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Abstract—In this paper we revisit the problem of SIR Balanc-
ing which was extensively studied in the wireless communication
literature. We generalize existing results by showing conditions
for the existence and uniqueness of a max-min optimizer. It is
shown that a unique positive optimizer exists if the underlying
asymptotic coupling matrix is irreducible and the interference
functions are strictly monotonic on the dependency set. We
also show how the solution can be extended to include power
constraints.

I. INTRODUCTION

One trend in wireless communications is towards high user
density. However, interference puts a limit on how many users
per area can be served at a certain data rate. Assigning each
user a separate resource is not always an efficient way of
organizing the system. If the number of users is high then each
user only gets a small fraction of the overall resource. Short-
ages occur, especially when many users have high data rate
requirements. So the classical design paradigm of independent
point-to-point communication links is gradually being replaced
by a network-centric point of view. In order to exploit the
network to its full potential, interference should be tolerated,
but in a controlled way. Dynamic interference management
and resource allocation are expected to play a key role in this
respect.

However, interference between users complicates the anal-
ysis and optimization of the network. The performance of
any user can depend on the transmission strategies of other
users. This typically leads to joint problem formulations with
performance measures that account for all users.

Previous Work. One fundamental problem in this context is
to balance the signal-to-interference ratios (SIR). First results
on this problem already appeared decades ago (e.g. [1]). In this
early work, the interference between users was modeled by a
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linear function of the transmission powers. It was observed that
irreducibility of the coupling matrix is the essential property
that enables many results. Existence and uniqueness is a
direct consequence of the Perron-Frobenius theorem. Linear
interference functions are a standard model in power control
theory.

The analysis becomes more complicated for systems with
non-linear interference functions. An example is joint power
control and multiuser beamforming, where the coupling matrix
depends on the beamformers, which in turn depend on the
powers (details are given in the appendix). In this context,
the max-min SIR balancing problem was studied in [2], [3].
Also in this case, the irreducibility of the coupling matrix is
an important requirement.

Another line of research is studying interference coupling
from a more general and abstract perspective, based on ax-
iomatic interference functions [4]. In this work, interference
is modeled as monotonic and scale-invariant (homogeneous)
functions. It turns out that general interference functions do
not have sufficient structure to ensure the existence of a
max-min optimal power vector. It is thus important to study
additional properties. For example, it was shown in [5] that the
problem becomes tractable under the additional assumption of
concavity.

Contributions. In this paper we study the SIR balancing
problem within the general framework of monotonic and
scale-invariant interference functions, without the assumption
of convexity or concavity. In order to ensure existence and
uniqueness of an optimizer, we require that the system is
fully connected in terms of its asymptotic coupling matrix
[6]. These properties are sufficient to ensure the existence
of a positive optimizer. Then, uniqueness is shown under
the additional assumption of strict monotonicity. Finally, we
show how the framework can be extended by noise and power
constraints.

Notation. Matrices and vectors are denoted by upper-case
and lower-case boldface letters, respectively. Let y be a vector,
then yl = [y]l is the lth component. Likewise, Amn = [A]mn
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Fig. 1. Interference-coupled system.

is a component of the matrix A. A vector inequality x > y
means xk > yk, for all k, and y > 0 means component-
wise greater zero. Inequality y ≥ x means yl ≥ xl for all
components. The notation y 	 x means y ≥ x and there is
at least one component l such that yl > xl. Finally, y 6= x
means that inequality holds for at least one component. The
sets of non-negative reals and positive reals are denoted by
R+ and R++, respectively.

A. Axiomatic SIR Balancing

Consider a system with L communication links with respec-
tive transmission powers p = [p1, p2, . . . , pL]

T ∈ RL+. The
system is illustrated in Fig. 1. Following the related literature,
we will also refer to the links as “users”. However, it should
be noted that pl can also model other system variables. An
example will be given in Section III.

The impact of p on some link l is characterized by a so-
called interference function Il(p). A very simple and basic
interference model is the following framework of axioms [4].

Definition 1. We say that I : RL+ 7→ R+ is an interference
function if the following axioms are fulfilled:

A1 (positivity) There is a p > 0 with I(p) > 0
A2 (scale invariance) I(αp) = αI(p) for all α > 0
A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

An example is given in the appendix.
A fundamental performance measure is the signal-to-

interference ratio

SIRl(p) =
pl
Il(p)

. (1)

The problem under consideration is the so-called max-min-
SIR-balancing problem

sup
p∈RL

++

min
1≤l≤L

SIRl(p)

γl
. (2)

The power vector p is assumed to be contained in RL++. This
is justified by our design goal, which is to balance the SIR
values. A solution of (2) cannot contain a zero power. All
users contribute, there are no inactive users because a solution
containing pk = 0 would mean that all SIR are zero. The
values γ ∈ RL++ can be regarded as weighting factors which
are chosen according to individual priorities.

B. Strongly Connected System

Some basic properties of problem (2) were already studied
in [4]. Here, we extend these results by assuming that the

links are “strongly connected”. This is defined by the following
properties.

In order to model whether an interference function depends
on some resource or not, we introduce the coupling matrix
AI , which characterizes the interference coupling between the
users.

The asymptotic coupling matrix AI is defined as follows.
Let el be the all-zero vector with the l-th component set to
one. Then,

[AI ]kl =

1 if there exists a p > 0 such that
limδ→∞ Ik(p+ δel) = +∞,

0 otherwise.
(3)

If there is one p that fulfills the condition in (3), then this
condition is fulfilled for all p > 0.

Throughout this paper, we assume that AI is irreducible. A
non-negative L×L matrix AI is said to be irreducible if and
only if its directed graph G(AI) is strongly connected. This
is illustrated by the following example.

AI =


0 0 0 1
1 0 0 0
1 1 0 0
1 1 1 0

 G(AI) :

1

4 3

2

The graph G(AI) consists of L = 4 nodes N1, . . . , NL. A pair
of nodes (Ni, Nj) is connected by a directed edge if [AI ]ij >
0. A graph is called strongly connected if for each pair of
nodes (Ni, Nj) there is a sequence of directed edges leading
from Ni to Nj .

The dependency set of link k is

Lk = {l ∈ [1, 2, . . . ,K] : [AI ]kl = 1} . (4)

The set Lk is non-empty. Because of the assumed irreducibility
there is at least one non-zero entry in each row and column.
Ik(p) is said to be strictly positive if for any p ≥ 0 with

pl > 0 for some l ∈ Lk we have Ik(p) > 0.

Definition 2. A system consisting of L interference functions
is said to be strongly connected if the functions are strictly
positive and AI is irreducible.

II. UNCONSTRAINED SIR BALANCING

In this section we consider a strongly connected system with
powers p ∈ RL++. Power constraints will be discussed later,
in Section III.

Since all involved quantities are positive, we have

sup
p∈RL

++

min
1≤k≤L

pk
γkIk(p)

=
1

inf
p∈RL

++

(
min

1≤k≤L
pk

γkIk(p)

)−1
=

1

inf
p∈RL

++

(
max

1≤k≤L
γkIk(p)
pk

) .
Thus, the optimum of the SIR balancing problem is 1/C(γ)
and both problems are equivalent in terms of optimizers (if
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existent). Thus, instead of studying the max-min SIR balancing
problem directly, we analyze the following problem instead.

C(γ) = inf
p∈RL

++

max
1≤k≤L

γkIk(p)
pk

. (5)

All results can be transferred directly to the original problem.
It was shown in [4, Thm. 2.7] that there always exists a

p∗ 	 0, such that

p∗k · C(γ) = γkIk(p∗), 1 ≤ k ≤ K . (6)

This result holds for all interference functions fulfilling A1-
A3.

A. The Strongly Connected Case

Under the assumption of a strongly connected system, we
show the following result.

Theorem 1. If the system is strongly connected then we have
C(γ) > 0 and any p∗ ≥ 0 fulfilling (6) is strictly positive,
i.e., p∗ > 0.

Proof: First, we show C(γ) > 0. Suppose that C(γ) = 0,
then with (6) all interference functions must be zero. However,
the assumed irreducibility yields a contradiction. The solution
p∗ 	 0 has at least one non-zero entry. Because of irreducibil-
ity, we know that there is at least one link k with Ik(p∗) > 0.

Next, we show p∗ > 0. We know from (6) that there is an
index k0 such that r∗k0 > 0. This affects all other links in Lk0 .
That is, Il(p∗) > 0 for all l ∈ Lk0 . From (6) it follows that
p∗l > 0 for all l ∈ Lk0 . These powers affect in turn other links
in their dependency set. Because of irreducibility, we know
that all components of the vector p∗ ≥ 0 fulfilling (6) must
be strictly positive.

Corollary 1. If the system is strongly connected then the max-
min problem (2) has a solution p∗ > 0.

Proof: From Theorem 1 we know that there always is
a p∗ > 0 that balances the SIR at a level C(γ) > 0. That
is, p∗ attains the infimum C(γ) = maxk γkIk(p∗)/p∗k. Also,
we know from [4, Thm. 2.14] that C(γ) is the only possible
balanced level.

Thus far, we have shown the existence of a solution p∗ > 0
but not uniqueness. There possibly are several solutions.
Uniqueness will be shown in the next section under the
additional assumption of strict monotonicity.

B. Strict Monotonicity implies a Unique Optimizer

We begin with a definition.

Definition 3 (strict monotonicity). Ik(p) is said to be strictly
monotonic if for arbitrary p(1), p(2), the inequality p(1) ≥
p(2), with p

(1)
l > p

(2)
l for some l ∈ Lk, implies Ik(p(1)) >

Ik(p(2)).

Theorem 2. If the interference functions are strongly con-
nected and strictly monotonic, then the set of equations (6)
has a unique solution p∗ > 0, up to scalar multiples.

Proof: The proof is by contradiction. Assume that there
is another vector p̂ > 0 that also fulfills (6), and p̂ is not a
scalar multiple of p∗. Equation (6) is invariant with respect
to a scaling of its solutions, thus we can assume p̂ 	 p∗

without loss of generality. By J (=) we denote the set of indices
for which the inequality is fulfilled with equality. Likewise,
J (>) denotes the set of indices for which the inequality is
strict. Because of the irreducibility of AI we can always find
a k ∈ J (=) and a l ∈ J (>) such that l ∈ Lk. We have

p̂k = p∗k , (7)
p̂l > p∗l l ∈ Lk . (8)

Because of strict monotonicity we have Ik(p̂) > Ik(p∗). With
(6) we obtain the contradiction

γkIk(p∗) = p∗k · C(γ) = p̂k · C(γ) = γkIk(p̂) .

The next result connects equation (6) and the balancing
problem (5).

Theorem 3. If the interference functions are strongly con-
nected and strictly monotonic, then the SIR balancing problem
(5) has an optimizer p∗ > 0, unique up to a scalar multiple,
that balances all the ratios SIRk/γk at the level C(γ), i.e.,

C(γ) = min
p∈RL

++

(
max
1≤l≤L

γlIl(p)
pl

)
(9)

=
γ1I1(p∗)

p∗1
= · · · = γLIL(p∗)

p∗L
. (10)

Proof: From Corollary 1 we know that an optimizer
exists. Now we show that any optimizer balances the SIR
values at the level C(γ). The proof is by contradiction. Let
p∗ > 0 be an arbitrary optimizer, and assume that there
is an index k1 such that γk1Ik1(p∗)/p∗k1 < C(γ). We can
decrease p∗k1 , while preserving strict inequality. Because of
irreducibility and strict monotonicity, any decrease of p∗k1
reduces the interference of some other user k2. Thus, we obtain
a new vector p′ ≤ p∗ with γk2Ik2(p′)/p′k2 < C(γ). Now,
users k1 and k2 are below C(γ). We go on decreasing p′k2 ,
while preserving strict inequality. This reduces the interference
at other users, which in turn can reduce their powers. By
the assumption of irreducibility, all users are included after
a finite number of steps. That is, all other users can benefit
from the reduction of some link power, either directly or
indirectly. Thus, it would be possible to achieve a value below
the infimum, which is a contradiction, thus proving that an
optimizer p∗ > 0 fulfills (10). From Theorem 2 we know that
this balanced solution is unique up to a scalar multiple.

III. CONSTRAINED POWERS

In this section we show how the results can be extended
to include power constraints, which is important for most
practical interference scenarios.

Thus far, we have analyzed the SIR, which is invariant with
respect to a scaling, i.e., SIRl(αp) = SIRl(p) for all α > 0.
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Thus, constraining the norm of p has no effect. This is typical
for a system with no noise.

In order to model power-constrained system with noise, the
framework of standard interference functions [7] is often used.
This framework is also based on a set of axioms similar to A1-
A3, except that scale invariance (A2) is replaced by scalability
I(αp) < αI(p) for all α > 1. In the literature there are many
examples of a successful application of standard interference
functions.

In the following we demonstrate that power-constrained
SI(N)R balancing can be understood as a special case of
problem (2). Our approach is based on the introduction of
an auxiliary interference function, which ensures that certain
power constraints are fulfilled.

In order for a power constraint to have any effect, it is
necessary to introduce noise. In this section we consider K
user powers p1, . . . , pK and a noise power σ2

n. These powers
are stacked in an extended power vector

p = [p1, . . . , pK , σ
2
n]
T ∈ RK+1

++ . (11)

In the following we normalize σ2
n = 1.

A. Total Power Constraint

Consider a system with a total power constraint
∑

1≤k≤K ≤
Pmax, for some Pmax > 0. In order to enforce this power
constraint, we introduce an auxiliary interference function

IK+1(p) =
1

Pmax
·
K∑
k=1

γkIk(p) . (12)

It can be verified that IK+1 fulfills the axioms A1-A3, since
the sum of interference functions is an interference function
again.

Let G be the dependency matrix of the first K components.
We assume that every user causes interference to at least one
other user, thus each column of the matrix G has at least
one non-zero entry. Also, every Ik(p) depends on the noise
component. Thus, the K ×K +1 asymptotic coupling matrix
of the first K interference functions is [G |1], where the last
column models the dependency on the noise.

The interference function IK+1 depends on all powers,
because of definition (12). Thus, the overall system coupling
matrix becomes

AI =

[
G 1
1T 1

]
. (13)

The matrix AI is irreducible.
We further assume that the interference functions

I1, . . . , IK are strictly monotonic. Since σ2
n = 1 is constant,

we know that they are also strictly positive. This is a con-
sequence of the properties A1-A3 and strict monotonicity, as
observed in [4]. The function IK+1 is the sum of all other
interference functions, thus positivity and strict monotonicity
holds.

The interference functions I1, . . . , IK , IK+1 constitute a
fully connected, strictly monotonic system, and all the results

of Section II can be applied. The K + 1 dimensional SIR
balancing problem can be written as

min
p∈P

(
max

1≤k≤K+1

γkIk(p)
pk

)
. (14)

Here, we optimize over the set

P =
{
p ∈ RK+1

++ : pK+1 = 1
}
. (15)

As a consequence, p always fulfills pK+1 = 1. Recall that the
SIR is not affected by a simultaneous scaling of transmission
powers and noise, so we could equivalently optimize over the
unconstrained set RK+1

++ . But the problem formulation (14) has
the advantage of having a defined noise level.

The additional parameter γK+1 can be set to one. Other
values will just scale the available power budget.

From Theorem 3 we know that problem (14) has a unique
optimizer p∗ > 0 such that

p∗1
γ1I1(p∗)

= · · · = p∗K
γKIK(p∗)

=
Pmax∑K

k=1 γkIk(p∗)
. (16)

Taking the sum of the first K powers, we obtain the following
identity.

K∑
k=1

p∗k =

K∑
k=1

γkIk(p∗) ·
Pmax∑K

k=1 γlIl(p∗)
= Pmax. (17)

Hence, all user SIRs are balanced and the sum power con-
straint is fulfilled with equality.

B. Max-Min SI(N)R Balancing

Next, consider the functions Yk(p) = Ik(p) for all k =
1, 2, . . . ,K. For constant noise p

K+1
, the function Yk is a

standard interference function [7], characterized by mono-
tonicity and scalability, i.e., Y (αp) < αY (p). Moreover,
any standard interference function can be written as Ik(p)
with pK+1 = 1. Thus, both frameworks can be used inter-
changeably for modeling interference+noise in communication
system. For a detailed comparison between the axiomatic
framework A1-A3 and the framework of standard interference
functions, the reader is referred to [8].

With standard interference functions, the power-constrained
SINR balancing problem can be written as follows.

max
p>0:

∑K
k=1≤Pmax

min
k∈K

pk
γkYk(p)

. (18)

Equivalently, we can focus on the problem

C(γ, Pmax) = min
p>0:

∑K
k=1≤Pmax

max
k∈K

γkYk(p)

pk
. (19)

Similar as in [9], we can show that
• Problem (19) has a unique optimizer p∗ > 0 that balances

all SINR at a level C(γ, Pmax) > 0, i.e.,

C(γ, Pmax) =
γkYk(p

∗)
p∗k

for all k = 1, 2, . . . ,K

(20)
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• At the optimum, the power constraint is fulfilled with
equality, i.e.,

∑K
k=1 p

∗
k = Pmax.

• C(γ, Pmax) is strictly monotonic decreasing in Pmax.

From the latter property it follows that there cannot be another
balanced level. If we find powers p∗ > 0 achieving a balanced
level, and if this solution fulfills

∑K
k=1 p

∗
k = Pmax, then this

is the unique optimizer of the SINR balancing problem (19).
Hence, the solution (16) obtained by the SIR balancing

approach with an auxiliary interference function yields the
unique global optimum of the SINR balancing problem.

IV. CONCLUSIONS

We have analyzed the SIR balancing problem and provided
conditions for the existence and uniqueness of an optimizer.
This analysis provides a common background for existing
work in the literature, where the max-min SIR problem was
studied under particular assumptions, e.g. concavity, beam-
forming, linear functions, noise and power constraints, etc.
The results of this paper show that any strongly connected
system with strictly monotonic interference functions has a
unique max-min optimizer.

APPENDIX

A. Example of an Interference Function

Consider an uplink system with K single-antenna trans-
mitters and an M -element antenna array at the receiver.
Independent signals s1, . . . , sK are transmitted over vector-
valued channels h1, . . . ,hK ∈ CM , with spatial covariance
matrices Rk = E[hkh

H
k ]. The superimposed signals at the

array output are received by a bank of linear filters u1, . . . ,uK
(the ‘beamformers’). The output of the kth beamformer is

yk = uHk
( ∑
1≤l≤K

hlsl + n
)
, (21)

where n ∈ CM is an AWGN vector, with E[nnH ] = σ2I .
The coupling coefficients of the kth user are

[vk(uk)]l =


uH

k Rluk

uH
k Rkuk

1 ≤ l ≤ K, l 6= k

‖uk‖2
uH

k Rkuk
l = K + 1,

0 l = k .

(22)

With the commonly used normalization ‖uk‖2 = 1, the
interference function for the beamforming case is

Ik(p) =
[

max
‖uk‖2=1

uHk Rkuk

uHk
(∑

l 6=k plRl + σ2I
)
uk

]−1
= min
‖uk‖2=1

pTvk(uk) . (23)

It can be observed that the interference coupling is not
constant. For any power vector p > 0, the beamformer uk
adapts to the interference in such a way that the signal-
to-interference-plus-noise ratio (SINR) is maximized. This
optimization can be solved efficiently via an eigenvalue de-
composition. For deterministic channels h1, . . . ,hK , we have
Rl = hlh

H
l , so the interference resulting from optimum

beamformers is obtained in closed form

Ik(p) =
1

hHk
(
σ2I +

∑
l 6=k plhlh

H
l

)−1
hk

. (24)

For a downlink scenario, we can exploit the reciprocity be-
tween uplink and downlink channels. So optimal downlink
beamformers can be found indirectly via a “virtual uplink”
channel [9].
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