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Abstract—In this paper we analyze the existence of efficient
bandpass-type systems for the space of bounded bandlimited
signals. Here efficient means that the system fulfills the following
properties: every output signal contains only frequencies within
the passband; every input signal that has only frequencies within
the passband is not disturbed by the system; and the system is
stable. Without using any further assumptions, such as time-in-
variance, we prove that a linear realization cannot exist. Moreover,
we show that a nonlinear realization is possible. It is well-known
that every signal with finite energy can be split into two signals
with finite energy, each of which contains a different part of
the spectrum. Surprisingly, this does not hold for the space of
bounded bandlimited signals. It is shown that there exist bounded
bandlimited signals that cannot be split in the above way. These
results can be of relevance for all applications where filters are
used and the peak value of the signals is decisive, e.g., the design
of efficient power amplifiers in wireless communication systems.
The no-go results in this paper are helpful to better understand
the signal space of bounded bandlimited signals and the limits of
signal processing operations on this space.

Index Terms—Bandpass, frequency splitting, linear realization,
lowpass, nonlinear realization, stability, system.

I. INTRODUCTION

F ILTERS are widely used in signal processing and system
theory. The filtering of signals is especially descriptive

when the signals are treated in the frequency domain. Loosely
speaking, filters can be used to extract certain frequency por-
tions from the signal, while other frequencies are suppressed.
The passband of a filter is a certain frequency interval that spec-
ifies the behavior of the filter. All signals that have only fre-
quencies within the passband are not disturbed by the filter.
Filters can be characterized according to their passband. It is
common to distinguish between lowpass-type, highpass-type,
bandpass-type, and bandstop-type filters.
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In wireless communication systems different transmission
techniques are used, for example time-division multiple access
(TDMA) in GSM systems and orthogonal frequency division
multiplexing (OFDM) in the downlink of 3GPP long term evo-
lution (LTE) systems. Depending on the employed transmission
technique, different signal spaces are appropriate for the mathe-
matical treatment of the corresponding communication system.
While in TDMA systems the transmitted signal has a constant
envelope at each symbol time, the peak value of the transmitted
signal in OFDM systems depends crucially on the data which
shall be transmitted, and can get large compared to the average
signal power. A common measure to quantify the peakiness of
an OFDM signal is the peak-to-average power ratio (PAPR)
[1]. OFDM systems are spectrally efficient but the transmit
signals exhibit large PAPR values in general. For signals with
large PAPR value it difficult and expensive to build high-effi-
ciency power amplifiers. Thus, compared to traditional GSM
systems, where the power amplifier design poses no problem,
it is much more difficult to built efficient power amplifiers for
LTE systems which use OFDM. Consequently, in order to save
energy and costs, it is desirable to have OFDM transmit signals
with small a PAPR value. Since, assuming a constant average
signal power, the PAPR value of a signal depends on the peak
value of the signal, it is natural to use the signal space of
bounded and bandlimited signals equipped with the supremum
norm for the analysis. A precise mathematical definition
will be given in the next section.

The reason for the large PAPR values in OFDM systems is
rooted in the structure of the signals and thus lies in the nature
of the signal space . The main objective of this paper is to
better understand the space and to identify the possible and
the impossible signal processing operations for this space. In
particular, we want to analyze whether certain filtering opera-
tions exist and how they can be realized.

In the following, we use the term system instead of filter be-
cause filters are often assumed to be linear and time-invariant,
and we do not want to restrict our analysis a priori to systems
with those properties.

For several reasons bandpass-type systems should be efficient
in the sense that

P1) every output signal has only frequencies within the
passband;
P2) every input signal that has only frequencies within the
passband is not disturbed by the system; and
P3) the system is stable.

In many applications such efficient systems are desirable. For
example in wireless communication systems the transmitted
signal must be concentrated within certain predefined frequency
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bands. The fraction of the signal power outside these intervals
has to be below some threshold, in order that the signal does
not interfere with other services that use these frequencies.
Ideally, the out-of-band power would be zero, i.e., the employed
bandpass-type system, which is used to filter the signal, should
fulfill property P1). On the other hand the desired signal within
the passband should not be disturbed by the filter. This is what
property P2) expresses. In property P3) we mean with stability
that the norm of the output signal can be controlled.

It is reasonable to call a bandpass-type system ideal if, in
addition to P1)–P3) it has the property that

P4) the system output is the zero signal for every signal that
has no frequencies within the passband.

Obviously, the class of ideal bandpass-type systems is a subclass
of the efficient bandpass-type systems. Note that the above defi-
nitions do not assume the systems to be time-invariant or linear.
This definition of an ideal bandpass-type system corresponds to
the accepted definition of an ideal bandpass-type filter [2], if we
further assume that the system is linear.

Lowpass-type, highpass-type, bandpass-type, and bandstop-
type systems are also frequently used in theoretical analyses. In
[3] for example, Logan develops a theory of modulation sys-
tems, in which bandpass-type systems play a central role. Mod-
ulation systems are often based on the Hilbert transform. How-
ever, for general bounded bandlimited signals the Hilbert trans-
form does not necessarily exist. Interestingly, for every bounded
bandpass signal the Hilbert transform exists and is bounded [4].

The main results of this paper about the realizability and ex-
istence of signals processing operations on the space of
bounded and bandlimited signals, given in Sections IV, V, and
VI, are as follows. In Section IV we prove that there exists no
linear (not even a time-variant) realization of efficient bandpass-
type systems for the signal space , and in Section V we show
that a nonlinear realization of efficient bandpass-type systems
exists. Moreover, in Section VI we prove that a splitting of the
signals with respect to their frequency content, is not possible
in general. As a consequence, two operations, which are often
used and whose existence is generally taken for granted, the ex-
traction of frequency components and the splitting of a signal
into two parts with disjoint spectrum, cannot be performed in a
stable manner for the signal space .

II. NOTATION AND DEFINITIONS

In order to continue, we need some notation and definitions.
Let denote the Fourier transform of a function . ,

, is the space of all th-power Lebesgue integrable
functions on , with the usual norm , and is the
space of all functions for which the essential supremum norm

is finite. , , is the space of all functions
in whose support is in the closed interval .
denotes the space of all continuous functions on that vanish
at infinity, and the space of all infinitely differentiable
functions on whose support is in .

For let be the set of all entire functions
with the property that for all there exists a constant

with for all . The
Bernstein space , , consists of all functions in

, whose restriction to the real line is in . The norm for
is given by the -norm on the real line, i.e.,

. A signal in is called bandlimited to , and is the
space of bounded and bandlimited signals. For signals in ,
we have the following lemma, which is a consequence of the
Phragmén-Lindelöf principle [5, Lecture 6].

Lemma 1: Let , . Then we have
for all .

Moreover, denotes the set of all signals in that vanish
at infinity. An important property of the space is stated in
the following lemma, the proof of which is given in Appendix A.

Lemma 2: The normed space , , is
complete.

For and we denote by the
Paley-Wiener space of signals with a representation

, , for some . If

then . The norm for , ,

is given by . For
we obtain the Paley-Wiener space , which is nothing else
than the space of bandlimited signals with finite energy.

As we can see from the above definitions, all signals in and
in , , , are defined on the complex
plane. However, in practical applications the signals are usually
considered to be a function of a real variable, which often rep-
resents the time. Since all signals in the above spaces are entire
functions, they are uniquely determined by their values on the
real line. Therefore, we will not distinguish between signals de-
fined on the complex plane and signals defined on the real axis
in the following. For example, if is a function defined on the
real axis and we write , we mean that can be extended
to an entire function, defined on the complex plane, which is in

. Equally, if is an entire function and we write ,
we mean that the restriction of to the real axis is in .

A. An Alternative Definition of Bandlimitedness

For signals in the Fourier transform does not need to
exist. Hence, we have to be careful when we use terms like “fre-
quencies of a signal”. However, it will turn out that—with the
proper definitions—we can mathematically rigorously formu-
late the properties P1)–P3) of efficient bandpass-type systems,
which were listed in an intuitive way in Section I, for systems
operating on .

We use the following definition to declare bounded bandpass
signals. This definition is similar to Zakai’s definition of ban-
dlimited signals in [6]. For let

The space consists of all signals that
fulfill for all and all

. The norm of is given by the -norm
on the real line.

The following lemma shows that bounded bandlimited sig-
nals are a special case of bounded bandpass signals. Hence, this
definition of bandlimitedness is closely related to the one given
in the previous section.

Lemma 3: Let . Then we have .
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The proof of Lemma 3 is given in Appendix B. Furthermore,
has the important property to be complete. We will

use this fact in the proof of Theorem 2.
Lemma 4: Let and

. Then is a closed subspace of
and complete.

The proof of Lemma 4 is included in Appendix C.
Analogously to the one-sided bandpass signals, we define the

two-sided bandpass signals. For let

The space consists of all signals that
fulfill for all and all

.
Note that, according to the previous definitions and Lemma

3, we have . Without loss of generality
we can restrict the analyses to the bandwidth . Any other
bandwidth can be obtained by a simple scaling of the signal.

B. LTI Systems

We briefly review some definitions and facts about stable LTI
systems. A linear system , mapping signals from
the space to the space , is called stable if the operator is
bounded, i.e., if . Furthermore,
it is called time invariant if for
all and .

Remark 1: Note that our definition of stability is with respect
to the norms of the spaces and , and thus is different from
the concept of bounded input—bounded output (BIBO) stability
in general.

Mathematically, a system is an operator, i.e., a rule by which
an input signal is transformed into an output signal. This oper-
ator can have different representations. For example, one pos-
sible representation for stable LTI systems operating on signals
in is the following well-known frequency-domain repre-
sentation. For every stable LTI system there
exists exactly one function such that

(1)

for all and all . The operator norm of
is given by and the impulse response by

. Conversely, every function de-
fines a stable LTI system . Thus, the space of
all stable LTI systems defined on is isometrically isomor-
phic to . Note that
and consequently . Another possible representation
for stable LTI systems operating on signals in is the fol-
lowing time-domain representation in the form of a convolution
integral. For every stable LTI system we
have

(2)

for all and all .

C. Stability Concepts

A common concept of stability is bounded input—bounded
output (BIBO) stability.

Definition 1: A LTI system is called
BIBO-stable if

According to this definition, the output of every BIBO-stable
LTI system is bounded. Furthermore, for bounded and bandlim-
ited signals we define the following notion of stability.

Definition 2: A LTI system is called
-stable if

Using the common notation, we denote by

the operator norm of .
From both definitions above and the fact that ,

it follows immediately that every BIBO-stable LTI system is
also a -stable LTI system.

The next lemma gives a necessary and sufficient condition for
the -stability of a LTI system.

Lemma 5: Let be a LTI system.
is -stable if and only if for all there exists a

such that

(3)

for all and all .
In the proof, which is given in Appendix D, we will see

that the sufficient condition for -stability can be further
weakened. A LTI system is -stable
if for some there exists a such that (3) is true
for all .

III. REALIZATION OF SYSTEMS

In an abstract view, an efficient system is an operator that
maps every input signal to an output signal in accordance with
the above properties P1)–P3). It is important to distinguish be-
tween the abstract concept of a system, or more general of an
operator, and the actual realization. An operator can have many
possible realizations with different properties. To illustrate these
differences we give two examples.

The differential operator is well defined on the space of
bounded bandlimited signals that vanish at infinity. One real-
ization of this operator is given by

(4)
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This series is formally obtained from the Shannon sampling se-
ries

by differentiating termwise. Another possible realization, which
is obtained by differentiating the Valiron interpolation series [7],
[8, p. 12]

is given by

(5)

The two realizations have different properties. For example, the
sum in the second realization (5) is absolutely convergent, while
the sum in the first realization (4) is not absolutely convergent
in general. Thus, from the fact that one realization does not have
a specific property we cannot conclude that there exist no real-
ization with this property.

In order to further illustrate what we mean by realization of
a system, we consider again the differential operator and ask
whether a certain system with prescribed properties exists and
how a realization of this system looks like. Let denote the
space of complex-valued bounded and continuous signals de-
fined on with the norm . Can we find
a system that maps every signal in to a bandlimited signal,
additionally has the property that
for all , and fulfills for all ? Thus, the
system is defined on the large signal space and equals the
differential operator on the subspace . For signals in ,
the differential operator is well defined and we have

according to Bernstein’s inequality [9, p. 49].
A first attempt to get a realization of the desired system

is to use a realization of the differential operator which is valid
for signals in the space . For signals we
have

and , where

(6)
We see that (6) is a linear and time-invariant realization of the
differential operator for signals in . Although (6) is a pos-
sible realization of the differential operator for , it is no
realization of the desired system , because

(7)

which means that the operator is not stable for . Equation
(7) can verified by showing that for the signal

.

However, the divergence of (6) for certain signals in does not
imply that the desired system does not exist. For example,
a possible time-variant realization of the desired system is
given by (5).

In this paper we analyze the existence of bandpass-type sys-
tems operating on the space of bounded and bandlimited
signals. It will turn out that it is impossible to find a linear re-
alization of efficient bandpass-type systems because linear effi-
cient bandpass-type systems system do not exist for the space

. Surprisingly, a nonlinear realization is possible.

IV. NO-GO THEOREM FOR LINEAR REALIZATION OF EFFICIENT

BANDPASS-TYPE SYSTEMS

In this section we analyze whether a linear realization of ef-
ficient bandpass-type systems exists for , i.e., the space of
bounded bandlimited signals.

Theorem 1: Let with . There
exists no linear operator defined on with the properties

i) ;
ii) for all ;

iii) is bounded.
The properties i)–iii) are the mathematical formulation of the

properties P1)–P3), which determine an efficient system. Prop-
erty i) means that the system output has only frequencies in the
range . Property ii) says that every signal
with frequencies concentrated in the passband is not disturbed
by the system, and property iii) expresses the stability of the
system. The additional condition in Theorem 1
was only included to prevent the case where and .
In this case the identity operator would trivially fulfill the prop-
erties i), ii), and iii).

Theorem 1 shows that there exists no linear operator de-
fined on with the properties i)–iii). Consequently, a linear
realization of efficient bandpass-type systems for the signal
space cannot exist. Since the class of ideal bandpass-type
systems is a subclass of the efficient bandpass-type systems,
this implies that there exists no linear realization of ideal
bandpass-type systems.

Remark 2: Since every lowpass-type system can be seen as
a bandpass-type system with a passband that starts from zero,
Theorem 1 also implies that there exists no linear realization of
efficient lowpass-type systems for the signal space .

Note that the result of Theorem 1 is very general, because
there are many conceivable realizations. For example we do not
restrict the systems to be time-invariant.

Proof of Theorem 1: The proof is divided into two parts. In
the fist part we prove the assertion for and in
the second part for .

First part: Let with be arbitrary
but fixed. The non-existence is proved indirectly. We assume
that there exists a bounded linear operator defined on
with the properties i) and ii) and construct a contradiction.
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For the proof we need the functions

where

Thus, for all . Moreover, let
. Then we have

(8)

for all and all , where the constant is indepen-
dent of [10, p. 183]. For the moment, let and
be arbitrary but fixed. We have

Since for all , the function
is in and it follows that

for all , according to property ii), which is
assumed to be true. Further, we know from i) that

for . Consequently, we obtain

and it follows that

(9)

Next, we treat the integral on the right-hand side (RHS) of (9)
for . According to Cauchy’s integral theorem,
we have

where and are the integration paths depicted in Fig. 1.
Since , Lemma 1 guarantees the existence of a
constant such that

for all , and it follows that

(10)

Bearing in mind that

and that for all , we can further
evaluate the integral on the RHS of (10)

Thus, we obtain

and consequently

(11)
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for all . Using (11), it follows from (9) that

(12)

Since is assumed to be a bounded linear operator, we have
, and

for all . It follows that

(13)

Thus, from (12) and (13) we obtain

(14)

which is valid for all and , because and were
arbitrary. On the other hand, since

we see that the left-hand side (LHS) of (14) diverges for
as tends to infinity. This is a contradiction.

Second part: Let with be arbitrary
but fixed, and assume that there is an bounded linear operator

defined on with the properties i) and ii). Let ,
, denote the operator . Furthermore, let

, and define the operator

(15)

We have that . Moreover, it follows from
(15) that . Thus,

is a bounded operator. Finally, we need the op-
erator . Clearly, is a bounded linear
operator that maps onto . For all

we have and conse-
quently . We can
use the same proof technique as in part 1 to show that such an
operator cannot exist.

V. NONLINEAR REALIZATION OF EFFICIENT

BANDPASS-TYPE SYSTEMS

In this section we drop the condition that the system is linear.
The following theorem shows that a nonlinear realization of ef-
ficient bandpass-type systems is possible for the space .

Theorem 2: Let . There exists an operator
defined on with the properties
i) ;

ii) for all ; and
iii) for all .

Theorem 2 states the existence of an operator with the prop-
erties i)–iii). However, it does not give a realization of this oper-
ator in the form of a closed-form expression. Nevertheless, the
proof gives the details how an algorithm can be designed for the
approximation of the operator.

Remark 3: Although Theorem 2 shows that a nonlinear re-
alization of efficient bandpass-type systems is possible for the
space , it makes no statement whether an ideal bandpass-
type system can be realized.

Proof of Theorem 2: Let be arbitrary but
fixed, and consider

(16)

There exists a sequence such that

(17)

Moreover, since , there exists a
natural number such that
for all . Thus, we can use Lemma 1 to obtain

for all and . From Montel’s theorem [11, p.
195] it follows that there exists an entire function and a sub-
sequence such that for all

. Further, according to Lemma 4, we have .
Since was arbitrary, we can define an op-
erator . On the other
hand, for we define the operator

. Next, we show that the operator
given by

if
if

is the desired operator with the properties i)–iii). The properties
i) and ii) are obviously fulfilled, due to the construction of the
operator . Moreover, the inequality in iii) is true for all

because for these signals we have . It
remains to prove the inequality in iii) for all .
For all we have and
consequently

(18)

Taking the supremum on both sides of (18), we obtain
. This implies that

(19)
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because .
Equality (19) together with the fact that
gives

which completes the proof.

VI. NO-GO THEOREM FOR FREQUENCY SPLITTING

In the previous section we have seen that a linear realization
of efficient bandpass-type systems on is impossible and
that a nonlinear realization of efficient bandpass-type systems
on is possible. Although a nonlinear realization of efficient
bandpass-type systems is possible it is still open whether ideal
bandpass-type systems can be realized.

The material in this section is conceptually closely related
to the previous section, especially to the idea of ideal band-
pass-type systems. Suppose that ideal bandpass-type systems
exist. Then, using two ideal bandpass-type systems, one with
passband and the other with passband

, , it would be possible, given any signal
, to generate two signals and .

If contains only frequencies in , i.e., if ,
then equals , and is the zero signal. In this case, we have

. However, in the more general case where ,
we only know that and that , but in gen-
eral we do not have . This is due to the very general
axiomatic definition of ideal bandpass-type systems.

For the discussion so far, we only used the concept of band-
pass signals. Next, we analyze whether a frequency splitting of
signals into two signals and ,
each of which contains a different part of the spectrum, is pos-
sible. Therefor we also need to define what it means that two
signals agree on some frequency interval.

For bandlimited signals with finite energy, i.e., signals in
, it is easy to define what it means that two signals and

agree on some frequency interval , .
This is done by comparing the Fourier transforms and . If

almost everywhere (a.e.) in we say that
and agree on the frequency interval . Note that it is

irrelevant whether we include the endpoints of the intervals in
the above definition or not, because a single point has Lebesgue
measure zero. Thus, two signals in agree on the closed
frequency interval if and only if they agree on the open
frequency interval .

A nice property of the space is that it is possible to
split a signal with respect to its frequency content. For every

and every frequency interval ,
, we can find a signal that agrees with

on the frequency interval and with the zero function on
. The signal is given by

Fig. 1. Integration paths � and � in the complex plane.

Fig. 2. Frequency splitting of a signal � � �� into two signals � � ��

and � � �� .

This consideration shows that for every signal and
every frequency interval , , it is
possible to split into two signals and
such that agrees with on the frequency interval
and with on the frequency interval . This
frequency splitting is illustrated in Fig. 2. Due to the linearity of
the Fourier transform we have .

This way of splitting a signal with respect to its frequency
content works for signals in and corresponds to the
common way of thinking. Next, we analyze whether this split-
ting is possible for signals in , i.e., bounded and bandlimited
signals. Since the Fourier transform does not necessarily exist
for signals in , we cannot use the above way to define
what it means that two signals in agree on some frequency
interval. Thus, we have to adapt the definition [12].

Definition 3: We say that and agree on the
open frequency interval , , if

(20)

for all with for all .
We see that this definition makes only a statement about what

it means that two signals agree on open sets of frequencies. It
cannot be used to define what it means that two signals agree
on a closed set of frequencies. For example, according to the
above definition, the two signals and agree
on every open interval , , and disagree on
every open interval , . However, if we changed
all open intervals to closed intervals in the above definition, the
equality in (20) would still hold, because is continuous and

. This is a fundamental difference to the
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Fig. 3. Definition of �� (solid line) and �� (dashed line).

space , where we do not have to distinguish between open
and closed sets in the definition.

This definition is reasonable, because for it is
equivalent to the definition that uses the Fourier transform.

Observation 1: Let . We have
a.e. in if and only if (20) holds for all with

for all .
For completeness, we included the elementary proof of Ob-

servation 1 in Appendix E.
Equipped with this definition of two signals in agreeing

on some open interval of frequencies, we can ask the question:
Given , can we find for all signals a
decomposition with and , such
that and agree on the frequency interval ? If this
was possible it would immediately follow that agrees with
the zero function on the frequency interval and that

. would be the lowpass part of , which agrees
with on the open frequency interval , and would
be the bandpass part of , which agrees with on the open set
of frequencies .

In the following theorem we will see that a frequency splitting
as discussed above is not possible for signals in . Although
we restrict ourselves to the lowpass case in Theorem 3, it is also
true for the bandpass case.

Theorem 3: Let . There exists a signal
such that there exists no signal such that

(21)

for all .
Remark 4: Since , Theorem 3 remains true if we

replace with .
Theorem 3 shows that the splitting of a signal into several

signal components with disjoint spectrum, is not possible for
the space . This signal theoretic result of course implies that
there exists no filter—regardless of how complicated the real-
ization is made—that can perform this task.

Proof of Theorem 3: We suppose that the negation of the
assertion of Theorem 3 is true and construct a contradiction.
Thus, we assume that there exists a with such
that for all there exists a signal such that
(21) is true for all .

Let . For the proof we need the two functions
and , whose Fourier transforms and are depicted in

Fig. 3. A simple calculation gives

and it follows that

(22)

independently of . According to our assumption we have, for
all

(23)

where the last equality follows from the fact that
and . Moreover, since

it follows from (22) and (23) that

for all and all .
Next, consider the functionals , ,

given by

Clearly, for all , is a bounded linear functional.
Since

for all , it follows by the Banach-Steinhaus theorem
[13, p. 98] that there exists a constant such that
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Moreover, the limit functional is a well de-
fined bounded linear functional on , because for all

we have

Since is dense in , it follows that the limit
exists also for all and that there exists a

constant such that

Since , we further obtain

(24)

Let . For , consider the func-
tions

where . Since

and

(25)

according to (8), where the constant is independent of , we
have

for all .
Using (25), we obtain

Fig. 4. Plot of �� ��� for � � � (dotted line) and � � �� (solid line).

which shows that for all . Moreover, since
the Fourier transform of is given by

we see that all are bandlimited with bandwidth . is
depicted in Fig. 4 for and . Thus, for
all . It follows that the functions , ,
are all in and have a norm . According to
Parseval’s theorem, we have

and it follows that

for all , . Consequently, we have

for all , . Furthermore, since
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Fig. 5. Plot of �� ���� for � � �, 16, 64, 256, 1024, illustrating that
�� � � � .

Fig. 6. Plot of �� ���� for � � �, 16, 64, 256, 1024, illustrating the un-
bounded increase of �� � .

we obtain

for all , , and it follows that

This is a contradiction to (24).

A. Illustration of the No-Go Theorem for Frequency Splitting

Before we proceed in the discussion, we illustrate Theorem 3
with two plots. To obtain them, we have chosen . In
Fig. 5 we see the absolute values of the signals , which were
used in the proof of Theorem 3, for , 16, 64, 256, 1024. It
is clearly visible that the -norm of the signals does not grow
infinitely as is increased. In fact, the -norm of all signals
is bounded above by the same constant (the constant in the
proof of Theorem 3).

Fig. 6 shows the absolute values of the signals that are
obtained by a lowpass filtering of the signals according to

The unbounded increase of as is increased is visible.

B. Approximate Frequency Splitting

From Theorem 3, we have seen that a frequency splitting is
not possible for signals in the space in general. Of course,
an exact frequency splitting, as discussed in Section VI, is a high
requirement and not always necessary for applications. That is
why we want to analyze in this section whether an approximate
frequency splitting is possible and how the peak value of the
signal behaves as the approximate splitting approaches more
and more the exact splitting.

For , , and let
denote the set of all functions , whose Fourier
transform fulfills , for , and

for . For we further
define the system by

For input signals in , has the meaning of a transfer
function, and we see that the definition of
is a relaxation of P1). We only require that for

, and apart from the boundedness of we make
no assumptions about the shape of in the transition region

.
It follows from Lemma 5 that is a -stable LTI

system. Thus, an approximate frequency splitting is possible for
. However, the following theorem shows that peak value of

the output signal increases unboundedly as the width
of the transition region is reduced, independently of the chosen

.
Theorem 4: Let and . Then there

exists a function with

such that for all we have

for all .
Remark 5: An equivalent way to formulate the assertion of

Theorem 4 is the following. For all and
we have

The proof of Theorem 4 is a simple application of the ideas
that were developed so far.

Proof of Theorem 4: Let and be
arbitrary but fixed. We assume that the negation of the assertion
is true and construct a contradiction. Thus, we assume that there
exist a constant and a sequence converging to
zero such that for every there exists a
with
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Let . For consider the functionals

Clearly, for all , is a bounded linear functional. Fur-
thermore, since for all and

where

otherwise

denotes the indicator function, we can apply Lebesgue’s domi-
nated convergence theorem to obtain

Thus, the limit functional is a well defined
bounded linear functional on . Since is dense in

, it follows the limit exists also for
all , and that there exists a constant such that

Since , we further obtain

This is a contradiction to the fact

which was derived in the proof of Theorem 3.

C. Further Discussion of the No-Go Theorem for Frequency
Splitting

Theorem 3 states the existence of a signal in , for which
a frequency splitting is not possible. The following corollary
shows that this phenomenon is no singular event for a single
signal. In a precise sense “almost all” signals in have the
property that a frequency splitting is not possible.

In order to specify what we mean with “almost all” we need
the following concepts from normed spaces. A subset of a
normed space is said to be nowhere dense in if the closure

does not contain a nonempty open set of . is said to
be of the first category (or meager) if is the countable union

of sets each of which is nowhere dense in . is said to be
of the second category (or nonmeager) if it is not of the first
category. The complement of a set of the first category is called a
residual set. Sets of first category may be considered as “small”.
According to Baire’s theorem [14] we have that in a complete
normed space, the residual set is dense and a set of the second
category. One property that shows the abundance of residual sets
is the following: the countable intersection of residual sets is
always a residual set.

Corollary 1: Let . The set of signals
for which there exists no signal such that (21) is true
for all is a residual set.

Proof: Let be arbitrary but fixed, and let
denote the set of all signals in for which there exists a signal

such that (21) is true for all . Further, let

and a sequence of positive numbers converging to
zero.

Let . We have

(26)

where and are the functions that were used in the proof of
Theorem 3, and whose Fourier transforms are depicted in Fig. 3.
Moreover, since , we have

(27)

where we used the same steps as in (23) to obtain the last in-
equality. Furthermore

(28)

according to (22). Combining (26), (27), and (28), we obtain
for all and all

, and consequently for all
.

Let denote the set of signals in for which
. We have .

According to Theorem 4 we have

Hence, the Banach-Steinhaus theorem [15, p. 251] implies that
is a residual set. Thus, by definition, is a set

of first category. Since is a subset of , it is
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also a set of first category. Consequently, the set ,
i.e., the set of signals for which there exists no signal

such that (21) is true for all , is a residual
set.

VII. DISCUSSION AND CONCLUDING REMARKS

We have analyzed the existence and realizability of band-
pass-type systems for the space . It has been shown that a
linear realization of efficient bandpass-type systems is impos-
sible, because the corresponding operator does not exist. More-
over, we have shown in Theorem 2 that a nonlinear realization
of efficient bandpass-type systems is possible. In practice, non-
linear systems are in general more difficult to implement than
linear system. Thus, we assume that there is no simple realiza-
tion of the nonlinear operator. The proof of Theorem 2 rather
suggests that the realization of a system with the properties
P1)–P3) requires complex algorithms.

In the paper, we considered systems that fulfill property P1),
i.e., systems whose output signals agree with the zero function
outside the passband. As already indicated in the introduction,
this requirement is relatively high and reflects the ideal situa-
tion in many applications. However, certain applications allow
the output signals to have a small portion of the signal outside
the passband. For example, in mobile communications the trans-
mitted signal has only to fulfill a spectral mask, which specifies
that the energy spectral density of the signal has to be below
some threshold. Thus, it would be interesting to extend the ideas
in this paper toward a more relaxed version of property P1).

A further result of this paper is that a frequency splitting,
which is conceptually related to the existence of ideal bandpass-
type systems, is not possible for signals in in general. This
shows that the common way of thinking, which suggests that a
signal can be divided according to its frequencies, is not justified
for the space .

APPENDIX

A. Proof of Lemma 2

Proof of Lemma 2: Since a closed subspace of a complete
normed space is complete, it suffices to show that is closed
in . Let be a sequence that converges
to some . we have to show that , i.e., that

. Let be arbitrary but fixed. By assump-
tion, there exists a such that for all

. Now fix . Since , there exists a
such that for all . Thus, it follows that

for all .

B. Proof of Lemma 3

Proof of Lemma 3: Let be arbitrary but fixed.
First we show that implies . Let

. For , arbitrary but fixed, choose some

. According to the definition of the space
we have

It follows that

Since , due to Bernstein’s Inequality
[9, p. 49], we obtain

Thus, the Taylor series expansion of is given by

It follows that

which holds for all , because was arbitrary. This
shows that .

Next, we show that implies . Let
. We have to show that

for all and all . Let and
be arbitrary but fixed. For consider the

family of functions

We have

(29)

Moreover, since , we have the identity

for all , and consequently

(30)
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Further, according to Lebesgue’s dominated convergence the-
orem, which can be applied because

and , we have

(31)

Combining (30) and (31) shows that

which completes the proof, because and
were arbitrary.

C. Proof of Lemma 4

Proof of Lemma 4: Let be arbi-
trary but fixed and . First, we show that

is a subspace of . Since is obviously
a linear space, it remains to show that implies

. Let . Then we have

(32)

for all and . Since
, (32) is also true for all and all .

Thus, . This completes the first part of the proof,
because , according to Lemma 3.

Next, we show that is closed and complete. Let
be a Cauchy sequence of functions in . Thus,
is also a Cauchy sequence in , and because is

complete, there exists a function such that

(33)

We have to show that . Let and
be arbitrary but fixed. We have

Taking the limit and using (33) gives

Since and were chosen arbitrary, we
have

for all and . This shows that
.

D. Proof of Lemma 5

Proof of Lemma 5: “ ”: Since

for all and all , it follows that

“ ”: Let be arbitrary but fixed. Since
, for all , we see that the

linear functional , is bounded.
Since is a subspace of , we know from the Hahn-
Banach theorem [13, p. 104] that there exists a bounded linear
functional with for all .
Moreover, according to the Riesz representation theorem [13, p.
130], the functional has the representation

where the integral is a Stieltjes integral and is a function of
bounded variation on . Hence, for all we have

Let and be arbitrary but fixed, and consider
the function . Due to the time-invariance of
we have . It follows that
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Next, we show that . Since is assumed to be
-stable, we have . It remains to show that

. Let be an arbitrary closed contour in . Since

where is the supremum of in some horizontal strip
containing , is the length of , and denotes the total
variation of , we can apply Fubini’s theorem to obtain

Moreover, the integral is zero, because is an
entire function. Thus, we have for all con-
tours in , and it follows from Morea’s theorem [11, p. 74]
that is an entire function. Additionally, we have

where we used the fact that and Lemma 1 in the
last inequality. Thus, and consequently .

Consider the function defined by

where

Since , we have the identity

and consequently

The interchange of the integration order is justified by Fubini’s
theorem [16], because

Thus, we have

for all and all .
It remains to show that . Integration by parts gives

because is bounded and . Thus, it follows
that

which shows that . Using the same steps as before,
where we showed that , it follows that , and
consequently that .

E. Proof of Observation 1

Proof of Observation 1: For convenience, we introduce the
set .

“ ”: Let be arbitrary but fixed. Since and
for all , it follows that is continuous

and in , and consequently we have . By using
Parseval’s theorem twice, we obtain

“ ”: Since

for all , it follows that
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for all . Furthermore, since
is dense in and , there exists a
sequence with

(34)

where . Moreover, we have

for all , because , and
consequently

(35)

Furthermore, we have

which implies that

(36)

From (34) and (35) we see that the RHS of (36) tends to zero as
. Therefore, we have

which implies that a.e. in .
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