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Abstract

Dispersed flows are very common in nature and are relevant to a great vari-
ety of industrial applications. Ranging from cloud physics in meteorology to
spray combustion in turbines and engines, the simulation of these types of
flows has been extensively used as a tool for understanding the basic phenom-
ena involved, as well as the design and optimization of engineering processes.
Yet challenges remain on the development of more efficient methods, which
can also be applied to real, complex configurations, at the same type with an
appropriate level of description and a reasonable degree of accuracy.

Recently, there has been a big effort towards the development of alternatives
to the conventional Lagrangian or Multi-Fluid techniques for dispersed flows.
Challenges are mainly associated to the multi-size/-velocity/-temperature
treatment of the population of particles and closure for exchange terms with
the continuous phase.

In the present work, a Method of Moments (PMOM) based on presumed func-
tions for the particle size distribution and a novel relaxation approach for the
size-velocity correlation was derived and tested for different configurations.
The dependence of particle-velocity on -size is expressed as a first order ex-
pansion in terms of particle relaxation time around a reference velocity, which
is obtained from the transport equations for particle phase momentum. A
simple closure for the energy equation is developed by assuming that all par-
ticles have the same temperature.

The model is applied to a series of “proof-of-concept” test cases for poly-
disperse particle segregation using various reconstruction schemes involv-
ing Gamma and Beta distribution functions in order to study the effect of
size-dependent particle velocity on particle and momentum transport. Cases
comprising both small and large particle relaxation times are investigated, to
which an extension of the relaxation approach is also proposed and tested. Re-
sults are compared to reference solutions computed with an Eulerian Multi-
Fluid model.
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A practical configuration consisting of a spray generated by an ultra-sonic at-
omizer was also assessed. Results for mono- and polydisperse simulations are
compared to each other and to experimental data, for both non-evaporative
and evaporative cases.

x



CONTENTS

Zusammenfassung

In der Natur und Industrie treten sogenante disperse Strömungen sehr häufig
auf. Sie sind durch die Koexistenz von Partikeln (Blasen, Tropfen oder Festpar-
tikel) und einer kontinuierlichen Phase gekennzeichnet. Zahlreiche Anwen-
dungen z.B. in der Meteorologie oder in der Energie- und Verfahrenstechnik
belegen die hohe Relevanz der Materie. Die Entwicklung von effizienten und
präzisen Simulationswerkzeugen gewinnt für die Beschreibung der Wolken-
physik oder die Optimierung und Auslegung von mit flüssigem Brennstoff be-
triebenen Turbinen und Motoren zunehmend an Bedeutung.

Lagrange’sche oder Multi-Fluid Modelle basieren auf einer Zerlegung des Par-
tikelspektrums in diskrete Größenklassen. Um den damit verbundenen hohen
Rechenaufwand zu vermeiden, wurden alternative Methoden zur Beschrei-
bung der Dynamik der dispersen Phasen in letzter Zeit vermehrt untersucht.
Diese Methoden basieren auf einer Beschreibung des Spektrums durch inte-
grale Bilanzgrößen. Das Vorhandensein von Partikeln verschiedener Eigen-
schaften (Durchmesser, Geschwindigkeit, Temperatur) so wie die Schließung
von Austauschtermen mit der kontinuierlichen Phase stellen hier eine beson-
dere Herausforderung dar.

Diese Arbeit befasst sich mit der Herleitung und Verifizierung einer neuarti-
gen, auf angenommenen Verteilungsfunktionen basierten Momentenmeth-
ode (PMOM) unter dem Paradigma der Euler’schen Betrachtungsweise der
dispersen Phase. Mit Hilfe eines sogennanten Relaxationsansatzes wird die
Abhängigkeit der Partikelgeschwindigkeit vom Partikeldurchmesser als Rei-
henentwicklung erster Ordnung im Relaxationszeitbereich näherungsweise
beschrieben. Temperaturunterschiede zwischen den Partikeln werden ver-
nachlässigt.

Das Modell wird in mehreren Testfällen zur polydispersen Partikelrelaxation,
-entmischung und -sedimentation getestet, bei denen die Durchmesser-
abhängigkeit der Partikelgeschwindigkeit eine wichtige Rolle für Partikel-
und Impulstransport spielt. Verschiedene Rekonstruktionsmethoden werden
eingeführt, die sich nach der Form der Verteilungsfunktion (Gamma oder
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Beta) und nach der Anzahl prognostischer Momente unterscheiden.

Zuletzt wird das Modell zur Beschreibung der Tropfenausbreitung und -
verdampfung in einem Ultraschallzerstäuber angewendet und sowohl mit
mono-dispersen (Zwei-Fluid Modell) Simulationsergebnissen als auch exper-
imentellen Daten verglichen.

xii



List of Figures

1.1 Population of drops.

2.1 Schematic representation of jet-break up.

2.2 Dispersed flow regime classification.

2.3 Different approaches to dispersed flows in terms of time scale ratio and
volume fraction [4].

2.4 Schematic representation of Eulerian and Lagrangian strategies.

2.5 Schematic representation of Eulerian-Eulerian Models.

3.1 Particle moving with respect to a fixed reference frame.

3.2 Drag coefficient as a function of particle Reynolds number.

3.3 Schematic representation of the solution of Eq. (3.17).

3.4 Characteristic control volume V enclosing both phases.

3.5 Characteristic control volume V and variation of Xd and ∇ along s, i.e. ∂Xd
∂s .

3.6 Control volume enclosing a surface S∗
i which locally separates the two

phases.

4.1 From Multi-Fluid to MOM formulation.

4.2 Schematic representation of evaporation of Ni droplets with initial diam-
eter D0.

4.3 Variation of the Gamma (left) and Beta (right) distribution functions with

xiii



List of Figures

the parameters p and q .

4.4 Different forms of the Beta distribution functions p ≤ 2 and q ≤ 2.

4.5 Variation of the Gamma function with the argument q .

4.6 Variation of the ratio Dk,k−1/Dmax with the order k.

4.7 Region of valid moment sets shown in the moment space projected at
the M (1) − M (2) plane. 3-moment Beta scheme (left) and 4-moment Beta
scheme (right). Moments are normalized by the maximum allowed values,
(M (1)

max, M (2)
max).

4.8 Schematic representation of the expression given by Eq. (4.74).

4.9 Initial distributions considered for the droplet deceleration (left) and bub-
ble rise (right) cases.

4.10 0D solution of the Lagrangian equation of motion for particle decelera-
tion (left) and bubble rise velocity (right) and comparison with the relaxation
approach.

4.11 Time evolution of the error between the moment average velocities ob-
tained by analytical integration of the Lagrangian equation of motion and in-
terpolation through the relaxation approach.

4.12 Evolution of the size-velocity correlation and relaxation times for a pop-
ulation of droplets decelerating in a gas.

4.13 Evolution of the size-velocity correlation and relaxation times for a pop-
ulation of bubbles rising in stagnant liquid.

4.14 Schematic representation of new proposed function.

5.1 Steady state distribution functions at several axial positions for test case 1
(analytical solution).

5.2 Steady state distribution functions computed with PMOM vs. analytical
solution at three different axial positions: x = 0 (left), x = 2 cm and x = 20 cm
(right).

xiv



List of Figures

5.3 Variation of the moment transport velocities u(0) and u(3) along the axial
position.

5.4 Temporal evolution of the normalized moments – M (0) (top) and M (3) (bot-
tom) – along the axial direction at times t = 0.02 (left), 0.07 (middle) and 0.2 s
(right).

5.5 Normalized Hankel-Hadamard determinants within the domain for the
Beta (left and right) and Gamma (bottom) distributions.

5.6 Moment space projected at the (M (1),M (2)) plane and sets of normalized
moments obtained.

5.7 Size velocity correlations for different positions along the axial coordinate:
analytical solution (symbols) vs. PMOM (lines).

5.8 Evolution of the distribution functions at several axial positions for test
case 2 (analytical solution).

5.9 Distribution functions at three different axial positions for test case 2: x = 0
(left), x = 2 cm and x = 20 cm (right).

5.10 Parameters p and q of the Beta distributions for cases 1 (left) and 2 (right).

5.11 Evolution of the normalized 3r d moment M (3) and Hankel-Hadamard de-
terminants along the axial position for test case 2.

5.12 Schematic representation for the test case of bubble segregation due to
buoyancy.

5.13 Pressure contours inside the channel and vertical pressure profile at x =
0.05 m.

5.14 Contours of mean diameters of the size distribution inside the channel.

5.15 Distribution functions at three different axial positions – x = 2 cm (left),
x = 5 cm (middle) and x = 8 cm (right) – and four different vertical positions
(from top to bottom) y = 0.035, 0.1, 1 and 1.97 cm.

5.16 Parameters p and q of the 3-moment Beta scheme for y = 0.035 cm (left)

xv



List of Figures

and y = 1.97 cm(right).

5.17 Axial evolution of normalized moments for several vertical positions in-
side the channel: y = 0.01, 0.035, 0.1, 0.4, 0.8 and 1.97 cm.

5.18 Vertical evolution of the moments transport y-velocities for x = 5 cm.

5.19 Contours of the Hankel-Hadamard determinant inside the channel.

5.20 Axial evolution of the normalized Hankel-Hadamard determinants for
y = 0.035 cm (left) and y = 1.97 cm (right).

5.21 Contours of mean diameters of the size distribution inside the channel.

5.22 Distribution functions at three different axial positions – x = 2 cm, x = 5
cm and x = 8 cm (from top to bottom) – and three different vertical positions
y = 0.035, 1 and 1.97 cm for the Multi-Fluid Model (left) and PMOM (right).

5.23 Moment space projected at the (M (1),M (2)) plane and sets of normalized
moments obtained at y = 0.035,1,1.97 cm (left) and axial variation of normal-
ized Hankel-Hadamard determinants at y = 0.035 cm (right).

5.24 Axial evolution of normalized moments for four vertical positions inside
the channel: y = 0.035, 1, 1.6 and 1.97 cm.

5.25 Vertical evolution of the moments transport y-velocities for x = 5 cm:
Multi-Fluid solution vs. PMOM (Beta); with and without velocity deviation
term.

5.26 Comparison of size-velocity correlations for x = 5 cm and various verti-
cal positions obtained by PMOM with the new hybrid Beta reconstruction vs.
Multi-Fluid Model: standard relaxation approach (left) and the extended ver-
sion (right).

5.27 Vertical evolution of the moments transport y-velocities for x = 5 cm:
Multi-Fluid solution vs. PMOM with the new hybrid Beta reconstruction; stan-
dard relaxation approach and the extended version.

5.28 Axial evolution of the mean diameters inside the channel for y = 1 cm.

xvi



List of Figures

5.29 Contours of the Sauter Mean Diameter of the size distribution inside the
channel: new Beta approach (left) and Multi-Fluid Model (right).

6.1 Sketch of the geometry used in the test case.

6.2 Axial velocity profiles obtained by the monodisperse simulations and ex-
perimental profiles at z =128 mm and 150 mm.

6.3 Experimentally measured distribution function at z = 128 mm and recon-
structed Gamma and Beta distributions.

6.4 Contours of the gas phase velocity magnitude.

6.5 Comparison of axial (top) and radial (bottom) velocity profiles obtained
with PMOM against experimental data.

6.6 Contours of M (0) and M (3) obtained with the Beta approach.

6.7 Contours of ∆01 and ∆11 for the Beta approach.

6.8 Profiles of ∆01 at z = 128 mm obtained by both Gamma and Beta ap-
proaches.

6.9 Reconstructed Gamma (M (1)−M (3)) and Beta (M (0)−M (3)) distributions at
the inlet and z = 300 mm.

6.10 Schematic representation of the evaporation process of a population of
particles as governed by the D2−Law.

6.11 Evolution of the NDF as directly computed by the D2-Law and recon-
structed NDFs by the Gamma approach.

6.12 Evolution of the total number of droplets with the degree of vaporization.

6.13 Evolution of mean diameters with the degree of vaporization.

6.14 Evolution of the normalized determinant ∆01.

6.15 Contours of dispersed phase volume fraction (top) and vapor mass frac-
tion (bottom).

6.16 Contours of ∆11.

xvii



List of Figures

6.17 Radial profiles of ∆02 and ∆11 (left) and reconstructed distributions.

6.18 Droplet mean diameters (z = 600 mm) obtained with the Moments Model
and PDA data.

A.1 Schematic representation of f |[0,Dmax ](D).

A.2 Crossing Jets with a classical Moments approach.

A.3 Crossing jets with a Multi-Moments approach.

A.4 Configuration with three jets using the Multi-Moments approach.

A.5 Inlet distributions and reconstructed distributions at positions a and b.

A.6 Configuration with three crossing jets using the Multi-Moments approach.

A.7 Reconstructed distribution at the intersection point of the three jets.

xviii



List of Tables

4.1 Summary of presumed functions used with corresponding prognostic and
diagnostic moments.

xix



Nomenclature

Latin Characters

A Surface area [m2]
B Beta function
A Force per unit mass in internal coordinate space [m/s2]
C0 Presumed function scaling parameter [1/m3]
CD Drag coefficient [-]
cp Specific heat [J/kg-K]
Ct Response coefficient [-]
Ck Modified response coefficient [-]
D Diameter [m]
f Size distribution function [1/m4]
f̃ Number density function [1/m3]
f Fick’s diffusive flux [m/s]
F Force [kg-m/s2]
g Gravity [m/s2]
G Generation of turbulence kinetic energy [m2/s3]
h Specific enthalpy [J/kg]
htc Heat transfer coefficient [W/m2-K]
hm Mass transfer coefficient [m/s]
i Specific internal energy [J/kg]
I Incomplete Beta function
I Unit tensor
k Thermal conductivity [W/m-K]
l Inter-particle spacing [m]
L Latent heat [J/kg-K]

xx



Nomenclature

m Particle mass [kg]
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1 Introduction

1.1 Motivation

A large number of flows in nature and industry involve the simultaneous pres-
ence of continuous and dispersed phases. Their applications range from envi-
ronmental sciences to numerous engineering problems. Several examples can
be cited such as bubbly flows in aerated stirred vessels, atmospheric aerosols,
cloud physics, oil and gas transport in pipelines, spray combustion, etc.

In contrast to other types of multiphase flows, such as those involving free
surfaces for example, dispersed multiphase flows present a very distinguished
characteristic: one is normally not interested in the detailed dynamics of the
interface between continuous and dispersed phases. Apart from very few ex-
ceptions, the detailed resolution of exchange processes at the interfaces of
several particles is either not relevant or demand a huge computational effort,
such that it is normally advantageous to implicitly assume that a distribution
of spherical drops, bubbles or solid particles exists, which evolves with time
and space depending on the flow conditions.

As a result of the interaction between the different phases such flows are very
difficult to describe theoretically. While for single-phase flows Computational
Fluid Dynamics (CFD) has already a long history and it is nowadays a standard
tool used both by researchers and engineers, the application of CFD in the de-
sign and optimisation of multiphase systems is rather young. Even though a
lot of effort has been spent towards a better description of the highly complex
physics involved, neither the modeling capabilities nor the numerical tech-
niques have achieved the desired level of maturity.

Hence, it is clear that there is still need to further improve current simulation
methods for the engineering design process involving these types of flows.
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Some basic aspects concerning this task are given below:

• One should not underestimate the importance of a careful verification of
new developed models in simple test cases in order to assess the prop-
erties of the system and confirm the expected behavior against reference
solutions. Only then it makes sense to apply the simulation method to
complex configurations and validate it against experimental data.

• Extensive verification against experiments in practical configurations is
an essential, if not the most important step.

• It is very important to develop models that are also attractive in terms of
computational costs, which often means to find a compromise between
simplicity and accuracy.

• Last but not least, with the advent of parallel computing, the robust per-
formance in highly parallelised systems became in the last years an al-
most indispensable characteristic, specially for Large Eddy Simulations
(LES) and Direct Numerical Simulations (DNS) of turbulent multiphase
flows.

A particularly challenging class of multiphase flows occur in spray appli-
cations. They have been the subject of intense investigation over the past
decades, having also driven the improvement on the description of dispersed
flows in a general way1. Understanding and predicting the behavior of sprays
is a crucial aspect to the process of energy generation through liquid fuels.
While emerging technologies explore the potential of renewable energies, one
way to reduce fossil fuel consumption is the optimization of existing processes
which are present, for example, in gas turbines and Diesel engines. Combus-
tion efficiency and emission characteristics depend strongly on the fuel-air
distribution over the combustion chamber’s cross section. This is achieved
through the dispersion and mixing of the atomized fuel, which is a result of

1This occurs specially for flows involving solid particles, but methods for the description of dispersed bubbly
flows are also in many aspects similar, specially with regard to bubble population dynamics, eventhough relevant
forces that influence bubble transport may differ
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the turbulent transport of droplets by the gas phase as well as a complex pop-
ulation dynamics influenced by collisions, break-up, coalescence and evap-
oration. Many advances have been achieved in the description of these phe-
nomena, yet challenges remain on the development of accurate and efficient
simulation tools that are also applicable to real configurations.

In view of the points mentioned above, it seems reasonable to pursue a mod-
eling framework which is able to describe overall quantities of engineering rel-
evance accurately and at reasonable costs, in lieu of capturing all the details
of the flow. In this context, field (Eulerian) formulations for average quantities
of the dispersed phase have gained a lot of attention recently, becoming an
alternative to the more detailed but more computationally expensive, discrete
treatment. There is no doubt, however, that in order to achive an appropriate
level of description of the phenomena involved, a considerable modeling ef-
fort has to be undertaken in the Eulerian context. Considerations on some of
the specific requirements of such approaches will be given next.

1.1.1 Modeling requirements

Mass, momentum and energy exchange with the continuous phase is strongly
influenced by the spectrum of particle2 sizes present in a typical dispersed
multiphase system, as represented in Fig. 1.1. For example, very small tracer
particles tend to quickly adapt to the carrier phase velocity as a result of the
dependence of inertial and drag forces on particle size. On the other hand, a
big fuel droplet has a higher rate of evaporation than a small one in a hot gas
environment. Both situations illustrate the importance of particle size on ba-
sic phenomena which exist in many dispersed systems. In the literature, the
presence of multiple particle sizes and its influence on the flow dynamics and
exchange with the continuous phase is normally referred to as polydispersity
in a very broad context. Hence, one of the most important modeling require-
ments is the ability of capturing polydispersity and related effects – such as
the ones mentioned above – in an efficient way.

2if not stated otherwise, the term “particle” is used in a general way throughout the text, and refers to either
bubbles, drops or solid particles
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Figure 1.1: Population of drops.

In the past, the field of computational modeling of dispersed flows (specially
solid particles and droplets) was dominated by Lagrangian methods. The de-
scription of the dispersed phase as a set of discrete entities with different sizes,
that are tracked throughout the flow, has the advantage of incorporating poly-
dispersity inherently. However, it is generally accepted that the integration
of equations of motion for a large number of individual particles can be ex-
tremely expensive, specially when the gas phase is turbulent. The multi-size
treatment in the Eulerian context is also possible, but is probably even more
computationally intensive. This occurs because sets of transport equations for
each size class, which are separetely treated as a different phase, have to be
solved for the whole computational domain, even in regions where there are
no particles present. However, it is the possibility of describing polydispersity
without the segregation into size classes that makes the Eulerian treatment
attractive and more efficient than its Lagrangian counterpart. The idea is to
formulate field equations for overall quantities (e.g., total volume or surface
area) of the particle cloud, which represent the population as a whole. Obvi-
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ously, this necessarily leads to loss of information on phenomena that occur at
scales that are not explicitly represented in this integral formulation. Hence,
one has to resort to modeling in order to incorporate whatever effect might
play an important role in the application in question.

Approaches that aim at describing the dispersed phase dynamics and its in-
teraction with the continuous phase without the explicit discretization into
size classes are usually grouped in the so called moment methods (often re-
ferred to as MOM – “Method of Moments”). These methods are characterized
by the transport of moments (or some related information) of the size dis-
tribution function, rather than the distribution itself. There are a number of
advantages of modeling the dispersed phase in this fashion. First, the num-
ber of equations being solved is significantly smaller than in any of the com-
monly used polydisperse models, making it more computationally efficient.
Second, when compared to Lagrangian approaches, coupling with the con-
tinuous phase can be more easily accounted for by way of the formulation.
Finally, a similar mathematical and numerical treatment of continuous and
dispersed phases allows the development of simpler and more efficient paral-
lelization schemes.

The challenge of MOM lies principally in the formulation of closure models
for the transport of moments and exchange terms with the continuous phase,
such as drag and turbulent dispersion forces, heat transfer and evaporation.

1.1.2 Scope of the work

The objective of the present work is the development, verification and valida-
tion of an Eulerian approach in the context of MOM to describe polydisperse
flows and its implementation in the open source CFD library tool OpenFOAM.
The mathematical formulation is achieved through the integration of the par-
ticle equations written in an Eulerian frame. Unclosed terms are modeled by
means of a presumed Number Density Function (pNDF), with a novel relax-
ation approach for the convection velocity of the moments and closure of ex-
change terms with the continuous phase. The relaxation approach considers
an expression for particle velocities as a first order expansion of the fluid ve-
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locity scaled with the particle response time. It is able to describe the particle
relaxation process towards equilibrium and provides an analytical closure for
the overall Stokes drag term acting on the particle population. It is shown that
the integration of the expression for the particle velocity also allows the direct
determination of the convection velocities of the moments from reference ve-
locities. The framework developed here is called Presumed function Method
of Moments (PMOM), with reference to the presumed forms of both the size
distribution function and the expression for the size-velocity correlation.

A careful verification of the model and its interdependencies is made with
the help of simple test cases involving the segregation and sedimentation of
particles due to drag and buoyancy. Results are compared either to analytical
solutions or to Multi-Fluid simulations. Additionally, in order to validate the
sub-models for spray simulations, comparison against experimental data is
performed for configurations involving droplet dispersion and evaporation.

1.2 Outline of the thesis

A literature review on the modeling of multiphase dispersed flows with special
attention to polydispersity is given in chapter two.

The third chapter is devoted to the thorough derivation of continuous and
dispersed equations in an Eulerian framework, which constitute the basis of
the Two- and Multi-Fluid formulations. In the following chapter, PMOM equa-
tions are then derived through the integration of the Eulerian dispersed phase
equations over the size spectrum. Closure models for the PMOM equation set
are also shown.

Chapters five and six contain the results obtained by the proposed model. In
chapter five, the implementation of the methodology in OpenFOAM is briefly
discussed, and a series of “proof of concept” test cases are presented, with
comparison to the corresponding reference solutions. A practical configura-
tion involving droplet dispersion and evaporation is presented in chapter six,
where the model results were validated against experimental data for a spray
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generated by an ultrasonic atomizer.

Conclusions and suggestions for future work are presented in chapter seven.
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2 Dispersed Flows

2.1 Introduction

A “phase” refers to the thermodynamic definition of the solid, liquid or
gaseous state of matter. A multiphase system consists of a mixture of two or
more phases such as gas bubbles in a liquid, solid particles or liquid drops in
a gas, and so on. The term “multi-component” is used to define systems with
multiple chemical species. Thus, a water-steam mixture is two-phase, one-
component, while a water-air mixture is a two-phase, two-component and
a oil-water mixture one-phase, two-component. The latter is commonly re-
garded as two-phase flow since the components in the mixture are immisci-
ble.

Unfortunately, at present, there is still no general framework which is able to
handle all classes of multiphase flows. Perhaps the major difficulty involved
in the prediction of these types of flows is that the physical arrangement of
phases and/or components in the mixture is not known a priori, but is rather
a part of the solution. Consider the flow of gas-liquid mixtures in pipes, for
example, which is quite common in many industries (nuclear, oil and gas,
etc). Unless the geometry of the interfaces can be defined, there is no practi-
cal way to proceed on the selection of an appropiate strategy for the modeling
and simulation of such flows in order to determine parameters of engineering
significance such as pressure drop, heat transfer coefficients, etc. Otherwise,
there is no simulation model which can reasonably predict – as a natural out-
come of the initial and boundary conditions chosen – whether bubbles will be
uniformly distributed throughout the liquid, or will coalesce to form coher-
ent gas structures, eventually flowing as a continuum core in the center of the
pipe, while the liquid forms a film on the wall (this configuration is called “an-
nular flow”). Another good example occurs in spray applications. The process
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Figure 2.1: Schematic representation of jet-break up.

of fuel atomization involves the disintegration of a liquid phase in a gaseous
environment. Very distinct regions can be identified here, ranging from a con-
tinuous liquid jet (or sheet) to finely dispersed droplets (see Fig. 2.1). Models
that are developed to capture the evolution of the interface during the primary
break-up process are not expected to perform well in regions where a popula-
tion of very small droplets exist (and vice-versa). While for the first it is crucial
to resolve phenomena happening at the scale of the interface, the flow inside
and around each droplet would be very difficult and expensive to compute,
being rather unimportant in the latter.

In this context, the present thesis is restricted solely to the description of what
is called dispersed flows. The term “dispersed” refers to the presence of dis-
crete elements immersed in a continuous medium. These elements can be
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of the same phase of the continuum (in a dispersion of oil in water for ex-
ample) or not (such as liquid droplets dispersed in air). Even though the be-
havior of the two can differ significantly, their modeling is usually similar. In
the majority of cases of interest, length scales of the dispersed elements are
sufficiently small so that surface tension effects are dominant. Hence, it is rea-
sonable to assume that these elements are well represented by spherical par-
ticles. Therefore, knowledge of how the particles are distributed (how many
and how big they are) at a given position allows to solve the problem of de-
termining the interfacial geometry in some sense, and the computation of the
exchange of mass, momentum and heat with the continuous phase is in the-
ory possible. The key question is related to the importance of back coupling
with the continuous phase, how to model exchange terms in general, and to
whether particle-particle interaction is important or not. Since particles are
not explicitly resolved, a priori criteria are extremely useful in order to de-
termine which type of regimes are expected, given the flow conditions, and
incorporate proper physical effects into the models. This will be discussed in
the next section.

2.1.1 Classification of dispersed flows

For the characterisation of dispersed two-phase flow regimes, it is useful to
define some properties which are summarized below.

The volume fraction of the dispersed phase (αd ) is the volume occupied by the
particles in a characteristic volume of the mixture, V . It is given by:

αd =
∑

i Ni Vi

V
, (2.1)

with Ni the number of particles of a certain size class i , with volume Vi =
πD3/6.

The spacing lp between particles is related to αd by1:

1it is considered, for simplicity, that particles are represented by a unique diameter
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Figure 2.2: Dispersed flow regime classification.

lp

D
= ( π

6αd

) 1
3 , (2.2)

with D the particle diameter.

The characteristic response time τ of particles with respect to the fluid flow is
defined as

τ= ρd D2

18µc
, (2.3)

with ρd the dispersed phase density and µc the continuous phase dynamic
viscosity.

Commonly, dispersed flows are separated in two regimes. In dilute systems τ
is typically much smaller than the time between collisions. Thus, the spacing
between particles is likely to remain sufficiently large, so that a direct interac-
tion is rare. On the other hand, dense systems are those where particle trans-
port is dominated by collisions and the inter-particle spacing is comparatively
small. In this case, particles have relatively little time to react to fluid dynamic
forces between successive collision events.

A classification of dispersed flows with regard to the importance of interaction
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mechanisms was provided by Elghobashi [28]. Generally it is distinguished
between dilute and dense flows as mentioned above (Fig. 2.2). A two-phase
system may be regarded as dilute for volume fractions up to O (10−3) (i.e.
lp/D ∼ 10). In this regime the influence of the particle phase on the fluid flow
may be neglected for volume fractions smaller than O (10−6) (i.e. lp/D ∼ 100).
When the volume fraction is increased, the influence of particles on the con-
tinuous phase needs also to be accounted for. This is often referred to as
“two-way coupling”. In the dense regime (i.e. for volume fractions greater than
O (10−3)) additionally inter-particle interactions (i.e. collisions and the effect of
particle presence on the fluid dynamic forces acting on its neighbors) become
important. This regime is characterized by the so called “four-way coupling”2.

It is common practice in the literature to designate the collection of all
dispersed particles simply as “dispersed phase”, in contrast to “continuous
phase”. If the dispersed phase is characterized by a single size, the flow is called
monodisperse. If a distribution of particle sizes is present, it is denominated
polydisperse (as mentioned in 1.1.1). In the most general case, particles are
likely to have distinct properties, such as different sizes, velocities or tempera-
ture. This obviously poses challenges to the modeling and computation of the
coupled dynamics of continuum and dispersed phases and will be discussed
later on with the different modeling strategies.

2.2 Modeling strategies

There are numerous techniques for the simulation of dispersed two-phase
flows and the question of which one is more appropriate for a given problem
does not have a simple answer. To help clarify the need for different meth-
ods, Ferry and Balachandar [30] propose the following analysis: imagine a
monodisperse particle-laden flow with fixed density ratio and volume fraction
in the dilute regime; how should the simulation technique be chosen?

They argue that the important parameter to be looked at is the ratio of the re-
2Loth [50] also distinguishes between three- and four-way coupling. While three-way coupling considers only

the distorted flow fields due to the presence of particles on its neighbors (e.g. wake effects), four-way coupling
includes also particle collisions.
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sponse time τ of particles vs. the typical time scale of the continuous phase
flow. Very small particles tend to adapt almost immediately to the surround-
ing flow and therefore the use of an Eulerian treatment for a single phase with
modified density is sufficient. A passive scalar representing the particle con-
centration is then transported with the fluid velocity. For larger particle diam-
eters the assumption of equal velocities is no longer valid, even though the
Eulerian treatment still applies. The reason for that is the larger response time
– τ∝ D2, see Eq. (2.3). For even bigger particles, the Eulerian approach ceases
to be appropriate, mainly because the number of particles is too low (for a
given volume fraction) to assign a meaningful mean value for the local Eu-
lerian velocity. In this case, a Lagrangian treatment for individual particles is
more accurate. If the particle sizes increase further, the Lagrangian parameter-
ization for the exchange terms with the continuous phase probably becomes
inaccurate and the resolution of the flow field around the particles becomes
necessary.

A brief description of each of the above mentioned modeling frameworks will
be given in the next sections, following the classification strategy presented
by Balachandar and Eaton [4] (see Fig. 2.3). The degree of details captured by
each approach will be gradually relaxed from the DNS level, going through La-
grangian and Eulerian approaches, including the treatment of polydispersity
with moment methods, including the parameterization of exchange terms.

2.2.1 DNS

For particle sizes comparable or larger than the characteristic flow scales of
the continuous phase, fully resolved DNS becomes the only option. In DNS
techniques the temporal and spatial resolution is such that all details of the
flow fields are captured, which makes possible the exact determination of
forces experienced by the dispersed elements moving in a continuous phase.
Unfortunately, computational costs are prohibitive for practical calculations.
There are examples of calculations involving up to O (103) particles (see e.g.
Pan and Banerjee [65] or Uhlmann [80]), but real applications typically in-
volve far more than that. Hence, the use of fully resolved simulations is likely
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Figure 2.3: Different approaches to dispersed flows in terms of time scale ratio
and volume fraction [4].

to be restricted to simple configurations in the near future. Nevertheless, these
configurations are also extremely interesting in order to improve closure rela-
tions for the phase interaction terms required in either Eulerian-Lagrangian
or Eulerian-Eulerian type of models which are in principle more suitable for
engineering problems.

2.2.2 Eulerian-Lagrangian approaches

As mentioned in section 1, discrete particle methods3 retain the intuitive La-
grangian description of particle motion in order to determine the position,
mass, momentum and energy of particles along its trajectories. Individual par-
ticles are tracked through the gas phase grid (Fig. 2.4, left) by solving their own
equations of motion. If the flow is dense and highly unsteady, it might be in-
teresting to track groups of representative particles, in what is called “discrete
element” method [22].

3These methods are often called Lagrangian point-particle approaches, because the whole mass of the parti-
cle is concentrated into a point
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Figure 2.4: Schematic representation of Eulerian and Lagrangian strategies.

In the Lagrangian description, polydispersity is handled intrinsically. Addi-
tionally, multiplicity of particle characteristics (e.g. velocities and tempera-
tures) within the same size class can be accounted for. This allows to capture,
for example, effects of Particle Trajectory Crossing (PTC). This effect can be
important in opposed jets configurations or when a spray interacts with a wall,
but also due to velocity non-equilibrium characteristics of large particles in a
turbulent flow field [22].

Coupling of the particles back to the carrier phase (two-way coupling) is
achieved through source terms in the Eulerian level, which poses challenges
regarding the distribution of source terms due to the presence of particles
within a cell to the neighboring grid points. In contrast to one-way coupled
simulations (as carried out, e.g. by Maxey [57] and Elghobashi [27]), two- and
four-way coupled simulations are much more expensive and have been only
more recently combined with LES by Yamamoto et al. [89] and DNS by Fer-
rante and Elghobashi [29] of the carrier phase.

An important aspect of the modeling of dispersed flows is the treatment of tur-
bulent fluctuations on particle motion. If the turbulent flow field of the con-
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tinuous phase is known, particle dispersion evolves directly from the discrete
particle method. However, in the majority of cases, it is not possible to resolve
all scales of the turbulent flow field and one has to resort either to Reynolds
Averaged Navier Stokes (RANS) computations or LES. In order to model the
fluctuating forces which act on the particles, the so called stochastic meth-
ods can be used. A very common approach is to assume that the velocity can
be decomposed as the sum of the local time-averaged value and a fluctuating
part [90], which is selected e.g. through a random number generator (Monte-
Carlo method). Many improvements have been made in the calculation of the
fluctuation velocity, such as in the works of Gosman and Ioannides [38] and
Berlemont et al. [13]. However, these methods are much more expensive than
the ones used in the Eulerian framework, where closure for terms involving
turbulent fluctuations can be simply achieved as in single phase flows by as-
suming e.g. a gradient-diffusion hypothesis, which intrinsically allows to in-
corporate terms involving gradients of relevant variables in a field description.

Accurate representation of interphase exchange requires a large sample of
particles to obtain statistically meaningful average quantities. If very fine re-
solved computations are conducted, very small time and spatial intervals for
sampling are necessary and quality of results might be compromised by the
level of statistical noise. To avoid this, the sample size must be increased,
which can be very computationally expensive, specially if LES or DNS of the
continuous phase is pursued.

The development of algorithms for parallel computations with Euler-
Lagrange methods is a difficult task. If the domain is decomposed in many
geometrical subdomains, particles must be tracked as they cross adjacent re-
gions to account for the exchange between processors, which involves a rela-
tive large amount of “book keeping”. Riber et al. [69] observed that the speed-
up using several processors is not able to follow the increase on the workload,
specially for unstructured grids. Furthermore, load imbalance is very common
in Euler-Lagrange computations, since particles might be accumulated in a
small part of the domain (near injectors, for example), but completely absent
in others.

Therefore, as seen above, while the biggest advantage of Lagrangian meth-

16



2.2 Modeling strategies

ods is the ability to capture most relevant phenomena involved in dispersed
flows, two- and specially four-way coupled simulations in engineering con-
figurations normally means formidable computational costs, specially when
combined with resolved turbulence simulations of the gas phase. The often
non-satisfactory scaling behavior in parallel computing has also contributed
to the motivation for the further development of techniques in the Eulerian
framework, which will be treated in the next section.

2.2.3 Eulerian-Eulerian approaches

The movement of a collection of small (macroscopic) particles is in many as-
pects similar to that of gas molecules on the molecular scale (even though the
relevant interaction forces have a different nature in the two cases). If scales
much larger than the mean free path between collisions are considered, the
discrete treatment is not strictly necessary; statistically invariant properties
are assigned locally and a continuum formulation can be used instead. A sim-
ilar idea has been used to treat dispersed flow systems as well; some earlier
work on the subject was done by Travis et al. [79], for example. Thus, the prin-
cipal difference to the Lagrangian approaches is that fields of local average
properties of the dispersed phase exist by definition in the whole domain,
even if no particles are present (Fig. 2.4, right).

In many of their classical versions, Eulerian multiphase models usually treat
all phases as interpenetrating and interacting continua. Conservation equa-
tions are derived through some type of averaging procedure (ensemble, time,
volume or a combination of them – as systematically derived by Ishii [42]) of
the single phase equations, and sets of symmetrical equations result for the
multiphase system, including continuous and dispersed phases. The outcome
of the different averaging procedures are in most cases similar, but many con-
troversies persist in the literature as to which approaches are more correct,
as well as the physical interpretation of phase interaction terms that arise
due to the presence of an interface. A discussion on the subject was given
by Prosperetti [67]. Another issue lies on the meaning of stress terms when
treating dispersed phases as continua. In the dense regime, it might be rea-
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sonable to model the outcome of particle-particle interaction as stress-like
terms, since particles are close to each other, are likely to collide and the in-
terchange of momentum is high. One example of this type of modeling can
be found in studies of Monahan et al. [60] and Monahan and Fox [59], where
a bubble-pressure term is employed to take into account for the exchange of
momentum arising from bubble-bubble interactions. In dilute mixtures, how-
ever, where inter-particle spacing is large and particle-particle interaction is
rare, the physical meaning of dispersed phase pressure and shear stresses is
questionable.

A comprehensive heuristic approach was developed by Crowe et al. [22], in
which particle field equations are derived starting from the Lagrangian equa-
tions of motion transformed to Eulerian coordinates. A similar approach was
also briefly discussed by Bataille and Lance [9]. The Eulerian field equations
for a dispersed phase are then obtained in a physically sound manner by using
directly the Lagrangian parameterization of interaction terms and perform-
ing a combination of volume and ensemble averaging. This avoids the ap-
pearence of stress-like terms in the dispersed phase equations. Continuous
phase volume-averaged equations are then derived in the usual manner and
the result is a set of field equations for both phases which are not strictly sym-
metrical.

Despite of the subtleties of the equation set and how it is derived, it is use-
ful to discuss the level of description and computational costs of Eulerian ap-
proaches. According to Balachandar and Eaton’s [4] classification (see Fig. 2.3),
the following Eulerian methods can be mentioned:

• Dusty Gas

The dusty gas approach was introduced by Carrier [20]. In this approach,
particles are assumed to be sufficiently small in order to follow the carrier
gas perfectly. Thus, the two-phase flow is actually considered as a single
phase with modified density and, in addition to the mixture equations,
only a tranport equation for the particle concentration has to be solved.

• Equilibrium Eulerian
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The single-velocity hypothesis limits the range of validity to very small τ.
Ferry and Balachandar [30, 31] extended the method on what was called
“equilibrium Eulerian” approach, which is also computationally simple,
even though particle and gas phases do not share the same velocity field.
Instead, the particle velocity field is expressed as a first order expansion
on the gas velocity, using particle relaxation time τ as dependent vari-
able. The method was shown to be accurate, provided that the particle
response times are not large. The same idea was successfully applied later
for the temperature field of small particles [32].

• Two-Fluid and Multi-Fluid Models

In the Two-Fluid Model, a set of conservation equations is solved for the
dispersed phase, which allows to better reproduce the dynamic nature
of coupling between continuous and dispersed phases than the previous
approaches. However, the hypothesis of local existence of a single phase
representative of the whole spectrum of sizes compromises the use of
the Two-Fluid Model when multi-size treatment is important, since there
is no information whether the volume fraction (the unique information
available on the distribution) is a result of a few large bubbles or many
small ones, for example.

The logical extension to the Two-Fluid is the Multi-Fluid Model, where
several size classes can be considered and each of them is treated as a
different Eulerian phase. Thus, here the description of polydispersity is
in theory possible, but the solution of multiple Eulerian phases might
become very computationally expensive. In the homogeneous MUSIG of
Lo [49], continuity equations are solved for each size, which share how-
ever the same velocity field. An extension to this model is the Inhomoge-
neous MUSIG of Krepper et al. [48], which subdivides the size classes in
different velocity groups, for which different momentum equations are
solved. These models have been extensively applied to bubbly flows with
relative success, but even the use of few momentum equations (typically
less than four) can be very expensive, specially when coupled through
population balance processes such as break-up, coalescence and phase
change.
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Figure 2.5: Schematic representation of Eulerian-Eulerian Models.

A critical comparison of Two-Fluid, Multi-Fluid and Lagrangian ap-
proaches in RANS context for spray simulations was done by Mostafa and
Mongia [62]. Surprisingly, they found out that the use of a Monte Carlo
technique to account for droplet turbulent dispersion can be sometimes
even more expensive than the multi-size Eulerian treatment. While both
models are accurate in comparison to the experimental data, the Two-
Fluid Model is restricted to situations where the size distribution is not
wide. Therefore, it seems reasonable to search for a solution which rep-
resents a compromise between the low costs of a Two-Fluid Model and
the accuracy of a full Multi-Fluid Model – as schematically represented in
Fig. 2.5. These models appear in the context of Moment Methods, which
will be described next.
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2.2.3.1 Moment methods

Recently, alternatives to the conventional Lagrangian or Multi-Fluid tech-
niques have been developed, which make it possible to account for polydis-
perse particle transport and population dynamics more efficiently. Instead of
discretizing the particle size distribution function in many size classes, most of
these methods rely upon formulations involving its moments (or some other
information) [12, 36, 45, 54, 73]. In the formulation of such types of models,
there are essentially two paths to follow: a statistical derivation in the lines of
the kinetic theory of gases; or, simply the integration of pre-established Eu-
lerian Multi-Fluid equations (in the context of models described in the last
section) over size or velocity space (or any other particle coordinate).

Statistical derivations of field equations can be found in several works in the
literature [33,55,79]. Normally, a generalized population balance equation for
a joint NDF f (x, t ;u,ξ) including one or more particle internal coordinates
(such as size, velocity or temperature; denoted here as ξ) is used:

∂ f

∂t
+∇x · (u f )+∇u · (A f )+∇ξ · (ξ̇ f ) = h( f ), (2.4)

where the first term is the accumulation in time, the second is the convection
in physical space, the third and fourth represents the convection in internal
coordinate space and h( f ) is the source term, which can incorporate break-
up and coalescence, for example.

Moment transforms are then applied to the above equation in order to derive
transport equations for integral quantities of interest (namely mass, momen-
tum, etc). Specifically in the context of sprays, the Williams generalized trans-
port equation introduced by Williams [88] is used in the development of these
types of methods [1, 2, 55].

Beck and Watkins [11, 12] have shown that a formulation dependent on the
moments can also be achieved by integration of Eulerian Multi-Fluid equa-
tions representing droplet classes over the size spectrum. The idea was to re-
tain the Eulerian-Eulerian formulation, but to capture the full polydisperse
nature of the spray while representing the population of droplets as a whole.
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Dispersed Flows

The liquid phase is parameterized by integral quantities defined by the mo-
ments. A similar framework concerning the derivation of their model is also
used in this thesis.

Regardless of which derivation strategy is chosen, transport equations for mo-
ments of the size distribution function are normally solved in addition to
the common conservation equations in the Eulerian-Eulerian framework. De-
pending on the physical laws of the exchange processes with the continu-
ous phase (e.g. drag or evaporation) or particle-particle interaction, integral
source terms which represent these processes are formulated in terms of the
moments and need to be modeled and closed. This involves in general the de-
termination of a priori unknown moments, which is usually done either by
reconstructing the size distribution from presumed functional forms [12], by
means of splines [24, 45], or using quadrature approximations [54]. Tagliani
[78] developed a framework with the maximum entropy formalism for the
reconstruction of a distribution function given a set of constraints (the mo-
ments). It has the main advantage that the form of the distribution function
is an outcome of the reconstruction process itself. Archambault [2] applied a
moment method with maximum entropy closure in quasi-one-dimensional-
spray while Massot et al. [56] tackled the important problem of evaluation
of disappearence rate of droplets with NDF reconstruction through a maxi-
mum entropy formalism. Beck [10] pointed out that approaches based on the
maximum entropy formalism can be computationally expensive for real con-
figurations – spray cases were analyzed with a CFD framework – because an
optimization problem has to be solved for each grid cell and time step. How-
ever, Kah et al. [47] have shown in the simulation of a compressible polydis-
perse evaporating spray that the associated numerical expenses are actually
not prohibitive.

Many moment methods commonly assume that the moments are transported
with the velocity of the dispersed phase [37,66]. Such approaches are also able
to predict effects of polydispersity due to, e.g. break-up and coalescence pro-
cesses, through the incorporation of source terms in the transport equations
for moments. Particularly in the work of Gharaibah [36], mean and variance of
the bubble size distribution are transported in a Two-Fluid framework, while
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2.2 Modeling strategies

source terms are read from a look-up table in order to compute the change in
the distribution function due to bubble coalescence or break-up in an aerated
stirred vessel. Indeed, depending on the local flow conditions, these processes
might lead to non-uniform size distribution functions in space and time. How-
ever, the effect that particles of different sizes have locally different velocities,
which translates into different transport velocities for the moments, is not ac-
counted for.

In order to account for the effect of particle size on the transport of moments,
different approaches can be found in the literature. Manninen et al. [52] sug-
gest the use of a Drift-Model to determine particle velocities in polydisper-
sions, assuming local equilibrium and a constant expression for the slip-
velocity. Wacker and Seifert [82] use a power-law functional form for the size-
velocity correlation, applying their moment method to pure sedimentation of
rain drops. Beck and Watkins [12], on the other hand, derive transport equa-
tions for the moment transport velocities, using for instance an approximate
closure for the integral drag force acting on the population of droplets in a
spray, where the relative velocity between the liquid and the gas was taken
to be constant with diameter. Their model gave very realistic results for the
spray configurations analysed, but the independent advection of more than
two moments proved to destabilize the numerical method. This motivated the
use of a two-moment scheme, while other moments were determined with
help of a presumed function approach.

In the present work, a novel closure based on the equilibrium Eulerian method
is presented, where particle velocities are expressed as a first order expansion
of the fluid velocity scaled with particle relaxation times. This is a more ac-
curate representation than simply setting a constant relative velocity for each
particle size, since the relaxation process towards equilibrium can also be ac-
counted for. The adaptation of this idea to the context of the Method of Mo-
ments allows the determination of moment transport velocities from refer-
ence velocities, which in turn can be obtained from the solution of proper mo-
mentum equations. Therefore, this method provides – in combination with a
presumed distribution function approach – a possibility of analytical closure
for the drag term and the determination of moment transport velocities. This
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model can also be extended to larger relaxation times, as will be shown in the
course of the text.
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3 Continuous and Dispersed Phase
Equations

3.1 Introduction

Multiphase flows can be in theory described by the Navier-Stokes equations
within each phase, applying appropriate boundary conditions at the inter-
faces separating them. That is, if the position and velocity of these interfaces
were known, the problem would be reduced to solving single-phase equations
for a complex domain with varying shape. However, in the vast majority of
cases, the interface dynamics is not known a priori; it is rather a part of the
solution. Needless to say, this poses formidable mathematical and computa-
tional problems, as stated and discussed in the former chapters of this thesis
in details.

In the past decades, much of the research in the area of multiphase flows was
dedicated to the development of techniques to contract the problem to a form
which is more tractable in both mathematical and numerical points of view.
For instance, in single- and multiphase pipe flows (e.g. in oil and gas pipelines)
it is common engineering practice to perform averages over the cross section
and treat the problem from the perspective of the “mean flow”. However, by
doing that, knowledge input is normally required (through empirical or ana-
lytical models), so that missing details, which might be important to the de-
scription of relevant phenomena, can be to some extent reincorporated into
the modeling process.

In the pipeline example, friction factors abbreviate the need for solving a com-
plex problem in very long domains, while representing momentum exchange
at the interfaces between phases (and between phases and the wall) by pre-
defined correlations. In dispersed flows, a similar point of view can be used.
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Continuous and Dispersed Phase Equations

The parameterization of forces acting on particles with help of analytical and
empirical results avoids having to compute the detailed fluid flow around each
and every particle – an effort which goes far beyond present computing power.
It is therefore very important to study the phenomenology of single particle
motion in a detailed manner.

The following sections are dedicated to the description of the various phe-
nomena governing particle motion. Once the most important forces acting on
particles – as well as mechanisms of heat and mass exhange – are identified
for the class of problems studied here, the averaging procedure can be worked
out, as well as closure for the interphase exchange terms that arise in the av-
eraged equations.

3.2 Phenomenology of dispersed flows

3.2.1 Particle-Fluid interaction: momentum exchange

The particle equation of motion is written according to Newton’s second law:

mi
dv

dt
+

∫
Si

ρd (û+ 1

2
Ḋn) û · ndS︸ ︷︷ ︸

≈0

= F, (3.1)

where mi is the particle mass, v is the particle center of mass velocity, û is the
velocity with which the mass crosses the particle interface Si (i.e., the velocity
with respect to the regressing or advancing surface) and 1

2Ḋn is the regress-
ing/advancing rate with respect to the particle’s center of mass; the integral on
the LHS represents therefore the net flux of momentum on the particle surface
due to loss/gain of mass during phase change (which is zero since spherical
symmetry is assumed). F is the sum of all external forces acting on the particle.
These forces can be divided in three different categories:

• Particle-fluid interaction: pressure and viscous forces acting on the inter-
face between particle and fluid (FF )
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3.2 Phenomenology of dispersed flows

Figure 3.1: Particle moving with respect to a fixed reference frame.

• Particle-particle interaction: momentum exchange due to collision pro-
cesses (FP )

• Body forces: such as gravity or Coulomb forces. (FB )

Attention will be restricted to the first type, since particle-particle interaction
is out of the scope of this work and the treatment of body forces is straight-
forward. The force FF exerted by the surrounding fluid on a particle is given
exactly by the integral of normal and shear stresses over the particle surface.
Thus:

FF =
∫

Si

(−pI +τ) ·ndS. (3.2)

As mentioned in chapter 2, a DNS of a fluid containing dispersed particles is
very difficult and demands a great amount of computing power. In addition to
the resolution of the boundary layer around the particle, a full dynamic cou-
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pling of fluid forces and particle movement described by Newton’s second law
is necessary. Although fully resolved simulations have been made for a small
number of particles and small Reynolds numbers of the continuous phase, it
remains impractical for the most systems of engineering relevance.

Fortunately, there is a practical way to proceed in parameterizing forces acting
on the particle without explicit knowledge of pressure and shear stress distri-
butions around the particle. Consider the continuity and momentum equa-
tions (Navier-Stokes equations) for the continuous phase, which govern the
flow around the particle:

∂ρc

∂t
+∇· (ρc uc) = 0 (3.3)

∂(ρc uc)

∂t
+∇· (ρc uc uc) = −∇p +∇·τ+ρc g. (3.4)

For an incompressible, Newtonian fluid with constant properties, the above
equations can be simplified to:

∇·uc = 0 (3.5)

and

Duc

Dt
= ∂uc

∂t
+uc ·∇uc = − 1

ρc
∇p + 1

ρc
∇·τ+g

= − 1

ρc
∇p +νc∇2uc +g. (3.6)

The momentum equation may be rendered dimensionless (neglecting grav-
ity, for simplicity, but without loss of generality for the present purposes)
with help of characteristic time and length scales t∗ ∼ t/τ, x∗ ∼ x/D , veloc-
ity u∗

c ∼ uc/(u∞−v) and pressure p∗ ∼ (p −p∞)D2/(µc |u∞−v|D), yielding the
following expression:
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3.2 Phenomenology of dispersed flows

∂u∗
c

∂t∗
+Rep (u∗

c ·∇∗u∗
c ) =−∇∗p∗+∇∗2u∗

c . (3.7)

It can be infered from Eq. (3.7) that, if the particle Reynolds number is much
smaller than unity (creeping flow condition)

Rep = |uc −v|D
νc

¿ 1, (3.8)

non-linearities have a marginal importance in the momentum equation. This
is generally known as the Stokes hypothesis. In this case, a superposition of
velocity and pressure fields that individually satisfy the Navier-Stokes equa-
tions is also a valid solution. Hence, the total force acting on the particle may
be added up as

FF =
∫

Si

−(p1 +p2 +p3...)I ·ndS +
∫

Si

(τ1 +τ2 +τ3 + ...) ·ndS

=
∫

Si

(−∑
i

pi I +∑
i

τi ) ·ndS)

= ∑
i

∫
Si

(−pi I +τi ) ·ndS

= ∑
i

FF,i . (3.9)

Therefore, particle movement in a complex flow field can be perceived to com-
prise of the combination of different types of elementary motions, of which
the following will be considered here:

• Particle traveling with uniform velocity in a stagnant fluid (FF,D)

• Particle at rest in a pressure field (FF,p)

• Particle moving in a shear flow (FF,τ)

• Archimedes’ buoyancy force (FF,g)
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The resulting expression of these forces can be seen as closure laws which al-
low to predict particle motion without requiring any detailed knowledge of
the influence of the particle on the flow. The linear splitting of the forces is
frequently used even if the Stokes assumption is not strictly fulfilled. How-
ever, nonlinear coupling between the forces is often thought to be so small
that it can be neglected. The various forces acting on particles and their be-
havior in different types of flow conditions have been reviewed by Crowe and
Michaelides [21].

3.2.1.1 Steady state drag force

In most dispersed systems, the drag force dominates particle motion and con-
sists of contributions from pressure (“form drag”) and shear stress (“viscous
drag”) distributions. The flow field due to a spherical body in translational
motion was first determined by Stokes [77]. With the hypothesis of sufficiently
small Rep , an analytical expression of the drag force can be derived simply by
evaluating the integral on the particle surface given by Eq. (3.2). It results in:

FF,D = 2πµcD(uc −v)︸ ︷︷ ︸
viscous drag

+πµcD(uc −v)︸ ︷︷ ︸
form drag

= 3πµcD(uc −v). (3.10)

As seen in the above expression, in the Stokes regime the contribution of vis-
cous drag is twice as important as the pressure contribution.

It is usual to express the drag force exerted on the moving particle by the fluid
in terms of a dimensionless coefficient obtained by dividing the magnitude
of the force by a dynamic pressure 1

2ρc |uc −v|2 and by the area of the particle
projected onto a plane normal to uc−v; thus the drag coefficient is determined
for small Reynolds numbers by

CD = 3πµcD|uc −v|
1
2ρc |uc −v|2πD2

4

= 24

Rep
. (3.11)

The dependence of the drag coefficient of a spherical particle on the Reynolds
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3.2 Phenomenology of dispersed flows

Figure 3.2: Drag coefficient as a function of particle Reynolds number
(adapted from [76]).

number is shown in Fig. 3.2.

One may identify several regimes which are associated with the flow charac-
teristics around the sphere. For small Reynolds numbers, viscous effects are
dominating and no separation is observed. The analytical solution for CD is
presented above. In the transition region (i.e. 1 < Rep < 1000) inertial effects
become of increasing importance. Above a certain Reynolds number, sepa-
ration patterns of the flow around the particle begin to be observed, which
change pressure and shear stress distributions. Numerous correlations have
been proposed in order to represent the experimental data. A frequently used
correlation is that proposed by Schiller and Naumann [71], which fits the data
up to Rep = 1000 reasonably well (see Fig. 3.2). The Schiller-Naumann corre-
lation takes into account a correction to the Stokes expression, which is non-
linear in the Reynolds number:

CD = 24

Rep
(1+0.15Re0.687

p ) (3.12)
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Above this region and below a critical value of Rep (i.e. 1000 < Rep < Rep,cr i t ),
the so- called Newton’s regime is observed, where form drag plays the decisive
role and drag coefficient is nearly constant (CD ≈ 0.45). For Rep > Rep,cr i t , tran-
sition to a turbulent boundary layer occurs, leading to a drastic decrease of the
drag coefficient, since the separation point moves significantly downstream at
the particle surface.

3.2.1.2 Forces due to pressure and shear stresses

Local pressure and shear stress gradients in the flow give rise to additional
forces on the particle. For example, a local pressure gradient tends to acceler-
ate particles in the opposite direction of the pressure gradient. A shear stress
distribution has a similar effect and generates a force in the direction of the
divergence of the shear stress. Hence, combining both effects, one obtains:

∫
Si

(−pI +τ) ·ndS →︸︷︷︸
Gauss’ divergence theorem

∫
Vi

(−∇p +∇·τ)dV

⇒ FF,p +FF,τ = Vi (−∇p +∇·τ) (3.13)

In the above relations, it is implicitly assumed that particles are sufficiently
small, such that the global pressure and shear stress gradients are nearly con-
stant over the particle volume.

3.2.1.3 Buoyancy

Buoyancy can be regarded as a pressure gradient force due to the hydrostatic
pressure variation in a fluid. The pressure distribution in a fluid at rest is given
by the hydrostatic equation:

∇p = ρc g. (3.14)
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3.2 Phenomenology of dispersed flows

The total force due to the pressure distribution resulting from the above equa-
tion is simply given by the surface integral:∫

Si

−p I ·ndS =
∫

Vi

−∇pdV =−ρcVi g (3.15)

This is also known as the Archimedes’ principle: the buoyancy force acting on
the particle is given by the weight of the displaced fluid, in which the particle
is immersed.

3.2.1.4 Relaxation time

The particle relaxation (or response) time is an extremely important param-
eter which may be used to characterize the capability of particles to follow
changes in the velocity of the continuous phase. Being a characteristic time
scale of particle motion, it will naturally appear as a central quantity in the
model development.

Rewriting Eq. (3.1), considering the expression for the drag force in the Stokes
regime presented above and the gravity/buoyancy contributions, results in:

mi
dv

dt
= 3πµcD(uc −v)+ (ρd −ρc)Vi g. (3.16)

With help of the definition of the particle relaxation time (see section 2.1.1),
the equation of motion becomes:

dv

dt
= uc −v

τ
+

(
1− ρc

ρd

)
g. (3.17)

The solution of this equation for a simplified case representing a jump in the
fluid velocity from zero to uc = (uc,x ,0,0) and an initial particle velocity of zero,
gives the evolution of the particle axial velocity, vx (no gravity acting in this
direction). Hence:

vx = uc,x(1−e− t
τ ). (3.18)
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From this equation it is obvious that the particle relaxation time, τ, is the time
required for a particle, released with zero velocity into a flow with uc , to reach
(1−1/e) = 63.2 % of the terminal velocity (in this case, the continuous phase
velocity). The solution of Eq. (3.17) is schematically represented in Fig. 3.3.
Another interpretation for τ is the time that would be required to reach the
terminal velocity if the initial acceleration was kept constant. This can be seen
by manipulating Eq.(3.17):

dv

dt
= dv

dt

∣∣∣
t=0

= ∆v

∆t
= uc

τ

⇒ t |v→uc = τ. (3.19)

Figure 3.3: Schematic representation of the solution of Eq. (3.17).

Note that the solution of Eq. (3.17) for a constant uc , including gravity and
buoyancy contributions, yields the following asymptotic value for the particle
velocity (terminal velocity):
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3.2 Phenomenology of dispersed flows

vT = uc +
(
1− ρc

ρd

)
τg. (3.20)

As seen above, the relaxation time is a time scale which characterizes momen-
tum exchange between particle and fluid due to drag. The Stokes number is
defined as the ratio between τ and some characteristic time τc defined for the
flow field:

St = τ

τc
. (3.21)

If St ¿ 1, particles will have sufficient time to respond to changes in the flow
and are likely to adopt the fluid velocity very rapidly. On the other hand, for
St À 1, particle movement is not affected by variations in the flow field be-
cause there is essentially not enough time to respond to fluid velocity changes.

3.2.2 Particle-Fluid interaction: heat exchange

In the present work, energy coupling between particles and fluid occurs
through the mechanisms of heat conduction, advection and phase change.
Kinetic energy changes due to efflux of mass (e.g. droplet evaporation) is usu-
ally very small compared to the enthalpy fluxes at the surface and shall be
therefore neglected. Furthermore, due to the small temperatures considered
here, radiative heat transfer will not be accounted for.

The particle temperature equation can then be written as:

mi cp,d
dTi

dt
= Q̇c +ṁLv , (3.22)

cp,d is the specific heat of the particle material, Q̇c is the heat transfer rate from
the continuous phase, ṁ is the rate of mass transfer from the particle surface
and Lv is the latent heat of vaporization. The above equation states that the
internal energy variation of the particle is controlled by the heat exchange with

35



Continuous and Dispersed Phase Equations

the continuous phase and the energy associated with change of phase. For
example, if there is no heat transfer to an evaporating droplet, it tends to cool
down as mass is evaporated from the surface. Also, at boiling conditions, the
amount of heat exchanged with the continuous phase is exactly that required
to produce the mass flow rate ṁ of vapor at the droplet surface; i.e. dTi /dt = 0.

The heat transfer rate Q̇c at the surface of the particle is given by:

Q̇c =−
∫

Si

q̇cdS, (3.23)

where q̇c is the heat transfer rate per unit area (heat flux) from the particle. It
is determined by Fourier’s law:

q̇c =−kc
∂Tc

∂r

∣∣∣
r=D/2

, (3.24)

kc the thermal conductivity of the continuous phase, Tc represents its temper-
ature.

Neglecting at first any volumetric sources of heat (i.e., ṁ = 0), the steady state
boundary layer equation (in its non-dimensional form) for the internal energy
of an incompressible continuous phase can be written as [41]:

u∗
c ·∇∗T ∗

c = 1

RepPrc
∇∗2T ∗

c , (3.25)

where the dimensionless temperature T ∗
c is defined as T ∗

c = Tc−Ti ,S

Tc,∞−Ti ,S
; Ti ,S is the

temperature at the particle surface and Tc,∞ is the free stream temperature of
the continuous phase. The Prandtl number Prc can be interpreted as a ratio
between the rates of diffusion of momentum and diffusion of thermal energy
and is given by:

Prc = µc

kc/cp,c
, (3.26)

with cp,c the specific heat of the continuous phase.
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The product of Reynolds and Prandtl numbers appearing in Eq. (3.25) is called
the Peclet number (Pe) and is an important parameter, which defines the role
of advection of heat by the fluid. Thus:

Pe = RepPrc . (3.27)

The case of Stokes flow implies Rep ¿ 1. According to the above relationship,
unless the Prandtl number Prc is very large (for air, for example, Pr = 0.7), this
condition also implies Pe ¿ 1. Under these circumstances, the problem sim-
plifies to solving a conduction equation

∇2Tc = 0, (3.28)

with the boundary conditions: T = Ti ,S , for r = D/2; T → Tc,∞, for r →∞. In
this case, the analytical temperature profile along the radial coordinate r is
given by:

Tc(r ) = Tc,∞+ D

2r
(Ti ,S −Tc,∞). (3.29)

It is also possible to determine the heat flux from the fluid to the particle:

q̇c = kc
∂Tc

∂r

∣∣∣
r=D/2

= 2kc

D
(Tc,∞−TS,i ). (3.30)

The heat transfer at a surface is usually expressed with help of the concept of
a convective heat transfer coefficient defined by Newton’s law: q̇c = htc (Tc,∞−
TS,i ). With this definition, the heat transfer coefficient htc is given by:

htc =
−kc

∂Tc
∂r

∣∣∣
r=D/2

Ti ,S −Tc,∞
= 2kc

D
. (3.31)
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The Nusselt number (Nu) represents the dimensionless rate of heat transfer
and is given by:

Nu = ∂T ∗
c

∂r ∗

∣∣∣
r∗=1

= htcD

kc
. (3.32)

Based on the above analysis, the following expression for Nu is obtained:

Nu = 2. (3.33)

Consider now a particle moving in a fluid (with Rep ,Pe ¿ 1 ) and that the par-
ticle temperature is nearly uniform in the interior and on the surface. This
should be the case if the convective heat transfer coefficient is small compared
to the internal heat transfer coefficient (due to conduction) calculated across
the particle radius. This is measured by the so called Biot number (Bi), defined
as

Bi = htcD

2kd
. (3.34)

kd is the thermal conductivity of the particle material. According to Eq. (3.31),
Bi is given by the ratio of continuous and dispersed phase conductivities, Bi =
kc
kd

. For water droplets in air, Bi ¿ 1, and Ti ,S ≈ Ti . The expression for the heat
flux at the particle surface can be substituted in Eq. (3.23), yielding:

Q̇c =−
∫

Si

2kc

D
(Tc,∞−Ti )dS = 2kc

D
(Tc,∞−Ti ) Ai , (3.35)

with Ai = πD2; i.e. the particle surface area. Finally, upon substitution of the
above expression into the particle temperature equation:

mi
dTi

dt
= 2πDkc(Tc,∞−Ti ). (3.36)
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The above equation can be generalized for non-creeping conditions:

mi
dTi

dt
= NuπDkc(Tc,∞−Ti ), (3.37)

with the Nusselt number usually given by the correlation due to Ranz and Mar-
shall [68]:

Nu = 2+0.6Re
1
2
pPr

1
3 . (3.38)

3.2.3 Particle-Fluid interaction: mass diffusion

The particle continuity equation states that the rate of change of the particle
mass equals the total mass efflux through the surface:

ṁ = dmi

dt
=

∫
Si

ρd (û · n)dS = ṁ
′′

Ai . (3.39)

In general, it is assumed that a binary mixture exists, consisting of the gas
phase and the vapor of the particle liquid. Fick’s law describes the mass flux at
the surface of a particle in a binary mixture as:

ṁ
′′ =−ρcDcd

∂Yv

∂r

∣∣∣
r=D/2

, (3.40)

with Dcd the binary diffusion coefficient associated to the mixture comprising
of continuous and dispersed phases.

The non-dimensional form of the concentration equation reads:

u∗
c ·∇∗Y ∗

v = 1

RepScc
∇∗2Y ∗

v , (3.41)

where Y ∗
v is defined as Y ∗

v = Yv−YS
Yv,∞−YS

; YS is the vapor mass fraction at the particle
surface and Yv,∞ is the vapor mass fraction far from the surface.

39



Continuous and Dispersed Phase Equations

The Schmidt number Scc represents the ratio of rates of diffusion of momen-
tum and diffusion of mass:

Scc = µc

ρcDcd
. (3.42)

Since, for air, Scc ≈ 1, Stokes flow also implies that the convective transport of
vapor from the particle surface is negligible compared to the diffusive trans-
port. Thus, the solution of a diffusion equation allows the determination of
the vapor mass fraction profile – which is analogous to the temperature pro-
file determined in the previous section. A similar anaysis to the heat diffusion
problem also allows the definition of the Sherwood number (Sh) – the equiv-
alent of the Nusselt number for mass transfer – given by:

Sh = ∂Y ∗
v

∂r ∗

∣∣∣
r∗=1

= hmD

Dcd
, (3.43)

where hm is a mass transfer coefficient, defined as:

hm = 2Dcd

D

∂Y ∗
v

∂r ∗

∣∣∣
r∗=1

. (3.44)

Based on the above analysis, similarly to the heat transfer problem, the Sher-
wood number is given by:

Sh = 2. (3.45)

If convective transport of vapor from the droplet surface is significant (e.g.
high relative velocity between particle and continuous phase), the Ranz-
Marshall correlation can also be generalized for the mass transfer problem:

Sh = 2+0.6Re
1
2
pSc

1
3 . (3.46)
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Finally, the particle mass conservation equation for the pure diffusive limit
with no heat transfer associated can be written as:

ṁ

Ai
= ṁ

′′ =−ShπDρcDcd (Yv,∞−YS). (3.47)

3.2.4 Coupled heat and mass exchange – Stefan problem

The coupled problem of heat and mass exchange appears for example in the
description of droplet evaporation in sprays. Evaporation is the process of
phase change at the droplet surface and the transport of vapor away from the
surface. The driving force of evaporation is the gradient in concentration be-
tween the droplet surface and the free stream. Obviously, the gas phase must
provide the sufficient amount of latent heat in order that phase change occurs
at the surface.

The previous separate analysis for heat and mass exchange with the continu-
ous phase provides the basis for the derivation of analytical expressions when
both processes are coupled. Mass and energy balances at the interface be-
tween the droplet and the gas phase are written in this case as:

ṁ
′′
(1−YS) =−ρcDcd

∂Yv

∂r

∣∣∣
r=D/2

, (3.48)

and

kd
∂Ti ,S

∂r

∣∣∣
r=D/2,d

−kc
∂Tc

∂r

∣∣∣
r=D/2,c

= ṁ
′′
Lv , (3.49)

respectively.

In Eq. (3.48), the mass flux is evaluated with respect to the regressing surface
of the evaporating droplet, taking into account the Stefan convection. Equa-
tion (3.49) represents a balance of heat fluxes at the droplet surface: the dif-
ference in the conductive heat fluxes at both sides of the interface (droplet,
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Continuous and Dispersed Phase Equations

“d” and gas, or continuous phase, “c”) equates the energy required for vapor-
izing the liquid at the interface. An additional condition is required for the
relationship between the liquid heating rate and the interface temperature.
As mentioned before, for Bi ¿ 1, it is reasonable to assume that Ti ,S ≈ Ti and
∂Ti ,S/∂r |r=D/2,d ≈ 0.

For the special case of unitary Lewis number (Le ≈ 1, i.e. ρcDcd = kc/cp,c), the
coupled solution of energy and vapor mass fraction equations taking into ac-
count diffusion and Stefan convection (with respect to the droplet’s moving
surface) yields the following algebraic expression for the rate of vaporization:

ṁ = dmi

dt
=−2πD

kc

cp,c
ln(1+Bm). (3.50)

Bm is the Spalding mass transfer number:

Bm = YS −Yv,∞
1−YS

. (3.51)

The evaporative Sherwood (Sh) number is:

Sh = 2
ln(1+Bm)

Bm
. (3.52)

The evaporative Nusselt (Nu) number is taken to be equal to the evaporative
Sherwood number. Note that for the non-vaporizing limit, Bm → 0 and the
classical result for the heated sphere derived in the previous section is recov-
ered (Nu = 2).

Equation (3.50) is frequently referred to in the literature as D2-Law. The rea-
son for that lies in the fact that the rate of decrease of the droplet surface is
constant (i.e., it does not depend on the droplet size):

dD2

dt
=λ∗ =−8

1

ρd

kc

cp,c
ln(1+Bm) = constant. (3.53)
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3.3 Continuous phase equations

The determination of the rate of vaporization given by Eq. (3.50) still requires
knowledge of the mass transfer number Bm, which depends on the vapor mass
fraction at the droplet surface, YS , as well as the free stream value Yc,∞. For the
latter, a transport equation can be formulated, as will be seen later. YS can be
determined using the Clausius-Clapeyron equation (assuming phase equilib-
rium at the interface):

YS = 1

1+ Wmi x
W f uel

( p
pv

−1)
, (3.54)

with

p

pv
= e

Lv
R

(
1

Ti
− 1

Tboi l

)
(3.55)

and

Wmi x = (1−Yv,∞)Wai r +Yv,∞W f uel . (3.56)

In the above equations, W f uel , Wai r and Wmi x represent the molar masses of
fuel, air and mixture, respectively. pv is the vapor pressure and R is the gas
constant.

3.3 Continuous phase equations

The previous sections were concerned with the phenomenology of momen-
tum, heat and mass exchange between phases at the scale of one particle.
Various sub-models were presented and discussed. These are relevant to de-
velop appropriate closure models for dispersed and continuous phase aver-
aged equations, because the averaging procedure itself leads to loss of infor-
mation at the scale of the particle size. Very small volume fractions will be
considered in this work, i.e., the disperse flow will be essentially dilute. Hence,
it will be assumed that these models will be considered valid even when a col-
lection of particles exist.
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Continuous and Dispersed Phase Equations

Various approaches exist as to how to perform averaging of the single phase
equations, such as time, volume and ensemble averaging (and combinations
of them). There is still no consensus in the literature on the superiority of any
of them versus the others, probably because the outcome of averaging is very
similar in all cases, while differences are expected to be marginal comparing to
the typical uncertainty of the closure relations required to close the averaged
system of conservation laws. Volume averaging seems to be the most natural
in a finite volume CFD context and will be used as basis for the development of
averaged equations [22,67]. In the volume averaging procedure, however, tur-
bulent fluctuations are not explicitly involved and the equations retain their
instantaneous form. Therefore, in the present work, a double averaging proce-
dure with phase weighted quantities (analogous to Favre-averaging of variable
density flows) will be used along the lines of Oliveira [63].

Consider a characteristic volume V as shown in Fig. 3.4. Note that the pur-
pose is not to discretize the spatial domain, but to develop a set of averaged
equations. For this reason, the characteristic volume does not need to be nec-
essarily Cartesian; it is rather more important that its dimensions are much
bigger than typical non-uniformities of the flow (e.g. velocity gradients of the
flow around each particle), and at the same time much smaller than the global
dimensions of the problem1. However, it is important to point out that a key
assumption regarding Eulerian models for the dispersed phase is that there
are many particles in a computational cell-volume, which implies that the
control volume sizes are much greater than the average inter-particle spacing
(V À l 3

p).

Subdividing the total volume of the mixture into continuous phase and dis-
persed phase contributions (Vc and Vd , respectively), such that:

V = Vc ∪Vd . (3.57)

It is useful to define an indicator function Xc(x, t ) as follows:

1For simplicity, boundary particles (i.e. particles which are crossed by the control surface) will not be consid-
ered in the derivation, since they do not influence the basic structure of the resulting set of equations [22, 67]
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3.3 Continuous phase equations

Figure 3.4: Characteristic control volume V enclosing both phases.

Xc(x, t ) =
{

1 if x ∈ Vc

0 otherwise
(3.58)

The topological equation describes the evolution of Xc(x, t ) and is given by:

D Xc

Dt
= ∂Xc

∂t
+ui ·∇Xc = 0, (3.59)

with ui the velocity of the interface and

∇Xc = ncδ(x−xi ) (3.60)

and

nc =− ∇Xc

|∇Xc |
∣∣∣

i
. (3.61)

In the above equations, δ is the dirac-function and xi denotes all points on the
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Continuous and Dispersed Phase Equations

surface Si which describes the interface between phases; nc is the unit vector
normal to Si and points from phase c outwards.

The variation of Xd (Xc is obviously analogous) and ∇ along a directional co-
ordinate s is schematically represented in Fig. 3.5.

Figure 3.5: Characteristic control volume V and variation of Xd and ∇Xd

along s, i.e. ∂Xd
∂s .

Xc(x, t ) can be averaged over the characteristic volume V , which results in the
volume fraction of the continuous phase:
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3.3 Continuous phase equations

αc = 1

V

∫
V

Xc(x, t )dV = Vc(t )

V
. (3.62)

The volume average over V of a general quantitiy (scalar or tensor) defined for
the continuous phase is defined as follows:

〈Ψc〉V = 1

V

∫
V
Ψc(x, t )Xc(x, t )dV. (3.63)

Analogously, the average over Vc is:

〈Ψc〉Vc = 1

Vc

∫
Vc

Ψc(x, t )Xc(x, t )dV. (3.64)

It is possible to write:

〈XcΨc〉V = 1

Vc

∫
V
Ψc(x, t ) Xc(x, t )Xc(x, t )︸ ︷︷ ︸

Xc (x,t )

dV =αc〈Ψc〉Vc . (3.65)

Therefore:

〈XcΨc〉V =αc〈Ψc〉Vc . (3.66)

Concerning the gradient of Ψc , the following relation is valid (with 〈∇Ψc〉V =
∇〈Ψc〉V ):

〈∇Ψc〉V =∇〈XkΨc〉V −〈Ψc∇Xc〉V , (3.67)

where the product rule was implicitly used. With Eq. (3.60), it follows that:

−〈Ψc∇Xc〉V = 1

V

∫
V
Ψc(x, t )δ(x−xi , t )ncdV = 1

V

∫
Si∩V

Ψc,i (x, t )ncdS. (3.68)
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Ψc,i denotes the values of Ψ along the continuous phase side of the surface
and Si ∩V is the interface between phases inside the characteristic volume V .

Furthermore, with help of the topological equation:

−〈Ψc
∂Xc

∂t
〉V = 〈Ψc ui ·∇Xc〉V = 1

V

∫
Si

Ψcδ(x−xi , t )ui · (−nc)dS

= 1

V

∫
Si

Ψc,i ui · (−nc)dS. (3.69)

The above relations form the basis for the derivation of volume-averaged
equations for the continuous phase.

3.3.1 Continuity equation

Multiplying the continuity equation for the continuous phase by the indicator
function and averaging over V results in:

〈Xc
∂ρc

∂t
〉V +〈Xc∇· (ρc uc)〉V = 0. (3.70)

The first term can be rewritten as

〈Xc
∂ρc

∂t
〉V = ∂〈(ρc Xc)〉V

∂t
−〈ρc

∂Xc

∂t
〉V , (3.71)

with

−〈ρc
∂Xc

∂t
〉V = 〈ρc ui ·∇Xc〉V = 1

V

∫
Si

ρc,i ui · (−nc)dS. (3.72)

The convective term becomes:

〈Xc∇· (ρc uc)〉V =∇·〈(Xcρc uc)〉V − 1

V

∫
Si

ρc,i uc,i · (−nc)dS. (3.73)

48



3.3 Continuous phase equations

Rearrangement of the above relations yields (with ρc,i = ρc):

∂〈(ρc Xc)〉V
∂t

+∇·〈(Xcρc uc)〉V = 1

V

∫
Si

ρc(ui −uc,i ) ·ncdS. (3.74)

Finally, with help of Eq. (3.66):

∂(〈ρc〉Vcαc)

∂t
+∇· (〈ρc uc〉Vcαc) = 1

V

∫
Si

ρc(ui −uc,i ) ·ncdS. (3.75)

A source term Γ can be defined as:

Γ= 1

V

∫
Si∩V

ρc(uc,i −ui ) ·ncdS, (3.76)

i.e., −Γ represents loss of mass, if uc,i > ui (nc points into the dispersed phase).

3.3.2 Momentum equation

With the above definitions and results, it may be written for the momentum
equation:

〈Xc
∂(ρc uc)

∂t
〉V +〈Xc∇· (ρc uc uc)〉V =−〈Xc∇p〉V +〈Xc∇·τ〉V +〈Xcρc g〉V . (3.77)

The time derivative term takes the following form:

〈Xc
∂(ρc uc)

∂t
〉V = ∂〈(Xcρc uc)〉V

∂t
−〈ρc uc

∂Xc

∂t
〉V

= ∂(αc〈ρc uc〉Vc )

∂t
+ 1

V

∫
Si

ρc uc,i ui · (−nc)dS. (3.78)

For the convective term, it is possible to write:
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〈Xc∇· (ρc uc uc)〉V = ∇· (〈Xcρc uc uc〉V )−〈(ρc uc uc) ·∇Xc〉V

= ∇· (αc〈ρc uc uc〉Vc )+ 1

V

∫
Si

ρc,i uc,i uc,i ·ncdS.

(3.79)

Pressure and shear stress terms are obtained in the following operations:

〈Xc∇p〉V = ∇〈Xc p〉V −〈p∇Xc〉V

= ∇(αc〈p〉Vc )+ 1

V

∫
Si

pi I ·ncdS (3.80)

〈Xc∇·τ〉V = ∇·〈Xcτ〉V −〈τ ·∇Xc〉V

= ∇· (αc〈τ〉Vc )+ 1

V

∫
Si

τi ·ncdS (3.81)

and for the gravity term:

〈Xcρc g〉V = αc〈ρc〉Vc g. (3.82)

Rearranging:

∂(αc〈ρc uc〉Vc )

∂t
+∇· (αc〈ρc uc uc〉Vc ) = −∇(αc〈p〉Vc )+∇· (αc〈τ〉Vc )

+ αc〈ρc〉Vc g

− 1

V

∫
Si

pi I ·ncdS + 1

V

∫
Si

τi ·ncdS

+ 1

V

∫
Si

ρc uc,i (ui −uc,i ) ·ncdS.

(3.83)
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3.3 Continuous phase equations

At this point, care must be taken when identifying the interphase forces in
the volume-averaged momentum equation for the continuous phase. It is
very common to consider the surface integrals in Eq. (3.83) (excluding the last
term, which obviously accounts for the momentum that the continuous phase
gains or loses due to phase change) equal to the total hydrodynamic force (per
unit volume) acting on the particles. However, as pointed out by Prosperetti
[67], this might lead to a physically incorrect result. Consider for instance a
system at rest without external forces. In this case, the LHS of Eq. (3.83) van-
ishes, as well as shear stresses, while the term 〈p〉Vc is constant. Therefore, it is
possible to write: ∇(αc〈p〉Vc ) = 〈p〉Vc∇αc . This, if correct, would imply that an
extra source of momentum exists only due to the spatial arrangement of the
phases, which is clearly non-physical.

Therefore, the correct procedure – in line with Prosperetti’s [67] arguments –
must involve the rearrangement of pressure and shear stress terms. Thus:

∇(αc〈p〉Vc )+ 1

V

∫
Si

pi I ·ncdS = αc∇〈p〉Vc +〈p〉Vc∇αc + 1

V

∫
Si

pi I ·ncdS

(3.84)

∇· (αc〈τ〉Vc )+ 1

V

∫
Si

τi ·ncdS = αc∇· 〈τ〉Vc +〈τ〉Vc ·∇αc + 1

V

∫
Si

τi ·ncdS

(3.85)

The terms 〈p〉Vc∇αc and 〈τ〉Vc ·∇αc can be recast as

〈p〉Vc∇αc = 〈p〉Vc
1

V

∫
V

∇Xc︸︷︷︸
ncδ(x−xi )

dV = 1

V

∫
Si

〈p〉Vc I ·ncdS (3.86)

and

〈τ〉Vc ·∇αc = 〈τ〉Vc
1

V

∫
V

∇Xc︸︷︷︸
ncδ(x−xi )

dV = 1

V

∫
Si

〈τ〉Vc ·ncdS, (3.87)
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respectively.

The momentum equation is now expressed as:

∂(αc〈ρc uc〉Vc )

∂t
+∇· (αc〈ρc uc uc〉Vc ) = −αc∇〈p〉Vc +αc∇· 〈τ〉Vc

+ αc〈ρc〉Vc g

− 1

V

∫
Si

(〈p〉Vc −pi )I ·ncdS

+ 1

V

∫
Si

(〈τ〉Vc −τi ) ·ncdS

+ 1

V

∫
Si

ρc uc,i (ui −uc,i ) ·ncdS.

(3.88)

Consider now that small air bubbles are immersed in a steady uniform water
stream. In addition to the gravitational field, there is a contribution of stresses
generated by gradients in the flow field (velocity, pressure). It will be basically
assumed here that the characteristics of the interaction between individual
particles and their immediate surroundings (which give rise to a drag force,
for example) are approximately independent on the large scale structure of the
stress field (such as macroscopic pressure gradient due to gravity for example).
As shown before, the errors which derive from this assumption are expected
to be less important for Rep ¿ 1. This argument has been also formalized by
Prosperetti [67].

According to the above analysis, it might be useful to rewrite the RHS of Eq.
(3.88) as (the momentum exchange due to phase change has been disre-
garded, for simplicity):

RHS = −∇〈p〉Vc +∇·〈τ〉Vc +αc〈ρc〉Vc g

+ αd∇〈p〉Vc −αd∇· 〈τ〉Vc

− 1

V

∫
Si

(〈p〉Vc −pi )I ·ncdS
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3.3 Continuous phase equations

+ 1

V

∫
Si

(〈τ〉Vc −τi ) ·ncdS

(3.89)

Pressure and shear stress terms were rewritten with help of the constraintαc+
αd = 1 (monodisperse). The fourth and fifth terms are identified as forces that
arise due to large scale non-uniformities of the continuous phase flow. Again,
for modeling purposes, it is clear that there exists a separation of “macroscale”
forces, which appear due to large scale effects caused for instance by stress
gradients in the main flow and “microscale” forces as a result of the strucure
of the flow around each particle – represented by the surface integrals in the
above equation. The latter can be modeled by drag or lift forces, as already
pointed out before. Thus, it can be written in an explanatory manner:

−M = − 1

V

∑
F =−αd ∇〈p〉Vc +αd ∇· 〈τ〉Vc︸ ︷︷ ︸

macroscale effects

+ 1

V

∫
Si

(〈p〉Vc −pi )I ·ncdS − 1

V

∫
Si

(〈τ〉Vc −τi ) ·ncdS︸ ︷︷ ︸
microscale effects

(3.90)

The momentum transfer term M represents the sum of forces F (per unit vol-
ume) acting on the dispersed phase. Modeling of microscale effects in the mo-
mentum exchange between phases can only be achieved with a priori knowl-
edge of the physical mechanisms behind it for the type of flow in question.
That is, since the geometry of the flow is assumed in some sense (dilute dis-
persed flows of spherical particles), it is appropriate to model these effects
through forces formulated as extensions of phenomenological expressions
developed for single particle motion. These forces must be consistently for-
mulated together with the dispersed phase equations, as will be seen later on.

In the volume-averaged convective term, ∇· (αc〈ρc uc uc〉Vc ) the average of the
product between velocity components appears and still needs closure. For
that purpose, it is possible to define a decomposition (similar to the Reynolds
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decomposition for time average) in a volume-averaged and a fluctuating com-
ponent:Ψc = 〈Ψc〉Vc +Ψ′

c , such that:

〈ΨcΨc〉Vc = 〈Ψc〉Vc 〈Ψc〉Vc

+ 〈〈Ψc〉VcΨ
′
c〉Vc︸ ︷︷ ︸

=0

+〈Ψ′
c〈Ψc〉Vc 〉Vc︸ ︷︷ ︸

=0

+ 〈Ψ′
cΨ

′
c〉Vc ,

⇒αc〈ρc uc uc〉Vc = αcρc〈uc〉Vc 〈uc〉Vc +αc ρc〈u
′
c u

′
c〉Vc︸ ︷︷ ︸

≡−τpt
c

. (3.91)

where it is implicitly assumed that the continuous phase is incompressible.
The resulting term containing fluctuating velocity components (τpt

c ) is of-
ten called pseudo-turbulence or streaming stress and is analogous to the
Reynolds stress in single phase turbulence. It represents sub-volume fluctu-
ations, which can be caused by the flow around particles. Even though the
flow does not have to be turbulent to generate this stress, for the purpose of
closure this term is usually joined together with the turbulent stresses, as will
be discussed later.

3.3.3 Energy equation

For the applications studied in the present work (dispersed flows), mechani-
cal energy effects are small compared to those of internal energy. It is therefore
preferable to use a conservation equation for the latter, instead of a total en-
ergy equation. On the other hand, for instance when analyzing a multiphase
pipeline for example, it might be important to retain all contributions to the
total energy, because kinetic and potential energy variations are expected to
be important.

The single phase (specific) internal energy equation is written as:
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3.3 Continuous phase equations

∂(ρcic)

∂t
+∇· (ρc ucic) = − ∇· q̇c −p ∇·u+Φv , (3.92)

where q̇c = kc∇T , −p ∇ ·u represents the flow work due to motion, Φv is the
viscous dissipation function and volumetric source terms due to radiation or
chemical reaction, for example, have been neglected.

Averaging of the energy equation is done the same way as for the momentum
equation. On a term by term basis, starting with the LHS, the time derivative
term is:

〈Xc
∂(ρcic)

∂t
〉V = ∂(αc〈ρcic〉Vc )

∂t
+ 1

V

∫
Si

ρcic,i ui · (−nc)dS, (3.93)

while the convective term becomes:

〈Xc∇· (ρc ucic)〉V = ∇· (αc〈ρc ucic〉Vc )+ 1

V

∫
Si

ρc,i ic,i uc,i ·ncdS.

(3.94)

The diffusion term is derived similarly to the shear stress term:

〈Xc∇· q̇c〉V = ∇·〈Xc q̇c〉V −〈q̇c ·∇Xc〉V

= ∇· (αc〈q̇c〉Vc )+ 1

V

∫
Si

q̇c i ·ncdS (3.95)

Flow work term and viscous dissipation are given by:

−〈Xc p ∇·u〉V = −αc〈p ∇·u〉Vc

(3.96)
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and

〈XcΦv〉V = αc〈Φv〉Vc ,

(3.97)

respectively. The above terms can be put together in the following form:

∂(αc〈ρcic〉Vc )

∂t
+∇· (αc〈ρc ucic〉Vc ) = ∇· (αc〈q̇c〉Vc )

− αc〈p ∇·u〉Vc +αc〈Φv〉Vc

+ 1

V

∫
Si

[q̇c i +ρcic,i (ui )−uc,i ] ·ncdS.

(3.98)

The conductive heat transfer term (〈q̇c〉Vc ) is given by: 〈q̇c〉Vc =−kc∇〈Tc〉Vc .

The thermal energy equation can be also formulated as:

∂(αc〈ρcic〉Vc )

∂t
+∇· (αc〈ρc uchc〉Vc ) = ∇· (αc〈q̇c〉Vc )

− αc〈u ·∇p〉Vc +αc〈Φv〉Vc

+ 1

V

∫
Si

[q̇c i +ρchc,i (ui −uc,i )] ·ncdS,

(3.99)

with hc = ic + p
ρc

, or in terms of the enthalpy itself:

∂(αc〈ρchc〉Vc )

∂t
+∇· (αc〈ρc uchc〉Vc ) = ∇· (αc〈q̇c〉Vc )

− αc〈dp

dt
〉Vc +αc〈Φv〉Vc

+ 1

V

∫
Si

[q̇c i +ρchc,i (ui −uc,i )] ·ncdS,

(3.100)
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3.3 Continuous phase equations

with dp

dt
= ∂p

∂t +uc ·∇p

Closure for the energy equation represents one of the major challenges in
multiphase flow modeling and is also one of the least explored aspects in
Eulerian models. Difficulties arise due to the dissipation function and terms
like 〈p ∇ · u〉Vc and 〈u · ∇p〉Vc , but also interfacial integrals. Closure of these
terms rely on phenomenological models yet to be developed, which is out of
the scope of this work. For low Mach numbers, low viscosity, incompressible
flows, the contribution of viscous dissipation is known to be unimportant and
will be neglected here. The flow work term is also not expected to play a de-
cisive role (in comparison to the heat transfer between phases). Nevertheless,
for completeness a simple model based on the description of Crowe et al. [22]
will be presented. It is given by:

αc 〈p ∇·uc〉Vc = 〈p〉Vc ∇·U (3.101)

and

αc 〈Φv〉Vc = 〈τ〉Vc : ∇U, (3.102)

with the mixture velocity U given by U =αc〈uc〉Vc + (1−αc)〈u〉Vd .

Closure for the interfacial transfer terms will be worked out later.

Analogous to the convective term in the momentum equation, the convective
term of the energy equation can be recast with help of the Reynolds decom-
position given by Eq. (3.91). It is then rewritten as:

αc〈ρc ucic〉Vc = αcρc〈uc〉Vc 〈ic〉Vc +αc ρc〈u
′
ci

′
c〉Vc︸ ︷︷ ︸

≡−q pt
c

, (3.103)

where q pt
c is analogous to τpt

c and represents the contribution of sub-volume
fluctuations. This term will be modeled in a similar manner as the pseudo-
turbulence stress, as will be shown later.
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3.3.4 Transport equation for the fuel vapor mass fraction

In the droplet evaporation model, the fuel vapor mass fraction in the far field
(i.e., away from the surface of the droplet) Yv,∞ (≡ Yv ) appears in the determi-
nation of the mass transfer number – see Eq. (3.51). A transport equation for
Yv can be derived in the same context as above and is given by [22, 39]:

∂(αcρcYv )

∂t
+∇· (αcρc 〈uc〉Vc Yv ) = ∇·αc (fc + fpt

c )

− 1

V

∫
Si

[fci +ρcYS(uc,i −ui )] ·ncdS.

(3.104)

fc represents Fick’s diffusive flux, which is given by fc =Dcd∇Yv . fpt
c is the fluc-

tuating part of the diffusive flux, analogous to the previous cases.

3.4 Dispersed phase equations

An heuristic approach will be pursued herein, in which the particle equations
are used as a starting point to derive averaged equations for the dispersed
phase. A similar strategy was also used before by Crowe et al. [22]. The main
advantage is that it avoids the problem of interpretation of stress-like terms
that arrise in the Eulerian framework for the dispersed phase (which is not,
stricty speaking, a continuum), specially for dilute mixtures.

Consider the small averaging characteristic volume V , which contains Ni par-
ticles of a certain size D . It is appropriate to define the volumetric average of
an arbitrary quantityΨ inside each particle:

〈Ψ〉Vi =
∫

Vi
ΨdVi

Vi
. (3.105)

The ensemble average of 〈Ψ〉Vi over all particles of the same size reads:
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3.4 Dispersed phase equations

∑Ni 〈Ψ〉Vi

Ni
=

∑Ni 〈Ψ〉Vi Vi

αV
=

∑Ni
∫

Vi
ΨdVi

αV
=

∫∑
Vi=Vi

ΨdVi

αV
= 〈Ψ〉Vd . (3.106)

3.4.1 Conservation of mass

The continuity equation states that the accumulation rate of mass in the char-
acteristic volume V plus the net efflux through the surface enclosing this vol-
ume equals the total mass generated (or consumed) through phase change.
The rate of variation of a single particle’s mass is given by Eq. (3.50). This equa-
tion can be summed up as follows:

1

V

Ni∑ dmi

dt
= 1

V

Ni∑
ṁ = Ni ṁ

V
=− 1

V

∫
Si

û ·nd dS.

(3.107)

û is the velocity through the interface, with respect to the interface velocity,
given by û = uSi −ui ; uSi is the fluid velocity at the particle side of the interface.

Taking into account the source term above, the continuity equation can be
written in an Eulerian frame as:

∂(ρdα)

∂t
+∇· (ρdα〈u〉Vd ) = Ni ṁ

V
=

∫
Si

ρd (uSi −ui ) ·nd dS, (3.108)

where α is the local volume fraction corresponding to a certain size class
(
∑Ni α=αd ).

3.4.2 Particle equation of motion

The equation of motion for Stokes particles in a viscous fluid goes back to the
pioneering works of Basset [6], Boussinesq [17] and Oseen [64]. Therefore, the

59



Continuous and Dispersed Phase Equations

equation of motion is mostly referred to as Basset-Boussinesq-Oseen (BBO)
equation.The BBO equation (without considering unsteady forces) is given
below including the sum of the contributions of pressure (FF,p), shear stress
(FF,τ), drag (FD), and gravity forces:

dv

dt
= 〈uc〉Vc −v

τ
− 1

ρd
∇〈p〉Vc + 1

ρd
∇· 〈τ〉Vc +g. (3.109)

Equation (3.109) can be summed up for all particles of the same size and di-
vided by the characteristic volume V :

1

V

Ni∑(
ρd Vi

dv

dt
= ρd Vi

〈uc〉Vc −v

τ
−Vi ∇〈p〉Vc +Vi ∇· 〈τ〉Vc +ρd Vi g

)
. (3.110)

The result will be handled on a term by term basis. For the gravity term, it is
possible to write:

1

V

Ni∑
ρd Vi g = Niρd Vi

V
g = ρd αg. (3.111)

The pressure and shear stress terms are given by:

1

V

Ni∑
Vi ∇〈p〉Vc = Ni Vi

V
∇〈p〉Vc =α∇〈p〉Vc . (3.112)

and

1

V

Ni∑
Vi ∇· 〈τ〉Vc = Ni Vi

V
∇· 〈τ〉Vc =α∇·〈τ〉Vc . (3.113)

The drag term is

1

V

Ni∑
ρd Vi

〈uc〉Vc −v

τ
= ρd α

〈uc〉Vc −〈u〉Vd

τ
. (3.114)
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3.4 Dispersed phase equations

The left hand side of the BBO equation becomes:

1

V

Ni∑
ρd Vi

dv

dt
= ρd Ni Vi

V

d

dt

∑Ni v

Ni︸ ︷︷ ︸
〈u〉Vd

= ρd α
D

Dtp
〈u〉Vd (3.115)

with the derivative following a particle trajectory being replaced by a total
derivative defined as:

D

Dtp
= ∂

∂t
+〈u〉Vd ·∇. (3.116)

The final form of the particle equation of motion in an Eulerian frame is given
by:

ρd α
∂〈u〉Vd

∂t
+ρd α〈u〉Vd ·∇〈u〉Vd = −α∇〈p〉Vc +α∇·〈τ〉Vc

+ ρd α
〈uc〉Vc −〈u〉Vd

τ
+ ρd αg. (3.117)

Alternatively, with help of the continuity equation, it can be written in a con-
servative form:

∂(ρd α〈u〉Vd )

∂t
+∇· (ρd α〈u〉Vd 〈u〉Vd ) = −α∇〈p〉Vc +α∇· 〈τ〉Vc

+ ρd α
〈uc〉Vc −〈u〉Vd

τ+ ρd αg

+ Ni

V
ṁ〈u〉Vd . (3.118)
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3.4.3 Particle energy equation

The temperature equation for a single particle can be written as:

ρd Vi cp,d
dT

dt
= NuπD kc(〈Tc〉Vc −T )+ṁLv , (3.119)

with ṁ given by Eq. (3.50).

Once again, summing up for all particles with the same size (and multiplying
by 1/V ) yields for the RHS:

1

V

Ni∑
NuπD kc(〈Tc〉Vc −T ) = Ni

V
NuπD kc(〈Tc〉Vc −〈T 〉Vd ). (3.120)

1

V

Ni∑
ṁLv = Ni

V
ṁLv (3.121)

For constant specific heat, one can simply write for the RHS:

ρd Vi cp,d
dT

dt
= ρd Vi

di

dt
, (3.122)

where the internal energy i has been considered, such that di = cp,d dT for an
incompressible phase. Furthermore:

1

V

Ni∑
ρd Vi

di

dt
= = ρd Ni Vi

V

d

dt

∑Ni i

Ni︸ ︷︷ ︸
〈i 〉Vd

= ρd α
D

Dtp
〈i 〉Vd . (3.123)

The internal energy equation for a given size class is therefore given by:

ρd α
∂〈i 〉Vd

∂t
+ρd α〈u〉Vd ·∇〈i 〉Vd = Ni

V
NuπD kc(〈Tc〉Vc −〈T 〉Vd )
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3.5 Interface conditions

+ Ni

V
ṁLv , (3.124)

or

∂(ρd α〈i 〉Vd )

∂t
+∇· (ρd α〈u〉Vd 〈i 〉Vd ) = Ni

V
NuπD kc(〈Tc〉Vc −〈T 〉Vd )

+ Ni

V
ṁ(Lv +〈i 〉Vd ). (3.125)

3.5 Interface conditions

Consider a control volume V ∗ enclosing the interface S∗
i which separates both

phases, as shown in Fig. 3.6. The following approximation is valid:

V ∗ = V1 +V2 ≈ (

≈S∗︷ ︸︸ ︷
S1 +S2)δ, (3.126)

with V ∗ and S∗ the total volume and surface area of the control volume, re-
spectively.

The integral form of mass conservation for the total volume is:

d

dt

∫
V ∗
ρdV +

∫
S∗
ρ(u−ui ) ·ndS = 0, (3.127)

or

d

dt

∫
V1

ρ1dV +
∫

S1

ρ1(u1 −ui ) ·n1dS =− d

dt

∫
V2

ρ2dV +
∫

S2

ρ2(u2 −ui ) ·n2dS,

(3.128)

while for the k-th (k = 1 or 2) phase control volume:

d

dt

∫
Vk

ρkdV +
∫

Sk+S∗
i

ρk(uk −ui ) ·nkdS = 0. (3.129)
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Continuous and Dispersed Phase Equations

Figure 3.6: Control volume enclosing a surface S∗
i which locally separates the

two phases.

By taking the limit δ → 0, which leads to dV ,V ∗ → 0 (strictly speaking, the
interface can not accumulate mass), the following result can be derived:

∫
S∗

i

ρ1(u1 −ui ) ·n1dS =−
∫

S∗
i

ρ2(u2 −ui ) ·n2dS. (3.130)

Since S∗
i is arbitrarily chosen, the integrand must vanish locally. Therefore:

ρ1(u1 −ui ) ·n1 =−ρ2(u2 −ui ) ·n2 =−ṁ
′′,∗. (3.131)

The balance of momentum for V ∗ states that the jump in phase tensions at
the interface, combined with the momentum fluxes must be balanced by the
action of surface tension (σ):
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3.5 Interface conditions

ṁ
′′,∗(u1 −u2)+ (p2 −p1)I ·n+ (τ2 −τ1) ·n = ∇sσ−σκn,

(3.132)

where the relation n1 =−n2 = n was used. The first term on the RHS vanishes,
unless the surface tension varies along the interface coordinate, s, due to sur-
factant effects for example (which is not the case here). κ is the local mean
curvature of the interface, given by

κ=∇·n. (3.133)

Surface tension effects in the normal direction do not need to be taken into
account explicitly in the present work, since there is no need to link continu-
ous and dispersed phase interfacial pressures (through a pressure-jump con-
dition). The latter does not appear in the momentum equations as a conse-
quence of the underlying assumptions involving the model derivation. In the
examples studied in this work, particle sizes will be of order O (100 −102µm).
For particles of such sizes, the form of the interface will very unlikely change,
and can be assumed to be known and remain constant (i.e. spherical parti-
cles).

Using the same procedure as for mass and momentum, the following condi-
tion for the energy balance is obtained (the energy associated to the interface,
ei ≈ S∗

i σ, is not considered because the change in surface energy associated to
the change in size due to evaporation is negligible compared to the enthalpy
fluxes at the interface):

ṁ
′′,∗(e1 −e2)− (−p1n1 +τ1 ·n1) · (u1 −ui ) + (−p2n2 +τ2 ·n2) · (u2 −ui ) =

= q2 ·n2 −q1 ·n1,

(3.134)

with ek = ik + uk ·uk
2 being the specific energy of a given phase. For the exam-

ple of droplet evaporation, one normally neglects the work exerted by shear
stresses and the above equation can be rewritten as:
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ṁ
′′,∗(i1 + u1 ·u1

2
− i2 − u2 ·u2

2
)+ p1

ρ1
ρ1(u1 −ui ) ·n1 − p2

ρ2
ρ2(u2 −ui ) ·n2 =

= q2 ·n2 −q1 ·n1

(3.135)

Using the definition of specific enthalpy; hk = ik + pk
ρk

:

ṁ
′′,∗(h1 + u1 ·u1

2︸ ︷︷ ︸
¿h1

−h2 − u2 ·u2

2︸ ︷︷ ︸
¿h2

) = q2 ·n2 −q1 ·n1.

ṁ
′′,∗(h1 −h2︸ ︷︷ ︸

Lv

) = q2 ·n2 −q1 ·n1, (3.136)

which correponds to Eq. (3.49).

A similar analysis leads to the following constraint at the interface for the
species (fuel vapor) mass fraction (see also Eq. 3.48):

ṁ
′′,∗(Y1 −Y2) = f2 ·n2 − f1 ·n1, (3.137)

where fk represents the Fick’s diffusive fluxes at both sides of the interface. For
the case of droplet evaporation, Y1 = 1 and f1 = 0 (phase 1 is arbitrarily taken
to be the liquid droplet).

The above conditions are useful in the formulation of closure models. Con-
tinuous phase equations must be coupled to the dispersed phase equations
through the interfacial integrals, otherwise they remain undetermined. Each
of the local interfacial conditions can be formulated in terms of the total sur-
face representing the sum of all particles pertaining to a certain size class
(monodisperse situation), by integration over Si .Thus, comparing Eqs. (3.75),
(3.108) and (3.131), the following condition can be written for the continuous
phase continuity equation:

1

V

∫
Si

ρc(ui −uc,i ) ·ncdS =−Γ=−Ni ṁ

V
. (3.138)
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3.5 Interface conditions

Similarly, unclosed momentum exchange terms due to microscale effects
(here, only the drag force) and the momentum flux due to phase change are
represented by:

1

V

∫
Si

(〈p〉Vc −pi )I ·ncdS − 1

V

∫
Si

(〈τ〉Vc −τi ) ·ncdS =

= −ρd α
〈uc〉Vc −〈u〉Vd

τ
(3.139)

and

1

V

∫
Si

ρc uc,i (ui −uc,i ) ·ncdS =−Ni

V
ṁ〈u〉Vd , (3.140)

respectively. At this point, the momentum transfer term M can be determined
as:

M = −α∇〈p〉Vc +α∇· 〈τ〉Vc +ρd α
〈uc〉Vc −〈u〉Vd

τ
. (3.141)

Hence, the sum of the above interfacial integrals in the continuous phase mo-
mentum equation is

1

V

∫
Si

(...)dS = −M−Γ〈u〉Vd . (3.142)

For the energy equation, it is possible to write:

1

V

∫
Si

[q̇c i +ρcic,i (ui −uc,i )] ·ncdS ≈ −Ni

V
NuπD kc(〈Tc〉Vc −〈T 〉Vd )

− Ni

V
ṁ(Lv +〈i 〉Vd ), (3.143)
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where the pressure contribution at the interface was neglected in compari-
son to internal energy and latent heat contributions. The above terms can be
conveniently redefined as:

Q̇ = 6
α

D2
Nukc(〈Tc〉Vc −〈T 〉Vd )+Γ(Lv +〈i 〉Vd ), (3.144)

representing the sum of convective heat transfer between phases and heat
transfer associated to phase change.

For the species equation, the interface constraint is:

1

V

∫
Si

[fci +ρcYS(uc,i −ui )] ·ncdS = −Γ. (3.145)

3.6 Turbulence modeling and closure

Description of turbulence in single phase flows is extremely challenging, let
alone multiphase flows. There are very few models available in the Eulerian
framework, specially in the RANS context. The reason for that is the diffi-
culty in obtaining reliable experimental data on particle-turbulence interac-
tion, while multiphase resolved simulations in LES and DNS context are very
expensive.

The procedure used to develop RANS equations in multiphase context is simi-
lar to that of single phase flows, i.e., by decomposing dependent variables into
a mean and a fluctuating component (Reynolds decomposition)

Ψ=Ψ+Ψ′
, (3.146)

with Ψ = 1
T

∫
T ΨdT , and taking the time-average of the corresponding equa-

tion.

According to Oliveira [63], it is also interesting to define theαk-weighted mean
value ofΨ as:
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3.6 Turbulence modeling and closure

Ψ̃≡ αk〈Ψk〉Vk

αk
, (3.147)

and the decomposition ofΨ into a phase-averaged component and its fluctu-
ating part is:Ψ= Ψ̃+Ψ′′

.

In order to obtain a closed set of equations involving the dependent vari-
ables, many assumptions have to be made regarding the different correlations
between fluctuating quantities. Only the most important results will be pre-
sented here; further details can be found in [43, 63].

With the above definitions, it is possible to rewrite the continuity, momentum,
energy and species equations as follows:

ρc
∂αc

∂t
+ρc∇· (αc ũc) =−Γ. (3.148)

ρc
∂(αc ũc)

∂t
+ρc∇· (αc ũc ũc) = −∇p̃ +∇· τ̃+αcρc g

+ ∇·αc (τ̃t
c + τ̃pt

c )−M−Γũ (3.149)

ρc
∂(αc ĩc)

∂t
+ρc∇· (αc ũc ĩc) = ∇·αc(q̃ c + q̃ t

c + q̃ pt
c )

− p̃∇· Ũ−Q̇. (3.150)

ρc
∂(αc Ỹv )

∂t
+ρc∇· (αc ũc Ỹv ) = ∇·αc( f̃ c + f̃

t
c + f̃

pt
c )−Γ, (3.151)

Note that the gas density is taken out of the derivatives, since all fluid prop-
erties are for simplicity assumed to be constant. It is expected to be a good
approximation due to the small pressure and temperature variations, as well
as small fuel vapor mass fractions.
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The fluctuating stress, heat and mass transfer terms are evaluated by means
of the gradient diffusion hypothesis. For simplicity – and lack of a better ap-
proach, it is assumed that contributions due to turbulence and sub-volume
fluctuations due to the presence of particles can be joined together and mod-
eled by the usual turbulent diffusivity approach. They are given by:

τ̃t
c + τ̃pt

c ≈µt
c(∇ũc +∇ũT

c )− 2

3
(µt

c∇· ũc +ρcκ̃c)I, (3.152)

with µt
c the turbulent viscosity of the continuous phase, κc the turbulence ki-

netic energy and κ̃c its phase averaged value.

q̃ c + q̃ t
c + q̃ pt

c = ke f f
c ∇T̃c (3.153)

with ke f f
c = µ

e f f
c

Prt
c

and

f̃ c + f̃
t
c + f̃

pt
c =D

e f f
c ∇Ỹv , (3.154)

with D
e f f
c = ν

e f f
c

Sct
c

. In the above equations, the effective kinematic viscosity

(νe f f
c ) is given by the sum of molecular and turbulent contributions, i.e.,

ν
e f f
c = νc +νt

c . Prt
c and Sct

c are the turbulent Prandtl and Schmidt numbers,
respectively, taken to be unity.

The Eulerian particle equations for a single size class (monodisperse), on the
other hand, are modified as follows:

ρd
∂α

∂t
+ρd∇· (αũ) = Γ (3.155)

ρd
∂(αũ)

∂t
+ρd∇· (α ũũ) = ∇· (α τ̃t

d )+ρd αg+M+Γũ. (3.156)

70



3.6 Turbulence modeling and closure

ρd
∂(αĩ )

∂t
+ρd∇· (α ũĩ ) = ∇· (αq̃ t

d )+Q̇. (3.157)

The turbulence fluctuation terms in the above equations are also modeled us-
ing the Boussinesq approximation. Hence:

τ̃t
d ≈µt

d (∇ũ+∇ũT )− 2

3
(µt

d∇· ũ+ρd κ̃d )I, (3.158)

where µt
d is the turbulent viscosity of the dispersed phase and κ̃d its turbu-

lence kinetic energy (phase-averaged); and

q̃ t
d = k t

d∇T̃ (3.159)

with k t
d = µt

d

Prt
d

.

Based on substitution of the time average velocities by u = ũ+u′′ = ũ− αu′
α

(see
[63] for details) and from the gradient diffusion hypothesis for the transport of

α by turbulent fluctuations, that is αu
′
k = νt

k∇α, the momentum transfer term
can be approximated by:

M ≈ −α∇p̃ +α∇· τ̃+ρd α
(ũc − ũ)

τ
+ ρd

τ

νt
d

σα
∇α︸ ︷︷ ︸

Turbulent drag

, (3.160)

where σα is a turbulent dispersion coefficient, taken to be 0.7. The corre-
sponding turbulent terms in the energy equations are neglected.

The turbulence model used herein is a two-equation, two-phase κ− ε model,
as described by Oliveira and Issa [43]. The equations for the transport of turbu-
lence kinetic energy kc and its rate of dissipation εc , for the continuous phase,
are written as:
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ρc
∂(αcκ̃c)

∂t
+ρc∇· (αc ũcκ̃c) = ∇· (αc

µt
c

σk
∇κ̃c)+αc(G −ρc ε̃c)+Sk

d −Γκ̃c

(3.161)

and

ρc
∂(αc ε̃c)

∂t
+ρc∇· (αc uc ε̃c) = ∇· (αc

µt
c

σε
∇ε̃c)+αc

ε̃c

κ̃c
(C1G −C2ρc ε̃c)+Sεd −Γε̃c .

(3.162)

In the above equations, the turbulent viscosity µt
c and the generation of κ̃c are

computed from:

µt
c = ρcCµ

k̃2
c

ε̃c
(3.163)

and

G = µt
c∇ũc : (∇ũc +∇ũT

c ). (3.164)

Γκ̃c and Γε̃c are the additional source terms due to droplet evaporation. In ad-
dition, Sk

d and Sεd represent the interaction between disperse phase and con-
tinuous phase turbulence, which are given by:

Sk
d = −ρd

τ

[
2ααc(1−Ck) κ̃c +

νt
c

σα
∇α · (ũ− ũc)

]
(3.165)

Sεd = −2ααc(1−Ck) ε̃c
ρd

τ
. (3.166)

In the above equations, Ck is given by:

Ck =
√

Ct . (3.167)

72



3.6 Turbulence modeling and closure

The model for the response coefficient Ct employed here is based on the pro-
posal of Oliveira and Issa [43]. It is given by:

Ct = 3+β
1+β+2ρd

ρc

, (3.168)

with

β = τεc

τ

(
1+2

ρd

ρc

)
. (3.169)

τεc is the turbulence characteristic time scale, which is given by τεc = 0.41 κ̃c
ε̃c

.

The turbulence kinetic energy (κ̃d ) and turbulent viscosity (νt
d ) of the disperse

phase are simply given by the relations: κd = Ckκc and νt
d = Ckν

t
c . Finally, the

κ−ε constants used herein were that of the standard model (see, e.g., the work
of Rusche [70]), with the turbulent quantities Prt and Sct taken to be unity for
both phases.
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4 Method of Moments

The last chapter was devoted to the thorough derivation of continuous phase
and Eulerian particle phase equations, which form the basis of Eulerian-
Eulerian models. Since a full size Multi-Fluid Model considers sets of Eulerian
equations for a large number of size classes and is able to capture polydisper-
sity automatically, it is reasonable that attempts to derive integral formula-
tions, which relax the multi-size level of description – at the same time trying
to retain a reasonable degree of accuracy – use as a starting point the Multi-
Fluid equations (Fig. 4.1). A Moment Method of this type was systematically
derived by Beck [10], based on the Eulerian equations presented by Mostafa
and Mongia [62]. In the present thesis, a similar framework is used, but the
Eulerian equations for dispersed phases derived in the last chapter in details
are in line with Crowe et al. [22] and Prosperetti [67]. Before proceeding with
the integration of these equations over the size spectrum, some definitions of
important quantities related to the size distribution function will be provided
next.

Figure 4.1: From Multi-Fluid to MOM formulation.
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4.1 Definitions

The discrete number frequency distribution for the particle size, ni , is first de-
fined:

ni = Ni

Nt
, (4.1)

where Nt is the total number of particles. It is straightforward to show that

Nc∑
i=1

ni = 1, (4.2)

Nc is the total number of size classes present. The particle number density
function (analogous to continuous distribution) f̃ (D) is defined as:

f̃ (D) = lim
∆D→0

ni

∆D
, (4.3)

such that the integral
∫ D+

D− f̃ (D)dD represents the probability of having par-
ticles with sizes between [D−,D+]. Again, in analogy to the discrete case, it
follows that:

∫ ∞

0
f̃ (D)dD = 1. (4.4)

It is useful to define the size distribution function f (D), as the particle num-
ber density function multiplied with the total number of particles per unit vol-
ume:

f (D) = f̃ (D)
Nt

V
. (4.5)

The moments of the size distribution function are in turn defined as:

M (k) ≡
∫ ∞

0
Dk f (D)dD. (4.6)

75



Method of Moments

The definition of f (D) allows a physical interpretation of the low order mo-
ments as follows:

• M (0) : total number of particles (per unit volume)

• M (1) : sum of the particle diameter ( " )

• πM (2) : total surface area of particles ( " )

• π
6 M (3) : total volume of particles ( " ); or the local volume fraction of the
disperse phase

The moment transport velocities, defined for the k th moment as

u(k) ≡ 1

M (k)

∫ ∞

0
u(D)Dk f (D)dD, (4.7)

represent weighted integrals of the size-velocity correlation u(D) over the size
spectrum1. As will be shown in the following sections, u(k) is the velocity at
which the k-th moment is transported. They will only be equal (u(l ) = u(m),
l 6= m) in two limiting cases: for a monodisperse distribution, i.e. f (D) = δ(D−
D∗), with u(D∗) = u∗; or if all particles have the same velocity, i.e. u(D) = u∗,
∀D . In both cases, u(k) = u∗, ∀k. Otherwise, there is no reason, e.g., for u(2)

and u(3) to be the same, as they represent surface area and volume weighted
averages, respectively.

The motivation for the introduction of the moments and their transport ve-
locities is to minimize computational costs by avoiding the discretization of
the size distribution in several classes, and nevertheless to capture the poly-
dispersity of the flow through the correct description of the evolution of the
moments. The moments and the corresponding transport velocities appear
naturally in the mathematical formulation as a direct consequence of the in-
tegration of the Eulerian particle equations over the diameter spectrum, as
will be demonstrated next.

1Implicit here is the assumption that particles with the same size are represented by a unique local average
velocity, denoted by u
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4.2 Moment transport equations

4.2 Moment transport equations

The objective here is the derivation of transport equations for the moments of
the size distribution function in the form

∂φ

∂t
+∇· (uφφ) = Γφ, (4.8)

where φ is any property of the population of particles (per unit characteristic
volume, V ) which travels with a characteristic velocity uφ and evolves accord-
ing to source/sink terms incorporated in Γφ. Note that this is in some sense a
generalization of the volume fraction equation:

∂α

∂t
+∇· (uα) = Γ

ρd
, (4.9)

withα defined as the total volume occupied by particles of the same diameter
(as seen in the previous chapter), i.e.:

α= Ni
πD3

6

V
. (4.10)

Note that, in Eq. (4.9), symbols denoting time and phase averages were droped
for simplicity of notation – which will be continued from this point on.

Since f (D) is related to α simply through

f (D) = lim
∆D→0

6

πD3
α

1

∆D
, (4.11)

a conservation equation for the third moment can be readily derived by inte-
gration of Eq. (4.9) over the size spectrum. Hence:

(
∂
∫ ∞

0 D3 f dD
)

∂t
+∇ · (

∫ ∞

0
uD3 f dD︸ ︷︷ ︸

M (3)u(3)

) = ΓM (3), (4.12)
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Method of Moments

with ΓM (3) the source term related to the variation of the total volume of the
distribution (per unit volume).

The above equation can be directly generalized for any moment M (k) as:

∂M (k)

∂t
+∇ · (M (k)u(k)) = ΓM (k). (4.13)

Note that the velocity which appears in the convective term is the moment
transport velocity, u(k). This results automatically from the integral over the
size spectrum:

∫ ∞
0 uDk f dD = M (k)u(k). ΓM (k) is a source term representing the

overall effect of the population balance processes mentioned above; e.g. for
k = 3 it represents the loss of mass (or volume) of a population of droplets due
to evaporation.

4.2.1 Source terms due to evaporation

The overall effect of evaporation on size distribution is that of decreasing all
moments M (k)’s2, once they represent integral characteristics of the whole
spectrum of droplet sizes (total volume, surface, etc). The source terms ΓM (k)

can be developed from physical principles governing the evaporation process
for a single particle – see section 3.2.4.

Consider first the (volume) rate of evaporation per unit volume for Ni droplets
pertaining to a certain size class:

d

d t

(
Ni

V
D3

)
=

(
Ni

V

)
d

d t
D3 +D3 d

d t

(
Ni

V

)∣∣∣
D→0︸ ︷︷ ︸

≡0

. (4.14)

Note that the last term is identically zero since, by definition, there can only be
a variation of the number of droplets when they disappear, i.e. D → 0 (Fig. 4.2

2In fact, as will be seen later in this section, unless the degree of vaporization is such that there is disappear-
ance of droplets, M (0) remains unchanged.
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4.2 Moment transport equations

Figure 4.2: Schematic representation of evaporation of Ni droplets with initial
diameter D0.

illustrates the situation of the evaporation of Ni droplets with initial diameter
D0).

The source term ΓM (3) is determined by integration over the whole spectrum
of sizes of the above relation:

ΓM (3) =
∫ ∞

0

 Ni

V dD︸ ︷︷ ︸
≡ f ; dD→0

 d(D3)

d t
dD =

∫ ∞

0
f (3D2)

dD

d t
dD. (4.15)

According to Eq. (3.53) (which defines the rate of variation of the droplet sur-
face area) one can write:

dD2

dt
=λ∗ ⇒ dD

dt
= λ∗

2D
. (4.16)

Substituting the above expression for the rate of variation of the droplet diam-
eter into Eq. (4.15):
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ΓM (3) = 3

2
λ∗

∫ ∞

0
f D dD =−12

ρd

kc

cp,c
ln(1+BM )M (1). (4.17)

ΓM (2) and ΓM (1) – i.e. the rate of variation of total surface area and sum of diam-
eters – can be computed similarly, yielding:

ΓM (2) = − 8

ρd

kc

cp,c
ln(1+BM )M (0) (4.18)

and

ΓM (1) = − 4

ρd

kc

cp,c
ln(1+BM )M (−1), (4.19)

respectively.

The disappearence rate of droplets per unit volume (ΓM (0)) requires a special
analysis. The total number of droplets of a certain distribution will diminish
only in the limit D → 0. Consider the following expression, which sets the tem-
poral variation of Ni

V
to the number flux of “zero-size” droplets in the diameter

space (see Fig. 4.2):

∂

∂t

(
Ni

V

)∣∣∣
D→0

= ∂

∂D

(
Ni

V

dD

d t

)∣∣∣
D→0

. (4.20)

The above equality (with help of the definition for f ) can be generalized and
integrated to yield the source term for M (0), which shall include the sum of
disappearence rates for all size classes. Therefore:

ΓM (0) ∝
∫ ∞

0

∂( f /D)

∂D
dD

∝ f

D

∣∣∣
D→0

. (4.21)
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4.3 Transport equation for moment fluxes

Thus, ΓM (0) is clearly indeterminate and its modeling is not trivial. Closure for
this term will not be developed in this work (for details on the modeling of the
disappearence rate of droplets, see the work of Massot et al. [56], for example).
Thus, for the cases where droplet evaporation occurs, M (0) will not be chosen
as transported moment. A further discussion on this subject will be given later.

4.3 Transport equation for moment fluxes

Analogously to the moment transport equations, it is possible to derive for-
mulations representing balance equations for the moment fluxes, u(k)M (k):

ρd
∂
(∫ ∞

0 f Dk udD
)

∂t
+ρd∇·

(∫ ∞

0
f Dk u udD

)
=

∫ ∞

0
MD (k−3)dD

+ ∇·
(∫ ∞

0
f Dk τt

d dD

)
+ ρd M (k) g

+ ρdΓM (k) u(k), (4.22)

where gravity and momentum exchange terms (last terms on the RHS) are
already given in an explicit manner. The integrals in the above equation will
be dealt with on a term by term basis. The first term on the left hand side is
given by:

ρd
∂
(∫ ∞

0 f Dk udD
)

∂t
= ρd

∂
(
M (k)u(k)

)
∂t

. (4.23)

To recast the second term on the LHS, following the decomposition first pro-
posed by Beck [10], the particle velocities u are written in terms of the velocity
u(k) plus a relative velocity component (representing the deviation from the
average) u′: u(D) = u(k) +u′(k)(D). Note that u′(k)(D) does not necessarily ap-
pear due to turbulent fluctuations of the particle movement, but represents
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Method of Moments

instead the deviation of individual velocities from the k-th average velocity of
the “particle cloud” in a general way. Hence:

∇ ·
(∫ ∞

0
f uuDkdD

)
= ∇ · (M (k)u(k)u(k))+∇ ·

(∫ ∞

0
f u′u′DkdD

)
+ ∇ ·

(∫ ∞

0
f u(k)u′DkdD

)
︸ ︷︷ ︸

≡0

+∇ ·
(∫ ∞

0
f u′u(k)DkdD

)
︸ ︷︷ ︸

≡0

.

(4.24)

The third and fourth terms on the right side of the above equality are zero by
definition.

On the RHS, the integral of the momentum exchange term M leads, for the
pressure and shear stress contribution, to:

∫ ∞

0
f Dk ∇p dD +

∫ ∞

0
f Dk ∇·τdD = M (k)∇p +M (k)∇·τ, (4.25)

and for drag and turbulent dispersion terms:

∫ ∞

0
18µc f Dk−2(u−uc)dD = 18µc M (k−2)(u(k−2) −uc)

∇
∫ ∞

0
18µc

νt
d

σα
f Dk−2dD = 18µc

νt
c

σα
∇M (k−2), (4.26)

respectively. In the above expressions, it is the dependence of the Stokes re-
laxation time with the particle diameter, τ∝ D2 that gives rise to lower order
powers of moment and transport velocity. This will be further discussed later
on.

The turbulent stress term is approximately evaluated with the velocity u(k) and
moment M (k), yielding the approximate expression:
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4.3 Transport equation for moment fluxes

∇·
(∫ ∞

0
f Dk τt

d dD

)
≡ ∇·

(
M (k)τt

d
(k)

)
, (4.27)

with

τt
d

(k) ≈ ρd ν
t
d (∇u(k) +∇u(k)T − 2

3
∇·u(k) I)−ρd

2

3
kd I.

(4.28)

According to the above results, the following form of the (k-th) averaged mo-
mentum equation for the particle phase is obtained:

ρd
∂
(
M (k)u(k)

)
∂t

+ρd∇ · (M (k)u(k)u(k)) = M (k)∇p +M (k)∇·τ

+ 18µc M (k−2)(u(k−2) −uc)+18µc
νt

c

σα
∇M (k−2)

+ ∇·
(
M (k)τt

d
(k)

)
+ ρd M (k) g

+ ρdΓM (k) u(k). (4.29)

The above equation for k = 3 is the volume-averaged momentum equation of
a dispersed phase (since M (3)u(3) represents the volume-flux of the population
of particles). Thus:

ρd
∂
(
M (3)u(3)

)
∂t

+ρd∇ · (M (3)u(3)u(3)) = M (3)∇p +M (3)∇·τ

+ 18µc M (1)(u(1) −uc)+18µc
νt

c

σα
∇M (1)

+ ∇·
(
M (3)τt

d
(3)

)
+ ρd M (3) g

+ ρdΓM (3) u(3). (4.30)
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4.4 Volume-averaged internal energy equation

The droplet temperature at a given position is considered here independent
of the diameter. This hypothesis will be shown to suffice for the present pur-
poses, but the more general case requires the consideration of other average
quantities (for example, a length scale or surface average temperature to be
used with the evaporation models) and is not going to be taken into account in
the present work. Recent developments in this direction can be found in [32]
and [84]. Thus, integration of the energy equation – with a similar treatment
for the convective term as used in the momentum equation – leads to the con-
servation equation of the volume average internal energy:

ρd
∂(M (3)i (3))

∂t
+ρd∇· (M (3)u(3)i (3) −M (3)

νt
d

Prd
t

∇T (3)) = Q̇ (3), (4.31)

where, for the convective term, it was implicitly assumed that:

∇ ·
(∫ ∞

0
f ui D3dD

)
= ∇ · (M (3)u(3)i (3))+∇ ·

(∫ ∞

0
f u′i ′D3dD

)
︸ ︷︷ ︸

≈0

+ ∇ ·
(∫ ∞

0
f u(3)i ′D3dD

)
︸ ︷︷ ︸

≡0

+∇ ·
(∫ ∞

0
f u′i (3)D3dD

)
︸ ︷︷ ︸

≡0

.

(4.32)

Note that the velocity and energy fluctuations are considered uncorrelated,
for simplicity. The integral heat flux Q̇ (3) is given by:

Q̇ (3) ≈ ρdΓM (3)ĥ(3) +6Nukc M (1)(T (3) −Tc), (4.33)

with ĥ(3) determined by: ĥ(3) = i (3) +Lv .
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4.5 Exchange terms with the gas phase

The averaged equations for the continuous phase derived in the previous
chapter considered exchange terms with a single dispersed phase (monodis-
perse situation). However, the exchange of mass, momentum and heat takes
place between the continuous phase and a population of particles with differ-
ent sizes and velocities. Therefore, the models extended in the previous sec-
tions also need to be incorporated into the continuous phase equations. Since
the exchange terms are formulated in the previous section for equations in-
volving M (3), a factor of π/6 has to be incorporated in corresponding terms
for the gas equations. Equations (3.148), (3.149), (3.150) and (3.151) are then
rewritten as follows:

ρc
∂αc

∂t
+ρc∇· (αc uc) =−ρd

πΓM (3)

6
. (4.34)

ρc
∂(αc uc)

∂t
+ρc∇· (αc uc uc) = −αc∇p +αc∇·τ

+ ∇·αc (τt
c +τpt

c )

− 3πµc M (1)(u(1) −uc)−3πµc
νt

c

σα
∇M (1)

+ αcρc g

− ρd
πΓM (3)

6
u(3) (4.35)

ρc
∂(αcic)

∂t
+ρc∇· (αc ucic) = ∇·αc(q c +q t

c +q pt
c )

− p∇·U− π

6
Q̇ (3) (4.36)

ρc
∂(αcYv )

∂t
+ρc∇· (αc ucYv ) = ∇·αc( f c + f t

c + f pt
c )−ρd

πΓM (3)

6
. (4.37)
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Method of Moments

Note that the following constraint is valid for the volume fraction αc : αc = 1−
πM (3)/6.

The two-phase κ−ε equations are also modified to account for the integral ex-
change terms with the whole population of particles. They are then rewritten
as:

ρc
∂(αcκc)

∂t
+ρc∇· (αc ucκc) = ∇· (αc

µt
c

σk
∇κc)+αc(G −ρcεc)

− 18µc M (1)

[
2(1−αc)αc(1−Ck)κc −

νt
c

σα
∇αc · (u(3) −uc)

]
− ρd

πΓM (3)

6
κc (4.38)

ρc
∂(αcεc)

∂t
+ρc∇· (αc ucεc) = ∇· (αc

µt
c

σε
∇εc)+αc

εc

κc
(C1G −C2ρcεc)

− 2(1−αc)αc(1−Ck)εc (18µc M (1))

− ρd
πΓM (3)

6
εc . (4.39)

The parameter β for the calculation of Ct in Eq. (3.168) is given approximately
by:

β = ρd
τεc

18µc M (1)

(
1+2

ρd

ρc

)
, (4.40)

where the contribution of the population of particles is considered implic-
itly through M (1). Note that the time scale has been substituted by the factor
ρd /(18µc M (1)).

4.6 Size distribution closure

Due to the form of the expressions for exchange terms in the particle equa-
tions of motion, unknown moments and transport velocities (e.g. M (k−2),
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4.6 Size distribution closure

u(k−2)) appear in the formulation. For instance, as seen before, the expression
for the drag force per unit volume in the equation for u(k) is given by:

F(k)
Dr ag = 18µc M (k−2)(u(k−2) −uc). (4.41)

The closure problem for the moments has been studied for the first time in
the pioneer work of Hulburt and Katz [40]. Since then, the majority of the lit-
erature is concerned with the determination of source terms due to interac-
tions such as agglomeration or break-up, but not due to size-dependent par-
ticle movement. In the present work, the closure problem for the drag term is
treated in a similar manner.

A simple way to overcome the issue of determining unknown moments is to
assume a certain functional form for f (D). Then the distribution can be re-
constructed approximately from a few (usually low-order) “prognostic mo-
ments”, for which transport equations are solved. Unknown “diagnostic mo-
ments”, which may be required to achieve closure, can then be computed by
integration of the presumed size distribution.

When using pNDFs, it is intrinsically assumed that the shape of the distribu-
tion is preserved during the simulated process, which might not be strictly
true. However, even if its shape varies, it might be possible to capture the most
important features of the flow through the description of the moments, which
represent integral quantities associated to the population as whole. Thus, hy-
pothetically, the exact shape of a droplet size distribution in an evaporating
spray might be poorly reproduced, without deteriorating predictions of the
total number/length scale/surface area/volume of droplets; so it might be
expected that exchange terms with the gas phase are still satisfactory. One
can try to minimize this problem by choosing distribution shapes which are
known to be flexible; or, develop methods which do not need to assume the
shape of the distribution (e.g., MEF or spline methods, as mentioned before).
Here, the first approach will be pursued. It shall be however pointed out that
critical situations involving bi- or multi-modal distributions will not be han-
dled in this thesis.
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Different types of reconstruction schemes using Gamma and Beta distribu-
tion functions will be outlined next, while a closure method for the moment
transport velocities will be proposed in section 4.7.

4.6.1 Gamma distribution

The Gamma distribution function used here is similar to the one proposed
by Watkins [83]. The present version, however, is defined such that it has 3
free parameters, while the previous one had only 2. Another version of a 2-
parameter Gamma scheme was also presented by Carneiro et al. [19]. It was
shown that the 3-parameter scheme performed better in a real spray config-
uration analyzed. The two-parameter Gamma scheme will not be used in this
work.

The expression for the Gamma distribution function is given by:

f (D) = C0
D q−1e−D

p

pqΓ(q)
, (4.42)

with the Gamma function

Γ(q) =
∫ ∞

0
t q−1e−t d t . (4.43)

Moments can be calculated explicitly by the general expression:

M (k) = C0
Γ(q +k)pk

Γ(q)
. (4.44)

The parameters p, q and C0 can be expressed in terms of 3 prognostic mo-
ments,

p = M (kmi n+2)M (kmi n) − (M (kmi n+1))2

M (kmi n)M (kmi n+1)
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q = (kmi n +1)(M (kmi n+1))2 −kmi n M (kmi n+2)M (kmi n)

M (kmi n+2)M (kmi n) − (M (kmi n+1))2
(4.45)

C0 =


M (kmi n )

pkmi nΠ
kmi n−1
l=0 (q+l )

, if kmi n ∈ N+

M (0) , if kmi n = 0.

Hence, these relations provide a simple way to reconstruct the Gamma distri-
bution function from any three consecutive moments known. In the present
work two alternatives will be tested: M (0)-M (2) (kmi n = 0) and M (1)-M (3) (kmi n =
1).

4.6.2 Beta distribution

The Beta distribution function with minimum diameter equal to zero is de-
fined as [83]:

f (D) = C0

B(p, q)

D p−1(Dmax −D)q−1

Dmax
p+q−1 , (4.46)

with D ∈ [0,Dmax] and the Beta function

B(p, q) =
∫ 1

0
t p−1(1− t )q−1d t = Γ(p)Γ(q)

Γ(p +q)
. (4.47)

Moments are given by the general expression:

M (k) = C0Dk
max

B(p +k, q)

B(p, q)
, (4.48)

with the parameters C0, Dmax , p and q being determined by:

C0 = M (0)
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Dmax = −M (1)(M (2))2 +2(M (1))2M (3) −M (0)M (2)M (3)

(M (1))2M (2) −2M (0)(M (2))2 +M (0)M (1)M (3)

p = −M (1)(Dmax M (1) −M (2))

Dmax[(M (1))2 −M (0)M (2)]

q = −
Dmax M (0)M (1) − (M (1))2 −M (0)M (2) + M (1)M (2)

Dmax

(M (1))2 −M (0)M (2)
. (4.49)

Clearly, the reconstruction of the Beta distribution requires in general knowl-
edge of the first four moments (M (0)-M (3)). If the maximum diameter Dmax of
the distribution is kept constant, however, only three moments (M (0)-M (2)) are
sufficient, since M (3) does not appear explicitly in the expressions for p and q .
Both possibilities will be assessed in the present study. The main advantage of
the presumed function approach is the simplicity of the reconstruction meth-
ods; indeed, for the Gamma and Beta functions the distribution parameters
are calculated in an algebraic manner. Furthermore, these functions are able
to represent a wide variety of shapes. Figure 4.3 shows the variation of Gamma
and Beta distribution functions for typical values of the shape and scale pa-
rameters, maintaining M (0) and Dmax invariant. Even for the small range of
variation of p and q , very distinct forms can be reproduced in both cases.
Some important differences can be observed between the two functions, how-
ever. While the Gamma distribution extends the diameter range indefinetely,
remaining positively skewed for all combinations of p and q (a limitation of
its functional form), the Beta distribution has a fixed diameter range and is
able to represent positively skewed (p < q), symetrical (q = p) and negatively
skewed (p > q) shapes. Note in Fig. 4.4 that for values of p, q < 2, overshoots
( f →∞) at the limits D → 0 or D → Dmax can be produced.

As will be demonstrated later, the use of different distribution shapes and a
different number of moments to reconstruct the distribution functions have a
strong influence on the performance of the model.
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D (m)

f(
#

/m
^4

)

0 3E-05 6E-05 9E-05 0.00012 0.00015
0

5E+11

1E+12

1.5E+12

2E+12

2.5E+12

q=2,p=5e-6
q=3,p=5e-6
q=4,p=5e-6
q =4,p=1e-5
q =4,p=2e-5

Figure 4.3: Variation of the Gamma (left) and Beta (right) distribution func-
tions with the parameters p and q .

Figure 4.4: Different forms of the Beta distribution functions p ≤ 2 and q ≤ 2.
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4.6.3 Validity of a moment set

Given a set of moments (M (k),k = kmi n, . . . ,kmax), there is no guarantee that
there is a realizable distribution function associated with it. In that case, the
set of moments is considered “invalid”. In Eulerian simulation models, invalid
sets may occur for two reasons, even if boundary and initial conditions are
valid: the independent advection of moments M (k) with different moment
transport velocities (u(l ) 6= u(m), l 6= m); or the presence of different source
terms in the moment transport equations (e.g. due to coalescence, break-up
or evaporation).

Recall the formulation of the Stieltjes moment problem [3, 74]:

To prove the existence of a distribution function f (D), with f (D) ≥ 0 defined in
the range D ∈ [0,∞), given a set of moments defined as

M (k) ≡
∫ ∞

0
Dk f (D)dD. (4.50)

In order to uniquely characterize f (D), knowledge of all its moments is in the-
ory necessary. In fact, White [87] give examples showing that even dissimilar
size distributions can have identical moments of all orders. One way or the
other, only a finite set is available in practice. Clearly, there exists an infinite
variety of functions whose moments coincide with the given finite set, and
the unique reconstruction of f (D) is impossible. Therefore, the problem of
distribution reconstruction is two-fold: first, the realizability of these distribu-
tions must be consistently checked in the simulation models; second, classes
of functions of interest must be chosen in order to reasonably reproduce the
shapes of experimentally observed distributions for the physical problem in
question.
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4.6.3.1 Convexity

An invalid moment set is characterized by the non-existence of an underlying
distribution function associated to it. The most straightforward way to check
the validity of a moment set is by verifying the so called “convexity conditions”
(also frequently called “Schwarz’s Inequalities”):

M (k) M (k−2) − (M (k−1))2 > 0, (4.51)

which must hold for all k. This property of the moment set is a direct conse-
quence of the definition of the moments: for a non-negative f (D), since the

ratio of consecutive moments M (k)

M (k−1) increases with k, one can simply write:

M (k−1)

M (k−2)
< M (k)

M (k−1)
< M (k+1)

M (k)
(...), (4.52)

which implies Eq. (4.51). This mathematical constraint must always be met in
order for the distribution function to be realizable.

A direct consequence of Eq. (4.52) is that the usual mean diameters used
to characterize droplet size distributions occurring in spray applications are
such that: D10 < D21 < D32 < D43 (...) < Dmax . This, as seen above, must be true
for all realizable distribution functions.

4.6.3.2 Hankel-Hadamard determinants

Equation (4.52), however, is a necessary but not sufficient condition for a
valid moment set. Necessary and sufficient conditions which guarantee the
existence of a distribution function, given a sequence of moments M (k), k =
0, 1, 2 ... 2l/2l +1︸ ︷︷ ︸

kmax

3, are non-negative Hankel-Hadamard determinants [46,74]:

3The expression for kmax (l ) depends if the number of prognostic moments is even (kmax = 2l + 1) or odd
(kmax = 2l ).
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∆k,l =

∣∣∣∣∣∣∣∣∣
M (k) M (k+1) . . . M (k+l )

M (k+1) M (k+2) . . . M (k+l+1)

...
... . . . ...

M (k+l ) M (k+l+1) . . . M (k+2l )

∣∣∣∣∣∣∣∣∣≥ 0

with k = 0, 1; l ≥ 0; ∆k,l = 0 for a monodisperse distribution.

A compact way of writing the above criteria including a formula for the ma-
trix elements is: ∆k,l = det|B | ≥ 0 (k = 0, 1) and Bi j = M (k+i+ j−2), with i , j =
1,2, ..., l +1.

Note that:

• ∆k,0 ≥ 0 corresponds to the physical condition of positivity of the mo-
ments.

• ∆k,1 (2x2 determinants) are a compact form of the convexity inequalities:
M (k+1)

M (k) < M (k+2)

M (k+1) .

The Hankel-Hadamard conditions guarantee the existence of f (D) whose first
(kmax + 1) moments are equal to the given ones. If the existence of a distri-
bution function is proven for a sequence of moments M (0)...M (kmax), the re-
maining moments M ( j ), j = kmax + 1, ... are such that all determinants ∆k,r ,
r = l + 1, l + 2... will necessarily be positive. Here, the first few moments are
used to compute the distribution function by means of presumed forms of
f (D). The relevant conditions depending on the number of prognostic mo-
ments are given as follows:

• 2 Moments

As mentioned before, the criterion reduces to M (k) ≥ 0, since l = 0.

• 3 Moments; M (0) −M (2)

The following restrictions apply:
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M (0), M (1) ≥ 0 (l = 1)

and

∆0,1 =
∣∣∣∣ M (0) M (1)

M (1) M (2)

∣∣∣∣≥ 0

(it is clearly not enough that M (2) ≥ 0, since convexity must also be satis-

fied: M (2) ≥ (M (1))2

M (0) )

• 4 Moments; M (0) −M (3)

Also here, l = 1. Hence: M (0), M (1) ≥ 0

and

∆0,1 =
∣∣∣∣ M (0) M (1)

M (1) M (2)

∣∣∣∣≥ 0

∆1,1 =
∣∣∣∣ M (1) M (2)

M (2) M (3)

∣∣∣∣≥ 0

4.6.3.3 Further remarks

The conditions outlined above obviously allow the definition of bounds for the
moments. There are some reconstruction approaches that might require some
additional considerations. For example, if the moments M (kmi n), M (kmi n+1), ...
are available, there is a problem with directly using the Hankel-Hadamard cri-
teria as presented here, since M (0) is unknown. However, this problem can be
readily avoided by defining an auxiliary distribution f ′(D)

f ′(D) = D f (D), (4.53)

such that M (k)′ = M (k+1), and the Hankel-Hadamard inequalities are applied
to f ′(D). Hence, if f ′(D) exists, f (D) also does. The following restrictions must
be then fulfilled:
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Figure 4.5: Variation of the Gamma function with the argument q .

kmi n = 1 (M (1) −M (3) as prognostic moments): M (1), M (2) ≥ 0

and

∆1,1 =
∣∣∣∣ M (1) M (2)

M (2) M (3)

∣∣∣∣≥ 0,

leading to M (3) ≥ (M (2))2

M (1) .

However, as will be seen in an example, some extra care might be needed in
order to reconstruct the distribution function. If the distribution function is
assumed to have a Gamma shape with kmi n = 0, it is sufficient to prove the
conditions outlined before (which lead to C0, p, q ≥ 0 – in fact, the monodis-
perse case has to be disconsidered to avoid q from exploding, and C0, p, q > 0).
However, for kmi n = 1, the criteria outlined above only guarantee that C0, p > 0,
but not q . This might be problematic, since Γ(q < 0) may assume negative val-
ues – see Fig. 4.5. To ensure that q > 0, one can define lower and upper bounds,
e.g., for the moment M (2) as a function of M (1) and M (3):
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√
1

2
M (1) M (3) < M (2) <

√
M (1) M (3). (4.54)

In fact, depending on which low-order moments appear in the sub-models
used, the above condition might become more restrictive. For instance, for
the problem of droplet evaporation, source terms might depend on moments
with negative order (e.g. M (−1)). In that case, according to Eq. (4.44), q > 1 is
desired. More generally: q > |kl | ( kl < 0) must be satisfied; otherwise M (kl )

might become negative. thus, it is possible to write for M (2):

√
|kl |+1

|kl |+2
M (1) M (3) < M (2) <

√
M (1) M (3), (4.55)

kl is the order of the moment with lowest (negative) order.

Some similar results on the bounds of moments for maximum entropy distri-
butions are also presented by Frontini and Tagliani [35].

Concerning the Beta distribution, a discussion on the Stieltjes formulation is
provided in Appendix A.1. It remains to be investigated, under which condi-
tions for both 3- and 4-moment schemes, the Beta distribution is realizable
allowing the reconstruction of the functional form. Hence:

• Dmax=D0 = const. (> 0); three-moments scheme

p = M (1)(D0M (1) −M (2))

D0[M (0)M (2) − (M (1))2︸ ︷︷ ︸
∆0,1

]

p = (M (1))2

∆0,1

(
1− D21

D0

)
(4.56)

Thus, if M (1) > 0, ∆0,1 > 0 and D0 > D21 (see section 4.6.3.1), p > 0. q can
be rewritten in dependence of p as:

q = p

(
D0

D10
−1

)
. (4.57)
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Obviously, if p > 0 and D0 > D10, q > 0.

• four-moments scheme

The conditions derived above are also valid here. It remains to be to be
analyzed under which conditions Dmax > 0. The expression for Dmax can
be rewritten as:

Dmax = (D32 −D21) (M (1))2 M (2) − (D21 −D10)M (0)M (1)M (3)

(D32 −2D21 +D10) M (0)M (1)M (2)

Dmax = 1

D32 −2D21 +D10
[(D32 −D21)D10 − (D21 −D10)D32]

Dmax = D32 D10

D32 −2D21 +D10

[
2−D21

(
1

D10
+ 1

D32

)]
Dmax = D32 D21 D10

D32 −2D21 +D10

[(
1

D21
− 1

D32

)
−

(
1

D10
− 1

D21

)]
(4.58)

As will be seen below, the difference (Dk,k−1 −Dk−1,k−2 decreases with k,
where Dk,k−1 = M (k)/M (k−1)). This can be verified using the expression for
the moments of the Beta distribution, Eq. (4.48), observing that

M (k) = C0 Dk
maxΠ

k−1
i=0

p + i

p +q + i
, (4.59)

which allows to derive an expression for the mean diameters of the dis-
tribution, as a function of k:

Dk,k−1 = Dmax
p +k −1

p +q +k −1
. (4.60)

The above expression has the following property: limk→∞Dk,k−1 = Dmax .
The dependence of Dk,k−1 on k can be visualized in Fig. 4.6, for the Beta
distributions shown in Fig. 4.3. Hence, as Dk,k−1 tends asymptotically to
Dmax with increasing order k, it is apparent that the difference (Dk,k−1 −
Dk−1,k−2) decreases. With help of Eq. (4.60), expressions for Dk,k−1 can be
substituted in the conditions (D32+D10)/2 < D21 and (1/D32+1/D10)/2 >
1/D21. It is possible to conclude that p, q must be positive, otherwise they
are not satisfied. Note that D10, D21 and D32 must also be positive.
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Figure 4.6: Variation of the ratio Dk,k−1/Dmax with the order k.

4.6.3.4 Geometry of the moment space

As seen above, the Hankel-Hadamard determinants establish whether or not
there is a set of positive functions which obey the Stjelties moment condition.
The realizability of specific functional forms might require additional consid-
erations, which depend both on the underlying mathematical functions and
reconstruction schemes. Therefore, the geometry of the valid moment space
varies accordingly.

As shown by Dems et al. [25], e.g. for the Beta scheme using four moments
the condition that both the enumerator and denominator of Dmax have to be
negative leads to the following inequalities for M (2):

M (2) ≥
√

M (0)2 M (3)2

4M (1)2 +2M (1)M (3) − M (0)M (3)

2M (1)
(4.61)
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and

M (2) ≥
√

M (1)4

16M (0)2 +
M (1)M (3)

2
+ M (1)2

4M (0)
, (4.62)

for enumerator and denominator, respectively.

Such constraints can be illustratively plotted together for the Beta schemes
(see Fig. 4.7), in order to visualize the valid moment space projected at the
M (1)−M (2) plane (i.e., for given values of M (0) and M (3)). The map is normalized
by the maximum values of M (1) and M (2). They can be determined taking into
account the intersection of the several conditions outlined above, from which
it follows that:

M (1)
max = D0M (0) M (1)

max = D2
0M (0), (4.63)

for the 3-moment scheme (with Dmax = D0 =constant), and

M (1)
max =

3
√

M (0)2 M (3) M (1)
max =

3
√

M (0)M (3)2, (4.64)

for the 4-moment scheme.

4.6.3.5 Replacement and correction schemes

The outcome of the numerical solution of the equation systems comprising
moment methods might give rise to moment sets that violate the mathemati-
cal constraints which must be met in order to calculate the local distribution
function.

Bo and Watkins [15], for example, reported serious difficulties in the simula-
tion of sprays. At the spray edges, particularly at the front, it is observed that
moments of higher order tend towards zero much faster than the lower or-
der ones. The authors applied restrictions in the moment transport velocities
in order to prevent this situation from occurring. Watkins [83], on the other
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Figure 4.7: Region of valid moment sets shown in the moment space pro-
jected at the M (1) − M (2) plane. 3-moment Beta scheme (left) and
4-moment Beta scheme (right). Moments are normalized by the
maximum allowed values, (M (1)

max, M (2)
max)

.

hand, bounded the Gamma and Beta parameters obtained in the reconstruc-
tion process in order to avoid out-of-range values in the transport equations.
A method using Hankel-Hadamard determinants and the construction of dif-
ference tables for the correction of invalid sets moments of aerosol size dis-
tributions was proposed by McGraw [58] and used by Petitti et al. [66] in the
simulations of gas-liquid stirred reactors with QMOM. Replacement schemes
were also proposed in the literature, based on, e.g., polynomial interpolation
of unknown moments [5] or log-normal schemes [14,46]. DQMOM [53] might
also be an interesting alternative, because it tracks abscissas and weights di-
rectly, which can be shown to be always positive and realizable for univariate
smooth distribution functions, avoiding moment set validity concerns. If the
distribution is multivariate, however, the moment set must be carefully cho-
sen in order to avoid nonunique abscissas and negative weights [34].

In the present work, potential situations will be described which might give
rise to invalid sequences during the simulations. In order to avoid singularities
in the distribution reconstruction during the solution procedure, it is made
sure that the moments do not fall below minimum values, which must re-
spect the conditions outlined above. By doing this, it will be shown that the
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converged solution of the equation system always presents positive Hankel
Hadamard determinants, allowing the reconstruction of realizable distribu-
tion functions. The integration of other procedures described in the literature
with the presumed functional forms and reconstruction schemes used here
will not be undertaken in this study.

4.7 Relaxation approach for size-dependent particle velocity

The “equilibrium Eulerian method” was introduced by Ferry and Balachan-
dar [30, 31]. The method assumes that for very small particle relaxation times,
it is appropriate to express the particle velocity u as a first order expansion
around the continuous phase velocity uc in terms of its relaxation time τ given
by Eq. (2.3). By doing so, particle velocities can be determined in a compu-
tationally efficient manner by simply introducing a correction of O (τ) on uc .
In the light of this idea, Bollweg et al. [16] proposed a linear interpolation
between the continuous phase and reference particle velocities (with a size
larger than all ”minor” particles) to determine minor particle size velocities.
Thus only one particle velocity field needs to be solved for in addition to uc . In
this work, a similar concept is used to determine moment transport velocities,
thus achieving closure for Eq. (4.13).

Considering the particle relaxation time τ as dependent variable, the particle
velocity u can be expanded formally around a reference velocity u|τr e f :

u|τ = u|τr e f + (τ−τr e f )
∂u

∂τ

∣∣
τr e f

+O (τ2). (4.65)

For the special case τr e f = 0, u|τr e f =0 = uc and the above expression may be
written as

u|τ = uc +τ ∂u

∂τ

∣∣∣
τr e f =0

, (4.66)

where the higher order terms were droped for simplicity. Obviously, in the
limit τ→ 0 the particle follows the continuous phase, u|τ→ uc .

The derivative ∂u/∂τ
∣∣
τr e f =0 can be determined by rewriting the particle equa-
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tion of motion given by Eq. (3.109) as4:

u = uc +τ
[(

1− ρc

ρd

)
g+ ρc

ρd

Duc

Dt
− du

dt

]
. (4.67)

Taking the derivative with respect to τ yields for τr e f = 0:

∂u

∂τ

∣∣∣
τr e f =0

=
(
1− ρc

ρd

)
g+ ρc

ρd

Duc

Dt
− du

dt

∣∣∣
τr e f =0

=
(
1− ρc

ρd

)(
g− Duc

Dt

)
. (4.68)

In the above equations, the Lagrangian derivative of the particle velocity
du/dt , evaluated at τr e f = 0, is replaced by the material derivative Duc/Dt fol-
lowing a fluid particle, which is given by Eq. (3.6). Ferry and Balachandar [30]
have shown that this is accurate for sufficiently small τ.

The above analysis can be extended by expanding u around a reference ve-
locity u0 ≡ u|τr e f with corresponding relaxation time τ0 > 0 (which shall nev-
ertheless be sufficiently small to allow the first order approximation), leading
to:

u|τ = u0︸︷︷︸
uc+τ0

∂u
∂τ

∣∣∣
τ0

+ (τ−τ0)
∂u

∂τ

∣∣∣
τ0
= uc +τ ∂u

∂τ

∣∣∣
τ0

. (4.69)

Furthermore, according to Eq. (4.68), one can write:

∂u

∂τ

∣∣∣
τ0
=

(
1− ρc

ρd

)
g+ ρc

ρd

Duc

Dt
− du

dt

∣∣∣
τ0

. (4.70)

Substituting u = u0 and τ = τ0 in Eq. (3.109) allows to finally arrive at the fol-
lowing expression for u|τ:

u|τ = uc +τ u0 −uc

τ0
. (4.71)

These results exhibit a number of important properties:

1. The limiting case u|τ→ uc for τ→ 0 is satisfied.
4Note that the particle center of mass velocity v is now the Eulerian mean velocity u.

103



Method of Moments

2. If the continuous phase is not accelerating, Duc/Dt= 0, the particle ter-
minal rise/fall velocity

uT = uc +τ
(
1− ρc

ρd

)
g (4.72)

is recovered.

3.
∂

∂τ
u|τ = u0 −uc

τ0
=

(
1− ρc

ρd

)(
g− Duc

Dt

)
≈ constant, (4.73)

hence ∂u/∂τ
∣∣
τ=τr e f

does not depend on the particle diameter. Differences

appear only in higher order terms O (τ2).

It is now shown how this framework can be applied to determine first order
approximations for the moment transport velocities. In order to do so, the ex-
pression 4.71 for u|τ is integrated over the size spectrum, yielding:

u(k) ≈ 1

M (k)

∫ ∞

0
f u|τDkdD = uc + τ(k)

τ0
(u0 −uc), (4.74)

where the k-th order response time τ(k) is defined as:

τ(k) = 1

M (k)

∫ ∞

0
τDk f (D)dD. (4.75)

Substituting Eq. (2.3) into (4.75), one obtains:

τ(k) = ρd

18µc

M (k+2)

M (k)
. (4.76)

Therefore, this closure corresponds to a linear interpolation between contin-
uous phase velocity uc and reference velocity u0 (see Fig. 4.8) in the response
times space. It is hence clear that the size-velocity correlation (and conse-
quently any u(k)) is fully determined with knowledge of uc and u0. Transport
equations for uc and u0 based on momentum conservation will be presented
later.
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Figure 4.8: Schematic representation of the expression given by Eq. (4.74).

This framework is named “relaxation approach”, because it allows to con-
sider the relaxation process towards the equilibrium condition. The relaxation
approach and the presumed function closure presented in this work com-
prise what is called presumed function Method of Moments (refered to as
“PMOM”).

4.7.1 A simple example for constant f (D)

To illustrate the concept of the relaxation approach, two cases are considered.
One can imagine the simple situation of particles in a box (0D), where the dis-
tribution function (and consequently its moments) is constant in space and
time, and only the evolution of the velocities due to drag (first case) or buoy-
ancy and drag (second case) is computed for the initial value problem of solv-
ing Eq. (3.17) in a Lagrangian frame. The expression for the time evolution of
a given velocity component u(t ) for each particle class is given by:

u(t ) = uT (1−e− t
τ ), (4.77)
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Figure 4.9: Initial distributions considered for the droplet deceleration (left)
and bubble rise (right) cases.

uT is a given component of the terminal velocity. The size distribution for the
first case is “Top-Hat” with minimum diameter Dmi n = 15 µm, maximum di-
ameter Dmax =115 µm and f ≈ 7x1013 1/m4. Particles have density ρ = 998
kg/m3 (water droplets) and the continuous phase (air at standard conditions)
has a constant velocity of 0.5 m/s. The moment transport velocities at t = 0 s
are: u(0) = 0.79 m/s, u(1) = 0.87 m/s, u(2) = 0.94 m/s and u(3) = 1 m/s. For the
second case, a distribution of air-bubbles initially at rest is considered, with
M (0) −M (3) given by: M (0) = 4.81x108 1/m3, M (1) = 2.58x104 1/m2, M (2) = 1.99
1/m and M (3) = 1.91x10−4. The initial distributions for both cases are given in
Fig. 4.9.

The analytical solution for the time evolution of the particle velocities and
moment average velocities are shown in Fig. 4.10. The moment average ve-
locities are compared to the interpolated values with Eq. (4.74), where the ref-
erence velocity u0 is chosen to be u(3), the volume averaged velocity. For the
case where particles decelerate to the continuous phase velocity (Fig. 4.10,
left), the size dependence of the drag term dictates that u(m) < u(n) for m < n,
since bigger particles will tend to take longer to reach equilibrium. A similar
situation occurs in the case where bubbles accelerate in a stagnant medium
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Figure 4.10: 0D solution of the Lagrangian equation of motion for particle de-
celeration (left) and bubble rise velocity (right) and comparison
with the relaxation approach.

towards the terminal rise velocity (Fig. 4.10, right), and the evolution of the
moment transport velocities reflects the effect of bubble size on buoyancy. In
both cases, the first order interpolation between uc and u(3) is a reasonable ap-
proximation for the lower order moment average velocities. Furthermore, the
interpolated values of u(k), k < 3 tend to the exact velocities as they approach
the equilibrium values. Note that the error (in Fig. 4.11, the error is defined as
(u(k)

i nter p −u(k))/u(k)
eq , with the equilibrium velocity ueq being given by the con-

tinuous phase and terminal rise velocities, for the first and second cases, re-
spectively) decreases with k and tend to zero as the velocities approach the
equilibrium values.

4.7.2 Closure for the moment transport equations and drag term

For the general case, one has to find the spatio-temporal evolution of the mo-
ments of the size distribution function. In the presumed function approach,
f (D) is fully determined if a few prognostic moments are known, for which
transport equations are solved. This allows the calculation of any diagnostic
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Figure 4.11: Time evolution of the error between the moment average veloci-
ties obtained by analytical integration of the Lagrangian equation
of motion and interpolation through the relaxation approach.

moment needed by the model – as described in section 4.6 for the Gamma
and Beta distributions.

It follows from the moment transport equation with Eq. (4.74), that:

∂M (k)

∂t
+∇· (M (k)uc) =∇· [M (k) (uc −u(k))︸ ︷︷ ︸

τ(k)
τ0

(uc−u0)

]. (4.78)

Hence, all moment transport equations contain a term, which represents con-
vection by the continuous phase, and a correction term, which depends on
the order of the kth-moment through the average response times τ(k). It is also
possible to formulate the above equation such that the common convective

velocity is u0 and the correction is: ∇ · [M (k)
(
1− τ(k)

τ0

)
(uc −u0)]. In both cases,

the relative velocity (uc −u0) is common to all equations, independent of k.
Therefore, only two equations are needed to determine these velocities. It is
clear that a closure problem also exists here, since in order to determine τ(k),
M (k+2) is required. This will be handled similar to any moment closure prob-
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lem, i.e. diagnostic moments are calculated after the distribution function is
reconstructed from prognostic moments.

The choice of additional transport equations for the prognostic moments will
depend on the presumed functional form and reconstruction algorithm cho-
sen. The volume (or mass) of the dispersed phase is a very – if not the most
– important characteristic to be conserved. Furthermore, in many situations,
the transport velocities of the moments M (0)-M (2) lie between uc and u(3) (as
demonstrated by Fig. 4.10), which makes the interpolation procedure between
these velocities most appropriate. Hence, τ(3) and u(3) are chosen here for the
reference properties to be used in the interpolation procedure for u(k) (in this
case, the hypothetical “reference particle size” of Bollweg et al. [16] should be

chosen to have exactly these properties, i.e. D0 =
√

M (5)

M (3) ). Closure for the mo-
ment transport velocities requires, therefore, solution of Eq. (4.29), for k = 3.

In order to close the integral drag term given in section 4.6, it is useful to
rewrite Eq. (4.74), with help of Eq. (4.76) as:

u(k) = uc +K
M (k+2)

M (k)
, (4.79)

where K is a constant according to Eq. (4.73) and is given for τ0 = τ(3) and
u0 = u(3) by:

K = ρd

18µc

u(3) −uc

τ(3)
. (4.80)

Hence, the following equality is valid, ∀k:

M (k−2) (uc −u(k−2)) =K M (k). (4.81)

Equation (4.41) for k = 3 can be written in a closed form as:

F(3)
Dr ag = 18µc M (3) K = ρd M (3) uc −u(3)

τ(3)
. (4.82)
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The above formulation of the drag term offers the advantage that it explicitly
depends on the velocity which is solved for, u(3). Thus, Eq. (4.29) for k = 3,
which in fact represents the volume averaged momentum equation for the
dispersed phase, can be written as:

ρd
∂
(
M (3)u(3)

)
∂t

+ρd∇ · (M (3)u(3)u(3)) = M (3)∇p +M (3)∇·τ

+ ρd M (3) uc −u(3)

τ(3)
+18µc

νt
c

σα
∇M (1)

+ ∇·
(
M (3)τt

d
(3)

)
+ ρd M (3) g

+ ΓM (3) u(3). (4.83)

The momentum equation for the gas phase is in turn given by:

ρc
∂(αc uc)

∂t
+ρc∇· (αc uc uc) = −αc∇p +αc∇·τ

+ ∇·αc (τt
c +τpt

c )

− ρd
π

6
M (3) uc −u(3)

τ(3)
−3πµc

νt
c

σα
∇M (1)

+ αcρc g

− ρd
πΓM (3)

6
u(3) (4.84)

Note that the absolute value of the total drag force per unit volume (ρd F(3)
Dr ag )

is equal for both phases, and the outcome of the relaxation approach is such
that it consistently depends on the relative velocity between u(3) (a volume,
or mass, weighted value) and uc , with a corresponding relaxation time, τ(3).
This relaxation time can be interpreted as a volume averaged response time
of all particles, and depends on the diagnostic moment M (5). The Gamma and
Beta distributions presented in this work offer some possibilities of closure,
as outlined before. Table 4.1 summarizes prognostic and diagnostic moments
involved in each of the reconstruction methods used:
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4.7 Relaxation approach for size-dependent particle velocity

Table 4.1: Summary of presumed functions used with corresponding prog-
nostic and diagnostic moments.

Distribution Prognostic Moments Diagnostic Moments
Gamma M (0)-M (2) M (3)-M (5)

Gamma M (1)-M (3) M (0),M (4),M (5)

Beta M (0)-M (2) M (3)-M (5)

Beta M (0)-M (3) M (4)-M (5)

The assumption of u|τ also allows to assess the order of magnitude of the term
that contains the velocity deviation tensor u′u′ neglected in Eq. (4.29), oth-
erwise unclosed5. It can be shown (see A.2) by substituting the expressions
derived in the relaxation approach, that it is proportional to the integral over
size of a term with order O (τ′ 2); τ′ is the deviation of the particle relaxation
time with respect to the average value, τ(k). It is identically zero only in the
monodisperse case and its contribution is expected to be more important for
distributions that present wider size spectra, including bigger, inertial parti-
cles, which tend to respond very differently to the flow.

4.7.3 Extension for larger particle relaxation times

The key underlying assumption of the relaxation approach presented in the
previous sections is that particles are assumed to have small relaxation times.
To illustrate the consequences of that assumption, consider the two distinct
situations of section 4.7.1. First, a population of droplets is decelerated in a
constant air-stream; the initial relative velocity is 0.5 m/s. Figure 4.12 shows
the evolution of the size-velocity correlation (left) and τ-velocity correlation
(right). The relaxation approach considers a linear expression for the parti-
cle velocities in τ, i.e. ∝ D2, according to the Stokes expression for the drag
force. This tends to be accurate for small τ or near the equilibrium – note that
this also applies for a population of bubbles rising in a stagnant fluid, where
terminal velocities are different for different bubble sizes (4.13). However, the

5As discussed by [22], in the literature this term is either simply neglected or incorporated into turbulent
fluctuating quantities using a diffusion hypothesis
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Figure 4.12: Evolution of the size-velocity correlation and relaxation times for
a population of droplets decelerating in a gas.
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Figure 4.13: Evolution of the size-velocity correlation and relaxation times for
a population of bubbles rising in stagnant liquid.

assumption of linear dependence in τ breaks down specially for big particles
and non-equilibrium conditions.

In order to account for inertial effects (i.e., larger response times to changes
in the flow) in non-equilibrium situations, an extension of the standard relax-
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4.7 Relaxation approach for size-dependent particle velocity

ation approach is suggested here. The idea is to limit the velocity of particles
with diameter greater than a certain critical value D∗, such that

u(D) =
{

uc +K ′D2 if D < D∗,
u∗ if D ≥ D∗

with u∗ = uc +K ′D∗2. The new proposed function is schematically repre-
sented in Fig. 4.14.

Hence, the size-velocity correlation is now divided in two regions: the first one,
for particles with D < D∗, so that u ∼ D2 (as in the relaxation approach, i.e. the
linear dependence in τ is recovered); and the second one, for inertial particles
with D > D∗, which are considered to have a constant velocity. Note that this
function satisfies the following (physical) constraints:

• limu(D)D→0 = uc : tracer particles follow the continuous phase perfectly.

• limu(D)D→∞ = u∗: the motion of very big, “inertial particles” is essen-
tially unaffected by the continuous phase.

• lim du(D)
dD = 0 in the limits D → 0, ∞: the size-velocity correlation tends

asymptotically to the above limits.

The characteristics of u(D) are also in accordance with the typical behavior
for the mean droplet size-velocity correlation at a single point experimen-
tally measured in a spray by Schulte [75], who measured simultaneously drop
sizes and velocity at a single point with PDA in the spray of a pressure atom-
izer. A similar type of approach to determine the size-velocity correlation was
also proposed before by Mossa [61], where a polynomial expression for u(D)
was used with a presumed size distribution function of Gaussian type. Mossa’s
polynomial expression also takes into account the physical limits incorporat-
ing different particle behavior depending on particle size.

A simple way to determine the critical diameter D∗ which divides these two
regions is to use a time scale of the size distribution τ∗ which corresponds to
a characteristic response time beyond which particles are considered to be in
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u ~ D^2

u*

uc

D*

u(D)

D

Figure 4.14: Schematic representation of new proposed function.
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the inertial region. The characteristic response time τ∗ is related to the maxi-
mum response time corresponding to the maximum diameter of the spectrum
(in line with the Beta distribution function) according to: τ∗ = St∗τmax . Thus,
D∗ can be determined by

D∗ =
√

18µc

ρd
St∗τmax . (4.85)

St∗ is given by the following expression:

St∗ = |u(3)|∣∣∣uc +τ(3)
(
1− ρc

ρd

)
g
∣∣∣ . (4.86)

Note that the relaxation approach is recovered for St∗ → 1, since D∗ → Dmax .
This happens when the transport velocity for the third moment, u(3), ap-
proaches its equilibrium value.

The new expression for the size-velocity correlation can be integrated over the
size spectrum, assuming that the distribution function f (D) has a Beta shape
given by Eq. (4.46):

u(k) = 1

M (k)

[∫ D∗

0
u(D)Dk f (D)dD +

∫ Dmax

D∗
u(D)Dk f (D)dD

]
, (4.87)

which results in

u(k) = uc + K ′ {C0 Dk+2
max

ID∗/Dmax (p +k +2, q)

B(p, q)
(4.88)

+ C0 Dk
max D∗2[ M (k)

C0 Dk
max

− ID∗/Dmax (p +k, q)

B(p, q)

]}
.

The incomplete Beta integral Ix(a,b) is defined as

Ix(a,b) =
∫ x

0
t a−1(1− t )b−1d t (4.89)
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and is evaluated numerically with the algorithm of Majumder and Battachar-
jee [51].

Analogously to the relaxation approach, any unknown velocity u(k) can be de-
termined with knowledge of the reference velocity u0 = u(3), such that:

u(k) = uc +Φ
(k)

Φ(3)
(u(3) −uc), (4.90)

with the ratio Φ(k)

Φ(3) given by

Φ(k)

Φ(3)
= Dk+2

max

D5
max


ID∗/Dmax (p+k+2,q)

B(p,q) +
(

D∗
Dmax

)2 [
M (k)

C0 Dk
max

− ID∗/Dmax (p+k,q)

B(p,q)

]
ID∗/Dmax (p+5,q)

B(p,q) +
(

D∗
Dmax

)2 [
M (3)

C0 D3
max

− ID∗/Dmax (p+3,q)

B(p,q)

]
 . (4.91)
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5 Model Development

5.1 OpenFOAM

The Method of Moments presented in previous chapters (PMOM) was imple-
mented in the open source CFD tool OpenFOAM [86], based on the Two-Fluid
solver twoPhaseEulerFoam [70]. The framework of PMOM with the relaxation
approach is comparable to a standard Two-Fluid formulation in terms of im-
plementation and costs. Additional computational effort is related mostly to
the solution of the moment transport equations. At the same time, PMOM
framework offers the possibility of incorporating polydisperse effects into
standard Two-Fluid solvers in a relatively simple manner. Details on the im-
plementation of moment transport equations in OpenFOAM are found below
(as also shown by Carneiro et al. [18]).

OpenFOAM is a C++ class library which can be easily used to develop CFD
codes for a wide variety of problems, including multiphase flows. This can be
done either by starting from existing solvers or by developing completely new
ones, using capabilities of the finite volume method [44, 86].

The solution of additional transport equations for the moments within
twoPhaseEulerFoam is possible with help of the closure for u(k) through the
relaxation approach. Regarding the implementation in the code itself, the mo-
ment transport equations can be defined within the tensor derivative class
fvScalarMatrix, with all terms being treated implicitly through the class fvm,
as depicted below:

surfaceScalarField C = tauk*(phib-phia)/taua;

fvScalarMatrix mkEqn
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(
fvm::ddt(mk)

+ fvm::div(phib, mk)
+ fvm::div(C, mk) //convective correction

);

mkEqn.relax();
mkEqn.solve();

According to Weller’s notation [85], the discretised form of the moments trans-
port equations is given by:

[[
∂[M (k)]

∂t
]]+ [[∇· (φb [M (k)] f (φb ,U D,))]]+ [[∇· (C [M (k)] f (C ,U D,))]] = 0, (5.1)

where the Euler implicit scheme for the time derivative and upwind differenc-
ing face values of M (k)’s for the convective terms were used.

It has been shown before that first order schemes guarantee realizability of
moment sets at the numerical level [26,46]. A recent study [81] presented ideas
for developing realizable high-order finite-volume schemes for quadrature-
based moment methods. The investigation of the model behavior with higher
order numerical schemes is out of the scope here and will be left for future
work.

The relaxation times taua and tauk for the correction coefficient C are defined
as surfaceScalarField types. Thus, segregation of the moments through-
out the flow field is achieved by considering different convective corrections
for each transport equation. Further details of the implementation and dis-
cretization strategies can be found in [70] and [18]. Note however that the
model described in [70] is essentialy a Two-Fluid Model and the exchange
terms are obviously adapted to encompass the framework presented here.
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5.2 Particle relaxation

5.2 Particle relaxation

The following test case comprises the one-dimensional flow of a population
of small particles that are injected into a domain with length Lc = 20 cm. The
advantage of such a test case is that there is an analytical solution to compare
with (see A.3 for details). The dispersed and continuous phase properties as
well as the inlet distribution were described in section 4.7.1. The continuous
phase velocity is given by uc = (uc,x ,0,0), with uc,x = 0.5 m/s (case 1, particle
deceleration) and uc,x = 2 m/s (case 2, particle acceleration). The inlet size
distribution for the analytical solution is “Top-Hat” as described before. The
Gamma and Beta distributions used to approximate the Top-Hat distribution
have the following low-order moments: M (0) = 7.05x109 1/m3, M (1) = 4.65x105

1/m2, M (2) = 36.15 1/m and M (3) = 3.15x10−3. The inlet moment transport
velocities are: u(k) = (u(k)

x ,0,0), with u(0)
x = 0.79 m/s, u(1)

x = 0.87 m/s, u(2)
x = 0.94

m/s and u(3)
x = 1 m/s. The Stokes number based on the biggest particle size

(Stmax = τmax
|uc |
Lc

) compares the characteristic time scales of both phases and
is approximately 0.1 for the first case and 0.4 for the second case.

As will be shown next, the test cases demonstrate that, despite the fact that
Gamma- and Beta-based reconstruction methods can poorly describe Top-
Hat or monotonic shaped functions (which will unlikely occur in a practical
situation), the moments of the distribution and its transport velocities are well
reproduced by the model.

5.2.1 Results and discussion – case 1

In this test case, particles have a higher inlet velocity than the continuous
phase, hence they will be decelerated towards the gas velocity. The axial vari-
ation of the steady state analytical distributions (normalized by the initial dis-
tribution) can be found in Fig. 5.1. The maximum values occur for smaller
diameters near the inlet and shift towards the maximum diameter of the dis-
tribution closer to the outlet. This happens because bigger particles have ini-
tially a higher inertia, but also larger relaxation times than smaller ones, and
tend to accumulate further downstream in the domain. Figure 5.2 shows the

119



Model Development

steady state distribution functions obtained with the various moment closure
methods presented in section 4.6 for three different axial positions (x = 0, 2
and 20 cm); the corresponding analytical distributions are shown here too.
Generally, the correct trend is captured by PMOM: as the particles are decel-
erated by the continuous phase, they accumulate upstream, and a small shift
towards the bigger particles of the spectrum occurs. Regarding the Beta re-
construction schemes, in addition to the 4-moment scheme (where Dmax is
evaluated depending on prognostic moments), two variants were tested here
for the 3-moment scheme: the first, with Dmax equal to that calculated by the
4-moment scheme at the inlet, and the second, with maximum diameter cor-
reponding to that of the initial Top-Hat distribution of the reference solution,
Dmax = Dmax,i ni t . Note that reconstructed distributions at the inlet are differ-
ent and none of the Beta forms is symmetric (while a Top-Hat shape is), since
the minimum diameter is forced to be null. While no substantial difference
can be seen between the 4-moment Beta scheme and the 3-moment scheme
with same Dmax , the 3-moment scheme with Dmax,i ni t was able to obtain neg-
atively skewed distributions which agreed qualitatively better to the analyti-
cal solution. This occurs because of the smaller maximum diameter used by
this scheme, which forces the Beta shape to have stronger influence of parti-
cles with diameters towards Dmax . The reconstructed Gamma function with
kmi n = 1 presents a higher peak than that with kmi n = 0 for all axial positions,
but both schemes produced distributions with very similar shapes to the 4-
moment Beta scheme.

Figure 5.3 gives the spatial relaxation of the moment transport velocities to-
wards the gas phase velocity until the steady state condition is reached. Since
all particles relax towards the continuous phase velocity, the same happens to
all moment transport velocities. However, since the influence of bigger parti-
cles is less pronounced in u(0) than u(3), it takes slightly longer for u(3) to reach
a value close to the continuous phase velocity. A very good agreement is ob-
tained between all reconstruction methods and the analytical solution.

The time evolution of the axial profiles of the 0th and 3rd moments can be
seen in Fig. 5.4. In the simulations, the domain is initialized with the inlet
values of the moments resulting from the reconstructed distributions using
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Figure 5.3: Variation of the moment transport velocities u(0) and u(3) along the
axial position.

the different methods investigated. As mentioned before, bigger particles of
the population will travel faster and segregate from the smaller ones, thus
accumulating further downstream in the domain. In the moments context,
this translates into a “continuity wave” for the moments, that propagates to-
wards the outlet until the equilibrium state is reached at approximately 0.2 s.
This wave has a higher concentration of particles on its peak, and its char-
acteristic diameters increase with axial position while traveling in the do-
main. The analytical solution of Eq. (4.13), at the steady state, requires that
u(k)M (k) =constant. Since τ(k) and τ0 are determined differently by the vari-
ous reconstruction methods and the interpolation between u(3) and uc in Eq.

(4.74) results in different boundary values for u(0) in each method, the 0th mo-
ment evolves to different values, with the Beta approaches presenting closer
values to the analytical profiles. Regarding M (3), because u(3) decelerates from
1 (at the inlet) to 0.5 m/s, the equilibrium value must be twice as high as
the inlet value. However, it is apparent that for the Gamma distribution with
kmi n = 0, M (3) is not conserved, since it is not used explicitly in the reconstruc-
tion process. This can be a serious drawback for this reconstruction approach,
because the total volume of the distribution is a very important physical pa-
rameter. This seems not to be an issue for the presumed Beta function using
three moments, even though it also uses only M (0)-M (2) in the distribution re-
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construction process.

The analysis of the first four Hankel-Hadamard determinants (∆0,1, ∆1,1, ∆0,2

and ∆1,2, normalized with their inlet values), which contain the most impor-
tant low-order moments used in the reconstruction schemes or appearing di-
rectly in the model equations, reveals that they remain positive throughout the
whole domain (see Fig. 5.5). This guarantees the realizability of distribution
functions for all sets of moments obtained. Furthermore, the axial variation
of the Hankel-Hadamard determinants is similar to that of the moments, in-
creasing asymptotically to a constant value corresponding to the equilibrium
distribution function. The variants of the Beta and Gamma methods are com-
pared to each other and it is possible to observe that the discrepancy between
the curves increases with the introduction of higher order moments in the de-
terminants, which carry a greater uncertainty irrespective of the reconstruc-
tion method used. For the Beta distributions with equal initial Dmax (left in
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Fig. 5.5), since they were very similar everywhere, and therefore must also have
similar moments, its corresponding determinants differed only marginally,
even for ∆0,2 and ∆1,2 (which depend on M (4) and M (5)). The variant of the 3-
moment scheme with Dmax = Dmax,i ni t (Fig. 5.5, right) presented smaller de-
terminants than the 4-moment scheme. In the case of the Gamma functions
(Fig. 5.5, bottom), a greater difference is observed between the two methods.
This aspect might be critical for the suitability of the different reconstruction
approaches, since it shows that the conditions for a valid set are sensible to
the moment sequence chosen.

Figure 5.6 illustrates that the pairs of (M (1), M (2)) obtained with the 4-moment
Beta scheme obviously fall within the bounds of the moment space, also il-
lustrating the validity of this reconstruction scheme for all moment combina-
tions obtained for this test case.

Figure 5.7 shows the size-velocity correlations obtained by PMOM (with the
4-moment Beta scheme) and the analytical solution for different axial posi-
tions. A good qualitative agreement can be observed, with all curves being rea-
sonably reproduced by a parabolic profile given by the relaxation approach.
It should be noted that the flow conditions were chosen such that effects of
larger relaxation times in non-equilibrium situations were not important. This
will be investigated later on.

5.2.2 Results and discussion – case 2

In this test case, particles have a smaller inlet velocity than the continuous
phase and will be accelerated towards the gas velocity, uc,x = 2 m/s. For sim-
plicity, the boundary and initial conditions are otherwise identical to test case
1.

The analytical solutions for this configuration can be seen in Fig. 5.8. The ef-
fect of particle acceleration is that of decreasing the size distribution in the
axial direction. The more pronounced decrease for smaller particles reflects
the smaller response times and faster acceleration towards equilibrium with
the continuous phase.

124



5.2 Particle relaxation

x (m)

N
or

m
.H

H
-D

et
s

(-
)

0 0.05 0.1 0.15 0.2
1

2

3

4

5

6

7

8

9

10

11

12
Beta (m0-m3)
Beta (m0-m2)

∆01
∆11

∆02

∆12

x (m)

N
or

m
.H

H
-D

et
s

(-
)

0 0.05 0.1 0.15 0.2
1

2

3

4

5

6

7

8

9

10

11

12

Beta (m0-m2), Dmax = Dmax,init

∆01
∆11

∆02

∆12

x (m)

N
or

m
.H

H
-D

et
s

(-
)

0 0.05 0.1 0.15 0.2
1

2

3

4

5

6

7

8

9

10

11

12
Gamma (m1-m3)
Gamma (m0-m2)

∆01

∆11

∆02

∆12

Figure 5.5: Normalized Hankel-Hadamard determinants within the domain
for the Beta (left and right) and Gamma (bottom) distributions.

125



Model Development

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.7  0.75  0.8  0.85  0.9  0.95  1

M
(2

)  N
or

m
.

M(1) Norm.

Moment Space
Dmax Enum

Dmax Denom
HHDet01
HHDet11

Case 1

Figure 5.6: Moment space projected at the (M (1),M (2)) plane and sets of nor-
malized moments obtained.

D (m)

u
 (

D
) 

(m
 / 

s)

0 2.5E-05 5E-05 7.5E-05 0.0001 0.000125
0.4

0.6

0.8

1

1.2

1.4

x = 0

2 cm

4 cm

9 cm

Figure 5.7: Size velocity correlations for different positions along the axial co-
ordinate: analytical solution (symbols) vs. PMOM (lines).

126



5.2 Particle relaxation

D (m)

(f
-f

0)
/f0

(-
)

0 2E-05 4E-05 6E-05 8E-05 0.0001 0.00012
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Inlet (x=0)

x = 0.2 cm

20 cm

2 cm
10 cm

Figure 5.8: Evolution of the distribution functions at several axial positions for
test case 2 (analytical solution).

127



Model Development

The distribution functions obtained with the Gamma reconstruction method
using M (1)-M (3), the 4-moment Beta scheme, as well as the 3-moment Beta
with Dmax = Dmax,i ni t are compared to the analytical results in Fig. 5.9. Once
again, the exact shape of the analytical distributions (a consequence of the
initial Top-Hat distribution chosen) is very difficult to be captured, but the
general trend is reasonably reproduced by the Beta distributions. Note that,
unlike the previous case, the 4-moment scheme shifts the skewness towards
the maximum diameter of the distribution. This can be attributed, first, to the
fact that particle segregation leads to a decrease of the moments in the ax-
ial direction. According to Eq. (4.48), M (k) ∝ Dk

max , and a decrease in Dmax

occurs. But also the higher “drift” in this case – the average relative velocity
(|u(3)

r | = |uc −u(3)| = 1 m/s) is twice as much as in the previous case (|u(3)
r | = 0.5

m/s) – contributes to stronger variations in the shapes of the distribution.

The evolution of the parameters p and q for the Beta distribution using four
moments is shown in Fig. 5.10 for the first (left) and second (right) cases. While
in the first case, it is clear that the condition p < q leads to negatively skewed
distributions along the axial position (Fig. 5.9); the second case is more inter-
esting since the value of p exceeds that of q inside the domain, leading to pos-
itively skewed distributions. The reason for that, as seen above, is the stronger
acceleration experienced by the particles due to a higher relative velocitiy.

The agreement of the axial evolution of the normalized third moment (Fig.
5.11, left) is very good for all methods. It is also interesting to analyze the evo-
lution of the normalized Hankel-Hadamard determinants along the axial po-
sition. While for the decelerating case the effect of particle accumulation to-
wards the outlet of the domain led to an increase of the determinants, here
the inverse occurs: particles tend to segregate along the axial position, which
leads to a decrease of the determinants (once again, it follows the variation
of the moments). According to the criteria described in section 4.6.3, positive
Hankel-Hadamard determinants are the necessary and sufficient conditions
for a valid moment set. Thus, this is an example of a potential situation where
these constraints might not be fully met, revealing a critical aspect of the for-
mulation which must be confronted. This issue will be addressed further in
the next example.
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5.3 Particle segregation due to buoyancy

In this section, two cases are presented to demonstrate the segregation of pop-
ulations of bubbles or solid particles due to the combined effect of buoyancy
and drag. In section 5.3.1, flow of a dilute mixture of water and air bubbles
at standard conditions is considered in a channel with 2 cm height and 10
cm length. At the inlet, axial velocities uc,x=ux=u(k)

x =0.1 m/s were defined; the
other components were set to null. The low-order moments of the size distri-
bution of the dispersed phase are the same described in section 4.7.1 for the
case with bubbles. A constant pressure was kept at the outlet, with zero gradi-
ent boundary conditions for all other variables. For simplicity, slip conditions
at the walls were applied for both phases, in order to mimic the situation of
segregation of particles in a quasi-uniform continuous phase velocity field,
with a constant pressure gradient given by the static equation: ∇P ≈ ρc g. The
maximum Stokes number based on the height of the channel is in this case of
order O (10−5). The same configuration will be investigated for the sedimenta-
tion of solid particles (ρ = 2500kg/m3; Stmax ≈ O (10−1)) in section 5.3.2, with
identical boundary conditions. In the second case, the much higher Stokes
number indicates that particle inertia is more important than in the first case.
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5.3 Particle segregation due to buoyancy

both

Figure 5.12: Schematic representation for the test case of bubble segregation
due to buoyancy.

Results obtained with PMOM using the Beta and Gamma approaches will
be compared to Multi-Fluid solutions with 15 size classes (D = 10− 150µm;
∆D = 10µm) obtained with the commercial software ANSYS CFX-11.0. The
Inhomogeneous-MUSIG approach of Krepper et al. [48] solves equations for
the velocities u(Di ) and volume fractions αi of each size class i . In order to
provide a correct comparison with PMOM, the molecular viscosity of the dis-
persed phases is set to a very small value, which is consistent with the di-
lute limit (particles do not influence each other’s motion). The size distribu-
tion function can be recovered from the MUSIG simulations with the relation:
f (Di ) = 6αi

πD3
i
∆D . Moments and moment transport velocities used for compar-

ison with PMOM are calculated, respectively, by:

M (k) =
15∑

i=1

f (Di )Dk
i ∆D (5.2)

and

u(k) =
∑15

i=1 u(Di ) f (Di )Dk
i ∆D∑15

i=1 f (Di )Dk
i ∆D

. (5.3)
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Figure 5.13: Pressure contours inside the channel and vertical pressure profile
at x = 0.05 m.

5.3.1 Results and discussion – bubbles

First, the contours of the pressure field, as well as its vertical profile at the
center of the channel are shown in Fig. 5.13. As expected, the hydrostatic linear
profile (with mean value equal to the atmospheric pressure) was obtained by
both Multi-Fluid and Moment Methods, with an almost exact match observed
between both approaches.

Figure (5.14) shows the contours of the mean diameters – defined as Dmn =(
M (m)

M (n)

) 1
m−n – inside the channel obtained with PMOM using the Beta approach

with M (0)-M (3) (left) and the Multi-Fluid Model (right), respectively. An in-
crease towards the upper wall can be clearly observed for all Dmn. This re-
flects the fact that the vertical velocity induced by buoyancy tends to increase
with bubble diameter. Since the contribution of bigger bubbles is more pro-
nounced for the higher order moments, M (m) rises faster than M (n) (m > n)
and leads consequently to an increase in Dmn. Marginal discrepancies be-
tween both methods can be seen, with the Beta approach predicting a slightly
larger region with small mean diameters downstream near the bottom wall,
while at the top wall larger mean diameters are observed at the first half of the
channel in the Multi-Fluid solution.
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Figure 5.14: Contours of mean diameters of the size distribution inside the
channel.
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The reconstructed distribution functions at several positions inside the chan-
nel (corresponding to axial positions x = 2; 5; 8 cm and vertical positions
y = 0.035; 0.1; 1 and 1.97 cm) are compared to the reference solution obtained
with the Multi-Fluid approach using 15 classes in Fig. 5.15. As bubbles migrate
inside the channel, f (D) increases towards the top wall for all size classes. Fur-
thermore, because of the greater velocity of bigger size bubbles due to buoy-
ancy, they tend to segregate from the smaller ones, while rising to the upper
side of the channel. Hence, for the vertical positions y = 0.035 and 0.1 cm,
bigger bubbles gradually disappear from the spectrum, accumulating in the
upper part (y = 1 and 1.97, cm). The distributions at y = 1 cm are nearly con-
stant along the length of the channel, indicating that the bubbles leaving the
central region of the channel are being replenished by the region near the bot-
tom wall.

Generally, a reasonable agreement can be noticed between the Multi-Fluid ap-
proach and PMOM using different presumed functions, with all reconstruc-
tion approaches reproducing the effect of polydispersity on bubble rise. Con-
cerning the shape of the distribution functions, important differences must be
pointed out. The Beta distributions present very distinct shapes here. The re-
construction approach using M (0)-M (3) results in distributions with a positive
skewness through the whole domain, while the Beta distributions with con-
stant Dmax adjust their shapes depending on the relative influence of small
and big bubbles of the spectrum, in order to reproduce the moments M (0)-
M (2) correctly. This is a consequence of the fact that the 3-moment scheme
has one degree of freedom less than the 4-moment scheme, since Dmax has
a fixed value throughout the channel. Thus, near the bottom of the channel,
they produce unphysical peaks towards D = 0µm1, while the other approaches
are in better agreement with the shape of the reference solution. Near the up-
per wall, particularly at the most downstream axial position in the channel,
the Beta distribution using four moments deviates the most from that of the
Multi-Fluid solution, even though it correctly reproduces the negative skew-
ness. It underestimates the influence of the bigger bubbles, while predicting a
much higher peak towards smaller size bubbles. On the other hand, the Beta
distributions reconstructed with three moments seem to be approximately

1Note that, for the Beta distribution function, limD→0 →∞, for p < 1.
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null-skewed near the top wall, with small negative skewness at x = 2 cm, shift-
ing towards a small positive skewness at x = 8 cm. Furthermore, the shape
of the Gamma distribution seems to be the best fit to the size distributions
obtained by the Multi-Fluid near the top wall. The parameters p and q for the
three-moment Beta scheme can be observed in Fig. 5.16 for y = 0.035 and 1.97
cm. As seen above, near the bottom wall the distribution remains negatively
skewed towards the smaller bubbles of the spectrum, while near the top walla
change in skeweness is observed towards the bigger bubbles.

In Fig. 5.17, the axial evolution of the zeroth and third normalized moments
for several vertical positions inside the channel obtained by PMOM is com-
pared against the reference Multi-Fluid solution. The overall behavior is well
represented by the model: as bigger bubbles migrate faster to the upper side
of the channel, higher order moments tend to decrease faster near the bot-
tom wall and increase faster near the top wall, while the distribution (and its
moments) in the central region stays nearly constant until very close to the
outlet. Also, the model compares quantitatively well against the Multi-Fluid
approach, with the best performance being achieved by the Beta presumed
function using four moments in almost the whole domain. Even though the
shape of the gamma distribution seems to reasonably reproduce the spectral
distributions (see Fig. 5.15), its moments are not well captured, being overes-
timated through the whole domain. This probably happens because the spec-
trum of the Gamma distribution ranges from D = 0 to D →∞, and the residual
influence of very big bubbles might be significant, even though their num-
ber density values are very small. At y = 1.97 cm, however, the Gamma distri-
bution is able to better reproduce the axial increase of the moments, which
seems to be an artifact caused by the presence of very big bubbles in the spec-
trum, being able to compensate the underestimation of the number density
for D = 100-150µm.

The profiles of the vertical component of the moment transport velocities for
x = 5 cm can be found in Fig. 5.18. u(0) and u(3) increase with the vertical posi-
tion until a constant level is reached, corresponding to the region in the chan-
nel where the distribution function is approximately invariant. Furthermore,
the contribution of big bubbles to u(k) increases with the order k of the aver-
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cm.
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Figure 5.16: Parameters p and q of the 3-moment Beta scheme for y = 0.035
cm (left) and y = 1.97 cm(right).

age, leading to a higher value of u(3) in comparison to u(0). This, as observed
before and leads to an increase on the mean diameters towards the upper part
of the channel. A better agreement is obtained for the Beta approaches, while
the Gamma reconstruction significantly underpredicts the velocities, particu-
larly for higher k. This also explains the overprediction of the moments in the
bottom half of the channel seen in Fig. 5.17. The 4-moment scheme performs
better for u(0) and in the upper half of the channel for u(3). On the other hand,
the fixed maximum diameter Beta approach agrees better with the Multi-Fluid
Model in the constant region of u(3). The relaxation times of the small bubbles
considered in this example are of the order ofµs, thus can be considered small
when compared to the characteristic time scale of the continuous phase flow
(Stmax ≈ O (10−5)). The variation of the moment transport velocities with the
vertical position occurs mainly due to the spatial heterogeneity of the distri-
bution function itself (which translates into the variation of the moments and
the moment average relaxation times, τ(k)), and much less due to acceleration
of the bubbles, since they can be considered to travel nearly at their terminal
velocities in most part of the channel.

The Hankel-Hadamard determinants were also investigated inside the chan-
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Figure 5.17: Axial evolution of normalized moments for several vertical posi-
tions inside the channel: y = 0.01, 0.035, 0.1, 0.4, 0.8 and 1.97 cm.
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Figure 5.18: Vertical evolution of the moments transport y-velocities for x = 5
cm.

nel (Figs. 5.19 and Fig. 5.20). Once again, positiveness of the determinants
could be confirmed, which guaranteed the existence of distributions for the
moment sets obtained by PMOM for all presumed functions presented. An in-
teresting characteristic is also demonstrated here: the contours of the Hankel-
Hadamard determinant∆11 resembles the characteristics of the moments, i.e.
tend to vanish where bubbles are less and increase when they accumulate.
Hence, the evolution of the profiles for y = 0.035 and y = 1.97 cm is analogous
to the evolution of the moments for the same positions. While an increase of
the determinants is observed near the top wall, near the bottom wall, where
the bubbles gradually disappear, they tend to zero. This once again reveals that
situations where the moments tend to zero, i.e., transitions between regions
with and without particles within the flow field, might be critical for the stabil-
ity of the simulation. Since the moments are transported differently through
the domain, it is natural that they also tend to zero at a different rate. In the
test cases presented here, this is a direct effect of size dependent drag and
buoyancy forces on the transport of particles. For example, the vertical trans-
port velocity of the third moment is larger than that of the zeroth moment,
reflecting the fact that bigger bubbles contribute more to the volume average
than smaller ones. If a particular moment is convected faster than other mo-
ments, there is a possibility that the former vanishes in a computational cell,
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Figure 5.19: Contours of the Hankel-Hadamard determinant inside the chan-
nel.

while the latter remain present. This situation is clearly unphysical (since all
moments refer to the same distribution), and might give rise to invalid sets in
the numerical domain, making strictly necessary the introduction of bound-
ing procedures or replacement schemes (as mentioned in section 4.6.3.5).

5.3.2 Results and discussion – solid particles sedimentation

The sedimentation of a population of solid particles in the channel flow con-
figuration is investigated here with PMOM using the presumed Beta approach
with the 3- and 4-moment schemes and the Multi-Fluid Model. The boundary
conditions of the previous case are used again in order to assess the behavior
of the model for larger particle relaxation times, which is achieved by signif-
icantly increasing the dispersed phase density (ρ = 2500 kg/m3, with Stmax ≈
O (10−2)). Since the buoyancy term in the momentum equation changes sign
(ρc/ρd < 1), particles will gradually sink towards the bottom wall while travel-
ing inside the channel.

Figure (5.21) compares the mean diameters obtained with PMOM (left) and
the Multi-Fluid Model (right). An increase towards the bottom of the chan-
nel can be observed for all Dmn. When compared to the previous test case, a
smaller region where the distribution function remains nearly constant is ob-
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Figure 5.20: Axial evolution of the normalized Hankel-Hadamard determi-
nants for y = 0.035 cm (left) and y = 1.97 cm (right).
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Figure 5.21: Contours of mean diameters of the size distribution inside the
channel.

served with a more significant variation on the characteristic diameters inside
the channel, which occurs due to the larger relaxation times used here. Fur-
thermore, a greater difference (specially for D30 and D32) is observed between
the Multi-Fluid Model and PMOM, where particles seem to settle with a higher
velocity. The larger discrepancy in this case than in the previous case possibly
points to the extension of the relaxation approach to large relaxation times,
where the approach is not strictly valid.

The distribution functions obtained with PMOM at three different axial posi-
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tions (x = 2 cm, x = 5 cm and x = 8 cm) and three different vertical positions
(y = 0.035, 1 and 1.97 cm) inside the channel are compared to the reference
solution of the Multi-Fluid Model in Fig. 5.22. An overall good agreement is
obtained between both solutions. Particles continuously disappear from the
region near the top wall, settling towards the bottom of the channel as the
mixture flows along the domain. Again the distribution function in the middle
of the channel stays nearly uniform along the axial position. The biggest parti-
cles of the spectrum completely disappear from the upper part of the channel
at x = 8 cm; an effect which is also well captured by the 4-moment Beta ap-
proach, as can be observed through the decrease in the predicted maximum
diameters. Near the bottom at y = 0.035 cm, the distributions predicted by
PMOM deviate the most from the Multi-Fluid distributions, with the underes-
timation of the bigger size classes being compensated both by the high peaks
in the smaller diameters and the presence of particles with diameter range be-
tween [150µm,Dmax]. When compared to the previous test case for the chan-
nel flow with bubbles, a similar behavior was observed. Note that this region
contains a high accumulation of big particles with high τ, where the relaxation
approach is also supposed to fail. The Beta approach with the 4-moment re-
construction scheme performs better than the 3-moment scheme, specially at
the top of the channel, where the latter approach produces again unphysical
high peaks towards the very small diameters of the distribution.

The position of the moment sets at the (M (1),M (2)) plane for the present test
case are shown in Fig. 5.23 (left), corresponding to the soltuion obtained
with the 4-moment Beta scheme at three different vertical positions. While
all points are located inside the valid moment space, the (M (1),M (2)) moment
pairs corresponding to the vertical position close to the top wall are closer
to the lower bound curve given by Eq. (4.62). In this region, as indicated be-
fore, there is a smaller concentration of particles, which leads to a decrease of
all Hankel-Hadamard determinants and possibly to moment set validity con-
cerns (i.e., irrespective of functional form chosen) - see Fig. 5.23 (right).

The evolution of the normalized moments and their transport velocities are
shown in Figs. (5.24) and (5.25), respectively. Generally, results for the 4-
moment Beta approach compare reasonably well against the Multi-Fluid so-
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Figure 5.22: Distribution functions at three different axial positions – x = 2
cm, x = 5 cm and x = 8 cm (from top to bottom) – and three differ-
ent vertical positions y = 0.035, 1 and 1.97 cm for the Multi-Fluid
Model (left) and PMOM (right).
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y = 0.035 cm (right).

lution. While the agreement for the normalized moments at intermediate ver-
tical positions is very good, specially for the low order moments, they are over-
predicted near the bottom wall at the first half of the channel (y = 0.035 cm)
and underpredicted near the top wall in the downstream part of the channel
(y = 1.97 cm).

The profiles of the moment vertical velocities at x = 5 cm for both Beta ap-
proaches are compared with the Multi-Fluid profiles in Fig. 5.25. The effect of
the inclusion of the velocity deviation tensor term – as given by Eq. (A.4) – on
the vertical velocity profile was also investigated. In general, only small dif-
ferences are observed, as expected. However, near the bottom wall, the inclu-
sion of this term removed the sharp gradients in the profiles in the region with
highest accumulation of particles. In that region, the influence of big particles
becomes more significant and the size spectra of the distributions wider (see
Fig. 5.22), which makes the contribution of the velocity deviation tensor term
more important. The overall behavior of both schemes is similar to the pre-
vious test case, but higher discrepancies are observed here between PMOM
and the Multi-Fluid solution for u(0) and u(3). Specially for u(3), the 4-moment
scheme significantly overpredicts the vertical velocities at the lower half of the
channel (where the influence of bigger particles is more important) and fails
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to predict a constant region in the profile, while the Beta approach with fixed
maximum diameter still captures reasonably well this behavior. The more pro-
nounced difference between PMOM and Multi-Fluid when compared to the
previous case occurs due to the larger particle relaxation times, since inertia
plays a more important role in the segregation of solid particles than bubbles,
given that the initial distribution is the same. The relaxation approach is based
on the assumption of sufficiently small relaxation times, so that the first order
expansion for τ can still be accurate. Hence, the closure given by Eq. (4.74)
is not as accurate as in the previous case, since the errors in the underlying
approximations become larger.

Nevertheless, the above findings suggest that a combination of both Beta
methods to reconstruct the distribution function might yield better overall
results for the transport of the moments. A hybrid reconstruction scheme is
proposed here for the computation of diagnostic moments, which determines
the maximum diameter through a linear combination between the expres-
sion given by Eq. (4.49) and the maximum diameter of the initial distribution,
Dmax,i ni t : Dmax,new = 1

2(Dmax +Dmax,i ni t ). The new scheme prevents the maxi-
mum diameter from becoming excessively large, overestimating the influence
of bigger particles. Indeed, significant improvements can be evidenced by the
predictions of the mean diameters inside the channel, as can be seen in Figs.
5.28 and 5.29 (compare also to Fig. 5.21). PMOM’s results with the new Beta
scheme are in closer agreement with the Multi-Fluid Model.

In order to better assess the validity of the relaxation approach, the size-
velocity correlations in the y-direction uy (D) obtained with the Multi-Fluid
Model and the hybrid Beta reconstruction approach are compared to each
other for various vertical positions at the center of the channel (Fig. 5.26, left).
The curves obtained with the Multi-Fluid Model reveal a considerable effect
of particle inertia, specially for diameters greater than 40 µm. While the small-
est particles reach their terminal velocities (parabolic profile) close to the top
wall, this is only observed at approximately y =1.3 cm for the biggest parti-
cles. On the other hand, the relaxation approach implicitly assumes that the
size-velocity correlation is always parabolic, varying according to the values
of uc and K – see section 4.7.2. Therefore, results obtained with PMOM, even
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Figure 5.25: Vertical evolution of the moments transport y-velocities for x = 5
cm: Multi-Fluid solution vs. PMOM (Beta); with and without ve-
locity deviation term.

with the modified Beta reconstruction, deviate considerably from the refer-
ence Multi-Fluid solution, specially for bigger particles. Indeed, the accuracy
of the relaxation approach is expected to deteriorate if relaxation times are
sufficiently high. Figure 5.26 (right) shows the size-velocity correlations at the
center of the channel obtained by the extended PMOM (new hybrid Beta with
extended relaxation approach). The modifications in the standard PMOM led
to a better representation of the mean diameters inside the channel than ob-
tained by the standard Beta reconstruction, which can be seen in Fig. 5.29
(compare to Fig. 5.21), as well as the axial profile at the center of the chan-
nel (Fig. 5.28). The combination of the hybrid Beta with the extended relax-
ation approach presented the best performance, with a very good agreement
against the Multi-Fluid results.
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6 Droplet Dispersion and Evaporation

6.1 Ultra-sonic atomizer

The following test case represents the configuration of a spray generated by
an Ultra-sonic atomizer. Figure (6.1) sketches the geometry of the test case. An
axisymmetric domain is used to represent the experimental set-up of Bässler
et al. [8]. The atomizer is placed centrally in a tube with 71 mm diameter
and 400 or 610 mm length (non-evaporative and evaporative cases, respec-
tively). Fuel is fed to an ultrasonic nozzle at 15 ml/min, which uses a small
mass flow of carrier air to improve droplet dispersion. Main air is injected
at a substantially higher flow rate (285 ln/min) than the atomizing air (15-20
ln/min), flowing through an annular passage 71 mm long, mixing with sec-
ondary (carrier) air flow and spray. Main air temperature was 90 C for the
evaporating case, otherwise all fluids were at 25 C. The outlet section was
prescribed at 1 atm and all walls were considered adiabatic. Boundary con-
ditions for the moments were calculated from the experimental distribution
measured at 8 mm behind the oscillating plate where droplets were generated:
M (1) = 3.83 ·105 m−2, M (2) = 1.43 ·101 m−1 and M (3) = 6.36 ·10−4.

Figure 6.1: Sketch of the geometry used in the test case.
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Droplet Dispersion and Evaporation

6.1.1 Monodisperse simulations

Results for monodisperse simulations with a Two-Fluid Model based on the
algorithm described by Rusche [70] are shown for different droplet diameters
(D =15, 30, 45 and 60µm). The axial velocity profiles at two positions along the
z-coordinate (8 mm and 150 mm behind the oscillating plate, i.e. z =128 mm
and 270 mm) are shown in Fig. 6.2 with the experimental profiles obtained
from PDA measurements of [8]. Two distinct streams are observed near the
spray inlet, which tend to mix while traveling towards the outlet of the pipe,
where a more uniform axial velocity profile is observed. It is possible to notice
that a given mean diameter is not necessarily appropriate for different regions
of the spray. For example, while at z =128 mm the profile seems to be better
represented with D =30 µm (although the peak is slightly better captured by
D =15 µm), further downstream this is not the case anymore, with the bigger
diameters showing better results near the axis of symmetry. This illustrates the
need for a polydisperse approach, which is able to represent the population of
droplets and the exchange processes with the gas phase in a consistent man-
ner. Results obtained with PMOM for the same case will be shown in the next
section.
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Figure 6.2: Axial velocity profiles obtained by the monodisperse simulations
and experimental profiles at z =128 mm and 270 mm.
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6.1 Ultra-sonic atomizer

6.1.2 Polydisperse simulations

For the polydisperse cases, PMOM is used with two distribution reconstruc-
tion approaches: a three-moment Gamma scheme (M (1) −M (3)) and the four-
moment Beta scheme (M (0) − M (3)). For stability reasons, the moments are
initially transported with equal velocities (u(3)) and the converged solution is
used as starting condition for the full polydisperse case, where the correction
terms in the Moment Transport Equations (see section 4.7.2) are then acti-
vated. This procedure was not necessary in the simplified test cases of the pre-
vious chapter. The reconstructed size distribution functions at the inlet for the
Gamma and Beta approaches are shown in Fig. 6.3 and their shapes are com-
pared to the experimentally measured droplet number frequency distribution
function. f ’s are reconstructed using the integral moments, which in turn are
calculated with knowledge of some properties of the experimental function.
For example, since M (3) and D32 are known, M (2) can be promptly determined,
and so on. Both Beta and Gamma functions are able to reasonably reproduce
the experimental shape.
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Figure 6.3: Experimentally measured distribution function at z = 128 mm and
reconstructed Gamma and Beta distributions.
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Contours of the continuous phase velocity magnitude obtained by the PMOM
using the four-moment Beta scheme are shown in Fig. 6.4. The two different
air streams can be easily identified, with higher velocities induced by the car-
rier jet, while a strong recirculating region is created by the detachment of the
main flow in the annular region. The two streams mix inside the tube while
flowing towards the outlet of the domain.

Figure 6.4: Contours of the gas phase velocity magnitude.

The axial and radial velocity profiles are investigated for PMOM using the pre-
sumed Gamma and Beta functions. The differences between both reconstruc-
tion approaches are not significant, with a good agreement obtained against
the experimental profiles. Since the experimental profiles represent a number
average value of the droplet velocities, it is natural that the transport velocity
of M (0) (u(0)) agrees better with the data. Near the spray inlet, smaller droplets
accelerate faster due to the higher continuous phase inlet velocity, having a
bigger contribution to u(0), while the contribution of bigger droplets is more
important to u(3). The width of the peak in the axial velocity profile is under-
predicted by the model, with smaller velocities obtained between the highest
value and the recirculation zone. This might be a direct consequence of the in-
terpolation procedure of the relaxation approach, which in this case forces the
intermediate moment transport velocities to lie between the reference veloc-
ity (u(3)) and uc . The radial component is qualitatively well predicted by both
approaches. The two distinct streams observed near the spray inlet tend to
mix towards the outlet of the pipe, where a more uniform axial velocity profile
is observed and the radial component becomes marginal.

The typical structure of the spray obtained with the Beta approach can be
identified in Fig. 6.6 (top). The spray is concentrated near the centerline and
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Figure 6.5: Comparison of axial (top) and radial (bottom) velocity profiles ob-
tained with PMOM against experimental data.

in the first half of the mixing tube. The radial dispersion of the droplets (due
to turbulent dispersion and drag) can be observed inside the domain, with a
consequent gradual decrease on the normalized number of droplets per unit
volume (M (0)) in the region near the symmetry axis. Contours of the normal-
ized third moment (M (3)) are depicted in Fig. 6.6 (bottom). When compared to
M (0), M (3) penetrates further downstream in the tube, which reflects the more
pronounced influence of bigger droplets on this moment.

Contours of the Hankel-Hadamard determinants ∆01 and ∆11 for the Beta ap-
proach are shown in Figs. 6.7, respectively. Throughout the whole domain,
positiveness of the determinants was observed. Note that also for the main air
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Figure 6.6: Contours of M (0) and M (3) obtained by PMOM with the Beta ap-
proach.

stream in the annular region a pseudo-distribution with very few droplets was
also defined at the inlet; this distribution obviously has positive determinants
and this information is also transmitted through the domain. Furthermore, an
interesting feature is observed here: ∆01 and ∆11 reach their minimum values
(close to zero) in the recirculation zone, which is "out of the reach" of droplets.
It highlights, once more (as observed in the 1D relaxation cases and the chan-
nel flow with bubbles/particles) that regions without particles represents the
greatest risk of generation of invalid sets. In the spray itself, the determinants
tend to remain positive and far from the “critical condition”, i.e. ∆kl → 0 and
the distributions are always realizable.

Figure 6.8 shows that the radial profiles of ∆01 obtained by both reconstruc-
tion approaches at 8 mm behind the spray inlet are qualitatively similar. The
sudden drop in the profiles corresponds to the recirculation zone in the gas
phase.

The reconstructed Gamma and Beta distributions for two axial positions at
the centerline are shown in Fig. 6.9. First, the variation in f observed for both
cases reflects the decrease in the total number of droplets along the centerline
due to the radial dispersion of the spray (i.e., M (0) decreases – compare also
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6.1 Ultra-sonic atomizer

Figure 6.7: Contours of ∆01 and ∆11 for the Beta approach.

Figure 6.8: Profiles of ∆01 at z = 128 mm obtained by both Gamma and Beta
approaches.

to Fig. 6.6). Furthermore, the Beta distribution presents a clear shift torwards
larger diameter droplets of the spectrum. This can not be reproduced by the
Gamma function, whose shape presents necessarily a positive skewness.
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6.1.3 Droplet evaporation

6.1.3.1 D2-Law

The evaporation model for the population of droplets is based on the D2-Law
for a single droplet, which is integrated over the size spectrum to yield source
terms for the moments M (k).

In order to assess the adequacy of the D2-Law and the Gamma distribution to
describe the evaporation process of the spray simulated here, a comparative
study was carried out using the experimental data of Bässler [7]. The number
frequency distribution ni measured near the spray inlet is used as initial con-
dition and is discretized using 103 size classes (Nc = 103) with ∆D = 2 µm and
maximum diameter equal to 235 µm. The variation on the number density of
a given size class i during a time interval ∆t is simply computed by

dni = ni
dDi

∆D
, (6.1)

with ni the number density corresponding to the time instant t −∆t and dDi

the change in size due to evaporation for all droplets pertaining to class i . dDi

can be calculated according to the D2-Law as
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dDi = Di − (D2
i −λ∗∆t )

1
2 , (6.2)

with Di the diameter corresponding to class i droplets at time instant t −∆t .

The evolution of the number frequency distribution as described by the above
relations is schematically represented in Fig. 6.10.

Figure 6.10: Schematic representation of the evaporation process of a popu-
lation of particles as governed by the D2−Law.

At each time instant, the moments of the number frequency distribution can
be computed as:

M (k) =
Nc∑
i

ni Dk
i ∆D. (6.3)

With knowledge of M (k), the number frequency distribution can also be re-
constructed, at each time instant, with the presumed function approach de-
scribed in this work. Here, the suitability of a three-moment Gamma scheme
will be tested for the description of the process of droplet evaporation.

Figure 6.11 shows the evolution of the number frequency distribution for sub-
sequent time instants t = 0.001, 0.002, 0.004, 0.006 s as computed directly by
the D2−Law (the droplets-air mixture is considered at boiling conditions). The
reconstructed distributions calculated with the low order moments M (1)−M (3)
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using a presumed Gamma scheme are also shown. As droplets evaporate, the
number density obviously decreases for both the direct (spectral) distribu-
tions and the reconstructed ones. The Gamma reconstruction scheme is able
to reasonably reproduce the shapes of the number frequency distributions.
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Figure 6.11: Evolution of the number frequency distribution as directly com-
puted by the D2-Law and reconstructed number frequency dis-
tributions by the Gamma approach.

The evolution of the total number of droplets with the degree of vaporization
ϕ is shown in Fig. 6.12. ϕ is defined as:

ϕ= 1− M (3)

M (3)
0

, (6.4)
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6.1 Ultra-sonic atomizer

M (3)
0 is the third moment of the initial droplet number frequency distribution.

Thus, the limit ϕ→ 1 represents the complete disappearance of droplets.

The evolution of the total number of droplets is compared for the direct so-
lution, the Gamma approach and experimental values of Bässler [7]. The ex-
perimental data is collected for a number of different cases, given the mass-
flow rate, varying the air temperature and the length of the mixing tube (see
Fig.6.1), yielding different ϕ’s measured at the outlet of the tube [7]. The evo-
lution of Nt in the simulations is therefore an idealization of the real process,
neglecting for example effects of convection, heat-up and interaction between
droplets.

Even though the Gamma scheme does not use M (0) explicitly in the recon-
struction process, the deviations observed from the spectral solution are
small. Both can represent the evolution of Nt qualitatively well, underpre-
dicting however the total number of droplets for high degrees of vaporization
(ϕ>≈ 50%). Bässler [7] argues that this occurs probably due to the presence of
vaporized fuel in the droplets vicinity, decreasing the concentration gradient,
which drives the evaporation process at the surface.
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Figure 6.12: Evolution of the total number of droplets with the degree of va-
porization.

The mean droplet diameters are also compared to the experimentally mea-
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sured values. First, it is observed that D10 < D32 < D43. This is obviously a re-
quirement for a realizable distribution according to the convexity condition,
as mentioned before. For D32 and D43, a good agreement is obtained between
the model and experimental data. The observed increase in the mean diam-
eters is explained by the fact that the rate of decrease of droplet diameter is
higher for smaller droplets, since according to the D2-Law: dD/d t ∝ 1/D . For
D10, this increase was not observed in the experiments. This might be a conse-
quence of the underprediction of the total number of droplets by the model,
leading to the excessive increase in D10.
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Figure 6.13: Evolution of mean diameters with the degree of vaporization.

The variation of the normalized Hankel-Hadamard determinant ∆01 as the
distribution of droplets evaporate is also computed (Fig. 6.14). As expected,
∆01 gradually decreases with ϕ and when droplets completely evaporate (ϕ→
1), the determinant vanishes (∆01 → 0). Hence, sprays with a high degree of
vaporization are expected to represent a potential situation for the occurance
of invalid moment sets.

6.1.3.2 Ultra-sonic atomizer with droplet transport and evaporation

As mentioned before, the source term for the zeroth moment due to evapora-
tion presents a singularity problem. As for the present version of PMOM, this
moment can not be chosen to be transported; development of a model for
ΓM (0) will not be undertaken in the present work. Therefore, only the Gamma
approach as used in the non-evaporative situation will be presented, since it
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Figure 6.14: Evolution of the normalized determinant ∆01.

does not use M (0) explicitly in the distribution reconstruction. As seen above,
the Gamma reconstruction scheme with M (1) − M (3) was able to reasonably
reproduce the process of droplet evaporation described by a D2−Law, and
presented a reasonable agreement with experimentally measured values of
D10, D32 and D43 for different degrees of vaporization. Therefore, it is assumed
that the D2−Law with this reconstruction scheme is a good approximation for
the evaporation process of the spray in question. It will be shown next that
PMOM with simultaneous moment transport and evaporation yields reason-
able results for the configuration analyzed. In order to avoid a higher propen-
sity for the generation of invalid sets due to the simultaneous consideration of
polydisperse transport and evaporation in the moments transport equations,
a two-step procedure is recommended, where evaporation source terms are
considered first, and the convective correction by the relaxation approach is
subsequently incorporated. As shown in the previous section, the evapora-
tion model considered in the moments context, with no transport, presented
a reasonable comparison with the real spray for the evolution of the droplet
population with the degree of vaporization. It is assumed that polydisperse
transport may be considered less important in this particular case. Therefore,
for simplicty, moments are transported with the same velocity, given by u(3),
in the simulation results shown next.
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Droplet Dispersion and Evaporation

Contours of the dispersed phase volume fraction (∝ M (3)) and vapor mass
fraction (Yv ) are shown in Fig. (6.15). A higher concentration of droplets is ob-
served near the inlet, which gradually decreases towards the end of the pipe
due to both dispersion and evaporation of the droplets, while the amount of
vaporized fuel increases.

Figure 6.15: Contours of dispersed phase volume fraction (top) and vapor
mass fraction (bottom).

The low order Hankel-Hadamard determinants ∆02 and ∆11 containing the
most relevant moments were assessed in order to check the signature of in-
valid moment sets throughout the solution domain (Figs. 6.16 and 6.17, left).
Contours of ∆11 are qualitatively similar to the ones obtained in the non-
evaporative cases, being positive within the spray and tending to zero towards
the outside region. It is also observed here, however, that∆11 decreases axially
towards the outlet, where the degree of vaporization is higher. This was ob-
served in the previous computation where the initial distribution of droplets
is made to evaporate according to the D2−Law with the moments and Hankel-
Hadamard determinants being calculated at each time instant. It was shown
that they decrease with the degree of vaporization and vanish at the limit
when droplets completely evaporate. For combustion simulations, for exam-
ple, where it is generally desired to achieve a high degree of spray vaporization,
this issue must be addressed in more details.
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6.1 Ultra-sonic atomizer

The reconstructed distributions at the centerline (Fig. 6.17, right) show the ef-
fect of evaporation as the droplets travel downstream in the pipe, diminishing
the total population in the spray.

Figure 6.16: Contours of ∆11.
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Figure 6.17: Radial profiles of ∆02 and ∆11 (left) and reconstructed distribu-
tions.

Profiles of droplet mean diameters corresponding to z = 600 mm are depicted
in Fig. (6.18). As shown by the experimental measurements, the mean diam-
eters are approximately constant at z = 600 mm in most part of the spray
and tend to slightly diminish in the main hot air stream, mainly because the
temperature is higher there (but probably also because bigger droplets tend
to travel near the centerline). This effect was also captured by the Moments
Model through the implementation of source terms described earlier but an
increase is also observed in the trends of the curves. This occurs due to the
nature of the source terms for the moments, which reproduces the D2-Law:
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Droplet Dispersion and Evaporation

smaller droplets have higher rate of evaporation, which translates into higher
rates of evaporation for low order moments. Towards the spray tip and near
the wall, only a few smaller droplets are likely to be found leading to a de-
crease in the mean diameters.

Figure 6.18: Droplet mean diameters (z = 600 mm) obtained with the Mo-
ments Model and PDA data.
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7 Discussion and Future Developments

A Method of Moments of polydisperse multiphase flows in the Eulerian-
Eulerian framework was formulated and validated. Closure was based on pre-
sumed functions for the particle size distribution and a novel relaxation ap-
proach for the size-velocity correlation. The method (called “PMOM”) was im-
plemented in the open source tool OpenFOAM in an existing Two-Fluid solver.
The proposed model was able to reproduce polydisperse effects in the parti-
cle motion in an efficient manner, by transporting a few moments of the size
distribution function.

First, one-dimensional test cases consisting of a population of particles being
decelerated or accelerated in a constant gas phase velocity field were inves-
tigated. Different particle relaxation times due to Stokes drag generate axially
heterogeneous distributions. Results for the model using different reconstruc-
tion schemes involving Gamma and Beta distribution functions were analyzed
and compared to an analytical solution. In general, the agreement was very
good, with the best performance achieved by the Beta approach. It became
also apparent that reconstruction methods that use only a few prognostic mo-
ments, might present conservation issues with respect to the diagnostic mo-
ments, since the latter are not explicitly used in the reconstruction process
itself. Since the moments also represent physical characteristics of the dis-
tribution, non-conservativeness is in certain situations unacceptable. This is
the case, for example, of the Gamma approach using M (0)-M (2), which does
not conserve the volume of the distribution. In this sense, the Beta approach
using the same moments presented a better performance.

A numerical experiment representing a channel flow of water and two dif-
ferent disperse phase densities (corresponding to bubbles or solid particles)
was also carried out to investigate the polydisperse segregation due to size-
dependent buoyancy effects. Results obtained with PMOM were compared
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Discussion and Future Developments

to reference solutions carried out with the Multi-Fluid Model using 15 size
classes. Also in this configuration, very reasonable agreement with the refer-
ence solution was obtained in both test cases. Predictions for the evolution
of the moments and their transport velocities for the case with bubbles were
slightly superior than for the one with solid particles – the reason for the dis-
crepancies observed was the larger average response times involved in the
second case. The relaxation approach was extended to account for inertial ef-
fects and combined with a hybrid Beta reconstruction method. Improvements
were achieved in comparison with the standard version of PMOM, since the
size-velocity correlations are better reproduced by the extended approach.

The model was also applied in a configuration consisting of a spray gener-
ated by an ultra-sonic atomizer. Results show that the basic structure of the
spray is well captured by the model, with a good quantitative agreement with
the experimental velocity profiles, showing that overall momentum exchange
was reasonably reproduced. For the evaporative case, experimentally deter-
mined mean diameters could be well reproduced by the model through the
implementation of moments source terms derived from the D2-Law, which
was shown to be a good approximation of the evaporation process.

The analysis of the Hankel-Hadamard determinants was introduced in order
to check the validity of the moment sets generated in the solutions. In the
cases investigated here, positiveness of the determinants was observed in the
converged solutions. However, it was revealed that the determinants increase
where particles tend to accumulate and decrease where they tend to disap-
pear, following the moments characteristics in some sense. This observation
suggests that transition regions with and without particles within the flow field
represent potential situations for the generation of invalid sets. Since the mo-
ments are transported with different velocities in the flow field, the rate at
which they tend to zero is also different. Hence, it is possible that the numer-
ical schemes produce invalid sets during the solution of the equation system.
Some practical situations can be perceived in which the Hankel-Hadamard
criteria might not be fulfilled, such as in sedimentation systems with strong
particle segregation, at the edges of high velocity sprays or the front of precip-
itating droplet clouds. In such situations, it will be important to investigate dif-
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ferent reconstruction schemes and to which extent bounding and correction
procedures do not violate moment conservation. The Hankel-Hadamard de-
terminants establish the existence or not of a family of distribution functions,
given a set of moments, and the realizability of especific functional forms re-
quire further analysis. Here, limits on the moment space for the Gamma and
Beta distributions were established and may help to construct replacement or
correction schemes in the future, in case invalid sets appear during the solu-
tion procedure. Other functions and reconstruction schemes need to be sep-
arately evaluated.

Future work should primarily be concerned with the extension of the model
concerning the simplifying hypothesis introduced here. Tentative general
guidelines are listed below:

• Extension to larger particle Reynolds number

The basic closure for the drag force is based on the Stokes law and corre-
lations for heat and mass exchange do not account for Reynolds number
corrections in the calculation of Nusselt and Sherwood numbers. This
simplification allowed the derivation of an analytical closure for these
terms. However, it is usual for most applications involving spray evap-
oration to consider larger particle Reynolds numbers, making necessary
the extension of momentum, heat and mass exchange models consid-
ered here.

• Closure for the energy equation

Hitherto, most of the Eulerian models assume that all particles have a
single temperature, as also done here. It is possible to develop a closure
in a similar framework as in the relaxation approach for particle veloci-
ties, by expanding the particle temperature around the continuous phase
temperature in terms of thermal response times (see [32], for details). The
expression can be then integrated over the size spectrum in order to de-
velop expressions for moment averaged temperatures, T (k) .

• Closure for u′u′

The assessment of the importance of the velocity deviation tensor term
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and its dependence on the particle relaxation time is also still needed.
A suggestion using the framework of the relaxation approach was pre-
sented in this work (see A.2).

• Droplet evaporation

Eventhough reasonable results were achieved in the examples studied
here, the evaporation model presented is not built on the conservation
of zero-th moment, since it is not chosen a prognostic moment. Closure
with a Beta reconstruction scheme using four moments, for example, re-
quires the development of a source term for M (0). However, as seen be-
fore, ΓM (0) presents a singularity problem and its formulation involves
modeling in some way. One idea is to formulate ΓM (0) as a function of
ΓM (3), for example, as: ΓM (0) = M (0)

M (3)ΓM (3) (i.e., the ratio of source terms is
equivalent to the ratio of the moments themselves). Schneider [72] and
Massot et al. [56] tackle the problem by parameterizing the distribution
function with the droplet’s surface area, using an approximate NDF [72]
or a maximum entropy approach [56], respectively.

• Particle Trajectory Crossing (PTC)

In contrast to Lagrangian approaches, one of the major drawbacks of
standard Eulerian models for disperse flows is the assumption that parti-
cles of the same size are only allowed to have a single local velocity. This
can be a serious handicap in situations such as those of impinging parti-
cle jets and jet crossing (as in multiple spray injection systems), but also
for LES and DNS of the gas phase. It is illustrated in A.4, in the frame-
work of PMOM, that approaches considering a single velocity field fail
to capture PTC. It is necessary to allow the co-existence, locally, of mul-
tiple distributions and size-velocity correlations. It is important to point
out, however, that quadrature-based methods have been proven to effi-
ciently overcome this issue allowing the local velocity to be multi-valued
(see [33], [23] and [72], for example).

Finally, it is believed that the foundations were laid in this work for the appli-
cation of the methodology in more complex configurations such as in gas tur-
bines or Diesel engines, where it is obviously still necesssary to include other
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interaction phenomena, such as droplet break-up and collision and possibly
extend the framework to turbulence resolved reacting flows.
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A Appendix

A.1 Stieltjes formulation and Beta function

The Stieltjes formulation (see section 4.6.3) applies to D ∈ [0,∞). However,
the Beta function might assume negative values if D is outside the interval
[0,Dmax]. To avoid this situation occuring, one can redefine f (D) by splitting
the intervals in D ∈ [0,Dmax] and outside.

Consider f |[0,Dmax ](D) the part of f (D) defined in [0,Dmax].

In order to guarantee that f (D) is non-negative throughout the entire real axis,
it is necessary that

f (D)


f |[0,Dmax ](D) ≥ 0, D ∈ [0,Dmax]

0, elsewhere.

A schematic representation is found in Fig. A.1.

The moments of f (D) are simply given by:

M (k) =
∫ Dmax

0
f |[0,Dmax ](D)DkdD +

∫ ∞

Dmax

(...)dD︸ ︷︷ ︸
≡0

. (A.1)

Therefore, the use of Hankel-Hadamard determinants in the sense of Stieltjes
will also be considered valid for the realizability of the Beta distribution used
here.
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Figure A.1: Schematic representation of f |[0,Dmax ](D).
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A.2 Closure for u′u′

A.2 Closure for u′u′

The expression for the first order expansion of the particle velocity in τ allows
the development of a closure for the velocity deviation tensor u′u′. If u′ = u|τ−
u(k) one can write, with help of Eq. (4.74):

∇ · (
∫ ∞

0
f u′u′DkdD) =∇ · [u0r u0r

τ2
0

∫ ∞

0
(τ′)2 f DkdD

]
, (A.2)

with τ′ the deviation of the particle relaxation time from the average relaxation
time, given by

τ′ = τ−τ(k), (A.3)

and u0r = u0 −uc . The divergence of the velocity deviation tensor can be ne-
glected if (τ′)2 is sufficiently small, which occurs, for example, in distributions
where the size spectrum contains mostly very small particles and does not ex-
tend through a wide range. The term obviously tends to zero in the monodis-
perse case, where all particles have equal response times. The framework in-
troduced here allows us to develop a model to account for the contribution of
the velocity deviation, which can be done by substituting back the expression
for τ′ in Eq. (A.2), giving rise to:

∇ · (
∫ ∞

0
f u′u′DkdD) =∇ · [u0r u0r

(τ(k)

τ0

)2
M (k)]+∇ · [u0r u0r

(τ(k+2)

τ2
0

)
M (k+2)].

(A.4)

Both terms on the RHS of the above equation need closure, which can be done
by means of presumed distribution functions as presented in this work.
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A.3 Analytical solution for the 1D particle relaxation case

The steady-state one-dimensional momentum equation – considering the
flux f ux in the axial direction – with no gravity can be written as:

d( f u2
x)

dx
= f

τ
(uc,x −ux) (A.5)

and

d( f ux)

dx
= 0, (A.6)

respectively.

For a constant gas velocity, Eq. (A.5) can be analytically integrated from x = 0
to x and ux(x = 0) = uI ,x to ux(x) to give:

ux(x)+uc,x ln
[ux(x)−uc,x

uI ,x −uc,x

]= uI ,x − x

τ
. (A.7)

Solution of the above transcendental equation in ux(x) together with Eq. (A.6)
results in:

f (x)

f I
= 1

1+W(Φ)
, (A.8)

with

Φ= uc,x

uI ,x −uc,x
exp

( uc,x

uI ,x −uc,x
− x

uc,xτ

)
. (A.9)

The Lambert-function W(Φ) is the inverse function of

F (Φ) =Φexp(Φ). (A.10)
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A.4 Particle Trajectory Crossing (PTC)

An intrinsic assumption of classic Two-Fluid formulations consists in consid-
ering a single velocity field for the dispersed phase. This, in a moments model
context, translates to the restriction that particles of the same size have locally
the same velocity.

Here, a “Multi-Moments” approach is evaluated, in order to capture macro-
scopic particle-crossing trajectories in two-dimensional flows, maintaining
the type of closure models presented in this work. It consists of solving mul-
tiple sets of equations for the moments of the size distributions and its trans-
port velocities. By doing so, it is possible to represent multi-modal velocity
distributions which are primary condition to represent crossing particle jets.
It remains to be investigated how to account for interactions between the un-
derlying distributions, such as when collisions or break-up take place.

Assuming that only Stokes drag is the relevant force acting on the particles
and unknown moments and average velocities are determined through the
presumed function closure described before, the governing equations for the
disperse phase are:

∂M (k)
i

∂t
+∇· (u(k)

i M (k)
i ) = 0, (A.11)

∂M (k)
i u(k)

i

∂t
+∇· (u(k)

i u(k)
i M (k)

i ) = 18µc

ρd
M (k−2)

i (uc −u(k−2)
i ). (A.12)

The distribution function is assumed to be e.g. a sum of multiple Gamma dis-
tributions:

f (D) =∑
i

C0i

Dβi−1e
− D
αi

α
βi
i Γ(βi )

, (A.13)

and the “total” moments are simply given by the sum of the individual mo-
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ments:

M (k) =∑
i

M (k)
i . (A.14)

The test case consists of a 0.1m x 0.1m squared domain and water droplets
(jets) are introduced centered at the bottom and right-hand sides of the do-
main with velocities of equal magnitude (1 m/s). For the sake of simplicity,
a very large Stokes number is chosen (so that the drag force vanishes). Ad-
ditionally, no collisional interaction is taken into account. First, results ob-
tained with a classical Two-Fluid Moments Model approach are shown in Fig.
(A.2). The jets “collide” at the center of the domain and move off diagonally in
one stream towards the upper left-hand corner of the domain. This is clearly
unphysical, since no collisional interaction is explicitly taken into account in
the model. This artifact demonstrates the inability of classical Two-Fluid ap-
proaches to cope with such situations.

For the same conditions of the previous example, a Multi-Moments approach
was also used and results are shown in Fig. (A.3). At early times, the jets ad-
vance towards the center point, until they begin to overlap and the local third
moment doubles. Distinct from the classical model, however, for subsequent
times, the jets continue along their original trajectories and finally exit the flow
domain at the top and left-hand sides, respectively.

The model is now applied to a situation where three distinct jets co-exist in-
side the domain, thus three sets of moments equations are needed. Two differ-
ent distribution functions are considered, so that a pair of equal distributions,
and a pair of different ones, cross perpendicularly. The idea behind this con-
figuration is to demonstrate the ability to represent different types of distribu-
tions simultaneously (including distributions containing multiple peaks).

As highlighted in Fig. (A.4), the three jets cross at two positions inside the do-
main, namely “a” (distribution 1 + distribution 1) and “b” (distribution 1 + dis-
tribution 2). The reconstructed size distributions at these positions, as well as
at both inlets, are shown in Fig. (A.5). At position “a” (bottom left), the result-
ing distribution has the same shape as distribution 1 (in fact, it is exactly the
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Figure A.2: Crossing Jets with a classical Moments approach – contours of the
third moment, M (3).

distribution 1 scaled by a factor of 2), but at “b”, the distribution presents a
double-peak shape resulting from the addition of the two underlying distri-
butions 1 and 2. It is clear that it can be easily extended to include more jets
(and more distributions), even distribution functions having different shapes
(for example, Beta, Log-normal, etc).

The previous test can also be extended to consider three jets crossing at the
same point. In order to do so, the three inlets are located at the bottom
plane of the square, with the central jet being directed upwards and the two
side jets having opposite inclinations, as shown in Fig. (A.6). Once again, the
model succeeds in capturing the crossing trajectories effect, with the overlap-
ping and subsequent separation of the three distribution functions. The high
numerical diffusion observed for the inclined jets is caused by the upwind
schemes used here, and will be subject of future improvement. The multi-
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Figure A.3: Crossing jets with a Multi-Moments approach – contours of the
third moment, M (3).
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Figure A.4: Configuration with three jets using the Multi-Moments approach
– contours of the third moment, M (3).

Figure A.5: Inlet distributions and reconstructed distributions at positions a
and b.

peak reconstructed distribution at the intersection point of the three jets is
shown in Fig. (A.7).
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Figure A.6: Configuration with three crossing jets using the Multi-Moments
approach – contours of the third moment, M (3).

Figure A.7: Reconstructed distribution at the intersection point of the three
jets.
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