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Abstract

An innovative method for quantification of qualitative information within the framework
of multidisciplinary structural optimization is presented in this thesis. The focus is on man-
ufacturing aspects which are described by fuzzy data and expert knowledge. The method
is applied to optimization of lightweight space frame parts. Manufacturing aspects change
the optimal profile cross sections of extruded profiles and allow for trade-offs with respect
to mass and manufacturability. The method is able to integrate otherwise neglected in-
formation into structural optimization, expand the problem formulation and finally gain
additional insight into the optimal design.



Kurzfassung

Es werden Methoden zur Quantifizierung qualitativen Wissens in der Modellbildung zur
multidisziplinren Strukturoptimierung untersucht, erweitert und an praktischen Beispielen
umgesetzt. Insbesondere das Wissen ber Fertigungsaufwnde bei werkstoffhybriden Rah-
menstrukturen wird damit in regelbasierten Typ-2-Fuzzy-Modellen abgebildet. Dadurch
wird die Formulierung der Optimierungsaufgabe erweitert und vervollstndigt sowie das
zugehrige Vorgehen zur Behandlung unscharfer Ziel- und Restriktionsinformationen vor-
gestellt. Aus diesem ganzheitlichen Prozess der Entwurfsoptimierung werden optimale
Kompromisse und Hinweise bezglich der strukturmechanischen und fertigungstechnischen
Aspekte gewonnen.
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1. Introduction

1.1. Motivation

Today global markets require fast and flexible product development processes. This need is
met in engineering by increasingly integrated simulation schemes for multiple disciplines
used extensively in early design stages. To find the best design with respect to requirements
arising from several disciplines structural optimization methods are gaining more impor-
tance. Optimization is applied on different levels of structural design which are outlined in
tigure 1.1. In general, the overall structural topology is determined first, followed by part
and detailed design. On structural level, typical loads determine the design whereas manu-
facturing aspects become more important on part and detailed level.

An example is given in figure 1.1 for the generic space frame investigated in the Collabora-
tive Research Center SFB Transregio 10 (SFB-TR10). On a the structural level the shape of
the profiles defines load paths. From those loads, single parts are designed and optimized.
On a detailed level, material selection, extrusion, machining and joining are main drivers
for design.

structure

joining

hybrid material

photo by fuL

1 |
|increasing influence of manufacturing aspects

Figure 1.1.: Design and optimization on different structural levels

The information on manufacturing processes on detailed level is mostly based on nu-
merical simulations. In this thesis a complementary approach is suggested. Information is
available in a qualitative way by expert knowledge, which allows the inclusion of manufac-
turing influences on detailed, part and even on structural level already in an early design
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phase. Manufacturing influences for example describe geometric relations for a given man-
ufacturing process in order to ensure process reliability, correlations between material and
part geometry, and manufacturing effort for a given design.

The advantage of multidisciplinary optimization with manufacturing aspects is shown in a
simple example first presented in Huber and Baier (2006). It represents the typical problem
formulation handled in this thesis. An extruded cantilever I-beam is optimized with respect
to mass and deformation. Composite extrusion is used which allows the introduction of
reinforcing elements. Stress constraints and geometric manufacturing constraint are present
together with manufacturing effort evaluation. The latter is characterized by fuzzy models
for production time. Optimization runs for three different settings of allowed manufactur-
ing effort are summarized in figure 1.2.
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Figure 1.2.: Trade-off for mechanical properties and manufacturing effort,
Huber and Baier (2006)

The three curves represent Pareto-optimal designs for three different settings of allowed
manufacturing effort. Three designs named “I”, “II” and "III” have a deformation of 16 mm.
The solution for lowest manufacturing effort is design ”III”. The wall thickness ratio be-
tween web and flange is nearly one and reinforcing elements are missing. Design “II” has a
medium amount of reinforcing elements and a typical web to flange ratio. Mass is reduced
compared to design "III”. Design “I” has again a slightly lower mass but the difference be-
tween the wall thicknesses can’t be manufactured by extrusion. This example shows that
the inclusion of models based on qualitative manufacturing knowledge can lead to designs
with much better manufacturability. The penalty on mass and deformation for good pro-
cess suitability is low in this example. A more complex version of an extruded profile will
be outlined throughout the thesis.

Three main challenges, namely imprecision in manufacturing expert knowledge, model
availability for manufacturing aspects and suitable optimization methods can be identified
from the I-beam problem.

¢ Imprecision in qualitative knowledge for mechanical and manufacturing aspects.
Early in the product development process many uncertainties and imprecisions arise
for all disciplines of an engineering problem. Most established approaches to handle
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uncertainties use statistics based on probability theory to find suitable designs, for ex-
ample robust design (RD) methods. This is valid for aleatory uncertainty only, which
describes the inherent variability of the system.! On the other hand epistemic uncer-
tainty reflects lack of information or scarce data?. An example is the qualitative nature
of expert knowledge on manufacturing aspects such as models for manufacturing time
used in the I-beam example. Epistemic uncertainty can be reduced by additional in-
formation and may become aleatory uncertainty. More detailed classifications can be
found in Nikolaidis et al. (2005). For epistemic uncertainty several evaluation methods
are listed in Ayyub (2001). One of them is possibility theory, which is often interpreted
in terms of fuzzy sets as described in Klir (1999).

* Model availability. Most integrated simulation schemes in structural engineering use

numerical models based on the finite element method (FEM) and computer aided de-
sign (CAD) representing objective knowledge of the problem. In general these models
require a lot of effort for implementation and a high amount of information.
For epistemic expert knowledge Yoo (2000), Shehab and Abdalla (2002) and others
suggest fuzzy rule-based systems (FRBSs) for modeling of experience and rule-based
information. Mainly type-1 fuzzy sets (T1 FSs) are used for FRBSs at the moment. An
example is manufacturing time in the I-beam problem taking into account the profile
wall thicknesses, and number and diameter of reinforcing elements. Due to limita-
tions of T1 FSs, Mendel (2001) suggests type-2 fuzzy sets (T2 FSs) for fuzzy rule-based
systems, which allow for a continuous propagation of uncertainties in expert’s infor-
mation throughout the modeling process.

* Design optimization. Optimization methods, manual and automated ones, are part of
nearly every product development process in engineering. An efficient algorithm for
multidisciplinary and multiobjective optimization from Gleichmar (2004) and Langer
(2005) is utilized in the I-beam problem. It can handle continuous as well as discrete
design variables, and allows for multiple objectives. For manufacturing aspects dis-
crete design variables are important for material and process selection, and for selec-
tion of part feature such as reinforcing elements. Multiple goals arise from structural
and manufacturing needs. Examples are mass, eigenfrequency, manufacturability and
manufacturing effort.

If uncertainties are present in the problem formulation, system responses are not crisp
values but statistical distributions, intervals or fuzzy numbers. A mapping has to be
performed in order to evaluate goals and constraints in the optimization algorithm.

In this thesis an integrated approach for typical engineering optimization problems tak-
ing into account expert knowledge especially for manufacturing aspects is developed and
evaluated. Uncertainty in expert knowledge is addressed by a fuzzy modeling approach.
Knowledge-based, type-2 fuzzy models for qualitative manufacturing information are gen-
erated and utilized together with type-2 fuzzy system answers for uncertain structural re-
sponses in structural optimization. A literature review is given in section 1.2 followed by
detailed objectives in section 1.3 and scope of the thesis in section 1.4.

!This kind of uncertainty is often referred to as irreducible, stochastic or random uncertainty.
2This kind of uncertainty is often referred to as subjective or reducible uncertainty.
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1.2. Structural optimization with manufacturing aspects - a
survey

The focus of this survey is on the modeling of manufacturing aspects especially, on evalu-
ation of systems with uncertain input parameters and finally, on optimization approaches.
An important term in this context is manufacturability which is often used for physical as
well as economic manufacturing aspects. The definition of manufacturability is according
to Shankar and Jansson (1993):

”Manufacturability is defined as the ability to manufacture a product to obtain the desired quality
and rate of production while minimizing cost.”

Different aspects have to be addressed with respect to optimization in this context. First,

different criteria for the evaluation of designs have to be defined. To classify manufacturing
and structural aspects Kumar and Bauer (2009) suggests three criteria. These are economic
criteria, technological criteria and performance criteria. The first criterion is related to de-
tailed cost estimations and overall manufacturing effort criteria, the second addresses the
physical manufacturing process and its restrictions, and the third criterion assesses proper-
ties and performance of structures such as mass, stresses and eigenfrequencies. A detailed
overview is given in section 1.2.1.
The handling of two types of uncertainty, aleatory or epistemic, in structural optimization is
reviewed in section 1.2.2. The type of uncertainty, which is present in the problem at hand,
defines the types of system equations. Commonly, the finite element method (FEM) is used
to evaluate performance criteria. Different approaches for the handling of uncertain parame-
ters in FEM models are discussed. Expert knowledge is another source for system equations
in optimization. The fuzzy approach for modeling of expert knowledge is presented in de-
tail in chapter 2. Finally design optimization problems with structural and manufacturing
aspects are evaluated in section 1.2.3 followed by a summary in 1.2.4.

1.2.1. Design Criteria

Economic Criteria. Mainly cost estimations are included in this category. Niazi et al. (2006)
provides a detailed survey for general product cost estimation. Qualitative and quantitative
techniques are distinguished. Quantitative techniques utilize detailed analysis of a prod-
uct design, the product features and manufacturing processes. Qualitative techniques, on
the other hand, are primarily based on experience and comparison of new products with
previously manufactured ones. Qualitative techniques utilizing fuzzy logic, rules and ex-
pert systems are grouped within decision support systems (DSSs). They are useful in early
phases of the product design process. Curran et al. (2004) gives a review of cost modeling in
aerospace engineering. He also classifies rule-based fuzzy logic as an advanced technique.
A limited scope and application is identified due to the knowledge acquisition process. The
model can handle only information provided by the experts.

A typical method in conceptual design phases are cost estimating relationships (CERs). Cost
is expressed as a dependent variable of one or more design parameters such as weight, di-
mensions and others. Examples can be found in Bao and Samareh (2000) and also in Kundu
et al. (2002), Curran et al. (2006a) and Pantelakis et al. (2009). Historical data are needed to
build CERs. Therefore the predicting performance for innovative designs is limited. Also,
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uncertainties of the models are not the focus of research in most literature sources.

As an qualitative alternative to cost estimations manufacturing effort can be used. Most
effort estimations are related to production time and geometrical manufacturing aspects,
the latter are described in the next paragraph. Yoo (2000) presents a fuzzy addition to a
simulation-based model for production time. He adds a knowledge-based model for down
time to a given analytical model. This down time is due to necessary tool change for small
radii in a composite wing. A similar method is suggested by Shehab and Abdalla (2002). In
both sources fuzzy rule-based models are built and crisp production times are computed.
Menzel (2001) use fuzzy logic arithmetic for the modeling of production rates and gives
figures for the uncertain production rate over time.

Technological criteria. This class of criteria summarizes the physical manufacturing pro-
cess and its properties. For example Hug et al. (1983) shows the influence of the extrusion
process for aluminum alloys on the optimal geometric design of a bridge reinforced with
carbon fibers. An optimal combination of materials well suited for extrusion and carbon
tiber reinforcements can lead to better design than high strength aluminum alloys.

Gupta et al. (1997) provides an overview of different automated manufacturability analy-
ses. Rule-based systems are suggested for near-net-shape processes (e.g., casting, stamping,
sheet metal working).

Subramaniam and Ulrich (1998) divide the processes into trajectory dominated and process-
physics-dominated processes. Machining and laser cutting are examples for the first cate-
gory, casting, stamping and extrusion for the second, respectively. An approach is provided
which defines a producibility metric® from expert knowledge. This approach is fast and less
costly than physical experiments and can be linked to cost models.

Alberti et al. (1998) use fuzzy logic and artificial neural networks (ANNSs) for cold forging
process planning. From 60 simulations rules for two antecedents are generated with a high
prediction accuracy of 90%. In Yin et al. (2006), Yin et al. (2004) and Li et al. (2007) an ap-
proach for knowledge acquisition from metal forming simulations is presented in order to
build rules from Fuzzy Rough Sets. For a deep drawing process 52 simulations with five
design parameters are computed and nine rules are found to identify cracks and wrinkling.
In Coelho (2004) and Coelho and Bouillard (2005) "PAMUC I1” is introduced, which han-
dles expert knowledge directly by expert rules for optimization. Analytical test problems
are discussed.

Menzel (2001) accounts for the uncertainties in expert knowledge. He presents a hybrid
fuzzy rule-based approach for a technological analysis of single parts. Manufacturing as-
pects for high-pressure-metal-forming are described via T1-FRBS with respect to geometri-
cal parameters. Menzel shows advantages compared to Neural Networks and he empha-
sizes the applicability of the approach for innovative manufacturing processes.

The optimization of structural and manufacturing aspects for composite structures is an up-
coming field of interest. For example ply drop-off and angle discontinuity are described in
Liu and Butler (2007), complex paths for fiber placement machines are discussed in Schu-
macher (1995) and Blom et al. (2008).

Performance criteria. The performance of a lightweight structure is defined primarily by
its physical properties. Typical criteria for structural optimization are mass, eigenfrequen-
cies, stresses, deformations and responses to dynamic loads. In the majority of structural

3Producibility” and “manufacturability” are used interchangeable in this thesis.
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optimization problems and in this thesis, the properties are computed with FEM. The han-
dling of uncertainties with FEM models can be classified into two main approaches. The
first one uses modified FEM codes, the second works with standard FEM but utilizes sev-
eral computations of the same model with slightly changed input parameters.

Elishakoff and Ren (1999) and in more detail Elishakoff and Ren (2003) and Stefanou (2009)
provide a general discussion about uncertainties handled directly by modified finite ele-
ment codes. They present finite element method for stochastic problems (FEMSP)*. FEMSP
provides mean and covariance for structural behavior with respect to variations in mate-
rial properties, geometrical parameters and loads. Random variables and random fields
can be mapped. A standard approach for FEMSP is a combination of deterministic FEM
and perturbation techniques. Sudret and Der Kiureghian (2000) expand this overview and
compare different methods. The probabilistic system answers obtained by FEMSP are used
especially for reliability analysis. Moens and Vandepitte (2005a) and Moens and Vande-
pitte (2006) present an overview for non-probabilistic methods for uncertainty treatment in
finite element analysis. They suggest that these methods are especially helpful in early de-
sign stages, when subjective information has to be quantified. In Moens and Vandepitte
(2005b) a method for the computation of uncertain frequency-responses due to fuzzy inputs
for damped structures is introduced and numerical case studies are given by De Gersem
et al. (2005). Moens and Vandepitte conclude, that fuzzy methods are complementary to
probabilistic methods rather than competitive. Another important contribution to this topic
based on a fuzzy approach using interval analysis is introduced by Rao and Sawyer (1995)
and further developed in Rao and Berke (1997), Rao et al. (1998) and Rao and Cao (2001).
Fuzzy finite element equations are solved and fuzzy numbers for the system outputs are
generated. The fuzzy mechanics of composites are analyzed in Rao and Liu (2004) and Liu
and Rao (2005) for uncertain Young’s moduli of fiber and matrix and uncertain fiber volume
content.

An overview for evaluation of probabilistic uncertainties with classic finite element method
is given in Choi et al. (2006). Sampling methods such as Monte Carlo sampling (MCS), im-
portance sampling (IS) and latin hypercube sampling (LHS) are used to directly gain proba-
bilistic information. The drawback of Monte Carlo sampling (MCS) is a very high number of
computations needed, which increases with the number of random variables. Latin hyper-
cube sampling (LHS) is a standard sampling method in engineering design for the compu-
tation of approximation functions. For reliability analysis, the first order reliability method
(FORM) and second order reliability method (SORM) are established approaches.

So called fuzzy a-level analysis (FaLA) computes the fuzzy output of a system for fuzzy
input parameters. Based on interval analysis (IA) one of the first implementations of fuzzy
a-level analysis (FaLA) called vertex method (VM) is introduced by Dong and Shah (1987).
The original VM can handle only monotonic functions and needs 2" system evaluations for
n uncertain parameters. An optimized vertex method (VMo) is described by Smith et al.
(2002). The optimized vertex method reduces the required system evaluations by applying
an optimization with bounded input parameters in order to find minimum and maximum
system answers. Massa et al. (2006) introduce a procedure called Taylor’s expansion with
extrema management method (TEEM) to compute fuzzy system answers. The computa-
tional efficiency of TEEM is high compared to original extension principle of which VM is
an implementation. In Massa et al. (2008) the authors suggest Padé approximants with ex-
trema management (PAEM) for fuzzy modal analysis. Law (1996) introduces a level interval
algorithm (LIA) to find the boundaries of the response parameters in FaLA. A linear approx-

4This method is also known as stochastic finite element method (SFEM).
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imation based on fractional factorial design of experiments (FFD) and Powell’s method for
extrema search is proposed. Law states that this scheme is acceptable for design decisions
in preliminary design stages. A method based on sparse grid interpolation is introduced
in Klimke et al. (2004). More details on the interpolation scheme are given in Klimke and
Wohlmuth (2005) and dimension-adaptive sparse grids are introduced in Klimke et al. (2006)
which further reduce computational effort. A frequency response function of a truck cabin
is analyzed for 27 uncertain parameters. In Klimke (2006) the approach is combined with
a spectral element method from Nunes et al. (2006). Sparse-grid based sensitivity analy-
sis is discussed in Klimke (2007). In Moller and Beer (2004) the authors summarize their
extensive research on FaLA. In Beer and Liebscher (2008) the approach is extended to the
highly nonlinear problem of crash analysis. Another algorithm for FaLA and its application
to engineering examples is given in Degrauwe (2007). For T2 FS fuzzy a-level analysis is a
new concept, only few literature sources can be found which will be introduced in the next
chapter.

1.2.2. Design Optimization with Uncertainty Handling

In order to characterize uncertainties with the methods described before the number of sys-
tem evaluations in optimization has to be increased. The main challenge is to keep the
additional numerical effort limited. Today mainly statistical uncertainties are taken into
account. Uncertainty handling is often summarized by the term robust design (RD). Thor-
ough surveys can be found in Antonsson (ed.) (2001), Tsompanakis et al. (2008) and Beyer
and Sendhoff (2007).

Optimization methods for aleatory uncertainties. Schuéller and Jensen (2008) iden-
tify the three most relevant contributions. System identification, reliability-based design
optimization and robust design optimization. The latter is revised in more detail by Park
et al. (2006) and Beyer and Sendhoff (2007) including many references to engineering ap-
plications. Robust and reliability-based optimization methods are successors of Taguchi’s
robust design methodology, which is not suitable for optimization due to very high compu-
tational effort. Robust design optimization minimizes the mean and variance of the objec-
tives whereas reliability-based design optimization utilizes limit state functions in order to
ensure a predefined failure probability, for details see Tsompanakis et al. (2008).

To reduce the computational effort, surrogate models are essential. For robust design opti-
mization (RDO) often the response surface method (RSM) is used to model mean and vari-
ance of the systems answers®. Shaibu and Cho (2009) discuss three modeling approaches
and show differences in the obtained optimal solution. Jin et al. (2003) suggest kriging
method (KGM) or radial basis functions (RBFs) as better alternatives. Koch et al. (2002)
provide an example with KGM surrogate models. Rais-Rohani and Singh (2004) compare
global and local surrogate models in reliability-based problems and show an advantage of
local response surface methods (RSMs) for computational effort.

Physical programming (PP) developed by Messac is used in Chen et al. (2000) and Mes-
sac and Ismail-Yahaya (2002) for RDO. PP transforms multiobjective trade-offs between a
minimum mean value and minimum variance into a single objective problem. The method
allows for subjective preferences defined by the engineer.

>This is also called dual response surface.
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A comparison of a probabilistic and a fuzzy set approaches is given in Chen (2000). Differ-
ent situations are investigated for available sample size and information on the true type of
statistical distribution. Chen concludes that for small sample sizes and an unknown distri-
bution of uncertain parameters, the aforementioned possibilistic methods should be used
together with probabilistic ones.

The main challenge with above-mentioned methods is the generation of probability density
tunctionss (PDFs) for input parameters. A quotation from Elishakoff (1995) emphasize this
situation:

”In modern probabilistic codes and in most, if not all, studies the necessary probabilistic informa-
tion on uncertain quantities is assumed rather than appropriately substantiated through statistical
analysis of extensive experimental data. After numerous assumptions are made, some new numerical
approaches, often sophisticated ones, are tested on simple examples. On the other hand the accuracy
of the experimental data (if at all present) is not discussed.”

Optimization methods for epistemic uncertainties. He and Qu (2008) and Mourelatos
and Zhou (2008) provide a good overview, a short history is given in the following.
In the mid 1980s optimization of fuzzy structural systems was introduced by Guang-Yuan
and Wen-Quan (1985) and Rao (1987). Rao transforms the original crisp objective and con-
straint function into fuzzy ones. The fuzzified constraints reflect the subjective engineering
information about constraint relaxation. One design variable is added to the problem called
A which accounts for the level of satisfaction for all fuzzified objectives and constraints. The
influence of different membership functions (linear, hyperbolic, logarithmic etc.) for fuzzy
objectives and constraints is investigated by Dhingra et al. (1992) for a 25-bar truss. In Rao
and Chen (1996) the authors extend the method by Dampster-Shafer theory and Yager’s rule
in order to merge different belief structures into one single design criterion and to evaluate
a satisfaction function for multiple design criteria. Shih et al. (2003) and Shih and Lee (2006)
extend the method to double and multi-a-level-cuts approaches.
Jensen (2001) introduces approximation models to decrease the number of expensive sys-
tem evaluations. He also discusses different optimal designs due to different defuzzifi-
cation techniques. Mourelatos and Zhou (2005) compare vertex, discretization and opti-
mization me