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Abstract

The simulation of physical systems is a very important task in modern product
development. Besides single domain systems also the simulation of multi domain
systems as a whole has increasing importance. This work deals with coupled sim-
ulation of multi domains, especially mechanical, hydraulic and electric ones, using
co-simulation: the subsystems are integrated by their own integrators and are dy-
namically connected at discrete macro time steps. The main aspect lies on stability
improvements and parallelization to achieve time efficient simulations on multi CPU
computers. Beside analytical considerations also examples of industrial relevance are
given showing the power of parallel multi domain co-simulations.

Zusammenfassung

Die Simulation physikalischer Systeme ist in der modernen Produktentwicklung von
hoher Bedeutung. Neben Systemen aus einer physikalischen Domain steigt auch
die Bedeutung von Multi-Domain Simulationen. Diese Arbeit handelt von gekop-
pelten Multi-Domain Simulationen, insbesondere von mechanischen, hydraulischen
und elektrischen Systemen, durch Co-Simulation: Die Subsysteme werden dabei
durch ihre eigenen Integratoren integriert und zu diskreten Makrozeitpunkten dy-
namisch gekoppelt. Der Hauptteil dieser Arbeit liegt auf Stabilitätsuntersuchun-
gen und Parallelisierung um möglichst kurze Simulationszeiten auf Mehrprozessor
PCs zu gewähren. Neben analytischen Untersuchungen werden auch Beispiele aus
dem industriellen Umfeld gezeigt, welche die Leistungsfähigkeit von parallelen Multi-
Domain Co-Simulationen aufzeigen.
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1 Introduction

1.1 Simulation in the Industrial Design Process

Simulation of technical systems has become a very important task in the last decades
and an integral part of industrial product design. Even nowadays it is a still rapidly
growing field in all industrial areas as well as in all physical domains. There are
different reasons for this development: First, the building of test rigs is often very
complex and expensive, whereas simulations can be done with low effort and cost.
Second, simulation allows to analyze systems which are not build at the time of
investigation. Third, it is not practical to measure any kind of physical values on
test rigs, because it may not be reasonable to plug a physical sensor due to space
limitations or intervention on the dynamic behavior. Whereas in simulations one
can plug a virtual sensor anywhere without a change of the system. Just another and
often underrated positive effect of simulation is the possibility to obtain a high level
of system comprehension. This is mainly attributed to the knowledge accumulation
of the physical system behavior during the assembly of the simulation model.

The results of simulation tools are only practical if they sufficiently represent the
physical behavior of the real system. Hence, the modeling of basic machine parts [50]
and the whole machine dynamic [77] is very important and still an ongoing process in
industry and research. To make a prediction on the quality of the simulation results
it is and will always be necessary to build test rigs to compare the results from
simulation with the measured results of the real system. Often it will be sufficient
to adjust the submodels of simulations with measurements of the corresponding
machine parts, because the assembly of submodels induces insignificant errors in
the entire simulation.

A drawback of the simulation of physical systems is that models with high model
quality come along with a high computational effort. The aim to improve the model
usually increases the computational effort even more. Hence, the development of
new simulation tools or models must consider computational performance aspects.
Moreover, the development of parallel algorithms for simulation tools has become
an increasing topic in the last years because modern computers or workstations are
nowadays equipped with more than one central processing unit (CPU).

The integral construction of modern machines or machine parts is accompanied by
a close integration of different physical domains. The integration of mechanical, hy-
draulic and electric components is called a mechatronic system. Modern engineering
systems include in addition also components form other physical domains like ther-
modynamics or aerodynamics. Hence, besides the investigation of systems belonging
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2 1 Introduction

to one of these domains also the simulation of multi domain systems as a whole is
of major interest.

1.2 Multi Domain Simulation: Literature Survey

Today there exist not only a lot of specialized simulation tools for different domains,
where [1,2,16,72] are examples for multi body, hydraulic and fluid dynamic systems,
but also a lot of sophisticated multi domain simulation tools for example [17,44,47].
In both fields there is still active development and research on implementing more
detailed models and opening the tools to additional domains, providing analysis of
multi domain dynamic systems in high quality. The area of multi domain simulation
tools can be split into two major simulation variants [41]: First, the entire system is
integrated by a single solver, where the different domains must be combined using
model coupling. Second, the subsystems of different domains are integrated by their
own solvers and are coupled using co-simulation.

1.2.1 Model Coupling

Using model coupling, also called close or strong coupling, it is necessary that the
physical model of all parts of the simulation leads to the same mathematical formula-
tion because the whole coupled system is integrated by a single integrator. Therefore
this central integrator must be feasible for the given mathematical formulation of
the dynamic equations. Since many domains can be formulated as differential al-
gebraic (DAE) or ordinary differential equations (ODE), it is possible to couple a
wide range of domains using this method.

Subsystem Modeling (using DAEs or ODEs)

Very general mathematical formulations for dynamic systems are differential alge-
braic equations (DAEs)

F (ż, z, s, t) = 0, (1.1)

where z denotes the dependent differential variables, s the dependent algebraic
variables and t the independent variable being usually the time. If ż appears only
linear in F , being true for many systems, equation (1.1) can be reformulated in a
semi-explicit form

ż = f (z, s, t), (1.2a)

0 = g(z, s, t). (1.2b)
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For both formulations, there exist a lot of different numerical solvers given for ex-
ample in [27]. If no algebraic variable s exist, the DAE (1.2) becomes an ordinary
differential equation (ODE)

ż = f (z, t), (1.3)

which can be solved by more specialized numerical integrators [26].

Rigid and flexible multi body systems [3,61], hydraulic systems [7,13] as well as con-
tinuous controllers [59] are usually modeled using ODEs (1.3) or semi-explicit DAEs
(1.2). Therefore mechatronic systems can be simulated using model coupling.

Elastic single or multi body systems are governed by partial differential equations,
which do no match the general DAE (1.1). However, the use of variational methods
like Galerkin or Ritz [55,58] leads to ODEs (1.3). These variational methods can
be applied locally, leading to finite element methods (FEM) [8,42] with a large num-
ber of freedoms or globally using for example modal ansatz functions with much less
number of freedoms. Using the finite element method it is even possible to describe
spatial large deformations of mechanical systems in form of ordinary differential
equations [71, 80]. Therefore also elastic systems can join mechatronic simulations
using model coupling.

Fluid mechanical problems can be formulated using specialized finite elements [24].
At least for large fluid mechanical systems it is however more common to use finite
volume methods [79]. However, the necessary use of specialized fluid mechanic
solvers for finite volume methods excludes these methods from a model couping
with the above systems.

Input, Output and Interconnection (of DAE-Systems)

For multi domain simulations each of N subsystems, modeled for example using a
general DAE (1.1), is extended by an input vector u and output vector y

F i(żi, zi, si, t, ui) = 0, (1.4a)

yi = oi(zi, si, t, ui), i = A, B, C, . . . , N, (1.4b)

where the output is a function oi of the dependent variables zi and si, the time t

and the input ui. The interconnection equations

ui = Li y∗

i = Li















yA
...

yi−1

yi+1
...

yN















(1.5)
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define the input ui by a function of all output variables yj except i = j. The
elements of the incidence matrix Li [38], being zero or one, represent a simple feed
through between input and output. The global differential equation including all
subsystem is again a general DAE (1.1) with

z =







zA
...

zN







, s =















sA
...

sN

uA
...

uN















and F =















F A
...

F N

uA − LA y∗

A
...

uN − LN y∗

N















. (1.6)

Even if the subsystems contain discontinuities, for example mechanical systems with
non-smooth behavior due to rigid contacts between bodies [56], model coupling can
be used. An example of a model coupling of subsystems solved by an ODE integrator
with included root finding (also often called event detection) is given for example
in [19].

Implementation

The generation of the general DAE (1.6) can be done internal in one multi domain
simulation tool like [17, 47]. In this case the multi domain simulation tool also
solves this equation by a provided DAE solver. Another approach is to export the
differential equations of all but one subsystems, often represented by a stand-alone
tool, by code-export. The remaining subsystem or tool imports all equations by
code import and solves the global system with a provided integrator.

Advantages and Disadvantages

The advantages of model couplings are:

• A unitary mathematical formulation is used for all subsystems.

• Only the numerical discretization used by the integrator is needed. No further
discretization with inherent errors is introduced.

• Sophisticated accuracy and stability investigation already exists for the numer-
ical solvers.

• The option to reuse existing single domain models, if the corresponding tool
provides code export.

Disadvantages may be:

• All tools must be modeled using the same mathematical formulation.

• Specialized integration methods cannot be used for individual domains.
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• In case of code export/import at least one simulation tool must provide a model
import functionality and all others must provide a model export functionality.

1.2.2 Co-Simulation

Another common method for multi domain simulation is co-simulation, often be-
ing also called solver or process coupling as well as loose or weak coupling [38, 41].
In contrast to model coupling, the modeling of the different domains need not to
lead to the same mathematical formulation. A discrete coupling between the indi-
vidual solvers for each domain or subsystem binds all parts to one multi domain
simulation.

Subsystem Modeling

Using co-simulation each domain or subsystem is solved by its own, specific and
optimized numerical integrator. For simplification a general DAE (1.1) is assumed
exemplary. For the dynamic interaction between the subsystems the inputs and
outputs of the subsystems must be interconnected. This data exchange is done only
at discrete macro time steps to be independent of the algorithm of the subsystem
solvers.

Input, Output and Interconnection

Each i = A, B, C, . . . , N subsystems must be extended by an input ui and output yi

vector, as already shown by the model coupling equation (1.4). The interconnection
equations (1.5) for co-simulations are also given like in the case of model coupling.

In contrast to model coupling the subsystem equations (1.4) are not joined to a
single equation. Hence, care must be taken to avoid algebraic loops on the input. If,
for N = 2 subsystems, each output function depends on the output of the other sub-
system, then these output functions yield, using the interconnection equation (1.5),

yA = oA(zA, sA, t, LA yB), (1.7a)

yB = oB(zB, sB, t, LB yA). (1.7b)

These equations are implicit in yA, yB and can only be solved together or by an
iterative method. This is called an algebraic loop in the input and has significant
consequences on the feasibility of the coupling method, the convergence and the
zero-stability of the global system [4, 38]. Solution strategies in case of algebraic
loops are the iterative solution of the output equations or of the macro integration
step as described in [38]. Alternatively the subsystems can be reformulated in a
way that the implicit dependency of the input vectors ui on the output functions oi

are eliminated. This approach called filtering is also described in [38] and is closely
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tl−2

tl−2

tl−1

tl−1

tl

tl

tl+1

tl+1

Subsystem A

Subsystem B t

t

H

hA

yB yB yB yBuB uB uB uB

yA yA yA yAuAuA uA uA

hB

Figure 1.1: Dynamic coupling between subsystems

related to the Baumgarte stabilization [9] or force coupling methods in multi body
simulations [43].

Macro Discretization

Since the mathematical formulation and integration of the subsystems is arbitrary,
the communication between the subsystems is done only at discrete macro time
steps tl. Hence, besides the inner, micro discretization on subsystem integrator
level also an outer, macro discretization needs to be imposed. At these points the
subsystems stop their integration and must deal with the input and output vectors ui

and yi as shown in Figure 1.1. Between one macro time step tl → tl+1 with step
size H = tl+1 − tl each subsystem integrates its own dynamic equations with the
subsystem specific, specialized integrator which can be of fixed or variable micro
step size hi.

Extra- and Interpolation of the Input

The output values yi are only available at the macro time steps tl because the
interconnection equations (1.5) are only evaluated at these discrete points in time.
Hence, the input values ui are also only updated at the macro time steps. The
input values are however needed by the subsystem solver at each minor time step.
Hence, a rule for the calculation of the input values at arbitrary times t ∈ [tl, tl+1]
must be defined depending on the known input values ul

i = ui(tl) at the discrete
macro time steps tl. This continuous input function is denoted by ũi. As exemplary
introduced for ul

i, the right side upper index denotes the discrete point of evaluation
in time. Since the coupling quantities of all co-simulation examples in this work are
scalar values, the calculation of the extrapolated subsystem input ũ is done per
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element. Therefore in the following scalar coupling values for example ũ or u are
used exemplary but can directly be extended to vector-valued descriptions.

For the current macro step tl → tl+1 it is always possible to use extrapolation,
for example polynomial extrapolation of degree N , because the input value at the
current time tl and at the previous macro time steps tl−k, k = 1, 2, . . . are known:

ũextrap. : IR → IR, t 7→
N∑

n=0

en (t − tl)n (1.8)

The calculation of the parameters en has to be done concerning good accuracy and
stability properties and is shown later in detail. However, all extrapolation methods
have the disadvantage that the input may comprise a point of discontinuity at the
macro time steps: the extrapolated input value at the end of the current macro time
step will not match the real input value at the beginning of the next macro time
step. This can lead to negative effects on the integrators of the subsystems. To avoid
this, [36] uses an interpolated extrapolation or an extrapolated interpolation. Both
variants use only current and previous values in time but continuity is assured even
at the macro time steps tl. Another problem for polynomial based approaches, well
known also from other numerical disciplines, is the induced instability especially for
high order polynomials, called Runge’s-phenomenon [60]. Therefore the advance
of accuracy and the enlargement of the macro step size H is limited.

Interpolations between the time steps tl and tl+1, for example a linear interpolation

ũinterp. : IR → IR, t 7→ ul+1 − ul

H
(t − tl) + ul, (1.9)

using the input values ul = u(tl) and ul+1 = u(tl+1) is another approach. Continuity
even at the macro time steps is observed for this method: the interpolated input
value at the end of the current macro time step equals the real input value at the
beginning of the next macro time step. The main drawback is, that the value
ul+1, which lies in the future with respect to the current simulation interval t ∈
[tl, tl+1], must be known. This value is commonly unknown, but if the subsystems
are arranged in ahead and lagging ones, all lagging subsystems which only use
inputs from ahead subsystems can interpolate their input [30]. This method however
excludes the ahead subsystem from running in parallel with the lagging ones.

The evaluation of the extrapolation (1.8) or interpolation (1.9) function at the micro
time step is done by the subsystem itself. Hence, the subsystems must know the
type of the extra- or interpolation, all parameters and the current macro time tl.
The type does not change during the whole simulation and can be set at initializa-
tion. The macro time tl is already known by the subsystem. Hence, the extra- or
interpolation parameters, changing at every macro time step, are the input values
of the subsystems.
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mA

output yA = xA

input uA = yB

mB

output yB = xB

c,dc,d input uB = yA

xA xB

(a) Displacement-Displacement

mB

input uB = yA

output yB = xB

mA

c,d

output yA = FA

input uA = yB

xA xB

(b) Force-Displacement

input action point output action point

Figure 1.2: Mechanical Coupling Variants

Mechanical Coupling Variants

Mechanical subsystems coupled by a force element do not lead to an algebraic loop
in the input variables because the output function oi of at least one of two coupled
subsystems is not depending on the input value ui. Figure 1.2 shows two mechanical
coupling methods commonly used [15].

a) Using a so called displacement-displacement coupling, both subsystems, being
connected by a force coupling element, export a displacement (position and/or
velocity) as output variable. This value is used by the other subsystem as a kine-
matic input. To avoid an algebraic loop this kinematic excitation is not directly
attached to a body, but to the interjacent force coupling element (for example
a spring-damper). The coupling element therefore is included and evaluated in
each subsystem separately. In this case the output functions oi of both subsys-
tems depend only on the subsystem state xi but not on the individual input

yi = xi = oi(zi). (1.10)

b) Using the so called force-displacement coupling only subsystem B exports a dis-
placement to subsystem A as described above. Subsystem A exports the force
of the interjacent force coupling element (included and evaluated only in sub-
system A) to subsystem B which uses this force as a kinetic excitation on the
connected body. In this case only the output function oA of subsystem A de-
pends on the input but not the output function oB. Considering a linear spring
as coupling force element the output function oA writes

yA = FA = c (xA − xB) = c (xA − uA) = oA(zA, uA). (1.11)
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Implementation

The implementation of a co-simulation can be split into two different approaches: a
solver coupling and a process coupling.

Using a solver coupling, the submodel equations as well as the algorithm of the
numerical integrator are exported by all subsystems but one. The remaining subsys-
tem imports the other subsystem models and integrators as time discrete systems.
The importing tool is also responsible for the connection of the input and output
variables (1.5).

Using a process coupling each subsystem is integrated by its respective simulation
tool and the communication defined by the input and output variables is left to an ex-
ternal process. The communication must be done using inter-process-communication
(IPC) and the synchronization of the macro time progress between the subsystems
is done distributed by the subsystems itself or by a global controlling process.

Advantages and Disadvantages

The general advantages of co-simulation are:

• The reuse of existing subsystems.

• The use of specialized solvers and simulation tools for each individual domain.

• No code import or export functionality is needed by the subsystems, if a process
coupling is used.

The disadvantages may be:

• An additional macro discretization is needed, which induces additional errors.

• Numerical considerations are not as well established as for example for DAE
or ODE systems.

• The subsystems need to implement an inter-process-communication and syn-
chronization, if a process coupling is used.

The advantages of the iterative method compared to filtering or force coupling meth-
ods are:

• Arbitrary couplings between subsystems are feasible.

• Coupling constraints are exactly fulfilled, at least for a vanishing macro step
size H .

Disadvantages may be:

• An increased computational effort due to the multiple call of the output func-
tions or due to repeated macro integration steps of the subsystems.
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• The subsystems must be able to reject integration steps by the request of an
external process, if iterative time integration is used for the macro step. Most
commercial simulation tools do not have such a functionality.

1.3 Objective and Outline

The main objective of this work is to introduce a co-simulation framework for multi
domain systems. Special attention is given to the computational performance of
this co-simulation on modern desktop or workstation computers. Such computers
are nowadays usually equipped with more than one central processing unit (CPU).
Even in the past multi processor mainboards did exist being able to take more
than one CPU. However, up to now such boards are of high cost and only useful
in workstation computers. Nevertheless, in the last years so called multi core CPUs
have appeared even in the field of medium and low cost desktop computers. To
be able to use the full computational power of such systems it is necessary to run
simulations in parallel. One possibility to do this is to perform a multi domain
simulation by a parallel co-simulation, being the main topic of this work.
Besides the parallelization the second main topic is the usability of the parallel co-
simulation framework. It should be possible to include a large number of preexisting
simulation tools of arbitrary domains in the co-simulation. The code of open source
systems can be changed to meet the requirements of the co-simulation framework.
For systems available only as closed source code, which is true for most commercial
systems, the implementation cannot be adjusted. Hence, the introduced parallel
co-simulation should only put minimal demands on the subsystems, which gives
the possibility to apply it to a large number of preexisting closed source simulation
tools.

In Chapter 2 a parallel co-simulation framework is introduced. Starting with the ba-
sic concept of this framework and its classification, differences are outlined compared
to co-simulations known from literature. A special focus is put on the mathemati-
cal analysis of mechanical couplings concerning the local order and stability of the
coupling. To achieve maximum stability, various coupling extrapolations are intro-
duced. Some of these are numerically optimized for stability. Moreover the long
time behavior of different couplings is analyzed and compared with other coupling
methods known from literature.
The concept of mechanical couplings with good stability properties are transferred
to hydraulic couplings as well as to control couplings. Moreover an overview is given
for couplings of other domains.

Chapter 3 gives an outline on the implementation of the parallel co-simulation using
the programming language C++. Besides the investigation of different inter-process-
communication methods, which have a high influence on the parallel performance of
the co-simulation, also the implementation of the master and the slaves are discussed.
Detailed information on the implementation of open source slaves as well as the
binding of commercial closed source slaves is given.
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Chapter 4 starts with an academic test example to analyze the influence of differ-
ent inter-process-communication methods. Using a timing chain drive the different
introduced coupling extrapolations are compared concerning simulation speedup.
The timing chain drive of a flat combustion engine with hydraulic chain tension-
ers shows an excellent speedup due to it’s multi-scale character which is resolved
by co-simulation. The last example gives an overview of the power of parallel co-
simulations for large industrial systems: efficient simulation of a timing chain drive
with a hydraulic chain tensioner including an intake and exhaust valve train with
hydraulic cam phasing systems of a V6 combustion engine.

Chapter 5 gives a short overview of a further parallelization technique in simulation
software: Parallelization of the algorithm. Exemplary two simulation tools are used
to show the basic concept and the possibility of this method using parallelization by
OpenMP and a comparison of this method with co-simulation.

Chapter 6 sums up and draws some conclusions. Finally, future potentials of parallel
co-simulations are judged.



2 A Parallel Co-Simulation Framework

In the following chapter the principle method for a coupled simulation is shown in
detail. In contrast to other common coupling methods for multi domain simulations
as shown in Section 1.2, the main objective of this coupling variant is the possibility
to run the simulation in parallel on a multi computer cluster or on multi-core ma-
chines. Moreover, it should be possible to couple subsystems which are integrated
by their own integrators forcing co-simulation as preferred method. Concerning
parallelization, both solver coupling and process coupling is usable. In case of a
solver coupling the imported solvers must be parallelized internally by the import-
ing subsystem. Even if the importing subsystem provides such a functionality, the
parallelization can only run on shared memory systems because the coupled system
is acting as a single process which usually cannot be distributed to different com-
puters. Using a process coupling neither the limitation to shared memory systems is
given nor the availability of parallelization of imported solvers is needed. Hence, a
process coupling, using inter-process-communication for the data exchange, is used
in the presented framework. Concerning parallelization a further limitation is im-
plied: all input is limited to extrapolation methods. A common concept implying
all these aspects is the master/slave concept where the subsystems act as slaves and
the master controls the overall progress especially the time synchronization of the
subsystems.

2.1 Master-Slave Concept

The master-slave concept is shown in Figure 2.1 in form of a block diagram. The
subsystems, acting as slaves and as subsystem integrators on micro step level, are
arranged in parallel. The master, arranged serial to the slaves, is responsible for the
dynamic coupling of the slaves, the synchronization of the slaves, the evaluation of
the physical coupling law oM , the extrapolation ũi and the interconnection (1.5).
The advantages of the master-slave concept are:

• The main computational cost, the integration of the subsystems (slaves), can
be performed in parallel.

• New coupling laws or extrapolation methods can be added to the master with-
out a change of already existing subsystems (slaves).

• The solvers of all subsystems are treated equally and are kept time synchronous
by the master.

12
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Slave A MasterũA yl+1
A

l := l + 1

ũi : IRn → IRn (extrap.)

ui = LiM yM

yM = oM(uM)

uM = [yT
A, yT

B]T

Slave B
ũB yl+1

B

tl → tl+1

Figure 2.1: Master-slave concept

• Each subsystem is only connected to the master. This means that they do not
have to know each other.

Disadvantages may be:

• Only extrapolation methods for the input can be used.

• Couplings between the slaves are restricted to the functionality of the master.

2.1.1 Classification Regarding Input, Output and
Interconnection

The master-slave concept can be formulated using equations (1.4) and (1.5). The
output (1.4b) of all i = A, B, C, . . . , N subsystems are assumed to depend only on
the state zi of the respective subsystem i

yi = oi(zi). (2.1)

The master M is implemented as a separate subsystem without any dynamic state
variable:

zM , sM ∈ IR0 (stateless), (2.2a)

yM = oM(uM). (2.2b)

The output function oM of the master represents the physical coupling law for each
connection between subsystems. The interconnection equations (1.5) are defined by
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mA mB

output yM = FM

c,d
input uM1 = yBinput uM2 = yA

input uB = FM

output yB = xBoutput yA = xA

input uA = FM
Master

xA xB

input action point output action point

Figure 2.2: Mechanical Coupling: Master-Slave; Force-Force

ui = Li y∗

i = [0, . . . , 0, 0, . . . , 0, LiM ]
︸ ︷︷ ︸

Li

















yA
...

yi−1

yi+1
...

yN

yM

















= LiM yM , (2.3a)

uM = LM y∗

M = E
︸︷︷︸

LM







yA
...

yN







=







yA
...

yN







. (2.3b)

Since the slaves are not directly interconnected with each other (see equation (2.3a))
and the output function oM (2.2b) of the master M depends on the input uM but
the output functions (2.1) of the slaves do not depend on their input, no algebraic
loop in the input variables exists.

2.1.2 Classification of Mechanical Couplings

The presented master-slave concept for mechanical subsystem does not match the
displacement-displacement or the force-displacement coupling shown in Section 1.2.2,
Figure 1.2. However, this concept can be interpreted as a force-force coupling as
shown in Figure 2.2. Both subsystems export a displacement to the master which
is calculating the interjacent force coupling element oM . The master exports the
coupling force to both subsystems which use this force as a kinetic excitation on
the connected body. In contrast to the displacement-displacement and the force-
displacement coupling the calculation of the force coupling element is not done
by any of the subsystems, but by the master. To give an example, the output
functions oi of the subsystems and the master are presented for a linear spring as
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force coupling element

yi = xi = oi(zi), (2.4a)

yM = FM = c (xA − xB) = c (yA − yB) = oM(uM). (2.4b)

2.2 Calculation of the Subsystem Input

The master-slave concept uses extrapolation for the input of all subsystems. There-
fore extrapolation parameters, like en of equation (1.8) for polynomial extrapolations
are the input of the subsystems. According to the interconnection equation (2.3a)
these inputs are the output of the master M . Hence, the master is not only respon-
sible for the calculation of the coupling law oM (2.2b) but also for the calculation
of the extrapolation function ũ (1.8).

This section discusses five extrapolation methods: besides the commonly known ex-
trapolation using polynomials and the Hermite interpolation, three further extrap-
olation variants are shown which are useful to optimize the accuracy and stability
of the co-simulation coupling. To provide quick cross references to these extrap-
olations a coded name for each extrapolation is given in brackets. Moreover, for
simplification, the notation is done using scalar coupling quantities without loosing
generality.

2.2.1 Extrapolation Using Polynomial Interpolation (Poly K)

A well known and very common way for extrapolation is the polynomial interpolation
of degree K − 1 at K supporting points

(

tl−k, u(tl−k)
)

, k = 0 . . . K − 1 (2.5)

for the extrapolation of u in the interval [tl, tl+1] outside of the supporting points.
The parameters en of the extrapolation function (1.8) are the solution of the equa-
tions

K−1∑

n=0

en (tl−k − tl)n = u(tl−k), k = 0 . . . K − 1. (2.6)

For practical applications the parameters can be calculated easily using for example
Lagrange-polynomials [14]. According the output function (2.2b) of the master
and the coupling equations (2.3), the subsystem input u depends only on values
known by the master

u = yM = oM(uM) = oM(yA, yB, . . . , yN). (2.7)

Hence the master is able to calculate the extrapolation parameters en without know-
ing the slaves in detail.
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The order of the extrapolation increases with the degree of the polynomial interpola-
tion. Hence the accuracy can be increased using more supporting points. However,
a problem known for polynomial interpolations are high oscillations between the
supporting points for increasing degrees K − 1. For the co-simulation this leads to
stability problems which are discussed in Section 2.3.2. A similar effect is known
from multi-step integration methods [26]: the order increases by the use of more
steps, but the stability area of the integration method decreases.

2.2.2 Extrapolation Using HERMITE-Interpolation (Hermite K)

Not only using the function values at the K supporting points but also the deriva-
tives of the function values for the polynomial interpolation is known as Hermite-
interpolation [14]. The parameters en of the extrapolation function ũ are the solution
of the following equations:

2K−1∑

n=0

en (tl−k − tl)n = u(tl−k), (2.8a)

2K−1∑

n=1

n en (tl−k − tl)n−1 = u̇(tl−k), k = 0 . . . K − 1. (2.8b)

Compared to the polynomial extrapolation, the degree of ũ is doubled using the
same number of supporting points. As well as for the polynomial extrapolation, the
stability deteriorates with an increasing number of supporting points.

This approach needs besides the value u (2.7) also its derivative

u̇ =
∂oM (yA, . . . , yN)

∂yA

ẏA + · · · +
∂oM (yA, . . . , yN)

∂yN

ẏN (2.9)

at the macro time steps tl. The partial derivative of oM with respect to yi is known
by the master, since the coupling law oM is a quantity of the master. However, the
derivative of the subsystem output yi is unknown unless the subsystems include
for each output yi also its derivative in the output vector. This is only feasible if
these derivatives are a state variable of the subsystem. Otherwise this will lead to
an algebraic loop in the input variables. For mechanical couplings, using only the
position x for the calculation of the coupling force, this is feasible since the velocity
v = ẋ is also a state variable. Including more than the first derivative of u by
the Hermite-interpolation will lead, for the mechanical as well as for most other
domains, to an algebraic loop in the input, and is therefore not considered.
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2.2.3 Constant Extrapolation Using a Linear Combination
(Const K,R)

The methods previously described have the advantage that the degree of the extrap-
olation, and thereby the accuracy, can be controlled by the number K of supporting
points, but there is no possibility to affect the stability of the methods directly, since
there are no free parameters. This disadvantage is dealt with by a further approach:
a special constant extrapolation function (1.8) for N = 0. This approach does not
use ul for the single parameter e0 of equation (2.6) but a linear combination of the
current and the K − 1 previous values of u and u̇

ũ = e0 =
K−1∑

k=0

(ak ul−k + bk u̇l−k H). (2.10)

Note that the derivatives u̇ are scaled by the macro step size H = tl+1 − tl which is
assumed to be constant in this approach. For the same reason as for the Hermite-
interpolation, to avoid an algebraic loop in the input variables, higher derivatives of
u must not be used.

Approximation order

The parameters ak and bk must fulfill some conditions for accuracy and good sta-
bility properties. To derive the conditions for accuracy a mechanical subsystem is
considered. Its differential equations (1.4) are

q̇ = T v, (2.11a)

Mv̇ = h + Bu, (2.11b)

y = o(z), (2.11c)

where q and v are the generalized positions and velocities, forming the state vector
z = [qT , vT ]T , M is the symmetric, positive definite mass matrix, h the force vector
of the right hand side including gravitational, gyroscopic and other terms and B

is the matrix projecting the co-simulation input u, being a force for mechanical
systems, to the generalized velocities v. For simplification only a scalar input u is
used. The matrix T equals unity for most parametrizations except for some special
parametrizations like quaternions. The equations (2.11) can also be given in an
integral form over one macro time step:

ql+1 = ql +

tl+1
∫

tl

T vdt, (2.12a)

vl+1 = vl +

tl+1
∫

tl

M−1hdt +

tl+1
∫

tl

M−1Budt, (2.12b)

yl+1 = o(zl+1). (2.12c)
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The integrals in these equations do not depict an exact mathematical integration,
but the numerical integrator of the subsystem. These equations show that the
co-simulation input force u is always integrated by the subsystem leading to a corre-
sponding velocity part in v. To derive conditions for accuracy, it is assumed that for
each single coupling the integral of the extrapolated input ũ is equal to the integral
of the input u up to a given order P concerning the macro step size H :

tl+1
∫

tl

M−1Budt =

tl+1
∫

tl

M−1B e0
︸︷︷︸

ũ

dt + O(HP +1) (2.13)

The local order of the state of the subsystem z might not be of order P , since the
constant extrapolation during a macro time step additionally influences the subsys-
tem integration on micro step level. Hence a local order analysis for the subsystem
state depending on the order P and concerning the extrapolation degree N is shown
in Section 2.3.1.

TAYLOR expansion of the exact integral: To derive conditions for the param-
eters ak and bk a Taylor expansion of equation (2.13) is derived. The Taylor
expansion of the exact integral (left hand side of equation (2.13)) yields

tl+H∫

tl

Cudt =
tl+H∫

tl

(
∞∑

n=0

1
n!

(

C(n)
)l (

t − tl
)n
)(

∞∑

n=0

1
n!

(

u(n)
)l (

t − tl
)n
)

dt (2.14)

with the generalized position dependent term M−1(q(t)) B(q(t)) substituted by
C(t). The upper right index written in brackets denotes the nth derivative of a
variable. Expanding the sum using the product of power series and integrating
leads to a sorted form in the powers of H

tl+H∫

tl

Cudt =
∞∑

n=0

n∑

m=0

1

n + 1

1

m!

1

(n − m)!

(

C(m) u(n−m)
)l

Hn+1. (2.15)

TAYLOR expansion of the constant extrapolation: The same is done for the
constant extrapolation on the right hand side of equation (2.13). The constant
value e0 is substituted by the linear combination (2.10) and shifted in front of the
integral

tl+H∫

tl

Ce0 dt =
K−1∑

k=0

(

ak ul−k + bk u̇l−kH
)

tl+H∫

tl

Cdt. (2.16)
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The values of u and u̇ at the times tl−k, k = 0 . . . K −1 are substituted by a Taylor
series around tl:

ul−k =
∞∑

n=0

1
n!

(

u(n)
)l

(−kH)n, (2.17)

u̇l−k =
∞∑

n=0

1
n!

(

u(n+1)
)l

(−kH)n. (2.18)

Inserting the above equations in equation (2.16) and evaluating the integral yields

tl+H∫

tl

Ce0 dt =

[
K−1∑

k=0

(

ak

∞∑

n=0

1
n!

(

u(n)
)l

(−kH)n + bk

∞∑

n=0

1
n!

(

u(n+1)
)l

(−kH)nH

)]

·

·
(

∞∑

n=0

1
(n+1)!

(

C(n)
)l

Hn+1

)

.

(2.19)

Exchanging the sums in the first multiplier leads to

tl+H∫

tl

Ce0 dt =
∞∑

n=0

(

1
n!

(

u(n)
)l

Hn
K−1∑

k=0

(−k)nak + 1
n!

(

u(n+1)
)l

Hn+1
K−1∑

k=0

(−k)nbk

)

·

·
(

∞∑

n=0

1
(n+1)!

(

C(n)
)l

Hn+1

)

.

(2.20)

Expanding the outer sums using the product of power series leads to a sorted form
in the powers of H

tl+H∫

tl

Ce0 dt =
∞∑

n=0

n∑

m=0

1

m!

1

(n−m+1)!

(

C(n−m) u(m)
)l

K−1∑

k=0

(−k)mak Hn+1+

∞∑

n=0

n∑

m=0

1

m!

1

(n−m+1)!

(

C(n−m) u(m+1)
)l

K−1∑

k=0

(−k)mbk Hn+2.

(2.21)

Comparison of Coefficients: To achieve order P in equation (2.13), the first P

coefficients in the powers of H of the equations (2.15) and (2.21) must be equal. For
order 1 this leads to the condition

C lul = C lul
K−1∑

k=0

ak ⇔ 1 =
K−1∑

k=0

ak (2.22)
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for the parameters ak, where the parameters bk are not constrained. For order 2
additionally

1
2
(C lu̇l + Ċ

l
ul) = 1

2

(

2C lu̇l
K−1∑

k=0

(bk − kak) + Ċ
l
ul

K−1∑

k=0

ak

)

(2.23)

has to be satisfied. Using equation (2.22) this can be simplified to

1
2

=
K−1∑

k=0

(bk − kak). (2.24)

For order 3 furthermore

1
6
(C lül + 2Ċ

l
u̇l + C̈

l
ul) =

= 1
6

(

6C lül
K−1∑

k=0

k (1
2
kak − bk) + 3Ċ

l
u̇l

K−1∑

k=0

(bk − kak) + C̈
l
ul

K−1∑

k=0

ak

)
(2.25)

must be fulfilled which can be reduced considering (2.22) and (2.23):

C lül + 2Ċ
l
u̇l = 6C lül

K−1∑

k=0

k (1
2
kak − bk) + 3

2
Ċ

l
u̇l (2.26)

In this equation, and equally in the equations for even higher orders, the unknowns
C l and ul and their derivatives cannot be eliminated, due to the non-matching fac-

tor 2 on the left hand side and 3
2

on the right for the term Ċ
l
u̇l. This restricts the

maximal order of this approximation to 2. However, with the assumption that C

is constant, all derivatives of C vanish. In this case and in combination with equa-
tions (2.22) and (2.24), equation (2.26) leads to a constraint for the parameters ak

and bk

1
6

=
K−1∑

k=0

k (1
2
kak − bk) (2.27)

forcing order 3.

Summarizing the conditions shows that for a constant C the order P for the constant
extrapolation can be achieved if the parameters ak and bk fulfill the first P ≤ 2K

constraints

1 =
K−1∑

k=0

ak (2.28a)

1
2

=
K−1∑

k=0

(−kak + bk) (2.28b)

1
6

=
K−1∑

k=0

k (1
2
kak − bk) (2.28c)
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Fulfilled constraints R (2.28) 1 2 3 4 . . .
C 6= const. 1 2 2 2 . . .
C = const. 1 2 3 4 . . .

Table 2.1: Maximal approximation order P of
∫

Cudt for a constant extrapolation

1
24

=
K−1∑

k=0

k2(−1
6
kak + 1

2
bk) (2.28d)

. . . = . . . .

If C is not constant the maximal approximation order is limited to 2, independent of
the number R of constraints being fulfilled. Table 2.1 summarizes these statements.

Since the total number of parameters is 2K, forcing order P ≤ 2K will lead to
2K − P free parameters which can be chosen arbitrarily without changing the order
of the approximation. These free parameters are used for stability improvements in
Section 2.3.2.

Remark: An intuitive motivation of this approach

The value e0 for the constant extrapolation (1.8) can be chosen as the integral mean
value of u in the interval of the current macro time step [tl, tl+1]

e0 =
1

H

tl+H∫

tl

udt. (2.29)

Since the current macro simulation time is tl, u is not known in this interval. How-
ever, to give an approximation u can be extrapolated and used for the integral
mean value e0. Figure 2.3 shows this approach exemplarily for a linear Taylor
extrapolation of u using the values of u and u̇ at the current macro time step.

Evaluating this approach with the different types of extrapolations for u and num-
bers of supporting points gives the following values for ũ = e0 (the extended b=0

at the coded names depicts that all parameters bk are forced to be 0 for these cou-
plings):

• Taylor extrapolation around tl:

N = 0 (Const 1,1,b=0) : e0 = ul (2.30a)

N = 1 (Const 1,2) : e0 = ul + 1
2
u̇lH (2.30b)

N ≥ 2 : not applicable for most domains since ü is needed (2.30c)
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tl+1tl

u

linear Taylor extrapolation

ũ = e0 (constant average)

tl+3tl+2 t

ul

ul+1
ul+3

ul+2

Figure 2.3: Constant extrapolation

• Extrapolation using a polynomial interpolation at K supporting points as
shown is Section 2.2.1:

K = 1 (Const 1,1,b=0) : e0 = ul (2.31a)

K = 2 (Const 2,2,b=0) : e0 = 1
2
(3ul − ul−1) (2.31b)

K = 3 (Const 3,3,b=0) : e0 = 1
12

(23ul − 16ul−1 + 5ul−2) (2.31c)

. . .

• Extrapolation using a Hermite-interpolation at K supporting points as shown
in Section 2.2.2:

K = 1 (Const 1,2) : e0 = ul + 1
2
u̇lH (2.32a)

K = 2 (Const 2,4) :
e0 = 1

12

[

−6ul + 18ul−1+

+
(

17u̇l + 7u̇l−1
)

H
] (2.32b)

K = 3 (Const 3,6) :
e0 = 1

240

[

−949ul + 608ul−1 + 581ul−2+

+
(

637u̇l + 1080u̇l−1 + 173u̇l−2
)

H
] (2.32c)

. . .

Equations (2.30a) to (2.32c) all match the linear combination (2.10). Hence, equa-
tion (2.10) is a general formulation including all extrapolations (2.30a) to (2.32c).

2.2.4 Linear Extrapolation Using a Linear Combination
(Lin K,R)

Since the last approximation shows good results with respect to stability (see Sec-
tion 2.3.2) as well as by the practical examples from Chapter 4 an extension of this
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Fulfilled constraints R (2.28) 1 2 3 4 . . .
C 6= const. 1 2 3 3 . . .
C = const. 1 2 3 4 . . .

Table 2.2: Approximation order P of
∫

Cudt for a linear extrapolation

approximation to a linear extrapolation ũ is considered. The aim of a linear extrap-
olation is mainly motivated by a higher approximation order. Point of departure is
the linear extrapolation (1.8) with N = 1

ũ = e0 + e1 (t − tl). (2.33)

The conditions for the unknown parameters e0 and e1 are motivated intuitionally:

1. The linear extrapolation ũ at time tl should be equal to u(tl):

ũ(tl) = u(tl) ⇔ e0 = ul. (2.34)

2. Under the assumption that C is constant, the integral of the constant extrap-
olation using a linear combination (2.10) should be equal to the integral of the
linear extrapolation (2.33):

tl+1
∫

tl

K−1∑

k=0

(ak ul−k + bk u̇l−kH)dt =
tl+1
∫

tl

[

e0 + e1 (t − tl)
]

︸ ︷︷ ︸

ũ

dt

⇔ e1 =
2

H

(
K−1∑

k=0

(ak ul−k + bk u̇l−kH) − ul

)

(2.35)

Approximation order

The order analysis of this approximation is done in the same way as for the constant
extrapolation and leads to identical constraints (2.28) for the parameters ak and
bk. In contrast to the constant extrapolation, the maximal achievable order P for
C 6= 0 is 3 because of the higher extrapolation degree (N = 1) of the input ũ.
Table 2.2 summarizes the achieved order P , dependent on the number R of fulfilled
constraints for a constant and not constant C.

Remark: An intuitive motivation of this approach

The motivation of this approach is analog to the previous one. Figure 2.4 exem-
plarily depicts this approach for parameters ak and bk representing a linear Taylor
extrapolation for u. The extrapolated input ũ is equal to the linear Taylor extrap-
olation of u because the order of the Taylor extrapolation is equal to the degree
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tl+1tl

u

tl+3tl+2 t

ul

ul+1
ul+3

ul+2

linear Taylor extrapolation

ũ = e0 + e1 (t − tl) (linear average)

Figure 2.4: Linear extrapolation

of the linear extrapolated input ũ. For higher order extrapolations of u the linear
extrapolation ũ will form a linear average.

Remark: Forcing continuity at the macro time steps

Using a linear extrapolation, it is possible to force continuity even at the macro time
steps tl. Therefore the first condition for the unknown parameters e0 and e1 (2.34)
is replaced by

ũ(tl) = ũ∗(tl) (2.36)

whereas ũ∗ represents the linear extrapolation of the previous macro time step. The
second condition (2.35) stays the same. This method is closely related to the ex-
trapolated interpolation [36]. However, stability analysis and numerical tests have
shown, that this approach has a bad stability character. This effect can already be
divined in Figure 2.5 by the alternating slope of the extrapolation.

2.2.5 Quadratic Extrapolation Using a Linear Combination
(Quad K,R)

The intuitive extension of the last two approaches is a quadratic extrapolation

ũ = e0 + e1 (t − tl) + e2 (t − tl)2 (2.37)

with the conditions

ũ(tl) = u(tl) (2.38a)

˙̃u(tl) = u̇(tl) (2.38b)
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tl+1tl

u

ũ = e0 + e1 (t − tl) (linear average)

tl+3tl+2

linear Taylor extrapolation

ul

ul+2

ul+1
ul+4

ul+3

tl+4 t

Figure 2.5: Linear extrapolation with continuity at the macro time step

tl+1
∫

tl

K−1∑

k=0

(ak ul−k + bk u̇l−kH)dt =

tl+1
∫

tl

[

e0 + e1 (t − tl) + e2 (t − tl)2
]

︸ ︷︷ ︸

ũ

dt (2.38c)

for the unknown parameters e0, e1 and e2. This method is, like the other ones, used
later in the local order and stability analysis as well as in the examples in Chapter 4,
but is not considered in more detail here, since the stability analysis of this approach
shows bad results compared to the other ones.

2.3 Analysis of Mechanical Couplings

The extrapolations introduced for the subsystem input ũ are analyzed concerning
the local order, the stability and the long time behavior. Exemplary mechanical
systems are examined due to the following reasons: From the practical point of view,
mechanical couplings are chosen since they represent the main point of interest for
the industrial examples in Chapter 4. From the theoretical point of view they are
very interesting concerning stability. This originates from the very stiff character of
typical mechanical couplings: Many mechanical co-simulation couplings represent a
constraint between two connected bodies. To prevent an algebraic loop in the input
these couplings must be reformulated using a force coupling, being one of the filtering
methods, see Section 1.2.2. In multi body dynamics this is called regularization and
leads to high stiffnesses, which can lead to stability problems for time integration.

2.3.1 Local Order

A typical mathematical formulation for a dynamic mechanical subsystem is given by
equations (2.11). The analysis of the local order of the co-simulation is based on the
assumption that the numerical integration of all subsystems is exact. This allows
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the investigation of the error induced only by the co-simulation coupling. From the
practical point of view, neglecting the error of the subsystem integrators is feasible,
since the integrator step sizes of the subsystems are much smaller than the macro
step size of the co-simulation. Moreover the order of typical subsystem integrators
for mechanical systems are high and therefore they provide good accuracy.

The local order analysis is done using a comparison of the Taylor expansion of
the exact solution of the coupled system with the Taylor expansion of one macro
time step using the constant or linear extrapolation from Sections 2.2.3 and 2.2.4.
Since the Taylor expansions are getting very complex even if only a few terms are
considered, only the principle way of the local order analysis and a final comparison
is given in the following.

TAYLOR Expansion of the Exact Solution

The Taylor-expansion of the state at time tl+1 = tl + H around tl is given by

q(tl + H) = ql+1 = ql + q̇lH + 1
2
q̈lH2 + 1

6

...
q lH3 + · · · , (2.39a)

v(tl + H) = vl+1 = vl + v̇lH + 1
2
v̈lH2 + 1

6

...
v lH3 + · · · . (2.39b)

The values ql and vl are known since they are the initial state with respect to the
current macro time step. Considering T = T (q), M = M(q), h = h(q, v, t) and
B = B(q), the first derivatives q̇l and v̇l for the exact solution result from equa-
tion (2.11). The input u is given by the coupling law oM only invoking positions q

u = yM = oM(uM) = oM(y) = oM(o(q)) =: r(q). (2.40)

Higher derivatives of q and v at time tl can be evaluated applying the chain rule in
tensor notation:

q̈l =〈T q, q̇, v〉l + 〈T , v̇〉l, (2.41a)

v̈l =〈〈M−1, h〉q, q̇〉l + 〈〈M−1, h〉v, v̇〉l + 〈M−1, h〉l
t+

+ 〈〈M−1, B〉q, q̇, r〉l + 〈M−1, B, rq, q̇〉l,
(2.41b)

...
q l =〈T qq, q̇, q̇, v〉l + 〈T q, q̈v + q̇v̇〉l + 〈T q, q̇, v̇〉l + 〈T , v̈〉l, (2.41c)
...
v l = · · · (2.41d)

· · · = · · ·

The lower right indices q, v and t denote the partial derivatives (for example
xq := ∂x

∂q
) with respect to this variable. Hence, the term T q is for example a tensor

of degree 3. The outer tensor product between a and b is represented by ab and the
inner tensor product (scalar product) is depicted by 〈a, b〉. Backward substitution of
equations (2.41) in (2.39) leads to the Taylor expansion of the state values at the
end of the current macro time step tl+1 only depending on known values at time tl.
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TAYLOR Expansion of the Constant Extrapolation Using a Linear
Combination

The Taylor expanded state q and v of the co-simulation at time tl+1 is already
given by equation (2.39). For a constant extrapolation ũ = e0 the unknown state
derivatives are

q̇l =〈T , v〉l, (2.42a)

v̇l =〈M−1, h〉l + 〈M−1, B, e0〉l, (2.42b)

q̈l =〈T q, q̇, v〉l + 〈T , v̇〉l, (2.42c)

v̈l =〈〈M−1, h〉q, q̇〉l + 〈〈M−1, h〉v, v̇〉l+

+ 〈M−1, h〉l
t + 〈〈M−1, B〉q, q̇, e0〉l,

(2.42d)

· · · = · · ·

The Taylor expansion of the linear combination (2.10) fulfilling R constraints (2.28)
for the parameters ak and bk yields

e0 =
P −1∑

n=0

1
(n+1)!

u(n)lHn + O(HP ). (2.43)

The derivatives of u up to P − 1 can be calculated applying the chain rule on
equation (2.40). Resubstituting equations (2.40), (2.43) and (2.42) in (2.39) yields
the Taylor expanded state (ql+1, vl+1) for the co-simulation.

TAYLOR Expansion of the Linear and Quadratic Extrapolation Using a Linear
Combination

The Taylor expanded state q and v of the co-simulation at time tl+1 for these
co-simulation coupling variants are fully analog to the last one. However the ex-
trapolated input (2.33) or (2.37) is linear or quadratic according to equations (2.34)
and (2.35) or (2.38). Claiming R constraints (2.28) to be fulfilled and backward
substitution all in equation (2.39) yields the Taylor expansion of one macro time
step.

Coefficient Comparison and Summarizing

Comparing the coefficients of the powers of H between the last three Taylor expan-
sions of the co-simulation and the Taylor expansion of the exact solution results
in the local order of a single co-simulation macro integration step with step size H .
Table 2.3 summarizes the local order for q and v giving the number of fulfilled
constraints R (2.28) and the extrapolation degree N = 0 . . . 2 using the linear com-
bination (2.10).
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Extrapolation Fulfilled constraints R
degree N 1 2 3 4

0: const.
q 2 2 2 2
v 1 2 2 2

1: lin.
q - 3 3 3
v - 2 3 3

2: quad.
q - - 4 4
v - - 3 4

Table 2.3: Local order of q and v

Fd = 5v4
B

Fc = 200x2
B

Fd = 10v3
A

Fc = 100x3
A

cCo-Sim = 10000

u −u

F = 200 cos(24t)

mB = 1mA = 1

xA xB

Figure 2.6: Test system for numerical local order analysis

This analysis shows that increasing the extrapolation degree N leads to a higher local
order of the state vector of the subsystems. In case of R = N +1 fulfilled constraints,
the local order of the generalized position q is one larger than the local order of the
generalized velocity v because q is the integral of T v which does not depend on
the input u. Therefore only the local order of the generalized velocity v can be
increased by one using R > N +1 fulfilled constraints, independent whether M−1B

is constant or not. Hence, concerning the local order of the state variables, the
restriction to a constant term M−1B is irrelevant because the maximal local order
is restricted also by the nonlinear character of a mechanical system in general.

Numerical Verification

The theoretical results of the local order are confirmed by a numerical study for the
nonlinear example shown in Figure 2.6. This example comprises two subsystems
each being a one mass oscillator. The subsystems are coupled by the co-simulation
with the constant or linear extrapolated input u. Both, the spring and the damping
element of each one mass oscillator are nonlinear and the mass of the subsystem A is
actuated by a harmonic kinetic excitation. The coupling law oM of the co-simulation
is a linear spring without damping to prevent an algebraic loop if u̇ is also used. The
integration of the subsystems on micro step level is done with a Runge-Kutta
integrator of order 5 with a micro step size h ≪ H allowing the solution of the
subsystem integrators to be interpreted as exact. The values u at the current and the
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(a) Const. extrapolation,
R = 1 fulfilled constraints (Const 2,1)
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(b) Const. extrapolation,
R = 2 fulfilled constraints (Const 2,2)
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(c) Linear extrapolation,
R = 2 fulfilled constraints (Lin 2,2)
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(d) Linear extrapolation,
R = 3 fulfilled constraints (Lin 2,3)

Figure 2.7: Numerical error and local order, represented by the mean gradient, of the
test system

K − 1 = 1 previous macro time steps evaluated within the linear combination (2.10)
have to be exact to analyze the local error (This is analog to the local error analysis
of multi step integration methods [26]). These reference values are calculated by
a pretended numerical integration of the coupled system (without a co-simulation)
using the same numerical integrator and micro step size as described above. At
the initial state both subsystem springs as well as the linear coupling spring are
stretched.

Figures 2.7(a)-2.7(d) depict the numerical local error of q and v for both subsystems
depending on the macro time step size H . The thin straight lines indicate the
theoretical analytic order as given in Table 2.3. Based on the full logarithmic axis
of these plots the order is qualified by the gradient of the straight lines. The vertical
offset of the straight lines represents the local error coefficient which has not been
analyzed analytically. Therefore, the offsets of the thin lines are chosen such that
they are near to the numerical solution. The numerical model confirms the local
order of the approximations for u except for very low macro step sizes H and high
orders where the numerical solution runs into the limitation of the computational
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mB

cA, dA cB, dB
ũ −ũ

mA

Figure 2.8: Test system for stability analysis

accuracy at about 10−15.

2.3.2 Stability

Besides accuracy requirements, the stability of the co-simulated system is the main
restriction for the largest possible macro step size H . If the step size is larger than
the maximal stable step size Hmax, the coupling input u will oscillate with a persis-
tent increase of the amplitude and the whole system which will get unstable. The
main aspects leading to instabilities are the coupling stiffnesses and the extrapola-
tion of the input u. Since a high coupling stiffness is often physically motivated,
only the extrapolation of the input, being a numerical requirement, can be used
to improve the stability. The analysis and comparison of co-simulation coupling
variants regarding stability extends the results presented in [45].

Test System and its Solution

In analogy to the stability analysis of standard numerical integration methods [26],
the stability of the co-simulation is analyzed using the simple linear mechanical test
system depicted in Figure 2.8. This test system can be interpreted as an extended
Dahlquist test equation. It consists of two subsystems i = A, B, each comprising
a one mass oscillator with mass mi, stiffness ci and damping di. The two masses are
coupled using the parallel co-simulation framework. Hence, each mass is excited by a
kinetic extrapolated input force ũ (1.8) of polynomial degree N . The coupling law oM

is chosen as a linear spring (2.4b). For the stability analysis the integration of the
subsystem is considered to be exact. The differential equations for the subsystems
are

mi ẍi + di ẋi + ci xi = ∓ũ = ∓
N∑

n=0

en (t − tl)n, (2.44)

where the upper sign belongs to subsystem A and the lower sign to subsystem B.
The homogeneous part xh of the analytical solution of equation (2.44) and its first
derivative are

xh,i(t) = ki eλi t, (2.45a)

ẋh,i(t) = ki λi eλi t, (2.45b)

with λi = jωi − δi, δi =
di

2mi
, ω2

i =
ci

mi
− δ2

i , (2.45c)
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if the damping di <
√

4mi ci is considered to be weak. The underscores represent
complex values and j the imaginary unit. The real particular part xp and its deriva-
tive are

xp,i(t) =
N∑

n=0

pn (t − tl)n, (2.46a)

ẋp,i(t) = n
N∑

n=1

pn (t − tl)n−1 (2.46b)

using the unknown parameters pn. Considering the right hand side of equation (2.44)
yields

for N = 0 :







xp,i(t) = ∓e0

ci
︸ ︷︷ ︸

p0

ẋp,i(t) = 0

(2.47a)

and for N = 1 :







xp,i(t) = ∓ci e0 − di e1

c2
i

︸ ︷︷ ︸

p0

∓e1

ci
︸ ︷︷ ︸

p1

(t − tl)

ẋp,i(t) = ∓e1

ci

. (2.47b)

The parameter e0, in case of a constant extrapolation with N = 0, is defined by
equation (2.10). For N = 1, giving the linear extrapolation, the parameters e0 and
e1 are defined by equations (2.34) and (2.35). Substituting t with tl in xi = xh,i +xp,i

and in its derivative yields the complex state at time tl dependent on the complex
parameter ki

xl
i = ki eλi tl

+ xp,i(t
l), (2.48a)

ẋl
i = ki λi eλi tl

+ ẋp,i(t
l). (2.48b)

Substituting t with tl+1 = tl + H in xi = xh,i + xp,i and in its derivative results in
the complex state at the end of the current macro time step tl + H

xl+1
i = ki eλi(tl+H) + xp,i(t

l + H), (2.49a)

ẋl+1
i = ki λi eλi(t

l+H) + ẋp,i(t
l + H). (2.49b)

In these equations the explicit appearance of the time tl can be eliminated using the
state at time tl (2.48) and the particular part (2.46) at time tl and tl + H

xl+1
i = eλi H

(

ki eλi tl

+ xp,i(t
l)
)

︸ ︷︷ ︸

xl
i

−eλi H xp,i(t
l)

︸ ︷︷ ︸

p0

+ xp,i(t
l + H)

︸ ︷︷ ︸
∑N

n=0
pn Hn

, (2.50a)

ẋl+1
i = eλi H

(

ki λi eλi tl

+ ẋp,i(t
l)
)

︸ ︷︷ ︸

ẋl
i

−eλi H ẋp,i(t
l)

︸ ︷︷ ︸

p1

+ ẋp,i(t
l + H)

︸ ︷︷ ︸

n
∑N

n=1
pn Hn−1

. (2.50b)
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Hence, the state at the new macro time step tl+1 is a function depending on the
old state at time tl, the subsystem parameters, the parameters of the extrapolated
input u and the macro step size H . The state at an arbitrary macro time step can
therefore be calculated using a recurrence formula. Moreover, equation (2.50) shows
that the old states occur linearly, since the parameters pn depend only linearly on
the parameters en which itself are linear on the input u depending linearly on the
position xi. The new subsystem state at time tl+1 depends on the current state at tl

and according to equation (2.10) also on the k = 1 . . . K − 1 previous states at the
times tl−k. Introducing the vector

rl = [xl
A, ẋl

A, xl
B, ẋl

B, xl−1
A , ẋl−1

A , xl−1
B , ẋl−1

B , . . . ,

xl−K+1
A , ẋl−K+1

A , xl−K+1
B , ẋl−K+1

B ]T ,
(2.51)

the linear recurrence formula for the new state is written in matrix notation

rl+1 = Rrl (2.52)

with the stability function R which decides about the system stability. The ma-
trix R ∈ IR4K×4K is evaluated using the real part of equation (2.50) substituting
equations (2.47), (2.10) or (2.34) and (2.35) as well as (2.4b) dependent on the de-
sired extrapolation degree N . The constant matrix R depends on the number of
used macro time steps K, the linear combination parameters ak and bk, the macro
step size H and the subsystem parameters ωi, δi, ci and c. Exemplarily, the first
entry of R is shown for N = 0:

R1,1 =
(cA + a0 c) (δA sin(ωA H) + ωA cos(ωA H)) − a0 cωA eδA H

cA ωA
e−δA H (2.53)

Note that R1,1 does not depend on the number of supporting points K, but other
entries of R will depend on it.

Stability Condition

The sequence of vectors rl in equation (2.52) is bounded if the matrix R has a
spectral radius equal or less than 1 [14]:

ρ(R) := max(|eig(R)|) ≤ 1. (2.54)

Then also the states of the subsystems xA, vA and xB, vB are bounded and the co-
simulated test system is stable. In the following the properties of R are analyzed.

To reduce the number of parameters the following substitutions are introduced to
equation (2.52)

ωi H = ω̂i, δi H = δ̂i, cA = C, cB = V C, c = FC, (2.55)

pl = Grl with G = diag(1, H, 1, H, . . . , 1, H), (2.56)
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which yields the new linear recurrence formula

pl+1 = P pl, (2.57)

having no explicit dependency on H and no dependency on the new substitution
variable C. The substitutions (2.55) and the scaling of the velocity terms in equa-
tion (2.56) with H do not influence the eigenvalues of P since the scaling leads to
a similar matrix [14]. Hence the eigenvalues of the matrix R and P are equal:

P = GRG−1 ⇒ eig(P ) = eig(R) ⇒ ρ(P ) = ρ(R) = max(|eig(P )|). (2.58)

Since conservative subsystems impose the highest requirements on the co-simulation
concerning stability, the subsystems are assumed to be undamped

dA = dB = δA = δB = δ̂A = δ̂B = 0. (2.59)

Moreover the subsystems are assumed to have nearly the same eigenfrequencies and
stiffnesses

ωA ≈ ωB := ω ⇔ ω̂A ≈ ω̂B =: ω̂, (2.60)

V =
cA

cB

≈ 1. (2.61)

Industrial problems show that many mechanical systems meet these assumptions.
The above limitations leads to a matrix P only depending on the scaled eigenfre-
quency ω̂ (2.60), the stiffness ratio F (2.55) as well as the extrapolation parameters
ak and bk of the input.

Stability Optimization

Restricting the number of supporting points to K ≤ 3, the maximal degree of the
extrapolation to N ≤ 2 and the number of fulfilled constraints to R = 1 . . . 2K yields
a total number of 37 different coupling types by permutation of the coupling variants.
Since for each coupling method 2K −R ≥ 0 parameters ak and bk are not defined by
the method, a total number of 23 couplings have at least one free parameter which
can be used to optimize the stability. The other couplings cannot be optimized for
stability and represent mainly the methods described in Sections 2.2.1 and 2.2.2 or
in Sections 2.2.3 and 2.2.4 with 2K − R = 0. In the following only coupling types
are considered having proven good stability and accuracy properties. The coupling
variants with a quadratic extrapolation (N = 2) are not presented, because these
have shown bad stability properties. The variants with three supporting points
K = 3 have shown a considerable worse stability characteristic than the one with
K = 2 and are also not shown for this reason. Finally the variants with R = 1 are
also neglected because of their low local order. The coded names of these couplings
are extended by Opt, since free parameters are used for stability optimizations.
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Figure 2.9: Largest stable step size ω̂max; Const 2,3,Opt

Constant Extrapolation with K = 2 and R = 3 (Const 2,3,Opt): The constant
extrapolation from Section 2.2.3 with K = 2 supporting points and R = 3 fulfilled
constraints leads to 2K − R = 1 free parameter for the parameters ak and bk. The
R = 3 constraints (2.28) can be eliminated analytically using one free parameter p

a0 := −1
3
(6p − 2), (2.62a)

a1 := 1
3
(6p + 1), (2.62b)

b0 := 1
6
(6p + 5), (2.62c)

b1 := p. (2.62d)

The largest stable macro step size Hmax

ωHmax = ω̂max = max{ω̂ : ρ(P ) ≤ 1} (2.63)

for a varying parameter p and different fixed values of F is depicted in Figure 2.9. For
large values of F , representing a very stiff co-simulation coupling, the parameter p

has no influence on the maximal macro step size, but for smaller values of F this
parameter must be restricted to p = 0 to achieve the best stability property. Hence,
the optimal values of the parameters ak and bk are given by

a0 = 2
3
, a1 = 1

3
, b0 = 5

6
, b1 = 0, (2.64)

independent of the ratio F . The maximum value ω̂max, dependent on F is shown in
Table 2.4

Linear Extrapolation with K = 2 and R = 3 (Lin 2,3,Opt): The same is done
for the linear extrapolation from Section 2.2.4 with K = 2 supporting points and
R = 3 fulfilled constraints (2.28), which also leads to one free parameter p. The
corresponding maximal scaled macro step sizes ω̂max are depicted in Figure 2.10.
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F ω̂max p at ω̂max

0.10 2.38 (see Figure 2.9)
0.56 1.34 (see Figure 2.9)
3.16 0.606 (see Figure 2.9)

17.8 0.259 (see Figure 2.9)
100.0 0.109 (see Figure 2.9)

Table 2.4: Maximum ω̂max; Const 2,3,Opt; compare to Figure 2.9
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Figure 2.10: Largest stable step size ω̂max; Lin 2,3,Opt

For each ratio F the maximum value ω̂max is always at an individual point, which
is listed in Table 2.5. In contrast to the constant extrapolation there exists no
single parameter p where best stability can be achieved for all ratios F . Considering
that stability problems only arise for stiff couplings, where F is large, and that the
parameters p at the maximum values ω̂max for large ratios F are close together, it
is a good compromise to use p = −0.20322 as the general choice. This corresponds
to F = 100 and yields

a0 = 1.0731067, a1 = −0.0731067, b0 = 0.6301133, b1 = −0.20322, (2.65)

as best general parameters for this coupling.

Constant Extrapolation with K = 2 and R = 2 (Const 2,2,Opt): Forcing only
R = 2 constraints (2.28) to be fulfilled leads to two free parameters p1 and p2 for

a0 := −1
2
(2p2 + 2p1 − 3), (2.66a)

a1 := 1
2
(2p2 + 2p1 − 1), (2.66b)

b0 := p2, (2.66c)

b1 := p1. (2.66d)
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F ω̂max p at ω̂max

0.100 2.3607 0.12446
0.562 1.4745 -0.097519
3.16 0.72003 -0.18132

17.8 0.31417 -0.19994
100.0 0.13335 -0.20322

Table 2.5: Maximum ω̂max; Lin 2,3,Opt; compare to Figure 2.10

F=0.1
ω̂max

-2 -1 0 1 2
-1

0

1

2

3
F=0.562

ω̂max

-2 -1 0 1 2
-1

0

1

2

3

F=3.162
ω̂max

-2 -1 0 1 2
-1

0

1

2

3
F=17.783

ω̂max

-2 -1 0 1 2
-1

0

1

2

3

p1 p1

p2

p2

0

0.5

1

1.5

2

2.5

0
0.25
0.5
0.75
1
1.25
1.5

0

0.2

0.4

0.6

0

0.1

0.2

0.3

Figure 2.11: Largest stable step size ω̂max; N = 0, K = 2 and R = 2

The contour plots in Figure 2.11 depicts the largest step size ω̂max depending on
p1 and p2 for various scaled co-simulation stiffnesses F . The colors represent the
value of ω̂max in the plane of the parameters p1 and p2. The black lines represent
contour lines of equal ω̂max. For low ratios F the maximal stability is at a single
point marked by a bold cross. For high ratios F maximal stability is achieved not
at a single point but within a straight line from the bottom left to the top right,
marked by a bold line. Table 2.6 lists the maximum values of ω̂max in dependency
of F . A compromise for the best parameter set, independent on the ratio F , are
the values p1 = −0.2 and p2 = 0.363. Hence, the best general parameters chosen for
this coupling are

a0 = 1.3370, a1 = −0.33700, b0 = 0.363, b1 = −0.2. (2.67)
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F ω̂max p1, p2 at ω̂max

0.100 2.5347 0.11734, 0.73499
0.562 1.5858 0.049051, 0.601361
3.16 0.76531 straight line (see Figure 2.11)

17.8 0.33281 straight line (see Figure 2.11)
100.0 0.14120 straight line

Table 2.6: Maximum ω̂max; N = 0, K = 2 and R = 2; compare to Figure 2.11
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Figure 2.12: Largest stable step size ω̂max; N = 1, K = 2 and R = 2

Linear Extrapolation with K = 2 and R = 2 (Lin 2,2,Opt): The second cou-
pling variant having two free parameters is the linear extrapolation from Section 2.2.4
with K = 2 supporting points and R = 2 fulfilled constraints. Figure 2.12 shows
plots for the maximal step size ω̂max for this coupling variant. For each ratio F there
is a single point of maximum, shown in Table 2.7 and marked by a bold cross in
Figure 2.12. Since higher ratios F are more problematic concerning stability, the
values p1 = −0.0069 and p2 = 0.667 are chosen as best general point independent
of the parameter F . Hence, the parameters

a0 = 0.83990, a1 = 0.1601, b0 = 0.667, b1 = −0.0069 (2.68)

are used for this type of coupling, defining the best general stability for the analyzed
coupled system.
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F ω̂max p1, p2 at ω̂max

0.100 2.4054 0.20301, 0.93711
0.562 1.5373 0.057105, 0.749684
3.16 0.75832 0.014735, 0.686343

17.8 0.32978 -0.020791, 0.666899
100.0 0.14071 -0.0069416, 0.6667712

Table 2.7: Maximum ω̂max; N = 1, K = 2 and R = 2; compare to Figure 2.12

Coupling Type R F = 100 F = 17.8 F = 3.16
Const 2,3,Opt 3 0.109

22%
0.259

21%
0.606

19%
Lin 2,3,Opt 3

6%
0.133

5%
0.314

4%
0.720

Const 2,2,Opt 2 0.141
0%

0.333
1%

0.765
2%

Lin 2,2,Opt 2 0.141 0.330 0.750

Table 2.8: Comparison of ω̂max

Comparison

Table 2.8 summarizes the maximal values ω̂max for different F from the Tables 2.4
to 2.7. In case of R = 3 fulfilled constraints there is an increase of about 20% for
the largest macro step size Hmax = ω̂max

ω
if a linear extrapolation is used instead

of a constant extrapolation. In contrast for R = 2, there is nearly no change in
stability depending on the extrapolation degree, being constant or linear. Reducing
the number of fulfilled constraints R from 3 to 2 leads to a small increase of about
5% in case of a linear extrapolation. However, according to Table 2.3 the local order
of the generalized velocity is decreased by one.

Figure 2.13 compares the stability not only at some discrete ratios F but at ar-
bitrary ones. Moreover this figure compares the last four optimized variants with
the variants from Section 2.2, without free parameters ak or bk. This plot shows
the maximal scaled macro step size ω̂max = ωHmax depending on the ratio F . The
thin dotted lines in this plot represent the level lines of equal stability which are
generated as follows: The two eigenfrequencies of the coupled, undamped, analyti-
cal test system of Figure 2.8 under the conditions (2.60) and (2.61) as well as the
substitution (2.55) are

ω1 = ω, ω2 = ω
√

2F + 1. (2.69)

Defining the level L of equal stability to

L = max(ω1, ω2)H = ω
√

2F + 1H, (2.70)
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Figure 2.13: Stability plot

the level lines of equal stability L are defined by

ωHL = ω̂L =
L√

2F + 1
. (2.71)

Hence, if the stability curve of a coupling is always near one level line, then this
coupling has a nearly equal stability property independent on the ratio F .

Figure 2.13 shows two groups of couplings: one with relatively low and one with
relatively high stability. The couplings with low stability are not very useful for a
parallel co-simulation because the low macro step size H will lead to bad parallel
speedups due to frequent communications. The other curves are discussed in more
detail:

1. The constant extrapolation using a Hermite interpolation (Const 2,4) is
the most stable classic coupling. The maximal macro step size H is about
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59% larger than for the linear extrapolation using a quadratic polynomial
(Lin 3,3,b=0).

2. The most stable coupling for stiff connections (F ≫ 1) is the linear extrapola-
tion using K = 2 supporting points and two free parameters for optimization
(Lin 2,2,Opt). However this coupling does not have an optimal behavior for
F < 10.

3. A good compromise between stability for high and low ratios F are the cou-
plings Lin 2,3,Opt and Const 2,2,Opt.

4. The constant extrapolation using K = 2 supporting points and one free pa-
rameter (R = 3, Const 2,3,Opt) shows a nearly equal stability compared to
the Hermite interpolation Const 2,4.

5. The systematic optimization of coupling variants has increased the stability
of about 22% without a lose in accuracy because the decrease from R = 4
to R = 3 fulfilled constraints does not influence the local order according to
Table 2.3.

The stability is only tested concerning the given linear test system having also a
linear force coupling between the subsystems. Such analysis using linear systems
are common in numerical mathematics, but nonlinear complex examples can show
other stability properties. Hence, in Section 4.2 a numerical benchmark will be
presented with respect to stability and parallel computing performance for different
coupling methods using an industrial complex and nonlinear example. This example
demonstrates that the qualitative stability properties, regarded for the linear test
system, also qualifies for a complex nonlinear example.

2.3.3 Long Time Behavior

The last analysis considers the long time behavior of co-simulations based on the
linear example from the previous section, Figure 2.8. Three different co-simulations
are compared: First, the master-slave concept or force-force coupling according to
Figure 2.2, using the most stable coupling methods from Section 2.3.2. Second and
third, the classical force-displacement and the displacement-displacement coupling,
see Figure 1.2, using a constant and linear extrapolation of the input with a spring-
damper as coupling element. Whereas the first represent the optimized methods
used in this work, the last two are commonly used co-simulation methods from
literature [70].

The linear recurrence equation (2.57) is used as starting point for the analysis of
the master-slave (force-force) coupling. An analogous recurrence equation can be
generated using the test system for the displacement-displacement and the force-
displacement couplings, which leads to different matrices P . The value of p of
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equation (2.57) at time tl is given without recursion depending on the initial value
p0 by

pl = P P · · · P
︸ ︷︷ ︸

l times

p0 = P lp0. (2.72)

Note that P l means P to the power of l, whereas all other top right indices l

represent a value at time tl. For the analysis of the long time behavior of the discrete
co-simulation, a modified ordinary differential equation is investigated which has the
same solution as the discrete co-simulation at the discrete macro time steps tl, l =
0 . . . ∞. Such a procedure is commonly known as backward error analysis and used
for example for investigations on numerical integrators for Hamilton systems [25,
40]. The continuous modified solution p̃ of equation (2.72) yields

p̃(t) = P t/Hp0 (2.73)

with t0 = 0 and equidistant macro time steps tl = lH with step size H . Refor-
mulating this solution using the matrix exponential and the matrix logarithm gives

p̃(t) = eln(P t/H)p0 = et/H·ln P p0. (2.74)

Finally, equation (2.74) is the solution of the modified linear first order ordinary
differential equation [5]

˙̃p = 1
H

ln P
︸ ︷︷ ︸

A

·p̃ (2.75)

with the initial condition p̃(t0 = 0) = p0. This differential equation can be analyzed
using the eigenvalues of the constant system matrix A = 1

H
ln P . The eigenvalues

of P were already analyzed for the stability considerations in Section 2.3.2. Since
the matrix P is diagonalizable P = T DT −1 with D = diag(eig(P )), the matrix
logarithm of P is defined according to [21] as

ln P = T (ln D) T −1. (2.76)

Hence, the eigenvalues of ln P are equal to the logarithm of the eigenvalues of P

eig(ln P ) = ln(eig(P )). (2.77)

This can be proved by setting up the eigenvalue problem for the matrix ln P using
equation (2.76) and the transformation matrix T :

(ln P ) · T = T ln D, (2.78a)

T (ln D) T −1 · T
︸ ︷︷ ︸

E

= T ln D. (2.78b)

Stability is claimed for the comparison of the three different co-simulation methods,
which leads to the condition (2.54). Since the logarithm of a complex number with
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a spectral radius less than or equal to 1 always leads to a real part less than or equal
to 0,

ρ(P ) = max(|eigP |) ≤ 1 ⇒ ℜ(eigA) = ℜ
(

1
H

ln(eigP )
)

≤ 0, (2.79)

the solution of the modified differential equation (2.75) is always damped or energy
conservative.

Subsystems with Equal Eigenfrequencies

The highest requirements on the numerical integration is given for undamped sub-
systems δ̂A = δ̂B = 0. In this case and the assumption that the eigenfrequencies of
the two subsystems A and B are equal ω̂A = ω̂B = ω̂ and a force-force coupling the
two eigenvalues of P satisfy

eigP = [e+jω̂, e−jω̂, . . . ], (2.80)

independent of the extrapolation used for the input. Hence, two eigenvalues of the
modified equation (2.75) are the conjugate complex values ±jω̂, which represent
the eigendynamics of the modified equation. The eigenfrequency of the test system
without a co-simulation coupling but with a rigid connection between the two bodies
is

ω̂n = ωn H =

√

cA + cB

mA + mB
H. (2.81)

Using the substitutions (2.45c) and (2.55) yields

ω̂n =

√
√
√
√

C + V C
C

ω2
A

+ V C
ω2

B

H =

√

1 + V

ω2
B + V ω2

A

ωA ωB H =

√

1 + V

ω̂2
B + V ω̂2

A

ω̂A ω̂B. (2.82)

Hence, the eigenfrequency of the modified equation of the force-force coupling equals
the eigenfrequency ω̂ = ω̂A = ω̂B of the reference system being coupled by a con-
straint. The same applies for the damping: the reference system as well as the
co-simulation force-force coupling is conservative. Therefore, at least for subsys-
tems having equal eigenfrequencies the co-simulation force-force coupling does not
influence the solution compared to the reference system. However, the displacement-
displacement as well as the force-displacement coupling does not show the same
effect: both couplings induce a damping to the subsystems and shift the eigenfre-
quency of the modified equation. Since the analytic investigation, especially for
eigenvalues, of these methods is very complex, this effect is shown numerically in
Figure 2.14 for a constant extrapolation of the input using a phase diagram and
a Poincaré plot. The force-force plot is generated with the most stable coupling
method (Const 2,3,Opt) from Section 2.3.2 and a step size being about 5 times
smaller than the maximal stable step size for this method. The two other plots are
generated with the same step size and a damping of the coupling being the lowest
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Figure 2.14: Comparison of different co-simulation methods: constant extrapolation
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feasible leading to a stable solution. The stiffness ratio V = 1 is chosen for all three
plots and an initial condition forcing a deviation of both subsystems springs and the
coupling spring.

The displacement-displacement coupling leads to a very high damping of the sub-
systems: during a macro time step the input, considered as a kinematic excitation,
is hold constant. Therefore the damping part of the coupling law acts on both sub-
systems like a damping against the environment. The force-displacement coupling
results in a lower damping: the damping part of the coupling law acts only on one
subsystem. The force-force coupling leads to an undamped system as expected.

The orbit of the reference system being rigidly coupled is reflected by the thin dotted
line. The orbit of the force-force coupling does not match this orbit, but leads to a
stationary behavior after the high frequent oscillations of the coupling are damped
out (see Figure 2.14 bottom left). For the other couplings a comparison with the
orbit is not possible, since they are highly damped.

Qualitatively the same effect is regarded for a linear extrapolation of the input
as shown in Figure 2.15. The phase diagrams of all three variants look like an
undamped stationary system, but the Poincaré plots show again, that the force-
force coupling is the only one which leads to a stationary orbit. The two other
methods are damped, even if damping is orders of magnitudes lower than for the
constant coupling extrapolation.

The displacement-displacement as well as the force-displacement coupling can be
used with larger macro step sizes than the force-force coupling without getting un-
stable. However these two methods may have a very high damping influence which
also leads to a frequency shift compared to the real solution and so to qualitatively
wrong behaviors.

Subsystems with Different Eigenfrequencies

If the eigenfrequencies of the subsystems are different, ω̂A 6= ω̂B, all three cou-
pling variants lead to damped subsystems and do not reflect the exact eigenfre-
quency ω̂n (2.82) of the rigidly coupled system. To compare the deflection of the
three different methods with respect to the exact solution, the eigenfrequency error
eω̃ = ω̃ − ω̂n and the damping error eδ̃ = δ̃ − δ̂n = δ̃ of the modified equations
are plotted for different spring stiffness rations V and fixed ratios kω = ω̂B

ω̂A
. These

errors are plotted for a stiff coupling (F = 100) in Figure 2.16. The same quali-
tative effect as for equal eigenfrequencies occurs: the force-force coupling gives the
best approximation for the exact solution, no error is visible in this plot. The force-
displacement has a medium error and the displacement-displacement coupling has
the largest deviation.
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Figure 2.15: Comparison of different co-simulation methods: linear extrapolation
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2.4 Extension to Hydraulic Couplings

Although the co-simulation framework is introduced as a domain independent ap-
proach, Section 2.3 analyzes only mechanical couplings in detail. Hence, the investi-
gations for this section can not be directly applied to other domains. For reusing the
methods and results for hydraulic systems it is reasonable to convert the mathemat-
ical equation of a hydraulic co-simulation coupling to a formulation which equals
mechanical couplings. Then, the local order estimations, the stability and long time
behavior of mechanical couplings can be transferred to hydraulic ones.

The basic dynamic elements and a coupling element is depicted in Figure 2.17 for the
mechanical and hydraulic domain. The mathematical formulation of the mechanical
subsystems can be represented by equation (1.4). The output y only depends on
the subsystems state

zmech = [qT , vT ]T (2.83)

which consists of the generalized positions q and velocities v. The co-simulation
coupling law, which only depends on the input of the master being the output of
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Figure 2.17: Mechanical and hydraulic couplings

the subsystems, is defined by an elastic element (see Figure 2.17(a)). In case of a
linear spring, the coupling law yields

umech = F = c (yA − yB) + c ∆x (2.84)

where F = umech is the co-simulation coupling force, c the coupling stiffness and
∆x the unloaded spring length. The mathematical formulation of the hydraulic
subsystems can also be represented by equation (1.4). The hydraulic subsystem
state

zhyd = [QT , pT ]T (2.85)

typically consists of the hydraulic fluid flow Q and the hydraulic node pressure p.
The hydraulic coupling law for an elastic hydraulic node (see Figure 2.17(b)) is given
according to [13] by

ṗ =
E(p)

VK

N∑

i=A

Qi, (2.86)

where Qi is the fluid flow into the coupling node of the connected hydraulic line i,
E(p) the bulk modulus of the fluid and p, VK are the fluid pressure and volume
of the coupling node. In contrast to the algebraic mechanical coupling law (2.84),
the hydraulic coupling law (2.86) is an ordinary differential equation of first order.
Hence, the analysis for the mechanical co-simulation coupling cannot be applied to
the hydraulic ones without reformulation:
Integrating equation (2.86) by separation of the independent variables yields

dp

dt
=

E(p)

VK

N∑

i=A

Qi(t) ⇒
p∫

p0

dp

E(p)
=

1

VK

N∑

i=A

t∫

t0

Qi(t)dt. (2.87)
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The calculation of the individual integrals i on the right hand side of equation (2.87)
is accomplished by the subsystem, respectively the slave, each hydraulic line belongs
to, because the fluid flow Qi is a state variable of subsystem i. Hence, introducing an
abstract position variable Vi with d

dt
Vi = Qi in the subsystem and the constant V 0

i ,
one obtains from equation (2.87)

p∫

p0

dp

E(p)
=

1

VK

N∑

i=A

(Vi − V 0
i ). (2.88)

The missing evaluation of the integral on the left hand side can be done analytically
dependent on the used function for the bulk modulus E(p) and leads to an explicit
algebraic expression for the hydraulic coupling node pressure p.

2.4.1 Constant Bulk Modulus

A constant bulk modulus is frequently used in hydraulic simulation, especially if
the pressure level of the system is high, the fraction of air in the fluid is small or
no temporary pressure drops to low pressures appears. In such a case, the bulk
modulus can be interpreted as constant because it changes only insignificant at high
pressures. Hence, equation (2.88) can be simplified to

uhyd. = p =
E

VK

N∑

i=A

Vi + p0
∗
. (2.89)

All integration constants V 0
i and p0 are summarized to the initial value p0

∗
. Extending

the output vector y of the subsystem by the abstract volume V

y = o
(

zhyd = [QT , pT ]T , V
)

(2.90)

leads to identical formulations for the hydraulic coupling (2.89) and the mechanical
coupling (2.84): the input, being an algebraic expression, only depends on the out-
put y of the subsystems. Hence, the analysis for mechanical test systems can be
carried over to hydraulic couplings.

Besides the input u, also the derivative u̇ is required by some coupling variants from
Section 2.2. Since the time derivative of equation (2.89)

u̇ = ṗ =
E

VK

N∑

i=A

Qi = f(y) (2.91)

only depends on the output y of the subsystems, these couplings are also applicable
for hydraulic systems.
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2.4.2 Stepped Bulk Modulus

If the conditions for a constant bulk modulus are not met, piecewise constant ex-
trapolation during macro time steps might be used. Since the pressure pl−1 and the
abstract volume V l−1 at the previous macro time step are known by the master,
equation (2.87) can be integrated over the current macro time step

pl
∫

pl−1

dp

E(pl−1)
=

1

E(pl−1)

pl
∫

pl−1

dp =
1

VK

N∑

i=A

tl
∫

tl−1

Qi(t)dt. (2.92)

This yields the node pressure at the current macro time step:

pl =
E(pl−1)

VK

N∑

i=A

(V l
i − V l−1

i ) + pl−1 (2.93)

The first derivative of u = p is given by equation (2.91) with E = E(pl−1).

2.4.3 Pressure Dependent Bulk Modulus

According to [7], a common formulation of the pressure dependent bulk modulus is
given by

E(p) =
Ẽ (1 + ν)

1 + Ẽν
κ

· p̃(κ−1) · p−(1+κ−1)
=

a

1 + bpc
, a, b, c ∈ IR, (2.94)

where ν is the volume fraction of air in the fluid at the reference pressure p̃, κ

the isentropic expansion factor and Ẽ the bulk modulus of the airless fluid. Then
equation (2.88) can be integrated analytically

p∫

p0

dp

E(p)
=

1

a

p∫

p0

(1 + bpc)dp =
1

a

[

p − p0 + b
c+1

(

pc+1 −
(

p0
)c+1

)]

︸ ︷︷ ︸

g(p)

=

=
1

VK

N∑

i=A

(Vi − V 0
i ).

(2.95)

This leads to an implicit algebraic equation in p which cannot be solved explicitly
due to the rational exponent c + 1 of p. However numerical experiments have shown
that a solution is found by a Newton-Solver in 2 or 3 iteration steps with analytic
Jacobian evaluations:

f(p) = g(p) − 1

VK

N∑

i=A

(Vi − V 0
i )

!
= 0, (2.96a)

f ′(p) = g′(p) =
1 + bpc

a
=

1

E(p)
(2.96b)



50 2 A Parallel Co-Simulation Framework

-1
0
1
2
3
4
5
6
7
8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

p
[b

ar
]

1
VK

∑

i Vi [-]

Figure 2.18: Stiffness of the hydraulic coupling node

Figure 2.18 shows the pressure p of the coupling node depending on the volume
fraction of fluid flowing in or out of the node with respect to the node volume VK ,
exemplarily for some realistic values: Ẽ = 821 N

mm2 , ν = 0.08, κ = 1.4, p̃ = p0 = 1bar.
The nonlinear character as well as the very high stiffness at high pressures are
revealed. They are responsible for the failure of the Newton-method when the
initial point is chosen poorly. However, this is bypassed using the node pressure pl−1

from the last macro time step as initial value. The first derivative of u = p is again
given by equation (2.91) with E = E(p).

In summary, all co-simulation extrapolation methods which have been developed
for mechanical couplings can be applied to hydraulic couplings even if a pressure
dependent bulk modulus is used. Therefore the abstract volume Vi =

∫

Qi dt is
defined within the corresponding subsystem i and both Vi and Qi must be included in
the output vector of the subsystem. Moreover, at least for a pressure dependent bulk
modulus, the master must implement a numerical solver for the iterative evaluation
of the coupling pressure.

2.5 Control Couplings

Since the number of physical systems containing active elements is increasing, the
modeling and simulation of active systems is very important [78]. Hence, a third
kind of very common couplings in the field of multi domain simulations are control
couplings. In contrast to mechanical and hydraulic systems, where the input and
output was introduced due to mathematical or implementation considerations, the
input and output is already an essential part of control theory: A controller reads
the sensor output of the system, calculates the input signal using the control law
and sends it to an active element of the system. Hence, control couplings have an
information flow only in one direction. The point of action of the control input and
output need not to be the same point nor at the same subsystem. Schematically
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Controllerbidirectional coupling

unidirectional coupling

unidirectional coupling

Figure 2.19: Two subsystems with a controller
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Subsystem A

Subsystem B

Controller
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Figure 2.20: Master-slave concept with two subsystems and a controller

this is depicted in Figure 2.19: two subsystems are coupled using a bidirectional
connection, for example a mechanic spring, and the controller communicates only
unidirectional but between different subsystems. Additionally, arbitrary information
concerning the physical measurement, for example accelerations, may be used.

2.5.1 Embedding to the Master-Slave Concept

To use a control subsystem in the master-slave concept of the presented co-simulation
framework, it is necessary to formally restructure the input and output signals of
a controller using the intermediate master as shown in Figure 2.20. The master
is responsible for the calculation of the coupling law (for example a mechanical
spring) including the coupling extrapolation for the bidirectional coupling between
the subsystems A and B. For the input and output of the controller, the master
simply feeds-through the output of subsystem A to the input of the controller and the
output of the controller to the input of subsystem B. Hence, a control subsystem can
be integrated to the master-slave concept like other subsystems. Since the special
coupling approximations for mechanical and hydraulic couplings cannot be used for
a unidirectional control coupling, the local order and stability of control couplings
should be investigated separately.
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2.5.2 Input Extrapolation, Local Order and Stability

The analysis of the time discretization and the extrapolation of the input, induced by
the macro time steps, is not relevant for control couplings concerning co-simulation
because at least digital controlling already implies a discretization in time, called
sampling: the continuous system output, gained by sensors, is sampled and the
controller is acting as a discrete, digital real-time controller. Therefore, the dis-
cretization introduced by the co-simulation is already part of the physical model of
the controller, even if the control sample rate will differ from the co-simulation macro
step size. The same applies for the extrapolation of the input: a digital controller
keeps the controller output (input of the subsystem) constant during a sampling
interval. Hence, the simplest form of the co-simulation input extrapolation (con-
stant extrapolation) represents already the exact behavior of the real system. All
appearing effects, like aliasing [10], are not specific to co-simulation of controlled
systems, but have to be solved already for the underlying controller.

The last missing part is the stability analysis of control couplings. The sampling
rates of typical controllers are in the range of about 1kHz to 10kHz. A typical macro
time step for a co-simulation of mechanical subsystem is about 1 · 10−6s, which
equals 1000kHz. Since a co-simulation macro time step is significantly smaller than
the sampling rate of the controller and the controller is stable at the controlling
sampling rate, it will also be stable at the co-simulation macro time step. However,
this analysis is topic of control theory [59].

Another problem, relevant for every discrete subsystem, is the clash of more than
one discretization in time: the co-simulation macro time steps and the time steps of
the discrete system. There exist different possibilities to resolve this problem [28].
The easiest way is to restrict the sampling step size of the discrete system to be an
integer multiple of the co-simulation macro time step size.

2.6 Other Domains

This section presents a general approach for co-simulation couplings for arbitrary
domains conforming the master-slave concept.

2.6.1 Domain Specific Modeling Interfaces

A well known way for defining domain specific interfaces is the bond graph ap-
proach [34], which is motivated by the energy flow between connected components.
Similar is the approach used by the Modelica® language [47,54]: The coupling vari-
ables are split into potential and flow variables. Potential variables P are defined to
coincide at the coupling points usually often called Kirchhoff nodes

Pi = Pj, i 6= j; i,j ∈ [1 . . . N ]. (2.97)
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Domain
Potential
Variable

Flow Variable
Basic Dynamic

Element; Output
Basic Coupling
Element; Input

Translational
mechanic

Position x Force F
mẍ =

∑
F

y = [x, ẋ]T
u = F = ct ∆x

Rotational
mechanic

Angle ϕ Torque M
Jϕ̈ =

∑
M

y = [ϕ, ϕ̇]T
u = M = cr ∆ϕ

Hydraulic Pressure p Volume flow Q
ρL
A Q̇ = ∆p

y = [V, Q]T
ṗ = E

VK

∑
Q

u = p = E
VK

∑
V

Thermal
Tempera-

ture T
Heat flow Q̄

Ct Ṫ = Q̄
y = T

u = Q̄ = λA
d ∆T

Electric
Electric

potential V
Electric
current ı

Le ı̇ = ∆V
Ce ∆V̇ = ı

ı = G ∆V

Magnetic
Magnetic

potential Ψ
Magnetic

flux Φ
no basic dynamic

elements
Φ = Gm ∆Ψ

with mass m, translational stiffness ct, moment of inertia J , rotational stiffness cr,
fluid density ρ, line length L, cross section area A, abstract volume V , bulk modulus E,
node volume VK , heat capacity Ct, heat conductivity λ, thermal conduction length d,

electric inductance Le, electric capacitance Ce, electric conductance G and
magnetic permeance Gm.

Table 2.9: Interface variables used by Modelica

In contrast, flow variables f sum-up zero at a Kirchhoff node

N∑

i=1

fi = 0. (2.98)

Table 2.9 shows the potential and flow variables for some domains used by Model-
ica. Further, it presents the differential equations for the basic dynamic elements
and the equations for the basic, mostly algebraic, coupling elements for each do-
main. Note that the hydraulic coupling element is the only one which is not an
algebraic equation, but hydraulic couplings were already investigated separately in
Section 2.4.

2.6.2 Selection of Input and Output Variables

To prevent an algebraic loop in the input variables, the subsystems output y for
the master-slave concept is restricted to functions only depending on the state of
the subsystems. These state variables are always appearing together with their time
derivative in Table 2.9. An input can be any variable appearing in the differential
equation of the subsystem, but must not appear in the output function. Moreover,
the master must be able to calculate the input for the subsystems using only their
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states. These two assumptions are fulfilled for the mechanic, hydraulic and thermal
domain. Note, that for the hydraulic domain the abstract volume V must be intro-
duced as shown in Section 2.4. To ensure this characteristic, couplings in the thermal
domain are restricted to co-simulation couplings not depending on the derivative of
the coupling value

u̇ = ˙̄Q = λA
d

∆Ṫ , (2.99)

because the derivative of the temperature Ṫ is not a state value and thus is not
included in the output vector of a thermal subsystem.

The last missing domains in Table 2.9 are electric and magnetic systems. These
two domains are closely related concerning modeling and their physical interaction.
However the modeling of these domains differs a lot from the previous domains. For
the electric domain, it depends on the basic dynamic element whether the state
variable is the potential variable V or the flow variable ı. Hence, there is no a
priori definition of the state variables for this domain. This is also reflected in
the typical modeling of electric or magnetic networks: they are build by setting
up the Kirchhoff equations (node rule and mesh rule) [39] and not by adding
new elements to the global equation structure as done for example by mechanical
systems. Since the electric and magnetic domain is not the focus of this work, the
couplings inside this domain are not discussed in further detail.

2.6.3 Inter Domain Coupling

Using couplings inside a given domain it is possible to couple different simulation
tools of the same domain using co-simulation. Moreover the model of a given domain
can be split into different subsystems whereby the possibility of a simulation speedup
arises if a parallel co-simulation is used. Besides this benefit, co-simulations are
mostly used to couple models of different domains, but till now only the coupling
inside a domain was shown.

For multi domain simulation, the physical model of the overall system must also
include the physical model of the interface between two domains. For example
a hydraulic system is mostly used to actuate a mechanical system. The physical
interface between these two domains is for example a hydraulic piston. The models
of such inter domain interfaces are typically built into one of the involved domains. In
case of a hydraulic-mechanical system, the hydraulic system has a model of a piston
included. Hence, the hydraulic system can even handle simple mechanical systems
like a piston. In this case the co-simulation between a hydraulic and mechanic
system can be done using the same couplings as for pure mechanical subsystems.
The same applies for inter domain co-simulations between other domains with own
specific coupling elements.
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In the last chapter the physical and mathematical modeling of subsystems of different
domains and especially of a parallel co-simulation framework has been discussed in
detail. To solve the global co-simulated system numerically an implementation in
form of a computer program is necessary. This implementation is non trivial, since
it must deal with different preexisting subsystems as well as with multi threads or
processes and communication methods to be able to handle parallelization. Hence,
this section shows the principle implementation of the parallel co-simulation using
the master-slave concept.

Based on the need for performance, scalability and code reusing the language of
choice for the co-simulation is the C++ programming language. This language offers
besides the object orientated structure also very good access to operating system
functions which are necessary for different types of inter-process-communication.
Moreover, linking C++ code with other preexisting simulation tools or libraries
works, no matter if they are implemented in C++, C or Fortran being the most
common languages for technical simulation tools.

3.1 Inter-Process-Communication (IPC)

The master-slave concept is implemented using a process coupling to be able to
share the computational work of the subsystems not only on multi-core computers
but also on different computers in a cluster. Hence, an inter-process-communication
is required, transferring the input and output variables between the subsystems and
the master. The principle methods for inter-process-communication and the main
operating systems providing these methods are shown in Table 3.1 according to [73].

The file method is feasible for the exchange of very large datasets with low commu-
nication frequency. It offers the advantage that the exchanged data is automatically
archived in the file. If the file is stored on a network file system, the communication
can also be done between computers arranged in a network.
Using signals it is only possible to send a very limited amount of information to
another process. Mostly, this method is only used to notify other processes about
events. This type of communication is very fast but is not available across networks.
Sockets or internet-sockets are one of the most known inter-process-communication
variants. The endpoints of a communication over Internet-Protocol (IP) based net-
works are called sockets, forming the basics of the communication in the World Wide
Web (WWW). It is self-evident that this kind of communication is available across

55
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IPC Method Providing Operating Systems

file nearly all operating systems
signal most operating systems
socket most operating systems
pipe POSIX-systems, Microsoft-Windows, . . .
shared memory POSIX-systems, Microsoft-Windows, . . .
semaphore, mutex POSIX-systems, Microsoft-Windows, . . .
message passing depending on the availability of for example MPI or PVM

Table 3.1: IPC methods

Communication Method Round Trip Delay Time
socket (ethernet; local network; not routed) ≈ 0.140 ms
socket (loopback; host intern) ≈ 0.035 ms
signal, shared memory (host intern) ≪ 0.001 ms

Table 3.2: Round trip delay time of IPC-methods

multi computers but also inside one computer using the so called loopback-interface.
The communication speed depends highly on the used interface (loopback, ethernet,
. . . ) but also on the transport protocol (for example TCP or UDP). In contrast to
signals the communication speed is several magnitudes slower. Table 3.2 shows the
typical round trip delay time of different communication methods which describes
the time delay between sending a message and receiving the answer.
The IPC methods listed above are implemented on nearly all modern operating sys-
tems. The following methods are provided by all operating systems conforming to
the POSIX-standard [33], for example GNU/Linux, BSD, Mac OS X and others,
as well as by Microsoft®-Windows®.
Pipes are similar to files but with direct feed-through between the writing and the
reading process without storing the transmitted data on the file-system. They are
mostly used in shell scripts and not very common for inter-process-communication
in case of co-simulation.
Using POSIX shared memory [33] one declares an area of memory accessible to
other processes in addition to the allocating process. Thereby, the need for synchro-
nization of read/write accesses arises like for threaded programs. Shared memory is
only available on one unique host computing the entire simulation but not across
computers in a network. The use of system memory for communication without an
administrative overhead makes this method the fastest inter-process-communication
method.
Semaphores and mutexes are not inter-process-communication methods for the ex-
change of data but for the synchronization of the chronologic flow of the processes
and of the read/write access to shared data. Binary semaphores are closely related
to mutexes and are used to lock and unlock the access to shared data atomically,
preventing inconsistent data values. Counting semaphores can be used effectively
to synchronize the program flow in different processes offering their usage in the
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Socket Message Passing Shared Memory

+ single- and multi-

host

+ automatic synchroniza-
tion

+ single- and multi-

host

+ operating system com-
prehensive

+ automatic synchroniza-
tion

+ easy to use

+ very fast

- operating system depen-
dent

- slow communication

- overhead due to general
approach

- slow communication

(depending on the imple-
mentation)

- operating system depen-
dent

- only single host
- manual synchronization

needed (more complex
to implement)

Table 3.3: Benefits and drawbacks of different IPC-methods

master-slave concept of the co-simulation.

Another type of inter-process-communication, differing from the previous ones, is
message passing. It is a high level language for the above IPC methods. Internally
message passing is implemented using the IPC methods provided by the operating
system. The implementation is either done directly in the programming language of
a specific hardware or operating system, or as an external library using it through
library calls. In both cases message passing is used to send messages, which can
be signals, simple data or complex data structures, from a sender to one or more
recipients. Depending on the routine used to send or receive a message, there are
synchronization mechanisms already included by a blocking mechanism. A very
common message passing method is the Message Passing Interface (MPI) [48]. Cur-
rent implementations of MPI are MPICH2 [49], OpenMPI [53] (the successor
of LamMPI) or Boost.MPI [12], all available for POSIX-systems, Microsoft-
Windows and also for some specialized hardware in high performance computing.
Due to the specialized implementation of the MPI standard for each system, the
hardware can be optimally used without changing the source code of a program.
Since MPI is available for different operating systems, a heterogeneous pool of com-
puters can be connected to a single parallel computer. Another type of common
message passing is the Parallel Virtual Machine (PVM) [22] which is closely
related to MPI but is an independent standard.
The main advantages and disadvantages of the most important IPC methods, which
are useful for co-simulations, are summarized in Table 3.3 where the most important
aspects are shown in bold font. A benchmark for these IPC methods in case of a
co-simulation using the master-slave concept in given in Section 4.1.
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3.2 MDPCOSIM

In practical examples of co-simulations the number of subsystems acting as slaves is
limited to a small value of usually less than 10. Therefore the use of high performance
computer systems with hundreds or thousands of central processing units (CPUs)
is not reasonable. Hence, the use of several computers in parallel in form of a small
computer cluster or modern shared memory multi-CPU or multi-core workstations
are good approaches to parallelize co-simulations. If there are subsystems which
themselves use massive parallelization the total number of CPUs may be much
higher, but the number of subsystems is mostly still limited to only several ones.

The implementation of the master-slave concept developed in this work is called
multi-d isciplinary parallel co-simulation (MDPCosim) and supports currently the
IPC methods shared memory, PVM, LamMPI and OpenMPI. The actual inter-
process-communication is chosen at compilation time of the master and the commu-
nication classes of the slaves. The topmost part of the co-simulation is a shell script
named mdpcosim. This script is responsible for the potential requirement of initial-
ization of the inter-process-communication method as well as for the invocation of
the master and the slave processes. The master and all slaves are separate programs
to be able to run on different hosts in a computer cluster. In case of shared memory
the mdpcosim script calls the master and all slave programs. In case of PVM the
mdpcosim script calls the master program, being the entry point for PVM, and
this program spawns the slave programs using PVM function calls. Using MPI the
script calls mpiexec with a parameter set for the master and all slaves. Thereby,
the initialization and process startup of the different inter-process-communication
methods are enclosed from the user, calling always only the mdpcosim script without
noticing the used IPC method which was defined previously.

3.3 Master

Figure 3.1 shows a UML [11,51] diagram of the class structure used by the master.
The main subroutine comprises a collection of Connection and SlaveCom objects.
The Connection class provides a pure virtual function updateu() which must be
implemented by a derived class using the coupling law (2.2b) including the extrapola-
tion. For each connection between subsystems a separate object of type Connection

is generated. The individual connections are grouped by an intermediate abstract
class for the different domains. The updateu() function calculates and sets the new
input u using the output values y being set by the SlaveCom class. This class holds
the input and output vectors as attributes.

For each slave, representing an individual subsystem, the main routine of the master
generates also an object of type SlaveCom being responsible for the communication
between the master and the appropriate slave, mainly the exchange of input and
output. For this communication the routines recv and send are always used indepen-
dent of the connection type, the IPC method or the subsystem. Hence, changing the
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Figure 3.1: UML diagram of the master

implementation of these routines gives the possibility to change the inter-process-
communication method used by the co-simulation for all subsystems without the
need to change existing subsystems. The recv function is blocking the execution of
the master until the required data is completely sent by the subsystems and thereby
guarantees the synchronization of the subsystems and the master.

The configuration of the master consists of three files:

mastersys.dat defines the subsystems and the name of their individual configu-
ration files <slave>.dat. Moreover, this file contains the hostname of the
machine where the subsystem is executed in case of an IPC method being able
for inter-host-communication.

masterpar.dat is a simple file defining only the simulation end time and the con-
stant macro time step size H .

mastercon.dat defines all connections between the subsystems. Each connection
consists of the type, the number of connected subsystems, the indices of the
input u and output y vector the connection acts on as well as connection
specific parameters, for example the mechanical stiffness.

Besides management functionality the main subroutine of the master implements
the outer macro time integration loop. A flowchart diagram of this loop is depicted
in Figure 3.2. After parsing the configuration files and initializing all objects of
type SlaveCom and Connection, the initial output vectors y of the subsystems are
received. Afterwards all connections calculate the input u for the first macro time
step at t0 = 0. This input is sent, using the defined IPC method, to the subsystems
using the send function of SlaveCom. The following call of the recv function is
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Figure 3.2: Flow chart diagram of the main routine of the master

blocking further execution until all subsystem have finished the integration of the
current macro time step and have sent their new outputs to the master. At this
point one macro time step integration is finished. The macro time is increased by
the macro time step size H and the loop starts again after the connections have
updated their input vector u.

3.4 Slaves

Figure 3.3 shows an UML diagram of the basic communication classes used to extend
a preexisting simulation tool by the functionality needed to communicate with the
master of the co-simulation. The virtual class Slave implements a send and a recv

function which are responsible for sending and receiving the input and output data.
Alike for SlaveCom of the Master, the recv function is implemented as a blocking
function responsible for the synchronization between slaves and master at the macro
time steps. The virtual function updatey must be implemented by each slave. This
function collects all output values from the subsystem and copies these into the
output vector y which is provided as an attribute by the class Slave.
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Figure 3.3: UML diagram of the slave

Each slave requires a configuration file <slave>.dat. Besides the number of input
and output variables this file also defines subsystem specific parameters or input files
needed for example for the initialization of the subsystem startup. Moreover, the
connection of the individual elements of the input and output vectors to subsystem
model variables are defined in this configuration file.

Each subsystem must implement the counterpart loop to the main routine of the
master, see Figure 3.2. Such a macro time step loop in defined by the convenience
function run defined in Slave. This function calls at simulation start one times the
abstract function updatey and repeatedly, one times for each macro time step, the
abstract function integrateUpdatey. Hence, a slave must only implement these
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two functions. The integrateUpdatey function must carry out one macro time step
integration of the subsystem and querying afterwards for the new output, which is
done by calling updatey.

This procedure is only possible if the subsystem is able to carry out a single macro
time integration step and to continue later after an update of the subsystem input.
This simple procedure is only for few preexisting tools possible and shown for some
in Sections 3.4.2 to 3.4.4. Especially for closed source simulation tools the process
of implementing the tools as a co-simulation slave is more complex and shown exem-
plarily in Section 3.4.5 for MATLAB/Simulink. But first the general requirements
on a preexisting simulation tool to attend the master-slave co-simulation is shown.

3.4.1 Subsystem Requirements

A main aspect of the introduced master-slave co-simulation is the possibility to in-
clude a large number of different simulation programs as slaves. Hence, the require-
ments on a subsystem should be minimal: First, the integrator of the subsystem
simulation tool must be able to stop the integration at discrete times and to call a
user defined function being responsible for the communication with the master pro-
cess. Second, functions from external software libraries (C, C++ or Fortran) must
be callable from a user function. This is necessary because all inter-process-com-
munication methods described in Section 3.1 are implemented as functions defined
in the C, C++ or Fortran language. Alternatively tools which provide access to
standardized IPC methods like MPI can be used. However, this restricts the slave
to this IPC method.

These two requirements are fulfilled for many commercial software tools. The first
requirement is already satisfied if the simulation tool is able to handle time discrete
events. The second is often fulfilled since external user functions written in C,
C++ or Fortran are widely used to extend simulation tools. Two such systems
are for example the multi disciplinary simulation tool Dymola® [17] and the multi
body simulation software SIMPACK® [72]. Both are able to join the parallel co-
simulation framework based on an interface being very similar to the implementation
for Simulink shown in Section 3.4.5.

3.4.2 MBSIM

The simulation program MBSim [46] is a software for the dynamical analysis of
physical systems. The main focus of this software is the analysis of nonsmooth
multi body systems being characterized by uni- and bilateral contacts and impacts
leading to discrete jumps of the system velocities [18, 56]. An introduction to the
basic concept of MBSim is given in [62]. Besides rigid multi body systems MBSim
is also extended to elastic bodies [65,80,81] as well as to hydraulic systems [68] and
control models.
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Different specialized time integration methods are available in MBSim: Time-step-
ping schemes [18,74,75] with fixed step size solve impacts without the resolution of
impact times. Step size controlled integrators with root finding [26, 27, 29] can be
selected in addition to detect the times of impacts and to solve the impact equations
at this discrete times. The contact solution in MBSim is implemented in form of a
fixed point problem using a proximal point notation of the set-values force laws [18],
where several numeric solvers are applicable.

Since MBSim is available as open source software, the integrator is accessibly on
programming level. Hence, it can be modified slightly to match the requirements
for using the convenience functions run and integrateUpdatey introduced in Sec-
tion 3.4. At initialization time, pointers to the input and output elements are stored.
These are used in the updatey function to read the output data from MBSim and
in the integrateUpdatey function to set the input data of MBSim before the inte-
gration up to the next macro time step.

3.4.3 KETSIM

The simulation of timing chain drives is state of the art for the analysis of the inter-
action between the crank shaft and the cam shafts in combustion engines. Current
research activities on chain drive simulation are for example acoustic and friction
optimizations. Timing chain drives can be incorporated in standard multi body sim-
ulation tools. However, a large amount of specialized code needs to be included to
take care of the typical structure of chain drives to avoid unnecessary overhead for
example in the contact search algorithm. Several commercial tools have chosen this
way [1, 57, 72]. Another approach is to develop specialized chain drive tools like for
example KetSim [20,32,35] or AVL Excite Timing Drive [6]. The advantage of
this method is the freedom of the design of the simulation tool which can be utilized
to achieve high computational efficiency. The drawback is that even for an inter-
action with other mechanical systems a co-simulation is required due to in general
small capabilities beside the simulation of chain drive components. An advantage
especially of KetSim is the use of rigid, unilateral contact laws between the chain
links and the wheels or chain guidings.

The numerical integration in KetSim is done using a step size controlled Runge-
Kutta integrator of order 2/3 [26] which is extended by a root finding algorithm
to detect the shift points of opening and closing rigid contacts. The rigid contact
problem is formulated as a linear complementary problem solved with the Lemke-
LCP solver [20].

The correct approach of the discrete macro time steps is done using events in time
causing small changes of the integrator code because the original software is not
able to interrupt at discrete points in time. These points must be treated separately
from those related to mechanical contact roots to be efficient. Such changes are
possible in KetSim since it was available as source code for this work. After this
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modification the implementation and configuration of KetSim as a slave is analog
to the MBSim-slave shown in Section 3.4.2.

3.4.4 HYSIM

Hysim [13] was originally developed as research software aiming to reduce the sim-
ulation time of hydraulic systems by exchanging elastic hydraulic elements like hy-
draulic nodes by bilateral rigid or, in cases where cavitation must be accounted
for, by unilateral rigid elements. In analogy to multi body systems with uni- and
bilateral rigid contact models, this approach avoids high stiffnesses of small fluid
volumes. The simulation of hydraulic chain tensioners [32] including the verification
against measurements of dynamical actuated tensioners [37] have become the main
scope of Hysim in industrial applications.

The numerical integration, root finding and contact solving in Hysim is nearly equal
to the implementation used in KetSim. The same applies for the modification of
Hysim allowing to carry out macro time integration steps and the implementation
of the HysimSlave class being used by the co-simulation.

3.4.5 MATLAB-SIMULINK

MATLAB®-Simulink® [44] is a well known and widely used simulation tool where
the model is build using block diagrams. The main field of application is the design of
controllers often used in hardware in the loop simulations. Besides the integration of
continuous models, being formulated as ordinary differential equations or differential
algebraic equations, Simulink is able to integrate discrete models even with different
sampling rates. Also mixtures of continuous and discrete models can be used.

Simulink provides a large number of numerical integrators. The different solvers
include integrators with fixed and variable step size, explicit and implicit ones, inte-
grators for continuous, discrete or mixed continuous-discrete systems, with constant
or variable order as well as single- or multistep integrators. Important with respect
to the co-simulation is the availability of integrators for discrete systems. These
integrators are able to handle the stopping points requested by the macro time
integration.

In contrast to subsystems being available as source code it is not possible to setup
this slave using the convenience functions from the Slave class. Hence, the imple-
mentation of Simulink as a co-simulation slave is more complex, see Figure 3.3.
One possibility to extend Simulink is to use so called S-Functions: an S-Function
acts in Simulink like a normal block, whereas the internal dynamic of an S-Function
is implemented by the user using a programming language like C or C++. For the
co-simulation a special S-Function block is communicating between Simulink and
the master of the co-simulation. The output vector y of the Simulink-subsystem
is the input of the S-Function block and the output of the S-Function block is
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Figure 3.4: Simulink subsystem and IO communicator for the co-simulation

the input vector u of the Simulink-slave, compare to Figure 3.4. Besides the im-
plementation of different functions for the initialization, starting and termination
of the S-Function block, the two most important functions MEX::mdlOutputs and
MEX::mdlGetTimeOfNextVarHit of the S-Function block are shown in Figure 3.3.
The Simulink function MEX::mdlOutputs is called for each S-Function block at
arbitrary micro time integration steps, so continuous access must be ensured by
this function. Hence, this function is responsible for the calculation of the extrapo-
lated input ũ (1.8) at the current micro time t using the slave input values u. The
MEX::mdlGetTimeOfNextVarHit function is called by Simulink for a block when
the current simulation time reaches the next sample point of this discrete block.
This function is used to update the output values y of the slaves by reading the
input of the S-Function block (SimulinkSlave::updatey), sending own output to
the master (Slave::send), blocking the Simulink simulation until the new input
has been received (Slave::recv) and setting the next Simulink sample point to
the next macro time step (MEX::ssSetTNext). Sending and receiving of data is done
again by the abstract base class Slave and can thus be exchanged without changing
the S-Function block being specific for the Simulink-slave.
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The modular implementation of the parallel co-simulation framework in Chapter 3
opens this framework to a wide range of subsystems and examples, from academic
test examples up to large and complex industrial applications. The examples in
this section reach from benchmark problems for inter-process-communications and
coupling extrapolations to complex multi domain examples in the area of combustion
engines. All examples use the introduced software MDPCosim from Section 3.2, in
conjunction with the slaves listed in Section 3.4.

4.1 IPC-Benchmark

Since inter-process-communication is a pure information technology topic it does
not influence the result of the numerical solution. However, the communication has
a significant effect on the overall simulation time of the co-simulation. Especially,
small macro time steps force very frequent communication. Hence, the time over-
head for the communication can get significant with respect to the pure simulation
time in case of frequent inter-process-communication. Moreover co-simulations on a
computer cluster connected for example by the ethernet-interface will be much more
critical than co-simulations on a single host multi processor computer. This effect
was already addressed theoretically by the round trip delay time in Table 3.2.

4.1.1 Model Setup

To analyze the communication overhead of different methods and communication
architectures, a very simple test model and a valve train including a chain drive are
used as benchmark problems.

Simple Test System

The simple test system for the IPC benchmark is the linear mass-spring oscilla-
tor used for the stability analysis in Section 2.3.2, Figure 2.8. This system is co-
simulated using a relatively small and a relatively large macro step size to show the
influence of the macro step size on the communication overhead.

66
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IPC-Method Single-Host Single-Host Multi-Host
1 CPU 2 CPUs 1 CPU per Host

SHM 1.00 1.56 -
PVM 1.00 1.56 1.56

LamMPI 1.00 1.53 1.56

Table 4.1: IPC benchmark: simple test system: speedup using large macro step size

IPC-Method Single-Host Single-Host Multi-Host
1 CPU 2 CPUs 1 CPU per Host

SHM 5.48 5.11 -
PVM 1.00 1.10 0.35

LamMPI (0.02) (0.02) (0.02)

Table 4.2: IPC benchmark: simple test system: Speedup using small macro step size

Valve Train with Chain Drive

The second IPC benchmark example is more practical: a valve train, for co-simulation
purposes separated into the intake and exhaust part as own subsystems modeled us-
ing MBSim and a timing chain drive modeled using KetSim. The macro step
size is the maximal stable step size. The subsystems are coupled by two rotational
springs between the intake and exhaust shaft on one side and the corresponding
chain wheels on the other side.

4.1.2 Comparison of IPC Methods

Both test systems are co-simulated with the different IPC methods introduced in
Section 3.1, on single host and multi host architectures and compared regarding the
simulation time.

Simple Test System

Table 4.1 and 4.2 show the simulation speedup

Ψ =
t1CPU

tnCPU
(4.1)

of the simulation time tnCPU using a co-simulation with n CPUs with respect to
a reference simulation done using PVM on a single host one CPU machine for a
large and a small macro step size. The three different IPC methods, shared memory
(SHM), PVM and LamMPI, are compared using a simulation on a single host with
one or two CPUs and on a multi host cluster using one CPU per host. As outlined
in Section 3.1 shared memory is available only for single host simulation.
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IPC-Method Number of CPUs Time [min]
SHM 2 (single host) 51
PVM 2 (multi host) 52

LamMPI 2 (multi host) (312)

Table 4.3: IPC benchmark: valve train: simulation time

In case of a large macro step size only few communications are needed and all three
IPC methods perform nearly equally, compare to Table 4.1. The simulation is by
a factor of about 1.5 faster if the subsystems are calculated in parallel on different
CPUs. This is related to the very low fraction of communication overhead with
respect to the simulation time of the subsystems. In case of a small macro step size,
see Table 4.2, the shared memory (SHM) IPC method performs better by a factor
of about 5 than PVM. This is related to the communication using shared memory
which is much faster than the host internal communication used by PVM in case of
single host communication. The LamMPI implementation even increases simulation
times. This reflects, that LamMPI has a very large overhead showing up especially
by sending very small data packages very frequently. Other implementations of MPI
like OpenMPI, being the next-generation MPI implementation, may perform better
but are not tested here since it was not implemented at the time of this benchmark
investigation.

The relation of computation time to communication time is called task granularity.
It has a very important effect on the overall performance of the co-simulation. To be
efficient, the amount of communication should be as low as possible and the compu-
tation time per macro time step should be high, giving a coarse task granularity.

Valve Train with Chain Drive

Table 4.3 shows the simulation time for the valve train including a chain drive. The
fastest simulation is the one using shared memory as inter-process-communication.
The task granularity is even coarse enough so that the much higher round trip delay
time in case of multi host parallelization (PVM) has only a minimal negative effect
on the total simulation time. The LamMPI implementation of MPI shows again
poor results.

Summary

All tests with different IPC methods have shown the expected result: shared memory
is the fastest communication in case of a single host. However, at least for realistic
industrial examples, the parallelization on multi host clusters is also feasible if fast
inter-host-communication methods like PVM are used.

Since co-simulation is mostly used with only a few subsystems and modern work-
stations already have up to 4 or 8 CPUs in a shared memory architecture, it is
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Figure 4.1: Timing chain drive with 3 drives

advisable to perform parallel co-simulations using shared memory inter-process-
communication on modern multi CPU workstations. The following examples are
all calculated using this IPC method.

4.2 Coupling-Benchmark

The different types of extrapolation for the co-simulation coupling have already been
analyzed analytically concerning the stability in Section 2.3.2. The most stable cou-
pling leads to the largest macro step size and to the minimal overall computational
time. However, this analytical stability analysis is only based on a linear test system.
Therefore, a benchmark of the different coupling variants applied to a complex, non
linear example of industrial relevance is necessary for further analysis. Moreover,
the parallel speedup and the simulation results of the different variants are analyzed
with respect to a serial not co-simulated reference simulation. Therefore an example
is used which can be calculated with and without a co-simulation.

4.2.1 Model Setup

Figure 4.1 shows the principle setup of the simulation of the chain drive of a V6
engine visualized by the program OpenMBV [52]. The lower wheel resides on
the crank shaft which follows a kinematic rotational nonuniformity representing
the varying load on the crank shaft. Chain drive 1 transmits a torque from the
crank shaft wheel to the exhaust and intake cam shaft of bank 1 and 2, using the
intermediate shafts and wheels and drive 2 and 3. The boundary conditions of the
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cam shafts are kinetic excitations representing the torque load of the valve trains.
The chain is prestressed using one hydraulic chain tensioner per drive.

The reference simulation is defined using KetSim calculating all three drives and
the chain tensioners in one simulation. The other simulations are realized using the
presented parallel co-simulation framework with different types of extrapolations
for the coupling. Therefore, the chain drive is split into the three drives by cutting
the intermediated shafts between the small and large wheels. The resulting three
independent chain drives again are simulated using KetSim. In each KetSim chain
drive a coupling interface is added at the point of intersection at the wheels. Each
interface exports the translational and rotational position and velocity and imports a
force or torque as a piecewise constant or linear kinetic boundary condition defining
the subsystem excitation due to the coupling interaction. The stiffnesses of the
translational linear co-simulation coupling elements are ctra = 6.6 · 109 N

m
, and the

rotational stiffnesses are crot = 6.3 · 104 Nm
rad

. These values are the real elasticities of
the small part of the shaft in between the small and large wheel. The co-simulation
is running on a four core, shared memory computer, using shared memory as inter-
process-communication.

4.2.2 Comparison of Coupling Extrapolations

The first row of Table 4.4 shows the total simulation time of the whole chain
drive using KetSim without co-simulation. The other rows show a selection of
co-simulations with different types of extrapolations for the coupling force. The sim-
ulations are grouped in constant and linear extrapolations. Moreover, each coupling
variant is tested using two different macro time steps H : the first is the maximal
stable macro step size and the second the one with the minimal simulation time.
This minimal time was found by carrying out several runs with different macro step
sizes and choosing the best. The simulation with the maximal stable macro step
size is not the fastest one because this simulation is acting near the stability barrier
which may induce high frequent oscillations having a negative effect on the step size
controlling of the subsystem integrators.

Table 4.4 shows that the coupling variants being optimized for stability lead to
the highest macro step size as well as to the minimal simulation time. Moreover,
the optimized coupling variants, especially those having only one free parameter,
Const 2,3,Opt and Lin 2,3,Opt, have a very low difference in simulation time
between the simulation with the maximal possible macro step size and the fastest
simulation with this coupling variant. This is a very helpful property, because the
manual detection of the maximal feasible macro step size by the user is easy whereas
the detection of the step size leading to the minimal simulation time is very time
consuming: To detect the maximal possible macro step size one starts at a high step
size and the simulation will fail very early due to instabilities. Decreasing the step
size until the simulation will not fail leads to the maximal macro step size. The
detection of the minimal simulation time needs several full simulations. Hence, if
the simulation time with the maximal possible macro step size H is very close to the
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Coupling Simulation Macro Step
variant Time [s] Size H [10−6s]

Without co-simulation 458 -
Constant Extrapolation:
Spring-Damper dt/r = 5000/50 1032 2
Spring-Damper dt/r = 5000/50 604 1
Const 3,6 711 4
Const 3,6 321 2
Const 2,3,Opt 216 6
Const 2,3,Opt 208 5
Const 2,2,Opt 272 8
Const 2,2,Opt 213 5
Linear Extrapolation:
Lin 2,4 274 5
Lin 2,4 204 4
Lin 1,2 433 4
Lin 1,2 239 3
Lin 2,3,Opt 189 6
Lin 2,3,Opt 189 5
Lin 2,2,Opt 574 8
Lin 2,2,Opt 209 4

Table 4.4: Simulation times of the three chain drives

minimal simulation time, a nearly optimal macro step size covering the simulation
time can be found very fast.

User selectable parameters like the macro step size H above are even more prob-
lematic if a spring-damper-coupling is used besides a spring-coupling. Such a co-
simulation is shown in Table 4.4 by the variant ’Spring-Damper’ using a simple
extrapolation variant. In this case the damping part can be used to stabilize the co-
simulation, but the best numerically inspired value for this damping is unknown and
must be estimated by the user. This is not the case for the optimized couplings since
they do not need any other numerical parameter except the macro step size H .

Speedup Effects

The simulation time of the most practical coupling Lin 2,3,Opt is about 189s, which
is a factor of about 2.4 faster than the simulation without co-simulation. Comparing
the CPU time of the three drives shows, that drive 1 needs about a factor of 1.9 more
computational time than drive 2 and 3 which have about the same computational
effort. This correlates with the larger number of chain links in drive 1. Hence, the
total simulation time of 458s of the drive without co-simulation can be distributed
approximately to the three drives

Tall ≈ T1 + T2 + T3 ≈ 1.9T2 + 2T2 ≈ 458s ⇒ T2 ≈ T3 ≈ 117s, T1 ≈ 224s. (4.2)
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Therefore the total simulation time of any kind of parallel co-simulation regardless
of any overhead should be expected to by at least max(T1, T2, T3) = 224s. The
paradox why the simulation time 189s of the best parallel co-simulation is even less
can be explained by the following aspects:

Integrator decoupling The shift points of closing or opening contacts between the
chain links and the wheels must be detected by the integrator. This search
needs extra calls to the right hand side of the simulation model. In case of no
co-simulation a shift point in one of the subsystems forces the call of the right
hand side to the entire system. In case of a co-simulation each subsystem
integrator is searching only own shift points including the call to the own
smaller right hand side. The other integrators can proceed as normal. This
effect as well as the decoupling of the step size control is known as integrator
decoupling.

Contact decoupling The contacts between the chain links and the wheels are
modeled using rigid contacts. Without co-simulation the two wheels on the
intermediate shaft are connected using a constraint. Each contact on the large
wheel is directly coupled with each contact on the small wheel. During co-
simulation these contacts are decoupled by the elastic co-simulation coupling.
In the first case the contact solver has to solve a coupled problem with N1 +N2

rigid contacts whereas a co-simulation decouples the system into independent
contact problems of size N1 and N2 being much easier and faster to solve.

Filtering Dynamical vibrations with frequencies higher than 1
H

can not be ex-
changed between subsystems due to the macro step size H . As a result some
effects with high frequency, which are not interesting for the global dynamics,
are eliminated by the co-simulation.

Besides the minimal simulation time estimated in equation (4.2), there exist two
common ways to compare the parallel speedup of a program with theoretical reach-
able values: the law of Amdahl and the law of Gustafson [31]. Both laws assume
that the program can be split into an arbitrary number of parallel portions. For co-
simulation this is far from reality, since the number of parallel portions is restricted
to the number of subsystems. Hence, the theoretical reachable speedups of both
laws may be much higher than the real speedup in case of a parallel co-simulation.
Amdahl states that the maximal speedup

Ψ ≤ 1

f + 1−f
p

(4.3)

is defined using the fraction of serial code f and the number p of subsystems on
individual CPUs. Gustafson defines the maximal speedup

Ψ ≤ pTp + Ts

Tp + Ts

(4.4)

using a slightly different approach using the fraction of serial simulation time Ts, the
parallel simulation time Tp and also the number p of CPUs. In case of a negligible
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Figure 4.2: Thread profiling of the V6 engine

fraction of serial code, as it is true for the parallel co-simulation, both laws state
Ψ = p. Hence, the achieved parallel co-simulation speedup of about 2.42 is a good
value compared to the theoretical reachable speedup of 3.

Thread Profiling

Figure 4.2 shows the thread activity for the co-simulation of the chain drive over the
real time. Slave 1 has nearly always the highest computational effort, even though
this can change in some macro time steps. The alternating computational effort
per macro step is related to the inconstant computational effort of the slaves which
itself is mainly related to the step size control of the subsystem integrators and the
contact search. Moreover, Figure 4.2 shows that the slaves perform well in parallel
and the master, which must run in serial with respect to all slaves and ensures the
synchronization, has a very low computational effort.

4.2.3 Simulation Results

Good speedups are an important benefit of co-simulation but are pointless if the
simulation results are not nearly equal to the original non parallelized program. A
typical parallelization technique is for example the parallel coding of an algorithm.
In this case the results of the non parallel and a parallel program are equal up to the
numerical accuracy of the computer. However this is not the case for co-simulation,
because adding elasticities at the coupling points physically changes the system and
might lead to a change of the simulation result which can be larger by magnitudes
than numerical errors. Hence, it is important to compare the co-simulated example
with a not co-simulated reference example. Figure 4.3 shows on the left the oscil-
lation angle ∆α of the exhaust cam shaft of bank 1 for the reference simulation
without co-simulation and for the co-simulation with the optimal coupling variant
Lin 2,3,Opt. The comparison of this value is chosen exemplarily, because the cam
shaft oscillation is of major interest for timing drives in combustion engines. This
figure shows that only at some points slight differences between the two simulations
are distinguishable. For a more detailed error analysis the error given by the abso-
lute difference between the two simulations is shown in Figure 4.3 on the right. The
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Figure 4.3: Comparison of the simulation results: V6 engine

error is only about two magnitudes smaller than the dynamic oscillation and thus
magnitudes larger than typical numerical errors of about 10−5. However, looking at
the relative rotational twist of the elasticity of the co-simulation coupling which is
also plotted in Figure 4.3 on the right, shows that this error is mainly attributed
to the change of the model needed by the co-simulation. This elastic deflection be-
tween the two wheels on the intermediate shaft is caused by the propagation of the
changing torque of the valve train having a peak torque of about 20Nm which leads
to a rotational deformation of about 0.02◦. Since the added elasticity was motivated
physically the co-simulation can also be interpreted as a model extension using an
elastic intermediate shaft instead of a rigid shaft.

4.3 Multi Scale Problem

The decoupling of the subsystem integrators is a very important aspect concerning
the maximum speedup of a co-simulation, even if the co-simulation is run in serial.
Especially if the time scales of the subsystems are very different, often called multi
scale problems, the speedup related to the decoupling of the multi scale problem
can be higher than the speedup related to the parallelization of a co-simulation. In
this case a parallel co-simulation will lead to very good speedups because of the
combination of both effects. An example of such a multi scale system is given in
this section.

4.3.1 Model Setup

In timing chain drives, the chain is often prestressed using a hydraulic chain ten-
sioner. Such chain tensioners can be modeled by the chain drive simulation software
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Figure 4.4: Flat engine chain drive with two hydraulic chain tensioners

KetSim using a limited number of provided models. Since the chain tensioner has
a significant effect on the dynamics of timing drives and there are many variants
of hydraulic chain tensioners, the representation of arbitrary chain tensioners with
high model quality is needed. Such modular chain tensioners can be modeled us-
ing the hydraulic simulation tool Hysim [13, 32]. Using these tools, the need for a
co-simulation between the chain tensioner and the chain drive simulation software
arises.

As an example, a chain drive of a flat engine, depicted in Figure 4.4, simulated
with KetSim and hydraulic chain tensioners simulated with Hysim is used to show
the effects of multi scale problems. The crank shaft in the middle is kinematically
excited representing the load of the crank shaft. The boundary condition on the
four cam shafts are kinetic torque excitations representing the load of the valve
train being not simulated in this example. Moreover, the hydraulic chain tensioners
have an oil pressure boundary which itself depends on the rotational speed of the
crank shaft.

Since the chain tensioners include small oil volumes which must be calculated elas-
tically to represent the dynamic behavior sufficient the hydraulic model is getting
much stiffer compared to the mechanical model of the chain. This leads to different
scales of both models causing numerical and computation time problems which can
be bypassed using a co-simulation.

The point of intersection in this co-simulation is the contact point between the piston
of the chain tensioners and the corresponding guiding. Since this unilateral contact
does not separate it can be approximated by a non separating local contact stiffness.
This can be represented by the co-simulation coupling law. Moreover, the two chain
tensioners can be calculated by different slaves and the left and right chain drive
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Model Simulation time [h]
Reference Simulation 15.37
Parallel Co-Simulation (2 subsystems) 1.86
Parallel Co-Simulation (4 subsystems) 1.46

Table 4.5: Simulation time of the chain drive and chain tensioner

can also be split into two subsystems if another co-simulation coupling between
the two wheels on the crank shaft is added. The optimized constant extrapolation
Const 2,3,Opt is used for the co-simulation coupling.

Besides defining a co-simulation the whole system can also be integrated by the
software Hysim using model coupling. In this case the Hysim integrator includes
the whole KetSim chain drive model as a component [19]. This simulation defines
the reference simulation without a decoupling of the subsystem and without the
possibility of parallelization.

4.3.2 Computing Time

The total computing time ttotal of a dynamical system is mainly attributed to the
product of the number of time steps N , required for a given time interval, and
the computing time of a single time step tstep. In case of a model coupling the
whole chain drive has to be integrated with the very small step size (many time
steps), needed for the very stiff hydraulic chain tensioner, although this would not
be necessary for the mechanical part. Using a co-simulation both subsystems are
integrated by their own integrators with their own typical step sizes, which leads to
a different number of required steps for each subsystem. Hence the total computing
time of a co-simulation is approximately the sum of Ni tstep,i of all subsystems. This
leads to a speedup if the number of required time steps Ni differs highly, being
the case for multi scale problems. Moreover, using co-simulation, the simulation of
the chain drives and the chain tensioner can run in parallel in two or four threads
depending on the substructure definition. The computation times for all simulation
variants are shown in Table 4.5. The parallel co-simulation with 2 subsystems gives
a speedup of about 8.26 compared to the reference simulation. Due to the average
CPU load of about 85% for both subsystems during the parallel co-simulation a
maximal speedup of about 2 · 0.85 = 1.7 can be related to the parallel execution.
The remaining speedup of about 4.8 results mainly from the decoupling of the multi
scale problem. Splitting the simulation into four subsystems leads to an additional
speedup of about 1.27 with respect to the co-simulation with two subsystems. In
this case no further speedup related to a multi scale problem arises because the
micro step sizes of the two chain drives are nearly equal and the micro step sizes of
the two tensioners are also nearly equal. The benefit of the extended parallelization
from two to four CPUs is not very high because the two tensioner subsystems can
only load a CPU with about 30%, since the calculation of one macro time step for
each chain drive takes much more time than for the tensioner subsystems.



4.3 Multi Scale Problem 77

0

2

4

6

8

1.0006 1.0008 1.001M
ic

ro
st

ep
si

ze
h

[µ
s]

Time t [s]

KetSim Step Size

0

2

4

6

8

1.0006 1.0008 1.001M
ic

ro
st

ep
si

ze
h

[µ
s]

Time t [s]

Hysim Step Size

left chain
right chain

left tensioner
right tensioner

(a) Co-simulation with four subsystems

0

2

4

6

8

1.0006 1.0008 1.001M
ic

ro
st

ep
si

ze
h

[µ
s]

Time t [s]

Step Size of Reference Model

(b) Reference simulation (no co-simulation)

Figure 4.5: Variable micro step size for chain drive system of Figure 4.4

Figure 4.5 shows the variable step size of the subsystem integrators. Figure 4.5(a)
left depicts that the step sizes of the chain drives calculated in KetSim are in average
equal but by a factor of about 2.4 larger than the step sizes of the chain tensioner
depicted in Figure 4.5(a) on the right. The step size of the not co-simulated reference
simulation is the minimal required step size of the overall system and is shown in
Figure 4.5(b). Hence, the chain drive, having a much higher computational effort
per time step than the tensioner, is forced to the small step size of the tensioner
part.

4.3.3 Simulation Results

Comparing the simulation results of the reference simulation with the parallel co-
simulation shows that the influence of the co-simulation approach is negligible for the
global dynamics. In contrast to the example in Section 4.2, no additional elasticity
needs to be added at the co-simulation coupling point because the cutting point
between the tensioner piston and the guiding is already modeled linear elastic in the
reference simulation. This elasticity is used as co-simulation coupling law.
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Figure 4.6: Bank 1 of a V6-engine and cam phasing controller

4.4 Multi Domain Example

The examples in Section 4.1 and 4.2, are both purely mechanical where the subsys-
tems are mechanically coupled. The multi scale problem in Section 4.3 is already
a multi domain example because the mechanical timing chain drive is coupled with
a hydraulic chain tensioner. However, the couplings between the subsystems again
are mechanical because the domain interface between mechanic and hydraulic sys-
tems is included by the model of the piston in the hydraulic domain, compare to
Section 2.6.3. The example in this section uses mechanical, hydraulic and control
subsystems as well as mechanical, hydraulic and feed through control couplings.

4.4.1 Model Setup

Figure 4.6(a) illustrates the setup of the system visualized by OpenMBV [52]. The
chain drive of the system is the same as drive 2 in Figure 4.1. The wheel on the
intermediate shaft (lower wheel) is actuated using a kinematic boundary. This
boundary represents the load of the crank shaft as well as the transmission behavior
of the chain drive 1 of Figure 4.1 between the crank shaft and the intermediate
wheel. The valve train comprises a full mechanical model including valve contacts
and springs, whereas the gas forces in the combustion chambers are not regarded.
The oil pressure of the oil supply is a variable boundary condition using a function of
the intermediate shaft rotational speed. Moreover, this system includes a hydraulic
chain tensioner and two hydraulic cam phasing systems on the intake and exhaust
shaft. The modeling of the components of this system is described in detail in [66,
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# Subsystem / Slave Program
#1 chain drive KetSim
#2 intake cam phasing MBSim
#3 exhaust cam phasing MBSim
#4 hydraulic chain tensioner MBSim
#5 intake valve train MBSim
#6 exhaust valve train MBSim
#7 cam phasing controller Simulink

# Connection Type
#1 intake chain wheel - intake cam phasing stator mechanical
#2 exhaust chain wheel - exhaust cam phasing stator mechanical
#3 tensioner guiding - tensioner piston mechanical
#4 oil supply - intake cam phasing - exhaust cam phasing hydraulic
#5 exhaust cam phasing - chain lubrication - chain tensioner hydraulic
#6 intake cam phasing rotor - intake cam shaft mechanical
#7 exhaust cam phasing rotor - exhaust cam shaft mechanical
#8 exhaust cam phasing relative angle - exhaust controller input feed through
#9 exhaust cam phasing relative velocity - exhaust controller input feed through

#10 intake cam phasing relative angle - intake controller input feed through
#11 intake cam phasing relative velocity - intake controller input feed through
#12 exhaust controller output - exhaust 4/3 way valve control edge feed through
#13 intake controller output - intake 4/3 way valve control edge feed through

Table 4.6: Subsystems and connections

67,69]. The original model of this system does not include a controller for the cam
phasing systems, they are acting at their end stops. Hence, two controllers for the
relative angle of the two cam phasing systems are added. Since a detailed model
of a real cam phasing controller was not available for this work the simple PID
controllers, shown in Figure 4.6(b) including the S-Function communication block,
are used.

The original model of this system is a co-simulation of two subsystems: the chain
drive and the rest of the system excluding the cam phasing controller which is not
included in the original model. The focus of this example lies on the splitting of
the system into more and more subsystems with the aim to speedup the simulation
dramatically using a parallel co-simulation on a multi core machine. Lastly the
controller is added. The final, fully split system consists of 7 subsystems and 13
co-simulation connections. The single subsystems and connections are listed in
Table 4.6 together with the respective simulation programs and connection types.
The system is split incrementally in the following order:

2 Subsystems: The chain drive is modeled in KetSim and both valve trains includ-
ing the individual cam phasing systems and the chain tensioner are modeled
as one subsystem in MBSim.

3 Subsystems: The valve train is split into the intake and exhaust valve train
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Number of Subsystems Hyd. Coupling Speedup
2 E(p) = const 1.0

3 E(p) = const 1.9

4 E(p) = const 2.1
4 E(p) : stepped 2.1
4 E(p) 6= const 2.1

6 E(p) = const 3.4

7 E(p) = const 3.4

Table 4.7: Speedup of the co-simulation

including their cam phasing system. The chain tensioner is part of the exhaust
model.

4 Subsystems: The chain tensioner is split from the exhaust model as a separate
subsystem.

6 Subsystems: The intake and exhaust cam phasing systems are split from the
intake and exhaust cam shafts.

7 Subsystems: The control subsystem is modeled in one Simulink subsystem and
includes two controllers for the intake and exhaust cam phasing systems. This
step does not further split but extends the model towards an active control.

Each splitting is attended by adding co-simulation connections of appropriate type
at the intersection points. The mechanical and hydraulic couplings use the extrap-
olation Lin 2,3,Opt which provided fast and accurate simulations in the previous
examples.

4.4.2 Computing Time

All calculations are run on a 4 CPU shared memory workstation computer with a
macro step size H = 1 · 10−5. Table 4.7 shows the speedup factors of the system
divided into the subsystems described above in relation to the original model with
only two subsystems. The splitting of the valve train gives a very good speedup of
1.9, because the valve train has a significant higher computational effort than the
chain drive and the cutting results in two similar subsystems having nearly the same
computational effort.
However, the splitting of the chain tensioner from the exhaust valve train gives
only a moderate additional speedup of about 1.1, in total 2.1 compared to the two
subsystems variant, because the tensioner model is very small and does not have
a considerably different time scale as it has been in the multi scale problem of
Section 4.3. The model with 4 subsystems has been tested with the three different
modelings of the hydraulic coupling node bulk modulus E described in Section 2.4.1-
2.4.3. Even the variant which needs an iterative numerical solution for the pressure p
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Figure 4.7: Thread profiling of the 6 subsystems and the master with same priorities

at each macro time steps does not lead to a significant increase of the simulation time.
The simulation result is also not influenced in an appreciable matter because the
pressure change has comparatively slow dynamics at the hydraulic coupling nodes.
The cam phasing systems have again a relevant computational effort. Hence, the
cutting of the cam phasing systems from the cam shafts leads to a total speedup of
about 3.4 on a 4 CPU machine.
Adding the controller increases the total computational effort of the model only
marginal since the simulation of the control subsystem can be performed very fast.

4.4.3 Thread Profiling

Figure 4.7 shows the thread profiling of the co-simulation with 6 subsystems. The
bars show the active times from the reception of the input from the master until
the sending of the output back to the master. At the times where no bar is drawn,
the subsystem has to wait because the other subsystems have not yet finished the
last macro time step. The total sleep time, called idle time, of a thread during one
macro time step is shown by the lighter bars. Note that the point in real time where
a process sleeps is not shown, only the amount of time during one macro time step
is depicted by the lighter bars.
Since there are 6 subsystems (slaves, threads) on a 4 CPU machine some threads
must run in serial or are forced to sleep by the multitasking feature of the operating
system. To run more threads at a time than CPUs are available the operating
system switches frequently between the execution of the threads, which results in a
quasi parallel execution called multitasking. Such switches are called context switch
and take a relatively long time for heavy weight threads [76] such as co-simulation
subsystems. The sequence and execution time of the different threads in case of
a multitasking operation is the challenge of the so called scheduler. The optimal
strategy for scheduling is a continuous research topic in information technology [76].
Current implementations like preemptive schedulers are not optimal in the given
scenario because the threads with the highest computational effort not always receive
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Figure 4.8: Thread profiling of the 6 subsystems and the master with different priorities
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Figure 4.9: Thread profiling of the 6 subsystems and the master with applied process
affinity

the full CPU time from the beginning of a macro time step, see for example the
exhaust VT in Figure 4.7. One possibility to influence the process scheduling of the
operating system is to apply a process priority to each process or thread. Figure 4.8
shows the thread profiling of the same simulation but with a high process priority
for the valve train subsystems having the highest computational effort and a low
priority for others. This changes the scheduling a lot, but has no relevant positive
effect on the speedup because the automatic distribution of the threads to the CPUs
is still not optimal. Another possibility is to apply a so called process affinity to the
threads, where a process is limited to run on a specific CPU. For the given system
one associates a subsystem with a very low and a middle computational effort to
one CPU and exclusively assigns the subsystems with the highest effort each to
a separate CPU. The resulting thread profiling is shown in Figure 4.9. The total
simulation time reduces by setting the process affinity because now the distribution
of the threads to the CPUs is optimal. A disadvantage of this method is that the
process affinity must be applied by the user. However, modern operating systems
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Number of Allowed CPU for Subsystem Speedup
Subsystems #1 #2 #3 #4 #5 #6
2 all all 1.0

6 all all all all all all 3.4
6 0 1 0 1 2 3 4.0

Table 4.8: Speedup of the co-simulation with applied process affinity

are able to change the process affinity dynamically during execution. Hence, it is
feasible to measure the CPU time of each thread for one macro time step and to
use this information to set the optimal process affinity automatically. Using this
method it is also feasible to change the affinity when the ratio of the computational
effort for two or more subsystems changes during the simulation.

Table 4.8 depicts the positive effect of process affinity settings in the speedup factor
compared to the original systems with two slaves and the one with 6 slaves but
without a process affinity. It is worth to point out that the speedup on a 4 CPU
machine is 4.0 even though there is an overhead for the co-simulation, especially
for the synchronization at the macro time steps. The reason why the theoretically
maximal speedup can be reached is already described in Section 4.2: integrator
decoupling, contact decoupling and filtering as well as the multi scale phenomena.

4.4.4 Simulation Results

Besides the speedup of the simulation also the influence of the co-simulation on
the simulation results needs to be investigated. Figure 4.10(a) shows the oscillating
angle of the exhaust cam shaft for the original simulation with 2 slaves and the co-
simulation with 6 slaves. Though the two curves nearly coincide, the error defined as
the difference between the two results, depicted in Figure 4.10(b), is much larger than
typical numerical errors as shown in Section 2.3.1. The reason therefore is again the
modification of the physical model: at the coupling points rigid connections must be
replaced by elastic coupling laws. Hence, Figure 4.10(b) depicts exemplarily also the
elastic deformations of the co-simulation coupling #7 and #2, see Table 4.6. This
demonstrates that the errors between the different simulations are mainly related
to the change of the model and not to the numerical accuracy of the co-simulation
coupling.

The co-simulation variant with 7 subsystems including the phasing controllers are
conclusively addressed. Figure 4.11 shows the set- and actual-value cam phasing
angle ϕ for the exhaust and intake cam phasing systems as well as the position s of
the corresponding 4/3 way valve. The valve is in neutral position for s = 0.5 and has
a corresponding minimal and maximal value of smin = 0 and smax = 1 respectively.
To demonstrate the work of the controller the set value exhaust cam phasing angle
is linear in time and the set value intake cam phasing angle jumps at t = 0.02s.
Both plots show that the controller has a relative large reaction time and that the
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Figure 4.10: Simulation results
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Figure 4.11: Controller results

maximal adjustment speed is very limited by the oil flow even if the valve is fully
opened. Improving the controller will improve the tracking of the set value, but this
is not topic of this work.



5 Parallelization of the Algorithm

The last chapters addressed the parallelization of multiple dynamic simulation soft-
ware tools with a detailed derivation of methods and examples. Another variant is
the parallelization of the algorithm used by the individual software. This is often
called internal parallelization and has the advantage that neither a change of the
model nor a split into subsystems is needed. The disadvantage of this method is that
usually only small parts of the code can be reformulated and implemented utilizing
parallelization. Hence, a high fraction of code cannot be parallelized which leads to
low speedups as well as to high frequent communication being responsible for over-
head. Another disadvantage is that the fraction of parallel code must be thread safe:
if one thread is writing to memory no other thread running in parallel is allowed to
read or write at the same time to the same memory. An investigation of the code
for thread safety is needed which can be very time consuming for large preexisting
simulation software. Two principle possibilities arise to force thread safety: reformu-
lating the algorithm in a way that such race conditions are avoided or synchronizing
of the corresponding code. The first might be hard to develop and implement and
the second leads to an increase of the synchronization overhead. In contrast to co-
simulation, internal parallelization is impossible with simulation tools only available
as closed source. To compare the principle possibilities of internal parallelization
and parallel co-simulation focusing on the speedup effects, a short outlook to inter-
nal parallelization of the simulation software KetSim and MBSim is given in this
section.

5.1 Parallelization of KETSIM

In KetSim chain links of the drive are connected to each other using local contact
elasticities. The contacts between the chain links and the chain wheels as well
as the chain guidings are modeled using rigid body contacts with set valued force
laws [18,20,23]. Due to the design of chain drives, a chain link can not be in contact
with more than one wheel or guiding. Therefore it is impossible that the contact of
a chain link with a wheel or guiding is coupled with the contact of a chain link with
another wheel or guiding. Hence, the rigid body contact calculation of each wheel
or guiding and all adjacent chain links can be separated and thus done in parallel.
Since KetSim is implemented in Fortran 77 with excessive use of global variables
it is hard to implement the parallel contact calculation.

For the V6 engine example with three drives, depicted in Figure 4.1, the implemen-
tation of this parallelization leads to a fraction of serial code of f = 0.559. Hence, on
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Method Speedup CPU-Load
Without Parallelization 1.000 100%
OpenMP: Two Parallel For-Loops 1.095 200%
OpenMP: Parallel Section with For-Loops 1.162 200%

Table 5.1: KetSim speedup using internal parallelization

0 100 200 300 400 500
µs

ż = f(z,t) ż = f(z,t)

Figure 5.1: Thread profiling using internal parallelization

a p = 2 CPU computer the maximal speedup according to Amdahl, equation (4.3),
is 1.28. Table 5.1 shows the speedup of the implementation using OpenMP [31].
Two different implementations are given: One with a parallel execution of the ele-
ments of two loops and one with two parallel sections each running one of the loops.
The maximal speedup of 1.162 is pretty close to the theoretical maximum. The
CPU load in case of OpenMP is 200% which shows that the synchronization by
this OpenMP implemention is done using busy waits. This minimizes the overhead
for synchronization but fully loads both CPUs even though the speedup is far away
from 2. The thread profiling in Figure 5.1 shows the still high ratio of serial code.
Of course there are still some parts of code in the serial code which can be paral-
lelized, but the implementation if difficult. Moreover the profit will not be very good
since these parts of code have shown a very low computation effort in cost profiling
analysis.

5.2 Parallelization of MBSIM

The implementation of internal parallelization in MBSim is more straight forward
because the object orientated language C++ being used, encapsulates the data
locally which resolves many problems compared to the use of global data. Being
the basis for continuous variable transmission models [64], as an academic example
a flexible closed band with 36 rigid body elements is used, see Figure 5.2. Since
the elements can only move tangential to the band, a relative kinematic description
with respect to the band is implemented [80]. Hence, the mass matrix M tot of
this tree structure is the sum of the element masses M i projected by the element
Jacobian J i

M tot =
∑

i

JT
i M i J i. (5.1)
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Figure 5.2: MBSim example for internal parallelization
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Figure 5.3: MBSim example: thread profiling

Since the calculation of the element Jacobians is very expensive, it is reasonable
to parallelize the evaluation of equation 5.1 for the elements i. The summing up
must be done to global memory. Hence, this process must be serialized to avoid
race conditions. This blocking is shown in the thread profiling of Figure 5.3 by the
bars blocking summation. Since the computational effort of each element is nearly
equal, the blocking appears only after the first element in each thread. Afterwards
the elements have already an offset in real time and the serial summation is not
blocking any more. The maximal speedup according to Amdahl is 2.05 on a 4
CPU machine, where the achieved speedup is at about 1.7 [63].

5.3 Comparison: Parallelization of the Algorithm -
Co-Simulation

This and the previous example show that internal parallelization is associated with
a high programming effort for each individual software. The speedup factors are
good compared to the factors according to Amdahl or Gustafson but are only
moderate compared to the full power of p CPUs. Using a parallel co-simulation,
it is much easier to achieve good speedups which are near to p, and the code of
the subsystems needs no or only marginal changes. Of course it will be advisable
to combine both methods in case of a co-simulation, if a subsystem is a priori
implemented in parallel.



6 Conclusion

The simulation of physical systems is a very important task in modern product
development. Besides the simulation of single domain systems with high quality
also the simulation of multi domain systems as a whole has increasing importance.
One possibility to calculate such systems is a co-simulation having the advantage
that preexisting systems of different domains can be coupled. Due to the high
computational effort of large multi domain systems, time efficient simulation appears
to be a main challenge of the problem. Particularly with regard to current processor
development, which leads nowadays to a larger number of cores rather than faster
single CPUs, parallelization is a major topic. Both multi domain simulations and
efficient usage of multi CPUs can be obtained by the presented parallel co-simulation
framework.

Chapter 2 starts with a draft for the proposed parallel co-simulation using the fun-
damental master-slave concept and a classification of this concept by well known
co-simulation variants from literature. The master acts as a global manager for
all subsystems, being the slaves, which do the main computational work, the time
integration. Beside the master-slave concept the main difference of this framework
compared to others lies in the evaluation of the coupling law. It is not part of one
of the subsystems but belongs to the master which evaluates the coupling law in a
special discrete form. The main viewpoint for the development of this framework
is a simple interface to be able to include a maximal number of preexisting simula-
tion tools, even including commercial software. Moreover, the number of unknown
numerical parameters like the macro step size is minimized. Good parallel scaling
on multi CPU workstations or multi computer clusters are a central topic. An es-
sential aspect is the stability of the coupling being discussed in detail. A numerical
optimization concerning the stability of special couplings yields great improvement
compared to couplings well known from literature. However, especially for large
macro step sizes the accuracy of the numerical solution must be investigated, which
is done by a local order analysis of different coupling variants. These analysis are ap-
plied to mechanical couplings and are taken over to hydraulic and control couplings.
It is proven to be feasible to reformulate these domains in a way that they are math-
ematical identical to mechanical couplings. The chapter closes with a long time
analysis of the constituted methods in comparison to other common co-simulation
coupling variants.

In Chapter 3 an overview of the implementation of the parallel co-simulation is
given. From the field of information technology a large number of inter-process-
communication methods are available. These are necessary for co-simulation and
proven to be more or less usable for the data exchange and synchronization between
the subsystems. Besides the discussion of the usage and implementation of these IPC
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methods also the basic program structure of the master and the slaves are outlined.
The implementation of subsystems as co-simulation slaves is shown for preexisting
open source simulation tools as well as for closed source commercial software. Closed
source tools limit the co-simulation interface to the minimal interfaces common for
all closed source tools.

Examples for the application of the parallel co-simulation framework are provided
in Chapter 4. It starts with a simple academic example being used as a bench-
mark problem for different inter-process-communication methods. The investigation
shows, that parallel co-simulations are only reasonable on shared memory machines
or on a computer cluster providing good communication methods and if the sub-
systems are large enough. The different coupling variants are compared concerning
the maximal parallel speedup using a timing chain drive with three subdrives of a
V6 combustion engine. The results confirm the mathematical stability analysis from
Chapter 2. Physical models with different time scales, known as multi scale problems,
are very problematic with respect to numerical efficiency. In this case co-simulation
is useful if the model can be divided into submodels each having mainly a single
time scale. For the provided coupling example between a mechanical and hydraulic
one this leads to a simulation speedup being larger than the number of subsystems
on individual CPUs. The last example, a timing chain drive with a hydraulic chain
tensioner and a valve train including a hydraulic cam phasing system, shows the
full power of the parallel co-simulation framework: besides the coupling of different
domains and different preexisting simulation tools also a simulation speedup using
parallelization and model splitting is reached.

The work is closed by an overview on internal parallelization in Chapter 5. Exem-
plarily the benefit of internal parallelization is analyzed for two simulation tools.
The results show that it is very hard to achieve good parallel speedups using this
method. Moreover, the implementation of a parallel algorithm might be very time
consuming but not very efficient, at least for multi body algorithms.

Summing up, the presented work shows that parallel co-simulation is a very helpful
simulation method: it offers the possibility to couple different preexisting simulation
tools, even closed source software. Moreover the co-simulation can run in parallel
on a multi CPU workstation or a computer cluster. Hence, it is feasible to reuse
existing models and to investigate the dynamics of coupled multi domain systems.
In many cases the simulation time of the coupled system even may not be larger
than the simulation time of the subsystem with the highest computational effort. If
a single system can be split into subsystems a reduction of the simulation time is
reachable.

The co-simulation macro step size was chosen constant for most investigation in
this work. An extension to a non constant macro step size is possible but leads
to extrapolation parameters being dependent on the ratio of the step sizes which
may complicate the analytical analyzes a lot. However, the required macro step size
controlling is topic of current research and may improve co-simulation even more.
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