
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informationstechnik im Maschinenwesen

Robust Scheduling of Real-Time Applications on Efficient

Embedded Multicore Systems

Michael Deubzer

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. rer. nat. Tim C. Lüth

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Birgit Vogel-Heuser

2. Prof. Dr. rer. nat. Jürgen Mottok

Hochschule für Angewandte Wissenschaften Regensburg

3. Univ.-Prof. Dr.-Ing. Markus Siegle

Universität der Bundeswehr München

Die Dissertation wurde am 03.02.2011 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen am 06.09.2011

angenommen.

Abstract

The increasing demand of computing capacity in embedded real-time systems, especially

in the automotive powertrain domain, has been satisfied so far by increased processor

frequency of singlecore processors. Due to thermal dissipation, increasing processor fre-

quency is technically limited. Multicore processors provide additional computing capacity

at constant or even reduced processor frequency. However, most embedded real-time sys-

tems have tight real-time, efficiency, and robustness requirements, resulting respectively

from time-critical interaction with other devices, high piece numbers, and realization of

control functions. Multicore processor real-time scheduling approaches, namely parti-

tioning heuristics for existing scheduling algorithms for singlecore processors and global

scheduling algorithms for multicore processors, have to fulfill these requirements.

This work discusses multicore processor real-time scheduling approaches as well as

examination approaches of real-time, efficiency, and robustness properties for complex

multitasking applications (task sets) on multicore processors in embedded real-time sys-

tems.

Related work on multicore processor real-time scheduling mainly considers simplified

task sets, i.e. periodic or sporadic task sets with constant task execution times and im-

plicit deadlines. This work examines multicore processor real-time scheduling approaches

for more complex practical task sets, common in automotive systems, with heterogeneous

task activation patterns, variable task execution times, and hard or soft explicit task dead-

lines. The work considers both global scheduling algorithms and partitioning heuristics

for local scheduling algorithms for symmetric multicore processors.

For this purpose, a task set model for complex multitasking applications, e.g. in the

field of automotive control units, is presented, which extends numerous existing task set

models: (I) by a description of task activation sources, specifying the modification of task

activation times for a sub group of tasks in a task set; (II) by a probabilistic description of

task section execution times, splitting task execution time in blocks in order to model non-

preemptive scheduling. Furthermore, the global multicore processor real-time scheduling

algorithms Partly-Pfair-PD2 and P-ERfair-PD2 are proposed. Both algorithms are able

to schedule the presented task sets in a way that the multicore processor is used very

efficiently while at P-ERfair-PD2 at the same time the compliance of task deadlines

is robust against perturbation of task set properties. For schedulability evaluation, a

simulation-based examination approach with mechanisms to approximate the worst-case

response time of tasks is proposed. Finally, a sensitivity analysis approach for embedded

real-time systems with a probabilistic description of task sets is proposed. The approach

allows to compare scheduling algorithms according to the mentioned properties and allows

a sensitivity analysis of system metrics, by considering task sets variations over the

lifetime of a real-time system. The application of these contributions is shown in case

studies based on task set data sets of automotive applications.

i

Kurzfassung

Durch den stetig steigenden Bedarf an Rechenkapazität in eingebetteten Systemen, be-

sonders im Bereich von Motorsteuerungen für Automobilsysteme, und der Begrenzung der

maximalen Taktfrequenz von Singlecore und Multi–Prozessor Systemen, werden Multicore-

Prozessoren für den Einsatz in diesen Systemen zunehmend interessanter. Aufgrund eines

hohen Kostendrucks im Bereich von eingebetteten Systemen ist die effiziente Auslastung

der Prozessoren hier besonders wichtig. Zudem fordern zeitkritische Interaktionen ei-

ne hohe Robustheit bei der Einhaltung von Echtzeitanforderungen gegenüber Störungen

der zeitlichen Eigenschaften der Anwendung. Sowohl die Effizienz als auch die Robustheit

von eingebetteten Echtzeitsystemen sind durch den Scheduling–Algorithmus maßgeblich

beeinflusst.

Der Fokus dieser Arbeit liegt auf Scheduling–Algorithmen für Echtzeitanwendungen

sowie Verfahren zur Untersuchung des Echtzeitverhaltens von eingebetteten Multicore–

Prozessor Systemen.

Bisherige Ansätze untersuchen vorwiegend Scheduling–Algorithmen unter der Annah-

me eines vereinfachten Modells für die Echtzeitanwendung (Taskset), periodische oder

sporadische Aktivierungen, konstante Tasklaufzeiten und implizite Deadlines. Diese Ar-

beit untersucht Scheduling–Algorithmen für Taskset, welche heterogene Aktivierungs–

Muster aufweisen, variable Laufzeiten besitzen und harten oder weichen Echtzeitan-

forderungen unterliegen. Hierbei werden sowohl Partitionierungsheuristiken für lokalen

Scheduling–Algorithmen als auch globale Scheduling–Algorithmen betrachtet.

Zu diesem Zweck stellt diese Arbeit eine Erweiterung für Tasksets um eine Beschrei-

bung der zeitgleichen Änderung von Aktivierungsmustern einer Teilmenge der Tasks ei-

nes Tasksets und eine Beschreibung von variablen Laufzeiten für Task–Sektionen vor.

Hierdurch ist es z.B. möglich Motorsteuerungen detailliert zu beschreiben und koope-

rative Scheduling Algorithmen zu untersuchen. Für das erweiterte Taskset werden die

zwei globalen Scheduling–Algorithmen Partly-Pfair-PD2 und P-ERfair-PD2 vorgestellt.

Diese ermöglichen es heutige komplexe Echtzeitanwendungen auf Multicore–Prozessoren

hocheffizient auszuführen. Dabei weist P-ERfair-PD2 zusätzlich eine hohe Robustheit

bei der Einhaltung von Echtzeitanforderungen unter Störungen des Tasksets auf. Für die

Untersuchungen der Echtzeiteigenschaften eingebetteter Systeme wird ein simulationsba-

siertes Verfahren für globale Scheduling–Algorithmen mit dynamischer Prioritätsvergabe

beschrieben, welches sich ebenfalls auf andere Algorithmen, wie z.B. lokale Scheduling–

Algorithmen, anwenden lässt. Zudem wird ein Verfahren vorgestellt, welches es ermöglicht

Scheduling–Algorithmen unter der Berücksichtigung der Variation von Eigenschaften des

Tasksets über die Lebensdauer eines eingebetteten Systemen zu bewerten und zu ver-

gleichen. Die praktische Anwendbarkeit wird an verschiedenen Fallstudien, basierend auf

Daten existierender automobiler Systeme, evaluiert.

ii

Acknowledgment

This work was written in the context of the BMBF founded project DynaS 3 (
”
Dynamic

software architectures in electronic control units in automotive systems with considera-

tion of requirements for functional safety“). DynaS 3 was a cooperative research project

between the University of Applied Sciences Regensburg, the Continental Automotive

GmbH, the Technical University Munich, the Bundeswehr University of Munich, and the

University Magdeburg. I have been fortunate to have been mentored by people who have

both inspired and challenged me.

Foremost, I would like to thank Prof. Dr. rer. nat. Jürgen Mottok for educating and

guiding me over the past years with great care, enthusiasm, and patience. I am much

obliged to Prof. Dr.-Ing. Birgit Vogel-Heuser for the great support and for giving me

the opportunity to write this thesis in her research group at the Technical University

Munich. I thank my further advisors Univ. Prof. Dr.-Ing. Markus Siegle and Prof.

Dr.-Ing. Frank Schiller. I am deeply thankful for their help and the feedback they gave

me over the years. I am deeply grateful to my advisors Dr. Ulrich Margull and Dr.

Michael Niemetz. We had a lot of inspiring discussions and they taught me in research

work and scientific writing.

I thank my research colleague Martin Hobelsberger for the inspiring discussions and

the great time we had as PhD students at the LaS 3. I am indebted to all colleagues of the

LaS 3, who have made my time here very enjoyable and also helped me countless times.

In particular, I would like to thank Michael Schorer and Michael Steindl. Furthermore, I

want to thank my students, especially Stefan Schmidhuber and Max Raith, for supporting

me at the development of the model generation environment and the cluster computing

cloud.

So many friends have supported me over the last years (I apologize to any friend

I may have omitted): Jennifer Bystry, Anton Achatz, Stefan Till, Katharina Fregin,

Andrea Weber, Marcus Kandelbinder, Michael Graupner, Jasmin Bystry, Heike Schwarz,

Christian Köhler, and Frank Jahn.

I am fortunate to have a loving and supportive family, who put great trust in me. All

my life they believed in me and gave me a strong motivation.

January 2011,

Regensburg

iii

Contents

Abstract . i

Kurzfassung . ii

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 4

1.3 Structure of the Work . 6

I Preparation and Related Work 8

2 Real-Time System Model 9

2.1 Fundamentals . 9

2.2 Real-Time System Model . 10

2.2.1 Task Set . 12

2.2.2 Processor . 16

2.2.3 Scheduler . 19

2.2.4 Time Events . 19

2.3 Related Work . 20

2.3.1 Models for Demand of Execution Time 21

2.3.2 Models for the Execution Time . 26

2.3.3 Classification of Deadline Bounds 28

2.4 Characteristics of Task Set Models . 29

3 Real-Time Scheduling 31

3.1 Fundamentals . 31

3.1.1 Definitions . 31

3.1.2 Classification of Multicore Scheduling Algorithms 32

3.1.3 Scheduling Model . 35

3.2 Related Work on Singlecore Scheduling . 36

3.2.1 Task-Fix Priority Scheduling . 36

3.2.2 Job-Fix Priority Scheduling . 38

3.2.3 Dynamic Priority Scheduling . 39

v

Contents

3.2.4 Cooperative Scheduling . 39

3.3 Related Work on Multicore Scheduling . 40

3.3.1 Local Scheduling . 41

3.3.2 Global Scheduling . 43

4 Real-Time System Examination 52

4.1 Fundamentals . 52

4.1.1 Definitions . 52

4.1.2 Real-Time Metrics . 55

4.2 Methods for Schedulability Examination 57

4.2.1 Response-Time Analysis . 57

4.2.2 Real-Time Calculus . 58

4.2.3 Model-Checking Approach . 59

4.2.4 Simulation Approach . 59

4.3 Anomalies of Multicore Schedulability Analysis 60

4.3.1 Examples . 61

II Contribution 63

5 Focus of Contribution 64

6 Multiple Time Base Task Set Extension 66

6.1 Multiple Time Base Extension . 66

6.1.1 Problem Formulation . 67

6.1.2 Extension . 69

6.2 Probabilistic Execution Time Model . 73

6.2.1 Discrete Probability Function . 74

6.2.2 Weibull Pobability Function . 74

7 Global Multicore Scheduling 78

7.1 Partly Pfair Approach . 78

7.1.1 Drawback of Pfair scheduling . 78

7.1.2 Partly Pfair . 79

7.2 Partly Early Release Fair Extension . 82

8 Simulation-Based Multicore Real-Time Examination 84

8.1 Discrete-event Simulation . 84

8.2 Architectural Model . 85

8.2.1 Stimulation Subsystem . 86

8.2.2 Software Subsystem . 86

8.2.3 Hardware Subsystem . 87

vi

Contents

8.2.4 Operating System Subsystem . 88

8.3 Behavioral Model . 88

8.3.1 Simulation Sequencer . 90

8.3.2 Stimulation Subsystem . 91

8.3.3 Software Subsystem . 93

8.3.4 Hardware Subsystem . 99

8.3.5 Operating System Subsystem . 104

8.4 A Metric for Real-Time Examination . 106

8.5 Approximation of Bounds for Schedulability 107

8.6 Technical Implementation . 109

9 Sensitivity Analysis of Probabilistic System Models 110

9.1 Task Set Parameter Variations . 110

9.2 Probabilistic System Model . 111

9.2.1 Probability of Task Set Parameters 112

9.2.2 Probability of Task Quantity . 112

9.3 Monte-Carlo Randomization . 113

9.4 Examination of Characterization Metrics 116

9.5 Classification of System Models . 116

9.6 Statistical Evaluation . 116

III Case Studies 120

10 Execution of Case Studies 121

10.1 Automotive Systems . 121

10.2 Case Study I: A Quadcore System . 123

10.3 Case Study II: Porting from Singlecore to Dualcore Processors 126

10.4 Case Study III: Robustness Analysis . 132

11 Discussion 134

11.1 Local Scheduling with Bin-Packing Partitioning 134

11.2 Global Scheduling Algorithms . 135

11.3 Simulation-Based Multicore Real-Time Examination 136

IV Conclusion and Future Work 137

12 Summary 138

13 Further Work 140

Bibliography 141

vii

Contents

Index 153

List of Figures 155

List of Tables 159

V Appendix 160

A Pseudo-Code of Scheduling Algorithms 161

A.1 Algorithm EDF . 161

A.2 Algorithm Partly-Pfair-PD2 . 162

A.3 Algorithm P-ERfair-PD2 . 163

viii

Chapter 1

Introduction

”
The only reason for time is so that everything doesn’t happen at once.“

-Albert Einstein

Real-time applications in embedded systems have logical and temporal require-

ments. Logical requirements imply that the application has to produce correct results.

Temporal requirements imply that the application has to produce the results within cor-

rect time windows. Additionally, embedded systems have a high demand on efficiency

and robustness.

Efficiency is necessary to develop a commercial solution which uses resources eco-

nomically. Often embedded systems have a high production number, therefore saving

resources has two benefits. Firstly, the production wastes less environmental resources

like material and energy. Secondly, piece costs decrease, which results in lower production

costs and a competitive product.

Robustness is necessary because embedded systems are often integrated in the hu-

man environment and take over safety-critical functions. In the case of a car crash, for

example, the airbag control system of an automotive system has to react within a few

milliseconds by preparing sensor data and switch a current, which ignites a combustible

material in order to fill the airbag with gas. This function has to be correct, logically

and temporally, also when perturbations stress the system, e.g. when a sensor delivers

wrong signals (logical perturbation) or other functions request non-specified processor

time (temporal perturbation). For this reason, a robustness consideration is necessary to

evaluate the behavior in case of perturbations.

This work considers the temporal part of these requirements for the scheduling prob-

lem of real-time applications on embedded multicore processors. The scheduling

problem inquires how to assign a real-time application to a number of processors in a

way that all temporal requirements are fulfilled.

1

1. Introduction

The following sections of this chapter summarize benefits of multicore processors for

the embedded domain and the necessity of appropriate real-time scheduling algorithms,

open topics on real-time scheduling algorithms for multicore processor, the contribution

of this work to these topics, and the structure of this dissertation.

1.1 Motivation

In embedded real-time systems, the amount and the interaction of software applications

has increased rapidly in the last decades. In current automotive systems, up to 100 elec-

trical control units (ECUs) supply computing capacity for the realization of movement,

safety, comfort, and entertainment functions. For further functionalities, additional com-

puting capacity is required. However, the mechanisms which were used to increase the

computing capacity in the last decades, e.g. raising of processor frequency or using ad-

ditional processors or ECUs, are either technically limited or not cost-effective. From

the current point of view, multicore processors are the only economic way to supply the

required computing capacity for automotive systems of the next decades. In other do-

mains of embedded systems, e.g. mobile devices or robotics, the situation is similar.

When using multicore processors, the computing capacity can be increased with-

out raising the processor frequency. Raising the processor frequency causes a quadratic

increase of power consumption, which in turn generates heat. Heat has numerous draw-

backs in embedded systems: it wastes energy, it requires costly cooling mechanisms, it

decreases reliability due to increasing failure rates of semiconductors [PLW90], and it

shortens the longevity of the device by aging effects [Fre09]. Additionally, frequency

rising results in higher electromagnetic perturbations, which may infringe the emission

restriction of the electromagnetic compatibility (EMC) requirement [DRS06] or makes

better shielding necessary.

A further benefit of multicore processors is the reduction of costs for caching mecha-

nisms, due to the reduction of the lag between memory access rates and processing rates.

When the increase of processor frequency stops and memory access rates still increase,

both rates converge and caching mechanisms to compensate this lag will not be necessary

anymore.

Furthermore, the high computing capacity of multicore processors allows to merge

ECUs, which has a benefit in car cost factor due to a reduction of the redundancy of

many components. This is beneficial, because besides the ECU costs, which include case,

board, power supply, peripherals, and many more costs, additional signal and power sup-

ply cables produce costs and additional weight, which increase the energy consumption

of the vehicle.

2

1.1 Motivation

The application software of an embedded system is implemented in a multi-tasking

architecture. For efficient usage of multicore processors in embedded systems, appro-

priate scheduling algorithms are necessary. A scheduling algorithm has to schedule the

multi-tasking application in a way that all real-time requirements are met. Furthermore,

the multicore processor has to be used very efficiently and the compliance of real-time

requirements has to be robust against perturbations of the temporal properties of the

application, meaning deviations of the specified temporal properties of the application.

A scheduling algorithm for an embedded multicore system has to assign the appli-

cation with real-time requirements to the cores of the processor. In singlecore processor

systems, mostly static priority based or job-fix priority based algorithms are applied.

Static priority algorithms schedule tasks by a system-developer defined priority or by a

priority which is derived by a schedule policy, e.g. Rate-Monotonic (RM). Job-fix priority

based scheduling algorithms derive a prioritization of tasks by scheduling policies, using

temporal properties of the task set. Earliest-Deadline-First (EDF), for example, assigns

the task with the shortest deadline the highest priority. By reason of the additional di-

mension of scheduling at multicore processors (time and place), scheduling algorithms for

singlecore processors are no longer optimal for the multicore processor case and perform

poorly in regard of processor utilization and compliance of real-time requirements (see

Section 3.3).

On the one hand a high processor utilization is important in embedded systems,

because there is a high demand of additional functionalities which is often limited by the

available resources, namely processor time and memory. Furthermore, it is desired to

decrease processor frequency because of the mentioned reasons, which in turn results in

higher execution times and higher processor utilizations. On the other hand embedded

systems have a high cost pressure due to a high piece number which tends to decrease

resource capacities. For these reasons, processor utilizations in the range of 80−95% are

common in automotive powertrain systems for certain operation modes [MNW10].

In order to fulfill these demands, multicore scheduling algorithms need information

about the requested execution time. For this purpose a model of the temporal properties

of the multi-tasking application is made and real-time requirements are specified. This

model is called task set. Based on this task set, the scheduling algorithm constructs

a schedule, which defines how to assign the multi-tasking application to the cores of a

multicore processor.

In this work, a task set specifies the request behavior and the execution time of the

tasks of a multi-tasking application. Depending on the kind of embedded system, the

temporal properties have different characteristics. Liu and Layland [Liu69] introduced

one of the first models of real-time systems, which describes a periodic activation of tasks.

A magnitude of extensions have been presented in the meantime (see section 2.3 for an

overview). However in today’s embedded systems, especially in automotive powertrain

3

1. Introduction

systems, tasks have activation patterns which depend on a trigger source which itself can

have an individual behavior. This can result in a complex request pattern. For such kind

of task sets less publications are available, mainly due to necessary simplifications of task

set properties in order to allow to prove the compliance of real-time requirements.

Since scheduling algorithms construct the schedule based on the temporal properties,

the effects of perturbations of the specified temporal properties have to be considered.

For the singlecore processor case, these kinds of perturbations are less important, be-

cause most scheduling algorithms don’t require this information due to static priority

scheduling. However, for multicore processor systems this information is essential and

therefore a high robustness according perturbations is desired.

1.2 Contribution

This dissertation addresses to the following questions:

Question 1:

”
How can software applications with real-time requirements and complex temporal proper-

ties be scheduled on embedded multicore systems in a way that all real-time requirements

are met, the multicore processor is used highly efficiently, and the real-time requirements

are also met at perturbations of temporal properties?
”

Question 2:

”
How can these properties be analyzed for multicore processors?

”

For this purpose, this work assumes that a system has a symmetric multicore proces-

sor where each core of the multicore processor is identical to all other cores. Furthermore,

asynchronous inter-task communication and data access is assumed and therefore delays

through data dependencies are not considered.

The applicability of a real-time scheduling algorithm depends on the temporal prop-

erties of the multi-tasking application (task set model) and the processor. For singlecore

processor systems, optimal scheduling algorithms (see an overview in Section 3.2) have

been introduced for different task set models, describing sporadic or different periodic task

activation patterns. Different clocks in a real-time system and the problem of synchroniz-

ing these clocks has been intensively discussed and is state of the art (e.g. standardized by

IEEE 1588). However, there are less publications which consider the activation of tasks

from clock trigger sources, which results in frequency and phase difference of clock time

in relation to global time. This scenario is typical for powertrain ECUs of the automo-

tive domain, where the execution of parts of the application depends on the crankshaft

position and the execution of other parts of the application is triggered periodically.

4

1.2 Contribution

An annotation of this information would allow to decrease the level of pessimism in

scheduling examination, because otherwise assumptions have to be made for the missing

information of the exact activation.

Therefore, this work presents the multiple time base (MTB) extension, which can be

applied to a wide range of previously introduced task set models. With the MTB exten-

sion it is possible to overlay activation patterns of existing task set models by variations

of the underlying clock of the trigger source. These variations are modeled by so called

time bases. Furthermore, the MTB extension allows a probabilistic description of execu-

tion times and a fragmentation of task execution times. This permits a realistic model of

practical embedded systems and a model of cooperative scheduling, which can be used

for scheduling algorithms and a more realistic examination of real-time requirements.

A number of optimal and efficient scheduling algorithms for multicore processor sys-

tems have been introduced in the last decade (see the overview in Section 3.3). However,

in order to permit a proof of optimality, these algorithms assume simplified task sets.

These task sets often don’t conform to temporal properties of the applications of existing

systems. Therefore, the work on these algorithms is very beneficial for theoretical under-

standing, but the applicability for practical systems is limited due to the overestimation

of response times. Consequently, an adjustment of scheduling algorithms is necessary,

which allows to schedule applications with a set of temporal properties, considering time

bases and probabilistic execution times.

This work contributes the group of Partly Proportionate Fair (Partly-Pfair) schedul-

ing, which extends the Proportionate Fair scheduling approach [BCPV96] by task sets

with extended properties, namely: explicit variable task section execution times, sporadic

task activation with multiple time base extension, and explicit task deadlines. It is shown

that Partly-Pfair with PD2 is able to schedule periodic and sporadic task sets with the

MTB extension highly efficiently up to a system utilization of the complete multicore

processor systems.

For the case of local scheduling algorithms with task or job-fix priority assignment,

where each instance of a task executes on the same core of a multicore processor and

the priority is constant or changes only between instances of a task, worst-case assump-

tions for the determination of the schedulability1 exist. However, for the case of global

scheduling algorithms with dynamic priority assignment, where instances of a task are

able to migrate and the priority may change at each schedule decision, the worst-case sce-

narios of the local scheduling algorithms will no longer (see Section 4.3). Therefore, new

schedulability examination methods are required which efficiently determine worst-case

response times but also allow a stochastic evaluation of response times. For schedula-

1The term
”
schedulability“ denotes whether all real-time requirements of all tasks in a task set are

met (for a detailed explanation see Section 4.1.1).

5

1. Introduction

bility examination of global scheduling algorithms with dynamic priority assignment no

general approach has been presented up to now. Additionally, formal approaches mostly

use static analysis mechanisms, which prohibits dynamic changing of temporal proper-

ties. However, robustness considerations require an observation of the dynamic changes

of temporal properties like short term perturbations in execution times or inter-arrival

times.

Due to this, a schedulability examination method is part of the contribution of this

work, based on a discrete event simulation. This method allows to approximate worst-

case bounds on schedulability for global scheduling algorithms with dynamic priority

assignment. Since this kind of scheduling algorithms is a generalization of global and

local scheduling approaches with task/job-fix priorities, the proposed method can be ap-

plied to these scheduling algorithms as well. Furthermore, the injection of perturbations

allows a robustness consideration of the schedulability of embedded multicore systems.

A common approach for the comparison of scheduling algorithms is an algorithm

specific utilization bound which guarantees schedulability. These bounds incorporate

any possible task set, but many task sets are not used in practical systems and therefore

a schedulability bound consideration is not representative for practical application.

This work presents a sensitivity analysis, which allows to consider only a subgroup

of task sets, representing existing and upcoming systems which are modeled by a prob-

abilistic task set. For the examination of the probabilistic task set, a Monte-Carlo ran-

domization approach generates task set models which can be analyzed by a schedulability

examination approach, e.g. the discrete event simulation. Statistical estimators of the

subsequent sensitivity analysis allow a comparison of different scheduling algorithms,

whereas a bootstrapping approach determines confidence intervals on the statistical es-

timators. This approach can be used to benchmark multicore scheduling algorithms

according to different metrics, e.g. deadline compliance, in dependence of a certain task

set characteristic like the system utilization.

1.3 Structure of the Work

The remainder of this dissertation is organized in the following parts. Part I provides

necessary background information for this work. It contains a summary of common fun-

damentals of real-time theory and gives an overview of related work and latest results in

modeling of real-time systems, multicore real-time scheduling, and schedulability exami-

nation methods. Part II describes the contribution of this work. After a formulation of

the investigation purpose, the new multiple time base extension of task sets is presented.

This extension is useful to model automotive powertrain systems and many other sys-

6

1.3 Structure of the Work

tems, e.g. embedded systems with task activations from bus messages. The extension

allows a precise specification of temporal properties of clock based activation sources,

variable task execution times and cooperative schedule points and therefore allows a

less pessimistic analysis as it is possible with today’s task sets. For these task sets, the

global multicore real-time scheduling approach Partly Proportionate Fair and a work-

conserving and non-work-conserving algorithm, implementing the Partly Proportionate

Fair approach, is introduced. Afterwards, a simulation-based approach for multicore

schedulability examination is shown which is able to evaluate global real-time schedul-

ing algorithms with dynamic priority assignment and many other algorithms like global

scheduling algorithms with tighter limitations on priority assignment or local schedul-

ing algorithms. In the next chapter, this simulation approach is used for a sensitivity

analysis of temporal properties for a probabilistic system model, which can be used for

benchmarking local and global scheduling algorithms with task-fix, job-fix, or dynamic

priority assignment. Part III validates the contribution in three case studies, based on

typical systems of the automotive domain, whereas the data sets were kindly provided by

the industrial partner of the DynaS3 project. The first case study evaluates scheduling

algorithms for a quadcore automotive system. The second case study evaluates the effi-

ciency of scheduling algorithms for a singlecore automotive powertrain system which is

ported to a dualcore system. The third case study evaluates the robustness of scheduling

algorithms for this quadcore system by inserting temporal perturbations in task set pa-

rameters during simulation according to temporal, efficiency, and robustness properties.

In the final part, a summary of this work and proposals for further work are provided.

7

Part I

Preparation and Related Work

8

Chapter 2

Real-Time System Model

This chapter concerns real-time system models, describing the temporal properties of a

real-time system. This definition is fundamental for all further investigations on schedul-

ing algorithms and real-time examination methods. After a definition of the context of

this work, a model for embedded systems is introduced. Based on this model, a conclu-

sion of related work for task set models is given. Finally task set characteristics, which

are used for the evaluation of scheduling algorithms, are presented.

2.1 Fundamentals

An analytical investigation of a physical object requires an abstract model, reducing the

complexity of the object, to be able to focus on the investigated aspect. This chapter

describes the properties of an embedded system and introduces a formal abstract model

for further analysis. The abstract model includes properties which are relevant and ig-

nores properties which are non-relevant for the investigation.

In the investigation of this work the real object is an embedded system. By DIN VDI

3633 [VDI96], a system ...

”
... is a delimited collection of components that are in interconnection

with each other.“

An embedded system is defined in the following way.

Definition 2.1

An embedded system is a collection of hardware and software components, which has to

fulfill its purpose according to logical and temporal requirements. It consists of input ports

that request a functionality, a software application that describes the functionality, one

or multiple processor(s) that execute the software application, an operating system that

administrates the execution of the software application, and output ports that provide the

result of the execution. To the result of the software application, temporal requirements

are imposed.

9

2. Real-Time System Model

Since the embedded system interacts with the environment, the results at the output

ports have to fulfill temporal requirements, to guarantee a successful interaction between

the embedded system and the environment. The requirements result from the device,

which is connected to the embedded system, e.g. the power electronic of an electrical

engine or an actuator. From an external system view the temporal requirements refer to

the results at the output ports. From an internal system view the temporal requirements

are assigned to the execution of the workload on the processor. The requirements re-

strict the range or the variability of the start or the completion of the workload execution.

Therefore, the software application is also called a workload with real-time requirements.

In order to guarantee all external temporal requirements, the operating system assigns

the real-time workload to the processing resources. This part of the operating system,

called scheduler, considers internal temporal requirements to fulfill external temporal

requirements.

2.2 Real-Time System Model

The real-time system model merges or splits hardware and software components into

abstract components for the investigation purpose. This work neglects properties of the

embedded system which are nonrelevant for the investigation of the performance and

temporal robustness of the embedded system. For accuracy, a formal description of the

real-time system model is used, and for legibility, the formal description is extended with

phrasings and graphical illustrations.

A real-time system S is a discrete event system because real-time system variables are

discrete1 and real-time system variables change only at time quanta2. A real-time system

S transforms a vector of input interface signals ~ΦI
IF into a vector of output interface signals

~ΦO
IF. The vectors represent the interface signals from the environment to the real-time

system ~ΦI
IF and from the real-time system to the environment ~ΦO

IF. The investigation of

this work concerns the behavior between ~ΦI
IF and ~ΦO

IF.

Both vectors ~ΦI
IF and ~ΦO

IF have n signals. The real-time system S includes for all n

input interface signals a transformation of the ith signal3 of ~ΦI
IF, called ΦI

IF(i), to the ith

signal of ~ΦO
IF, called ΦO

IF(i).

1Discrete system variables originates from a digital value representation.
2Quantized time originates from digital microcontroller.
3A Signal Φ(i) can be a composition of multiple signals.

10

2.2 Real-Time System Model

I

IF O

IF

    ,, , , ,O I

IF IF i jt i j t i j d   

S

Figure 2.1: Graphical definition of a real-time system.

S : ~ΦI
IF =


ΦI
IF(1)

...

ΦI
IF(i)

...

ΦI
IF(n)

 −−−→ ~ΦO
IF =


ΦO
IF(1)

...

ΦO
IF(i)

...

ΦO
IF(n)

 (i = 1, ..., n) (2.1)

The occurrence of a signal Φ(i) is numbered with a counter j and the jth occurrence

of Φ(i) is called Φ(i, j).

When function t(Φ, i, j) returns the time of the jth occurrence of signal Φ(i), then

the transformation S has to fulfill Equation 2.2, whereas di,j denotes the deadline of jth

occurrence of the ith outgoing signal.

t(ΦO
IF, i, j)− t(ΦI

IF, i, j) ≤ di,j ∀i, j (2.2)

Informally, each signal entering the real-time system input interface has to produce

the corresponding output signal at the output interface at least after d time units. This

is the fundamental property of a real-time system4. A real-time system S is defined in

the following way:

Definition 2.2

A real-time system S = (τ,Π, ξ) consists of a task set τ , a processing resource Π, and

a scheduler ξ.

The next sections give a formal definition of these components.

4Strictly speaking, this is the definition of a hard real-time system. Buttazzo [But05a] give a classifi-
cation of weakening the relation between deadline and finalization time.

11

2. Real-Time System Model

2.2.1 Task Set

For each transformation from input interface signals ΦI
IF(i) to output interface signals

ΦO
IF(i), a task Ti exist. A task Ti is part of the real-time system S and transforms input

signals ΦI
i in output signals ΦO

i (Fig. 2.2). Input interface signals ΦI
IF(i) differ from

input signals ΦI(i). ΦI(i) can include signals which come from another task Tx of the

real-time system Tx ∈ τ , x 6= i, whereas ΦI
IF(i) includes only signals which come from

the environment. Analogous, ΦO(i) can include signals which are sent to another task

Tx of the real-time system Tx ∈ τ, x 6= i, whereas ΦO
IF(i) includes only signals which are

delivered to the environment.

Definition 2.3

A task set τ = {Ti} is the collection of all tasks Ti in a real-time system S (i = 1, ..., n).

Since a real-time system has to fulfill both, temporal and logical requirements, there

are two considerations required: the temporal consideration and the logical consideration,

shown in Figure 2.2.

Temporal

Logical

iT

ie id

()I i ()O i

ip
t '

it t d 

Figure 2.2: A task Ti has temporal properties, including inter-arrival time pi, execution
time ei, and deadline di, and logical properties, including input signals ΦI(i) and output
signals ΦO(i).

The temporal consideration of a task Ti describes the inter-arrival time pi, the ex-

ecution time ei and the temporal requirement to the output di. The inter-arrival time

pi is a model for the occurrence of the input interface signal ΦI
IF(i) and defines when

Ti is requested to be processed. For processing, a processing resource Π executes Ti,

this requires execution time ei. When ΦI
IF(i) occurs at request time t, the result of the

execution of Ti at time t
′

is required until di time units at ΦO
IF(i).

The logical consideration of a task Ti describes which signals ΦI
i a task consumes and

which signals ΦO
i a task produces, during the time interval between request and end of

the execution of Ti.

12

2.2 Real-Time System Model

Definition 2.4

A task Ti = (pi, ei, di,Φ
I
i ,Φ

O
i) is defined by the temporal properties: inter-arrival time

pi, execution time ei, and deadline di and by the logical properties: input signals ΦI
i and

output signals ΦO
i .

Table 2.1 gives a compact overview of all task symbols. Existing inter-arrival time

models and execution time models will be discussed in chapter 2.3.

Finally the multiple task activation scenario in multicore systems is considered. Mul-

tiple task activation (MTA) concerns the scenario, when a further job of a task is acti-

vated, while the previous job has not finished. MTA can occur when a task has a deadline

higher than the minimal inter-arrival time or when a job miss its deadline. In singlecore

systems there is only one processor available and the processor is allocated to the first

job. After finishing this job, waiting jobs of the same tasks are allowed to execute. At

multicore systems, this restriction is a drawback according efficiency because there is

a free core which is not used. Therefore, this restriction is revoked and it is assumed

that jobs of the same task are allowed to execute concurrently. The code of a task has

to be prepared for multiple entry in order to prevent data inconsistencies, e.g. by data

duplication. Nevertheless, each time the earliest activated job has to be preferred to each

other job of the task. However, it is possible that a later activated job finishes before a

previously activated job.

Table 2.1: List of all task symbols.

Name Symbol

task set τ = {T1, ..., Tn}
task Ti (i = 1, ..., n)

task inter-arrival time model pi

task execution time model ei

task deadline model di

input signals ΦI
i

output signals ΦO
i

Task Sections

As already mentioned, a task Ti gets input interface signals ΦI
IF(i) and sends output

interface signals ΦO
IF(i). But a task also consumes and produces additional signals during

execution. Therefore, a task Ti has a number of task sections T ki (k = 1, ..., q), which

allow to model the temporal behavior of inter-task signals (Figure 2.3).

Each task section T ki consumes signals ΦI(i, k) and produces signals ΦO(i, k). Signals

ΦO(i, k), which T ki produces, can be consumed by T k+xi of the same task Ti (∀x =

{1, ..., (q − k)} ∧ k < q) or by other task sections T kx which are not element of the same

task (∀x 6= i). It is also possible, that T ki produce signals which a task section T k−xi of

13

2. Real-Time System Model

1

(, 1)O

k

i k
 

 

(,)I i k

(,)O i k
(, 1)I

k q

i k
 

 
k

ie

k

iT

(,)R i k

(,)S i k

()I

IF i ()O

IF i

 

Figure 2.3: Graphical definition of a task section.

Table 2.2: Task section symbols.

Name Symbol

task section T ki k = 1, ..., q

task section execution time model eki
task section input signals ΦI(i, k)

task section output signals ΦO(i, k)

the same task Ti (∀x = {0, ..., (k − 1)}) consumes, e.g. in the case of a feedback loop.

However, the signal is then at least pi time units old, because it can be consumed at the

earliest at the next task activation.

Input signals ΦI(i, k) which are not element of input or output data of any previous

task section has to be loaded from external task sections. Formally, these requested

signals ΦR(i, k) are defined by Equation 2.3.

ΦR(i, k) := ΦI(i, k) 6⊂

(
ΦO(i, k − x)
∀x={1,...,k−1}

∪ΦI
IF(i)

)
(2.3)

Similarly, each task section supports signals which are consumed by other external

task section T kx or by a preceding task section. Formally, these supported signals ΦS(i, k)

are defined by Equation 2.4.

ΦS(i, k) := ΦO(i, k) ∩
(
(ΦR(x, k) ∀x 6= i) ∪ (ΦR(i, k − x) ∀x = {1, ..., k − 1})

)
(2.4)

Shown in Table 2.2, each task section T ki requires an execution time eki , has a vector

of input signals Φk
i
I
, and has a vector of output signals Φk

i
O

.

14

2.2 Real-Time System Model

The request time of a task section depends on task section position. For a task section

T ki with k = 1, the time t of earliest possible execution of T ki is ΦI
IF(i).

For all other task sections T ki with 1 < k ≤ q, the time t(Φ, i, k, j) of earliest possible

execution of the jth execution of the kth task section of task Ti is t(ΦO, i, k − 1, j). This

sequentially dependency is required because otherwise the output signals of the preceding

task section would not be available.

Figure 2.4 shows the composition of task sections to a task.

1

ie

()I

IF i
(,1)I i

(,1)O i
()O

IF i

1

iT q

iT

(,)I i k

(,)O i k

(,)I i q

k

ie

k

iT

q

ie

(,)O i q

(,1)R i (,)R i k (,)R i q(,1)R i

(,1)S i (,)S i k (,)S i q

Figure 2.4: Example of a task with task sections.

Runnables

This section gives a brief overview of the runnable architecture. Industrial software ar-

chitectures and operation systems in automotive systems, e.g. the AUTOSAR standard

[AUT10] and the OSEKVDX operating system [Int05], divide the implemented func-

tionality of the system into runnables. Dependent on data dependencies and temporal

requirements, runnables are allocated to the task sections of a task.

Definition 2.5

A runnable R is the highest subdivision of a real-time application and defines an execu-

tion time e.

Runnables include the program code for a certain functionality. A runnable requires

incoming signals and is able to modify these incoming signals to generate new signals. All

outgoing signals are consumed by other runnables or they are sent to the environment.

All incoming signals of runnables in a task section T ki are composed to the signal input

vector ΦI(i, k). All outgoing signals of runnables in a task section T ki are composed to

the signal output vector ΦO(i, k).

The premise of this approach is coincident with the interface-based design approach

[DH01]: system designer, composing a set of runnables, only need to understand the

runnables’s interface and not the details of how the functionality offered by the runnable

is implemented. This enables to integrate a set of runnables if their input and output

signals
”
match“.

Runnables have the temporal requirements sampling period or a delay, measured

from any signal. The temporal requirements define a sampling period in the case of

15

2. Real-Time System Model

time triggered polling mechanisms. These mechanisms are used e.g. when in a defined

time-interval new state changes of the real-time system are detected, processed, and the

information is distributed by signals to other runnables. The temporal requirements

define a delay in the case of event triggered execution mechanisms. This is used e.g.

when changes of environment values trigger an event for processing.

The system designer assembles the system real-time from its components, consider-

ing temporal requirements and dependencies. As a result, runnables are allocated to

tasks (according the temporal requirements) and they are arranged to task sections and

(mostly according the dependency requirements). This work assumes the allocation of

runnables to task sections has already be done as a part of the software integration under

consideration of temporal and dependency requirements.

2.2.2 Processor

This work defines that a real-time system contains exactly one multicore processor, with

m processing elements Px (x = 1, ...,m). A real-time system with a multicore processor

is denoted as multicore system.

Definition 2.6

A processor Φ describes the number m and the processing speed σ(t) of all available

processing elements Px in an embedded system. A processor Φ has a shared memory to

allow processors Px to share signals.

This work constrains on symmetric multicore processor systems, where a task is

physically able to be executed on each core. Furthermore, all processing elements have

the same processing speeds σ(t) at a certain time, whereas the processing speed can

vary in time. This property is a sub group of dynamic voltage/frequency scaling (DVFS)

theory, which studies mechanisms of energy saving through reduction of the processor

voltage or frequency, to minimize power consumption (see [PS01] for an overview).

Alternatively, for comparing studies, a real-time system contains exactly one sin-

glecore processor, which implies m = 1. This kind of real-time system is called a sin-

glecore system.

In general, an embedded processor architecture includes beside the external memory

a cache architecture which allows to reduce the access time on signal data.

For the inter-task communication mechanisms, a shared memory allows to communi-

cate task signals. In the processor model Φ, a processor has a shared memory, where all

processing elements Px can access in the same way with the same access time. This is also

denoted as a symmetric multiprocessing. Heterogeneous approaches, like Non Uniform

Memory Access (NUMA), Cache Coherent Non Uniform Memory Access (CC-NUMA),

Cache Only Memory Access (COMA), Pseudo Uniform Memory Access (P-UMA), or

Private Memory Access (PMA), are not considered in this work. All these architectures

16

2.2 Real-Time System Model

lead to a diverse memory access time from different cores. For these architectures a

certain group of scheduling algorithms is required, which considers memory access time,

therefore in the most cases local scheduling algorithms are applied. Otherwise, worst-case

response time could increase enormously due to a high effect of the caching architecture

on the worst-case execution time.

There are different memory access models for a shared memory possible. In general it

is distinguished between blocking and non-blocking access. Blocking mechanisms delay

all read or write accesses when there is already a write access to a signal, until the

signal has been written. Non-blocking mechanisms duplicate a signal for write access.

During write access to the original signal, other tasks are able to read the value from the

duplicate of the signal. After finishing writing, all tasks are able to access to the original

signal again.

The blocking access, also mentioned as exclusive access, has the benefit of data con-

sistency for all processors. However, blocking mechanisms can lead to high task response

times. A nonblocking access requires a special system architecture, which duplicates a

part of the data and has hardware or software consistency mechanisms.

This work assumes such a non-blocking memory access approach and proposes a

multiplexed-segmented shared memory access system. Multiplexed memory, i.e. a multi-

plexed memory port (MMP), dynamically wires the exclusive access of a memory region

to a processor. Segmented memory enables a processor the exclusive access to a memory

segment, without interfering other processors. This is beneficial because access, i.e. write

access, to memory cells is always exclusive. Common memory sections produce a high

interfering through access requests which results in a high memory access latency. At the

segmented approach each instance of a task has it’s own segment of memory. This has

two advantages. Firstly, task instances doesn’t access this memory segment because it

contains exclusive task signal data. Secondly, in the case of a task instance migration, it

is easy to switch the access to another processor by the multiplex memory port without

delay.

Now the realization of the multiplexed-segmented shared memory access is discussed.

First of all, the approach of task section related signal storage is introduced, afterwards

a mechanism of signal distribution is proposed.

Figure 2.5 shows the memory architecture of the multicore system. The memory

architecture divides in three parts:

• Shared memory (SM)

• Private memory (PM)

• Cache memory (CM)

The approach avoids blocking times by simultaneous write access on the shared mem-

ory. During the execution of a task section, produced signals are located in the local CM

17

2. Real-Time System Model

CORE 1 CORE 2 CORE 3 CORE 4

C1-1 C1-2 C2-1 C2-2 C3-1 C3-2 C4-1 C4-2

PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8

SHARED MEMORY (SM)

...

Figure 2.5: Memory architecture of a multicore processor.

(Figure 2.6, step 1). When a task section has finished, the processor Load and Store

Unit (LSU) provides the new or changed signals to the PM, located in the main memory

area. Triggered by an event or in a defined time interval, a synchronization task provides

the signals to the SM (Figure 2.6, step 3). On the SM all other task sections are able to

access and get the new value of the signal (Figure 2.6, step 2 and 4). Using an explicit

synchronization has two reasons. Firstly, when there are multiple sender of the signal

and in the PMs multiple values of the signal are ready to send, a direct access without

blocking could lead to data misses and a blocking access effects other processors and

leads to high memory access latencies. Secondly, collection pattern could be applied at

synchronization, e.g. boolean operation, addition, or summation.

In the case of a multi-layered cache, it is assumed that lower level caches have the

same content as CM. The PM’s are realized as a port-multiplexed segmented memory,

whereas one segment requires the capacity of the maximal signal vector size of all task

sections. Additionally each CM has the same size, because it has to support the same

data of the PM to the processing core.

Effects of additional devices e.g. communication buses, peripherals, or further block-

ing resources are not considered in this work. Tasks are assumed to be independent

according blocking, meaning they have no blocking resource or precedence relationship5.

5Due to signal duplication in the SM, a task is able to receive the actual instance of a signal during
another task produce a new instance of the signal.

18

2.2 Real-Time System Model

t

CORE 1 CORE 2 CORE 3 CORE 4

C1-1 C1-2 C2-1 C2-2 C3-1 C3-2 C4-1 C4-2

PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8

SHARED MEMORY (SM)

...

1

1

3
2

2t

t

t

1

4

4
2

3

4

1T

2T

3T

Sync

Figure 2.6: Signal storage and distribution in the task section based communication
approach. A task stores signals during calculation in the local cache (C), which is syn-
chronized with the private memory (PM) (Step 1). Collectively shared signals can be
loaded from the shared memory (SM) (Step 2). A synchronization routine (sync) gathers
all signals from the private memories and provides them to the shared memory (Step 3).
Afterwards, the actual signal value can be loaded from the shared memory (Step 4).

2.2.3 Scheduler

Definition 2.7

A scheduler model ξ describes the algorithm of a real-time system, which allocates the

task set τ to the processor Φ.

In multicore scheduling theory, it is distinguished between local, global, and clustered

approaches.

Local scheduling (also mentioned as partitioned scheduling) means that for each pro-

cessing element Px an instance ζy of the scheduling algorithm ξ exist. Tasks are assigned

before runtime to a scheduler instance ζy (y = 1, ..., h). A scheduling approach is called

local if |{ζy}| = |{Px}|. However, the assignment of multiple tasks on multiple processing

elements was proved by Garey and Johnson to be NP-hard [GJ79].

Global scheduling means that there is only one scheduler instance (|{ζy}| = 1) which

manages all processing elements.

Clustered scheduling is a combination of both and means that one scheduler instance

is able to manage multiple processing elements but the real-time system has at least two

scheduler instances (|{ζy}| < |{Px}| ∧ |{ζy}| > 1).

2.2.4 Time Events

This section presents all time events of a task execution, necessary for further examina-

tions.

Figure 2.7 shows timestamps of the execution of a job Ti,j of a task Ti. At job

activation Ti,j .A, the scheduler requires time in order to assign the job for execution to a

processing resource. Then, job execution starts at Ti,j .S. If there is no preemption of the

19

2. Real-Time System Model

, .i jT A , .i jT D , 1.i jT A , 1.i jT D

, .i jT S , .i jT F , 1.i jT S

, 1.i jT F, 1 1.i jT P

, 1 1.i jT R

, 1 2.i jT P

, 1 2.i jT R

t

iT

Figure 2.7: Notations of timestamps during the execution of job Ti,j of task Ti.

Table 2.3: Job time intervals and timestamps.

Name Symbol

job Ti,j (j = 1, ..., g)

job execution time Ti,j .e

job deadline (relative) Ti,j .d

job activation Ti,j .A

job start Ti,j .S

job finish Ti,j .F

job deadline (absolute) Ti,j .D

job suspension Ti,j .P

job resume Ti,j .R

job, the next time stamp is the job finish Ti,j .F . The temporal requirements are fulfilled,

when the absolute job deadline Ti,j .D is later as Ti,j .F . In the case of a preemptions,

which enter in Figure 2.7 at the next task instance Ti,j+1, job suspensions Ti,j .P1 and

Ti,j .P2 and job resumes Ti,j .R1 and Ti,j .R2 are additional timestamps.

Table 2.3 gives a compact overview of all job time intervals and timestamps. For

differentiation, time intervals are expressed by lower case symbols and time stamps are

expressed by upper case symbols.

2.3 Related Work

In order to examine whether an embedded system fulfills the real-time requirements

(Equation 2.2), task set models for demand and execution time are necessary. These

models are used at real-time system examination methods e.g. to determine the maximal

response time of a task, which equates the time between the request and the finalization

of a task. The response time is determined under consideration of all tasks of the task

20

2.3 Related Work

set, the scheduling algorithm, and the processor. In past work, several models were

introduced, which allow to describe and classify temporal properties.

This section gives an overview of existing task set models, even when they are mostly

used to describe the workload for uniprocessors. Chapter 6 presents extensions which

will be used in the following for multicore scheduling considerations. This considerations

are divided in models for the demand of execution time, i.e. tasks activation models, and

models for the execution time, i.e. execution time models.

2.3.1 Models for Demand of Execution Time

The demand model pi of a task Ti describes the quantity of task activations as a function

of time, time interval, or in dependence of other signals. The task demand models is

classified in three groups:

• Recurrent demand model

• Arrival Curve demand model

• Hierarchical demand model

The recurrent demand model [Liu69] originates from sampling mechanisms (Figure

2.8), also know as polling approach [But05a]. At this kind of activation, a task actively

queries signals ΦI
IF (t), process them, and sends the output signals to a receiver. The time

interval between two successive activations depends on the required update frequency.

This kind of activation is also mentioned as active triggering, because a system timer

or another configurable trigger source activates the task. This demand model allows to

calculate the absolute task activation time of the jth instance of a task in independence

of the previous task activations.

iT

ip

t
()I

IF t

t

ip

Figure 2.8: Example of a recurrent task activation. The input interface signal ΦI
IF (t)

is sampled and a task activation is triggered in a periodic manner with an inter-arrival
time pi.

21

2. Real-Time System Model

The arrival curve demand model [LBT01] originates from client-server mechanisms

(Figure 2.9). A change in an external signal, originating from the environment changes or

from internal system changes, activates a task. This kind of activation is also mentioned

as reactive activation, because a task waits for requests. This demand model allows to

calculate only the relative task activation time of the jth instance of a task in dependence

of the previous entered activations.

aT



,u l 

()I

IF t

t

u

l

()I

IF t

Figure 2.9: Example of an arrival curve task activation. A change in the interface signal
ΦI
IF (t) is immediately processed by an activated task. The upper and lower number

of activations is expressed by an upper αu and lower αl arrival curve respectively as a
function of any time interval with the size ∆.

Hierarchical demand models allow to model inter-task activation mechanisms (Figure

2.10). The recurrent demand model and the arrival curve demand model describe inde-

pendent task demands. At both models, the reason of demand variation is not considered

and is assumed to be in a
”
black box“. For the case of that a task Ta activates after

finish another task Tb, these approaches would be to pessimistic because a delay of task

Ta’s output signals, which produce a delay in the activation of Tb, is not considered.

Recurrent Demand Model

The recurrent demand model describes task activations by an inter-arrival time. For each

task instance Ti,j , the activation time Ti,j .A can be determined by the instance counter

22

2.3 Related Work

aT

bT

ap

Figure 2.10: Example of a hierarchical task activation. A task Ta (activated in a periodic
manner with inter-arrival time pa) activates another task Tb at end of execution or at
any other point during execution. The activation time of Tb depends on the delay of task
Ta.

j. The job inter-arrival time pi,j represents the difference between the jth task activation

time Ti,j .A and the j − 1th task activation time Ti,j−1.A of task Ti.

pi(j) =

{
Ti,j .A j = 1

Ti,j .A− Ti,j−1.A ∀j > 1
(2.5)

In 1973, Liu and Layland introduced the periodic task set [LL73]. It is the simplest

request model because it assumes a constant inter-arrival pi time between all successive

activations Ti,j .A and Ti,j−1.A. The periodic arrival time is defined by Equation 2.6.

pi,j = pi ∀j (2.6)

A special case of periodic task set is called harmonic task activation. Harmonic task

activation means that for each task or for a subgroup of tasks in a task set the inter-

arrival time is an exact integer multiple of the next shorter period. A common approach,

e.g. for the sampling based tasks of the task set of automotive systems, applies following

design pattern.

1. The task with the lowest inter-arrival time represents the Greatest Common Divisor

(GCD) for all tasks with a higher inter-arrival time.

2. When the tasks of a task set are sorted by inter-arrival time {T1, ..., Ti, ..., Tn}, task

Ti has an inter-arrival time pi equal a multiple of the inter-arrival time of the task

with the next lower inter-arrival time Ti−1.

23

2. Real-Time System Model

The harmonic task activation increase the schedulability bound of many singlecore

scheduling algorithms (see Section 3.2.1). Therefore, practical task sets are often designed

to fulfill harmonic requirement.

For periodic activation, the offset extension [Tin92, PH98] considers dependencies

between the release of tasks in a task set. In basic periodic task sets [LL73], there is a

synchronous task activation, meaning the first activation of all tasks in a task set

enters at time zero. In periodic task sets with offsets, there is a asynchronous task

activation6, meaning the first activation of each task in a task set has an offset oi,

referring the time between zero and the first activation. All successive activations have

a constant inter-arrival time pi (Equation 2.7).

pi,j =

{
oi j = 1

pi ∀j > 1
(2.7)

The periodic task set with offsets is widely used in practical embedded systems, e.g.

in sampling based systems7. For periodic task sets with offsets and a harmonic activation,

offsets allow to deskew the task execution demand by shifting the activations over the

inter-arrival time of the task with the next higher inter-arrival time.

Palencia and Harbour [PH98] considered task offsets for schedulability considerations,

but this work differs from whose work according to the definition of the relative task

deadline. In [PH98], offsets for periodic task activations represent a forced delay of task

release time from an originally periodic activation pattern, mentioned as external event.

The delay results from limitation in reaction time for activation or from initial effort for

transferring local task data.

This work considers the offset as a conscious design decision, in order to apply load

balancing mechanisms. This differentiation is fundamental at consideration of deadline

requirements. In this approach the deadline is measured relatively from the shifted

activation, including the task offset. Palencia and Harbour measure the deadline from

occurrence of the external event, excluding the task offset. Therefore, the definition of

Palencia and Harbour results in a lower available time for task execution in comparison

with the definition of this work.

Sporadic Activation

Instead of the notation of sporadic task sets [Mok83], this work considers the repre-

sentation of sporadic activation through arrival curves.

6Also mentioned as desynchronized task activation
7Sampling based systems use modified polling mechanisms to detect state changes of the system. With

a constant task activation pattern, sensor values are requested, processed and propagated to environment
or other tasks.

24

2.3 Related Work

Arrival Curve Demand Model

The arrival curve demand model concerns an event based task demand behavior. A task

activation is not triggered in a periodic manner, but with an event. An arrival curve de-

scribes the entrance of the event. Arrival curves are used in Real-Time Calculus theory,

which will be introduced in Section 4.2. This section gives a brief overview on arrival

curves.

Assuming a trace of task activation events, called event stream, with time stamps of

event occurrence. Then this event stream can conveniently be described by means of a

cumulative function R(t), defined as the number of events seen on the event stream in

the time interval ∆ = [0, t). While R(t) describes one concrete trace of an event stream,

a tuple α(∆) = [αu(∆), αl(∆)] of upper and lower arrival curves [Cru02] provides an

abstract event stream model, representing all possible traces of an event stream. The

upper arrival curve αu(∆) gives the upper bound on the number of events in a time

interval ∆. Similarly, the lower arrival curves αl(∆) gives the lower bound on the number

of events in a time interval ∆. R(t), αu, and αl are related by the following equations:

αl(∆) = min
λ≥0
{R(∆ + λ)−R(λ)}

αu(∆) = max
λ≥0
{R(∆ + λ)−R(λ)}

The arrival curves are right-continuous, non-negative, subadditive functions [CKT03].

Informally, given any finite length event trace (from measurements or from simulation)

and a real number ∆, it is possible to determine the values of αl(∆) and αu(∆) corre-

sponding to the event trace by sliding a window of length ∆ over the trace and recording

the minimum and maximum number of events lying within the window respectively

[CKT03].

The arrival curve is an abstract representation, which can be specified for the analysis

of different system properties. In [CKT03], Chakraborty et al. used this representation

for the execution time requests for tasks.

This is introduced with an example, based on periodic activation pattern8. For the

construction of the upper and lower arrival curve the time interval [0, Ti.p) is considered.

In any time interval of the length [0, Ti.p), the maximum number of activations of task

Ti are 1 and the minimum is 0. In the time interval [0, 2 · Ti.p) the maximum number

of activations is 2 and there is at least 1 activation. Proceeding in this way, the arrival

curve can be constructed up to the interested time interval. Figure 2.11 shows the result

for a task with Ti.p = 7.

8This simple task activation pattern is used for explanation reasons, it can easily adapted to any
arrival curve

25

2. Real-Time System Model

l

1

u

1

1

2

3

4

5

6

10 20 30 40

Figure 2.11: Arrival curve of periodic task activations with Ti.p = 7. The upper αui and
lower αli number of task activations are specified in dependence of the size of any time
interval ∆.

Hierarchical Demand Model

The hierarchical demand model [ABS06] derives from message processing real-time sys-

tems. In those systems, a message requires different processing steps and each step is

located in a task. During a certain execution point in a task or when a task has fin-

ished, the task with the next processing step is activated. The following tasks are able

to activate the next tasks in the same manner.

The hierarchical sequence of task activations is also mentioned as task chain [Int05].

In order to model the activation of this sequence, the first task of a task chain requires

a recurrent demand model or an arrival curve demand model. For the activation of all

further tasks in the task chain, the task section which activates the next task in the chain

is defined. Whenever this task section finishes, the next task in the chain is activated.

2.3.2 Models for the Execution Time

The execution time model ei describes how the execution time changes between the jobs

of a task Ti. There are several effects, which cause execution time variations. Examples

are different code branches, cache misses, instruction pipelines, out-of-order execution,

etc. The following sections give an overview of commonly used models and its purpose.

WCET

Scheduling theory is mainly driven by approaches validating deadline compliance for hard

real-time systems.

In sustainable systems9 it is sufficient to show that the task set is schedulable, when all

tasks have the maximum execution time, denoted as worst-case execution time (WCET).

9A system is called sustainable, when a schedulable task set remains schedulable at a decrease of
execution time (see also Section 4.3).

26

2.3 Related Work

The execution time for the worst-case execution time model WCET is defined by

Equation 2.8.

WCET := Ti,j .e = Ti.e
WCET ∀j. (2.8)

The WCET analysis computes upper bounds for the execution time. This complex

approach has to determine the longest execution time, effected by code branches, loop

cycles, cache model, processor pipeline architecture and further influences10. Additionally

the range of variables influences the executed code branch or limits the number of loop

executions. However this ranges are difficult to bound because they often depend on the

use case and the environment of the real-time system. Therefore, the WCET analysis

approximates upper bounds for the WCET, i.e. the WCET analysis does not guarantee

to determine the WCET exactly but determines a value which is at least as high as the

exact WCET. Since assumptions are necessary, which in general overestimate execution

times in order to guarantee the upper bound on execution time, the WCET model has a

high degree of pessimism.

The WCET is mainly used in formal schedulability approaches, e.g. Response Time

Analysis (see Section 4.2.1), in order to determine whether a task set is schedulable at

the worst-case scenario.

For systems where the sustainability is not given, effects occur which are also known as

timing anomalies (see Section 4.3 and [LS02, Gra71, RWTW06]). These effects provoke

that the response time possibly increases when tasks have a lower execution time. In

case of such systems, using common static approaches for worst-case examination are not

sufficient. Therefore, an extension of the execution time model is presented in chapter 6.

BCET-WCET

The oppositional execution time model of the WCET model is the best case execution

time (BCET) model. BCET analysis calculates the minimal execution time.

The execution time for the best case execution time model BCET is defined by

Equation 2.9.

BCET := Ti,j .e = Ti.e
BCET ∀j. (2.9)

Figure 2.12 shows the bounds on WCET and BCET which are determined by different

approaches. Profiling methods trace the execution time of tasks on a simulated or real

hardware. They allow to detect the distribution of execution time, but in general doesn’t

achieve the WCET (maximal observed execution time) and the BCET (minimal observed

execution time) exactly. Static methods determine bounds on the WCET (upper timing

bound) and BCET (lower timing bound) and guarantee that the execution time doesn’t

10See [WMM+08] for a comprehensive overview.

27

2. Real-Time System Model

exceed bounds, but they are in general pessimistic and doesn’t describe how often a

certain execution time enters.

Figure 2.12: Comparison of WCET and BCET bounds, detected by different approaches
[WMM+08]. The maximum of the measured execution time approximates the exact
WCET from the left side by systematically executing measurement scenarios. Analyt-
ically determined maximum execution time approximates the exact WCET from the
right side by reducing the pessimism of the prediction. The BCET determination works
analogous.

The BCET model is widely used in combination with the WCET model. The BCET

model in combination with formal methods, are used to determine the lower bounds on

the best achievable response times. Comparing the BCET model and the WCET model

allows to estimate the range of changing response times and can be used when not only

deadline compliance is required but also a periodic requirements are defined for tasks

(e.g. see Section 4.1.2 for jitter metrics).

2.3.3 Classification of Deadline Bounds

Finally this section gives a classification of deadline bounds. The classification limits

application of both, scheduling algorithms and methods for examination of schedulability.

The specification of bounds relatively to the inter-arrival time of tasks derives from

methods and metrics for schedulability.

• Implicit deadline: The basic model, introduced by Liu and Layland [Liu69] as-

sumes deadlines are implicit given by the minimal task inter-arrival time.

• Explicit deadline: The extension of Mok [Mok83] explicitly defines deadlines but

restricts deadlines to be smaller than the minimal inter-arrival time.

• Arbitrary deadline: The final extension of Lehoczky [Leh90] allows arbitrary

deadlines. When task deadlines are greater than the minimal inter-arrival time, it

is possible that task instances of the same task overlap in execution without vio-

lating deadline constraints. Therefore, multiple activations of a task could enter

28

2.4 Characteristics of Task Set Models

between the inter-arrival time span, which is not considered at the most schedula-

bility examination methods.

2.4 Characteristics of Task Set Models

For a task set τ , there are several characteristics, used for further schedulability analysis

or real-time system evaluation.

For task sets with implicit deadlines and periodic or sporadic activation, the system

utilization Usum(τ) equates both, the resource consumption and the percentage time,

reserved to execute tasks to fulfill all temporal requirements.

Usum(τ)
def
=
∑
Ti∈τ

Ti.e

Ti.p
(2.10)

Umax(τ)
def
= max

Ti∈τ

Ti.e

Ti.p
(2.11)

Ti.e equates the Worst-Case-Execution Time and Ti.p equates the minimal inter-

arrival time of a task Ti. The maximal task utilization Umax(τ), i.e. maximal task

weight , is the maximal utilized task of all tasks in a task set. The task weight wt(Ti) of

a certain task Ti is defined in the following way (in some work, task utilization is used

instead of task weight).

wt(Ti)
def
=

Ti.e

Ti.p
(2.12)

For task sets with explicit deadlines, the constrained system density δsum(τ) and the

maximal constrained density δmax(τ) define the execution time relatively to the temporal

requirement.

δsum(τ)
def
=
∑
Ti∈τ

Ti.e

Ti.d
(2.13)

δmax(τ)
def
= max

Ti∈τ

Ti.e

Ti.d
(2.14)

For task sets with arbitrary deadlines, the generalized system density λsum(τ) or the

maximal generalized density λmax(τ) equate the utilization or the constrained density,

depending on the relative deadline.

λsum(τ)
def
=
∑
Ti∈τ

Ti.e

min (Ti.p, Ti.d)
(2.15)

λmax(τ)
def
= max

Ti∈τ

Ti.e

min (Ti.p, Ti.d)
(2.16)

29

2. Real-Time System Model

A further important characteristic is the demand bound functionDBF (Ti,∆) [BMR90]

(bχc is the highest integer, smaller or equal χ; dχe is the smallest integer, higher or equal

to χ).

DBF (Ti,∆) = max

(
0, (

⌊
∆− Ti.d
Ti.p

⌋
+ 1)Ti.e

)
(2.17)

For any time interval ∆, the DBF (τ,∆) of a sporadic task Ti bounds the maximal

cumulative execution requirement by jobs of Ti that both arrive in and have deadlines

within any time interval ∆. The DBF (Ti,∆) function is used for schedulability evalua-

tion of multiprocessor scheduling algorithms in Section 3.3.

30

Chapter 3

Real-Time Scheduling

This chapter summarizes results of the scheduling problem for singlecore and multicore

systems. First of all, fundamental definitions are given and a theoretical classification of

multicore scheduling algorithms is shown. This classification is extended by additional

properties, important for practical considerations and the scheduling algorithms which

are part of the contribution of this work. Afterwards the related work on singlecore and

multicore scheduling algorithms is summarized.

3.1 Fundamentals

This section summarizes common definitions in scheduling theory. Afterwards a classifi-

cation of scheduling algorithms is reviewed and extended by practical criteria. Based on

this classification, a generic scheduler model is presented.

3.1.1 Definitions

As introduced in the previous section, during system execution, a task generates a job

at activation, depending on the demand model.

The pool of waiting and executing jobs is called a job sequence. It contains a list of

all jobs, which are activated and need to be assigned to a core. A real-time scheduling

algorithm is an approach, which constructs a schedule to assign a job sequence to a

number of processing resources in a manner that all job deadlines are fulfilled. A schedule

is a list of jobs, sorted by the scheduling algorithm by application of policies to each job

of the job sequence. The schedule defines the order how to assign a job sequence to a

core. The position in a schedule is called rank and the highest ranked job has the highest

rating to be allocated to the core. At job execution, several steps are required like context

switching and cache consistency mechanisms. A dispatcher is responsible for these steps

and manages the execution of a schedule.

31

3. Real-Time Scheduling

Table 3.1: Classification of general utilization based schedulability bounds on multicore
scheduling [CFH+04]. The maximal system utilization U depends on the number of
cores m and for some groups of scheduling algorithms on the maximal task utilization
α = Umax(τ).

No migration Bounded Migration Full Migration

Task-fix
Priority

(
√

2− 1)m ≤ U ≤ m+1

1+2
1

m+1
U ≤ m+1

2 U = m+1
2

Job-fix
Priority

U = m+1
2 m− α(m− 1) ≤ U ≤ m+1

2 m− α(m− 1) ≤ U ≤ m+1
2

Dynamic
Priority

m2

3m−2 ≤ U ≤
m+1
2

m2

2m−1 ≤ U ≤
m+1
2 U = m

3.1.2 Classification of Multicore Scheduling Algorithms

In [CFH+04], Carpenter et al. give a categorization of multicore scheduling algorithms.

They used a migration- and priority-based classification and determined bounds on max-

imal system utilization. This model is helpful for the case of comparing classes of al-

gorithms, independent from task set properties. They assumed a preemptive, periodic

task set and derived the schedulability bounds from Table 3.1. A schedulability bound

defines the schedulability of a task set in dependence of a characteristic of the task set

(see also Section 2.4). E.g. one characteristic of a task set is the system utilization Usum.

As long as the value of the task set characteristic is lower than the schedulability bound,

all deadlines are met.

A usage of the complete system utilization, meaning a system utilization Usum which

is equal to the number of cores m, can only be achieved by full migration scheduling with

dynamic priorities. At bounded migration scheduling, maximal system utilization also

depends on the maximal task utilization α in task set.

For global scheduling of more general implicit-deadline sporadic task sets, the follow-

ing theorem has been proven:

Theorem 3.1 ([Bak07])

Any implicit deadline sporadic task set τ , satisfying Usum(τ) ≤ m and Umax(τ) ≤ 1 is

schedulable upon a platform comprised of m unit-capacity cores by a [global] scheduling

algorithm with dynamic priority assignment.

To see why this holds, observe that a processor-sharing schedule [Bak07], in which

each job of each task Ti is assigned a fraction wt(Ti) of processor time between its release

time and its deadline, would meet all deadlines. Such a processor-sharing schedule may

subsequently be converted to one in which each job executes on zero or one processor

tick at each time instant by means of the technique of Coffman and Denning [CD73].

However such an algorithm is clearly very inefficient and not implementable in practical

32

3.1 Fundamentals

Table 3.2: Classification of multicore scheduling algorithms.

I II III IV

Allocation Local Clustered Global

Disruption Non-preemptive Cooperative Preemptive

Migration No Job- Section- Full-

Prioritization Task-fix Job-fix Section-fix Dynamic

Processing Work-Conserving Non-Work-Conserving

embedded systems.

This work gives a more practically oriented categorization for multicore scheduling

[DSM+10a], which is used in the following for the design of a generic scheduler model.

This classification of multicore scheduling algorithms can be found in Table 3.2.

Allocation

Allocation concerns the number of cores, where the job of an activated task is able

to execute. This work differs between global, local (also called partitioned or static

scheduling) and clustered scheduling.

Global scheduling means that a job of a task is able to execute on each core of the

m multicore processor. Therefore, only one global queue of ready tasks exist and the

scheduling algorithm generates a schedule which contains a ranking of at least m ready

jobs. Dependent on further properties, e.g. migration or disruption, the dispatcher

assigns the m ready jobs to the cores.

Local scheduling means that tasks are assigned to a core by a partitioning approach

before runtime and each core has an instance of the same scheduling algorithm. All jobs

of a task have to execute on the same core.

Clustered scheduling means that the m cores of a multicore processor are grouped in

a number of core clusters. Each cluster has a scheduling algorithm, whereby it is possible

that different kind of scheduling algorithms are used for the different clusters. Then, the

following classification according to the other properties has to be done individually for

each scheduling algorithm.

Disruption

Disruption defines when a job is able to preempt another job, caused from a changed job

ranking in the schedule. It is differed between preemption and interruption, due to the

difference in costs. Preemption occurs by another job and is very costly due to saving

the complete task context. Interruption occurs by an ISR which is less costly because

only a subpart of the context has to be stored due to limited functionality of ISR’s. This

work differs between non-preemptive, cooperative, and preemptive scheduling. Non-

33

3. Real-Time Scheduling

preemptive scheduling means that a task never gets preempted by another task, also

when this task has a higher rank. Since the higher ranked task has to wait for the

complete execution time of the executing task, this could cause a high response time for

the waiting task. Cooperative scheduling means that a task gets preempted only between

two successive task sections. Preemptive scheduling means that a task can be preempted

by other task at any point of execution.

In general, it is assumed that all tasks have the same class of disruption. In practical

systems, there are also task sets, where a sub group of tasks of the task set have a

cooperative disruption pattern to all other task of this group, but the tasks of this group

are preemptive according tasks of a disjunct sub group of tasks of the task set.

Migration

Migration restricts the selection of cores for execution of a job. Migration can be used

only for global or clustered allocation pattern. This work differs between no migration,

bounded-migration, task section-migration and full migration. No migration means that

each job of a task has to execute on the same core. Bounded-migration means that

different jobs of a task can execute on different cores, but a job once started on a core

has to resume after a preemption on the same core. Task section-migration means that

a task can migrate only at task section end. Full migration means that a job can change

the core after each preemption.

Prioritization

Prioritization defines the variability of priorities which are assigned by a scheduling policy

of a scheduling algorithm to jobs of a tasks. This work coincides with the general classes

of prioritization: task-fix, job-fix, dynamic priority and extends the classification with

the class section-fix prioritization. Task-fix priority means that each job of a task has

the same priority. This prioritization is also mentioned as static priority scheduling.

Job-fix prioritization means that the priority can differ between different jobs of a task,

but it is constant for one job. Section-fix prioritization means that the priority of a job

can differ only between task sections, but is constant during one task section. Dynamic

prioritization means that the priority of one job can differ at any schedule decision.

The benefit of section-fix prioritization is a lower sorting effort in comparison with

dynamic prioritization and a higher degree of flexibility in resource allocation than job-fix

prioritization.

Processing

Processing defines how a scheduler proceeds with the allocation of ready jobs. The two

groups are work-conserving and non-work-conserving algorithms. A work-conserving

34

3.1 Fundamentals

algorithm allocates ready jobs to a core as soon as there is a free core. A non-work-

conserving algorithm is able to leave a core idle also when there are ready jobs.

3.1.3 Scheduling Model

This section gives a description of a generic scheduler model which can be applied to

all scheduling algorithms of Table 3.2. The simulation, introduced in Section 8 includes

this model for schedulability examination. In future work it can be used for a generic

scheduler module implementation in embedded systems.

The generic multicore scheduler model has following phases:

• Phase I: Resource Analysis

• Phase II Task Nomination

• Phase III: Task Nominee Sorting

• Phase IV: Execution

• Phase V: Non-work-conserving preparation

A scheduler has a list of available cores with entries {1, ...,m}. Additionally the

scheduler has a list of running jobs and a list of ready jobs. A task instance provides its

state and all policy parameters, required for scheduling.

Resource Analysis

In the first phase, the scheduler determines for each core whether the core is blocked or

unblocked. This depends on the blocking capability of the running jobs on a core. A job

blocks a core if and only if the scheduling algorithm is non-preemptive or cooperative

and the executing job has not reached task section end. Whenever there is a job which

is able to preempt the running job, the core is unblocked.

Task Nomination

In this phase, the scheduler determines which jobs of the job sequence are able to execute.

This is required because a job can be prohibited to execute, e.g. in the case of a non-work-

conserving algorithm or in the case of non fulfilled precedence constraints. Afterwards

the scheduler determines whether the job is schedulable on each of the unblocked cores.

Limitation of migration at scheduling algorithms with bounded migration or task-section

migration bounds additionally the selection of unblocked cores and migration overhead

[SPDM09]. For example when an algorithm works in a job-fix migration manner and a

job has already started execution on one core it can not execute on another core (e.g. at

Fixed-Migrating EDF [ABD08]).

35

3. Real-Time Scheduling

Task Nominee Sorting

In this phase, the scheduler sorts all jobs of the nomination list by a scheduling policy.

The scheduler can have a single policy or a multi level policy. A multi level policy defines

tie-breaking rules, applied when a policy is not distinct.

Execution

In this phase, the scheduler preempts running jobs and resumes waiting jobs according to

the sorted nominee list. When a scheduler has a list of x cores and a list of f unblocked

cores, then all jobs on the blocked cores, namely all x − f jobs, remain in the state

running. For all other jobs, the following procedure applies: Running jobs with a rank

> f getting preempted, running jobs with a rank ≤ f stay in the state running. All other

jobs with a rank ≤ f resume the execution on the core where they were preempted the

last time as long as the core is free. Otherwise they resume execution on any other free

core. This preferred selection of a core allows to reduce the number of migrations.

Non-work-conserving preparation

For the case of non-work-conserving algorithms, the job sequence could include waiting

jobs even if there is a free core. In general the scheduling algorithm is called at different

points of execution of a job, e.g. at job termination, activation or at an explicit scheduler

call. However non-work-conserving scheduling algorithms need to be called additionally

when a waiting job becomes ready for execution. Waiting for the next scheduler call,

e.g. by a finished job, could lead to a miss of ready time for a waiting job. Therefore,

the first time when a waiting job gets ready for execution is determined. At this time a

scheduler event is set where the scheduling algorithm executes.

3.2 Related Work on Singlecore Scheduling

This section discusses results of the scheduling problem of singlecore processor real-time

systems. Singlecore scheduling algorithms are used for local scheduling of multicore

processors.

3.2.1 Task-Fix Priority Scheduling

Today practical real-time systems mostly use task-fix priority scheduling [LL73]. Task-fix

priority scheduling has practical and theoretical benefits, in comparison with job-fix or

dynamic scheduling. Practical benefits are a low runtime complexity, because priorities

don’t have to be calculated during runtime and the runtime for sorting ready task queue is

lower because of a presorted list of the previous scheduler execution. Further benefits are

the possibility to apply formal schedulability analysis techniques due to a lower number

36

3.2 Related Work on Singlecore Scheduling

of cases that have to be considered, when determining worst-case response times (see

Section 4.2 for more details).

In the last decades, many priority assignment policies for task-fix priority scheduling

were introduced and discussed. The following part summarizes results on the scheduling

algorithms Rate Monotonic and Deadline Monotonic.

Rate Monotonic (RM) [LL73] is a simple priority assignment policy for periodic task

sets with implicit deadlines. It assigns tasks a priority with respect to the inverse of

the task period, where the task with the highest value has the highest priority. RM is

preemptive, therefore a running task is immediately preempted by an arriving task with a

lower period. Liu and Layland [LL73] proved that RM is optimal among all fixed-priority

assignments, in the sense that no other fixed-priority algorithms can schedule a task set

that cannot be scheduled by RM. For task sets τ , containing n tasks, the maximal system

utilization is

Usum(τ) = n(2
1
n − 1). (3.1)

For lim
n→∞

the maximal system utilization is ln 2 ≈ 0.69. However, the schedulability

bound improves when task periods have a harmonic base, defined in the following way.

Definition 3.1 ([BB03])

Let P = {p1, p2, ..., pn} a set of periods of the task set τ = {T1, T2, ..., Tn} of periodic

tasks. A subset R ⊆ P is said to be a harmonic base of τ if there is a partition Z of P

into |R| subsets such that:

1. Each member of P is a multiple of the smallest element in exactly one member of

the partition Z;

2. If x and y are two elements in the same member of the partition Z, then either x

divides y or y divides x.

Each subset in the partition Z is a harmonic chain.

However, a common misconception is to believe that the schedulability bound be-

comes Usum = 1 when the periods are a multiple of the smallest period. Kuo and

Mok [KM91] proved for harmonic chains the achievable task set utilization Usum(τ) =

K ∗ (2
1
K − 1), whereas K is the number of harmonic chains with K ≤ n. Due to the

increase of maximal system utilization, harmonic chains are also often used in practical

systems.

For more general periodic task sets with explicit deadlines, Leung and Whitehead

[LW82] proposed the algorithm Deadline Monotonic (DM). At DM, each task has pri-

ority according to the inverse of its relative deadline. Since in general deadlines are

constant, DM is also a task-fix priority algorithm. However, for task sets with explicit

37

3. Real-Time Scheduling

deadlines, the system utilization bound of RM is no longer representative for schedula-

bility considerations. A general, but pessimistic bound on schedulability of DM can be

derived on the Rate-Monotonic schedulability test, modified by the constrained system

density [But05a]. Therefore, a task set of periodic tasks with constrained deadlines is

schedulable, as long δsum ≤ n
(

2
1
n − 1

)
. For a tighter bound on schedulability, the ex-

act interleaving of higher-priority task must be evaluated for each task. Audsley et al.

[ABRW91, ABR+93] proposed a method which evaluates necessary and sufficient condi-

tions for DM scheduling (for more details see Section 4.2.1).

3.2.2 Job-Fix Priority Scheduling

For more general task sets, e.g. task sets with sporadic tasks, also more general task

assignment policies have to be applied, to achieve a high system utilization. One of

the best-know and discussed job-fix priority scheduling algorithm is Earliest Deadline

First (EDF). EDF assigns tasks a priority according to there absolute deadline, where

the task with the earliest absolute deadline has the highest priority. Dertouzos [Der74]

proved that EDF is optimal according feasibility for sporadic task sets, which means that

whenever a task set is feasible, it is also schedulable with EDF [But05a]. This proof also

holds for task sets with periodic task sets, because periodic task sets are a sub group of

a sporadic task sets.

For task sets with explicit deadlines Baruah et al. [BRH90] proposed a schedulabil-

ity test, called processor demand criterion. Informally, the processor demand criterion

evaluates the amount of processing time, requested in a time interval by task instances

with activation and deadline in the time interval. The feasibility (and for EDF also the

schedulability) is guaranteed, if and only if the requested processing time does not exceed

the available processing time for any time interval.

When the execution time of the scheduling algorithms is considered, EDF scheduling

has a drawback in comparison with task-fix priority scheduling, because at task activa-

tion, the absolute deadline has to be calculated for each job. But, from a practical view,

the higher execution time compensates, when context switching costs are taken into ac-

count. The number of preemptions that typically occur at RM is much higher than at

EDF. In experimental studies, Buttazzo [But05b] showed that the average number of pre-

emptions increases almost linearly at RM, while it decreases for high loads under EDF.

A further advantage of EDF is that it is robust against permanent overload [CEBA02].

At overload, EDF automatically performs a periodic rescaling, which means that tasks

are behaving like they are requested at a lower rate. This is beneficial in comparison

with disregarding job instances of lower priority task at RM scheduling.

38

3.2 Related Work on Singlecore Scheduling

3.2.3 Dynamic Priority Scheduling

Since EDF is optimal regarding feasibility, for the purpose of a higher system utiliza-

tion, there is no need to use a more general priority assignment method. Additionally,

dynamic priority scheduling algorithms have the drawback of additional execution time

for the determination of priorities by scheduling policies at each schedule point. In com-

parison with previously discussed algorithms, there is only a low number of publications

on dynamic priority scheduling algorithms, mainly examining benefits of dynamic task

priority scheduling for special task set models.

Mok [Mok83] proposed a dynamic scheduling algorithm, called Least Laxity First

(LLF). The laxity defines the time a ready job can be maximally delayed for execution

and hold its deadline, when the job executes without preemption. LLF prefers the job

with the lowest laxity. The laxity of a job has to be calculated at each schedule point,

because the laxity of a non-executed job decrease proportionally with the past time. LLF

has been discussed in several works as algorithm for task sets, containing soft and hard

task deadlines [DTB93, SB96]. LLF guarantees better response times for tasks with soft

deadlines, while keeping all hard deadlines, in comparison with mechanisms which set all

soft deadline tasks to background priority level.

3.2.4 Cooperative Scheduling

Many practical systems use cooperative scheduling , also mentioned as deferred preemp-

tion scheduling [BW09, BLV09] or non-preemptive scheduling [LA10]. At cooperative

scheduling, a task can be non-preemptive for a limited time of the task execution time.

This is a trade-off between full-preemptive and non-preemptive scheduling and has a

number of benefits.

The schedulability bound of task sets increases, when deadline misses of a task set

mainly enter at lower priority tasks [BW09]. Additionally, in systems using cache mem-

ory, arbitrary preemptions induce additional cache flushes and reloads [BLV09]. As a con-

sequence, system performance and predictability degrade, complicating system design,

analysis and testing [LLL+98]. Whenever a preemption takes place, different sources

of overhead must be taken into account: the current task is suspended and inserted in

the ready queue, the dispatcher stores executing task context and loads the next task

context. The time of these operations is referred to as context switch cost. When the

preempted task resumes, there are other indirect costs to be considered, related to cache

misses, pipeline refills, bus contentions etc. Additional overhead occurs at refilling the

pipeline of the pre-fetch mechanism, since preemption typically destroys program local-

ity of memory references, and at reloading cache lines, evicted by the preempting task.

These costs have a high variance and depend on the specific point in the task when

preemption takes place, resulting in a low predictability. Non-preemptive sections have

no increase in task execution times and therefore make execution times more predictable

39

3. Real-Time Scheduling

[YBB10], since the task section executes until completion once it is started. A drawback

of cooperative scheduling is an increased blocking time for higher priority tasks.

There are two types of cooperative scheduling:

• Floating Non-Preemptive Regions (FNPR) [YBB09]: Each task Ti can disable pre-

emption for a time interval of at most Qi units of time. When a higher priority

task arrives, the running task can switch to non-preemption mode for Qi units

of time, before the preemption is triggered. Since the running task can switch to

non-preemptive mode at any time, because the arrival of high priority tasks can be

at any time, the non-preemptive regions are assumed to be floating inside the task

code.

• Fixed Preemption Points (FPP) [Bur95]: preemption is limited to pre-defined po-

sitions, called preemption points. Thus, each task is divided into a set of fixed

non-preemptive sections, the longest of which play a crucial role in the schedula-

bility analysis.

The FPP approach is comparable with the introduced task section model in Section

2.2.1, because the task section execution time describes the length between two successive

preemption points. However, the FPP approach assumes constant preemption points and

the task section model allows a stochastic specification of preemption points.

For the dimension of the size of non-preemptable sections, Lee [LLL+98] introduced

an approach which derives schedule points from the number of useful cache blocks in a

task. At a certain execution point in a task, a useful cache block contains a memory

block that may be referenced before being replaced by another memory block of the

same task. The number of useful cache blocks at a given execution point in a task can be

calculated by using data flow analysis technique [LHS+98]. Bertogna et al. [BBM+10]

introduced an algorithm to set preemption points at task-fix priority scheduling algo-

rithms or EDF scheduling in order to reach a trade-off between small blocking times and

reduced preemption overhead. For the FNPR floating model, Baruah [Bar05] showed

how to compute the longest non-preemptive interval for each task that does not jeopar-

dize the schedulability of the task set under EDF, with respect to the fully preemptive

case. Yao [YBB09] addressed the same problem with task-fix priorities. Other meth-

ods incorporate the effect of instruction cache on response time, e.g. for a single task

[LHS+98, GMM99] or for interference of other tasks [RM06, SSE08]. A practical ap-

proach, used at OSEK scheduling [Int05], sets preemptive points between runnables or

group of runnables, selected by the system developer.

3.3 Related Work on Multicore Scheduling

In 1973, Liu and Layland addressed in their seminal paper [LL73] the problem of assigning

task to multiple processors during runtime. More than two decades later, Baruah et al.

40

3.3 Related Work on Multicore Scheduling

proposed the first optimal solutions for this problem, called Proportionate Fair (Pfair)

scheduling [BCPV96]. This section gives a brief overview of fundamental and latest

results on local and global multicore scheduling algorithms.

3.3.1 Local Scheduling

At local scheduling, tasks are allocated to cores before runtime and a singlecore schedul-

ing algorithm at each core schedules the allocated tasks. According feasibility, optimal

singlecore algorithms like EDF and LLF are no longer optimal for the case of local

scheduling on a multicore processor [DM89]. However local scheduling is a convenient

bridge when changing from singlecore to multicore systems. Concurrency support is not

required for local memory sections, and operating system functions for task migration

are not required. Furthermore, existing scheduling algorithms and schedulability test for

singlecore algorithms can be used. Optimal assignment of task to cores is a kind of bin-

packing problem, which is NP-hard [GJ79]. However, an optimal1 bin-packing solution

is not required, as long a partition can be found that is schedulable on each core.

The most studied partitioning approach is the group of algorithms for the classical

bin-packing problem [CJGJ78]. One dimensional bin-packing algorithms assign a number

of boxes to a number of bins. Each box has a size which is a fraction of the size of a bin,

equal to 1. The objective of bin-packing is to find a partition of boxes to bins, where no

bin exceeds its capacity. Bin-packing algorithms distinguish between two criteria: the

order of selecting a box and the order of selecting a bin.

Bin-packing can be used for partitioning of tasks in the following way: the task weight

wt(Ti) indicates the size of a box and the available capacity of a core C(Px) indicates

the size of a bin. The assignment of a task set τ on a multicore processor M expires in

the following way.

In the first step, tasks are sorted by task weight wt(Ti) (Equation 2.12). The index i

is used for the position of a task Ti in an ordered list {T1, ..., Ti, ..., Tn}. It is distinguished

between the following sorting policies:

• Increasing: Non-decreasing sorting of boxes implies wt(Ti) ≤ U(Ti+x) ∀i < n;x =

{1, ..., n− i}

• Decreasing: Non-increasing sorting of boxes implies wt(Ti) ≥ U(Ti+x) ∀i < n;x =

{1, ..., n− i}

Afterwards, the core sequence is defined in arbitrary way and remains for the fur-

ther partitioning process. An empty core Px has a capacity of C(Px) = 1 at start of

partitioning. After assignment of tasks, the actual capacity calculates in the following

way:

1Optimality in terms of bin packing address following term. Having a bin size V and a list a1, ..., an
of sizes of items to pack, find an integer P and a P -Partition S1 ∪ ...SP of {1, ..., n} such that

∑
i∈Sk

ai ≤

V ∀k = 1, ..., P . A solution is optimal if P is minimal.

41

3. Real-Time Scheduling

C(Px) = 1−
∑

Ty∈τ ;Ty∈Px

U(Ty)

At each assignment, the next task Ti from the ordered list of tasks {T1, ..., Ti, ..., Tn}
is selected, starting with task T1.

For each assignment Ti to Py, the number of fitting cores < = {Py} {Py|Py ∈
M ∧ C(Py) ≥ wt(Ti)} has to be determined from the ordered list of all cores M =

{P1, ..., Px, ..., Pm}. From <, a core Py is selected by one of the following assignment

policies:

• First Fit: Select from < the core with the lowest x.

• Best Fit: Select from < the core Px with C(Px) = min
Py∈<

(C(Py)).

• Worst Fit: Select from < the core Px with C(Px) = max
Py∈<

(C(Py)).

• Next Fit: When in the previous assignment of Ti−1 the core Pa has been selected,

then select from sequence {Pa+1, ..., Pm, P1, ..., Pa−1} ∈ < the core at the first po-

sition.

• Any Fit: Select from < an arbitrary core Px.

A certain bin-packing algorithm derives from a combination of sorting and assignment

policy. For example the FFD algorithm selects cores with First Fit and sorts tasks

in Decreasing order. Lopez et al. [LGDG00] provide a comparison of the different

combinations. They showed that FFD, BFD, and WFD allow the highest schedulability

bound of utilization. In combination with partitioned preemptive Earliest-Deadline-

First (pEDF) scheduling, the proved utilization bound UpEDFsum (τ) exists for m cores

with a maximal task utilization of Umax(τ) for arbitrary periodic task sets with implicit

deadline.

UpEDFsum (τ) =
m
⌊
1/Umax(τ)

⌋
+ 1⌊

1/Umax(τ)

⌋
+ 1

(3.2)

For the unrestricted case Umax(τ) = 1, the maximal system utilization is Usum(τ) = m+1
2 .

For partitioned Rate-Monotonic (pRM) Scheduling, a utilization bound of UpRMsum (τ)

was derived by [LDG04a], for arbitrary periodic task sets with implicit deadlines, con-

sisting of n tasks and m cores.

UpRMsum (τ) = (n− 1)(2
1
2 − 1) + (m− n+ 1)(2

1
(m−n+1) − 1) (3.3)

However this bound is only valid for periodic task sets and it is not proven to be a tight

bound.

42

3.3 Related Work on Multicore Scheduling

3.3.2 Global Scheduling

For the case of global scheduling, ready tasks are sorted in a single queue and one schedul-

ing algorithm allocates them to available cores. In [CFH+04], Carpenter et al. derived

that global scheduling with dynamic priority assignment is the only way to achieve a

schedulability bound of Usum(τ) = m for periodic task sets. For sporadic task sets,

Fisher et al. [FGB10] showed that there are feasible task sets which can not be scheduled

by any online scheduling algorithm, therefore there is no optimal online scheduling algo-

rithm for the general case of any sporadic task set. In the following, global scheduling

algorithms from different priority assignment groups are presented.

Task-fix and Job-fix priority scheduling

The application of singlecore scheduling algorithms for global scheduling implies that the

m highest priority tasks are selected for execution. However, EDF is no longer optimal

for global scheduling. Dhall and Liu [DL78] showed that the uniprocessor EDF utilization

bound test does not extend directly to global multicore scheduling. They showed that

there are implicit-deadline sporadic task sets τ with Usum(τ) = 1 + ε for arbitrarily small

positive ε, such that τ is not schedulable on m cores, for any value of m. Reasons are

certain task sets, essentially leaving all but one core idle nearly all of the time. Denoted as

Dhall’s effect [Dha77], for sporadic task sets with explicit deadlines these poorly behaving

examples have two kinds of tasks: tasks with a high ratio of execution time to deadline,

and tasks with a low ratio of execution time to deadline. For implicit deadline task sets,

at least one task needs a very high utilization [Bak07].

For sporadic task sets with implicit deadline, [GFB03] showed that a sufficient con-

dition for schedulability is

Usum(τ) ≤ m− (m− 1)Umax(τ). (3.4)

For explicit deadlines, minor extensions derive a generalized density based test [GFB03]:

δsum(τ) ≤ m− (m− 1)δmax(τ). (3.5)

Further schedulability bounds for other kind of task sets can be found in [Bar07].

43

3. Real-Time Scheduling

Task-Section-fix and Dynamic Priority Scheduling

Up to now, two groups of optimal global dynamic priority scheduling algorithms have

been proposed: Pfair [BCPV96] and LLREF [CRJ06]. Both use the fluid scheduling

concept to determine scheduling policies. Fluid scheduling is a model for optimal resource

allocation.

Theorem 3.2

Fluid scheduling defines: When each task Ti of a periodic implicit deadline task set τ

has to be executed with an individual processing speed, where the processing speed is δ · Ti.eTi.p

units of time in an interval δ, then all deadlines are met as long Usum ≤ m.

Formally, the fluid schedule fluid(T, t1, t2) represents the processing time, which has

to be assigned to a task Ti during a time interval between t1 and t2 with regard to its

weight wt(Ti).

fluid(Ti, t1, t2) = wt(Ti) · (t2 − t1) (t1 < t2) (3.6)

Figure 3.1 shows the arrival of two periodic tasks and the fluid scheduling graph of

both tasks. The y-axis of the lower diagram corresponds to the remaining execution time

of each task and the graph represents the reduction of execution time by a fluid schedule.

2T

1T

2.T e

1.T e

2 4 6 8 10 120

Figure 3.1: Arrival of two periodic task (upper curves) and related fluid scheduling graph
(lower curve).

At time 0 both tasks arrive but have different execution times T1.e and T2.e. Task

T1 has to be finished until t = 3 and task T2 has to be finished until t = 4. In order to

fulfill fluid scheduling, both task are executed simultaneously with an execution speed,

corresponding to Equation 3.6. At time 3 task T1 is activated again and the remaining

execution time rises to the task execution time.

The ideal model of fluid scheduling requires that the processing time can be subdi-

vided arbitrarily and allocated to tasks. Practically there is a bounded resolution in sub-

division, caused by the core frequency. Additionally, there is an overhead through context

switching. This overhead can be reduced by multiple context registers, as implemented in

44

3.3 Related Work on Multicore Scheduling

many hardware architectures [May09], but overall the overhead is not negligible. There-

fore, the fluid schedule model is not applicable for practical purpose. Nevertheless it is

used for the algorithms LLREF and Pfair as a model to derive approximations which are

also optimal in sense of feasibility.

Least Local Laxity First (LLREF) was proposed by Cho et al. [CRJ06]. LLREF

is optimal to schedule a periodic task set with implicit deadlines up to a utilization

Usum = m. LLREF is based on an abstraction of the time and local execution time

domain plane (T-L plane). A T-L plane derives from two successive activations of any

periodic task in the task set, as shown in Figure 3.2.

Figure 3.2: LLREF: Determination of T-L plane [CRJ06].

A T-L plane is a right isosceles triangle, where the x-axis is the time and the y-axis

is the local remaining execution time. Each job, which is active during this time of the

T-L plane, has a token, starting at the left side of a T-L plane. At the beginning, the

token of a job Ti,j has a local execution time of li,j = tf · Ti.eTi.p
, where tf represents the

size of a T-L plane. An example in Figure 3.3 shows the start and the movement of job

tokes in a T-L plane.

When a job executes, the token moves downwards in the T-L plane with a gradient

of −1. When a job is suspended, the token moves horizontally in the T-L plane. LLREF

schedules with a largest local remain execution time first policy. At the beginning of a

T-L plane, LLREF selects for execution the m tokens with the largest local remaining

execution time. These jobs execute until they have no local execution time, or until

a ceiling hitting event enters. The ceiling hitting event enters, when a token moves

horizontally and has no local laxity, which means the job has to execute immediately,

otherwise the job will not finish within this T-L plane. When a job has no local remaining

execution time, the job suspends until the next T-L plane starts. The following T-L planes

45

3. Real-Time Scheduling

Figure 3.3: LLREF example of token movement through job execution in a T-L plane
[CRJ06].

are calculated and processed in the same way. Since jobs have to wait even if there are

idle cores, LLREF is a non-work-conserving algorithm.

Cho et al. [CRJ06] proved that LLREF is optimal for periodic task sets with im-

plicit deadlines. They showed that there is a bounded number of job preemptions and a

bounded number of scheduling events. In recent work, Funk and Nadadur [FN09] pro-

posed the extension LRE-TL which is optimal for sporadic task sets and reduces the

number of migrations by a factor of n in a T-L plane, where n is equal to the number of

tasks in a task set.

Proportionate Fair Scheduling

Baruah et al. [BCPV96] introduced Proportionate Fair (Pfair) scheduling for periodic

task sets with implicit deadlines. Pfair is a global multicore scheduling algorithm and

preemptively schedules jobs with dynamic task priorities.

As mentioned in Section 3.3.2, Pfair is an approximation to the fluid schedule. The

approximation uses a quantum time model for the scheduling events task activation,

start, suspend, resume, and termination. Task periods Ti.p and task execution times Ti.e

of a task set have to be a multiple of the quantum size Q. Events can enter at time

quanta t = {x ·Q} with x ∈ N0.

Whenever a task Ti executes, the received processing time increase with time t. When

a task is suspended, the received processing time stays constant. The difference between

the received processing time received(Ti, 0, t) and the fluid schedule fluid(Ti, 0, t) for a

task Ti at time t is defined as Lag :

Lag(Ti, t) = fluid(Ti, 0, t)− received(Ti, 0, t)

46

3.3 Related Work on Multicore Scheduling

Pfair algorithm’s approximation to the fluid schedule is a limitation of the Lag(Ti, t) of

each task.

−Q < Lag(Ti, t) < +Q ∀ Ti ∈ τ (3.7)

The limitation of Lag(Ti, t) is called upper and lower lag boundary. Through the

combination of lag boundaries and the limitation of scheduling events to time quanta,

upper and lower bounds for executing a fraction Q of task execution time derive.

Therefore, a task Ti divides in a number of task quanta2 Υl
i (l = 1, ..., q). For

practical purposes, it is important to consider that task quanta differ from task sections

in Section 2.2.1. A task section defines an enclosed section of software code, which

ends at task section end, but a task quantum has no relation to the software code and

preemptively suspends the execution at task quanta times, which can be at arbitrary

point in a task section through execution time variations. Each Υl
i has the execution

time of one quantum Q. The number of task quanta q of a task derives from the task

execution time Ti.e by Equation 3.8.

q =
Ti.e

Q
(3.8)

To fulfill Equation 3.7, a task quantum Υl
i has to be scheduled in a Pfair window

w(Υl
i), starting with the pseudo3-release r(Υl

i) and ending with the pseudo-deadline

d(Υl
i). A certain task quantum is called pseudo-activated , when its pseudo-release time

is elapsed.

r(Υl
i) =

⌊
l − 1

wt(Ti)

⌋
(3.9)

d(Υl
i) =

⌈
l

wt(Ti)

⌉
(3.10)

The smallest time a task quantum can be completely processed is called slot S. Depending

on the weight of a task Ti, a Pfair window w(Υl
i) = {S1, S2, ..., S end} has a number of

slots, available to schedule a task quantum Υl
i. (

∣∣w(Υl)
∣∣ = |{S1, S2, ..., S end}| denotes

the quantity of slots of a Pfair window.)∣∣∣w(Υl
i)
∣∣∣ =

⌈
l

wt(T)

⌉
−
⌊
l − 1

wt(T)

⌋
(3.11)

Figure 3.4 shows the fluid schedule of an example for a job of task T1, including

lag boundaries and Pfair windows. The dotted line represents the fluid scheduling for a

task T1 with execution time T1.e = 3, inter-arrival time T1.p = 5, and quantum Q = 1.

The dashed lines represent the lag boundaries, which have the same gradient as the

fluid schedule, but have a y-offset for the upper and lower lag boundary with +Q and

−Q, respectively. The Pfair windows of the time quanta Υ1
i , Υ2

i , and Υ3
i are shown as

2Υl
i denotes the kth quantum of task Ti.

3The appendix pseudo is used to differ between task and task quantum properties.

47

3. Real-Time Scheduling

1.T e

2 40

1

1
2

1
3

1

t

Figure 3.4: Approximation of Pfair to the fluid schedule. The fluid schedule defines that
the execution time T1.e = 3 of a task is allocated to a processor between two successive
activations (arrows, T1.p = 5) in a way that the remaining execution time constantly
decreases (dotted line). Pfair defines a minimum and maximum lag (dashed line) from
the fluid schedule in continuous time. In discretized time, task quanta have to execute
in windows (continuous line, Υ1

1,Υ
2
1,Υ

3
1), derived from lag boundary.

thick continuous line and they are defined by the time intervals (0, 2], (1, 4], and (3, 5]

respectively. Due to the limitation of events to time quanta, scheduling events like task

suspension or resume can only enter at t = {0, 1, 2, 3, 4, 5}. The scheduler has to start

task quanta Υ1
1 at t = 0 or t = 1, otherwise task quanta has not finished until t = 2,

where the task quanta’s window ends and the pseudo-deadline would be violated. Since

task quanta are sequentially dependent, they can not execute before the previous task

quantum has finished. For the case that task quanta Υ2
1 is started at t = 1, task quanta

Υ3
1 can not execute before t = 3, otherwise the pseudo-release time is not reached and

the lower lag boundary would be ignored.

Proportionate Fair scheduling is a mechanism to assign periodic task sets to multiple

cores. For scheduling decisions, a policy or a number of policies is required for prioriti-

zation. Up to now, four optimal algorithms have been proven as optimal for scheduling

synchronized periodic task sets on multicore processors: PF [BCPV96], PD [BGP95],

PD2 [AS00a], andBF [ZMM03]. All algorithms schedule task quanta by Earliest-Pseudo-

Deadline-First (EPDF) policy. For the case, that task quanta of different ready tasks

have the same pseudo-deadline, the algorithms apply tie-breaking rules, depending on

the algorithm.

One tie-breaking rule that is common to all Pfair algorithms (excepted BF) is called

overlapping-bit. The overlapping-bit concerns the position of two successive Pfair win-

dows. When the pseudo deadline of Υl
i’s window is later than the pseudo-release time of

Υl+1
i ’s window, the overlapping bit b(Υl

i) is one, otherwise it is zero.

b(Υl
i) =

⌊
l

wt(Ti)

⌋
−
⌈

l

wt(Ti)

⌉
(3.12)

The following part describes the Pfair algorithms.

48

3.3 Related Work on Multicore Scheduling

The Pfair-PF Algorithm

Pfair-PF prioritizes tasks as follows: at schedule decision, when task quanta Υa
x and task

quanta Υb
y are ready to execute, Υa

x has a higher priority than Υb
y, denoted Υa

x � Υb
y, if

one of the following holds:

i) d(Υa
x) < d(Υb

x),

ii) d(Υa
x) = d(Υb

x) and b(Υa
x) > b(Υb

y),

iii) d(Υa
x) = d(Υb

x), b(Υa
x) = b(Υb

y), and Υa+1
x � Υb+1

y

At each start of a slot, at t = a · Q, the m highest priority tasks are selected and get

processed for one time quanta. At time t = (a+1)·Q, all running tasks getting suspended

and the procedure starts again. However, the algorithm Pfair-PF is quite inefficient due

to the recursive calculation of policy iii. Therefore, Anderson et al. replaced the last

policy by a non-recursive policy and presented the algorithms Pfair-PD2 and Pfair-PD.

Algorithm Pfair-PD2

Pfair-PD replaces policy iii of Pfair-PF by three rules. Since Pfair-PD2 requires only one

of these rules Pfair-PD is less efficient than as Pfair-PD2. Therefore, this work considers

only Pfair-PD2 and refer to [BGP95] for Pfair-PD. The new policy concerns the effect of

a scheduling decision for task quanta Υl
i on successive task quanta and is called group-

deadline D(Υl
i). Assume there is a sequence of task quanta Υl

i with l = {a,, b} and a

Pfair window |w(Υl
i)| = 2 and b(Υl

i) = 1. Then, processing Υa
i in its last slot results in

processing all other task quanta in their last slot. Therefore, the group deadline for all

task quanta Υl
i of this sequence is the pseudo-deadline of the last task quantum Υb

i in the

sequence, because after this task quantum there are at least 2 slots left for scheduling.

Anderson et al. [AS01] proved that the constellation |w(Υl
i)| = 2 and b(Υl

i) = 1 only

occurs with high weighted tasks, meaning 0.5 ≥ wt(Ti) < 1. The group deadline for high

weighted task calculates by Equation 3.13.

D(Υl
i) =


⌈⌈

l
wt(Ti)

⌉
· (1− wt(Ti))

⌉
1− wt(Ti)

 if 0.5 ≥ wt(Ti) < 1 (3.13)

For light task, when 0 < w(Ti) < 0.5, the group deadline is 0 for all task quanta.

D(Υl
i) = 0 if 0 < wt(Ti) < 0.5 (3.14)

At Pfair-PD2, the policies i and ii are equal to Pfair-PF policies. Policy iii is replaced

as follows:

iii) d(Υa
x) = d(Υb

x), b(Υa
x) = b(Υb

y), and D(Υa
x) < D(Υb

y)

49

3. Real-Time Scheduling

The reason of this prioritization is that scheduling a task quantum with a higher

group deadline prevents (or at least reduces the extend of) cascades, meaning a task

quantum is possibly processed in a slot within its schedule window which overlaps with

the schedule window of the subsequent task quantum. Cascades are undesirable since

they constrain the scheduling of future slots. Anderson et al. [AS01] proved that the

Pfair scheduling algorithm PD2 is optimal for scheduling a task set τ in a multicore

processor system with m cores iff Equation 3.15 holds.

n∑
i=1

wt(Ti) ≤ m (3.15)

Figure 3.5 illustrates a schedule of Pfair-PD2 for a synchronized periodic task set

τ = {T1, T2}, with T1 = (10, 6, 10,−,−) and T2 = (7, 3, 7,−,−) on a singlecore proces-

sor4. Three representative schedule points are considered: At timestamp 0 Pfair-PD2

prefers the task quantum of task T1 before the task quantum of T2, because d(Υ1
1) =

2 � d(Υ1
2) = 3. At timestamp 3 Pfair-PD2 prefers the task quantum of task T2 be-

fore the task quantum of T1, because d(Υ3
1) = d(Υ2

2) = 5 and b(Υ3
1) = 0 ≺ b(Υ2

2) = 1.

At timestamp 10, it is arbitrary if the task quantum of task T2 is preferred before the

task quantum of T1 or otherwise, because d(Υ1
1) = d(Υ2

2) = 5, b(Υ1
1) = b(Υ2

2) = 1, and

D(Υ1
1) = D(Υ2

2) = 0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3

2

1

0

6

5

4

3

2

1

0

t

1
6

10
wt T

2
3

7
wt T

1.T e

2.T e

Figure 3.5: Example of a schedule of algorithm Pfair-PD2. The x-axis represents the time
and the y-axis defines the processed execution time. Task quanta (grey) are processed
between the upper and lower lag boundary (slim line) which results from the fluid schedule
graph (thick line).

4Pfair-PD2 scheduling on multicore processors behaves analogously, with the difference that instead
of one task, m tasks are selected for execution.

50

3.3 Related Work on Multicore Scheduling

Algorithm BF

In [ZMM03], Zhu et al. addressed the problem of a high number of context switches at

Pfair scheduling and proposed an extended Pfair algorithm, called Boundary Fair (BF).

In systems with a periodic implicit deadline task set, a task can miss its deadline only

at inter-arrival time boundaries. Using this assumption, Zhu et al. construct a scheduling

algorithm which makes schedule decisions only at inter-arrival time boundaries and allows

a violation of the lag condition (Equation 3.7) during this inter-arrival time boundaries,

as long as the lag condition holds at inter-arrival time boundaries.

BF determines how many task quanta of all tasks in a task set have to be assigned

to the cores from schedule time until next inter-arrival time boundary and place these

task quanta in a way that the context switches are minimal. Although the BF algorithm

has the same complexity as all other Pfair algorithms, the number of scheduling points

decrease dramatically in practice. In experiments, the number of of schedule points could

be reduced up to 75% [ZMM03]. Since the task activation has to be known, Pfair-BF is

limited to periodic task sets.

Early Release Extension

Pfair scheduling assigns a task quantum between its pseudo-activation and pseudo-

deadline to cores. Due to the pseudo-activation of task quanta, a ready task can only

be assigned to a core, when time exceeds pseudo-activation of the actual task quantum.

Especially at low core utilizations, this leads to non-work-conserving behavior, because

task quanta are often executed at the beginning of their window and as long window size

is larger 2 or the overlapping bit is zero the pseudo activation of the next task quantum

is not reached at finalization of the actual task quantum. Non-work-conserving schedul-

ing has a number of benefits, e.g. reduced task jitters, which is shown in detail in the

experiments of Section 10. Unfortunately, in general non-work-conserving scheduling is

not as robust as work-conserving scheduling, which is derived from the experiments of

Section 10, too.

Anderson and Srinivasan proposed in [AS00a] a work-conserving version of Pfair

scheduling, called Early-Release fair (ERfair) scheduling. ERfair scheduling defines that

task quanta have no longer a pseudo-activation time and therefore, when a task quantum

Υl−1
i finishes before pseudo-release time of the next task quantum at t < r(Υl

i), Υl
i is

allowed to be processed.

51

Chapter 4

Real-Time System Examination

This chapter gives an overview of existing methods for the evaluation of real-time sys-

tems, i.e. the verification whether the real-time requirements of tasks in a task set are

fulfilled. First of all, fundamental information on real-time evaluation is given. Then,

schedulability and performance evaluation methods are presented. Finally, the difference

between singlecore and multicore schedulability evaluation is discussed.

4.1 Fundamentals

This section presents necessary definitions and metrics for the evaluation of performance

and temporal robustness properties of real-time system models.

4.1.1 Definitions

Several fundamental definitions are required, common in real-time theory, which will be

introduced in the following.

Classical real-time theory contains two problems: feasibility and schedulability anal-

ysis [BG04]. The feasibility-analysis problem concerns: when given a certain task set, a

processor model, and constraints on the scheduling environment (e.g. a global schedul-

ing algorithm with dynamic priority assignment and full-migration, see also Table 3.2),

determine whether there is any schedule for the task set that will meet all deadlines. The

constraints on the scheduling environment are necessary to limit the possible schedule

operations on a job sequence. The complexity of scheduling a job sequence strongly de-

pends on the kind of task set. As introduced in Section 2.3.1, recurrent task sets produce

one single sequence of jobs. The request behavior of a task is defined by the task off-

set Ti.o and the task inter-arrival time Ti.p; the execution time of task Ti.e is constant.

These kind of task sets are feasible, as long as for the collection of jobs in this sequence

all deadlines are held. Event-based task sets produce an undefined, usually very high,

number of sequences of jobs. The only limitation is the upper and lower arrival curve

and the discrete resolution of accepted time stamps of task activations. This kind of task

52

4.1 Fundamentals

sets are feasible, as long as for the collections of jobs of all sequences all deadlines are

held.

Definition 4.1

A task set is said to be feasible with respect to a given system if there exists any scheduling

algorithm that can schedule all possible sequences of jobs that may be generated by the task

set on that system without missing any deadline [DB09]. A feasibility test validates if

a certain task set is feasible.

The schedulability-analysis problem concerns: when given a certain feasible task set,

determine whether a certain scheduling algorithm can schedule the task set to meet all

deadlines. Similarly to the feasibility of a task set, for recurrent task sets, a schedulability

test has to determine if the scheduling algorithm produces a schedule for the sequence of

jobs, such that for the collection of jobs of the sequence all deadlines are held. For non-

periodic event-based task sets, a schedulability test has to determine if the scheduling

algorithm produces schedules for all possible sequences of jobs, such that for all collections

of jobs of all sequences all deadlines are held.

Definition 4.2

A task is referred to as schedulable according to a given scheduling algorithm, if its

worst-case response time under that scheduling algorithm is less than or equal to its

deadline [DB09]. A task set is referred to as schedulable according to a given scheduling

algorithm if all of its tasks are schedulable. A schedulability test checks if a certain

task set is schedulable.

The applicability of a schedulability test depends on the task set, the scheduling algo-

rithm class, and the processor model. Most schedulability tests are scheduling algorithm

specific, meaning they are only applicable to a certain algorithm or a class of algorithms.

This work gives an overview of the most relevant schedulability tests in Section 4.2. Be-

fore, schedulability tests are classified according to their accuracy.

Schedulability tests are mainly driven from hard real-time system theory, where a

deadline violation results in a system destruction or comparable perilous situation. Em-

bossed by this fact, the class of pessimistic schedulability tests was developed, rather

judging a task set as non-schedulable, when the method can not solve the problem more

precisely.

Definition 4.3

A pessimistic schedulability test surveys sufficient conditions for schedulability, meaning

a positive outcome guarantees that all deadlines are always met.

Sufficient but not necessary test have a lower runtime complexity, but they are pes-

simistic [SAC+04]. Figure 4.1 shows the iteration steps of a pessimistic schedulability

53

4. Real-Time System Examination

Pessimistic Approach

Exact Approach

Optimistic Approach

Exact

Iterations

Time

Worst-Case

Response Time

Over-

estimated

Under-

estimated

Figure 4.1: Examination methodologies of worst-case response time. The x-axis repre-
sents the number of iterations (for iterative approaches) or the calculation time (e.g. for
simulation approaches) and the y-axis represents the estimation of the quality criteria.
A pessimistic approach approximates the worst-case response time from the upper side
(overestimated) and the optimistic approach from the lower side (underestimated). An
exact approach determines the worst-case response time directly.

test. Each step approximates closer to the real schedulability result. The obtainment

of the maximal response-time for a task is not guaranteed for all kinds of schedulability

tests. Since a pessimistic test can produce a result which overestimates the real value,

system resources are not used efficiently, e.g. processor computation capacity is wasted.

For particular cases this is acceptable, e.g. when over-dimensioning of system resources

is non-relevant.

When efficient dimensioning of system resources is relevant, a pessimistic test is often

not appropriate and another class of tests is required. The class of optimistic schedula-

bility tests rather judge a task set as schedulable, when the method can not solve the

problem more precisely. Since this behavior is non-consistent with the definition of test,

this kind of approaches are also called schedulability examinations .

Definition 4.4

A optimistic schedulability examination surveys necessary conditions for schedulability,

meaning there might be a deadline miss at some point during the execution of the system.

Figure 4.1 shows that the result of an optimistic schedulability examination approx-

imates over the time to the exact value.

The class of exact schedulability tests determines always the accurate result.

54

4.1 Fundamentals

Definition 4.5

An exact schedulability test surveys necessary and sufficient condition for schedula-

bility.

Unfortunately this kind of approaches are mainly only applicable for very simple task

set configurations, due to a state explosion. Therefore, sufficient and necessary tests are

ideal, but for many computational models such tests are intractable [SAC+04].

4.1.2 Real-Time Metrics

This section describes metrics for system evaluation, applied to the schedule of a task set.

The term
”
metric“ is used in the parlance of software engineering, denoting a measure of

some property of a piece of software or its specifications. This meaning differs from the

strong definition of a mathematical metric.

In the following, these metrics are used to compare scheduling approaches. It is dif-

fered between the following task job metrics, which can be used for real-time examination

on task level.

Response Time The response time describes the required time for the Finalization of

a job of a task.

i, jT .A

i, jT .F

i, jRT

t

Figure 4.2: Task job metric response-time, measured between the activation Ti,j .A and
the finalization Ti,j .F of a job Ti,j .

RTi,j = Ti,j .F − Ti,j .A (4.1)

The response time is the fundamental property to measure the task deadline compli-

ance, namely when condition RTi,j < di is fulfilled.

Lateness A further metric which characterizes the deadline compliance, i.e. the delay

of a task, is called lateness .

Li,j = Ti,j .F − Ti,j .D + Ti,j .A (4.2)

55

4. Real-Time System Examination

i, jL

i, jT .F

i, jT .D

t

Figure 4.3: Task job metric lateness, measured between the deadline Ti,j .D and the
finalization Ti,j .F of a job Ti,j .

The benefit of the lateness in comparison with the response time is a direct relation to

the deadline miss. When the lateness is negative, the task deadline is held. The lateness

can be calculated from response time through Equation 4.3.

Li,j = RTi,j − Ti,j .D (4.3)

End-to-End The previous metrics concern the deadline compliance, but e.g. for sam-

pling systems it is not necessary that a task returns a computation result until a deadline

has reached. Instead it is required that the result of a periodic calculation is returned in

a constant time-interval with less jitters. The end-to-end jitter is one of such metrics.

i, jT .F i, j 1T .F

i, jE2E

t

Figure 4.4: Task job metric End-to-End, measured between the finalization Ti,j .F of two
subsequent jobs Ti,j and Ti,j+1.

E2Ei,j = Ti,j+1.E − Ti,j .E (4.4)

Mostly, this metric is used to evaluate the temporal behavior for periodically triggered

calculation, e.g. in multimedia applications. For example, consider a computer communi-

cation network that carries some packet voice connections for web camera conversations.

For those connections that carry voice and video packets, delays are disruptive to the

56

4.2 Methods for Schedulability Examination

application, which needs to feed data at a constant rate to the conversation. Otherwise

the quality of acoustic and visual conversation decreases.

Start-to-Start The counter part of the end-to-end jitter is the start-to-start jitter.

When the end-to-end jitter is task output oriented, the start-to-start jitter is task input

oriented. It assumes that a task reads data from a source at beginning of the task. When

this task is the element of a control cycle which collects data with a certain sampling

rate, then it is important that the data is collected in a constant time-interval.

i, jT .S i, j 1T .S

i, jS2S

t

Figure 4.5: Task job metric Start-to-Start, measured between the start Ti,j .S of two
subsequent jobs Ti,j and Ti,j+1.

S2Si,j = Ti,j+1.S − Ti,j .S (4.5)

The start-to-start jitter is used for periodically triggered calculation, too. Both met-

rics start-to-start and end-to-end are metrics for soft real-time systems.

4.2 Methods for Schedulability Examination

This section surveys existing approaches of schedulability examination and gives a brief

overview of the mechanisms. Furthermore, the application to multicore processor schedul-

ing is discussed. The various approaches are very heterogeneous in terms of modeling

scope, modeling effort, tool support, accuracy and scalability. Most of the approaches for

performance analysis proposed so far can broadly be divided into the two main classes

of analytic techniques and simulation-based methods [PWTH09].

4.2.1 Response-Time Analysis

The Response Time Analysis (RTA) [JP86, Leh90, ABR+93] is an exact analytical

schedulability test. The basic principle of the RTA is to determine the worst-case in-

terference that a task can suffer from higher priority tasks. The approach uses a fix point

iteration method which successively extends the window length in which the execution

57

4. Real-Time System Examination

time of higher priority tasks is considered in order to determine the interference in this

window. Equation 4.6 shows the fundamental iterative formula for calculating the re-

sponse time Ri of a periodic task Ti, which was extended for many other properties like

task offsets [MTN08]. For all higher priority task hp(Ti), it is determined how many

activations from task Tj with a minimal inter-arrival time pj enter in the response time

Rni of the current iteration n. This number of activations is multiplied with the execution

time ej . Finally the execution time of task Ti is added. This response time Rn+1
i is used

for the next iteration. The calculation terminates when Rni = Rn+1
i .

Rn+1
i = ei +

∑
j∈hp(Ti)

⌈
Rni
pj

⌉
· ej (4.6)

The approach can be applied to determine worst-case and best-case bounds of re-

sponse time. This analysis guarantees that all observable response times will fall into the

calculated [best-case, worst-case] interval [HHJ+05]. Initially developed for periodic task

sets and task-fix priority scheduling [JP86], several extensions for support of task release

jitters, conditioned deadlines, and burst activation have been presented [ABR+93]. A

further extension of the RTA is the compositional system analysis [HHJ+04, HHJ+05].

Compositional system level analysis alternates local component analysis and output event

model propagation. More precisely, in each global iteration of the compositional system

level analysis, local analysis is performed for each component to derive the output event

models. An output event stream of one component turns into an input event stream

of a connected component in order to reach a global analysis result. The SymTA/S

[RE02, RZJE02, RRE03, RJE03] approach couples local scheduling analysis algorithms

by using event streams. Event functions resemble arrival curves [Cru02] which have been

successfully used by Thiele et al. [TCGK02] for compositional performance analysis of

network processors. They are piecewise constant step functions with unit-height steps,

each step corresponding to the occurrence of one event.

For the singlecore case, Baruah et al. [BB06] proved that RTA is sustainable (see

Definition 4.8) with respect to all task set parameters, and that RTA remains sustainable

even when additional non-preemptable resources must be shared among jobs of different

tasks. However, for analysis of global scheduling algorithms for multicore system the

RTA is not appropriate, because it determines the maximal interference on a task, which

is the worst-case scenario at local scheduling but not at global scheduling (see Section

4.3).

4.2.2 Real-Time Calculus

The Real-Time Calculus (RTC) [CKT03] is a performance analysis approach of dis-

tributed embedded systems. The Real-Time Calculus is based on the well-know Network

Calculus [LBT01] which is based on max-plus algebra [BCOQ92]. Instead of describing

the minimum inter-arrival time, as it is done at sporadic task sets, and instead of record-

58

4.2 Methods for Schedulability Examination

ing the precise arrival times of events, as it is done at hardware measurements, RTC uses

a count-based abstraction. Upper and lower arrival curves, βu(∆) and βl(∆), define the

maximal and minimal number of events as a function of a time interval ∆. Each event

activates a task and the requested execution time in a time interval can be derived by

multiplying the events with the execution time. Comparable to the arrival curves, the

upper and lower service curves define the free capacity of a resource as a function of

a time interval ∆. The RTC allows to process a very general model of arrival curves

and service curves beyond the classical event models such as periodic, sporadic, periodic

with jitters, etc. [PTCT07]. There are different resource sharing mechanisms available

like task-fix priority scheduling, EDF, TDMA and generalized processor sharing (GPS)

which assigns to each active task a processor share proportional to its utilization in a

perfectly fair manner.

In [LCA09], Leontyev and Chakraborty introduced an extension of the RTC in order

to support global scheduling algorithms with job-fix priorities like global EDF. Beside

the arrival curve of tasks, an assumption of response time of all tasks is required. With

these parameters the extension is able to check whether the response time assumptions

can be met.

4.2.3 Model-Checking Approach

Another approach of real-time system examination is the application of model-checking

algorithms, using e.g. timed automata [AD94] (TA) for the specification of real-time

systems. In [Cor94], TA was used for modeling preemptive scheduling with task-fix pri-

orities. In [HV06], a general approach was shown which determines temporal properties

of real-time systems. The benefit of Model-checking is the determination of exact upper

bounds on temporal properties like the response time.

In [MHK+08], the application of TA to multicore processors with local scheduling

algorithms with static or dynamic priorities has been shown. However, due to state

explosion, the application is often limited for more complex real-time systems with a

high number of tasks [GGD+07] or different clocks [ALM10].

4.2.4 Simulation Approach

Simulation-based approaches for schedulability examination use a model which describes

the temporal behavior and a systematic approach for changing model parameters in

order to determine the worst-case response time. Samii et al. [SREP08] proposed a

simulation-based methodology for worst-case response time estimation of distributed real-

time systems with periodic task sets and variable task execution times. The discrete-

event simulation was based on top of System–C [Ope10]. Since an exhaustive search

of all execution times is not feasible in adequate time, Samii et al. analyzed methods

for reducing the exploration space of execution times and how to explore the reduced

59

4. Real-Time System Examination

space efficiently in order to determine the worst-case response time. In [LNKN10], Lu

et al. proposed a simulation-based approach for schedulability examination for task sets

containing execution dependencies. In the presented approach, the execution time is

randomly varied in the specified range and multiple simulation runs were performed.

Finally, by application of Extreme Value Theory [BGST04], an approximation of the

distribution function of the maximal response-times of all runs was derived in order to

estimate the worst-case response time.

4.3 Anomalies of Multicore Schedulability Analysis

This section shows why schedulability analysis of global multicore scheduling differs from

schedulability analysis of singlecore scheduling. Furthermore, the background and the-

orems of singlecore schedulability analysis are presented and it is shown why a lot of

these assumptions fail at multicore systems, which requires new schedulability tests or

schedulability examination methods. First of all, the following definitions are required:

Definition 4.6

Anomalies consider the case when a task set τ ′ with weaker properties, meaning a lower

execution time T ′i .e, a lower inter-arrival time T ′i .p, or higher deadline T ′i .d of one or

more tasks T ′i in comparison with the corresponding task Ti in a task set τ , exceeds1 the

worst case of task set τ .

Definition 4.7 ([Ber07])

A scheduling algorithm A is predictable if and only if the A-schedulability of a task

set τ implies the A-schedulability of another task set τ ′ with identical arrival times and

deadlines, but smaller execution requirements.

The concept of predictability of scheduling algorithms can be extended to feasibility

and schedulability tests. A schedulability test is predictable, if a schedulable task set τ

remains schedulable for a modified task set τ ′ with reduced temporal requirements (in

terms of predictability).

Definition 4.8 ([BB06])

A schedulability test for a scheduling policy is sustainable if any system deemed schedu-

lable by the schedulability test remains schedulable when the parameters of one or more

individual job(s) are changed in some or all of the following ways: (i) decreased exe-

cution requirements; (ii) later arrival times; (iii) smaller jitter; and (iv) larger relative

deadlines. A non-sustainable system remains not schedulable under this conditions.

1A quantitative formulation of
”
exceeds“ can be given by use of the maximum normed lateness (mNL,

Equation 8.8): mNL(τ ′) > mNL(τ).

60

4.3 Anomalies of Multicore Schedulability Analysis

In general, schedulability tests are based on the critical instant theorem. A critical

instant for a task is a release time for which the response time is maximized (or exceeds

the deadline, in the case where the system is overloaded enough that response times grow

without bound [SAC+04]). Using task offsets, i.e. asynchronous task activation,

Theorem 4.1 ([LL73] and [BMR90])

For singlecore systems with periodic task sets and preemptive task-fix priority [LL73] or

dynamic priority [BMR90] scheduling the critical instant occurs when a task starts with

all other higher priority task at the same time, i.e. tasks have synchronous activation.

Using task offsets, i.e. asynchronous task activation, allows to improve the worst-case

response time, because the response time of a periodic task is better or not worse than the

critical instant. However, at asynchronous task activation with jitters, the schedulability

test is not sustainability anymore, because activating a task later can result in a higher

response time [BB06].

Global multiprocessor scheduling is intrinsically a much more difficult problem than

uniprocessor scheduling due to the simple fact that a task can only use one processor at

a time, even when severals are free [LL73].

Considering only implicit deadline systems, it is possible to prove that Pfair algo-

rithms are sustainable for periodic and sporadic task sets: increasing the inter-arrival

time or decreasing the computation time of any task, the total utilization decreases and

the inequality Umax(τ) ≤ m is still valid and the task set is still P-fair-schedulable [Ber07].

4.3.1 Examples

This section gives examples, showing why multicore schedulability considerations differ

from singlecore schedulability considerations.

The Example 4.1 (proposed in [Bar07]) shows that for global job-fix priority schedul-

ing of sporadic task sets, the critical instance theorem is not valid.

delayed

(b) delayed activation, deadline miss(a) minimal inter-arrival time, no deadline miss

1T

2T

3T

1T

2T

3T

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.6: Example 4.1: Multiprocessor Anomalies - sporadic activation. Dualcore
processor with three tasks.

61

4. Real-Time System Examination

Example 4.1

For a sporadic task set τ = {(2, 1, 1,−,−), (6, 1, 1,−,−), (12, 10, 12,−,−)}, a processor

with m = 2, and EDF scheduling, the synchronous activation and minimum inter-arrival

time of all tasks doesn’t represent the worst-case. This is shown in Figure 4.6 where a

delay of task T1 of one time unit at the second job, results in a deadline miss of task T3

at time 7 (b), whereas all tasks meet their deadline at a minimal inter-arrival time (a).

Also for periodic task sets, simultaneous release does not has to be the scenario that

represents critical instant, as shown in Example 4.2 (proposed in [DB09]).

1T

2T

3T

4T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.7: Example 4.2: Multiprocessor Anomalies - synchronized periodic activation.
Dualcore processor with four tasks.

Example 4.2

For a periodic task set τ = {(8, 2, 2), (10, 2, 2), (8, 4, 6), (8, 4, 7)}, scheduled on a processor

m = 2, the critical instance for task T4 may not be in the interval [0, 7) when all tasks

are activated synchronized, as shown in Figure 4.7. However, when higher priority task

block all processors at the time [8, 12), then task T4 misses its deadline at 15.

Therefore, the maximal interval where all processors are occupied by higher priority

tasks results in worst-case response time. This shows that the critical instant assumption

for singlecore / local multicore scheduling, which assumes that the maximal interval of

higher priority tasks on any processor results in worst-case response time, can not be

applied to global multicore scheduling.

62

Part II

Contribution

63

Chapter 5

Focus of Contribution

The objective of a real-time analysis is the determination whether a given real-time task

set fulfills all temporal requirement on a given processing resource with a defined schedul-

ing approach.

This work extends this objective by focusing on the performance and temporal ro-

bustness of task-sets, executing on embedded multicore processors.

This work defines performance for embedded real-time systems in the following way:

Definition 5.1

Performance is the capability of an embedded real-time system to execute a workload on

a processing resource and to fulfill all temporal requirements. The ratio between requested

and theoretically available processing time is called utilization. A high performance system

allows a maximal utilization.

For an embedded real-time system, high performance can be interpreted in two ways.

On the one hand, high performance means to be able to execute real-time workload up to

a maximal task-set utilization to the available processors. On the other hand, high per-

formance means to be able to reduce the number or the processing speed of the available

processors in a way that the real-time workload produces a maximal task-set utilization.

The first interpretation relates to maximizing functionality, the second one relates on

maximizing energy efficiency and minimize hardware costs.

The second investigation purpose is temporal robustness. This work defines temporal

robustness for embedded real-time systems in the following way:

Definition 5.2

Temporal robustness describes the property of an embedded real-time system to be

capable to fulfill its temporal requirements despite the presence of transient or permanent

64

perturbations. Temporal robustness is dependent on the kind, intensity, and duration of

the perturbation.

A perturbation must be distinguished from a fault. In contrast to fault-tolerance,

where the fault-hypothesis precisely specifies the faults that must be tolerated, the con-

cept of a perturbation is intentionally ill-specified. The condition which will perturb the

operation of a system is not exactly known. A perturbation can thus be a hardware

fault, a software fault, a changing specification, an unanticipated behavior of the envi-

ronment, or any other phenomenon that impacts the system [Kop08]. It is important to

distinguish between transient and permanent perturbations. A permanent perturbation

impacts some parts of the system unendingly and thus requires a reconfiguration or repair

action, whereas a transient perturbation is temporary and disappears by itself [Kop08].

Robustness in scheduling can be achieved in several ways. Stankovic et al. [Sta98]

define robust scheduling as follows: “Whenever a new [job of a] task enters the system,

an acceptance test verifies the schedulability of the new task set based on worst-case

assumptions. If the task set is found schedulable, the new task is accepted; otherwise, one

or more tasks are rejected based on a different policy.” This requires a forecast, at least

in execution time and activation demand. Unfortunately, the nature of a perturbation is

an unexpected entrance of a temporal property variation, possibly exceeding worst-case

assumptions.

The definition of temporal robustness in this work conforms with the definition of

Kopetz [Kop08] and Baruah [BB06], who said a robust system retains its schedulability

even when it operates beyond the worst-case assumptions used in its schedulability test,

e.g. when jobs arrive earlier than expected, or have higher execution requirements than

permitted. Clearly a system can never be fully robust and will fail when it becomes too

overloaded [BB06].

65

Chapter 6

Multiple Time Base Task Set

Extension

This chapter presents an extension for task sets which allows to define arrival patterns

for groups of tasks, where tasks of a certain group are triggered by a trigger source which

has an own non-synchronized time base, in comparison with the trigger source of other

groups. Time bases have the effect of a collective variation of inter-arrival times for

all tasks which are triggered from this time base. The extension can be applied to all

task sets which allows to determine inter-arrival times, but it is mainly used for task

sets with periodic inter-arrival pattern. It allows to increase the accuracy of temporal

behavior models for many application cases, for example, rotation speed dependent task

activation in automotive powertrain systems or task activation from a bus communication

with an own (drifting) clock. Furthermore, a probabilistic model of variable execution

time for non-preemptive task sections is introduced, which is closer to real task sets than

worst-case execution time models. For global scheduling algorithms, non-preemptive

scheduling of task sections has the benefit of reduced response-times for low priority

tasks and simultaneously limited overhead of migrations in comparison with preemptive

scheduling [YBB10].

6.1 Multiple Time Base Extension

Section 2.3.1 presented existing task demand models. In general, task activations are

assumed to be independent of other tasks. This conforms with the recurrent demand

model and the arrival curve model. The hierarchical demand model considers precedence

constraints of task activations.

In contrast to these models, in many embedded systems, e.g. in the automotive pow-

ertrain domain, tasks have activation dependencies that don’t depend on execution of

other tasks, but on a common trigger source which has a time base of its own. For ex-

ample, in a typical automotive engine control system two main sources of task activation

66

6.1 Multiple Time Base Extension

exist. The first source is a periodic trigger, which activates tasks with different constant

inter-arrival times. The other source is the crank shaft of the engine, which activates

tasks depending on the engine position.

In the following, the resulting problem of multiple time bases for schedulability anal-

ysis is outlined in an example and afterwards a model extension of task sets is proposed.

6.1.1 Problem Formulation

Phasing describes the variation of distance between activation times of periodic task in

different time bases. Assuming the inter-arrival time of a periodic task is a multiple of

the inter-arrival time of another periodic task, which is very often the case in practical

system. Then, there is a bounded number of distances, representing the time between

the activation of the first task and the activation of the n-successive activations of the

other task, until the next activation of the first task occurs. These time-intervals can be

used to determine the number and especially the point in time of preemptions, in the

case of preemptive or cooperative scheduling and different priorities of both tasks.

Assuming another example, two tasks having the same periodic parameters as in

the previous example, i.e. inter-arrival time and offset, but the periodic parameters are

defined in different time bases and the time bases are not synchronized, meaning the time

bases can have a offset in time or a difference in progress of time1, however both in a

defined range. Then the bounded number of distances of the previous example change to

a bounded number of distance-intervals in the case of a variable offset between both time

bases. Additionally, the bounded number of distances of the previous example change

to a bounded number of preemptions with a defined distance-interval between successive

activations of the preempting task, resulting by the difference in progress of time.

The problem of multiple time bases for task response-time evaluation will be intro-

duced by an example. Assume, there is a singlecore system with four tasks. All tasks

are triggered in a periodic manner, however by two trigger sources. The task parameters

offset oi, inter-arrival time pi, and execution time ei for a task Ti = (oi, pi, ei) are shown

in Figure 6.1 for the task T1 = (0, 4, 1), T2 = (2, 4, 1), T3 = (4, 8, 3), T1 = (0, 24, 2). The

task priority is assigned in a rate-monotonic manner, therefore the following prioritiza-

tion T1 � T2 � T3 � T4 is applied, whereas Ta � Tb equates Ta has a higher priority than

Tb.

All tasks execute on the same processor, however task T1 and T2 are activated from

time base b1, whereas task T3 and T4 are activated from time base b2. Reasoned to

the allocation of periodic tasks to multiple time bases, which can be interpreted as non-

synchronized clocks, the phasing of periodic task activations has to be considered.

1Using the term clock from signal processing theory for the term time base, then in analogy the offset
represents the phase shift and the progress of time represents the frequency deviation between two time
bases.

67

6. Multiple Time Base Task Set Extension

Due to the phasing effect, the activation of periodic tasks of the same time base is

constant, i.e. between T1 and T2 and between T3 and T4, but the phasing of the activation

of periodic tasks of different time bases is variable, i.e. between T1 and T3 or T4, T2 and

T3 or T4, and the inversion of the previous.

1T 2T 3T 4T
1e  1e 3e  2e

4p 4p 8p 24p

0o 2o 4o 0o

1b
2b

Figure 6.1: Example of task activations from different time bases. Tasks are activated
in a periodic manner with an inter-arrival time p and an offset o. Task T1 and T2 are
activated from time base b1 and task T3 and T4 are activated from time base b2. All task
instances execute on the same processor.

For such kind of task activation, up to now there is no appropriate inter-arrival model.

Tindell [Tin92] proposed a periodic task set model with offsets which describes a similar

case. In this demand model, a system contains a fixed number of transactions (compa-

rable to time bases) and tasks are assigned to exactly one transaction. A transaction

is defined by a period, which equates the minimal distance between two sporadically or

periodically arriving transactions. Furthermore, each task has an offset, which defines

the task activation, relatively to the start of a transaction. Since the activations from

different transactions can have any phasing, this task set model is similar to the stated

problem. However, since each task is only activated once in a transaction, all tasks of a

transaction share the same period. This restriction makes the arrival model from Tindell

not applicable for the example in Figure 6.1.

Analyzing the response time of task T4 in Figure 6.1 with a sporadic task set model

[Mok83], assumes for the worst-case scenario that the first activation of all task arrives

at the same time (see Figure 6.2 A,) according to the critical instant theorem. This

produces a response time of RTi = 16. Analyzing such systems with a periodic task set

model with offsets [Tin92] produces a worst-case response time of RTi = 10. However,

the sporadic assumption is to pessimistic, because task offsets are neglected, and the

periodic assumption is to optimistic, because it assumes that the phasing between all

tasks is constant. Only, when the constant phasing between task T1 and T2 and between

T3 and T4 and the variable phasing between both groups is respected, the correct worst-

case response time of RTi = 11 returns. In the following, a task set extension is proposed,

which is able to model time bases and therefore increase the accuracy of response time

analysis approaches of such systems.

68

6.1 Multiple Time Base Extension

0 2 4 6 8 10 12 14 16 18 20 22 24

24 26 28 30 32 34 36 38 40 42 44 46 48

1T

2T

3T

4T

1T

2T

3T

4T

1T

2T

3T

4T

A,

B,

C,

0 2 4 6 8 10 12 14 16 18 20 22 24

Sporadic activation

Periodic activation

Multiple Time Base activation

t

t

t

Figure 6.2: Schedule sequence of worst-case response time of task T4 for different assumed
task set models. The sporadic task set model (A) assumes all tasks to be activated
simultaneously at critical instant, which results in an overestimated worst-case response
time R4 = 16 for task T4. The periodic task set model with offsets (B) results in an
underestimated worst-case response time R4 = 10. Only the consideration of time bases,
which defines that the first transactions T1 and T2 and the second transaction T3 and T4
are able to be shifted against each other, gives the correct worst-case response-time of
R4 = 11.

6.1.2 Extension

This section introduces the Multiple Time Base (MTB) extension. In MTB task sets,

tasks refer to a time base of the system. A time base models a task activation source

which triggers tasks with any activation pattern. However, the activation source is not

synchronized with the global time. Therefore, a difference in the frequency of the time

base and the global time transforms e.g. periodic inter-arrival times of the time base in

variable inter-arrival times in the global time. The time base models these differences and

allows to transform any activation pattern of the time base into the resulting activation

pattern in global time.

69

6. Multiple Time Base Task Set Extension

Additionally, all periodic tasks which belong to the same time base have a defined

phasing in their activation and tasks of different time bases have an undefined phasing

in their activation. This fact is important in regard of schedulability examination, be-

cause for the worst-case response time estimation task activation constellations have to

be considered (see critical instant theorem at singlecore scheduling, Section 4.3).

A system contains w time bases bv (v = 1, ..., w) and a task has a reference to exactly

one time base bv.

Definition 6.1

A time base bv is defined by

bv = fv(tv).

The frequency multiplier fv(tv) defines the gradient between the time tv of the time base

bv and the unique global time t at time tv.

fv(tv) =
dt

dtv

∣∣∣∣
tv

(6.1)

vt

t

1

1

2

3

4

5

6

7

8

9

10

11

12

2 3 4 5 6 7

Figure 6.3: Relation between time tv of time base bv and global time t.

Figure 6.3 shows for an example the progress of both times in a diagram. The x-axis

represents the time tv and the y-axis represents the time t. The dotted line shows the

case when both times would progress with the same speed. The continuous line shows the

graphical transformation from time tv to global time t. It can be seen, that a constant

distance in time base bv turns into a variable distance when this time is transformed to

70

6.1 Multiple Time Base Extension

global time.

The description of the dependency between time tv and time t by the differential

coefficient in Equation 6.1 has the following reason, illustrated by an example in Figure

6.4.

vt

t

io
i io p 2i io p

'io

,1' 'i io p

,1 ,2' ' 'i i io p p 

vt

v

dt

dt

Figure 6.4: Global time t as a function of tv (upper diagram) and derivative of t over tv.

The time base is used to model task activations, which are discrete events in the time.

Describing the complete function tv = f(t) is not necessary, which can be easily seen in

the figure. Only when an activation occurs, the corresponding global time has to be

determined. Therefore, it is possible to approximate the function tv = f(t) between two

successive activation points by a straight line. The differential coefficient of this sequence

of straight lines is a step function, as it is shown in the lower diagram of Figure 6.4. This

step function allows to model time base variations by a set of frequency multipliers and

time values where multiplier change.

A time tvi in time base bv can be transformed in the related time ti in global time by

equation 6.2.

ti =

tvi∫
0

fv(tv)dtv (6.2)

71

6. Multiple Time Base Task Set Extension

The integration of the frequency multipliers fv(tv) in the range [0, tvi] results in global

time ti.

However, a restriction of the minimal value of the frequency multiplier is necessary.

When the frequency multiplier would have values smaller zero, the time tv moves back-

wards, therefore this is a tight restriction. However, also for frequency multiplier values

equal to zero, tasks would have an inter-arrival time of 0 which results in an unbounded

task weight wt(Ti) = x
0 =∞. Therefore, the frequency multiplier is limited as follows.

Definition 6.2

For the time base multiplier, the following restrictions exist:

fv(tv) ∈ R≥0 ∀ tv, v

This limitation is only a formal restriction, because the inter-arrival time of a time

base can be normed by the frequency multiplier. Therefore, inter-arrival times are spec-

ified in a way that they have the minimal inter-arrival time at a frequency multiplier

fv(tv) = 1. However, this definition is beneficial for analysis purposes because pvi in

time tv is the minimal inter-arrival time pi in global time. Otherwise, the frequency

multiplier would have to be considered for the determination of the minimal inter-arrival

time, which is not necessary when the range of frequency multiplier is defined in this way.

Now it is shown how an activation pattern of a periodic task can be transformed from

tv to t. As task inter-arrival time pi and task offset oi of task Ti are defined in the time

tv of the time base bv, the task inter-arrival time p′i,j of the jth activation of the ith task

and the task offset o′i in global time t can be calculated by Equation 6.3 and 6.4 and the

preceding task activation ti,j−1.A.

p′i,j =

ti,j−1.A+pi∫
ti,j−1.A

fv(tv)dtv (6.3)

o′i(t) =

oi∫
0

fv(tv)dtv (6.4)

The MTB extension can be applied to all introduced demand models of Section 2.3.1,

because all introduced demand models allow to determine the inter-arrival time pi of

a task Ti. The recurrent demand model directly defines the parameter p for the inter-

arrival time. The arrival curve model defines only the inter-arrival time as a function

of any time interval. However, Kuenzli and Thiele introduced a method to generate

event traces from an arrival curve [Kue06]. The event trace generator uses an ON/OFF

72

6.2 Probabilistic Execution Time Model

traffic source, comparable to the approach introduced in [Bar98]. Since this event trace

includes absolute task activation times, task inter-arrival times can be derived and MTB

extension can be applied.

The hierarchical demand model requires that the inter-arrival time of the first task of

a task chain origins from a recurrent demand model or an arrival curve model. Therefore,

the inter-arrival time can be transformed analogously. All other tasks in the task chain

are indirectly affected by time base variations, because the execution of the time base

related task delays which results in a delayed activation of the other tasks in the chain.

6.2 Probabilistic Execution Time Model

There are two cases, where the mentioned BCET and WCET models for description of

the execution time are not sufficient. The first case is when systems are non-sustainable,

e.g. at global scheduling algorithms with dynamic priorities [LH94]. Then, the WCET

doesn’t necessarily cause the maximal response time and the BCET doesn’t necessarily

cause the minimal response time. Therefore, all values of the execution time between

worst-case and best-case can potentially lead to maximal schedule length.

The second case is when the probability of achieving a certain response time should be

determined. This can be used for example for reliability considerations, e.g. to determine

rates of deadline misses.

Then, representative scenarios have to be chosen and statistic analysis or measure-

ment methods of execution time determination have to be applied for these scenarios. In

general, multiple scenarios are measured in order to construct the distribution function.

Execution time variation results mainly from different code branches or the different

cycles of loops. Since only a limited number of branches exist and the duration for a

loop is often constant, also execution time variations have a limited number of possible

values.

However, cache misses and pipeline architectures also result in execution time varia-

tions. These variations have a smaller range and they are in general independent of the

code branch. Therefore, the number of possible execution times increases. In a simplified

assumption, a generalization of possible execution time values to all possible values with

a resolution of processor instruction processing speed can be assumed.

The probabilistic execution time (PET) is described by a probability function P () :

R → [0, 1]. The instance of an execution time ei,j of an instance of task Ti is randomly

generated by Pi(x), whereas Pi(x) describes the probability p of x = ei = Xi,j for an

instance value ei,j . The value Xi,j is part of {Xi}, representing the amount of all possible

instance values for ei. In the following, possible probability functions for the description

of execution time are discussed.

73

6. Multiple Time Base Task Set Extension

6.2.1 Discrete Probability Function

When measurements can be performed, the discrete distribution of execution time values

can be determined. The range of possible execution times is discretized into a number of

bins with a fixed size. The discrete pobability function PDi (x, emin, eδ, {pn}) (Equation

6.5) of a task Ti has the parameters lower bound of execution time emin, a bin size eδ, and

a list of probabilities {pn}. The probability pn for an value x follows following function:

PDi (x, emin, eδ, {pn}) = pn : (emin + (n · eδ) ≤ x < (emin + (n+ 1) · eδ) (6.5)

The nth probability value pn (n ∈ N0) indicates the probability of a value x lying in

the bin [emin + n · eδ, emin + (n+ 1) · eδ[.

6.2.2 Weibull Pobability Function

When it is not possible to extract a trace of execution times, a discrete distribution can

not be used. However, when statistic estimators like average, maximum, and minimum

execution time are available, a pobability function can be determined which approximates

the statistical estimators. The Weibull Probabilityfunction wb(x, λ, κ) is appropriate for

this purpose because it allows to change the mean and the probability of a certain value by

a shape and scale parameter. Therefore, it is possible to describe the execution time varia-

tion with modified parameter Weibull probability function PWB
i (x, emin, eavg, emax, pmax)

by the mentioned statistical estimators minimum emin, average eavg, and maximum emax

and an additional parameter which defines the probability of the maximum pmax.

The probability of the maximum randomly drawn variable of Weibull density function

wb(x, λ, κ) is necessary, because wb(x, λ, κ) is 1 for limx→∞. Certainly an upper bound

of the generated values is necessary when using a probability function for the description

of execution time variations.

Therefore, an approximation is applied which defines the probability of the max-

imum value and determines Weibull parameters for the Weibull probability function.

Afterwards, when values are generated from this Weibull probability function, values

exceeding the maximum value are removed from the list of generated values.

The Weibull density function WB(x, λ, κ) [RK08] has the three parameters: proba-

bility x, shape parameter κ, and scale parameter λ.

WB(x, λ, κ) =

{
κ
λ

(
x
λ

)(κ−1)
e−(xλ)

κ

x ≥ 0

0 x < 0
(6.6)

Now, an approach to determine shape and scale parameter from statistical estimators

of maximal execution time emax, minimal execution time emin, and average execution time

eavg is introduced. The approach approximates shape and scale parameter by an iterative

procedure, and uses the average value of the Weibull density function and the cumulative

distribution function for the Weibull distribution.

74

6.2 Probabilistic Execution Time Model

The average value of the Weibull density function [LNR99] can be derived by Equation

6.7.

xavg (κ, λ) = λ · Γ
(

1 +
1

κ

)
(6.7)

Γ(z) denotes the gamma function2 which can be determined efficiently by Taylor

series expansion.

The Weibull distribution function [Gum04] is shown in Equation 6.8. It describes the

normalized probability measure and is the integral of the Weibull density function.

wb(x, λ, κ) = 1− e−(xλ)
κ

(6.8)

When Equation 6.7 is rearranged the following equation is derived:

λ =
xavg

Γ
(
1 + 1

κ

) . (6.9)

The probability plimit that a drawn value exceeds a certain value xlimit calculates by

Equation 6.10.

plimit = 1− wb(x) = e−(xlimit
λ)

κ

(6.10)

By a combination of these formulas, λ and κ parameters can be derived from the

distribution data: average value xavg, probability at limit plimit, and a limit value xlimit.

Replacing λ in Equation 6.10 by Equation 6.9 results in the following equation:

plimit = exp

(
−
xlimit · Γ

(
1 + 1

κ

)
xavg

)κ
(6.11)

Since Equation 6.11 can not be solved analytically, a numerical approximation ap-

proach has to be applied. The approach, comparable to the nested interval approach

[KW95], starts with the smallest value of κ = 1 and then adds 1 to κ with each step,

until Equation 6.11 delivers a value which is higher than the defined plimit. Then 1
2(n−1)

is subtracted from κ, where n is the number of iterations which produce a plimit which

is higher than the defined value. In the next step the value 1
2(n)

is added until plimit is

higher than the defined value and the approach subtracts 1
2(n−1) from κ with n = 2. This

procedure repeats until the deviation between the determined and the defined value of

plimit is smaller than ε.

In the following, the application of the mentioned execution time estimators for the

calculation of the Weibull distribution function parameters is shown.

2Γ (z) =
∞∫
0

tz−1e−tdt

75

6. Multiple Time Base Task Set Extension

The first modification concerns the minimum value of the Weibull density function

which is 0. Since the minimum execution time of a task is in general higher than 0, the

Weibull density function has to be shifted. Therefore, average and maximal execution

time are shifted by the minimum execution time.

e
′
avg = eavg − emin (6.12)

e
′
max = emax − emin (6.13)

Both values, combined with the probability pmax of values exceeding e
′
max, are inserted

in equation 6.11:

pmax = exp

(
−
e
′
max · Γ

(
1 + 1

κ

)
e′avg

)κ
(6.14)

When the parameter κ is calculated, λ can be determined by Equation 6.7. Then,

the Weibull probability function of the execution time for statistical estimators can be

derived by adding emin to Equation 6.6.

WB(x, λ, κ, emin) =

 κ
λ

(
x−emin

λ

)(κ−1)
e
−
(
x−emin

λ

)κ
x ≥ emin

0 x < emin

(6.15)

wb(x, λ, κ, emin) = 1− e−
(
x−emin

λ

)κ
(6.16)

Finally, the problem of the different shapes of Weibull density function is considered,

when the mean value eavg is higher or lower than the average value of minimum emin

and maximum emax, in the following mentioned as average of bounds bavg. When this

problem is not obviated, the shape of the Weibull density function differs as shown in

Figure 6.5.

When the average value increase beyond bavg the Weibull density function approx-

imates (but is not equal) to a Dirac delta function, which results in a high density at

the average value and a low density over the other values. In Figure 6.5 the difference

can be seen: although both curves have an average value differing 30 from minimum and

maximum bound respectively, the density function with eavg = 80 has fewer values near

the average value than the density function with eavg = 270. For higher values of eavg

the Weibull density function has nearly all values at eavg which doesn’t confirm to the

required shape of the distribution function, delivering values over the complete range

between emin and emax.

Following mirror approach can be applied, to solve this problem:

1. When eavg > (emax−emin
2),

2. set e
′
avg = emax − eavg,

3. calculate Weibull parameters κ and λ by Equation 6.14, and

76

6.2 Probabilistic Execution Time Model

50 100 150 200 250 300

0.
00

0.
01

0.
02

0.
03

xAxis

yA
xi

s

mw=80
mw=270

Figure 6.5: Example for different shapes of Weibull density function for equal minimal
and maximal value and different average values.

4. determine mirrored values according to:

WB(x, λ, κ, emin, emax) = emax −

 κ
λ

(
x−emin

λ

)(κ−1)
e
−
(
x−emin

λ

)κ
x ≥ 0

0 x < 0
(6.17)

When this approach is applied, a mirrored Weibull density function for equal absolute

distances of eavg from average of bounds can be determined, as shown in Figure 6.6.

50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

xAxis

yA
xi

s

mw=80
mw=270

Figure 6.6: Example for corrected shapes of Weibull density function for equal minimal
and maximal value and different average values.

77

Chapter 7

Global Multicore Scheduling

This chapter focuses on global scheduling algorithms for complex task sets with time base

triggered arrival pattern and variable execution time of non-preemptive task sections, on

multicore processors. For these task sets, especially used in automotive powertrain sys-

tems, a non-work-conserving [DMM+10] and a work-conserving [DMMN10] cooperative

scheduling algorithm is presented.

7.1 Partly Pfair Approach

This section introduces extensions of Pfair scheduling which consider the following prop-

erties of Pfair: (i) Pfair is a preemptive scheduling algorithm, (ii) Pfair requires that

scheduling events and task activation enter at time quanta, (iii) Pfair requires tasks to

have constant execution times, (iv) Pfair requires implicit task deadlines.

7.1.1 Drawback of Pfair scheduling

One widely discussed drawback of Pfair scheduling is the high number of context switches

[ZMM03, BCL09, CG06], which occur due to a high number of preemptions (i). At any

point during task execution a preemption can occur, causing a context switch. Several ac-

tions are required at context switching, dependent on processor architecture and software

application. Saving process register, stack pointer, and further registers of the current

task is required for every software architecture. The duration for these actions can be

assumed to be independent of the preemption point. A further action is the recovery of

missing cache data for the next running task, where the size of data depends on task data

and the current position in task execution. In Pfair scheduled systems, scheduling events

occur at each time quantum, defined by the quantum size Q. It seems as if task preemp-

tion points are predictable, because the time between two schedule events is constant.

However, different code paths and different task input signals result in different program

paths. Therefore, the size of required data (and therefore also the possibly missing cache

78

7.1 Partly Pfair Approach

data) at preemption point is not predictable. Without a prediction of preemption points,

there is no way to improve the cache related context changing overhead by reducing re-

quired data after a task preemption.

A further disadvantage of Pfair scheduling is that task activation and scheduling

events only occur at time quanta (ii). Also when Baruah et al. did not mention how to

choose the quantum size, certainly the time quanta size has to be a multiple of the instruc-

tion processing speed resolution. For short time quanta the high number of scheduling

events results in increased context switching overhead, as mentioned above. In contrast,

a high quantum size is disadvantageous when using sporadic task sets with original Pfair

scheduling, because the time until an activated task becomes scheduled can be as large as

Q time units. For tasks with an initial laxity1 lower than Q this could lead to a deadline

miss.

The most critical limitation of Pfair scheduling is a constant task execution time

(iii), which can not be held in practical systems. Devi and Anderson [DA05] analyzed

the effect of this limitation. They assumed that a task quantum can be smaller than one

quantum Q and the schedule decision starts after this fraction of a task quantum has

been finished. Under this assumption, they proved that task deadlines are violated by at

most one quantum Q, therefore Pfair can be applied for soft real-time task sets.

A further limitation of Pfair is the demand for implicit deadlines (iv). Task set

models with explicit deadlines allow to define more realistic temporal requirements, for

example in an automotive brake system the minimum time between braking events may

be considerably larger than the required braking-reaction time.

7.1.2 Partly Pfair

In order to overcome the mentioned disadvantages i−iv of Pfair scheduling in the previous

section, this work proposes the scheduling model Partly Proportional fair (Partly-Pfair)

[DMM+10]. The term partly implies that this algorithm does not fulfill the proportional

fair bounds (Equation 3.7) but applies a transformation of MTB task set parameters

in order to calculate the scheduling policies. Furthermore, the occurrence of schedul-

ing events is modified, which changes the preemptive scheduling of tasks to cooperative

scheduling of non-preemptive task sections.

Partly-Pfair is the adaptation of Pfair to MTB task sets, introduced in Section 6.1.

In the following, the transformation from MTB task set parameters to Pfair conforming

parameters is shown.

1difference between deadline and execution time

79

7. Global Multicore Scheduling

For MTB task sets, the minimal task inter-arrival time is characterized by Ti.p in

time base time. For MTB task sets, arbitrary deadlines are allowed. It is assumed that a

job of a task has to be finished at task deadline or at least when the next task activation

occurs. FI(Ti) denotes the finalization time, meaning the minimum of the absolute task

deadline and the next task activation.

FI(Ti) = min(Ti.d, Ti.p) (7.1)

At MTB task sets task execution time is split into task sections. For Partly-Pfair,

the maximal task section execution time is defined as follows, whereas Q equates the

quantization:

T ki .e ≤ Q ∀i, k. (7.2)

It is assumed that execution time can be variable during runtime. Additionally the

exact execution time can not be known prior to execution2. Therefore, this work uses the

maximal task section execution time T ki .e = Q ∀T ki ∈ Ti for the calculation of Partly-

Pfair scheduling policies. Together with the definition of the finalization time FI(Ti),

the modified task weight w′(Ti) calculates by Equation 7.3.

wt′(Ti) =
|{T ki }|⌊
FI(Ti)
Q

⌋ (7.3)

The modified weight is a transformation of MTB task set characteristics to Pfair task

set restrictions. Since task deadlines Ti.d and minimal inter-arrival times Ti.p are allowed

to have arbitrary values, using the exact value of the minimum of both FI(Ti) could result

in a task weight which can not be allocated to an integer number of task sections (see

Equation 3.9 and 3.10). Therefore, the floor function bxc is applied, which returns an

integer smaller or equal to x. In order to get a quantized value, the floor function is

applied to the quotient of FI(Ti) and Q and the result is multiplied with Q. The floor

function guarantees that fluid schedule assigns task execution time to processors in a

way that a task job finishes before deadline or next task activation. Furthermore, the

execution time Ti.e derives from the number of task sections |{T ki }| multiplied with Q,

in order to achieve a correct weight. The modified weight wt′ is used to calculate the

modified pseudo-release time r′(T ki) and the modified pseudo-deadline d′(T ki):

r′(T ki) =

⌊
k − 1

wt′(Ti)

⌋
(7.4)

d′(T ki) =

⌈
k

wt′(Ti)

⌉
(7.5)

2 Unless the algorithm has forecasting mechanisms for execution times

80

7.1 Partly Pfair Approach

All other policies used for the Pfair algorithms can be applied in the same way as

with Pfair task set characteristics.

The overlapping bit b′(T ki) for Partly-Pfair Scheduling is determined by replacing the

task weight wt(Ti) in Equation 3.12 with the modified task weight wt′(Ti), as shown in

Equation 7.6.

b′(T ki) =

⌊
k

wt′(Ti)

⌋
−
⌈

k

wt′(Ti)

⌉
(7.6)

The group deadline D′(T ki) derives from replacing wt(Ti) with wt′(Ti) in Equation

3.13 and 3.14, as shown in Equation 7.7 and 7.8.

D′(T ki) =


⌈⌈

l
wt′(Ti)

⌉
· (1− wt′(Ti))

⌉
1− wt′(Ti)

 if 0.5 ≥ wt′(Ti) < 1 (7.7)

D′(T ki) = 0 if 0 < wt′(Ti) < 0.5 (7.8)

To overcome the mentioned restriction to preemptive scheduling (i), Partly-Pfair sched-

ules task sections in a non-preemptable manner. Non-preemptable scheduling has been

shown in several work as efficient method to limit context switching overheads [BW97,

LLL+98, GMM99, BLV09, YBB10, BBM+10]. Pfair allows to preempt tasks at each

time quantum. Since task activation times can occur at any time for MTB task sets, the

limitation to synchronized periodic task activation at time quanta is removed:

Partly-Pfair allows to preempt tasks only at task section ends. Whenever a task sec-

tion has finished the scheduler assigns a ready task sections to the free core.

Furthermore, this also allows sporadic task activation where Ti.p represents the mini-

mal inter-arrival time of a sporadic task. A similar extension, called intra-sporadic release

[AS00b], allows task quanta to be released late. An example of such an application is a

multimedia system in which packets may sometimes arrive early or late [AS00b].

The definition of variable task section execution times which are smaller than Q is

a generalization of the desynchronized variable quanta (DVQ) model, proposed by Devi

and Anderson [DA05]. This allows a task to have an execution time, where the last task

quantum has an execution requirement less or equal Q.

Example Partly-Pfair-PD2

Figure 7.1 shows an example of a Partly-Pfair-PD2 schedule on a singlecore processor,

using slightly modified task properties, compared with the task properties of the Pfair-

PD2 example in Figure 3.5. Tasks T1 and T2 have task sections with an execution time

T k1 .e, T
k
2 .e ≤ Q ∀k. Task T1 originates from a desynchronized periodic task set with task

81

7. Global Multicore Scheduling

parameter T1.o = 0.5 and T1.p = 10.

At timestamp 0 only task section T 1
2 is pseudo-activated and executes.

Between timestamp 0 and 1, after task section T 1
2 has finished (Figure 7.1, black star),

T 1
1 is activated and task section T 2

2 has not reached its pseudo-activation. Therefore,

task section T 1
1 is executed.

A scheduler call occurs each time when a task section has finished. When there is no

pseudo-activated task section available for execution, an additional scheduler call (Figure

7.1, gray star) is set at the next pseudo-activation time, e.g. at time 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3

2

1

0

6

5

4

3

2

1

0

t

*
* *

*
*

* *

*

* *
*

*

async.
*

*

*

*

*

*

1
6'

10
wt T

2
3'

7
wt T

*

2.T e

1.T e

t

Idle

time

*

Figure 7.1: Example of a schedule of algorithm Partly-Pfair-PD2. In the upper diagrams,
the x-axis represents the time and the y-axis the processed execution time of a task. The
lower diagram shows when the processor is in the idle state.

7.2 Partly Early Release Fair Extension

Partly-Early Release Fair (P-ERfair) [DMMN10] is the application of ERfair schedul-

ing to the concept of Partly-Pfair scheduling. The transformations of MTB task set

parameters to Pfair scheduling are applied in the same way at P-ERfair. The modified

weight wt′(Ti) is calculated by Equation 7.3 and the modified pseudo-deadline d′(T ki) is

calculated by Equation 7.5. However, P-ERfair removes the modified pseudo-activation

time r′(T ki) and allows a task sections to execute whenever the previous task section

has finished. This makes P-ERfair a work-conserving algorithm. All other policies, e.g.

overlapping bit and group deadline for PD2, are equal to the policies of Partly-Pfair.

82

7.2 Partly Early Release Fair Extension

Example P-ERfair-PD2

As an example, the Partly-Pfair-PD2 example from Figure 7.1 is shown in Figure 7.2

as schedule of P-ERfair-PD2. At time stamp 0 only task T2 is activated and therefore

task section T 1
2 is executed. Between time stamp 10 and 11, after task section T 3

2 has

finished, T 2 has finished execution and task T1 is not activated. As there is no task ready

for execution, the processor changes to the idle state and the scheduler waits until the

next call occurs, which happens when task T1 is activated the second time. It can be seen

that the time when the processor is in the idle state is summarized at P-ERfair-PD2,

whereas it is distributed over the execution time at Partly-Pfair-PD2. In the case study

in section 10.4 it will be shown that this effect of P-ERfair-PD2 is beneficial, when the

robustness against perturbations is considered.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3

2

1

0

6

5

4

3

2

1

0

t

*
*

*
*

*

*

*
*

*

async.

*

*

*

*

*
*

1
6'

10
wt T

2
3'

7
wt T

1.T e

2.T e

*

t

Idle

time

Figure 7.2: Example of a schedule of algorithm P-ERfair-PD2. In the upper diagrams,
the x-axis represents the time and the y-axis the processed execution time of a task. The
lower diagram shows when the processor is in the idle state.

83

Chapter 8

Simulation-Based Multicore

Real-Time Examination

This chapter describes a method for examination of temporal properties of real-time sys-

tems by use of discrete-event simulation [Deu08, DSM+10b, DHM+10, DM10]. The sim-

ulation model is more detailed and more practically oriented than the abstract real-time

system model in Chapter 2.1 in order to study overhead effects and allow an extension

of model components and properties, e.g. different task activation patterns. After an

introduction to discrete-event simulation, the simulation model is explained in two parts.

The first part introduces all components and their relation, mentioned as the architec-

ture model . The second part explains how the components interact with each other,

mentioned as the behavioral model . Afterwards, a metric is introduced which allows a

quantitative evaluation of the deadline compliance for a complete task set and the simu-

lative examination of this and further metrics is shown. Finally, some information of the

technical implementation is given.

8.1 Discrete-event Simulation

Discrete-event simulation has two characterizing properties according to the simulation

model parameters: the discretization of values of a model parameter and the discretiza-

tion of the time when values change, called event.

The term discrete concerns the discretization of acceptable values of parameters. In

comparison, continuous systems, e.g. analog electronic components, give a response on

inputs which can have arbitrary granularity of parameters. Discrete systems, e.g. digital

electronic components, have a defined granularity of parameters.

The term event concerns the time of a change in the value of a parameter. In a

discrete time system, the event has a time stamp of the time of occurrence, denoted as

event time. This time is also discretized and therefore events can take place only at

discrete time stamps. The non-discretized approach has immediate changes of values.

84

8.2 Architectural Model

The discrete-event model comes very close to an embedded system, where mainly

digital components are used. The parameter granularity is defined by the data type

resolution, namely the number of bits. The time granularity is defined by the processor

frequency.

The model of the discrete event simulation consists of a number of components.

Each component model has a state machine to describe its behavior and input and

output interfaces, required to interact with other components. In interaction with other

components, it is possible to perform state transitions, where the interaction is based on

events. An event has an event time, which defines the time of occurrence of an event, a

signal which is necessary to differ between multiple interactions between two components,

and a value which gives additional information to the signal. The input interface of a

component accepts only a limited number of incoming events and the output interface

sends only a limited number of outgoing events.

Furthermore, this work extends the state machine model with delayed events. Stan-

dard state machines only know one type of events which are processed in order of trigger

time. However, for the simulation of real-time systems it is necessary to model the elapse

of time, e.g. for the execution of task. For this purpose it is distinguished between

immediate events and delayed events.

Immediate events change the state of the receiving component straight after the

occurrence of the event. Therefore, the time stamp of the event is equal to the time

stamp of the state change. If a state transition triggers another immediate event, there

is no delay between the event time of both events.

Delayed events change the state of the receiving component at a defined time in the

future. Since a typical state diagram does not allow to model delayed events, in Section

8.3.1 the simulation sequencer is introduced which receives all delayed events and sends an

immediate event when delay time has passed. In the meantime, the receiving component

stays in the current state and is also able to receive further events. A delayed event can

be modified by the component which registers the event at the simulation sequencer, e.g.

when a core registers a delayed event for the finalization of a task execution but the task

is suspended during execution, then the finalization time of the old task is replaced by

the finalization time of the new task.

For the chronological correct triggering of all delayed events, the simulation sequencer

has an event queue of all received delayed events and sorts them by their event time.

When the global time is equal to an event time, the state transition of the receiving

component enters at the component.

8.2 Architectural Model

The architectural model of the simulation includes four subsystems: a hardware subsys-

tem, a software subsystem, a stimulation subsystem, and an operating system subsystem.

85

8. Simulation-Based Multicore Real-Time Examination

These models have a number of components, shown in Figure 8.1. After a short intro-

duction of the different components, the necessity of this fragmentation is discussed in

the remainder of this section and in Section 8.3.

The hardware subsystem has a number of cores and quartz oscillators, where one

or multiple cores of a processor are assigned to a core cluster. The operating system

subsystem models the scheduling of tasks (by a scheduler) and the scheduling of ISRs (by

a dispatcher). A scheduler controls a core cluster and is able to allocate tasks, which are

assigned to this scheduler, to all cores of the core cluster, as long as the scheduling model

allows migration. The dispatcher decides whether the allocated task executes, when there

is no waiting ISR, or which ISR executes, when multiple ISRs wait for execution. The

software subsystem is extended with ISRs to model interference of available processor

capacity on task scheduling, e.g. for robustness considerations. It contains the execution

time description of all processes. Tasks are mapped to a scheduler, which allocates task

instances to the cluster of cores, ISRs are mapped statically to cores. The stimulation

subsystem describes the activation pattern of processes.

8.2.1 Stimulation Subsystem

The triggering of tasks and ISRs is modeled by a stimulation subsystem. A stimulus

component has a connection to one or multiple trigger targets. At each trigger of the

stimulus, the related trigger target gets a signal. The stimuli are used to model the

activation of tasks and ISRs.

8.2.2 Software Subsystem

The software subsystem contains the components ISRs, tasks, and runnables. A runnable

abstracts the execution demand of an entity of program code, e.g. a function call, by a

number of instructions. Additionally a runnable is able to contain a functional code which

is performed after execution of all instructions. The simplification of performing the

functional code after all instructions have been executed is a trade off between simulation

complexity and temporal accuracy. For a more detailed analysis it would be possible to

sub-divide runnables in code fractions. This would allow a higher degree of accuracy,

because functional code fractions would define the time granularity. Unfortunately this

leads to a much higher number of simulation steps, which is not justified in this work,

since the functionality is only considered at scheduler routines.

In practical systems, runnables are sub-parts of a functionality. Therefore, multiple

runnables have to be executed in a defined order or a runnable has to be executed at

multiple positions of the application1. Therefore, runnables are composed2 in task sec-

1E.g. when the runnable contains a basic functionality, which is required at multiple parts of the
application.

2This work uses composed or composition of objects to indicate that multiple other objects can have
a reference on the same objects.

86

8.2 Architectural Model

Stimulation Subsystem

Software Subsystem

Operating System Subsystem

Hardware Subsystem

Scheduler

Dispatcher

Core Cluster

Core

Task

Task Section

Runnable

ISR Set

Task Set

Stimulus

ISR

Quartz Oscillator

Figure 8.1: Subsystems and components of the discrete-event simulation. The real-
time system is divided in the subsystems: stimulation, software, operating system, and
hardware. The extension of this model in comparison to singlecore systems [AUT10] are
multiple cores, which are arranged to core clusters. Each core cluster has a scheduler
which allocates the tasks, managed by this scheduler, to the cores of the core cluster.
Quartz oscillators are mapped to cores in order to provide the clock for the processing
frequency.

tions in a sequential order. Task sections itself are aggregated3 to tasks. The subdivision

of tasks in task sections allows to build cooperative scheduling, as explained in Chapter

3.1.

In difference to the task model, the ISR model only includes one section. Nevertheless,

ISR model allows to allocate a composition of multiple runnables in this section.

8.2.3 Hardware Subsystem

The hardware subsystem consists of a number of quartz oscillators and a number of cores.

The quartz oscillators are connected to the cores to provide the frequency for instruction

3This work uses aggregated or aggregation of objects to indicate that only one object can have a
reference on the same object.

87

8. Simulation-Based Multicore Real-Time Examination

processing speed. The explicit model of quartz oscillators allows to simulate the effect of

instruction processing speed variation, how it is used for energy saving purpose.

8.2.4 Operating System Subsystem

The operating system is divided in two parts, one part for tasks and one part for interrupt

service routines (ISRs). A scheduler prioritizes tasks and allocates them to a cluster of

cores. The interrupt handler prioritizes ISRs at cores, which are statically allocated to

cores.

Task have additional properties, required for scheduling decision. These properties

are the task deadline, and the algorithm specific properties static priority, task group,

and MTA4 for OSEK scheduling and assumed execution time and assumed inter-arrival

time for the group of Pfair and Partly-Pfair algorithms. Further scheduling policies can

be derived from these values. It is important to distinguish between the real and the

assumed execution time and inter-arrival time. At scheduling decision, some parameters

are not known ahead like the execution time, because it depends e.g. on the executed

path or on cache misses. Furthermore, the inter-arrival time can be indeterministic due

to external influences. Therefore, assumptions, i.e. forecasts, of these parameters are

required. These assumed parameters can either be static or variable, e.g. when using

on-line forecast or interpolation mechanism.

ISRs have the priority as additional parameter. It is assumed that all ISRs are non-

migrating with the only exception of the ISR of a global scheduling algorithm, which is

able to allocate its instance at scheduling request to any core. Further information is

introduced in Section 8.3.5.

8.3 Behavioral Model

For the purpose of the explanation of the simulation behavioral model, an own definition

of state diagrams is used to describe the internal behavior and a symbolic model describes

the component interaction. The state diagrams contain states which can be changed by

a transition. A regular transition is triggered by an event, a conditioned transition is

triggered when a certain condition is true, or an unconditioned transition is triggered

after the operations of the previous state finished.

All components start in the initial state (INIT). If and only if a component exists for

a fraction of the simulated time, it also has a final state. For example, this applies to

process instances, which are initialized at the activation and destroyed at the finalization.

4Multiple Task Activation (MTA) limits the number of concurrently existing task instances of one
task and is used in many practical systems for bounding of overhead.

88

8.3 Behavioral Model

The behavior of the component is described by state diagrams and the following

notation:

A
X−→ B

denotes an event X, which is sent from component A to component B at performing a

state transition;

B −→
X

A

denotes an event X, which is received from component B by component A and probably

results in a state transition.

Figure 8.2 shows an example of the graphical description of the behavior of two

components A and B. Component A sends event E1 to component B, which can be seen

in the description above the state diagrams. Additionally component A sends event E2

to component C and receives event E3. Component B receives event E1 from component

A.

When component A is assumed to be in STATE A and event E3 enters, the event E1

is sent to component B and component A changes into STATE B. The entry of event E1

cause component B to change from STATE A to STATE B.

Component A has a non-conditioned state transition STATE B into STATE C (sig-

nalized by a dot at leaving state), therefore event E2 is triggered immediately. A transi-

tion which is conditioned on an internal property of the component is represented by a

condition σ, e.g. at component B the transition from STATE A into STATE B.

Component BComponent A

STATE A

1E
A B

STATE B

STATE A

STATE B1E
A B

STATE C

2E
A C

1

A

1E

B

2E

C A
1E

B

3E
C A

3E

Figure 8.2: Example of the description of a behavioral model.

89

8. Simulation-Based Multicore Real-Time Examination

The following sections describe the behavior of the simulation components with this

notation. Before introducing the different components of the simulation, the mechanism

of the simulation sequencer is shown, which is necessary to arrange all delayed events in

the correct chronological order.

8.3.1 Simulation Sequencer

As already mentioned in Section 8.1, the discrete-event simulation has immediate and

delayed events. The objective of the simulation sequencer is to trigger all delayed events

in the correct order. Whenever a simulation component sends a delayed event, this event

is registered at the simulation sequencer. The simulation sequencer sorts all delayed

events in increasing order, sets the global time to the time of the next delayed event, and

triggers the event. A component is able to simultaneously register only one delayed event.

When a component registers a new delayed event, although it already has registered an

event, the old trigger time is replaced by the new trigger time.

SORT

TRIGGER

INIT

TSim U

U
Sim ()R t

T

END

()R t
U Sim

()R t
U Sim

    2 : 0x next ENDt t t    

()ENDStart t

1

    1 : 0x next ENDt t t    

2

Cl

()S t

()nextS tSim Cl

()U t
U Sim

()U t

()ENDStart t
Sim

Figure 8.3: State diagram of simulation sequencer.

Figure 8.3 shows the state diagram and the interacting components of the simulation

sequencer. The simulation sequencer SIM interacts with user components U by the

events register event R(t), unregister event U(t), and trigger T , with the clock component

Cl by the event set time S(t), and with the simulation environment by the event start

Start(tEND), which sets the maximal simulation time tEND.

90

8.3 Behavioral Model

A user component registers delayed events at the simulation sequencer. The event

R(t) sets the event time t of the next delayed event for the registering user component.

The event T executes the registered delayed event and sets global time to time t. The

clock component provides the global time to all simulation components, but only the

simulation sequencer is able to increase the global time by S(t).

In INIT state, user components U are able to register a delayed event at the simulation

sequencer Sim. For example, a stimulation component registers its next trigger time.

When the simulation starts (signal Start(tEND)), the simulation sequencer changes in

the state SORT. Whenever entering SORT, all registered delayed events {t} are sorted

by increasing event time t. When two delayed events have the same event time, they

are causally sorted according to the order of registration. After finishing sorting, it is

distinguished between the condition σ1 and σ2. The simulation sequencer change to state

END, when condition σ1 holds. It means that there is no registered event or the next

event time tnext exceeds tEND. The simulation sequencer changes to state TRIGGER

when σ2 holds. This means that there is at least one delayed event and the event time

tnext of this event is before or equal to tEND. When changing to state TRIGGER, the

sequencer changes the time at Cl to tnext. Afterwards the delayed event is triggered at

the related user. In state TRIGGER, users U are able to register new delayed events

R(t) or unregister U(t) existing delayed events. A simulation user component, getting

triggered by a delayed event, is able to send immediate events with the same time stamp

also to other components, which itself are able to register or unregister delayed events at

Sim. When all immediate events are triggered and all delayed events are registered at

Sim, the simulation sequencer changes again to state SORT.

8.3.2 Stimulation Subsystem

The stimulation component S is connected to the simulation sequencer Sim and one or

multiple trigger targets TT . S receives the trigger event T from the simulation sequencer

and sends the register event R(t) to register a delayed event. The trigger target receives

the fire event F .

Figure 8.4 shows the behavioral model of the stimulation component. The stimulation

component models the recurring firing events F through a recurring registration at Sim.

When the stimulation component is initialized, it sends the registering event R(t) for

the firing time t = t0 (t0 equates the first firing time). Afterwards S changes to state

WAIT. When the stimulation component receives the trigger event T from simulation

sequencer (the global time has progressed to firing time t0), all trigger targets receive

the fire event F , and the stimulation component changes to state TRIGGER. Afterwards

the stimulation component registers the next firing event. When tj is denoted as the jth

time of the firing event of a stimulus component, then the time of the next firing event

tj+1 is registered at SIM by the event R(tj+1) and the stimulation component changes

to state WAIT. This process repeats for the complete simulated time.

91

8. Simulation-Based Multicore Real-Time Examination

WAIT

TRIGGER

INIT

1()jR t
S Sim

0()R tS Sim

T
Sim S

FS TT

S Sim

TT

()R t

T

F

Figure 8.4: Behavioral model of stimulation component.

Since this work considers in the simulation model tasks and ISRs, the stimulation

component, implementing the introduced task execution time demand models of Chapter

2.3, is extended to ISRs.

The time between tj and tj+1 depends on the task execution demand model. Since

all introduced models from Chapter 2.3 describe the task execution demand pattern in

a way that this time can be derived, all mentioned models can be simulated. However,

for this study, only the periodic model is used, with probability function extension, to

model stochastic behavior, and multiple time base extension, to model task activation

dependencies.

A fire event denotes the action when a stimulus triggers its target. The time, when

the jth trigger event5 enters is denoted as tj , and the time interval between two trigger

events j − 1 and j is denoted as inter-arrival time δj = tj − tj−1.

Periodic Model:

The simplest stimulation model is the periodic request pattern. All fire events have

the same inter-arrival time δ, equal to the inter-arrival time p, except the first one, which

fires after offset o has passed, measured from simulation start.

δPeriodicj =

{
o j = 1

p ∀j > 1
(8.1)

5The index j is used for multiple components of the simulation model, whenever the instance of an
object or the entry of an event is described.

92

8.3 Behavioral Model

Probabilistic Jitter Extension:

The inter-arrival time results from a periodic model and a probability function p(x).

δPj =

{
o+ p(x) j = 1

p+ p(x) ∀j > 1
(8.2)

This work uses the probabilistic distribution functions: uniform pu(x), Weibull pwb(x),

and a discrete probability function pd(x). A pseudo-random number generator produces

numbers x according to the probabilistic distribution functions. The generated sequence

of numbers has to fulfill a number of quality criteria, e.g. the spectral test to prove the

independence of the generated numbers. Furthermore, the period time when a sequence

of numbers repeats should be as long as possible for long simulation times. Therefore, the

Mersenne twister is used, introduced in [MN98], which has a prime period of 219937 − 1

and fulfills necessary statistical test.

Multiple Time Base Extension:

Section 6.1 introduced the multiple time base (MTB) extension which allows to model

a modification of task activation patterns for a subgroup of tasks in a task set. The

extension can be applied to any of the introduced arrival models from section 2.3.1 by

application of the following approach. The inter-arrival time which origins the arrival

model X is denoted as δX .

The MTB extension defines a frequency multiplier fv(t) as a function of the global

time t. The variation of fv(t) is modeled as a list of 2-tuples (tvi , f
v
i). Whenever time

tvi enters, all stimuli which are related to the time base bv apply the following rule to

determine the new inter-arrival time δX
′

j by use of the previous activation time tj−1:

δX
′

j (t) = (t− tj−1) + ((tj−1 + δXj)− t) ∗ fv(t). (8.3)

Afterward δXj (t) is set to δX
′

j (t). When a modification of the time base enters until

next activation, Equation 8.3 can be applied in the same way.

The unmodified inter-arrival time δX derives from the inter-arrival model X as ex-

plained in Section 6.1.

8.3.3 Software Subsystem

This section defines the software model of the real-time system, which is deduced from

the task set model of section 2.2.1.

In many real-time systems, timing requirements, i.e. deadlines, for the separate parts

of the software are distributed over a high range, e.g. in automotive powertrain systems

in an interval of [10−3, 103] milliseconds [MNW10]. In order to allow tight response times,

especially for the software parts with deadlines near to the lower limit, there is a multi-

level scheduling of processors. The parts of the software with short timing requirements

93

8. Simulation-Based Multicore Real-Time Examination

are realized as Interrupt Service Routines (ISRs), having a reduced context-switching

overhead and a limited access on time intensive operating system functions. All other

parts of the software are realized as tasks. ISRs are mostly statically allocated to cores

and a static priority is assigned for scheduling decisions (ISR scheduling is managed by

the dispatcher) in order to minimize the delay of online scheduling decisions, whereas

tasks can be scheduled by any scheduling algorithm (task scheduling), allowing a better

usage of the available processing capacity. At each time of scheduling decision, a waiting

ISR is preferred over any task, in order to allow tight ISR response times. This type

of scheduling, which prefers decisions of one scheduler (for ISRs) over the decisions of

another scheduler (for tasks), is a subgroup of hierarchical scheduling [DB05].

Since ISRs and tasks have the same stimulation and processing model but different

scheduling policies, this work generalizes ISRs and tasks to a processes model and extends

this model by a set of individual parameters for scheduling decision of ISRs and tasks.

Additionally, tasks can have multiple task sections for non-preemptive scheduling of parts

of the execution time (see Section 2.2.1), whereas ISRs have only one section due to full-

preemptive scheduling. Generalizing ISRs and tasks to processes has the benefit of a

variable assignment of software parts to the dispatcher of ISRs or the task scheduler by

adding the corresponding schedule parameters. Furthermore, the stimulation model and

the determination of real-time metrics (see Section 4.1.2) can be applied in the same way.

When a stimulus sends a fire event to a process, i.e. activates a process, a process

instance is generated. The instantiation of a process is required due to a concurrent

execution of multiple instances of the same processes. This enters when the inter-arrival

time of a stimulus is smaller than the response time of the related process, which especially

is the case in event driven activation, when multiple requests for execution of one process

could exist at the same time. In uniprocessor systems, the common approach is to execute

all process instances of one process in a FIFO manner, because only one process instance

can be executed at the same time. The first process instance executes until termination,

all other process instances of the process remain in the state activated. For the case of too

many activations, there is a pragmatic approach for handling this scenario in practical

systems, e.g. by the operating system OSEK/VDX [Int05]. A counter for multiple task

activation (MTA) determines the number of coexistent process instances of one process.

If the MTA counter exceeds its configured limit, all further trigger events for that process

are ignored. In multiprocessor systems, i.e. when using a global scheduling algorithm,

an alternative approach is applicable. For example, new arriving process instances can

be allocated to other processors and therefore process instances are able to be executed

concurrently. This is a high benefit, especially in queued processing systems where data

items can be processed concurrently, however requires a new process model for execution.

In uniprocessors systems, it is sufficient to have a global data section where the process

94

8.3 Behavioral Model

instances of one process have access6. Other process instances use this data section only

if the previous process instance finished (justified due to FIFO execution). Therefore, the

interference of process data is prevented. In multicore systems, when process instances are

able to be executed concurrently, data inconsistency can occur due to interfering access

of multiple process instances on a process data section. Furthermore, when a scheduling

algorithm executes schedule decisions, task states and properties are required, which can

also be modified.

Therefore, this work defines a process instance model, which is introduced after the

process model.

Process

Figure 8.5 shows the behavioral model of the process component.

WAIT

INSTANTIATION

INIT

AP PI

F
S P

P SF

A

PI

IP PI

I

Figure 8.5: Behavioral model of process component.

A process P interacts with the stimulation component S and the process instance

component PI. The stimulation component sends the fire event F and the process

instance receives the events initialize I and activate A.

After initialization, a process component immediately changes to state WAIT, and

waits until a fire event occurs. When this happens, a process instance is getting instanced

and the process changes in state INSTANTATION. In this state, further related compo-

nents get initialized and component parameters are calculated (see component process

instance). When initialization was successful, the process sends the event activate A to

6Sometimes also architectures with complete shared memory are used, which is dangerous because of
unauthorized access on process memory.

95

8. Simulation-Based Multicore Real-Time Examination

the process instance PI and changes into state WAIT.

Process Instance

The process instance PI interacts with the components process P , runnable instance

RI, core C, and operating system OS, whereby the operating system can be either a

scheduler or an interrupt management unit.

ACTIVATED

RUNNING

INIT

PI

P

AI

READY

TERMINATED

END

RI RUN

I
P PI

A
P PI

RUN
RI PI

SUSPEND
RI PI

RUN
RI PI

SUSPEND

2FINAL
R PI




 1 : : 0idr state INIT   

 2 : : 0idr state INIT   

()idR r
PI C

C()idR r

SCHEDPI OS

OS

SCHED

FINAL

SCHEDPI OS

1FINAL
R PI




3FINAL
R PI




SCHEDPI OS

 3 : : 0id id actual

cooperative

r state INIT r PP

SCHED

     



Figure 8.6: Behavioral model of process instance component.

In comparison with other components, a process instance component PI gets initial-

ized whenever the process component sends the signal initialize I, but is not initialized

at start of simulation. Additionally, whenever the signal I enters, a new process instance

is generated, which allows that multiple process instances of the same process exist in

parallel and can also be executed independently.

A process instance has a number of process instance sections, which itself contain a

number of runnable instances. All these components get initialized, when event I enters.

A process instance additionally has a reference on the runnable instance which should

be executed next. At beginning, this reference is assigned to the first runnable instance

of the first process instance. The operating system uses this reference, to assign this

96

8.3 Behavioral Model

runnable instance to a core.

After initialization and when event activate A has entered, a process instance sends

the event schedule SCHED to the operating system, and waits in the state ACTI-

VATED. The operating system assigns the first runnable instance to one of the managed

cores. When the runnable instance executes, it sends the signal RUN to the process

instance, which changes to the state running. The cascaded change from ACTIVATED

to RUNNING (from process instance over runnable instance to core) allows to model

further behavior at each component, e.g. precedence constraints at runnable instance

and prioritization at the core component. When the runnable instance is interrupted at

the core, the runnable instance sends the event SUSPEND and process instance changes

to the state READY. When the runnable instance gets resumed, the signal RUN enters

again, and the process instance changes again into state RUNNING. When a runnable

instance has finished its execution, it sends the signal FINAL. Now the process instance

differs between the conditions σ1 and σ2.

σ1 enters when the finalized runnable instance was not the last runnable instance in

the actual process section or the actual process section instance is not the last process

section instance, i.e. the number of runnable instances in the state INIT is higher than

0. Then, the next runnable instance is registered by the event register R(rid) at the same

core, which executes the previous runnable instance. If the runnable instance is the last

runnable of a process instance and there is a cooperative scheduler, the schedule event

SCHED is sent to the operating system OS.

σ2 enters when the finalized runnable instance is the last runnable instance of the

process instance. Then, the process instance sends the event SCHED to the operating

system in order to notify that the core of the last running runnable instance is avail-

able. Afterwards, the process instance changes into the state TERMINATED. After

termination operations the process instance changes into the final state END.

σ3 enters when the finalized runnable is the last runnable of its process phase and the

process is scheduled by a cooperative scheduling algorithm. Then, the process changes

to READY and the scheduling algorithm is executed.

Runnable Instance

Figure 8.7 shows the behavioral model of the runnable instance.

The runnable instance interacts with the core C and the process instance PI com-

ponent. It routes the events RUN, SUSPEND, and FINAL from the core to the process

instance and changes its state according to the entering signals in the same way as the

process instance model. The duplication of states is necessary because the core compo-

nent is only able to interact with runnable instances.

When a core has executed all instructions of a runnable instance, the core sends the

event FINAL and the runnable instance change into the state PROCESSING FUNC-

97

8. Simulation-Based Multicore Real-Time Examination

RUNNING

READY

INIT

RUN
C RI

RI

PI

RUN

SUSPEND

FINAL

C

RUN

SUSPEND

FINAL

RUNRI PI

RUN
C RI

RUNRI PI

SUSPEND
C RI

SUSPENDRI PI

FINAL
C RI

FINALRI PI

PROCESSING

FUNCTION

END

EXRI C

EX

Figure 8.7: Behavioral model of runnable instance component.

TION. In this state, functional code or any dummy code is processed. This is used

to model logical functions. However, in this work this property is used only for the

model of the scheduling algorithm. When the functional code is processed, the runnable

instance sends the event FINAL to the process instance. As already mentioned, the pro-

cess instance is now able to register the next runnable instance at the core. Afterwards

the exit event EX is sent to the executing core, which is afterwards able to start the

next runnable instance. Furthermore, a runnable instance includes parameters for saving

remaining instructions and the last executed core.

Instruction Model

The instruction model describes the variation of the instructions of a runnable.

An explicit modeling of instructions is applied to allow on the one hand a simulation of

heterogeneous hardware architectures, where the number of required cycles for processing

one instruction can be configured by a multiplier. Furthermore, cores can have different

processor frequencies which results in different execution times. On the other hand an

instruction-accurate simulation allows a higher accuracy of the preemption behavior,

meaning when a preemption of a runnable instance enters it can be derived when an

98

8.3 Behavioral Model

instruction is processed. The transformation from instructions to execution time is shown

in Section 8.3.4.

When a runnable is triggered, it generates a runnable instance and the instruction

model determines the number of instructions, depending on the type of instruction model.

There are following types of instruction model:

• Constant Instruction model:

Ij = I ∀j (8.4)

Each runnable instance has the same number of instructions for all runnable in-

stances j. This model is used for worst-case response time determination in the

case of local scheduling.

• Probabilistic Instruction model:

P (Ij = In) = pn (8.5)

The number of instructions I of the j − th instance has with a probability pn the

value In, whereas the probability follows a distribution function P () as defined in

section 6.2.

For both models, the execution time of the task set model has to be transformed into

instructions by a normed conversion value respectively the processor frequency.

8.3.4 Hardware Subsystem

The introduced scheduling algorithms in Chapter 7 are developed for symmetric multi-

processing systems, but the following behavioral model of the hardware subsystem allows

to model SMP and many heterogeneous multicore processor systems, too. Since a quartz

oscillator can be connected to an arbitrary number of cores, it is possible to model proces-

sor architectures with cores of different processing speed. This is required for example for

the analysis of co-processor architectures, where tasks which use Input/Output ports are

allocated to a core with a low processing speed and the tasks which include computation

intensive algorithms are allocated to a core with a higher processing speed. Furthermore,

the processing frequency of cores can be dynamically changed during simulation time,

in a predefined manner or in a dynamic manner by a control-interface for the operating

system7. In the following, the required behavioral models are introduced.

7For example for energy saving purpose, when the processing frequency can be reduced due to a
dynamic workload in a low utilization state.

99

8. Simulation-Based Multicore Real-Time Examination

Quartz Oscillator

The quartz oscillator component models the processor frequency variations of the core

component. These variations are extracted in a separate model in order to allow syn-

chronous changes of processor frequencies at multiple core components.

WAIT

FREQUENCY

MODIFICATION

INIT

Q

Sim

()F f
C

()R tQ SIM

T()R t

0()R t
Q Sim

T
Sim Q

()F fQ C

Figure 8.8: Behavioral model of quartz oscillator component.

The processor frequency changes of quartz oscillator components can be modeled in

different ways. All components have in common that they register the time when the

processor frequency changes the next time at the simulation component.

For this purpose a quartz oscillator component is a user component of the simulation

sequencer Sim and sends register events R(t) and receives trigger events T . Furthermore,

it interacts with core components C in order to change processor frequencies by event

F (f).

After initialization, the quartz oscillator component Q sends the event register R(t0 =

0) to simulation sequencer Sim and changes in state WAITING. The registration at time

t = 0 is necessary to notify all related cores about the processor frequency. Otherwise,

the core has a processor frequency of 0 and no instructions would be executed. In order to

limit the number of events, which are sent between core and quartz oscillator components,

the quartz oscillator notifies the core only when processor frequency variation occurs,

instead of notifying about each processing tick.

When trigger event T enters, the quartz oscillator provides the frequency to all reg-

istered core components. When a synchronized processor frequency modification of mul-

tiple core components is necessary, it is possible to register these cores to one quartz

oscillator component. Then all frequency modifications occur simultaneously. When en-

100

8.3 Behavioral Model

tering into the state FREQUENCY MODIFICATION, the next frequency modification

value and its entry time is determined.

There are several models of frequency modifications possible, e.g. a static list of

frequency modification or an interface to the scheduler component, which is able to

adjust processor frequency dependent of workload on processor.

When the time of the next frequency modification is determined, the next trigger

time t is registered by register event R(t) at the simulation sequencer and the quartz

oscillator component Q changes again to state WAITING.

Core

The core component models the execution of runnable instances on a processor. The

execution of runnable instance works in the following way: When a runnable instance

starts execution, the core calculates the finishing time of the executing runnable instance

by use of the remaining instructions. The core registers a delayed event with this time at

the simulation sequencer in the role of a user component. When there is no preemption of

the runnable instance, the core is triggered when runnable instance has finished. When-

ever a runnable instance with a higher priority than the processing runnable instance is

registered at the core, the remaining instruction of the executed runnable instance are

calculated, the executing runnable instance is suspended, and the next runnable instance

is started in the same way.

Runnable instances are prioritized according following schema: All runnable in-

stances, executed in the context of a task, have a priority equal to 0. The scheduler

component of the operating system guarantees that only one runnable instance of a task

is assigned to a core at the same time.

All runnable instances, executed in the context of an ISR, inherit the priority of the

ISR priority level, which is higher than 0.

The core component sorts all runnable instances in decreasing order and executes the

runnable instance with the highest priority. When there are multiple runnable instances

with the same priority, they are executed in a FIFO manner.

This model is used because it is sufficient for modeling the simple static priority

based prioritization of ISRs but also allows to model the complex scheduling of tasks. In

analogy, this approach can be compared with a hierarchical scheduling approach, where

the low priority scheduler of task instances gives a scheduling decision to a higher priority

dispatcher, which only executes the scheduler’s decision, when there is no ISR instance

allocated to the processing resource.

Figure 8.8 shows the behavior of the core component. The core component C receives

from the quartz oscillator component Q the frequency modification event F (f), which

sets the core frequency. The operating system component OS sends register events R(rid)

which request a runnable instance for execution, and it sends unregister events U(rid)

to remove a registered runnable instance from the core. The core component sends the

101

8. Simulation-Based Multicore Real-Time Examination

WAITING

FINALIZINGINIT

INITIALIZING EXECUTION

PROCESSING
FUNCTION

SUSPENDING

()idR r
OS C

0()R tC Sim
0()RUN r

C RI

  2 : 0idr  

  1 : 0idr  

0()id idR r r r
OS C

 


T
Sim C

0()FINAL r
C RI

1

2

C

()idR r
RUN

OS

Q

Sim

()idU r
RI

T ()R t

()F f

SUSPEND

FINAL

0()U r
OS C 

0()SUS r
C RI

1

2

()F f
Q C

()idR r
OS C

()idU r
OS C

PI()idR r

()idR r
PI C

()F f
Q C

0()R tC Sim

0()id idR r r r
OS C

 


0r

1r

2r

EX

EX
RI C

Figure 8.9: Behavioral model of core component.

events RUN, SUSPEND, and FINAL to the runnable instance component to notify about

status of execution. The core component receives from the runnable instance component

the exit event EX to notify about finishing function processing of runnable instance. The

process instance component is able to register runnable instances by registering the event

R(rid). From the simulation sequencer component Sim, the core component receives the

trigger event T and sends the register event R(t) in order to determine correct execution

times.

Additionally the core includes an instructions per processor tick (IPT) parameter.

The execution time e of a runnable instance can be calculated by Equation 8.6, in de-

pendence of IPT, the actual processor frequency fa, and the remaining instructions I.

e =
I

IPT
· f−1a (8.6)

102

8.3 Behavioral Model

In the following, the behavior of the core component is described. After initialization

at start of simulation, the core component C changes without transition condition to state

WAITING. When the operating system component OS registers a runnable instance by

event R(rid), the core component changes to state INITIALIZING. Now, all registered

runnable instances are sorted according to the priority of the related process instance,

i.e. priority 0 for task instances and the corresponding priority level of the ISR instance.

For the runnable instance with the highest priority level, the remaining instructions

are determined and the execution time is calculated by Equation 8.6. Then, finish-

ing time is registered at simulation sequencer, the runnable instance is notified about

runnable execution by event RUN(r0), and the core change in state EXECUTION. Now

the Transitions 1–4 are possible.

Transition 1: When a quartz oscillator component sends the event F (f), the pro-

cessor frequency changes and execution time has to be calculated again. When f is

denoted as actual processor frequency, tf as actual finishing time, f
′

as new processor

frequency, and t
′
f as new finishing time, than by Equation 8.7 the new finishing time can

be determined.

t
′
f = t+ (tf − t) ·

f
′

f
(8.7)

Afterwards, this time is registered at the simulation sequencer Sim by the event R(t
′
).

Transition 2: Another transition enters when the operating system OS registers a

new runnable instance rid by the event R(rid). When the priority of the actual runnable

instance r0 is lower or equal than the rid, the new runnable instance is pushed to the

runnable instance queue of this core component. Contrary, when the new runnable in-

stance has a higher priority than the executing runnable instance or the operating system

OS unregisters the executing running task instance by the event U(r0), the executing

runnable instance stops execution. Then, the remaining instructions has to be calculated,

in order to be available when this runnable instance executes next time. This can be done

by rearanging Equation 8.6 to instructions I, whereby e equates the remaining execution

time. Furthermore, when the OS unregisters the runnable instance, it is removed from

core queue of runnable instances. In both cases, the core component sends the signal

SUS (r0) to the runnable instance, and changes into state SUSPENDING.

From state SUSPENDING the core component changes automatically in the state

WAITING or INITIALIZING. In the case of condition σ1, meaning the number of re-

maining runnable instances is zero, core component changes in state WAITING. In the

case of condition σ2, meaning the number of remaining runnable instances is greater zero,

the core component changes again to state INITIALIZING and starts execution of next

runnable instance.

Transition 3: During the execution of a runnable instance, it is possible that a quartz

oscillator component Q sends a frequency event F (f). The modification of execution

103

8. Simulation-Based Multicore Real-Time Examination

time can be determined in the same way as in state WAITING (by Equation 8.7), but

additionally the new time when execution finishes is registered at Sim by event R(t
′
).

Transition 4: When the core component gets the trigger event T from the simulation

sequencer Sim, the runnable instance gets the event FINAL(r0), starts with processing of

the functional code, and the core component changes in the state PROCESSING FUNC-

TION.

In the state PROCESSING FUNCTION, it is possible that the functional code of the

executing runnable instance includes a function which registers new runnables. In this

work, only the operating system component (i.e. the scheduler function) has a functional

code and is able to send event R(rid). Alternatively, the process instance of the finished

runnable instance registers the next runnable instance.

When the processing of the functional code is finished, the executed runnable in-

stance component sends the exit event EX to the core component, which changes in

state FINALIZING. When there are no runnable instances registered at core component

(condition σ1), the core component changes again in the state WAITING. When there

are runnable instances registered (condition σ2), the core component changes into state

INITIALIZING.

8.3.5 Operating System Subsystem

Task instances are assigned by a scheduler to core components and ISR instances are

assigned by an interrupt management unit to core components.

For simplification of interrupt management, ISR instances are mapped statically to

cores. Furthermore, the prioritization of ISR instances is done by the core component,

as described in the previous section. Nested interrupts8 are allowed and ISRs with the

same priority are executed by FIFO manner. Multiple ISR activation is allowed, where

ISR instances of the same ISR are prioritized by activation time.

For the assignment of task instances, the scheduling algorithm routine is modeled by

an ISR, whereby the scheduler ISR has the highest priority of all ISRs. In dependence

of the scheduling algorithm, the scheduler manages a number of cores of the multicore

processor, mentioned as core cluster. The core cluster can include one core (Table 3.2,

group AI), a subset of cores (Table 3.2, group AII), or all cores of a multicore processor

(Table 3.2, group AIII). When a scheduler call9 enters, the scheduler determines from a

queue of ready task instances and running task instances with a scheduling policy the x

8Nested interrupt mentions the case, when an ISR instance executes and a higher priority ISR instance
is activated, then the executing ISR instance is suspended, the higher priority ISR instance executes, and
when the higher priority ISR has finished, the suspended ISR resumes at the suspended position.

9In general, the scheduler is called at task activation, task termination, cooperative schedule point, or
scheduler specific points in time.

104

8.3 Behavioral Model

highest priority task instances, whereby x equates the number of cores in the core cluster.

The scheduler always assigns only one task instance to a core at the same time. The

actual runnable instance of this task instance immediately executes, as long as there is

no runnable instance of an ISR instance allocated to the core, because runnable instances

of ISRs instances always have a higher priority than runnable instances of task instances.

Algorithm 1 Pseudo-code of generic scheduler.

Require: {a} (core cluster), {f} (available cores), {j} (ready tasks), {i} (running tasks),
{k} (nominee tasks), {s} (sorted tasks)
{ Step 1: Check non-blocked cores}
for all {i} do
{f} ← BLOCKING(i)

end for
{ Step 2: Find nominated tasks }
for all {i} do

for all {f} do
{kf} ← NOMINEE(i,f)

end for
end for
for all {j} do

for all {f} do
{kf} ← NOMINEE(j,f)

end for
end for
{ Step 3: Sort nominated tasks}
for all {f} do
{sf} ← SORT({kf})

end for{ Step 4: Dispatching Schedule}
for all {i} do

if Rank(i,{s1, ..., sf}) ≤ |{f}| or i /∈ {f} then
REMOVE(i)

end if
end for
for all {s} do

if Rank(s) < |{f}| then
SUSPEND(i)

end if
end for
for all {s} do

if Rank(s) ≥ |{f}| then
RESUME(s)

end if
end for

Algorithm 1 shows the pseudo code of the generic multicore scheduling routine. This

routine implements the scheduling model from Section 3.1.3 and can be specialized by all

scheduling algorithms from Table 3.2. The first step determines whether a core is blocked

105

8. Simulation-Based Multicore Real-Time Examination

by a running tasks. A core can be blocked in the case of a non-preemptive (group DI) or

purely cooperative scheduling algorithm (group DII), e.g. the algorithms P-ERfair-PD2

or Pfair-PD2. Therefore, all running task instances in i are checked whether they block

its related core in x. The result is stored in f , which finally includes a list of available

cores.

The next step determines by the function NOMINEE whether a task is nominated

for execution on a core. Constraints can prevent the task from execution on a certain

core. This can be a task instance with non fulfilled precedence constraints10, e.g. in case

of non-work-conserving algorithms (group WII) or when a scheduling algorithm works

in a bounded-migration manner11 (group MI,MII,MIII). The result is a two dimensional

array which has a list of task instances for each core which can be executed on the core.

Note that a task either is nominated for one core (in the case of group MI, MII, and AI),

or for all cores (in the case of all other groups).

When the task nominee lists have been created, the task instances are sorted according

to scheduling algorithm policies. When a task instance is able to execute on multiple cores

it is only considered once in the sorted list. Therefore, the list of sorted task instances

s has the same number of elements as lists i + j. The function RANK(s) returns the

rank of a task instance s in the sorted list s, whereby a task instance with rank 1 has

the highest scheduling policy value.

The final step dispatches the task instances to the cores in the following manner.

Task instances which execute at the moment and have a rank in the nominee list less or

equal f or block a core are removed from nominee list and stay in the state RUNNING

on the executing core. Task instances which execute at the moment and have a rank in

nominee list higher than f and don’t block a core are suspended by sending the unreg-

ister event U(rid) with the runnable instance rid of the executing task instance to the

Sim component. All other task instances, which are on the list of ready tasks and have

a rank in nominee list less or equal f are started for execution by sending the register

event R(rid) to the Sim component, with the last running runnable instance rid of the

task instance.

The listings of the functions BLOCKING and SORT are dependent from the schedul-

ing algorithm. They can be found for the analyzed algorithms in Section A.

8.4 A Metric for Real-Time Examination

For the examination of deadline compliance of a single task, in general the response time

metric is used. However, for evaluation of a complete task set, there are often only true-

false statements whether all tasks meet their deadline or don’t. In the following, a metric

10Then the task instance is not able to execute on any core
11Then a task instance at a core which is once started is not allowed to execute on any other core

106

8.5 Approximation of Bounds for Schedulability

is introduced which allows a more precise examination of real-time properties on task set

level, denoted as maximal Normed Lateness (mNL) .

The lateness Li,j (Equation 4.2) of a task job Ti,j equates the exceeding of its deadline.

When the lateness is negative, the deadline is met. In order to calculate the mNL metric,

the lateness Li,j is standardized by the task deadline Ti.d, representing a percentaged

delay. From the normed lateness value of all jobs, the maximum can be determined which

equates the worst handled job of all tasks related to the percentaged delay. Since the

deadline is assumed to be constant for all jobs of a task, the calculation can be simplified

as shown in Equation 8.8.

mNL(τ) = max
Ti∈τ

 max
Ti,j∈Ti

(Li,j)

Ti,j .d

 (8.8)

This metric is proposed, because of the need for an one-dimensional value, which

allows a comparison of different system models, i.e. an evaluation of the deadline compli-

ances for different task sets. Furthermore a metric which allows a quantitative evaluation

of the deadline compliances of all tasks in a task set is more representative than a simple

true/false statement about the deadline compliance. Therefore, it is assumed that not

the absolute distance from task finalization to deadline is important but the distance,

relatively to the deadline. This is valid, as long the assignment of processing time for a

task scales with the inverse of the task deadline, which in turn is valid for all deadline

driven scheduling algorithms or scheduling algorithms which derive a static task priority

from the task deadline. Furthermore, the lateness is chosen instead of the response time.

This is not necessarily required but allows to set the bound of deadline compliance to 0

which is intuitive instead of a bound of 1 in the case of the response time.

The mNL metric is used in the following for schedulability examination of a complete

task set.

8.5 Approximation of Bounds for Schedulability

The target of a schedulability analysis is to determine the worst-case scenario for a task,

where its response time is maximized or grows unboundedly. In a schedulability exam-

ination, the target is to modify system model parameters in a way that the worst-case

(and best-case) scenario is approximated. The response time is affected by system model

parameters in the following way. As long as the scheduling algorithm has no memo-

rization of passed events, it simply assigns priorities to task instances in a deterministic

manner. Therefore, there is no property, which can be modified in order to change task

response time. Similarly the processor has a constant processor frequency and a constant

number of cores in this work. Therefore, these components don’t have to be considered

for the approximation. The only property which results in different schedule decisions is

the workload of tasks, namely the execution time and the inter-arrival time. For schedu-

107

8. Simulation-Based Multicore Real-Time Examination

lability examination of local scheduling algorithms, the assumption of the worst-case

execution time is sufficient. As shown in Section 4.3 the worst-case response time has its

maximum at maximal interval of occupied processor time. Therefore, a lower execution

time of any task results in a lower response time, this property is also denoted as sustain-

ability. Furthermore, the worst-case response time for local scheduling algorithms occurs

when all tasks are released at the beginning and all further task arise with the minimal

inter-arrival time, this property is also denoted as critical instant.

For examination of schedulability for global scheduling algorithms, the critical instant

and the worst-case execution time don’t necessarily result in the worst-case response time,

as shown in the examples of Section 4.3. Therefore, it is necessary to determine the worst-

case response time by modifying both, task execution time and task inter-arrival time.

For the execution time variation, execution times,i.e. instructions, are randomly

generated by the definition of the probability function.

For the inter-arrival time variation, periodic offset based task sets with MTB extension

are assumed. Therefore, the only parameters which can be modified is the time base

parameter. It is also possible to model a sporadic task activation with the MTB task set

by assigning only one sporadic task to a time base.

At start of simulation, all parameters of the time bases have the minimal value,

meaning fv(t = 0) = 1. Then, a successive variation approach is applied. The approach

changes activation patterns between the initial time base parameter and a fraction of the

maximal time base parameter. In order to prevent a repeating sequence of activation

patterns, time base parameter are varied at prime numbers which guarantees that no

inter-arrival time of any task is a multiple of the interval of time base parameter variation.

Therefore, the task with the highest inter-arrival time is selected and the next prime

number which is at least 5-times higher12. This value is denoted as δM . At t = δM ,

the frequency multiplier f1(t) of the first time base b1 is modified by a fraction delta

+δ. At t = 2 · δM , the frequency multiplier f1(t) is again modified by +δ. This modi-

fication repeats until a fraction of maximal frequency multiplier f1(t) = δ1max has been

achieved. Afterwards, after each time interval of length δM , the frequency multiplier

will be decreased until reaching the initial value. Then, the frequency multiplier of the

second timebase is modified by +δ. Afterwards the approach of time base variation of

the first time base starts from the beginning. When the first time base reaches again the

initial value, the second frequency multiplier changes by +δ and the process starts from

ramping time base one. This repeats until the second time base reaches a certain mul-

tiplier value, and afterwards the frequency multiplier is ramped downwards in the same

way as the first time base. When the frequency multiplier f2(t) of time base b2 reaches

again the initial value, the third time base b3 is modified and so on. When the last time

12This value was determined empirically as good trade-off between low simulation duration and good
worst-case response time approximation.

108

8.6 Technical Implementation

base has ramped upwards and downwards, the process starts from beginning with an in-

creased +δ and an increased limit of the frequency multiplier fv(t). The approximation

stops when the maximal determined response-time of all tasks does not change for one

complete ramping process for all time bases.

8.6 Technical Implementation

The discrete event-based simulation is realized as a C++ application. For simulation

performance, the simulation model and discrete-event simulation core were implemented

from the scratch in order to prevent runtime overhead from any framework. Therefore,

it was possible to achieve a very low experiment execution duration. For the models,

comparable to the models of the case studies, a simulation time can be achieved which

is four times lower than the simulated time. This is a performance benefit of factor

1,000 in comparison with existing simulation tool solutions. The GNU scientific library

[GNU10] was used for uniform and Weibull distribution functions and the pseudo-random

number generator Mersenne-Twister [MN98]. For parallelization of the simulation of

multiple models, a cluster computing cloud was built and managed with the Condor

High Throughput Computing framework [FTF+02].

109

Chapter 9

Sensitivity Analysis of

Probabilistic System Models

This chapter describes an approach for the evaluation of scheduling algorithms for multi-

core processors. The application of the approach is split. On the one hand, a quantitative

comparison of the fitness of scheduling algorithms for application in a specific real-time

system is possible, where changes of task set parameter over the lifetime of a real-time

systems are considered. On the other hand, a sensitivity analysis of the effect of system

characteristics like task set utilization on system metrics like deadline compliance can be

evaluated.

9.1 Task Set Parameter Variations

The real-time examination methods of Section 4.2 and the simulation-based real-time

examination approach determine metrics, e.g. the response time, for a single real-time

system model. But, in order to compare existing and proposed scheduling algorithms

for multicore systems, the evaluation of a single model is not representative. Changes

in task set configuration produce different results in system evaluation. These changes

occur multiple times in the development and lifetime of embedded systems.

During the development of the embedded system, task execution times change due

to varying content of executed functions entities, e.g. some parts of the program are not

implemented or implementations are improved. Furthermore, task activation patterns

change, e.g. through changes in hardware, peripherals, or connected embedded systems.

During the lifetime of the embedded system, task set parameters also change. For

example software updates are applied, including fault repairs1, software upgrades with

additional functions, or software changes due to modified hardware components. Fur-

thermore, aged hardware might change execution time, e.g. due to changed input data

1E.g. software updates are applied during automotive service inspections.

110

9.2 Probabilistic System Model

which increase runtime of algorithms.

Since a determined metric of a real-time system strongly depends on the task set,

strictly speaking all possible task set configurations of the development and lifetime of

the embedded system have to be considered when benchmarking scheduling algorithms.

Though, in typical embedded systems the dimension of problem space of possible task

sets is in a range where an exhaustive evaluation is not applicable due to required com-

putation effort. Furthermore, an exhaustive evaluation does not consider the probability

of task set parameters and therefore the frequency of metric values, e.g. response time,

is not known, too.

Sensitivity analysis approaches are efficient mechanisms to support the embedded

system designer at these variations. For example, sensitivity analysis has been introduced

for bounding upper limits on task deadlines at EDF scheduling for singlecore processor

systems [ZBB10a], minimal possible task periods [ZBB10b], or several other use-cases

[ZBB09, DRRG10].

The Sensitivity Analysis of Probabilistic Systems (SA-PS) approach [DSM+10b] de-

termines metrics in dependence of task set parameter variations.

The variation of task set parameters is expressed by a probabilistic system model. By

use of this probabilistic system model, the SA-PS approach uses a Monte Carlo sampling

technique [MU49]. Task set samples are generated, according to a system model with

probability density functions of the task set parameters. Then, these task set samples

in combination with the remaining model components (processor and scheduler model)

are analyzed by a single model examination approach and metrics are determined. Since

the Monte Carlo approach only samples a subpart of all possible task sets, originating

the probabilistic description, a consideration of the confidence of determined metrics is

necessary. For this purpose, the SA-PS approach assigns the system models to clusters

regarding a certain system model characteristic, e.g. the task set utilization Usum(τ), the

average task utilization, or any other characteristic which can be determined from system

model parameters. For each cluster, statistical estimators on metrics are calculated in

order to describe e.g. the range, the variability, or the median of values. These statistical

estimators could be used for a sensitivity analysis, however the confidence of the statistical

estimators is missing. This is important because Monte-Carlo randomization is only

a sampling method. Therefore, the bootstrapping approach [ET93] is applied, which

determines the confidence interval of the statistical estimators.

The following sections describe the steps of the SA-PS approach.

9.2 Probabilistic System Model

The sensitivity analysis requires a probabilistic description of the task set, defining the

range and the distribution of task set parameters, in order to generate task sets rep-

111

9. Sensitivity Analysis of Probabilistic System Models

resenting possible stages in development or lifetime of the embedded system. For this

purpose, the task set model τ (see Section 2.2) with the MTB extension (see Chapter

6) are extended by a probabilistic description. A task set τ includes a number of tasks

{Ti}, where a task Ti has the task parameters Ti = (p, e, d, bv). When Ti.z describes

any property z ∈ {p, e, d, bv} of a task Ti, then the probabilistic description of the model

parameter v origins from following definition:

P (Ti.z = zn) = xn, (9.1)

whereby z = f(x) is the probability density function. The probability of values Z,

falling into an interval [z1, z2], can be derived by [Das10]:

P [z1 ≤ Z ≤ z2] =

∫ z2

z1

f(x) dx.

The kind of probability density function depends on the variation of task set parame-

ters. In general, measurements of execution time Ti.e are available for different embedded

system projects or different stages of the development and lifetime of an embedded sys-

tem. Furthermore, variation of inter-arrival times Ti.p, deadlines Ti.d, or time bases Ti.b
v

are recorded. This information is used to determine the probability density function, e.g.

a discrete probability function or a Weibull probability function as introduced in Section

6.2.

Depending on the kind of variation, this work distinguishes between the following two

types of probabilistic system models.

9.2.1 Probability of Task Set Parameters

The model for probabilities of task set parameters has for all task sets {τ} of the proba-

bilistic task set τP a constant number of tasks in a task set.

Therefore, for each task Ti ∈ τp and each task parameter Ti.z z ∈ (p, e, d, bv), a

probability density function according to Equation 9.1 is defined. In the case of a constant

value for a task parameter, there is a constant value instead of a probability density

function.

A typical application of this kind of probability model is the case when the number

of tasks in a task set is constant, but the execution time varies e.g. due to the changing

functional code.

9.2.2 Probability of Task Quantity

For the case that the quantity of tasks changes, the probabilistic model description has to

be extended by a probabilistic description of task quantity regarding Equation 9.2 with

the probability density function z = f(x).

112

9.3 Monte-Carlo Randomization

P (|{Ti}| = zn) = xn (9.2)

When the task quantity is based on a probability density function, task parameters

can not be specified in the probabilistic model description for a certain task of the task

set. Therefore, the probabilistic model description includes one probability density func-

tion Ti.z = f(x) ∀Ti ∈ τP for each task parameter z ∈ {p, e, d, bv}.

A real-time system model with these kinds of probabilistic task set τP is denoted as

probabilistic system model SP . It includes the components: probabilistic tasks set τP ,

scheduler model ξ, and processor model Π.

9.3 Monte-Carlo Randomization

For evaluation of metrics for the probabilistic system model SP , the introduced real-

time system examination approach from Chapter 8 is not applicable directly because the

probability functions doesn’t define variations of task set parameters during the execution

of the real-time system but they define variations between the different stages of a real-

time system. Therefore, an approach for creating real-time system models S originating

the probabilistic system model SP is necessary.

In order to generate a representative selection of real-time system models, the SA-

PS approach applies Monte-Carlo randomization, presented by Metropolis and Ulam

[MU49].

Monte-Carlo randomization was initially introduced as a methodology to determine

numerical solutions of mathematical problems. An application example of Monte-Carlo

randomization which can be compared to the application of the Monte-Carlo randomiza-

tion in this work is the determination of the mathematical constant π, shown in Figure

9.1. A random number generator produces pairs of two numbers in the range of [0, 1].

For each pair, representing x and y coordinates, the approach determines whether the

point of the coordinates is inside the upper right quarter of a circle with a radius of 1

or it is outside the circle. The ratio between points inside of the circle and all generated

pairs represents a quarter of the area of a circle with an arc radius of 1, which is equal

to π
4 .

The objective of the SA-PS approach is to determine the effect of system characteris-

tics variation on a system metric, e.g. the maximal normalized lateness. The probabilistic

system model is a description of a multi-dimensional exploration space. For analysis of

this exploration space it is not significant how a change of a single value of a model

parameter of one component, e.g. the execution time of a task, effects a system metric.

Detecting this kind of effects does not allow to make decisions in software development,

because at changing parameter of another component, the system metric could change,

too. Therefore, a more generalizing characterization is necessary, which allows to make

113

9. Sensitivity Analysis of Probabilistic System Models

Figure 9.1: Application of Monte-Carlo randomization in order to determine the value
of π.

decisions at the software development, independently of a certain model parameter but

in dependence of a certain system characteristic, e.g. the system utilization Usum(τ).

In order to determine such a bound for a system characteristic from a probabilistic

model, an exhaustive evaluation of the exploration space would lead to an exact bound.

However an exhaustive evaluation is not possible due to required calculation time.

Therefore, the SA-PS approach applies the Monte-Carlo approach. Randomly gener-

ated task sets represent a sample of the probabilistic system and allow to determine the

effect on a system characteristic. When plotting the determined metric values as a func-

tion of the system characteristic values, the exploration space is successively analyzed.

The space, clamping by the analyzed values, can be analyzed afterwards by clustering of

system characteristic values and determining statistical estimators for the cluster. Since

the analyzed system models represent only a sample of the system, confidence intervals

of the determined estimators have to be calculated in order to compensate the missing

analyzed models.

A system model S is generated from the probabilistic system model SP in the follow-

ing way. Since model parameters are given as probability density function, the following

transformation has to be applied for the generation of parameter values, whose distribu-

tion approximates the probability density function. A pseudo-random number generator

produces uniformly distributed values in the range [0, 1] representing a probability p.

Additionally, from the probability density function f(x) a cumulative distribution func-

tion F (x) is determined, with F : R→ [0, 1]. By passing the pseudo randomly generated

numbers in the inverse function of F−1(p), values according to the probability density

114

9.3 Monte-Carlo Randomization

function f(x) can be determined. This method is also known as inverse transformation

[SD88].

For generation of random uniform values it is important to generate repeatable series

of random values to be able to replicate examinations of characterization metrics. There-

fore, a pseudo-random number generation is necessary. The pseudo random-number gen-

erator (P-RNG) has to fulfill a number statistical tests, guaranteeing a long period and

having a high quality of randomness. The SA-PS approach uses the Mersenne-Twister,

introduced by Matsumoto and Nishimura [MN98]. The Mersenne-Twister has a long

period of 219937 and fulfills numerous tests of randomness [MN98], e.g. the DIEHARD

battery of statistical tests [Mar96].

In order to improve evaluation duration, system models including a task set which is

not feasible are rejected. The SA-PS approach applies the following feasibility checks on

the generated task sets:

• Generalized density check: Whenever the maximal generalized density

λmax(τ) > 1, (9.3)

there is a task Tf ∈ τ , which has a task deadline Tf .d or a task inter-arrival time

Tf .p shorter than the task execution time Tf .e. In the first case, this task can

not fulfill its deadline, because Tf,j .A+ Tf .e > Tf,j .D ∀j. In the second case, this

task is overloaded, meaning in any case the next task instance is started before the

previous task instance has finished. For the case of a global scheduling algorithm,

this scenario is feasible when successive task instances are allocated to different

cores (at least the λmax(τ) − 1 successive instances, when there is no other task

allocated to the core). However, for the case of local scheduling algorithms, the

delay of task instances constantly increases at least by the value Tf .e− Tf .p which

necessarily results in a violation of task deadlines in finite time. Since the SA-

PS approach compares local and global scheduling algorithms, task sets violating

Equation 9.3 are rejected.

• Task set utilization check: Whenever the system utilization

Usum(τ) > m, (9.4)

the task set τ is not feasible, because the task set execution requirement exceeds

the available computation capacity of the real-time system. Therefore, a task set

which violates Equation 9.4 is rejected.

115

9. Sensitivity Analysis of Probabilistic System Models

9.4 Examination of Characterization Metrics

In the next step, the SA-PS approach determines a metric, e.g. the response time, of

the system model. It depends on the properties of system model S, namely task set

τ , scheduler ξ, and processor Φ, and the metric itself, which type of real-time system

examination method can be applied.

Because introduced schedulability examination approaches from Section 4.2 are not

able to analyze the presented scheduling algorithms Partly-Pfair-PD2 and P-ERfair-PD2,

the simulation-based multicore real-time examination approach has to be applied to these

algorithms.

For the case of local multicore scheduling algorithms, real-time system examination

approaches from section 4.2 can be applied.

9.5 Classification of System Models

The previous step determines a vector of metrics {M(S)} for all generated system models

{S} ∈ SP . The target of the sensitivity analysis is to determine the interdependency

of {M(S)} with system characteristics {C(S)}, for example C(S) = mNL(S), and to

compare the dependencies of different scheduling algorithms.

The interdependency can be analyzed by correlation evaluation of both vectors, plot-

ted in a scatter diagram (as shown in the case studies). The cloud represents the inter-

dependency of a certain metric value with a certain system characteristic and bounds of

achieving a certain metric value can be derived.

For the quantitative comparison of scheduling algorithms a correlation evaluation is

not sufficient. When plotting multiple clouds in one scatter diagram, overlapping sections

could occur and it is not possible to determine which algorithm is more adequate to

achieve a certain metric value. Therefore, the range of system characteristics

[min
S∈SP

(C(S)), max
S∈SP

(C(S))]

is divided in a number of equal sized clusters {Zk} k ∈ N∗ with the cluster size z. All

system models {S} are assigned to one of these clusters according the following equation:

Zk = {S|(k − 1) · z ≤ C(S) < k · z} . (9.5)

9.6 Statistical Evaluation

After this classification, two scheduling algorithms ξa and ξb can be compared according

to the following approach.

For each cluster Zk, estimators σ(Zk) of the metric values M(S) in this cluster are

determined. For the comparison of ξa and ξb, the SA-PS approach determines the Q.01

116

9.6 Statistical Evaluation

and Q.99 quantile to estimate the range of cluster values and the Q.5 quantile to determine

the median value of cluster values. Further statistical estimators are possible.

As already mentioned in previous sections, Monte-Carlo randomization only covers

a subset of all possible system models, where the degree of coverage depends on the

number of generated system models. Therefore, it is necessary to determine confidence

intervals of the determined estimators. For this purpose, the SA-PS approach applies

the bootstrapping approach, introduced by Efron and Tibshirani [ET93].

Bootstrapping is a method to determine the confidence interval of statistical esti-

mators of a number of random variables by resampling the random variables. From a

set of random variables (x1, ..., xn) bootstrap samples Xb = (x∗1, ..., x
∗
n) with b = 1, ..., B

are randomly selected with replacement. For each bootstrap sample Xb the statistical

estimator σb(x
∗
1, ..., x

∗
n) is determined. Finally the distribution function F (σ1, ..., σB) is

determined and confidence intervals can be calculated, e.g. through quantiles.

For the comparison of scheduling algorithms, in the first step the statistical estima-

tors are calculated and in the second step the confidence bounds are determined by the

bootstrapping approach.

Fr
e

q
u

en
cy

mNL

.1 ()LQ k
.01()Q k

.9 ()UQ k
.99 ()Q k.5 ()Q k

.05 ()mQ k .95 ()MQ k

Figure 9.2: Statistical estimators and bootstrapped confidence bounds of a distribution
of metric values in a cluster Zk.

Figure 9.2 shows the distribution of mNL metrics values in a cluster k. For this dis-

tribution, the statistical estimators Q.01(k), representing the 1 percent quantile, Q.99(k),

representing the 99 percent quantile, and Q.5(k), representing the median, are calculated

(shown as continuous line in Figure 9.2). In the next step, the confidence bounds (shown

as dotted line) are calculated for these estimators. QL.1(k) equates the 10 percent quan-

117

9. Sensitivity Analysis of Probabilistic System Models

tile of the bootstrapped statistical estimator Q.01(k). Informally, this value defines the

confidence bound that with a probability of 10 percent one percent of the metric values

have a lower value. In a similar way, QU.9(k) is determined for the statistical estimator

Q.99(k). QU.9(k) equates the 90 percent confidence bound of the 99 percent quantile of

metric values.

QM.05(k) and QM.95(k) represents the 90% confidence range of the median of the distri-

bution of metric values in cluster k, meaning the median of the distribution of metric

values has a value which is with a probability of 90 percent between QM.05(k) and QM.95(k).

With these estimators it is possible to compare a cluster Zk for two scheduling algorithms.

For the evaluation of scheduling algorithms, the SA-PS approach compares the upper

and lower confidence bounds, QU.9(k) and QL.1(k) respectively, and the confidence range

(QU.9(k) − QL.1(k)) for a certain cluster k. Depending on the relation of these values for

a cluster, two scheduling algorithms ξb and ξb can be compared according the following

definitions.

The first comparison is the predictability of a metric, meaning the statistical spread

of metric values in a cluster. The predictability is defined in the following way:

Definition 9.1

Predictability. A metric of a scheduling algorithm ξa has a higher predictability than

the metric of a scheduling algorithm ξb, when (QU.9(k)a −QL.1(k)a) < (QU.9(k)b −QL.1(k)b),

meaning the absolute value of the range between the upper and lower confidence bounds

of scheduling algorithm ξa is lower than the absolute value of the range between the upper

and lower confidence bounds of scheduling algorithm ξb.

A scheduling algorithm, which has a higher predictability in comparison with an-

other scheduling algorithm is less sensible for task set variations as long as the task set

utilization variations don’t exceed the cluster boundaries. This is beneficial for the de-

sign process of embedded systems, because metric values can be estimated with a higher

confidence.

The second evaluation is a comparison of the metric values, whereas it is assumed

that a high metric value is better than a lower one. It is differed between two cases.

The first case is that scheduling algorithm ξa is sometimes better but never worse than

scheduling algorithm ξb:

Definition 9.2

Weak Predominance (Maximum Value). When the target of a benchmark is to

maximize a metric, a scheduling algorithm ξa is sometimes better but never worse than

a scheduling algorithm ξb, when QU.9(k)a > QU.9(k)b and QL.1(k)a ≥ QL.1(k)b, meaning the

upper confidence bound of scheduling algorithm ξa is higher than the upper confidence

bound of scheduling algorithm ξb and the lower confidence bound of scheduling algorithm

ξa is higher than or equal to the lower confidence bound of scheduling algorithm ξb.

118

9.6 Statistical Evaluation

This formulation is used because it is often the case that the range between the upper

and lower confidence bounds of two scheduling algorithms overlap. If they don’t overlap,

a tight statement is possible:

Definition 9.3

Strong Predominance (Maximum Value). When the target of a benchmark is to

maximize a metric, a scheduling algorithm ξa predominates a scheduling algorithm ξb

in relation to a metric, when QL.1(k)a > QU.9(k)b, meaning the lower confidence bound of

scheduling algorithm ξa is higher than the upper confidence bound of scheduling algorithm

ξb.

For the case that a low metric value is better, in Definition 9.2 the comparators have

to be inversed:

Definition 9.4

Weak Predominance (Minimum Value). When the target of a benchmark is to

minimize a metric, a scheduling algorithm ξa is sometimes better but never worse than a

scheduling algorithm ξb, when QU.9(k)a < QU.9(k)b and QL.1(k)a ≤ QL.1(k)b.

Furthermore, in Definition 9.3 comparators have to be inversed and confidence bounds

have to be transposed:

Definition 9.5

Strong Predominance (Minimum Value). When the target of a benchmark is to

minimize a metric, a scheduling algorithm ξa predominates a scheduling algorithm ξb in

relation to a metric, when QU.1(k)a < QL.9(k)b.

With these definitions it is possible to compare different scheduling algorithms for a

probabilistic system model, as shown in the case studies in the next part.

119

Part III

Case Studies

120

Chapter 10

Execution of Case Studies

This chapter describes three case studies, applying the contribution of this work to the

domain of automotive powertrain systems. The first case study compares the presented

global scheduling algorithms Partly-Pfair-PD2 and P-ERfair-PD2 regarding the applica-

tion in automotive systems, including multiple task trigger sources e.g. periodic activa-

tion, CAN field bus, or FlexRay bus. The second case study compares Partly-Pfair-PD2,

P-ERfair-PD2, and the local scheduling algorithm EDF with bin-packing heuristic Worst

Fit Decreasing (WFD) for a group of automotive powertrain system, ported from a sin-

glecore to a dualcore processor. The third case study is a robustness evaluation of the

algorithms Partly-Pfair-PD2 and P-ERfair-PD2.

10.1 Automotive Systems

This section gives a brief overview of the architecture of automotive systems and how

the system model is derived.

In a typical automotive system, there are multiple Electronic Control Units (ECUs),

including functions of different parts of the system, e.g. entertainment, car body, or pow-

ertrain category. In today’s upper class automotive systems, there are up to 100 ECUs.

For sharing of information between these ECUs, data-frames on bus systems activate

tasks on ECUs. Depending on the transmission type of the bus system, data-frames

arrive in defined time slices or data-frames arrive sporadically due to prioritization. This

is one kind of task activation. Another kind of activation is an internal timer, which

periodically activates task in a constant manner. Furthermore, in the case of a power-

train system, tasks are activated in dependence of the position of the crankshaft. This

complex activation behavior can be modeled by the presented models for demand of ex-

ecution time and the MTB extension. The execution time is modeled by probabilistic

functions.

121

10. Execution of Case Studies

In order to give a better understanding of the complexity of automotive powertrain

systems, figure 10.1 shows all sensors and actors which are controlled by an engine man-

agement system (sensors and actors which are accessed via other ECUs are not shown).

Active
Carbon
Canister

Canister Purge
Solenoid

Fuel Supply Unit High Pressure
Fuel Pump with
Flow Control Valve

Fuel Pressure
Sensor

Engine Coolant
Temperature
Sensor

Knock SensorActive Crankshaft
Position Sensor

NOx SensorLinear/Binary
O2 Sensor

Dual Cont. Var.
Cam Phaser

Exhaust Gas
Recirculation
Valve (EGR)

Manifold
Absolute Pressure
Sensor

Ignition CoilElectronic
Throttle Control

Mass Air Flow
Sensor with
Integrated
Temp. Sensor

Exhaust
Temperature
Sensor

Piezo Direct
Injection Piezo
Injector

Air Cleaner Box Composite
Manifold

3-Way Catalyst Lean NOx

Trap Catalyst

Camshaft
Position Sensor

Figure 10.1: Sensors and actors of an automotive powertrain system (By courtesy of
Continental Automotive GmbH).

The engine management unit receives beside the angle of the fuel pedal a lot of

additional data e.g. from the mass air flow sensor, NOx sensor, or fuel pressure sensor.

This data is processed by algorithms to determine the firing angle and the amount of

air in the cylinder, which allows to make the combustion process more efficient in order

to fulfill exhaust emission norms and reduce fuel consumption, but also to provide the

demanded turning moment. These calculations have to be partitioned on tasks with

different temporal requirements, dependent on the required updating rate. Otherwise it

is not possible to process the algorithms and trigger the injection with minimal inter-

arrival times of up to 1.2 ms.

In the automotive domain, software or software parts are typically used in different

projects of the same type. However, through modifications of hardware, peripherals,

or functional amount, the software differs between these projects. The objective of the

following case studies is to evaluate scheduling algorithms for these automotive systems

by use of a probabilistic system model.

122

10.2 Case Study I: A Quadcore System

The task set data, used to generate the probabilistic system model of the case stud-

ies, was provided from the Continental Automotive GmbH. Task execution times were

determined by profiling methods and code analysis approaches. Task deadlines and the

inter-arrival times of periodic tasks and engine speed dependent inter-arrival times are

used from design documents.

10.2 Case Study I: A Quadcore System

In this case study, a probabilistic task set description, representing different automotive

systems, is used to compare the scheduling algorithms Partly-Pfair-PD2 and P-ERfair-

PD2.

Since in this case study also the number of tasks in a task set changes, the probability

of task quantity model from Section 9.2.2 is applied in the following way. The index z

denotes a randomly generated task set τz from the probabilistic system model SP .

In the first step, the quantity of tasks nz of task set τz is drawn from a discrete uniform

distribution (nmin = 20, nmax = 30). Afterwards, for each task Ti ∈ τ the inter-arrival

time is drawn from an equally distributed list of inter-arrival times {2.5, 5.0, 7.5, 10.0, 20.0, 50.0}
(these and all further times are in ms) and the task utilization wt(Ti) is drawn from a

Weibull distribution (wtmin = 0.05,wt = 0.15,wtmax = 0.51, pmax = 10%), choosen in

order to model a generalized function of the minimum, average and maximum task uti-

lization. For all tasks, the deadline is equal to the inter-arrival time. The quantum Q

is set to 0.25. For the determination of the number of task sections of a task, execution

times are randomly generated from a Weibull distribution (emin = 0.125, eavg = 0.24,

emax = 0.25, pmax = 10%) which are assigned to the related task Ti as long as condition

q∑
k=0

T ki .e ≤ Ti.p · wt(Ti)

is fulfilled. The task offset o is drawn from a uniform distribution (omin = 0.0, omax =

0.05). Finally, each task is assigned to a time base bv according to a uniform distribution

{1, 2, 3, 4} with frequency multiplier values fv(t) in the range [1, 1.05] ∀v.

Figure 10.2 shows the result of 500.000 randomly generated and simulated task sets,

falling in a system utilization interval Usum(τz) ∈ [1.68, 4].

One point represents the maximum normed lateness mNL(τz) of a task set τz in

dependence of the system utilization Usum(τz).

For the algorithm Partly-Pfair-PD2 the only deadline violation occurs at a system

utilization of 3.995. The mNL value of this task set is +0.00005, which equates a deadline

violation of 0.005 %. The mNL value results from a task with 50 ms inter-arrival time.

At P-ERfair-PD2, no deadline violation occurs for any generated and simulated task sets.

Additionally, it can be clearly seen thatP-ERfair-PD2 predominates Partly-Pfair-PD2 up

123

10. Execution of Case Studies

Figure 10.2: Scatter diagrams of mNL (y-axis) as function of system utilization (x-axis)
for the algorithms Partly-Pfair-PD2 and P-ERfair-PD2. The diagram shows 500.000
systems, generated by a probabilistic automotive system model and simulated by use of
computer cloud.

124

10.2 Case Study I: A Quadcore System

to a utilization of 3.89 and afterwards weakly predominates Partly-Pfair-PD2. However

Partly-Pfair-PD2 has a higher predictability than P-ERfair-PD2.

125

10. Execution of Case Studies

10.3 Case Study II: Porting from Singlecore to Dualcore

Processors

In this case study, the porting of a number of singlecore processor automotive powertrain

systems on a dualcore processor platform is analyzed. The singlecore processor of the

original system is replaced by a dualcore processor with equal processing capacity. For

comparison reason, the processing frequency of the dualcore processor is the half of the

singlecore processor.

The target of the case study is to find the scheduling algorithm which allows the

highest system utilization while still fulfilling all deadline requirements. Therefore, the

case study compares the scheduling algorithms Partly-Pfair-PD2, P-ERfair-PD2, and

WFD-EDF (Worst-Fit-Decreasing).

For automotive powertrain systems, the task execution times differ due to variations in

software functionality. Further task set parameters are identical at the different systems

due to equal environment conditions. Therefore, the SA-PS approach is applied with the

probability of task set parameter model (see Section 9.2.1). The probabilistic system SP

is used to generate task sets {τz} with a non probabilistic periodic offset based demand

model, defining a minimal inter-arrival time and a task offset. Furthermore, the task set

parameters task deadline, number of task sections, and time base reference are constant.

These values are listed in Table 10.1.

Tasks are assigned to two types of time bases. The first time base b1 is the crankshaft

trigger which activates tasks in the case of a constant engine rotation speed with different

but constant inter-arrival times. However, when rotation speed changes, the inter-arrival

time of all task is changed by a common factor. The frequency multiplier f1(t) models the

ratio between maximal rotation speed rmax and actual rotation speed. For this reason,

f1(t) can never be smaller than 1. The lower bound of f1(t) derives by the maximal

rotation speed, namely min
t

(f1(t)) = rmax
rmax

= 1. The upper bound of f1(t) derives by the

engine idle speed rmin, namely max
t

(f1(t)) = rmax
rmin

= 6.8. During the simulation time,

f1(t) is varied between these bounds according to the methodology in section 8.5. The

second time base b2 is a periodic trigger which activates tasks with constant inter-arrival

times and task offsets, originating the periodic offset based task set. Therefore, the

related time base b2 has a constant multiplier f2(t) = 1.

The execution time of the task sections is modeled by a Weibull probability distribu-

tion function

P (T ki .e = xn) = pn

and

pn = wb(x, λ, κ, emin) ∀T ki ∈ Ti, ∀Ti ∈ τz.

All task sections have an identical variation of task section execution time. Using the ap-

proach of Section 6.2.2, the Weibull parameter shape κ and scale λ can be calculated from

126

10.3 Case Study II: Porting from Singlecore to Dualcore Processors

Table 10.1: Task set parameters of porting case study.

Task Inter-
arrival
time

Offset Deadline Number
of
task-
sections

Time
base

T00 RPM 2.5 0 2.5 6 b1

T01 RPM 8.8 2.5 5.0 1 b1

T02 RPM 2.9 0 1.3 1 b1

T03 RPM 2.9 0.6 1.3 1 b1

T04 RPM 2.9 1.2 1.3 1 b1

T05 RPM 2.9 1.8 1.3 1 b1

T06 1MS 1.0 0.5 0.6 1 b2

T07 5MS 5.0 0 5.0 1 b2

T08 5MS 5.0 7.5 10.0 1 b2

T09 10MS 10.0 5.0 2.5 3 b2

T10 10MS 10.0 0 10.0 3 b2

T11 10MS 10.0 5.0 10.0 2 b2

T12 20MS 20.0 0 20.0 3 b2

T13 40MS 40.0 0 80.0 1 b2

T14 100MS 100.0 0 100.0 10 b2

T15 1000MS 1000.0 0 500.0 6 b2

the statistical estimators on execution times: minimal execution time T ki .emin = 0.01,

average execution time T ki .eavg = 0.22, and maximal execution time T ki .emax = 0.3.

The probability of an execution time higher than the maximal is pmax = 0.0001. The

execution time of the scheduling algorithm ISR, executed at each schedule decision, is

considered with 2µs.

From this probabilistic system model, the SA-PS approach generates 25.000 system

models for the evaluation and the sensitivity analysis. A simulation duration of 20s was

determined empirically to be sufficient for approximation of worst-case response time. In

order to compare the algorithms regarding maximal system utilization, the metric mNL

is determined and analyzed as function of the system utilization Usum(τz). The scatter

diagram of the result is shown for all algorithms in Figure 10.3. The x−axis represents

the system utilization Usum(τz), the y−axis represents the mNL metric.

The experiment shows, that the algorithm Partly-Pfair-PD2 has a low variation of

mNL for each cluster and has the highest predictability of all analyzed algorithms. But,

already at a low system utilization, mNL exceeds 0 and the system violates task deadlines.

This effect occurs because Partly-Pfair-PD2 works in a non-work-conserving manner. It

schedules task instances in a way that they finish short before deadline. However, due to

127

10. Execution of Case Studies

an execution of the scheduling algorithm ISR at the start of each task section, in some

cases the delay of execution results in a violation of task deadlines.

The algorithm P-ERfair-PD2 shows a high variation of mNL per cluster. The median

of mNL in a cluster increases with the system utilization. Even at high system utilizations

there are only a few deadline violations per cluster (see the enlarged detail of P-ERfair-

PD2 in Figure 10.3). The first deadline violation occurs at a system utilization of 1.81

(which corresponds to 91%). These violations result from the additional time for the

scheduling algorithm. Migration overhead was not considered in this case study due to

the assumptions of no delay for a migration at task section boundary, as argued in section

2.2.2. For processor architectures which don’t fulfill this assumption, in [SPDM09] the

migration overhead for comparable task sets was estimated by simulation studies and it

was derived, that an additional system utilization of 5− 10% has to be assumed for this

kind of task sets. In comparison with the algorithm Partly-Pfair-PD2, P-ERfair-PD2 has

a weak predominance.

The algorithm WFD-EDF shows the highest variations of mNL and first deadline

violations at a system utilization of 1.633. Furthermore, it is obvious that the area divides

in two sections (to be discussed below). A disadvantage of the bin-packing approach in

general is that there are task sets, which can not be partitioned by a certain heuristic, e.g.

WFD, even though there is a valid partition. In this case, further partitioning heuristics

have to be applied. Since in each case study the same task sets have been examined by

all scheduling algorithms, task sets which could not be partitioned by a heuristic were

rejected for all scheduling algorithms.

In Figure 10.4, the range of system utilization [1.56, 2] is divided in 20 equal sized

clusters. For each cluster, the confidence bounds of the statistical estimators from Section

9.6 are calculated by the bootstrapping approach with a bootstrap sample size of 500.

The statistical estimators are represented by a box plot. The upper and lower whisker

represent the upper and lower confidence interval of the upper and lower quantile respec-

tively, the box represents the confidence interval of the median, and the symbol represents

the median itself.

When these statistical estimators are compared for different scheduling algorithms

of one cluster, it can be seen that in any case the algorithm P-ERfair-PD2 has a lower

variance than the algorithm WFD-EDF. The algorithm Partly-Pfair-PD2 has the lowest

variance of all scheduling algorithms regarding median and range of mNL but the algo-

rithm is never better than any other scheduling algorithm. Due to the low variation,

Partly-Pfair-PD2 has a higher predictability of mNL than the other algorithms which

makes this algorithm appropriate for systems where the task finalization should be inde-

pendent from other task execution times. However, due to first deadline violation at a

low system utilization, this algorithm is not suitable for automotive powertrain systems

with hard real-time requirements. Equally, WFD-EDF is not applicable because the

number of deadline violations increases rapidly for system utilizations higher than 1.633.

128

10.3 Case Study II: Porting from Singlecore to Dualcore Processors

Therefore, the only algorithm which fulfills deadline requirements also for a high system

utilization is P-ERfair-PD2.

A detailed consolidation of the task partitioning of the WFD heuristic shows that all

these task sets have a mNL < 0 when only models are considered where task T00 RPM

and T09 10MS execute on a different core (see Figure 10.5). Unfortunately, this very

good result can not be compared with the experiment results of the scheduling algorithms

P-ERfair-PD2 and Partly-Pfair-PD2 because of the filtered set of analyzed models.

129

10. Execution of Case Studies

Figure 10.3: Scatter diagrams of mNL (y-axis) as a function of the system utilization
(x-axis) for the algorithms Partly-Pfair-PD2, P-ERfair-PD2, and WFD-EDF. The dia-
gram shows 25.000 system models originating from a probabilistic automotive powertrain
system model.

130

10.3 Case Study II: Porting from Singlecore to Dualcore Processors

(1.56,1.58] (1.62,1.64] (1.68,1.7] (1.74,1.76] (1.8,1.82] (1.86,1.88] (1.92,1.94]

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

System Utilization

m
N

L

P−ERfair−PD2
Partly−Pfair−PD2
WFD−EDF

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 10.4: Comparison of the scheduling algorithms Partly-Pfair-PD2, P-ERfair-PD2,
and WFD-EDF by statistical estimators on mNL (y-axis) as a function of the system
utilization (x-axis).

(1.56,1.58] (1.62,1.64] (1.68,1.7] (1.74,1.76] (1.8,1.82] (1.86,1.88] (1.92,1.94]

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

System Utilization

m
N

L

WFD−EDF (subset 1)

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

(1.56,1.58] (1.62,1.64] (1.68,1.7] (1.74,1.76] (1.8,1.82] (1.86,1.88] (1.92,1.94]

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

System Utilization

m
N

L

WFD−EDF (subset 1)

Figure 10.5: Subset of examined models from porting case study (Figure 10.3) and WFD-
EDF scheduling, where only models are considered with task T00 RPM and T09 10MS
on different cores.

131

10. Execution of Case Studies

10.4 Case Study III: Robustness Analysis

This case study analyzes the robustness of the algorithms Partly-Pfair-PD2 and P-ERfair-

PD2 by inserting temporal perturbations, i.e. execution time changes of task sections.

For this case study, the same probabilistic system description as in Section 10.2 is used.

Additionally, each task section is challenged with a random variation of the task sec-

tion execution time via a Weibull distribution in the range of T ki .e = [0.9 ·Q, ..., 2 ·Q] ∀T ki ∈
Ti,∀Ti ∈ τz, with T ki .e ∈ R, and T ki,j .eavg = Q. Again, Q is set to 250 µs. In real systems,

such task execution time variation could occur due to varying runtime of algorithms,

preemptions caused by interrupt service routines, different control flows depending on

the input, etc.

For the evaluation, 100.000 task sets were generated and simulated.

(1.68,1.79] (2.02,2.13] (2.36,2.48] (2.7,2.82] (3.04,3.16] (3.38,3.5] (3.72,3.84]

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

System Utilization

m
N

L

1_PPF_ER_PD2
1_PPF_PD2

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 10.6: Robustness consideration of Partly-Pfair-PD2 and P-ERfair-PD2 through
random variation of the task section execution time via a Weibull distribution. The task
section execution time can be twice as long as allowed.

Figure 10.6 shows the examination results for both algorithms on a quadcore proces-

sor (m = 4). Each box plot represents statistical estimators of mNL for a group of task

sets, clustered by system utilization in 20 equal sized clusters. The box plot of a cluster

consists of a symbol, two whiskers, and a box. The symbol represents the median, the

box around the symbol represents the bootstrapped 99% confidence intervall of the me-

dian, and the whiskers represent the upper and the lower bootstrapped 99% confidence

intervall of the inter-quantile distance (99%) boundaries respectively.

132

10.4 Case Study III: Robustness Analysis

Due to the non-work-conserving behavior, Partly-Pfair-PD2 leads to a mNL typically

close to zero. For the case of a system without task set perturbations, Partly-Pfair-PD2

fulfills all deadlines up to a system utilization of 3.995 (which corresponds to 99, 9%) (see

Figure 10.2). However, for the case of a system with perturbations, Partly-Pfair-PD2

has the first deadline violation at a system utilization of 2.2 (which corresponds to 55%).

Furthermore, in contrast to case study I, Partly-Pfair-PD2 has a lower predictability in

the last utilization cluster.

The algorithm P-ERfair-PD2 is work-conserving, which leads to the fact that tasks

typically finish earlier and have lower mNL value for low system utilizations. Conse-

quently, the perturbed system is able to meet all deadlines up to a rather high system

utilization of 3.7 (which corresponds to 92.5%).

This shows that P-ERfair-PD2 is able to handle variations of the task section execution

time quite well, while Partly-Pfair-PD2 fails completely above 57.5% (i.e. upper box plot

whisker is above mNL =0 limit). P-ERfair-PD2 strongly predominates Partly-Pfair-PD2

up to a utilization of 3.72.

133

Chapter 11

Discussion

This chapter discusses the results of the presented case studies, compares them with

other studies, and summarizes the advances in knowledge.

11.1 Local Scheduling with Bin-Packing Partitioning

In case study II, the bin-packing approach WFD was selected for analysis because it

allows the highest system utilization of all bin-packing algorithms of Section 3.3.1. This

is justified due to a load balancing effect at partitioning, because WFD selects the core

with the lowest utilization for the assignment of the next task.

The examined schedulability bound of the bin-packing partitioning algorithm WFD

is equal to schedulability bound in [LDG04b]. Carpenter et al. [CFH+04] derived for lo-

cal scheduling with job-fix priority assignment a system utilization bound of Usum(τz) =
M+1
2 . Lopez et al. [LDG04b] proved for bin-packing algorithms using a decreasing task

sorting that the maximal system utilization can be increased when the maximal task uti-

lization Umax(τz) is decreased. Using equation 3.2, Usum(τz) = 1.63 is the schedulability

bound for task sets with Umax(τz) = 0.58 (in Case Study II, Umax(τz) = 0.58 derives from

task T00 RPM). In the case study, the task set with the lowest utilization, which has a

mNL > 0, has a system utilization of Usum(τz) = 1.633. Therefore, the schedulability

bound of the case study corresponds with the general schedulability bound of theoret-

ical considerations. However, the case study also shows that many task partitionings

produce a much better mNL as the schedulability bound. For task sets originating the

probabilistic task set description of Case Study II, it was shown that the application of

a simple rule, which defines that certain tasks are not allowed to execute on the same

core, extends the maximal system utilization bound. Certainly, this rule is only valid for

the probabilistic task set description of the automotive powertrain systems.

As expected, in comparison with the global scheduling algorithms Partly-Pfair-PD2

and P-ERfair-PD2, WFD partitioning with EDF scheduling has more deadline violations

and never predominates these algorithms. Furthermore, the predictability of WFD-EDF

134

11.2 Global Scheduling Algorithms

is much lower than at Partly-Pfair-PD2 and P-ERfair-PD2. According to Question 1 of

this work, WFD-EDF (and all other bin-packing algorithms) doesn’t fulfill the require-

ment of efficiency, which makes the algorithm inappropriate for embedded multicore

systems.

11.2 Global Scheduling Algorithms

The algorithm Partly-Pfair-PD2 works in a non-work-conserving manner, meaning the

processor may be idle even though tasks are ready to execute. The algorithm P-ERfair-

PD2 works in a work-conserving manner and executes ready tasks whenever there are

free processors. The experiments show that the non-work-conserving behavior of Partly-

Pfair-PD2 leads to a lower variability of maximal task response times at changing task

set parameters but similar system utilization, because the variation of mNL in a system

utilization cluster is very low in comparison with the algorithm P-ERfair-PD2. This is

particularly beneficial for soft real-time systems which require a production of calculation

results in a periodic manner, e.g. at control of robotic actuators by feedback controlled

systems or at multimedia applications with a constant sending interval for video frames.

Devi and Anderson [DA05] showed that the original algorithm Pfair-PD2 leads to

deadline violations of at most one time quantum Q, when using desynchronized schedul-

ing calls. Desynchronized scheduling calls means that the scheduler is called and is al-

lowed to assign a waiting time quanta to a core, when the execution time of a time quanta

is smaller than Q. Case Study I showed for task sets, common in automotive systems,

the modified algorithm Partly-Pfair-PD2 has deadline violations only at maximal system

utilization and only for the tasks in the task set, which have the highest inter-arrival time

(or rather task deadline). Also when a direct comparison is not possible because the al-

gorithms are proposed for different kind of task sets, it is observed that the algorithm

Partly-Pfair-PD2 performs for the analyzed task sets better than the original Pfair-PD2

algorithm for sporadic task sets. According predictability, Partly-Pfair-PD2 outperforms

both algorithms, P-ERfair-PD2 and WFD-EDF. Therefore Partly-Pfair-PD2 is appropri-

ate for efficient soft real-time systems, which furthermore require a high steadiness of

response times at task set perturbations.

The benefit of the work-conserving behavior of P-ERfair-PD2 is a higher robustness

against task execution time perturbations. Immediately execution of ready task results

in lower response times, i.e. higher laxities at task termination, which allows the sched-

uler to compensate the higher execution times of the task sections. Furthermore, global

scheduling is able to migrate waiting task sections to another core when a core is blocked

by another task. In each case study P-ERfair-PD2 strongly or at least weakly predom-

inates Partly-Pfair-PD2. This qualifies P-ERfair-PD2 for highly efficient hard real-time

systems with a high robustness of deadline compliance, as long as the predictability of

135

11. Discussion

response times is not significant.

11.3 Simulation-Based Multicore Real-Time Examination

The simulation-based examination approach was used for schedulability considerations

because mentioned examination approaches from Section 4.2 are not able to analyze

global multicore scheduling algorithms with a task section fix priority assignment for

task sets with inter-arrival patterns which differ from periodic activation.

For the case of local scheduling algorithms with a job-fix priority assignment, Case

Study II shows that the schedulability bound of the simulation-based examination ap-

proach corresponds to the proved schedulability bounds. This indicates that the mecha-

nisms of the simulation for approximation of worst-case response times are adequate for

the examination of local scheduling algorithms.

When task set parameter fulfill the restrictions of synchronized periodic task sets

with implicit deadline and quantized execution time, the algorithms Partly-Pfair-PD2

and P-ERfair-PD2 behave like the original algorithms Pfair-PD2 and P-ERfair-PD2 (see

Equation 7.3). In this case, the determined response time corresponds to the maximal

value which was proved by Baruah et al. [BCPV96] and Anderson [AS00a] as schedu-

lability bound. Therefore, also for global scheduling algorithms, the simulation-based

examination approach adequately approximates the worst-case response time. Accord-

ing to Question 2 of this work, the simulation-based real-time examination approach

can be stated as appropriate for the examination of response times of the presented

algorithms.

136

Part IV

Conclusion and Future Work

137

Chapter 12

Summary

This work has investigated real-time scheduling of practical task sets on embedded mul-

ticore processor systems as well as the schedulability examination of these systems.

The presented global scheduling algorithm Partly-Pfair-PD2 works in a non-work-

conserving manner. For practical task sets with multiple time base extension, defining

clock dependencies for activation pattern of tasks with variable execution times and

cooperative scheduling points, Partly-Pfair-PD2 has the benefit of a high predictability

of task response times and a moderate violation of task deadlines, also at high task set

utilizations. Therefore, this algorithm is particularly suitable for a soft real-time system,

e.g. embedded systems with multimedia function, where tasks have to finish execution

regularly but moderate deadline violations are permitted [But05c].

The introduced work-conserving variant, denoted as P-ERfair-PD2, turned out to be

very efficient regarding the maximal system utilization because it allows to utilize the

complete processor capacity and fulfills all task deadlines in several case studies. Further-

more, P-ERfair-PD2 shows a high robustness regarding task set parameter perturbation,

e.g. in a case study, the algorithm was able to schedule task sets on a quadcore pro-

cessor up to 93% of task set utilization despite of perturbations provoking up to the

double of task execution times. Therefore, this algorithm is especially interesting for

high performance and hard real-time systems, e.g. automotive powertrain systems.

For the group of global scheduling algorithms with dynamic priority assignment, only

algorithm specific proofs of schedulability were introduced up to now. The introduced

simulation-based schedulability examination methodology does not prove compliance of

task deadlines, but examines schedulability by an approximation of response-times. This

approach can be used for many kinds of scheduling algorithm, e.g. local static priority

scheduling algorithms, cooperative scheduling algorithms, and global dynamic priority

scheduling algorithms. Furthermore, this approach also allows to consider scheduling

overheads.

For a sensitivity analysis of the effect of changing task set parameters on schedula-

bility, the SA-PS methodology was introduced. Using a probabilistic system model, the

138

SA-PS approach allows to determine precisely whether a system parameter effects any

metric of system. Furthermore, this approach can be used for comparison of scheduling

algorithms.

Several case studies, located in the automotive domain, evaluated the applicability of

the presented algorithms and approaches.

139

Chapter 13

Further Work

In this work, scheduling algorithms for independent tasks and sequentially dependent

task sections have been proposed and evaluated. However, through the introduced task

set model, task response times can not be reduced. This is important when the processor

frequency remains constant in next generation processor architectures. With the advent

of highly parallelized systems, like many core processor systems, identifying indepen-

dent sections in a task and the parallel execution of these sections could overcome this

drawback. At certain positions during task execution, a task instance is parallelized for

execution on multiple cores and results return afterwards, also known as fork-join mech-

anisms. For this kind of task sets, additional temporal requirements have to be assigned

to parallelized task sections in order to complete these task sections before task deadline

is exceeded. Scheduling of those task sets and the problem of a high sorting time for the

long queue of waiting task sections for a many core processor system remains for further

work.

The SA-PS approach allows a sensitivity analysis of probabilistic system models.

For this purpose, the deadline compliance was analyzed as a function of system model

characteristics. However, through this reduction of system model characteristics to one

dimension, a lot of information is neglected. By application of clustering approaches,

groups of system model parameters could be extracted from the SA-PS approach which

influence the deadline compliance. Employing this information in the development pro-

cess of embedded systems could lead to a higher quality of deadline compliance.

140

Bibliography

[ABD08] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based restricted-migration

scheduling algorithm for multiprocessor soft real-time systems. In Proceed-

ings of the 17th Euromicro Conference on Real-Time Systems, pages 199–

208, 2008.

[ABR+93] N. Audsley, A. Burns, M. F. Richardson, K.W. Tindell, and A. J. Wellings.

Applying new scheduling theory to static priority preemptive scheduling.

Software Engineering Journal, 8(5):284–292, 1993.

[ABRW91] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time

scheduling: the deadline-monotonic approach. In Proceedings of the IEEE

Workshop on Real-Time Operating Systems and Software, pages 133–137,

1991.

[ABS06] K. Albers, F. Bodmann, and F. Slomka. Hierarchical event streams and

event dependency graphs: A new computational model for embedded real-

time systems. In Proceedings of the 18th Euromicro Conference on Real-

Time Systems, pages 97–106, 2006.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

[ALM10] K. Altisen, Y. Liu, and M. Moy. Performance Evaluation of Components

Using a Granularity-based Interface Between Real-Time Calculus and Timed

Automata. Electronic Proceedings in Theoretical Computer Science, 28:16–

33, 2010.

[AS00a] J. H. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceed-

ings of the 12th Euromicro Conference on Real-Time Systems 2000, pages

35–43, 2000.

[AS00b] J. H. Anderson and A. Srinivasan. Pfair Scheduling: Beyond Periodic Task

Systems. In Proceedings of the 7th International Conference on Real-Time

Computing Systems and Applications, pages 297–306, 2000.

141

Bibliography

[AS01] J. H. Anderson and A. Srinivasan. Mixed Pfair/ERfair Scheduling of Asyn-

chronous Periodic Tasks. In Proceedings of the 13th Euromicro Conference

on Real-Time Systems, pages 76–85, 2001.

[AUT10] AUTOSAR. AUTomotive Open System ARchitecture Release 4.0, 2010.

[Bak07] T.P. Baker. Schedulability analysis of multiprocessor sporadic task systems.

In Handbook of Realtime and Embedded Systems, pages 1–28. Chapman &

Hall/CRC, Boca Raton, 2007.

[Bar98] P. Barford. Generating representative Web workloads for network and server

performance evaluation. In Proceedings of the ACM SIGMETRICS, pages

151–160, June 1998.

[Bar05] S. K. Baruah. The limited-preemption uniprocessor scheduling of sporadic

task systems. In Proceedings of the 17th Euromicro Conference on Real-Time

Systems, pages 137–144, 2005.

[Bar07] S. K. Baruah. Techniques for Multiprocessor Global Schedulability Analysis.

In Proceedings of the 28th IEEE International Real-Time Systems Sympo-

sium, pages 119–128, December 2007.

[BB03] E. Bini and G. C. Buttazzo. Rate monotonic analysis: the hyperbolic bound.

IEEE Transactions on Computers, 52(7):933–942, July 2003.

[BB06] S. K. Baruah and A. Burns. Sustainable Scheduling Analysis. In Proceedings

of the 27th IEEE International Real-Time Systems Symposium, pages 159–

168, 2006.

[BBM+10] M. Bertogna, G. C. Buttazzo, M. Marinoni, G. Yao, F. Esposito, S. Superi-

ore, S. Anna, and M. Caccamo. Preemption points placement for sporadic

task sets. In Proceedings of the 22nd Euromicro Conference on Real-Time

Systems, pages 251–260, 2010.

[BCL09] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global

scheduling algorithms on multiprocessor platforms. IEEE Transactions

on Parallel and Distributed Systems on Parallel and Distributed Systems,

20(4):553–566, 2009.

[BCOQ92] F. L. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat. Synchronization

and linearity: An Algebra for Discrete Event Systems. Wiley, New York,

1992.

[BCPV96] S. K. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress:

A notion of fairness in resource allocation. Algorithmica, 15(6):600–625,

1996.

142

Bibliography

[Ber07] M. Bertogna. Real-time scheduling analysis for multiprocessor platforms.

PhD thesis, Universtiy Scuola Superiore Sant’Anna, Pisa, 2007.

[BG04] S. K. Baruah and J. Goossens. Scheduling Real-Time Tasks: Algorithms

and Complexity. In Handbook of Scheduling. Chapman & Hall/CRC, Boca

Raton, 2004.

[BGP95] S. K. Baruah, J.E. Gehrke, and C.G. Plaxton. Fast scheduling of periodic

tasks on multiple resources. In Proceedings of 9th International Parallel

Processing Symposium, pages 280–288, 1995.

[BGST04] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of extremes:

theory and applications. Wiley series in probability and statistics. Wiley,

Weinheim, 2004.

[BLV09] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response

time analysis of real-time tasks under fixed-priority scheduling with deferred

preemption. Real-Time Systems, 42(1-3):63–119, 2009.

[BMR90] S. K. Baruah, A. K. Mok, and L.E. Rosier. Preemptively scheduling hard-

real-time sporadic tasks on one processor. In Proceedings of the 11th IEEE

Real-Time Systems Symposium, pages 182–190, 1990.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity

concerning the preemptive scheduling of periodic, real-time tasks on one

processor. Real-Time Systems, 2(4):301–324, November 1990.

[Bur95] A. Burns. Preemptive priority based scheduling: An appropriate engineering

approach. pages 225–248. Prentice Hall, New Jersey, 1995.

[But05a] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling

algorithms and applications. Springer, New York, 2005.

[But05b] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Sys-

tems, 29(1):5–26, 2005.

[But05c] G.C. Buttazzo. Soft real-time systems: predictability vs. efficiency. Springer,

New York, 2005.

[BW97] A. Burns and A. J. Wellings. Restricted tasking models. ACM SIGAda Ada

Letters, 17(5):27–32, 1997.

[BW09] A. Burns and A. J. Wellings. Real-Time Systems and Programming Lan-

guages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-Wesley,

Reading Massachusetts, 2009.

143

Bibliography

[CD73] E. G. Coffman and P. J. Denning. Operating systems theory. Prentice Hall,

Upper Saddle River, New Jersey, 1973.

[CEBA02] A. Cervin, J. Eker, B. Bernhardsson, and E. Arzen. Feedback-Feedforward

Scheduling of Control Tasks. Real-Time Systems, 23(1):25–53, 2002.

[CFH+04] J. Carpenter, J. H. Funk, P. L. Holman, A. Srinivasan, J. H. Anderson,

and S. K. Baruah. A categorization of real-time multiprocessor scheduling

problems and algorithms. In Handbook of Scheduling, pages 30.1–30.19.

Chapman & Hall/CRC, Boca Raton, 2004.

[CG06] L. Cucu and J. Goossens. Feasibility Intervals for Fixed-Priority Real-Time

Scheduling on Uniform Multiprocessors. In Proceedings of the IEEE Con-

ference on Emerging Technologies and Factory Automation, pages 397–404,

2006.

[CJGJ78] E.G. Coffman Jr, M.R. Garey, and D.S. Johnson. An application of bin-

packing to multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–

17, 1978.

[CKT03] S. Chakraborty, S. Kuenzli, and L. Thiele. A general framework for analysing

system properties in platform-based embedded system designs. In Proceed-

ings of the Design, Automation, and Test in Europe Conference, pages 190–

195, 2003.

[Cor94] J. C. Corbett. Modeling and analysis of real-time Ada tasking programs. In

Proceedings Real-Time Systems Symposium, pages 132–141, 1994.

[CRJ06] H. Cho, B. Ravindran, and E. Jensen. An Optimal Real-Time Scheduling

Algorithm for Multiprocessors. In Proceedings of the 27th IEEE Interna-

tional Real-Time Systems Symposium, pages 101–110, 2006.

[Cru02] R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in

Isolation. IEEE Transactions On Information Technology, 37(1):114–131,

2002.

[DA05] U. C. Devi and J. H. Anderson. Desynchronized pfair scheduling on mul-

tiprocessors. In Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium, 2005.

[Das10] A. Dasgupta. Fundamentals of Probability: A First Course. Springer, New

York, 2010.

[DB05] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling.

In Proccedings of the 26th IEEE Real-Time Systems Symposium, pages 389–

398, 2005.

144

Bibliography

[DB09] R. I. Davis and A. Burns. A Survey of Hard Real-Time Scheduling Algo-

rithms and Schedulability Analysis Techniques for Multiprocessor Systems.

Technical Report RTS Group, University of York, 2009.

[Der74] M. L. Dertouzos. Control robotics: The procedural control of physical pro-

cesses. Information Processing, 74:807–813, 1974.

[Deu08] M. Deubzer. Method of Performance Analysis for Embedded System Archi-

tectures. Master’s thesis, University of Applied Sciences Regensburg, 2008.

[DH01] L. De Alfaro and T. Henzinger. Interface theories for component-based

design. In Proceedings of the Embedded Software Conference, pages 148–

165, 2001.

[Dha77] S. K. Dhall. Scheduling periodic-time-critical jobs on single processor and

multiprocessor computing systems. PhD thesis, University of Illinois at

Urbana-Champaign, 1977.

[DHM+10] M. Deubzer, M. Hobelsberger, J. Mottok, F. Schiller, R. Dumke, M. Siegle,

U. Margull, M. Niemetz, and G. Wirrer. Modeling and Simulation of Em-

bedded Real-Time Multi-Core Systems. In Proceedings of the 3rd Embedded

Software Engineering Congress, pages 228–241, 2010.

[DL78] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations

Research, 26(1):127–140, 1978.

[DM89] M. L. Dertouzos and A. K. Mok. Multiprocessor online scheduling of hard-

real-time tasks. IEEE Transactions on Software, 15(12):1497–1506, 1989.

[DM10] M. Deubzer and J. Mottok. Dependability von Systemen mit dynamischen

Multicore-Schedulingalgorithmen. In safetronic.2010, November 2010.

[DMM+10] M. Deubzer, U. Margull, J. Mottok, M. Niemetz, and G. Wirrer. Partly Pro-

portionate Fair Multiprocessor Scheduling of Heterogeneous Task Systems.

In Proceedings 5th Embedded Real Time Software and Systems Conference,

2010.

[DMMN10] M. Deubzer, J. Mottok, U. Margull, and M. Niemetz. Efficient Scheduling

of Reliable Automotive Multi-core Systems with PD2 by Weakening ERfair

Task System Requirements. In Proceedings of the Automotive Safety and

Security, pages 60–67, 2010.

[DRRG10] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability and

sensitivity analysis of multiple criticality tasks with fixed-priorities. Real-

Time Systems, 46(3):305–331, 2010.

145

Bibliography

[DRS06] S.B. Dhia, M. Ramdani, and É. Sicard. Electromagnetic compatibility of

integrated circuits: techniques for low emission and susceptibility. Springer,

New York, 2006.

[DSM+10a] M. Deubzer, F. Schiller, J. Mottok, M. Niemetz, and U. Margull. Ef-

fizientes Multicore-Scheduling in Eingebetteten Systemen - Teil 1: Algo-

rithmen für zuverlässige Echtzeitsysteme. atp, Automatisierungstechnische

Praxis, 52(9):60–67, 2010.

[DSM+10b] M. Deubzer, F. Schiller, J. Mottok, M. Niemetz, and U. Margull. Effizientes

Multicore-Scheduling in Eingebetteten Systemen - Teil 2: Ein simulations-

basierter Ansatz zum Vergleich von Scheduling-Algorithmen. atp, Automa-

tisierungstechnische Praxis, 52(10):54–63, 2010.

[DTB93] R. I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed

priority pre-emptive systems. In Proceedings of the 14th IEEE Real-Time

Systems Symposium, pages 222–231, 1993.

[ET93] B. Efron and R.J. Tibshirani. An introduction to the bootstrap. Chapman

& Hall/CRC, Boca Raton, 1993.

[FGB10] N. W. Fisher, J. Goossens, and S. K. Baruah. Optimal online multiprocessor

scheduling of sporadic real-time tasks is impossible. Real-Time Systems,

45(1-2):26–71, 2010.

[FN09] J. H. Funk and V. Nadadur. LRE-TL : An Optimal Multiprocessor Schedul-

ing Algorithm for Sporadic Task Sets. In Proceedings of the 17th Interna-

tional Conference on Real-Time and Network Systems, pages 26–27, 2009.

[Fre09] Freescale Semiconductors. Embedded Multicore: An Introduction, Whitepa-

per, 2009.

[FTF+02] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A

computation management agent for multi-institutional grids. Cluster Com-

puting, 5:237–246, 2002.

[GFB03] J. Goossens, J. H. Funk, and S. K. Baruah. Priority-Driven Scheduling of

Periodic Task Systems on Multiprocessors. Real-Time Systems, 25(2):187–

205, 2003.

[GGD+07] N. Guan, Z. Gu, Q. Deng, S. Gao, and G. Yu. Exact Schedulability Analysis

for Static-Priority Global Multiprocessor Scheduling Using Model-Checking.

In Proceedings of the 5th International Conference on Software Technologies

for Embedded and Ubiquitous Systems, number 2006, pages 263–272, 2007.

146

Bibliography

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability. Freeman, San

Francisco, 1979.

[GMM99] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler

framework for analyzing and tuning memory behavior. ACM Transactions

on Programming Languages and Systems, 21(4):703–746, July 1999.

[GNU10] GNU Scientific Library. http://www.gnu.org/software/gsl/, December 2010.

[Gra71] R. L. Graham. Bounds on multiprocessing anomalies and related packing

algorithms. Proceedings of the AFIPS Joint Computer Conferences, pages

205–217, 1971.

[Gum04] E.J. Gumbel. Statistics of extremes. Dover Publications, Mineola, New

York, 2004.

[HHJ+04] A. Hamann, R. Henia, M. Jersak, R. Racu, K. Richter, and R. Ernst.

SymTA/S-Symbolic Timing Analysis for Systems. In Proceedings of the

16th Euromicro Conference on Real-Time Systems, pages 17–20, 2004.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. Sys-

tem level performance analysis-the SymTA/S approach. IEE-Proceedings

Computers and Digital Techniques, 152(2):148–166, 2005.

[HV06] M. Hendriks and M. Verhoef. Timed Automata Based Analysis of Embedded

System Architectures. In Proceedings of the 20th IEEE International Parallel

and Distributed Processing Symposium, pages 1–8, 2006.

[Int05] International Organizations for Standardization. ISO 17356-3 Road vehi-

cles - Open interface for embedded automotive applications - Part 3: OS-

EK/VDX Operating System (OS), 2005.

[JP86] M. Joseph and P. Pandya. Finding response times in a real-time system.

The Computer Journal, 29(5):390–395, 1986.

[KM91] T. W. Kuo and A. K. Mok. Load adjustment in adaptive real-time systems.

Proceedings of the 12th Real-Time Systems Symposium, pages 160–170, 1991.

[Kop08] H. Kopetz. Wrong Assumptions and Neglected Areas in Embedded Systems

Research. In Proceedings of the 11th IEEE International Symposium on Ob-

ject and Component-Oriented Real-Time Distributed Computing, page 360,

May 2008.

[Kue06] S. Kuenzli. Efficient Design Space Exploration for Embedded Systems. PhD

thesis, Swiss Federal Institute of Technology, Zurich, 2006.

147

Bibliography

[KW95] K. Knopp and W. Walter. Theorie und Anwendung der unendlichen Reihen.

Springer, Berlin, 1995.

[LA10] C. Liu and J.H. Anderson. Scheduling suspendable, pipelined tasks with

non-preemptive sections in soft real-time multiprocessor systems. In Pro-

ceedings of the 16th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, pages 23–32, 2010.

[LBT01] J. Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic

queuing systems for the internet. Springer, Berlin, 2001.

[LCA09] H. Leontyev, S. Chakraborty, and J. H. Anderson. Multiprocessor extensions

to real-time calculus. In Proceedings of the 30th IEEE Real-Time Systems

Symposium, pages 410–421, 2009.

[LDG04a] J. M. López, J. L. Dı́az, and D. F. Garćıa. Minimum and maximum utiliza-

tion bounds for multiprocessor rate monotonic scheduling. IEEE Transac-

tions on Parallel and, 15(7):642–653, 2004.

[LDG04b] J. M. Lopez, J. L. Dı́az, and D. F. Garćıa. Utilization Bounds for EDF

Scheduling on Real-Time Multiprocessor Systems. Real-Time Systems,

28(1):39–68, 2004.

[Leh90] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary

deadlines. In Proceedings of the 11th Real-Time Systems Symposium, pages

201–209, 1990.

[LGDG00] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garćıa. Worst-case utilization

bound for EDF scheduling on real-time multiprocessor systems. In Proceed-

ings of the 12th Euromicro Conference on Real-Time Systems, pages 25–33,

2000.

[LH94] J. W. S. Liu and R. Ha. Efficient Mehtods of Validating timing constraints in

multiprocessor and distributed real-time systems. In Proccedings of the 14th

International Conference on Distributed Computing Systems, pages 162–171,

1994.

[LHS+98] C. Lee, J. Hahn, Y. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee,

and C. S. Kim. Analysis of cache-related preemption delay in fixed-priority

preemptive scheduling. IEEE Transactions on Computers, 47(6):700–713,

1998.

[Liu69] C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time

environment. JPL Space Programs Summary, 37:60, 1969.

148

Bibliography

[LL73] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming

in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

[LLL+98] S. Lee, C. Lee, M. Lee, S. L. Min, and C. S. Kim. Limited preemptible

scheduling to embrace cache memory in real-time systems. In Proceedings

of the Languages, Compilers, and Tools for Embedded Systems Conference,

pages 51–64, 1998.

[LNKN10] Y. Lu, T. Nolte, J. Kraft, and C. Norstrom. A statistical approach to

response-time analysis of complex embedded real-time systems. In Proceed-

ings of the 16th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, pages 153–160, 2010.

[LNR99] G. Lechner, H. Naunheimer, and J. Ryborz. Automotive transmissions:

fundamentals, selection, design and application. Springer, Berlin, 1999.

[LS02] T. Lundqvist and P. Stenström. Timing anomalies in dynamically sched-

uled microprocessors. In Proceedings of the 20th IEEE Real-Time Systems

Symposium, pages 12–21, 2002.

[LW82] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority

scheduling of periodic, real-time tasks. Performance Evaluation, 2(4):237–

250, 1982.

[Mar96] G. Marsaglia. DIEHARD: a battery of tests of randomness. See http://stat.

fsu. edu/∼ geo/diehard. html, 1996.

[May09] D. May. The XMOS XS1 Architecture. XMOS Ltd, 2009.

[MHK+08] J. Madsen, M. R. Hansen, K. S. Knudsen, J. E. Nielsen, and A. W. Brek-

ling. System-level verification of multi-core embedded systems using timed-

automata. In Proceedings of the 17th World Congress International Feder-

ation of Automatic Control, pages 9302–9307, 2008.

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transac-

tions on Modeling and Computer Simulation, 8(1):3–30, 1998.

[MNW10] U. Margull, M. Niemetz, and G. Wirrer. Quirks and Challenges in the Design

and Verification of Efficient, High-Load Real-Time Software Systems. In 5th

Embedded Real Time Software and Systems Conference, 2010.

[Mok83] A. K. Mok. Fundamental design problems of distributed systems for the hard-

real-time environment. PhD thesis, Massachusetts Institute of Technology,

1983.

149

Bibliography

[MTN08] Jukka Mäki-Turja and Mikael Nolin. Efficient implementation of tight

response-times for tasks with offsets. Real-Time Systems, 40(1):77–116,

2008.

[MU49] N. Metropolis and S. Ulam. The monte carlo method. Journal of the Amer-

ican Statistical Association, 44(247):335–341, 1949.

[Ope10] Open System C Initiative. http://www.systemc.org, December 2010.

[PH98] J. C. Palencia and G. Harbour. Schedulability analysis for tasks with static

and dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems

Symposium, pages 26–37. Citeseer, 1998.

[PLW90] M. Pecht, P. Lall, and S. J. Whelan. Temperature dependence of micro-

electronic device failures. Quality and Reliability Engineering, 6:275–284,

1990.

[PS01] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power

embedded operating systems. ACM SIGOPS Operating Systems Review,

35(5):89, 2001.

[PTCT07] L. T. X. Phan, L. Thiele, S. Chakraborty, and P. S. Thiagarajan. Com-

posing Functional and State-based Performance Models for Analyzing Het-

erogeneous Real-Time Systems Systems. In Proceedings of the 28th IEEE

International Real-Time Systems Symposium, pages 343–352, 2007.

[PWTH09] S. Perathoner, E. Wandeler, L. Thiele, and A. Hamann. Influence of differ-

ent abstractions on the performance analysis of distributed hard real-time

systems. Design Automation for Embedded Systems, 13(1):27–49, 2009.

[RE02] K. Richter and R. Ernst. Event model interfaces for heterogeneous system

analysis. In Proceedings of the conference on design, automation and test in

Europe, pages 506–513, 2002.

[RJE03] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC perfor-

mance verification. IEEE Computer, 36(4):60–67, 2003.

[RK08] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method.

Wiley, Hoboken, 2008.

[RM06] H. Ramaprasad and F. Mueller. Tightening the Bounds on Feasible Pre-

emption Points. In Proceedings 27th IEEE International Real-Time Systems

Symposium, pages 212–224, December 2006.

[RRE03] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for

heterogeneous multiprocessor SoC. In Proceedings of the 24th International

Real-Time Systems Symposium, pages 236–245, 2003.

150

Bibliography

[RWTW06] J. Reineke, B. Wachter, S. Thesing, and R. Wilhelm. A definition and clas-

sification of timing anomalies. In Proceedings 6th International Workshop

on Worst-Case Execution Time Analysis, pages 1–6, 2006.

[RZJE02] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for

scheduling analysis in platform design. In Proceedings 39th Annual Design

Automation Conference, pages 287–292, 2002.

[SAC+04] L. Sha, T. Abdelzaher, A. Cervin, T. P. Baker, A. Burns, G. C. Buttazzo,

M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time Scheduling Theory :

A Historical Perspective. Real-Time Systems, 28:101–155, 2004.

[SB96] M. Spuri and G. C. Buttazzo. Scheduling Aperiodic Tasks in Dynamic

Priority Systems. Real-Time Systems, 10(2):179–210, 1996.

[SD88] B. Schmeiser and L. Devroye. Non-Uniform Random Variate Generation.

Journal of the American Statistical Association, 83(403):906–945, 1988.

[SPDM09] G. Stamatescu, D. Popescu, M. Deubzer, and J. Mottok. Migration Over-

head in Multiprocessor Scheduling. Proceedings of the 2nd Embedded Soft-

ware Engineering Congress, pages 645–653, 2009.

[SREP08] S. Samii, S. Rafiliu, P. Eles, and Z. Peng. A simulation methodology for

worst-case response time estimation of distributed real-time systems. In

Proceedings of the Design, Automation and Test in Europe Conference 2008,

pages 556–561, 2008.

[SSE08] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling Analysis of Real-

Time Systems with Precise Modeling of Cache Related Preemption Delay.

In Proceedings of the 17th Euromicro Conference on Real-Time Systems,

pages 41–48, 2008.

[Sta98] J. A. Stankovic. Deadline scheduling for real-time systems: EDF and related

algorithms. Kluwer Academic Publisher, Norwell, 1998.

[TCGK02] L. Thiele, S. Chakraborty, M. Gries, and S. Kuenzli. Design space explo-

ration of network processor architectures, volume 1, pages 55–89. 2002.

[Tin92] K. Tindell. Using offset information to analyse static priority pre-emptively

scheduled task sets. Technical report, Technical Report RTS Group, Uni-

versity of York, 1992.

[VDI96] VDI Richtlinie 3633. Simulation von Logistik-, Materialfluß- und Produk-

tionssystemen - Begriffsdefinitionen, 1996.

151

Bibliography

[WMM+08] R. Wilhelm, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,

P. Stenström, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, and R. Heckmann. The worst-case execution-time

problem - overview of methods and survey of tools. ACM Transactions

on Embedded Computing Systems Embedded Computing Systems (TECS),

7(3):1–53, 2008.

[YBB09] G. Yao, G. C. Buttazzo, and M. Bertogna. Bounding the Maximum Length

of Non-Preemptive Regions Under Fixed Priority Scheduling. In Proceedings

of the 15th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, pages 351–360, 2009.

[YBB10] G. Yao, G. C. Buttazzo, and M. Bertogna. Comparative evaluation of lim-

ited preemptive methods. In Proceedings of the 15th IEEE International

Conference on Emerging Technologies and Factory Automation, 2010.

[ZBB09] F. Zhang, A. Burns, and S. Baruah. Sensitivity Analysis for Real-Time

Systems. Technical report, University of York, Department of Computer

Science, Technical Report YCS-2009-438, 2009.

[ZBB10a] F. Zhang, A. Burns, and S. Baruah. Sensitivity analysis of relative deadline

for EDF scheduled real-time systems. In Proceedings of the 2nd International

Conference on Mechanical and Electronics Engineering, 2010.

[ZBB10b] F. Zhang, A. Burns, and S. Baruah. Sensitivity analysis of task period for

EDF scheduled arbitrary deadline real-time systems. In Proceedings on the

3rd IEEE International Conference on Computer Science and Information

Technology, pages 23–28, 2010.

[ZMM03] D. Zhu, D. Mosse, and R. Melhem. Multiple-Resource Periodic Scheduling

Problem: how much fairness is necessary? In Proceedings of the 24th IEEE

Real-Time Systems Symposium, 2003, pages 142–151, 2003.

152

Index

Activation

Asynchronous, 24

Synchronous, 24

Architectural Model, 84

Behavioral Model, 84

Cascade, 50

Constrained System Density, 29

Cooperative Scheduling, 39

Critical Instant, 61

Deadline

Arbitrary, 28

Explicit, 28

Implicit, 28

Deferred Preemption, 39

Discrete Distribution, 74

Discrete Event Simulation, 84

Dispatcher, 31

DVFS, 16

Efficiency, 1

Embedded System, 9

Embedded Systems, 9

Feasibility, 52, 53

Finalization Time, 55

Generalized System Density, 29

Global Scheduling, 19

Group-Deadline, 49

Harmonic Base, 37

Instructions Per Tick Parameter, 102

Interruption, 33

Lateness, 55

Laxity, 39

Local Scheduling, 19

Maximal Normed Lateness, 107

Maximal Task Utilization, 29

Maximal Task Weight, 29

Migration

Bounded, 34

Full, 34

No, 34

Task Section, 34

Monte-Carlo Randomization, 113

Multicore System, 16

Multiple Time Base Extension, 69

Non-Sustainability, 60

Non-work-conserving, 35

Offset, 24

Overlapping-Bit, 48

Partitioned Scheduling, 19

Performance, 64

Pfair Scheduling, 46

Phasing, 67

Policies, 31

Predictability, 60, 118

Predominance, 118

Preemption, 33

Priority

Dynamic, 34

Job-fix, 34

Section-fix, 34

Static, 34

153

Index

Task-fix, 34

Processor, 16

Pseudo-Activation, 47

Pseudo-Deadline, 47

Pseudo-Release, 47

Rank, 31

Real-time, 1

Real-Time Calculus, 58

Real-Time System Simulation, 84

Response Time, 55

Robustness, 1

Runnable, 15

SA-PS, 111

Schedulability, 52, 53

Schedulability Analysis, 107

Schedulability Bound, 32

Schedulability Examination, 54, 107

Schedule, 31

Scheduler, 19

Scheduling

Clustered, 33

Cooperative, 34

Global, 33

Local, 33

Preemptive, 34

Scheduling Algorithms

DM, 37

EDF, 38

LLF, 39

LLREF, 45

Pfair

BF, 51

PD, 49

PD2, 49

PF, 49

RM, 37

Singlecore System, 16

Sustainability, 60

Symmetric Multicore Processor, 4

Symmetric Multiprocessing, SMP, 16

System Utilization, 29

Task, 13

Task Section, 13

Task Set, 12

Task Utilization, 29

Task Weight, 29

Temporal Requirements, 10

Temporal Robustness, 64

Utilization, 64

Weight, 29

Work-Conserving, 34

154

List of Figures

2.1 Graphical definition of a real-time system. 11

2.2 A task Ti has temporal properties, including inter-arrival time pi, execution

time ei, and deadline di, and logical properties, including input signals

ΦI(i) and output signals ΦO(i). 12

2.3 Graphical definition of a task section. 14

2.4 Example of a task with task sections. 15

2.5 Memory architecture of a multicore processor. 18

2.6 Signal storage and distribution in the task section based communication

approach. A task stores signals during calculation in the local cache (C),

which is synchronized with the private memory (PM) (Step 1). Collec-

tively shared signals can be loaded from the shared memory (SM) (Step

2). A synchronization routine (sync) gathers all signals from the private

memories and provides them to the shared memory (Step 3). Afterwards,

the actual signal value can be loaded from the shared memory (Step 4). . 19

2.7 Notations of timestamps during the execution of job Ti,j of task Ti. 20

2.8 Example of a recurrent task activation. The input interface signal ΦI
IF (t)

is sampled and a task activation is triggered in a periodic manner with an

inter-arrival time pi. 21

2.9 Example of an arrival curve task activation. A change in the interface

signal ΦI
IF (t) is immediately processed by an activated task. The upper

and lower number of activations is expressed by an upper αu and lower αl

arrival curve respectively as a function of any time interval with the size ∆. 22

2.10 Example of a hierarchical task activation. A task Ta (activated in a peri-

odic manner with inter-arrival time pa) activates another task Tb at end

of execution or at any other point during execution. The activation time

of Tb depends on the delay of task Ta. 23

2.11 Arrival curve of periodic task activations with Ti.p = 7. The upper αui
and lower αli number of task activations are specified in dependence of the

size of any time interval ∆. 26

155

List of Figures

2.12 Comparison of WCET and BCET bounds, detected by different approaches

[WMM+08]. The maximum of the measured execution time approximates

the exact WCET from the left side by systematically executing measure-

ment scenarios. Analytically determined maximum execution time approx-

imates the exact WCET from the right side by reducing the pessimism of

the prediction. The BCET determination works analogous. 28

3.1 Arrival of two periodic task (upper curves) and related fluid scheduling

graph (lower curve). 44

3.2 LLREF: Determination of T-L plane [CRJ06]. 45

3.3 LLREF example of token movement through job execution in a T-L plane

[CRJ06]. 46

3.4 Approximation of Pfair to the fluid schedule. The fluid schedule defines

that the execution time T1.e = 3 of a task is allocated to a processor

between two successive activations (arrows, T1.p = 5) in a way that the

remaining execution time constantly decreases (dotted line). Pfair defines

a minimum and maximum lag (dashed line) from the fluid schedule in con-

tinuous time. In discretized time, task quanta have to execute in windows

(continuous line, Υ1
1,Υ

2
1,Υ

3
1), derived from lag boundary. 48

3.5 Example of a schedule of algorithm Pfair-PD2. The x-axis represents the

time and the y-axis defines the processed execution time. Task quanta

(grey) are processed between the upper and lower lag boundary (slim line)

which results from the fluid schedule graph (thick line). 50

4.1 Examination methodologies of worst-case response time. The x-axis repre-

sents the number of iterations (for iterative approaches) or the calculation

time (e.g. for simulation approaches) and the y-axis represents the esti-

mation of the quality criteria. A pessimistic approach approximates the

worst-case response time from the upper side (overestimated) and the opti-

mistic approach from the lower side (underestimated). An exact approach

determines the worst-case response time directly. 54

4.2 Task job metric response-time, measured between the activation Ti,j .A and

the finalization Ti,j .F of a job Ti,j . 55

4.3 Task job metric lateness, measured between the deadline Ti,j .D and the

finalization Ti,j .F of a job Ti,j . 56

4.4 Task job metric End-to-End, measured between the finalization Ti,j .F of

two subsequent jobs Ti,j and Ti,j+1. 56

4.5 Task job metric Start-to-Start, measured between the start Ti,j .S of two

subsequent jobs Ti,j and Ti,j+1. 57

4.6 Example 4.1: Multiprocessor Anomalies - sporadic activation. Dualcore

processor with three tasks. 61

156

List of Figures

4.7 Example 4.2: Multiprocessor Anomalies - synchronized periodic activa-

tion. Dualcore processor with four tasks. 62

6.1 Example of task activations from different time bases. Tasks are activated

in a periodic manner with an inter-arrival time p and an offset o. Task T1

and T2 are activated from time base b1 and task T3 and T4 are activated

from time base b2. All task instances execute on the same processor. . . . 68

6.2 Schedule sequence of worst-case response time of task T4 for different as-

sumed task set models. The sporadic task set model (A) assumes all tasks

to be activated simultaneously at critical instant, which results in an over-

estimated worst-case response time R4 = 16 for task T4. The periodic

task set model with offsets (B) results in an underestimated worst-case re-

sponse time R4 = 10. Only the consideration of time bases, which defines

that the first transactions T1 and T2 and the second transaction T3 and

T4 are able to be shifted against each other, gives the correct worst-case

response-time of R4 = 11. 69

6.3 Relation between time tv of time base bv and global time t. 70

6.4 Global time t as a function of tv (upper diagram) and derivative of t over tv. 71

6.5 Example for different shapes of Weibull density function for equal minimal

and maximal value and different average values. 77

6.6 Example for corrected shapes of Weibull density function for equal minimal

and maximal value and different average values. 77

7.1 Example of a schedule of algorithm Partly-Pfair-PD2. In the upper dia-

grams, the x-axis represents the time and the y-axis the processed execu-

tion time of a task. The lower diagram shows when the processor is in the

idle state. 82

7.2 Example of a schedule of algorithm P-ERfair-PD2. In the upper diagrams,

the x-axis represents the time and the y-axis the processed execution time

of a task. The lower diagram shows when the processor is in the idle state. 83

8.1 Subsystems and components of the discrete-event simulation. The real-

time system is divided in the subsystems: stimulation, software, operating

system, and hardware. The extension of this model in comparison to sin-

glecore systems [AUT10] are multiple cores, which are arranged to core

clusters. Each core cluster has a scheduler which allocates the tasks, man-

aged by this scheduler, to the cores of the core cluster. Quartz oscillators

are mapped to cores in order to provide the clock for the processing fre-

quency. 87

8.2 Example of the description of a behavioral model. 89

8.3 State diagram of simulation sequencer. 90

157

List of Figures

8.4 Behavioral model of stimulation component. 92

8.5 Behavioral model of process component. 95

8.6 Behavioral model of process instance component. 96

8.7 Behavioral model of runnable instance component. 98

8.8 Behavioral model of quartz oscillator component. 100

8.9 Behavioral model of core component. 102

9.1 Application of Monte-Carlo randomization in order to determine the value

of π. 114

9.2 Statistical estimators and bootstrapped confidence bounds of a distribu-

tion of metric values in a cluster Zk. 117

10.1 Sensors and actors of an automotive powertrain system (By courtesy of

Continental Automotive GmbH). 122

10.2 Scatter diagrams of mNL (y-axis) as function of system utilization (x-

axis) for the algorithms Partly-Pfair-PD2 and P-ERfair-PD2. The diagram

shows 500.000 systems, generated by a probabilistic automotive system

model and simulated by use of computer cloud. 124

10.3 Scatter diagrams of mNL (y-axis) as a function of the system utilization (x-

axis) for the algorithms Partly-Pfair-PD2, P-ERfair-PD2, and WFD-EDF.

The diagram shows 25.000 system models originating from a probabilistic

automotive powertrain system model. 130

10.4 Comparison of the scheduling algorithms Partly-Pfair-PD2, P-ERfair-PD2,

and WFD-EDF by statistical estimators on mNL (y-axis) as a function of

the system utilization (x-axis). 131

10.5 Subset of examined models from porting case study (Figure 10.3) and

WFD-EDF scheduling, where only models are considered with task T00 RPM

and T09 10MS on different cores. 131

10.6 Robustness consideration of Partly-Pfair-PD2 and P-ERfair-PD2 through

random variation of the task section execution time via a Weibull distri-

bution. The task section execution time can be twice as long as allowed. . 132

158

List of Tables

2.1 List of all task symbols. 13

2.2 Task section symbols. 14

2.3 Job time intervals and timestamps. 20

3.1 Classification of general utilization based schedulability bounds on multi-

core scheduling [CFH+04]. The maximal system utilization U depends on

the number of cores m and for some groups of scheduling algorithms on

the maximal task utilization α = Umax(τ). 32

3.2 Classification of multicore scheduling algorithms. 33

10.1 Task set parameters of porting case study. 127

159

Part V

Appendix

160

Appendix A

Pseudo-Code of Scheduling

Algorithms

A.1 Algorithm EDF

Algorithm 2 Pseudo-code of EDF BLOCKING function. Returns 0 when task Ti does
not block the core.

Require: Ti (task)
return ← 0

Algorithm 3 Pseudo-code of EDF NOMINEE function. Returns 1 when task Ti is
nominated for execution.

Require: Ti (task), f (core)
return ← 1

Algorithm 4 Pseudo-code of EDF Compare function. Returns from two tasks the task
with the higher rank, as long there is one, and returns task Ta when both tasks have the
same rank. The symbol Tx.D denotes the absolute deadline of task Tx.

Require: Ta (task a), Tb (task b)
if Ta.D ≤ Tb.D then

return ← Ta
else

return ← Tb
end if

161

A. Pseudo-Code of Scheduling Algorithms

A.2 Algorithm Partly-Pfair-PD2

Algorithm 5 Pseudo-code of Partly-Pfair-PD2 BLOCKING function. Returns 1 when
task Ti blocks a core and returns 0 when task Ti does not block the core. The function
TaskStateTx returns the actual state of a task (see Figure 8.6 for state definition).

Require: Ti (task)
if TaskState (Ti) = RUNNING then

return ← 1
else

return ← 0
end if

Algorithm 6 Pseudo-code of Partly-Pfair-PD2 NOMINEE function. Returns 1 when
task Ti is nominated for execution and returns 0 when task Ti is not nominated for
execution. The symbol t denotes the actual time and r′(T kx) returns the pseudo-release
time of the actual task section T kx of task Tx.

Require: Ti (task), f (core)
if t ≥ r′(T ki) then

return ← 1
else

return ← 0
end if

162

A.3 Algorithm P-ERfair-PD2

Algorithm 7 Pseudo-code of Partly-Pfair-PD2 Compare function. Returns from two
tasks the task with the higher rank, as long there is one, and returns task Ta when
both tasks have the same rank. The symbol d′(T kx) denotes the pseudo-deadline, b′(T kx)
the overlapping-bit, D′(T kx) the group deadline, of the actual task section T kx of task Tx
respectively.

Require: Ta (task a), Tb (task b)
if d′(T ka) < d′(T kb) then

return ← Ta
else if d′(T ka) = d′(T kb) then

if b′(T ka) = 1 ∧ b′(T kb) = 0 then
return ← Ta

else if b′(T ka) = b′(T kb) then
if D′(T ka) ≥ D′(T kb) then

return ← Ta
else

return ← Tb
end if

else
return ← Tb

end if
else

return ← Tb
end if

A.3 Algorithm P-ERfair-PD2

Algorithm 8 Pseudo-code of P-ERfair-PD2 BLOCKING function. Returns 1 when
task Ti blocks a core and returns 0 when task Ti does not block the core. The function
TaskStateTx returns the actual state of a task (see Figure 8.6 for state definition).

Require: Ti (task)
if TaskState (Ti) = RUNNING then

return ← 1
else

return ← 0
end if

163

A. Pseudo-Code of Scheduling Algorithms

Algorithm 9 Pseudo-code of P-ERfair-PD2 NOMINEE function. Returns 1 when task
Ti is nominated for execution and returns 0 when task Ti is not nominated for execution.

Require: Ti (task), f (core)
return ← 1

Algorithm 10 Pseudo-code of P-ERfair-PD2 Compare function. Returns from two
tasks the task with the higher rank, as long there is one, and returns task Ta when
both tasks have the same rank. The symbol d′(T kx) denotes the pseudo-deadline, b′(T kx)
the overlapping-bit, D′(T kx) the group deadline, of the actual task section T kx of task Tx
respectively.

Require: Ta (task a), Tb (task b)
if d′(T ka) < d′(T kb) then

return ← Ta
else if d′(T ka) = d′(T kb) then

if b′(T ka) = 1 ∧ b′(T kb) = 0 then
return ← Ta

else if b′(T ka) = b′(T kb) then
if D′(T ka) ≥ D′(T kb) then

return ← Ta
else

return ← Tb
end if

else
return ← Tb

end if
else

return ← Tb
end if

164

	Abstract
	Kurzfassung
	Introduction
	Motivation
	Contribution
	Structure of the Work

	I Preparation and Related Work
	Real-Time System Model
	Fundamentals
	Real-Time System Model
	Task Set
	Processor
	Scheduler
	Time Events

	Related Work
	Models for Demand of Execution Time
	Models for the Execution Time
	Classification of Deadline Bounds

	Characteristics of Task Set Models

	Real-Time Scheduling
	Fundamentals
	Definitions
	Classification of Multicore Scheduling Algorithms
	Scheduling Model

	Related Work on Singlecore Scheduling
	Task-Fix Priority Scheduling
	Job-Fix Priority Scheduling
	Dynamic Priority Scheduling
	Cooperative Scheduling

	Related Work on Multicore Scheduling
	Local Scheduling
	Global Scheduling

	Real-Time System Examination
	Fundamentals
	Definitions
	Real-Time Metrics

	Methods for Schedulability Examination
	Response-Time Analysis
	Real-Time Calculus
	Model-Checking Approach
	Simulation Approach

	Anomalies of Multicore Schedulability Analysis
	Examples

	II Contribution
	Focus of Contribution
	Multiple Time Base Task Set Extension
	Multiple Time Base Extension
	Problem Formulation
	Extension

	Probabilistic Execution Time Model
	Discrete Probability Function
	Weibull Pobability Function

	Global Multicore Scheduling
	Partly Pfair Approach
	Drawback of Pfair scheduling
	Partly Pfair

	Partly Early Release Fair Extension

	Simulation-Based Multicore Real-Time Examination
	Discrete-event Simulation
	Architectural Model
	Stimulation Subsystem
	Software Subsystem
	Hardware Subsystem
	Operating System Subsystem

	Behavioral Model
	Simulation Sequencer
	Stimulation Subsystem
	Software Subsystem
	Hardware Subsystem
	Operating System Subsystem

	A Metric for Real-Time Examination
	Approximation of Bounds for Schedulability
	Technical Implementation

	Sensitivity Analysis of Probabilistic System Models
	Task Set Parameter Variations
	Probabilistic System Model
	Probability of Task Set Parameters
	Probability of Task Quantity

	Monte-Carlo Randomization
	Examination of Characterization Metrics
	Classification of System Models
	Statistical Evaluation

	III Case Studies
	Execution of Case Studies
	Automotive Systems
	Case Study I: A Quadcore System
	Case Study II: Porting from Singlecore to Dualcore Processors
	Case Study III: Robustness Analysis

	Discussion
	Local Scheduling with Bin-Packing Partitioning
	Global Scheduling Algorithms
	Simulation-Based Multicore Real-Time Examination

	IV Conclusion and Future Work
	Summary
	Further Work
	Bibliography
	Index
	List of Figures
	List of Tables

	V Appendix
	Pseudo-Code of Scheduling Algorithms
	Algorithm EDF
	Algorithm Partly-Pfair-PD2
	Algorithm P-ERfair-PD2

