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a

Abstract

Ultrafast photoinduced heterogeneous electron transfer processes in dye-semiconductor

systems are studied employing a first-principles based methodology. A partitioning

scheme is used to define localized donor and acceptor states and to parametrize a model

Hamiltonian based on electronic structure calculations for the dye-semiconductor sys-

tems. On the basis of this modeling procedure, accurate quantum dynamical simula-

tions are performed employing the multilayer multiconfiguration time-dependent Hartree

method. As representative examples, applications of this methodology to several dye-

semiconductor systems are presented. Simulations for the dye molecule alizarin adsorbed

at a titanium oxide nanocluster show that the electron injection process in this system

takes place on an ultrafast femtosecond timescale and is accompanied by significant elec-

tronic coherence effects. A detailed analysis reveals that the electron transfer process in

this system proceeds via a two-step mechanism involving an intermediate state localized

at the adsorbate-substrate interface. For systems containing pyridine- or perylene-based

adsorbates anchored at titanium oxide nanoclusters via different groups, the results of

simulations show that the ultrafast electron injection dynamics is significantly influenced

by the chemical nature of the adsorbate, especially that of the anchor groups and the

spacer groups. Furthermore, the effect of Dushinsky rotation on the electron transfer

dynamics is investigated for coumarin 343 adsorbed at titanium oxide nanoparticles.



b

Kurzfassung

Gegenstand der Arbeit sind theoretische Untersuchungen von ultraschnellen photoin-

duzierten Elektrontransfer(ET)-Prozessen in Farbstoff-Halbleiter-Systemen. Die theo-

retische Beschreibung verwendet einen Modellhamiltonoperator, dessen Parameter durch

first-principles Elektronenstruktur-Rechnungen auf der Basis von Dichtefunktionaltheorie

charakterisiert werden. Die Donor- und Akzeptorzustände der heterogenen ET-Prozesse

werden dabei mittels einer Projektionsmethode bestimmt. Auf der Basis dieser Modell-

ierung werden unter Verwendung der Multilayer Multiconfiguration Time-Dependent

Hartree (ML-MCTDH) Methode akkurate quantendynamische Simulationen durchge-

führt. Die betrachteten Anwendungsbeispiele umfassen eine Reihe repräsentativer Farb-

stoffmoleküle adsorbiert auf Titanoxid-Substraten. Für den Farbstoff Alizarin, adsorbiert

auf Titanoxid-Nanopartikeln, ergeben die Simulationen eine ultraschnelle Elektronenin-

jektion auf einer Zeitskala von nur wenigen Femtosekunden, die von ausgeprägten elek-

tronischen Kohärenzeffekten begleitet ist. Die genaue Analyse zeigt, dass der ET-Prozess

in diesem System einem zweistufigen Mechanismus folgt, mit einem Zwischenzustand,

der an der Adsorbat-Substrat-Grenzfläche lokalisiert ist. Rechnungen für Pyridin- und

Perylen-basierte Farbstoffe auf Titanoxid ergeben, dass der genaue Verlauf der ultra-

schnellen ET-Dynamik von der chemischen Natur des Adsorbats, insbesondere der Anker-

und Brückengruppen, stark beeinflusst wird. Als ein weiterer interessanter Mechanismus

wird der Einfluss der Duschinski-Rotation der Normalmoden auf die ET-Dynamik am

Beispiel von Coumarin-343, adsorbiert auf Titanoxid-Nanopartikeln, untersucht.
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Chapter 1

Introduction

Electron transfer (ET) reactions in molecular systems are elementary processes that
involve the translocation of an electron (or several electrons) within a single molecule,
a molecular aggregate or an arrangement of molecules embedded in various types of
environments [1]. ET reactions are of importance in many different fields of physics,
inorganic chemistry, organic chemistry and biochemistry [1–3]. Important examples
include isotopic exchange reactions and cross reactions [4, 5], redox reactions among
coordination compounds of metals [6], intramolecular charge transfer in organic com-
pounds [7], electron transfer in photosynthesis [8–10], as well as electron transport in
single-molecule junctions [11].

This thesis will focus on theoretical studies of photoinduced ET reactions at dye-
semiconductor interfaces. These reactions represent interesting examples of hetero-

geneous surface ET processes, which play an important role in many fields [12]. An
ET reaction in these systems can be described as the electron injection process from
an electronically excited state of a chemisorbed dye molecule (the donor) into a semi-
conductor substrate (the acceptor). This process represents the key step for photonic
energy conversion in dye-sensitized solar cells (DSSC, sometimes also called Grätzel

cells) [13–19]. A DSSC is a photovoltaic device based on transition-metal or organic
dye molecules that are adsorbed to a highly porous, nanocrystalline semiconductor
and embedded in an electrolyte. The operation principle of a DSSC is sketched in
Fig. 1.1 [13, 18]. Visible light (hν) excites the dye molecule from its ground state
S0, which is energetically located in the band gap of the semiconductor, to an ex-
cited state S1, which is resonant with the conduction band of the semiconductor. The
photoexcited dye adsorbate then injects electrons to the semiconductor (the photoan-
ode). The thus oxidized adsorbate in turn oxidizes the mediator, which is formed by
a redox species (R/R−) dissolved in the electrolyte. The mediator is regenerated in a
reduction process at the cathode by electrons which flow through the external circuit.

In recent years, the process of electron injection in dye-semiconductor systems has

1
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Figure 1.1: Schematic representation of the principle of a dye-sensitized solar cell
(DSSC). Shown are the conducting-glass photoanode (in gray, labeled as “−”), the
semiconductor (in light blue, with its conduction band and valence band labeled as
CB and VB, respectively), the dye (green) which is adsorbed to the surface of the
semiconductor, the electrolyte (dark blue) which can be a liquid, a gel or an organic
solid, and the conducting-glass cathode (in gray, labeled as “+”). The photoexcitation
(hν) of the dye-adsorbate from its ground state S0 to its excited state S1, the flow of
electrons in the closed circuit and the redox pair R/R− of the electrolyte are indicated.
The maximum voltage ∆V is determined by the difference between the (quasi-)Fermi
level of the semiconductor under illumination (shown by the red line labeled as V −)
and the electrochemical potential of the electrolyte (shown by the red line labeled as
V +).

been studied in great detail experimentally for many different systems [15,17,20–33].
Employing femtosecond laser spectroscopy techniques, which allow the observation
of ultrafast photoreactions in real time by monitoring the electronic and vibrational
spectra of the products of the electron injection reactions (i.e., the oxidized adsorbate
molecules and the electrons in the semiconductors), it has been shown that electron
injection processes at interfaces of dye-semiconductor systems often take place on an
ultrafast sub-picosecond timescale [17, 26, 29, 30, 34, 35]. These experimental studies
were performed on different dye-semiconductor systems. The employed dye adsor-
bates include transition-metal (mostly ruthenium) / ligand complexes (in particular
the so-called N3-dye [13,15–18]) and purely organic dyes. Besides the most commonly
used titanium oxide nanoparticles, zirconium oxide, zinc oxide and tin oxide have also
been used as semiconductor substrate [17, 24, 27, 29]. An electron-injection time as
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fast as 6 fs has been reported for alizarin adsorbed at titanium oxide nanoparticles
in time-resolved experiments [29]. A faster electron-injection time (3 fs) has been
reported for bi-isonicotinic acid adsorbed at titanium oxide employing resonant pho-
toemission spectroscopy techniques [30].

Theoretical studies of interfacial ET reactions require a quantum mechanical de-
scription of the overall processes including a characterization of the electronic struc-
ture of the system as well as a simulation of the ET dynamics and the associated
nuclear dynamics. For complex systems such as dye-semiconductor interfaces, a fully
quantum mechanical treatment of the electronic-nuclear dynamics associated with
the ET process is challenging. In recent years, a variety of different theories and
methods [36–40] have been developed. These methods can be classified into two ca-
tegories. In some methods [37, 38], the dynamics of electron injection is simulated
based on first-principles electronic structure calculations of the ET system. Thereby
the nuclear motion is treated approximately using classical mechanics. On the other
hand, methods which employ a parametrized model Hamiltonian [36,39] often allow
a fully quantum mechanical treatment. In these studies, however, the parameters
were often determined semiempirically from experimental results.

In this thesis, the quantum dynamics of ET processes in dye-semiconductor sys-
tems will be studied employing a recently proposed methodology [41]. In this method,
the dye-semiconductor system is characterized based on first-principles electronic
structure calculations, and the electronic-nuclear dynamics associated with the ET
process is simulated at a fully quantum mechanical level employing a numerically
exact approach. We will employ this first-principles based approach to analyze pho-
toinduced interfacial ET processes in several dye-semiconductor systems, including
alizarin, coumarin 343 and different pyridine- and perylene-based dye molecules ad-
sorbed at titanium oxide nanoparticles. In particular, interesting aspects of ET pro-
cesses in these systems, including the ultrafast ET timescale, the influence of the
coupling to the nuclear motion, electronic coherence effects and their quenching due
to dephasing processes, as well as the mechanism of the ET reaction, will be analyzed
in detail.

This thesis is structured as follows. In Chapter 2, we outline the details of the first-
principles models and the multilayer multiconfigurational time-dependent Hartree
(ML-MCTDH) method [42], which is used to simulate the ET dynamics. Chapter 3
presents the results of electronic structure calculations and the ET dynamics for
alizarin adsorbed at titanium oxide nanoparticles. In particular, we will study the
mechanism of ET reaction in this system based on the analysis of electronic coherence
effects. Chapter 4 focuses on systems containing different pyridine- and perylene-
based dye molecules adsorbed at titanium oxide nanoparticles. In particular, we
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discuss the influence of different anchor groups and spacer groups on the ET dynamics.
In Chapter 5, we analyze the ET dynamics in the dye-semiconductor system coumarin
343 - titanium oxide, focusing on effects caused by Dushinsky rotation. Chapter 6
concludes with a summary and a perspective.



Chapter 2

Theoretical Methodology

In this chapter, we introduce the theoretical methodology which is employed in the
studies of ET dynamics in the dye-semiconductor systems in the following chapters.
This chapter is structured as follows. In Section 2.1, we present a brief overview
of ET reactions and the general theoretical background of ET and traditional ap-
proaches. Previous studies of heterogeneous ET in dye-semiconductor systems are
briefly reviewed in Section 2.2. A detailed introduction of the first-principles based
methodology of quantum dynamics, which will be employed throughout this thesis,
are given in Sections 2.3 and 2.4. Thereby Section 2.3 focuses on the determination
of parameters required in the first-principles based model and Section 2.4 describes
the quantum dynamical methods. Finally, Section 2.5 discusses the observables of
interest in ET reactions and computational details.

2.1 A brief introduction to electron transfer reactions and tra-

ditional kinetic theories

An ET process in a molecular system can be characterized as a charge redistribution
between an initially prepared reactant state and a product state [1]. Specifically, it
can be formulated as a charge transfer from the donor part to the acceptor part of
the system as

DA → D+A−. (2.1)

The overall molecular system is sometimes referred to as a “donor-acceptor complex”.
According to Eq. (2.1), we can denote the reactant state and the product state by
|Ψreac〉 = |DA〉 and |Ψprod〉 =

∣

∣D+A−〉, respectively.

Eq. (2.1) can be extended to describe most ET reactions. For example, a photoin-
duced heterogeneous ET process in a dye-semiconductor system can be formulated

5
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as

DA hν→ D∗A → D+A−, (2.2)

where the superscript ∗ indicates that the donor part is photoexcited.

The reactant state |Ψreac〉 and the product state |Ψprod〉 are eigenstates of the overall
donor-acceptor complex only when there is no interaction between the donor part and
the acceptor part and thus no ET occurs. In this limit, |Ψreac〉 corresponds to the
product of the state |D〉 localized at the donor part and the state |A〉 localized at the
acceptor part, and |Ψprod〉 corresponds to the product of the state

∣

∣D+
〉

localized at
the donor part and the state

∣

∣A−〉 localized at the acceptor part.

In general, the change of the wave function of the overall system from |Ψreac〉
to |Ψprod〉 during the ET reaction involves a redistribution of electron density. This
causes a change of nuclear configuration of the molecular system as well as a polariza-
tion of the environment. Thus, an ET process is usually accompanied by the change
of the equilibrium configuration of the nuclei and coupled to the nuclear (vibrational)
motion of the system. Therefore, when studying an ET reaction, it is often necessary
to include the vibrational degrees of freedom (DoF) and the electronic-vibrational
coupling in the theoretical treatment.

An overall wave function of an ET system is a function of both electronic and
vibrational (nuclear) DoF. In this thesis, we refer to the electronic part of the re-
actant state, in which the transfered electron is localized at the donor part of the
overall system, as the donor state (denoted by

∣

∣ψd
〉

), and the electronic part of the
product state, in which the transfered electron is localized at the acceptor part, as the
acceptor state (denoted by |ψa〉). For a fixed nuclear configuration, a non-vanishing
electronic coupling between the donor state and the acceptor state, which describes
the interaction between the donor and the acceptor part in the overall complex, is
necessary for an ET reaction.

A simple homogeneous ET reaction as given by Eq. (2.1) can be characterized as a
transfer of an electron from a localized (diabatic) donor state to a localized acceptor
state accompanied with the nuclear motion. The Hamiltonian which describes a
simple homogeneous ET reaction in the diabatic picture reads

Ĥ = T̂nucl +
∣

∣ψd
〉

V dd
〈

ψd
∣

∣+ |ψa〉V aa 〈ψa| +
∣

∣ψd
〉

V da 〈ψa| + |ψa〉V ad
〈

ψd
∣

∣ . (2.3)

Here, T̂nucl denotes the nuclear kinetic energy operator. V dd and V aa denote the ener-
gies of the diabatic donor state and the acceptor state, respectively. The offdiagonal
matrix elements V da and V ad characterize the electronic coupling between the donor
state and the acceptor state. For a Hermitian Hamiltonian, we have V da =

(

V ad
)∗.
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In Eq. (2.3), all matrix elements of the potential energy operator, V dd, V aa and
V da, depend on nuclear coordinates. The diagonal elements V dd and V aa describe
the potential energy surfaces (PES) as functions of nuclear configuration. For a fixed
nuclear configuration, the Hamiltonian given in Eq. (2.3) describes an electronic two-
level system, which can be solved analytically: the population of each diabatic state

oscillates with the Rabi-period given by 2π
[

(

V dd − V aa
)2

+ 4
∣

∣V da
∣

∣

2
] 1

2
. Thus, the

characteristic timescale for the electronic transition at the intersection of the two
PES (where V dd = V aa) is proportional to

∣

∣V da
∣

∣

−1.

The diagonalization of the potential energy matrix transforms the electronic part
of Hamiltonian to (|−〉V− 〈ψ−| + |+〉V+ 〈ψ+|). The thus obtained states |−〉 and |+〉
are eigenstates of the electronic Hamiltonian for fixed nuclei, in the following referred
to as the lower and upper adiabatic states. The corresponding energy eigenvalues are
given by

V± =
1

2

[

V dd + V aa ±
√

(V dd − V aa)2 + 4 |V da|2
]

. (2.4)

V− and V+ are also functions of nuclear configuration. As an example, Fig. 2.1 shows
the PES of the diabatic donor and acceptor states and the PES of the lower and
upper adiabatic states involved in a two-state ET reaction.

The interstate coupling matrix element V da in Eq. (2.3) plays an important role in
the ET process. In case of a large

∣

∣V da
∣

∣, Fig. 2.1 (b) shows that two adiabatic PES
exhibit a significant splitting at the intersection of the PES of two diabatic states.
In this case, the upper adiabatic state does not participate in the ET reaction. The
ET process occurs as indicated by the blue arrow in Fig. 2.1 (a) along the PES of
the lower adiabatic state (the double well in black in Fig. 2.1 (a)). This type of
ET reactions can be classified as adiabatic ET. According to the theory of chemical
reaction kinetics, an activation energy Ead

act as indicated in Fig. 2.1 (b) is required
to overcome the potential energy barrier, which separates the reactant state and the
product state. Alternatively, a tunneling transition through the barrier as indicated
by the cyan arrow in Fig. 2.1 (a) is possible. Usually, an adiabatic ET process is
accompanied by a rather large change of nuclear configuration along the reaction
coordinate, which implies a possible atomic rearrangement.
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Figure 2.1: Physical model of two-state ET reactions. Shown are the PES for the
diabatic donor (reactant) state (V dd, the left red parabola) and the diabatic acceptor
(product) state (V aa, the right red parabola), and the PES of the adiabatic states
(in black, the lower one labeled by V− and the upper one by V+). All PES are shown
along a single reaction coordinate. (a) The nonadiabatic ET is indicated by magenta
arrows, and the adiabatic ET is indicated by the blue arrow and the cyan arrow
(the latter indicating a tunneling transition). (b) The splitting 2

∣

∣V da
∣

∣ between the
PES of the adiabatic lower and upper states at the intersection of PES of the two
diabatic states, the activation energy of the nonadiabatic ET Ena

act, the Gibbs free-
energy change ∆Go, the reorganization energy ΛET and the activation energy of the
adiabatic ET Ead

act are indicated.
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In contrast, if the interstate coupling
∣

∣V da
∣

∣ is small, a near degeneracy will be
observed at the intersection of the PES of two diabatic states. Thus both adiabatic
states are involved in the ET reaction. In this case, the ET process is often understood
as electronic transition between two diabatic states. This type of ET reactions is
classified as nonadiabatic ET, which often involves a spatial redistribution of charge
within the molecular system. Magenta arrows in Fig. 2.1 (a) indicate a nonadiabatic
ET reaction. In a nonadiabatic ET reaction, an activation energy Ena

act as indicated
in Fig. 2.1 (b) is required to reach the intersection, where, as a result of the coupling
between the donor state and the acceptor state, there is a certain probability that a
transition to the acceptor state occurs.

The rate constant for a nonadiabatic ET reaction including the coupling to the
nuclear (vibrational) DoF, kna, can be obtained in different ways. By regarding the
donor-acceptor coupling as a perturbation to the Hamiltonian describing a system
containing non-interacting donor and acceptor, the relationship kna ∝

∣

∣V da
∣

∣

2 can be
obtained from Fermi’s Golden Rule theory (cf. following discussion and Appendix
A). On the other hand, the rate constant is related to the activation energy Ena

act via
the Arrhenius equation. Therefore, the rate constant for the nonadiabatic ET obeys

kna ∝
∣

∣V da
∣

∣

2
exp

(

−E
na
act

kBT

)

, (2.5)

where T denotes the temperature and kB is the Boltzmann constant. In contrast, the
rate constant for an adiabatic ET reaction, which only involves the PES of the lower
adiabatic state, obeys the Arrhenius equation1:

kad ∝ exp

(

−E
ad
act

kBT

)

. (2.6)

As indicated in Fig. 2.1 (b), Ead
act differs from Ena

act.

A general theory for a kinetic description of ET reactions was developed by Marcus
[43] in 1950-1960s. In the earliest version of this theory, the motion of nuclear DoF
was treated classically. Later this theory was extended to include quantum effects of
the nuclear motion [44, 45]. In the Marcus theory for a two-state homogeneous ET
reaction, which can be described by Eq. (2.3), the vibrational motion on the PES of
both diabatic (donor and acceptor) states can be approximated by classical harmonic
oscillators, and V da is considered to be independent of the nuclear configuration.
Furthermore, along each individual nuclear coordinate, the vibrational frequency of
the donor state is assumed to be identical to that of the acceptor state. By regarding
the weak donor-acceptor coupling as a perturbation, the resulting nonadiabatic ET

1This does not mean that the rate constant for an adiabatic ET reaction is independent of V da,

because V
−

and thus Ead
act can be determined based on the matrix elements V dd, V aa and V da of

the ET Hamiltonian represented in the diabatic picture.
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rate constant in the Marcus theory is given by an approximation to Fermi’s Golden
Rule [46,47] as

kna =

√

π

ΛETkBT

∣

∣V da
∣

∣

2
exp

(

−E
na
act

kBT

)

(2.7)

in atomic units2. It can be rewritten in the form

kna =

√

π

ΛETkBT

∣

∣V da
∣

∣

2
exp

(

−
(

ΛET + ∆Go
)2

4ΛETkBT

)

= 2π
∣

∣V da
∣

∣

2
FC, (2.8)

where

FC =
1√

4πΛETkBT
exp

(

−
(

ΛET + ∆Go
)2

4ΛETkBT

)

(2.9)

denotes the classical approximation for the Franck-Condon (FC) factor. Here, ΛET is
the ET reorganization energy, and ∆Go denotes the change of the Gibbs free energy,
which, when neglecting the entropy change, is given by

∆Go = min {V aa} − min
{

V dd
}

. (2.10)

Both ΛET and ∆Go are indicated in Fig. 2.1 (b). The activation energy of the
nonadiabatic ET is given by

Ena
act =

(

ΛET + ∆Go
)2

4ΛET
. (2.11)

Similarly, the rate constant for the back reaction reads

kna
− =

√

π

ΛETkBT

∣

∣V da
∣

∣

2
exp

(

−
(

ΛET − ∆Go
)2

4ΛETkBT

)

.

Hence, the equilibrium constant of the ET reaction is given by

K =
kna

kna
−

= exp

(

−∆Go

kBT

)

. (2.12)

Thus, the ET rate depends on the temperature and the activation energy, while the
change of the Gibbs free energy, which is sometimes regarded as the “driving force”
of the reaction, determines the chemical equilibrium of the reaction.

Marcus has extended the theory for homogeneous ET to a unified approach which
can also describe heterogeneous ET reactions [3,43,48], e.g., ET from an initially pre-
pared diabatic donor state

∣

∣ψd
〉

to a manifold of diabatic acceptor states
∣

∣ψa
j

〉

. Here
we only introduce the rate formula for a simplest (purely electronic) heterogeneous
ET reaction (as sketched in Fig. 2.2). When the nuclear motion is not considered, the

2Atomic units are used throughout this thesis.
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rate of electronic transition from the discrete donor state to the set of acceptor states
is given by the Golden Rule formula (a detailed discussion is given in Appendix A)

kGR = Γ
(

εd
)

= 2π
∑

j

∣

∣V da
j

∣

∣

2
δ
(

εd − εa
j

)

. (2.13)

Here εd denotes the energy of the donor state, εa
j denotes the energy of the j-th

acceptor state. V da
j =

(

V ad
j

)∗ characterizes the coupling between the donor state
and the j-th acceptor state. Γ (ε) is the energy-dependent decay-width function. It
describes the density of acceptor states weighted by the donor-acceptor coupling.

E
ne

rg
y ET

∣

∣ψd
〉 {∣

∣ψa
j

〉}

Figure 2.2: ET from a discrete electronic donor state to the continuum of electronic
acceptor states. The distribution of the magnitude of interstate coupling |V da

j | is
shown by the curve over the continuum.

The approaches introduced above are rate theories (kinetic theories) to describe
ET reactions. They characterize the ET reaction by a single rate constant. However,
in many practical applications a kinetic theory is not sufficient since there are many
other observables of interest besides the rate constant. For a detailed study of ET
reactions, including the investigation of population dynamics as well as electronic and
vibrational coherence effects, a dynamical theory of ET is required.

2.2 Survey of previous studies of photoinduced electron trans-

fer in dye-semiconductor systems

In the last decade, various theories and methods have been developed and applied to
studies of dye-semiconductor systems [36–40,49–75]. The electronic structure of dye
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molecules adsorbed at semiconductor substrates, in particular titanium oxide, was
studied employing cluster models of nanoparticles [50, 62, 65, 72, 74, 75] or the slab
model with periodic boundary conditions to describe an extended surface [37,38,55,
56,59,64,67,68].

Quantum dynamics of electron injection at dye-semiconductor interfaces was stud-
ied employing models based on a parametrized Hamiltonian [36,39,49,51–54,58,60,63,
69–71,73] as well as employing first-principles simulations [37,38,56,59,62,64,66,68].
The former class of methods of quantum dynamics often allows a fully quantum-
dynamical treatment on the ET process. On the other hand, the dynamical studies
of ET processes based on the first-principles electronic structure characterization of
the systems often use an approximate classical treatment of the nuclear dynamics.

Ramakrishna and Willig modeled the dynamics and the pump-probe spectroscopy
of photoinduced ultrafast electron injection in the perylene-TiO2 system [36]. In
their study, the model molecular Hamiltonian was represented in a diabatic basis set
constructed by three discrete states (the ground state, the first excited state and a
higher excited state) of the dye molecule and a continuum of acceptor states repre-
senting the conduction-band levels of the semiconductor. Later, together with May,
they applied this model in the simulation of the vibronic dynamics including one
and two vibrational modes [51, 52]. Based on these model studies, Wang, May and
co-workers simulated the laser pulse control of the ultrafast ET and the absorption
spectra of some dye-semiconductor systems with different perylene-based dyes ad-
sorbed at TiO2 [60, 63, 69]. In their studies, the electronic-vibrational wavepacket
propagation was performed at a fully quantum-mechanical level within a single-
reaction-coordinate model with the parameters adopted from the experimental results
of absorption spectra.

Thoss, Kondov and Wang modeled photoinduced ultrafast ET reactions in dye-
semiconductor systems [39] using the Anderson-Newns model Hamiltonian [76, 77]
with a tight-binding parameterization [49]. They also applied this model to study the
coumarin 343 - titanium oxide system [70]. In their studies, the donor-state energy
relative to the conduction-band states was calculated by fitting the experimental
results of absorption spectra. The electronic-vibrational coupling parameters were
obtained from electronic structure calculations of the isolated dye molecule. The
tight-binding parameters of the semiconductor as well as the parameters concerning
the bath modes modeling the solution environment were taken from literature. The
fully quantum-dynamical simulations were carried out employing the self-consistent
hybrid (SCH) approach [78,79] in combination with the ML-MCTDH method [42].

Rego, Abuabara and Batista studied ET processes from catechol to titanium oxide
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in detail [38, 62, 68]. In their studies, the tight-binding model Hamiltonian was con-
structed using a semiempirical extended Hückel approach based on density functional
theory (DFT) electronic structure calculations. The ET dynamics was simulated at
a mixed quantum-classical level with the nuclear DoF treated classically using the
Ehrenfest mean-field nuclear dynamics.

Stier, Duncan and Prezhdo performed a series of nonadiabatic molecular dynamics
(NAMD) studies for various dye-semiconductor systems (isonicotinic acid, isonicotinic
acid - silver cyanide complex or alizarin adsorbed at a titanium oxide substrate)
[37,56,59,64,66]. In their studies, the real time electronic-vibrational dynamics of ET
at the atomistic level was simulated using a mixed quantum-classical approach with
the electronic DoF treated by the quantum-mechanical electronic structure theory
and the nuclear DoF described classically or semiclassically.

2.3 First-principles model

In this section and Section 2.4, the theoretical methodology which is employed to
describe photoinduced ET reactions in dye-semiconductor systems is outlined. This
approach, which combines a first-principles based model Hamiltonian and accurate
quantum dynamical simulations, was first proposed by Kondov and co-workers [41].
This method has been successfully applied to investigate photoinduced interfacial ET
processes in several dye-semiconductor systems [41,80,81]. In this section, the major
focus is on the approach to determine electronic energies and donor-acceptor coupling
matrix elements. We also discuss the method used to characterize the nuclear DoF.
The dynamical approach employed in the simulation will be introduced in Section 2.4.

2.3.1 Determination of the electron transfer Hamiltonian

To study ET dynamics in dye-semiconductor systems, we use an first-principles based
model for heterogeneous ET reactions. Within this model, the ET Hamiltonian is
represented in a basis of the following diabatic (charge-localized) electronic states
which are relevant for the photoreaction: the electronic ground state of the overall
system |ψg〉, the donor state of the ET process

∣

∣ψd
〉

(which, in the limit of vanishing
coupling between the dye molecule and the semiconductor substrate, corresponds to
the product of an electronically excited state of the dye and an empty conduction
band of the semiconductor), and the (quasi-)continuum of acceptor states of the ET
reaction

{∣

∣ψa
j

〉}

(corresponding to the product of the ground state of the dye-cation
and a conduction-band state of the semiconductor-anion in the zero-coupling limit).
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Thus, the ET Hamiltonian reads

Ĥ = T̂nucl + |ψg〉V g 〈ψg| +
∣

∣ψd
〉

V dd
〈

ψd
∣

∣+
∑

j

∣

∣ψa
j

〉

V aa
j

〈

ψa
j

∣

∣

+
∑

j

(∣

∣ψd
〉

V da
j

〈

ψa
j

∣

∣+
∣

∣ψa
j

〉

V ad
j

〈

ψd
∣

∣

)

. (2.14)

Here, V g denotes the potential energy in the electronic ground state. The diagonal
elements of the diabatic potential energy matrix, V dd and V aa

j , describe the energies of
the electronic donor state and the j-th acceptor states, respectively. They all depend
on nuclear coordinates. The offdiagonal matrix elements V da

j =
(

V ad
j

)∗ characterize
the donor-acceptor coupling. The kinetic energy of the nuclear DoF is given by

T̂nucl =
∑

l

1

2
p̂2

l , (2.15)

where p̂l is the canonical momentum of the l-th mass-scaled nuclear coordinate ql.

The potential energy in the electronic ground state, V g, can (at least in principle)
be determined by electronic structure calculations. However, the characterization
of the diabatic (donor-acceptor) potential energy matrix elements, V dd,

{

V aa
j

}

and
{

V da
j

}

, requires the introduction of appropriate diabatic donor and acceptor states
∣

∣ψd
〉

and
{∣

∣ψa
j

〉}

. In a previous work [74] on heterogeneous ET, a semiempirical
method was employed to characterize the diabatic donor and acceptor states and
donor-acceptor coupling matrix elements. This semiempirical approach was moti-
vated by the Newns model of chemisorption [77] with a parametrization based on a
tight-binding model [49]

In this thesis, a first-principles description of quantum dynamics for ET processes
in dye-semiconductor systems based on electronic structure calculations is employed.
This approach is motivated by the projection-operator approach [82] of resonant
electron-molecule scattering [83]. This projection-operator approach has been proven
to be a very useful concept to introduce localized diabatic states [83–85]. Specifically,
we employ a partitioning scheme based on DFT calculations for a dye-semiconductor
complex (with a finite semiconductor cluster). As an example, the partitioning
scheme applied to the dye-semiconductor system 3-peryleneacrylic acid - (TiO2)60

is illustrated in Fig. 2.3. The scheme for defining the localized donor and acceptor
states

∣

∣ψd
〉

and
{∣

∣ψa
j

〉}

in the Hamiltonian given by Eq. (2.14) includes three steps:
(i) a partitioning of the Hilbert space into a donor and an acceptor subspace using a
localized basis, (ii) a partitioning of the Hamiltonian according to the donor-acceptor
separation, and (iii) a separate diagonalization of the donor and the acceptor blocks
of the partitioned Hamiltonian. In this thesis, we will work within the mean-field
single-electron picture, where we consider that the configuration of all other electrons
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is left unchanged during the ET process. Thus, we identify the effective Hamilton-
ian with the Fock (or Kohn-Sham) matrix and use the orbitals and orbital energies
to represent the corresponding system states and the energies in the partitioning
method.

acceptor

donor

e-

?

hν

Figure 2.3: Partitioning scheme for the dye-semiconductor system 3-peryleneacrylic
acid - (TiO2)60. The donor part includes all atoms of the dye adsorbate (3-
peryleneacrylic acid) and the acceptor part includes all atoms of the (TiO2)60 semi-
conductor substrate as indicated.

In the first step, we employ the set of (Gaussian-type-of) atomic orbitals (AO)
{|φk〉}, which are used in the electronic structure calculation for the overall system,
as the localized basis functions in the separation of donor and acceptor space. This
set of AO is divided into two groups: the donor group

{∣

∣φd
k

〉}

which comprises the
AO centered at the atoms of the donor part (i.e., the dye adsorbate, cf. Fig. 2.3),
and the acceptor group {|φa

k′〉} which includes the AO centered at the atoms of the
acceptor part (i.e., the semiconductor substrate, cf. Fig. 2.3).

Since it is advantageous to work with orthogonal orbitals [86,87], the set of all AO
is orthogonalized according to Löwdin [88,89]:

∣

∣

∣φ̃k′

〉

=
∑

k

(

S− 1
2

)

k′k
|φk′〉 . (2.16)

Here S denotes the overlap matrix of AO with elements

Skk′ = 〈φk |φk′〉 . (2.17)
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The thus obtained new basis functions
{∣

∣

∣φ̃k

〉}

exhibit a minimal deviation from
the original ones in a least-squares sense, and hence, their localization is preserved.
In particular, the classification with donor orbitals

{∣

∣

∣φ̃d
k

〉}

and acceptor orbitals
{∣

∣

∣φ̃a
k′

〉}

is still valid.

The set of orthogonal basis functions,
{{∣

∣

∣
φ̃d

k

〉}

,
{∣

∣

∣
φ̃a

k′

〉}}

, is then used to parti-
tion the Fock or Kohn-Sham matrix from the converged self-consistent field (SCF) or
DFT calculation into two (donor and acceptor) subspaces. The Fock (or Kohn-Sham)
matrix in the orthogonal basis is given by

F̃ = S− 1
2 FS− 1

2 , (2.18)

where F denotes the Fock (or Kohn-Sham) matrix in the original AO basis. F̃ can
be rearranged into the following donor-acceptor block structure

F̃ =

(

F̃ dd F̃ da

F̃ ad F̃ aa

)

, (2.19)

where the matrix elements are given by

F̃αβ
kk′ =

〈

φ̃α
k

∣

∣

∣ F̂
∣

∣

∣φ̃
β
k′

〉

=
∑

m

ǫm

〈

φ̃α
k

∣

∣

∣χm

〉〈

χm

∣

∣

∣φ̃
β
k′

〉

. (2.20)

Here F̂ is the Fock operator, {α, β} = {d, a} denote the donor (d) or the acceptor (a)
subspace, |χm〉 is the m-th MO (i.e., F̂ |χm〉 = ǫm |χm〉) obtained from the converged
SCF (or DFT) calculation.

The separated diagonalization of diagonal blocks, F̃ dd and F̃ aa, can be written as

F̄ αα = (Uα)† F̃ ααUα =







ǭα1 0 · · ·
0 ǭα2 · · ·
...

... . . .






. (2.21)

The transformation matrix

U =

(

Ud 0

0 U a

)

(2.22)

can prediagonalize F̃ as

U †F̃U =

(

(

Ud
)†

0

0 (U a)†

)(

F̃ dd F̃ da

F̃ ad F̃ aa

)(

Ud 0

0 U a

)

=

(

(

Ud
)†

F̃ ddUd
(

Ud
)†

F̃ daU a

(U a)† F̃ adUd (U a)† F̃ aaU a

)

=

(

F̄ dd F̄ da

F̄ ad F̄ aa

)

= F̄ . (2.23)
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The prediagonalized block structure of the Fock matrix reads

F̄ =

(

F̄ dd F̄ da

F̄ ad F̄ aa

)

=























ǭd1 0 · · · F̄ da
11 F̄ da

12 · · ·
0 ǭd2 · · · F̄ da

21 F̄ da
22 · · ·

...
... . . . ...

... . . .

F̄ ad
11 F̄ ad

12 · · · ǭa1 0 · · ·
F̄ ad

21 F̄ ad
22 · · · 0 ǭa2 · · ·

...
... . . . ...

... . . .























. (2.24)

The corresponding “projected” donor and acceptor orbitals
{∣

∣χ̄α
j

〉}

are given as
the column vectors of U (i.e. eigenvectors or F̃ αα), which are related to the ortho-
gonalized AO

{∣

∣

∣
φ̃α

k

〉}

and the original AO {|φk′〉} via

∣

∣χ̄α
j

〉

=
∑

k

Uα
kj

∣

∣

∣φ̃α
k

〉

=
∑

k,k′

Uα
kj

(

S
1
2

)

k′k
|φk′〉 . (2.25)

The diagonal blocks of the thus obtained Fock matrix (Eq. (2.24)), F̄ dd and F̄ aa,
contain energies of the localized dye adsorbate states and those of the localized semi-
conductor substrate states, respectively. The offdiagonal blocks contain electronic
coupling matrix elements between adsorbate and substrate sites. Identifying the
donor state

∣

∣ψd
〉

with one of the states
∣

∣χ̄d
n

〉

(based, e.g., on the orbital energy or the
transition dipole moment to the ground state) and the acceptor states

∣

∣ψa
j

〉

with states
∣

∣χ̄a
j

〉

, electronic energies of donor and acceptor states are given by the corresponding
diagonal elements ǭdn and ǭaj of the prediagonalized Fock matrix, respectively. The
donor-acceptor coupling matrix elements are accordingly given by V da

j = F̄ da
nj .

The partitioning method discussed above is not limited to dye-semiconductor sys-
tems with a finite semiconductor cluster but can, in principle, also be applied to
a dye molecule adsorbed on an extended (“infinite”) surface. One possibility is to
employ a slab model and electronic structure calculations with periodic boundary
conditions [67]. Alternatively, the effect of an infinite semiconductor substrate can
also be described using surface Green’s function techniques [90]. Within this method,
the effect of the infinite substrate enters via the self-energy. In this thesis, we use a
simpler approximate version [41] of surface Green’s function approach to mimic the
effect of an extended surface. Thereby a constant imaginary part is added to the
AO energies (in the orthogonal basis

∣

∣

∣φ̃α
k

〉

) at the “boundary atoms” of the cluster.
The details of this approach are given in Appendix B. The classification of boundary
atoms and the specification of the imaginary energy can be determined by test calcu-
lations. In this thesis, a value of 1 eV is used for the imaginary part. Employing this
approach, the interaction of the donor state with acceptor states is fully characterized
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by the (continuous) energy-dependent decay-width function

Γ (ε) = 2π
∑

j

∣

∣V da
j

∣

∣

2
δ
(

ε− εa
j

)

. (2.26)

This function describes the density of states of the semiconductor substrate weighted
by the donor-acceptor coupling strength (cf. Eq. (2.13)). A practical approach to
approximately calculate Γ (ε) is described in Appendix B.

2.3.2 Characterization of nuclear degrees of freedom

To characterize the nuclear DoF involved in the ET process, the partitioning proce-
dure outlined above has to be performed for each nuclear geometry, thus resulting
in PES V αα ({ql}) of ET-related diabatic states and coordinate-dependent donor-
acceptor coupling matrix elements V da ({ql}). If many DoF are considered in the
simulation of ET dynamics, such a global characterization of PES is not feasible. In
this thesis, we adopt a more practical and local strategy, where a local low-order poly-
nomial expansion of the diabatic potential energy matrix elements V αβ ({ql}) around
the equilibrium geometry of the neutral ground state of the system is employed.

In principle, nuclear DoF of the overall system include both phonons of the semi-
conductor substrate and intramolecular vibrations of the dye adsorbate. In this thesis,
we only consider the intramolecular vibrations, which are expected to have a larger
influence on the electron injection process due to the ultrafast timescale (from a
few femtoseconds to a few tens of femtoseconds) of the ET reactions considered in
this thesis. Thus, the corresponding vibrational parameters are determined based on
electronic structure calculations for the isolated dye molecule, thereby neglecting the
coupling to the semiconductor substrate and to the phonons of the semiconductor.

To describe the vibrational DoF of the isolated dye molecule, we employ the har-
monic approximation for the potential energy in its electronic ground state as

V g ({ql}) = εg +
∑

l

1

2
ω2

l q
2
l . (2.27)

Here, ql denotes the mass-scaled coordinate of the l-th normal mode in the electronic
ground state of the isolated dye molecule, ωl denotes the corresponding frequency.
Both are determined by electronic structure calculations for the isolated dye molecule.
εg is the ground-state equilibrium energy.

We assume that the donor-acceptor coupling matrix elements V da are approxi-
mately independent of the nuclear geometry3. To account for electronic vibrational

3This corresponds to the Condon approximation, which is often employed in ET theory and is
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coupling, we expand the PES of other electronic states about the equilibrium geo-
metry of the electronic ground state ({ql = 0}) as

V αα
j ({ql}) = V αα

j ({0}) +
∑

l

κα
l ql +

∑

l,l′

γα
ll′qlql′ . (2.28)

In the simplest approximation, only linear terms of the expansion are taken into ac-
count. The frequencies are approximated by their ground-state values, and Dushinsky
rotation [91] of normal modes is neglected. In this way we obtain

V αα
j ({ql}) = V αα

j ({0}) +
∑

l

κα
l ql +

∑

l

1

2
ω2

l q
2
l . (2.29)

This approximation has been successfully used to describe Franck-Condon and re-
sonance Raman spectra [92]. It is also used in the linear vibronic coupling model of
conical intersections [93] and in the Marcus theory of ET [3].

Within the description of nuclear DoF employed as introduced above, parameters
of PES of diabatic donor and acceptor states are obtained from the potential energy
functions of the excited state of the neutral dye molecule and the ground state of the
cation of the dye, respectively. Accordingly, we have

V dd ({ql}) = εd +
∑

l

κd
l ql +

∑

l

1

2
ω2

l q
2
l , (2.30)

V aa
j ({ql}) = εa

j +
∑

l

κa
l ql +

∑

l

1

2
ω2

l q
2
l . (2.31)

Here εd and εa
j denote the energy of the donor and the j-th acceptor state at the

equilibrium geometry of the ground state, respectively. They are obtained from the
partitioning procedure based on the electronic structure calculation of the overall
system. The electronic-vibrational coupling constants κd

l and κa
l are obtained from

the gradients (along the l-th intramolecular normal mode) of the potential energy
functions of the electronically excited state of the neutral dye molecule (corresponding
to the donor state) and the ground state of the cation of the dye (corresponding to
the acceptor states) at the equilibrium geometry of the ground state of the neutral
dye molecule, respectively.

The electronic-vibrational coupling constants κd
l and κa

l are related to reorganiza-

tion energies of the l-th intramolecular normal mode via

λd
l =

(

κd
l

)2

2ω2
l

, (2.32)

λa
l =

(κa
l )

2

2ω2
l

, (2.33)

expected to be valid for relatively rigid systems considered in this thesis.
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which are associated with transitions from the electronic ground state to the excited
state and to the cation of the dye molecule, respectively. For the l-th intramolecular
mode, the reorganization energy for the ET process, which corresponds to a transition
from the excited state of the dye to the cation, is given by

λET
l =

(

κa
l − κd

l

)2

2ω2
l

. (2.34)

The corresponding total donor-state, acceptor-state and ET reorganization energies
are given by Λd/a/ET =

∑

l λ
d/a/ET
l .

In the calculations of electronic-vibrational dynamics presented in the following
chapters, we select the intramolecular modes according to their electronic-vibrational
coupling strength in the following way. A vibrational mode ql, for which at least one
of the parameters

∣

∣

∣

∣

κd
l√
ωl

∣

∣

∣

∣

=
√

2ωlλd
l ,

∣

∣

∣

∣

κa
l√

ωl

∣

∣

∣

∣

=
√

2ωlλa
l ,

∣

∣

∣

∣

κET
l√
ωl

∣

∣

∣

∣

=
√

2ωlλET
l

is larger than a certain threshold (set as 100 cm−1 in this thesis), is included in the
dynamical calculation. This criterion is motivated by the ET Hamiltonian rewritten
in the form

Ĥ = T̂nucl +
∣

∣ψd
〉

εd
〈

ψd
∣

∣+
∑

j

∣

∣ψa
j

〉

εa
j

〈

ψa
j

∣

∣+
∑

j

(∣

∣ψd
〉

V da
j

〈

ψa
j

∣

∣+
∣

∣ψa
j

〉

V ad
j

〈

ψd
∣

∣

)

+
∑

l

[

κd
l√
ωl

(

∣

∣ψd
〉 〈

ψd
∣

∣+
∑

j

∣

∣ψa
j

〉 〈

ψa
j

∣

∣

)

+
∑

j

∣

∣ψa
j

〉 κa
l − κd

l√
ωl

〈

ψa
j

∣

∣

]

.

In this thesis, the photoexcitation of the dye adsorbate by the laser pulse will not
be included explicitly in the dynamical simulations. Instead, we will assume that
it can be approximated by an instantaneous transition from the electronic ground
state to the donor state. Therefore, the electronic ground state will also not be
explicitly involved in the dynamical calculations. However, the position of the elec-
tronic ground state with respect to the donor and acceptor states plays an important
role in the vibronic dynamics of ET, because it determines to the position of the
photoexcited vibrational wavepacket at t = 0. In principle, along each intramole-
cular mode, there are three possible relationships among the positions of the PES,
corresponding to three possible results when comparing the reorganization energies:
max

{

λd
l , λ

a
l , λ

ET
l

}

= λd
l , λ

a
l or λET

l . All three different situations are illustrated in
Fig. 2.4. In a model system described by Fig. 2.4 (a), if the electronically excited
wavepacket is located at the intersection of the FC geometry (dashed line) and the
parabola describing V dd, it will move along the PES V dd towards its minimum and
thus intersect the acceptor states

{

V aa
j

}

with a decreasing quantum number j. This
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trend is more pronounced for a model system described by Fig. 2.4 (c). In contrast,
for a model system described by Fig. 2.4 (b), the wavepacket will move along the
PES V dd and intersect

{

V aa
j

}

with an increasing quantum number j.
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Figure 2.4: Schematic illustrations of PES of the donor and acceptor states along
a single nuclear coordinate. Shown are PES of the ground state (V g), the donor
state (V dd) and the acceptor states ({V aa

k }). The FC geometry (corresponding to the
minimum of the ground-state PES) is indicated by the vertical dashed line. Three
different situations are shown: (a) the minimum of an acceptor-state PES lies be-
tween that of the ground-state PES and that of the donor-state PES (corresponding
to max

{

λd
l , λ

a
l , λ

ET
l

}

= λd
l ), (b) the minimum of the donor-state PES lies between

that of the ground-state PES and that of an acceptor-state PES (corresponding to
max

{

λd
l , λ

a
l , λ

ET
l

}

= λa
l ) and (c) the minimum of the ground-state PES lies between

that of the donor-state PES and that of an acceptor-state PES (corresponding to
max

{

λd
l , λ

a
l , λ

ET
l

}

= λET
l ).
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The discussions about electronic-vibrational coupling constants, reorganization
energies and PES above are all based on the approximation applied in Eq. (2.29)
or equivalently, in Eqs. (2.30) and (2.31). If this approximation is not employed,
the PES of the donor and acceptor states is expanded up to quadratic terms using
Eq. (2.28). Thereby, Dushinsky rotation is introduced in the PES of the donor and
acceptor states. This requires the determination of both κα

l and γα
ll parameters for

each normal mode ql of the electronic ground state as well as γα
ll′ parameters for

each pair of modes ql and ql′
4. Effects caused by Dushinsky rotation (often classi-

fied as Dushinsky effects) on the ET dynamics in dye-semiconductor systems will be
analyzed in Chapter 5 in detail.

In most experiments on electron injection from adsorbed dye molecules to semi-
conductor substrates, a colloidal solution of dye-sensitized nanoparticles was em-
ployed [22, 23, 34, 35]. In principle, we can account for the influence of the surround-
ing solvent on the ET dynamics. In this thesis, we will not include the motion of
surrounding environment in dynamical simulation of ET reactions. For studies of
solvent effects on interfacial ET processes in dye-semiconductor systems, we refer to
Refs. [39, 41,70].

In the dynamical simulations discussed below, we also consider for analysis the
purely electronic dynamics, which is obtained with all nuclear DoF frozen at their
equilibrium positions. The corresponding approximate electronic Hamiltonian is
given by

Ĥelec = |ψg〉 εg 〈ψg| +
∣

∣ψd
〉

εd
〈

ψd
∣

∣+
∑

j

∣

∣ψa
j

〉

εa
j

〈

ψa
j

∣

∣

+
∑

j

(∣

∣ψd
〉

V da
j

〈

ψa
j

∣

∣+
∣

∣ψa
j

〉

V ad
j

〈

ψd
∣

∣

)

. (2.35)

2.4 Quantum dynamical methods

In this thesis, we will study the dynamics of ET reactions in dye-semiconductor
systems. The dynamics of a quantum mechanical system is described by the time-
dependent wave function |Ψ (t)〉, which is given by the solution of the time-dependent
Schrödinger equation (TDSE)

i
∂

∂t
|Ψ (t)〉 = Ĥ |Ψ (t)〉 . (2.36)

4Based on Eq. (2.28), normal modes {ql} of the ground state are no longer normal modes of the

donor or acceptor states due to the non-vanishing mode-mixing terms in the expressions of potential

energies.
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Here Ĥ is the Hamiltonian given, e.g., by Eq. (2.14).

Several approaches can be used to solve the TDSE. If the Hamiltonian Ĥ is not
explicitly time-dependent, solving the quantum-dynamical problem within a time-

independent picture is a straightforward approach. The key step of such an approach
is the diagonalization of the Hamiltonian matrix. The Hamiltonian operator and the
state vector of the system are usually represented in an appropriate product basis. In
a time-independent approach, we need to solve the eigenvalue problem of the Hamil-
tonian matrix and to perform transformation between the product basis-function
representation and the eigenfunction representation. The detailed procedure is not
discussed here. The application of the time-independent approach is restricted to sys-
tems containing only a few DoF, since the computational effort grows exponentially
with the number of DoF that the system contains.

Various numerical methods of solving the TDSE within a time-dependent picture

have been developed [94]. The scheme of wavepacket propagation consists of three
components: the construction of an initial wavepacket in a proper representation, the
propagation of the wavepacket, and the analysis of dynamical properties based on
the propagated wavepacket. Compared with time-independent methods, wavepacket
propagation approaches have revealed differences and advantages: (i) for most appli-
cations, the computational efforts of solving the set of first-order differential equations
in a time-dependent approach is smaller than the effort of diagonalizing the Hamil-
tonian matrix in the time-independent approach; (ii) the time-dependent wavepacket
usually remains more localized even after a long propagation time, while usually the
eigenstates involved in time-independent approaches are very delocalized; and (iii) it
is easier to develop approximate methods based on a time-dependent method.

In this thesis, we will study the dynamics in dye-semiconductor systems using time-
dependent approaches. Methods that will be employed to simulate ET dynamics in
the following chapters, including the conventional wavepacket-propagation method,
the routine multiconfiguration time-dependent Hartree (MCTDH) method [95–99]
and the multilayer (ML) formulation [42,100] of MCTDH method, will be introduced
in this section. These methods are applicable to dynamical problems in systems with
different sizes. For example, conventional wavepacket-propagation approaches are
applicable to the simulation of purely electronic dynamics, while the ML-MCTDH
approach allows the treatment of the vibronic dynamics including many vibrational
modes.
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2.4.1 From conventional wavepacket propagation to the multiconfigura-

tion time-dependent Hartree method

The equations of motion for a variational basis set approach to quantum dynamics
can be obtained from the Dirac-Frenkel variational principle [101,102]

〈δΨ (t)| Ĥ − i
∂

∂t
|Ψ (t)〉 = 0. (2.37)

In the past few decades, most of computational implementations of wavepacket pro-
pagation methods have expressed the wave function as a linear combination of time-

independent configurations as

|Ψ (t)〉 =
∑

J

AJ (t) |XJ〉 , (2.38)

where J = j1 · · · jN is a multiindex that runs through all combinations of basis
functions in F DoF, i.e.,

|Ψ (t)〉 =

J1
∑

j1=1

· · ·
JN
∑

jN=1

Aj1···jN
(t)

N
∏

n=1

∣

∣

∣
χ

(n)
jn

〉

. (2.39)

Here,
|XJ〉 =

∣

∣

∣
χ

(1)
j1

〉

· · ·
∣

∣

∣
χ

(N)
jN

〉

(2.40)

represents a time-independent configuration of the system.
∣

∣

∣
χ

(n)
jn

〉

only describes the
motion of the n-th DoF. Eq. (2.38) can be alternatively written in the form

Ψ (q1, · · · , qN , t) =

J1
∑

j1=1

· · ·
JN
∑

jN=1

Aj1···jN
(t)

N
∏

n=1

χ
(n)
jn

(qn) .

For convenience, the basis functions for each DoF are usually chosen to be orthonor-
mal

〈

χ
(n)
jn

∣

∣

∣
χ

(n)
j′n

〉

= δjj′ ,

which yields orthonormal time-independent configurations:

〈XJ |XJ′〉 = δJJ′ . (2.41)

Because the configurations |XJ〉 are considered fixed and time-independent, the
variation and the time derivative of the wave function are only performed with respect
to the expansion coefficients as given by

δ |Ψ (t)〉 =
∑

J

δAJ (t) |XJ〉 , (2.42)

∂

∂t
|Ψ (t)〉 =

∑

J

ȦJ (t) |XJ〉 . (2.43)
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After substitution into Eq. (2.37) and application of the orthonormality condition
given by Eq. (2.41), we obtain the usual expression for the time evolution of expansion
coefficients:

iȦJ (t) =
∑

J′

HJJ′AJ′ (t) , (2.44)

where

HJJ′ = 〈XJ| Ĥ |XJ′〉 (2.45)

are the Hamiltonian matrix elements in the basis {|XJ〉}.

The equation of motion for the expansion coefficient AJ, Eq. (2.44), is coupled to
the equations of motion for other expansion coefficients. All these equations form a
system of coupled linear ordinary differential equations, which are employed as the
major scheme used for most of the time-dependent wavepacket propagations. Al-
though considerable progress has been made in order to optimize the methodology
from various aspects, including the choice of basis functions, the choice of coordinate
systems and different methods of propagation, the practical application of this ap-
proach to large systems is severely restricted. This is due to the fact that, in this
scheme, the configurations are time-independent and only the expansion coefficients
are varied, which corresponds to a full configuration interaction (FCI) approach in
electronic structure theory. From Eq. (2.39), we can observe that the total number
of configurations |XJ〉 =

∏N

n=1

∣

∣

∣
χ

(n)
jn

〉

(i.e., combinations of primitive basis functions
for individual DoF) and coefficients AJ (t) = Aj1···jN

(t) scales exponentially versus
the number of DoF (N). Thus, the application of the numerically exact wavepacket-
propagation approach based on Eqs. (2.39) and (2.44) is limited to systems containing
up to four atoms. For larger systems, e.g., systems with more than 10 DoF which
roughly corresponds to 1010 configurations, a numerically exact dynamical calculation
is rather unrealistic with the current computer hardware.

However, for many systems, only a relatively small number of time-dependent

combinations of fixed configurations are important for describing the correct quantum
dynamics. Thus, it appears to be more promising to describe the wave function in the
functional of the variational procedure in terms of time-dependent configurations. One
approximate method developed for solving the TDSE for larger systems, the time-

dependent self-consistent field (TDSCF) approach [101], employs the time-dependent

Hartree (TDH) ansatz for the wave function as

Ψ (q1, · · · , qM , t) =
M
∏

m=1

ϕ(m) (qm, t) . (2.46)

This TDH product ansatz for the wave function can remarkably reduce the com-
putational effort. On the other hand, it represents a significant approximation to
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the exact solution of the TDSE if the Hamiltonian is not variable-separable, since it
neglects the coupling among the DoF.

By generalizing the single TDH-product ansatz for the wave function to a linear
combination of TDH products, the ansatz for the wave function in the multiconfigu-

ration (MC) TDH approach [95–99] is given by

|Ψ (t)〉 =
∑

J

AJ (t) |ΦJ (t)〉 . (2.47)

Here, each time-dependent configuration |ΦJ (t)〉 is expressed in the form of a Hartree
product

|ΦJ (t)〉 =
M
∏

m=1

∣

∣

∣
ϕ

(m)
jm

(t)
〉

, (2.48)

where
∣

∣

∣
ϕ

(m)
jm

〉

is referred to as the single-particle (SP) function for the m-th SP-DoF,
and M is the total number of SP-DoF. The expansion scheme for the MCTDH wave
function thus reads

|Ψ (t)〉 =

J1
∑

j1=1

· · ·
JM
∑

jM=1

Aj1···jM
(t)

M
∏

m=1

∣

∣

∣ϕ
(m)
jm

(t)
〉

=
∑

J

AJ (t) |ΦJ (t)〉 , (2.49)

or alternatively,

Ψ (q1, · · · , qM , t) =

J1
∑

j1=1

· · ·
JM
∑

jM=1

Aj1···jM
(t)

M
∏

m=1

ϕ
(m)
jm

(qm, t)

=
∑

J

AJ (t)ΦJ (q1, · · · , qM , t) .

The error introduced by the TDH ansatz is eliminated in the MCTDH approach,
since the coupling among the DoF is represented through the linear combination of
different configurations (TDH products). MCTDH is thus, in principle, a numerically
exact approach.

The main difference between the conventional wavepacket-propagation approach
given by Eq. (2.39) or (2.38) and the MCTDH approach is that the MCTDH-
configurations are also adjusted in the variational procedure. In this way, the Dirac-
Frenkel variational principle [101,102] can be separated into two parts:

〈δΨ (t)| Ĥ − i
∂

∂t
|Ψ (t)〉coefficients = 0, (2.50)

〈δΨ (t)| Ĥ − i
∂

∂t
|Ψ (t)〉configurations = 0. (2.51)

Here, only the expansion coefficients AJ are varied in Eq. (2.50), while in Eq. (2.51)
only the configurations |ΦJ〉.
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Without loss of generality, the SP functions are chosen to be orthonormal [95,96]
in most practical implementations as

〈

ϕ
(m)
jm

(t)
∣

∣

∣ϕ
(m)
j′m

(t)
〉

= δjmj′m
, (2.52)

which is equivalent to the combination of
〈

ϕ
(m)
jm

(0)
∣

∣

∣ϕ
(m)
j′m

(0)
〉

= δjmj′m
(2.53)

and
i
〈

ϕ
(m)
jm

(t)
∣

∣

∣ϕ̇
(m)
j′m

(t)
〉

=
〈

ϕ
(m)
jm

(t)
∣

∣

∣ ĝ(m)
∣

∣

∣ϕ̇
(m)
j′m

(t)
〉

. (2.54)

Here the constraint operator ĝ(m) is an arbitrary Hermitian operator that acts exclu-
sively on the m-th SP-DoF. It does not affect the quality of the multiconfigurational
expansions of the wave function. For simplicity we will choose these constraint ope-
rators as

ĝ(m) = 0, (2.55)

which yields the differential orthonormality condition
〈

ϕ
(m)
jm

(t)
∣

∣

∣
ϕ̇

(m)
j′m

(t)
〉

= 0. (2.56)

As a result, the configurations also satisfy the orthonormality condition

〈ΦJ (0) |ΦJ′ (0)〉 = δJJ′ , (2.57)
〈

ΦJ (t)
∣

∣

∣Φ̇J′ (t)
〉

= 0. (2.58)

Since variations in Eqs. (2.50) and (2.51) involve two parts, it is useful to define
the single-hole function

∣

∣

∣
G

(m)
jm

〉

for the m-th SP-DoF [95–99] as

∣

∣

∣
G

(m)
j′m

(t)
〉

=

J1
∑

j1=1

· · ·
Jm−1
∑

jm−1=1

Jm+1
∑

jm+1=1

· · ·
JM
∑

jM=1

Aj1···jm−1j′mjm+1···jM
(t)

×
∣

∣

∣
ϕ

(1)
j1

(t)
〉

· · ·
∣

∣

∣
ϕ

(m−1)
jm−1

(t)
〉 ∣

∣

∣
ϕ

(m+1)
jm+1

(t)
〉

· · ·
∣

∣

∣
ϕ

(M)
jM

(t)
〉

, (2.59)

so that the MCTDH expansion of wave function can be written as

|Ψ (t)〉 =
Jm
∑

jm=1

∣

∣

∣
ϕ

(m)
jm

(t)
〉 ∣

∣

∣
G

(m)
jm

(t)
〉

. (2.60)

The variation with respect to the expansion coefficients leads to a result in a form
similar to Eq. (2.44):

iȦJ (t) =
∑

J′

HJJ′ (t)AJ′ (t) (2.61)

where the only difference is that the Hamiltonian matrix element

HJJ′ (t) = 〈ΦJ (t)| Ĥ |ΦJ′ (t)〉 (2.62)
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becomes time-dependent. On the other hand, the variation with respect to the con-
figurations is explicitly expressed in terms of each SP function as

〈

δϕ
(m)
jm

(t)
∣

∣

∣

〈

G
(m)
jm

(t)
∣

∣

∣
Ĥ − i

∂

∂t

∣

∣

∣
Ψ (t)

〉

= 0. (2.63)

Further derivation (given in Appendix C and related references) results in

〈

δϕ
(m)
jm

(t)
∣

∣

∣ i
Jm
∑

j′m=1

ρ
(m)
jmj′m

(t)
∣

∣

∣ϕ̇
(m)
j′m

(t)
〉

=
〈

δϕ
(m)
jm

(t)
∣

∣

∣

[

1 − P̂ (m) (t)
]

Jm
∑

j′m=1

〈

Ĥ
〉(m)

jmj′m

(t)
∣

∣

∣
ϕ

(m)
j′m

(t)
〉

. (2.64)

Here, we have introduced compact notations for the mean-field operator
〈

Ĥ
〉(m)

(t)5,

the reduced density matrix ρ̂(m) (t) and the projection operator P̂ (m) (t) onto the m-th
SP-space:

〈

Ĥ
〉(m)

jmj′m

(t) =
〈

G
(m)
jm

(t)
∣

∣

∣ Ĥ
∣

∣

∣G
(m)
j′m

(t)
〉

, (2.65)

ρ
(m)
jmj′m

(t) =
〈

G
(m)
jm

(t)
∣

∣

∣
G

(m)
j′m

(t)
〉

(2.66)

=

J1
∑

j1=1

· · ·
Jm−1
∑

jm−1=1

Jm+1
∑

jm+1=1

· · ·
JM
∑

jM=1

A∗
j1···jm−1jmjm+1···jM

(t)Aj1···jm−1j′mjm+1···jM
(t)

(2.67)

P̂ (m) (t) =
Jm
∑

jm=1

∣

∣

∣
ϕ

(m)
jm

(t)
〉〈

ϕ
(m)
jm

(t)
∣

∣

∣
. (2.68)

Here P̂ (m) (t) is related to the projection operator onto the configuration space

P̂ (t) =
∑

J

|ΦJ (t)〉 〈ΦJ (t)| (2.69)

via the identity
[

1 − P̂ (t)
]

∣

∣G(m)
m

〉

=
∣

∣G(m)
m

〉

[

1 − P̂ (m) (t)
]

. (2.70)

For practical implementations, the variations of the SP functions needs to be
specified. In the MCTDH method, this is achieved by expanding SP functions in a
chosen time-independent primitive basis set

{∣

∣

∣
X

(m)
I

〉}

as
∣

∣

∣ϕ
(m)
jm

(t)
〉

=
∑

I

B
(m∼jm)
I

(t)
∣

∣

∣X
(m)
I

〉

(2.71)

=

I1
∑

i1=1

· · ·
IF (m)
∑

iF (m)

B
(m∼jm)
i1···iF (m) (t)

F (m)
∏

f=1

∣

∣

∣χ
(m,f)
if

〉

(2.72)

5Since
〈

Ĥ
〉(m)

denotes the mean-field operator, where the superscript (m) indicates that the

“mean-field” is defined for the m-th SP-DoF, the notation
〈

Ĥ(m) (t)
〉

which is commonly used in

the references, is not used in this thesis.
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with the multiindex I = i1 · · · iF (m). Here F (m) is the total number of Cartesian

(physical) DoF within the m-th SP group, and
∣

∣

∣χ
(m,f)
if

〉

denotes a corresponding
time-independent primitive basis functions for the f -th Cartesian DoF in the m-th
SP group6. Thus

∣

∣

∣δϕ
(m)
jm

(t)
〉

in Eq. (2.64) becomes the variation with respect to each

of the coefficients B(m∼jm)
I

(t), which finally gives the equations of motion for the SP
functions in the form

i
Jm
∑

j′m=1

ρ
(m)
jmj′m

(t)
∣

∣

∣
ϕ̇

(m)
j′m

(t)
〉

=
[

1 − P̂ (m) (t)
]

Jm
∑

j′m=1

〈

Ĥ
〉(m)

jmj′m

(t)
∣

∣

∣
ϕ

(m)
j′m

(t)
〉

. (2.73)

The formal solution of this set of linear equations can be written as

i
∣

∣ϕ̇(m) (t)
〉

=
[

1 − P̂ (m) (t)
]

[

ρ̂(m) (t)
]−1
〈

Ĥ
〉(m)

(t)
∣

∣ϕ(m) (t)
〉

, (2.74)

where
∣

∣ϕ(m)
〉

=
( ∣

∣

∣ϕ
(m)
1

〉

· · ·
∣

∣

∣ϕ
(m)
Jm

〉 )T

(2.75)

denotes the symbolic column vector of (coefficients of) SP functions for the m-th
SP-DoF, and

[

ρ̂(m) (t)
]−1

denotes the pseudoinverse of the reduced density matrix.

Eqs. (2.61) and (2.74) are the MCTDH equations of motion for expansion co-
efficients and SP functions, respectively. Eq. (2.47) shows that the total number
of time-dependent configurations scales exponentially versus the number of SP-DoF
(M), which resembles that in the FCI-type expression of Eq. (2.39). However, the
MCTDH method is applicable to more complex systems due to two reasons: (i) the
base of the exponential in the MCTDH approach, i.e., the number of physically im-
portant SP functions, is always much smaller than the number of time-independent
basis functions in the FCI-type (conventional wavepacket-propagation) approach; and
(ii) each SP group can contain several physical DoF so that the number of SP-DoF
(M) is usually much smaller than the total number of physical DoF (N). As a result,
the overall computational effort in the MCTDH approach scales more slowly with
respect to the number of physical DoF, which makes MCTDH capable of handling
rather large molecular systems in a numerically converged manner [78,79,103].

The main limitation of the MCTDH approach lies in its way of constructing the SP
functions which is also based on a multidimensional expansion given by Eq. (2.71).
The FCI-type expansion of the SP function in Eq. (2.71) is usually limited to a

6This is indicated by the superscript (m,f); similarly, the superscript (m∼jm) for B
(m∼jm)
i1···iF (m) in-

dicates that, in the m-th SP group, the expansion coefficient B
(m∼jm)
i1···iF (m) depends not only on the

index i1 · · · iF (m) but also on the index jm of the SP function
∣

∣

∣
ϕ

(m)
jm

〉

. The sign ∼ but not a comma

is used to separate m and jm in order to distinguish from (m,f): the former indicates “the jm-th

configuration of the m-th SP group” while the latter indicates “the f -th physical DoF of the m-th

SP group. This notation system is adopted in the next subsection.
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few (about 10) DoF, and the multiconfigurational expansion of the wave function
in Eq. (2.47) is typically limited to about 10 SP groups. As a result, a routine
MCTDH calculations is limited to systems with a few tens of quantum DoF (which
is much more than that can be treated via conventional wavepacket-propagation
approaches). A further improvement can be achieved by employing static basis set
contraction techniques [78, 79, 103], but due to the limitations discussed above, the
quantum dynamical treatment of a system with more than a hundred DoF is still
beyond the current computer power.

2.4.2 Multilayer formulation of the MCTDH theory

In order to extend the applicability of the MCTDH method to substantially larger
systems, the number of physical DoF contained in each SP group must be significantly
increased. To this end, the multilayer (ML) MCTDH approach was developed [42]
in order to circumvent the limitations in the MCTDH method. The basic idea is
to use dynamical contraction of the basis functions that constitute the SP functions
by building further layers in the MCTDH functional. The resulting ML-MCTDH
approach can be regarded as a “cascading” of the original MCTDH method to the
SP functions, i.e., the basic MCTDH strategy is adopted to treat each SP group.
Thereby the FCI-type construction of the SP functions in Eq. (2.71) is replaced by a
time-dependent multiconfigurational expansion as

∣

∣

∣ϕ
(m)
jm

(t)
〉

=
∑

I

B
(m∼jm)
I

(t)
∣

∣

∣U
(m)
I

(t)
〉

.

This can be extended into a recursive and layered expansion of the time-dependent
wave function as follows:

|Ψ (t)〉 =
∑
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· · ·

The ansatz for the wave function expansion in the multilayer (ML) formulation of
the MCTDH theory is given by combining Eqs. (2.76), (2.77), (2.78), etc. Here,

AJ (t) = Aj1···jM
(t), B(m∼jm)

I
(t) = B

(m∼jm)
i1···iF (m) (t), C(m,f∼if)

L
(t) = C

(m,f∼if)
l1···lK(m,f) (t), etc.

are the expansion coefficients for the first, second, third layers, etc., respectively;
∣

∣
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jm

(t)
〉

,
∣

∣

∣u
(m,f)
if

(t)
〉

,
∣

∣

∣ξ
(m,f,k)
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(t)
〉

, etc. are the SP functions for the first, second,

third layers, etc., respectively; |ΦJ (t)〉,
∣

∣

∣U
(m)
I

(t)
〉

,
∣

∣

∣Ξ
(m,f)
L

(t)
〉

, etc. are the first-,
second-, third-layer configurations, etc., respectively. Other notations are as follows.
M is the total number of level-1 (L1) SP groups; F (m) is the number of level-2 (L2)
SP groups in the second layer that belong to the m-th L1-SP group in the first layer,
i.e., there are a total of

∑M

m=1 F (m) L2-SP groups. Continuing along the multilayer
hierarchy, K (m, f) is the number of level-3 (L3) SP groups in the third layer that
belong to the f -th L2-SP group of the second layer in the m-th L1-SP group of
the first layer, resulting in a total of

∑M

m=1

∑F (m)
f=1 K (m, f) L3-SP groups. Such a

recursive expansion can be carried out to an arbitrary number of layers. To terminate
the multilayer hierarchy at a particular level, SP functions in the deepest layer are
expanded in terms of time-independent configurations. For example, in the four-layer
version of the ML-MCTDH theory, the fourth layer is expanded in time-independent
basis functions (configurations), each of which may still contain several Cartesian
(physical) DoF.

The ML-MCTDH method [42] is a rigorous variational approach to study quantum
dynamics in systems with many DoF. Applying the Dirac-Frenkel variational principle
[101,102]

〈δΨ (t)| Ĥ − i
∂

∂t
|Ψ (t)〉 = 0

with the functional form given by a combination of Eqs. (2.76), (2.77), (2.78), etc.,
the equations of motion can be obtained as7

i
∣
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L1 coefficients
= Ĥ (t) |Ψ (t)〉 , (2.79)
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Ĥ
〉(m)

L1
(t)
∣

∣ϕ(m) (t)
〉

,
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7In Eq. (2.79), Ĥ (t) is represented as time-dependent because it is represented in a time-

dependent L1 configuration.
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· · ·
Here, the mean-field operators, reduced density matrices and projection operators
are defined similar to Eqs. (2.65), (2.66) and (2.68), respectively [42]. A detailed
derivation is given in Appendix C. For clarity, we refer to the top layer as the L1
SP space, the second layer as the L2 SP space, etc. All time-derivatives denoted by
an overhead dot on the left-hand side of each equation are meant to be carried out
only with respect to the expansion coefficients of the particular layer that appear
in that equation8. For an N -layer version of MCTDH, there are (N + 1) levels of
expansion coefficients because we need to expand SP functions of the deepest layer in
terms of time-independent basis functions (configurations). In this sense, the conven-
tional wavepacket-propagation method can be referred to as a “zero-layer” MCTDH
approach, while the original MCTDH method is a one-layer MCTDH approach.

The inclusion of several dynamically optimized layers in the ML-MCTDH method
provides more flexibility in the variational functional, which significantly advances
the capabilities of performing wavepacket propagations in complex systems. This has
been demonstrated by several applications to quantum dynamics in the condensed
phase including many DoF [39,41,42,81,100,104–107]. In the calculation considered
in this thesis, up to four dynamical layers are employed.

2.5 Observables of interest and computational details

Several observables are of interest to analyze heterogeneous ET reactions in dye-
semiconductor systems. In this thesis, we focus on the electron injection dynamics
which is most directly reflected by the time-dependent population of the donor state
∣

∣ψd
〉
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tr
[

exp
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−βĤg
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)

∣

∣ψd
〉 〈
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(

iĤt
)

∣
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〉 〈

ψd
∣

∣ exp
(

−iĤt
)]

tr
[

exp
(

−βĤg
nucl

)] . (2.83)

Thereby, we have assumed that the system is initially prepared by an ultrashort laser
pulse in the donor state

∣

∣ψd
〉

. In principle, the photoexcitation may also result in
a direct population of acceptor states [64]. An analysis of this mechanism would
require the inclusion of the laser pulse in the simulation, which is not considered in
this thesis.

In studies of electronic-vibrational dynamics, the initial state of the nuclear DoF
is specified by the corresponding density operator, i.e., the Boltzmann operator

8For example, the time-derivative in Eq. (2.79), (2.80) or (2.81) acts only on the L1, L2 or L3

expansion coefficient AJ (t), B
(m∼jm)
I

(t) or C
(m,f∼if )
L

(t), respectively.
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exp
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−βĤg
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)

of the nuclear Hamiltonian in the electronic ground state

Ĥg
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2
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l q
2
l (2.84)

with the kinetic energy of the nuclei given by T̂nucl =
∑

l
1
2
p̂2

l . The denominator in
Eq. (2.83),

Zg
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[
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−βĤg
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)]

, (2.85)

denotes the partition function of the Boltzmann operator.

In simulations of purely electronic dynamics, i.e., when the electronic-vibrational
coupling is not included, the time-dependent population of the donor state is given
by

Pd (t) =
∣

∣

∣
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ψd
∣

∣ e−iĤt
∣

∣ψd
〉

∣
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∣

2

. (2.86)

Traditionally, ET processes have been characterized by a single rate constant k
by, e.g., fitting Pd (t) as an exponential function of t. Thereby the ET reaction is
assumed to follow first-order kinetics,

−Ṗd (t) = kPd (t) . (2.87)

One possibility to approximately characterize the overall timescale of a (complete)
injection from the donor state to acceptor states is provided by the time when the
population of the donor state has decreased to e−1 of its initial value, i.e.,

Pd (τe−1) = e−1. (2.88)

For incomplete decays, i.e., Pd (+∞) > 0, the e−1-time can be determined via

Pd (τe−1) − Pd (+∞)

1 − Pd (+∞)
= e−1. (2.89)

On the other hand, a time-dependent rate of injection from the donor state to the
acceptor states is given by

k (t) = − Ṗd (t)

Pd (t)
. (2.90)

Assuming that the population dynamics, after a transient regime, corresponds to first-
order kinetics, the (time-independent) injection rate can be defined as the long-time
limit of k (t) [80] as

k = − lim
t→+∞

Ṗd (t)

Pd (t)
. (2.91)

Due to their definitions, τe−1 and k = limt→+∞ k (t) describe the dynamics from
different aspects. The e−1-time is more related to the early dynamics, while the k (or
its reciprocal k−1) shows information mainly about the long-time dynamics.
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It is important to note that for most of dye-semiconductor systems (especially
those with a finite semiconductor substrate, cf. following chapters), the population
dynamics of the donor state shows that the electron injection process is not a simple
exponential decay and can thus not be fully characterized by a single (first-order)
rate constant [41, 80, 81]. Therefore, characteristic timescales (i.e., the reciprocal of
rate constants defined by various rate theories) can only provide some information
about the ET dynamics. For a detailed understanding of ET dynamics, an analysis
of the time-evolution of the population of the donor state is necessary.



Chapter 3

Quantum Dynamics of Electron Transfer Processes in

the Dye-Semiconductor System Alizarin - Titanium

Oxide

3.1 Introduction

As a representative system for heterogeneous ET processes, the dye-semiconductor
complex alizarin-TiO2 has raised significant interest in recent years. In the last two
decades, a number of experimental studies of the ET process in this system have been
carried out [20,24,29,32,35,108,109]. For example, an electron-injection time as fast
as 6 fs was reported for alizarin adsorbed at TiO2 nanoparticles in time-resolved
experiments [29]. In a later experimental study [109], a slower injection was reported
for nanostructured TiO2 films. On the other hand, there are several theoretical studies
of alizarin-TiO2 systems in the last decade [59, 61, 64]. The electronic structure and
spectra of the system containing alizarin and anatase TiO2 were studied by Duncan
et al. [61] and Kondov et al. [74]. Theoretical simulations of ET dynamics in the
related system alizarin - titanium oxide (rutile) were carried out employing an ab

initio NAMD approach [59,64].

In this chapter, we apply the first-principles based methodology outlined in Chap-
ter 2 to study the photoinduced ET in the dye-semiconductor system alizarin-TiO2.
Several features of the ET reaction are of interest, including the ultrafast timescale
of ET, the effect of electronic-vibrational coupling, and, especially, the mechanisms
of the reaction.

Section 3.2 of this chapter describes the methods for the electronic structure cal-
culations for the investigated systems. Diabatic ET-related electronic states and
donor-acceptor coupling matrix elements are determined employing the partitioning
approach introduced in Section 2.3.1 based on electronic structure calculations for

35
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the overall alizarin-TiO2 systems. The corresponding results are discussed in Sec-
tion 3.3. In Section 3.4, we present the electronic-vibrational coupling parameters
which are obtained from the vibrational analysis for an isolated alizarin molecule and
the alizarin-cation. Simulation results of ET dynamics are analyzed in Section 3.5.
In Section 3.6, electronic coherence effects in the ET dynamics are discussed in detail.
Furthermore, it is shown that the ET proceeds in a stepwise mechanism. Based on
model studies, Section 3.7 provides further examples that exhibit significant effect of
electronic-vibrational coupling.

3.2 Characterization of the system

To study the quantum dynamics of electron injection from alizarin to the TiO2 sub-
strate, we have considered complexes consisting of alizarin and anatase TiO2 nanopar-
ticles of different sizes (two examples are depicted in Fig. 3.1 and others in Fig. D.1).
All geometric parameters of the TiO2 clusters are taken from the X-ray structure
of bulk anatase [110]. In order to avoid artificial effects due to dangling bonds, the
clusters are saturated by adding hydrogen atoms and hydroxyl groups to the surface
oxygen and titanium atoms, respectively, in a way that neutral closed-shell clusters
with high coordination of all titanium and oxygen atoms are obtained. Similar cluster
models for the (101) anatase surfaces have been used in Refs. [111,112]. Specifically,
we have considered complexes with seven different TiO2 clusters, which comprise be-
tween one and four (101) layers of anatase with 10 TiO2 units per layer or between one
and three (101) layers with 18 TiO2 units per layer. The results obtained for the ET
dynamics are qualitatively similar for all cluster sizes considered as shown below1.
Therefore, only results obtained for the largest complex alizarin-(TiO2)54(H2O)58

(Fig. 3.1 (b)) are discussed in detail.

The following protocol is used to obtain the structure of the dye-semiconductor
complex alizarin-(TiO2)54(H2O)58. The geometry of the alizarin anion C14H6O2−

4

attached to a (TiO2)10(H2O)18H2+
2 substrate (corresponding to one (101) anatase

layer) is optimized. Thereby, all nuclear DoF of the TiO2 substrate are kept frozen,
and a 1,2-bidentate adsorption mode is used. This binding mode is energetically the
most favorable as indicated by test calculations. Using the thus obtained geometry
and relative orientation of the alizarin-TiO2 complex, alizarin is attached to the larger
TiO2 substrates.

The geometry optimization and the characterization of nuclear DoF of the iso-
lated alizarin molecule are performed with Turbomole [113] using DFT with the

1Detailed results are presented in Appendix D.
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(a) (b)

Figure 3.1: Complexes of alizarin (C14H8O4) with titanium oxide clusters of different
sizes: (a) (TiO2)10(H2O)18 (1 layer of 10 TiO2 units) and (b) (TiO2)54(H2O)58 (3
layers of 18 TiO2 units).

B3LYP functional and the TZV(P) basis set. The geometry optimization of alizarin-
(TiO2)10(H2O)18 is carried out with DFT using the Gaussian 03 package [114] with
the B3LYP functional and the 3-21G basis set. The single-point electronic structure
calculations for all complexes are performed using the Turbomole package [113]
with the B3LYP functional and the SV(P) basis set.

3.3 Energy-level scheme, donor-acceptor separation and cou-

pling matrix elements

An important aspect of interfacial ET reactions is the energy-level scheme, in par-
ticular the location of the energy levels of the dye adsorbate relative to those of
the semiconductor substrate. Fig. 3.2 shows energies of MO of the overall alizarin-
(TiO2)54(H2O)58 complex as well as those of the donor and acceptor orbitals obtained
by the partitioning procedure described in Section 2.3.1. Also shown, in compari-
son, are the energy levels of the isolated alizarin molecule and those of the isolated
(TiO2)54(H2O)60 cluster.

The energies of the MO of the isolated (TiO2)54(H2O)60 cluster exhibit a dense
level structure with a valence and a conduction band separated by a band gap. The
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calculated value for this band gap is 2.4 eV, which is smaller than the calculated
(4.0 eV [115]) and experimental (3.4 eV [116]) value for anatase TiO2 nanoparticles.
This underestimation of the band gap is presumably due to the added hydrogen
atoms and hydroxyl groups which are used to saturate the cluster. A detailed ana-
lysis (data not shown) reveals that the lowest unoccupied orbitals have predominant
contributions from the oxygen atoms of saturation groups. As discussed previously
in a study of similar clusters [111], this deficiency of the saturated cluster model is
not expected to have a significant influence on the electronic levels involved in the
interfacial reactions. Defining the “true” lower edge of the conduction band by the
energy of the lowest unoccupied (3d) orbital of the titanium atoms, a value of about
3.3 eV is obtained for the “band gap” in (TiO2)54(H2O)60, which is in good agreement
with to the experimental value for bulk anatase.
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Figure 3.2: Energy-level scheme of the investigated dye-semiconductor complex
alizarin-(TiO2)54(H2O)58. From left to right: energy levels of the isolated dye molecule
(alizarin), energy levels of the donor orbitals (obtained from the partitioning proce-
dure) which are localized in the adsorbate, energy levels of the overall complex, energy
levels of the acceptor orbitals (obtained from the partitioning procedure) which are lo-
calized in the semiconductor substrate, and energy levels of the pure titanium oxide
cluster (TiO2)54(H2O)60. The selected donor state |ψd〉 as well as the correlations
among some energy levels relevant for the ET reaction are indicated.
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The energy-level scheme of the overall system (shown in the middle panel of
Fig. 3.2) shows that the adsorption of the dye molecule (alizarin) on the titanium
oxide cluster changes the level structure noticeably. Two energy levels are introduced
in the lower part of the band gap through the adsorption of the alizarin molecule.
Analysis of the orbitals corresponding to these two levels shows that they can be
related to the highest occupied MO (HOMO) and the (HOMO-1) of the isolated
alizarin molecule. Thus, the two highest occupied levels of alizarin remain located
in the band gap during the adsorption and thus retain their discrete structure in
the complex. On the other hand, the lowest unoccupied levels of alizarin are located
energetically in the conduction band of TiO2. As a consequence, in the complex these
levels are dissolved in the dense manifold of conduction-band levels.

Figure 3.3: Example of an “acceptor” (substrate) orbital of the investigated complex
alizarin-(TiO2)54(H2O)58 with energy in the upper part of the band gap. The orbital
is predominantly localized in the saturation groups.

The partitioning procedure results in orbitals localized in the alizarin adsorbate
and the (TiO2)54(H2O)58 substrate, respectively, which are depicted in Fig. 3.2 as
donor and acceptor levels. The energy-level scheme of acceptor orbitals in Fig. 3.2
shows a structure very similar to that of the isolated (TiO2)54(H2O)60 cluster. Similar
to the results for the isolated TiO2 cluster, the acceptor levels in the upper part of the
band gap are predominantly localized in the oxygen atoms of the saturation groups.
An example for such an orbital is shown in Fig. 3.3. The electronic coupling between
these levels in the upper part of the band gap and the donor levels of adsorbate is



40 III. ET processes in alizarin-TiO2

negligible in the complex and thus these states do not participate in the ET reaction.
The energy-level scheme of the orbitals localized in the adsorbate shows two energy
levels in the band gap which correspond to the HOMO and (HOMO-1) of the overall
system and are closely related to the HOMO and (HOMO-1) of the isolated dye
molecule. For instance, the overlap between the HOMO of the complex and the
projected donor orbital that is associated with the HOMO of the alizarin is larger
than 0.80 thus demonstrating the close relation.

(a) (b)

(c) (d)

Figure 3.4: Selected localized adsorbate orbitals of the dye-semiconductor complex
alizarin-(TiO2)54(H2O)58 obtained from the partitioning procedure (compared with
the corresponding MO of the isolate dye molecule alizarin): (a) the localized orbital
of the complex which is associated with the HOMO of the isolated alizarin, (b) the
HOMO of the isolated alizarin, (c) the localized orbital of the complex which is
associated with the lowest unoccupied MO (LUMO) of the isolated alizarin (i.e., the
donor orbital in the ET reaction) and (d) the LUMO of the isolated alizarin.

The localized adsorbate orbital that corresponds to the LUMO of the isolated
alizarin is chosen as the donor state of the ET reaction. Time-dependent (TD)
DFT calculation for an isolated alizarin shows that the HOMO-LUMO excitation
contributes more than 95% to the S0 → S1 excitation. Due to the coupling to the
dense manifold of conduction-band states of TiO2, this donor level does not have a
predominant overlap to any single level of the complex. The local character of the two
frontier orbitals localized in the adsorbate and the resemblance between them and the
corresponding orbitals (HOMO and LUMO) of the isolated alizarin are illustrated in
Fig. 3.4.
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The acceptor states included in the dynamical calculation of the ET process com-
prise all orbitals localized in the TiO2 substrate that are associated with unoccupied
orbitals in the conduction band of the isolated titanium oxide cluster. As in the
isolated TiO2 cluster, the acceptor orbitals are dominated by the 3dxy, 3dyz and 3dxz

orbitals of titanium atoms due to the 3d level splitting caused by the octahedral coor-
dination of oxygen atoms (as indicated by the X-ray structure of bulk anatase [110],
here we considered that the titanium atom in each TiO6 octahedron is located at
the origin while the oxygen atoms are located at or near to the coordinate axes, in
particular). Fig. 3.5 depicts two examples of the projected acceptor orbitals. The
one shown in Fig. 3.5 (a) is delocalized in the substrate part of the complex, while
the one shown in Fig. 3.5 (b) has significant contribution from a titanium atom that
directly binds to the dye.

(a) (b)

Figure 3.5: Examples of localized substrate orbitals of the investigated complex
alizarin-(TiO2)54(H2O)58 obtained from the partitioning procedure. Each of these
orbitals is associated with an unoccupied orbital in the conduction band of the iso-
lated titanium oxide cluster.

An important parameter for the electron injection dynamics is the location of the
donor level relative to the conduction-band minimum. In the present model, the
donor level is located about 0.70 eV above the conduction-band minimum, where
the latter is defined by the lowest unoccupied 3d orbital of the titanium atoms as
discussed above. This location is higher than that reported by Duncan et al., where
the donor level has an energy close to the conduction-band minimum [59, 61, 64, 66].
This difference is presumably due to the different adsorption motifs and different
forms of titanium oxide (rutile vs. anatase) considered and may also be caused by
the different functionals and basis sets used. It should also be noted that the donor
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level, as defined in the present method, is not a molecular orbital, i.e., an eigenstate
of the overall complex. The coupling to the acceptor states will result in a lowering
of the energy of the corresponding resonance in the overall complex.

Another key factor for heterogeneous ET reactions is the strength and the dis-
tribution of the donor-acceptor coupling. Fig. 3.6 shows the modulus of the donor-
acceptor coupling matrix elements V da

j for the system investigated. It is seen that the
first-principles based model results in a distribution of donor-acceptor coupling ma-
trix elements V da

j that exhibits a rather complicated structure. This finding agrees
with results obtained previously for other dye-adsorbates on the (101) surface of
anatase-TiO2 [41, 80]. For an extended substrate, the donor-acceptor coupling can
be characterized by the energy-dependent decay-width function Γ (ε) as defined in
Eq. (2.13). The Γ (ε) function, which is obtained based on the discrete V da

j data as
discussed in Sections 2.1 and 2.3.1, is also shown in Fig. 3.6. The position of the peak
of Γ (ε) is in good agreement with the positions of the two acceptor states with the
largest coupling to the donor state (one of which depicted in Fig. 3.5 (b)).

0

0.05

0.1

0.15

0.2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
0

0.5

1

1.5

2

∣ ∣

V
d
a

j

∣ ∣

[e
V

]

Γ
(ε

)
[e
V

]

εa
j , ε [eV]

εd

Figure 3.6: Modulus of donor-acceptor electronic coupling matrix elements V da
j (dis-

crete lines) and the decay-width function Γ (ε) (continuous line) of the investigated
complex alizarin-(TiO2)54(H2O)58. The red vertical line indicates the energy of the
donor state εd.
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3.4 Analysis of vibrational degrees of freedom and electronic-

vibrational coupling

The vibrational frequencies ωl and the corresponding electronic-vibrational coupling
constants κd/a

l in the donor and acceptor states have been determined for all 72

vibrational modes of alizarin as described in Section 2.3.2. For the l-th normal mode,
the electronic-vibrational coupling constants are related to the reorganization energies
λd

l , λ
a
l and λET

l given by Eqs. (2.32), (2.33) and (2.34), which are associated with
transitions from the electronic ground state to the excited state of alizarin, from the
electronic ground state of alizarin to the ground state of alizarin-cation, and from the
excited state of alizarin to the ground state of alizarin-cation, respectively.

The calculated frequencies and reorganization energies for the donor state and
the ET transition are depicted in Fig. 3.7. It is seen that the electronic-vibrational
coupling is distributed over a rather large number of vibrational modes. The overall
reorganization energies obtained are Λd = 0.301 eV, Λa = 0.240 eV, and ΛET =

0.156 eV for the donor state, the acceptor state, and the ET transition, respectively.
These values for the reorganization energies suggest a moderate electronic-vibrational
coupling with respect to the electronic excitation but a rather weak coupling to the
ET process itself.

For the simulation of the vibronic dynamics in the alizarin-TiO2 system, 37 of the
total 72 vibrational normal modes are selected based on the ET related electronic-

vibrational coupling strength
(

2ωlλ
d/a/ET
l

) 1
2
. The thus selected modes incorporate

more then 98% of the three total reorganization energies and are therefore expected
to give a proper representation of the electronic-nuclear coupling in alizarin. All
parameters of the normal modes selected in the dynamical simulation are given in
Table 3.1.
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Figure 3.7: Reorganization energies of all intramolecular modes of alizarin associated
with (a) the transition from the ground to the electronically excited state and (b) the
ET transition.
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Table 3.1: Vibrational parameters of selected normal modes of alizarin included in
the dynamical simulation of the ET process. Listed are the ground state harmonic vi-
brational frequencies and the electronic-vibrational coupling constants in the excited
state of alizarin and in the ground state of the alizarin-cation. All data are given in
cm−1.

mode No. ω κdω− 1
2 κaω− 1

2 mode No. ω κdω− 1
2 κaω− 1

2

10 329.0 282.5 83.9 49 1305.2 698.5 199.2

12 395.2 271.3 398.8 50 1322.7 −265.8 −622.5

15 428.2 179.4 149.5 51 1348.7 −168.3 −120.7

18 477.1 217.1 29.3 52 1358.2 641.9 −16.5

21 586.5 −243.9 −60.3 53 1378.2 177.3 400.9

23 629.4 −226.9 −378.8 54 1438.3 623.9 446.5

25 674.9 231.8 138.0 55 1486.7 −450.3 −859.1

27 702.5 −174.2 −224.9 56 1491.7 120.9 −81.1

29 770.6 88.7 150.5 57 1511.2 −695.0 −389.9

32 846.6 −381.4 −280.0 58 1520.4 213.6 301.5

34 911.5 261.8 246.0 59 1611.3 216.2 93.3

39 1030.5 393.4 427.1 60 1625.6 −780.8 −831.6

41 1072.5 −292.2 −224.5 61 1629.2 407.7 44.2

43 1178.4 −84.1 −170.3 62 1635.4 90.4 136.5

44 1192.9 −487.2 −167.8 63 1674.2 580.7 −486.5

45 1210.1 319.6 41.2 64 1718.5 −55.6 427.6

46 1223.3 −416.5 −538.0 71 3305.4 593.6 613.3

47 1247.7 643.8 519.1 72 3710.1 −163.4 −297.2

48 1291.2 568.4 120.3

According to the electronic-vibrational coupling constants, these vibrational nor-
mal modes can be classified into four groups: (i) the normal modes with relatively
large κdω− 1

2 but small κaω− 1
2 , (ii) the normal modes with relatively small κdω− 1

2

but large κaω− 1
2 , (iii) the normal modes with both relatively large κdω− 1

2 and κaω− 1
2

with the same sign, and (iv) the normal modes with both relatively large κdω− 1
2 and

κaω− 1
2 with different sign. The normal modes with both small κdω− 1

2 and κaω− 1
2

(and thus also small κETω− 1
2 ) are not included in the simulation (also not listed in

Table 3.1), since the probability of vibrational excitation of this mode through either
the electronic excitation or the ET process is very small. The modes with large κdω− 1

2

have significant probability to be excited through the electronic excitation, while the
probability of vibrational excitation through the ET transition is large for the modes
with large κETω− 1

2 . Thus, normal modes in different groups are supposed to play
different roles in the ET dynamics.
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Some vibrational normal modes of alizarin are depicted in Fig. 3.8. Subfigs. (a),
(b), (c) and (d) of Fig. 3.8 represent a normal mode of group (iii), (i), (iv) and (ii)
as discussed above, respectively.

(a) (b)

(c) (d)

Figure 3.8: Selected vibrational normal modes of an isolated alizarin molecule: (a)
normal mode No. 39 (ω = 1030.5 cm−1), (b) normal mode No. 52 (ω = 1358.2 cm−1),
(c) normal mode No. 63 (ω = 1674.2 cm−1) and (d) normal mode No. 64 (ω =

1718.5 cm−1).

Employing the vibrational modes of the free alizarin molecule (e.g. the normal
modes depicted in Fig. 3.8) to characterize the electronic-vibrational coupling in
the ET dynamics is only an approximation to the vibronic dynamics of ET, since
the vibrational motion of the bound alizarin adsorbate is not exactly identical to
the vibrational motion of an isolated alizarin molecule, especially for those modes
that exhibit significant vibrational motion around the oxygens atoms that bind to
the semiconductor substrate. A better approximation can be achieved by specifying
some metal atoms at the reaction center to represent the cluster when performing
the vibrational analysis for the adsorbate part.

3.5 Electron injection dynamics

The ET dynamics in the alizarin-TiO2 system is simulated based on the first-principles
model outlined in Chapter 2. Fig. 3.9 (a) shows the result of the simulation for the
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population of the donor state after photoexcitation (red line). The initial decay of
the population of the donor state reveals an ultrafast injection of the electron from
the donor state localized in the adsorbate (dye) into the quasi-continuum of acceptor
states localized in the TiO2 substrate on a timescale of a few femtoseconds. The
result also exhibits pronounced oscillations on different timescales. A comparison
with results of a purely electronic calculation (black line), where the nuclear DoF are
frozen at their equilibrium geometry, reveals that the oscillations are due to electronic
motion, i.e., reflect electronic coherences. A further analysis of these oscillations is
given in Section 3.6.

The comparison between the purely electronic and the vibronic calculation also
shows that the coupling to the vibrational modes results in a somewhat slower decay
of the population of the donor state, in particular in the short-time dynamics (shown
by the inset of Fig. 3.9 (a)). This is due to the fact that during the dynamics the
nuclear wavepacket enters regions of phase space with an effectively smaller donor-
acceptor coupling [70]. From the reorganization energy data, it is seen that the
physical model sketched in Fig. 2.4 (a) is qualitatively suitable for a description for
the present system. In this model of an ET reaction, the nuclear wavepacket is found
at the intersection of the dashed line (marking the the FC geometry) and the parabola
V dd (describing the PES of the donor state) when t = 0. At the early stage of the
dynamics, the wavepacket is moving along the PES of the donor state towards its
minimum due to the vibrational motion, meanwhile intersecting the acceptor states
V aa

j with a decreasing quantum number j. As the donor-acceptor coupling matrix
elements V da

j are assumed to be independent of the nuclear coordinates, this effect
is equivalent to that the wavepacket moving towards the conduction-band minimum,
i.e., away from the maximum of the decay-width function Γ (ε) function (cf. Fig. 3.6).
However, as a result of the relatively small ET reorganization energy (0.155 eV), the
total effect is not significant, as the wavepacket is not supposed to leave the region
of strong donor-acceptor coupling (εa

j ∈ [−1.2 eV, 0.0 eV]).
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Figure 3.9: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)54 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.
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This finding is different to the results of theoretical simulations for the ET systems
with alizarin adsorbed at rutile TiO2 [59, 61, 64, 66], where, as a consequence of the
fact that the donor level has an energy close to the conduction-band minimum, the
electronic-coupling is supposed to play an important role in the dynamics. A test
calculation based on the present alizarin-TiO2 system can be performed by shifting
the donor level towards the conduction-band minimum. Fig. 3.10 shows the results
of ET dynamics with lowering the donor level by 0.25 eV (2000 cm−1), while the
acceptor levels and the donor-acceptor coupling matrix elements are left unchanged.
The inclusion of the electronic-vibrational coupling (red line) results in a significantly
slower electron injection than the purely electronic dynamics (black line) even from
the very early stage of the dynamics. The amplitude of the oscillatory structures is
also globally reduced.
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Figure 3.10: Population dynamics of the donor state after photoexcitation in
the alizarin-(TiO2)54 system with the donor level shifted by 0.25 eV towards the
conduction-band minimum. Both results with vibronic coupling (red lines) and with-
out vibronic coupling (black lines) are depicted.

Due to the coherent oscillatory character of the dynamics, the electron injection
dynamics cannot be characterized by a single rate constant. However, the overall
timescale of about 5 ∼ 10 fs found in the simulations depicted in Fig. 3.9 agrees well
with the experimental result of 6 fs [29] for a colloidal solution of TiO2 nanoparticles
and with previous results of mixed quantum-classical calculations [56, 59, 64]. Very
recent experimental result for alizarin adsorbed at nanostructured TiO2 films shows
a slower injection time [109].
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Figure 3.11: Dependence of ET dynamics on the size of TiO2 cluster used to model the
substrate in the alizarin-TiO2 systems. Shown are results for the vibronic dynamics
obtained with the TiO2 clusters containing (a) 4 (solid line) and 2 (dashed line) layers
with 10 TiO2 units per layer, and (b) 3 layers with 18 (solid line) and 10 (dashed
line) TiO2 units per layer.

The results shown in Fig. 3.9 (a) also show that the population of the donor state
does not decay to zero for longer times. This is a result of the finite TiO2 substrate
used in the calculation [105]. Reflection of the wavepacket at the boundaries of the
substrate results in recurrences in the population dynamics, e.g., at about 50 fs. The
dependence of the ET dynamics on the size of the TiO2 substrate is illustrated in
Fig. 3.11(a more detailed comparison is given in Figs. D.4 - D.9). Fig. 3.11 (a) shows
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that an increase of the number of layers of the substrate from two to four (each layer
containing 10 TiO2 units) results in an increase of the recurrence period (due to the
reflection at the boundaries) by about a factor of two. On the other hand, an increase
of the lateral size of the TiO2 clusters results in a smaller intensity of recurrences but
has negligible effect on the recurrence period, as illustrated in Fig. 3.11 (b). The
results in Fig. 3.11 also demonstrate that the influence of the finite size of the TiO2

cluster is negligible on the timescale of the ultrafast ET process in alizarin.

As discussed in Section 2.3.1 and Appendix B, electron injection at an extended
surface can be mimicked using absorbing boundary conditions by including an imagi-
nary part in the orbital energies at the boundary of the substrate. As a result, the
recurrences in the dynamics as well as the incompleteness of electron injection are
quenched. The corresponding results, depicted in Fig. 3.9 (b), agree for short times
well with the results obtained for finite TiO2 substrates (Fig. 3.9 (a)) but decay to
zero for longer times.

3.6 Electronic coherence effects and analysis of electron trans-

fer mechanism

The electron injection dynamics depicted in Fig. 3.9 exhibits pronounced oscillations
on a time-scale of about 6 fs. These oscillations are also present in the calculations
for the extended system (red lines in Fig. 3.9 (b)) and are therefore not a finite-
size effect. The presence of the same oscillations in the results of purely electronic
calculations (black lines in Fig. 3.9) as well as the ultrafast timescale of 6 fs show
that these oscillations are not related to vibrational dynamics but rather to electronic
motion, i.e., can be classified as electronic coherence effects.

This finding suggests that the electron injection process proceeds with a two-step
mechanism, i.e., there exists a single (or a few) intermediate state(s) localized in the
surface through which the electron in the originally populated donor state decays to
the conduction band of the substrate according to the scheme

donor state ⇀↽ intermediate state(s) → acceptor states. (3.1)

The fact that the population of the donor state (in the extended system) decays for
long time, i.e., the oscillations do not persist, shows that these intermediate states
cannot be truly bound surface states with energies in the band gap but rather surface
resonances with energies in the conduction band.

To analyze the oscillations in more detail, we consider for simplicity the purely



52 III. ET processes in alizarin-TiO2

electronic dynamics in the following. The two-step ET mechanism can be seen more
explicitly if the electronic part of Hamiltonian is unitarily transformed to the form

Ĥelec =
∣

∣ψd
〉

εd
〈

ψd
∣

∣+ |ψm〉 εm 〈ψm| +
∑

j′

∣

∣

∣ψ̃a
j′

〉

ε̃a
j′

〈

ψ̃a
j′

∣

∣

∣

+
∣

∣ψd
〉

V dm 〈ψm| + |ψm〉V md
〈

ψd
∣

∣

+
∑

j′

(

|ψm〉V ma
j′

〈

ψ̃a
j′

∣

∣

∣+
∣

∣

∣ψ̃a
j′

〉

V am
j′ 〈ψm|

)

. (3.2)

Here we have introduced an intermediate state defined as

|ψm〉 =
∑

j

V da
j

V dm

∣

∣ψa
j

〉

(3.3)

with energy

εm =
∑

j

(

V da
j

)2

(V dm)2 ε
a
j , (3.4)

and coupling matrix element to the donor state

V dm =

√

∑

j

(

V da
j

)2
. (3.5)

The states
{∣

∣

∣
ψ̃a

j′

〉}

constitute the “secondary” acceptor states. Eqs. (3.4) and (3.5)
show that the intermediate state |ψm〉 carries all coupling to the donor state and is
in turn coupled to the secondary acceptor states.

The intermediate state |ψm〉 for the alizarin-TiO2 system studied here is depicted
in Fig. 3.12. It is localized in the two titanium atoms that bind to the alizarin and
is dominated by the 3d orbitals of titanium atoms. As to be expected from the dis-
tribution of their orbitals (cf. Figs. 3.4 (c) and 3.12), the interaction between the
intermediate state and the donor state is rather strong (V dm = 0.336 eV). Further-
more, the energy of the intermediate state, εm = −0.513 eV, is in good agreement
with the maximum of the decay-width function of the donor state, Γ (ε) (cf. Fig. 3.6)
and also close to the donor level (εd = −0.699 eV).
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Figure 3.12: Orbital that represents the intermediate state |ψm〉 for the analysis of
ET dynamics in the alizarin-TiO2 system.

The transformed Hamiltonian (3.2) allows an analysis of the two-step mechanism
of the ET process. The part of the Hamiltonian without the secondary acceptor
states is given by the two-level system of the donor and the intermediate state

Ĥd-m
elec =

∣

∣ψd
〉

εd
〈

ψd
∣

∣+ |ψm〉 εm 〈ψm| +
∣

∣ψd
〉

V dm 〈ψm| + |ψm〉V md
〈

ψd
∣

∣ (3.6)

and describes the Rabi-oscillations of the electronic population between the donor
and the intermediate state:

P d-m
d (t) = 1 − 4

(

V dm
)2

4 (V dm)2 + (εd − εm)2 sin2

√

4 (V dm)2 + (εd − εm)2t

2
(3.7)

with the Rabi-period

T d-m =
2π

√

4 (V dm)2 + (εd − εm)2
. (3.8)

The value of the Rabi-period, T d-m = 6 fs, agrees well with the oscillation of the
donor-state population found for the overall system in Fig. 3.9. Due to the coupling
of the intermediate state to the secondary acceptor states, V ma

j′ , these oscillations are
damped.

Fig. 3.13 shows an analysis of the population dynamics employing the intermediate
state representation introduced above. After the initial excitation of the donor state,
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Figure 3.13: Analysis of mechanism of the ET process in the alizarin-TiO2 system
based on the scheme given by Eq. (3.1). Shown are the population dynamics of the
donor state (black line), the intermediate state (blue line) and the sum of the popu-
lation of the remaining (“secondary”) acceptor states (red line). All results are ob-
tained employing a finite (TiO2)54 substrate without including electronic-vibrational
coupling.

the population oscillates between the donor state and the intermediate state and
decays from the intermediate state to the secondary acceptor states in the TiO2

substrate. The increase of the population of the secondary acceptor states in the
substrate is almost monotonous. An overall timescale of 5 ∼ 6 fs based on the e−1-
time concept is obtained for the dynamics of the total population in the secondary
acceptor states. Thus the overall ET mechanism can be considered as a coherent
two-step procedure in accordance with the scheme given by Eq. (3.1).

These findings are in accordance with previous theoretical studies and experimental
results. Theoretical simulations [37, 38] for other dyes adsorbed at TiO2 have shown
that the injected electron is initially localized on titanium sites at the surface similar
to those represented by the intermediate state |ψm〉 (cf. Fig. 3.12). Furthermore,
experimental studies for dye-semiconductor systems with a slower injection timescale,
in particular, dye molecules adsorbed at ZnO, indicate a stepwise mechanism with an
intermediate state that has been attributed to an interface-bound charge-separated
pair state or exciplex state [117–120]. Our results show that intermediate states can
also be important in systems with very short electron-injection times. In this case,
the first step of the ET process may have significantly coherent character.
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3.7 Model study of a series of alizarin - titanium oxide com-

plexes with larger donor-acceptor distances

In this section, the results of ET dynamics in several alizarin-(TiO2)54(H2O)58 sys-
tems with larger distances between the alizarin adsorbate and the TiO2 substrate are
discussed. The geometries of the investigated systems are obtained by increasing the
distance between the alizarin adsorbate and the anatase TiO2 substrate along the
(100) direction of the cluster by 0.1 Å, 0.2 Å, 0.3 Å, 0.4 Å and 0.5 Å (denoted by
δdd-a in the following discussions). As an example, Fig. 3.14 shows the structure of
the complex with δdd-a = 0.5 Å.

Figure 3.14: Complex alizarin-(TiO2)54(H2O)58 with the alizarin adsorbate located
0.5 Å away from its equilibrium position to the TiO2 substrate along the (100) direc-
tion.

The energy-level schemes (Fig. D.10 in Appendix D) of the systems investigated,
obtained by the partitioning procedure applied based on the electronic structure
calculations, show overall similar band structure of the localized substrate levels. The
energies of localized adsorbate levels of these systems, on the other hand, are overall
higher than those of the original system without increasing the adsorbate-substrate
distance. One important feature illustrated in Fig. D.10 is that by increasing the
adsorbate-substrate distance, the localized donor orbital, which is associated with
the LUMO of the isolated alizarin, becomes less dissolved in the dense manifold of
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the acceptor (conduction-band) levels (as shown by the red lines representing the
correlation between

∣

∣ψd
〉

and some unoccupied MO of the complex). This reflects
a weaker interaction between the adsorbate (donor) and the substrate (acceptor),
which is an obvious consequence of the increased adsorbate-substrate distance.
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Figure 3.15: Energy-dependent decay-width functions Γ (ε) (continuous curves) and
energies of the donor states εd (vertical lines) of the investigated complexes alizarin-
(TiO2)54(H2O)58 with the alizarin adsorbate 0.1 Å (black lines), 0.2 Å (red lines),
0.3 Å (blue lines), 0.4 Å (cyan lines) and 0.5 Å (magenta lines) away from its equi-
librium position to the TiO2 substrate along the (100) direction.

The donor-acceptor coupling schemes for the investigated systems are illustrated
in Fig. 3.15. For simplicity, only the decay-width functions Γ (ε) and the donor-
state energies εd are shown. For each system, the position of the peak of Γ (ε) is in
good agreement with the region of maximal donor-acceptor coupling shown by the
discrete scheme of donor-acceptor coupling matrix elements (cf. Fig. D.11). From
Fig. 3.15, it is seen that, with an increasing adsorbate-substrate distance, (i) the
strength of the donor-acceptor coupling monotonically decreases and (ii) the region
of strongest donor-acceptor coupling monotonically moves towards the conduction-
band minimum.

This trend can be understood by the following analysis. In order to simplify the
notations, we define the direction that the TiO6 octahedra are slightly prolonged
(as shown by the X-ray structure of bulk anatase [110]) as z, and the direction
perpendicular to the (100) planes of anatase as y (as indicated in Fig. 3.16). Thereby
the unoccupied orbital of titanium that the most strongly interacts with the donor
orbital is 3dyz. Fig. 3.16 shows the x-, y- and z-directions and the orbital which
represents the intermediate state in alizarin-(TiO2)58 (δdd-a = 0), which is mainly
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contributed from the two acceptor orbitals (both are 3dyz) with the largest coupling
to the donor orbital. For a system with a larger δdd-a (thus less stable), the energies of
bonding MO of the overall system are higher (as shown in Fig. D.10) due to the weaker
interaction between the occupied orbitals of the dye and the unoccupied orbitals of the
substrate. In particular, the energy of HOMO, which can mainly be considered as a
result of the (ππ

∗) interaction between the HOMO of the dye and the 3dyz of titanium,
is higher for a system with a larger δdd-a. As a consequence, the corresponding anti-
bonding MO of the overall system, which also reflects the interaction between the
HOMO of the dye and the two 3dyz of titanium atoms (corresponding to the localized
acceptor orbitals with the largest coupling to the donor orbital), has a lower energy.
This can rationalize the monotonic decrease of energy region of strongest donor-
acceptor coupling with an increasing adsorbate-substrate distance.

����*
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x z

y

Figure 3.16: The localized adsorbate orbital that is associated with the HOMO of
the isolated alizarin (in blue and white, identical to that shown by Fig. 3.4 (a)) and
the intermediate orbital (in light blue and light brown, identical to that shown by
Fig. 3.12) of the investigated complex alizarin-(TiO2)58. The latter represents the two
acceptor orbitals with the strongest coupling to the donor orbital. The x-, y- and z-
axes are also indicated, which are defined in order to simplify the analysis. Thus, the
intermediate orbital in light blue and light brown has pronounced contribution from
the 3dyz orbitals of the two titanium atoms that directly bind to the dye adsorbate.

On the other hand, εd values from left to right correspond to the complexes with
adsorbate-substrate distances extracted by 0.1 Å, 0.2 Å, 0.3 Å, 0.5 Å and 0.4 Å,
respectively, and thus do not show a completely monotonic tendency versus the
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adsorbate-substrate distances. In particular, the difference between the εd of the
system with δdd-a = 0.4 Å and that with δdd-a = 0.5 Å is rather small.

Table 3.2: Energy parameters for alizarin-(TiO2)54(H2O)58 systems with adsorbate-
substrate distances extracted for δdd-a (given in Å). For each system, the decay-width
of the donor state Γ

(

εd
)

(given in eV) as well as the energy difference (given in eV)
between the donor-state energy εd and the maximum of the decay-width function
max {Γ (ε)} are listed. Corresponding data for the system with unmodified geometry
(δdd-a = 0.0 Å) is also shown for comparison.

δdd-a εd − max {Γ (ε)} Γ
(

εd
)

0.0 −0.227 0.590

0.1 0.118 0.735

0.2 0.428 0.098

0.3 0.707 0.036

0.4 0.945 0.021

0.5 1.106 0.016

As a total effect, the energy difference between the donor level and the region
of strongest donor-acceptor coupling increases monotonically when the adsorbate-
substrate distance increases. In particular, the donor state is further away from
the region of strongest donor-acceptor coupling in a system with larger adsorbate-
substrate distance when δdd-a > 0.1 Å. This parameter is listed in the second column
of Table 3.2. The fact that, for δdd-a > 0.1 Å, the localized donor orbital (obtained
from the partitioning procedure) that is associated to the LUMO of the isolated
alizarin becomes less dissolved in the dense manifold of the acceptor levels with
larger δdd-a (as shown by Fig. D.10) can be rationalized by the combination of the
monotonic increase of the

∣

∣εd − max {Γ (ε)}
∣

∣ value and the monotinic decrease of the
strength of the donor-acceptor coupling.

Also seen from Table 3.2 is the monotonic decrease of the decay-width of the
donor state Γ

(

εd
)

in the region δdd-a ∈
[

0.1 Å, 0.5 Å
]

, which can, in the Golden-
Rule theory, characterize the reaction rate constant of the transition from the initial
discrete state to the continuum of the final states.

The ET dynamics in these modified alizarin-TiO2 systems has been simulated
based on the first-principles model with all other parameters concerning the motion
of the nuclear DoF left unchanged. The results of vibronic dynamics for the donor-
state populations obtained for the model of an infinite TiO2 surface for the systems
with δdd-a ∈

[

0.1 Å, 0.3 Å
]

are shown in Fig. 3.17 (the results for the systems with
δdd-a ∈

[

0.4 Å, 0.5 Å
]

are shown in Fig. D.12 with a different scale of the t-axis).



III. ET processes in alizarin-TiO2 59

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

P
d

t [fs]

Figure 3.17: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 systems with the alizarin adsorbate away from its equilibrium position
to the TiO2 substrate along the (100) direction for 0.1 Å (red lines), 0.2 Å (blue
lines), 0.3 Å (cyan lines). Shown are results obtained for the model of an infinite
TiO2 surface. Both results with vibronic coupling (thick lines) and without vibronic
coupling (thin lines) are depicted.

From Fig. 3.17 and Fig. D.12, some interesting features can be observed for the
systems with δdd-a ∈

[

0.1 Å, 0.5 Å
]

. First of all, the electron injection becomes
monotonically slower with an increasing adsorbate-substrate distance (the overall
timescales are about 5 fs, 8 fs, 12 fs, 25 fs and 33 fs for δdd-a = 0.1 Å, 0.2 Å, 0.3 Å,
0.4 Å and 0.5 Å, respectively), which agrees well with the trend of the Γ

(

εd
)

values.
Second, the results for all systems exhibit pronounced oscillations on a timescale
less than 6 fs which reflect electronic coherences. The amplitude of these oscillatory
structures decreases with an increasing δdd-a. Third, the inclusion of electronic-
vibrational coupling results in an obviously faster decay of the population of the
donor state except for the system with δdd-a = 0.1 Å, where the effect of electronic-
vibrational coupling is rather small. Furthermore, complete electron injection can be
achieved for all systems with mimicking an extended TiO2 surface (for the system
with δdd-a = 0.3 Å, Pd decays to 0 in the region of t > 60 fs).

The effect of the electronic-vibrational coupling can be rationalized by a combina-
tion of the donor-acceptor coupling schemes (Fig. 3.15) and the reorganization energy
data. The latter factor implies that, as already mentioned above, Fig. 2.4 (a) gives
a qualitative model to describe the alizarin-TiO2 systems. The initially prepared
wavepacket moves along the PES of the donor state towards the conduction-band
minimum at the early stage of the dynamics. For the system with δdd-a = 0.1 Å,
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as a result of ΛET = 0.155 eV and εd − max {Γ (ε)} = 0.118 eV, the wavepacket re-
mains within the region of max {Γ (ε)} (thus the region of strongest donor-acceptor
coupling) during its motion. This results in a fast decay of the donor-state popu-
lation and a weak effect of electronic-vibrational coupling. However, for all other
four systems, since the

[

εd − max {Γ (ε)}
]

values are all positive and larger than ΛET

(cf. Table 3.2), the wavepacket moves significantly towards the region of strongest
donor-acceptor coupling during its vibrational motion along the donor-state PES.
This results in a pronounced effect of electronic-vibrational coupling, which acceler-
ates the ET dynamics.

3.8 Summary

In this chapter, we have studied the quantum dynamics of photoinduced hetero-
geneous ET processes in the dye-semiconductor system alizarin-TiO2. The study
was based on a method which uses first-principles electronic structure calculations to
characterize the system and to parametrize a model Hamiltonian including electronic-
vibrational coupling. Based on this model, the quantum dynamics of the ET process
has been simulated using the ML-MCTDH method.

The results of the simulations reveal that the electron injection in the investigated
system takes place on an ultrafast timescale of about 10 fs, which is in good agree-
ment with experimental results [29]. The results also show that the electron injection
dynamics is accompanied by significant electronic coherence effects and thus cannot
be characterized by a single rate constant. A detailed analysis shows that the ET
process in the alizarin-TiO2 can be described by a two-step mechanism, which in-
volves an intermediate state localized at the dye-semiconductor interface. The strong
coupling between the donor and the intermediate state results in coherent electronic
motion, which is damped due to the interaction with the substrate.

We have also performed an analysis of the electronic-vibrational coupling in the
ET process. The quantum-dynamical simulations show that the coupling to the
vibrational modes of the dye-adsorbate results in a somewhat slower injection dy-
namics. However, due to the ultrafast timescale of the ET process and the relatively
small reorganization energy, the overall effect of electronic-vibrational coupling in the
alizarin-TiO2 system is rather small. A model study of systems with an increased
distance between the dye-adsorbate and the titanium oxide substrate results in more
pronounced effect of electronic-vibrational coupling with the presence of much weaker
donor-acceptor coupling.



Chapter 4

Effects of Anchor and Spacer Groups: Electron Trans-

fer Processes in the Dye-Semiconductor Systems Pyri-

dine / Perylene - Titanium Oxide

4.1 Introduction

In this chapter, we apply the first-principles based methodology of quantum dynamics
outlined in Chapter 2 to various dye-semiconductor systems in order to study effects
of different anchor and spacer groups on the ET dynamics. The systems investigated
in this chapter contain different pyridine- and perylene-based adsorbates, which are
adsorbed on surfaces of titanium oxide clusters. Thereby an anchor group is defined
as the functional group that connects the chromophore group of the dye molecule and
the surface atom(s) of the semiconductor substrate, while the group that connects
the chromophore group of the dye molecule and the anchor group is referred to
as the spacer group. Thus, dye molecules (or adsorbates) studied in this chapter
can be understood as different chromophore-anchor or chromophore-spacer-anchor
combinations. We expect that using different anchor group (or spacer-anchor group)
in the dye-semiconductor system will affect the energy-level structure of the localized
adsorbate orbitals and introduce difference in both strength and distribution of the
donor-acceptor coupling. The ET dynamics in dye-semiconductor systems can be
modulated due to these two aspects.

In practical applications, dye molecules used in dye-semiconductor systems can
be classified into two categories: purely organic conjugated molecules and transition-
metal complexes. All dye molecules in the systems investigated in this thesis belong
to the first category. There are various chemical structures of purely organic dye
molecules, most of which possess planar conjugated π-structures. Some organic dye
molecules, such as catechol, alizarin, coumarin 343 and bi-isonicotinic acid (Fig. 4.1),
contain heteroatomic functional groups. Thus they can directly adsorb to the surface
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of the semiconductor substrate via metal-heteroatom chemical bonds. On the other
hand, some organic chromophore molecules, such as pyridine and perylene (Fig. 4.2),
do not have any heteroatomic functional groups. For these chromophore groups, an
anchor group is often required to bind to the surface (transition-metal) atoms of the
semiconductor substrate.

OH
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Figure 4.1: Examples of purely organic aromatic molecules, (a) catechol, (b) alizarin,
(c) coumarin 343 and (d) bi-isonicotinic acid, which can be used as dye molecules for
dye-semiconductor ET systems. The heteroatoms (oxygen atoms) which can directly
bind to the surface metal atoms of semiconductor substrates are boldfaced.

N

(a) (b)

Figure 4.2: Examples of purely organic conjugated molecules, (a) pyridine and (b)
perylene, which can be used as dyes for dye-semiconductor ET systems. In these
systems, there are no heteroatomic functional groups which can directly bind to the
surface metal atoms of semiconductor substrates.
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The dye-semiconductor systems containing pyridine-based dye molecules mainly
serve as models [55] for adsorbate-substrate interactions for common ruthenium poly-
pyridyl sensitizer systems [121–126]. In contrast, the perylene-based systems allow
direct comparisons with ultrafast laser spectroscopy measurements [25,26,33,72,127,
128]. Both electronic structures of dye-semiconductor complexes and electron injec-
tion rates have been previously studied for these systems [67, 72, 75]. Thereby the
rates of ET reactions were characterized using the broadening of the initially excited
donor state motivated by the fundamental idea of the Anderson-Newns model [77].
In this chapter, the electronic structure of the investigated systems is studied in
combination with the partitioning procedure outlined in Section 2.3.1, and the time-
dependent electron injection dynamics is simulated within the first-principles based
model. A comparison of different rate-theory approaches is presented.

In Section 4.2, we discuss the ET processes in the systems containing pyridine- and
perylene-based adsorbates with different anchor groups, while Section 4.3 focuses on
systems containing perylene-based adsorbates with different spacer groups between
the perylene chromophore group and the carboxylic-acid anchor group. Both sec-
tions include results of electronic structure calculations, discussions about the donor-
acceptor separation and coupling matrix elements, and analysis on the ET dynamics.

4.2 Influence of the anchor group on the electron transfer dy-

namics

4.2.1 Characterization of the systems

To study the influence of the anchor group on the ET dynamics, we have considered
the quantum dynamics of electron injection in dye-semiconductor systems with four
different dye molecules. In each system, a bulky (TiO2)46 cluster is used to model
the semiconductor substrate. The model chromophores considered include pyridine
and perylene, which are bound to the titanium dioxide substrate via two different
anchor groups, carboxylic acid and phosphonic acid. The thus obtained four different
dyes are denoted by PyC, PyP, PeC and PeP in the following. In all four cases,
we have used a monodentate (ester) binding mode between the adsorbate and the
substrate. Fig. 4.3 shows the chemical structures of the four dyes considered. The
four dye-semiconductor systems are depicted in Fig. 4.4.

The structures of the four investigated dye-semiconductor systems were obtained
according to the following protocol: (i) the systems consisting of the different anchor
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Figure 4.3: Chemical structure of the four dyes considered in the study: (a)
pyridine-COOH (PyC), (b) pyridine-PO3H2 (PyP), (c) perylene-COOH (PeC) and
(d) perylene-PO3H2 (PeP).

groups and the involved titanium dioxide cluster were optimized; (ii) the bonding
geometries between different aromatic molecules and different anchor-TiO2 systems
are optimized using a periodic model [67]; and (iii) the pyridine or perylene moiety
is mounted onto the parts obtained in step (i) according to the corresponding geo-
metries obtained in step (ii). The calculations were performed using DFT with the
B3LYP functional and a 31G/311G/41G basis set (VDZ), which is used to respec-
tively describe the valence electrons of {H,C,N,O}/P/Ti atoms, combined with large
effective core potentials (ECP) [129,130] describing the core electrons.

In the electronic structure calculations, an additional diffuse sp-shell for oxygen
atoms is included in the basis set in order to allow a realistic description of the
negative ions in the nanocrystallines with significant ionic character. This method,
denoted by B3LYP/VD(T)Z, has proved capable to give good results in describing the
electronic structure of systems comprising organic adsorbates on TiO2 surfaces [55].
All calculations mentioned above were carried out using the Gaussian 03 package
[114].



IV. Effects of anchor and spacer groups on the ET dynamics 65

(a) (b)

(c) (d)

Figure 4.4: The four complexes considered in the study: (a) PyC-(TiO2)46, (b) PyP-
(TiO2)46, (c) PeC-(TiO2)46 and (d) PeP-(TiO2)46.
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4.2.2 Energy-level scheme, donor-acceptor separation and coupling ma-

trix elements

To discuss the donor-acceptor partitioning, we first consider the energy-level scheme.
Figs. 4.5 and 4.6 show energies of the MO of the overall dye-TiO2 complexes as well
as those of the donor and acceptor orbitals obtained from the partitioning procedure
for the four systems investigated. For each system, the MO-energies (shown in the
middle panel of the corresponding subfigure) exhibit a dense level structure with a
valence and a conduction band separated by a band gap. In addition, there are a
few isolated levels in the band gap. The calculated value for the band gap is 4.8 eV,
which is somewhat larger than experimental value (3.4 eV [116]) for anatase TiO2

nanoparticles.

The partitioning procedure results in donor and acceptor orbitals that are lo-
calized in the adsorbate and the (TiO2)46 substrate, respectively. The energy-level
scheme of the acceptor orbitals shows a structure very similar to that of the isolated
(TiO2)46 cluster [75]. All energy levels in the band gap of the complex are localized
in the adsorbate, and, therefore, result within the partitioning procedure in donor or-
bitals. These orbitals can be associated with the occupied orbitals of the isolated dye
molecules. The number of orbitals in the band gap depends on the specific system.
While in each of the two pyridine-based complexes only the HOMO and (HOMO−1)

are located in the band gap, there are several occupied levels in the band gap in the
perylene-based complexes. The results in Figs. 4.5 and 4.6 also show that energies
of the donor levels in the band gap are very close to those in the complex, indicating
almost negligible interaction with the substrate. This is corroborated by the fact that
the overlap of the donor orbitals in the band gap with the corresponding orbitals of
the complex is larger than 0.99.
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Figure 4.5: Energy-level schemes of the complexes with pyridine-based adsorbates:
(a) PyC and (b) PyP adsorbed at the (TiO2)46 substrate. From left to right in
each subfigure: energy levels of the donor orbitals (obtained from the partitioning
procedure) which are localized in the adsorbate, energy levels of the overall complex,
and energy levels of the acceptor orbitals (obtained from the partitioning procedure)
which are localized in the semiconductor substrate. The selected donor state |ψd〉 as
well as the correlations among some energy levels relevant for the ET reaction are
indicated.
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Figure 4.6: Energy-level schemes of the complexes with pyridine-based adsorbates:
(a) PeC and (b) PeP adsorbed at the (TiO2)46 substrate. From left to right in
each subfigure: energy levels of the donor orbitals (obtained from the partitioning
procedure) which are localized in the adsorbate, energy levels of the overall complex,
and energy levels of the acceptor orbitals (obtained from the partitioning procedure)
which are localized in the semiconductor substrate. The selected donor state |ψd〉 as
well as the correlations among some energy levels relevant for the ET reaction are
indicated.

For each system, energies of the lowest unoccupied orbitals of the dye, on the
other hand, are located in the conduction band of TiO2. As a consequence, these
levels are dissolved in the dense manifold of conduction-band levels of TiO2. In
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the dynamical calculations discussed below, we have chosen the lowest donor orbital
which corresponds to the LUMO of the isolated dye molecule as the donor state
∣

∣ψd
〉

. TD-DFT calculations for the isolated dye molecules indicate that the first
excited states of pyridine and perylene correspond almost exclusively to the HOMO-
LUMO excitation [131]. Therefore, the use of the LUMO as a model for the excited
state is well justified in these systems.

An important parameter for the ET process is the energy of the donor state relative
to the conduction-band minimum of the TiO2. This parameter varies significantly for
the four systems investigated. While the energy of the donor state for PyP-TiO2 is
well above the lower edge of the conduction band, it is very close in PeC-TiO2. This
trend can be rationalized by the excited-state energies of the two chromophores and
the coupling strength between the chromophores and the different anchor groups. For
each chromophore, the coupling to the carboxylic-acid anchor group is stronger and
tends to lower the donor state as compared to the phosphonic-acid bridge.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Selected localized adsorbate orbitals of the investigated systems (a) PyC-
(TiO2)46, (c) PyP-(TiO2)46, (e) PeC-(TiO2)46 and (g) PeP-(TiO2)46 that are asso-
ciated with the HOMO of corresponding isolated dye molecules (b) PyC, (d) PyP,
(f) PeC and (h) PeP.

The local character of the two frontier orbitals for each investigated system and
the resemblance between them and the corresponding orbitals (HOMO and LUMO)
of isolated dye molecules are illustrated in Figs. 4.7 and 4.8, respectively. For each
system, the localized orbital associated with the HOMO is almost identical to the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8: Selected localized adsorbate orbitals of the investigated systems (a) PyC-
(TiO2)46, (c) PyP-(TiO2)46, (e) PeC-(TiO2)46 and (g) PeP-(TiO2)46 that are asso-
ciated with the LUMO of corresponding isolated dye molecules (b) PyC, (d) PyP, (f)
PeC and (h) PeP.

HOMO of the corresponding isolated dye molecule and also to the HOMO of the
complex (data not shown), thus demonstrating that this orbital has negligible inter-
action with the TiO2 substrate. On the other hand, the localized orbital associated
with the LUMO of the isolated dye molecule, which constitutes the donor state of the
ET reaction in each system, show noticeable contribution at the anchor bridge. This
contribution is particularly pronounced for the systems containing the carboxylic-acid
anchor group. It is also noted that all projected acceptor orbitals are localized in the
TiO2 substrate (data not shown).

Another key factor for the ET dynamics is the strength and the distribution of the
donor-acceptor coupling. Figs. 4.9 and 4.10 show the modulus of the donor-acceptor
coupling matrix elements V da

j for the four systems (with the scale of the V da
j -axis

different in each subfigure). It is seen that the first-principles based models result in
a distribution of donor-acceptor coupling matrix elements V da

j that exhibits a rather
complicated structure. This is in contrast to the semiempirical Newns model, where
the donor-acceptor coupling is often represented by a Lorentzian or semielliptical
function. The overall strength of the donor-acceptor coupling varies for the four
systems. Thereby, the major effect is caused by the anchor group. Systems which
bind via the carboxylic-acid anchor group show a significantly stronger donor-acceptor
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coupling. This is in accordance with the character of the donor state orbital as
discussed above. Considering systems with the same anchor group, the pyridine-
based systems have a somewhat stronger donor-acceptor coupling due to the smaller
spatial extension of the chromophore.
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Figure 4.9: Modulus of donor-acceptor electronic coupling matrix elements V da
j (dis-

crete lines) and the decay-width function Γ (ε) (continuous line) of (a) PyC-(TiO2)46

and (b) PyP-(TiO2)46. For each system, the red vertical line indicates the energy of
the donor state εd.



72 IV. Effects of anchor and spacer groups on the ET dynamics

0

0.02

0.04

0.06

0.08

0.1

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

0.1

0.2

0.3

0.4

0.5
∣ ∣

V
d
a

j

∣ ∣

[e
V

]

Γ
(ε

)
[e
V

]

εa
j , ε [eV]

εd

(a)

0

0.005

0.01

0.015

0.02

0.025

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

0.005

0.01

0.015

0.02

0.025

∣ ∣

V
d
a

j

∣ ∣

[e
V

]

Γ
(ε

)
[e
V

]

εa
j , ε [eV]

εd

(b)

Figure 4.10: Modulus of donor-acceptor electronic coupling matrix elements V da
j

(discrete lines) and the decay-width function Γ (ε) (continuous line) of (a) PeC-
(TiO2)46 and (b) PeP-(TiO2)46. For each system, the red vertical line indicates the
energy of the donor state εd.

For an extended substrate, the donor-acceptor coupling is characterized by the
decay-width function Γ (ε) given by Eq. (2.13). This function is depicted by the
continuous lines in Figs. 4.9 and 4.10. In contrast to the functional forms used
for Γ (ε) in the Newns-type models [49, 77, 105], the results from the first-principles
calculations exhibit pronounced structures and show significant differences for the
four systems. In particular, in the complexes containing the carboxylic-acid anchor
group, Γ (ε) shows one single maximum, while it has a double-peak structure for the
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systems containing the phosphonic-acid anchor group.

4.2.3 Electron injection dynamics

The ET dynamics in the four systems investigated is simulated based on the first-
principles model outlined in Chapter 2. All localized acceptor states associated with
unoccupied orbitals of the isolated semiconductor cluster are included in the simula-
tion. Figs. 4.11 and 4.12 show the population of the donor state. For each system,
the decay of the population of the donor state reflects the electron injection into the
(quasi-)continuum of acceptor states in the TiO2 substrate.
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Figure 4.11: Population dynamics of the donor state after photoexcitation in the
PyC-TiO2 (blue lines) and PyP-TiO2 (red lines) systems. Shown are results obtained
for the finite (TiO2)46 cluster (thick lines) and for the model of an infinite TiO2

surface (thin lines).

All systems show an ultrafast initial decay of the population of the donor state. The
timescale of this initial injection as well as the character of the long-time dynamics
depend on the specific system. In PyC-TiO2, the population of the donor state
decays within a few femtoseconds almost completely into the acceptor states. In the
other three systems, the injection process is somewhat slower and incomplete, i.e.,
there is a finite probability to find the electron for longer times at the adsorbates. The
initial injection process is significantly faster in the systems containing the carboxylic-
acid anchor group. By consideration of complexes with the same anchor group,
the injection is faster in the pyridine-based systems. Furthermore, the results show
oscillatory structures which indicate electronic coherence. This effect is particularly
pronounced in the PeP-TiO2 system.
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These findings can be rationalized by the energy-level structure and the donor-
acceptor coupling strength discussed in Section 4.2.2. The timescale of the initial in-
jection follows mainly the overall strength of the donor-acceptor coupling. PyC-TiO2,
the system with the largest donor-acceptor coupling, exhibits the fastest injection.
On the other hand, PeP-TiO2, the system with the smallest donor-acceptor coupling,
shows the slowest injection. The donor-acceptor coupling in PyP-TiO2 is overall
slightly weaker than that in PeC-TiO2, while the energy of the donor state of PyP-
TiO2 is located significantly higher relative to the conduction-band minimum than
that of PeC-TiO2. These two features result in a somewhat faster initial injection in
PeC-TiO2 as compared to PyP-TiO2.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

P
d

t [fs]

Figure 4.12: Population dynamics of the donor state after photoexcitation in the
PeC-TiO2 (blue lines) and PeP-TiO2 (red lines) systems. Shown are results obtained
for the finite (TiO2)46 cluster (thick lines) and for the model of an infinite TiO2

surface (thin lines).

As already noted above, the injection process is incomplete for all systems except
PyC-TiO2 which shows an almost complete injection. Model studies [105] indicate
that there are two possible reasons for an incomplete injection process: (i) the finite-
ness of the (TiO2)46 cluster, which results in recurrences of the wave function that
would be quenched when an infinite semiconductor surface is mimicked; and (ii) true
bound (e.g., surface) states in the band gap with a finite overlap with the donor
state, which may result in an incomplete injection even when mimicking an infinite
substrate. In order to study the first effect, we have mimicked electron injection at
an infinite TiO2 surface using absorbing boundary conditions by including an imagi-
nary part in the orbital energies at the boundary of the substrate (cf. Section 2.3.1
and Appendix B). Corresponding results are depicted in Figs. 4.11 and 4.12 by
the thin lines. It is seen that all systems exhibit a complete injection process. This
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demonstrates that the incomplete decay of the population of the donor state in all
four systems is mainly caused by the finiteness of the (TiO2)46 cluster used in the
simulation and can thus be understood as a finite-size effect.

Table 4.1: Characteristic times (in femtoseconds) of the electron injection process in
the four investigated systems.

adsorbate PyC PyP PeC PeP
finite (TiO2)46 cluster
τe−1 2.0 13.8 9.0 42.8

extended TiO2 surface
τe−1 1.9 11.3 16.2 41.7

k−1 3.8 12.0 16.1 43.7
(

Γ
(

εd
))−1

1.7 11.7 9.9 43.2

Previous studies
finite TiO2 cluster [75]
γ̃−1 5 20

extended TiO2 surface [67]
γ̃−1 17 35

experiments [33] 13 24

Table 4.1 lists reaction rate constants of ET processes in all four systems obtained
from different rate-theory approaches1. It is important to note that, for the complexes
with a finite TiO2 substrate, the time-dependent population dynamics shows that the
electron injection is not an exponential process and can thus not be fully characterized
by a single rate constant. In particular, the decay is incomplete and shows significant
coherence effects for longer times. To characterize the average timescale of the initial
injection process, we have fit the initial decay dynamics of the population of the donor
state to an exponential function in order to extract the corresponding e−1-time.

The results obtained for the extended substrate show complete injection. Never-
theless, the time-dependent population dynamics is not a purely exponential decay.
In the ET rates, this becomes apparent in the difference of the e−1-time and the
long-time injection time k−1 defined in Eq. (2.91). This deviation is particularly pro-
nounced for PyC-TiO2, since electronic coherence effects prevail even an extended
surface is mimicked for this system. Thus, also in the case of an “infinite” substrate,
the electron injection rate has to be considered as an approximate concept and can
only give an overall timescale.

1Specifically, τe−1 is defined via Eq. (2.89), k is defined in Eq. (2.91), Γ
(

εd
)

is defined in

Eq. (2.13), and γ̃ is defined in, e.g., Ref. [72].
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The results in Table 4.1 show ultrafast character of the injection process for all
systems. The timescales range from a few femtoseconds for the most strongly coupled
system PyC-TiO2 to a few tens of femtoseconds for PeP-TiO2. The overall trend for
the electron-injection timescale τ for the four systems

τ (PeP-TiO2) > τ (PyP-TiO2) > τ (PeC-TiO2) > τ (PyC-TiO2)

is reproduced by all rate concepts.

For the perylene-based systems, experimental results obtained from transient ab-
sorption spectroscopy in ultrahigh vacuum [33] predict an electron-injection time of
13 fs for PeC-TiO2 and 24 fs for PeP-TiO2. For PeC-TiO2, the experimental result
is in good agreement with the calculated injection times, while for PeP-TiO2 the
experimental result is about a factor of 2 faster.

Based on the comparison of the results of the different rate concepts, it is seen that
the Golden-Rule rate constants agree well with other rate constants for the systems
containing the phosphonic-acid anchor group (which create a weaker donor-acceptor
coupling in the dye-semiconductor systems) but significantly deviates for PeC-TiO2.
This is to be expected due to the perturbative character of the Golden-Rule rate.
For the PyC-TiO2 system, the good agreement between the Golden-Rule rate and
other rate constants is presumably fortuitous, since the applicability of rate theory is
questionable in this system.

In previous work [57,65,72,75], the electron injection rates for the pyridine-based
systems were characterized based on the lifetime broadening of the donor state. Ta-
ble 4.1 shows reasonable agreement between the thus obtained results and the results
obtained from dynamical calculations. The deviations are presumably due to the fact
that the distribution of the donor-acceptor coupling matrix elements significantly de-
viates from a Lorentzian distribution (cf. Figs. 4.9 and 4.10).

4.3 Influence of the spacer group on the electron transfer dy-

namics

4.3.1 Characterization of the systems

To study the influence of the spacer group on the ET dynamics, we have consi-
dered the quantum dynamics of electron injection in dye-semiconductor systems with
three different dye molecules. In each system, a bulky (TiO2)60 cluster is used
to model the semiconductor substrate. All dye molecules investigated contain a



IV. Effects of anchor and spacer groups on the ET dynamics 77

perylene chromophore group which is directly or indirectly bound to the titanium
dioxide substrate via a carboxylic-acid anchor group. Two different spacer groups,
-CH=CH- and -CH2-CH2-, are selected to insert between the perylene chromophore
and the carboxylic-acid group, thus resulting in an acrylic-acid and a propionic-acid
anchor group. The thus obtained three different dyes are denoted by PeCOOH,
PeCH=CHCOOH and PeCH2CH2COOH in the following. In all three cases, we
have used a bridge binding mode between the adsorbate and the substrate (differ-
ent to the monodentate mode used in Section 4.2). The proton detached from the
carboxylic-acid group is attached to a surface oxygen atom. Fig. 4.13 shows the
chemical structures of the two dyes except PeCOOH which is identical to the PeC
shown in Fig. 4.3 (c). The three dye-semiconductor systems are depicted in Fig. 4.14.

OHO

(a)

OHO

(b)

Figure 4.13: Chemical structure of two dye molecules considered in the study:
(a) perylene - acrylic acid (PeCH=CHCOOH) and (b) perylene - propionic acid
(PeCH2CH2COOH).

The procedure to obtain the structures of the three investigated dye-semiconductor
systems and the details of electronic structure calculations were described in Ref. [72].
All calculations were carried out using the Gaussian 03 package [114].

4.3.2 Energy-level scheme, donor-acceptor separation and coupling ma-

trix elements

To discuss the donor-acceptor partitioning, we first consider the energy-level scheme.
Fig. 4.15 shows energies of the MO of the overall dye-TiO2 complexes as well as those
of the donor and acceptor orbitals obtained from the partitioning procedure for the
three systems investigated. For each system, the MO-energies (shown in the middle
panel of the corresponding subfigure) exhibit a dense level structure with a valence
and a conduction band separated by a band gap. In addition, for each system there is
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(a) (b) (c)

Figure 4.14: The three complexes considered in the study: (a) PeCOOH-(TiO2)60,
(b) PeCH=CHCOOH-(TiO2)60 and (c) PeCH2CH2COOH-(TiO2)60.

one isolated level (the HOMO of the overall complex) in the band gap. The calculated
value for the band gap is 3.1 eV, which is somewhat smaller than experimental value
(3.4 eV [116]) for anatase TiO2 nanoparticles. This finding also differs from the result
obtained for the (TiO2)46 cluster as shown in Section 4.2. This is a result of the higher
coordination of the titanium atoms in the (TiO2)60 cluster considered [75].

The partitioning procedure results in donor and acceptor orbitals that are localized
in the adsorbate and the (TiO2)60 substrate, respectively. The energy-level scheme
of acceptor orbitals shows a structure very similar to that of the isolated (TiO2)60

cluster [72]. For each system, the energy level in the band gap of the complex is
localized in the adsorbate, and, therefore, results within the partitioning procedure
in a donor orbital, which is associated with the HOMO of the corresponding isolated
dye molecule. The energy of this donor level is very close to the energy of the HOMO
in the complex, indicating almost negligible interaction with the substrate. This is
corroborated by the fact that the overlap of this donor orbital with the HOMO of
the complex is larger than 0.99.
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Figure 4.15: Energy-level schemes of the investigated complexes with perylene-based
adsorbates: (a) PeCOOH, (b) PeCH=CHCOOH and (c) PeCH2CH2COOH adsorbed
at the (TiO2)60 substrate. From left to right in each subfigure: energy levels of the
donor orbitals (obtained from the partitioning procedure) which are localized in the
adsorbate, energy levels of the overall complex, and energy levels of the acceptor
orbitals (obtained from the partitioning procedure) which are localized in the semi-
conductor substrate. The selected donor state |ψd〉 as well as the correlations among
some energy levels relevant for the ET reaction are indicated.
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For each system, energies of the lowest unoccupied orbitals of the dye, on the
other hand, are located in the conduction band of TiO2. As a consequence, these
levels are dissolved in the dense manifold of conduction-band levels of TiO2. In the
dynamical calculations discussed below, we have chosen the lowest donor orbital in
the conduction band which corresponds to the LUMO of the isolated dye molecule as
the donor state

∣

∣ψd
〉

. TD-DFT calculations for the isolated dye molecules indicate
that the first excited state of perylene corresponds almost exclusively to the HOMO-
LUMO excitation [72, 131]. Therefore, the use of the LUMO as a model for the
excited state is well justified in these systems.

An important parameter for the ET process is the energy of the donor state
relative to the conduction-band minimum of the TiO2. For PeCOOH-TiO2 and
PeCH=CHCOOH-TiO2, the energy of the donor state is close to the lower edge
of the conduction band, while it is well above the conduction-band minimum in
PeCH2CH2COOH-TiO2. This feature can be rationalized by the coupling strength
between the chromophore and the different anchor groups (carboxylic acid, acrylic
acid and propionic acid): the coupling to the propionic-acid anchor group is much
weaker and tends to a higher donor level as compared to both carboxylic-acid and
acrylic-acid bridge.

The local character of the two frontier orbitals for each investigated system and
the resemblance between them and the corresponding orbitals (HOMO and LUMO)
of isolated dye molecules are illustrated in Figs. 4.16 and 4.17, respectively. For
each system, the localized orbital associated with the HOMO is almost identical to
the HOMO of the corresponding isolated dye molecule and also to the HOMO of the
complex (data not shown), thus demonstrating that this orbital has negligible inter-
action with the TiO2 substrate. On the other hand, all projected acceptor orbitals
are localized in the TiO2 substrate (data not shown). For both PeCOOH-(TiO2)60

and PeCH=CHCOOH-(TiO2)60, the localized orbital associated with the LUMO of
the isolated dye molecule, which constitutes the donor state of the ET reaction, show
noticeable contribution at the anchor bridge. In particular, for PeCH=CHCOOH-
(TiO2)60, the localized orbital associated with the LUMO of the isolated dye molecule
shows pronounced contribution at the spacer group -CH=CH-. In contrast, for
PeCH2CH2COOH-(TiO2)60, the distribution of the probability density of the localized
orbital which is associated with the LUMO of PeCH2CH2COOH is almost completely
restricted in the perylene chromophore group.

Fig. 4.18, showing the modulus of the donor-acceptor coupling matrix elements
V da

j for the three systems (with the scale of the V da
j -axis for PeCH2CH2COOH-

(TiO2)60 different to that for the other two systems), illustrates the strength and the
distribution of the donor-acceptor coupling, which is regarded as another key factor
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Selected localized adsorbate orbitals of the investigated systems
(a) PeCOOH-(TiO2)60, (b) PeCH=CHCOOH-(TiO2)60 and (c) PeCH2CH2COOH-
(TiO2)60 that are associated with the HOMO of corresponding isolated dye molecules
(d) PeCOOH, (e) PeCH=CHCOOH and (f) PeCH2CH2COOH.

for the ET dynamics. Similar to Figs. 3.6, 4.9 and 4.10, the first-principles based
models result in a distribution of donor-acceptor coupling matrix elements V da

j that
exhibits a rather complicated structure. The overall strength of the donor-acceptor
coupling varies for the three systems. Thereby, the major effect is caused by the spacer
group. The system with a perylene chromophore bound to the substrate directly
via the carboxylic-acid anchor group shows the strongest donor-acceptor coupling,
while the donor-acceptor coupling for the system containing a -CH=CH- spacer group
between the perylene chromophore and the carboxylic-acid anchor group is slightly
weaker. The donor-acceptor coupling for the system containing a -CH2CH2- spacer
group between the perylene chromophore and the carboxylic-acid anchor group is
significant weaker than that of the other two systems. This is in accordance with the
different character of the donor orbitals in the different systems as discussed above.

For an extended substrate, the donor-acceptor coupling is characterized by the
decay-width function Γ (ε) given by Eq. (2.13). This function is depicted by the
continuous lines in Fig. 4.18. These results from the first-principles calculations
exhibit pronounced structures and show significant differences for the three systems.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: Selected localized adsorbate orbitals of the investigated systems
(a) PeCOOH-(TiO2)60, (b) PeCH=CHCOOH-(TiO2)60 and (c) PeCH2CH2COOH-
(TiO2)60 that are associated with the LUMO of corresponding isolated dye molecules
(d) PeCOOH, (e) PeCH=CHCOOH and (f) PeCH2CH2COOH.

Different to Figs. 4.9 (a) and 4.10 (a), the carboxylic-acid anchor group in each system
investigated here results in a Γ (ε) function containing more than one maxima.

4.3.3 Electron injection dynamics

The ET dynamics in the three systems investigated is simulated based on the first-
principles model outlined in Chapter 2. All localized acceptor states associated with
unoccupied orbitals of the isolated semiconductor cluster are included in the simula-
tion. Fig. 4.19 shows the population of the donor state for all systems, reflecting the
electron injection into the (quasi-)continuum of acceptor states in the TiO2 substrate.

All systems show an ultrafast initial decay of the population of the donor state. The
timescale of this initial injection as well as the character of the long-time dynamics
depend on the specific system. In both PeCOOH-TiO2 and PeCH=CHCOOH-TiO2,
the population of the donor state decays within a few femtoseconds to about 0.1, while
the injection process in PeCH2CH2COOH-TiO2 is significantly slower. These findings
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Figure 4.18: Modulus of donor-acceptor electronic coupling matrix elements V da
j

(discrete lines) and the decay-width function Γ (ε) (continuous line) of (a) PeCOOH-
(TiO2)60, (b) PeCH=CHCOOH-(TiO2)60 and (c) PeCH2CH2COOH-(TiO2)60. For
each system, the red vertical line indicates the energy of the donor state εd.

can be rationalized by the energy-level structure and the donor-acceptor coupling
strength discussed in Section 4.3.2. As shown in Figs. 4.15 and 4.18, the position of
the donor level with respect to the conduction-band minimum and the strength of
the donor-acceptor coupling are both very similar in the dye-semiconductor systems
PeCOOH-TiO2 and PeCH=CHCOOH-TiO2. This results in similar ET dynamics in
these two systems, exhibiting a much faster injection than in PeCH2CH2COOH-TiO2,
where the donor-acceptor coupling is much weaker. Furthermore, the results for both
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Figure 4.19: Population dynamics of the donor state after photoexcitation in the
investigated systems PeCOOH-TiO2 (black lines), PeCH=CHCOOH-TiO2 (red lines)
and PeCH2CH2COOH-TiO2 (blue lines). Shown are results obtained for the finite
(TiO2)60 cluster (thick lines) and for the model of an infinite TiO2 surface (thin lines).

PeCOOH-TiO2 and PeCH=CHCOOH-TiO2 show pronounced oscillatory structures
which indicate electronic coherence. The decay in PeCH2CH2COOH-TiO2 is rather
smooth with some recurrences of a large period, which can be classified as a finite-size
effect as discussed below.

Incomplete electron injection is observed for all three investigated systems even
for a long injection time. From Fig. 4.19, we can see that this incompleteness is
particularly significant for PeCH=CHCOOH-TiO2. Similar to the analysis outlined
in Sections 3.5 and 4.2.3, we have mimicked electron injection at an extended TiO2

surface using absorbing boundary conditions by including an imaginary part in the
orbital energies at the boundary of the substrate. Corresponding results are depicted
in Fig. 4.19 by the thin lines. It is seen that all systems exhibit a complete injection
process (for PeCH2CH2COOH-TiO2, the population of the donor state decays to
zero after 200 fs). This demonstrates that the incomplete decay of the population
of the donor state in all three systems is mainly caused by the finiteness of the
(TiO2)60 cluster used in the simulation and can thus be understood as a finite-size
effect. This finding is similar to the results for other dye-semiconductor systems
discussed previously (cf. Sections 3.5 and 4.2.3). Furthermore, Fig. 4.19 also shows
that electronic coherence effects are almost completely quenched by mimicking an
extended substrate surface for all systems.

Table 4.2 lists reaction rate constants of ET processes in all three systems obtained
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Table 4.2: Characteristic times (in femtoseconds) of the electron injection process in
the three investigated systems.

adsorbate PeCOOH PeCH=CHCOOH PeCH2CH2COOH
finite (TiO2)60 cluster
τe−1 5.2 6.4 43.2

extended TiO2 surface
τe−1 5.8 6.4 47.4

k−1 5.0 5.9 47.2
(

Γ
(

εd
))−1

5.3 5.8 47.3

Previous studies
finite TiO2 cluster [72]
γ̃−1 5 6 33

experiments [33,72] 13 10 57

from different rate-theory approaches2. It is important to note that, for the complexes
with a finite TiO2 substrate, the time-dependent population dynamics shows that the
electron injection is not an exponential process and can thus not be fully characterized
by a single rate constant. In particular, the decay is incomplete and shows significant
coherence effects for longer times. To characterize the average timescale of the initial
injection process, the initial decay dynamics of the population of the donor state is
fit to an exponential function in order to extract the corresponding e−1-time.

The results obtained for the extended substrate show complete injection with
oscillatory structures almost completely quenched. The time-dependent popula-
tion dynamics is similar to an exponential decay especially for PeCH2CH2COOH-
TiO2, where the e−1-time is very close to the long-time injection time k−1 defined in
Eq. (2.91).

The results shown in Table 4.2 show the ultrafast character of the injection process
for all systems. The timescales range from a few femtoseconds to a few tens of
femtoseconds. The overall trend for the electron-injection timescale τ for the three
systems

τ (PeCH2CH2COOH-TiO2) > τ (PeCOOH-TiO2) ≈ τ (PeCH=CHCOOH-TiO2)

is reproduced by all rate concepts.

For each system, the results obtained from the different rate concepts (i.e., the e−1-

2Specifically, τe−1 is defined via Eq. (2.89), k is defined in Eq. (2.91), Γ
(

εd
)

is defined in

Eq. (2.13), and γ̃ is defined in, e.g., Ref. [72].



86 IV. Effects of anchor and spacer groups on the ET dynamics

time obtained with both finite cluster and infinite surface, the long-time injection time
obtained with an infinite surface, and the Golden-Rule injection time) are very close
to each other. This is different to the finding in Section 4.2.3. The injection rates
obtained for PeCOOH-(TiO2)60 is about a factor of 2 faster than the results obtained
for PeC-(TiO2)46 (cf. Table 4.1). On the other hand, the Golden-Rule rate constants
agree well with other rate constants for all systems, including PeCOOH-TiO2, which
is very different to the finding obtained for PeC-TiO2 (cf. Table 4.1). This can be
rationalized by the different distribution scheme of the donor-acceptor coupling (cf.
Fig. 4.18 versus Fig. 4.10 (a)), which is presumably a result of the different adsorption
motifs and different sizes of the cluster.

In previous work [72], the electron injection rate for the investigated systems was
characterized based on the lifetime broadening of the donor state. Table 4.2 shows
reasonable agreement between the thus obtained results and the results obtained from
dynamical calculations.

We can compare the results obtained from dynamical simulations to the expe-
rimental results obtained from transient absorption spectroscopy in ultrahigh vacuum
[33,72]. For all three systems, the injection rates obtained from experimental studies
are somewhat slower than the theoretical results.

4.4 Summary

In this chapter, we have studied the quantum dynamics of photoinduced heteroge-
neous ET processes in dye-semiconductor systems with different chromophore groups,
anchor groups and spacer groups. In the investigated systems, pyridine or pery-
lene chromophore is anchored to a titanium oxide nanocluster via carboxylic-acid or
phosphonic-acid anchor group. Furthermore, different spacer groups are inserted be-
tween the perylene chromophore and the carboxylic-acid anchor group, resulting in
dye-semiconductor systems with perylene anchored to the substrate via acrylic-acid
or propionic-acid anchor group (thus the spacer-group effects can also be classified
as anchor-group effects). The ET dynamics has been described employing a model
based on first-principles electronic structure (DFT) calculations.

The results show that the electron injection in all investigated systems occurs
on an ultrafast timescale which ranges from a few femtoseconds to a few tens of
femtoseconds. Because of the finite size of the nanoclusters used for the systems,
the injection process is incomplete and, furthermore, shows significant electronic co-
herence effects. The results demonstrate that the injection dynamics can be strongly
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influenced by the chemical nature of the anchor group. The stronger donor-acceptor
coupling created by the carboxylic-acid and acrylic-acid anchor groups, which extend
the π-system of the planar chromophore group, results in injection processes which are
significantly faster than the ET in the systems with the nonplanar phosphonic-acid
and propionic-acid anchor groups.

We have also studied the applicability of rate theories to characterize the electron
injection process. Since the long-time dynamics in systems with finite TiO2 nanoclus-
ters exhibits pronounced electronic coherence effects, only the initial dynamics can be
approximately characterized by a single decay constant. For some systems, coherence
effects are almost completely quenched when an extended surface of the substrate is
mimicked and the rate constants can thus be defined. The real-time dynamics of the
electron injection process may not follow an exponential decay characteristics espe-
cially if electronic coherence effects are pronounced even when mimicking an extended
surface.

In the study presented in this chapter, we have considered the purely electronic
dynamics of the ET process and neglected the electronic-vibrational coupling. This
is expected to be a good approximation for dye-semiconductor systems with very
short injection times. In general, the coupling to the nuclear DoF may have profound
effects on the ET dynamics especially for systems with longer injection times (such
as the PeP-TiO2 and PeCH2CH2COOH-TiO2 systems) as discussed in Chapter 3 and
in previous studies [39,70].
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Chapter 5

Dushinsky Effects: Electron Transfer Processes in the

Dye-Semiconductor System Coumarin 343 - Titanium

Oxide

5.1 Introduction

In the study of the vibronic ET dynamics in alizarin-TiO2 presented in Chapter 3 as
well as in previous studies [41,70], the electronic-vibrational coupling was character-
ized employing the simplest harmonic approximation without including Dushinsky
rotation. Thereby, in the donor and acceptor states, the vibrational frequency along
each normal mode is approximated by its value in the electronic ground-state, and
the coupling among the normal modes is neglected. This approximation has been
successfully used to describe Franck-Condon and resonance Raman spectra [92]. It
is also used in the linear vibronic coupling model of conical intersections [93] and in
the Marcus theory of ET [3].

In this chapter, we will employ a more precise characterization of the electronic-
vibrational coupling to simulate the vibronic ET dynamics in the dye-semiconductor
system coumarin 343 (C343) - titanium oxide. In the recent years, this system has
been studied in detail both experimentally [20,23,34,35,118,119,132–136] and theo-
retically [41, 70, 74]. Thereby the vibronic ET dynamics was simulated based on the
simplest harmonic approximation employing a first-principles model [41].

In the dynamical simulation in this chapter, we employ an extended model, where
the PES of the ET-related diabatic states are expanded in local second-order polyno-
mials of normal-mode coordinates thereby including the change of vibrational frequen-
cies and the coupling among the normal modes. This modification is often termed
as Dushinsky rotation. Some experimental and theoretical studies [137–139] revealed
that effects of Dushinsky rotation on the ET dynamics may be pronounced in some

89
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systems.

In Section 5.2 we outline a brief introduction of Dushinsky rotation and its effects
on heterogeneous ET reactions. The parameters describing the electronic-vibrational
coupling with considering Dushinsky rotation and the thus introduced effects on the
ET dynamics are discussed in Section 5.3.

5.2 Dushinsky rotation and Dushinsky effects

In the study of the vibronic ET dynamics in Chapter 3, we employed the simplest
harmonic approximation to characterize the electronic-vibrational coupling using
Eq. (2.29),

V αα
j ({ql}) = V αα

j ({0}) +
∑

l

κα
l ql +

∑

l

1

2
ω2

l q
2
l (5.1)

with α = d, a. The PES of the donor and the acceptor states are given by Eqs. (2.30)
and (2.31), respectively. Therefore the PES of each ET-related state has a shape
identical to that of the PES of the electronic ground-state given by Eq. (2.27).

In general, without applying the above mentioned approximation, we can expand
the PES of the diabatic donor and acceptor states in second-order polynomials as
given by Eq. (2.28)

V αα
j ({ql}) = V αα

j ({0}) +
∑

l

κα
l ql +

∑

l,l′

γα
ll′qlql′ .

Alternatively, it can be written as

V αα
j ({ql}) = V αα

j ({0}) +
∑

l

κα
l ql +

∑

l

1

2
(ωα

l )2 q2
l +

∑

l 6=l′

γα
ll′qlql′ , (5.2)

with
ωα

l =
√

2γα
ll . (5.3)

The last two terms in Eq. (5.2) represent diagonal and offdiagonal elements of the
Hessian matrix, respectively. More specifically, Eq. (5.2) can be written as two equa-
tions

V dd ({ql}) = V dd ({0}) +
∑

l

κd
l ql +

∑

l

1

2

(

ωd
l

)2
q2
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ll′qlql′ , (5.4)

V aa ({ql}) = V aa ({0}) +
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2 q2

l +
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γa
ll′qlql′ , (5.5)

for the donor-state PES and the acceptor-state PES, respectively.
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Eq. (5.2) has a form similar to Eq. (5.1) with two main differences: (i) the fre-
quency ωα

l along the l-th normal mode depends on the electronic state α and may,
in general, differ from its value ωl in the ground state, and (ii) the non-vanishing off-
diagonal (mode-mixing) terms γα

ll′qlql′ in the potential energy matrix which describe
the coupling between two different (the l-th and the l′-th with l′ 6= l) normal modes.

The diagonalization of the Hessian matrix in each electronic state results in

V αα
j ({q̃l}) = V αα

j ({0}) +
∑

l

κ̃α
l q̃l +

∑

l

1

2
(ω̃α

l )2 q̃2
l (5.6)

with {q̃l} denoting the normal modes in the corresponding electronic state, which
are, in general, different to {ql}. Thus, the inclusion of the change of vibrational
frequencies and the non-vanishing mode-mixing terms in Eq. (5.2) (as compared with
Eq. (2.29)) results in a rotation of normal modes. This transformation of the normal-
mode coordinate system is called Dushinsky rotation, and the thus introduced effects
are classified as Dushinsky effects.

In this chapter, we will analyze Dushinsky effects based on two aspects. First,
the change of vibrational frequencies introduces a difference of the vibrational zero-
point energy (ZPE) between the donor and acceptor states. Furthermore, Dushinsky
rotation modifies the PES, which results, e.g., in a change of the reorganization
energies.

5.3 Parameters of electronic-vibrational coupling and electron

transfer dynamics including Dushinsky rotation

The geometry optimization of the investigated dye-semiconductor system C343-TiO2

(shown in Fig. 5.1) as well as the electronic structure calculation, the determination
of ET Hamiltonian matrix elements and the normal-mode analysis for this system
were carried out previously as described in Ref. [41]. In this chapter, we will focus on
discussions of the vibrational parameters reflecting Dushinsky rotation and Dushinsky
effects on the ET dynamics. To this end, we will compare the vibronic dynamics
including Dushinsky rotation to the vibronic dynamics without including Dushinsky
rotation as well as to the purely electronic dynamics.

In order to simulate the ET dynamics in C343-TiO2 with including Dushinsky
rotation, the PES of the donor and the acceptor states are described via Eqs. (5.4)
and (5.5), respectively. All parameters ωd/a

l , κd/a
l and γ

d/a
ll′ are obtained from the

vibrational analysis for an isolated C343 molecule and the C343-cation using the
Turbomole package [113] with the B3LYP functional and the TZV(P) basis set.
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Figure 5.1: Donor-acceptor complex coumarin 343 - (TiO2)24(H2O)30.

47 of the total 102 vibrational normal modes are selected for the simulation of the
vibronic dynamics based on the electronic-vibrational coupling strength (determined
in a similar approach as described in Sections 2.3.2 and 3.4). Table 5.1 shows the
thus obtained ωd/a

l values for the normal modes selected in the dynamical simulation
(compared with the corresponding ground-state frequencies ωl).

When Dushinsky rotation is included in the expansion of the PES of the donor and
acceptor states, the reorganization energies for the donor state, the acceptor state and
the ET transition change. Furthermore, a difference of the ZPE between the donor
state and the acceptor states is introduced. The corresponding data are listed in Ta-
ble 5.2. The reorganization-energy data in line (a) of Table 5.2 suggest a very weak
electronic-vibrational coupling to the electronic excitation but a moderately strong
coupling to the ET transition. If Dushinsky rotation is not considered, the selected
47 modes incorporate more than 84% of the total donor-state reorganization energy
and more than 90% of the other two total reorganization energies, as indicated by line
(b) of Table 5.2. Dushinsky rotation results in an increase of the total donor-state
reorganization energy of about 5%, a decrease of the total acceptor-state reorganiza-
tion energy of more than 20% and a decrease of the total ET reorganization energy
of about 10%. It also causes a decrease of the vibrational ZPE in the donor state by
0.057 eV, while the decrease of ZPE in the acceptor states is rather small (0.006 eV).
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Table 5.1: Vibrational frequencies of selected normal modes of coumarin 343 included
in the dynamical simulation of the ET process. Listed are frequencies in the electronic
ground state, the donor state and acceptor states. All data are given in cm−1.

ω ωd ωa ω ωd ωa ω ωd ωa

126.6 119.7 130.6 1048.3 1048.3 1053.7 1390.4 1386.0 1403.6

137.7 151.2 190.9 1066.3 1057.3 1061.9 1406.1 1382.1 1408.7

216.7 207.6 230.6 1070.9 1098.5 1087.6 1455.0 1424.2 1450.0

222.3 208.2 237.2 1115.4 1099.3 1110.7 1472.7 1452.3 1457.8

269.6 183.7 268.5 1176.4 1160.4 1169.1 1495.2 1467.8 1471.2

322.7 322.5 370.6 1191.9 1179.3 1202.5 1519.2 1499.6 1502.4

413.9 406.8 408.8 1206.4 1198.7 1205.3 1579.3 1351.5 1499.1

448.9 458.8 453.1 1220.4 1214.9 1225.1 1630.3 1564.8 1565.7

467.1 461.7 468.1 1239.2 1232.6 1250.6 1654.9 1565.6 1606.0

603.1 590.0 603.7 1253.3 1236.2 1245.5 1777.0 1760.0 1758.2

644.7 622.0 632.8 1259.8 1245.9 1259.6 1848.3 1832.3 1814.8

688.4 681.1 691.3 1316.8 1302.5 1313.3 2946.8 2938.9 2970.7

719.3 710.6 688.8 1344.7 1335.2 1342.0 2954.7 2946.7 2978.0

735.4 719.2 724.8 1360.3 1344.4 1357.4 3066.4 3068.1 3084.0

790.8 775.3 786.4 1367.8 1346.9 1369.6 3194.5 3186.3 3201.1

894.7 882.3 899.0 1388.7 1377.4 1415.4

Table 5.2: Donor-state, acceptor-state and ET reorganization energies as well as the
ground-state, the excited-state and the cation-state ZPE of coumarin 343. Shown are
(a) reorganization data including all 102 vibrational normal modes without consider-
ing Dushinsky rotation, (b) all data for the selected 47 vibrational normal modes
without considering Dushinsky rotation and (c) all data for the selected 47 vibrational
normal modes with considering Dushinsky rotation. All data are given in eV.

Λd Λa ΛET ZPEd ZPEa

(a) 0.068 0.170 0.263

(b) 0.057 0.160 0.240 3.516 3.516

(c) 0.060 0.127 0.217 3.459 3.510
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Fig. 5.2 shows the modulus of the donor-acceptor coupling matrix elements V da
j

obtained from the partitioning procedure which was discussed in Ref. [41].
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Figure 5.2: Modulus of donor-acceptor electronic coupling matrix elements V da
j (black

lines) of C343-TiO2. The red vertical line indicates the energy of the donor state εd.

We have simulated the ET dynamics in the C343-TiO2 system based on the first-
principles model. The results are shown in Fig. 5.3. We can observe that there
are pronounced oscillatory structures superimposed on the purely electronic dyna-
mics (black line), which indicate electronic coherence. These coherence effects are
significantly quenched by the inclusion of the electronic-vibrational coupling in the
dynamical simulation (blue line and red line). The incomplete injection shown in
Fig. 5.3 can be classified as a finite-size effect of the TiO2 cluster [41].

Dushinsky effects on the ET dynamics in C343-TiO2 are reflected by the compar-
ison between the vibronic dynamics including Dushinsky rotation (red line) and that
without including Dushinsky rotation (blue line). Fig. 5.3 shows that Dushinsky ro-
tation has a small but noticeable effects on the ET dynamics. In particular, it results
in a slower injection at the early stage of the dynamics, while for a long injection
time the overall effect is very small. As discussed in Section 5.2, Dushinsky rotation
introduces a ZPE-difference between the donor and acceptor states. Based on Ta-
ble 5.2, this ZPE-difference causes an equivalent shift of the donor level of 0.051 eV
towards the conduction-band minimum for C343-TiO2. Thereby the donor level is
shifted away from the region of strongest donor-acceptor coupling based on Fig. 5.2,
and thus results in a slower dynamics. Therefore the slower injection dynamics in
the first a few femtoseconds can be considered as an effect of the difference of ZPE
between the donor and acceptor states, which is caused by Dushinsky rotation.
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Figure 5.3: Population dynamics of the donor state after photoexcitation in the C343-
TiO2 system. All results are obtained for a finite (TiO2)24(H2O)30 cluster. Shown are
results without vibronic coupling (black line), with vibronic coupling not including
Dushinsky rotation (blue line) and including Dushinsky rotation (red line).

This effect of Dushinsky rotation can be tested by a model where the donor level
is shifted towards the conduction-band minimum by 0.051 eV in the simulation of
purely electronic dynamics (red line in Fig. 5.4). It is seen that, especially in the first
a few femtoseconds, this simulation provides a better approximation to the vibronic
dynamics including Dushinsky rotation (black line, which is identical to the red line
in Fig. 5.3) than the purely electronic dynamics without considering the shift by the
ZPE-difference (blue line, which is identical to the black line in Fig. 5.3).

As shown in Table 5.2, Dushinsky rotation also causes a 0.023 eV decrease of the
ET reorganization energy for C343-TiO2 (together with a 0.003 eV increase of the
donor-state reorganization energy). According to the reorganization energy values
listed in Table 5.2, we can use Fig. 2.4 (c) as a proper model to describe the ET
reaction in C343-TiO2. From Fig. 2.4 (c) we can see that (i) the electronic-vibrational
coupling results in a motion of the wavepacket towards the conduction-band minimum
due to its vibrational motion along the donor-state PES, and (ii) the modification of
reorganization energies results in a slightly faster motion of the wavepacket towards
the minimum of the donor-state PES but a slower motion towards the conduction-
band minimum. Based on Fig. 5.2, the first feature corresponds to the motion of the
wavepacket away from the region of strongest donor-acceptor coupling thus resulting
a slower injection dynamics, as indicated by the blue line in Fig. 5.3 when compared
with the black line. Also based on Fig. 5.2, the modification of reorganization energies
corresponds to that the motion of the wavepacket away from the region of strongest
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Figure 5.4: Population dynamics of the donor state after photoexcitation in the C343-
TiO2 system. All results are obtained for a finite (TiO2)24(H2O)30 cluster. Shown are
the results with vibronic coupling including Dushinsky rotation (black line), without
vibronic coupling (blue line) and without vibronic coupling but with the energy of
the donor-state shifted by the ZPE-difference (red line).

donor-acceptor coupling becomes slower. As a result, the injection dynamics with
the modification of reorganization energies should be faster. This modification of
reorganization energy shows negligible influence on the early dynamics. For long
injection times, on the other hand, it is opposite to the effect caused by the ZPE-
difference as discussed above. As a result, the total effect on the long-time dynamics
is very small.

In order to study this effect of Dushinsky rotation, we have applied a model with
enlarging the mode-mode coupling in Eqs. (5.4) and (5.5). The red line in Fig. 5.5
shows results obtained by increasing all γα

ll′ values in Eq. (5.2) by a factor of 10.
With these new mode-mode coupling parameters, the total donor-state, acceptor-
state and ET reorganization energies become 0.201 eV, 0.108 eV and 4.929 eV, re-
spectively. Compared with the data shown in line (b) in Table 5.2, we observe that
Dushinsky rotation results in a much larger ET reorganization energy for this model
system. Based on the physical model given by Fig. 2.4 (c) which corresponds to
the reorganization-energy data, Dushinsky rotation is expected to result in a signifi-
cantly slower dynamics, since the wavepacket will quickly move away from the region
of strongest donor-acceptor coupling. This prediction is demonstrated by the results
shown in Fig. 5.5, where the vibronic dynamics including Dushinsky rotation of the
model system (red line) is significantly slower than the purely electronic dynamics
without considering the ZPE-difference (blue line).
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Figure 5.5: Population dynamics of the donor state after photoexcitation in the C343-
TiO2 system. All results are obtained for the finite (TiO2)24(H2O)30 cluster. Shown
are the results without vibronic coupling (blue line), including Dushinsky rotation as
obtained from the vibrational analysis (black line) and including Dushinsky rotation
with the enlarged mode-mode coupling (red line).

5.4 Summary

In this chapter, we have studied the quantum dynamics of photoinduced hetero-
geneous ET processes in the dye-semiconductor system C343-TiO2. The simulation
of ET dynamics is based on a first-principles description of the system including
the electronic-vibrational coupling with Dushinsky rotation. Within this model, the
quantum dynamics of the ET processes has been simulated using the ML-MCTDH
method.

The results of the simulations reveal that the inclusion of Dushinsky rotation re-
sults in a slightly slower dynamics of the ET process especially in the first a few
femtoseconds. This can be understood as a combination of the two effects of Dushin-
sky rotation: the difference of the vibrational ZPE between the donor state and
the acceptor states, and the change of the reorganization energies. For the present
system, the former effect causes a slower dynamics while the latter causes a faster
dynamics. Since both effects are small and opposite to each other, the total effect
introduced by Dushinsky rotation is not pronounced in this system.
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Chapter 6

Conclusions and Perspectives

In this thesis, we have studied the quantum dynamics of photoinduced ultrafast elec-
tron transfer processes in several dye-semiconductor systems. The study was based on
a method which uses first-principles electronic structure calculations to characterize
the system and to parametrize a model Hamiltonian including electronic-vibrational
coupling. Within this model, ET dynamics was simulated at a fully quantum me-
chanical level employing different wavepacket-propagation methods. In particular, we
used the multilayer multiconfigurational time-dependent Hartree method to simulate
the electronic-vibrational dynamics in systems containing many degrees of freedom.
Based on the recursive and layered expansion of the wave function, the ML-MCTDH
approach provides more flexibility in the variational functional and thus significantly
advances the capabilities of performing numerically exact wavepacket propagation for
complex systems.

This first-principles based methodology was applied to study a variety of dye-
semiconductor systems, including alizarin, coumarin 343 and different pyridine- and
perylene-based dye molecules adsorbed at titanium oxide nanoparticles. For all sys-
tems, results of dynamical simulations reveal that electron injection processes take
place on ultrafast timescales ranging from a few to a few tens of femtoseconds. In most
systems, ET timescales obtained from the simulations are in good agreement with
experimental results. In particular, we have obtained an electron-injection timescale
of about 5 ∼ 10 fs for alizarin-TiO2, which agrees well with experimental results [29].

In the studies in this thesis, we have employed cluster models to describe the semi-
conductor substrates in ET reactions. Furthermore, we have mimicked the electron
injection to an infinite surface of semiconductor substrate using absorbing boundary
condition techniques. For most systems, the decay of the population of the donor state
exhibits significant recurrences and electronic coherence effects in the simulations of
ET using cluster models. The results of simulations for extended surfaces, on the
other hand, agree well with the results obtained with the corresponding cluster mo-
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dels for short times and show an almost complete electron injection for longer times.
This indicates that the incomplete ET is a finite-size effect of cluster models. For
all system investigated, the combination of cluster models and absorbing boundary
condition techniques provides an appropriate model to describe the semiconductor
substrates.

Pronounced electronic coherence effects were obtained in the ET dynamics for the
systems with strong donor-acceptor coupling. This can be rationalized by the complex
donor-acceptor coupling scheme of the first-principles model. As a result, for most
systems with finite TiO2 substrate, only the initial dynamics can be approximately
characterized by a single decay constant. We have studied electronic coherence effects
in detail in the dye-semiconductor system alizarin-TiO2. The result suggests that
the ET process in alizarin-TiO2 can be described by a two-step mechanism, which
involves an intermediate state localized in the dye-semiconductor interface. The
coherent electronic motion is a result of the strong coupling between the donor and
the intermediate state.

The influence of electronic-vibrational coupling on the ET dynamics in systems of
alizarin and coumarin 343 adsorbed at TiO2 nanoparticles was studied. The results
show that the coupling to the nuclear DoF causes a quenching of electronic coherence
effects in C343-TiO2, while the decoherence effect of the electronic-vibrational cou-
pling is not significant in alizarin-TiO2. Furthermore, effects of vibrational motion
on the ET timescale is noticeable but not pronounced in both systems. We have
also studied the effects of Dushinsky rotation on the ET dynamics in C343-TiO2.
The analysis shows that two aspects of Dushinsky rotation have to be considered:
the change of vibrational zero-point-energy as well as the modification of potential
energy surfaces.

The results of our studies demonstrate that the electron injection dynamics can be
strongly influenced by the chemical nature of the dye-semiconductor system. Several
ways to modify the chemical structure of dye-semiconductor systems have been con-
sidered in this thesis, such as using different anchor groups to bind the dye adsorbate
to the substrate, inserting different spacer groups between the chromophore and the
anchor group, extending the distance between the dye and the semiconductor, and
employing different adsorption motifs. These modifications have a noticeable influ-
ence on the energy of the donor state and show significant effects on the strength and
the distribution of donor-acceptor coupling. Thus, by applying these modifications,
we can modulate several aspects of the ET dynamics, including the characteristic
timescale and the strength of electronic coherence effects.

We finally mention several perspectives of the work presented in this thesis. In
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the present applications, we have assumed that the photoexcitation by an ultrashort
laser pulse can be approximated by an instantaneous transition from the electronic
ground state to the donor state. The dynamical methodology also allows an inclusion
of the laser pulse explicitly in the simulation of the ET process [100]. A particular
interesting aspect would be the influence of the laser pulse on the ET reaction.

Another aspect concerns the model employed. In this thesis, we have studied ET
reactions in dye-semiconductor systems employing a mean-field single-electron pic-
ture and using atomic orbitals to introduce the partitioning. Furthermore, we have
characterized the electronic-vibrational coupling based on electronic structure calcula-
tions for isolated dye molecules, thereby neglecting the coupling to the semiconductor
substrate and to the phonons of the semiconductor. Therefore, further developments
of this methodology including a treatment within correlated many-electron states as
well as a higher-level characterization of the electronic-vibrational coupling would be
of interest.

The first-principles based model used in this thesis is not limited to the study of
quantum dynamics of ET reactions in dye-semiconductor systems. It can, in principle,
also be employed to describe other types of heterogeneous (interfacial) processes, such
as photoinduced electron transport at dye-metal interfaces, surface photoelectrolysis
and surface photocatalysis. The first-principles exploration of quantum chemistry
and quantum dynamics in the corresponding heterogeneous systems would be of great
interest to obtain a comprehensive understanding of the underlying photophysical and
photochemical mechanisms, which is a prerequisite for the development of molecular
optoelectronic devices.
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Chapter A

Decay from a discrete state to a continuous set of

states: Fermi’s Golden Rule

We have studied heterogeneous ET reactions in several dye-semiconductor systems
in this thesis. Such an ET process can be described by a model of transition from
a discrete initial state to a set of final states. In this appendix, we will discuss
this model, in particular, we will derive the general formula of the transition rate
employing time-dependent perturbation theory.

The transition from an initially prepared discrete state |0〉 to a set of final states
{|j〉} which form a (quasi-)continuum provides a proper physical model for many
applications. If all involved states are orthogonal to each other and form a complete
set, the system Hamiltonian can be expanded in the basis {|0〉 , {|j〉}} as

Ĥ = |0〉 ε0 〈0| +
∑

j>0

|j〉 εj 〈j| +
∑

j>0

(|0〉V0j 〈j| + |j〉Vj0 〈0|) (A.1)

with εj (j ≥ 0) denoting the energy of state |j〉 and V0j (j > 0) denoting the electronic
coupling between |0〉 and |j〉 (for a Hermitian Hamiltonian we have V0j = V ∗

j0). Here
j > 0 denotes the quantum number of the j-th final state. |0〉 and |j〉 are eigenstate
of the Hamiltonian in Eq. (A.1) only when all V0j = 0.

At t = 0, the system is prepared at the initial state, i.e. |Ψ (0)〉 =
∑

j≥0 cj (0) |j〉 =

|0〉. The wave function at t > 0 can be written as

|Ψ (t)〉 =
∑

j≥0

cj (t) e−iεjt |j〉 . (A.2)

If the final states form a true continuum, the summation over the final states
should be replaced by the integration with respect to the quantum number, thus,

Ĥ = |0〉 ε0 〈0| +
∫

dj |j〉 εj 〈j| +
∫

dj (|0〉V0j 〈j| + |j〉Vj0 〈0|) (A.3)
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with the orthonormality condition among the final states given by

〈j |j′〉 = δ (j − j′) (A.4)

and the completeness condition of the basis set given by

|0〉 〈0| +
∫

dj |j〉 〈j| = 1. (A.5)

The physical model of such a transition is given by Fig. 2.2 (with replacing
∣

∣ψd
〉

by
|0〉 and

∣

∣ψa
j

〉

by |j〉).

The Hamiltonian given by Eq. (A.1) can be divided into two parts

Ĥ = Ĥ0 + V̂ (t) (A.6)

with
Ĥ0 = |0〉 ε0 〈0| +

∑

j>0

|j〉 εj 〈j| (A.7)

denoting the unperturbed Hamiltonian. The time-dependent perturbation operator
V̂ (t) is given by

V̂ (t) =

{

0, t < 0

V̂0eηt, t ≥ 0
(A.8)

with taking the limit η → 0+. Here

V̂0 =
∑

j>0

(|0〉V0j 〈j| + |j〉Vj0 〈0|) . (A.9)

The wave function in the interaction picture (Dirac picture), |Ψ (t)〉I, can be related
to the wave function in the Schrödinger picture, |Ψ (t)〉, via

|Ψ (t)〉I = eiĤ0t |Ψ (t)〉 (A.10)

and accordingly
|Ψ (t)〉I =

∑

j

cj (t) |j〉 . (A.11)

The perturbation operator in the interaction picture is defined as

V̂ I (t) = eiĤ0tV̂ (t) e−iĤ0t, (A.12)

and the Schrödinger equation in the interaction picture is given by

i
∂

∂t
|Ψ (t)〉I = V̂ I (t) |Ψ (t)〉I . (A.13)

The zeroth-order solution for the expansion coefficients cj (t) is given by c(0)j (t) = 0

for all j > 0. The first-order correction (and thus the first-order solution) is given by

c
(1)
j (t) = −i 〈j| lim

t0→−∞

∫ t

t0

dt1V̂ I (t1) |0〉 , (A.14)
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i.e.,

c
(1)
j (t) = −iVj0

eη+i(ε0−εj)

η + i (ε0 − εj)
. (A.15)

The population of the j-th state (j > 0) and its time-derivative are thus given by

Pj (t) =
∣

∣

∣
c
(1)
j (t)

∣

∣

∣

2

= |Vj0|2
e2ηt

η2 + (ε0 − εj)
2 (A.16)

and

Ṗj (t) = 2 |Vj0|2
ηe2ηt

η2 + (ε0 − εj)
2 , (A.17)

respectively. For short times, i.e., P0 (t) ≈ 1, the rate constant of the transition from
|0〉 to {|j〉} can be calculated as

k = − Ṗ0 (t)

P0 (t)
≈
∑

j>0

lim
η→0+

Ṗj (t) = 2π
∑

j>0

|Vj0|2 δ (ε0 − εj) . (A.18)

This equation is the Golden-Rule formula of transition rate. Thereby the relationship

lim
α→0+

1

π

α

α2 + x2
= δ (x)

is used.

Usually, we relate the transition rate with the self-energy in the donor state Σ (ε0)

via
k = Γ (ε0) = −2ℑΣ (ε0) . (A.19)

The influence of the continuous set of final states as well as the coupling between the
initial state and the acceptor states enters only through the self-energy

Σ (ε0) =
∑

j>0

lim
η→0+

|Vj0|2
ε0 − εj + iη

. (A.20)

This effect can be understood as a shift of the energy of |0〉 from ε0 to [ε0 +Σ (ε0)].
The imaginary part of the self-energy

Γ (ε0) = −2ℑΣ (ε0) = 2π
∑

j>0

|Vj0|2 δ (ε0 − εj) (A.21)

represents the decay width of the initial state.
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Chapter B

Description of electron transfer from an adsorbate to

an extended surface

In this appendix, we will outline an approximate approach towards the description
of electron transfer from an adsorbate to an extended surface. This can be carried
out employing the slab model and electronic calculations with periodic boundary
conditions [67]. In this thesis, we describe the effect of an infinite semiconductor
substrate using an approximate variant [41] of surface Green’s function techniques
[90].

In the dynamical study, if the system is initially prepared in the donor state, the
equation of motion for the electronic projection of the time-dependent vibronic wave
function on the donor state,

〈

ψd
∣

∣Ψ (t)
〉

, can be obtained using projection-operator
techniques [83] as

∂

∂t

〈

ψd |Ψ (t)〉

= −iĤd
nucl

〈

ψd
∣

∣Ψ (t)
〉

−
∫ t

0

dτΓ (τ) exp
(

−iĤa
nuclt

)

〈

ψd
∣

∣Ψ (t− τ)
〉

, (B.1)

where

Ĥd
nucl = εd +

∑

l

(

1

2
p̂2

l +
1

2
ω2

l q
2
l + κd

l ql

)

(B.2)

denotes the nuclear Hamiltonian in the donor state, and

Ĥa
nucl = εa +

∑

l

(

1

2
p̂2

l +
1

2
ω2

l q
2
l + κa

l ql

)

(B.3)

denotes the nuclear Hamiltonian in the acceptor state. Thus, when only observables
that are localized at the donor part (i.e., the dye adsorbate) are of interest, the
influence of the semiconductor substrate and of the donor-acceptor coupling on the
dynamics is fully characterized by the function

Γ (t) =
∑

j

∣

∣V da
j

∣

∣

2
exp

(

−iεa
j t
)

(B.4)
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or, equivalently, its Fourier transform Γ (ε).

As already mentioned in Appendix A, the Γ (ε) function is the imaginary part of
the self-energy in the initial (donor) state and usually written as

Γ (ε) = −2ℑΣ (ε) (B.5)

with
Σ (ε) =

〈

ψd
∣

∣ V̂ ĜsurfV̂
∣

∣ψd
〉

(B.6)

with V̂ representing the donor-acceptor coupling. The electronic Green’s function of
the semiconductor surface is given by

Ĝsurf =
(

ε+ iη − Ĥsurf
)−1

. (B.7)

Here Ĥsurf denotes the electronic Hamiltonian of the semiconductor surface and η is
the usual positive infinitesima.
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Figure B.1: Partitioning scheme of a dye-semiconductor system containing a dye
molecule (labeled as “donor”) adsorbed to an infinite surface (labeled as “surface”)
of the semiconductor. In our approach, the extended surface of semiconductor is
partitioned into two parts: the inner part (labeled as “acceptor” and marked by
dots) which directly interacts with the donor under our approximation, and the outer
part (in light gray, labeled as “outer”) which only interacts with the inner part of
semiconductor substrate. The influence of the infinite outer part enters the dynamics
via a self-energy operator which, under our approximation, acts on all AO centered
at the boundary part of the acceptor (in dark gray).

In order to study the effect of the infinite substrate to the ET reaction, we can
partition the overall system containing a dye adsorbate and an infinite substrate
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into three parts: the donor part that contains the dye adsorbate (labeled by the
superscript d), the inner part of the substrate acceptor (labeled by the superscript
a) and the outer part of the substrate (labeled by the superscript o). Furthermore,
we assume that the infinite outer part of the substrate only interacts with the inner
part of the substrate but not with the donor. In the orthogonal basis, the Fock (or
Kohn-Sham) matrix of the overall system can be accordingly rearranged as

F̃ =







F̃ dd F̃ da 0

F̃ ad F̃ aa F̃ ao

0 F̃ oa F̃ oo






. (B.8)

Here the subblock
(

F̃ dd F̃ da

F̃ ad F̃ aa

)

that describes a finite donor-acceptor system will be treated explicitly employing the
methods outlined in Chapter 2.

The effect of the infinite outer part of the substrate enters via a self-energy ope-
rator1 that only acts on the inner part of the substrate, since we have assumed that
the outer part of the substrate does not interact with the donor. This self-energy
operator is given by

Ξ̂ (ε′)

= P̂Ĥsurf
(

1 − P̂
) [

ε′ + iη′ −
(

1 − P̂
)

Ĥsurf
(

1 − P̂
)]−1 (

1 − P̂
)

ĤsurfP̂ , (B.9)

with the surface Hamiltonian given by

Ĥsurf =







0 0 0

0 F aa F ao

0 F oa F oo






. (B.10)

The projection operator
P̂ =

∑

k

∣

∣

∣
φ̃a

k

〉〈

φ̃a
k

∣

∣

∣
(B.11)

projects onto the subspace of the acceptor part of the substrate that is explicitly
treated. Here

{∣

∣

∣φ̃a
k

〉}

are the orthogonalized orbitals that are localized at the accep-
tor part.

Based on the analysis above, the self-energy in the donor state in Eq. (B.6) can
be calculated via

Σ (ε) =
〈

ψd
∣

∣ V̂ P̂ĜsurfP̂V̂
∣

∣ψd
〉

(B.12)

1This must be distinguished to the self-energy to the discrete initial state which presents the

effects from an infinite surface, as defined in Eq. (B.6).
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with the projected surface Green’s function given by

P̂ĜsurfP̂ =
[

ε+ iη − P̂ĤsurfP̂ − Ξ̂ (ε′)
]−1

. (B.13)

Here
[

P̂ĤsurfP̂ + Ξ̂ (ε′)
]

can be understood as the Hamiltonian describing the accep-
tor part with considering the self-energy effect from the infinite part.

In principle, the energy-dependent self-energy matrix Ξ (ε′) can be calculated
using surface Green’s function techniques. In the application considered in this thesis,
we have used a variant of this method, which approximates the self-energy by a
constant imaginary part added to all AO energies centered at the boundary atoms
of the explicitly treated acceptor part of the substrate. Thus, we have replaced the
energy-dependent self-energy matrix Ξ (ε′) by a diagonal matrix Ξ with Ξkk = −iδ/2
if k belongs to an AO of the boundary atoms, otherwise Ξkk′ = 0. Based on test
calculations, δ = 1 eV is used in this thesis.

As a result, the Fock matrix is no longer real symmetric but complex symmetric.
We can calculate the right eigenvectors of

(

F̃ dd F̃ da

F̃ ad F̃ aa + Ξ

)

.

Denoting the matrix of right eigenvectors by U , the eigenvalue matrix by εa and the
overlap matrix of the eigenvectors by S = UTU , we obtain the energy-dependent
decay-width function

Γ (ε) = −2ℑΣ (ε) = −2ℑ
[

F̄ daU
1

S (ε− εa)
UTF̄ ad

]

. (B.14)

Here F̄ da is obtained from the prediagonalization of F̃ .

In the dynamical simulations, the continuum of electronic acceptor states, which is
implicitly contained in the continuous decay-width function Γ (ε), is discretized and
represented by a finite number (determined by test calculations) of acceptor states
employing Eq. (2.13) as described in Ref. [39].



Chapter C

Derivation of equations of motion of the ML-MCTDH

method

In this appendix, we provide a detailed derivation of equations of motion in the ML-
MCTDH theory. As an example, we will concentrate on the two-layer framework.
The extension to a more-layer MCTDH is straightforward.

In the ML-MCTDH theory, the wave function is expanded in a recursive and
layered manner given by Eqs. (2.47), (2.77), (2.78), etc.:

|Ψ (t)〉 =
∑

J

AJ (t) |ΦJ (t)〉

=

J1
∑

j1=1

· · ·
JM
∑

jM=1

Aj1···jM
(t)

M
∏

m=1

∣

∣

∣ϕ
(m)
jm

(t)
〉

,

∣

∣

∣
ϕ

(m)
jm

(t)
〉

=
∑

I

B
(m∼jm)
I

(t)
∣

∣

∣
U

(m)
I

(t)
〉

=

I1
∑

i1=1

· · ·
IF (m)
∑

iF (m)

B
(m∼jm)
i1···iF (m)

(t)

F (m)
∏

f=1

∣

∣

∣
u

(m,f)
if

(t)
〉

,

∣

∣

∣u
(m,f)
if

(t)
〉

=
∑

L

C
(m,f∼if)
L

(t)

∣

∣

∣

∣

Ξ
(m,if)
L

(t)

〉

=

L1
∑

l1=1

· · ·
LK(m,f)
∑

lK(m,f)

C
(m,f∼if)
l1···lK(m,f) (t)

K(m,f)
∏

k=1

∣

∣

∣
ξ

(m,f,k)
lk

(t)
〉

,

· · ·
In the two-layer MCTDH framework, an L2-SP function is expanded in an FCI-
manner as

∣

∣

∣
u

(m,f)
if

(t)
〉

=
∑

L

C
(m,f∼if)
L

(t)

∣

∣

∣

∣

X
(m,if)
L

〉

=

L1
∑

l1=1

· · ·
LK(m,f)
∑

lK(m,f)

C
(m,f∼if)
l1···lK(m,f) (t)

K(m,f)
∏

k=1

∣

∣

∣χ
(m,f,k)
lk

〉

. (C.1)

121



122 C. ML-MCTDH equations of motion

Here K (m, f) is the total number of Cartesian (physical) DoF within the f -th L2-SP
group which belongs to the m-th L1-SP group,

∣

∣

∣
χ

(m,f,k)
lk

〉

denotes the corresponding
time-independent primitive (orthonormal) basis functions for the k-th DoF in the f -th
L2-SP group of the m-th L1-SP group. Thus, the functional form for the application
of the Dirac-Frenkel variational principle is given by Eqs. (2.47), (2.77) and (C.1).

In order to obtain the equations of motion for all expansion coefficients in different

levels, AJ (t), B(m∼jm)
I

(t) and C
(m,f∼if)
L

(t), the Dirac-Frenkel variational principle
[101,102]

〈δΨ (t)| Ĥ − i
∂

∂t
|Ψ (t)〉 = 0

is applied. The variation of the wave function reads

δ |Ψ (t)〉 =
∑

J

(δAJ (t) |ΦJ (t)〉 + AJ (t) δ |ΦJ (t)〉) . (C.2)

The variation of the L1-configuration δ |ΦJ (t)〉 in the second term can be calculated
as

∑

J

AJ (t) δ |ΦJ (t)〉 =
∑

I

Aj1···jM
(t) δ

(

M
∏

m=1

∣

∣

∣
ϕ

(m)
jm

(t)
〉

)
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(m)
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∣ϕ
(m)
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(t)
〉

thus reaching the variation of the L1-SP function δ

∣

∣

∣
ϕ

(m)
jm

(t)
〉

. Recursively, this vari-
ation can be calculated in a way similar to δ |Ψ (t)〉 as

δ

∣
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∣
ϕ

(m)
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(t)
〉

=
∑
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(
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. (C.3)

The variation of the L2-configuration δ

∣

∣

∣U
(m)
I

(t)
〉

in the second term is calculated as

∑

I
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thus turning to the variation of the L2-SP function δ
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. Based on Eq. (C.1),
it can be explicitly written as
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∣

X
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〉

. (C.4)
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Combining Eqs. (C.2), (C.3) and (C.4), the variation of the wave function in the
two-layer MCTDH framework can be explicitly written as the variation with respect
to all expansion coefficients in different levels

δ |Ψ (t)〉 =
∑

J

δAJ (t) |ΦJ (t)〉

+
M
∑
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Jm
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〉

. (C.5)

Similarly, the time-derivative of the wave function is given by
∣

∣
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〉
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(C.6)

Recalling the constraints given by Eqs. (2.53) and (2.56) and extending these
constraints to the L2-SP functions as

〈

u
(m,f)
if

(0)
∣

∣

∣u
(m,f)

i′
f

(0)
〉

= δif i′
f

(C.7)

and
〈

u
(m,f)
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(t)
∣

∣

∣
u̇

(m,f)

i′
f

(t)
〉

= 0, (C.8)

the equations of motion for the expansion coefficients are obtained as follows:

iȦJ (t) = 〈ΦJ (t)| Ĥ (t) |Ψ (t)〉 , (C.9)

i
Jm
∑

j′m=1

ρ
(m)
L1,jmj′m

(t) Ḃ
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The above three equations are equivalent to Eqs. (2.79), (2.80) and (2.81).

The L1 single-hold function, L1 mean-field operator, L1 reduce density matrix
and L1 projection operator are defined in Eqs. (2.59), (2.65), (2.66) and (2.68),
respectively. The corresponding L2 notations are defined as follows: the L2 single-
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(C.12)

the L2 mean-field operator
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the L2 reduced density matrix
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and the projection operator onto the f -th L2-SP space in the m-th L1-SP space
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Furthermore, the following equalities are used in the derivation above:
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Chapter D

Results for further alizarin - titanium oxide systems

In this appendix, we will present results for further alizarin-TiO2 systems which are
not shown in Chapter 3.

D.1 Results for alizarin - titanium oxide systems with differ-

ent sizes of semiconductor clusters

In this section, we will present results for several alizarin-TiO2 complexes with differ-
ent sizes of TiO2 cluster that have not been shown in Chapter 3. These titanium-oxide
substrate are (TiO2)10(H2O)18, (TiO2)20(H2O)28, (TiO2)30(H2O)38, (TiO2)40(H2O)48,
(TiO2)18(H2O)30 and (TiO2)36(H2O)44. The structures of the corresponding alizarin-
TiO2 complexes are depicted in Fig. D.1 (except alizarin-(TiO2)10(H2O)18 which was
already shown in Fig. 3.1 (a)).
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(a) (b) (c)

(d) (e)

Figure D.1: Complexes of alizarin with titanium oxide clusters of different sizes: (a)
(TiO2)20(H2O)28 (2 layers of 10 TiO2 units), (b) (TiO2)30(H2O)38 (3 layers of 10 TiO2

units), (c) (TiO2)40(H2O)48 (4 layers of 10 TiO2 units), (d) (TiO2)18(H2O)30 (1 layer
of 18 TiO2 units) and (e) (TiO2)36(H2O)44 (2 layers of 18 TiO2 units).
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Fig. D.2 shows energy-level schemes for all alizarin-TiO2 systems except alizarin-
(TiO2)54(H2O)58 (which is shown in Fig. 3.2). From these energy-level schemes of the
seven investigated alizarin-TiO2 complexes (Figs. D.2 and 3.2), we can observe some
interesting features as follows.

For all systems, the energies of the MO of isolated TiO2 clusters exhibit a dense
level structure with a valence and a conduction band separate by a band gap. The
density of state increases with the size of the TiO2 cluster. The calculated value for
the band gap is not clearly affected by the size of the cluster. In all isolated clusters,
the lowest unoccupied orbitals have predominant contribution from the oxygen atoms
of saturation groups. The value of band gap calculated based on the “true” lower edge
of the conduction band (defined by the energy of the lowest unoccupied 3d orbital of
the titanium oxides, as defined in Section 3.3) does not clearly depend on the size of
the cluster.

One or two energy levels are introduced in the lower part of the band gap through
the adsorption of the alizarin molecule. In particular, the HOMO of the overall
system can be related to the HOMO of the isolated alizarin molecule. It is located
in the band gap during the adsorption and thus retain its discrete structure in the
complex. The overlap between the HOMO of the complex and the projected donor
orbital that is associated with the HOMO of the alizarin is larger than 0.80 for all
systems. On the other hand, the lowest unoccupied levels of alizarin are located
energetically in the conduction band of TiO2. These levels are dissolved in the dense
manifold of conduction-band levels in the complex. The correlation scheme between
the projected donor orbital that is associated with the LUMO of the alizarin (which
is chosen as the donor state of the ET reaction) and the dense manifold of unoccupied
orbitals of the complex is similar in all systems investigated.
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Figure D.2: Energy-level schemes of the alizarin-TiO2 complexes studied in this
thesis: (a) alizarin-(TiO2)10(H2O)18, (b) alizarin-(TiO2)20(H2O)28, (c) alizarin-
(TiO2)30(H2O)38, (d) alizarin-(TiO2)40(H2O)48, (e) alizarin-(TiO2)18(H2O)30 and (f)
alizarin-(TiO2)36(H2O)44 (cf. Fig. 3.2 for detailed descriptions and legends).
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Fig. D.3 shows the modulus of the donor-acceptor coupling matrix elements for all
alizarin-TiO2 systems except alizarin-(TiO2)54(H2O)58 (which is shown in Fig. 3.6).
For each system, the energy-dependent decay-width function is illustrated as well,
which can characterize the donor-acceptor coupling for an extended substrate.

The complicated structure exhibited by the distribution of donor-acceptor coupling
matrix elements, as a result of the first-principles based model, is similar in all inves-
tigated systems. For each system, the position of the peak of the energy-dependent
decay-width function is in good agreement with the positions of the acceptor states
with largest coupling to the donor state. Fig. D.3 and Fig. 3.6 show that the two
important parameters for the electron injection dynamics, i.e., the location of the
donor level relative to the conduction-band minimum as well as the strength and the
distribution of the donor-acceptor coupling, are similar in all systems.
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Figure D.3: Donor-acceptor coupling and the decay-width functions of the alizarin-
TiO2 complexes studed in this thesis: (a) alizarin-(TiO2)10(H2O)18, (b) alizarin-
(TiO2)20(H2O)28, (c) alizarin-(TiO2)30(H2O)38, (d) alizarin-(TiO2)40(H2O)48, (e)
alizarin-(TiO2)18(H2O)30 and (f) alizarin-(TiO2)36(H2O)44 (cf. Fig. 3.6 for detailed
descriptions and legends).
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Figs. D.4 - D.9 show the results of dynamical simulations for the population of
the donor state after photoexcitation for the above mentioned six dye-semiconductor
systems.

In all systems, the initial decay of the population of the donor state reveals an
ultrafast injection of the electron from the donor state localized in the adsorbate
(dye) into the quasi-continuum of acceptor states localized in the TiO2 substrate on
a similar timescale of about 5 ∼ 10 fs femtoseconds, which is similar to the result
for alizarin-(TiO2)54(H2O)58 as shown in Fig. 3.9. There are other findings similar to
the results for alizarin-(TiO2)54(H2O)58: pronounced electronic coherence effects, the
overall weak effect of electronic-vibrational coupling on the ET dynamics, and the
finite-size effect of the TiO2 cluster. In particular, all systems exhibit very similar
results of ET dynamics with mimicking the electron injection process at an extended
TiO2 substrate.

Figs. D.4 - D.9 and 3.9 show clear dependence of ET dynamics on the size of
the semiconductor cluster. As we have discussed in Fig. 3.11, an increase of the
number of (101) layers of the TiO2 substrate does not noticeably affect the intensity of
recurrences in the population dynamics but results in an nearly proportional increase
of the recurrence period (which can be due to the reflection at the boundaries). On
the other hand, an increase of the lateral size of the clusters results in a smaller
intensity of the recurrences but has negligible effect on the recurrence period.
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Figure D.4: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)10 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.
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Figure D.5: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)20 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.
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Figure D.6: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)30 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.
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Figure D.7: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)40 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.
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Figure D.8: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)18 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.



D. Results for alizarin-TiO2 141

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

P
d

t [fs]

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30

P
d

t [fs]

(a)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

P
d

t [fs]

(b)

Figure D.9: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 system. Shown are results obtained (a) for the finite (TiO2)36 substrate
and (b) for the model of an infinite TiO2 surface. Both results with vibronic coupling
(red lines) and without vibronic coupling (black lines) are depicted.
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D.2 Results of a model study for alizarin - titanium oxide

complexes with larger donor-acceptor distances

In Section 3.7, we have discussed the results of five alizarin-(TiO2)54(H2O)58 systems
with extracting the distance between the alizarin adsorbate and the TiO2 substrate.
Here we show the original energy-level schemes of these five complexes in Fig. D.10
and the donor-acceptor coupling schemes in Fig. D.11. Furthermore, Fig. D.12 shows
the population dynamics of the donor state after photoexcitation for systems with
the alizarin adsorbate 0.4 Å and 0.5 Å away from its equilibrium position to the TiO2

substrate along the (100) direction.
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Figure D.10: Energy-level scheme of alizarin-(TiO2)54(H2O)58 with the alizarin adsor-
bate (a) 0.1 Å, (b) 0.2 Å, (c) 0.3 Å, (d) 0.4 Å and (e) 0.5 Å away from its equilibrium
position to the TiO2 substrate along the (100) direction. From left to right: energy
levels of the donor orbitals (obtained from the partitioning procedure) which are lo-
calized in the adsorbate, energy levels of the overall complex and energy levels of the
acceptor orbitals (obtained from the partitioning procedure) which are localized in
the semiconductor substrate. The selected donor state |ψd〉 as well as the correlations
among some energy levels relevant for the ET reaction are indicated.
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Figure D.11: Donor-acceptor coupling and the decay-width functions of the investi-
gated complexes alizarin-(TiO2)54(H2O)58 with the alizarin adsorbate (a) 0.1 Å, (b)
0.2 Å, (c) 0.3 Å, (d) 0.4 Å and (e) 0.5 Å away from its equilibrium position to the
TiO2 substrate along the (100) direction (cf. Fig. 3.6 for detailed descriptions and
legends).
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Figure D.12: Population dynamics of the donor state after photoexcitation in the
alizarin-TiO2 systems with the alizarin adsorbate away from its equilibrium position
to the TiO2 substrate along the (100) direction for (a) 0.4 Å and (b) 0.5 Å. Shown are
results obtained for the model of an infinite TiO2 surface. Both results with vibronic
coupling (black lines) and without vibronic coupling (red lines) are depicted.



150 D. Results for alizarin-TiO2



List of abbreviations

C343 coumarin 343
PyC 4-pyridinecarboxylic acid (isonicotinic acid)
PyP 4-pyridinephosphonic acid
PeC 3-perylenecarboxylic acid
PeP 3-perylenephosphonic acid

AO atomic orbital
DFT density functional theory

TD-DFT time-dependent density functional theory
DoF degree of freedom
DSSC dye-sensitized semiconductor solar cell
ECP effective core potential
ET electron transfer
FC Franck-Condon
FCI full configuration interaction
MCTDH multiconfigurational time-dependent Hartree

ML-MCTDH multilayer multiconfigurational time-dependent Hartree
L1 level-1
L2 level-2
· · · · · ·

MO molecular orbital
HOMO highest occupied molecular orbital
LUMO lowest unoccupied molecular orbital

NAMD nonadiabatic molecular dynamics
PES potential energy surface
SCF self-consistent field

TDSCF time-dependent self-consistent field
SCH self-consistent hybrid
SP single particle
TDH time-dependent Hartree
TDSE time-dependent Schrödinger equation
ZPE zero-point energy
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