus and it is located on the same
Ecu resource as the controller segment, which is of type overecu.

• The second segment S2 is a transmission segment and belongs to the same
bus resource as segments transmitM1 and transmitM2 (there is only one
bus in the example).

• The third segment S3 is of type bustoexternal and it is located on the
same Ecu resource as segment actuator.
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The segment groups controller plus S1, transmitM1 plus transmitM2 plus
S2, as well as actuator plus S3 each compete for their common resource.
transmitM1, transmitM2 and S2 are transmission segments and thus actually
represent a frame transmission on the bus. The four segments of the other
two segment groups represent competing task executions on their common
processor resource.

The sum of the old requirement values of the damperControlChain is 25,
i. e. it is exactly the latency constraint of that function chain. The sum of
the guarantee values of the damperControlChain is 27. So according to the
guarantees the latency constraint of a maximum of 25 is not fulfilled. There is
a local timing conflict at segment actuator, because there the guarantee does
not fulfill its requirement by 2. On the other hand, the guarantee sum of the
randomChain is 2 smaller than the old requirement sum. Segment S2 has got
a buffer of 2. Such local timing conflicts at segment actuator can be solved
with vertical and diagonal shifting by utilizing the buffer of segment S2 for a
fulfillment of the other function chain’s latency constraint.

The application of all rules of the shifting approach Shifting(S) over the
segments S of both chains leads to seven solutions for the CLP problem. The
solutions are shown in the lower part of Figure 7.4 as the new requirements r
below all segments. We discuss the solutions in the following.

The search for new requirement values is triggered by Predicate (6.39). The
predicate applies all CLP constraints for possible solutions, such as standard
output model constraints, invariants, the fulfillment of the timing constraints
by the new requirement values, and finally the rules for the shifting approach
by Shifting(S).

According to Constraint (6.38) a not fulfilled segment latency requirement
either results in taking over the guarantee or in setting the same requirement
as before, which is currently not fulfilled. The latter case has been chosen
in solution 1, i. e. segment actuator again got a new requirement of 5. This
choice however means that the requirement of segment actuator is tightened
with respect to the guarantee, which is 7. According to Constraint (6.36) such
a tightening implies a) that the chain path has a backlog (which is true for
the damperControlChain) and b) that there must be a relaxed segment on
the same resource. There is only one other segment on the same resource Ecu
3 is this case, which is segment S3. The new requirement of S3 in solution
1 therefore is 8, which is relaxed compared to the guarantee of 6. According
to Constraint (6.37) the relaxing of S3 implies a) that there is a path buffer
(which is true for the randomChain) and b) that there is a tightened segment
on the same resource, which is segment actuator, as already discussed. All
other segments of the two chains just take over their guarantee as the new
requirement and neither Constraint (6.36) nor Constraint (6.37) must be ap-
plied for them. In particular segment S2 thereby releases its buffer to relax
segment S3 by horizontal shifting. The buffer is then used to solve the timing
problem vertically on the resource Ecu 3 as described above. In combination,
the timing problem is solved by diagonal shifting. Solution 1 is the only pos-
sible solution for the case that the new requirement of segment actuator is
repeated.
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Solutions 2 to 7 cover the cases, where according to Constraint (6.38) the
new requirement of segment actuator is 7, i. e. its guarantee is just taken
over as new requirement. All these solutions have in common that another
segment of the function chain damperControlChain must be tightened by 2,
or 2 segments must be tightened by 1 each, because otherwise the latency
constraint of damperControlChain would not be fulfilled.

Therefore solution 2 is the most obvious one. The buffer of segment S2 is
vertically shifted to segment transmitM2 according to Constraint (6.37) and
Constraint (6.36). Practically this means that the priorities of the two frames
that are represented by the two segments must be adapted and thus the bus
schedule must be redesigned to fulfill these new requirements.

In solutions 3 and 4 segment S2 also provides its entire buffer to other seg-
ments on the bus resource by vertical shifting. In solution 3 the buffer is
divided for segment transmitM1 and transmitM2. both are tightened by 1,
which is possible because segment S2 on the same bus resource is relaxed
(Constraint (6.36) and Constraint (6.37)). In solution 4 the buffer is used
solely to tighten segment transmitM1 by 2.

Solutions 5, 6 and 7 utilize diagonal shifting. In solutions 5 and 6 a part of the
buffer of segment S2 is shifted horizontally to segment S1. From there it is
shifted vertically to segment controller which is then tightened by 1. The other
part of the buffer is still shifted vertically to the segment transmitM2 (solution
5) and transmitM1 (solution 6), respectively. In solution 7 the buffer of seg-
ment S2 is completely shifted diagonally to segment controller over segment
S1. Therefore the new requirement of segment controller can be tightened
by 2 and the overall latency constraints of both function chain damperCon-
trolChain and function chain randomChain are fulfilled, according to all new
requirement values.

The application of the shifting approach according to our CLP implementation
possibly offers several solutions for a new requirement value assignment. Thus
there still exists a certain freedom to choose one of the proposed solutions. A
typical approach in constraint programming is to evaluate solutions according
to appropriate cost functions. The solution with the lowest cost can the be
selected as final output. We outline possible cost evaluations for the shifting
approach in Section 8.2.

7.2.2 Discussion of the Windowing Approach

For the discussion of our windowing approach we assume a time-triggered
system that implements the system timing model of the running example
depicted in Figure 5.2.

We assume that the system only consists of the one function chain of the
example. The five segments now are understood as time windows according
to the windowing approach described in Section 6.5.3. Figure 7.5 displays the
five windows and their size and positions in time. The windows are within
the function chain’s given period P = 10, which we also consider as invariant
here. That means all triggering variables of the CLP problem have a predefined
value of 10 to simplify the demonstration of the windowing approach.



7.2 Application of the Timex Methodology 185

             sensor M1
controller

actuator
M2

damperControlChain latency: 25

i * P (i+1) * P

2 4 6 80 1 3 5 7 9

             sensor M1 controller actuatorM2required

windows

guaranteed

windows

in
p

u
t

s
o

lu
ti
o

n
 1

s
o

lu
ti
o

n
 2

2 4 6 80 1 3 5 7 9

             sensor M1 controller actuatorM2

2 4 6 80 1 3 5 7 9

             sensor M1 controller actuatorM2

Fig. 7.5. Example with two solutions by the windowing approach.

The input to the CLP system here are all old latency and offset requirements
and their according guarantees of iteration n. Additionally to the visualization
as windows we also provide a detailed table of all offset and latency values
of the example’s segments and hops in the following. As mentioned in Sec-
tion 6.5.3 window positions and sizes actually represent these low-level Timex
model details. Table 7.1 holds these low-level requirement and guarantee val-
ues for the input of the windowing example depicted in Figure 7.5.

old requirement guarantee
element type min max min max
sensor latency 1 13 1 13

controller latency 1 3 1 5
actuator latency 1 5 1 3

M1 queued offset 2 2 2 2
M1 transmitted offset 3 4 3 4

M2 queued offset 5 7 5 9
M2 transmitted offset 8 9 8 9

Table 7.1. The input values of the windowing approach example.

The input value situation in the example is as follows. The old requirement
values are in a way that the overall latency of the damperControlChain, i. e. the
length of all five windows, is exactly 25. There are neither gaps nor overlaps
between windows and the period switch occurs between two windows, namely
M2 and actuator. We defined rules in terms of predicates and constraints in
Section 6.5.3 to formalize these basic window conditions.
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The current guarantees of all windows in the example cause a local timing
problem. The controller window has a response backlog of 2. That means
the window size has increased by 2 at the right end. The response backlog is
also represented by the low-level latency and offset requirement values given
in Table 7.1. As shown in the table, the controller latency guarantee is 5
instead of 3 and therefore also the M2 queued hop max offset is 9 instead of
7. This response backlog leads to an overlap of the two windows controller
and M2. The bus data M2, which is queued for transmission at time point
9 is transmitted at time point 8 at the earliest (min) and 9 in the worst
case (max). Therefore a whole period of 10 is lost and must be added to the
overall function chain latency. The latency constraint of 25 is thus not fulfilled,
because according to the current window guarantees the overall latency can
be calculated as follows:

25︸︷︷︸
original latency

+ 10︸︷︷︸
period loss

− 2︸︷︷︸
buffer of window actuator

= 33

The actuator window in the example has a response buffer of 2. The buffer
is indicated by the green color in Figure 7.5. The actuator latency guarantee
has decreased to 3, compared to the old requirement of 5. All other windows
exactly fulfill their requirements with their guarantees. Using our windowing
approach, the buffer of the actuator window can be used to solve the local
timing problem of the controller window.

As we will demonstrate in the following, two solutions are possible in the win-
dowing approach CLP system initiated by the Search_TT Predicate (6.66).
The predicate applies all rules of the windowing approach as CLP constraints.
The rules cover all general conditions for offset, period and latency require-
ments, the fulfillment of all timing constraints and some more (see Sec-
tion 6.5.3). In the following we focus on the functionality of the predicate
Windowing(S) over the set of all segments, which implements the windowing
approach.

The starting point of the windowing approach CLP realization here is Con-
straint (6.56). The predicate initiates an action, if a response backlog occurs,
which is the case for window controller. There are three possible reactions
to a response backlog according to the predicate. Either the guaranteed win-
dow is kept, or only the window response requirement is repeated, or the old
window requirement is repeated completely (window stimulus and response).
The last possibility would trigger Constraint (6.60) and thus would imply the
predicate Resource_Freed(s). As there is no other window available on the
resource of the controller window in the example, this possibility cannot be
applied because the resource cannot be freed. The other two possible reactions
in Constraint (6.56) result in the two following solutions to the CLP problem
of the example.

The first solution is summarized in Table 7.2 and also depicted in Figure 7.5.
The guarantee window is kept and thus Constraint (6.58) is triggered. That
means that the next window M2 must be shifted to the right. According to
Predicate (6.55) a right shift in this case means that there is a period switch to
the right and in the new requirements the window stimulus must be tightened.
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The window M2 does not have a stimulus buffer. Finally, Constraint (6.65)
transitively shifts the last actuator window to the right over the period switch.
TheM2 window response must be relaxed, because it does not have a response
buffer. The actuator window finally has a buffer of 2 and the constraints are
fulfilled. The shifting leads to an overall function chain latency of 25 again,
because the overlap of the two windows is solved and the buffer is transferred
from the actuator window to the controller window.

new requirement
element type min max
sensor latency 1 13

controller latency 1 5
actuator latency 1 3

M1 queued offset 2 2
M1 transmitted offset 3 4

M2 queued offset 5 9
M2 transmitted offset 0 1

Table 7.2. Solution 1 of the windowing approach example.

The second solution is summarized in Table 7.3 and depicted in the lower part
of Figure 7.5. According to Constraint (6.56) in this case only the response
of the controller window requirement is repeated and Constraint (6.59) is
triggered. As a consequence the controller window’s stimulus must be relaxed
because there is no buffer that could be used. Therefore the previous window
must be shifted to the left. Thereby Constraint (6.65) triggers the transitive
shifting of also the sensor window to the left. Again, the resulting window
arrangement leads to an overall latency of 25 and thus fulfills the latency
constraint of the function chain.

new requirement
element type min max
sensor latency 1 13

controller latency 1 5
actuator latency 1 3

M1 queued offset 0 0
M1 transmitted offset 1 2

M2 queued offset 3 7
M2 transmitted offset 8 9

Table 7.3. Solution 2 of the windowing approach example.

Note that the window arrangements of the two solutions of the example dif-
fer only in the relative positions of the windows in time. The window sizes
are equal in both solutions. The overall function chain latency of the new
window requirements is also equal in both solutions. This way the example
highlights the basic functionality of "moving and resizing time windows" by
the windowing approach.
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The application of the windowing approach can offer several solutions, as one
can see in the discussed example. We outline possible cost functions to identify
an optimal solution of the windowing approach in Section 8.2.

7.3 Benefits of the Timex Methodology

7.3.1 Automatically Derive Subsystem Timing Requirements

In Section 4.7.1 we explain the limitations of related work regarding the deriva-
tion of subsystem constraints from given system-level timing constraints.
Many approaches to analyze a system’s timing behavior assume given task
or frame deadlines. The fulfillment of those deadlines can be guaranteed by
various analysis approaches.

According to Definition 6.2, the goal of Timex methodology it to ensure
the system’s correct timing behavior on subsystem level instead of system
level. Therefore we distinguish function-triggered timing constraints (system
level) and timing guarantees (subsystem level). The fulfillment of all timing
requirements by their guarantees must ensure the fulfillment of all timing
constraints. We formulated this condition in Predicate (6.9).

In all examples that we discuss in this section, for both the windowing ap-
proach and the shifting approach, we demonstrate that the system’s incorrect
timing behavior is indicated by what we call local timing problems. Those
simply are not fulfilled requirements of either segments or hops, i. e. timing
requirements on subsystem level. It is not necessary to perform a system wide
timing analysis to realize the incorrect timing behavior. This is an advantage
of Timex and its semantics of timing requirements. However, to rely on Pred-
icate (6.9), the generation of all timing requirements must be done correctly
beforehand. We use predicate logic to formalize our CLP approach that incor-
porates several CLP constraints, which ensure the validity of Predicate (6.9)
both for event-triggered and time-triggered systems.

In Section 6.4.1 we formulate a CLP constraint for each of the three function-
triggered timing constraint types of Timexfor the case of an event-triggered
system. These CLP constraints are used in the overall search Predicate (6.39),
which initiates the entire shifting approach. Similar, in Section 6.5.2 we formu-
late a CLP constraint for each of the three function-triggered timing constraint
types for the case of a time-triggered system. The search Predicate (6.66) uses
these and thus ensures Predicate (6.9) also for the windowing approach.

In the examples discussed for the shifting and windowing approaches the so-
lutions according to our CLP realization automatically ensured correct timing
requirements. In the event-triggered case, the sum of the latency requirement
values is lower than the latency constraint of the function chain. In the time-
triggered case, the length of the windows in the time line also fulfills the overall
latency.

To conclude the discussion about how Timex overcomes the related work
limitation regarding the derivation of subsystem constraints: If an appropriate
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timing model like Timex is used and the subsystem requirement generation
is done right, then the great advantage is that the timing correctness can
be ensured on subsystem requirement level, rather than on system constraint
level. Our CLP implementation ensures this and Predicate (6.9) is valid for
the Timex methodology.

7.3.2 Systematically React to Local Timing Problems

Another related work limitation we discuss in Section 4.7.3 is that the tim-
ing properties of typical timing models do not qualify as target of timing
requirements and for being exchanged between development teams. Those
low-level properties like response times, priorities etc. are very unstable and
implementation-specific in practice. The consequences of changes of those low-
level timing properties to the entire system are not easy to predict. Thus, tim-
ing budget negotiation – as proposed by the Timex methodology – should be
done on more abstract levels. Timing problems can systematically be solved
on these abstract levels, which in our model is the level of segments and hops,
instead of the above-mentioned low-level timing properties. We discuss the
benefits of Timex with respect to systematical reaction to local timing prob-
lems based on the shifting and windowing approach examples in the following.

Implementation-specific low-level timing properties of a subsystem can change
during development. From a system integration perspective, which typically a
system designer has, such changes are only important if they affect the guar-
antees of that subsystem. In other words, the subsystem developer does not
need to reveal his implementation-specific low-level timing properties, which
we consider as his intellectual property. The level of information exchange
between development teams and the system designer solely is the level of seg-
ment and hop requirements and guarantees. In the examples, we solve local
timing conflicts only based on the comparison of requirement and guarantee
values. We are not interested in the detailed task priorities, worst case response
times or other schedule information. Further, the output of the requirement
generation process also solely are requirements for segment latencies and hop
offsets, not requirements for the low-level schedules themselves, like priorities
or task offsets. In today’s collaboration processes in the automotive industry,
this kind of timing requirements gains much more acceptance by subsystem
developers and suppliers, because they leave enough freedom of design and
respect the suppliers development competence.

The temporary Assumption 4.6 of Chapter 4 is not valid in practice. The sys-
tem is developed by many different development teams. Thus typical schedule
generation approaches are hard to realize in distributed development. If a tim-
ing problem like a not fulfilled timing constraint exists in a system design, it
is unrealistic to generate an entire new schedule for the whole system (Ecus
and busses) and to give completely new requirements for low-level properties
to the subsystem developers. Rather, each subsystem developer is responsi-
ble for his part of the overall global schedule. The Timex approach solely
applies a raw schedule frame for the subsystems, by assigning time budgets
for them. These budgets are iteratively negotiated. Timing problems can be
identified as local timing problems of certain subsystems and the reaction to
such problems yields to a minimal impact to the rest of the system.
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In the first event-triggered system example of Section 7.2.1 a timing problem
exists only for the segments controller and transmitM2. The solution calcu-
lated by the shifting approach is not a complete new requirement setup. The
two segments transmitM1 and actuator are not affected by the new solution.
In the second, more complex example with two chains, also segments are af-
fected by the seven new solutions, which were not involved in the local timing
problems. However, especially when requirements are tightened for a subsys-
tem, the shifting approach ensures that another requirement is relaxed on the
same resource and thus redistributes the budgets in a fair manner.

As described in Section 2.1.4, especially time-triggered Ecu and bus sched-
ules are tightly coupled with each other. Changes of the schedule of a sender
Ecu for example can lead to a period loss, if the receiver Ecu schedule is
not adapted accordingly. The windowing approach example discussed in Sec-
tion 7.2.2 shows such a local timing problem. The windowing approach how-
ever ensures that depending schedules are adapted and also minimizes the
impact on other subsystems. The movement of windows on the time line is
performed in a way that fair window position and size changes are ensured.
That means that a window is moved to a new location, if the specific local
schedule is freed at that position (see Constraint (6.51)).

Summarizing, the Timex requirement generation approach helps to systemat-
ically react to local timing problems. In a not distributed development process,
probably also a random re-generation of the global schedule would be ac-
ceptable. However, in distributed development Timex helps to minimize the
impact of local timing problems to other subsystem’s timing requirements.
Further, Timex is an approach to abstract from low-level timing properties if
timing requirements and according guarantees are exchanged between system
designers and subsystem developers. The low-level timing properties them-
selves are considered as intellectual property of the subsystem suppliers.
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Conclusion

8.1 Summary

In this thesis we presented our approach to derive and iteratively maintain
subsystem timing requirements from given function-triggered – and system-
independent – timing constraints. As a formal basis we developed Timex, a
timing model for distributed development of automotive real-time systems.
Timex is organized in two sections. A Timex function timing is used to cap-
ture implementation-independent timing constraints of automotive functions.
As an example of such a function we use a chassis control function throughout
the thesis, which is used to stabilize the car during driving. Such functions
typically are end-to-end functions from a certain sensor to an observable actu-
ator output and have strict timing constraints due to safety reasons. A Timex
system timing is used to structure the entire automotive system according to
the assignment of subsystems to development teams. The end-to-end paths
of functions are thus segmented at the border between two different subsys-
tems, such as Ecus and the communication busses. A system timing carries
subsystem timing requirements, which are derived from the function-triggered
timing constraints.

The derivation of subsystem timing requirements as well as the iterative re-
finement of the requirements during development can be expressed by formal
rules. In this thesis we presented a predicate logic formalization for these rules
for both event-triggered and time-triggered systems. The approach takes the
current requirement and guarantee setup of all subsystems as input. If at
least one requirement is not fulfilled by its guarantee, the fulfillment of all
function-triggered timing constraints cannot be assured and a modification of
the requirements is triggered. As a benefit of Timex, the abstract timing anal-
ysis can be performed by the system designer per subsystem and on the level
of timing requirements. This model-based approach eases and automates the
system designer’s timing validation process of the system. If a timing problem
exists, our constraint logic programming system can be used to search for pos-
sible modified timing requirement setups, which have the highest probability
of fulfillment of all timing requirements.
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8.2 Outlook

Our work leaves some room for improvements and further investigation. This
section gives an outlook of possible future work.

Regarding our constraint logic programming implementation of the shifting
and windowing approaches, we did not discuss optimization strategies for
the search for solutions. As we showed in Section 7.2, there can be multiple
solutions as a timing requirement modification to fix a local timing problem.
Shifting and windowing are designed to allow for as many reaction choices as
possible and calculate all such possible reactions according to the rules. We
assumed engineering work to analyze the solutions and select one of them.
However, formalized optimization or selection metrics could be added to the
search to automate this process. As an example, a metric could prioritize
those solutions, which involve the least resource or subsystem changes, because
all changes must be handed to the respective subsystem developers as new
requirements.

The functional architecture of our system model only consists of end-to-end
functions. Further, these functions can only have sensor inputs and actua-
tor outputs at the boarder of the system to its environment. The functional
architecture thus does not provide a concept of subfunctions, which can be
composed to functions. Typical automotive functions are end-to-end functions
that are visible at the system boarders. Body functions of a car for example
are typically controllable by the driver via buttons and respond by actuators,
which are visible to the driver, such as light or mechanical reaction. Examples
for such body functions are the electric window lift, where the user presses
a button (sensor) and expects window movement (actuator reaction), or the
turn indicator, where the user pushes a lever (sensor) and expects the indi-
cator lights to turn on (actuator reaction). Chassis functions also use some
sensor data as input and produce mechanical actuator output, like the running
example (damper control function) of this thesis. Other chassis functions, like
for example steering or braking, are also based on driver input, which is made
available to the system by sensors, and control recognizable actuators. As al-
ready stated above, all those functions fit to the scheme of sensor-to-actuator
functions. Our system model and our Timex model fit for such sensor-to-
actuator functions. In practice however, such functions are often divided into
subfunctions. A typical reason for subfunction structures is to reuse basic func-
tionality in several functions. Consider as example the turn indicator again. A
car typically has several parallel functions based on the indicator lights, such
as left and right turn indication or warning lights. One common subfunction
for all these functions could be a turn light controller that mediates between
the different sensors (turn indicator lever, warning light button) and actuators
(all available turn lights). Such a subfunction does not have direct actuator
output, but an internal interface to the actual light controllers. Therefore it
could not be modeled within a Timex function timing model as presented
in this thesis. Other system models we discussed in Section 3.3 are capable
of such subfunctions. The Timex model could be extended to support tim-
ing constraints for subfunctions in its function timing model by also adding
internal interfaces.
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Observable events, and thus also hops, in our models represent observable
actions in the system. The instances of such events can be observed, every
time the action is performed by the system. In our current model and its
semantics, the instances cannot be limited – or filtered – to a subset of all
possible instances. Additional concepts for a more precise definition of observ-
able events are conceivable. One could be interested in only such instances of
an observable event, which are defined by some kind of data-dependency. For
a send event at a software component’s port for example probably only the
instances are of interest, which occur when the sent data element has a spe-
cific value. The same "occurrence filter" could be applied for signal events
or receive events (see Section 3.4). Consider the indicator function explained
above. When the controller subfunction receives the sensor input, it decides
which lights should be turned on or off. As a result it could send one shared
message to all light controllers that contains the information, which lights
should be turned on. Timing constraints for the subfunctions (left, right or
warning light) would only be valid depending on the content of this message.
Thus, the message occurrences could be filtered to fit the right subfunction.

Another possible enhancement for our event model is the concept of composed
events. That is, an abstract observable event is defined to occur every time,
when several basic observable events actually occur. Timing requirements, as
well as other requirements of automotive functions, often are defined using
such types of events. As an example consider a wiper function, which is trig-
gered by the driver who pushes a lever. The activation of the function however
actually also depends on other input data, such as rain information of the rain
sensor. A timing constraint for the wiper function thus must be defined using
the additional rain sensor input context. Therefore a composed event could
be used. A concept of composed observable events could easily by added to
Timex. The semantics of the concept and its influence on the requirement
generation by the shifting and windowing approach should be investigated.

More generally, timing constraints could depend on certain system states or
modes. Car systems often define some standard modes, such as "stopping",
"parking" or "high speed driving". Often timing constraints are only valid in
the context of a certain state of the system, typically because the functions
are not available in other states or because they have different constraints
in other states. The timing extensions of Autosar for example support a
simple concept for mode switch timing constraints [4]. The system model of
this thesis could be extended by such a state or mode concept.

In this thesis we basically investigated simple function event chains with one
sensor stimulus and one actuator response event, such as the damper function
example. The Timex model however also allows for more complex function
event chains. Consider the warning light function, which requires all four turn
lights to be activated after the warning light button has been pushed. Such
a function could be modeled with four response events, one for each light
activation. In Timex, each of the four paths from the button to the lights can
easily be modeled as an own function event chain. Each of the function event
chains must then be assigned an own function-triggered timing constraint. The
model so far does not provide a simplification that allows for an aggregated,
complex function, which consists of several function event chains that belong
to the same car function.
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Another improvement of the Timex model could be a support for complex
data paths of a function’s stimulus event to its response event. If several
possible paths exist, we call such segments with the same stimulus hop but
different response hops a "fork". Segments with different stimulus hops but
the same response hop are called a "join". Using forks and joins, especially
in combination with data-dependent and composed hops can result in very
complex function event chain definitions. The derivation of segment and hop
requirements from timing constraints for such complex function event chains
is certainly more difficult, compared to the rather simple ones that we investi-
gated in this thesis. Our work however already provides the necessary formal
model and the basic derivation algorithm that could be extended by rules for
more complex function event chains as well.
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Tool Prototype

During the work on this thesis we developed a tool prototype to support the
application of Timex. The tool consists of the following parts:

• an Ecore [89] realization and a generated Java implementation of the
Timex meta-model

• a textual Timex model editor based on Xtext [40]

• an implementation of both the shifting and the windowing approach using
the constraint programming system ECLiPSe [19]

• a visualization concept for Timex models and requirement/guarantee
value pairs

The tool is based on Artop, the AUTOSAR Tool Platform [48, 77]. Artop is
an implementation of common base functionality for Autosar development
tools, such as model and workspace management, import and export of Au-
tosar XML files, and generic tree-based editors for all Autosar models.
Artop is based on Eclipse (not to be confused with ECLiPSe). Eclipse is an
open source community that develops an open tool platform that is used for
many software engineering and programming tools [34].

The four parts of the functionality of our Timex tooling listed above were de-
veloped as plug-ins for Artop. In the following, we provide a short description
of the tool parts.

A.1 Tool Overview

As shown in Figure A.1, the tooling for Timex is built up around three dif-
ferent types of model.

• The standardized Autosar model is used as exchange model requirement
and guarantee data between development teams. The timing extension
structure (i. e. necessary event, event chain and timing constraint elements,
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without concrete initial values) is automatically generated based on the
Timex model.

• As engineering model the tool provides Timex and the according textual
model editor (see Section A.2).

• The Timex model is used to generate Prolog facts for the constraint solver,
which represent the computation model. The facts and the implemented
rules of the shifting and windowing approach are used to search for new
requirement values in each iteration of the Timex methodology.

Fig. A.1. Three different model types of the overall Timex tooling.
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A.2 Textual Timex Model Editor

Using Xtext, we created a Timex Ecore [89] model and generated a Timex
textual editor. The editor provides the syntax for both a function timing and
a system timing model of Timex.

Fig. A.2. Example function timing in the textual Timex editor.

Figure A.2 displays the function timing of the running example in the textual
editor. Hop declarations reference Autosar observable events, which are im-
ported by the editor in the first line. After the hop declaration, a complete
function timing is defined, which uses the declared hops. A function timing in
our model references a function of our system model.

The industry standard Autosar however does not provide the concept of a
"function", because it basically consists of a logical and technical architecture
model. Our system model, which in principle is similarly structured, extends
the Autosar model with its functional architecture. Nevertheless we want to
ensure the possibility to map from one model to the other. As a workaround,
it is possible to define a so-called composition component without atomic
software components in Autosar as a function and use it to model function-
triggered timing constraints. In the example the function timing references a
SimpleComposition for that purpose.
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Figure A.3 displays the system timing of the running example in the textual
editor. Similar to the function timing syntax, first all referenced Autosar and
Timex models are imported. Then all additional hops of the system timing
are declared. The system timing in this case is used for the time-triggered
realization of the function. Therefore a hop cycleStart is defined.

Fig. A.3. Example system timing in the textual Timex editor.
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A.3 Timex Visualization

Figure A.4 shows our visualization of a Timex system model for an event-
triggered system. A function chain is displayed as a sequence of segment lines.
The segment lines are colored according to their requirement fulfillment. Is a
segment’s requirement is not fulfilled by its guarantee, then it is colored in
red. A circle at a hop indicates a triggering requirement for that hop.

Fig. A.4. Visualization of the example Timex model for an event-triggered system.

Figure A.5 shows the system timing for a time-triggered system. Hop offsets
are displayed relatively to the period start. For simplification, additional other
display types for system timing models are available. Figure A.6 as such a
simplification shows the same system timing without requirement values and
concentrates solely on the structure.
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Fig. A.5. Visualization of the example Timex model for a time-triggered system.

Fig. A.6. Structural visualization of the example Timex model for a time-triggered
system.
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A.4 Requirement and Guarantee Value Table Editor

An easy way of editing requirement and guarantee values is provided by our
table editor. Each line in the editor represents one requirement and guarantee
pair.

Figure A.7 displays the table editor that has loaded the system timing model
for the event-triggered system case. If a requirement is not fulfilled, it is colored
in red. An over-fulfilled requirement is colored in darker green.

Fig. A.7. Table editor view of the requirements and guarantees of the event-
triggered example.

Figure A.8 displays the table editor that has loaded the system timing model
for the time-triggered system implementation. Here, additionally hop offsets
are included in the table. Changes in the table can directly be saved to the
according Autosar XML file by clicking "Save Changes".
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Fig. A.8. Table editor view of the requirements and guarantees of the time-triggered
example.
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