
Technische Universität München

Lehrstuhl III – Datenbanksysteme

Adaptive Data Processing in Embedded Networks

Diplom-Informatiker Univ.

Andreas Scholz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.Prof. Dr. Uwe Baumgarten

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Harald Kosch, Universität Passau

Die Dissertation wurde am 08.02.2011 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 05.07.2011 angenommen.

Abstract

The availability of embedded networks consisting of interconnected microcon-
trollers will change the way automation systems are built in the future. Instead
of hierarchical systems with a centralized control logic, we will see an increasing
deployment of “smart” nodes on the field level. These nodes can be used to execute
applications directly in the embedded network, thereby reducing the required net-
work bandwidth and increasing the scalability of automation systems. We will also
see an increasing number of applications that incorporate devices from both, the IT
domain and the field level, e.g., real-world aware business applications with direct
access to the information gathered at the field level.

Embedded networks have special characteristics that have to be taken into ac-
count during development, such as heterogeneous nodes and communication media,
resource constraints imposed by the used microcontrollers and network dynamics
caused by the addition or failure of nodes. These unique boundary conditions pro-
hibit the direct application of technologies developed for IT networks and attracted
researchers from various areas. A prerequisite for the widespread deployment of em-
bedded networks is a comprehensive development platform that bundles the results
of these research efforts and supports a fast and efficient development of applica-
tions. This work aims at providing the basic building blocks of such a platform and
also describes a prototypical realization: the ǫSOA platform. The ǫSOA platform
was tailored for building systems under the above mentioned boundary conditions.
It is based on three design principles: a service oriented architecture, a data stream
based execution model and a model driven development approach. We will show
how these concepts can be used to create a highly customizable middleware that can
scale its functionality based on application requirements. Furthermore, we present
optimization techniques that allow adapting the execution of applications based on
application requirements and the characteristics of the underlying network. Besides
the fundamental concepts we will also present several technical solutions that pro-
vide the necessary prerequisites for these optimizations, including amongst others a
modular communication layer, a service migration algorithm, a cross-layer commu-
nication interface and a service bridge that allows a seamless interaction between
field level devices and Web services.

v

Acknowledgements

I am pleased to thank all the people that contributed to this work. First of all
I want to thank Prof. Alfons Kemper for giving me the opportunity to work in
this fascinating research area and his invaluable input on the various research topics
tackled in this work. I also want to thank Prof. Dr. Harald Kosch from the
University of Passau for volunteering to review my thesis.

My special thanks go to our cooperation partners at Siemens CT, Dr. Jörg Heuer,
Anton Schmitt and Martin Winter, for the many hours of fruitful discussions. The
possibility to test our implementation in an industry relevant setting and the feed-
back provided by these individuals had major impact on the outcomes of this work
and ensured the developed solutions are applicable in an industrial setting. I want to
thank Dr. Christian Buckl, Irina Gaponova and Stephan Sommer, who worked with
me for several years on this topic and greatly influenced the outcomes of this work,
for the productive cooperation, the inspiring discussions and the relaxed working
atmosphere.

I also want to thank all my colleagues at the TUM for the feedback, support and
help provided over the years. This includes Martina-Cezara Albutiu, Stefan Aulbach,
Veneta Dobreva, Daniel Gmach, Prof. Dr. Torsten Grust, Benjamin Gufler, Sebas-
tian Hagen, Dean Jacobs, Ph.D., Stefan Krompaß, Dr. Richard Kuntschke, Manuel
Mayr, Fabian Prasser, Dr. Angelika Reiser, Jan Rittinger, Michael Seibold, Jes-
sica Smejkal, Dr. Jens Teubner, Dr. Tobias Scholl and all students that worked
on the implementation of the ǫSOA platform. Special thanks to our secretary, Evi
Kollmann, who took care of all the tedious administrative work.

Last but not least I want to thank my family and my friends who always supported
me, even during the “hard” times where I was busy writing this thesis in the evenings
and on weekends.

vii

Contents

1 Introduction: Embedded Networks 1

1.1 Hardware Platforms . 6

1.2 Operating Systems . 7

1.3 Monitoring Oriented Sensor Networks 8

1.3.1 (Wireless) Sensor Networks 8

1.3.2 The Global Sensor Network 9

1.4 Control Oriented Embedded Networks 10

1.4.1 Application Fields for Control Oriented Embedded Networks 10

1.4.2 Characterization of Control Oriented Embedded Networks . . 12

1.5 Outline . 16

2 The ǫSOA Platform 18

2.1 Design Principles . 18

2.1.1 SOA . 19

2.1.2 Data Stream Oriented Processing Model 21

2.1.3 Model Driven Development Approach 23

2.1.4 Runtime Environment . 27

2.1.5 Summary . 28

2.2 Development Workflow . 30

2.2.1 Actors Involved in the Development of Embedded Networks . 31

2.2.2 Workflow I: Assembly of Off-The-Shelf Components 33

2.2.3 Workflow II: Off-The-Shelf Hardware, Custom Software . . . 34

2.2.4 Workflow III: Custom System 34

2.2.5 Workflow IV: Modification of Running Systems 34

2.2.6 Summary . 35

2.3 System Model . 36

2.3.1 Hardware Model . 36

2.3.2 Service Model . 38

viii

2.3.3 Service Composition Model 39
2.3.4 Properties . 41
2.3.5 Summary . 42

2.4 Service and Instance Lifecycle . 43
2.4.1 Web Service Lifecycle . 43
2.4.2 ǫSOA Lifecycle Model . 45
2.4.3 Summary . 46

2.5 Application Development . 47
2.5.1 Manual Composition . 47
2.5.2 Pattern Based Composition 47
2.5.3 Summary . 60

2.6 Optimization Techniques . 62
2.6.1 Data Rate Optimization . 62
2.6.2 Service Placement . 70
2.6.3 Service Placement Optimization with Simulated Annealing . 78
2.6.4 Optimization of System Availability 82
2.6.5 Ongoing Work: Service Placement Optimization with Genetic

Algorithms . 87
2.6.6 Related Work . 89
2.6.7 Summary . 91

3 Runtime Environment 92
3.1 Runtime Environment Architecture 94

3.1.1 Runtime Components . 94
3.1.2 Summary . 95

3.2 Encoding Techniques . 97
3.2.1 Test Cases . 102
3.2.2 Evaluation . 106
3.2.3 Summary . 107

3.3 Hardware Description Language . 108
3.3.1 eHDL Format . 108
3.3.2 Domain Specific Description Models 109

3.4 Service Description Language . 110
3.4.1 WSDL . 110
3.4.2 eSDL . 111
3.4.3 Comparison of WSDL and eSDL 113
3.4.4 Summary . 114

3.5 Embedded Service Choreography Language 115
3.5.1 Choreography Languages in the Web Service Domain 116
3.5.2 Embedded Service Choreography Language 117
3.5.3 Summary . 121

3.6 Communication Module . 122
3.6.1 Communication Requirements 122
3.6.2 The ǫSOA Adaptive Network Stack 125

ix

3.6.3 Transport/Routing Protocol Layer 126

3.6.4 Abstract Network Layer . 126

3.6.5 Stream Routing Layer . 129

3.6.6 Packet Routing Layer . 135

3.6.7 Implementation . 135

3.6.8 Summary . 143

3.7 Message Parsing and Data Binding 144

3.7.1 Combined Parsing and Data Binding 144

3.7.2 Generation of Tailored Message Parsers 147

3.7.3 Summary and Outlook . 148

3.8 Management Interface & Cross-Layer Information Exchange 149

3.9 Dynamic Installation of Services . 179

3.9.1 Dynamic Service Installation in the ǫSOA Platform 179

3.9.2 Related Work . 180

3.9.3 Ongoing Work: Peer-to-Peer Code Distribution 181

3.9.4 Summary . 182

4 Advanced Features 183

4.1 Failure Compensation . 183

4.1.1 Link Failures . 184

4.1.2 Node and Instance Failures 185

4.1.3 Related Work . 187

4.1.4 Summary . 188

4.2 Service Migration . 189

4.2.1 Migration Techniques in the IT Domain 189

4.2.2 State Transfer in Embedded Networks 190

4.2.3 Migration Algorithm . 191

4.2.4 Implementation . 195

4.2.5 Software Updates . 196

4.2.6 Related Work . 196

4.2.7 Summary . 197

4.3 Integration of Embedded Networks and Web Service Based IT-Systems198

4.3.1 Web Services and Embedded Services 198

4.3.2 Integration of Both Worlds 199

4.3.3 Message Conversion . 199

4.3.4 Mapping of Execution Paradigms 200

4.3.5 Design and Implementation of the Service Bridge 201

4.3.6 Related Work . 206

4.3.7 Summary . 206

5 Tool Support 208

5.1 Planning and Management . 208

5.2 Stub/Skeleton and eSDL Generation 211

5.3 Monitoring and Configuration . 211

x

5.4 Summary and Ongoing Work . 211

6 Prototypes 213
6.1 Smart Home Prototype . 213
6.2 Intelligent Lighting Prototype . 215
6.3 Related Work . 218

7 Summary & Future Work 220

A Service Placement Benchmarks 223

B XML Schema Definitions 227
B.1 eHDL XML Schema Definition . 227
B.2 eSDL XML Schema Definition . 229
B.3 eSCL XML Schema Definition . 231
B.4 Meta-Information Repository: XML Schema Definition 233

Bibliography 235

1

CHAPTER 1

Introduction: Embedded Networks

Recent technological advances and continuously dropping hardware prices have paved
the way for the development and installation of embedded networks. Embedded
networks are composed of tiny interconnected computers with diverse processing,
sensing and actuation capabilities. The widespread installation of such networked
devices allows building computer based models of our environment with unprece-
dented accuracy. The long envisioned goal of pervasive/ubiquitous computing - the
elimination of the gap between physical world surrounding us and the computer
systems we use for storing and exchanging information about this world - seems at
hand. Having access to up-to-date information about our surroundings anytime and
anywhere and the possibility to directly control the actuation devices present in our
environment dramatically changes the way we interact with computer systems and
the way computer systems interact with our environment.

Embedded networks are emerging due to several reasons. One reason is the in-
creasing availability of network enabled sensor devices. Consumer devices such as
cell phones, navigation systems and PDAs are becoming more and more intercon-
nected, e.g. via WLAN technology or personal area networks. At the same time,
an increasing number of sensors is installed in these devices. Modern handhelds
already contain a lot of built-in sensors, such as GPS modules, orientation sensors,
and compasses. There are several companies and research labs working on sensor
board extensions for cell phones that provide additional devices for environmental
and health monitoring. This trend results in a variety of network-enabled sensor
devices that can be combined to create new applications and smart systems that
incorporate devices carried by the user.

A second reason is the availability of cheap sensor and actuator devices. Dropping
hardware prices and improved miniaturization allows the deployment of sensor and
actuator devices in new environments. An obvious application field is environmen-

2 1 Introduction: Embedded Networks

tal monitoring. The more sensor devices we install in our environment, the more
accurate the information we can gather is and the better the forecasts and deci-
sions we make based on this information will be. These benefits are not limited to
environmental monitoring. Modern production sites or logistic chains can be im-
proved by adding additional sensor devices, too. The goal in these environments is
to achieve real-world awareness in computer systems. All business relevant informa-
tion, such as the status of production sites, the logistic chain or productivity rates
are monitored and any changes are immediately reflected in the business back-end.
A real-world aware IT infrastructure allows the timely reaction to exceptional situ-
ations in the production environment and optimizations on a fine grained level due
to the availability of very detailed and up-to-date information about the production
process. With dropping unit costs we will see both, an increasing number of such
embedded networks and an increasing number of nodes contained in each of these
networks.

A closer look at recent standardization efforts and projects reveals another source
for the emergence of embedded networks. A lot of effort is put into pushing IT
technology down to control and automation systems. The driving idea is to replace
domain specific solutions with well known and established IT technologies, in order
to reduce costs and increase interoperability between automation systems. In the
last years we already saw this trend w.r.t. physical communication media. Many
protocols used in automation systems (e.g. PROFIBUS[3]) have been extended to
support Ethernet (e.g. PROFINET[3]). More recently this trend is also extend-
ing to the network protocol layer. Approaches such as 6LoWPAN[63] or IP500[68]
provide IP based access to field level devices. This results in a much higher interop-
erability between IT systems and automation systems. Sensor devices are becoming
seamlessly available from the IT world and different automation systems can be
interconnected. This trend also influences the architecture of automation systems.
Instead of centralized architectures, e.g. star architectures comprising a central con-
troller with attached sensor and actuator devices, these new technologies foster the
development of decentralized solutions based on smart nodes that are interconnected
via an IP network, hence embedded networks.

The presence of embedded networks will change the way automation systems1

are built in the future. Traditionally, automation systems have been designed in a
hierarchical way, the so called “automation pyramid”. The automation pyramid is
shown in Figure 1.1(a). The bottom layer contains field devices, such as sensors and

1This work focuses on building, process and manufacturing automation systems. Automation so-
lutions in these and similar domains are developed individually for each customer by connecting
off-the-shelf sensors, actuators and Programmable Logic Controllers (or modules composed of
these devices) offered by vendors such as Siemens. Automation solutions used in modern cars or
planes are another class of systems. To a certain degree, the presented solutions can be mapped
to this class, too. However there are fundamental differences between both classes that have
to be considered. One example is that modern cars are produced in large volumes, and the
design of specialized solutions for individual product lines is possible. Another difference is that
extensibility and reconfiguration features are far less important for modern cars than for modern
production sites.

3

Field Devices

Controller

IT

Systems

(a) The Automation Pyramid (b) Converged Network of Heteroge-
neous Devices

Figure 1.1: Automation Systems, Present and Future

actuators. These devices are attached via field bus systems to controllers, which
form the middle layer of the automation pyramid. The controllers host the appli-
cation logic and periodically retrieve measurements from sensor devices in the field
level and produce control signals for actuators on the field level. A direct commu-
nication between field devices is often not possible due to the used communication
technology or not used. The controllers are connected to the IT backend, often
using IT networks, such as Ethernet. The IT backend hosts enterprise systems, for
example for production planning or order management. With the emergence of em-
bedded networks, the separation between the layers in the pyramid will disappear.
Devices at the bottom layer are getting smarter, i.e., they are no longer mere sen-
sors or actuators that are only capable of providing raw measurements or executing
simple actuation tasks. Instead we will see an increasing number of “smart” nodes,
i.e., nodes with programmable microcontrollers. The processing power provided by
these microcontrollers can be used to execute parts of the automation applications
directly in the embedded network. The possibility to perform filtering, aggregation
and control tasks directly in the embedded network reduces the required network
bandwidth and greatly increases the scalability of automation systems.

When looking at the two topmost layers, we see a similar situation. The pres-
ence of a unified communication infrastructure that allows a seamless bi-directional
communication between IT systems and devices in the automation domain will elim-
inate the boundary between the IT and the automation layer. We will see a growing
number of applications that incorporate devices from the IT layer and the automa-
tion layer. One example are real-world aware IT systems with direct access to the
information gathered at the field level. Another example are automation systems

4 1 Introduction: Embedded Networks

PLC

Read Sensors

Write Actuators

Logic

Figure 1.2: Automation System Software Architecture

that rely on information provided at the IT level for performing their tasks, such as
a smart building using a weather forecast provided by an IT service or a production
system using information from the enterprise back-end.

As a consequence, we will see automation systems based on an architecture like
the one depicted in Figure 1.1(b). IT systems are interweaved with field devices
in a single unified network2. Applications can access devices from both worlds
and are executed in a distributed way in the embedded network. The ultimate
vision is to build an Internet of Things, a converged network comprising the network
of information systems we already know - the Internet - and the smart objects
surrounding us.

But we still have a long way to go until we reach the Internet of Things. The
widespread installation of large numbers of devices is only possible if the per unit
price is low. As a consequence, the nodes in an embedded network will be built of tiny
microcontrollers with very limited storage and processing capabilities. Depending
on the application scenario, the nodes might even be battery powered and a wasteful
use of battery resources will result in a short lifetime of nodes. The straightforward
approach of simply extending the Internet to include the devices in an embedded
network is therefore not possible. The limited capabilities of the nodes prohibit
the direct application of the solutions we know from the Internet domain, such as
Web service technologies. Instead, we have to strip down existing protocols to make
them usable in the context of embedded networks and develop new solutions that
are tailored to the needs of embedded networks. It is decisive that these solutions
are compatible with the technologies known from the Internet domain; otherwise we
will not get one converged Internet of Things but a multitude of embedded networks
running in parallel to the Internet.

A side effect of the changing communication infrastructure is a paradigm shift con-
cerning the software architecture used for implementing automation systems. Nowa-

2The unified network is from an application point of view. On the network and lower layers we
will still see bridges and gateways that convert between the technologies used in the different
domains. However these differences are transparent from a functional point of view.

5

days, automation solutions are commonly based on a cyclic execution model3, for
which Figure 1.2 illustrates an example. A central control unit, the Programmable
Logic Controller (PLC), executes the automation software in a cyclic manner. Each
cycle begins with fetching data from all sensor devices. After that, the program logic
is executed. Note that even if two subsystems perform independent tasks, the appli-
cation logic from both systems will be executed in a single monolithic operation on
the PLC. The last step of each cycle is sending control signals to all actuator devices.
It is possible to use more than one PLC in an automation system. All PLCs use a
shared logical memory for storing sensor reading, intermediate results and output
values. The PLCs are organized into a hierarchical structure and the control logic
is split into several parts, one for each PLC. After reading the sensor values, each
PLC executes its control logic and then sends the complete shared memory to all
PLCs further down in the hierarchy. Due to this mechanism, the execution model
is essentially the same as in the case of a single PLC.

This software design paradigm is suitable for static automation systems that are
planned once and then operated unchanged for multiple years. The replacement or
the addition of functionality is challenging because any modification that increases
the execution time of the cycle affects the whole automation solution. Another prob-
lem is that nowadays automation solutions are often hard to debug and to maintain.
There are concepts for structured and modularized software development in au-
tomation systems, such as the Function Blocks specified in IEC 61499[67] and IEC
61131[66]. Nevertheless, the code executed on a PLC is often hard to understand,
even for trained engineers. The reason is that function blocks specify interfaces on
the data level. A communication between different subsystems of the automation
solution is performed through shared memory. These memory areas can be reused
throughout the execution of the logic and it is impossible to determine what data
is stored in a memory area without a detailed analysis of the code that is executed
on the PLC. In the IT domain, service oriented software architectures have already
shown that a decomposition of monolithic applications into loosely coupled services
can greatly increase the maintainability, readability and extensibility of software
systems. We will show that it is possible to build automation systems with service
oriented design principles and that the benefits known from the IT domain can be
transferred to the automation domain, too.

This work aims at laying the foundations for the next generation of control and
automation systems based on embedded networks and service oriented design prin-
ciples. We derive the requirements a system development platform for embedded
networks has to fulfill and propose a framework that covers all aspects of system de-
velopment, including a service oriented system architecture, an efficient middleware
for nodes in an embedded network and a model driven software development ap-
proach. The solutions proposed in this work have been carefully designed to match

3Most systems also offer mechanisms that allow event-like processing of information parallel to
the cyclic execution. Nevertheless the cyclic model is predominant, especially because timing
guarantees are hard to establish using the non-cyclic execution models.

6 1 Introduction: Embedded Networks

the spirit of the Internet of Things. All presented technologies are designed in a way
that allows a seamless integration with Web service based solutions. We will show
that it is possible to create converged embedded networks comprising resource con-
strained microcontrollers and Web service based IT systems. Furthermore, we show
how a service oriented paradigm can be used to develop modular and extendable
automation solutions that are easy to maintain and that automatically adapt the
execution of applications based on the characteristics of the underlying hardware
and the requirements of the executed applications. Of course this work is only a
first step towards these goals. However we are confident that the presented concepts
and technologies can be used as building blocks for future automation systems and
will hopefully pave the way for further research directing at the Internet of Things.

We will first present a short overview of hardware platforms and operating sys-
tems for embedded networks. Throughout this work, we distinguish two classes of
embedded networks: monitoring oriented and control oriented embedded networks.
Both classes and their specific requirements are explained in more detail in the fol-
lowing sections. We will conclude this chapter with a detailed analysis of control
oriented embedded networks. The requirements and properties described in this
analysis motivated the creation and implementation of our development platform
for embedded networks, which we will present in the main part of this work.

1.1 Hardware Platforms

Several hardware platforms have been developed for (wireless) sensor networks, e.g.,
the MICA platform (which is based on microcontrollers from Atmel), the TelosB/T-
Mote Sky platform (which is based on microcontrollers from Texas Instruments)4.
Another example are the nodes from ScatterWeb5 or the WaspMotes from Libelium6.
These architectures follow the general design depicted in Figure 1.3.

The microcontroller and the communication module are the core of every sensor
node. Nodes are often also referred to as “motes” in the research community. We
will use the term mote and node interchangeably throughout this work.

The microcontroller contains the processor (8 or 16 bit CPUs in most cases). Most
microcontrollers implement a Harvard architecture, which strictly separates between
the program memory (called ROM in the figure), which contains the executable code,
and the data memory (called RAM in the figure), which contains the data. The ROM
typically has a size of a few tens or hundreds of kilobytes, the RAM a size of 10
kilobytes or less. Many microcontrollers are shipped with an on board flash memory
that allows storing comparably large data sets with some hundred kilobytes up to
a few megabytes7. Peripheral devices such as sensor and actuator devices can be
attached via an I/O interface offered by the microcontroller. The type and number

4Further documentation can be found at the Crossbow Homepage (http://www.xbow.com)
5http://scatterweb.com
6http://www.libelium.com/products/waspmote
7Some microcontrollers also offer an interface for an external flash storage.

1.2 Operating Systems 7

Persistent Storage

(Flash)

Communication

Module

I/
O
 I
n
te
rf
a
c
e

(D
IO
,
A
D
C
,
R
S
-2
3
2
,
..
.)

Processor

ROM

RAM

Sensor/Actuator

Sensor/Actuator

Sensor/Actuator

...

Microcontroller

Figure 1.3: Sensor Node Hardware Architecture

of I/O ports depend on the microcontroller and range from digital I/O ports over
analog I/O ports to serial interfaces, such as RS-323, and bus interfaces, such as
SPI8 or I2C[107].

The communication module provides a communication infrastructure for nodes
in the embedded network. For wireless nodes, radio modules based on the IEEE
802.15.4[56] standard have become quite popular. They provide an energy efficient
alternative to the 802.11[55] based WLAN networks known from the IT domain.
Other modules, wired or wireless are also possible, e.g., an Ethernet interface or an
interface to a field bus system.

For our demonstrators, we used TelosB motes from Crossbow and the Java based
SunSPOTS9 from SUN (Oracle). The basic architecture of a SunSPOT is similar
to the architecture depicted in Figure 1.3. SunSPOTs additionally contain a hard-
ware based Java Virtual Machine implementation, more details about the SunSPOT
platform can be found in [139]. The TelosB Mote has a ROM size of 48 kilobytes, a
RAM size of 10 kilobytes and a flash memory with 1 megabyte size. Meeting these
resource constraints was a design target for the solutions presented in this work.

1.2 Operating Systems

There are several operating systems available for sensor nodes. Probably the most
popular ones are TinyOS10 and Contiki11. We will not present both systems in
detail here, a list of publications for each operating system can be found on the
corresponding Web site. Both systems use an event driven execution model. Events

8There is no single agreed upon standard for SPI, a general overview can be found in Wikipedia
9For more information see http://www.sunspotworld.com/

10http://www.tinyos.net/
11http://www.sics.se/contiki/

8 1 Introduction: Embedded Networks

can be generated by sensor/actuator devices attached to the node, by incoming net-
work packets or by applications running on the node. Applications can register to
events and process the received/measured data. Both systems contain mechanisms
that allow saving energy resources by putting the node into a sleep mode if there are
no pending events. Besides this core functionality, both systems offer the essential
building blocks for sensor node applications, such as drivers for various hardware
platforms, network protocols, or timers. Nevertheless, both systems are strictly op-
timized for resource constrained environments and many functionality known from
PC operating systems is not available, e.g., multithreading, private memory areas,
a differentiation between user and kernel mode, or a hardware abstraction layer.
A difference between both systems is that Contiki contains a module that allows
loading new application code at runtime. This mechanism can be used to dynami-
cally download code to the sensor node. In TinyOS, such updates are currently not
possible without rebooting the node.

1.3 Monitoring Oriented Sensor Networks

Embedded networks have been receiving growing interest in the research community
in recent years and a lot of research has been done in this area. Most of this work is
focused on pure sensor networks, i.e., networks which possess no actuators and per-
form solely measurement and observation tasks. We will use the term “monitoring
oriented” sensor networks to refer to this class.

1.3.1 (Wireless) Sensor Networks

In the last years, a special subclass of sensor network has drawn a lot of attention:
“wireless sensor-networks” (WSNs). WSNs use radio modules for the communica-
tion between individual nodes in the network. This introduces new complexities
compared to wired communication, but also increases the flexibility for the deploy-
ment of such networks. Nodes can be placed freely and even moved at runtime12. A
possible application scenario of wireless sensor networks is the monitoring of modern
plants [152] or flexible production sites, which prohibit the use of wired solutions be-
cause of environmental influences or frequent reconfigurations. Another application
scenario is environmental monitoring. A quite prominent example is the bird obser-
vation project on Great Duck Island[95]. By using WSNs, a fine grained monitoring
is possible without disturbing the observed animals. The ZebraNet[73] project uses
WSNs to track animals in large, wild areas. A special characteristic of this appli-
cation scenario is that there is no stable network structure due to the mobility of
individual nodes. Instead most communication has to be performed using ad-hoc
established links whenever two tracked animals are in close proximity of each other

12There are some boundary conditions, such as the maximum distance between nodes or line-of-
sight requirements

1.3 Monitoring Oriented Sensor Networks 9

or are near a base station. An overview of other application scenarios for WSNs can
be found in Römer et al.[123].

Wireless Sensor Networks pose several challenges. Resource constraints and lim-
ited energy resources require efficient and robust communication and data processing
paradigms. Node failures, e.g., due to energy depletion or environmental influences,
are common and must be compensated to guarantee a continuous operation of the
sensor network. The large number of nodes encountered in sensor networks requires
new management mechanisms for the efficient reconfiguration and reprogramming
of whole sensor networks. Besides these topics there are a multitude of additional
research directions. We will present related work for the individual topics studied
in this work at the end of each section.

The nodes used in the projects mentioned above are still fairly large and expensive.
An ongoing research field is to further decrease the size, energy consumption and
price of sensor platforms. The ultimate goal is to design a “smart-dust” network - a
sensor network comprising hundreds or even thousands of very inexpensive and very
small nodes. Ideally, these nodes are small and lightweight enough to float in the
air - like dust. An use case for these networks is disaster monitoring, for example
by dropping nodes from a plane in order to monitor flood levels, temperatures, etc.
An overview of research challenges in this area can be found in Kahn et al.[78] and
Warneke et al.[166].

1.3.2 The Global Sensor Network

The increasing deployment of sensor networks has fostered the vision of “global sen-
sor networks” (GSNs) comprising thousands or millions of geographically dispersed
sensor devices. The vision of GSNs is to provide sensor information with wide (or
even global) coverage through a unified easy-to-use interface to a multitude of users,
even if the data stems from different underlying sensor networks. A GSN can be
seen as a network of sensor networks. Research in this area has been started and
aims towards providing mechanisms that allow to deal with huge numbers of de-
vices, as encountered in the Internet of Things. The IrisNet project[44] targets a
software platform that offers basic sensor network functionality, such as collecting,
filtering and querying data, at a global scale. The Open Geospatial Consortium
(OGC)[115] defines a set of XML standards for various measurement and observa-
tion application fields. These standards can be used as a basis for data exchange
between different sensor networks. Holman et al.[53] describe a possible application
scenario of a GSN using video cameras to monitor shorelines. The authors bring
forward the argument that many of the nowadays installed “beach cams” could also
be used for scientific or management purposes. Through the addition of image pro-
cessing functionality, these cameras can be turned into an intelligent sensor network
for coastal monitoring.

10 1 Introduction: Embedded Networks

1.4 Control Oriented Embedded Networks

This work focuses on networks for control and automation purposes. These networks
contain not only sensor devices to monitor the environment, but also actuator de-
vices to interact with the environment (this kind of network is often also called
SAN: Sensor Actuator Network). From a hardware point of view, monitoring and
control oriented networks look very similar: both network types are composed of
networked microcontrollers. However there are fundamental differences that require
distinct solutions for both types of networks. The infrastructure of control oriented
networks is comparably stable. The addition of new devices (or the failure of exist-
ing devices) is possible in control oriented networks, but these changes are rather
exceptional situation. In many monitoring oriented SNs, this is not the case and
network protocols and applications are often designed with mechanisms that allow
compensating node failures. Another difference is that control oriented networks
typically execute multiple different applications at once, which access different sub-
sets of the available hardware. Monitoring networks on the other hand typically
run a single data collection and processing application. We will present an overview
of application scenarios and characteristics of control oriented embedded networks
and the differences compared to monitoring oriented networks in more detail in the
following sections.

It is impossible to draw a strict border between monitoring and control oriented
networks. In some cases, networks with pure monitoring tasks will possess charac-
teristics similar to control networks. Consider for example an embedded network
used to monitor a production site, which possesses a well planned and fixed network
structure with fairly reliable nodes. Such a network could be seen as a special case
of a control oriented network that possesses no actuator devices and executes only
a single monitoring application. To improve the readability, we will use the term
“control oriented” network to refer to networks that possess the characteristics men-
tioned in the following sections. This term does not imply that the network actually
performs a control task. The presented solutions may also be applied to networks ex-
ecuting monitoring, observation and data collection tasks - if these networks possess
characteristics similar to control oriented networks.

1.4.1 Application Fields for Control Oriented Embedded Networks

Control oriented embedded networks have many application fields. Probably the
most obvious one are process and production automation systems. As mentioned
in the introduction, the emergence of embedded networks in this area is driven by
the increasing convergence between IT and automation systems, combined with the
presence of smart devices at the field level. Another application field of embedded
networks is the automotive industry. Modern cars contain more and more electronic
control units (ECUs) and different bus systems for the data exchange between these
ECUs. In addition to these built-in devices, more and more external devices have
to be integrated into the on-board network of modern cars, such as cell phones,

1.4 Control Oriented Embedded Networks 11

navigation systems, multimedia players, etc. This trend is not restricted to commu-
nication inside the car but will most likely also extent to communication between
the car and its environment. If vehicle-to-vehicle communication becomes available,
a multitude of new sensor devices and information sources will become available
and have to be integrated into next generation automobiles. A similar example are
battery powered cars. The charging process - and the billing process attached to it
- requires a communication between the car and the charging station, often referred
to as vehicle-to-grid communication.

The power grid is another application field for embedded networks. Like in the
automation domain, the power grid will be enriched with more and more smart
devices. Electric cars are one source. The increasing number of solar/wind power
generators installed in many households creates new challenges for the operators of
energy grids. The generation of electric power is shifting from a few large power
plants, to thousands of small energy generators distributed throughout the power
grid13. In order to manage the power distribution and to ensure a stable operation,
the consumption and generation of energy at individual nodes (households) in the
power grid has to be measured, leading to large scale embedded networks (often
called Smart Grids).

Control oriented embedded networks are also used in building and home automa-
tion scenarios. Although the technological foundations and even products for home
automation systems are already available for several years, a widespread installa-
tion of automation systems by home owners is not observable. Instead, automation
solutions are - with some few exceptions - limited to commercial buildings, such as
office buildings, hospitals, etc. This will most likely change in the near future, as
more and more homes already contain a network infrastructure for the communica-
tion between multimedia devices, PCs, etc. An automation solution that leverages
this existing infrastructure could provide an affordable alternative compared to the
dedicated home automation networks available nowadays. Such a home automation
network could also be attached to the smart power grids described in the previous
section. One vision is that future power grids will use a variable power price to
reduce power peaks and smooth out the overall utilization. The power price will
change based on the current demand and can be queried from the smart energy me-
ter. Intelligent consumers in the household, such as refrigerators, washing machines,
a charging station for an electric car, can schedule their power consumption in a
way that minimizes the overall energy costs.

Besides the already mentioned ones, there are many additional applications fields
for embedded networks. Most examples presented in this work are taken from the
domain of home/building automation, because most readers should have an intu-
itive understanding of the requirements in this domain. Because of very similar
requirements, the presented concepts can be transfered to process/production au-

13Nowadays the vast majority of power is still generated by large power plants. To deal with the
growing number of regenerative energies resources, new management and control mechanisms
have to be found, which are studied in many research projects targeting the development of the
next generation of power grids.

12 1 Introduction: Embedded Networks

tomation systems, too. We are confident that the core ideas can be applied in other
applications fields, too - perhaps with some modifications to care for the special
characteristics of the targeted system.

1.4.2 Characterization of Control Oriented Embedded Networks

Control oriented embedded networks have special characteristics and requirements
that have to be supported by a development platform. We identified the following
requirements, which also represent the design goals for the ǫSOA platform, our
development platform for embedded networks.

1.4.2.1 Resource Constraints

An important characteristic of embedded networks are resource constraints. In
order to keep the unit costs low, many nodes in embedded networks will be designed
based on small microcontrollers with very limited processing power and memory
resources in the order of a few tens or hundreds of kilobytes. It is foreseeable that,
just like in the area of personal computers, hardware prices will drop in the future.
However, dropping unit prices will not necessarily lead to nodes with increased
resource capacities. In many application fields, it is more beneficial to increase the
number of nodes in the embedded network instead of increasing the capacity of
every single node, for example to achieve a better coverage. Additionally, a cheaper
price will also open up new application fields for embedded networks that will -again-
require low per-unit prices. As a consequence, the challenge of designing applications
on resource constrained embedded networks will persist, even under the assumption
of dropping hardware prices.

Resource constraints cannot be overcome with a single technological solution and
influence many aspects of system design. They require the design of resource efficient
network protocols, a lightweight execution environment on the nodes and optimiza-
tion techniques that distribute workloads over multiple nodes in the network.

1.4.2.2 Heterogeneity

In contrast to monitoring oriented networks, which are often built by installing a
set of similar nodes in the environment, an embedded network built for automation
purposes is typically heterogeneous.

Heterogeneous Nodes In order to minimize costs and to build as energy efficient
nodes as possible, control oriented networks often comprise a multitude of special-
ized nodes with different characteristics. On the one hand there are lightweight
and cheap nodes which can be installed in large numbers, e.g., measurement nodes
with attached sensor devices. These nodes often possess only very limited process-
ing and storage capacities. On the other hand, the network will also contain more
powerful nodes which provide enough resources for complex control and processing

1.4 Control Oriented Embedded Networks 13

tasks. Besides the nodes directly involved in the control operations, embedded net-
works contain additional nodes for the management and supervision of the network.
Another source of diversity are devices that are used to manage and configure the
embedded network, e.g., Laptops that are dynamically attached and removed, or
end user devices such as cell phones.

Multiple Communication Media A second source of heterogeneity are different
communication media used inside an embedded network, ranging from field bus sys-
tems over Ethernet based networks to wireless communication media. Each of these
technologies and the used network protocols have differing features and capabilities
that have to be taken into account during the installation, configuration and execu-
tion of applications in the embedded network. Multiple communication technologies
can even be used simultaneously in an embedded network, e.g. wireless mobile nodes
which are connected to a wired backbone. The challenge is to provide a seamless
and efficient communication across such heterogeneous networks.

1.4.2.3 Distributed Execution of Applications

Embedded networks require a programming paradigm that supports the distributed
execution of applications. One reason is the distribution of sensor and actuator
devices. Because it is unlikely that a single node possesses all required hardware
devices, the execution of applications typically involves multiple nodes. The second
reason are the resource limitations on the nodes. In many cases, the workload
created by an application has to be distributed over multiple nodes in order to
achieve a resource efficient execution and to maximize the overall lifetime of battery
powered networks. A distributed execution model can also be used to remove single
points of failure. If a node in an embedded networks fails, only applications that
explicitly depend on functionality provided by this node, such as a specific sensor
or actuator device, have to be stopped. The remaining applications will still be able
to perform their tasks. Finally, applications built of distributed components also
offer the possibility to control the resource utilization on a fine grained level. If a
bottleneck is detected, individual application components can be moved away from
the overloaded nodes in order to provide a more homogeneous utilization. Such
a mechanism greatly increases the scalability of networks. If a network requires
more computing resources, e.g., to resolve an overload situation or to support a new
application, these can be provided by simply adding one or multiple nodes to the
embedded network. There are no scalability limits such as a limited amount of I/O
ports at a central controller or similar constraints.

A distributed execution is also beneficial from an optimization point of view.
Often the amount of transferred data can be reduced by placing the data consuming
control logic nearby the data producing sensors. Such optimizations can greatly
reduce the required network traffic and help creating more stable and more efficient
networks.

14 1 Introduction: Embedded Networks

1.4.2.4 Simultaneous Execution of Multiple Applications

Sensing oriented embedded networks are often running only a single data collection
application that collects, aggregates and stores sensor readings. In contrast to this,
control oriented embedded networks typically solve multiple control and automation
tasks at once. As a consequence, control oriented embedded networks have to be
capable of executing multiple distributed applications simultaneously. Each of these
applications may access a subset of the available sensors, actuators and processing
resources. An important optimization goal is to minimize the interference between
these applications. Shared resources such as communication channels or storage and
processing capacities have to be allocated to the individual applications in a way
that avoids overload situations.

1.4.2.5 Event Driven Processing Model

A typical task of control oriented networks is the control of actuator devices based on
sensor readings. An application performing this task can be implemented efficiently
following an event driven processing model. Upon the arrival of new data, e.g. new
sensor readings, the execution of the application logic is triggered. Based on the
outcome of this calculation, a new event is created. This event is forwarded to the
actuation device. The actuator will react upon the arrival of the event by performing
some actuation task. In many cases these events will be generated on a regular basis,
e.g. by a sensor device that performs measurements periodically. A middleware for
embedded networks should provide efficient mechanisms to manage and distribute
such sequences of events. Besides periodic measurements there are also non-periodic
interactions, e.g., messages for monitoring, reconfiguration or other administrative
tasks. The embedded network also has to support this communication pattern.

1.4.2.6 Network Dynamics

Control networks have to be reconfigurable at run-time. At any time, new nodes
with previously unknown functionality can be added and existing nodes can fail.
The embedded network should be capable to adapt to such changes and re-optimize
the execution of applications based on the new boundary conditions.

Not only the hardware in an embedded network is subject to change, but also
the software executed on this hardware. Application fields of embedded networks
can change and new applications will be added to provide new functionality. As a
consequence, the purpose of individual nodes in the network is not fixed but changes
throughout the lifetime of the network. This requires a life cycle management that
supports the installation, startup, shutdown, and removal of individual components
and whole applications in the network.

Please note that despite these dynamics, control oriented networks still possess
a comparably stable network structure compared to Smart Dust networks or ad-
hoc networks with mobile devices, etc. The concepts presented in this work were
designed and optimized with this stability in mind.

1.4 Control Oriented Embedded Networks 15

1.4.2.7 Web Service based Interfaces

Nowadays, embedded networks do not operate in isolation but are connected to the
Internet or wide-area networks and interact with external systems - sometimes with
multiple different systems at the same time. The interaction can occur in both ways,
embedded networks can consume data provided by external sources or supply status
and monitoring information to remote systems.

One example is the integration of data supplied by Web service running in the
Internet or an enterprise back-end.

1.4.2.8 End-user Programming

A key advantage of embedded networks compared to centralized control systems is
the possibility to dynamically integrate new devices in existing installations. New
devices can be added to the network at runtime and integrated through the in-
stallation of new applications that use the additional hardware or by updating and
reconfiguring running applications. In order to fully exploit the benefits of such a
system architecture, it is decisive that the integration can be performed in an easy
and intuitive manner. If a comparably simple task, such as the installation of a
new switch in a building automation scenario, requires complex planning and the
availability of trained personnel, the benefits provided by the embedded network
infrastructure will be easily outweighed by the administrative costs for performing
such an operation. The goal therefore has to be to enable the users that interact
with the embedded network to perform such tasks themselves.

Depending on the application field, different groups of people will perform con-
figuration tasks in an automation system. In a home automation scenario, recon-
figurations will be performed by the home owner himself, who most likely will only
have domain knowledge and little to no knowledge about the technical background
of their automation tasks. In a larger building such as an modern office building,
trained personnel from a facility management provider will do most of the instal-
lation and maintenance tasks. In a production automation scenario, engineers will
be the users that interact with the embedded network and trigger reconfigurations
to optimize the performance of the production process. The common denominator
of these different user groups is that, although they possess highly different knowl-
edge concerning the technical background of their application domain, none of them
will be an expert in the area of embedded network programming. An embedded
network middleware should empower an end-user to do the necessary configuration
and installation tasks himself. That means, the user should be able to specify what
application he wants to run on the embedded network based on domain knowledge
and the embedded network middleware has to ensure that the resulting application
will achieve the intended goals and will operate safely on the embedded network.

16 1 Introduction: Embedded Networks

1.4.2.9 Multiple User Groups

During its lifetime, multiple different user groups interact with an embedded net-
work. One group are hardware developers that design, specify and implement nodes
for a given application scenario. The second group are installers that deploy nodes
in a given environment and optionally do some configuration for generic nodes. The
third group are application developers that create a working embedded network out
of the individual components installed by the installer. During runtime, manager
will supervise the embedded network and perform adjustments and reconfigurations
to adjust the embedded network to changing application requirements or environ-
mental parameters. The last group are users which are not involved in the creation
and maintenance of the embedded network, but will simply use the network for
example by interacting with sensors or actuators. A crucial observation is that all
these roles require different skills and a different level of knowledge about embedded
networks. To keep management costs low, it is desirable that the manager and the
installer role can be performed solely based on domain knowledge and do not require
special training in embedded network technologies.

1.4.2.10 Different Workflows

Depending on the application field and the customer, automation solutions are de-
veloped using different workflows. One possibility is the offline modeling of the whole
automation solution prior to the installation (or even acquisition) of hardware de-
vices. This workflow is nowadays commonly used for the development of large scale
automation systems. With the availability of smart devices on the field level, a more
dynamic development is possible. By storing configuration and hardware informa-
tion directly on the device, devices will become self-descriptive. Self descriptive
devices can be used to model systems bottom-up. Whenever a self descriptive de-
vice is added to an existing automation solution, its capabilities and properties are
queried by the system and fully automatically added to the system model. The
developer can then integrate the new device into the existing applications. A vision
for a development workflow without any prior modeling is a module based automa-
tion system. In this vision, an automation system, such as a manufacturing site, is
created by installing modules for specific automation tasks, such as packaging, bot-
tling or cleaning. These modules are automatically discovered and can be integrated
using an iterative workflow in which the modules are added one after the other to
the automation system. Of course, all possible variations between these two devel-
opment workflows are possible, too. The development process used for building next
generation automation systems should be flexible enough to support these variants.

1.5 Outline

This work is structured as follows. We will first present the core design concepts of
the ǫSOA platform (also published in [130] and [129]) and provide a short overview

1.5 Outline 17

of the application development workflow at the beginning of Chapter 2. In the re-
maining part of Chapter 2, we will present the ǫSOA system model in more detail,
derive a service and instance lifecycle model and describe the service based appli-
cation composition workflow. Finally, we will present the optimization techniques
used in the ǫSOA platform at the end of Chapter 2 (parts of this work have been
published in [132]).

After the presentation of the design principles and development workflow in Chap-
ter 2, Chapter 3 focuses on the ǫSOA Runtime Environment, which provides the cor-
responding service execution environment on the nodes in the embedded network.
We will present the overall architecture, the used description and encoding formats
and present the communication layer (published in [131]), which is a crucial part in
a distributed control network. We will describe how efficient message parsers can
be implemented on resource constrained nodes (some of the used code generation
techniques have been presented in [10]) and describe lightweight interfaces for the
management of nodes and services and the information exchange between different
layers of the communication stack (also called cross-layer information exchange).
Furthermore, we will present how new services can be installed at runtime on nodes
in the embedded network. This mechanism can be used to perform in-field updates
and support end-user adaptations for off-the-shelf components.

Chapter 4 describes advanced features provided by the ǫSOA platform, which are
based on the basic mechanisms introduced in Chapter 3. We will present failure
compensation mechanisms for distributed control applications, a service migration
scheme that allows the live migration of stateful services (published in [142]) and a
bridge component that acts as mediator between services from the embedded domain
and services from the IT domain (published in [141] and [11]).

In Chapter 5 we will provide a short overview of the development tools included
in the ǫSOA platform, which implement the aforementioned concepts and support
an easy and fast development of embedded networks. We developed demonstrators,
which showcase the functionality of the ǫSOA platform. These demonstrators are
presented in Chapter 6. Finally, a summary and an outline of future and ongoing
work is given in Chapter 7.

18

CHAPTER 2

The ǫSOA Platform

The challenges for the application development in embedded networks summarized
in the previous chapter cannot be solved by a single technological concept, but
require a holistic solution that comprises a well-thought system architecture, an
efficient runtime environment, a suitable development paradigm, and corresponding
tool support. The ǫSOA platform, which we will present in this work, aims at
providing all these features. The key design principles used in the ǫSOA platform
are explained in the next section, followed by a more detailed description of the
individual building blocks used to realize these design principles.

2.1 Design Principles

The variety of application fields and the different hardware platforms with unique
capabilities and constraints make it very hard to build a general all-purpose mid-
dleware that can be executed efficiently and with little overhead on any system.
Instead we aimed at designing a development platform that allows a user to specify
what applications he wants to execute in the embedded network on an abstraction
layer that safely hides the details of the underlying hardware. This abstraction
is provided by employing the concepts of a Service Oriented Architecture (SOA).
Based on this high-level specification, the ǫSOA platform will fully automatically
create all code, including the runtime environment, that has to be installed at the
nodes in order to run the applications. This transformation is performed using
model driven development techniques, which allow creating highly efficient systems
with minimal overhead. A primary design goal for the runtime environment was to
efficiently support the distribution and processing of periodic a priori known data
transfers, as these represent the vast majority of network traffic encountered in a
control oriented embedded networks. An execution model that supports this kind

2.1 Design Principles 19

of data transmissions and that can be well combined with a SOA is a data stream
oriented processing paradigm. These three design principles are presented in more
detail in the following sections.

2.1.1 SOA

The term Service Oriented Architecture (SOA) has become quite popular in the IT
domain. A closer look at the big number of systems that are - or at least claim to
be - based on the ideas of Service Oriented Architectures reveals a lot of differences
w.r.t. the definition of SOA. When talking about SOA in this work, we are referring
to a system architecture that follows the definition provided by the Organization for
the Advancement of Structured Information Standards (OASIS). The definition is:

“Service Oriented Architecture (SOA) is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different
ownership domains.”[109]

As mentioned in the definition, SOA is not a technology for implementing systems
but an architectural design principle. The focus of SOA is functionality. Functional-
ity is bundled in services, which are described by a well defined interface specification
that contains all information required for interacting with the service. Individual
services can be combined to create applications. This process is called service compo-
sition. An important property of service compositions is a loose coupling between the
individual services. Unlike compile-time or runtime binding, which require changes
on the client and the server side if a service’s interface changes, loose coupling gives
service owners the flexibility to change the implementation and the interface of ser-
vices independently of the other services used in a composition (of course with some
limitations, because the new interface still has to provide the functionality required
by the other services).

The architecture of the ǫSOA platform is based on the principles of SOA mapped
to the domain of embedded networks. The capabilities encapsulated by services
in the ǫSOA platform can be functionality provided by hardware devices, such as
sensors and actuators, or data processing functionality. If a distinction between
these two types is necessary, we will call the former kind of services “hardware
services” and the latter kind “software services”. Service compositions in the ǫSOA
platform will typically involve both, hardware services (which provide access to
sensor and actuator devices) and software services (which contain the control logic or
provide storage, logging or monitoring functionality). However this is not mandatory
and applications can be implemented by using solely hardware services, or software
services respectively. We will use the term application synonymously for service
composition. Note that applications do not have exclusive access to services, instead
a service may be used in multiple applications simultaneously and a single embedded
network can execute multiple applications in parallel.

SOAs have several properties that help solving the requirements mentioned in
the previous section. The clear separation between the interface and the implemen-

20 2 The ǫSOA Platform

tation of a service allows dealing with the heterogeneity encountered in embedded
networks. A service can be implemented differently on different systems, tailored to
the characteristics of the underlying hardware and software platform. The second
concept that makes SOA an appealing solution, especially for heterogeneous systems,
is the loose coupling of services. By using a suitable service description language and
composition paradigm, applications can be designed in a way that does not require
the presence of a specific hard- or software service but instead requires the pres-
ence of some functionality. In different systems, this functionality can be provided
by different services. This allows building applications that are reusable in differ-
ent systems, instead of re-designing the application for every embedded network.
Consider an application that requires periodic temperature measurements. In one
system, this functionality might be provided by a dedicated temperature sensor, in
another system by a sensor board that contains humidity, temperature and bright-
ness sensors. The same mechanism can be used to integrate devices from different
vendors in a single system. The only prerequisite is that these devices provide the
required functionality.

Another benefit of SOAs is the inherent support for a distributed execution of ap-
plications. SOAs encourage the decomposition of applications into bundles of inter-
operating services. These services can be distributed throughout the network. This
mechanism is especially interesting for resource constrained devices. The burden of
executing applications can be distributed over multiple nodes, thus reducing bottle-
neck situations. This flexibility can be extended to support network dynamics, too.
Nodes can be implemented as general purpose service hosts and are therefore capable
of executing arbitrary software services (and hardware services if they possess the
required sensor/actuator devices). A system design based on such a paradigm can
react to network dynamics, such as the failure or addition of nodes, by reorganizing
the distribution of services. This allows building systems that can recover from node
failures and are easily extensible. The envisioned goal is the following: in order to
provide more processing power or to support a new application field, the user sim-
ply adds the required hardware resources to the embedded network. The network
should then reconfigure itself to match the requirements of the new application field
and to exploit the additional resources. As we will show in this work, SOA is a well
suited architectural paradigm for building “smart” embedded networks that adapt
their behavior to the application requirements and the capabilities of the underlying
hardware.

SOAs are also beneficial w.r.t. the integration of IT systems and embedded net-
works. In the IT domain, the SOA concept - implemented with Web service tech-
nologies - is well established and used in many business systems. This eases the
integration between the domain of embedded networks and the IT domain. Using
the same architectural concept in both domains is essential for a seamless integra-
tion. An application developer should be able to use services from both domains
and compose them to applications spanning embedded and IT services. Of course
there are non-functional differences between services in both domains that have to
be taken into account. The resource limitations in embedded networks require very

2.1 Design Principles 21

resource efficient solutions and some features such as reliable message transfer or
encryption support may not be offered by services in the embedded domain. Nev-
ertheless, the fundamental concepts in both domains are the same and Web service
knowhow is sufficient for integrating embedded services into IT systems. This simi-
larity has another benefit. If embedded networks use a solution that is based on Web
service technologies, or a solution that can be mapped easily to WS technologies,
one can benefit from the vast investments done in the domain of Web services for
training people and developing toolsets. This can dramatically reduce development
costs compared to nowadays automation solutions, which are often based on special-
ized protocols that require highly trained experts and custom made toolsets during
development.

2.1.2 Data Stream Oriented Processing Model

A second important building block besides the system architecture is the data pro-
cessing model. As mentioned in the previous section, it has to efficiently support the
distributed execution of applications on resource constrained devices. A processing
model that satisfies this requirement is a data stream oriented processing model. In
a stream oriented processing model, applications are composed of components that
possess a well defined interface comprising inputs for receiving data and outputs for
sending data. These components are connected by data streams. A data stream is
a continuous flow of events/messages that connects an output of a component with
the input(s) of one or more components. A component can be seen as a data stream
operator that consumes data streams at its inputs and produces data streams at
its outputs. An important characteristic of data stream processing systems is that
operators/components are purely data driven. An operators output is determined
solely by its configuration and the data it receives at its inputs. The source of a data
stream is irrelevant for the operator. Analogously, the output streams produced by
an operator are not influenced by the sinks that consume this stream.

A special characteristic of the communication patterns encountered control ori-
ented embedded networks is longevity and predictability. Applications installed in
control oriented embedded networks will typically be executed for days, months or
even years. This makes the message flow occurring in the embedded network pre-
dictable. Of course there are also applications that are event driven, e.g., a fire
detector that will send a signal only once a year - if at all. Nevertheless, the in-
teraction between the fire sensor and an alarm bell is still predictable. It is known
beforehand that if an event occurs, it will be send to the alarm bell. The fire detector
does not select a destination ad-hoc. Because the communication is predictable, it
is possible to optimize the message flow in the system. It is possible to exploit syn-
ergies between different applications that consume the same data and it is possible
to route the data streams in a way that avoids network congestions and bottleneck
situations. In the database community, the special term Data Stream Management
System (DSMS) has been coined for management infrastructures that optimize the
message flow in data stream based systems. The ǫSOA platform uses optimization

22 2 The ǫSOA Platform

techniques that are comparable to the optimizations performed by these DSMS.
We will present DSMS and the used optimization techniques in more detail in Sec-
tion 2.6.

A processing model that is based on independent components which communicate
by exchanging messages is often also called an actor-oriented design. Actor-oriented
models are well known in the literature for quite some time. An initial definition was
given by Carl Hewitt[52], which was further refined in the work of Gul Agha[5] and
others. A good introduction to actor-oriented system design and references to many
related projects can be found in Lee et al.[86]. An actor-oriented design consists
of actors with a well defined interface. The interface of an actor contains ports,
which are used for communication with other actors, and parameters, which contain
configuration information. The ports of actors can be connected via channels, which
pass data between the connected ports. Like in the data stream processing model,
an actor does not know to which endpoint the channel is connected to. The actor-
oriented design does not imply any semantics for these components. Instead the
semantics are provided by a model of computation, which is largely orthogonal to
the definition of actors, parameters, ports and channels. The model of computation
specifies rules that determine when an actor executes its internal logic, updates
its state and communicates with other actors. The separation of actors and the
model of computation allows building highly reusable actors that interact using the
model of computation that fits best for a particular application field. An interesting
feature of actor-oriented designs is the possibility to automatically generate hard-
and software systems out of the actor model, see Lee et al.[86] for more details.

There is a close relationship between the Data Stream Processing Model and the
Actor Oriented Programming Model. Both rely on distributed components that
communicate by exchanging messages. Both enforce a strict separation between the
implementation of components and the composition of components into applications.
From an actor-oriented point of view, the data stream processing model can be seen
as an actor oriented system using a dataflow/discrete event processing model. The
focus of our work is closer to the tasks performed by DSMS, i.e., the optimization
of the communication and data routing. We will therefore use the term data stream
processing model and not actor oriented programming model throughout this work.
Nevertheless, the concepts used in actor-oriented system designs fit seamlessly into
the ǫSOA platform. Especially the possibility to create not only software but also
hardware implementations could be an interesting feature for embedded networks
and a possible direction for future research.

The stream oriented processing model fits well into a service oriented system ar-
chitecture. Operators can be seen as services that offer operations that produce,
consume or process data streams. The data driven execution model enforces the
design of loosely coupled components. If the behavior of components only depends
on the received data and not the source of this data, the source can be exchanged
freely as long as the corresponding service provides a similar interface. The stream
oriented processing model also provides a good way to deal with heterogeneous
systems spanning IT systems and embedded networks. A common problem encoun-

2.1 Design Principles 23

tered in these systems are different addressing formats. The URLs used in the IT
domain for addressing services can easily have a size of dozens of bytes. This is too
resource consuming for embedded networks regarding the resulting message sizes
and the overhead required for processing these strings. A benefit of a data stream
oriented design is that the routing of data streams is done in the middleware and
therefore transparent for an operator/component. This can be exploited during the
installation of applications and the configuration of the data stream routing. If a
user connects a service in the embedded network (identified by a numerical address)
with a Web service (identified by an URL), the middleware can fully automatically
generate an address mapping that translates the URL to a numeric address and
vice versa. The embedded network is then configured to send messages directed at
this numerical address to a bridge node. This bridge converts the address back to
the original URL and submits the message to the corresponding Web service. This
mapping can be done transparently for the end-user and the involved services. The
end-user may still use URLs to identify services during application composition.
However the middleware can decide to convert these URLs to other - more efficient
- addressing schemes at runtime in order to improve the performance.

2.1.3 Model Driven Development Approach

The third key piece of the ǫSOA platform is a model driven development approach.
Model Driven Software Development (MDSD), also called Model Driven Engineer-
ing (MDE), is a software development methodology that aims at reducing the gap
between a problem domain and the software implementation domain. MDEs are
based on models that describe a complex system at various levels of abstraction.
Ideally, these models can be transformed directly into executable software using
model transformation and code generation techniques. An overview of research in
this area and the history of MDE is given by France and Rumpe[41].

Probably the most prominent example of MDE is the Model Driven Architecture
(MDA)[82] specified by the Object Management Group (OMG1). The MDA advo-
cates the creation of systems based on three models: a computation independent
model (CIM), a platform independent model (PIM) and a platform specific model
(PSM). The CIM captures the environment of the modeled system and the required
features. The PIM contains all features of the system that will (most likely) not
change from one platform to another. In this case, a platform is a framework such
as CORBA or J2EE or some proprietary solution. Platform specific details are in-
tegrated into the system using the PSM. A typical development workflow based on
MDA uses two transformation processes, a model to model mapping between the
PIM and the PSM and an automatic source code generation based on the PSM.

A challenge encountered during application development for embedded networks
is that the execution environment for an application is a dynamic, heterogeneous
distributed system. The ǫSOA platform uses a MDE approach that is tailored for

1http://www.omg.org/

24 2 The ǫSOA Platform

D
a
ta
 S
tr
e
a
m

sensor/actuator

wireless link

S
e
rv
ic
e

A
pp
lic
at
io
n

C
on
cr
et
e
S
ys
te
m

A
b
s
tr
a
c
t
N
e
tw
o
rk

wired link

S
e
rv
ic
e

R
e
p
o
s
it
o
ry

H
a
rd
w
a
re
 M
o
d
e
l

A
p
p
lic
a
ti
o
n
 M
o
d
e
l

Figure 2.1: Abstraction Layers used in the ǫSOA Platform

2.1 Design Principles 25

application development in such environments. It uses an automated code generation
to support different hardware platforms. The code generation is not only used
to generate the applications running in the embedded network, but also to tailor
the middleware executed on each node in the embedded network. The generated
middleware for a specific node will only contain those features that are required
by the services running on this node. This allows building a scalable middleware
that supports both, simple nodes that only require a limited subset of features and
complex nodes that require the full functionality of the middleware.

The system model used in our approach is divided into an Application Model
and a Hardware Model. The combination of both models allows optimizing the
execution of applications based on the characteristics of the underlying hardware
and the requirements of the different applications. The ǫSOA platform uses four
abstraction layers to model an embedded network, which are shown in Figure 2.1.

The Abstract Network Layer provides an abstract view of the available hard-
ware and the communication characteristics in a concrete system. It possesses two
elements, nodes and links. Nodes represent computing devices in the embedded
network, such as microcontrollers and PCs. Nodes are annotated with informa-
tion about the hardware platform, the operating system running on the node and
its hardware characteristics, such as the available free memory. Depending on the
hardware platform and the operating system, nodes can be re-programmable at run-
time (indicated by the gray boxes) or offer only a fixed set of services (indicated by
the white boxes). Each node contains a list of all attached sensor and actuator
devices and their characteristics. The communication channels present in the em-
bedded networks are represented by links between the nodes in the abstract network
layer. These links represent a single-hop communication between nodes. If nodes
are using broadcast media such as wireless connections, a link to every reachable
node is added to the abstract network layer. The ǫSOA platform supports a variety
of network protocols for the communication between nodes, it is even possible to
use multiple different protocols in a single embedded network. The links are an-
notated with the characteristics of the network protocol used for communication.
One source of characteristics are protocol specific features, such as the support for
reliable message transfer, support for multicast and broadcast communication, or
support for certain Quality of Service parameters, such as latency or bandwidth
guarantees. The other source are characteristics of the underlying communication
technology, e.g., the available bandwidth, the latency, etc. The Abstract Network
Layer provides a simplified view of a concrete system. Often sensor and actuator
devices are not attached directly to a node but connected via a bus system. The
Abstract Network Layer contains only nodes and links that are interesting from an
optimization/configuration point of view. If the communication between the sen-
sor/actuator and the node is fixed, the sensor/actuator will be treated as if it were
attached directly to the node. This situation is depicted in the lower right part of
Figure 2.1. The bus system connecting a sensor/actuator device to the rightmost
node in the embedded network is not visible in the Abstract Network Layer.

The Service Layer provides an overview about all services and service instances

26 2 The ǫSOA Platform

present in an embedded network. These services can be both, hardware services that
provide access to a sensor or an actuator device, and software services that encap-
sulate a certain piece of application logic. The service layer also contains a service
repository. The service repository stores software services, which can be installed
on-demand on the nodes in the network in order to provide new functionality or to
adapt the applications running in the network to new application fields.

The Data Stream layer models the communication between components in the em-
bedded network. It contains an overview of all data streams running in the systems.
Each data stream is originated by the output of a service instance and is consumed
by one or more inputs of other service instances. Allowing multiple sinks for streams
allows reducing the network traffic if a service is used in multiple applications, e.g.,
a sensor service. This is especially useful if the underlying network protocol does
not support multicast communication, or if streams have to be transported across
multiple subnets with different network protocols. The detection of re-usable data
streams and high-level routing decisions are done based on this layer.

The upmost layer is the Application Layer that comprises all applications, i.e.,
service compositions, currently executed in the embedded network. It contains all
information that is required during the installation of new applications or the recon-
figuration or removal of already installed applications. For each application it stores
the service instances that are used by the application and the data streams that have
to be established for the communication between these instances. Additionally, the
application layer stores the non-functional requirements for each application and the
contained instances and data streams. These non-functional requirements specify,
amongst others, the required amount of storage and CPU power and which hard-
ware devices are needed for the execution of a service. Non-functional requirements
for data streams typically comprise QoS requirements, e.g., concerning latency or
bandwidth, or define features that have to be provided by the communication proto-
col used, such as reliable message transfer, encryption, etc. The Application Layer
is also used to specify error-handling and failure recovery strategies for individual
applications.

The model driven development approach is based on two models: the Hardware
Model, which is based on the Abstract Network Layer, and the Application Model,
which comprises the Application Layer, the Data Stream Layer, and the Service
Layer. This design enforces a clear separation of the application model, which com-
prises a definition of the high-level communication paths and the requirements im-
posed by the applications, from the Hardware Model, which comprises the hardware
characteristics and the capabilities and features offered by the underlying hardware.
Both models are combined to a system model. During this process optimizations
can be performed, which we will present in the following sections. This combined
model is used to automatically generate code for the targeted hardware platform
and to automatically configure the middleware and the executed services according
to application requirements and network characteristics. The optimizations during
the model transformation and the tailored code generation is essential for minimiz-
ing overheads and achieving as compact and as efficient code as possible and to

2.1 Design Principles 27

support heterogeneous networks containing very lightweight microprocessors with
constrained resources.

A special characteristic of embedded networks is that in many application fields,
embedded networks cannot be preconfigured and simply deployed in a given environ-
ment. Instead they have to be (re-)programmed in-field, e.g., to allow the addition
and removal of new applications or to support the creation of embedded networks out
of standardized components. Consider a home/building automation scenario. The
embedded network in such a scenario is created by connecting off-the-shelf compo-
nents such as switches, relays and sensors and more complex devices such as heaters
or air conditions. The final application model, i.e., the applications that should be
executed in this embedded network, is specified by the owner of a building, not the
developers of the individual components. These only provide specific parts of the
Application Model, the final assembly is performed by the end-user himself. The
ǫSOA platform supports such scenarios through a system design and corresponding
development tools that allow different user groups to deliver parts of the applica-
tion model and a service composition paradigm that allows even untrained users to
compose an application model out of these individual parts.

In classical software engineering, MDE is often only used to create the software
itself - configurations and adaptations are performed manually for each installation.
This is not sufficient for embedded networks. The network structure can change
over time, due to node failures, the addition of new nodes or changing environmen-
tal boundary conditions. The ǫSOA platform continuously monitors these parame-
ters and keeps the Hardware Model up-to-date. If a persistent change is detected,
the execution of applications is adapted to reflect the new boundary conditions.
Possible adaptations are the reconfiguration of nodes and services and the reloca-
tion of services between nodes to optimize the transmission of data streams. The
same procedure is applied if new applications are added to the embedded network
or existing applications are modified. The Application Model is changed to reflect
the new situation and the system automatically reoptimizes the embedded network.
This reoptimization may also lead to the reconfiguration of running instances if this
improves the overall performance of lifetime of the embedded network.

2.1.4 Runtime Environment

Each node contains a runtime environment that provides an execution environment
for services and administrative interfaces for the management and the configuration
of services. We will only present a short overview of the used concepts here. All
concepts are explained in more detail in the following parts of this work. The
data stream oriented communication is provided by a Stream Router on each node.
The data produced by services is submitted to the Stream Router, which in turn
dispatches the data to services on the same node or services on remote nodes. The
dispatching is done based on a data stream routing table maintained in each Stream
Router. It is possible to specify multiple destinations for a stream in this table.
This can be used to split a data stream and supply multiple services with the data

28 2 The ǫSOA Platform

Service

Stream Router

Node

Stream

A

B

C

1

2

3

4

5

6

Figure 2.2: Example Application

produced by the stream source. An example application and the used data streams
are shown in Figure 2.2. The data produced by Service A on node 1 is dispatched
to node 2. The Stream Router on node 2 splits the data streams into two copies,
one targeted at node 6, and the other at node 5. At the destination nodes, the data
is submitted to Service C and B respectively. Note that Stream Routers specify
the high level routing of data on the application level. The routing of individual
packets in the network - possibly using multiple links - is performed by an underlying
network protocol.

2.1.5 Summary

The three concepts presented in this section, are the central building blocks of the
ǫSOA platform. The combination of SOA and model driven design principles are
the key to an efficient execution of applications on heterogeneous networks with
resource constrained devices. The decomposition of applications into compositions
of cooperating services allows distributing the processing workload over multiple
nodes. The services communicate using a data stream oriented processing model.
The dissemination and processing of these data streams can be optimized based on
the information provided by the model driven development approach. This allows
an automatic adaptation of the execution of applications based on application re-
quirements and network characteristics. The optimizations are not limited to the
installation phase of an embedded network. The ǫSOA platform continuously mon-
itors the underlying network and keeps the system model up-to-date. Persistent
changes in the network structure, such as node failures, can be compensated by
reorganizing and reconfiguring the embedded network.

Based on these key concepts, we designed a development platform for embedded
networks: the ǫSOA platform. We will describe the individual building blocks of
this platform in the following chapter, starting with an overview of application de-
velopment workflows that show the interaction between the individual components

2.1 Design Principles 29

in more detail. We will also describe solutions for the requirements which are not
covered by the above mentioned concepts: end-user programming and the support
of multiple user groups.

30 2 The ǫSOA Platform

2.2 Development Workflow

The development workflow leading to a running embedded network can differ from
application field to application field. In some cases special hardware has to be
developed, in other cases off-the-shelf components can be assembled to build the
embedded network. The same holds for the applications. In some cases functionality
can be provided by software already available in some repository, whereas other
application fields require the development of customized solutions. The development
workflow in the ǫSOA platform is structured as shown in Figure 2.3.

System Model

Concrete System

DeploymentMonitoring

User Modifications

External Influences

Optimization

Code Generation

Service Distribution & Instantiation

(Re-) Configuration

Installation of Streams

Startup

Figure 2.3: The ǫSOA Development Workflow

All application related information is maintained in the System Model. If a user
wants to change the configuration of an application, or remove or add an application,
these changes are first performed in the System Model. The same holds for the
initial installation of the system. The desired applications are first added to the
System Model. To propagate modifications to the Concrete System, the user can
trigger the deployment process. The deployment is subdivided into several steps.
In the first step, the application model and the hardware model are analyzed to
determine an optimal execution strategy for the applications. If new services have
to be installed in the network, the code generation is triggered to create a suitable
implementation for the targeted node. After that new services are downloaded to the
node and afterwards instantiated. In the fourth step, the configuration parameters
of all instances and the configuration of the execution environment on the nodes is
adjusted according to the requirements specified in the application. The fifth step
is the installation of the data streams. The final step is to start the execution of
applications.

An embedded network is not static. External influences can modify the network
structure, e.g., the unexpected failure of nodes or the addition of new nodes by
the user. Another source of variation are environmental changes that influence the

2.2 Development Workflow 31

Hardware

Developer

Application

Developer

Service

Developer

Installer

Manager

User

Embedded

Network

Software

Service

Hardware

Service

Service

Metadata

Pattern Configuration

Hardware

Description

Application

Figure 2.4: Actors Involved in the Development of Embedded Networks

characteristics of wireless links. In the ǫSOA platform, the nodes in the embedded
network possess mechanisms to compensate transient changes and to provide a fast
reaction to node or link failures. These mechanisms are based on a continuous mon-
itoring of the network and its characteristics. If the change is persistent, the System
Model is updated to reflect the new situation. By re-running the optimization algo-
rithms, the system can check whether the change was substantial, i.e., check whether
a different configuration will result in an increased performance. If this is the case,
the deployment algorithm can be used to adapt the execution of applications to the
new boundary conditions.

2.2.1 Actors Involved in the Development of Embedded Networks

The System Model is the junction point where hardware devices and software are as-
sembled to an executable system. The different parts used in the System Model are
widely independent and can be provided by different actors. We identified six differ-
ent actors that contribute to the development of an embedded network. Figure 2.4
shows these actors.

The Hardware Developer is responsible for designing the hardware devices, in-
cluding the node itself and sensor and actuator devices. The special characteristics
of these devices are specified in a Hardware Description document, which is shipped
along with the hardware. This document can either reside directly on the node or
be kept in a central Web-accessible repository. In the latter case, the node only has
to store a reference to an entry in this directory what is beneficial for nodes with
very limited storage capabilities. The Hardware Developer is also responsible for

32 2 The ǫSOA Platform

developing hardware services that encapsulate the functionality provided by sensors
and actuators and to create corresponding service descriptions.

Similar tasks are performed by the Service Developer. He realizes the control
logic or other application logic by creating one or more software services and a
corresponding service description. These descriptions can be stored together with
the corresponding service in a service repository or can be pre-installed on nodes in
the embedded network.

To increase the re-usability, many of the devices created by a Hardware Developer
will be generic and usable for different tasks depending on their configuration. Con-
sider for example a general rotary switch. It can be used to control various devices,
e.g., to dim lights or to adjust the temperature in a room. The task of a device
and its configuration are assigned by the Installer during the installation of a node
in the embedded network. This information is added to the service description as
additional meta-information.

The Application Developer, which is often also the Service Developer, creates
application patterns. We will give a detailed description of patterns and their ca-
pabilities in Section 2.5 and only present a short overview here. An application
pattern is an abstract definition of an application, i.e., a service composition. A
pattern specifies a set of slots and connections between these slots. A slot is a place-
holder for a service instance and specifies requirements that have to be fulfilled by
this instance. The requirements comprise technical characteristics of service, such
as the number of in- and outputs or the used data types, and semantic information
specifying what kind of data is measured or consumed by a service.

A pattern can be instantiated in a given embedded network by assigning com-
patible services to each slot in the pattern. A service is compatible to a slot when
it fulfills all requirements specified by the slot. The assignment of instances is per-
formed by the Manager. When the pattern is completely filled, the application can
be installed in the embedded network. This is done fully automatically by the ǫSOA
platform by deriving a service composition from the pattern, installing the required
data streams and configuring the involved services and nodes according to the re-
quirements specified in the pattern. The Manager may also create applications by
manually connecting services to applications. This approach should only be pursued
by experienced users and is typically only beneficial if the created application should
be installed only once (or used for testing and development purposes).

The last actor is the (End-)User, which will specify application specific configu-
ration parameters and interact with the system through the provided interfaces.

A differentiation between these actors is useful, because the different actors re-
quire different knowledge about the embedded system. The Hardware and Software
Developer must be able to program services using the interfaces provided by the
ǫSOA platform and therefore need detailed knowledge about the platform and the
programming of embedded devices. This is not true for the Application Developer.
He must have some technical knowledge to understand how services can be combined
and what functionality is provided by each service, but does not require detailed in-
formation about the service’s implementation. Even less information is required by

2.2 Development Workflow 33

the three remaining actors. The Installer only needs basic domain knowledge to
configure devices and to add the according meta-information to the service descrip-
tion2. The same holds for the Manager. He has to understand what the functional
differences between services are, e.g., to select the most suitable control logic for a
given application. The compatibility checks in the patterns ensure that only valid
service compositions are created by the Manager. They can also be used to assist
the Manager during the selection of services, e.g., by providing the Manager with
a list of compatible services. The User requires the least knowledge of all actors.
He may only adjust configuration parameters. This can be done purely on domain
knowledge, assuming a suitable user interface is provided by the system.

The ǫSOA platform uses a development workflow that is split into multiple parts,
each related to a specific actor. In Chapter 5 we will describe development tools
that aid the individual actors in performing their tasks. The individual subparts
of the development workflow can be executed independently of each other by the
corresponding actor and can be re-arranged to support different, domain-specific
workflows. We identified some typical application development workflows, which
we will present in the following paragraphs. This list is not exhaustive and other
workflows are also possible. Note that the different actors in these workflows do
not necessarily have to be different persons. In many cases multiple tasks can be
performed by the same person, e.g., the Service Developer and the Pattern Developer
are often identical.

2.2.2 Workflow I: Assembly of Off-The-Shelf Components

In this workflow, an automation solution is created by combining standardized off-
the-shelf components. In this case, the work of the Hardware Developer is strictly
separated from the other actors because it is performed prior to the creation of the
embedded network. The first step in this workflow is the installation and configu-
ration of the hardware devices, what is performed by the Installer. After that, the
nodes are started and the system will enter a discovery phase. In this phase, the
Hardware Model is created by collecting the hardware descriptions of all nodes and
by analyzing the network structure. Any pre-installed services on the nodes, e.g.,
hardware services, are detected in this phase and are used to populate the initial
Service View. This view can be used to browse a pattern repository and retrieve
application patterns that are compatible to the used hardware devices and a service
repository to retrieve any missing software services required by these patterns. These
steps are performed by the Manager and can be supported by tools that automati-
cally filter the repositories based on the available devices in a concrete installation.
When one or more patterns are filled, the Manager can trigger the installation of the
pattern(s) according to the deployment workflow mentioned in the previous section.

2This can be done by selecting values from drop-down list or similar GUI components, and the
Installer does not have to write a service description manually.

34 2 The ǫSOA Platform

2.2.3 Workflow II: Off-The-Shelf Hardware, Custom Software

This workflow is an extension of Workflow I. The difference is that the software (or
at least not all parts of the software) executed in the embedded network is not taken
out of a repository. The ǫSOA platform supports two approaches for the imple-
mentation of custom software: a model-driven and a prototype driven development
approach. Using the model-driven approach the user first models the desired service
compositions and the interfaces of the individual services. This information can be
used to create service stubs that have to be filled with application logic by the de-
veloper. Using the prototype driven approach, the user starts by implementing the
application logic. Through annotations in the source code of the services, a service
description is created automatically by the platform and added to the Service View.
The developer can use these descriptions to quickly compose application prototypes
out of the individual services. Both approaches may use hardware services provided
by the embedded network. These are added to the Service View in a discovery phase
similar to the one described in Workflow I.

2.2.4 Workflow III: Custom System

In this workflow, the whole embedded network is developed from scratch. The user
starts with modeling the hard- and software used in the embedded network. In
most cases, the hardware will be based on a generic microcontroller platform that
is equipped with custom sensor and actuator devices. However it is also possible to
create new types of nodes by specifying hardware characteristics such as available
memory, communication interfaces, etc. Using this workflow, the developer also has
to model the Hardware Services provided by the nodes because these cannot be
discovered by inspecting a concrete system. The creation of software services can
be performed following the two approaches mentioned in Workflow II. At any time,
the developer may trigger the optimization module of the ǫSOA platform to check
whether the system model is realizable or not. At the current stage, the optimizer
can check fundamental characteristics, e.g., if enough memory is available on each
node. We are currently working on extending these capabilities to provide Quality
of Service related validations, too. One example would be to check whether a given
response time requirement can be met or not. We will present these ideas in more
detail in Section 7.

2.2.5 Workflow IV: Modification of Running Systems

The modification of a running system is no real workflow on its own but can be re-
alized using any of the workflows mentioned above. The desired changes are added
to the System Model. During deployment, the ǫSOA platform determines the dif-
ference between the running system and the modeled system and derives a series of
actions that have to be performed on the live system to achieve the modeled situ-
ation. These tasks can either be basic operations, or operations that are especially
designed for modifying a running system. We currently support 10 basic operations:

2.2 Development Workflow 35

the installation/removal of services, the creation/deletion of service instances, the
installation/removal of applications, the installation/removal/modification of data
streams and the modification of configuration values. Up to now, we support one
operation targeting a running system: the live migration (i.e. the state preserving
relocation) of a service instance from one node to another, see Section 4.2 for a
detailed description.

2.2.6 Summary

The development workflow used in the ǫSOA platform is based on a cyclic inter-
action between the System Model, which specifies the desired functionality of the
system, and the Concrete System in a given installation. Changes in the System
Model are deployed to the Concrete System using a deployment process that in-
cludes an optimization step for an automatic tuning of the data processing in the
embedded network. Changes in the Concrete System are detected via monitoring
and propagated back to the System Model. This basic cycle can be used to sup-
port different development workflows, ranging from specification first workflows to
interactive workflows, in which an embedded network is created incrementally by
adding more and more devices. The information contained in the System Model may
be provided by different user groups involved in the development of embedded net-
works. The different user groups reflect the different classes of users - with different
knowledge and programming skills - that interact with an embedded network.

36 2 The ǫSOA Platform

2.3 System Model

We already gave a short description of the System Model used in the ǫSOA platform.
It consists of a Hardware Model and an Application Model. The Hardware Model
captures the structure of the embedded network and the characteristics of the used
hardware. The Application Model is subdivided into three parts. The Service Model
contains an overview of all services and service instances installed in an embedded
network. The Application Model provides an overview of the applications composed
out of these instances, whereas the Data Stream Model specifies all data streams used
to realize the communication between instances. In this section, we will present
an overview of all models. We will thereby focus on the information model. In
Chapter 3, we will present XML description languages for each model and give a
comparison with Web service standards having a similar focus.

2.3.1 Hardware Model

The hardware model is used to maintain an abstract view of the hardware devices
present in an embedded network. This information plays a key role during the op-
timization of the embedded network. Based on the characteristics and constraints
modeled in the hardware model, an optimizer is capable of configuring the system
in a way that ensures an efficient execution and at the same time ensures that all
application requirements and hardware constraints are met. Besides its use during
optimization, the hardware model is also needed for validation. Prior to the instal-
lation of a new embedded network, or the reprogramming of an existing network,
the hardware model is used to check whether the intended applications can be exe-
cuted in the network or not3. During validation, the system can check the following
requirements based on the hardware model:

Hardware Constraints Some services require specific hardware to be executed, e.g.,
sensor devices. During validation it is checked that this hardware is present on the
node at which the service should be installed.

Resource Constraints Every service requires a certain amount of resources, e.g.,
ROM space for keeping the service code or RAM for storing its variables. This
information is used during the planning and deployment process to to check whether
the resources on a node are sufficient for executing all intended services or not.

Application Requirements Applications may specify non-functional requirements,
e.g., an application may require a reliable message transfer. During validation, it
will be checked if the requirements can be fulfilled by the embedded network or not,
e.g., because a node does not support reliable network protocols.

3The optimizer will always produce a valid system. The validation is important because users may
override the optimizations done by the system. By running the validation, it can be checked
that the user defined system is still executable on the given hardware.

2.3 System Model 37

Figure 2.5: The ǫSOA Hardware Model

The level of detail used in the hardware model has to be chosen carefully. On the
one hand, the hardware model should provide enough information to perform the
optimizations and validations mentioned above. On the other hand, the hardware
model should provide a high abstraction layer that allows optimizing applications
across heterogeneous infrastructures, i.e., it should hide all unnecessary complexity
to ease the optimization and provide an intuitive overview of the system for a user.

The hardware model presented in this section is suitable for building all demon-
strators and examples shown in this work. Because the application fields for embed-
ded networks are very diverse, the hardware model is not limited to these features,
but can be extended to include additional information. This additional informa-
tion is accessible during optimization and validation and can be included in the
optimization process.

Figure 2.5 shows the hardware model used in the ǫSOA platform. An embedded
network consists of Nodes. Each of these nodes has one or more communication
Interfaces. The communication interfaces are grouped into Subnets. Nodes with
more than one communication device will act as bridge between these subnets. Nodes
that belong to the same subnet and have a single-hop communication channel are
connected by a Link. Every link can be annotated with properties, e.g., the available
bandwidth, reliability, latency, etc. Besides the communication interfaces, nodes
also possess Hardware devices and Resources. The former are used to determine
if a node can fulfill a certain hardware requirement of a service or not, e.g., if a
node possesses a specific sensor device. The latter are used to check whether the
resource capacities on a node are sufficient to execute all services assigned to this
node. We currently use the amount of flash capacity and the amount of RAM as
resources. A node can be annotated with Properties. These properties are used to
add configuration, installation or administrative information to the node. Typical
examples are inventory numbers, location information (e.g., the room number in

38 2 The ǫSOA Platform

Interface Parameter

Property

Measurand

Type
Representation

Property

Output

Input

Operation

0..1

0..1

**

*Service

Property

*

*

Figure 2.6: The ǫSOA Service Model

which the node is installed), etc. This information can be used to filter nodes
during application composition, to search for specific nodes or to query nodes with
a given property.

2.3.2 Service Model

The description of applications and services is a central aspect of every service
oriented architecture. In the ǫSOA platform, the description of the Application
Model is split into two parts. In this section, we will present the Service Model, which
describes how individual services are modeled. The Service Model represents the
Service View in Figure 2.1 on page 24. In the next section we will describe the Service
Composition Model, which describes how services are composed to applications. The
Service Composition Model represents the Data Stream and the Application View
in Figure 2.1.

The ǫSOA service model is shown in Figure 2.6. A Service offers Operations.
Operations can either consume data at an Input, produce data at an Output, or both
consume and produce data. Throughout this work, we will synonymously use the
term port to refer to In- and Outputs. Interfaces, i.e., In- and Outputs, possess a list
of Parameters. Every Parameter has a Representation, which defines how the data is
represented, e.g., as string, floating point value, etc. The Measurand Type specifies
what type of data this parameter represents, e.g., a temperature value or a weight.
Additionally, every Parameter can be annotated with a set of Properties, which
refine the description of the data. Depending on the application scenario, varying
properties may be of interest. Typical examples are the data unit, the precision,
the possible data range, etc. Properties annotated at Ports define characteristics
for the whole Port and typically cover aspects concerning data processing, e.g., the
maximum frequency an output can deliver data with, the execution costs in terms
of energy for an actuator, etc. Properties attached to Services contain installation
specific metadata for a whole service, e.g., the location or configuration of a device.

An important field of the metadata description is the Measurand Type. It defines
the meaning of a data value in terms of the application domain and will differ from

2.3 System Model 39

Data

Temperature

Gaseous

Temperature

Liquid

Temperature

...

Figure 2.7: Example Taxonomy

scenario to scenario. We use a taxonomy for this purpose, i.e., the Measurand
Type links to an object defined in a taxonomy for the given application domain.
Figure 2.7 shows a very simple example taxonomy. The root of the taxonomy is
the generic type Data. A possible specialization is Temperature, which is further
refined into Liquid Temperature and Gaseous Temperature. Besides these simple
meanings, the taxonomy allows to specify more complex elements, e.g., a fire warning
service may define an output with a meaning “fire probability” that describes the
possibility of forest fires depending on the air temperature and the humidity. This
extensibility allows supporting arbitrary logic services which combine simple inputs
to semantically richer outputs.

Service descriptions can be provided by different sources. Hardware services will
typically be described by the manufacturer, logic services by the programmer of the
service. During the physical installation of nodes, additional metadata can be en-
tered by the Installer, e.g., the position and orientation of sensors and actuators or
other data like inventory numbers. The third category of metadata is dynamic data,
which represents the current state of nodes, such as energy resources or utilization,
and is monitored during run-time. The ǫSOA middleware makes no assumptions
about the presence of specific metadata fields, because these will greatly vary de-
pending on the application scenario. Instead it offers generic filtering algorithms
that support the extraction, monitoring, and configuration of subsets of nodes with
given characteristics, e.g., all nodes which are in the same room, i.e., possess the
same “room” and “floor” property.

2.3.3 Service Composition Model

An application in the ǫSOA platform is defined by: (1) a set of service instances and
(2) a set of data streams that connect the ports, i.e., the in- and outputs of these
instances. Because failure tolerance is an important criterion for many embedded
networks, the ǫSOA platform allows the modeling of redundancy directly in the
application model. During application development, the user may specify redundant
instances for each instance used in an application. These instances are also stored
in the application model and will be used to replace failed instances at runtime.
Note that services that provide redundant functionality do not necessarily have to
be exact replica of each other. It is sufficient if the replacements provide the same

40 2 The ǫSOA Platform

Figure 2.8: The ǫSOA Application Model

functionality. As a consequence, the service interfaces for redundant services may
be different from each other. Consider for example a simple temperature sensor that
provides temperature readings on output one, whereas a more sophisticated climate
sensor provides temperature measurements on port two and humidity measurements
on port one. Assume that we want to use the climate sensor as redundant backup
for the temperature sensor.

In order to avoid ambiguities and to ease the selection of redundant instances at
runtime, applications model redundancy based on ports. Ports that provide identical
functionality are grouped into redundancy groups. A redundancy group may either
contain inputs or outputs, never a mixture of both. In the example, port one of the
temperature sensor and port two of the climate sensor would be put in a redundancy
group. Data streams connect redundancy groups. If an instance fails, all redundancy
groups can be checked to determine whether there is a redundant instance available
that can replace the functionality of the failed instance. This mechanism is presented
in more detail in Section 4.1.

The application model is also used to determine at which point in time an ap-
plication has to be disabled because of failed instances. Disabling an application is
an important decision in an embedded network. It allows saving resources by de-
activating sensor devices that produce measurements that are not needed anymore.
If an application depends on the presence of multiple actuators, a deactivation will
not ensure that the application will not produce unwanted results if one of these
actuators fails. The decision which failures are critical and should lead to the de-
activation of an application is application specific. A simple case is the failure of a
redundantly available instance. In this case the instance can be replaced and the
application will continue to function as expected. But the opposite is not true in
all cases. If a whole redundancy group fails, i.e., all instances from the group are
unavailable, the corresponding data stream will fail too and can be removed from

2.3 System Model 41

the system. However, the remaining parts of the application might still work as
intended. One example is a lighting application that controls multiple lamps in a
room at once. Even if one lamp fails (and there is no redundant lamp available),
the lighting application should not be deinstalled. On the other hand the same
lighting application can be safely disabled if the last lamp in the room fails. The
application model uses stream groups to capture such dependencies. A stream group
may contain one or more data streams of an application. The user can specify a
lower limit on the number of availalbe streams in this group. If this threshold is
underrun, the application will be disabled. Note that a data stream can be added to
multiple stream groups. We were able to cover all practical scenarios encountered
during the development of our demonstrators based on this mechanism. If a specific
application field requires a more sophisticated ruleset, the data stream group can be
easily extended to support other operations besides simple counting, too. The only
prerequisite is that the ruleset has to be simple enough to be evaluated efficiently
on a resource constrained node.

2.3.4 Properties

All three models presented in the previous sections use properties. Properties are
(name, value) pairs and can be used to add additional information to many elements
of the system model. Every property is associated with a comparator function. This
function is used whenever a comparison between property values is required, e.g.,
to check whether an instance is compatible with a slot or to search for services or
nodes with specific properties. Example comparators are:

• Equality: used for enumerations other categorical data; requires that the
value of properties is equal

• Smaller/larger: used for numerical values; requires that the value of a prop-
erty is smaller/larger than the value of another property

• Overlap: used for properties that define data ranges; requires that the data
range specified in both properties overlap

• Contains: used for properties that define data ranges; requires that the data
range of a property is contained in the data range of another property

New comparator functions can be added if required and are automatically integrated
into the development tools. Based on the available comparator functions, new prop-
erties can be added at any time to the system model, e.g. to add installation or
runtime specific information to the system model.

In many application fields standardized information models for the description
of systems have already been developed. Examples are the information model for
automation systems in the industrial domain specified by the OPC Foundation4 or

4http://www.opcfoundation.org/

42 2 The ǫSOA Platform

the Industry Foundation Classes for building automation systems specified by the
buildingSMART Alliance5 or information specified with the Open Building Infor-
mation Exchange (oBIX)6, which is standardized by OASIS[110]. If a standardized
information model is already available, the Measurand Type and Properties can also
be defined based on a reference to this model.

2.3.5 Summary

In this section, we presented the hardware and the application model used in the
ǫSOA platform. Both models define a basic structure but can be extended with
application domain specific information. The model is stored in a XML based no-
tation in the ǫSOA platform. In Section 3.4 we will present a service description
language, in Section 3.5 a service composition language and in Section 3.3 a hard-
ware description language. The XML formats were carefully designed to provide a
compact representation of the information contained in the different models, what is
a prerequisite for storing the models on resource constrained nodes. The motivation
for storing (parts of) the system model on an embedded node is that an embedded
network should be self-descriptive, i.e., a user should be able to retrieve all model
information related to an embedded network by querying the nodes contained in
this network. Based on this information, any user with a suitable toolset can man-
age and monitor the network without a prior synchronization with a central model
repository.

5http://www.buildingsmart.com/
6http://www.obix.org/

2.4 Service and Instance Lifecycle 43

2.4 Service and Instance Lifecycle

An important building block of service oriented systems is the service/instance life-
cycle management. The lifecycle management in embedded networks has to meet
several requirements. First the number and type of services installed at a node are
not fixed but may change throughout the lifetime of the network, e.g., to adapt the
network to new application fields or environmental changes. The service lifecycle
has to support such reconfigurations by allowing a dynamic installation and instan-
tiation of services. The second requirement is an efficient support of a stream based
execution model. The processing of new data should create as little overhead as
possible to allow an efficient execution on resource constrained nodes.

We will first analyze the service lifecycle used in nowadays Web service stacks and
describe the limitations that prohibit its application in embedded networks. We will
then present the ǫSOA lifecycle model that is tailored to the special characteristics
imposed by embedded networks.

2.4.1 Web Service Lifecycle

Up

Down

PassivateActivate

Start of Life

End of life

Idle Busy

Figure 2.9: The Web Service Lifecycle

The W3C working group describes the service lifecycle and request processing for
Web services in the Web Service Management: Service Life Cycle note[161]. The
Web service lifecycle, as specified in the Web Service Management specification com-
prises two states: a service can either be “up”, i.e., it is ready to process requests,
or “down”, i.e., it is not available and will not respond to requests, see Figure 2.9.
Services that are “down” can be “activated” to make them ready for request process-
ing or “passivated” to revert the state back from “up“ to “down” and stop request
processing. Services that are “up” can either be “idle”, i.e., they are not processing
request, or “busy”, i.e., they are currently processing one or more requests. The
processing of requests is done by agents that take an incoming request, process it,
and deliver the results (or an error message) to the requester.

44 2 The ǫSOA Platform

Accept

Request
Dispatch

Restore

State
Instantiate

Process

Save

State
Delete

Send

Response

Figure 2.10: Web Service Request Processing Model

An important characteristic of the Web service lifecycle model is that the ser-
vice model is inherently stateless. There is no notion of instances, which possess a
persistent state between service invocations. When a stateful interaction with Web
services is required, the state of this interaction has to be stored at an external lo-
cation, such as a database. This state (and therefore implicitely a specific instance
of a service) is referenced by the client either via a session identifier or a mechanism
such as the Web Services Resource Framework (WSRF), see WS-Resource[111] and
related standards. The invocation of a stateful Web service comprises the following
steps, which are also shown in Figure 2.10:

1. Parsing of request and parameters

2. Dispatching of the request to the specific service

3. Instantiation of the service

4. Loading of instance state (based on the instance identifier)

5. Execution of service logic

6. Storing of instance state

7. Delivery of response

8. Deletion of instance

This lifecycle model is well suited for the use with stateless application protocols,
such as HTTP[158]. Furthermore, it allows building servers that are capable of
handling a large number of simultaneous interactions within a small amount of
memory. Because all services are persisted between invocations, only the services
that are currently being processed have to be stored in the main memory of the
server. This is especially beneficial if there is a long time between service invocations
targeting a stateful service. This is often the case for long-running business processes
that may take days or weeks to complete but only perform a small number of Web
service invocations during this period. The drawback of this approach is that each
service invocation causes a considerable overhead for restoring and serializing the
service state.

2.4 Service and Instance Lifecycle 45

Figure 2.11: The ǫSOA Service/Instance Lifecycle

2.4.2 ǫSOA Lifecycle Model

The invocation pattern encountered in embedded networks is quite the opposite
of the invocation pattern in the Web service domain. In the IT domain, a node
offering Web services is faced with a multitude of users that access a large number
of service instances, but each service instance is only accessed a few times. In an
embedded network each node runs a few services, but these services are accessed very
frequently, e.g., to process periodic measurements. The overhead for (de-)serializing
service states between invocations is too large in this situation. The second difference
is the lifetime of instances. Services involved in a control or automation task will
be running for days, months or even years. During this time, service instances can
be reconfigured, moved between nodes or even updated with a new implementation
of the service. During these operations, the service instance has to be “stopped”,
i.e., the processing of data has to be halted until the operation is completed. A
stopping or pausing of instances can also be triggered by the end-user, e.g., during
the installation of new devices. The Web service lifecycle model does not support
such operations because there is no notion of instances - the WS lifecycle focuses
solely on services.

The ǫSOA lifecycle model comprises a Service Lifecycle and an Instance Lifecycle
as shown in Figure 2.11. The Service Lifecycle comprises one single state, the state
“installed”. This state is reached when a service is installed at a node. Installed
services can be instantiated to create service instances. Every service instance in
the ǫSOA platform is stateful, i.e., will keep its internal state between invocations.
Service instances are not persisted between invocations. The number of instances
that can be executed by a node is therefore limited by the available memory. There
is no overhead for (de-)serializing service states and frequent service invocations can
be handled efficiently (several dozens of invocations per second are possible even
on very lightweight microcontrollers). A single service may be instantiated multiple
times, e.g., to create multiple instances of a logic service that can be used in different
applications.

A service instance is initially in the “Stopped” state. In this state, configuration

46 2 The ǫSOA Platform

parameters can be changed, or a service migration to another node can be triggered.
The migration process is explained in more detail in Section 4.2. In the stopped
state, the instance will not receive or send any messages or execute periodic tasks.
However it will keep its internal state. If a stopped instance is started it will enter
the “Running” state. In the running state, the instance may interact with other
instances by sending or receiving messages and it may execute periodic tasks. As in
the stopped state, services can be (re-)configured in the running state. If a running
service is stopped, it will enter the “Stopped” state again and the message handling
and execution of periodic tasks is suspended. Stopped service instances can be
deleted, which will destroy the internal state of the instance, free all used resources
and remove the instance from the system. If there are no more service instances for
a service, the service may be removed. If a service is removed, its binary code is
removed from the node and the service is unavailable for further instantiation.

Depending on the hard- and software environment, not all nodes support every
part of the lifecycle model. If the node uses an operating system that is not capable
of dynamically loading code, such as TinyOS, it is impossible to install new services
at runtime. In this case, the lifecycle is restricted to the instance lifecycle. The
preinstalled services at a node can be instantiated, started, stopped and configured,
however it is impossible to install or delete service instances. Such limitations can be
specified in the hardware model of the ǫSOA platform. To circumvent this problem,
the ǫSOA platform allows the installation of service libraries on nodes. A service
library can be added during the initial deployment of the node and may contain
an arbitrary number of services, only limited by the available storage on the node.
Services from this library can be instanciated even if no dynamic loading of code is
possible. Service libraries can greatly increase the flexibility of embedded network
installations based on TinyOS and operating systems with similar limitations7.

2.4.3 Summary

The ǫSOA service lifecycle has two main differences compared to the service lifecycle
known from Web services: it explicitly models service instances and does not persist
service instances between invocations. These changes were motivated by the special
characteristics of embedded networks. Service invocations in embedded networks
can occur with very high frequencies and the overhead for persisting the service
state between these invocations is too large. The second reason is that the lifetime
of service instances in embedded networks is very high (up to several years). Due
to this reason, the ǫSOA lifecycle model also supports the reconfiguration and the
migration of services. To the best of our knowledge, we are the first to propose a
lifecycle model tailored for embedded networks.

7The Contiki based version of the ǫSOA runtime supports the dynamic loading of code. The library
mechanism is offered as a convenience method if a migration to another operating system is not
possible, e.g., due to missing driver support. The full flexibility and optimization potential is
only achievable if the underlying operating system supports the dynamic loading of code - or if
the used nodes have enough storage capacities to store all services used in the network.

2.5 Application Development 47

2.5 Application Development

The manual specification of service compositions is a tedious and error prone task.
To ease the composition of applications, the ǫSOA platform offers two development
approaches: manual composition and pattern based composition. Both approaches
are supported with corresponding development tools, which are presented in more
detail in Chapter 5. In this section, we will present the underlying foundations in
more detail. The final outcome of both approaches is a service composition based on
the model presented in Section 2.3.3. Newly created or modified service compositions
are added to the System Model and can be deployed to the embedded network using
the development workflow explained in Section 2.2.

2.5.1 Manual Composition

Manual composition is a bottom-up service composition approach. The developer
first specifies a set of services instances that should be used in the application.
These instances can either be existing instances, i.e., instances already installed in
the embedded network, or new instances based on services from the service reposi-
tory. After that, the developer manually connects the outputs and inputs of these
instances.

With corresponding development tools, this approach can be extended to support
a progressive creation of service compositions. In this case, the developer starts
with a specific service instance, e.g., a logic service. The development tool can
automatically search for services with matching interfaces for each of the in- and
outputs of this service. The developer can choose from this list and does not have
to search the whole service repository manually.

The manual composition approach gives the developer full control about the re-
sulting service composition. The developer must have fairly detailed domain knowl-
edge to perform a manual service composition. The development tools can ensure a
basic compatibility between services, i.e., can reject connections between in- and out-
puts using incompatible data types. If multiple services are available for a specific
task, e.g., different implementations of the service logic requiring different sensor
devices, the developer has to select a suitable service himself.

2.5.2 Pattern Based Composition

The requirement for end-user programming cannot be fulfilled with a manual service
composition. Most end-users will neither have the required programming skills, nor
the experience in developing control applications, required for manual composition.
The pattern based composition is based on a clear separation between the application
developer and the end-user (or more precisely the manager of a building according
to the actors wie identified in Section 2.2.1).

This separation is achieved through the introduction of application patterns. An
application pattern is an abstract, i.e., not directly executable, definition of a service

48 2 The ǫSOA Platform

Figure 2.12: Lighting Pattern

composition. A pattern specifies a set of “slots” that can be filled with services in
a given installtion. Each slot specifies an interface that has to be provided by the
service, i.e., the number and type of in- and outputs offered by the service. The
pattern additionally defines connections between the in- and outputs of slots. Based
on these connections and an assignment of services to slots, the ǫSOA platform can
automatically generate a service composition that can be installed in the embedded
network.

Patterns are created by the application developer. The end-user/manager has to
fill the slots of the pattern with suitable services from his concrete installation. With
corresponding tool support, the assignment of services to slots can be performed
by selecting from a list of compatible services for each slot. Figure 2.12 shows a
simple example of an application pattern. It defines two slots, a “Toggle” slot and
a “Lamp” slot. The “Toggle” slot can be filled with services that possess a single
output that delivers on/off signals, e.g., toggle or rocker buttons. Services that are
compatible to the “Lamp” slot have to possess an input that consumes on/off signals
and no outputs, e.g., a service representing a conventional light bulb or a neon lamp.
Furthermore, the pattern specifies that the output of the “Toggle” slot is connected
to the input of the “Lamp” slot.

A slot in a pattern is defined using the service model introduced in Section 2.3.2. It
is possible to define the number and kind of ports a compatible service has to possess
and the number and data type of parameters consumed by these ports. Using the
Measurand Type field, it is also possible to specify which kind of data a service has to
provide, e.g., temperature measurements. These basic requirements can be further
refined with properties. As mentioned in Section 2.3.2, the properties used in the
ǫSOA platform are not fixed and can be tailored to the application field. A slot in a
pattern can for example require a service that provides a temperature measurement
with a resolution of at least tenth of degrees (with a numeric property “resolution”
and the “larger” comparator) in a temperature range from -20◦C to 40◦C (with a
range property “measurementRange” and the “contains” comparator).

Application patterns have several benefits. The assignment of services to slots
requires only basic domain knowledge and can be performed by an untrained user.
Some assignments can be performed fully automatically, e.g., when only a single
service qualifies for a slot in a pattern. For a home automation scenario, we en-
vision the following scenario: a user buys a set of off-the-shelf automation devices
and installs them in his home. After the installation of the hardware, a service
composition tool automatically searches a repository for application patterns that

2.5 Application Development 49

use this hardware. The user selects one of these patterns. The development tool
now automatically retrieves all software services required for filling empty slots in
this pattern. The tool will also try to assign hardware services to the slots. If mul-
tiple services qualify for a slot, e.g., because multiple devices of the same kind are
installed (e.g. multiple switches), the user has to select the appropriate one. When
all slots are filled, a corresponding service composition is created and installed in
the embedded network.

An interesting idea w.r.t. this vision is a community driven management of the
pattern and service repository. An initial set of patterns could be supplied by hard-
ware vendors or companies specialized in developing automation solutions (possibly
with an according business model8). Further patterns and services may be added
at any time, e.g., to support new hardware devices or cover new use cases. A com-
munity driven approach allows solving many of the scalability challenges imposed
by the envisioned Internet of Things. With an increasing number of networked
devices, the number of possible combinations of these devices will explode. It is
questionable whether a small number of companies will be able to offer automa-
tion solutions for each of these combinations. With a community driven approach,
it is possible to leverage the programming and domain knowledge provided by the
users of these systems. This will hopefully lead to a situation where the number
of developers will grow with the number of application fields, thus creating the re-
quired scalability. The recent development regarding the application development of
smart phones shows that there is a considerable amount of programming knowledge
available. Users and companies created and are still creating thousands of applica-
tions for modern smart phones. If we succeed in creating a comparable application
development environment for automation applications, we will hopefully see a sim-
ilar trend in this sector - especially because remote control of automation devices
via smart phones will most likely be one of the first applications demanded by the
end-user. We think that the combination of application patterns and SOAs is a
development approach that is flexible enough to support different hardware devices
but still simple enough to be developed in a community driven approach.

A second benefit of patterns is that patterns are re-usable. This can lead to
a considerable reduction of development time, especially in large networks which
contain many subnets with similar purpose. A good example is an office building,
which contains many rooms (subnets) with similar sensors and actuators. A pattern
has to be developed only once and can then be used to install applications in an
arbitrary number of rooms. This installation does not have to be performed by
the programmer but may also be performed by a third party, such as a facility
management service.

Patterns also possess another interesting property: patterns externalize domain
knowledge. The development of automation solutions requires not only the imple-
mentation of individual services but also the composition of these services to appli-

8One possibility would be to adopt a concept like the Apple App Store(http://www.apple.com/
iphone/apps-for-iphone/ for selling logic services and patterns on a Web based platform.

50 2 The ǫSOA Platform

(a) Roomplan

Service Inputs Outputs
Nr Type Nr Type

PushBtn I 1 signal
PushBtn II 1 signal

ToggleBtn I
1 signal
2 on/off

LightSens I 1 brightness
LightSens II 1 brightness
Lamp I 1 on/off
Lamp II 1 on/off
Lamp III 1 on/off
Lamp IV 1 on/off

(b) Hardware Services

Figure 2.13: Building Automation Scenario

cations. Application patterns can be used to store and exchange common “patterns”
encountered in these service compositions. Patterns therefore have a functionality
in embedded networks that is comparable to the functionality of process modeling
languages in IT and business environments.

We will present the features and capabilities of application patterns in more detail
in the following section using examples from a building automation scenario.

2.5.2.1 Building Automation Scenario

To illustrate the features and the application development workflow based on pat-
tern based service composition, we will use an example from a building automation
scenario. Figure 2.13(a) shows the scenario and the available hardware devices. The
scenario is based on a room in a smart building that possesses three switches, two

2.5 Application Development 51

(a) Pattern

Toggle Lamp

ToggleBtn I Lamp I

(b) Service Composition

Figure 2.14: Basic Pattern for Direct Connection of Switch and Lamp

push buttons9 (PushBtn I and PushBtn II) and one toggle button (ToggleBtn I),
four lamps (Lamp I to Lamp IV), and two light sensors (LightSens I and LightSens
II). Each of these devices is represented by a corresponding hardware service in the
ǫSOA platform. Based on these devices, a lighting application is going to be installed
by the end-user.

Table 2.13(b) shows a short summary of the service metadata of each device. The
push buttons possess only one single output that is used to transmit a simple signal
indicating the button was pressed. The toggle button possesses two outputs. The
first output sends on/off signals whenever the state of the button changes, the second
output sends a simple signal whenever the button is pressed. Both of these outputs
are marked as optional, so the user can chose to either use the switch as a simple
push button (by using the second output) or as a stateful on/off switch (by using
the first output). The light sensors possess a single output that is used to distribute
the current brightness to connected services. The lamps possess no outputs, as they
represent actor devices, and one input that allows to turn the lamp on or off.

2.5.2.2 Application Patterns

Toggle Button Pattern Assume the user wants to start with a basic lighting ap-
plication: he wants to connect the toggle button to Lamp I. A pattern that allows
the creation of such an application is shown in Figure 2.14(a). It defines two slots,
a “Toggle” slot and a “Lamp” slot. The Toggle slot can be filled with services that
possess a single output that delivers on/off signals. Suitable services for such a slot
are for example hardware services that represent toggle or rocker buttons. Services
that are compatible to the Lamp slot have to possess an input that consumes on/off
signals and no outputs, e.g., a service representing a conventional light bulb or a
LED-lamp. Furthermore, the pattern specifies that the output of the “Toggle” slot
is connected to the input of the “Lamp” slot. Given the running example, there is

9In this scenario, a push button denotes a switch that will always flip back in its original position
when it is released. In contrast to this, toggle buttons have two states (on/off) and will alternate
between these two states when the button is pressed.

52 2 The ǫSOA Platform

(a) Pattern

Push-Button Logic Lamp

Push-Button

Push-Button Lamp

Lamp

Lamp I

Lamp II

Lamp III

ToggleBtn I

PushBtn I

PushBtn II

BasicLight

(b) Service Composition

Figure 2.15: Advanced Pattern for Multiple Push-Buttons Connected to Multiple
Lamps

only one compatible service for the Toggle slot, ToggleBtn I, and four compatible
services for the Lamp slot, Lamps I to IV. Note that ToggleBtn I is only compatible
to the slot, because its output “1” is marked as optional. If output “1” had been
marked as required, the service would not match the slot in the pattern because it
possesses two outputs and the slot requires a service with one output. Based on the
filled pattern, a simple service chain will be created, which connects the output of
the button with the input of the lamp. This chain is shown in Figure 2.14(b). In
the figure, the service instances are annotated with the pattern slot they have been
assigned to.

Combination Strategies To allow turning the lights on or off from every door of
the room, the user decides to install a more advanced lighting application that also
uses the push buttons available in his room. Additionally, he wants to control all
lights simultaneously, and not only Light I. It would be a tedious task and in many
cases infeasible to design patterns for every possible combination of instances, e.g., a
pattern for two switches and one light, two switches and two lights, two switches and
three lights, etc. To support building applications with an a priori unknown number
of instances, slots in a pattern can be marked to support the assignment of multiple
instances by specifying a combination strategy. The ǫSOA platform supports several
combination strategies, which will be explained in the following paragraphs.

The most basic combination strategy is the multi strategy: it specifies that the
outgoing data of all assigned instances is merged to one data stream and that in-

2.5 Application Development 53

coming data is delivered to all assigned instances. A sample pattern using this
combination strategy is shown in Figure 2.15(a). In the pattern, the “Lamp” and
the “Push-Button” slots are annotated with the combination strategy multi. As
a consequence, the output produced by the logic slot is distributed to all service
instances assigned to the lamp slot. It is therefore possible to control an arbitrary
amount of lamps simultaneously. Analogously, all data produced by instances as-
signed to the push-button slot is merged and submitted to the input of the logic
service.

A possible service composition for the running example is shown in Figure 2.15(b).
Both pushbuttons, PushBtn I and PushBtn II, have been assigned to the Push-
Button slot. The toggle button ToggleBtn I can also be assigned to this slot because
it possesses an optional output that delivers signals whenever the button is switched.
The events produced by all these three buttons are sent to the same input of the
BasicLight logic service. This service produces on/off signals which are submitted
to all services assigned to the Lamp slot. In the example, the user assigned three
lamps, Lamp I to III.

The multi combination strategy is typically used to control multiple actuators at
once, such as the lamps in the example. In some cases, it can also be used to integrate
multiple sensor devices, like the push-buttons in the example. This is only possible
for sensors measuring data on an event basis. If the data is acquired periodically,
one typically wants to have a some kind of integration between the data streams
produced by the sensors, for example by calculating average values. A combination
strategy that supports this kind of integration is the “agg” strategy explained in the
following paragraph.

Aggregation of Data Streams Figure 2.16(a) shows a more advanced lighting
application. The switches and lamps are used in the same way as in the last example.
The pattern uses a different logic service that additionally consumes the data of one
or more brightness sensors. The brightness information is used to automatically turn
the lights on if it is too dark in the room10. The light sensors in the example are
annotated with the “agg” combination strategy. The agg strategy specifies that all
output data streams are sent to an aggregation service which combines all incoming
streams to a single, aggregated output stream. This stream is then submitted to the
input of the service instance(s) assigned to the connected slot(s). The aggregation
service is automatically added during the installation of the application. The pattern
developer can choose from different aggregation services, e.g., averaging, maximum,
minimum, voting schemes such as majority consensus, etc. In our example, the
pattern specifies that the measurements of the light sensors should be averaged.

A resulting service composition using the devices from our running example is
shown in Figure 2.16(b). The upper part of the service composition is similar to the

10It would be a bad idea to turn the lights on if there is nobody in the room, so in a real world
application such a mechanism should be combined with an activity/presence sensor that is
capable of detecting whether a human is present in a room or not.

54 2 The ǫSOA Platform

Push-Button

Logic

Light-Sensor

(multi)

(agg:avg)

(multi)

Lamp

(a) Pattern

(b) Service Composition

Figure 2.16: Advanced Combination Strategies

2.5 Application Development 55

Figure 2.17: Advanced Combination Strategies in Patterns 2

service chain shown in the previous example. The data of all services assigned to
the “Light-Sensor” slot is submitted to the aggregation service “Avg I”. This service
creates a combined data stream by calculating the average of all input streams. The
resulting stream is then submitted to the logic service “AutoLight I”.

Nested Patterns The above mentioned light control, which automatically turns
on the lights based on the measured brightness, is only a first step in the direction
of a “smart” room. It is quite difficult to adjust the threshold for turning on the
lights, especially because this threshold may be different from user to user. A much
better lighting application, which can be built out of the same components, is an
application that automatically dims lights in a way that ensures the brightness
always has a specific level. If it is daytime and the weather is bright, the lights
are turned off. If its getting darker, the lights are turned on and are dimmed in a
way that compensates the degrading brightness of the daylight. A possible pattern
for such a lighting application is shown in Figure 2.17. Again, the lighting logic
consumes the input from the buttons and the averaged input of the lighting sensors.
However the pattern specifies dimmable lamps instead of the simple lamps used in
the previous example as actors. The dimmable lamps accept a percentage value
between 0 and 100% as input and will dim their brightness to the given level. To
keep the example concise, we omitted a possibility for the user to adjust the desired
brightness level. The lamps installed in the example scenario are not dimmable and
therefore do not match with the specification in the pattern. On the other hand, the
room contains a total of four lamps, so a possible way to mimic a dimmable lamp
would be to selectively turn on or off a subset of the four lamps. This requires some
additional control logic that takes the desired brightness percentage as input and
turns on or off a subset of the connected lamps.

The ǫSOA platform allows using nested patterns for this purpose. A nested pat-
tern is a pattern that itself possesses in- and/or outputs. When a nested pattern is
installed in a system, it appears as a service that has the in- and outputs specified
in the pattern. This service can be assigned to a slot just like any other service.
Nested patterns can be used to reduce the complexity of large patterns by subdi-

56 2 The ǫSOA Platform

Software-Dimmer

Simple-Lamp

Simple-Lamp

Simple-Lamp

Simple-Lamp

(a) Pattern

Software-Dimmer

SW-Dimmer I

Lamp I

Lamp II

Simple-Lamp

Simple-Lamp

Simple-Lamp

Simple-Lamp

Lamp III

Lamp IV

(b) Service Composition

Figure 2.18: Nested Pattern for a Software Dimmer

viding the patterns into smaller subsets. Another application field is the extension
of patterns with new functionality. As already mentioned, we would like to use a
software dimmer to create dimmable lamps that can be used in the pattern shown
in Figure 2.17. An example nested pattern for this task is shown in Figure 2.18(a).
The pattern possesses a single input, denoted by the line on the left hand side, a
slot for a logic service and four slots for lamp services. Note that we cannot use a
“multi” combination strategy for the lamps, because we want to control each lamp
individually and not turn on or off all lamps simultaneously. Given the services from
our running example, the pattern can be filled with service instances as shown in
Figure 2.18(b).

The completed pattern can now be used like a service with a single input and is
compatible with the “dimmable-lamp” slot shown in Figure 2.17. A possible service
chain using this nested pattern and the service instances from our running example
is shown in Figure 2.19. Nested patterns are a modeling concept. During the instal-
lation of an application, all nested patterns are inserted into the application. In the
example, the “Dimmable Lamp” slot of the pattern is replaced by the service chain
created by the nested pattern, i.e., the “SW-Dimmer I” service and the connected
lamps “Lamp I” to “Lamp IV”. All data streams targeting the nested pattern are
connected directly to the service instances assigned to the corresponding slots inside
the pattern. Due to this mechanism, nested patterns create no overhead during the
execution of applications.

Patterns with Runtime Behaviour The combination strategies presented up to
here are all static combination strategies, i.e., extend or alter the structure of the
generated pattern. Besides this type of combination strategy, the ǫSOA platform

2.5 Application Development 57

Push-Button

Logic

Light-Sensor

Push-Button

Button I

Light-Sensor

LightSens I

LightSens II

Avg

Avg I

Software-Dimmer

SmartLight I SW-Dimmer I

Lamp I

Lamp II

Button II

Simple-Lamp

Simple-Lamp

Simple-Lamp

Simple-Lamp

Lamp III

Lamp IV

Figure 2.19: Service Chain using Combination Strategies and Nested Patterns

Push-Button Logic

(red)(multi)

Lamp

(a) Pattern with Redundancy Combination Strategy

(b) Initial Service Chain

(c) Service Chain after Failure

Figure 2.20: Redundancy Combination Strategy

58 2 The ǫSOA Platform

also supports dynamic combination strategies that influence service compositions at
runtime. One example for such a dynamic combination strategy is the “redundancy”
combination strategy (red). Initially, the first service instance assigned to a slot with
a redundancy combination strategy will be used. If this service fails at runtime, e.g.,
due to a node failure or energy depletion, it is replaced by one of the other instances
assigned to the slot. This mechanism is especially useful if it is applied to logic
services, because these can be installed at multiple nodes to provide the required
redundancy. If multiple instances of a sensor and actuator device are available, the
redundancy strategy can be applied to the corresponding hardware services, too.
A possible pattern that uses redundancy is shown in Figure 2.20. Based on the
services from the running example, the user can build the application shown in
Figure 2.20. The upper service composition is active at rutime. If “Lamp I” fails,
it is replaced by “Lamp II”. The resulting service composition is shown in the lower
part of Figure 2.20. If the user repairs the “Lamp I”, one of two configurable actions
is taken. If the user chose to use “Lamp I” as primary device, the system will re-
activate the upper chain and use the replaced device. If the user selected no primary
device, no changes are conducted and the replaced device will work as redundant
backup for the lower device11. This “switching” between redundant service instances
can be implemented efficiently by a simple controller running directly on the nodes
in the embedded network. It can be performed fully automatically without user
interaction and in a very timely manner. The failure compensation mechanism and
some extensions are explained in more detail in Section 4.1.

By using nested patterns, the redundancy combination strategy can also be com-
bined with the “multi” strategy or one of the aggregation strategies mentioned in
the previous examples. Assume that the lamps from the running example are very
bright and two lamps are sufficient to light up the whole room. The user decides to
build two groups of lamps. Each group contains two lamps which should be used
redundantly, “Lamp I” and “Lamp II” in group one, and “Lamp III” and “Lamp
IV” in group two. The user instantiates two nested patterns with a redundancy com-
bination strategy and assigns the lamps to the corresponding slots. These nested
patterns can be added to the pattern shown in Figure 2.21(a), which we already
used in one of the previous examples. This pattern uses a “multi” combination
strategy. The subpatterns containing the redundant lamp services can be assigned
to the “Lamp” slot in the pattern, resulting in the service composition shown in Fig-
ure 2.21(b). The three buttons can be used to turn on or off “Lamp I” and “Lamp
III” simultaneously. If one of these lamps fails, it is replaced by a redundantly
available instance, “Lamp II” or “Lamp IV” respectively.

It is also possible to combine dynamic and static combination strategies the other
way round, i.e., to define a static combination strategy as nested pattern, which is
then added to a slot with a redundancy strategy. Nested patterns may also contain
nested patterns again. As a consequence, all combinations of dynamic and static

11If multiple replacements are available for a redundant slot, candidates are selected in the order
they were assigned to the slot or by user assigned priorities.

2.5 Application Development 59

(a) Pattern

Push-Button Logic

Lamp

Push-Button

Push-Button

Lamp

Lamp

Lamp I

Lamp II

Lamp III

ToggleBtn I

PushBtn I

PushBtn II

BasicLight

Lamp

Lamp IV

Nested Pattern II

Nested Pattern I

(b) Service Chain

Figure 2.21: Dynamic Combination Strategies and Nested Patterns

60 2 The ǫSOA Platform

combination strategies can be created.

Dynamic combination strategies can access all monitoring information gathered
on the nodes in the embedded network, e.g., remaining energy resources, utilization
information, etc. Based on this information, further dynamic combination strategies
can be developed. One example is to homogenize the energy utilization on battery
powered nodes by switching between instances from different nodes based on the
reported energy resources.

2.5.3 Summary

The ǫSOA platform offers pattern based service composition as alternative to a man-
ual composition of services. Service patterns define an abstract service composition,
which can be instantiated by assigning instances from a given installation to the
placeholders defined in the pattern. The service placeholders used in the pattern
define requirements that have to be fulfilled by services that should be assigned to
the placeholder. The required functionality can be provided by different services in
different systems. Patterns can be used to design reusable applications that can use
whatever sensor/actuator device is present in a given installation - as long as this
device provides the required functionality. At the same time, the application devel-
opment with patterns is simple enough to be performed even by untrained users.
This is achieved through a separation of the service/application developer, which
creates the pattern and the used logic services, from the end-user, which only has to
fill the pattern with services from a given installation. The assignment of services to
placeholders in the pattern can be done based on domain knowledge and requires no
further programming skills. The service descriptions and the requirements specified
in the placeholders can thereby be used to esure that only meaningful service com-
positions are created, i.e., no incompatible services are linked together. Through the
use of combination strategies, the flexibility and functionality of patterns can be im-
proved. Combination strategies allow the definition of patterns that can work with
arbitrary numbers of sensors and actuators and allow the automated injection of
aggregation services into the resulting service compositions. Furthermore, combina-
tion strategies can be used to create applications that dynamically adapt to changes
in the embedded networks, e.g., to compensate node failures through redundant
devices or to adapt the execution of applications based on resource utilizations.

In some cases, service patterns can be used to automate the service composition
process. Whenever there is only a single suitable candidate for a given placeholder
in a pattern, the corresponding service instance can be assigned automatically. If
multiple candidates qualify, the user has to perform the selection of the most suitable
one. With a corresponding tool support, this mechanism allows a rapid installation
and configuration of applications in embedded networks. An interesting functional-
ity that can be provided by patterns is the simultaneous management of multiple
pattern instances in large scale embedded networks. Consider a large office build-
ing. Many offices will be running applications that are based on the same pattern.
A modification of one of these installations could be “copied” to similar installa-

2.5 Application Development 61

tions in other rooms. We are currently investigating this and related reconfiguration
mechanisms.

Another direction for future work are automated learning mechanisms for appli-
cation patterns. The idea is to analyze the commonalities between the applications
running in a given installation and to automatically derive general applications pat-
terns. This could be used to support very dynamic development workflows. A user
could create an application by composing services manually. Based on this compo-
sition, a general pattern could be derived (probably by comparing the given service
composition with a repository of other compositions), which can then be used to
“copy” the application to other rooms in a building.

62 2 The ǫSOA Platform

2.6 Optimization Techniques

A benefit of the model driven development approach used in the ǫSOA platform is the
explicit specification of application requirements in the application model. Based
on this information, the configuration of the embedded network can be tuned to
achieve an as efficient execution of applications as possible. In this work, we focus
on two optimization fields: the optimization of measurement data rates and the
optimization of the service placement, i.e., the location where services are executed.
Besides these two fields, there are other optimization possibilities such as the re-
use of datastreams in multiple applications and the optimization/configuration of
communication links with TDMA schemes, which we will outline shortly at the end
of this section.

2.6.1 Data Rate Optimization

Sensor devices can be used by more than one application simultaneosuly. Each ap-
plication has its own requirements concerning the data rate at which measurements
should be delivered. The challenge is to coordinate the access to the sensor device
in a way that ensures these requirements are met. Additionally, it is desirable to
share measurements between applications. Depending on the sensor type, the acti-
vation of the sensing hardware can be an energy consuming operation. In addition
to this, each measurement also incurs some processing overhead for analyzing the
measured data. If the outgoing data streams of a sensor service are coordinated in a
way that allows to use one measurement in multiple streams, a considerable amount
of measurement operations can be saved. This leads to a reduction of the overall
power consumption and increases the lifetime of battery powered nodes. The ǫSOA
platform provides two means for achieving this goal: data rate ranges and a stream
dispatcher module. Both concepts are explained in detail in the following sections.

2.6.1.1 Data Rate Ranges

The desired data for a data stream can be specified in the application pattern or
added at installation time by the manager. In many cases an application has not one
single acceptable data rate but a broader range of data rates that are acceptable.
Consider for example a heating application. The control logic requires periodic
temperature readings. These readings have to be frequent enough to react to short
term temperature variations, e.g., an opened window. This is the lower bound for the
data rate of temperature readings. There is also an upper bound, because a heating
system is not very dynamic and increasing the measurement frequency beyond a
certain point will not increase the quality of the resulting control operations.

In the ǫSOA platform data rates are specified by a triple comprising the minimum
data rate, the maximum data rate and an optimal data rate. The former two values
specify the range of acceptable values. The ǫSOA platform guarantees that the
resulting data rate will lie in these bounds - as long as the sensor hardware supports

2.6 Optimization Techniques 63

1

2

3

4

5

6

5/min

12/min

St
re
am

 1

Stream 2

(a) Two Streams Created by One Sensor

Stream Min. Max. Opt.

1 (blue) 3 7 5
2 (red) 10 14 12

(b) Data Rate Specifications (measure-
ments per minute)

Figure 2.22: Header Generation for a Data Stream Transmission

the data rates of course. The optimal data rate can be used to indicate the sweet
spot in this range. The ǫSOA platform will try to deliver data rates that are close to
this value. However, deviations may occur if multiple data streams access the same
sensor device. Note that the specification of the optimal data rate is optional. If a
service performs equally well with any data rate laying in its acceptable range, the
optimal data rate may be omitted.

The data ranges already provide a basic way of supporting multiple outgoing data
streams with different data rates. If the intersection of these ranges is not empty, a
data rate can be chosen that is acceptable for all applications. Of course this is not
possible in general, because often data ranges will not overlap. In these cases it is still
possible to achieve a sharing of measurements by using subsampling. Subsampling
and the ǫSOA Stream Dispatcher, which performs this task, are introduced in the
following section.

2.6.1.2 The ǫSOA Stream Dispatcher

Assume we have the situation depicted in Figure 2.22(a). A sensor on node 1 is used
to create two data streams, Stream 1 (blue color in the figure) directed at node 4
and Stream 2 (red color) directed at node 5. Table 2.22(b) shows the corresponding
data rate specifications. Stream 1 has an acceptable range of data rates between
3/min and 7/min measurements per minute with an optimum of 5/min. Stream 2 a
range of 10/min to 14/min with an optimum of 12/min.

In this case, the data ranges of the individual streams do not overlap. Assume we
measure data at a rate of 12/min. This is the optimal data rate for Stream 2. If we
take every second of these measurements and create a new data stream out of these
values, we get a data stream with a data rate of 6/min. This data rate is not optimal
for Stream 1, but still in the acceptable range. This process is called subsampling.
We created a new data stream by using a part (every second element) of the original
data stream. Note that we are interested in creating subsamples that possess a fixed
data rate. The subsample is always created by taking every i’th item of the stream,

64 2 The ǫSOA Platform

Sensor ServiceTimer

d
1

d
2

d
n

...

Stream Dispatcher

Data Rate

Optimizer

Data Rate

Specifications

Stream 1

Stream 2

Stream n

Figure 2.23: The ǫSOA Stream Dispatcher

Divider 2

Divider 3

Figure 2.24: Skipping of Measurements

where i ∈ N, i > 1. We will use the term divider d = 1/i in the remaining part of the
work12.

In the ǫSOA platform, the subsampling is performed by the Stream Dispatcher.
The architecture of the Stream Dispatcher is shown in Figure 2.23. The Stream
Dispatcher controls the creation of data streams for a specific sensor, which is rep-
resented by a corresponding sensor service. The Stream Dispatcher has an internal
timer that is used to periodically trigger measurements. This internal data stream
is handed over to a series of splitting modules. Each splitting module creates an
outgoing data stream i based on a supplied divider di. The splitting modules can
be implemented very efficiently using a single counter that counts the number of
dropped measurements. Whenever the counter reaches di, a measurement is added
to the outgoing data stream and the counter is reset. The last two components
of the Stream Dispatcher are a table holding data rate specifications for all outgo-
ing streams, and an Optimizer that configures the internal timer and the splitting
modules based on the given specifications.

To optimize the energy consumption, the internal Timer does not trigger the
Sensor Service immediately. Instead it first checks whether any of the splitting

12Note that the term subsampling is also used in statistics whenever a smaller sample is taken from
an existing sample. In this case, not necessarily every i’th element will be selected.

2.6 Optimization Techniques 65

modules will create an outgoing data packet or not. If that is not the case, the sensing
hardware is not activated. Instead a dummy measurement is added to the internal
data stream. The dummy measurement will cause the splitting modules to correctly
increment their counters. This optimization saves unnecessary measurements that
can occur if not all elements of the internal stream are forwarded to an outgoing
stream. A simple example scenario are two outgoing data streams with dividers 2
and 3, as seen in Figure 2.24. In this case, out of six elements of the internal stream,
the first element is used in both streams, the third and fifth only in the stream
with divider 2 and the forth only in the stream with divider 3. The second and the
sixth element are not used in either stream (indicated by the gray boxes) and can
be replaced by dummy measurements.

Subsampling has two major benefits. First measurements can be triggered with a
single periodic timer. This is beneficial compared to a solution using multiple timers
which have to be coordinated to avoid conflicting accesses to the sensing hardware.
Second subsampling can reduce the number of measurements taken by sharing mea-
surements between multiple streams. In the example from Figure 2.22(a), we needed
only a measurement rate of 12/min to create both data streams, because Stream 1
re-used every second measurement from stream 2. If both streams had been created
independently, a total of 12/min + 5/min = 17/min measurements per minute would
have been required. In this case, the timers for stream 1 and 2 would collide every
60 seconds. Even if we could exploit this fact and share this measurement between
both streams, we would still require a total of 16/min measurements per minute.
Compared to the 12/min measurements per minute needed with subsampling, this is
still a considerable increase. On the other hand, the optimal data rate of stream 1 is
not met perfectly when using subsampling. A trade-off has to be found that allows
reducing the number of measurements taken, but still provides data rates that are
close to the desired optima. This trade-off is performed by the Data Rate Optimizer
contained in the Stream Dispatcher.

2.6.1.3 Optimization of Data Rates

We already introduced the conflicting goals encountered by the Stream Dispatcher
with an example in the previous section. We will reformulate the problem more
mathematically.

Optimization Problem The Stream Dispatcher has to solve the following optimiza-
tion problem: given a set of n data streams with data rate optima o1, o2, . . . , on,
find an internal measurement data rate r and a set of dividers d1, d2, . . . , dn that
minimzes the deviations from the data rate optima and minimizes the number of
measurements taken per minute.

Because we supplied two optimization criteria, the optimization problem has mul-
tiple solutions. It is always possible to find a measurement rate and a set of dividers
that perfectly suites all data rate optima. But this solution will have a very high
number of measurements, because only few measurements are shared. The other

66 2 The ǫSOA Platform

extreme is to use a very low measurement rate and accept high deviations from
the optima. To combine both optimization criteria, we use a weighting function w,
which is defined as:

w = c · dist + (1 − c) · u

dist quantifies the deviation from the optima and u the number of required mea-
surements respectively. This weighting function allows finding a good trade-off be-
tween the deviation from the optima and the required number of measurements.
We used a value of c = 0.5 for our experiments. An increase in the deviation from
the optima of x% is therefore tolerable, if it results in a decrease of the number of
required measurements of at least x%.

Distance Metric The resulting data rate for each stream is the di’th part of the
measurement rate r. dist quantifies the deviation from the optima as a percentage
value. It is defined as:

dist =
n∑

i=1

∣
∣
∣
∣

r

di
− oi

∣
∣
∣
∣
·

1

oi

where oi is the optimal data rate for stream i.

Number of Measurements The calculation of u is more complicated. A solution
without any sharing would require a total of

∑n
i=1 oi measurements. We are only

interested in solutions that require less measurements than this base case. We
therefore define u as the savings achieved compared to this base case:

u =
m

∑n
i=1 oi

where m is the number of measurements taken per minute.
In general m is not equal to the data rate r. As exemplified in the previous section,

some readings can be omitted because they will be ignored by all splitting modules.
As a consequence m is typically smaller than r. Only if a divider of 1 is used, m is
equal to r.

Let Ai be the set of measurements acquired in one minute that are used for
creating output stream i. The number of required measurements per minute m is
then:

m =

∣
∣
∣
∣

n⋃

i=1

Ai

∣
∣
∣
∣

The cardinality of Ai is easy to determine. It is the di’th part of the internal
measurement rate r, thus

Ai =
r

di

The sets Ai are not disjunct. In order to determine the cardinality of the union
of these sets, the inclusion-exclusion principle can be used. The inclusion-exclusion
principle is used in combinatorial mathematics to determine the cardinality of a

2.6 Optimization Techniques 67

B

Figure 2.25: Principle of Inclusion-Exclusion

union of finite non-disjunct sets. The basic idea is to calculate the cardinality of
a union by first using a over-generous inclusion, which is followed by an exclusion
to compensate the error. Figure 2.25 shows an example comprising three sets A,
B and C. Following the inclusion-exclusion principle, the cardinality of A ∪ B ∪ C
is calculated by starting with the over-generous inclusion |A| + |B| + |C|. This
inclusion was over-generous, because we counted the elements in the intersection
multiple times. We correct this error by substracting the elements contained in the
intersections, which are |A∩B|, |A∩C|, |B∩C|. This was an over-generous inclusion
again, because we included the elements contained in A∩B∩C multiple times. This
error is compensated by adding another exclusion, and so on. For the special case
of three sets used in the example, the resulting cardinality is

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|

For the general case, the cardinality is

m =

∣
∣
∣
∣

n⋃

i=1
Ai

∣
∣
∣
∣
=

n∑

i=1

|Ai| −

∑

i,j : 1≤i<j≤n

|Ai ∩ Aj | +

∑

i,j,k : 1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · +

(−1)n−1 |A1 ∩ · · · ∩ An|

In order to calculate m, we first have to determine the cardinality of the various
possible intersections. Given these values, we can determine the value of m using
the inclusion-exclusion principle. The measurements that lay in the intersection

68 2 The ǫSOA Platform

Stream Min. Max. Opt.

1 40 60 50
2 15 25 20
3 12 24 18

(a) Example Scenario

d1 1 1 1
d2 3 2 2
d3 3 3 2

r 50 50 40
dist 0.241 0.324 0.311
u 0.568 0.568 0.455
w 0.404 0.446 0.383

(b) Data Rate Specifications (mea-
surements per minute)

Figure 2.26: Example Calculation

of two streams are the measurements that are (re-)used by both these streams.
Assume the measurements in the internal stream are numbered in increasing order.
A measurement is used in both streams, whenever the measurement’s number is a
multiple of the dividers of both streams. The rate at which these collisions occur is
therefore the least commom multiple (LCM) of the dividers.

The number of required measurements per minute is then:

m =

∣
∣
∣
∣

n⋃

i=1
Ai

∣
∣
∣
∣
= r ·

(
n∑

i=1

1

di
−

∑

i,j : 1≤i<j≤n

1

LCM(di, dj)
+

∑

i,j,k : 1≤i<j<k≤n

1

LCM(di, dj , dk)
− · · · +

(−1)n−1 1

LCM(di, . . . , dn)

)

Based on this result for m, the number of required measurements u can be calcu-
lated using the formula above.

Algorithm The algorithm for solving the optimization problem iteratively tries
different sets of dividers. For each set, it calculates the optimal measurement rate
r and the values for dist and u. The algorithm stores the best solution w.r.t the
weighting function w.

Assume we have three streams with the data rate optima specified in Table 2.26(a).
Table 2.26(b) shows the calculation results for some combinations of dividers. We
will go through the calculation of the first set of dividers from Table 2.26(b) step by
step.

2.6 Optimization Techniques 69

The first step is the calculation of r. It is performed based on the distance metric.
The goal is to find a value for r that minimizes dist, i.e., that minimizes:

dist =
n∑

i=1

∣
∣
∣
∣

r

di
− oi

∣
∣
∣
∣
·

1

oi

The absolute values in the formula above can be eliminated by using case differ-
entiations. The sign of the term inside the absolute value flips at r

di
− oi = 0, what

is equal to r = oi · di. We can now distinguish i + 1 different ranges for r. The
first range are data rates below 50. The second range are data rates between 50
and 54, the third range between 54 and 60. Finally the fourth and last range are
data rates greater than 60. For each of these ranges we calculate the data rate r
that minimizes dist. This can be done easily, because the absolute values can be
removed. We select the data rate r that minimzes dist.

For the example, this is a data rate of 50, which results in a distance of 0.241.
The resulting data rate for stream 1 is 50, which fits perfectly. Stream 2 has a data
rate of 50/3 ≈ 17 which shows a comparably large deviation from the optimum of
20. Stream 3 has the same data rate, which is fairly close to the optimal value of
18. Summing up, we have a deviation dist of approximately 24% from the optimal
data rates.

Based on r and the dividers, we can calculate u. In the example, u is 0.568.
We therefore only need approximately 57% of the measurements compared to the
simple solution using multiple timers. These saving are achieved, because all the
measurements used in streams 2 and 3 are shared with stream 1. The resulting value
of w is 0.404.

As we can see from the table, this value is quite good but not optimal. A better
solution can be found using the dividers 2, 5, 6 and a data rate of 100. In this case,
the deviation from the optima is much smaller. Stream 1 is supplied with a data
rate of 100/2 = 50, which fits perfectly. The same holds for Stream 2 with a data
rate of 100/5 = 20. Stream 3 has a data rate of 100/6 ≈ 16.7, which is fairly close to
the optimal value of 18. Given these values, dist is 0.074. The resulting value for u
is 0.682, what is slightly worse than the value for the dividers 1, 3, 3. The savings
gained in dist overweigh the increase in u, the solution using the dividers 2, 5, 6 is
therefore superior. It is even the best solution that can be found.

Search Space The number of reasonable divider combinations is limited. The
optimization algorithm iteratively selects a fixed divider dl for the largest data rate
optimum, e.g., the value of 1 for Stream 1 in the example above. In order to minimze
the deviation from the optima, the ratio between the other dividers and 1 should
resemble the ratio between the corresponding data rate optima. In the example the
ratio between the optima of Stream 2 and Stream 1 is 50/20 = 2.5. The ratio between
the dividers should be close to this value, leaving possible divider values of 2 and 3
for Stream 2. This results in a total of 2i−1 combinations for each value of dl.

70 2 The ǫSOA Platform

In a practical setting, the search space for dl is restricted by u. Assume we use
a divider value of dl = 4. Because dl is used for the stream with the highest data
rate, all other dividers have to be equal or greater than 4, too (the ratio between
the largest optimum and the other optima is always greater or equal to one). High
divider values result in a low number of shared measurements, because the LCM
grows very fast. In a practical setting, divider values dl lower or equal to 4 are
typically sufficient. The resulting number of possible combinations can be tested
even on severely constrained microcontrollers.

2.6.2 Service Placement

Services that do not depend on the presence of a specific hardware (e.g. a sensor or
actuator device) can be executed on any node in the embedded network, assuming
the node posseses the memory and processing resources required by the service. This
flexibility is a central building block for the design of scalable and robust distributed
control applications. It allows remedying overload situations by moving services from
the overloaded node to other nodes in the network, and allows adapting the execution
of applications based on the energy resources of the underlying nodes in order to
homogenize the battery utilization and move services to neighboring nodes if an
energy depletion is forseeable. Furthermore, the scalability of embedded networks
can be increased. If the summed processing power in an embedded network is not
sufficient, a new node can be added and some of the already installed services can
be moved to this node.

There are boundary conditions that have to be taken into account during these
optimizations. A service can only be moved between nodes if the target node pos-
sesses the required hardware devices (important for sensor/actuator devices) and
enough resources to execute the services. These constraints can be modeled in the
system model in the ǫSOA platform. The optimization algorithm presented in this
section can derive an optimized service placement, i.e., an optimized assignment of
services to nodes, based on such constraints, the specified application requirements
and the network infrastructure. The new placement can be viewed and modified by
the user using the tools presented in Chapter 5 and finally deployed in the embedded
network.

On the following pages, we will first present the service placement optimization
problem in Section 2.6.2.1. After that, we will introduce a set of metrics in Sec-
tion 2.6.2.2 that allow quantifying the quality of a specific placement. These metrics
are used by optimization algorithms, which we will present in Section 2.6.2.4, to cal-
culate an optimal service placement for a given set of applications and network char-
acteristics. We performed a series of benchmarks to compare different optimization
techniques and to evaluate different configuration parameters of the optimization al-
gorithms. The network generator used in these tests is described in Section 2.6.2.3.
The benchmark results are presented in Section 2.6.3. Finally, we will present an
availability metric in Section 2.6.4, which can be used to place services in a way that
maximizes the availability of the network in case of node failures.

2.6 Optimization Techniques 71

2.6.2.1 The Service Placement Optimization Problem

The quality of a placement is defined by a set of metrics which are defined in the
following section. The optimization problem is to determine a mapping of services
to nodes that creates minimal costs w.r.t. these metrics and fulfils a set of boundary
conditions. A placement is defined as a function p(i) = n, i ∈ I, n ∈ N that maps
every instance i out of the set of all instances I to a node n out of the set of all
nodes N .

Resource Constraints The first boundary condition for every placement are the
resource constraints on each node. Every service requires a specific amount of re-
sources R = {r1, . . . , rn} (we currently use CPU, flash memory and RAM) on a
node. The sum of the demands on a node may not exceed the capacity of this node.
Each service instance i specifies a resource demand vector di = (dr1

, . . . , drn) which
quantifies the resource demands for every resources ri ∈ R. Each node n speci-
fies a resource capacity vector cn = (cr1

, . . . , crn) for every resource ri ∈ R. Every
placement has to fulfill the following boundary condition:

∀n∈N∀ri∈R




∑

i∈I,p(i)=n

di(ri)



 < cri

Assignment Restrictions Another boundary condition are assignment restrictions.
Some service instances can only be installed at nodes that possess some specific hard-
ware, e.g., a specific sensor device. Another source of restrictions are administrative
restrictions, e.g., some service may only be installed at nodes in a specific location
etc. These restrictions are notated for a service instance i as a set of suitable nodes
si ⊂ N where N is the set of all nodes. Note that assignment restrictions can be
used to create non-movable service instances, i.e., instances which may not be relo-
cated to another node, by specifying only a single target node in the list of suitable
nodes.

Nodes With Limited Reprogramming Capabilities Depending on the hardware
and the used operating system, nodes may be reprogrammable at runtime or not.
If a node is reprogrammable, it is capable of executing any service instance as long
as it has enough spare resources and possesses the hardware devices required by
this service instance. If the node is not reprogrammalbe, e.g., because the operat-
ing system does not support the dynamic loading of code, it can only execute the
services that were initially installed on this node. These restrictions are modeled by
specifying a list of possible services that may be executed on a node.

2.6.2.2 Metrics

A prerequisite for the calculation of a service placement are metrics that allow to
quantify the quality of a placement and allow comparing different placements. The

72 2 The ǫSOA Platform

available metrics depend on the information available in the system model. For the
calculation of some of the metrics mentioned in this section, information from the
routing layer is required to determine the routes used in the physical network for the
transmission of data streams (the streams only specify the start and end point of the
transmissions, not the hops in between). This information can be either supplied
by an algorithm that models the behaviour of the routing protocol and calculates
the shortest path between nodes in the physical network, or can be queried from the
network protocol (using a suitable cross layer communication mechanism, like the
one described in Section 3.8).

At the current stage, we do not support timing constraints during the calculation
of metrics. For some metrics, such as the CPU utilization, it is not only important
how large the demand of a service for this resource is, but also when it is requested.
If the underlying resources can only be used exclusively, simultaneous demands will
result in delays and increase the time needed to execute a service. We are currently
investigating how the execution model on the nodes and the timing requirements of
the services can be incorporated to improve the calculation of the metrics described
in the following paragraphs.

Many of the metrics described below require information from the system model
regarding the capabilities of the available hardware and the requirements of the
applications. In many cases, this information will be available immediately because
it is contained in the hardware specifications or given by the application developer.
If this is not the case, a lot of information can also be collected at runtime by
observing the service execution on the nodes. In this scenario the system will be
launched with a placement based on a very simple metric, e.g., the hop count, and
can be optimized when additional information is available through monitoring.

Currently we have implemented 6 metrics. Just like new properties in the system
model, new metrics can be added easily to the system to allow a customization
for specific application fields. For the utilization metrics, we will describe how the
utilization coefficient for every node is calculated. These coefficients are combined to
receive the overall utilization based on the maximum, mean or a specific percentile
of the coefficients.

Hop Count A simple metric that is always available is the hop-count. For the
calculation of this metric, the number of hops involved for the transmission of all
data streams flowing through the system is summed up. This very simple metric
works fairly well for the optimization of the network utilization if the data streams
used by the applications have similar data volumes.

Data Volume If information about the expected volume of data-streams is avail-
able, the hop-count metric can be refined to calculate the data volume metric. This
metric is based on the summed data volume transmitted over all links, i.e., the
data rate of each stream multiplied with the number of hops needed for routing the
stream. If an application comprises services that produce low data volume streams

2.6 Optimization Techniques 73

out of high data volume streams, e.g., a control service like the one presented in
the air condition example that requires periodic measurements but only rarely is-
sues commands to an actor service, this metric will ensure that the data consuming
service is placed as close to the data producing services as possible (preferably on
the same node). This metric closely resembles the heuristics used in systems like
TinyDB, which “push” services as close to the stream sources as possible.

Link Utilization The data volume metric can be further extended to calculate the
overall link utilization metric, if additional information about the bandwidth of the
links is available. For each link the summed data rates of all streams flowing through
a link is divided by the link’s bandwidth. If this coefficient is greater than one, the
link is marked as overloaded13.

Network Utilization In many cases, logical links to different nodes are using the
same physical communication medium, e.g., a wireless link or an ethernet link which
is connected to a switch. To avoid overload situations under these circumstances, an
additional utilization metric, the network utilization is calculated for each physical
communication medium available at each node. This is done by aggregating the
data volumes for all logical links using the same physical medium, e.g., all ZigBee
links.

Memory Utilization The memory utilization metric can be calculated if informa-
tion about the memory demand of services is available. In many cases this informa-
tion can be determined by inspecting the service code. If this is not the case, the
user has to specify the corresponding value manually in the system model or it has
to be determined at runtime by observing the memory usage of the running service.

CPU Utilization The CPU utilization is calculated based on CPU cycles. The
calculation of this metric requires information about the CPU capacity of each node,
and an estimation of the required CPU cycles for the execution of each service. To
estimate/measure the number of required CPU cycles, emulators such as (Power)
TOSSIM[91, 137], MSPSim[36] or similar tools for other operating systems and
hardware platforms can be used. A counter for the number of CPU cycles used
in each service invocation (which relates to a method invocation performed by a
dispatcher when a new message is received or a periodic timer is triggered) can be
easily implemented in these tools or is often already available because it is required
to calculate the CPU power consumption. The emulation run can be performed by

13Placements containing overloaded resources are not immediately discarded because the user can
opt to install the applications based on these placements anyway. This can be a reasonable
decision if all placements result in overload situations and the middleware possesses features to
compensate link congestions at runtime, e.g., by dynamically reducing the data acquisition rates
at the sensor devices.

74 2 The ǫSOA Platform

Logic

Actor

Actor

Sensor

Actor

Logic

Sensor

Depth

Fanout

Fanout

Probability

Depth

Probability

Figure 2.27: Basic Structure of Generated Applications

the service developer prior to publishing the service in a service repository and the
results can be annotated in the service description14.

Combined Metrics The individual metrics mentioned above can be combined with
a linear weighting function. The weight for each metric can be specified by the user.
This mechanism can also be used to create a list of alternative solutions. In this
case, the optimization algorithm is invoked multiple times with different weights
prioritizing different metrics. The user can browse this list of alternatives using
the development tools presented in Chapter 5 and select the most suitable one. In
ongoing work, we are studying how the generation of alternative solutions can be
refined to create a set of pareto optimal solutions. A possible approach is outlined
in the description of ongoing work at the end of this section.

2.6.2.3 Evaluation Scenario

In order to get a large test set of different embedded networks for the testing of the
optimization algorithms we designed a system generator, which creates network and
application models based on a set of parameters.

Network Structure The created networks are based on a grid based structure.
Each node in the grid has a communication link to each of its four adjacent nodes
with a configurable probability (if the generated network is non-connected, it is
discarded and a new network is generated). The generator can also be used to
create link characteristics (e.g. bandwidth limitations) in a user specified range.

Application Model The generator can create a configurable number of applications
with different structure and complexity. Applications are created following the basic

14Such an emulator run is often performed anyway to do unit testing on an emulated device.

2.6 Optimization Techniques 75

Scenario
Number

1 2 3 4 5 6 7 8 9 10 11 12

Number
of Nodes

3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9

Number
of Apps

2 2 2 2 4 4 4 4 2 2 2 2

Depth 3 3 3 3 3 3 3 3 4 4 4 4

Scenario
Number

13 14 15 16 17 18 19 20

Number
of Nodes

3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9

Number
of Apps

4 4 4 4 6 6 6 6

Depth 4 4 4 4 4 4 4 4

Table 2.1: Evaluation Scenario for Service Placement Algorithms

structure shown in Figure 2.27. The generation starts with a logic service. To the
output(s) of the logic service 0..Fanout actor services are attached, each with a
probability of FanoutProbability. Analogously, 0..Fanout services are attached
to the inputs of the logic service, again with a probability of FanoutProbability.
These service can either be sensor services or logic services. The latter are created
with a probability of DepthProbability. If a logic service is created, the creation
recursively starts at this service, i.e., a set of service (either sensors of logic services)
are attached to the input(s) of the logic service. The depth of the recursion, and
therefore the length of the service chain, can be capped with the depth parameter.
The sensor and actuator services are fixed at randomly chosen nodes in the network,
the logic services can be placed freely.

Scenarios The following parameters were used for the evaluation: a maximum
Fanout of 3, a FanoutProbability of 80%, a DepthProbability of 80% (i.e., 80%
probability for the creation of a logic service). The remaining parameters were
configured according to Table 2.1 to generate a series of scenarios with varying ap-
plication complexity and number and different network sizes. This configuration
resembles typical application sizes/structures we encountered during the develop-
ment of our demonstrators.

2.6.2.4 Optimization Techniques

The task of the optimization techniques presented in this section is to determine an
optimal placement, i.e., a placement with as little costs as possible, based on the
metrics presented in the previous section and the generated system model containing

76 2 The ǫSOA Platform

information about the hardware characteristics and the application requirements.
The optimization problem of distributing services to nodes can be easily mapped to
the Bin Packing Problem: the task is to distribute n services with resource demands
d1 . . . dn to m nodes with resource capacities c1 . . . cm in a way that avoids overload
situations. The problem is therefore NP hard. For small networks (< 10 nodes) and
a small number of services (< 10 services), a solution based on a simple enumeration
of all possible combinations is possible. For larger problem instances, other solutions
have to be applied.

We analyzed three well known optimization algorithms: Ant Colony Optimiza-
tion, Simulated Annealing and a Genetic Algorithm, which we will present in the
following sections. All algorithms are intended to be used on a central management
node in the network that possesses global knowledge about the network topology,
hardware characteristics and service requirements. This is typically the case for
management nodes, which control the application execution in an embedded net-
work or a subnet of a larger network. The algorithms aim at finding a global solution
to the optimization problem, i.e., will move already installed services in the network
if a new application should be installed and requires already occupied resources.
These reorganizations come at a cost, because services have to be migrated between
nodes and the corresponding applications will cease to work during the migration
process. To provide a good trade-off between the migration costs and the long term
savings of a new placement, the optimization algorithms can be used to create a list
of placements containing different levels of reorganization. The user can then select
an appropriate placement from this list. This is done by running the optimization
algorithms multiple times with different restrictions for the placement of services,
e.g., restricting all installed services to the node they are executed on will result in
a scenario with no reorganization.

Ant Conoly Optimization Ant Colony Optimization (ACO)[20, 34] is inspired by
the way ants explore food sources and optimize the track between the food source
and the colony. (Initially) ants wander randomly. Whenever an ant finds food it
leaves a pheromone trail on its way back to the colony. Other ants that cross such a
trail will likely follow it and also leave pheronomes on their way back to the colony,
therefore reinforcing the trail.

Simulated Annealing Simulated Annealing (SA)[14, 81] mimics the process of an-
nealing used in metallurgy. The SA algorithm iteratively replaces the current so-
lution with a “neighboring” solution, which is chosen based on the improvement
(or the decrement) of the quality solution and a global parameter, the temperature.
The temperature initially starts at a high value and decreases over time. When the
temperature is high, worse solutions are accepted with a high probability (result-
ing in a comparatively random search in the optimization space at the beginning).
Lower temperature values enforce a more “downhill” oriented behaviour, i.e., the
algorithms will tend to accept only solutions that are actually better than the cur-

2.6 Optimization Techniques 77

rent one. The possibility to intermediately accept worse solutions and enforce a
convergence only at low temperature values reduces the chance that SA gets stuck
in a local optima, which is a typical problem for heuristics such as hill climbing (see
e.g. Russel and Norvig[127]) or similar methods.

Genetic Algorithm A Genetic Algorithms (GA) is based on the idea of iteratively
evolving a set of genomes (the population) in order to create better and better
solutions to the optimization problem. Mapped to the service placement problem, we
try to iteratively improve a set of service placements until we find an optimal solution
to the optimization problem. Genetic algorithms use two basic concepts for evolving
genomes: mutation and crossover. Mutation introduces some random changes to a
genome, crossover creates a new genome based on a combination of characteristics
from two parent genomes. As mutation function we use the same mechanism as in the
neighbourhood function used in simulated annealing: we randomly move one service
instance from one node to another. The implementation used for the tests below
does not use crossing. The genetic algorithm iteratively creates a new generation
of genomes (also called a new generation) out of the current one by mutating and
crossing genomes. From the new generation, the s best genomes are selected and
used as starting point for the next iteration. The parameter s is called the size of
the gene pool.

Comparison of Optimization Techniques Ant Colony Optimization is not well
suited for the optimization of the service placement problem. Many metrics used for
the service placement optimization create a situation where multiple data streams
compete for the use of a communication link (e.g. link utilization metric does). In
other words, the decision to transmit a stream over a specific link (which is locally
optimal for a specific application) can lead to a non-optimal global solution, because
other applications are prohibited from using this link. In order to use ACO in such a
situation, one would have to introduce an additional mechanism that modifes parts
of the pheromone trails if a competition is detected. Such modifications have to be
studied carefully to ensure they do not jeopardize the convergence of the algorithm
towards the global optimum. We therefore chose to not use ACO.

We implemented both, Simulated Annealing and a Genetic Algorithm, and per-
formed some initial tests to determine which optimization technique is better suited
for solving the service placement optimization problem. These initial tests showed
that - given the same CPU time - SA yields considerably better placements than our
GA implementation. We therefore chose to analyse SA in more detail and to use an
optimizer based on SA for the prototypical implementation of the ǫSOA platform.
There is some potential to improve the genetic algorithm used for these initial tests.
In ongoing work, we are investigating what performance gains are achievable and
whether an improved implementation of the genetic algorithm can compete with the
SA based optimizer (or even provide better results). We will present the possible
improvements for the genetic algorithm and the results of the initial benchmark in

78 2 The ǫSOA Platform

Scenario 10

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 1

 2

 3

 4

 5

 6

 7

 8
av

g
er

ro
r

in
 %

Figure 2.28: Lambda / Limit Test for Scenario 10

more detail at the end of this section. In the following section we will focus on the
SA based implementation of the optimizer.

2.6.3 Service Placement Optimization with Simulated Annealing

Our implementation of Simulated Annealing is based on the algorithm from Russel
and Norvig[127]. It uses an exponentially decaying temperature function e−λ·t, where
t is the time counted as number of SA iterations performed so far. The algorithm is
stopped after l iterations (also called “limit” in this work). The neighbor function
used to generate new solutions moves a single service to another, randomly selected,
node in the network.

2.6.3.1 Temperature Function Parameterization

We performed a series of tests to derive good values for the parameters used in the
temperature functions, that is λ and l. For each scenario described in the previous
section 50 different systems and a random starting placement were generated. Each
of these systems was optimized using the SA algorithm with different settings for λ
(ranging from 0.0075 to 0.5) and l (ranging from 50 to 600), resulting in a total of
35, 000 test runs. The test runs were performed using the hop-count metric, as this
metric is the fastest to compute15. Because the SA algorithm operates independently

15Which metric performs best for a given embedded network depends on the application scenario
and the network characteristics (the utilization metrics for example are of little value if the

2.6 Optimization Techniques 79

of the used metric, the results are applicable in settings with other metrics, too.
Figure 2.28 shows for each parameter combination the average deviation from the
“optimum” in percent for Scenario 10. The results for the other scenarios can be
found in Appendix A.

The deviation is calculated as distance from the best solution found by the SA
algorithm. Of course it is not guaranteed that this solution actually is the optimal
one. Due to the high number of possible placement it is practically infeasible to cal-
culate the optimum by enumerating all possible combinations for the more complex
scenarios. We cross-checked the results of the SA algorithm with the results from a
complete enumeration for the simple scenarios (3x3 grid) to check the correctness of
the SA algorithm. In these cases, SA was always capable of finding the optimal so-
lution. There is an indicator that this observation also holds for the larger scenarios
(or that the found results are at least very close to the optimum): each scenario is
analyzed by 70 runs of the SA algorithm (with the aforementioned different param-
eter settings). Due to the involved randomness, it is unlikely that the SA algorithm
will repeatedly converge to the same local optimum for each of these runs. As a
consequence, the probability is quite high that the best found solution actually is
the optimal solution in the larger scenarios (or at least very close to the optimum).

As Figure 2.28 shows, the SA algorithm is quite insensitive to the selection of λ.
For very low values, and therefore high temperature values, the convergence towards
the optimum is not strong enough. For very high values, the SA algorithms tends
to converge to local optimas. This effect can be observed for the scenarios with
a high number of applications (Scenarios 17-20)16. To achieve a good compromise
between both situations we selected a value of λ = 0.2 which provides good overall
performance. The benchmarks also show a clear dependency between the number
of iterations, l, and the quality of the resulting placement.

2.6.3.2 Comparison of Neighborhood Functions

We ran another series of tests to further analyze the dependency between the number
of iterations and the complexity of the scenario. These tests were also used to
evaluate different neighbor functions: (1) the function used in the previous tests that
moves a service to a random node in the network, (2) a function that randomly moves
a service to adjacent nodes, and (2) a function that moves services to nodes that are
two hops away in the network. The tests were run using the previously derived value
of 0.2 for λ. For the tests, 50 systems were generated for each of the 20 scenarios
and supplied to the SA algorithm using each of the above mentioned neighbour
functions. An additional number of 50 systems was generated for Scenarios 18 and
19 and an additional number of 350 systems for Scenario 20 to get a reasonable
number of repetitions for the larger systems. For each of these systems, the three

network bandwidth is high and the transmitted data volume is low). In this work, we therefore
focus on the optimization algorithm itself. The comparison of the different metrics has to be
performed depending on a concrete application scenario and is not in the focus of this work.

16The effect is hard to see in the graphics due to the scaling of the vertical axis.

80 2 The ǫSOA Platform

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 100000 1e+010 1e+015 1e+020 1e+025 1e+030 1e+035 1e+040

D
ev

ia
tio

n
in

 %

Degree of Freedom

50
100
150
200
250
300
350
400
500
550
600
650
700
750
800

(a) Neighbor Function: Random

 0

 10

 20

 30

 40

 50

 60

 70

 1 100000 1e+010 1e+015 1e+020 1e+025 1e+030 1e+035 1e+040

D
ev

ia
tio

n
in

 %

Degree of Freedom

50
100
150
200
250
300
350
400
500
550
600
650
700
750
800

(b) Neighbor Function: Adjacent Neighbor

 0

 10

 20

 30

 40

 50

 60

 70

 1 100000 1e+010 1e+015 1e+020 1e+025 1e+030 1e+035 1e+040

D
ev

ia
tio

n
in

 %

Degree of Freedom

50
100
150
200
250
300
350
400
500
550
600
650
700
750
800

(c) Neighbor Function: 2 Hops Distance

Figure 2.29: Deviation for Varying Degrees of Freedom

2.6 Optimization Techniques 81

different neighborhood functions were tested with a varying number of iterations
between 50 and 800, incremented in steps of 50. This results in a total of 3 · 16 = 48
SA runs for each system and a summed total of

48 · 50 · 20 + 48 · 50 · 2 + 48 · 350
︸ ︷︷ ︸

additional runs for large systems

= 69, 600

optimization runs.
For each system, the deviation from the best found solution was calculated for

each combination of neighbor function and iteration number. Note that the best
found solution was calculated using the results from all three neighbor functions.
Furthermore, the degree of freedom was calculated for each system. The degree of
freedom quantifies the number of possible placements and is defined as ns, where
n is the number of nodes in the network and s is the number of freely placeable
services (the logic services in our example). The deviations were grouped by the
degree of freedom and averaged. Figure 2.29 shows the average deviation for the
different combinations of neighbor functions and number of iterations. Please note
the logarithmic scale of the x-axis. As expected, a higher number of iterations leads
to better solutions. The measurements also show that neighborhood function 3
(using nodes at a two hop distance) shown in Figure 2.29(c) outperforms the other
functions if a high enough number of iterations is chosen. For very low iteration
numbers, neighbor function 1 is the best choice.

Neighbor function 1 performs best with very low iteration numbers because the
diameter of the search space is smaller compared to neighbor functions 2 and 3. The
diameter is the minimum number of iterations required to reach any other solution
from a given solution. When services are moved randomly, every placement can be
generated in at most s iterations, where s is the number of freely placeable services.
The diameter for the other neighbor functons is a multiple of this value, because
moving a service over a distance of n hops in the network requires n iterations, or n/2

respectively. If a very low number of iterations is chosen, a low diameter is beneficial
because it minimizes the number of steps required to reach the optimum. If a suitably
high number of iterations is selected, neighbor funtions 2 and 3 outperform function
1. The locality exploited by these functions increases the convergence towards the
optimal solution at low temperature values and leads to a better overall performance.

2.6.3.3 Calculation Rule for the Limit l

In a practical setting, an user of the SA algorithm is faced with the question which
value to chose for the limit l. From the measurements shown in Figure 2.29, we
derived a function that yields a suitable value for the limit l for a given degree of
freedom. This was done by selecting the lowest number of iterations that resulted
in a deviation of less than 1% for each degree of freedom. Using a curve fitting
algorithm, an logarithmic function

fl(d) ::= max{50, 14 · log(d)}

82 2 The ǫSOA Platform

can be derived, which specifies the limit l as function of the degree of freedom d.
The lower bound of 50 was used to enforce a minimum number of iterations for
small scale networks. With fl and the value 0.2 for λ, the optimizer in the ǫSOA
platform can automatically adjust the configuration of the SA algorithm for a given
system model. This ensures that enough iterations are performed to actually find
a good solution in large networks and that no unnecessary iterations are performed
for small networks.

2.6.3.4 Summary

In this section, we gave an in-depth analysis of the Simulated Annealing optimiza-
tion algorithm used in the ǫSOA platform. We compared different neighborhood
functions and parameter sets on a broad set of networks with varying complexity.
Based on these results, we derived a calculation rule and a set of default parame-
ter that allows to fully automatically tune the SA algorithm for a given embedded
network in order to minimize the execution time of the optimization algorithm.

2.6.4 Optimization of System Availability

Besides the performance optimizations presented in the previous section, the service
placement can also be used to optimize the system availability. By placing mission
critical services on the most reliable nodes, the availability of applications can be
increased. Using this technique, the achievable availability still depends on the avail-
ability of the nodes executing these services. To further increase the availability of
applications in an embedded network, the ǫSOA platform allows exploiting redun-
dantly available hardware. We already outlined in Section 2.5 how an application
with redundant service instances can can be modelled during application design.
Based on this information, the system can automatically react to the failure of in-
dividual components by replacing the failed component with one of the specified
redundant component. To fully exploit the benefits of such an approach, redun-
dancy also has to be considered during service placement. An example is that -for
obvious reasons- it should be avoided to place a service instance on the same node
as the redundant backup instance.

The ǫSOA platform supports an availability metric that allows optimizing systems
w.r.t. to the availaibility of applications. At the current state, the metric allows to
optimize systems based on hardware failures. However, the mechanisms presented
in this section can be extended to incorporate software failures, too. As already
mentioned in Section 2.5, the failure compensation mechanisms in the ǫSOA platform
are optimized for single node failures which do not result in network partitions. As
a consequence, we will present a metric that allows an optimization of the system
availability under this boundary condition. The presented concepts can be easiliy
extended to include network partitions. In this case, the reachability between service
instances has to be checked in addition.

A prerequisite for optimizing the availability of an embedded network is knowledge

2.6 Optimization Techniques 83

Figure 2.30: Example System Containing Series and Parallel Parts

about the individual components used in the network, i.e., the availability of the
nodes. If accurate availability rates for individual nodes are available - e.g. through
monitoring - the presented metric can calculate the overall system availability. If
such detailed information is not available, the metric may also be supplied with
reliability classes that quantify the expected availability and allow defining “risk”
classes for nodes, e.g., battery powered nodes, wireless nodes, mobile nodes, etc.

We will first present the mathematical background for calculating system avail-
ability. After that we will explain the availability metric based on an example from
a building automation scenario.

2.6.4.1 System Availability Basics

The availability of a system consisting of multiple independent parts can be calcu-
lated by modelling the system as a combination of parts, see Shooman[138]. Two
combination types are possible: series of parts and parallel parts. In a series of parts,
the combination fails if one part fails. Using parallel parts, the combination fails if
all parts fail. These two basic types can be combined to create arbitrary complex
composition. Figure 2.30 shows a combination consisting of an outer sequence. The
second part of the outer sequence is a parallel combination of two parts, which in
turn are a sequence of two parts.

For a series of n independent parts A1, . . . , An, the overall system availability As
1..n

is defined as

As
1..n = A1 · A2 · . . . · An

By exploiting the associativity of multiplications, this can be reformulated to

As
1..n = As

1..n−1 · An

For a parallel combination of n independent parts A1, . . . , An, the overall system
availability Ap

1..n is defined as

Ap
1..n = 1 − (1 − A1) · (1 − A2) · . . . · (1 − An)

Analogously to the serial combination of parts, this can be reformulated to

Ap
1..n = 1 − (1 − Ap

1..n−1) · (1 − An)

84 2 The ǫSOA Platform

(a) Application (b) Embedded Network

Figure 2.31: Example Scenario For Availability Metric

Proof:

Ap
1..n = 1 − (1 − Ap

1..n−1) · (1 − An)

Ap
1..n = 1 − (1 − (1 − (1 − A1) · (1 − A2) · . . . · (1 − An−1))

︸ ︷︷ ︸

A
p
1..n−1

) · (1 − An)

Ap
1..n = 1 − ((1 − An) − (1 − An) · (1 − (1 − A1) · (1 − A2) · . . . · (1 − An−1)))

Ap
1..n = 1 − ((1 − An) − ((1 − An) − (1 − A1) · (1 − A2) · . . . · (1 − An−1) · (1 − An)))

Ap
1..n = 1 − (1 − An) + (1 − An) − (1 − A1) · (1 − A2) · . . . · (1 − An−1) · (1 − An)

Ap
1..n = 1 − (1 − A1) · (1 − A2) · . . . · (1 − An−1) · (1 − An)

Ap
1..n = Ap

1..n

2.6.4.2 Availability Metric

We will describe the availability metric based on an example scenario shown in
Figure 2.31. Assume we want to place the application shown in Figure 2.31(a) on
the embedded network illustrated in Figure 2.31(b). The taks of the application
is to provide a simple lighting application in a building automation scenario. It
comprises two push buttons, Button I and Button II that can be used to toggle the
lights in the room on or off. The room contains three lights, Lamp I, Lamp II and
Lamp III. The application logic is contained in the SimpleLight I service. Ignore the
SimpleLight II service for the moment. Note that the only service that can be freely
placed in the embedded network is the SimpleLight I service. All other services
depend on the availability of specific hardware devices and are therefore fixed to a
specific node. Figure 2.31(b) shows these assignments: the buttons are attached to
the leftmost nodes, the lights to the rightmost nodes. The central node possesses
no sensor or actuator devices. In order to keep the example simple, assume that all
nodes communicate via wireless links and are in the radio range of each other (what
is very likely if they are placed in the same room). The network therefore possesses
a full mesh communication infrastructure and each node can directly communicate

2.6 Optimization Techniques 85

(a) Basic Scenario (b) Scenario with Replicated Logic

Figure 2.32: Availability View

with each other. Assume that the buttons are battery powered, perhaps even mobile.
As a consequence the availability of the buttons is lower that the availability of the
remaining nodes. Assume the buttons are available with 90% and all other nodes
with 95%17.

The lighting application will work als long as there is at least one button and
one lamp available. From an availability point of view, the buttons are operating in
parallel. The same holds for the lights. The overall application is a sequence of the
button group, the logic service and the lamps, as depicted in Figure 2.32(a). Assume
the logic service SimpleLight I is installed on node 3. In this case, the availability
of the whole application can be easily calculated based on the formulas presented in
the previous section. The availability of the button group is:

1 − (1 − 0.9) · (1 − 0.9) = 0.99

The availability of the group of lamps is:

1 − (1 − 0.95) · (1 − 0.95) · (1 − 0.95) = 0.999875

The overall availability of the system therefore is:

(1 − (1 − 0.9) · (1 − 0.9))
︸ ︷︷ ︸

Buttons

· 0.95
︸︷︷︸

Logic

· (1 − (1 − 0.95) · (1 − 0.95) · (1 − 0.95))
︸ ︷︷ ︸

Lamps

= 0.9403824375

This calculation method is not applicable in general. Assume the logic service is
installed on one of the lamp nodes, e.g., node 4. In this case, the availability of the
individual services is not independent anymore. Everytime the logic service is up,
we know for sure that also Lamp 1 is up (assuming the lamp itself does not fail).
The formulas presented in the previous section require independent components and
therefore cannot be applied anymore. To calculate the system availability, we have
to distinguish two scenarios:

17Real world components will typically have higher availabilities, these numbers were chosen to get
a concise example.

86 2 The ǫSOA Platform

Scenario 1: Node 4 is available In this case, both the logic service and at least
one lamp are available. As a consequence, the availability is purely based on the
availability of the switches, which we already calculated. The availability in Scenario
1 therefore is:

AS1 = 1 − (1 − 0.9) · (1 − 0.9) = 0.99

Scenario 2: Node 4 is down In this case, the logic service is not available. Because
it is a required part of the application, the overall application is not available, too.
The availability in Scenario 2 therefore is AS2 = 0.

The likelihood for Scenario 1 in a given time interval is equal to the availability
of node 4, which is 95%. With this, the overall availability can be calculated as

0.95 · (1 − (1 − 0.9) · (1 − 0.9))
︸ ︷︷ ︸

AS1

·0.05 · 0
︸︷︷︸

AS2

= 0.9405

The availability in this case is a litte bit higher than the availability in the previous
example. In both examples, the system will fail when the node executing the logic
service fails. In the first example we need at least two additional nodes for the
application, one switch and one light. In the second example, we only need one
additional node, one switch. As a consequence, the application in the second example
has a little higher availability, because it requires only two available nodes, whereas
the application from example one requires three.

The vailability in both of the example presented in this section was clearly dom-
inated by the availability of the logic service. Assume the user wants to remove
this single point of failure and install a replica of the logic service. This can be
easily done during application development by creating a second instance of the
logic service, (in this case LogicService II) and assigning it as redundant backup
to LogicService I. The resulting service chain from an availability point of view is
shown in Figure 2.32(b).

Assume that LightLogic I is placed on node 4, just like in the second example.
Furthermore assume that the replacated logic should be installed on node 5. In this
case we have two dependencies between services: one between LogicService I and
Lamp I and the other between LogicService II and Lamp II. The overall availability
can be calculated just like in the previous example by splitting the calculation into
multiple scenarios:

Scenario 1: Node 4 and Node 5 are available If both nodes are available, at
least two lamps are available, too. As a consequence the application availability is
determined by the availability of the buttons.

AS1 = 1 − (1 − 0.9) · (1 − 0.9) = 0.99

2.6 Optimization Techniques 87

Scenario 2: Node 4 is available, Node 5 is down Just like in Scenario 1, the
availability of the system is determined by the availability of the buttons, because
at least one lamp - Lamp 1 - is always available.

AS2 = 1 − (1 − 0.9) · (1 − 0.9) = 0.99

Scenario 3: Node 4 is down, Node 5 is available This scenario is similar to
Scenario 2.

AS3 = 1 − (1 − 0.9) · (1 − 0.9) = 0.99

Scenario 3: Node 4 and Node 5 are down If none of the replicated logic services
is avaialbe, the whole application is unavailable.

AS4 = 0

The resulting application availability can be calcuated based on the probabilities
of the individual scenarios which is:


0.95 · 0.95
︸ ︷︷ ︸

Scenario 1

+ 0.95 · 0.05
︸ ︷︷ ︸

Scenario 2

+ 0.05 · 0.95
︸ ︷︷ ︸

Scenario 3



 ·



1 − (1 − 0.9) · (1 − 0.9)
︸ ︷︷ ︸

Buttons



 = 0.987525

2.6.4.3 Calculation Scheme for Availability Metric

This calculation scheme can be generalized. The algorithm distinguishes between
service instances with availability dependencies, i.e., instances that are placed on
the same node, and independent instances. To speed up the calculation, indepen-
dent instances are aggregated by using the formulas presented in the beginning of
this section. If a parallel group contains multiple independent instances, these are
aggreagated. The same holds for a sequence of independent instances.

After this simplification step, the availability for the different combination sce-
narios of dependent instances are iteratively computed by the algorithm. In a final
step, these individual availabilities are aggregated to an overall availability using the
probability of each combination as weighting function, like in the example. The to-
tal number of scenarios is 2k, where k is the number of nodes with non-independent
services. In typical automation use cases, this number is fairly small because service
compositions have a limited size and many of the involved services are placed on
dedicated sensor and actuator devices and are therefore independent.

The calculated availability metric for a placement can be used as stand-alone
optimization criterion or combined with the other metrics presented in this section.

2.6.5 Ongoing Work: Service Placement Optimization with Genetic
Algorithms

As mentioned in the beginning of this section, we performed a series of initial test
to compare the results of a Genetic Algorithm to the results created with Simulated

88 2 The ǫSOA Platform

 0

 2

 4

 6

 8

 10

 12

SA (Random) SA (Adjacent) SA (2 Hops) GP (5) GP (10)

D
ev

ia
tio

n
in

 %

Figure 2.33: Comparison of Different Optimization Algorithms for Scenario 20

Annealing. For smaller scenarios, both algorithms are able to determine the optimal
solution. For larger scenarios, differences are observable. Figure 2.33 shows the aver-
aged deviation from the optimum for systems based on Scenario 20. A total number
of 500 systems was generated. Each system was optimized using the Simulated An-
nealing Algorithm, with the three different neighbor functions and a number of 800
iterations, and the Genetic Pogramming Algorithm with a gene pool of size 5 and
a value of 5 and 10 mutations per generation. The number of generations used in
the Genetic Algorithm was 160 for a pool of size 5 and 80 for a pool of size 10. The
most resource intensive operation in both algorihms is the calculation of the evalu-
ation metric for each tested placement. The settings mentioned above ensure both
algorithms use the same number of metric evaluations, this is 800. As Figure 2.33
shows, the Genetic Algorithm has a much higher deviation compared to the Simu-
lated Annealing algorithm, i.e., often returns a worse placement. The reason for this
is a well known limitation of Genetic Algorithms. While Genetic Algorithms tend to
yield solutions that are close to the optimum, they often require many generations
for finding the last few mutations that result in an optimal solution. If the number
of generations is increased the results returned by the Genetic Algorithm are getting
better, but this comes at a considerable increase of computation costs. We confirmed
these results for other combinations of gene pool sizes and mutations per generation.
In all cases, the average deviation was considerably higher compared to Simulated
Annealing. Due to this reason, the current implementation of the ǫSOA platform
uses a Simulated Annealing algorithm for optimizing the placement of services.

A solution that often improves the results of Genetic Algorithms is a combination
with greedy heuristics, such as hill climbing. In this scenario, the Genetic Algo-
rithm ensures that the optimization does not get stuck in a local optimum, whereas
the heuristic ensures a fast convergence to the actual optimum. We are currently
investigating how such a heuristic could look like and whether it can be used to
tune the performance of our Genetic Algorithm. We are also investigating whether
a crossover function can improve the results created by the Genetic Algorithm. A
possible crossover function is to exploit the presence of multiple applications. In this
case, a new genome is created by mixing the placements for individual applications.

In order to create a set of pareto optimal solutions w.r.t. multiple metrics, the

2.6 Optimization Techniques 89

Genetic Algorithm can be extended with a special sorting function. Deb et al.[25]
propose such an algorithm called NSGA-II (Non-dominated Sorting Genetic Algo-
rithm). We are investigating how this approach can be integrated into the GA for
service placement and the development tools in the ǫSOA platform.

2.6.6 Related Work

Wittenburg et al.[169] present an overview of research activities considering service
placement in ad-hoc networks. This work shares some properties with the ser-
vice placement problem analyzed in this section, however there are some important
differences. The special characteristics encountered in control oriented networks,
especially the longetivity of applications and the stable network structure, require
different optimization approaches compared to ad-hoc networks with more dynam-
ics. A dedicated optimization/configuration phase as used in the ǫSOA platform is
possible due to this stability and also needed to ensure the optimality of the created
solution which may be executed based on the derived placement for weeks, months
or even years.

Yick et al.[171] study the problem of distributung data logger services in a ran-
domly organized sensor network. The goal is to achieve a complete coverage of the
observiced area, to provide load balancing between nodes and to a minimize of the
energy consumption for gathering and transmitting sensor readings. The latter can
be achieved by minimizing the number of data loggers and optimizing their place-
ment in the network. The basic problem tackled by Yick et al. is comparable to
the service placement problem presented here, nevertheless there are some domain
specific differences. A problem challenge encountered in the work of Yick et al. is
that the communication between nodes is influenced by obstacles in the environ-
ment, which requires a line of sight analysis when calculating communication paths.
Another difference is that Yick et al. optimize the placement for a single application
(i.e. try to minimize the resource utilization), whereas control oriented networks
have to be designed to support the simultaneous execution of multiple applications,
which compete for resources (i.e. also optimize the assignment of resources to dif-
ferent applications).

In TinyDB[93, 94], sensor data can be acquired and transformed using a SQL-like
syntax. The execution of these queries is based on a tree oriented network struc-
ture. The placement of the individual operators of these queries, such as selections
and joins, are placed according to a heuristic. This approach is feasible for sensing
oriented networks with a dedicated sink. It cannot be applied to control oriented
networks where multiple applications with differing communication behavior com-
pete for the available resources.

Besides this sensor network focused work, optimization techniques/challenges
comparable to the ones described in this section can also be found in the IT do-
main.

90 2 The ǫSOA Platform

Data Stream Management Systems An optimization technique in Data Stream
Management Systems (DSMS) that can reduce the transmitted data volume consid-
erably is stream sharing, see Kuntschke[84] for more information and a detailed list
of publications in this research area. The idea of stream sharing is to detect common-
alities in the data usage of different queries and to exploit these commonalities by
only transmitting the shared data once. The sharing of measurements presented in
this chapter can be seen as a variant of such optimizations. An interesting direction
for future research is an analysis whether stream sharing is applicable and actually
beneficial in control oriented embedded networks. Our experience from prototypi-
cal implementation indicates that application often either require the exactly same
data or have very little commonalities. The former is often the case for “raw” sensor
data, which is consumed by multiple sinks. In this case, a multicast communication
achieves the same results as a stream sharing approach. In contrast to DSMS, the
consumers of this data typically apply complex processing tasks and the resulting
output is so specialized that it cannot be reused in multiple applications. Examples
for such transformations are control loops or other application logic. A mere filtering
or aggregation of data is rather uncommon. The possibilities for stream sharing are
therefore limitied. Another difficulty is that data processing tasks in control appli-
cations do not necessarily have a clearly defined semantic (as operators in a DSMS
typically have). This complicates the detection of commonalities as the exact char-
acteristics of the produced data streams can be unclear. Nevertheless, there surely
are situations where stream sharing can be beneficial, especially in monitoring/data
analysis heavy networks.

Data Center Optimization Virtualization and Software as a Service techniques
promise cost savings for the operaters of data centers. The possibility to move
enterprise services between hosts without downtime and to scale the number of
service instances according to the current utilization can be used to increase the
individual utilization of servers in a data center and consequently allows reducing
the overall number of required servers. Gmach[46] shows that a colocation of services
with complementary resource demands, e.g., daytime vs. nighttime activity, and a
proactive scaling of applications based on load estimations can reduce the number of
hosts while maintaining the same QoS. The optimization problem of placing services
in a data center is related to the service placement problem encountered in embedded
networks. Both aim at optimizing the resource utilization in the system, however
with different goals and boundary conditions. In data centers, the main goal is to
maximize the utilization (by keeping the QoS at the same level) in order to support
more applications/customers with the same hardware. In embedded networks, the
optimization goal typically is to achieve a certain QoS goal or to homogenize the
resource utilization. The reason is that nodes often have additional tasks besides
the mere processing of data, e.g., attached sensors or actuators or the forwarding
of data in a multi-hop network, and cannot be removed, even if it is possible to
move all processing tasks to other nodes. The goal therefore is not to minimize the

2.6 Optimization Techniques 91

number of required nodes, but to optimize the exploitation of available resources to
maximize QoS, battery lifetime, etc.

Virtual Machine Grid Computing An optimization problem comparable to the
service placement problem presented in this work is studied by Sundararaj et al.[150].
The authors present a virtual network layer for grid computing based on virtual
machines. In such a network, the placement of virtual machines can be optimized
w.r.t. network and utilization metrics. The boundary conditions imposed by a grid
computing environment differ from the boundary conditions imposed by control
oriented networks. Nevertheless there are similarities which could be an interesting
starting point for a more detailed comparison of both approaches.

2.6.7 Summary

In this section we presented optimization techniques used in the ǫSOA platform to
optimize the execution of applications in heterogeneous embedded networks. We
showed how the acquisition of measurements can be optimized when sensors are
used in multiple applications and how the placement of services can be optimized
based on communication characteristics and the characeristics of the underlying net-
work infrastructure. The current implementation uses Simulated Annealing to solve
the service placement optimization problem. In ongoing work , we are examining a
Genetic Algorithm which could be used as an alternative approach for solving the op-
timization problem. Another direction for optimization, which we are investigating
in ongoing work, is the optimization of schedules for TDMA based communication
media, such as FlexRay18. The challenge here is to derive a schedule which guaran-
tees that all end-to-end latency requirements imposed by the running applications
are met.

18http://www.flexray.com/

92

CHAPTER 3

Runtime Environment

In the previous chapter, we presented the design principles of the ǫSOA platform and
described an application development workflow based on service oriented principles.
In order to actually execute the modeled services and service compositions, the nodes
in the embedded network have to provide a corresponding execution environment.
This functionality is offered by the ǫSOA Runtime Environment, which is installed
on every node in the embedded network. We will first present the overall architecture
of the ǫSOA Runtime Environment in Section 3.1, followed by a detailed description
of the individual components. The ǫSOA platform uses XML to transmit data
between nodes and to store information on the nodes in the embedded network. In
Section 3.2 we will analyze different XML encoding formats and show that binary
XML techniques can meet the resource constraints imposed by microcontrollers.

In many application fields, it is desirable to use self descriptive nodes, i.e., nodes
that contain not only the service implementation, but also all information required
for the configuration and integration of the installed services. If a self descriptive
node is attached to a network its capabilities and characteristics can be retrieved
and added to the system model. This reduces development overheads and allows a
synchronization of the model used in the planning and development tools and the
actual system. In Sections 3.3, 3.4 and 3.5 we will present XML based description
languages that allow storing the relevant parts of the system model directly on the
node.

In Section 3.6 we will present the communication module of the ǫSOA middleware.
The ǫSOA platform uses a binary XML based message format. In order to achieve a
high parsing performance, a code generator is used to create tailored message parsers
and databinding code. This code generator is presented in Section 3.7.

The management of large scale embedded networks requires a management and
configuration protocol. We will present such a protocol in Section 3.8. This pro-

93

tocol can also be used to facilitate a cross layer information exchange, i.e., to pass
information from the network stack up to the application level and push information
down the network stack.

The flexibility of embedded networks can be increased if services can be added
and removed at runtime. In Section 3.9 we will present such a mechanism and a
workaround based on service libraries, which can be used if the underlying operating
system does not support the dynamic loading of code.

94 3 Runtime Environment

Stream RouterC
ro
s
s
-L
a
y
e
r
In
te
rf
a
c
e

S
e
rv
ic
e

In
s
ta
n
c
e

S
e
rv
ic
e

In
s
ta
n
c
e

Network Stack

S
e
rv
ic
e
 R
e
p
o
s
it
o
ry

L
if
e
c
y
c
le
 M
a
n
a
g
e
r

S
e
rv
ic
e

In
s
ta
n
c
e

Management Interface

M
o
n
it
o
ri
n
g
 &

F
a
ilu
re
 C
o
m
p
e
n
s
a
ti
o
n

Operating System (Contiki/TinyOS/...)

Figure 3.1: The ǫSOA Runtime Environment - Architectural Overview

3.1 Runtime Environment Architecture

The ǫSOA Runtime Environment is installed on every node in the embedded net-
work. It provides a service execution environment and basic functionality that can
be accessed by each service running on the node. We will present a short overview
of the purpose and functionality of each runtime component here. A detailed de-
scription can be found in the corresponding sections of Chapter 3 and Chapter 4.

3.1.1 Runtime Components

Figure 3.1 shows the architecture of the ǫSOA Runtime Environment. It comprises
seven components:

Network Stack The ǫSOA network stack sits on top of the transport/routing layer
protocols provided by the underlying operating system. It provides a basic communi-
cation interface and handles the transmission of messages across network boundaries
in heterogeneous embedded networks.

Stream Router The Stream Router augments the Network Stack with functionality
for handling data streams. The Stream Router specifies where produced data is sent.
It stores non-functional requirements (e.g. reliability) for each stream and handles
the splitting of data streams if a data stream is consumed by multiple services. The
ǫSOA network stack and the Stream Router are presented in detail in Section 3.6.

3.1 Runtime Environment Architecture 95

Cross-Layer Interface The Cross-Layer Interface can be used to perform a message
exchange between the communication layer and the application layer. The appli-
cation layer gets access to topology information and communication characteristics
through the Cross-Layer Interface, whereas the Communication Layer can retrieve
application layer information, e.g. data rate estimations for data streams. The ex-
changed information can be used to optimize the configuration in the corresponding
layer and is used as input for the optimization algorithms presented in Section 2.6.
The Cross-Layer information exchange is explained in Section 3.8.

Monitoring & Failure Compensation The ǫSOA platform offers mechanisms for
compensating the failure of nodes in the embedded network. The monitoring of
neighboring nodes and the execution of compensatory actions is performed by the
Monitoring & Failure Compensation module of the ǫSOA platform. The supported
failure compensation mechanisms are explained in detail in Section 4.1.

Lifecycle Manager The Lifecycle Manager handles the instantiation of services and
the management of service instance states, i.e., the starting, stopping and removal of
service instances. It implements the Service Lifecycle Model presented in Section 2.4.
The Lifecycle Interface uses the Service Repository to gain access to the executable
code and metadata description of services.

Service Repository The Service Repository contains the executable code and the
metadata description of each service. Services can be added to the Service Reposi-
tory during the initial programming of the node, or added at runtime if the under-
lying operating system supports the dynamic loading of code. Both mechanisms are
explained in Section 3.9.

Management Interface The configuration of module and service parameters can
be performed through a Management Interface. The XML based Management In-
terface used in the ǫSOA platform is explained in Section 3.8.

Service Instances The components mentioned above provide an execution envi-
ronment that can be used to execute and manage an arbitrary number of different
Service Instances, only limited by the available system resources (memory, CPU
power, ...) on a node.

3.1.2 Summary

In this section, we described the main building blocks of the ǫSOA Runtime En-
vironment. It provides the execution environment for services on each node. The
Runtime Environment is created and configured based on the requirements specified
in the System Model and installed on each node in the network. This initial installa-
tion can be pre-configured with services and service instances to build ready-to-use

96 3 Runtime Environment

nodes (e.g. to design sensor/actuator devices that are shipped with correspond-
ing hardware services) or empty nodes that initially contain no services and act as
generic service hosts. In both cases, the node configuration can be changed and
new services and service instances can be deployed at runtime in order to adapt
the node to the requirements of a specific installation. The configuration of the
Runtime Environment and the installation and management of services and service
instances can be performed through a management interface, which is used by the
development and administration tools described in Chapter 5.

3.2 Encoding Techniques 97

3.2 Encoding Techniques

The resource constraints encountered in embedded networks necessitate efficient en-
coding techniques for storage, transmission and processing of messages. In most
cases, the most power consuming device on a wireless node is the radio module.
A compact message format reduces the overall power consumption, what is espe-
cially important for battery powered nodes. A compact data representation is also
beneficial from a utilization point of view. Smaller message sizes allow higher data
rates on links with limited bandwidth. Nodes in an embedded network often pos-
sess comparably weak CPUs and only a very limited amount of RAM for storing
intermediate results when parsing a message. The encoding scheme must be simple
enough to support an efficient implementation on such systems.

In this section, we will analyze different encoding techniques w.r.t. their suitability
for embedded networks. An efficient, yet flexible data format is not only required
during message transmission, but also for storing information on the nodes in an
embedded network, such as service descriptions, configuration information, service
compositions, etc. The requirements are identical in both application fields and the
presented encoding techniques can also be used to store such information efficiently
on resource constrained devices.

Two factors contribute to the size of the data representation: the data format
overhead and the encoding of data types. The data format overhead quantifies the
additional information used to encode data types and other semantic information.
In an embedded network, most of the data transmissions are periodic and known a
priori. This can be exploited by using a transmission format that contains solely the
data payload and that uses the interface description of the service on the client and
the server side to interpret the data correctly. This technique can greatly reduce
message sizes for periodic transmissions and should be supported by the data format.

The encoding of data types is the second key factor that influences the message
size. In many cases, services in the embedded network will exchange numeric data
which has to be encoded efficiently. When communicating with external Web ser-
vices, textual data has to be transmitted, too. Through an efficient encoding of
numeric and textual data, the size of these messages can be reduced by a large
amount.

Besides the compact data representation, the message format should also be ex-
tensible and flexible enough to support complex, structured data types. Not all
sensor services will consume simple numeric values; consider for example a RFID
reader which will create tuples comprising the EPC code of the observed item, the
timestamp of detection and the id of the reader.

Even more complex structures will be encountered in scenarios where an inter-
action between the embedded network and enterprise Web services occurs, e.g. in
a shop floor integration scenario. In these cases complex XML documents have to
be transmitted and processed by the embedded network. This leads to another re-
quirement: XML support. The data format has to provide a possibility to efficiently
interact with XML based services. Because parsing XML documents requires large

98 3 Runtime Environment

amounts of memory and CPU power it is not feasible to simply transport the doc-
ument to a service in the embedded network. This issue is solved by using message
converters that intercept incoming XML messages and transform them to the data
format used in the embedded network. The returned outputs are transformed back
to XML again. The message format should provide a way of mapping XML doc-
uments to the message format and vice versa. It is decisive that this mapping is
applicable to any kind of XML message and can be done by a generic gateway. The
development overhead for designing a manual mapping between the external XML
document and the data representation used inside the network should be avoided.

Summing up a message format should have the following properties:

• low format overhead

• low encoding overhead

• high flexibility and extensibility

• support for XML data

Looking at these properties, XML itself is a possible candidate for the message
format. It provides the required flexibility and inherently supports nested XML
data. The major drawback of plain XML is the very large overhead due to the
verbose markup and the string based encoding of data types. This overhead is not
only problematic in the domain of embedded networks, but also in the Web service
domain. Processing large numbers of XML messages (such as SOAP[165] calls) will
challenge even modern servers. As a consequence, a lot of effort was done in the past
years to improve the processing speed of XML parsers and to reduce the message
size transmitted over the network. Because the XML representations generated by
these approaches are not human readable anymore, they are commonly referred to as
binary XML technologies. In the following paragraphs we will analyze these binary
XML encoding techniques and ASN1.0 PER, a popular binary encoding format,
w.r.t their suitability as encoding format for embedded networks.

To keep the discussion concise, we will focus on the properties mentioned above
and defer the discussion regarding the parsing complexity to Section 3.7, where we
will show how efficient message parser for embedded devices can be realized.

Abstract Syntax Notation One (ASN.1) A popular encoding standard in the IT
domain is the Abstract Syntax Notation 1.0 (ASN.1)[69], which is standardized by
the International Telecommunication Union (ITU). ASN.1 itself is not an encoding
format, but a description language for data formats. Based on this abstract data
definition, different encoding formats can be applied to represent the data. The most
compact data format are the ASN.1 Packed Encoding Rules (PER)[70]. PER defines
an efficient binary format with very little overhead and therefore is an interesting
encoding technique for embedded networks. It provides the required flexibility by
supporting a broad range of data types and the possibility to create complex data

3.2 Encoding Techniques 99

structures out of these types. Based on the syntax definition of an interface it is
also possible to generate an efficient parser for messages directed at this interface.
ASN.1 therefore fulfills the first three requirements mentioned above.

It is possible to represent the information contained in a XML document in
ASN.1. The de-facto standard for data definitions in the Web service world is
XML Schema[162, 163] (or RelaxNG[108] to a lesser degree). In order to provide
an automatic conversion between messages in both domains, a mapping between
XML Schema and ASN.1 is required. The ITU specifies such a mapping between a
XML Schema definition, and a ASN.1 syntax definition[71]. The opposite direction
is possible, too. By using these mappings, it is possible to design a message con-
verter that can convert ASN.1 PER documents to XML document and back again.
However there are some limitations due to information loss during the conversion. A
big difference between ASN.1 and XML Schema is the expressiveness w.r.t to data
types. XML Schema offers the possibility to define data types on a fine grained
level using facets. With these facets it is possible to define data ranges for numeric
values, declare enumerations or restrict data types to specific patterns defined by
regular expressions. Many of these features cannot be represented in ASN.1 very
well. It is possible to mimic these facets via user-defined constraints to an ASN.1
definition, but these are mere annotations and will be ignored by ASN.1 parsers.
On the other hand, many of these restrictions have very little or no influence on
the data representation used when encoding messages. The additional information
lost during conversion might therefore be compensatable by using additional type
checking in the application logic.

Summing up, ASN.1 PER provides an efficient and compact binary representation
of data values. It also supports the representation of XML based data - but there
are some losses during the conversion of messages.

Compressed XML A straightforward approach for reducing the size of an XML
document is the application of data compression algorithms. Because the markup
(and sometimes also the payload) contains recurring occurrences of the same tokens,
such as tag names, this can result in a considerable reduction of the document
size. The drawback of this approach is that it requires a fairly high amount of
processing power on the nodes, because compression algorithms are CPU intensive.
Another drawback is a high memory demand. After decompression, the resulting
XML document will occupy a considerable amount of RAM on the node. We are
using the gzip[58] compression algorithm for our analysis, because it is available on a
wide variety of platforms and it is patent-free. There are a lot of other compression
algorithms besides gzip, such as bzip2[1] for example, which might be interesting
for compressing XML data. The results of our experiments with gzip showed that
compressed XML is still too large for embedded networks. We therefore did not
analyze other compression algorithms in detail.

100 3 Runtime Environment

VTD-XML An approach that aims at speeding up the processing of XML docu-
ments is VTD-XML[170]. This is done by adding Virtual Token Descriptors (VTDs)
to XML documents. A VTD encodes the offset, length, token type and nesting
depth of a token in an XML document. Navigation in the XML document can be
performed based on these tokens what results in a speedup compared to traditional
parsing mechanisms. Because VTD-XML is a parsing technique, the message size
cannot be reduced for the transmission over the network. Parsing messages with
VTD-XML even requires additional memory for storing the token descriptors. Its
applicability in the domain of embedded networks is very limited, because the mem-
ory available on every node is very scarce. We will therefore not analyze VTD-XML
in more detail here and concentrate on other encoding techniques that allow reducing
the size of transmitted XML messages.

WBXML The Binary XML Content Format Specification (WBXML)[116] has been
developed to ease the handling of XML based messages on mobile phones. It aims at
reducing the transmission size of XML based documents and improving the parsing
performance of XML documents. WBXML encodes the parsed XML document, i.e.,
the structure and content of the encountered XML entities with a binary format.
Any meta information contained in the original XML document is removed during
the conversion. WBXML does not use schema information for encoding documents.
As a consequence documents are always self-contained, i.e., can be reconstructed
without external knowledge.

XML Fast Infoset (FI) A technique that aims at combining the goals of reduced
document size and increased parsing performance is Fast Infoset (FI)[72]. The idea
of FI is to use an efficient binary representation for the XML data model. FI relies on
the Abstract Syntax Notation 1.0 (ASN.1) to (de-)serialize XML documents. Note
that there is a fundamental difference between XML FI and the XML to ASN.1
mapping described in the first paragraph of this section. XML FI encodes an XML
tree with ASN.1, i.e., there is an ASN.1 construct for storing a tag, an attribute, a
namespace, etc. This encoding can be done without any XML Schema information
about the XML document. The XML to ASN.1 mapping on the other hand does
not encode the XML document itself, but only the information contained in the
XML document. The resulting document is not a XML tree anymore and cannot
be parsed with a SAX or DOM parser. The benefit of XML FI is that there is
no information loss involved if a document is encoded with XML FI. On the other
hand, the resulting message size will typically be larger compared to an information
centric approach, because the XML structure and especially the names of tags and
attributes are still contained in the document.

An important building block of FI is a vocabulary that maps verbose strings to
compact numeric representations. XML FI supports two different modes for storing
this vocabulary. In the default mode, the vocabulary is contained in the encoded
document. We will refer to this mode as FI. In the second mode, the dictionary is not

3.2 Encoding Techniques 101

added to the document but kept at an external location. This mode is interesting
if many documents with similar structure should be encoded. In this case, the
vocabulary has to be exchanged only once and does not have to be added to every
single document. This mode results in smaller document sizes. We will use FI-Dict
to refer to this mode. The vocabulary exchange can be done during the creation of
a data stream in the embedded network. Every element of the data stream can then
use this external vocabulary.

Efficient XML Interchange (EXI) The Efficient XML Interchange (EXI) format
aims at combining the goals of high processing performance and compact message
sizes. EXI is based on a grammar that enumerates the possible elements occurring
at every position of an XML document. This, combined with an efficient binary
representation of numeric data types, creates a very compact message format that
is easy to parse at the same time. EXI supports two modes for encoding a XML
document: by using a built-in grammar or by using a schema-informed grammar.
A built-in grammar is contained directly in the EXI encoded XML document. The
resulting document is self-contained, i.e., an EXI decoder can reconstruct the XML
document without any further information. We will call this encoding technique
EXI. The embedded grammar also has a drawback: it has to be added to every
single XML document, even if a sequence of documents referring to the same XML
Schema should be encoded. This redundancy can be avoided by using schema-
informed grammars. In this case, a grammar is created once for each XML Schema
definition. This grammar encodes all valid XML documents that can be created
based on this schema. We will call this approach EXI schema-informed (EXI-SI).
Because the schema is fixed, it is sufficient to create and exchange this grammar once.
It can then be used to en-/decode all documents corresponding to this schema. This
results in smaller message sizes and can also be used to tune the performance of the
EXI en-/decoder implementations. We will show in Section 3.7 how a tailored EXI
en-/decoder can be generated.

EXI-SI is also capable of encoding documents that differ from the original XML
Schema definitions. The deviations are encoded by using built-in grammar defi-
nitions that overwrite the schema-informed global definitions. This mechanism is
very useful for encoding values that can have arbitrary values in theory, but use
a limited subset of these values in a practical setting. A good example of such a
value is a data definition used in a service description. Assume a user can define
custom datatypes identified by a string value, or used built-in datatypes. In such a
setting, the reference to a data type has to be encoded with a generic String literal
because the names of the user defined types are not known beforehand. On the
other hand, most of the data types will reference the built-in definitions, which are
known beforehand. When using EXI, one can define an enumeration containing all
the build-in datataypes. References to these types will be encoded very efficiently
based on an index pointing to the corresponding value in the enumeration. If the
reference targets a user defined datatype, which is not contained in the enumeration,

102 3 Runtime Environment

EXI can encode this value anyway by overwriting the enumeration defined in the
XML Schema and replacing it with a String based reference. This technique can be
used in many situations and can yield a considerable reduction of document sizes if
commonly used values for attributes and elements are known beforehand.

3.2.1 Test Cases

We defined a set of test cases that represent typical message types exchanged in
embedded networks. The test cases cover a broad range of complexity, starting with
documents containing only single measurement values, over documents containing
more complex, compound data values, to XML documents encountered during com-
munication with external Web services. The goal of these tests is to quantify the
document size created by the different encoding techniques. In order to keep the
examples concise, we use plain XML documents in this section to compare the per-
formance of the different encoding strategies. In a practical setting, the messages
exchanged in the embedded network will be a bit more complex, because the ex-
changed data values are embedded in a message format (just like messages exchanged
by Web services are embedded in SOAP). This results in slightly bigger XML doc-
uments. Nevertheless, the results and conclusions presented in this section remain
applicable in the more complex setting, too.

3.2.1.1 Single Data Value

Listing 3.1 shows an example document for a sensor delivering a single data value,
e.g. a measurement stemming from a temperature sensor. The size of this data value
has a, albeit small, influence on the resulting document size. We therefore used three
instances of this document with data values of different sizes. The “short” variant
uses a value of 1, as shown in the example, the “medium” variant a value of 120,
and the “large” variant a value of 2.000.000.

<esoa :message xmlns:eSOA=” ht tp : //www3. in . tum . de/eSOA”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : //www3. in . tum . de/eSOA s i n g l e . xsd ”>

<data1>1</data1>
</ esoa :message>

Listing 3.1: Message Containing a Single Data Value

3.2.1.2 Multiple Data Values

In some cases, a service delivers multiple data values at once, e.g., a weather station
might supply a status report comprising a temperature and a humidity value in a
single measurement. In this case, multiple data values are contained in the same
message. Listing 3.2 shows an example document containing two data values. To
quantify the influence of the data values on the document size, we used three different
sizes for the elements, as we did in the previous example.

3.2 Encoding Techniques 103

<esoa :message xmlns:eSOA=” ht tp : //www3. in . tum . de/eSOA”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : //www3. in . tum . de/eSOA mul t i p l e . xsd ”>

<data1>1</data1>
<data2>0</data2>

</ esoa :message>

Listing 3.2: Message Containing Multiple Data Values

3.2.1.3 Compound Data Types

Not all data exchanged in an embedded network will be based on single numeric
values, but will instead be based on compound data types composed of multiple
simple data types. A possible example of such a message is shown in Listing 3.3. It
shows a document containing a reading of a RFID reader, a so called RFID event.
The RFID event is a triple comprising the Electronic Product Code (EPC) of the
scanned item, the time the item was scanned and the identifier of the reader that
scanned the item, which is an EPC again. An EPC, as specified by the EPCglobal
consortium[35], is a unique identifier for an item. The exact information stored in
the EPC depends on the encoding format used. Typical fields are an identifier for
the manufacturer of the product, a product group identifier and a serial number.
EPCs are stored as 96 bit integers, given in hexadecimal notation in the example.

<esoa :message xmlns:eSOA=” ht tp : //www3. in . tum . de/eSOA”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : //www3. in . tum . de/eSOA complex . xsd ”>

<data1>
<epc>1234567890AB1234567890AB</epc>
<timestamp>2002−10−10T17:00:00Z</timestamp>

<r eader>FF1234567890FF1234567890</ reader>
</data1>

</ esoa :message>

Listing 3.3: Message Containing a Complex Data Value

3.2.1.4 Collections

Another source of complex data types are collections. Listing 3.4 shows a document
containing a RFID bulk. A RFID bulk is a group of elements that is bundled
together, e.g., a palette of goods. To ease the further processing of RFID events,
a RFID reader can aggregate the individual readings of such groups in a single
message, resulting in a list of RFID events.

<esoa :message xmlns:eSOA=” ht tp : //www3. in . tum . de/eSOA”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : //www3. in . tum . de/eSOA l i s t . xsd ”>

<data1>
<event>

104 3 Runtime Environment

<epc> . . .</epc>
<timestamp> . . .</timestamp>

<r eader> . . .</ reader>
</ event>
[. . .]

<event>
<epc> . . .</epc>
<timestamp> . . .</timestamp>

<r eader> . . .</ reader>
</ event>

</data1>
</ esoa :message>

Listing 3.4: Message Containing a List of Complex Data Values

3.2.1.5 Interaction with Web Services

Embedded networks do not operate in isolation but are more and more integrated
into larger IT networks and exchange information with Web services located in
these networks. It is not possible to process all XML documents exchanged between
nowadays Web services on resource constrained devices. Some of these documents
are so complex that the contained information is simply larger than the available
RAM on a node in an embedded network. Often nodes in an embedded network do
not require all information contained in such XML documents but only a subset.
This subset can be extracted easily from the original message using XPath or XQuery
processors.

In the long run, we will most likely see a growing number of Web services that
offer documents that are small enough to be processed on embedded devices. Until
now, there was little demand for Web service interfaces that produce small XML
documents. Instead, service developers tried to stuff as much information as possible
into the exchanged XML documents to support a broad variety of use cases. In most
situations, a more fine grained access to the same information is sufficient to reduce
the message complexity to a level that can be processed by embedded devices.

There already are Web services available that can be integrated directly into ap-
plications in the embedded network. We picked two examples which fit into the
building automation scenario used in our prototypical implementation. Listing 3.5
shows an XML document from a weather service provided by the Norwegian Me-
teoreological Institute1. It contains the sunrise and sunset times on February 1st
2010. Such information can be used to automatically open or close the jalousies in
an office building or a private home, even if no brightness sensors are available. The
website of the Norwegian Metereological Institute contains interfaces which provide
a fine grained access to specific weather information and which can be used directly
by embedded devices. Most other weather services offer only a single interface for
retrieving all weather information for a given location. This information contains
forecasts for several days, various supplemental information and sometimes even

1http://yr.no

3.2 Encoding Techniques 105

weather maps, resulting in a XML document that is simply to large for embedded
networks. In this case, an integration is only possible by extracting a subset of the
contained information, e.g., with an XPath expression.

<as t rodata xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xsi:noNamespaceSchemaLocation=” ht tp : // api . yr . no/weatherapi / s un r i s e /

1 .0/ schema”>
<meta l i c e n s e u r l=” ht tp : // api . yr . no/ l i c e n s e . html”/>
<time date=”2010−02−01”>

< l o c a t i o n l a t i t u d e=” 48.264473 ”
l ong i tude=” 11.668839 ”>

<sun r i s e=”2010−02−01T06:42:03Z”
s e t=”2010−02−01T16:12:17Z”>

<noon a l t i t u d e=”24.7122690084228 ”/>
</sun>

<moon phase=”Waning gibbous ”
r i s e=”2010−01−31T18:07:15Z”
s e t=”2010−02−01T07:33:52Z”/>

</ l o c a t i o n>

</ time>
</ as t rodata>

Listing 3.5: Message From an External Weather Web Service

Listing 3.6 shows an example calendar entry using the xCal format, a XML repre-
sentation of the widespread used iCal format. Such a document can be delivered by
most calendar applications used nowadays. In a future building automation scenario,
such calendar information can be used to dynamically prepare meeting rooms based
on occupancy. In this vision, a meeting room is supplied with all calendar entries
that take place in this room. Based on this information it can dynamically adjust
the heating, cooling and lighting of the room or perform related optimizations.

<iCa lendar xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns=” ht tp : //www. i e t f . org / in t e rne t−d r a f t s /

dra f t−i e t f −ca l sch−many−xcal −01. txt ”
xs i : s chemaLocat ion=” ht tp : //www. i e t f . org / in t e rne t−d r a f t s / dra f t−

i e t f −ca l sch−many−xcal −01. txt xca l . xsd ”>
<vca lendar version=” 2 .0 ”>

<vevent>
<uid>1234</uid>

<dtstamp>20100901T130000Z</dtstamp>

<d t s t a r t>20100903T163000Z</ d t s t a r t>
<dtend>20100903T190000Z</dtend>

<summary>JourFixe</summary>
< l o c a t i o n>Room 12.132</ l o c a t i o n>

</vevent>
</ vca lendar>

</ iCalendar>

Listing 3.6: Message From an External Calendar Web Service

It is hard to estimate what kind of Web services will be integrated into future em-
bedded networks due to the vast number of interaction possibilities. We think that

106 3 Runtime Environment

the two examples mentioned above are good representative w.r.t. the expected com-
plexity of the documents and the amount of information contained in the documents
used for communicating with these Web services.

3.2.2 Evaluation

We encoded the documents for the various test cases using different encoding tech-
niques. Table 3.1 shows the resulting document sizes. For the gzip compression
tests we used the built-in gzip support from Java SE 6. The WBXML tests were
performed using the kXML library (version 2.2.2)[85], the Fast Infoset tests using
the Java implementation provided by the GlassFish project (version 1.2.7)[45]. The
EXI implementation was provided by the EXIficient project (version 0.4)[37]. The
ASN.1 schema definitions were created manually based on the XML Schema defini-
tions using the ASN.1 editor from Objective Systems (build 2010/01/29)[113].

To get comparable results, we removed the references to the XML Schema def-
initions for all encoders aside from EXIficient. These references are of no value if
the encoding technique does not exploit XML Schema information and increase the
message size considerably. EXIficient will not encode these references because the
structure of the XML Schema documents is implicitly known from the grammar.

Table 3.1 shows that EXI-SA and ASN.1 provide massive savings compared to all
other encoding techniques. Especially for small documents, such as the documents
used in test cases 1 and 2, this difference is obvious. The documents created by
EXI-SI and ASN.1 have a size that is only a tenth or less of the size of documents
created with other encoding techniques. The reason for this big difference is that the
documents used in the first test cases have a very bad markup/content ratio. The
actual content of these messages are simple numeric values, which can be encoded
in very few bytes. The XML markup is more than 100 bytes. The gap is closer
if the markup/content ratio is better, e.g., when using the “Complex” test case or
the “List” test case. The documents used in these tests encode fairly large data
values (each EPC code alone is 12 byte long) and the encoding overhead for markup
becomes less significant. Nevertheless EXI-SI and ANS.1 provide still a considerable
reduction of message sizes.

To interpret the numbers shown in Table 3.1 correctly, one has to consider the
boundary conditions imposed by embedded networks. In a real world environment,
message sizes have to be kept very small. Bit error rates are comparably high using
IEEE 802.15.4 networks. The larger a packet is the higher is the probability of a bit
error, which requires a retransmission of the whole packet. TinyOS for example uses
a default maximum payload size of 29 bytes. To achieve a good response time, it is
important that messages exchanged between the services of a control application fit
into a single network packet. These messages typically have a low complexity (one
or more numeric values) but are often exchanged with high frequency. Test cases 1
and 2 represent these messages. As the numbers show, only EXI-SI and ASN.1 can
provide the required compactness.

The tests cases for the interaction with the weather Web service and the calendar

3.2 Encoding Techniques 107

XML GZip WBXML FI FI-Dict EXI EXI-SI ASN.1

Single
short 130 129 81 67 31 46 2 1
medium 132 131 83 70 34 48 3 2
large 136 131 87 74 38 52 5 4

Multiple
short 149 136 97 78 36 55 3 1
medium 152 138 100 82 40 58 5 4
large 159 139 107 90 48 65 9 8

Complex 263 195 201 174 117 139 46 34

List 1074 306 793 394 331 292 267 205

Weather 456 287 410 360 268 295 74 n.a.

Calendar 419 267 338 297 149 241 93 n.a.

Table 3.1: Message Size in Bytes for Different Encoding Techniques

application were not performed for ASN.1 because we could not find an (affordable)
tool that provides an automated mapping between XML Schema definitions and
ASN.1 definitions. According to the other numbers, the expected size of the ASN.1
documents will be very close to the size reported for EXI-SI. The resulting size
for both documents is below 100 bytes what is only half of the size provided by
other encoding techniques. Although these messages do not fit into a single network
packet, their size is still small enough to be processable on resource constrained
devices - assuming that such messages do not have to be processed very frequently.

3.2.3 Summary

Summing up, EXI-SI and ASN.1 are both suitable encoding techniques for embed-
ded networks. The question is, which one is better suited for embedded networks?
We chose to use EXI-SI because of two reasons: first EXI provides a cleaner map-
ping of XML documents. We assume that interactions with external Web services
are common for future embedded networks, and XML support therefore is a key
requirement. It is even likely that future Web service stacks will offer EXI support
out of the box to increase the performance of Web service interactions (at least this
was the motivation that led to the development of EXI). In this case, a conversion
between EXI and plain XML is not required anymore. The second benefit of EXI
is the possibility to encode schema deviations. We already gave a motivation how
this feature can be used to provide an efficient encoding of commonly used values
based on enumerations. The ǫSOA platform makes heavy use of this feature to cre-
ate compact service descriptions and related documents that have to be stored and
processed by nodes in the embedded network.

108 3 Runtime Environment

3.3 Hardware Description Language

Each node in the ǫSOA platform is described by a hardware description document.
The hardware description is based on the hardware model already introduced in
Section 2.3.1. It contains information about the resources available on a node,
such as flash storage capacity or the amount of RAM available on a node. The
hardware description document contains all static information, i.e., information that
is independent from environmental influences.

3.3.1 eHDL Format

Variable information, such as link characteristics, is collected during runtime and dy-
namically added to the hardware model. The hardware description document uses a
simple XML format we call embedded Hardware Description Language (eHDL). The
corresponding XML Schema definition can be found in Appendix B.1, an example
eHDL document is shown in Listing 3.7.

<ehdl :hardware xmlns :ehdl=” ht tp : // in . tum . de/eSOA/hardware”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : // in . tum . de/eSOA/hardware ehdl . xsd ”>

< !−− TMote Sky / TelosB Conf i gura t ion −−>

< !−− 10k RAM −−>

<r e s ou r c e name=”RAM” value=”10240” />
< !−− 40k ROM −−>

<r e s ou r c e name=”ProgramMemory” value=”40960” />
< !−− 128k Flash −−>

<r e s ou r c e name=”Flash ” value=”1048576”/>

< !−− r e f e r ence to a t tached dev i c e −−>

<hardware>100275</hardware>

< !−− l o c a t i o n in format ion −−>

<property name=”Floor ” value=”2” />
<property name=”Room” value=”54” />

</ ehdl :hardware>

Listing 3.7: Example eHDL Document for a Relay

The listing shows a hardware description for a node with 10k RAM, 40k program
memory and 1MB of flash memory (the hardware parameters of a TMote Sky /
TelosB node). Assume a light switch is attached to an I/O pin of the node. This
information is specified in the hardware parameter. Additional management infor-
mation concerning the location of the node is specified with two properties in the
description. This information can be used by development tools to filter and search
nodes.

As already outlined in Section 3.2, EXI can be used to efficiently encode enu-
merated types. Enumerations can also be used to efficiently encode commonly used
values, e.g. the property names used in the hardware description. If a property name

3.3 Hardware Description Language 109

is used in the document that is not contained in the document, the schema devia-
tion handling in EXI can be used to encode this value. Due to this mechanism it is
possible to efficiently encode common values in EXI and at the same time preserve
the flexibility to encode arbitrary values. Using a schema informed EXI encoding
and enumerations, the example hardware description has a total of 23 bytes.

The eHDL document comprises three main parts: resources, hardware descriptions
and properties. Resources describe the basic resources offered by a node which are
consumed by the services running on this node. We currently use the following
three resources: program memory, RAM and flash capacity. All resources describe
the free amount of the resource after the installation of the ǫSOA middleware on the
given node. This free capacity can be used by services running on a node. Because
many microcontrollers use a Harvard-architecture, i.e., separated memory areas for
code and data, we distinguish between the available amount of data memory (RAM)
and the available amount of program memory. The flash can be used as long-term
persistent storage. The flash also supports the storage of fairly large data sets
compared to the very small amount of RAM available on many microcontrollers.

In most cases, a node will already be shipped with a set of hardware services that
provide access to the sensor and actuator devices available on a node. If a node
possesses some general hardware capabilities, such as a relay that can be used to
turn on or off arbitrary devices, the hardware description section can be used to
specify which devices are attached to the node. This information can be added by
the Installer during the installation and configuration of the node. This information
can be used to install corresponding hardware services on the node, when the node
is connected to the network. The hardware device is specified with a hardware
identifier (in our demonstrator we use a 64bit numeric identifier), which can be used
to look up a corresponding hardware service from a repository.

The last part is the properties section. Properties allow storing arbitrary infor-
mation as name, value pairs. A typical example is management information (e.g.
numbers taken from an installation planning tool) or location information (e.g. GPS
coordinates or room numbers). This information can be used to filter nodes or
search nodes with specific properties and helps managing large scale installations.
In Section 5 we will describe some possibilities how this information can be used by
management and monitoring tools.

3.3.2 Domain Specific Description Models

We developed the eHDL description as a basic example format to showcase the
functionality of hardware descriptors. In some domains, specific description stan-
dards have already been developed, e.g., the Electronic Device Description Language
(EDDL)[2] in the automation domain. These formats can also be used to store the
information contained in the hardware model. The only prerequisite is that the in-
formation can be represented compact enough to fit on an embedded device (if the
format specifies an XML based encoding EXI can be applied, too).

110 3 Runtime Environment

3.4 Service Description Language

An important building block of service oriented architectures is the service descrip-
tion language. The service description provides the information required for the
selection of and the interaction with services. In the first part of this section, we
will take a look at the service description used for describing Web services: the Web
Services Description Language (WSDL)[159]. WSDL has some drawbacks that pro-
hibit its use in the context of embedded networks. We will present these drawbacks
and an adapted service description language for embedded networks in part two of
this section.

3.4.1 WSDL

In the Web service domain, the Web Service Description Language (WSDL) is used
to describe services. The aim of the authors of WSDL was to create a language
that can be used for “describing network services as collections of communication
endpoints capable of exchanging messages”[159]. Due to this generic approach WS-
DLs can be used to describe services in a broad range of service oriented systems,
including the ǫSOA platform.

A WSDL document comprises 6 parts. The types section allows defining data
types. The message section provides an abstract definition of exchanged messages.
Each message may comprise multiple parts, which are each mapped to one of the data
types defined in the types section. portTypes can be used to specify communication
end points with a specific message exchange pattern (one way or request/response
interactions). The concrete protocol used to access a portType can be specified in
the binding section. The address of a binding is specified in a port. Services finally
can be used to bundle associated services.

WSDLs are not well suited to express the semantic information included in the
ǫSOA service model. This weakness of WSDL is well known and there are some
approaches to add this functionality to WSDL, such as Semantic Annotations For
WSDL (SAWSDL)[156] or Web Service Semantics (WSDL-S)[157]. A problem is
that none of these approaches is well established in practice and it is unclear which
-if any- approach will be used in the future.

Because of the lacking support for semantic information and the bloated descrip-
tion format provided by WSDL, we did not use WSDL for describing services in the
ǫSOA platform. Instead we designed a stripped down version of WSDL that is tai-
lored to the needs of embedded networks and can be efficiently encoded using binary
XML techniques. We call this language Embedded Service Description Language
(eSDL). eSDL was designed in a way that allows an easy bi-directional mapping to
WSDL. Developers already familiar with WSDL will find the same building blocks
with the same semantics in eSDL, however the representation is different to allow a
better compression with binary XML techniques. The only difference is that eSDL
inherently supports the annotation of semantic information, which cannot be rep-
resented in WSDL (but one can easily define a mapping to one of the semantic

3.4 Service Description Language 111

annotations formats for WSDL), and that the expressitivity of eSDL is limited to a
single binding per service. An eSDL can be converted to a WSDL for external Web
services that are interested in interacting with services in the embedded network. A
conversion from WSDL to eSDL is possible, too. In the latter case, the user has to
add semantic information during the conversion process - if it is not contained in one
of the already mentioned extensions of WSDL, which support semantic annotations.

3.4.2 eSDL

A lot of the complexity of WSDL descriptions can be attributed to the built-in flexi-
bility. The WSDL specification provides a generic description of services, regardless
of the used message protocol. A concrete service may use one or more bindings to
specific protocols, such as the SOAP binding. This flexibility can be desirable in the
Web environment to provide services that can interact using different communica-
tion protocols. The vast majority of Web services nowadays uses the SOAP binding.
The flexibility provided by different bindings is therefore only very rarely used in
the Web service domain. In the embedded domain, this flexibility is not needed at
all. A lot of effort is currently done to design communication protocols that have
a footprint that is small enough to fit on nodes with a few kilobytes of RAM. The
overhead for supporting multiple different protocols is simply too high in such an
environment. As a consequence, services in an embedded network communicate us-
ing one specific message protocol and the flexibility for specifying different bindings
is not needed.

Another problem of WSDL that prohibits its use in embedded networks is the ver-
bose description format. WSDL makes heavy use of string based references between
the individual parts of the definition: services refer to ports, ports to messages, mes-
sages to datatypes, etc. These references consume a considerable amount of space,
even if binary XML techniques are applied. The reason for this is that, even if
dictionary based encodings are used, each reference has to be encoded at least once
in the message. The dictionary will quickly require several ten’s of bytes. Using
very short strings for these refrences is typically not practicable. The readability of
WSDL documents heavily depends on the usage of “sound” names for messages or
ports. A WSDL that defines a port that uses message “1” as input, which has data
of type “43”, and produces a message of type “3”, which has data of type “44”, is
hardly understandable by a human. In many cases the names used for these ref-
erences also imply semantic information, such as the purpose of an operation, and
cannot be replaced by numerical values.

An eSDL document uses the following concepts

• Service A service offers one or more Operations

• Operation Each operation defines a functionality offered by a service. Oper-
ations consume and/or produce messages.

• Message A message specifies the data being communicated based on a type
system

112 3 Runtime Environment

eSDL uses nesting to avoid the references needed in WSDL. The Service element
directly contains Operation elements as children. Like in WSDL, each Operation
specifies a message exchange pattern based on the occurrence and order of Input and
Output messages. The supported patterns are the same as in WSDL, i.e., One-way
(input only), Request-response (input followed by output), Solicit-response (output
followed by input) and Notification (output only). The messages directly contain the
data type definitions. We will present eSDL in detail using an example description,
which is shown in Listing 3.8. The XML Schema defintion for eSDL can be found
in Appendix B.2.

<e s d l : s e r v i c e xmlns=” ht tp : // in . tum . de/eSOA/ s e r v i c e ”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : // in . tum . de/eSOA/ s e r v i c e e s d l . xsd ”
id=”TemperatureService ” >

<opera t i on address=”1” mep=”out−only ”>
<output>

<parameter measurandtype=”Temperature” datatype=” shor t ”>
</parameter>

</output>
</ opera t i on>

<opera t i on address=”2” mep=” in−out”>
<input>

< !−− message i s used as t r i g g e r and conta ins no data −−>

</ input>
<output>

<parameter measurandtype=”Temperature” datatype=” shor t ”>
</parameter>

</output>
</ opera t i on>

</ e s d l : s e r v i c e>

Listing 3.8: Example eSDL Document for a Temperature Sensor

The eSDL description in Listing 3.8 describes a temperature sensor. The sensor
offers an operation for the delivery of periodic measurements (operation “1”) and
an operation for a request/response retrieval of a measurement value (operation
“2”). Operation “1” uses an out-only message exchange pattern, i.e., delivers solely
output data and accepts no inputs. Services interested in periodic measurements can
subscribe to the temperature sensor and will receive measurement values from this
output of the service. Operation “2” can be used to fetch temperature measurements
on demand. Whenever a request is received, a measurement is performed and the
measured temperature is returned in the response document. The “measurandtype”,
“datatype” and common properties can be encoded efficiently using enumerations.

The Types section known from WSDL is moved to a separate XML schema docu-
ment. This has a technical reason. The currently available binary XML en-/decoders
are not capable of parsing an XML document based on schema information defined
in the same document. Instead, all schema information has to be kept seperate from

3.4 Service Description Language 113

the encoded document. A service description therefore comprises two documents:
an XML schema document containing the type definitions and the eSDL document
itself. If the service uses only the built-in data types of XML schema, the eSDL
alone is sufficient.

Service descriptions based on eSDL can be encoded very efficiently using EXI
with schema informed encoding. The service descriptions for the services used in
our demonstrators have a size smaller than 50 bytes (26 bytes for the document in
the example).

3.4.3 Comparison of WSDL and eSDL

Figure 3.4.3 illustrates the correlation between WSDL and eSDL elements (to keep
the example concise, the documents have been stripped down to the basic struc-
ture). Services in the ǫSOA platform support only one operation per PortType.
The PortType element known from WSDL can therefore be omitted and the Op-
eration elements can be nested directly into the Service. To avoid references, the
Message definitions are directly nested into the Operations. As we already men-
tioned, all services in the ǫSOA platform support only one pre-defined binding. The
Binding element is therefore unnecessary in eSDL. Like the binding, the address-
ing scheme is fixed in the ǫSOA platform. To further reduce the complexity, the

114 3 Runtime Environment

addressing information provided by the Port element of the WSDL can be added
directly to the Operation.

3.4.4 Summary

In this section we described eSDL, the service description language used in the ǫSOA
platform. We chose to design a new description language over using WSDL due to
two main reasons: to achieve a more compact descrption format and to offer built-in
support for semantic annotations regarding the purpose of services and the type of
measured data. eSDL was designed in a way that allows an easy transformation
to and from WSDL to foster the integration of embedded and Web services and to
provide an intuitive description language for developers already experienced in Web
service development.

3.5 Embedded Service Choreography Language 115

3.5 Embedded Service Choreography Language

The composition of services to applications has been studied for quite a while in the
Web service domain. Two major composition paradigms have been developed for
Web services: service orchestrations and service choreographies.

A service orchestration uses a central coordinator that orchestrates the interaction
between different services. The most prominent orchestration language nowadays is
the Web Service Business Process Execution Language (WS-BPEL)[112]2. By using
an orchestration language, the developer can specify execution workflows with basic
programming constructs such as branches and loops. Furthermore, orchestration
languages typically offer constructs for accessing external Web services, handling
XML data, session and transaction management, etc. An orchestration language
can be seen as a high-level programming language that uses Web service invocations
instead of method calls for performing complex processing tasks.

A service choreography on the other hand has no central coordinator and is ex-
ecuted completely decentralized. Using a service choreography, a developer creates
an application by defining the communication between individual services. He de-
fines a set of peer-to-peer communication links between services, which are used
to propagate data from one service to another. The most prominent Web service
choreography languages are the Web Service Choreography Interface (WSCI)[160]
and the Web Service Choreography Description Language (WS-CDL)[164].

The stream based processing model used in the ǫSOA platform essentially is a
choreography based service composition approach. The motivation for using a chore-
ography rather than an orchestration was twofold. First, choreographies avoid the
creation of single points of failure. If the node executing an orchestration fails, the
whole application ceases to work - even if redundant hard- and software is available.
The second reason is that choreographies are easier to scale than orchestrations. An
orchestration introduces a single point of control which is involved in all interactions
between services. This is problematic for distributed control applications because
the node executing the orchestration will have to process large amounts of sensor
data. By using a choreography, this processing load can be distributed over mul-
tiple nodes. Furthermore, service choreographies are much better suited to exploit
locality. With a choreography, it is possible to place data consuming services close
to data producing services in order to reduce the overall communication overhead.
In an orchestration this is not always possible. Assume we have two sensor service
producing high volume data streams. These streams are filtered by two logic ser-
vices and afterwards submitted to a database service that stores the measurements
for later processing. Using a choreography, both filters can be placed close to the
sensor devices and only the filtered streams have to be transmitted to the database
service. Using an orchestration, the sensor data first has to be transmitted to the
orchestration workflow and is then forwarded to the filter. Because the orchestra-

2Other examples of business modeling languages are the now deprecated Business Process Man-
agement Language (BPML), the predecessors of BPEL: Web Service Flow Language (WSFL)
and XLANG, and the XML Process Definition Language (XPDL).

116 3 Runtime Environment

tion workflow is a single point of control, it can be placed either close to one sensor
or the other, never both at the same time. This results in a much higher network
utilization compared to the choreography based solution.

We will not present WS-BPEL in detail here and instead focus on the choreography
languages WS-CDL and WSCI. A general overview of service composition standards
can be found in Peltz[117], Bucchiarone et al.[9] and Srivastava et al.[144]. We will
present a short summary of WS-CDL and WSCI here, a more detailed comparison
can be found in Cambronero at al.[12].

3.5.1 Choreography Languages in the Web Service Domain

WSCI specifies an extension to WSDL that allows describing complex operations
beyond the basic interface definitions possible with WSDL. WSCI specifies the in-
teraction between Web services in terms of choreographed activities. Activities can
either be simple WSDL operations or more complex structured activities that allow
the execution of multiple actions in sequence, in parallel or in a loop. WSCI of-
fers support for transactions by allowing the definition of correlation elements that
are used to identify messages belonging to the same transaction and by providing
exception handling and compensation mechanisms.

WS-CDL can be seen as an successor of WSCI. In WS-CDL interactions occur
between participants. Each participant can be assigned one or more roles. Each role
is identified by a name and may be assigned to an interface defined in a WSDL. If
an interaction requires commitments from both endpoints, e.g., a purchase request
that must be accepted by the vendor, the relationship construct from WS-CDL can
be used to express this requirement. The communication between participants is
handled via channels. A channel specifies how and when a communication between
participants occurs. WS-CDL offers variables and tokens to store intermediate in-
formation. A token is a reference, specified in XPath, to a value that may occur in
multiple messages but at different locations, e.g., a customer id. The heart of the
WS-CDL specification is the choreography element. A choreography defines worku-
nits which encapsulate activities. Workunits can be used to force an alignment, i.e.,
an agreement between multiple participants regarding the value of a variable. WS-
CDL offers activities for parallel, sequential and conditional execution of activities,
and an interaction activity. An interaction references a channel, a Web service op-
eration, a “from” and “to” reference to a role, and some additional variables. Using
these constructs, WS-CDL allows describing a Web service orchestration based on
a set of service-to-service communications.

While WS-BPEL has emerged as a dominant and widely used standard for service
orchestration, service choreography standards are not used on a widespread basis.
One reason might be some inherent limitations of the languages as described by
Decker et al.[26]. A limitation of WS-CDL and WSCI is that both languages are
“not an executable business process description language”, as it is clearly stated in
the WS-CDL specification. The intended purpose of both specifications is to allow
the modeling of choreographies, the concrete realization is out of the focus of the

3.5 Embedded Service Choreography Language 117

specifications. There is some work that aimes at specifying an execution model for
WS-CDL[42], however this work has just been started and it is unclear whether
this model can be implemented efficiently on resource constrained devices. Another
problematic aspect of WS-CDL and WSCI is the complexity of the generated XML
documents. Even very simple choreographies will create huge documents due to
a very bloated XML syntax and the definition of many business related concepts,
such as the participants, roles and relationships in WS-CDL. These concepts are not
required for specifying interactions in an embedded network. Another problem is
the limitation of the communication pattern to peer-to-peer communications. The
submission of single measurements to multiple consumers cannot be modeled in WS-
CDL and multicast capabilities present in an embedded network cannot be exploited
due to this limitation.

Due to these limitations, we decided to develop a new choreography language that
is tailored to the needs of embedded networks, provides an efficient representation of
the application model introduced in Section 2.3.3 and can be executed on resource
constraint devices. We call this language embedded Service Choreography Language
(eSCL).

3.5.2 Embedded Service Choreography Language

eSCL was designed to meet the following four design goals:

Compactness eSCL should be very compact to allow storing and exchanging chore-
ography descriptions in resource constrained embedded networks.

Instance Based Choreographies The second goal was to exploit the service life-
cycle model used in the ǫSOA platform. eSCL defines an choreography based on
service instances. Service instances in the ǫSOA platform are explicitly instanti-
ated and can be addressed using an instance identifier. This removes the need for
correlation information as used in BPEL, WS-CDL and WSCI. If a stateful service
should be integrated in a choreography, a distinct instance will be created that can
be addresses directly from the eSCL choreography.

Modelling of Redundant Components The third design goal was to support the
modeling of redundancy. Failure recovery in the Web service domain typically in-
volves the execution of compensatory actions to achieve a consistent state between
all Web services involved in a transaction. All standards targeting Web service com-
positions assume that the availability of the involved services is guaranteed by the
Web service providers or that a replacement for a failed service can be found by
issuing a lookup in a service repository - otherwise an error occurs and the compo-
sition fails. These assumptions do not hold for embedded networks. To provide a
fast and resource efficient reaction to service failures, the ǫSOA platform allows the
specification of redundant service composition that will be fully automatically acti-
vated whenever a composition fails. The preconfiguration of redundant components

118 3 Runtime Environment

ensures that the replacement of a failed service instance will result in a meaningful
service composition, i.e., a service composition that provides the desired outcome.
Furthermore, the reconfiguration is simplified in a way that ensure it can be per-
formed in a timely manner even on resource constraint devices. A design goal of
eSCL was to support the modeling of such redundant compositions directly in the
choreography language.

Graceful Degradation In some cases, a failure recovery is not possible, e.g., be-
cause there are no redundant devices available. If this service was critical for an
application, the execution of the whole application should be stopped. If the re-
maining composition is still meaningful, the execution should continue. In the latter
case, some adjustments in the behavior of the remaining service instances might
be required to compensate the missing component. Assume the brightness sensor
fails in a lighting application. In this case, the lighting application should not be
deactivated. Instead, the control logic could deactivate the dimming of lights based
on the measured brightness and always turn on the lights. This ensures the end
user will still be able to turn on the lights, but will experience reduced functionality
(graceful degradation). The implementation of degradation mechanims is domain
and service specific. The ǫSOA platform offers a monitoring and notification inter-
face that reports missing service instances to the remaining instances of a service
composition. Based on this information, the instances can adjust their behavior.
The fourth design goal for eSCL was to integrate concepts that allow the developer
to specify under which conditions a graceful degradation or a deactivation of service
compositions should be triggered .

3.5.2.1 eSCL Format

We will present eSCL by using the example description shown in Listing 3.9, the
corresponding XML Schema definition can be found in Appendix B.3.

<e s c l : cho r eog raphy xmln s : e s c l=” ht tp : // in . tum . de/eSOA/ choreography”>
< i n s t an c e s>

< !−− sw i t ch −−>

<i n s t ance in s t anc e Id=”3000” s e r v i c e=”LightSwitch ” />
< !−− l i g h t l o g i c −−>

<i n s t ance in s t anc e Id=”3010” s e r v i c e=” Bas icL ight ” />
< !−− redundant l i g h t l o g i c −−>

<i n s t ance in s t anc e Id=”3011” s e r v i c e=” Bas icL ight ” />
< !−− bu l b 1 −−>

<i n s t ance in s t anc e Id=”3020” s e r v i c e=”LightBulb” />
< !−− bu l b 2 −−>

<i n s t ance in s t anc e Id=”3021” s e r v i c e=”LightBulb” />
</ i n s t an c e s>

<operat ionGroups>
< !−− output o f sw i t ch −−>

<operationGroup id=”1”>
<opera t i on in s t anc e Id=”3000” opera t i on=”0”/>

3.5 Embedded Service Choreography Language 119

</operationGroup>

< !−− redundant input f o r l o g i c −−>

<operationGroup id=”2”>
<opera t i on in s t anc e Id=”3010” opera t i on=”0”/>
<opera t i on in s t anc e Id=”3011” opera t i on=”0”/>

</operationGroup>

< !−− redundant output f o r l o g i c −−>

<operationGroup id=”3”>
<opera t i on in s t anc e Id=”3010” opera t i on=”1”/>
<opera t i on in s t anc e Id=”3011” opera t i on=”1”/>

</operationGroup>

< !−− inpu t o f l i g h t 1 −−>

<operationGroup id=”4”>
<opera t i on in s t anc e Id=”3020” opera t i on=”0”/>

</operationGroup>

< !−− inpu t o f l i g h t 2 −−>

<operationGroup id=”5”>
<opera t i on in s t anc e Id=”3021” opera t i on=”0”/>

</operationGroup>

</ operat ionGroups>

<dataStreams>
< !−− sw i t ch to l o g i c −−>

<dataStream streamId=”1” source=”1” dra in=”2”/>
< !−− l o g i c to bu l b 1 −−>

<dataStream streamId=”2” source=”3” dra in=”4”/>
< !−− l o g i c to bu l b 2 −−>

<dataStream streamId=”3” source=”3” dra in=”5”/>
</dataStreams>

<streamGroups>
< !−− both bu l b s are in one stream group −−>

<streamGroup>

<dataStream streamId=”2”/>
<dataStream streamId=”3”/>

</streamGroup>

</streamGroups>
</ e s c l : cho r eog raphy>

Listing 3.9: eSCL Example

The first part of an eSCL choreography is a definition of the used service instances.
Each instance is uniquely identified by a numeric id. Additionally, each instance
contains a reference to a service identifier that can be used to look up the interface
definition of the instance. One or more of the operations offered by each of these
service instances can be bundled into an operationGroup. An operationGroup may
contain one or more operations. Each of these operations is identified by the in-
stance id and a reference to the operation definition in the eSDL service description
of the corresponding service. The operationGroups are used to define dataStreams.
A stream references an operationGroup as source and an operationGroup as drain.
If the operationGroup contains only a single operation, the ǫSOA platform will auto-
matically install corresponding data stream between the in- and outputs defined by

120 3 Runtime Environment

the corresponding operations. To model redundantly available instances, more oper-
ations can be added to an operationGroup. The ǫSOA platform currently supports
only a comparatively simple redundancy model for operationGroups: operations are
used in document order, i.e., the first operation mentioned in a operationGroup
is preferred. If the corresponding instance is not available, the second operation
is selected, and so on3. A possible extension is to add priorities to the operation
references in an operationGroup.

If no operation in an operationGroup is available, the corresponding data stream
is marked as malfunctioning. This information can be used in the last part of the
choreography specification, the streamGroup definition, to specify when an applica-
tion should be stopped. A stream group may contain one or more references to data
streams. If all data streams contained in a stream group fail, the whole streamGroup
is marked as malfunctioning and the application is stopped. This mechanism can
be refined by using the optional count attributes of the streamGroup which allow
to specify a minimum number of instances that has to be available. Data streams
may be added to multiple streamGroups, which allows the definition of fairly com-
plex dependencies between streams. The expressiveness offered by the streamGroup
construct was sufficient to model all failure situations we encountered in our demon-
strators so far. A possible extension would be to allow the specification of more
complex rules, e.g., using event, condition, action (ECA) rules to support more fine
grained control over the actions taken whenever an application fails. However, this
ruleset must be designed carefully to allow an execution on embedded devices.

In the example, there are five instances, three instances of hardware services (a
light switch and two light bulbs) and two instances of a light control software ser-
vice. The example defines a redundancy relationship between both instances of the
logic service. This is done in operationGroups 2 and 3, which each define instance
3010 as preferred instance and 3011 als redundant instance. If instance 3010 is
not available (e.g. because of a node failure) the ǫSOA platform will automatically
search for replacements in each operationGroup that contains instance 3010. It will
then reconfigure the stream routers on the individual nodes and remove all entries
belonging to instance 3010 and add new entries for instance 3011. A more detailed
description of the failure compensation algorithm can be found in Section 4.1. The
light bulbs have no redundant replacements. If one of the light bulbs fails, e.g.
instance 3020, the corresponding streamGroup becomes unavailable and the corre-
sponding data stream is marked as failed. The example specifies a stream group
containing data streams for both bulbs. As long as one of the bulbs and therefore
also the corresponding data stream is available, the application will not be stopped.
If both bulbs fail, or the data stream between the switch and the logic fails, the
application will be stopped.

Using a schema informed EXI encoding, the example document has a size of 104
bytes, which is small enough to be stored and processed even on resource constraint

3The selection process is a bit more complex because a service may offer multiple operations
simultaneously. In this case, a replacement is selected that satisfies all affected operationGroups

3.5 Embedded Service Choreography Language 121

microcontrollers.

3.5.3 Summary

In this section we introduced eSCL, the XML based description language for ap-
plication compositions used in the ǫSOA platform. Its design was motivated by
the observation that existing choreography languages are not applicable for embed-
ded networks. eSCL provides a compact representation of service composition and
supports the modelling of redundant components out of the box. This information
is used by the failure recovery mechanisms presented in Section 4.1 to provide an
autonomous compensation of node failures.

122 3 Runtime Environment

3.6 Communication Module

The communication layer is a crucial part of embedded networks. Communication
costs constitute a major part of the overall power consumption, especially if wireless
communication media are used. A basic requirement for efficient data processing
in embedded networks therefore is a suitable communication infrastructure. In this
section we will motivate and present the design of the network stack used in the ǫSOA
platform, which is based on a modular design. The message payload transported
with this stack are EXI documents, the used format and corresponding parser and
encoder implementations are presented in Section 3.7.

3.6.1 Communication Requirements

Embedded networks cover a broad range of application fields with different require-
ments concerning the communication between the individual nodes in the network.
Because the characteristics of the underlying transport media and the envisioned
application fields are diverse, it is unlikely that a single communication protocol can
be designed which is suitable and efficient enough for all these scenarios. As a con-
sequence a lot of specialized protocols are emerging which are tailored for a given
application scenario or use case. Examples for such protocols for wireless sensor
networks are: 6LoWPAN[63], which provides IP communication for low power wire-
less networks, Ad hoc On-Demand Distance Vector Routing (AODV)[148], which
provides routing for ad hoc wireless networks, data-centric[51][65] routing protocols,
energy aware routing schemes[135], and many more.

Given the variety of network protocols, the developer of an embedded network is
faced with several challenges: first he has to choose a suitable protocol for his given
application field. However, this choice should not be final. If the intended appli-
cation scenario changes or a better suited protocol becomes available, the protocol
should be exchangeable. This should be possible even if the new protocol uses a
different addressing scheme and should not require a reconfiguration of all installed
applications.

The second challenge are heterogeneous networks comprising several different pro-
tocols. A typical example for this scenario is depicted in Figure 3.2(a). It comprises
a backbone of nodes connected via an Ethernet running the IP protocol and multiple
sensor nodes connected via ZigBee to the backbone. In this scenario, three network
types with different protocols are used, as shown in Figure 3.2(b): ZigBee for the
communication between the sensor nodes (Subnets I and V), a RS-232 interface for
the communication between the sensor nodes and the backbone nodes (Subnets II
and IV), and TCP/IP for the communication between the backbone nodes (Subnet
III). We will use the term “subnet” to refer to such clusters of nodes that communi-
cate with the same network protocol. Assume the developer wants to run a simple
monitoring application that calculates average values over the measurements of all
sensor nodes. A possible solution is illustrated in Figure 3.2(c): Node 1 is used to
calculate the average for the left ZigBee subnet, Node 2 for the right ZigBee sub-

3.6 Communication Module 123

ZigBeeZigBee TCP/IPTCP/IPRS-232RS-232

(a) Scenario

I II III IV V

(b) Subnets

1 2

3

(c) Data Flows

Figure 3.2: Heterogeneous Embedded Network

124 3 Runtime Environment

net. Node 3 is used to calculate the average of the intermediate results produced by
Node 1 and Node 2. The corresponding data flows are shown as thick lines in Fig-
ure 3.2(c). During application development the developer should not have to worry
about the message conversions required to facilitate a communication between the
individual nodes, but should be able to work on an abstract view of the network that
hides the underlying protocols and communication media. Nevertheless, a majority
of the communication will occur between nodes in the same subnet and should not
be hindered by a too complex abstraction layer with high overhead. Finally, the spe-
cial characteristics of the underlying networks, such as bandwidth restrictions, have
to be represented in the abstract network view in order to support an optimization
of the placement of services and to avoid overload situations.

A third challenge is the heterogeneity of the involved networks. Some of the used
network protocols may already offer reliable transmissions, either through a reliable
communication medium or a reliable transport protocol, whereas other networks
only offer unreliable transport mechanisms. We will refer to these capabilities as
“features” in the remaining part of this work. A possible solution is to use an
overlay network that offers all the required features. The major drawback of this
approach is the inefficient resource usage. If some features are already implemented
by an underlying protocol the overhead of a re-implementation should be avoided.
Additionally, not all nodes may require the same features. Consider a network
comprising temperature sensors which are used to provide long-term monitoring
and do not require a reliable data transport, because the loss of some measurement
values is acceptable. At the same time the network contains a fire detector which
has to report fire alarms reliably. Given this scenario the network stack on the
temperature sensing nodes does not have to provide a reliable transport protocol,
but the stack on the alarm and the fire detector has to. To provide an efficient
communication in this scenario, the network stack used on individual nodes has to
be adaptable. It should provide the features required by the services running on
the node, but not offer additional features if the provisioning of these incurs an
overhead. Additionally, features already available in the underlying network should
be exploited and not re-implemented by the network stack.

Messages exchanged via the communication layer can be grouped into two classes:
plannable interactions based on data streams flowing between two services and ad-
hoc interactions. Ad-hoc interactions typically occur during (re-)configurations or
other administrative tasks. They can occur at any time and there is no information
available regarding the characteristics of these interactions, such as data rates. There
are some use cases for control applications that also perform an ad-hoc selection of
their communication partners, especially for mobile devices. Nevertheless, the vast
majority of applications executed in the embedded network will communicate via
long-lived stream based interactions. An important property of data streams is
that the source and sink of these streams is known a priori. Often the data rates
are known, too. It is possible to transfer data streams using the same messaging
protocol used for transmitting ad-hoc requests. But this is not advisable from an
optimization point of view. A communication layer optimized for the transmission of

3.6 Communication Module 125

data streams provides a much higher efficiency and reduced resource requirements
compared to the solution based on a generic messaging protocol. Because data
stream transmissions constitute a major part of message exchanges in the embedded
network, the communication layer should provide an optimized handling for these
data streams.

Summing up, the communication layer for embedded networks should provide the
following features:

• Easy addition and removal of network protocols

• Support for communication over heterogeneous subnets

• Efficient communication within a subnet

• An adaptable network stack that can be tailored to application needs and
exploits features provided by underlying protocols

• Support for data stream oriented communication

• Support for ad-hoc interactions

3.6.2 The ǫSOA Adaptive Network Stack

The ǫSOA network stack is based on two principles: modularity and re-use. A major
design goal was to create a communication layer that introduces as little overhead as
possible compared to existing network protocols. At the same time, the functionality
of this stack should be scalable, i.e., small nodes with little processing capabilities
should not be burdened with functionality not needed by the services running on
the node. This can be achieved by a modular network stack that allows tailoring its
functionality by adding or removing features depending on the needs of the services
running on a node. To provide a resource efficient implementation of this stack,
all features provided by the underlying network protocol should be re-used and not
re-implemented in upper layers of the network stack.

The modular network stack shown in Figure 3.3 is based on a layered architecture.
It comprises an Abstract Network layer which is located on top of the protocols used
in the subnets. This layer provides a unified addressing scheme across all networks
and provides modules for features not present in the underlying protocols. Based on
the Abstract Network, the Data Exchange layer offers two communication interfaces:
the Stream Routing, which is optimized for the transmission of continuous data
streams, and the Packet Routing, which is optimized for message exchanges occurring
during ad-hoc interactions. Additionally a Cross-Layer Component provides access
to information gathered by the different layers, allowing the Optimizer to adapt
the configuration of the network stack to the needs of a given application. We will
describe the individual components of the network stack in detail in the following
sections starting from the bottom with the Network Protocol Layer in the following
section.

126 3 Runtime Environment

Data Routing

Transport/Routing Protocol

Stream Routing

Abstract Network

Address Translation

Bridging

Packet Routing

Optional Modules

C
ro

s
s

 -L
a

ye
r C

o
m

p
o

n
e

n
t

Optimizer

UDP TCP Active Messages …

Application Requirements

Application Requirements

Application Requirements

Figure 3.3: Architecture of an Adaptive Network Stack

3.6.3 Transport/Routing Protocol Layer

The bottom layer of the stack provides access to the transport or routing proto-
cols used in the different networks, such as the UDP and TCP protocols used in
IP based networks, the Active Messages used in TinyOS, the RS-232 interface for
serial data transmission, etc. The minimum requirement for protocols that should
be incorporated in the network stack is support for a unicast end-to-end commu-
nication between nodes. Potential candidates are therefore all protocols from the
OSI-layers 3 and 4. Besides this basic functionality, many protocols offer additional
features, such as multicast support, reliable transport, encryption, QoS guarantees,
etc. These features are stored for every protocol. During the installation of an
application, the Optimizer determines which of the features required by an appli-
cation can be provided by the underlying protocols, and which features have to be
provided through the installation of an additional module. The Cross-Layer Com-
ponent allows the transport/routing protocols to publish topology information and
link characteristics and to access application level information such as the data rates
of streams, etc. The former information will be used to optimize the placement of
services in the network, what is explained in detail in Section 2.6. The latter can
be used by the transport/routing protocol to optimize the routing of packets in the
network.

3.6.4 Abstract Network Layer

The functionality of the Abstract Network Layer resembles the functionality of net-
work stacks known from overlay networks, such as Peer-to-Peer networks. However
there is an important difference: The Abstract Network only handles the message

3.6 Communication Module 127

routing across network boundaries. Messages sent within a subnet will be transmit-
ted directly via the underlying transport protocol. Therefore the Abstract Network
is not a full-fledged overlay network but can bee seen as a thin wrapper that allows
communication across heterogeneous subnets. The rational for this decision are per-
formance considerations. If communication occurs within a subnet, the Abstract
Network incurs no additional overhead because all messages are sent directly via the
underlying network protocol. If a packet is addressed at a node in another subnet,
the packet is sent to a bridge node which converts the packet and injects the new
packet in the other network. This is done by the Bridging component.

The Address Translation provides a unified addressing scheme across all subnets.
It uses n-bit logical addresses for the identification of nodes, which comprise a net-
work identifer (the first m bits) and a node identifier (the remaining n − m bits).
The number of bits used for addresses, n, and the distribution of these bits between
the network and node part can be chosen during the code generation and deploy-
ment of the sensor network. This allows to reduce the network header size for small
installations and support scenarios with a multitude of different subnets. However,
only nodes stemming from networks with identical parameters for n and m can com-
municate seamlessly across network boundaries. If different parameters are used in
two networks, a gateway that performs a network address mapping has to be used.

Address Assignment The Abstract Network currently supports two assignment
schemes for logical addresses: static addresses and dynamic configuration. Static
addresses are assigned during code generation and configuration of the network and
remain unchanged at runtime. This allows creating very compact and small images
for devices, which are not added to networks dynamically, e.g., switches, static
sensors or similar devices. The second address assignment scheme is based on a
DHCP-like dynamic configuration mechanism. New nodes request an address by
sending a broadcast message after installation. A coordinator node in every subnet
handles these requests and creates unique addresses for new nodes.

Address Resolution In order to send a packet to a remote node, the logical address
of this node has to be mapped to the addressing format used by the underlying
network protocol. This is done by the Address Resolution component. Similar to
the address assignment, the address resolution can be performed either in a setup
phase before the execution of applications is started, or dynamically at runtime.
In the first case, the address resolution is performed when a new data stream is
installed at the node and the network address of the destination node is stored in
the Stream Router along with the routing information for a specific data stream. The
dynamic address resolution uses a broadcast mechanism. Nodes can send a discovery
broadcast for a logical address and will receive a reply from the corresponding node,
which contains the network address.

128 3 Runtime Environment

Modules Optional modules can be plugged into the Abstract Network layer to
provide additional features not present in the underlying transport or routing pro-
tocols. Consider an application requiring a reliable message transmission between
two services. If this application is running on top of a TCP/IP network, the TCP
protocol already provides this feature out of the box. If the underlying protocol
supports only unreliable transmissions, e.g., UDP/IP, an additional reliability mod-
ule is installed in the network stack at the sender and at the receiver. This module
can extend the message header with additional fields in order to provide the desired
functionality.

Modules are organized as a stack, i.e., on the sender side the message is passed
to all modules in a top-down, on the receiver side a in bottom-up manner. Modules
higher up in the stack can therefore treat modules lower down in the stack as black
boxes. Assume an application requires a connection between two services, which
offers reliable transport and data encryption. In this case the reliability module
is installed below the encryption module in the network stack. At the sender, the
encryption module is called first, which can encrypt the message payload. Subse-
quently the reliability module is called, which extends the message header with data
needed to perform the reliable transport, e.g., a sequence number. The modules on
the receiver side will be invoked in reverse order, i.e., first the reliability module
and second the encryption module. If a transmission problem occurs, e.g. through
a lost packet or a duplicate packet, this situation will be handled transparently by
the reliability module and will not be visible to the encryption module.

We implemented some basic modules to demonstrate the feasibility of the mod-
ularization. Some of the modules are very simple and should be seen as a proof of
concept implementation, modules used in a productive environment will most likely
be more complex. The supported modules are:

Reliability Module The Reliability Module supports per-packet reliable transport.
Outgoing packets are assigned with a unique sequence number and stored at the
sender. The receiver submits an acknowledgement for every received packet. The
next packet of the stream is sent after the acknowledgement of the previous packet
is received. If the acknowledgement is not received in a configurable period of time,
the packet is treated as lost and resubmitted by the sender. This mechanism can
be implemented very efficiently on resource constrained devices, because only one
packet has to be stored per data stream. It is well suited for a reliable transmission
of control signals in the embedded network. The drawback is a poor performance
compared to stream based protocols, such as TCP, if large data volumes have to be
transmitted.

Fragmentation Module The Fragmentation Module is required if the underlying
network protocol is packet based and the transmitted payload exceeds the packets
capacity. The Fragmentation Module will break the message into peaces that fit
into the network packets and reassemble the original payload at the receiver.

3.6 Communication Module 129

S
tr
e
a
m
 R
o
ut
in
g

Tr
an
sp
or
t/R
ou
tin
g
Pr
ot
oc
ol

Stream Router

Figure 3.4: Layered Routing

Encryption Module Providing secure communication and authentication mecha-
nisms for embedded networks is an open research area. The resource constraints
on the devices often prohibit the use of public key infrastructures and asymmetric
encryption algorithms known from other distributed systems. Often it is impossi-
ble to store long cryptographic keys on the nodes or perform complex calculation
required by algorithms such as RSA. The Encryption Module should be seen as a
demonstration how encryption support can be added to the network stack, once a
suitable mechanisms has been developed. It supports a simple stream based sym-
metric encryption algorithm and is based on the assumption that a symmetric key
pair is installed on each node and a trusted coordinator in the network. The coor-
dinator authenticates new nodes and generates session keys for the communication
between nodes in the network. Falk and Hof[38] describe a security design that can
be used to create and manage such session keys.

3.6.5 Stream Routing Layer

The ǫSOA platform supports the transmission and management of data streams
through the Stream Routing component of the network stack. The Stream Routing
component operates on top of the network protocols (and the abstract network
layer) used in the embedded network. The basic idea of this approach is depicted in
Figure 3.4. The Stream Routing Layer uses data Stream Routers that are installed
on each node in the embedded network. A data Stream Router directs incoming
data stream elements to one or more targets. These targets can either be service
instances on the local node, or data Stream Routers at a remote node. The target of
an incoming data stream element is determined based on the id of the data stream
it belongs to. To perform this task, the Stream Router contains an internal routing
table that stores a list of targets for each data stream id.

The Stream Routing Layer handles the high level distribution of data streams and
messages in the network. It specifies the sink nodes of data streams and provides
functionality to split data streams at nodes. Note that the source and sink of data

130 3 Runtime Environment

streams do not have to be neighboring nodes, but can be any node in the embedded
network, even nodes from different subnets. A data stream only specifies on a high
level that the data has to be transmitted from one node to another. The transmission
of individual packets of the data stream and the selection of a suitable route in the
underlying network is handled by the Network Protocol Layer. This layer relies on
one of the various network protocols available for embedded networks to perform
the actual transport of data between two nodes.

The layered approach is beneficial from a modeling point of view: the Stream
Routing Layer provides a high level overview of the data transmissions in the net-
work. It shows the data flows in a way that is understandable for an application
domain expert and safely hides details regarding the underlying network protocols.
The expert does not have to deal with the clustering of nodes or different network
protocols used in different subnets. The expert can even influence the data trans-
mission based on this high level of abstraction, the required reconfigurations are
performed transparently by the ǫSOA platform.

Besides this modeling aspect, the Stream Routing Layer also possesses some in-
teresting properties from an implementation and optimization point of view, which
are discussed in more detail in the following sections.

3.6.5.1 High Level Routing of Data Streams

The Stream Routers control the flow of data streams through the system. They can
be used to direct streams over specific nodes or to avoid nodes which are overloaded
or have low energy resources. This can be done by adding intermediate Stream
Routers (anchor points) to a data stream. The anchor point is a data Stream Router
that simply takes the incoming stream and dispatches it to the final destination or
the next anchor point in line.

The layered routing used in the ǫSOA platform was motivated by the observation
that the routing of data streams and the routing of network packets operate on
different levels of abstraction. The Stream Routing Layer is configured based on
information from the application layer. During its configuration, data rate estima-
tions, information about the long term behavior of applications and data streams,
and a global overview over the topology and characteristics of the embedded net-
work are available. The routing decisions in this layer are often based on long term
optimization goals. Assume that in the example mentioned above, the node in the
bottom right corner of the picture is battery powered whereas all other nodes have
an unlimited power supply. In this case, the alternative route using the upper left
node as anchor can be beneficial to maximize the lifetime of node x.

The routing decisions for individual packets are performed by the protocols in the
Network Protocol Layer. These protocols have timely access to network topology
changes, such as broken or congested links, failed nodes or new nodes added to the
network. They can react quickly to these changes and adapt the routing of packets
in a way that ensures the packet arrives at its destination. Compared to the Data
Routing Layer, the routing decisions taken at the Network Protocol Layer are focused

3.6 Communication Module 131

on a much smaller time scale. Furthermore, nowadays network protocols typically do
not exploit information from the application layer, even if this information is made
available through a cross layer interface. Therefore they cannot perform global
optimizations regarding the routing of multiple data streams or optimizations based
on the long term behavior of applications.

Note that many of the global optimizations can also be performed fully auto-
matically by the system. The placement algorithm described in Section 2.6 can be
extended to include such optimizations. The gains achievable through these opti-
mizations depend on the application scenario.

There are some points that have to be taken into account when using the Stream
Routing Layer to influence the data dissemination in the embedded network. Be-
cause every node executes a Stream Router, every node can be used as a anchor
point for data streams. The Stream Routing Layer can therefore be used to control
the flow of data streams on a very fine grained level. However, it is rarely beneficial
to specify every single hop of a data stream via anchor points. In this case, the
routing protocol used in the underlying Network Protocol Layer degenerates to a
single hop transmission protocol. All functionality provided by the routing protocol
is lost, such as the quick response to network changes. In a typical situation it is
sufficient to specify a single anchor point for a data stream in order to redirect the
stream.

A second point is that there is no guarantee that a network packet will not pass a
specific node or use a certain link. The ultimate routing decision is still performed
by the network protocol. Theoretically, it may choose an arbitrary path in the
network to deliver the message. In a practical setting, this is rarely a problem,
because the currently available network protocols behave quite predictable and will
not arbitrarily change their routing decisions. Nonetheless, the Stream Routing
Layer should not be used to perform security based optimizations. It cannot be
guaranteed that a data stream will only use specific (secure) links. Such routing
guarantees have to be provided by the network protocol, or cryptographic measures
have to be taken to prevent access to the data stream.

Currently there is a lot of work aiming at the optimization of network protocols.
We are looking at ways to push the information available at the application layer
down to the network protocols. Based on this information, a smart routing protocol
could perform some optimization tasks on its own. The routing functionality offered
by the Stream Routing Protocol should be seen as an opportunity to achieve this
functionality with the network protocols currently available. If future network pro-
tocols offer built-in support for these features, the ǫSOA platform can exploit this
functionality by simple removing all anchor points and giving the network protocol
full control over the transmission of data streams4.

4It is not clear that such a protocol can be built. Especially the global optimizations are very
hard to perform given the resource constraints on the embedded devices and would most likely
require a distributed solution using the resource capacities of multiple nodes. As a consequence,
the high level optimizations provided by the Data Stream Routing layer might still be beneficial
in future embedded networks, despite the advances in the functionality provided by the network

132 3 Runtime Environment

5

6

7

8

9

42

3
1

1.5.0 – 6
1.5.0 – 7

1.5.0 – 6.6.0

1.5.0 – 7.3.0

(a) No Stream Sharing

5

6

7

8

9

42

3
1

1.5.0 – 5

1.5.0 – 6.6.0

1.5.0 – 7.3.01.5.0 – 6
1.5.0 – 7

(b) Stream Sharing

Figure 3.5: Data Stream Rounting

3.6.5.2 Data Stream Sharing

Whenever data is consumed by more than one service, data stream sharing can
provide a reduction in the required network traffic. Instead of creating a distinct
data stream for each source, it is often beneficial to create a single data stream that is
split at an intermediate node. Such an example scenario is depicted in Figure 3.5(a).
The data produced by node 1 is used by two other nodes, 6 and 7. The thick lines
indicate the two resulting data streams routed through the network. A possible
optimization which reduces the network utilization is shown in Figure 3.5(b). Instead
of sending two distinct data streams to nodes 6 and 7, a single stream is sent to
node 5. There it is split into two streams targeted at nodes 6 and 7. The dashed
boxes in Figure 3.5(a) and 3.5(b) show the routing tables for the example. Every
row contains one routing entry, the part on the left side of the “-” is the stream
identifier, i.e., the source address, the part on the right side is the target address.
Like the source address, the target address consists of a node address, an instance id
and a port number. Because the instance id and port number are only needed at the
target node, the Stream Router stores only the node address for remote services. The
routing table of node 1 in Figure 3.5(a) can be read as: transmit the data produced
by service instance 5 port number 0 to nodes 6 and 7. At node 6 the routing table
specifies that the data should be processed by service instance 6 port number 0. The
shared use of the data stream produced by node 1 can be achieved with the routing
tables shown in Figure 3.5(b). Instead of two different streams, node 1 only creates
a single stream that is targeted at node 5. Because the stream identifier is contained
twice in the routing table, the stream is split at node 5 and sent to both nodes, 6
and 7. The routing tables at nodes 6 and 7 can remain unchanged.

Note that the splitting does not necessarily have to be performed at a dedicated
node in the network, but can also be done at one of the sink nodes. In this case, the
elements are dispatched to the service instance interested in the data and another

protocols used in these networks.

3.6 Communication Module 133

sink node. This can be done for an arbitrary number of sinks, resulting in a single
data stream flowing through all sink nodes. The data Stream Routers mentioned
above offer built-in support for these scenarios. Every node in the network runs
a data Stream Router and can be used to split an incoming stream into multiple
streams directed at different nodes or local services.

Some of this functionality can also be provided by multicast capable network
protocols. In this case, the transmission and splitting of data streams can be done
transparently by the underlying network layer. The ǫSOA network stack can exploit
multicast support during data transmission. Like the routing support provided by
the Stream Routing Layer, the multicast support should be seen as an optional
component that can be used if the underlying network protocols do not support
multicast.

Nevertheless, there are some use cases, where the Stream Routing Layer is required
even if the underlying network supports multicast. The first use case are heteroge-
neous networks. The Stream Routers can be used to support multicast over subnets
using different network protocols. To communicate across a network boundary, the
source node can send a data stream to an intermediate node in the remote subnet.
The Stream Router on the intermediate node can rely on the multicast feature of
the underlying network protocol to transmit the data to the ultimate destinations.

An advanced application field for Stream Routers is the sharing of subsets of data
streams. An example are two data streams that are originated by the same sensor,
but at different data rates. If the data rate of one stream is a multiple of the other
stream, the data stream with the lower data rate can be created by subsampling the
high data rate stream, i.e., by selecting only every i’th element. Another example
are streams that are sampled at the same data rate but use different filter criteria,
e.g., one stream is interested in temperature readings higher than 40◦C, the other in
reading higher than 50◦C. The filtering and subsampling can be done by splitting the
original data stream and sending it to a service that performs the required processing
tasks, thus creating a new data stream. The Stream Routers provide the necessary
functionality to perform these tasks. At the current state, these optimizations have
to be performed manually be the developer. As mentioned in Section 2.6, a direction
for future research is an investigation how such optimizations can be performed
automatically by an optimizer component.

3.6.5.3 Stream Id based Routing

The Stream Routing Layer presented in this section uses stream identifiers to address
elements of a data stream and to store data paths in the routing tables. This
addressing mechanism is well known from multicast protocols, such as IP-Multicast.
The stream identifiers are used analogously to the multicast addresses used in these
protocols. This addressing mechanism is beneficial in a multicast/stream sharing
scenario, i.e., a scenario where multiple recipients are interested in receiving a data
stream stemming from a single source. Whenever the data stream has to be split at
an intermediate node, the received messages can simply be duplicated and routed to

134 3 Runtime Environment

all destinations. The message itself remains unchanged throughout the transmission
in the network. A target based addressing scheme creates a much higher overhead
in this situation, because the intermediate node has to create a new data packet for
each recipient and to add the recipients address information to the packet.

3.6.5.4 Network Configuration

The configuration of multicast environments is no trivial task. In the domain of
embedded networks, we can exploit the plannability of data streams to simplify the
network configuration. We chose to use an approach that strictly separates between
a configuration phase and an execution phase. During the configuration phase,
the routing tables on each Stream Router are configured based on the information
from the application model. Because all data streams created and consumed by an
application a known a priori, it is guaranteed that, after the configuration phase,
every Stream Router has all the information required for handling the data streams
flowing over its node.

If an application is reconfigured or a data Stream Router fails, a new configura-
tion phase is started to adapt the Stream Routers to the new situation. Note that
the transmission of data streams continues during the configuration phase. The im-
portant characteristic of the configuration phase is that it is managed by the ǫSOA
middleware, which has access to global information about the network and the ex-
ecuted applications. The difference to the approaches for IP networks mentioned
above is that the Stream Routers do not adapt their behavior autonomously. In-
stead, all reconfigurations are triggered by the middleware. This eliminates the need
for a network protocol that handles these adaptations and allows building a very
lightweight and compact implementation on the nodes in an embedded network.

The obvious drawback of this approach is an increased reaction time. Changes
in the network have to be detected and reported to the middleware. After that
the middleware can start a reconfiguration to adapt the Stream Routers to the new
situation. A solution that is integrated into the network protocol can react much
faster to such a change. But this drawback is not as severe as it appears at first
glance. As mentioned in the beginning of this section, the Stream Routing Layer sits
on top of a network protocol that performs the routing of packets. The majority of
network changes, such as broken links or failed nodes, will be handled transparently
by this network protocol. A single node failure therefore only influences the data
streams using the Stream Router installed at this specific node. In many cases,
such a failure will require adaptations in the communication layer anyway. The new
topology might require moving services between nodes or activating redundantly
available devices in order to compensate the failure. We therefore chose to accept
the increased reaction time in order to gain a much more compact and lightweight
implementation of the Stream Routing Protocol.

3.6 Communication Module 135

Payload Length

Bitfield

Optional

Header Parts

Payload

16 1915 14 13 12 11 10 8 7 6 5 4 3 2

Figure 3.6: eTP Message Format

3.6.6 Packet Routing Layer

The Packet Routing Layer is optimized for ad-hoc interactions between services and
administrative messages. It supports unidirectional and request-response interac-
tions. Message exchanged via the Packet Routing Layer typically use the Reliability
Module to achieve a reliable end-to-end message transfer. Due to the additional ad-
dressing information, the packet size for messages using the Packet Routing Layer
is larger than the packet size for messages using the Stream Routing Layer. More
details on this issue are presented in the following section.

3.6.7 Implementation

In order to create a feasible solution for resource constrained devices, the concepts
presented in the previous section have to be implemented in a resource saving and
efficient way. The network stack can be implemented with a single protocol that
includes the functionality of the abstract network layer and both communication
interfaces, the Stream Routing interface and and the Packet Routing interface. We
call this protocol embedded Transport Protocol (eTP).

The ǫSOA communication protocol uses a message format that is structured as
shown in Figure 3.6. A message consists of a header, comprising a bitfield, a sequence
of optional header parts and a content length field, followed by the message payload.
This design was chosen to support the modular design of the network stack. The
bitfield is used to identify which modules in the network stack have to be activated
for parsing this message. If the corresponding bit is set, the module is invoked at the
receiver. Each of the modules can define extensions to the message header. These
are encoded as data fields in the optional part of the header. The bitfield therefore
also identifies which optional header fields are present or not.

The size of the bifield and the module identified by each bit are defined in an
application domain specific profile. The profile defines the sequence of the modules in
the modular stack and the size of the optional header fields created by each module.
The profile ensures that all nodes implementing the profile interpret the bitfield in
the same way and can parse the message header correctly and can communicate
with each other. On the other hand, the protocol can still be tailored to different
application domains by specifying different profiles that may contain a different

136 3 Runtime Environment

number of modules and modules with different functionality. Note that the protocol
profile only specifies a list of possible modules. Not all nodes in the embedded
network have to use all the modules specified in the profile. The profile only ensures
that each node interprets the header correctly. Which modules are installed at each
node can be configured at runtime to en- or disable certain communication features
depending on the application requirements.

3.6.7.1 Addressing Modules

Some modules require address information. Consider for example the Reliability
Module. In order to send an acknowledgement to the sender, the receiver has to
know the source node of a message. For stream based communication the Reliability
Module at the receiver additionally has to know the stream a message belongs to, for
message based interactions the instance and port address of the sender, respectively.
The crucial observation is that these addresses are often needed by more than one
module. The source address for example is also needed whenever a request/response
interaction is used in order to determine the target for the response. eTP supports
the sharing of address information. In eTP all addressing related information is
provided by five addressing modules. The modules are located at the top of the
module stack, i.e., will be parsed at the beginning for inbound messages and added
as the last header components to outbound messages. The modules are:

• Destination Node Module: adds the destination node to the message
header

• Source Node Module: adds the source node to the message header

• Destination Address Module: adds the instance and port identifier of the
destination service to the header (when using message based communication)

• Source Address Module: adds the instance and port identifier of the source
service to the header (when using message based communication)

• Stream Id Module: adds the stream identifier to the header (when using
stream based communication)

Modules can specify dependencies to these addressing modules and other modules.
A dependency specifies that the other module should also be invoked. The Reliability
Module uses a dependency to the Source Node Module and the Stream Id Module (or
the Source Address Module respectively). This ensures that all address information
required by the Reliability Module is added to the message header. However, the
address information will only be added once - even if multiple modules specify this
dependency.

Besides the usage for sharing addressing information, the address modules are
also used to exploit common knowledge between both ends of a communication
channel. Assume a temperature sensor should deliver periodic measurements to some

3.6 Communication Module 137

Stack
Position

Module Name Header Size Dependency

7 Encryption Module ?? -
8 Fragmentation Module 2 bytes -
9 Reliability Module 1 byte Source Node, Source

Address, Stream Id
10 Bridge Module - Destination Node

11 Stream Id 2 bytes -
12 Source Address 3 bytes -
13 Destination Address 3 bytes -
14 Source Node 2 bytes -
15 Destination Node 2 bytes -

Table 3.2: Example Profile

application logic. Because we want a reliable transmission of the sensor readings, the
user/the system decides to use a TCP connection for the data transmission. Further
assume that the TCP connection is not shared by multiple applications but used
solely for transmitting the temperature readings. In this case, the sending and the
receiving node implicitly know that all data received through the TCP connection are
temperature readings. It is therefore unnecessary to transmit the stream identifier
along with each data packet. eTP stores a list of such implicit information along
with each communication channel. All header fields that are contained in this list
are removed at the sender side and reconstructed based on the channel information
on the receiver side.

We will explain these feature with some example scenarios in the following section.

3.6.7.2 Implementation Details and Example Scenarios

The examples in this section are based on the application profile shown in Table 3.2
(this profile is also used for implementing the demonstrators shown at the end of this
work). The profile specifies which modules are present in the network stack, the order
of these modules, and the size of the header fields of each module. The last column
of the table shows the dependencies between modules. This column is not part of
the profile but added to provide a better overview for the example. The dependency
information is added at runtime by each module. The bitfield is not fully used by
the profile. An additional number of six modules could be added to the stack. The
bottommost module is the Encryption Module, followed by the other two modules
presented in the previous section, i.e., the Fragmentation Module that handles the
splitting of large messages, and the Reliability Module that provides reliable message
delivery. The fourth module from the bottom is the Bridge Module that implements
the functionality of the Abstract Network Layer, i.e., ensures communication across
network boundaries. The remaining modules are addressing modules for the source
and destination node of a packet, the source and destination service instances (for

138 3 Runtime Environment

Bitfield
16 1915 14 13 12 11 10 8 7 6 5 4 3 2

S
tre
am
/M
es
sa
ge

D
e
st
in
a
tio
n
 N
o
d
e

S
o
u
rc
e
 N
o
d
e

D
e
st
in
a
tio
n
 A
d
d
r.

S
o
u
rc
e
 A
d
d
re
ss

S
tr
e
a
m
 I
d

R
el
ia
bi
lit
y

Fr
ag
m
en
ta
tio
n

E
nc
ry
pt
io
n

B
rid
ge

Figure 3.7: Bitfield in the eTP Header for the Example Scenario

message based interactions) and the stream identifier (for stream based interactions).
The highest bit in the bitfield is reserved. It is used to identify the communication
mode. If the bit is set, stream based communication is used. If not, message based
communication is used.

The bitfield of the message header for this profile is shown in Figure 3.7. The
highest bit determines the communication mode. If the bit is set, stream based
communication is used, if the bit is not set message based communication is used.
The remaining bits are used for modules. The bits 15 to 11 are assigned to the
addressing modules. Bit ten is used for the Bridge Module, bit nine for the Reliability
Module. The bits eight and seven are used by the Fragmentation Module and the
Encryption Module respectively.

On the receiver side, the message is parsed by invoking the modules top-down.
The first modules are the addressing modules, followed by the Destination Node
Module. The last module is the Encryption Module. The parsing of the header
fields is done with a pointer that stores the offset at which the module specific
header fields are located. Initially the pointer is set to the position right behind
the bitfield. If a module is activated, i.e., the corresponding bit in the bitfield is
set, the module is invoked. Based on the position of the pointer, it may extract its
information from the message header. After that, the pointer is incremented by the
module specific offset specified in the profile. The position of the pointer is now the
start of the next module header field or the start of the payload if there are no more
header fields.

On the sender side, the modules are invoked bottom-up. Because the length of the
header is not known in advance, a message is created bottom up on the sender side.
First the payload is written at the end of the message buffer on the sender side. After
that the header information is appended at the front. The last field of the header
is always the payload length, which is therefore added at first. Next all modules
are invoked in order, i.e., starting with the module at the top of the stack. In the
given profile, this module is the Encryption Module followed by the Fragmentation
Module and so on. The addition of header fields is performed analogously to the
reading of header fields. Based on a pointer each module is assigned a part of the
header to store its data fields. The only difference is that this time the pointer is
decremented by the module specific header size prior to the addition of the header

3.6 Communication Module 139

fields. This ensures the buffer is filled bottom-up. The last step is to add the bitfield
at the start of the message header.

The invocation of modules on the receiver side is determined by the bitfield in
the message header. During its invocation, each module may extract information
from the message header. A module may cancel the handling of an incoming packet.
In this case, no further modules are invoked and the network stack proceeds with
the parsing of the next incoming packet. A typical use case is for example the
detection of an invalid or malformed packet. Another example is the Fragmentation
Module. If a fragment is received, this module will cancel the handling of the packet
and instead store its payload in an intermediate buffer. When all fragments are
available, the Fragmentation Module will recreate the original packet and pass it to
the remaining modules in the stack. A module may also trigger the creation of a new
outgoing packet. This packet will only be passed to all modules located below the
sending module in the network stack. The outgoing packet is therefore not visible
by modules higher up in the stack. The Reliability Module uses this mechanism to
send acknowledgements and to re-send lost packets. Note that this communication
is not visible for the Fragmentation and Encryption Modules.

Not every module is needed for every outbound packet. Which modules should be
invoked is determined by a requirements bitfield that is passed to the network stack
by the application. This bitfield specifies which functionality has to be provided by
the communication stack. The communication stack maintains a bitfield containing
the characteristics of each communication channel. Based on the requirements bit-
field and the characteristics bitfield, the communication stack can determine whether
a module has to be activated or not. Upon its activation, a module may set its bit
in the bitfield of the outgoing message or not. If the bit is set, the module may
add information to the message header. Note that setting a bit in the bitfield will
also trigger the execution of the corresponding module on the receiver side. A mod-
ule that has no header fields may therefore be interested in setting the bit without
adding fields to the message header. A module may also decide to not set its bit in
the bitfield. In this case it may not add information to the message header and the
corresponding module on the receiver side is not invoked. A module that uses this
functionality is the Fragmentation Module. It checks the size of outgoing packets.
If a packet is small enough to fit into a single network packet, the Fragmentation
Module does not set its bit in the message header. In this case the whole message is
transmitted in a single packet and the Fragmentation Module on the receiver is not
invoked. If the message is too large, the Fragmentation Module will create multiple
small packets. It will also set its bit in the bitfield to trigger the execution of the
Fragmentation Module on the receiver side, which will then reconstruct the original
message based on the received fragments.

We will illustrate the functionality of the eTP protocol with some examples.

Example 1: Dedicated TCP connection for a data stream Assume a data stream
requires reliable data delivery and both involved nodes are located in an IP based

140 3 Runtime Environment

Requirements

Bitfield

Buffer

S
tre
am
/M
es
sa
ge

D
e
st
in
a
tio
n
 N
o
d
e

S
o
u
rc
e
 N
o
d
e

D
e
st
in
a
tio
n
 A
d
d
r.

S
o
u
rc
e
 A
d
d
re
ss

S
tr
ea
m
 I
d

R
el
ia
bi
lit
y

Fr
ag
m
en
ta
tio
n

E
nc
ry
pt
io
n

B
rid
ge

11

1

Channel

1

1 1 11 1 11

Payload Length

(a) Dedicated TCP Connection

S
tre
am
/M
es
sa
ge

D
e
st
in
a
tio
n
 N
o
d
e

S
o
u
rc
e
 N
o
d
e

D
e
st
in
a
tio
n
 A
d
d
r.

S
o
u
rc
e
 A
d
d
re
ss

S
tr
e
a
m
 I
d

R
el
ia
bi
lit
y

Fr
ag
m
en
ta
tio
n

E
n
cr
yp
tio
n

B
rid
ge

Payload Length

Stream Id

1 1

1 1 1 1

1

1

1

Requirements

Bitfield

Buffer

Channel

(b) Shared TCP Connection

Figure 3.8: Header Generation for a Data Stream Transmission

network. If both nodes support TCP and have enough spare resources, the user
(or the Optimizer component in the network stack) may choose to use a dedicated
TCP connection for transmitting the data stream. During the installation of the data
stream, the middleware on both nodes will establish a TCP connection. Figure 3.8(a)
shows the information available in the communication stack in this situation. The
bitfield at the top contains the requirements specified by the application. In the
example there are three requirements. Stream based communication should be used,
the stream identifier should be added to the addressing part of the header and reliable
transmission should be provided. The second bitfield shows the properties of the
used communication channel. A TCP connection already supports fragmentation
and reliable transport out-of-the box. Because the TCP connection is used only for
transmitting a single data stream, the network stack on the receiving node implicitly
knows all addressing information related to this stream. The third bitfield shows
the bitfield that is created by the communication stack on the sender side and that
is transmitted at the beginning of the message header. Below this bitfield, a buffer
containing the header contents is shown. The payload length is always the last field
of the message header and depicted in green in the figure. Note that this buffer is
filled from bottom up, as already mentioned.

On the sender side modules are invoked top down. The application requires no
encryption or fragmentation support (because all packets are known to be small
enough), the Encryption and Fragmentation Modules are therefore not needed. The
application does need reliable transport. From the channel bitfield, the communi-
cation stack knows that this functionality is already provided by the used commu-
nication channel. The Reliability Module is therefore not invoked. The same holds
for the Stream Id Module. Because the channel provides the needed functionality,
the module is not invoked. Instead the addressing information is reconstructed by
the network stack on the receiver. The resulting message only contains the bitfield
and the size field of the message header.

3.6 Communication Module 141

Requirements

Bitfield

Buffer

S
tre
am
/M
es
sa
ge

D
e
st
in
a
tio
n
 N
o
d
e

S
o
u
rc
e
 N
o
d
e

D
e
st
in
a
tio
n
 A
d
d
r.

S
o
u
rc
e
 A
d
d
re
ss

S
tr
ea
m
 I
d

R
el
ia
bi
lit
y

Fr
ag
m
en
ta
tio
n

E
nc
ry
pt
io
n

B
rid
ge

11

1

Channel

1

Payload Length

1

1

Seq. Nr.

(a) Part 1: Invocation of Reliability Module

S
tre
am
/M
es
sa
ge

D
e
st
in
a
tio
n
 N
o
d
e

S
o
u
rc
e
 N
o
d
e

D
e
st
in
a
tio
n
 A
d
d
r.

S
o
u
rc
e
 A
d
d
re
ss

S
tr
e
a
m
 I
d

R
el
ia
bi
lit
y

Fr
ag
m
en
ta
tio
n

E
nc
ry
pt
io
n

B
rid
ge

Payload Length

Stream Id

1 1

1 1

1

1

1

1

Requirements

Bitfield

Buffer

Channel

Source Node

Seq. Nr.

(b) Part 2: Invocation of Other Modules

Figure 3.9: Header Generation for a UDP Based Data Stream Transmission

Example 2: Shared TCP connection Now assume we want to exchange two data
streams between the nodes in our example. Of course it is possible to use two
dedicated TCP connection for this purpose. However, in some cases it is beneficial
to multiplex both streams into a single TCP connection. A typical reason for such a
decision is a low amount of free memory on one of the nodes. Each TCP connection
uses up resources and a resource constrained node might not be capable of supporting
many TCP connections at once. The TCP connection is therefore no dedicated
communication channel, but a shared communication channel. In this case, the
network stack is still able to infer the source node based on the TCP connection,
but not the stream identifier. Figure 3.8(b) shows this situation. The requirements
are the same as in the previous example. The channel properties are different to
reflect the characteristics of the shared channel. Just as in the previous example,
the modules up to the Stream Id module are not invoked because they are either
not required by the application or their functionality is already provided by the
communication channel. The Stream Id module will be invoked because the shared
channel does not provide the corresponding functionality. The module will set its
bit in the bitfield of the message and add its information to the header (shown in red
in the figure). For the Stream Id Module, this is a 16 bit integer value containing
the stream identifier. No other modules are required, resulting in a message that
contains the bitfield, the stream identifier and the payload length.

Example 3: Shared UDP channel If a reliable transport channel is not supported
by the underlying network protocol, the situation is more complex. Assume we want
to transmit the data stream from the first example over a UDP socket. UDP offers
no reliable transport and no fragmentation support. Just like the TCP connection
in the previous example, an UDP socket may be shared too. In the case of UDP, a
single socket may even be used to receive data from multiple different nodes. This
scenario is shown in Figure 3.9(a). The requirements are the same as in the previous

142 3 Runtime Environment

Requirements

Bitfield

Buffer

S
tre
am
/M
es
sa
ge

D
e
st
in
a
tio
n
 N
o
d
e

S
o
u
rc
e
 N
o
d
e

D
e
st
in
a
tio
n
 A
d
d
r.

S
o
u
rc
e
 A
d
d
re
ss

S
tr
ea
m
 I
d

R
el
ia
bi
lit
y

Fr
ag
m
en
ta
tio
n

E
nc
ry
pt
io
n

B
rid
ge

10

0

Channel

1

Payload Length

1

1

Destination Instance

Destination Port

11

Destination

Node

Figure 3.10: Header Generation for a UDP Based Message Transmission

examples. Ignore the blue field in the requirements for the moment. The channel
possesses no useful characteristics, the corresponding bitfield is therefore empty.

We will analyze the creation of the header step by step. The first invoked module
is the reliability module, because UDP provides no built-in support for reliable
transmissions. The reliability module sets its bit in the header field and adds a
sequence number to the message header. The reliability module on the receiver side
has to know the source of the message to deliver an acknowledgement. The reliability
module therefore specifies a dependency to the Stream ID module and the Source
Node Module. This is done by setting the corresponding bits in the requirements
bitfield. The bit for the stream id was already set so it is not changed. The bit
for the Source Node Module was not set before and will therefore be set by the
Reliability Module. The situation after the invocation of the Reliability Module is
shown in Figure 3.9(a). The modified bitfield entry for the Source Node Module is
shown in blue.

The next invoked module is the Stream ID module, which will add its information
to the header and set the corresponding bit in the bitfield of the message. The same
holds for the Source Node Module. The situation after the execution of all modules
is shown in Figure 3.9(b). The information of the Stream Id Module is shown in
red, the information of the Source Node Module in light red. The resulting message
header comprises the bitfield, the source node header field, the stream id header
field, a sequence number and the payload length.

Example 4: Message based Communication over an UDP Channel The last
example is using a message based communication over a shared UDP channel, as
shown in Figure 3.10. The application expects no reply to the sent message; it
therefore only requires the destination node and the address of the destination service
instance on this node. The first invoked module is the fragmentation module which is
required by the application. To keep the example concise, let us assume the message
is small enough to fit into a single UDP packet. The fragmentation module will
therefore not add any data to the message header and will not set the corresponding

3.6 Communication Module 143

bit in the message bitfield. The next module is the bridge module. The bridge
module itself adds no information to the message header. Nevertheless, it sets the
corresponding bit in the bitfield to ensure the bridge module is also invoked at the
receiver. The bridge module has a dependency to the target node module. The
corresponding bit in the header has already been set by the application, therefore
no change will occur. The Destination Address Module and the Destination Node
Module both add information to the message header and set the corresponding bits.
Note that the Destination Address comprises two values, a 16 bit instance identifier
and a 8 bit port identifier. The resulting message can now be sent to a bridge node
in the network. On the bridge node, the Bridge Module will be invoked. It will
check the ultimate destination of the message and send the message to the subnet
the destination node is located in. This is done by cancelling the parsing of the
message and by resending it through another communication channel. The bridge
node on the final destination will detect that the message is targeted at its node and
pass the message on to the modules higher up in the stack.

3.6.8 Summary

In this section we presented the communication layer used in the ǫSOA platform.
It is based on a modular architecture and provides optimized support for the trans-
mission of data streams. The ǫSOA communication layer allows the specification of
features, such as reliability, on a per stream basis. The stack on each node can be
tailored on a fine grained level by using modules. This allows creating very compact
network stacks for resource constrained devices that do not require all features of the
network stack. The communication layer offers built-in support for communication
in heterogeneous network environments with multiple different network protocols.

There are approaches that aim at extending the IP based infrastructure used in
the IT domain to embedded networks, e.g. 6LoWPAN[63] or the several approaches
that aim at developing low power WLAN solutions. It is currently unclear whether
these approaches will be successful or not, especially in the automation domain
where bus systems play an important role. As mentioned above, the ǫSOA platform
was designed to support heterogeneous networks. If a common IP infrastructure
becomes available, the ǫSOA platform can be reconfigured to use this infrastructure.
The bridging module is not needed in this case.

144 3 Runtime Environment

3.7 Message Parsing and Data Binding

The application fields for embedded networks are very diverse. As a consequence, the
transmitted data is very different, depending on the application domain and the task
of the nodes. Simple sensor devices, such as a temperature sensor, will only transmit
simple data values, such as a simple numeric value. More complex devices, such as
an RFID reader, will produce more complex data comprising multiple data values,
e.g., an RFID code, a timestamp and a reader id. Services that are interacting with
external Web services often have to deal with complex XML documents, which can
have an arbitrary structure. The ǫSOA platform uses XML documents for the data
exchange between services, which provide the necessary scalability for supporting
the transmission of simple data values up to complex XML documents used for
communicating with Web services.

Building an efficient message parser that supports a fast and resource efficient
parsing of small XML documents and at the same time supports all the flexibility
provided by XML is difficult. A typical setting for embedded networks is that nodes
that produce or consume only simple data values, such as sensor nodes, will also
possess very limited storage and processing capacities. For these nodes, it is decisive
that the size of the message parser is small and that the parsing of messages requires
little CPU and memory resources. This requires a scalable message parser that is
very compact and efficient for simple data formats, but can be scaled up to support
arbitrary xml documents.

As mentioned in Section 3.2, the EXI format provides a compact encoding of XML
data. Besides the message size, a fast and efficient parsing of messages is a prerequi-
site for the usage on resource constrained devices. In this section, we will show how
code generation techniques can be used to create lightweight message parsers5 for
EXI, which can be executed efficiently even on severely resource constrained devices.

3.7.1 Combined Parsing and Data Binding

In nowadays solutions, the parsing of messages is often subdivided into two steps.
The receiver first parses the received message in order to extract the transmitted
payload. After that, the transmitted data is converted from the message data format
to the data format used by the service implementation. The latter step is called
data binding and typically performed by a corresponding framework. For EXI, this
results in a message processing procedure as depicted in Figure 3.11(a). The received
binary EXI string is parsed by a EXI XML parser. The parser creates XML events
(often SAX, the Simple API for XML, or a comparable format is used), which are
handed on to a data binding framework. The data binding framework creates a data
structure based on the information contained in the events. This data structure is
handed on to the service implementation to do the actual processing of the data.

5In this section, we will focus on the generation of parsers, which are used by the receiver of a
message. The generation of encoders for the sender side can be performed analogously and is
not explained in detail here.

3.7 Message Parsing and Data Binding 145

XML Parser

Databinding Framework

Service Logic

XML Events

Data Structure

Error

Handling

Error

Handling

1 1 1 10 00000 1 11

(a) Separated Parsing and Databinding

Generated EXI Parser

Service Logic

Data Structure

Error

Handling

1 1 1 10 00000 1 11

(b) Combined Parsing and Databinding

Figure 3.11: Message Parsing & Databinding Schemes

An alternative approach, which is based on the same message processing scheme,
is the usage of a tree model instead of events for the communication between the
parser and the data binding framework. In this case, the XML parser reads the whole
received message at once and stores the contained information in a tree structure
(e.g. a Document Object Model (DOM)[155] tree). This tree is handed over to the
data binding framework and the processing continues like in the event based case.

The separation of the message parsing into two strictly separated layers increases
the flexibility of the message parsing, because the layers can be exchanged individ-
ually in order to support other message formats or programming languages. But
the layering also introduces a considerable overhead. The exchanged data has to be
converted twice. First data is converted between the data format used in the actual
message to the data format used in the XML events or XML tree structure. The sec-
ond conversion is done in the data binding framework. The communication between
the XML parser and the data binding framework also introduces an overhead. Even
small XML documents can create a lot of XML events, because not only the con-
tained data but also structural information, such as opening and closing tags, have
to be communicated. This leads to a considerable amount of method invocations
and can slow down resource constrained microcontrollers. The tree based approach
does not have this drawback, but requires additional memory for storing the tree
model.

Both overheads, the overhead for multiple data conversions and the communica-
tion overhead between the parser and the data binding framework, can be eliminated
if a combined message parser is used that converts an incoming EXI stream directly
to a data structure used by the service implementation. A corresponding message
parsing architecture is shown in Figure 3.11(b). This architecture has the additional
benefit that the error handling is not split up in different layers but can be realized
efficiently at a single location.

146 3 Runtime Environment

S
e
rv
ic
e

In
s
ta
n
c
e

S
e
rv
ic
e

In
s
ta
n
c
e

S
e
rv
ic
e

In
s
ta
n
c
e

G
e
n
e
ra
l
P
a
rs
e
r
L
ib
ra
ry

(B
a
s
ic
 T
y
p
e
s
)

Tailored

Parser

Tailored

Parser

Tailored

Parser

Runtime Environment

Figure 3.12: Tailored Message Parser

<tempReading>

 <temperature>

 22

 </temperature>

 <timestamp>

 123456

 </timestamp>

</tempReading>

begin_element()

 begin_element()

 r.temp = decode_uint8()

 end_element()

 begin_element()

 r. time = decode_uint32()

 end_element()

end_element()

struct tempReading

{

 /* temperature value */

 uint8 temp;

 /* time of measurement */

 uint32 time;

};

XML Document Tailored Parser Data Structure

General Functions

Figure 3.13: Tailored Message Parser Example

3.7 Message Parsing and Data Binding 147

General

Parser

Library

Service

Descrip-

tion

Parser

Encoder

Parser/Encoder

Generator

Figure 3.14: Overview of the ǫSOA Binding Generator

3.7.2 Generation of Tailored Message Parsers

To further increase the efficiency and compactness, the ǫSOA platform does not use
a generic message parser, but tailored message parsers that are shipped with each
service, as shown in Figure 3.12. Every node contains a general parsing library that
offers support for the basic data types used by the services. The tailored parsers
contain logic for the parsing of the messages received and sent by a service, including
support for complex structures such as lists, optional elements, choices, etc. The
tailored parsers rely on the general library for the parsing of basic types. A simple
example for a sensor reading containing a temperature value and a timestamp is
shown in Figure 3.13. The leftmost box in the figure shows the XML data created
by the service. Note that the textual XML representation is only given for read-
ability reasons, the message parser and encoder directly read and write binary EXI
documents. The basic structure of the tailored parser is shown in pseudo code in the
center of Figure 3.13. The tailored parser encodes the basic document structure, i.e.,
the tree of XML elements. It relies on the parsing functions contained in the general
library for the extraction of simple data types, such as the unsigned integer values in
the example. In the example, the read data is stored in a c-struct, other realizations
for other programming languages are possible (the Java based implementation of
the ǫSOA platform for example uses a Java class).

The tailored parsers are generated fully automatically based on the informa-
tion contained in the service description of each service. The architecture of the
parser/encoder generator is shown in Figure 3.14. Based in the service description,
the generator creates structure definitions for the target programming language and
tailored parser/encoder implementations. The generated code is bundled with the
service implementation and loaded on the node during the service deployment.

148 3 Runtime Environment

3.7.3 Summary and Outlook

Through the combination of message parsing and data binding and the generation
of tailored parser and encoder implementations, highly efficient message parsers can
be realized. The parser generator used in the ǫSOA platform is optimized for deeply
embedded devices with minimal resources. It does not support all features provided
by EXI, especially the support for schema deviations is very limited. If these features
are required, a full fledged EXI implementation has to be added to the node (which
will require more resources).

The approach for code generation described in this section was optimized for
generating code for documents that are exchanged in control oriented embedded
networks (hence comparably simple XML documents). This is not the only appli-
cation field for EXI. An EXI based encoding of XML documents is a promising
approach for improving the performance of Web service based solutions in the IT
domain and for speeding up the processing of SOAP messages on embedded devices.
In the ǫSOA platform, messages contain solely data, the addressing information is
contained in the transport protocol. SOAP messages on the other hand also contain
addressing information (e.g. WS-Addressing headers or method names for rpc-style
invocations). In this scenario, the message handling performance can be improved
if a message dispatcher, which maps incoming messages to method invocations, is
included in the parser (using a combined parsing and databinding as described in
this section). Work in this direction is presented in Käbisch et al[76, 77].

3.8 Management Interface & Cross-Layer Information Exchange 149

3.8 Management Interface & Cross-Layer Information

Exchange

Besides the communication that is needed to perform the control tasks of an embed-
ded network, management information has to be exchanged too. The configuration
of the nodes in an embedded network has to be changeable at runtime in order to
adapt the network to changing application fields or changes in the structure of the
embedded network. This requires an efficient and scalable management protocol
that provides an easy access to the configuration parameters of the nodes and the
service instances executed on these nodes. In the IT domain the Simple Network
Management Protocol (SNMP)[61][146] is used on a widespread basis. To ensure
a seamless integration of embedded networks and nowadays IT infrastructures, a
compatible management protocol for embedded networks is desirable.

The second application field for the exchange of management information is cross-
layer communication. In many cases the performance of the communication in an
embedded network can be improved if the strict layering of network protocols is
relaxed. If information collected by underlying layers is available at the application
layer, such as the network topology, data routes or bandwidth and latency of links,
the execution of applications can be optimized to better suite the characteristics of a
given network. In the other direction, the transmission of messages can be improved
if high level information provided by the application layer, such as data rates, is
available in the network stack. This communication is not limited to an information
exchange between the application layer and the layers below in the network stack.
The layers inside a network stack can benefit from such an information exchange,
too. We will focus on the information exchange that involves the application layer,
because the development and optimization of the network protocols used in embed-
ded networks is out of the scope of this work. Nevertheless, the presented cross-layer
communication interface can be used to improve the communication inside the net-
work stack, too.

We will first present SNMP and a design concept for a Web service based man-
agement interface in the next section and derive requirements for a management
protocol for embedded networks based on these interfaces. After that we analyze
existing approaches for cross-layer communication and derive requirements for the
cross-layer communication interface. A comparison of these requirements shows a
high overlap. We therefore developed a single solution that can be used to solve
both tasks. The concepts used in the design of this solution and an efficient imple-
mentation for resource constrained nodes are shown in the main part of this section,
followed by an overview of related work and future research possibilities.

3.8.0.1 Management Interface

The ǫSOA platform offers two management interfaces, which are motivated in the
following paragraphs.

150 3 Runtime Environment

internet

1

org

3

CCITT

0

ISO

1

ISO-CCITT

2

dod

6

private

4

enterprise

1

mgmt

2

mib-2

1

system

1

sysUptime

3

sysDescr

1

root

sysObjectID

2

Figure 3.15: SNMP Object Identifiers

SNMP As the name implies, SNMP was initially designed for the management of
network devices, such as routers in IP based networks. Because SNMP is very flexible
it is nowadays not only used to configure the devices that build the infrastructure of
IP networks, but also used to manage devices that are attached to these networks.
In SNMP information is organized in a tree structure. SNMP uses object identifiers
(oids) to address nodes in this tree. An object identifier is composed of a sequence of
numeric values. Each value identifies a node in a specific level of the tree. A human
readable name, the data type, a description and other related information about
a node in the tree can be found in the Management Information Base (MIB). An
excerpt of a tree defined in the MIB is shown in Figure 3.15. The object identifier
of the system description node “sysDescr” for example is 1.3.6.1.2.1.1.1. SNMP
defines the following messages:

• Get: Used to retrieve a set of management information

• GetNext: Used to retrieve the next set of information from a table or list

• GetBulk: Used to retrieve multiple sets of information at once

• Set: Used to change/update information

• Response: Reply to one of the messages above

• Trap: May be sent from devices to a management host to report unexpected
or erroneous situations

3.8 Management Interface & Cross-Layer Information Exchange 151

In SNMP, an object may have several instances. These instances are distinguished by
appending an instance identifier to the object identifier. For objects that only have a
single instance per device, such as the system description, the instance identifier is 0.
Following this rule, the get request to retrieve the system description from a device
has to be issued with 1.3.6.1.2.1.1.1.0 . If an object has multiple instances (a list
or a table) a single instance is identified by adding a key to the object identifier. For
lists, this key is the position in the list. If a device has multiple system descriptions,
the i’th description could be fetched with 1.3.6.1.2.1.1.1.i . For tables, the key is
composed of the values contained in one or more key columns. Assume we have
a table with a key column called “id”. To retrieve the row identified by the entry
“abc”, we can issue a get request using <oid of table>.abc. To retrieve all values
in a list or table, the object identifier without an instance identifier can be specified.

SNMP has been used for many years now and some limitations have become
obvious. SNMP does not support the storage of structured data types in lists or
tables. The reason is that SNMP requires that the last element(s) (and only the
last elements(s)) of an object identifier are keys. It is impossible to specify multiple
keys and therefore impossible to nest lists or tables. The second limitation is that
SNMP specifies no operation to invoke methods on a remote node. Many complex
management tasks cannot be performed by changing single values. The typical
workaround in SNMP is to introduce a method call variable. If the user sets this
variable to a certain value, a corresponding management function is executed by the
device. This workaround is problematic because it introduces side effects that may
not be obvious for an administrator. The second problem is that there is no way
of passing parameters to methods. Of course there is also a workaround for this
problem by storing parameters in special variables that have to be initialized prior
to a method call. The solution resulting from these workarounds is very error prone
and the management code issuing a sequence of such commands is hard to read and
to debug.

Web Service based Management Interfaces The motivation for a SNMP based
interface was to provide an interface that is compatible to established technologies
in the IT domain and that allows leveraging existing management tools. Because
SNMP has some limitations and does not fit well into a Web service based environ-
ment, we want to provide an additional Web service based management interface. A
lot of research is done in the area of Web service based management solutions. We
will only present a general overview of this work here. A more detailed description
can be found in the related work paragraph at the end of this section.

The first group of related work are approaches that propose a complete redesign of
management protocols based on XML and Web service technologies, such as XML,
SOAP and XPath. A problem encountered during the deployment of these new
management approaches is that there is a huge number of SNMP devices installed
in nowadays IT infrastructures and it is very unlikely that vendors will implement
new protocols for these devices. Even if all new devices would be shipped with Web

152 3 Runtime Environment

service based management interfaces (what is not the case) we would still have to
deal with SNMP based devices for many years. This led to the development of
another group of systems: SNMP to XML gateways. These offer XML based access
to SNMP based devices by transforming Web service requests/responses to SNMP
requests/responses and converting binary SNMP data to XML documents and vice
versa. Our solution follows the second approach.

A network management solution for embedded networks additionally has to con-
sider the resource constraints imposed by small sized devices. The use of XML and
Web service technologies for the management of IT networks is only possible be-
cause the network bandwidth and the processing power of devices in these networks
has been growing continuously in the last years. This is not the case for embedded
networks. There will always be application fields that require lightweight, small and
cheap nodes, which will possess severely limited processing, storage and communi-
cation capabilities. In this situation, a management solution based on a comparably
simple protocol like SNMP is an appealing solution. On the other hand, converged
networks containing both IT systems and embedded devices require Web service
based interfaces to allow a seamless integration between both domains.

Our approach was to design a protocol that uses XML and Web service tech-
nologies, but with some restrictions that allow an implementation on resource con-
strained devices. We use a management interface based on the REST philosophy.
Management tasks require only simple request/response interactions. These can be
implemented much more efficiently with a lightweight REST solution compared to
the more complex SOAP based solutions. The management information is stored
using an XML based information model. The selection of nodes in the XML infor-
mation model is based on a XPath oriented syntax. We use a XPath dialect that is
tailored for the use in management applications. It provides some additional func-
tionality for management operations and restrictions that allow an efficient imple-
mentation on resource constrained devices. Data is stored in a binary XML format
that can be handled efficiently by embedded devices and can be easily converted to
plain XML if needed.

The implementation of the management interface does not store plain XML docu-
ments. We use a numeric encoding for nodes in the XML tree to reduce the storage
requirements and increase the XPath evaluation performance. The crucial observa-
tion is that this encoding can be designed in a way that is backwards compatible to
SNMP. Our solution is therefore a hybrid approach. It offers a SNMP based interface
that allows a seamless integration into SNMP managed networks and a XML/REST
based management interface for the integration in Web service/XML based manage-
ment infrastructures. Both interfaces are based on the same information model and
may be used simultaneously. This allows a smooth migration between SNMP and
XML based management. The SNMP interface provides backwards compatibility
to the existing management infrastructure, whereas the XML interface allows the
integration into upcoming XML based management solutions.

3.8 Management Interface & Cross-Layer Information Exchange 153

Network Protocol

Network Modules

Auxiliary Module

C
ro
s
s
-L
a
y
e
r
In
fo
rm
a
ti
o
n

E
x
c
h
a
n
g
e Data Stream Router

Optimizer Application Logic

Figure 3.16: Architecture for Cross-Layer Information Exchange

Requirements An important observation is that the requirements for the SNMP
and the XML/REST management interface can be easily combined. The XML solu-
tion we propose is more powerful in some areas and removes some of the limitations
of SNMP. If backwards compatibility to SNMP is required, it can be achieved by
using a restricted XML data model that is backwards compatible to the SNMP tree
model. The same holds for the XPath based identification of objects. The object
identifier in SNMP essentially is a (simple) path expression. The ePath language we
propose has some additional features, such as predicates for conditional selection of
nodes. Nevertheless, the basic functionality for identifying a node in the information
model is identical and SNMP requests can be treated like any other path expres-
sion. A common requirement for both interfaces is that the resulting overhead for
processing requests is very low to allow an implementation on resource constrained
nodes.

Summing up, we identified the following requirements and design goals for the
management interface:

• An information model based on XML, which is compatible to the SNMP tree
model

• A XPath oriented node selection that is compatible to SNMP object identifier

• Extensions to SNMP functionality that allow invocation of methods and sup-
port nested tables

• Low storage and processing overhead to allow an implementation on resource
constrained nodes

• Easy integration in Web service environments through a REST/XML interface

• Backwards compatibility to SNMP with an SNMP interface

3.8.0.2 Cross-Layer Communication Interface

The Cross-Layer Communication Interface (CLCI) is used to exchange information
between the application layer and the network stack and between the different layers

154 3 Runtime Environment

inside the network stack. This situation is depicted in Figure 3.16. The different
components of the ǫSOA platform, such as the modular network stack, the network
protocols and the application logic are connected to the CLCI. Every component
can publish information and request information from other components in order to
optimize its execution. The Optimizer shown in the figure is the global optimization
component of the ǫSOA platform. Based on the network topology and other infor-
mation provided by the lower layers of the network stack, it optimizes the execution
of applications. It also publishes application level information through the CLCI to
supply lower layer protocols with application level information, e.g., communication
data rates.

This design is a deliberate violation of the layered design enforced by architec-
tural standards such as the Open System Interconnection Reference Model (OSI
Model)[4]. The OSI Model divides the network communication into a stack of seven
layers. Each of these layers provides services to the layer above and may use services
provided by the layer below. An important characteristic is that each layer only in-
teracts with directly adjacent layers. A layer may not use services provided by a
layer located more than one position down or up in the network stack. The commu-
nication between adjacent layers is limited to procedure calls and the corresponding
responses. A layer therefore cannot access information provided by layers higher up
in the network stack, unless this information is provided during the procedure calls.

The violation of the layered design has to be approached cautiously to avoid the
creation of unmaintable code and unwanted side effects. An overview of problem-
atic issues in non-layered network stacks is presented by Kawadia et al.[79] and
Srivastava et al.[145]. On the other hand, several research projects have shown con-
siderable performance gains if cross-layer information is exploited. The main usage
of cross-layer information in the ǫSOA platform is the optimization of the execution
of applications in the application level. These optimizations require information that
is only visible to the lower layers of the network stack, such as neighborhood infor-
mation. Our cross-layer approach does not aim at removing the layering of network
protocols but instead augments the network stack with an additional communication
interface that allows the retrieval of information from each layer. The CLCI can also
be used to push information down the network stack. We currently use this feature
to improve the monitoring in the ǫSOA platform. To detect the failure of nodes, the
ǫSOA platform uses heartbeat messages that are periodically sent by each node. If
it is known that a device submits data with a high periodicity, e.g., regular sensor
measurements, the heartbeat is turned off and the received measurements are used
to check whether the node is still available or not. This requires information about
the measurement data rates, which can only be provided by the application layer.
We are analyzing further tuning possibilities inside the network stack in ongoing
work.

The cross-layer communication is performed using a shared information repository
that can be accessed by the different components. This repository is managed by the
CLCI. Because the set of running applications is not fixed, the type and structure
of the shared information can change over time. This requires an extensible and

3.8 Management Interface & Cross-Layer Information Exchange 155

reconfigurable information model. Many information accessed through the CLCI
can be provided by the local node, e.g., battery levels, neighborhood information,
etc. Nevertheless, some information can only be provided by combining the local
information of multiple nodes in order to gain a global view on the embedded net-
work. To allow the use of the CLCI in performance critical components such as the
networks stack, the access to local information should be realized with very little
overhead. The access to remote information should be handled transparently by the
CLCI. The last requirement is imposed by the resource constraints on the embedded
nodes. The implementation of the management repository has to be as compact as
possible to minimize the required storage on the embedded devices.

Summing up, we identified the following requirements and design goals for the
cross-layer communication interface:

• Extensible information model that can be changed at runtime

• Efficient access to information at the local node

• Easy access to data on remote nodes

• Low storage overhead

3.8.0.3 Solution

A comparison of the requirements for the cross-layer communication interface and
the management interface shows a lot of similarities. An XML based information
model solves the requirements of both interfaces w.r.t. flexibility and extensibility.
Using the XPath oriented access to information, local and remote information can
be addressed. With a corresponding API, a component on one node can access
information published by other components on this node and information published
by components on remote nodes. This provides the required access to remote and
local information for the cross-layer communication. Management tasks can be
realized in a similar way. The user simply specifies a path expression to select
or update the information on a remote node. As we will show in the following
paragraphs, it is possible to implement a XML based solution very efficiently. This
allows an implementation on resource constrained nodes and provides the required
performance for frequent cross-layer communication.

The information model used in our solution provides a unified view of all informa-
tion available in the embedded network. It organizes the information in a hierarchical
way and is the foundation for a XPath oriented query language that can be used
to access and modify nodes in the tree. Its structure is flexible and can be adopted
based on the application field. Please note that the tree is not materialized in the
network. The represented information is still kept at individual nodes and therefore
distributed throughout the network. The information tree is an abstraction that is
used to organize this information. In order to interact with the information tree,
meta-information about the structure, organization and type of nodes contained in

156 3 Runtime Environment

the tree is required. This meta-information is kept in an external repository. We
will first give an intuitive explanation of our solution based on an example.

Example An example information model is shown in Figure 3.17. The root of the
information model is the Network node. At the current state it only contains one
child node, Nodes, which stores a list of all nodes present in the embedded network.
If additional network wide information should be added to the information model,
new children can be appended. The Nodes element may have an arbitrary number
of Node children. Each of these children stores information about a node in the
network. A required child element is the NodeID element. It provides access to the
node identifier in the ǫSOA platform and is needed to unambiguously identify a node
in the information model. Besides the identifier, additional elements may be added
to a Node. The type and number of these optional child elements is application
domain specific and may be changed at runtime. The figure shows two additional
elements that provide access to the Stream Router configuration on the node and
to the configuration of the service instances installed at the node.

The Stream Router is implemented with a tabular data structure. The corre-
sponding tree in the information model consists of a list of Entry nodes, which
represent the rows in the table. Each of these rows has several columns, which are
added as children to the Entry. To keep the example concise, we showed only three
columns in the figure, Stream ID, Target and Characteristics. These children rep-
resent the identifier of the data stream, the target destination of a data stream and
the required data stream characteristics (e.g. reliable data transfer).

The Instances node provides access to all service instances present at the node.
Each instance is represented by an Instance child node. Like the NodeID in the
Node, the ID child is used to uniquely identify an Instance. It is a required child
of each Instance. The remaining children are instance specific. They can be used
to provide access to status information or configuration parameter. In the example,
the “Temperature Sensor” instance has a DataRate child that allows to retrieve and
change the measurement data rate. The “Light Bulb” can be queried for the number
of hours worked by retrieving the HoursWorked child.

The example also shows a further child element of Node: the Neighbors child. It
provides access to information collected by the lower layers of the network stack.
In the example it contains the identifier of the node (NodeID), the neighbor node
(NeighborID), the Bandwidth and the approximated Distance, which is calculated
based on the received signal strength of the radio signal. Like the StreamRouter,
the Neighbors node is organized as table. Neighbors can be used locally on a node
to exchange information between the different layers of the network stack. If the
neighbor information from multiple nodes is collected, the network topology can be
reconstructed. This information is used during application installation to optimize
the execution of application based on the network characteristics.

3.8 Management Interface & Cross-Layer Information Exchange 157

N
e
tw
o
rk

N
o
d
e
s

N
o
d
e

N
o
d
e

S
tr
e

�� Router
E
n
tr
y

S
tr
e

�� IDTar
g
e
t

C
h
a
ra
c
te
ri
s
ti
c
s

E
n
tr
y

..
.

In
s
ta
n
c
e
s

In
s
ta
n
c
e

In
s
ta
n
c
e

S
e
rv
ic
e

H
o
u
rs
W
o
rk
e
d

ID

..
.

N
e
ig
h
b
o
rs

N
e
ig
h
b
o
r

N
e
ig
h
b
o
r

N
o
d
e
ID

N
e
ig
h
b
o
rI
D

B
a
n
d
w
id
th

D
is
ta
n
c
e

..
.

A A

ID

"T
e
m
p
 S
e
n
s
o
r
1
"

"L
ig
h
t
B
u
lb
 1
"

N
o
d
e
ID

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

N
o
d
e
 S
e
le
c
ti
o
n

D
a
ta
R
a
te

S
e
rv
ic
e

T
e
m
p
_
S
e
rv
ic
e

L
ig
h
t_
S
e
rv
ic
e

Figure 3.17: Example Information Model

158 3 Runtime Environment

Structure The tree structure used for organizing the management information uses
two conventions. Lists are implemented following a convention we already used in
the example for the list of nodes. A list of n item is always composed of a single
parent element (Nodes in the example) that has n child elements (Node in the
example). The parent may not have any other elements besides these children.

Tables are realized as lists of tuples. A single parent element stores a child for each
row in the table. Each row possesses a child element for each column in the table.
We already used this convention in the example for modeling the StreamRouter.
The StreamRouter possesses a Entry child element for each row of the routing table.
Each Entry possesses a child for each column in the table.

These conventions are used for two reasons. First they guarantee backwards
compatibility to SNMP, which can only express information models following these
conventions. Second, they allow a more compact representation of the tree. We will
present more details on both issues in the following sections.

Path Expression Language Users or programs can access the information tree by
selecting a node of the tree and issuing a data retrieval or update request. A node is
uniquely identified by the path from the root to this node. We use a XPath oriented
language to notate such a path. XPath is well known in the IT domain and should
therefore provide an intuitive query interface for many users. We use a subset of
XPath that can be implemented efficiently on resource constrained nodes. We call
this subset embedded path expression language (ePath).

Like XPath, ePath uses localization steps comprising a navigation axis, a node
test and optional predicates. An expression consists of a sequence of localization
steps separated by /. The root of the tree is identified by the /. Multiple nodes of
a tree can match a given path expression. If this is the case, a list containing all
matches is returned, or an update of all matches is performed respectively. Consider
the following example path expression

/Network/Nodes/Node [2]

The expression consists of three localization steps. First the root node of the tree
is selected and a node test is performed to check whether the node is “Network”.
The second localization step, /Nodes, selects all children of type “Nodes” from
“Network”. Like in XPath the default axis is the child axis and can be omitted. The
third localization step selects all “Node” children of “Nodes”. This step additionally
uses a predicate. Predicated are notated in square brackets and appended to the
localization step. A simple numeric predicate i selects the i’th child element that
passed the node test. In the example we selected the second “Node” child. It is also
possible to use boolean expressions as predicates. For example

/Network/Nodes/Node [NodeID = 4]

selects the node with node identifier 4. Boolean expressions can be built based
on constants and direct children of a node. In the example we compare the value
stored in the child “NodeID” with the constant 4. The limitation to direct children

3.8 Management Interface & Cross-Layer Information Exchange 159

is more restrictive than XPath. XPath allows arbitrary XPath expressions inside
the predicate. We chose this limitation to get a more compact implementation of
the query execution engine on resource constrained nodes.

To retrieve the data rate of the temperature sensor from the information tree in
the initial example, we can use the following expression:

/Network/Nodes/Node [1] / In s tance s /
Ins tance [ID = ‘ ‘Temp Sensor ’ ’] / DataRate

The path expressions are also used for exchanging cross-layer information on a
node. Many requests will access information that is available at the node the request
is created on. The home operator $ can be used as a shorthand expression. The
definition of $ is:

$: := /Network/Nodes/Node [x]

where x is the identifier of the node, the request is issued at. If the temperature
sensor in the example above is located on the local node, the request can be rewritten
to

$/ In s tance s / Ins tance [ID = ‘ ‘Temp Sensor ’ ’] / DataRate

An important requirement for the network management is the support of method
invocations. ePath supports this features with a special axis, the method axis #.
The method axis can be used to invoke a method provided by the element specified
with the preceding localization step. Assume the “Stream Router” has a method
named “clear” that can be used to wipe the internal routing table. To invoke this
method on the local node, the following expression can be used

$/StreamRouter/#c l e a r ()

Note that the “clear” method is not a built-in method from the query language. It is
a method offered by the “StreamRouter” and has to be implemented outside of the
query language. These methods are therefore fundamentally different from XPath
functions, which are a feature of the query language. ePath defines two standard
methods, “set()” and “get()”. The former is used to change the value of a node,
the latter is used to retrieve the content of the current node (for leaf nodes) or
the subtree rooted at this node (for inner nodes). Note that “get()” is the default
method that is called whenever no other method is specified. The data rate selection
above is therefore equivalent to

$/ In s tance s / Ins tance [ID = ‘ ‘Temp Sensor ’ ’] / DataRate/#get ()

The “get()” method has an optional parameter n that allows to limit the depth of
the returned tree. An invocation of “get(1)” will only return the direct children of
a node.

Methods can have an arbitrary number of arguments. These arguments are passed
on to the externally implemented method. The “set” method accepts one parameter,
the new data value.

160 3 Runtime Environment

The wildcard node test can be used to select all children of a specific node. To
retrieve all values belonging to the StreamID column of the Stream Router, the
following expression can be used

$/StreamRouter /∗/StreamID

The return value of this function is a list containing the corresponding entries. Please
note that there is a difference between the following two expressions:

$/StreamRouter

and

$/StreamRouter /∗

The former selects the subtree rooted at the Stream Router node. The return value
is a single tree. The latter selects all entries of the Stream Router table. The return
value is a list of trees. This list contains all children of the Stream Router node.

Implementation Fundamentals A textual representation of the nodes in the in-
formation tree is not feasible for resource constrained nodes. Even if dictionary
tables are used and each node only refers to an entry in the dictionary, the resulting
storage requirements are too large. In the example, a dictionary containing only
the elements used in the subtree of the “StreamRouter” would already require more
than 60 bytes of storage. The demand for the more complex “Instances” subtree
will be even higher. The required capacity for storing the information tree from the
example is therefore a few hundreds of bytes. The example is a comparably simple
tree for a node executing two service instances. The storage requirements quickly
increase with every additional instance. The required storage capacity is not feasi-
ble, given the RAM constraints in the order of 10 kBytes (the nodes we used in the
demonstrator have a total of 11k RAM).

To reduce the storage requirements, we use a numeric encoding of the tree nodes.
Each node is assigned a number that is unique at the child level, i.e., all children
of a node must have distinct numbers. Instead of storing the name of the nodes
in the tree, we only store this number. The resulting storage requirements are in
the order of some tens of bytes, what is a magnitude smaller than the dictionary
based solution. The mapping between node names and numbers is stored in a Meta-
Information Repository, along with the data type definitions and the structure of the
information tree. The assignment of the numbers has to be coordinated to ensure the
interoperability between components from different vendors. A corresponding infras-
tructure has already been established for the Management Information Base (MIB)
in SNMP. Besides a general set of management information specified in standards
such as the MIB-II[57], manufacturers can request MIB identifiers and publish man-
agement information for their devices in a subtree under this identifier. The MIB
is flexible enough to include the management information required for embedded
networks. General management information can be added in a specific subtree of

3.8 Management Interface & Cross-Layer Information Exchange 161

the MIB. Device specific information can be added by the manufacturer using the
extensibility features included in the MIB.

Meta-Information Repository The Meta-Information Repository describes the struc-
ture of the information tree. Each entry in the repository describes a node in the
tree and contains the following information:

• Namespace: namespace of the identifier

• Identifier: identifier of this entry

• Parent: identifier of the parent node

• Position: unique number (unique on child level)

• Type: type of the node

• Description: textual description of the entry

The namespace entry is explained in detail in the next section. It can be ignored
up until then.

The Identifier uniquely identifies each entry and is used to create references be-
tween elements in the Meta-Information Repository.

The Parent field is used to specify the identifier of the parent node. This field is
mandatory for every element but the root.

For performance reasons, the implementation of the information model uses nu-
meric values instead of names for each node. The Position field provides these
numbers. Positions have to be unique on the child level, i.e., two children of a node
must have distinct Position values. The Position field is required for every entry,
unless the item belongs to a list. In this case, the Position is determined by the
position of the item in the list.

There are three classes of datatypes: simple types, Objects, Subtypes, Lists and
Methods.

Simple types are basic datatypes that can be used to store values in the leafs of
the tree. We support all simple XML Schema datatypes.

Objects are compound data types. An Object can be composed of simple types
and other Objects.

Subtypes are a convenience construct for specifying multiple objects that share
common parts. A Subtype inherits all children of the supertype. A Subtype may
specify additional children. If Subtypes are used, the Position numbers have to be
unique for the union of sub- and supertype children, i.e., a subtype child may not
reuse a Position number already occupied by a superclass child.

Lists are specialized Objects. Children of a List have no fixed Position number.
Instead their position is determined at runtime based on the insertion order in the
list. Children of a List containing n elements are always numbered in increasing
order starting by one. It is possible to add nodes of different types to the same List.

162 3 Runtime Environment

Namespace Identifier Parent Position Type

default Network - 1 Object
default Nodes Network 1 List
default Node Nodes - Object

default NodeID Node 1 INT
default Stream Router Node 1 List
default Instances Node 2 List

default Entry StreamRouter - Object
default StreamID Entry 1 INT
default Target Entry 2 INT
default Characteristics Entry 3 INT
default clear StreamRouter 3 Method

default Instance Instances - Object
default ID Instance 1 INT
default Service Instance 2 INT

TempService TempService default:Instance - Subtype
TempService DataRate TempService 3 INT

LightService LightService default:Instance - Subtype
LightService HoursWorked LightService 3 INT

Table 3.3: Meta-Information Repository for the Example Information Model

Methods can be added to Objects (and the derived types Subtype and List). A
method can have an arbitrary number of parameters. A parameter can be any simple
type and is specified as child of the Method. Methods always have a return value
that specifies whether the invocation was successful or not. The Position number of
Methods has to be unique on the method level, i.e., no two methods may have the
same Position number. Positions 1 and 2 are reserved for the “get()” and “set()”
methods.

Table 3.3 shows the Meta-Information Repository for the running example (the
“Neighbors” subtree is omitted to keep the example concise). The root node is the
Object “Network”. It possesses a single child element “Nodes”, which is a List. Pos-
sible entries of the list are all children of “Nodes”, in this case “Node” Objects. Note
that “Node” has no Position value because it is the child element of a List. A node
has two children. The first child is the “Stream Router” identified by a Position value
of 1, the second one the “Instances” List, identified by a Position value of 2. The
“Stream Router” is a List of “Entry” Objects. Entries are composed of three integer
values: a “Stream ID” (Position 1), a “Target”(Position 2) and “Characteristics”
(Position 3). The “Stream Router” also specifies a Method named “clear()”. This
method has no parameters and therefore no children. The second child of “Node”
is the “Instances” List. As seen in the example, “Instances” can contain different
service instances with different structures. This is modeled by specifying the com-
mon parts of these structures in the supertype “Instance”. The common parts are

3.8 Management Interface & Cross-Layer Information Exchange 163

the “ID” and “Service” simple types. Based on this supertype, two subtypes are
defined. The “Temp Service” subtype extends the supertype with an additional field
“DataRate”, the “LightService” with an additional field “HoursWorked”.

<mir : en t ry xmlns:mir=” ht tp : //www3. in . tum . de/mir”>
< !−− de f i n e new namespace f o r s e r v i c e −−>

<namespace>TempService</namespace>
< !−− t h i s entry d e f i n e s the TempService inner node −−>

< i d e n t i f i e r>TempService</ i d e n t i f i e r>
< !−− TempService i s a sub type o f Ins tance −−>

<parent>In s tance</ parent>
< !−− TempService i s on ly used in l i s t s , no Pos i t i on needed −−>

<po s i t i o n></ po s i t i o n>

< !−− TempService i s a sub type −−>

<type>Subtype</ type>
</ mi r : en t ry>

Listing 3.10: Meta Information for TempService

<mir : en t ry xmlns:mir=” ht tp : //www3. in . tum . de/mir”>
< !−− namespace i s i n h e r i t e d −−>

< !−− DataRate d e f i n t i o n −−>

< i d e n t i f i e r>DataRate</ i d e n t i f i e r>
< !−− a d d i t i o n a l f i e l d f o r TempService −−>

<parent>TempService</ parent>
< !−− numeric i d e n t i f i e r −−>

<po s i t i o n>3</ po s i t i o n>

< !−− data ra t e in measurements per minute −−>

<type>shor t</ type>
< !−− data ra t e i s managed by the dev i c e and may only be quer i ed −−>

<ac c e s s>read−only</ ac c e s s>
< !−− has to be implemented by every dev i c e −−>

<s t a tu s>mandatory</ s t a tu s>
</ mi r : en t ry>

Listing 3.11: Meta Information for DataRate

As indicated in the example, each service instance can extend the Meta-Information
Repository with a tailored management interface. To support an easy integration of
new devices into an existing embedded network it is desirable that these extensions
are stored directly on the node. If a new node enters the network, the management
meta-information can be retrieved automatically from the node and added to the
repository. Information in the MIB of SNMP is specified according to the Structure
of Management Information Version 2 (SMIv2)[60] specification. SMIv2 specifies a
textual data format to represent meta information. The resulting descriptions are
too large to be stored efficiently on resource constrained devices. We designed an
XML format to store entries in the Meta-Information Repository. It contains all
fields shown in Table 3.3. The format additionally contains fields for storing the
information contained in SMIv2 documents, such as access rights and status flags.
These fields have the same purpose as the corresponding fields in SMIv2 and are not
presented in detail here. The XML-Schema definition for this format makes heavy

164 3 Runtime Environment

use of enumerations. Enumerations can be encoded very efficiently with EXI and
the resulting document sizes are small enough to fit on embedded devices. Example
documents for the temperature service are shown in Listing 3.10 and Listing 3.11,
the corresponding XML-Schema definition can be found in Appendix B.4. Both
documents use the SMIv2 field access to specify the valid management operations
on the node. The second document additionally uses the SMIv2 field status to spec-
ify that the corresponding management entry has to be implemented by all devices.
The EXI encoded documents from the examples both have a size of 28 bytes.

Namespaces The uniqueness requirement for identifiers can be relaxed. This is
done through the creation of namespaces. A namespace can be created at any node
and includes the node and all nodes belonging to the subtree rooted at this node.
A namespace behaves like an implicit prefix that is added to any node identifier
belonging to the namespace. Because of this prefix, nodes from different namespaces
can be distinguished even if they use the same identifier. Namespaces are stored
in the Meta-Information Repository. The first column of Table 3.3 specifies the
namespace of an element. Namespaces may be omitted in the reference to the
parent node in the meta-information repository, if both nodes belong to the same
namespace. In all other cases, they are mandatory.

Note that, despite the introduction of namespaces, the path to a node in the infor-
mation model is still unique if the numeric values are used. The path is determined
by the Position numbers which are by definition unique at the child level. A sequence
of these numbers therefore unambiguously identifies a node in the information tree.

To keep the path expression language concise, namespace identifier may be omit-
ted if the node identifier is unambiguous. This is the case in the vast majority of
path expressions. Ambiguities occur whenever a node has two or more children that
all use the same identifier but from different namespaces. The “Instances” node in
the example is a possible candidate for ambiguities. Assume two developers modeled
two instances, each using a different namespace (what is a good design decision to
avoid name clashes). Assume both instances have a “DataRate” node. The following
ePath expression is ambiguous:

$/ In s tance s / Ins tance [ID = ‘ ‘Temp Sensor ’ ’] / DataRate

Based on the information contained in the Meta-Information repository, it is unclear
to which namespace the “DataRate” field belongs. Both instances are subtypes of
“Instance” and both use a “DataRate” field but from different namespaces. This
information could only be retrieved by actually executing the path expression and
checking the type of the instance with ID “Temp Sensor”. An additional complex-
ity is that ambiguous expressions cannot be transformed to a numeric encoding,
because the different candidate identifiers may use different Position values. Am-
biguous path expressions are therefore rejected by the execution engine and have to
be reformulated by the user. This can be done by adding the namespace identifier:

$/ In s tance s / Ins tance [ID = ‘ ‘Temp Sensor ’ ’] / TempService:DataRate

3.8 Management Interface & Cross-Layer Information Exchange 165

In some cases ambiguities can be removed by using the specific subtype instead of
the generic supertype. The above path expression is equivalent to:

$/ In s tance s /TempService [ID = ‘ ‘Temp Sensor ’ ’] / DataRate

This path is unambiguous, because the subtype TempService specifies only a single
DataRate entry.

Implementation As mentioned in the previous sections, the implementation uses
numeric node identifiers instead of strings for performance reasons. The Informa-
tion tree offers two interfaces, the ePath API that is used to evaluate textual ePath
expressions and the binary API that can be used to evaluate numeric path expres-
sions. The former is typically used to perform network management tasks using the
XML/REST interface. It offers a human readable syntax and provides an intuitive
interface for the end user. In order to evaluate a path expression, it is first trans-
formed to a binary path expression. This transformation overhead can be avoided
by using the numeric interface. It is typically used for the cross-layer information
exchange between components or management tasks using the SNMP interface. The
path expressions used by these components will not change at runtime. They can
be transformed once during development and the more efficient numeric representa-
tion is used at runtime. The query evaluation is organized in five steps, which are
explained in the following paragraphs

If the ePath interface is used, the first step performed in the execution engine is
the transformation of ePath expression into the numerical notation. This can be
done easily based on the information in the Meta-Information Repository and is
not presented in detail here. If the numeric interface is used, this step is omitted.
Assume the following ePath expression is issued at node 1, which also maintains the
Meta-Information Repository:

/Network/Nodes/Node [Log i ca l ID = 4]/ In s tance s /
Ins tance [ID = ‘ ‘Temp Sensor ’ ’] / Temp Service:DataRate

This ePath is rewritten by the evaluation engine on node 1 to the following numeric
path expressions:

/1/1/∗ [Log i ca l ID = 4]/3/∗ [1 = ‘ ‘Temp Sensor ’ ’] /3

As stated in the previous sections, nodes contained in a list have no fixed Position
entry. The evaluation engine replaces the corresponding entries in the path with the
wildcard operator ∗ to ensure the whole list of children is traversed.

The second step is the selection of target nodes of an expression. The topmost
three layers of the information tree in the example specify a node in the embedded
network. The execution engine splits the path expression at this point. The first
part, including any predicates and the home operator $, is evaluated. The result of
this evaluation is the identifier of a node (or a list of identifiers). Note that because

166 3 Runtime Environment

the position of nodes in the node list is not deterministic, a specific node can only
be accessed by specifying a predicate involving the NodeID. If multiple nodes are
affected by a path expression, the following steps are performed for each of these
nodes. In the example, the path expression is targeted at a single node identified by
the following expression:

/1/1/∗ [Log i ca l ID = 4]

The target node therefore is the node with id 4.

The third step is the transmission of the path expression to the target nodes.
This step can be omitted if the only target is the local node.

After the completion of the previous steps, the fourth step is the evaluation of
the path expression at the target node. The purpose of the information tree is
to provide access to information that is stored in the various components installed
at a node, such as service instances, the Stream Router or the network stack. A
design goal was to avoid storing redundant information. Instead of duplicating the
information in the information tree, we use callback functions that provide access
to the information installed in the corresponding component. This ensures that the
returned data is always up-to-date and minimizes the overall storage consumption.
A callback function has to be implemented by every component that wants to publish
information in the information tree. The callback function has the following syntax:

callback function(methodType, remainingPath, < parameter >)

The individual components are:

• methodType: defines which method should be invoked. Possible values are
the predefined functions get() and set(), or user defined functions.

• remainingPath: a part of the original path expression that has to be evalu-
ated by the method (this field is explained in more detail later on)

• <Parameter>: parameters for the method call. Number and type depend
on the invoked method.

The evaluation of the path is done by subsequently processing the individual parts
of the path expression. The evaluation is done by maintaining a list of nodes n that
match the path expression. Initially, this list contains only the root node. Let p be
the path element that should be evaluated. The engine evaluates the path expression
for each entry in ni and thereby distinguishes four cases:
Case 1: Evaluation Finished

If p is the last path element, the evaluation of the expression is finished. If the
user specified a method call, the corresponding method is invoked on ni. If the user
did not specify a method call (or used the “get()” method), the subtree rooted at
ni has to be returned (if ni is a leaf, this tree consists only of a single node). This

3.8 Management Interface & Cross-Layer Information Exchange 167

is done by calling each callback function located in the subtree of ni and combining
the results according to the structure of the information tree.
Case 2: Inner Node Found

If p is not the last path element and ni is an inner node, ni is removed from the
list n and replaced with the child node(s) identified by p. If a wildcard expression
is used, all children of a node are appended to n. If a predicate is specified in p, the
list is filtered accordingly.
Case 3: Callback Found

If p is not the last path element and ni is a method call, the method is invoked
with the remaining part of the path expression as parameter. This is a very conve-
nient way for providing access to information stored in lists or tables. The Stream
Router for example installs the callback function at the “StreamRouter” node of the
information tree. An access to

. . . / StreamRouter/Entry [4] / StreamID = . . . / 1 / 4 / 1

will result in a method call to the Stream Router with a remaining path of 4/1. In
this case, the first element identifies the row in the Stream Router table, the second
element the column.
Case 4: Error

In any other case, or if an error is encounter during the invocation of the callback
method, the path expression is invalid and a corresponding error is returned to the
user.

The fifth and last step is the transmission of the result. If multiple nodes were
involved in the execution of a path expression, the results are combined in this step.
Results are encoded as XML trees using the binary XML format EXI.

Web service based interface The Web service based management interface has
been implemented for our demonstrator platform. It follows the REST philosophy.
The ePath expression can be specified directly in the URL of a http get/post request.
Return values are delivered as XML document in the http response. This interface is
used by the development and management tools in the ǫSOA platform to adjust the
configuration of the nodes and services in the embedded network. The Web service
based interface is offered by a lightweight bridge. The bridge is required because
not all embedded networks support IP based communication, especially the TCP/IP
communication required by http is often not supported. The bridge transforms
incoming http requests into corresponding requests in the ǫSOA platform and vice
versa. The bridge also performs the mapping of ePath expressions to numeric path
expressions. Note that the conversions only affect the message format. Because
the internal data model uses a XML based data format the actual payload of the
exchanged messages is not changed by the bridge. If the embedded network supports
TCP/IP communication, the bridge is not required. However, a bridge might still be
useful in this case for providing access control or maintaining the Meta-Information
Repository.

168 3 Runtime Environment

Compatibility with SNMP The tree based information model and the numeric
path expressions were designed to be backwards compatible to SNMP. The informa-
tion model used in the ǫSOA platform is more expressive than the SNMP information
model w.r.t. tables and lists. In SNMP, a table may only contain simple data values.
In the ǫSOA platform a table may contain complex values, too. This limitation is
inherent to SNMP and well known by SNMP experts. To circumvent this problem,
special table designs have been developed for SNMP that allow the modeling of ta-
bles containing complex data types. The ǫSOA information model does not enforce
these limitations. If a SNMP based interface should be offered, these considerations
have to be taken into account during the development of the information model.
Otherwise the corresponding subtree of the information model can only be accessed
with the Web service based interface. SNMP uses a slightly different syntax com-
pared to ePath to address elements in lists and tables. Both use keys to identify
entries. In SNMP, keys are always appended at the end of an object identifier. In
ePath, keys are specified with predicates and may occur at any position in the path
expression6. These two modes can be supported easily with a switch in the query
engine.

The SNMP based interface in the ǫSOA platform is not fully implemented yet.
The missing part is a bridge component that offers three functions: (1) a conversion
between the UDP based SNMP protocol and the message format used in the ǫSOA
platform, which is not necessarily based on IP, and (2) a transformation between
the XML message format used in the ǫSOA platform and the ASN.1 format used
by SNMP. Note that the latter transformation is straightforward, because the XML
structure is identical to the tree structure specified in the MIB/Meta-Information
Repository.

The third task of the bridge is the mapping between the information models used
in both domains. The syntax of the numeric path expressions is compatible to the
syntax used in SNMP. The information model specified in the Meta-Information
Repository can therefore be mapped to the information specified in the MIB repos-
itory in SNMP. The only prerequisite is the addition of a prefix that embeds the
ǫSOA information model in the hierarchy specified by the MIB, which can be done
by the bridge. The bridge can also generate a MIB module definition containing
all information of the Meta-Information Repository, which can then be loaded by
SNMP tools.

A possible extension of the bridge is to support the efficient bulk retrieval of
management information. SNMP uses an iterator model to traverse tables and
lists. A requester can issue a series of “getNext” requests to retrieve one entry after
the other. This results in a very high number of exchanged messages and a high
communication overhead. The bridge could be configured to prefetch specific tables
upon the arrival of the first “getNext” request. This can be done by simply fetching
the whole subtree defined by the table. The series of “getNext” requests can then
be answered directly from this cache. SNMPv2 introduces a new bulk oriented get

6This difference is the reason why ePath supports nested tables, whereas SNMP does not.

3.8 Management Interface & Cross-Layer Information Exchange 169

operation to improve the retrieval of multiple data items at once. If such a request
is issued, the bridge could automatically activate the caching for the corresponding
subtree.

Cross-Layer Information Exchange The second application field of the informa-
tion tree - besides the management interfaces explained in the previous sections -
is the cross-layer information exchange. The tree based information model is flex-
ible enough to allow the addition of new cross-layer information at runtime. If a
new component is installed at a node, or an existing component is replaced, the
information model can be adapted accordingly.

At the current implementation state, the cross-layer interface in the ǫSOA plat-
form is used primarily for topology discovery. Each node maintains a list of neighbor
nodes. This list contains information about the signal strength and related metrics
of received messages, which is supplied by the physical layer of the network stack.
The list is also used to track the number of corrupted or lost packets and link related
metrics such as bandwidth, utilization, etc. This information is added by the used
network and transport protocol. The signal strength is used to approximate the
distance between nodes and to layout nodes in the graphical user interface. The
other metrics are stored in the System Model in the Abstract Network Layer and
are used to optimize the execution of applications. Not all metrics can be supplied
by all protocols. The extensibility features of the cross-layer interface can be used
to dynamically add or remove information based on the capabilities of the used pro-
tocols. In order to create the network topology and the Abstract Network Layer
view, all neighbor tables have to be collected at a single node.

The information model provides the application developer with an easy to use
interface to access data stored on remote nodes. By supplying suitable node selection
criteria at the first levels of the ePath expression, data from one or more remote
nodes can be fetched. To retrieve a unified table containing the information of all
neighbor tables, the ePath expression

/Network/Nodes/∗/ Neighbors /∗

can be used. The result of this request is a single big table containing the entries of
all neighbor tables. The required network communication is handled transparently
by the system.

The ǫSOA platform continuously monitors the availability of nodes to detect node
failures. The monitoring is realized with a periodic heartbeat. If no signal is received
for a configurable period of time, a corresponding failure notification is issued by
neighboring nodes7. The heartbeat is not needed if nodes emit measurements with a
high frequency. In this case, the packets used for sending the measurements can be
used to detect whether a node is running or not. Information about the data rates
of data streams and measurement frequencies are provided through the cross-layer

7A node failure is only announced if no other node receives the alive signal to distinguish between
broken links and a complete node failure.

170 3 Runtime Environment

interface by the application layer. The ǫSOA middleware automatically adjusts the
frequency of heartbeats based on this information to avoid unnecessary message
transmissions.

Related Work A good overview of different network management approaches can
be found in the book of Martin-Flatin[102]. An overview about recent developments
in the area of Internet Management is provided by Schönwälder et al[133]. We will
focus on projects that either use SNMP, XML based interfaces or are specifically
targeted at embedded networks.

Management Protocols in the IT domain SNMP is not the only network manage-
ment protocol available in the IT domain. An alternative is Universal Plug and Play
(UPnP). UPnP defines a set of protocols that ease the installation of components
in home and enterprise networks. UPnP provides protocols for address assignment
(DHCP based or based on AutoIP[62]), service discovery, service description, control
operations on the devices, event notifications from the devices and a presentation
layer based on Web technologies. The benefit of UPnP is a large set of functionality
that covers many important aspects of system management. The drawback is the
complexity required to implement this functionality. We could not find an UPnP
implementation that is small enough to fit on small embedded devices such as the
TMote platform. In order to be usable in the area of embedded networks, UPnP has
to be adapted. The addressing functionality is tailored to IP based communication
which may not be used in embedded networks. The SOAP based communication
and the XML based description format may require some changes to fit on resource
constrained nodes. The presentation layer based on a Web browser and http will be
hard to realize on embedded devices due to its size. It is possible to implement a Web
server on the TMote platform, however the implementation of the TCP/IP stack,
the http protocol and the Web service use up almost all resources available on the
device, leaving no room for the implementation of the actual applications. Instead
of redesigning UPnP in all these areas we chose to start with a more lightweight
protocol, SNMP, that is focused on the implementation of the management tasks
alone and creates a much lower implementation footprint.

Due to the same reasons we also restrained from building a management solution
based on the Devices Profile for Web Services (DPWS). DPWS aims at provid-
ing the functionality of Web service technologies on resource constrained embedded
devices. DPWS offers functionality comparable to UPnP, with the addition of a
service registry that provides a centralized overview of all available services in the
embedded network. DPWS uses stripped down versions of the WS-* technologies to
allow an implementation on small devices, however the resulting resource usage is
still very high compared to SNMP. A lot of this complexity can be attributed to the
SOAP/XML based communication. In our opinion, a REST based communication
fits better into the domain of resource constrained devices. We therefore decided
to implement Web service based management with a REST based interface instead

3.8 Management Interface & Cross-Layer Information Exchange 171

of DPWS. But this decision is not fixed. There are ongoing efforts to improve the
performance of DPWS[48]. If a resource efficient DPWS implementation becomes
available, the REST based frontend can be changed to a SOAP based frontend using
DPWS.

The Web-Based Enterprise Management (WBEM) consortium defines a set of
technologies for Web based management solutions. The core technologies are the
(meta)schema definition CIM, a mapping of CIM to xml called xmlCIM, and pro-
tocol bindings for the CIM operations for http and WS-Management. CIM is based
on a metamodel that uses an object oriented design. The available metamodel enti-
ties are: classes, properties (state), methods (behavior), qualifiers (metadata), etc.
The Common Information Model (CIM)[27] specifies three model layers. The Core
Model contains a basic vocabulary for describing managed systems. This model is
extended by Common Models that define further classes for technology independent
application areas, e.g., network management. The Core and Common Model are
defined in the CIM Schema specification[32]. The Common Model can be further
refined by technology specific extension specified in Extension Schemata. The CIM
model itself is not bound to a particular representation. A suitable XML based
format is specified in xmlCIM[30], the corresponding DTD definition in [29]. CIM
supports two kinds of operations. Extrinsic operations are standard methods defined
in a CIM schema. Intrinsic operations can be used to analyze and modify the class
model. They provide an interface comparable to reflection APIs in object oriented
programming languages. The interaction with a CIM based system is possible using
different bindings, such as http[28] or WS-Management[31].

There are other management approaches that are also based on a stack of stan-
dardized XML technologies. Hong et al. propose a management system based on
Web servers running on the embedded devices [151]. In this system, management
information is exchanged in a XML format and transported with http calls. The
authors also propose a SOAP based interface for implementing management opera-
tions [17]. To achieve an integration with SNMP based systems, the authors propose
a XML/SNMP gateway [74].

Juniper Networks offer an interface called JUNOScript on their routing platforms[75].
JUNOScript allows client applications to communicate with XML based messages
with a Juniper router. The message format is specified in DTDs and XML Schema
documents along with a documentation describing the semantics of the message ele-
ments. A white paper from Juniper Networks is also available motivating the usage
of XML for network management[134].

The Web-based Integrated Management Architecture (WIMA)[102] allows an in-
tegration of multiple management data models, including SMI and CIM. The in-
tegration of the different models can be performed using either a model-level or a
metamodel-level mapping. Using a model-level mapping each module specified in
SMI is mapped to a dedicated DTD. Using metamodel mapping, a generic DTD is
used to represent all modules in the MIB. The benefit of model-level mapping is that
the resulting XML documents are easy to read because they reflect the structure
used inside the MIB. The drawback is that there may be multiple possible mappings

172 3 Runtime Environment

between both data models. The mapping process cannot be automated due to this
reason. The opposite is true for metamodel-level mapping. The generic XML model
can be created fully automatically, but is hard to read.

Klie and Strauß[147] propose an approach to automatically convert XMI based
MIB entries to XML-Schema definitions. This approach is comparable to the model-
level mapping used in WIMA. The authors also propose some optimizations to
achieve a better readability of the resulting documents, such as reducing the depth of
the resulting document by flattening the tree structure. Based on this mapping, the
authors designed a gateway that allows an integration of SNMP managed systems
into a XML management infrastructure[83].

Pras et al.[118] provide a performance comparison between SNMP and a XML
based management systems. The measurements were performed using a plain XML
and a zlib compressed version of XML and showed a considerable overhead for XML
processing. At the time the paper was written, binary XML implementations like
EXI were not available. As our results in Section 3.2 show, EXI provides superior
performance compared to an approach based on compressed XML. This charac-
teristic of EXI is an important prerequisite for the implementation of XML based
techniques on resource constrained devices.

To perform conversions between SNMP and XML, our work leverages the work
done in the area of SNMP to XML mapping. We use a model-level mapping to
translate between the SMI and the XML data model. Our implementation shows
that it is possible to combine a SNMP based management interface and a XML based
management interface in a single solution that can be implemented efficiently on
resource constrained nodes. This is possible due to a carefully designed information
model and query language that is backwards compatible to SNMP.

Management Protocols for Embedded Networks Lim et al.[92] propose a SNMP
proxy for wireless sensor networks. Opposed to our solution, the SNMP functionality
is implemented inside the proxy and not on the individual nodes. The nodes submit
data to the proxy which stores the information in a log file. The proxy provides
a SNMP based interface to this log file. This approach allows only read access
to sensor devices because there is no possibility to send updates to a mote. The
second drawback is that the proxy is application specific. If a new node with a new
sensor type is added to the network, the proxy proposed by Lim et al. has to be
adapted manually to include the new sensor type. This introduces a considerable
management overhead and prohibits any access to the new device until the proxy is
changed. The solution we propose does not have these limitations. New devices are
immediately accessible and we provide full access to the management information
including the possibility to change data and invoke management methods on the
remote device. Our solution requires a mediator between the IP based external
network and the embedded network, too. But opposed to the proxy from Lim et
al., the bridge used in our system is generic, i.e., does not have to be adapted to the
available devices.

3.8 Management Interface & Cross-Layer Information Exchange 173

The Bridge of the SensorS (BOSS)[143] proposes a UPnP based gateway for sensor
networks. The gateway mediates between UPnP, which is used as external interface
to the network, and an internal protocol used for the communication with the devices
in the embedded network. Like the SNMP proxy, the BOSS gateway uses a pro-
prietary protocol for the communication with the nodes in the embedded network.
This is problematic if devices from different vendors have to be integrated into a
single network. To ensure interoperability, the protocol used for the communication
between the nodes in the embedded network and the BOSS gateway has to be stan-
dardized. Because this protocol has to provide the same functionality as UPnP, this
standardization will ultimately lead to the definition of another management proto-
col. We avoid the definition of another protocol (tailored for embedded networks)
by adopting SNMP to the resource restrictions imposed by embedded devices.

A lot of work has been done in the area of network management for monitoring
oriented wireless sensor networks (WSNs). Networks that follow the “Smart Dust”
vision, i.e., are composed of a large number of nodes with high redundancy, require
different management functionality compared to the control oriented networks we
are considering in this work. Lee et al. [87] provide an overview of projects in
this area. Typical tasks of the management layer in WSNs is to collect information
about the battery status of nodes, the network topology, link characteristics such
as signal strength and bandwidth, and general characteristics such as the coverage
of the observed area. Based on this information, typical management tasks are the
(re-)configuration of the communication in order to compensate node failures, the
adoption of sampling frequencies, the power management of nodes, etc.

The motivation for the development of new management protocols for embedded
networks was the observation that WSNs require a new management philosophy.
The user should be provided with a management interface on the network level
instead of the node level. In this vision, a user only specifies the intended high
level changes; the actual reconfiguration required on individual nodes is handled
transparently by the system. This management interface is often tightly integrated
with the application. This is possible because nodes in a monitoring oriented network
are based on an identical hardware and are all executing the same application code.
The required management functionality and the used hardware are known during
system development and can be integrated directly into the application.

A project that falls into this category is the Management Architecture for Wire-
less Sensor Networks (MANNA)[125]. It provides information about the network
topology, energy resources, sensor coverage and other characteristics based on a
specialized management protocol called MANNA network management protocol
(MNMP)[124]. The authors also provide some functionality to handle faults in
event driven networks[126].

The Sensor Network Management System (SNMS)[154] provides health monitor-
ing for WSNs. It offers a query interface that allows an user to retrieve health
information from the network and a logging system to store events. SNMS comes
with own protocols for data collection and dissemination to ensure an independence
of the managed application. SNMS realizes network level management by support-

174 3 Runtime Environment

ing a dissemination algorithm that allows a delivery of control messages to multiple
nodes at once. This differentiates SNMS from point-to-point management protocols
such as SNMP.

The Sensor Network Management Protocol (sNMP)[23] offers management func-
tions for retrieving the network topology, energy map and usage patterns. For col-
lecting this information, the authors propose a topology extraction algorithm called
STREAM[24]. sNMP is focused on data collection. The authors state that the con-
structed routing tree for data collection can also be used for data dissemination but
provide no further details on this issue.

Louis Lee et al.[89] propose a policy based management system called Wireless
Sensor Network Management System (WinMS). It supports an automatic adaption
of the network based on trigger conditions. If for example measurements are above
a certain threshold the WinMS system can automatically assign bigger transmission
slots in a TDMA protocol (FlexiMAC[88]) to allow a transmission of measurements
with higher data rates.

Besides these projects there are other projects that provide specialized function-
ality for debugging, power management, traffic management, etc. The solutions
are tailored for the specific application field, whereas we aim at a general manage-
ment solution. We will therefore not present these approaches in detail. A general
overview can be found in Lee et al.[87].

The prerequisites that fostered the development of these new management solu-
tions are not given in control oriented networks. Control oriented networks are het-
erogeneous. Each node may possess different hardware devices and execute different
services. The required management functionality is therefore not known before-
hand and may even change during the lifetime of a network, when new devices and
services are added. Due to the diversity of nodes and the simultaneous execution
of multiple control tasks, a network wide management interface is not feasible for
control oriented networks. Their requirements are much closer to the management
requirements known from IT networks and protocols known from this domain can
be leveraged.

Note that the ǫSOA platform offers network wide management interfaces through
the model driven development approach. Changes in the model are automatically
and transparently mapped to reconfiguration options in the embedded network.
In order to communicate these changes to the individual nodes, the management
protocol presented in this section is used.

Cross-Layer Information Sharing In the recent years, several approaches for cross-
layer communication stacks have been developed, especially in the area of embedded
networks. An overview covering many of these approaches is presented by Razzaque
et al.[122] and Srivastava et al.[145]. The possible cross-layer solutions span a wide
area. One research field are solutions that propose architectural changes, such as
combining several layers of the network stack or partitioning the network stack based
on other criteria. Other solutions propose new interaction possibilities between

3.8 Management Interface & Cross-Layer Information Exchange 175

the layers of a network stack. The last group are information sharing approaches.
These approaches typically do not change the layered structure of the network stack.
Instead they provide an interface that allows the different layers to access a shared
information base. We will focus on the research projects directed at this last area, as
these provide functionality comparable to the cross-layer communication interface
in the ǫSOA platform.

The MobileMan project [21] proposes a networks stack that contains a shared
information database called network status (NeSt). This shared storage is made
available to all layers of the network stack through a publish/subscribe API.

CrossTalk[168] provides two views of the network protocol stack. A local view that
contains information available at the local node and a global view that provides
network wide information. The latter is created by using a data dissemination
protocol that distributes local information throughout the network.

An architecture similar to CrossTalk is used in XLENGINE[7]. It also offers an
interface to local information and a module for the dissemination of information into
the embedded network in order to create a global view w.r.t. specific metrics.

The TinyCubus project[101] proposes a cross-layer framework for sensor networks.
Cross-layer information is stored in a State Repository and can be shared between
different layers of the network stack. The type of the shared information can be
specified with a specification language to allow a customization based on application
requirements.

In X-lisa[103], information sharing between multiple layers of the network stack is
implemented using three tables containing information about the neighborhood of
the node, the data sinks consuming data from the node and the messages exchanged
by the node. Components can access these tables through an API that allows the
retrieval and update of individual entries.

The primary motivation for the development of the cross-layer communication
interface in the ǫSOA platform was to support an information exchange between
the application layer and the network stack. An important requirement in this set-
ting was the possibility to dynamically change the type and structure of the shared
information. Applications may be installed and removed at any time and the cross-
layer information repository has to be flexible enough to reflect these changes. This
distinguishes our solution from the approaches above, which all assume a static set
of shared information. The only exception is the TinyCubus, which also allows to
changing the type of shared information. Our prototypical implementation shows
that a XML based information model and a XPath oriented query language can be
implemented efficiently on resource constrained devices. Despite these differences,
there are a lot of possible synergies between the ǫSOA cross-layer interface and the
related projects. The ǫSOA platform currently uses a pull based mechanism to re-
trieve the network topology from the embedded network. The functionality provided
by the global view in CrossTalk and similar protocols is a promising extension for a
push based solution that provides faster reaction times to changes in the topology.
In the other direction, these projects could benefit from the extensible information
model used in the ǫSOA platform.

176 3 Runtime Environment

Topology Discovery The focus of our work was the design of a generic cross-layer
communication interface to allow an easy integration of the different optimization
techniques analyzed in the projects mentioned above. To showcase the functionality
we implemented a basic topology discovery mechanism. It performs reasonably well
for the test environments used in our prototypical implementations. But there are
further optimization potentials. Topology discovery has been studied for quite some
time and there are many - sometimes application specific - solutions. Topology
discovery for IP networks has been studied for several years now, a comprehensive
survey is provided by [33]. We will only present an overview of projects targeting
wireless embedded networks.

A task closely related to topology discovery is sensor localization. Localization
algorithms are used to determine the absolute or relative position of nodes in the
environment. If localization information is available, it can be used to create an
initial network topology based on communication ranges, which can be refined at
runtime to incorporate obstacles that influence the communication between nodes.

Farrell and Davis[39] propose a topology discovery algorithm for camera networks.
The authors track the movement of mobile objects and derive neighborhood rela-
tionships based on the point in time when each camera detects an object. If a slow
moving object leaves the observed area of camera A and is detected by camera B a
few seconds later, one can assume cameras A and B are neighbors. These observa-
tions can not only be used for creating a topology of the network, but also to provide
estimates about the movement of objects.

A comparable approach is pursued by Marinakis et al.[98]. They divide the topol-
ogy discovery into two phases. In the first phase, the association between sensor
observations and motion sources is inferred. In the second phase, network connec-
tivity parameters are determined in a way that best describes observed transitions
between nodes.

A multi-modal localization algorithm for wireless sensor networks is proposed by
Farrell et al. [40]. With the help of two cameras, the position of wireless nodes in an
observed area is calculated. This position can be used to derive the network topology
and calibrate the sensor devices. When the calibration is finished, the nodes can be
used to detect and track the movement of objects through the observed area.

Maróti et al.[99] present a localization system called Radio Interferometric Po-
sitioning System (RIPS). The authors use pairs of nodes that simultaneously emit
radio signals with different frequencies. Based on the phase difference between the
received signals and the signal strength, a node can determine its position relative to
the sending nodes. The benefit of this approach is that the radio module is sufficient
and no additional hardware is required on the receiving nodes.

A distributed algorithm for node localization in sensor networks is described by
Moore et al.[104]. The algorithm is capable of determining the location of nodes
based on noisy range measurements. The computation is fast enough to allow a
localization of mobile nodes.

An active research area in embedded networks is topology control. Topology con-
trol algorithms are used to control the communication of nodes in a wireless network

3.8 Management Interface & Cross-Layer Information Exchange 177

in order to guarantee some graph property (e.g. connectivity) and simultaneously
reduce the overall power consumption and/or interference between nodes. Santi[128]
provides a good overview of projects on this topic.

If required, the topology discovery in the ǫSOA platform can be extended with or
replaced by these solutions. Due to the cross-layer interface, only a minimal amount
of changes are required. These are limited to the optimization algorithms using the
network topology, which have to incorporate the new/changed topology metrics. On
the nodes, the addition or removal of topology metrics can be done dynamically in
the information model and requires no implementation changes.

Summary and Possible Extensions The communication efficiency in embedded
networks can often be improved by relaxing the strictly layered design of network
protocol stacks. A communication interface that allows a communication between
different layers can provide each layer with additional information that can be used
to optimize and adapt the communication based on application requirements and
network characteristics. Because the exchanged information depends on the ap-
plication field and the involved components on each node, the interface has to be
adaptable. At the same time, the overhead for retrieving or publishing data should
be low to allow an implementation on resource constrained nodes.

Another functionality that is crucial for an efficient management of mid-size and
large scale installations is a management interface that allows an easy inspection
and adoption of the configuration of individual nodes in the embedded network. In
the IT domain, the Simple Network Management Protocol (SNMP) is widespread
used for this purpose.

A closer look at SNMP reveals that the required functionality is closely related to
the functionality required by the cross-layer communication interface. In this sec-
tion we proposed an information model based on a tree data structure that supports
efficient cross-layer data exchange and can be used to implement network manage-
ment functionality. Nodes in the information model can be selected with an XPath
oriented expression language. A selected node can be queried to retrieve the stored
information or updated to change the stored information. The information model
contains an overview of all information in the embedded network. A node has access
to both, information published by other components installed at the local node and
information published by components on remote nodes. The access to local informa-
tion is very efficient and can be used to implement a shared information repository
between the different layers of the network stack. The access to remote information
is handled transparently by the system and can be used to collect network wide
information, such as the topology, with an easy to use interface. The second use
case for remote access is network management. Based on the information model,
configuration parameters and status variables of any node in the embedded network
can be retrieved and modified. Nodes may additionally offer methods. These meth-
ods can be invoked using the ePath language to perform more complex management
tasks.

178 3 Runtime Environment

The proposed solution can be implemented with a very low resource consump-
tion and is feasible even for resource constrained nodes. Through a bridge that
performs a message conversion, a SNMP compatible interface and a Web service
based management interface can be provided. The main purpose of the bridge
is the transformation between different network and transport protocols, because
embedded networks often do not support the IP protocol. To get a lightweight im-
plementation of the bridge, the information model was carefully designed w.r.t. two
goals. It is backwards compatible to SNMP and uses XML technologies.

The compatibility with SNMP is achieved by using a path expression language that
is semantically identical to the identifiers used in SNMP. The resulting binary path
expressions are valid SNMP object identifier and vice versa. The only exception
are extensions that were introduced to overcome some limitations of SNMP: the
possibility to invoke methods on objects and the possibility to store structured data
in tables. These features are not supported directly by SNMP and are nowadays
implemented by using workarounds. In the current implementation the user has
to implement these workarounds manually if a SNMP based interface is required.
Otherwise the corresponding subtree of the information model is only accessible via
the Web service interface. A possible extension would be to integrate the generation
of these workarounds in the bridge.

The Web service bridge offers a REST interface for network management. The in-
formation model was designed to support such an interface out of the box. The ePath
expressions can be supplied directly via a URL in the request. The returned results
are valid XML documents (expressed in EXI) and can be returned to the requester
without further processing. The Web service bridge is therefore very lightweight.
Its sole purpose is to convert between http requests and the ǫSOA message for-
mat. If the requestor does not understand EXI, the bridge can transform the result
document to a plain XML representation.

Besides the points already mentioned, there are some other extension possibilities.
The implementation currently only supports a pulling of information. If a request
is issued periodically, a push based approach might be more efficient. A possible
extension to the presented solution is the addition of a subscription mechanism,
comparable to the concept of traps in SNMP. If an update is received for a node,
every subscriber of this node is informed.

The cross-layer interface provides the technical foundation for exchanging infor-
mation between the application layer and the network stack. The ǫSOA platform
implements two optimizations based on this information: topology-aware execution
of applications and self-adjusting live signals. In ongoing work, we are investigating
further optimizations. An interesting research area is the addition of Quality of
Service metrics, such as latency, to the System Model. In the application layer, this
information can be used to calculate an estimated execution time for applications -
including required network transmissions. In the network stack, QoS requirements
supplied by the application layer can be used to automatically configure time driven
MAC protocols or dynamically prioritize important or urgent messages.

3.9 Dynamic Installation of Services 179

3.9 Dynamic Installation of Services

The flexibility of embedded networks can be increased, if new services can be in-
stalled at runtime on the nodes in the embedded network. If a new application
should be executed by the embedded network, or an improved version of the used
services becomes available, the new software can be distributed on the nodes with
only a small downtime for the reconfiguration of the network. This feature is espe-
cially important if devices in the embedded network are not easily accessible, such
as devices installed at a remote location.

3.9.1 Dynamic Service Installation in the ǫSOA Platform

A prerequisite for a dynamic installation of services is that the operating system
running on the nodes supports the dynamic loading of code. Not all operating
systems for microcontrollers possess this feature. If this is the case, the only way
to install a new service on a node is to reprogram the whole node. In most cases,
the reprogramming requires a reboot of the node and the internal state of all service
instances is lost during this process. The ǫSOA platform possesses some features
that ease the update of nodes in such a situation. Using the migration interfaces, it is
possible to extract the persistent state of services running on a node. This state can
be saved on other nodes in the network during the reprogramming and can be used
to restore the state of the node after the reprogramming has been finished. Another
feature offered by the ǫSOA platform are service libraries. Services contained in
the service library are pre-installed in the unused program memory on the nodes
whenever a node is programmed. If the user wants to install a new service on a
node, the service library on this node is checked. If it contains the desired service,
it can be instantiated without a reprogramming of the node. This mechanism can
be used to support a dynamic relocation of service instances, even if no dynamic
loading of code is supported by the underlying operating system. If the operating
system supports the dynamic loading of code, new services can be downloaded on
the node at runtime and instantiated without stopping running applications.

Services are shipped in bundles in the ǫSOA platform. A service bundle comprises
the following components:

• The service executable (which includes the generated EXI message parser)

• The service description document (the eSDL)

• The management information model of the service

These components are installed on the node using a reliable communication chan-
nel (e.g. a TCP connection) between the node and the repository containing the
service. The node stores the service and the accompanying documents in its flash
memory. When the download of all components has been finished, the service is reg-
istered at the node. During this registration, the service implementation is loaded

180 3 Runtime Environment

from the flash to the program memory and initialized. From this point in time, it
can be accessed like any other service installed at the node. To use the service in an
application, a new instance of the service can be generated using the management
interface provided by the node.

3.9.2 Related Work

The distribution mechanism described above is fairly simple. It was motivated by
the observation that many services are installed only at few nodes in an embed-
ded network used for control and automation tasks. In many monitoring oriented
embedded networks, all nodes execute the same services. In such a scenario, the
individual update of each node is too time consuming and uses too many network
resources. As a consequence, special code dissemination algorithms have been devel-
oped which allow the efficient reprogramming of whole networks based on a single
source containing the new service(s). An overview of research activities in this area
can be found in Han et al.[50] and Wang et al.[119], we will only present selected
projects in detail here.

A code update mechanism targeting all nodes in an embedded network has to
deal with several complexities introduced by (wireless) embedded networks. Nodes
are severely resource constrained, may not be available when the update process is
started and can fail during the update process. The communication in embedded
networks, especially if it is based on wireless links, is unreliable and message loss
will occur. As a consequence, a retransmission of packets has to be supported by
the code dissemination protocol. Several multicast code distribution schemes have
been proposed that target such environments. Probably the most prominent one is
Deluge[54]. Deluge is a density-aware protocol, i.e., has mechanisms to reduce the
amount of exchanged control messages in regions of the network with a high node
density. Furthermore, Deluge is an epidemic protocol, i.e., will quickly spread data
throughout the network and has built-in mechanisms to compensate lost messages.
By combining both concepts, data can be distributed reliably to large numbers of
nodes with a fairly high data rate.

FlexCup[100] provides the possibility to distribute only parts of the images in-
stalled at a specific node. This can result in considerable savings w.r.t. the number
of bytes transmitted over the network. Updates in the ǫSOA platform are always
targeting single services, so this functionality is not needed during the installation
of new services for platforms that support dynamic code loading. The FlexCup
approach is beneficial for updating TinyOS based nodes or other operating systems
that support no dynamic code loading. In these cases, it allows updating only the
modified services and keeping the remaining part of the runtime on the node un-
touched. We are planning to analyze this feature in more detail in the future.

3.9 Dynamic Installation of Services 181

3.9.3 Ongoing Work: Peer-to-Peer Code Distribution

The code dissemination algorithms mentioned in the previous section cannot be
used for the distribution of services in control oriented networks. Because only a
few services will need the new service, the overhead for submitting the code to each
node is too high. On the other hand an update of individual nodes from a central
repository is often not optimal, too. Assume we want to move a service from one
node to another. In this case, at least two nodes in the embedded network possess
a copy of the service, the service repository and the source node of the migration.
If a service is installed at multiple nodes, this will be the case for even more nodes.
An interesting research question is, how these copies can be used to improve the
performance of the code dissemination in control oriented embedded networks.

The code dissemination problem has several analogies to peer-to-peer file sharing
known from the IT domain. One or more sources in the embedded network possess a
copy of a resource (the service). At any point in time, a node can issue a demand for a
specific resource. This demand should be supplied as efficiently as possible, thereby
avoiding bottleneck situations and an overloading of single nodes. A prominent
protocol used for file sharing is BitTorrent[19]. The basic idea of BitTorrent is to
split a file into several chunks. These chunks are initially located at a single node,
the original source of the file. If a node is interested in receiving the file, it will start
to download chunks from other nodes in the network. Whenever the download of a
chunk has been finished, the chunk will be immediately offered to other nodes. This
guarantees that the original source will not be overloaded. Even more, it ensures
that the number of nodes offering a specific chunk will scale with the interest in
the corresponding file. If more nodes are interested in downloading a file, more
nodes will automatically also start offering parts of this file for other nodes. The
information about which node possesses which chunk is maintained by so called
BitTorrent Trackers, which keep a list of nodes offering a copy of a certain chunk.

We are currently investigating how such an approach can be ported to an embed-
ded network setting. The idea is to split a service into multiple chunks that can
be fetched from different nodes in the network. This would allow distributing the
overhead for code dissemination over multiple nodes. A possible extension would be
that nodes with sufficient storage capacities host copies of services or some chunks
of a service to further reduce the processing overhead for each individual node. The
critical part for the implementation of this approach is the implementation of the
tracker, which maintains the list of service chunks stored at each node. We are
currently investigating how this tracker can be implemented efficiently on resource
constrained devices. There is some previous work, however with another focus, that
shows that an implementation of BitTorrent is possible in embedded networks[43].
Another interesting research question is how the wireless communication influences
the behavior of BitTorrent like protocols. Because wireless links broadcast data to
all nodes in range, multiple nodes will receive a copy of a single chunk without ad-
ditional costs. Another research question we are looking at is, how this broadcast
property influences the performance of BitTorrent and what benefits can be real-

182 3 Runtime Environment

ized with a peer-to-peer code dissemination compared to the simple solution using
a single update source.

3.9.4 Summary

In this section, we gave an overview of the dynamic installation of new services on
nodes. Code updates in the ǫSOA platform are performed on a per node basis. This
design decision was motivated by the observation that nodes in a control network
typically have highly different tasks. Because of this diversity, a specific service is
installed only at a small number of nodes. The small number of targets prohibits
the use of epidemic dissemination protocols often used in monitoring oriented net-
works. In this situation, a bunch of single node updates will provide a better overall
performance.

We also outlined a possible solution using a BitTorrent like code dissemination
protocol, which we are studying in ongoing work. This protocol could fill the gap
between protocols that aim at updating all nodes in a network (e.g. Deluge) and
single node updates and would be a perfect match for the code update requirements
imposed by control oriented embedded networks.

183

CHAPTER 4

Advanced Features

Based on the basic functionality provided by the ǫSOA runtime, we implemented
some advanced features that provide additional functionality for application devel-
opers. The first extension are failure compensation mechanisms, which are shown in
Section 4.1. All mechanisms can be executed in-network and can be used to achieve
a continuous operation until the failed components have been replaced.

If the underlying network structure changes (or if a node fails), the initial place-
ment of services can become sub-optimal. In these cases, an optimal execution of
applications can often be achieved by relocating service instances between nodes. In
Section 4.2 we will present service migration strategies that allow the relocation of
stateful and stateless service instances at runtime.

The integration of embedded networks and IT systems becomes increasingly im-
portant. This requires not only a conversion of different message formats and com-
munication protocols, but also a mediation between different service execution and
composition paradigms. In Section 4.3 introduce the ǫSOA service bridge, which
provides this functionality.

4.1 Failure Compensation

In embedded networks, the handling of node and link failure is greatly influenced by
the probability of their occurrence. In the envisioned “smart dust” networks, node
failures are a common phenomenon. The reasons for such failures are manifold:
energy depletion, environmental influences, mobile nodes that leave the communica-
tion range of the network, etc. The network as a whole is only functional due to the
massive redundancy provided by the large number of available nodes. In such a sce-
nario, an explicit reconfiguration of the embedded network upon each node failure is
not feasible. Instead, failure compensation mechanisms are integrated directly into

184 4 Advanced Features

the used network protocols and the applications executed in the embedded network.
Examples are data-centric routing (e.g. Directed Diffusion[64]) and data processing
mechanisms (e.g. Geographic Hash Tables[136]). A data-centric approach is focused
on the data itself, which device/node acquired the data is not important. By storing
data redundantly on multiple nodes, a node failure is much easier to compensate
compared to node/sensor centric processing schemes, which route and process data
based on the device that acquired the data.

Control oriented embedded networks offer a much higher stability. In many cases,
a redundant installation of actuator devices is not possible or too costly. Further-
more, nodes in control oriented networks are often specialized for a specific task.
Simply adding some additional general purpose nodes will not provide the required
redundancy to handle arbitrary node failures. As a consequence, nodes in control
oriented networks are based on much more reliable nodes compared to the above
mentioned “smart dust” networks. Nevertheless, node and link failures can still oc-
cur and have to be compensated by the embedded network to ensure a continuous
execution of applications.

There are many failure scenarios with different levels of complexity. A basic
assumption that guided the development of the failure compensation mechanisms
presented in this section was that the failure compensation should provide an in-
termediate solution that ensures a continuous operation of applications until the
failure is remedied by a replacement of the failed components. We therefore aimed
at designing a failure compensation mechanism that is capable of dealing with single
node failures. If the failure of multiple nodes or complex scenarios such as network
segmentations should be supported, the mechanisms presented in this section have
to be extended. The second goal was to design a resource efficient failure com-
pensation mechanism. Embedded networks comprising solely resource constrained
nodes should be capable to autonomously recover from a failure. The presence of a
powerful node should not be a prerequisite for the proposed solution.

We will first take a closer look at link failures and how these are handled in the
ǫSOA platform. After that we will present the node failure compensation in more
detail.

4.1.1 Link Failures

In the ǫSOA platform, link failures are handled in a two phase procedure. If a link
fails, the ǫSOA platform initially relies on the used network protocol to compensate
the failure by choosing another route in the network. If the failure persists for an
extended period of time, the optimizer component in the ǫSOA platform is informed
about this situation. This is done by updating the network topology through the
Cross-Layer-Interface presented in Section 3.8. Based on the new topology, the
Optimizer can re-optimize the execution of applications, for example by moving ser-
vices from one node to another. The separation of the link failure handling into
two phases has several benefits. The network protocol can react autonomously and
immediately on broken links. This ensures that a fast reaction on link failures is

4.1 Failure Compensation 185

possible. This initial compensation by the network protocol is invisible to the appli-
cations executed in the network. If the link failure is transient, e.g. a disturbance
caused by an object moving through a wireless link, it can be handled completely
transparently by the network protocol. A reconfiguration is only triggered if the
network structure changed permanently. The global reoptimization performed by
the optimizer ensures that the execution of applications is always optimized for the
current network structure, even if the network undergoes massive reconfigurations
after the initial installation.

Note that the same mechanisms used for handling link failures can be used to
integrate new nodes (with new communication links) into an existing embedded
network. New links are first detected and used by the network protocol and trigger
global reorganizations in the Optimizer if they persist.

4.1.2 Node and Instance Failures

Node failures can be compensated in the ǫSOA platform using three mechanisms:

• Implicit compensation by the application

• Graceful degradation

• Redundancy

Some control tasks implicitly support the compensation of failed nodes. An example
is a PID-control loop. If multiple actuators are attached to the controller, a failed
device will be compensated by a higher output of the remaining actuators. The
ǫSOA platform offers a notification interface that allows services to inform the user
about an unexpected system behavior, e.g., when the PID-controller detects that it
has to use an unexpectedly high output value1. The same interface can be used to
report malfunctioning sensor devices, e.g., sensors that show an erratic behavior or
a high deviation from other sensors observing the same phenomenon.

A graceful degradation can be used if the failed component is not essential and
the affected application can continue to work - maybe with reduced performance or
functionality. Consider a smart lighting application that dims lights according to
the measurements of a brightness sensor. If the sensor fails, the lighting application
can continue to work. However, the functionality is reduced: the lights will be
either turned on or off, an automatic adjustment based on the brightness is not
possible anymore. The user can annotate services during application development
to specify non-essential services for each application. If a failure of such a service
is detected, the application is notified and can change its behavior. Analogously,
the application is informed when the failure is remedied. When an essential service
fails, the application will be stopped - unless a redundant replacement is available.

Redundant replacements are the third compensation strategy supported by the
ǫSOA platform. During application development, the user can specify groups of

1In the Smart Lighting Demonstrator shown in Section 6.2 this feature can be used to detect aged
or failed lights, which are less bright or not working at all.

186 4 Advanced Features

redundant service instances. This information is stored in the service choreography
description of each application. If an instance/node fails, the network autonomously
replaces the failed instance with a redundant instance and continues to execute the
affected applications.

The latter two compensation mechanisms are only possible, if failed nodes can be
detected. We will first present a mechanism for detecting such node failures. After
that, we will present the redundancy based failure compensation mechanism in more
detail.

4.1.2.1 Node Failure Detection

Node failures in the ǫSOA platform are reported through the Cross-Layer Interface
described in Section 3.8. Which mechanism is used to perform the actual detec-
tion is dependent on the used network protocol. Some protocols such as IPv6 (and
therefore also 6LoWPAN, which is based on IPv6) offer built-in support for neigh-
bor detection[59]. This information can be queried from the network stack and
published through the Cross-Layer Interface. The ǫSOA platform also supports a
general neighbor detection/failure detection mechanism, which can be used if no
neighborhood information can be retrieved from the underlying network protocol.
The mechanism is based on periodic keepalive signals, which are broadcasted by
each node. Based on these broadcasts, neighboring nodes can detect each other
and - if the broadcast is not received - detect node and link failures. The broad-
cast is limited to one hop to avoid unnecessary forwarding. If no keepalive signals
are received, the node is treated as failed. If wireless communication is used, the
keepalive broadcasts can be omitted if the node sends regular network messages,
e.g., a periodic measurement signal. These regular broadcasts can be monitored by
neighboring nodes and can be used to detect whether the node is still available or
not. Of course this is only possible if the periodic transmissions are frequent enough.
This optimization is performed during the network configuration by the Optimizer
component in the ǫSOA platform.

If a neighboring node detects a node failure, it is reported to a monitoring node.
The monitoring node can then issue compensatory actions or can deactivate failed
applications. Each node in the ǫSOA platform can be used as monitoring node. This
provides a high flexibility and allows customizing the node failure detection based
on the network characteristics and application requirements. We currently support
the following scenarios:

Central Monitoring If the network contains a highly reliable node, e.g., a gateway
node to a wide area network, this node can be used as central monitor node. In this
case, all node failures are reported to the central monitoring node. This scenario is
well suited if the distance (in number of hops) between all nodes and the monitoring
node is low. A typical example is a star topology with the monitoring node as the
center. Such networks are often encountered when wireless networks are attached
to a wired backbone, e.g. rooms in a smart building. The gateway node, which

4.1 Failure Compensation 187

connects both networks, is a good candidate for a monitoring node. It will typically
have a reliable power supply and will be located in close proximity to all nodes.

Distributed Monitoring A drawback of the central monitoring approach is the
central component, which may turn into a single point of failure in some situations.
The distributed monitoring remedies this situation by defining different monitoring
nodes for each application. If possible, the ǫSOA platform will select a monitoring
node that executes no service from the monitored application. This ensures that
single node failures will either be detected by the monitoring node (when a node
used by the application fails) or do not disturb the execution of the application
(when any other node fails).

4.1.2.2 Node Failure Compensation

A monitoring node has access to the service choreography documents for all mon-
itored applications. If a node failure is reported, the monitoring node first checks
which applications are influenced by the failure and creates a list of failed service
instances for each application. The monitoring node tries to compensate the node
failure through redundantly available services. It checks all port groups to deter-
mine whether a replacement for a failed instance is available. If that is the case,
the monitoring node will reconfigure the Stream Routers to send data to the redun-
dant service instance instead of the failed instance. If a replacement of the failed
instance(s) is not possible, the monitoring node will check whether the instance was
critical for the execution of an application or not. This is done by analyzing the
Stream Groups specified in the service choreography document. If the application is
still functional, the application is informed about the failed component. If a critical
service failed, i.e., at least one Stream Group is non-functional, the whole applica-
tion is shut down. This is done by stopping the execution of all instances involved
in the application.

4.1.2.3 Node Replacement

If a failed node becomes available again or is replaced by a new node with identical
configuration, a mechanism similar to the node failure mechanism is triggered. After
a new/repaired node has been discovered by the embedded network, a corresponding
notification is sent to the monitoring node. The monitoring node performs the same
steps as mentioned in the failure case; the only difference is that it will now try to
reactivate failed applications.

4.1.3 Related Work

There is not much related work concerning failure management for embedded net-
works besides the projects mentioned in the beginning of this section. Gummadi et
al.[49] propose a failure recovery mechanism based on a checkpointing systems that
allows dealing with faults that occur during the execution of an application. The

188 4 Advanced Features

approach presented in this work tackles faults at a different level. Gummadi et al.
describe a checkpointing mechanism that can be used by the application developer
to design fault tolerant applications. In contrast to this, our solution is transparent
for the application developer. The checkpointing approach can guarantee that a
computation creates the desired result - even in the case of faults - however this
comes with a considerable cost for establishing the checkpoints during the execution
of the application. Our approach introduces no overhead at runtime, but the exe-
cution of applications will be disturbed for a short time until the reconfiguration of
the network has finished.

Balfanz et al.[6] describe a tracing mechanism for monitoring oriented networks
that continuously reports measurements to a sink node. The tracing mechanism
allows learning the network topology based on neighborhood information that is
piggybacked to periodically submitted measurement data. Our work assumes that
the topology of a control oriented network is known during the configuration of the
network. This information is exploited to optimize the execution of applications
and also to optimize the fault handling by selecting appropriate monitoring nodes
for each application.

4.1.4 Summary

In this section we presented the failure detection and compensation mechanisms
supported in the ǫSOA platform. The first alternative is the implicit failure com-
pensation by the application logic. The ǫSOA platform offers a notification interface
that allows applications to report errors and inform the user about unexpected sys-
tem behavior. The second alternative is a graceful degradation of service/application
functionality. When a non-critical component of a service composition fails, the re-
maining services are informed and can adapt their behavior. The third alternative
is a replacement of failed service instances through redundantly available instances.
Redundancy information can be specified during application development and is
stored in the service choreography. Based on this information, a monitoring node
can autonomously replace failed instances.

4.2 Service Migration 189

4.2 Service Migration

The infrastructure of embedded networks is not fixed. New nodes can be added,
existing nodes can fail and link characteristics can change. To ensure an optimal
execution of applications, the ǫSOA platform continuously monitors the underlying
network. If changes are detected, the placement of instances can be optimized to
adapt the execution of applications to the changed network structure. A typical
operation during the optimization process is the migration of service instances, i.e.,
the relocation of instances from one node to another. Two boundary conditions have
to be ensured by the migration algorithm: the state of the moved instance must be
preserved and the migration has to be performed transparently for the application.

The migration of instances in an embedded network is closely related to the migra-
tion of virtual machines (VMs) in the IT domain. We will first present an overview
of migration techniques for VMs and discuss their applicability in the context of
embedded networks. We will then present a migration algorithm for embedded net-
works and an extension for supporting software upgrades in embedded networks.
We conclude the section with a summary, related work and an overview of ongoing
work.

4.2.1 Migration Techniques in the IT Domain

Different migration techniques have been studied for hardware virtualization sys-
tems. The decoupling of software and the underlying hardware offers a new degree
of flexibility in hosting environments. Whole operating systems can be moved be-
tween hosts, including all running applications and configuration settings. By mov-
ing VMs, overload situations can be resolved at peak times. In low-load situations,
operating costs can be reduced by consolidating virtual machines on a reduced num-
ber of hosts and shutting down idle systems. In order to make the migration process
transparent to the end-user and the applications executed inside the virtual ma-
chine, established communication sessions have to be preserved and the downtime
of virtual machines has to be minimized. Such a non-interruptive migration is also
called live migration.

A difficulty encountered during a live migration of virtual machines is the low
bandwidth of nowadays networks compared to the large amounts of main memory
installed in modern computer systems. The transmission of 4 gigabytes of RAM
across a gigabit network takes more than 30 seconds, even assuming no protocol
overhead and an achievable utilization of 100%. In a practical setting the required
time will be much higher because links cannot be used exclusively for the migration
process. The simple approach to stop the virtual machine, copy its state to the new
host and resume the machine after the copy is not feasible given these boundary
conditions. Instead, the migration process is split into three phases:

• Push phase: During the push phase the original virtual machine is running
while certain main memory pages are already being copied to the new host.

190 4 Advanced Features

• Copy phase: In the copy phase, the original virtual machine is stopped.
After that memory pages can be copied to the new virtual machine, which is
started once the copying has finished.

• Pull phase: In the pull phase “missing” memory pages, i.e., memory pages
not copied yet, are fetched on demand from the old virtual machine.

Based on these three phases different migration schemes are possible, which use
one or more of the phases.

As mentioned above, a prerequisite for a transparent migration is that existing
communication sessions are not interrupted. Many solutions in the IT domain use
virtual IP addresses, which move along with the VM from host to host, such as Clark
et al.[18] or Nelson et al.[106]. After the Copy Phase, the IP network is reconfigured
to route IP packets to the new host instead of the old host. Messages that arrive
during the Copy Phase can either be discarded (assuming a transport protocol such
as TCP will handle the packet loss) or forwarded from the old host to the new host,
e.g., using an IP tunneling technique as proposed by Bradford et al.[8]. Virtual IP
addresses can be managed easily if the migration is performed inside a local network.
There are also approaches that aim at extending virtual IP addresses to wide area
networks[153].

These techniques cannot be applied in embedded networks. Not all network pro-
tocols support virtual addresses and many applications use non-reliable transport
protocols. A migration in a heterogeneous embedded network can lead to the sit-
uation that the migrated service is accessible via a different network protocol on
the new host. General forwarding mechanisms such as IP tunneling are therefore
hard to apply, and often not desirable because of the resulting increase in network
traffic. The other difference is that the service migration in an embedded network
is performed on a different level of detail. VMs in the IT domain encapsulate whole
applications; services in the embedded network are individual parts of an applica-
tion. To achieve a resource efficient migration and to ensure a continuous operation
of the embedded network during the migration process, the characteristics of the
applications and the involved services have to be taken into account.

4.2.2 State Transfer in Embedded Networks

A prerequisite for the migration of a stateful service is that the internal state of
a service is accessible. There are virtual machines that are compact enough to be
executed on resource constraint devices, such as Maté[90] and the more specialized
SwissQM[105]. To speed up the processing on lightweight microcontrollers Hitoshi
Oi proposes a hardware based accelerator for Maté[114]. A comparable solution is
used in the SunSPOT[149] platform. SunSPOTs are based on the Squawk Virtual
Machine[139] and a corresponding microcontroller that can execute Java byte code
“on the bare metal”. The motivation for the development of these machines was the
optimization of the in-field reprogramming of devices. A base image that contains
the virtual machine is installed at the node and can be extended with new code

4.2 Service Migration 191

that can be downloaded at runtime. The second motivation was the observation
that binary image tend to be large compared to the available network bandwidth
in embedded networks. A virtual machine with an optimized instruction set for the
application field allows creating more compact implementations that require fewer
resources for code updates. If a virtual machine is used in the embedded network,
the state of services can be copied by simply transferring the state of the virtual
machine.

There are also arguments that speak against a deployment of virtual machines
on embedded devices. The services implemented with a tailored instruction set
can be smaller compared to native implementations. However, the overall resource
consumption of a VM based solution can be higher than the native alternative,
because the implementation of the VM can use a considerable amount of storage
on the node. It is questionable whether this amount of storage will be available in
every situation. The current implementation of the ǫSOA platform does not use a
virtual machine due to these reasons.

If no virtual machine is available, the internal state of a service has to be retrieved
programmatically. In the ǫSOA platform, each service is assigned a memory area
for storing persistent variables, i.e., variables that keep their value between method
calls. This design was introduced to support the creation of multiple instances of
each service. These instances share the same service implementation, but store their
internal state in a private memory area. This memory area can be used to perform
a state transfer between different instances of the same service by simply copying
the memory contents from one node to another. The ǫSOA platform ensures that a
state transfer is only triggered between invocations of the service logic. At this point
in time, all state information belonging to an instance is stored in the designated
memory area and can be copied to the destination.

4.2.3 Migration Algorithm

We present the different migration strategies based on the example scenario depicted
in Figure 4.1. The initial setup is an application consisting of a service chain of three
services (a, b and c) which are installed at nodes A, B and C. We want to move
the middle instance of the service chain (b) from node B to node D. The migration
is realized by installing a copy (d) of the original service instance at the new node
and transferring the state of b to the copy. During this process, all data streams
targeting the migrated instance (x) or originated by the migrated instance (y) have
to be redirected accordingly (x′ for x and y′ for y).

To keep the description concise, the example scenario contains only one instance
that submits data to the migrated instance (a) and one instance that consumes data
from the migrated instance (c). The following migration schemes are not limited to
the simple scenario and can be used to migrate arbitrary service chains. All actions
concerning a and c have to be executed analogously on all involved instances.

The migration is divided into three phases, a preparation phase, the migration
phase and a cleanup phase.

192 4 Advanced Features

Stream

Router

Stream

Router

Stre
��

Router

A B C

x y

Stream

Router

D

x' y'

a b c

d

Figure 4.1: Migration Scenario

Preparation Phase The first step is to check that the target node (D) of the
migration has enough resources to execute the new instance. If that is the case, the
service is installed at the target node. The installation of new services is explained
in Section 3.9 and not presented in detail here. The next step is to instantiate the
service (resulting in the creation of d) and transfer any configuration parameters from
the original instance to the new instance. Configuration information is transferred
using the Management Interface presented in Section 3.8. After all these actions
have been executed successfully, the Preparation Phase is finished and the Migration
Phase is started.

Migration Phase The migration phase has two tasks: transferring the internal
state of the service instance between the original and the new instance (b and d
in the example) and adjusting the data streams accordingly. In the example the
existing data streams x and y have to be removed and the new data streams x′

and y′ have to be installed. Data streams in the ǫSOA platform are managed by
Stream Routers, which are installed at each node. Each Stream Router has a routing
table that specifies the destination of incoming and outgoing data streams. Each
data stream possesses an entry in the Stream Routing Table of the originating node,
which specifies the destination node, and an entry in the Stream Routing Table of
the destination node, which specifies the destination instance and port. To replace
streams x and y with the new streams x′ and y′ we therefore have to remove four

4.2 Service Migration 193

entries from the old streams and add four entries for the new streams.
The migration process has to be designed in a way that ensures no instance receives

duplicate data. In the example, service instance c should not receive data from both
b and d. This is important to ensure that events are only processed once. Assume b
sends a signal to c that tells c to flip its internal state. If this message is duplicated
during the migration process, i.e., sent by both b and d, c will be in an inconsistent
state. Depending on the application scenario, another boundary condition is that no
messages are lost during the migration process. If service a continuously produces
data, e.g., a stream of periodic measurements, the loss of a few messages is tolerable.
This is not the case if a produces events. Assume a is a button and the service chain
is a lighting application. In this case, we want to be sure that the button press is
not lost during the migration.

The ǫSOA platform offers three migration schemes. The developer can specify
migration characteristics for applications and instances. Based on these characteris-
tics, a suitable migration scheme is automatically selected. Applications can either
tolerate message loss or not. Service instances have three possible characteristics.
Services can be stateless, stateful or synchronizable. A synchronizable instance is a
special case of a stateful instance. The state of a synchronizable instance depends on
the data received during a specific time interval. A typical example are services that
calculate data on sliding windows, e.g., a sliding window average. We will present
migration schemes for all three service types. All schemes are designed in a way
that ensures no duplicate data is created.

Scheme 1: Migration of a Stateless Instance The migration of a stateless service
is the simplest migration scenario. The output of a stateless instance depends solely
on the input it receives. Typical examples of stateless services are services that
convert data between different formats and data types or perform filter operations.
The migration workflow for a stateless instance consists of the following steps:

1. Add path x′ and y′ on node D.

2. Add path x′ on node A.

3. Remove path y on node C

4. Add path y′ on node C

5. Remove remaining entries for old paths, i.e., x and y from B and x from A

After the execution of Steps 1 and 2, both the original (b) and the new instance
(d) are receiving data. Both output data streams are submitted to node C. Because
stream y′ has not been added to the Stream Router Table on node C, the output
stream of instance d is discarded at node C. The parallel execution of b and d is
not problematic because both instances are stateless. To finish the migration, the
Stream Router on node C is reconfigured to discard data from stream y (Step 3)
and forward data from stream y′ instead (Step 4). This can be done in an atomic
operation. A message loss is therefore not possible.

194 4 Advanced Features

Scheme 2: Migration of a Synchronizable Instance The special characteristics
of synchronizable instances can be exploited to simplify the migration process com-
pared to general stateful services. Recall that the state of a synchronizable instance
depends on the data received in a specific time interval ∆t. After ∆t has elapsed,
the original and the new instance will have the same internal state if they are sup-
plied with identical input data. This characteristic is exploited to avoid an explicit
state transfer between the original and the new instance. Instead of transmitting
the state, both instances are executed in parallel until their internal state is syn-
chronized, i.e., equal. The corresponding workflow is identical to the workflow in
Scheme 1 with the exception of Step 3:

1. Add path x′ and y′ on node D.

2. Add path x′ on node A.

3. Wait for synchronization

4. Remove path y on node C

5. Add path y′ on node C

6. Remove remaining entries for old paths, i.e., x and y from B and x from A

Step 3 is introduced to suspend the migration process until a synchronization
between b and d has been achieved. The used delay is service specific and can be
specified by the service developer. Like Scheme 1, this Scheme prevents message
losses if Step 4 and 5 are executed in an atomic operation.

Scheme 3: Migration of a Stateful Instance The migration of a general stateful
instance is the most complicated migration scheme. It comprises the following steps:

1. Add path x′ on node D.

2. Add path y′ on D and C

3. Remove path x from node A

4. Transfer state from b to d

5. Add path x′ on node A

6. Remove remaining entries for old paths, i.e., x and y from B and y from C

The critical steps in this process are steps 3 to 5. It is important to execute
these steps in the given order to ensure a consistent state transfer and avoid the
duplication of data. After the execution of Step 3 and before the execution of Step
5, messages can be lost. In general, this period of time is comparably small because

4.2 Service Migration 195

the state information of services is small and can be transmitted fast even on low-
bandwidth links. If a message loss is critical, node A can be configured to store
outgoing messages. The corresponding command is bundled with Step 3. After the
installation of path x′ in Step 5, the stored messages are delivered immediately via
the new path. This ensures all messages are either transmitted via stream x and
processed before the state transfer, or transmitted via stream x′ and processed after
the state transfer. The resulting state of d will therefore include all messages that
were generated by a. This migration scheme ensures no messages are lost, however
messages can be delayed if they are created at the beginning of the migration process.

Comparison of Migration Schemes What migration scheme works best for a given
service is application specific. Migration Scheme 1 introduces the smallest overhead
and should be applied whenever possible. There is a time window in which mes-
sages are sent to instances b and d simultaneously, what results in an increased
network utilization. However this time window is small and in many cases, message
duplication does not occur at all.

Migration Scheme 2 allows a loss free migration without additional memory for
storing messages. It is limited to a certain class of services instances and creates
some communication overhead due to the duplication of messages.

Migration Scheme 3 is the most general one, but also requires additional resources
for storing messages during the migration process. Our prototypical implementation
shows that Migration Scheme 3 is fast and efficient enough to be implemented even
on resource constrained devices. In many cases, the internal state of services is small
enough to fit into a single network packet, thus resulting in a negligible network
overhead. A little more overhead is required if a loss free migration has to be
ensured. Storing multiple messages can be a considerable burden for nodes in an
embedded network. Our experience with the prototypical implementation shows
that this problem occurs rarely in a practical setting. A loss-free message transfer is
typically required for applications that are controlled by seldomly generated events.
Due to the low frequency of events, the storage requirements are low. If applications
use events that are generated frequently, they are often synchronizable and Migration
Scheme 2 can be used.

Cleanup Phase After the migration is completed, the original service instance is
deleted and any occupied resources are freed.

4.2.4 Implementation

The migration schemes are implemented with two interoperating controllers in the
ǫSOA platform. Each node possesses a local Migration Controller. It triggers the
instantiation and deletion of instances, handles the addition and removal of entries in
the Stream Router tables and (de-)serializes instance states and transmits them via
the network. The Migration Controllers are managed by a Migration Coordinator
that implements the different migration schemes and issues corresponding commands

196 4 Advanced Features

to the Migration Controllers. The Migration Coordinator also stores a compensation
action for each executed command. If the migration fails, these actions are used to
revert the system configuration to the state before the start of the migration process.
The Migration Coordinator is dynamically created for each migration process and
deleted when the migration is finished.

4.2.5 Software Updates

The migration algorithm presented in this section can also be used to handle the
installation of new software versions for running services. To ensure a continuous
operation it is desirable to preserve the internal state of instance during a software
update. A software update can be seen as a special case of a migration. The
differences to Migration Scenario 3 are that the destination instance is located at the
same host as the original instance. To support a state transfer between the old and
the new version of a service, the ǫSOA platform offers a versioning interface. Instead
of simply copying the state variables during the upgrade process, this interface is
used to supply the new version of the service with the state variables of the old
version. The remaining parts of the migration process are identical. Because the
new instance is located at the same node as the original instance, all migration steps
can be performed in an atomic operation.

4.2.6 Related Work

Pure sensor networks that perform tracking tasks often use techniques that are com-
parable to a service migration. We will not present these solutions here and instead
focus on solutions that are tailored to the application fields and boundary condi-
tions of control oriented embedded networks. A list of key design issues for mobile
agents in WSNs is given by Chen et al.[16]. Quaritsch et al.[121] present a camera
tracking application based on mobile agents that follow the tracked person through
the network. The application exploits á-priori known neighborhood relationships
to perform the handover, i.e., the migration of the tracking agent, between differ-
ent cameras. Tseng et al.[15] describe an agent based system for tracking. In this
system, objects are detected by groups of three nodes which elect a master that
coordinates the tracking inside the group. If the object leaves the current group, the
master moves along with the object to the next group. Because the tracking of an
object is restricted to small, local groups, the communication and sensing overhead
is kept low. Qi et al.[120] show that mobile agents can provide a good trade-off
between energy efficient signal processing (which requires as few nodes as possible)
and fault tolerant detection of objects (which requires as many nodes as possible).
The trade-off is achieved by using mobile agents and local communication in the
proximity of the tracked object.

From an abstract point of view, the tracking applications and the migration
scheme presented in this section provide a similar functionality: both provide means
to move a running service/agent between nodes in a network. However the ap-

4.2 Service Migration 197

proaches are optimized for different characteristics. Tracking applications require a
frequent and fast state transfer between nodes and the relocation is typically vis-
ible for the moved agent. Services/agents used in tracking applications are often
designed with this mobility in mind. Opposed to this, the migration techniques pre-
sented in this section handles migrations transparently for the involved services and
applications. Any instance can be relocated without additional programming effort
from the developer. In some scenarios the migration scheme presented in this section
can be used for building mobile code that follows a tracked object, but a tailored
solution based on mobile agents will most likely provide superior performance.

4.2.7 Summary

In this section, we analyzed the problem of moving a running service instance from
one node to another. We presented a migration algorithm that allows a live mi-
gration of instances, i.e., instances and applications do not have to be stopped
during the migration process. The algorithm takes into account the characteristics
of embedded networks and the characteristics of the applications executed in these
networks. It offers several migration schemes that can be selected based on appli-
cation requirements. The algorithm was designed to require minimal intermediate
storage on the involved nodes, in order to support an implementation on resource
constrained devices.

198 4 Advanced Features

4.3 Integration of Embedded Networks and Web Service

Based IT-Systems

A seamless integration of services from the embedded world and services from the IT
world is a key requirement for the envisioned Internet of Things and modern automa-
tion solutions. The techniques used in the ǫSOA platform were carefully designed to
allow a seamless communication between both domains. But the technologies used
in the communication layer are not the only difference between both domains. While
SOA is a suitable architectural paradigm for both, IT infrastructures and embedded
networks, the characteristics of services differ in both application domains. To me-
diate between both worlds, the ǫSOA platform uses a Service Bridge. The Service
Bridge has two tasks. It guarantees the technical interoperability by converting be-
tween the different message formats and network protocols used in both domains.
The second - and more important tasks - of the bridge is to map between the differ-
ent application development and execution paradigms used in both worlds. Many
of these differences have already been mentioned in previous parts of this work. We
will recapitulate these differences (and the similarities) in the following section and
derive a set of integration scenarios that have to be supported to allow a seamless
cooperation of services from both domains. After that we will present the design
and implementation of the ǫSOA Service Bridge, which offers this functionality. We
conclude this section with an overview over related work and a summary.

4.3.1 Web Services and Embedded Services

The most fundamental difference between services in both domains is the data pro-
cessing paradigm. Embedded networks typically use a data centric programming
paradigm (often also called actor oriented or data stream paradigm). The ǫSOA
platform is an example of such an architecture. Applications are composed of a
chain of services that operate solely on the received data and have no knowledge
about the sources of received data and the destinations of produced data. The data
is exchanged between services using a push-paradigm. A crucial observation is that
an application in this scenario can be realized completely decentralized.

In contrast to this, Web services are typically implemented using a request/re-
sponse interaction pattern. The current state-of-the-art for composing applications
from Web services is to use orchestration languages such as the Business Process
Execution Language (BPEL)[112]. The BPEL process is a central coordinator that
handles the Web service invocations and contains some high level processing and
fault handling logic.

To distinguish both kinds of services, we will call services from the IT domain Web
services and services from the embedded/automation domain ǫServices throughout
this chapter.

4.3 Integration of Embedded Networks and Web Service Based IT-Systems 199

Web Service

A
εService

A

Web Service

B
Web Service

C

εService

B

εService

C

Web Service

A

Web Service

B

εService

A

εService

A

εService

B

εService

C

Web Service

A

S
er
v
ic
e
B
ri
d
g
e

Embedded WorldWeb Service World

D
ev
el
o
p
m
en
t

P
ar
ad
ig
m

S
e
rv
ic
e
s

B
P
E
L

req

resp
req

resp

req

S
e
rv
ic
e

C
h
a
in

Figure 4.2: Web Services and Embedded Services - Two Views

4.3.2 Integration of Both Worlds

The challenge for application developers is the integration of both worlds, Web
services on the one side and embedded Services on the other side. The integration
has to be performed in two ways, as shown in Figure 4.2. A developer familiar with
Web service technologies should be able to interact with services from the embedded
world (ǫServices) just like he would interact with any other Web service. If, for
example, a business process is modeled with BPEL [112] (as depicted in the lower
left part of Figure 4.2), the process designer should be able to use ǫServices inside the
BPEL process to acquire data or to submit data to field level devices. On the other
hand, a developer familiar with application development for embedded networks
should have access to services in the enterprise back-end in the same manner as he
accesses other ǫServices. If data has to be transmitted to a back-end Web service, it
should be sufficient to route a corresponding data stream to the remote service (as
depicted in the lower right part of Figure 4.2).

The Service Bridge is the mediator between the two worlds: it translates mes-
sages to facilitate communication between services in both worlds and provides an
abstraction layer that supports both of the above mentioned views. We will present
both aspects in detail in the following sections.

4.3.3 Message Conversion

What conversions are required to allow a communication between both worlds de-
pends on the technologies used in the embedded network. Automation system are
typically not using HTTP for exchanging messages, or at least not standard HTTP
but an optimized binary variant. The Web Service Bridge therefore has to translate
between incoming Web service calls, which are based on HTTP, and the message
format used in the embedded network. The basic architecture of the Service Bridge
is shown in Figure 4.3. The main task during this translation is the mapping of ad-

200 4 Advanced Features

Service

Bridge

http:
//193

.150.
15.14

/

light
/turn

On

Node: 193.150.15.14

Service: 5Port: 1

light
turnOn

5

1

Mapping

IP-Network
Embedded-Network

Figure 4.3: Service Bridge

dresses. URLs cannot be used in embedded networks due to their size and a numeric
addressing format has to be used instead. The mapping of URLs to numeric values
can be done using an indexing technique. The Service Bridge parses the WSDL
documents of external services and assigns numbers to the different Web service
operations based on the occurrence in the WSDL, i.e., the first WS operation is as-
signed the numeric address one, the second operation the numeric address two, etc.
In order to make ǫServices available in the IT domain, a conversion from numeric
values to URLs is needed. In the ǫSOA platform, the conversion is performed using
the metadata description of ǫServices. The created URL is composed of the name
of the service, appended with a number if multiple instances of the same service are
executed, followed by the name of the in- or output. To get a measurement from
a temperature sensor represented by service “TempSensor” a generated URL could
be:

<address o f node>/TempSensor/Temperature

The second aspect of the translation is the data format. The ǫSOA platform
uses a binary XML representation (EXI). A design goal of EXI was to increase the
communication efficiency of Web services in the IT domain. We might therefore see
an increasing number of Web service stacks that offer built-in support for EXI. In
these cases the data format is identical in both domains. If this is not the case, the
Service Bridge will convert binary XML to plain XML and vice versa.

Note that neither of these transformations requires any service specific configura-
tion and can be performed fully automatically by the Service Bridge.

4.3.4 Mapping of Execution Paradigms

The translations mentioned in the previous section ensure that a communication
between services in both domains is possible. To map between the different execution
paradigms, the following interaction scenarios have to be supported. We distinguish
between ad-hoc interactions and subscription based interactions.

Ad-hoc interaction with the embedded network An ad-hoc interaction created
by a Web service is a very common interaction scenario. In this case, the interaction

4.3 Integration of Embedded Networks and Web Service Based IT-Systems 201

between the services in both domains is not planned beforehand via subscriptions,
but occurs dynamically. RPC-style Web service invocations are an example for this
kind of interactions, e.g., in order to retrieve the current measurement value of a
sensor, an external service could invoke a getData method on an embedded service.

Ad-hoc interaction with an external Web service This scenario is not needed
in the ǫSOA platform. The stream oriented execution paradigm does not support
blocking calls to remote services. In the embedded network, a request/response
interaction therefore has to be modeled as a service chain. This is equivalent to a
subscription based interaction with the external Web service.

Subscription based interaction with the embedded network In this scenario, an
external Web service interacts with one or more a priori known services in the em-
bedded network, e.g., to retrieve measurement values or provide externally acquired
data to the embedded network. The communication is managed via subscriptions,
i.e., a Web service developer subscribes to the output of an embedded service. The
subscriptions are realized using existing Web service standards.

Subscription based interaction with an external Web service In this scenario, a
developer from the embedded domain wants to retrieve data from or submit data to
an external Web service on a repeating basis. This interaction has to support the
stream based paradigm used in the embedded network, i.e., to submit data to the
external service the developer routes a stream to the Web service, to receive data
he routes a stream from the Web service to the embedded service.

4.3.5 Design and Implementation of the Service Bridge

The mapping of execution paradigms is implemented in the Service Bridge through
virtual services. A virtual service represents a service from one domain in the other
domain. A developer can access virtual services in exactly the same way he ac-
cesses other services in his domain. A virtual Web service (which represents an
ǫService) has a Web service interface and offers Web service execution semantics,
a virtual ǫService (which represents a Web service) offers a stream based interface
and corresponding execution semantics. The Service Bridge offers a front-end that
allows users to enable Web service based access to embedded services. If the Web
service based access is enabled, the Service Bridge creates a virtual Web service and
corresponding WSDL documents and reconfigures the embedded network accord-
ingly. A similar procedure is used to enable access to external Web services from
the embedded network. Based on a WSDL document of the external service, the
Service Bridge creates a virtual ǫService. This service is available in the embedded
network and can be integrated into service chains just like any other embedded ser-
vice. The implementation of the bridge is illustrated using examples derived from
the interaction scenarios shown in the previous section.

202 4 Advanced Features

Web Service

A

εService

B

Web Service

B'

Service Bridge

req

resp

WSDL

Figure 4.4: Ad-hoc Interaction with an Embedded Service

Ad-hoc Interaction with the Embedded Network A common use case for a com-
munication between an external Web service and an ǫService is an ad-hoc request/re-
sponse interaction. A Web front-end that allows users to poll sensor values or to
modify actor states is a typical source of such interactions. Another example are
mobile devices that are used to interact with the automation system, e.g., a PDA
that is used to control the lights in a room. These interaction are infrequent and
the used devices are often mobile and not always in the proximity of the embedded
network. A subscription based interaction is therefore not suitable. To ensure com-
patibility with a variety of Web services, the Service Bridge supports three ad-hoc
interaction scenarios.

Pull Based Ad-hoc Interaction

Figure 4.4 shows an ad-hoc request/response interaction scenario. In order to
make an embedded service accessible from the Web service world, a WSDL gen-
erator in the Service Bridge creates a WSDL document describing the embedded
service’s interfaces. It contains a WSDL Notification type port for every output of
the service and a WSDL One-way port for every input of the service. The correla-
tion between the virtual ports and the ports of the embedded service are maintained
in a mapping table. The newly generated WSDL is made available through a UDDI
based discovery interface, which allows users from the Web service world to search
for specific embedded services. The Service Bridge additionally installs data streams
from the virtual service to the target ǫService.

Incoming WS requests aimed at the input of an embedded service are intercepted
by the bridge and converted to messages in the ǫSOA platform. The messages are
injected into the embedded network using the newly installed data streams. Any
results returned by the ǫService are converted back to SOAP responses and returned
to the external Web service. The pending HTTP request is stored in the Service
Bridge until a response is available.

Cached Ad-hoc Interaction

The interaction scheme mentioned above requires an ǫService that allows the
pulling of measurements. Sometimes such an interface is not available or the mea-
surement is a very costly operation and should only be performed in specific intervals.
In these cases, the Service Gateway offers a caching solution. If a user enables exter-
nal access to a Web service, he may choose to support only cached access. If caching
is enabled, the Service Bridge installs an additional caching service, as shown in

4.3 Integration of Embedded Networks and Web Service Based IT-Systems 203

Web Service

A

εService

B

Web Service

B'

Service Bridge

req

resp

Cache

WSDL

Figure 4.5: Cached Ad-hoc Interaction with an Embedded Service

Web Service

A

Web Service

B'

Service Bridge

req

resp

WSDL

εService

C

εService

D

εService B

εService

S

Figure 4.6: Ad-hoc Interaction with a Service Chain

Figure 4.5. The caching service has two inputs and one output. The data input
is connected with the output of the ǫService. The caching service will always store
the latest data received at this input. If a message is sent to the second input, the
trigger input, the caching service will send the stored data. The last measurement
produced by the target service is therefore pullable via a call to the trigger input.
This caching mechanism can also be used to support continuous access to nodes
that are not available all the time, e.g., because they activate their radio module
only at specific times or are mobile and not always in communication range of the
embedded network.

Interaction with Service Chains

Ad-hoc interactions are not limited to single ǫServices. The Service Bridge can
also be used to provide an interface to whole service chains or parts of a service
chain. Such a scenario is shown in Figure 4.6. The virtual Web service B’ offers an
input and an output. The input represents an input of the ǫService C, the output
an output of the ǫService D. Incoming requests are forwarded to the input of C
and trigger the execution of the service chain in the embedded network. The result
created at the output of D is returned as Web service response to the caller. This
interaction possibility is a powerful tool for building Web front-ends or Web service
based interfaces for automation applications. Note that the addition of the Web
service interface requires no manual changes to the application logic or the network

204 4 Advanced Features

Switch

Wind-sensor

Brightness-

sensor

Prioritization

Stop-sensor

(Top)

Stop-sensor

(Bottom)

virtual

Web Service

Controll-Logic Motor

virtual

Web Service

Figure 4.7:

Web Service

A

εService

B

Web Service

B'

Service Bridge

Subscription

Event

WSDL

Figure 4.8: Subscription based Interaction with an Embedded Service

configuration.

Figure 4.7 shows a more complex example for an interaction with a service chain.
In the example, a jalousie control application is made accessible as Web service. The
virtual Web service contains an input, which can be used to move the jalousie to a
specific position. This input value is submitted along with the sensor signals from
other control devices to a prioritization logic. The prioritization logic ensures that
manually issued commands, such as an activation of the switch or an incoming Web
service call, override the commands created by the brightness sensor. The highest
priority is assigned to the wind sensor, which ensures the jalousie is not damaged
when high wind speeds are observed. The control application additionally uses two
stop sensors to stop the motor, if the jalousie reached its top or bottom position.
When the motor is stopped, the control logic reports the current position of the
jalousie back to the virtual Web service.

Subscription based Interaction with an Embedded Service In some cases, an
external Web service wants to monitor a measured phenomenon continuously or
wants to receive continuous status updates from an embedded service. The ǫSOA

4.3 Integration of Embedded Networks and Web Service Based IT-Systems 205

Web Service

A

εService

B

Service Bridge

εService
A'

WSDL

Figure 4.9: Subscription based Interaction with a Web Service

platform supports such interactions through a subscription mechanism in the Service
Bridge. A corresponding scenario is shown in Figure 4.8. The subscriptions are
implemented using the WS-Eventing standard. Whenever an external Web service
issues a WS-Eventing subscription for an output of an embedded service, the Service
Bridge installs a virtual Web service and a data stream between the output of the
ǫService and the virtual service. Updates received via this data stream are converted
to WS-Eventing notifications and delivered to the external service.

If a developer wants to access an external Web service from the embedded world,
the Service Gateway creates a virtual embedded service representing this Web ser-
vice, as shown in Figure 4.9. The virtual service’s in- and outputs are created
according to the WSDL description of the Web service. For continuous interaction,
the One-way and Notification WSDL port types are supported. A One-way port
in a WSDL specifies a port, which only receives messages. The virtual service will
therefore possess a corresponding input. Analogously, an output is created for every
Notification port of the WSDL. The correlation between these ports is stored in an
internal mapping table in the Service Gateway. From the view of the embedded
network, the virtual service is offered by the node hosting the Service Gateway. In
order to send data to the external Web service, an embedded service can send data
to the input of the virtual service running on the gateway node. The arriving mes-
sages are intercepted by the Service Gateway and converted to a SOAP call. The
destination Web service is determined with the mapping table and the message is
forwarded to its destination in the Web service domain. Incoming SOAP messages
are treated analogously: they are intercepted by the Service Gateway and converted
to embedded network messages. These messages are injected to the network, as if
the output of the virtual service created them.

The Service Bridge can act as a WS-Eventing client and subscribe to Web services
in order to retrieve external data and inject it to the embedded network. Although
WS-Eventing has been standardized for quite a while, not many WS-Eventing capa-
ble Web services can be found in the Internet. Instead most Web services available
nowadays offer a simple pull based API. The Service Bridge can be configured to
periodically issue pull requests to Web services to allow an interaction with such
services, too. The results returned by these requests are injected into the embedded
network analogously to notifications created by WS-Eventing.

206 4 Advanced Features

In many cases information from the Web is not only available through Web services
but also RSS feeds or similar information sources. A possible extension of the Service
Bridge is to integrate this information sources to broaden the interaction possibilities
between embedded networks and Web applications.

Ad-hoc Interaction with a Web Service The Service Gateway does not directly
support ad-hoc interaction with external Web services. We found no use case where
this functionality is needed. It violates the data centric processing paradigm in the
sensor network and many benefits of data centric systems, like free placement of
services, splitting and re-using of data streams, are only achievable if the individual
services operate purely data driven. An ad-hoc interaction violates this design,
because it requires a decision which external Web service should be called from an
ǫService. If the ad-hoc interaction is needed anyway, it can be mimicked by installing
temporary data streams for the duration of the invocation. The message exchange
in this case is the same as in the continuous interaction scenario.

4.3.6 Related Work

To the best of our knowledge, we are the first to propose a Service Bridge that
mediates between data driven embedded services and Web services. There is a lot
of literature about bridges and gateways that convert between different message for-
mats and protocols. These approaches are tailored to the requirements of the specific
protocols and - besides the basic architecture - do not have a lot of commonalities
with the ǫSOA service bridge. Some techniques used in the ǫSOA service bridge,
such as the mapping of URLs to numeric identifiers, are also discussed in ongo-
ing standardization efforts concerning application protocols for embedded networks,
e.g., in the IETF CoRE (formerly CoAP) working group2.

4.3.7 Summary

In this section we presented the ǫSOA Service Bridge. The Service Bridge works as
a mediator between the IT domain and the embedded domain. It converts messages
between the data formats and protocols used in both domains. This ensures that
a basic communication between services in both domains is possible. But this is
not enough to build the envisioned Internet of Things. The IoT requires a seamless
integration between services from both domains, i.e., Web services should be acces-
sibly from applications in the embedded domain and embedded services should be
accessible in Web service workflows. The main obstacle for an integration are the
different service composition and execution paradigms used in both domains. Web
services are connected to applications with orchestration languages such as BPEL
and typically employ a request/response oriented execution paradigm. Embedded
services on the other hand are organized as data centric, decentralized service chains
that communicate by pushing data to subsequent services in the chain. The Service

2https://datatracker.ietf.org/wg/core/

4.3 Integration of Embedded Networks and Web Service Based IT-Systems 207

Bridge provides a mapping between these different paradigms. Through the instal-
lation of virtual services, the Service Bridge can represent external Web services
as ǫServices in the embedded domain and vice versa. These virtual services can
be integrated into service chains like any other ǫService or integrated into BPEL
workflows like any other Web service, respectively.

208

CHAPTER 5

Tool Support

The different actors involved in the creation and operation of embedded networks
have to be supplied with tools that ease their work. It was not possible to develop
a full-fledged set of tools with the resources available for a research project. We
realized basic implementations of the tools to demonstrate the overall application
development workflow in the ǫSOA platform, starting from the system model down
to the executed code on the nodes in the network. There are many possibilities for
extensions and additional features beyond the basic implementations described in
the following sections.

5.1 Planning and Management

The heart of the ǫSOA toolset is the Planning and Management tool. An example
screenshot from the current implementation is shown in Figure 5.1. The Planning
and Management tool allows defining the hardware and application model used in
the ǫSOA platform. The developer can specify nodes, based on hardware types that
define basic characteristics such as ROM and RAM size, and the communication
channels between these nodes. The hardware model (see Section 2.3.1 allows to
assign properties to nodes and links. This information can be used in all tools to
filter entities (nodes, links, services, instances) with specific properties.

Navigation and Filtering

The Planning and Management tool provides a graphical overview of a modeled or
concrete embedded network. The user can navigate through the model and inspect
and modify the individual components. The tool provides several filter mechanisms
that allow an efficient modeling and administration of large scale networks. A com-
mon use case for filters in a building automation scenario is a filtering based on

5.1 Planning and Management 209

Figure 5.1: Planning & Management Tool

location information. Location information added to nodes at deployment time can
be used to efficiently search for nodes in a specific room or part of the building and
can be used to filter candidate nodes during the creation of service choreographies.

Definition of Services and Instances

The Planning and Management tool contains a repository of services. Each entry of
the repository comprises an interface definition (an eSDL document) and a service
implementation. The developer can instantiate services in order to use them in
applications. If the service can be parameterized, the user can configure the service
instance by assigning values to the corresponding parameters.

Application Composition

The creation of applications is supported by a service composition tool that is based
on a pattern based service composition as introduced in Section 2.5. The basic
structure of the tool is shown in Figure 5.2. The user may load different application
patterns into the tool. These are displayed in the pattern view in the center. If a
user clicks on one of the slots defined in the pattern, the service view at the bottom
is populated with compatible service instances, i.e., service instances that can be
added to the selected slot. Like the Planning and Management tool, the service
composition tool can use filters, e.g., to restrict the list of instances to instances
present in a specific room. Finished service compositions are added to the Planning
and Management tool.

Service Placement

Each service instances has to be placed on a node in the embedded network. The
user can assign placements manually or trigger the calculation of a placement using

210 5 Tool Support

Figure 5.2: Service Composition Tool

the optimization algorithm described in Section 2.6. The output of the placement
algorithm is a list of placements which are optimal w.r.t. a specific metric. The user
can browse this list to select the most suitable one. The user may optionally alter
the generated placements by manually moving service instances between nodes.

Code Generation

If all previous steps have been completed, the deployment of the modeled system
can be started. The Planning and Management tools launches the model driven
code generation to create images for each node in the network or to create service
bundles which can be added to existing images.

(Re-)Configuration

Some changes can be deployed without a reprogramming of nodes. An example is
a reconfiguration of applications, which only requires the modification of instance
parameters. Another example is the relocation of services between nodes or the
reconfiguration of service compositions, e.g., the replacement of a service instance
through another, compatible instance. The Planning and Management tool tracks all
changes made to the system model. If the user is satisfied with the new configuration,
he can deploy all pending changes to the live system.

Status and Ongoing Work

The current implementation of the Planning and Management tool allows developing
automation systems based on a model-first approach. The developer first specifies
the target system. Based on this model, code images can be automatically generated
for the nodes in the network. The Planning and Management tool can also be used to

5.2 Stub/Skeleton and eSDL Generation 211

modify systems after the initial installation. Changes to the model are automatically
tracked and can be deployed to the live system.

We are currently working on an integration of a node discovery mechanism into
the Planning and Management tool. The ultimate goal is to store all configuration
and management information on the nodes in the network. An administrator can
download and access all information required for the management of an embedded
network by connecting to the network and starting the discovery process. During
this process, all nodes report their configuration, the installed services and instances
and other management related information to the Planning and Management tool.
The in-network storage of management information ensures that the system model
is always up-to-date, what cannot be guaranteed if the system model is kept at an
external connection.

5.2 Stub/Skeleton and eSDL Generation

Development tools for Web services typically support two different Web service cre-
ation processes: an interface-first approach and an implementation-first approach.
Using the interface-first approach a developer specifies a Web service using WSDL
and the development tool automatically create a service stub containing suitable
interfaces that can be filled with the application logic by the developer. The
implementation-first approach works the other way round. The developer imple-
ments the Web service using a programming language and the Web service develop-
ment tool automatically creates a corresponding WSDL document (perhaps using
some annotation mechanism that allows specifying which methods should be callable
via Web service interfaces and which not). The same mechanisms can be provided
for embedded services, too. The ǫSOA platform contains a (basic) implementation
for both kinds of tools to showcase this functionality.

5.3 Monitoring and Configuration

The Planning and Management tool can also be used for basic monitoring tasks. It
evaluates the keep-alive signals sent by each node and automatically detects failed
nodes. Failed nodes can be displayed with a special icon in the graphical overview of
the network. Additionally, this view can be colorized based on the metrics calculated
by the placement optimizer, what allows a quick comparison of different placement
alternatives. A possible extension is to extend the coloring to sensor values, too. In
this case, the Management and Planning tool automatically subscribes to all sensors
providing a specific measurement and displays the received values.

5.4 Summary and Ongoing Work

In this section, we gave a short overview over the tool support provided by the ǫSOA
platform. Development tools are a crucial part for embedded networks. Automation

212 5 Tool Support

systems are too complex to be built and managed by single developers. Instead a
multitude of different actors, probably from different companies, contribute to the
development of automation systems. Each of these actors has to be supported with
tools that allow the actor to efficiently perform his tasks and at the same time ensure
the correctness of the overall system. In the ǫSOA platform, the central junction
point where all information is aggregated is the system model. Different actors can
contribute information to the model, either directly or indirectly via information
pre-installed on nodes in the network. The ǫSOA platform provides a set of tools
for

• the automated generation of service stubs and service description documents

• the installation and management of services and service libraries

• the definition of the hardware model, including node and link characteristics

• the composition of service to applications

• the monitoring and reconfiguration of installed systems

The ǫSOA platform currently offers no tool support for the Installer, i.e., the
person that installs nodes and performs the basic configuration. The Installer is
responsible for adding installation specific information to the node and service de-
scriptions, e.g., the location information. This task can be well supported by a Web
based tool, which automatically stores all entered information in the system model
and the description documents on the nodes.

Another tool we are working on is a pattern development tool. This tool could
not only provide a graphical interface for creating patterns, but also include some
algorithms for a semi-automatic generation of patterns based on an analysis of al-
ready installed applications. These ideas are presented in more detail at the end of
this thesis.

We are also working on an Eclipse based version of the tools presented in this
section. The goal is to achieve a seamless integration of the code development tools
required for the implementation of individual services and the modeling/composition
tools required for the creation of whole networks.

213

CHAPTER 6

Prototypes

The prototypes presented in this section are implemented using the TMote Sky
/ TelosB platform with a MSP430 microcontroller with 48 kilobytes of program
memory and 10 kilobytes of RAM. The nodes are running a TinyOS based (Smart
Home Prototype) and a Contiki based (Lighting Prototype) implementation of the
ǫSOA platform. The visualization/configuration front ends are realized with a Java
based implementation of the platform.

6.1 Smart Home Prototype

Increasing resource prices and ecological considerations are creating the need for
smarter power grids. Besides the mere distribution of energy to private, commercial
and industrial sites, future power grids also have to be able to manage the distributed
production and consumption of energy. The widespread use of renewable energies,
e.g., through solar cells, requires the coordination of hundreds (or thousands) of
small energy producers instead of a few large power plants we see in current power
grids.

The second key challenge for future power grids will be the incorporation of elec-
trically powered cars. These cars present both a challenge and an opportunity for
the owner of a power grid. On the one hand, large amounts of energy have to be
provided for charging the batteries of these cars; on the other hand these batteries
can also contribute to the stability of the power grid by providing massive storage
capabilities that can be used to soften load peaks. These storage capacities also
play an important role for the efficient usage of renewable energies. Because renew-
able energy cannot be produced on-demand, large storage capacities are required
if a substantial amount of the overall power consumption should be generated out
of regenerative resources. Otherwise a lot of the produced energy will be wasted

214 6 Prototypes

because it is not needed at the time it is produced, an effect that is already observ-
able for some wind energy production sites. By using the batteries of electrically
powered cars as energy buffers in these cases, one can greatly increase the efficiency
of regenerative power sources.

To decrease the per head energy consumption of the population, smart energy
management has to be employed not only in the power grid itself, but also inside the
households. A possible scenario is to provide power at varying prices throughout the
day, based on the current power demand. A smart energy meter inside the household
will supply the power price to intelligent consumers that will optimize their power
consumption in order to minimize the overall power costs. Possible examples are a
refrigerator that will avoid cooling during load peaks, or a smart washing machine
which will start washing when power prices are cheap. Such price mechanisms allows
building energy markets that will automatically regulate the power consumption and
can be an important building block of stable, decentralized power grids.

A central building block of any of these systems is an efficient, scalable and secure
information system. Data has to be acquired, aggregated and stored at thousands
of consumers and producers distributed throughout the power grid. This requires
highly scalable and reliable information systems that at the same time provide a real-
time overview of the state of the power grid to allow regulating the flow of energy
through the grid. We call such a combined power grid and computer network an
InfoGrid. The development of such an InfoGrid is an important milestone towards
next generation power grids.

The Smart Home Demonstrator is used to showcase a scenario with a smart me-
tering device and varying energy prices. Based on the ǫSOA platform, we developed
a demonstrator, which covers a future home automation scenario. The assembling of
our demonstrator is shown in Figure 6.1. We assume that in the near future energy
providers use dynamically changing energy prices in order to influence the overall
energy consumption in a way that smoothes load peaks. We further assume that
some kind of power storage system, such as the battery of an electric car, is present
in future homes. We implemented the following scenario: A household comprising
a battery and loads (a refrigerator and 2 lights) with different power consumption
and energy saving options. One task of the automation logic is to minimize the
energy costs throughout the day. If prices are cheap, the battery is charged and the
refrigerator cools down to a lower threshold. If prices are high, the house is discon-
nected from the power grid and draws its energy from the battery. Additionally,
the refrigerator is put to energy saving mode, i.e., it stops cooling until an upper
temperature threshold is reached. There are other functional requirements not pre-
sented in detail here, e.g., the home has to connect to the power grid if the summed
consumption of all devices exceeds the power of the battery, the battery should not
be completely depleted, etc. The electricity prices are delivered by an external Web
service, which is represented by a virtual sensor in the network. The used ZigBee
based motes possess a set of I/O devices used to read signals from the switches and
turn on or off the loads. The requirement to support end user programming can
be also motivated by this example. Starting from a traditional control system, the

6.2 Intelligent Lighting Prototype 215

Figure 6.1: Smart Home Demonstrator

user can add a battery and install a new pattern to benefit from the described price
saving mechanism. Furthermore, the ǫSOA approach offers a new flexibility to end
users. Changes, e.g. of the lighting, can be performed easily using the graphical user
interface provided by the Planning and Management tool of the ǫSOA platform. The
demonstrator also points out how different devices can be used to administrate the
embedded network. The programmable phone, for instance, can be used to monitor
sensor readings and to adjust thresholds, such as the maximum temperature of the
fridge.

6.2 Intelligent Lighting Prototype

The lighting demonstrator shows the failure recovery mechanisims available in the
ǫSOA platform and demonstrates that fast reaction times to sensor events can be
realized in distributed control systems. Figure 6.2 shows the demonstrator setup.
The demonstrator comprises 12 motes. The lights are grouped into four groups.
One group is located at the desk and comprises four lamps, which are controlled
by four separate motes II, III, V I and V II. The second group is the meeting
area, which comprises two lamps and two corresponding motes, Mote V III and
XII. These two groups also contain a combined brightness/activity sensor, which is
attached to Mote V and X, respectively. This sensor can be used to dim the lights
in the corresponding area according to the current daylight and to turn lights on or
off whenever a human enters or leaves the observed area. Mote IV and XI each
control a group of smaller lights. The lights attached to Mote XI provide general
illumination for the room. The wall near Mote IV contains a whiteboard and can
be used as projection area for a digital light projector. The wall can be illuminated

216 6 Prototypes

I

II III IV

V

VI VII

VIII
IX

X

XI XII

Whiteboard Area

Visitor Area

Desk Area

Figure 6.2: Intelligent Lighting Prototype

with a set of 3 lights, which are controlled by Mote IV . Mote I and IX are attached
to switches. Mote IX is the master switch that allows to turn off all lights in the
room and to activate a “maintenance mode” in which all lights are turned on. The
switch located at the desk, I, can be used to switch the light at the whiteboard on
or off, and to turn on a “beamer mode”. In the beamer mode, the lights at the
whiteboard and at the visitor area are turned off.

All three failure recovery mechanisms described in Section 4.1 are implemented
in the demonstrator.

Implicit Compensation If a lamp fails or does not provide the expected level of
brightness due to aging, the control logic will automatically adjust the brightness of
the remaining lamps in order to achieve the desired brightness level. If the target
level cannot be reached, this situation can be reported via an email interface. The
email notification has two purposes. It can be used to trigger a proactive replacement
of aged lamps before an actual failure occurs and ensures that malfunctioning lamps
are reported immediately and can be replaced in a timely fashion.

Graceful Degradation If the presence/activity sensor (or the corresponding mote)
is missing or fails, the light control logic switches to a graceful degradation mode.
In this mode, the dimming of lights is turned off (if no brightness information is
available) and/or the light is always turned on when the master switch is turned on (if
no activity information is available). When the sensor becomes available again, the
control application automatically switches back to normal operation. Additionally,
the failure of the sensor is reported via the email notification interface.

Redundancy In order to allow a compensation of node failures, the light logic for
the desk and the visitor area are installed redundantly on the nodes in each group.

6.2 Intelligent Lighting Prototype 217

Such a configuration can be created by using an application pattern with the redun-
dancy combination strategy in the system model, as introduced in Section 2.5. If
the node currently executing the control logic fails, one of the remaining nodes auto-
matically takes over control of the group. This is done by changing the configuration
of the Stream Routers to send data to the replacement node instead of the failed
node. When the failed node is online again, control is automatically handed back
and the original configuration is restored. Node failures are also reported through
the email notification interface.

The communication in the lighting demonstrator is a mixture of periodic trans-
missions from the brightness sensors and event driven communication whenever a
switch is pressed or activity in one of the areas is detected. A challenge in the
demonstrator is that the event driven communication is very bursty and has to be
very fast to provide quick response times for the user of the system. The bursti-
ness is created by the large number of individual lamps, which have to be switched
simultaneously. Assume the user enters the room and hits the master switch. In
this case, the control logic of each of the four light groups has to be updated with
the new state of the master switch. The control logic then calculates the new dim
value for the lights in the group and sends this information to all other motes in
the corresponding group (three in the desk group and one in the visitor group if
the logic runs on one of the lights in this group). The overall execution time for
the execution of these service chains is clearly dominated by the communication
costs for the transmission of data between the involved services. The demonstrator
uses UDP based communication and achieves end-to-end response time of less than
0.4 seconds, including proactive retransmission to compensate packet losses. Better
response times can be achieved if a faster communication technology is used.

The lighting demonstrator shows the failure recovery mechanisms available in the
ǫSOA platform and a model-first development approach. Based on the system model
developed in the engineering tool, service stubs for the implementation of the indi-
vidual services can be generated. Based on these implementations and the system
model, deployable images for each node, including all configuration information, are
automatically generated by the development tools. To show the failure compensa-
tion mechanisms, the brightness/activity sensor is modeled as optional component
and the control logic automatically reacts to the failure of this sensor by switching
to a degradation mode. To allow a compensation of failed nodes, the light control
logic is installed redundantly on several nodes by specifying a corresponding combi-
nation strategy in the system model. A failure or an increased brightness of single
lights can also be compensated by the control logic, which automatically adjusts the
brightness of the remaining lights. All failures in the demonstrator are reported via
email.

218 6 Prototypes

6.3 Related Work

We already presented related work for individual topics at the end of each section.
We will therefore focus on appraches that also propose an overall system architecture
in this section.

Embedded Virtual Machines The embedded virtual machines proposed by Mang-
haram et al.[96, 97] provide an abstraction layer that allows distributing control
tasks over multiple nodes in the network. Through the installation of multiple
copies of (parts) of the control task, failures can be compensated - a mechanism
that is comparable to the failure compensation used in the ǫSOA platform.

ITEA - SIRENA/SODA/SOCRADES A research project with a scope similar to
the work presented here is SOCRADES1, which started parallel to the work pre-
sented here. SOCRADES leverages work conducted in the SODA2 and SIRENA3

projects. SOCRADES[13, 140] also uses a service oriented paradigm to model and
implement automation systems. One result of the SOCRADES project is a demon-
strator that shows that SOA is a feasible technology for implementing distributed
automation systems. The SOCRADES platform and the demonstrator are real-
ized based on an implementation of the DPWS stack. The DPWS implementation
requires fairly powerful nodes compared to the microcontroller based platform pre-
sented in this work. By using binary XML technologies and the optimized code gen-
eration presented in this work, the resource requirements for executing distributed
control tasks can be reduced. The SOCRADES project has a strong focus on the
integration of field level devices with enterprise systems, such as SAP. De Souza et
al.[22] propose an architecture for such an integrated system and show how field level
devices and ERP systems can be linked together. The key enabling technology for
this integration - Web service based interfaces - is also provided by the ǫSOA plat-
form. In our demonstrator we showed how an integration of ǫSOA and Web services
is possible. This work could be extended to achieve an integration with enterprise
systems, like the integration shown in the SOCRADES project. The ǫSOA platform
offers some features that are not available in the SOCRADES platform. The three
main features are (1) the optimized placement of services (including the possibility
to move services between nodes at runtime), (2) the failure recovery mechanism us-
ing preconfigured redundancy, and (3) the pattern based service composition. These
concepts can be transferred to other service oriented development platforms and can
be used to ease the engineering process and to build self-optimizing and self-healing
systems.

1http://www.socrades.eu
2http://www.soda-itea.org/
3http://www.sirena-itea.org/

6.3 Related Work 219

Grid Platforms (C3-Grid) An interesting observation is that the execution of re-
quests/applications in some grid platforms, such as the C3-Grid4[47, 80], shows
similarities with the concepts presented in this thesis. The C3-Grid is targeted at
collaborative climate data processing and also uses a service oriented system ar-
chitecture. A typical processing task in such a grid is to gather data from several
sources, perform some preprocessing on this data, join/aggregate the collected data
and finally create an output that is submitted to the requester. The individual parts
of the processing task can be executed on different nodes in the grid, which also leads
to an optimization problem comparable to the service placement problem analyzed
in this work5. Of course the individual challenges encountered in both domains are
different, e.g., the resource limitations in embedded networks or the heterogeneity
of data sources in a grid environment. Nevertheless, the architectural similarities
are an interesting starting point for thinking about an integration of grids and em-
bedded networks, e.g., to source out processing intensive evaluation tasks from the
embedded network to the grid platform, or enhance the grid platform with direct
access to field devices for improved data freshness.

4http://www.c3grid.de
5A difference is that the service placement problem in embedded networks is more focused on

optimizing the communication between nodes, whereas grid applications are often trying to
optimize the utilization of the nodes in the grid.

220

CHAPTER 7

Summary & Future Work

In this work we presented the ǫSOA development platform. The ǫSOA platform is
targeted at the development of control and automation applications in distributed
heterogeneous embedded networks. It is based on three core design principles: a
service oriented system architecture, a model driven development paradigm and a
stream based execution model. The combination of these principles allows creating
highly customizable systems that can optimize their behavior based on applica-
tion requirements and network characteristics. The implementation of the afore-
mentioned concepts on resource constrained microcontrollers requires new concepts
and/or the adaptation of existing solutions, such as Web service technologies. Be-
sides the conceptual design of the platform, this work also describes an execution
environment and a corresponding development toolsuite for the design, installation
and management of control applications in resource constrained environments. The
feasibility of the solution was demonstrated with prototypical implementations in
the building automation domain.

The concepts and the implementation described in this work are intended to form
the basic building blocks for future, SOA based automation systems. There are
several directions for future research. Many of these were already presented at
the end of the individual sections. Besides these topics, there are some additional
interesting research directions, which we will outline in the following paragraphs.

Semantic Control Throughout this work, we showed some example applications
in the area of building automation. These examples were mostly based on state-
of-the-art automation tasks, which can also be realized with nowadays automation
solutions. Embedded networks possess a huge potential beyond these comparatively
simple automation tasks. The seamless access to devices in our surroundings and
the possibility to dynamically add nodes to the control network offer unpreceded

221

interaction possibilities between devices. One scenario are smart mobile devices
which influence their surroundings to guarantee an optimal user experience. Con-
sider for example a digital light projector (DLP), which should be automatically
integrated into the light control system when it is brought to a room. In most
cases it is practically infeasible to pre-plan the addition of all such devices during
the creation of the light control system. An interesting vision is an automated in-
tegration of new devices based on semantic information that also expresses certain
environmental conditions (e.g. a maximum brightness specified by the DLP). This
concept could be extended to the components used inside the control application,
too. New sensor/actuator devices could describe their capabilities (and associated
costs) and the automation logic could dynamically select the most appropriate de-
vice(s) for achieving a certain domain goal. Many of these concepts are studied in
the context of agent based systems, however these typically lack an implementation
on resource constrained devices. An interesting idea is the combination of such agent
based approaches and the model driven paradigm used in the ǫSOA platform in or-
der to combine the flexibility and the resource efficiency provided by the different
approaches.

Pattern Learning / Automated Service Composition In the current implemen-
tation of the ǫSOA platform, application patterns are manually designed by the
developer. An interesting topic for future research is the automatic learning of
such patterns from a repository of installed applications. These patterns could
not only cover concrete applications (e.g. a pattern for a heating, ventilation, and
air-condition (HVAC) application), but also meta-patterns such as a sensor-logic-
actuator chain. This information can be used to improve the tooling support for
the creation of patterns by providing additional hints for the developer that con-
cern structural aspects of the created pattern. Another application field of such a
pattern recognition approach is an automated service composition without the ex-
plicit specification of patterns. This could be used to provide a “smart” copy&paste
functionality that allows to copy applications between installations, even if both
applications do not have identical components but only components with similar
functionality.

Timing Constraints In some application fields of embedded networks, such as dis-
crete manufacturing systems, timing constraints play an important role. One aspect
is the reaction speed, i.e., the latency between a measurement at a sensor device and
the corresponding reaction of an actuator device, which typically has to stay below
a certain threshold. A second aspect is determinism. In many cases it is decisive to
keep the jitter, i.e., the variation of this latency, low. In nowadays automation sys-
tems, timing constraints are often implicitly guaranteed through the cyclic execution
model. Based on the maximum execution time of a cycle, an upper bound for the
execution time of the automation logic can be derived. This model is problematic
if additional functionality should be added to an existing system. Furthermore, this

222 7 Summary & Future Work

model of execution cannot be applied in distributed automation systems. Using a
model driven development approach, such requirements could be specified at the
application level as end-to-end requirements. Wiklander et al.[167] propose such an
approach for components on a single embedded controller. In the ǫSOA platform, a
solution for a distributed execution of applications on multiple internetworked de-
vices has to be developed, e.g., an optimizer component that breaks down end-to-end
requirements for individual links and service invocations and derives schedules for
TDMA communication schemes and prioritizes/schedules service invocations on the
nodes.

223

APPENDIX A

Service Placement Benchmarks

Scenario 1

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

av
g

er
ro

r
in

 %

(a) Benchmark Scenario 1

Scenario 2

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 0.5

 1

 1.5

 2

 2.5

 3

av
g

er
ro

r
in

 %

(b) Benchmark Scenario 2

Scenario 3

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

av
g

er
ro

r
in

 %

(c) Benchmark Scenario 3

Scenario 4

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 1

 2

 3

 4

 5

 6

av
g

er
ro

r
in

 %

(d) Benchmark Scenario 4

Figure A.1: Lambda / Limit Test Series

224 A Service Placement Benchmarks

Scenario 5

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

av
g

er
ro

r
in

 %

(e) Benchmark Scenario 5

Scenario 6

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 1

 2

 3

 4

 5

 6

av
g

er
ro

r
in

 %

(f) Benchmark Scenario 6

Scenario 7

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

av
g

er
ro

r
in

 %

(g) Benchmark Scenario 7

Scenario 8

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 2

 4

 6

 8

 10

 12
av

g
er

ro
r

in
 %

(h) Benchmark Scenario 8

Scenario 9

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

av
g

er
ro

r
in

 %

(i) Benchmark Scenario 9

Scenario 10

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 1

 2

 3

 4

 5

 6

 7

 8

av
g

er
ro

r
in

 %

(j) Benchmark Scenario 10

Figure A.1: Lambda / Limit Test Series

225

Scenario 11

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 2

 4

 6

 8

 10

 12

av
g

er
ro

r
in

 %

(k) Benchmark Scenario 11

Scenario 12

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 2

 4

 6

 8

 10

 12

 14

av
g

er
ro

r
in

 %

(l) Benchmark Scenario 12

Scenario 13

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 1

 2

 3

 4

 5

 6

 7

 8

av
g

er
ro

r
in

 %

(m) Benchmark Scenario 13

Scenario 14

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 2

 4

 6

 8

 10

 12

 14

 16

av
g

er
ro

r
in

 %

(n) Benchmark Scenario 14

Scenario 15

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 5

 10

 15

 20

 25

av
g

er
ro

r
in

 %

(o) Benchmark Scenario 15

Scenario 16

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 5

 10

 15

 20

 25

 30

av
g

er
ro

r
in

 %

(p) Benchmark Scenario 16

Figure A.1: Lambda / Limit Test Series

226 A Service Placement Benchmarks

Scenario 17

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 2

 4

 6

 8

 10

 12

av
g

er
ro

r
in

 %

(q) Benchmark Scenario 17

Scenario 18

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 5

 10

 15

 20

 25

av
g

er
ro

r
in

 %

(r) Benchmark Scenario 18

Scenario 19

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 5

 10

 15

 20

 25

 30

 35

 40

av
g

er
ro

r
in

 %

(s) Benchmark Scenario 19

Scenario 20

0.5
0.4

0.3
0.2

0.1
0.075

0.05
0.025

0.01
0.0075

lambda

50
100

200
300

400
500

600

limit

 0

 10

 20

 30

 40

 50

 60

av
g

er
ro

r
in

 %

(t) Benchmark Scenario 20

Figure A.1: Lambda / Limit Test Series

227

APPENDIX B

XML Schema Definitions

B.1 eHDL XML Schema Definition

The information model for the embedded Hardware Description Language (eHDL)
is introduced in Section 2.3.1. A corresponding XML based notation is described
in Section 3.3. The XML Schema definition for the XML notation can be found in
Listing B.1

<schema targetNamespace=” ht tp : // in . tum . de/eSOA/hardware”
xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns : tns=” ht tp : // in . tum . de/eSOA/hardware”>

<element name=”hardware” type=”tns:HardwareType”></ element>

< !−− hardware d e s c r i p t i o n conta iner −−>

<complexType name=”HardwareType”>
<sequence>

< !−− l i s t o f r e source s −−>

<element name=” re sou r c e ” type=” tns:ResourceType ”
maxOccurs=”unbounded” minOccurs=”0”>

</ element>
< !−− r e f e r ence to hardware d e f i n i t i o n −−>

<element name=”hardware” type=” long ”
maxOccurs=”unbounded” minOccurs=”0”>

</ element>
< !−− l i s t o f p r o p e r t i e s −−>

<element name=”property ” type=” tns:PropertyType ”
maxOccurs=”unbounded” minOccurs=”0”>

</ element>
</ sequence>

</complexType>

228 B XML Schema Definitions

< !−− proper ty −−>

<complexType name=”PropertyType”>
<a t t r i bu t e name=”name”>

<simpleType>
< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”Floor ”></ enumeration>

<enumeration value=”Room”></ enumeration>

< !−− . . . −−>

</ r e s t r i c t i o n>

</ simpleType>
</ a t t r i bu t e>
<a t t r i bu t e name=”value ” type=” s t r i n g ”></ a t t r i bu t e>

</complexType>

< !−− resource d e f i n i t i o n −−>

<complexType name=”ResourceType”>
<a t t r i bu t e name=”name”>

<simpleType>
< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”RAM”></ enumeration>

<enumeration value=”ProgramMemory”></ enumeration>

<enumeration value=”Flash ”></ enumeration>

< !−− . . . −−>

</ r e s t r i c t i o n>

</ simpleType>
</ a t t r i bu t e>
<a t t r i bu t e name=”value ” type=” in t ”></ a t t r i bu t e>

</complexType>
</schema>

Listing B.1: eHDL XML Schema Definition

B.2 eSDL XML Schema Definition 229

B.2 eSDL XML Schema Definition

The information model for the embedded Service Description Language (eSDL) is
introduced in Section 2.3.2 and a corresponding XML notation in Section 3.4. The
XML Schema definition for the XML notation can be found in Listing B.2

<schema targetNamespace=” ht tp : // in . tum . de/eSOA/ s e r v i c e ”
xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns : tns=” ht tp : // in . tum . de/eSOA/ s e r v i c e ”>
<complexType name=”ServiceType ”>

<sequence>
<element name=”property ” type=” tns:PropertyType ”

maxOccurs=”unbounded” minOccurs=”0”>
</ element>
<element name=” operat i on ” type=” tns:Operat ionType ”

maxOccurs=”unbounded” minOccurs=”0”>
</ element>

</ sequence>
<a t t r i bu t e name=”name” type=” s t r i n g ” use=” requ i r ed ”>
</ a t t r i bu t e>

</complexType>

<element name=” s e r v i c e ” type=” tns :Se rv i ceType ”>
</ element>

<complexType name=”OperationType”>
<sequence>

<element name=” input ” type=” tns:MessageType ”
maxOccurs=”1” minOccurs=”0”>

</ element>
<element name=”output” type=” tns:MessageType ”

maxOccurs=”1” minOccurs=”0”>
</ element>

</ sequence>
<a t t r i bu t e name=” address ” type=”byte ” use=” requ i r ed ”>
</ a t t r i bu t e>

</complexType>

<complexType name=”ParameterType”>
<sequence>

<element name=”property ” type=” tns:PropertyType ”
maxOccurs=”unbounded” minOccurs=”0”>

</ element>
</ sequence>
<a t t r i bu t e name=”datatype ” type=” tns:DatatypeType ” use=” requ i r ed ”>
</ a t t r i bu t e>
<a t t r i bu t e name=”measurandtype” type=”tns:MeasurandtypeType”

use=” requ i r ed ”>
</ a t t r i bu t e>

</complexType>

<complexType name=”PropertyType”>
<a t t r i bu t e name=”name” type=”tns:PropertyName”>

230 B XML Schema Definitions

</ a t t r i bu t e>
<a t t r i bu t e name=”value ” type=” s t r i n g ”>
</ a t t r i bu t e>

</complexType>

<simpleType name=”PropertyName”>
< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”Unit”></ enumeration>

<enumeration value=” Pr e c i s i on ”></ enumeration>

< !−− . . . and so on . . . −−>

</ r e s t r i c t i o n>

</ simpleType>

<simpleType name=”DatatypeType”>
< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=” s t r i n g ”></ enumeration>

<enumeration value=” in t ”></ enumeration>

<enumeration value=” shor t ”></ enumeration>

<enumeration value=”byte ”></ enumeration>

<enumeration value=”boolean ”></ enumeration>

< !−− . . . and so on . . . −−>

</ r e s t r i c t i o n>

</ simpleType>

<simpleType name=”MeasurandtypeType”>
< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”Temperature”></ enumeration>

<enumeration value=”Light ”></ enumeration>

<enumeration value=”Humidity”></ enumeration>

< !−− . . . and so on . . . −−>

</ r e s t r i c t i o n>

</ simpleType>

<complexType name=”MessageType”>
<sequence>

<element name=”parameter ” type=” tns:ParameterType”
maxOccurs=”unbounded” minOccurs=”0”>

</ element>
</ sequence>

</complexType>
</schema>

Listing B.2: eSDL XML Schema Definition

B.3 eSCL XML Schema Definition 231

B.3 eSCL XML Schema Definition

The information model for the embedded Service Choreography Language (eSCL)
and a corresponding XML notation are introduced in Section 3.5. The XML Schema
definition for the XML notation can be found in Listing B.3

<schema targetNamespace=” ht tp : // in . tum . de/eSOA/choreography”
xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”
xmln s : e s c l=” ht tp : // in . tum . de/eSOA/choreography”>

<element name=”choreography” type=” escl :ChoreographyType ”></ element>

< !−− choreography conta iner −−>

<complexType name=”ChoreographyType”>
<sequence>

<element name=” in s t an c e s ” type=” e s c l : I n s t anc e sType ” />
<element name=”operat ionGroups ” type=” esc l :Operat ionGroupsType ” />
<element name=”dataStreams” type=” escl :DataStreamsType ” />
<element name=”streamGroups” type=”escl :StreamGroupsType ” />

</ sequence>
</complexType>

< !−− l i s t o f i n vo l v ed in s t ance s −−>

<complexType name=” InstancesType ”>
<sequence>

<element name=” in s t ance ” type=” e s c l : I n s t anceType ”
maxOccurs=”unbounded” minOccurs=”0” />

</ sequence>
</complexType>

< !−− i n s t ance d e f i n i t i o n −−>

<complexType name=” InstanceType”>
< !−− g l o b a l l y unique in s tance i d e n t i f i e r −−>

<a t t r i bu t e name=” in s t anc e Id ” type=”unsignedShort ” use=” requ i r ed ” />
< !−− r e f e r ence to s e r v i c e d e s c t r i p t i o n −−>

<a t t r i bu t e name=” s e r v i c e ” type=” s t r i n g ” use=” requ i r ed ” />
</complexType>

< !−− l i s t o f opera t ion groups −−>

<complexType name=”OperationGroupsType”>
<sequence>

<element name=”operationGroup” type=” escl :OperationGroupType ”
maxOccurs=”unbounded” minOccurs=”0” />

</ sequence>
</complexType>

< !−− opera t ion group d e f i n i t i o n (l i s t o f redundant opera t i ons) −−>

<complexType name=”OperationGroupType”>
<a t t r i bu t e name=” id ” type=”unsignedByte ” use=” requ i r ed ” />
<sequence>

<element name=” operat i on ” type=” esc l :Operat ionType ”
maxOccurs=”unbounded” minOccurs=”0” />

</ sequence>
</complexType>

232 B XML Schema Definitions

< !−− opera t ion r e f e r ence −−>

<complexType name=”OperationType”>
<a t t r i bu t e name=” in s t anc e Id ” type=”unsignedShort ” use=” requ i r ed ” />
<a t t r i bu t e name=” operat i on ” type=”unsignedByte ” use=” requ i r ed ” />

</complexType>

< !−− l i s t o f data streams −−>

<complexType name=”DataStreamsType”>
<sequence>

<element name=”dataStream” type=” escl :DataStreamType”
maxOccurs=”unbounded” minOccurs=”0” />

</ sequence>
</complexType>

< !−− data stream d e f i n i t i o n −−>

<complexType name=”DataStreamType”>
<a t t r i bu t e name=” source ” type=”unsignedByte ” use=” requ i r ed ” />
<a t t r i bu t e name=” dra in ” type=”unsignedByte ” use=” requ i r ed ” />
<a t t r i bu t e name=” streamId” type=”unsignedByte ” use=” requ i r ed ” />

</complexType>

< !−− l i s t o f stream groups −−>

<complexType name=”StreamGroupsType”>
<sequence>

<element name=”streamGroup” type=”escl:StreamGroupType ”
maxOccurs=”unbounded” minOccurs=”0” />

</ sequence>
</complexType>

< !−− stream group d e f i n i t i o n −−>

<complexType name=”StreamGroupType”>
<a t t r i bu t e name=” id ” type=”unsignedByte ” use=” requ i r ed ” />
<sequence>

<element name=”dataStream” type=” escl :DataStreamTypeRef ”
maxOccurs=”unbounded” minOccurs=”0” />

</ sequence>
</complexType>

< !−− r e f e r ence to datastream −−>

<complexType name=”DataStreamTypeRef”>
<a t t r i bu t e name=” streamId” type=”unsignedByte ” use=” requ i r ed ” />

</complexType>
</schema>

Listing B.3: eSCL XML Schema Definition

B.4 Meta-Information Repository: XML Schema Definition 233

B.4 Meta-Information Repository: XML Schema Definition

The Meta-Information Repository is presented in Section 3.8. It defines a XML
message format for the storage of metadata entries. The corresponding XML Schema
definition can be found in Listing B.4

<schema targetNamespace=” ht tp : //www3. in . tum . de/mir”
xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns:mir=” ht tp : //www3. in . tum . de/mir”>

<element name=” entry ” type=”mir:EntryType”></ element>

<complexType name=”EntryType”>
<sequence>

< !−− namespace i s i nhe r e t ed i f not s p e c i f i e d here −−>

<element name=”namespace” type=” s t r i n g ”
maxOccurs=”unbounded” minOccurs=”0”></ element>

< !−− i d e n t i f i e r o f the entry −−>

<element name=” i d e n t i f i e r ” type=” s t r i n g ”></ element>
< !−− r e f e r ence to parent i d e n t i f i e r −−>

<element name=”parent ” type=” s t r i n g ”></ element>
< !−− numeric va lue f o r i d e n t i f i e r −−>

<element name=” po s i t i o n ” type=” in t ”></ element>
< !−− type , not a l l e n t r i e s shown here −−>

<element name=” type”>
<simpleType>

< r e s t r i c t i o n base=” s t r i n g ”>
<enumeration value=”Object ”></ enumeration>

<enumeration value=” L i s t ”></ enumeration>

<enumeration value=”Subtype”></ enumeration>

<enumeration value=” s t r i n g ”></ enumeration>

<enumeration value=”byte ”></ enumeration>

<enumeration value=” shor t ”></ enumeration>

<enumeration value=” in t ”></ enumeration>

. . .
</ r e s t r i c t i o n>

</ simpleType>
</ element>
< !−− acces s r i g h t s , see MIB −−>

<element name=” acc e s s ” maxOccurs=”1” minOccurs=”0”>
<simpleType>

< r e s t r i c t i o n base=” s t r i n g ”>
<enumeration value=”read−wr i t e ”></ enumeration>

<enumeration value=”read−only ”></ enumeration>

<enumeration value=”write−only ”></ enumeration>

<enumeration value=”not−a c c e s s i b l e ”></ enumeration>

</ r e s t r i c t i o n>

</ simpleType>
</ element>
< !−− s t a t u s o f entry , see MIB −−>

<element name=” s ta tu s ” maxOccurs=”1” minOccurs=”0”>
<simpleType>

< r e s t r i c t i o n base=” s t r i n g ”>
<enumeration value=”mandatory”></ enumeration>

234 B XML Schema Definitions

<enumeration value=” opt i ona l ”></ enumeration>

<enumeration value=” ob so l e t e ”></ enumeration>

<enumeration value=”deprecated ”></ enumeration>

</ r e s t r i c t i o n>

</ simpleType>
</ element>
< !−− op t i ona l human readab l e d e s c r i p t i on , see MIB −−>

<element name=” de s c r i p t i o n ” type=” s t r i n g ”
maxOccurs=”1” minOccurs=”0”></ element>

< !−− op t i ona l re f e rence , see MIB −−>

<element name=” r e f e r e n c e ” type=” s t r i n g ”
maxOccurs=”unbounded” minOccurs=”0”></ element>

< !−− op t i ona l default va lue , see MIB −−>

<element name=” de f au l t ” type=” s t r i n g ”
maxOccurs=”unbounded” minOccurs=”0”></ element>

</ sequence>
</complexType>

</schema>

Listing B.4: Meta-Information Repository XML Schema Definition

235

Bibliography

[1] bzip2. http://www.bzip.org/.

[2] Electronic device description language (EDDL). http://www.eddl.org.

[3] PROFIBUS. http://www.profibus.com/.

[4] ISO/IEC 7498-1: Open systems interconnection – basic reference model, 1994.

[5] G. A. Agha. Actors: A model of concurrent computation in distributed sys-
tems. In The MIT Press Series in Artificial Intelligence. MIT Press, Cam-
bridge, 1986.

[6] D. Balfanz, G. Durfee, J. Staddon, and J. Staddon. Efficient tracing of failed
nodes in sensor networks. In In Proceedings of the First ACM International
Workshop on Wireless Sensor Networks and Applications, pages 122–130,
2002.

[7] W. Berrayana, G. Pujolle, and H. Youssef. Xlengine: a cross-layer autonomic
architecture with network wide knowledge for qos support in wireless networks.
In IWCMC ’09: Proceedings of the 2009 International Conference on Wireless
Communications and Mobile Computing, pages 170–175, New York, NY, USA,
2009. ACM.

[8] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area
migration of virtual machines including local persistent state. In VEE ’07:
Proceedings of the 3rd international conference on Virtual execution environ-
ments, pages 169–179, New York, NY, USA, 2007. ACM.

[9] A. Bucchiarone and S. Gnesi. A survey on services composition languages and
models. In A. Bertolino and A. Polini, editors, in Proceedings of International
Workshop on Web Services Modeling and Testing (WS-MaTe2006), pages 51–
63, Palermo, Sicily, ITALY, June 9th 2006.

236 Bibliography

[10] C. Buckl, S. Sommer, A. Scholz, A. Knoll, and A. Kemper. Generating a
tailored middleware for wireless sensor network applications. In Proceedings
of the 2008 IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (sutc 2008), pages 162–169, Washington, DC,
USA, 2008. IEEE Computer Society.

[11] C. Buckl, S. Sommer, A. Scholz, A. Knoll, A. Kemper, J. Heuer, and
A. Schmitt. Services to the field: An approach for resource constrained
sensor/actor networks. Advanced Information Networking and Applications
Workshops, International Conference on, 0:476–481, 2009.

[12] M. E. Cambronero, G. Dı́az, E. Mart́ınez, and V. Valero. A comparative
study between wsci, ws-cdl, and owl-s. In ICEBE ’09: Proceedings of the 2009
IEEE International Conference on e-Business Engineering, pages 377–382,
Washington, DC, USA, 2009. IEEE Computer Society.

[13] A. Cannata, M. Gerosa, and M. Taisch. Socrades: A framework for developing
intelligent systems in manufacturing. In Industrial Engineering and Engineer-
ing Management, 2008. IEEM 2008. IEEE International Conference on, pages
1904 –1908, 8-11 2008.

[14] V. Cerny. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applica-
tions, 45:41–51, 1985. 10.1007/BF00940812.

[15] Y. chee Tseng, S. po Kuo, H. wei Lee, and C. fu Huang. Location tracking in
a wireless sensor network by mobile agents and its data fusion strategies. In
The Computer Journal, pages 448–460, 2003.

[16] M. Chen, S. Gonzalez, and V. Leung. Applications and design issues for mobile
agents in wireless sensor networks. Wireless Communications, IEEE, 14(6):20
–26, december 2007.

[17] M.-J. Choi, H.-M. Choi, J. Hong, and H.-T. Ju. Xml-based configuration man-
agement for ip network devices. Communications Magazine, IEEE, 42(7):84 –
91, july 2004.

[18] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In NSDI’05: Proceedings of
the 2nd conference on Symposium on Networked Systems Design & Implemen-
tation, pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[19] B. Cohen. The bittorrent protocol specification.
http://www.bittorrent.org/beps/bep 0003.html, 2008.

[20] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant
colonies. In ECAL’91: European Conference on Artificial Life, 91.

Bibliography 237

[21] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad
hoc network design. Computer, 37:48–51, 2004.

[22] L. M. S. de Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and
D. Savio. Socrades: A web service based shop floor integration infrastructure.
In C. Floerkemeier, M. Langheinrich, E. Fleisch, F. Mattern, and S. E. Sarma,
editors, IOT, volume 4952 of Lecture Notes in Computer Science, pages 50–67.
Springer, 2008.

[23] B. Deb, S. Bhatnagar, and B. Nath. A topology discovery algorithm for sensor
networks with applications to network management. In IEEE CAS Workshop,
2002.

[24] B. Deb, S. Bhatnagar, and B. Nath. Stream: Sensor topology retrieval at
multiple resolutions. Kluwer Journal of Telecommunications Systems, 26:285–
320, 2003.

[25] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: Nsga-ii. In Pro-
ceedings of the 6th International Conference on Parallel Problem Solving from
Nature, PPSN VI, pages 849–858, London, UK, 2000. Springer-Verlag.

[26] G. Decker, H. Overdick, and J. M. Zaha. J.m.: On the suitability of ws-cdl
for choreography modeling. In In: Proceedings of Methoden, Konzepte und
Technologien für die Entwicklung von dienstebasierten Informationssystemen
(EMISA 2006, 2006.

[27] DMTF. Common information model (cim) specification. version 2.2.
http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf, 1999.

[28] DMTF. CIM operations over http.
http://www.dmtf.org/standards/published documents/DSP0200 1.3.1.pdf,
2009.

[29] DMTF. CIM xml document type definition (dtd).
http://www.dmtf.org/standards/published documents/DSP0203 2.3.1.dtd,
2009.

[30] DMTF. Representation of cim in xml, version 2.3.1.
http://www.dmtf.org/standards/published documents/DSP0201 2.3.1.pdf,
2009.

[31] DMTF. Ws-management cim binding specification.
http://www.dmtf.org/standards/published documents/DSP0227 1.0.0.pdf,
2009.

[32] DMTF. CIM schema.
http://www.dmtf.org/standards/cim/cim schema v2250, 2010.

238 Bibliography

[33] B. Donnet and T. Friedman. Internet topology discovery: a survey. IEEE
Communications Surveys and Tutorials, 9(4):2–15, December 2007.

[34] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Po-
litecnico di Milano, 1992.

[35] EPCglobal. EPCglobal tag data standards, version 1.4, June 2008.

[36] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt. Mspsim – an
extensible simulator for msp430-equipped sensor boards. In Proceedings of the
European Conference on Wireless Sensor Networks (EWSN), Poster/Demo
session, Delft, The Netherlands, Jan. 2007.

[37] EXIficient. http://exificient.sourceforge.net/.

[38] R. Falk and H.-J. Hof. Security design for industrial sensor networks. it -
Information Technology, 52(6):331–339, 2010.

[39] R. Farrell and L. Davis. Decentralized discovery of camera network topol-
ogy. In Distributed Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE
International Conference on, pages 1 –10, sept. 2008.

[40] R. Farrell, R. Garcia, D. Lucarelli, A. Terzis, and I.-J. Wang. Localization
in multi-modal sensor networks. In Intelligent Sensors, Sensor Networks and
Information, 2007. ISSNIP 2007. 3rd International Conference on, pages 37
–42, dec. 2007.

[41] R. France and B. Rumpe. Model-driven development of complex software: A
research roadmap. pages 37–54, 2007.

[42] L. Fredlund. Implementing ws-cdl. In Proceedings of the second Spanish work-
shop on Web Technologies (JSWEB 2006), Universidade de Santiago de Com-
postela, November 2006.

[43] K. H. Fritsche. Tinytorrent: Combining bittorrent and sensornets. Master’s
thesis, University of Dublin, Trinity College, http://hdl.handle.net/2262/850,
2005.

[44] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An ar-
chitecture for a worldwide sensor web. IEEE Pervasive Computing, 2:22–33,
2003.

[45] GlassFish. Fast infoset project. https://fi.dev.java.net/.

[46] D. Gmach. Managing Shared Resource Pools for Enterprise Applications. PhD
thesis, Technische Universität München, 2009.

[47] C. Grimme, T. Langhammer, A. Papaspyrou, and F. Schintke. Negotiation-
based choreography of data-intensive applications in the c3grid project. In
German e-Science Conference 2007, Baden-Baden, May 2007.

Bibliography 239

[48] M. Guido, Z. Elmar, P. Steffen, G. Frank, T. Dirk, and S. Regina. Devices
profile for web services in wireless sensor networks: Adaptations and enhance-
ments. In IEEE 14th International Conference on Emerging Technologies and
Factory Automation (ETFA 2009). IEEE-ETFA, September 2009. Conference.

[49] R. Gummadi, N. Kothari, T. Millstein, and R. Govindan. Declarative failure
recovery for sensor networks. In AOSD ’07: Proceedings of the 6th inter-
national conference on Aspect-oriented software development, pages 173–184,
New York, NY, USA, 2007. ACM.

[50] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava. Sensor network software
update management: a survey. Int. J. Netw. Manag., 15(4):283–294, 2005.

[51] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for in-
formation dissemination in wireless sensor networks. In Proceedings of the 5th
annual ACM/IEEE international conference on Mobile computing and net-
working, MobiCom ’99, pages 174–185, New York, NY, USA, 1999. ACM.

[52] C. Hewitt. Viewing control structures as patterns of passing messages. Artif.
Intell., 8(3):323–364, 1977.

[53] R. Holman, J. Stanley, and T. Ozkan-Haller. Applying video sensor networks
to nearshore environment monitoring. IEEE Pervasive Computing, 2(4):14–21,
2003.

[54] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pages
81–94, New York, NY, USA, 2004. ACM.

[55] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications (ANSI/IEEE Std 802.11, 1999 Edition (R2003)). In-
stitute of Electrical and Electronics Engineers, Inc., June 2003.

[56] IEEE. Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs) (AN-
SI/IEEE Std 802.15.4). Institute of Electrical and Electronics Engineers, Inc.,
June 2006.

[57] IETF. RFC 1213: Management information base for network management of
tcp/ip-based internets: Mib-ii.
http://tools.ietf.org/html/rfc1213, 1991.

[58] IETF. RFC 1952: Gzip file format specification version 4.3.
http://tools.ietf.org/html/rfc1952, 1996.

[59] IETF. RFC 2461: Neighbor discovery for ip version 6 (ipv6).
http://www.ietf.org/rfc/rfc2461.txt, 1998.

240 Bibliography

[60] IETF. RFC 2578: Structure of management information version 2 (smiv2).
http://tools.ietf.org/html/rfc2578, 1999.

[61] IETF. RFC 3411 - 3418 simple network management protocol.
http://tools.ietf.org/html/rfc3411, 2002.

[62] IETF. RFC 3927: Dynamic configuration of ipv4 link-local addresses.
http://tools.ietf.org/html/rfc3927, 2005.

[63] IETF. RFC 4994: Transmission of ipv6 packets over ieee 802.15.4 networks.
http://tools.ietf.org/html/rfc4944, 2007.

[64] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In MOBICOM,
pages 56–67. ACM, 2000.

[65] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Di-
rected diffusion for wireless sensor networking. volume 11, pages 2–16, 2003.

[66] International Electrotechnical Commission (IEC), TC65. IEC 61131: Pro-
grammable controllers - parts 1 to 8, 2001-2004.

[67] International Electrotechnical Commission (IEC), TC65. IEC 61499: Function
blocks - parts 1 to 4, 2004-2005.

[68] IP500 Alliance. http://www.ip500.de/.

[69] ITU. x.680 information technology - abstract notation one (asn.1): Specifica-
tion of basic notation.

[70] ITU. x.691 information technology - asn.1 encoding rules: Specification of
packed encoding rules (per).

[71] ITU. x.694 information technology - asn.1 encoding rules: Mapping w3c xml
schema definitions into asn.1.

[72] ITU. X.891 information technology - generic applications of asn.1: Fast infoset.

[73] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with zebranet. SIGOPS Oper. Syst. Rev., 36(5):96–107, 2002.

[74] Y. jung Oh, H. taek Ju, M. jung Choi, and J. W. Hong. Interaction translation
methods for xml/snmp gateway. In In Proc. 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, pages 54–65.
Springer, 2002.

[75] Juniper Networks. JUNOScriptAPI, http://www.juniper.net/support/xml/
junoscript/index.html.

Bibliography 241

[76] S. Käbisch, D. Peintner, J. Heuer, and H. Kosch. Efficient and flexible xml-
based data-exchange in microcontroller-based sensor actor networks. In Pro-
ceedings of the 2010 IEEE 24th International Conference on Advanced Infor-
mation Networking and Applications Workshops, WAINA ’10, pages 508–513,
Washington, DC, USA, 2010. IEEE Computer Society.

[77] S. Käbisch, D. Peintner, J. Heuer, and H. Kosch. Xml-based web service
generation for microcontroller-based sensor actor networks. In 8th IEEE In-
ternational Workshop onFactory Communication Systems (WFCS), pages 181
–184, 2010.

[78] J. M. Kahn, R. H. Katz, Y. H. Katz, and K. S. J. Pister. Emerging chal-
lenges: Mobile networking for ”smart dust”. Journal of Communications and
Networks, 2:188–196, 2000.

[79] V. Kawadia and P. R. Kumar. A cautionary perspective on cross layer. Wire-
less Communications Magazine, IEEE, 12:3–11, 2005.

[80] S. Kindermann, M. Stockhause, and K. Ronneberger. Intelligent data network-
ing for the earth system science community. In German e-Science Conference
2007, Baden-Baden, May 2007.

[81] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[82] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[83] T. Klie and F. Strauß. Integrating snmp agents with xml-based management
systems. Communications Magazine, IEEE, 42(7):76 – 83, july 2004.

[84] R. Kuntschke. Network-Aware Optimization in Distributed Data Stream Man-
agement Systems. PhD thesis, Technische Universität München, 2008.

[85] kXML. http://www.trantor.de/wbxml/.

[86] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of
embedded hardware and software systems. Journal of Circuits, Systems, and
Computers, 12:231–260, 2003.

[87] W. L. Lee, A. Datta, and R. Cardell-Oliver. Handbook of Mobile Ad Hoc and
Pervasive Communications, chapter Network management in wireless sensor
networks. Scientific Publishers, USA.

[88] W. L. Lee, A. Datta, and R. Cardell-Oliver. Fleximac: A flexible tdma-based
mac protocol for fault-tolerant and energy-efficient wireless sensor networks.
In Proc. IEEE ICON Conf., 2006.

242 Bibliography

[89] W. L. Lee, A. Datta, and R. Cardell-oliver. Winms: Wireless sensor network-
management system, an adaptive policy-based management for wireless sensor
networks. Technical report, UWA-CSSE-06-001, The University of Western
Australia, 2006.

[90] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks. In
ASPLOS-X: Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems, pages 85–95, New
York, NY, USA, 2002. ACM.

[91] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable
simulation of entire tinyos applications. In Proceedings of the 1st international
conference on Embedded networked sensor systems, SenSys ’03, pages 126–137,
New York, NY, USA, 2003. ACM.

[92] Y. Y. Lim, M. Messina, F. Kargl, L. Ganguli, M. Fischer, and T. Tsang.
Snmp proxy for wireless sensor network. In ITNG ’08: Proceedings of the
Fifth International Conference on Information Technology: New Generations,
pages 738–743, Washington, DC, USA, 2008. IEEE Computer Society.

[93] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. In IN OSDI, 2002.

[94] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb:
An acquisitional query processing system for sensor networks. ACM Trans.
Database Syst, 30:2005, 2005.

[95] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless
sensor networks for habitat monitoring. In WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor networks and applications,
pages 88–97, New York, NY, USA, 2002. ACM.

[96] R. Mangharam and M. Pajic. Embedded virtual machines for robust wireless
control systems. In Proceedings of the 2009 29th IEEE International Con-
ference on Distributed Computing Systems Workshops, ICDCSW ’09, pages
38–43, Washington, DC, USA, 2009. IEEE Computer Society.

[97] R. Mangharam, M. Pajic, and S. Sastry. Demo abstract: Embedded virtual
machines for wireless industrial automation. In IPSN ’09: Proceedings of the
2009 International Conference on Information Processing in Sensor Networks,
pages 413–414, Washington, DC, USA, 2009. IEEE Computer Society.

[98] D. Marinakis, P. Giguère, and G. Dudek. Learning network topology from sim-
ple sensor data. In CAI ’07: Proceedings of the 20th conference of the Canadian
Society for Computational Studies of Intelligence on Advances in Artificial In-
telligence, pages 417–428, Berlin, Heidelberg, 2007. Springer-Verlag.

Bibliography 243

[99] M. Maróti, P. Völgyesi, S. Dóra, B. Kusý, A. Nádas, A. Lédeczi, G. Balogh,
and K. Molnár. Radio interferometric geolocation. In SenSys ’05: Proceedings
of the 3rd international conference on Embedded networked sensor systems,
pages 1–12, New York, NY, USA, 2005. ACM.

[100] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel. Flexcup: A flexible and efficient code update mechanism for
sensor networks. In In Proceedings of the Third European Workshop on Wire-
less Sensor Networks (EWSN 2006, pages 212–227, 2006.

[101] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel. TinyCubus:
An Adaptive Cross-Layer Framework for Sensor Networks. it - Information
Technology, 47(2):87–97, April 2005.

[102] J.-P. Martin-Flatin. Web-Based Management of IP Networks and Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2002.

[103] C. J. Merlin. Adaptability in Wireless Sensor Networks Through Cross-Layer
Protocols and Architectures. PhD thesis, Department of Electrical and Com-
puter Engineering, University of Rochester, Rochester NY, 2009.

[104] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network
localization with noisy range measurements. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pages
50–61, New York, NY, USA, 2004. ACM.

[105] R. Müller, G. Alonso, and D. Kossmann. A virtual machine for sensor net-
works. SIGOPS Oper. Syst. Rev., 41(3):145–158, 2007.

[106] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual
machines. In ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 25–25, Berkeley, CA, USA, 2005. USENIX
Association.

[107] NXP Semiconductors. The i2c-bus specification, version 3.0.
http://www.nxp.com/acrobat download/usermanuals/UM10204 3.pdf, 2007.

[108] OASIS. RELAX NG specification. http://relaxng.org/spec-20011203.html,
2001.

[109] OASIS. Oasis reference model for service oriented architecture 1.0, October
2006.

[110] OASIS. Open building information exchange. http://www.oasis-
open.org/committees/download.php/21812/obix-1.0-cs-01.pdf, 2006.

[111] OASIS. Web services resource 1.2 (ws-resource). http://docs.oasis-
open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf, 2006.

244 Bibliography

[112] OASIS. Web services business process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[113] Objective Systems. Asn.1 viewer/editor. http://www.obj-sys.com/asn1-
viewer.php.

[114] H. Oi. Hardware support for a wireless sensor network virtual machine. In
MOBILWARE ’08: Proceedings of the 1st international conference on MO-
BILe Wireless MiddleWARE, Operating Systems, and Applications, pages 1–
5, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[115] Open Geospatial Consortium (OGC). http://www.opengeospatial.org/standards/.

[116] Open Mobile Alliance. Wap binary xml content format specification
(WBXML, version 1.3, July 2001.

[117] C. Peltz. Web services orchestration and choreography. Computer, 36:46–52,
2003.

[118] A. Pras, T. Drevers, R. V. D. Meent, and D. Quartel. Comparing the per-
formance of snmp and web services-based management. In ETransactions on
network and service management, 2004.

[119] Y. Z. Q. Wang and L. Cheng. Reprogramming wireless sensor networks: Chal-
lenges and approaches. IEEE Network Magazine, 20(3):48– 55, May-June 2006.

[120] H. Qi, Y. Xu, and X. Wang. Mobile-agent-based collaborative signal and
information processing in sensor networks. Proceedings of the IEEE, 91(8):1172
– 1183, aug. 2003.

[121] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and B. Strobl. Au-
tonomous multicamera tracking on embedded smart cameras. EURASIP J.
Embedded Syst., 2007(1):35–35, 2007.

[122] M. A. Razzaque, S. Dobson, and P. Nixon. Cross-layer architectures for auto-
nomic communications. J. Netw. Syst. Manage., 15(1):13–27, 2007.

[123] K. Römer and F. Mattern. The design space of wireless sensor networks, 2004.

[124] L. B. Ruiz. MANNA: A Management Architecture for Wireless Sensor Net-
works. PhD thesis, Federal University of Minas Gerais, Belo Horizonte, MG,
Brazil, 2003.

[125] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro. Manna: a management ar-
chitecture for wireless sensor networks. In Communications Magazine, IEEE,
volume 41, pages 116–125, 2003.

Bibliography 245

[126] L. B. Ruiz, I. G. Siqueira, L. B. e. Oliveira, H. C. Wong, J. M. S. Nogueira, and
A. A. F. Loureiro. Fault management in event-driven wireless sensor networks.
In MSWiM ’04: Proceedings of the 7th ACM international symposium on
Modeling, analysis and simulation of wireless and mobile systems, pages 149–
156, New York, NY, USA, 2004. ACM.

[127] S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Pren-
tice Hall, 2nd international edition edition, 2003.

[128] P. Santi. Topology control in wireless ad hoc and sensor networks. ACM
Comput. Surv., 37(2):164–194, 2005.

[129] A. Scholz, C. Buckl, I. Gaponova, S. Sommer, A. Knoll, A. Kemper, J. Heuer,
and A. Schmitt. An adaptive soa for embedded networks. In INDIN’09: 7th
IEEE International Conference on Industrial Informatics. IEEE, 2009.

[130] A. Scholz, C. Buckl, S. Sommer, A. Kemper, A. Knoll, J. Heuer, and
A. Schmitt. esoa - soa für eingebettete netze. ECEASST, 17, 2009.

[131] A. Scholz, I. Gaponova, S. Sommer, A. Kemper, A. Knoll, C. Buckl, J. Heuer,
and A. Schmitt. Efficient communication in control-oriented embedded net-
works. In Proceedings of the 14th IEEE international conference on Emerging
technologies & factory automation, ETFA’09, pages 132–139, Piscataway, NJ,
USA, 2009. IEEE Press.

[132] A. Scholz, S. Sommer, C. Buckl, G. Kainz, A. Kemper, A. Knoll, J. Heuer, and
A. Schmitt. Towards an adaptive execution of applications in heterogeneous
embedded networks. In Software Engineering for Sensor Network Applications
(SESENA 2010). ACM/IEEE, 2010.

[133] J. Schönwälder, A. Pras, and J.-P. Martin-Flatin. On the future of internet
management technologies. IEEE Communications Magazine, 41(10):90–97,
2003.

[134] P. Shafer. Xml-based network management.
http://www.juniper.net/solutions/literature/white papers/200017.pdf.

[135] R. C. Shah and J. M. Rabaey. Energy aware routing for low energy ad hoc sen-
sor networks. In IEEE Wireless Communications and Networking Conference
(WCNC), March 2002.

[136] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric
storage in sensornets. SIGCOMM Comput. Commun. Rev., 33(1):137–142,
2003.

[137] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh. Sim-
ulating the power consumption of large-scale sensor network applications. In
Proceedings of the 2nd international conference on Embedded networked sensor
systems, SenSys ’04, pages 188–200, New York, NY, USA, 2004. ACM.

246 Bibliography

[138] M. L. Shooman. Reliability of Computer Systems and Networks: Fault Toler-
ance, Analysis, and Design. John Wiley & Sons, 2002.

[139] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on the
bare metal of wireless sensor devices: the squawk java virtual machine. In
VEE ’06: Proceedings of the 2nd international conference on Virtual execution
environments, pages 78–88, New York, NY, USA, 2006. ACM.

[140] R. Sollacher, C. Niedermeier, N. Vicari, and M. Osipov. Towards a service
oriented architecture for wireless sensor networks in industrial applications.
In 13th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM 2009), 2009.

[141] S. Sommer, A. Scholz, C. Buckl, A. Knoll, A. Kemper, J. Heuer, and
A. Schmitt. Towards the internet of things: Integration of web services and
field level devices. In FITS ’09: International Workshop on the Future Inter-
net of Things and Services - Embedded Web Services for Pervasive Devices,
2009.

[142] S. Sommer, A. Scholz, I. Gaponova, A. Knoll, A. Kemper, C. Buckl, G. Kainz,
J. Heuer, and A. Schmitt. Service migration scenarios for embedded networks.
Advanced Information Networking and Applications Workshops, International
Conference on, 0:502–507, 2010.

[143] H. Song, D. Kim, K. Lee, and J. Sung. Upnp-based sensor network manage-
ment architecture. In Proc. ICMU, 2005.

[144] B. Srivastava and J. Koehler. Web service composition - current solutions and
open problems. In In: ICAPS 2003 Workshop on Planning for Web Services,
pages 28–35, 2003.

[145] V. Srivastava and M. Motani. Cross-layer design: a survey and the road ahead.
Communications Magazine, IEEE, 43(12):112–119, 2005.

[146] W. Stallings. SNMP, SNMPv2, and CMIP - The Pracitcal Guide to Network-
Management Standards. Addison-Wesley Publishing Company, 1993.

[147] F. Strauß and T. Klie. Towards xml oriented internet management. In in Proc.
8th IFIP/IEEE International Symposium on Integrated Network Management,
pages 505–518. Kluwer Academic Publishers, 2003.

[148] C. P. Sun. Ad-hoc on-demand distance vector routing. In In Proceedings of the
2nd IEEE Workshop on Mobile Computing Systems and Applications, pages
90–100, 1997.

[149] Sun Microsystems Laboratories. Sun spot world.
http://www.sunspotworld.com/.

Bibliography 247

[150] A. I. Sundararaj and P. A. Dinda. Towards virtual networks for virtual ma-
chine grid computing. In VM’04: Proceedings of the 3rd conference on Virtual
Machine Research And Technology Symposium, pages 14–14, Berkeley, CA,
USA, 2004. USENIX Association.

[151] H. taek Ju, M. jung Choi, S. Han, Y. Oh, J. hyuk Yoon, H. Lee, and J. W.
Hong. An embedded web server architecture for xml-based network manage-
ment. In Management, Proc. IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS 2002, pages 1–14, 2002.

[152] A. Talevski, S. Carlsen, and S. Petersen. Research challenges in applying
intelligent wireless sensors in the oil, gas and resources industries. In Industrial
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on, pages
464–469, June 2009.

[153] F. Teraoka and M. Tokoro. Host migration transparency in ip networks: the
vip approach. SIGCOMM Comput. Commun. Rev., 23(1):45–65, 1993.

[154] G. Tolle and D. Culler. Design of an application-cooperative management
system for wireless sensor networks. In Wireless Sensor Networks, 2005. Pro-
ceeedings of the Second European Workshop on, pages 121–132, February 2005.

[155] W3C. Document object model (DOM). http://www.w3.org/DOM/.

[156] W3C. Semantic annotations for WSDL working groups.
http://www.w3.org/2002/ws/sawsdl/.

[157] W3C. Web service semantics - WSDL-S.
http://www.w3.org/Submission/WSDL-S/.

[158] W3C. Hypertext transfer protocol - HTTP/1.1.
http://tools.ietf.org/html/rfc2616, 1999.

[159] W3C. Web services description language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001.

[160] W3C. Web service choreography interface (WSCI) 1.0.
http://www.w3.org/TR/wsci, 2002.

[161] W3C. Web service management: Service life cycle.
http://www.w3.org/TR/wslc/, 2004.

[162] W3C. XML Schema part 1: Structures second edition.
http://www.w3.org/TR/xmlschema-1/, 2004.

[163] W3C. XML Schema part 2: Datatypes second edition.
http://www.w3.org/TR/xmlschema-2/, 2004.

248 Bibliography

[164] W3C. Web services choreography description language version (WS-CDL)
1.0.
http://www.w3.org/TR/ws-cdl-10/, 2005.

[165] W3C. Simple object access protocol (SOAP).
http://www.w3.org/TR/soap/, 2007.

[166] B. Warneke, M. Last, B. Liebowitz, and K. S. Pister. Smart dust: Communi-
cating with a cubic-millimeter computer. Computer, 34:44–51, 2001.

[167] J. Wiklander, J. Eliasson, A. Kruglyak, P. Lindgren, and J. Nordlander.
Enabling component-based design for embedded real-time software. JCP,
4(12):1309–1321, 2009.

[168] R. Winter and J. Schiller. Crosstalk: A data dissemination-based crosslayer
architecture for mobile ad-hoc networks. In in Proceedings of ASWN, 2005.

[169] G. Wittenburg and J. Schiller. A survey of current directions in service place-
ment in mobile ad-hoc networks. Pervasive Computing and Communications,
IEEE International Conference on, 0:548–553, 2008.

[170] XimpleWare. VTD-XML. http://vtd-xml.sourceforge.net/.

[171] J. Yick, G. Pasternack, B. Mukherjee, and D. Ghosal. Placement of network
services in a sensor network. Int. J. Wire. Mob. Comput., 1:101–112, February
2006.

