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Zusammenfassung

Diese Arbeit beschäftigt sich mit den elektroschwachen Beiträgen zu Squark–Squark und

Sbottom–Antisbottom Produktionsprozessen am LHC im Rahmen des minimalen supersym-

metrischen Standardmodells. Um möglichst präzise theoretische Vorhersagen zu erhalten

werden die elektroschwachen Beiträge sowohl auf Born-Niveau als auch in nächstführender

Ordnung berücksichtigt. Diese Einschleifenbeiträge sind von der Ordnung (α2
sα).

Die elektroschwache Wechselwirkung unterscheidet zwischen den unterschiedlichen Quark-

bzw. Squark-Arten und -Chiralitäten, wodurch sich eine Vielzahl von Prozessen ergibt, wel-

che zur Squarkproduktion beitragen. In dieser Dissertation werden alle benötigten techni-

schen Details geliefert um die genannten Prozesse in nächstführender Ordnung zu berechnen.

Dazu gehören unter anderem adäquate Regularisierungs- und Renormierungsvorschriften,

als auch eine konsequente Behandlung von Massensingularitäten. Dies ist notwendig um

ultraviolett-endliche sowie infrarot- und kollinear-sichere Observablen zu erhalten.

Sowohl Squark–Squark Produktion als auch deren ladungskonjugierten Prozesse setzen

sich aus jeweils 36 Prozessen zusammen. Für all diese Prozesse werden die elektroschwa-

chen Beiträge sowohl auf Born-Niveau O(αsα + α2) als auch in nächstführender Ordnung

O(α2
sα) berechnet. Abhängig von Art und Chiralität der produzierten Squarks müssen ver-

schiedene Interferenzbeiträge aus elektroschwach und stark wechselwirkenden Diagrammen

berücksichtigt werden. Während die O(αsα+α2) Beiträge bis zu 20% des integrierten Born

Wirkungsquerschnittes erreichen, reduzieren die O(α2
sα) Beiträge diesen um einige Prozent.

Die Berechnung der Wirkungsquerschnitte zu Sbottom–Antisbottom Produktion weist

Besonderheiten auf, die sich grundlegend von der entsprechenden Berechnung für Squark–

Antisquark und Stop–Antistop Produktion unterscheiden. Dazu gehören sowohl die Mi-

schung der links- und rechts-chiralen schwachen Eigenzustände, die Renormierung des Sbot-

tom Sektors, welche mit Vorsicht gewählt werden muss, als auch die für große Werte von

tan β-verstärkten Yukawakopplungen, welche resummiert werden müssen. Die elektroschwa-

chen Beiträge zum Wirkungsquerschnitt werden bis zur Ordnung O(α2
sα) berechnet. Wir

berücksichtigen dabei die bis dahin vernachlässigten Photon-induzierten Beiträge und lie-

fern die erste vollständige Berechnung der elektroschwachen Beiträge in nächstführender

Ordnung. Für die betrachteten Szenarien liegt der Beitrag der elektroschwachen Korrektu-

ren zum inklusiven Wirkungsquerschnitt im Prozentbereich. In kinematischen Verteilungen

kann dieser jedoch mehr als 10% des Born-Wirkungsquerschnittes ausmachen.





Abstract

We study the electroweak (EW) contributions to squark–squark and sbottom–anti-sbottom

production processes at the LHC within the framework of the Minimal Supersymmetric

Standard Model (MSSM). Aiming at precise theoretical predictions, the EW contributions

are considered up to next-to leading order (NLO) which are of O(α2
sα).

Since the EW interaction distinguishes flavor and chirality of the initial- and final-state

quarks and squarks, respectively, the contributing processes are manifold and their interplay

is non-trivial. All technical details needed in order to calculate the NLO EW contributions

to the hadronic cross section for the abovementioned processes are given within this dis-

sertation. This includes appropriate regularization and renormalization prescriptions and

a proper treatment of mass singularities in order to get ultraviolet finite and infrared and

collinear safe observables.

Squark–squark production consists of 36 processes and the same amount for anti-squark–

anti-squark production. The tree-level EW contributions of O(αsα + α2) and the NLO EW

contributions are calculated for all processes. Depending on the flavor and chirality of the

produced squarks, many interferences between EW-mediated and QCD-mediated diagrams

give non-zero contributions at tree-level and NLO EW. While the tree-level EW contributions

to the integrated cross section can reach the 20% level, the NLO EW corrections typically

lower the LO prediction by a few percent.

Sbottom–anti-sbottom pair production exhibits specific features like left–right mixing and

the renormalization of the sbottom sector which has to be chosen with care in order to get

reliable predictions. In addition, Yukawa couplings get enhanced for large values of tan β

with the related need of resummation. This renders the computation of the electroweak

contributions substantially different from the corresponding computations for squark–anti-

squark and stop–anti-stop production. The tree-level EW contributions to the cross section

including the previously unknown photon-induced channel is calculated and we present the

first complete computation of the NLO EW contributions. For the scenarios considered,

the effect of the EW contributions on the inclusive cross section is at the percent region.

However, in kinematical distributions they can exceed the LO contribution by 10%.
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1 Introduction

At the beginning of the 20th century, it was widely believed that all known physical phe-

nomena could be described by Newton’s laws of motion [1], Maxwell’s equations [2], and the

Lorentz force law. Together they form the foundation of classical mechanics and classical

electrodynamics. However, technological improvements allowed for more and more precise

measurements leading to observations that could not be explained within this framework

and asked for two drastic changes in the fundamental concepts of physics. First of all, ex-

periments like the Michelson–Morley experiment of 1887 [3] have shown that the speed of

light is a constant independent of the reference frame. This was one basic ingredient for

the formulation of special relativity by Einstein in 1905 [4], which dramatically changed the

concept of simultaneity. Whether two events occur at the same time is no longer absolute

since within this concept it depends on the inertial frame considered. Einstein extended

the idea that physical laws apply equally in all inertial frames to gravity and formulated

the famous theory of general relativity in 1915 [5], whose astonishing predictions such as

the deflection of light were found to be correct and up to now no experiment contradicts

its predictions. Sophisticated experiments examining the behavior of fundamental particles

such as the Stern–Gerlach experiment on the deflection of particles in 1922 [6] asked for a

second profound modification of the fundamental concepts of physics. It was discovered that

electrons and atoms have intrinsic quantum properties and that measurements can affect

the system being measured. In the mid-twenties, quantum mechanics was formulated. It

postulates that the state of each particle can be described by a wavefunction which provides

information about the particles probability to be at a specific location or state of motion.

The most famous implication is given by the Heisenberg uncertainty principle which states

that momentum and position of a particle cannot be measured simultaneously to arbitrary

precision [7]. This is in striking contrast to classical mechanics where the trajectory of a

particle can (at least in principle) be measured exactly.

After these two drastic changes in the description of modern physics, much effort was

made in formulating a theory that incorporates both, the concept of special relativity and

of quantum mechanics, which is nowadays successfully formulated in terms of relativistic

quantum field theories. The first successful quantum field theory was quantum electro-

dynamics (QED) [8], which describes the interaction of electrons and positrons with the

electromagnetic field, and is still among the most accurate physical theories known.

Numerous high-energy experiments were performed over the last decades in order to

identify the elementary particles and forces. Quarks and leptons were found to be the

fundamental constituents of matter which interact among each other via four fundamental

forces: the gravitational, strong, weak, and electromagnetic force. Glashow, Salam, and

Weinberg [9] managed to describe the short-ranged weak force and the long-ranged electro-

1



2 1. Introduction

magnetic force in terms of an unified electroweak force. Together with the theory of the

strong force [10] they are a basic ingredient for the formulation of the standard model of

particle physics (SM). The SM is a relativistic quantum field theory which incorporates the

quarks and leptons as well as the strong and electroweak force. It consists of 19 free indepen-

dent parameters that have to be determined by experiments. Only one of those parameters,

the one that parametrizes the mass of the Higgs boson [11], is a yet unknown quantity of

the SM. Up to now, the standard model of elementary particles successfully describes all

known high-energy phenomena to unexpected good accuracy.

Despite the success of the SM, there are several hints that it is only an effective theory

in the sense that it correctly describes the electroweak and strong phenomena for currently

available energies, but has to be extended by a more fundamental theory which manifests

itself at higher energies. They arise from various theoretical as well as experimental ob-

servations such as the estimated amount of cold dark matter in the universe, the hierarchy

problem related to the Higgs-boson mass, or gauge-coupling unification which is not possible

with SM particle content only. Finally, an ultimate theory should also describe gravity.

Among the various possible extensions of the SM, a supersymmetric extension is of par-

ticular interest [12]. Supersymmetry (SUSY) is a space-time symmetry that relates particles

that differ by spin 1/2, i.e. bosons and fermions. In its simplest version, it postulates scalar

partners to the SM fermions and spin-1/2 partners to the SM bosons. If the masses of the

SUSY partners are at the TeV scale, one finds that the hierarchy problem is no longer present

and that the particle content allows for gauge coupling unification of the strong, weak, and

electromagnetic force. By introducing an additional discrete symmetry, the so-called R
parity [13], one finds that the lightest supersymmetric particle (LSP) is stable at cosmolog-

ical timescales and hence a cold dark matter candidate. Finally, supersymmetry has the

potential to incorporate the gravitational interaction.

Up to now, there are only indirect hints that SUSY might be realized at the TeV scale,

since no SUSY particle has ever been observed via direct production at high energy experi-

ments. This non-observation can be translated into lower mass bounds on the SUSY particle

spectrum [14]. Since an ultimate proof that SUSY is realized in the real world can only be

given via direct SUSY particle production, the attention is currently turned to the Large

Hadron Collider (LHC) at CERN. The LHC is a proton–proton collider which was built in or-

der to probe TeV scale physics. If SUSY is realized at the TeV scale, colored SUSY particles,

i.e. the superpartners of quarks and gluons which are commonly called squarks and gluinos,

will be produced at a high rate. Unfortunately, a few weeks after the successful start-up

in September 2008, the LHC was forced to shut down again due to magnetic quenching of

about 100 superconducting solenoids. Since November 2009 the LHC is operating again.

However, the center of mass energy is halved to 7 TeV for the first 18 month to two years,

after which it will be shut down again to prepare for the 14 TeV collisions.

In this thesis we focus on colored SUSY particle production processes at the LHC within the

framework of the minimal supersymmetric extension of the standard model (MSSM) [15,16]

with SUSY masses realized at the TeV scale and R-parity conservation. In order to analyze

the data collected at collider experiments and to claim a discovery or to give reliable exclusion
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bounds on the SUSY mass spectrum, precise theoretical predictions are needed. Due to the

large interest in squark and gluino production processes at hadron colliders, much effort has

been made in order to get reliable cross section predictions for squark and gluino production

processes. First theoretical predictions based on leading order (LO) calculations were already

made in the early ‘80s [17]. However, these LO QCD predictions suffer from large theoretical

uncertainties and higher-order corrections have to be taken into account. The next-to leading

order (NLO) QCD cross sections have been computed more than ten years ago [18, 19],

considerably reducing the theoretical uncertainties. However, in order to obtain theoretical

predictions that are competitive with the experimental statistical uncertainties, calculations

beyond NLO QCD are necessary. These higher-order QCD contributions are investigated

in [20–24] and are still subject of current research.

Besides the production of squarks and gluinos via the strong interaction, also electroweak

(EW) production mechanisms are possible. For squark–(anti-)squark final states, EW con-

tributions are already present at tree-level and one finds corrections to the LO cross section

that amount to 10% to 20% [25] for specific final state configurations. In order to gain

the same precision as obtained for the QCD predictions, one also has to take into account

next-to leading order electroweak (NLO EW) contributions, which are formally of the same

order than the beyond NLO QCD predictions. NLO EW contributions have in general a

non-trivial structure, since as well the one-loop contribution as the real emission matrix

elements can arise via various interference contributions. In addition one has to consider

that due to QED evolution an effective photon density is generated inside the proton that

can lead to photon-induced squark- and gluino-pair production. The NLO EW contributions

to gluino-pair production, diagonal squark–anti-squark production, diagonal stop–anti-stop

production, and squark–gluino production have been investigated in [26–29]. A wide class

of the remaining processes, namely squark–squark and sbottom–anti-sbottom production

are investigated within this thesis and have partly been published in [30–32].

The outline of this thesis is as follows: In Chapter 2 we introduce the building blocks and

particle content of the SM and the MSSM. Some open questions of the SM are addressed

and we argue that several of these weaknesses can be overcome by considering the mini-

mal supersymmetric extension of the SM. Since the construction of supersymmetric field

theories is quite involved we collect the fundamental concepts needed for the derivation of

supersymmetric theories in Appendix D.

The aim of this thesis is to investigate the electroweak contributions to squark–squark

and sbottom–anti-sbottom production processes. In Chapter 3 we give an overview over the

current experimental and theoretical status to colored particle production. The lower mass

bounds resulting from the non-observation of squarks and gluinos in collider experiments

are given and we show the prospects for early SUSY discovery at the LHC. We compare the

theoretical predictions to the production cross sections at the LHC for the various squark

and gluino production processes and illustrate the impact of higher-order corrections. At the

end of this chapter we summarize the status of higher-order corrections which demonstrates

the importance of the NLO EW contributions to squark–squark and sbottom–anti-sbottom
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production in order to have a complete knowledge of all relevant higher-order contributions.

In Chapter 4 we collect all technical issues needed in order to perform the NLO EW

calculation to colored SUSY particle production processes at hadron colliders. Various QCD–

EW interference contributions have to be taken into account at NLO EW. As a consequence,

one has to renormalize the electroweak as well as the strong sector in order to obtain a

ultraviolet (UV) finite result. In addition, one has to deal with infrared (IR) and collinear

singularities arising from soft and collinear photons and gluons, respectively. In order to

have a proper treatment of the UV divergences and IR and collinear singularities one has

to define a regularization procedure. In this chapter, we give the regularization procedure

used throughout this work and list the relevant renormalization constants needed in order to

obtain a UV finite result. Afterwards, we show how IR and collinear singularities cancel for

sufficient inclusive observables. Cross sections are finally derived via numerical integration

of the squared matrix elements, which will be done using Monte Carlo methods. In order to

allow for a stable integration, adequate phase-space parametrizations are needed, depending

on the singular structure of the amplitude.

In Chapter 5 we consider the electroweak contributions to first and second generation

squark–squark and anti-squark–anti-squark production processes up to order (α2
sα). Due

to the large amount of possible final states that differ in flavor and chirality, respectively,

squark–squark production consists of 36 processes and the same amount for anti-squark–

anti-squark production. After classifying the various partonic production processes, we

give the tree-level QCD and tree-level EW hadronic cross section including the analytic

formulae. The NLO EW corrections are obtained by using the techniques presented in

Chapter 4. We show the strategy and details of the calculation. In the following section

we list the input parameters used in our numerical analysis and present hadronic cross

sections and distributions for squark–squark production at the LHC with
√
S = 14 TeV and√

S = 7 TeV. Different SUSY scenarios are considered and a scan over the squark and gluino

masses is performed. We investigate the impact of reasonable phase-space cuts on the EW

contributions.

The electroweak contributions to sbottom–anti-sbottom production processes up to order

(α2
sα) are considered in Chapter 6. The production of third generation squark pairs is

substantially different to squark–pair production of the first two generations due to the

non-negligible mixing in the stop and sbottom sector. Moreover, b-tagging makes bottom-

and top-squark production experimentally distinguishable from the production of squarks of

the first two generations. In addition, the non-negligible Higgs-boson contributions and the

enhanced Yukawa couplings for large values of tan β with the related need of resummation,

render the computation of sbottom–anti-sbottom production substantially different from the

corresponding computations for squark–anti-squark and stop–anti-stop production. The

structure of this chapter is in close analogy to squark–squark production. However, it

contains an additional section related to the enhanced bottom-quark Yukawa coupling for

large values of tan β.

We summarize and conclude in Chapter 7.
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The conventions used throughout this work are collected in Appendix A. Explicit expres-

sions for the counterterms needed in this work are listed in Appendix B. In Appendix C

the tan β enhanced effects that alter the relation between the bottom-quark mass and its

Yukawa coupling are explicitly resummed in SQCD. In addition the effective Higgs–bottom

vertices are derived. The fundamental concepts for deriving supersymmetric theories are

collected in Appendix D. After deriving the irreducible representations of the homogeneous

Lorentz group, the supersymmetry algebra is written down. Afterwards the concept of

superfields is introduced, in order to construct supersymmetric Lagrange densities.





2 From the Standard Model to the MSSM

2.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) successfully describes all known elementary

particles and their strong, weak, and electromagnetic interactions [9, 10, 33, 34]. It belongs

to one of the best tested theories in physics [14].

The SM is given in terms of a renormalizable quantum field theory which is locally invariant

under an internal SU(3)C × SU(2)L ×U(1)Y symmetry group and globally invariant under

the group of Poincaré space-time transformations. All known matter fields — the quarks and

leptons — are described by spin-1/2 fermion fields. Forces are introduced within the concept

of local gauge invariance under the internal symmetry group and give rise to gauge fields.

The strong force is described by the SU(3)C gauge theory, called quantum chromodynamics

(QCD), while the weak and electromagnetic force are unified into the electroweak force which

is given in terms of the spontaneously broken SU(2)L×U(1)Y gauge theory. The symmetry

is broken in such a way that the exact U(1)em symmetry remains which describes the

electromagnetic phenomena via quantum electrodynamics (QED). In the SM the spontaneous

symmetry breaking is achieved by a scalar field which develops a non-vanishing vacuum

expectation value (vev), the so called Higgs field [11].

The internal symmetries of the SM can be described by the Lie algebra of the corresponding

Lie group. Labeling the generators of SU(3)C , SU(2)L, and U(1)Y by T a, Ia, and Y ,

respectively, their commutation relations are given by

[T a, T b] = ifabcT
c, [Ia, Ib] = iǫabcI

c, [Y, Y ] = 0, (2.1)

with the totally antisymmetric structure constants fabc and ǫabc of SU(3)C and SU(2)L,

respectively. Elements of the Lie group S(x) are given by exponentiation of the generators,

S(x) = e−i(θa(x)Ta+θ′a(x)Ia+θ′′(x)Y ), (2.2)

with real spacetime dependent parameters θa(x), θ′a(x), and θ′′(x). Gauge transformations

for fundamental fields Ψ and gauge fields Aµ = T aAaµ are defined by

Ψ → Ψ ′ = S(x)Ψ, (2.3)

Aµ → A′
µ = S(x) (Aµ + i∂µ)S−1(x). (2.4)

The gauge fields transform inhomogeneously under local gauge transformations.

Each SM field can be classified by its spin and its internal quantum numbers, corresponding

to the representation of SU(3)C , SU(2)L, and U(1)Y . The complete field content of the SM

is summarized in Table 2.1. In the following we will further specify these fields.

7
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Name Fields SU(3)C , SU(2)L, U(1)Y

Quarks

(u
d

)
L
,
(c
s

)
L
,
(t
b

)
L

(3,2, 1
3)

ucR, c
c
R, t

c
R (3̄,1,−4

3)

dcR, s
c
R, b

c
R (3̄,1, 2

3)

Leptons

(νe

e

)
L
,
(νµ

µ

)
L
,
(ντ

τ

)
L

(1,2,−1)

ecR, µ
c
R, τ

c
R (1,1, 2)

Higgs-doublet H (1,2, 1)

Gauge bosons

G (8,1, 0)

W (1,2, 0)

B (1,1, 0)

Table 2.1: Field content of the Standard model. The gauge group representation and charge of
the SM fields are arranged as (SU(3)C , SU(2)L, U(1)Y ). Quarks and leptons are fermions of spin-1/2

while the Higgs and gauge fields are bosons of spin-0 and spin-1, respectively. The label c on the
right-handed particles denotes charge-conjugation, see also (D.79).

The fermion fields of the SM are constituted by quarks and leptons which are best de-

scribed in terms of left- and right-handed Weyl spinors, cf. Appendix D.3.1. They can be

grouped corresponding to their symmetry group representation:

• Quarks (up, down, charm, strange, top, and bottom):

QL =

{(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

}
, uRi = {uR, cR, tR, }, dRi = {dR, sR, bR}. (2.5)

• Leptons (electron, muon, tau, and the corresponding neutrinos):

LL =

{(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
τ

)

L

}
, lRi = {eR, µR, τR}. (2.6)

The subscripts L and R denote left- and right-handed spinors. All quarks are triplets of

SU(3)C and therefore strongly interacting particles, while the leptons are singlets under

SU(3)C . Further, all left-handed fermions are doublets under SU(2)L while the right-

handed fermions are singlets. As one can see from (2.6), right-handed neutrinos are not

present in the SM. All fermions are charged under the U(1)Y hypercharge in such a way

that the Gell–Mann–Nishijima relation for the generator of the electric charge holds,

Q = I3 +
Y

2
. (2.7)
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The gauge fields of the SM are spin-1 fields and hence bosons, transforming under the

adjoint representation of the respective gauge group. Therefore there are eight gauge fields

Gaµ corresponding to the strong interaction, three fields W i
µ belonging to the weak-isospin,

and the one belonging to the weak-hypercharge, called Bµ. With help of the gauge-covariant

derivative, defined as

Dµ = ∂µ + igsT
aGaµ + ig2I

iW i
µ + ig1

Y

2
Bµ , (2.8)

one can construct gauge and Lorentz invariant Lagrange densities (see also (D.72)),

Lfermion =
∑

ψL=QL,LL

ψ†
Lσ̄

µDµψL +
∑

φR=uR
i
,dR

i
,lR

i

φ†
Rσ

µDµφR. (2.9a)

Lgauge = −1

4
GaµνGaµν − 1

4
W aµνW a

µν − 1

4
BµνBµν , (2.9b)

with the field-strength tensors Gaµν , W
a
µν and Bµν defined as

Gaµν = ∂µG
a
ν − ∂νG

a
µ − gsfabcG

b
µG

c
ν , (2.10a)

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g2ǫabcW

b
µW

c
ν , (2.10b)

Bµν = ∂µBν − ∂νBµ . (2.10c)

The coupling between gauge fields and fermion fields is minimal in the sense that it is only

mediated via the gauge-covariant derivative.

Explicit mass terms for gauge fields are forbidden by gauge invariance. Mass terms for

fermion fields would also spoil either gauge or Lorentz invariance.1 However, gauge invari-

ance is crucial to guarantee the renormalizability of the theory [35]. Hence, mass terms for

SM particles have to be generated dynamically in a gauge-invariant way. It is realized by the

Higgs–Kibble mechanism [11], where a complex two-component scalar field HT = (φ+, φ0)

is postulated.2 This field has a specific potential that allows for spontaneous symmetry

breaking, and hence the realization of effective mass terms for gauge bosons and fermions.

The introduced Higgs-doublet field H is a doublet under SU(2)L with hypercharge Y = +1.

It has the following potential,

V (H) = −µ2H†H +
λ

4

(
H†H

)2
, (2.11)

where µ2, λ > 0, i.e. it has a tachyonic mass term. The choice of the hypercharge Y = +1

further allows for Yukawa couplings, i.e. couplings between scalar and fermion fields in a

gauge- and Lorentz-invariant way. The most general renormalizable Lagrangian, involving

1Dirac mass terms of two SM spinor fields ψL and φR are given by the Lorentz invariant contraction φ†
RψL

or its adjoint, which spoils SU(2) invariance. The combination ψ†
LψL or φ†

RφR would be conform with

gauge invariance but is not Lorentz invariant. A gauge invariant Majorana mass term ∝ ψT

Rσ
2ψR would

only be possible for right-handed neutrinos, which are absent in the SM (see also Appendix D.3.1 f.).
2The labels + and 0 of the component fields φ denote the charge Q, eq. (2.7), of these components.
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the scalar field H and further SM fields is given by

LHiggs = (DµH)†(DµH) − V (H)

−
3∑

i,j=1

[
ydij(Q

L
i )†HdRj + yuij(Q

L
i )†HcuRj + yeij(L

L
i )†HlRj + h.c.

]
,

(2.12)

with the charge-conjugated scalar field defined as Hc = iσ2H∗. As mentioned above, the

scalar-field self-interaction is chosen in such a way that spontaneous symmetry breaking can

take place. The scalar potential (2.11) has a minimum for

|〈H〉|2 = |H0|2 =
2µ2

λ
≡ v2

2
6= 0, (2.13)

with the vacuum expectation value v. Since U(1)em, whose generator is given by the electric

charge operator (2.7), should remain an exact symmetry, H0 is given up to a phase by

HT
0 = (0, v/

√
2). The Higgs doublet field can now be expanded about the classical ground

state as

H(x) =

(
φ+(x)

1√
2
[v + h(x) + iχ(x)]

)
, φ− = (φ+)† , (2.14)

where h(x), φ±(x), and χ(x) have vanishing vacuum expectation values. The fields φ± and

χ, the would-be Goldstone fields of a broken global symmetry [36], are unphysical degrees of

freedom in broken gauge symmetries. They disappear from the physical spectrum and some

of the gauge bosons become massive. This can be seen by considering the so-called unitary

gauge, where the unphysical fields are eliminated and only one physical field remains, the

Higgs field h(x).

Inserting the expanded Higgs-doublet field into the Higgs Lagrangian (2.12), one finds that

the ground state is not SU(2)L × U(1)Y invariant anymore. Instead it is invariant under

the (smaller) group U(1)em which is generated by the electric charge (2.7). The fields of

the unbroken electroweak theory, W 1
µ , W 2

µ , W 3
µ and Bµ, are no mass and charge eigenstates

of U(1)em. These eigenstates are simplest obtained in the unitary gauge, i.e. (2.14) for

φ+ = χ = 0, and are given by

W± =
1√
2

[W 1
µ ∓ iW 2

µ ], (2.15)

(
Zµ
γµ

)
=
(

cos θw − sin θw

sin θw cos θw

)(
W 3
µ

Bµ

)
. (2.16)

with the weak mixing angle θw given by (2.18). Under U(1)em the eigenstates W± have

charge ±1 while Z and γ are uncharged. Three of the four eigenstates are massive. Their

masses are given by

MW = g2
v

2
, MZ =

v

2

√
g2

1 + g2
2 . (2.17)
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The weak mixing angle can also be expressed via the ratio of the heavy gauge boson masses

cw ≡ cos θw =
g2√
g2

1 + g2
2

=
MW

MZ
, (2.18a)

sw ≡ sin θw =
g1√
g2

1 + g2
2

=

√

1 −
(
MW

MZ

)2

. (2.18b)

The remaining massless particle is identified as the photon γ, since it is the gauge boson

of the unbroken U(1)em which has to reproduce the observed low energy QED. Hence, the

couplings g1 and g2 are related to the electric charge via e = g1g2/
√
g2

1 + g2
2.

The effective fermion masses are obtained by inserting (2.14) into the Yukawa part of the

Higgs Lagrangian (2.12). The resulting mass matrix Mf
ij = 1/

√
2yfijv can be diagonalized by

a bi-unitary transformation. The fermion mass eigenstates and corresponding eigenvalues

are given by

f ′L
i =

∑

k

Uf,Lik fLk , f ′R
i =

∑

k

Uf,Rik fRk , (2.19)

mf,i =
v√
2

∑

k,m

Uf,Lik yfkm

(
Uf,Rmi

)†
=

v√
2
λfi , (2.20)

with the unitary matrices Uf,Lik and Uf,Rik for left- and right-handed fields f = ui, di, ei,

respectively. Owing to their unitarity, the matrices Uf,Lik and Uf,Rik drop out of the interaction

terms between fermions and neutral gauge bosons, when expressing the weak eigenstates in

(2.9a) by the mass eigenstates (2.19). Therefore there are no flavor-changing neutral currents

at tree-level [34]. However, since the quark–W±-boson interaction connects up-type fermions

with down-type fermions, a non-trivial matrix remains, the Cabbibo–Kobayashi–Maskawa

(CKM) quark mixing matrix [37,38]:

VCKM = Uu,L
(
Ud,L

)†
. (2.21)

This matrix can be parametrized by four physical parameters, usually denoted by three

mixing angles and a complex phase. The complex phase of the CKM matrix is the only

source of CP-violation in the SM.

The potential V (H) in (2.12) gives rise to the mass of the physical Higgs field h(x):

Mh =
√

2µ =
v

2

√
λ , (2.22)

i.e. the mass is a free parameter of the SM determined via the quartic coupling of the

Higgs-doublet field. The Higgs-boson mass is a yet unknown quantity of the SM.

2.1.1 Open Questions of the Standard Model

Even though the SM is extremely successful in describing the electroweak and strong phe-

nomena observed in nature, there are theoretical considerations as well as experimental

observations that render the SM as a low energy effective field theory that gets modified

when going to higher energies.
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Theoretical Considerations

• The SM does not describe gravitational interactions. Macroscopically, gravitation is

described by general relativity [5]. Since the gravitational coupling constant is many

orders of magnitude weaker than the other known forces, it can be safely neglected

for center-of-mass energies produced at high-energy colliders. However, at energies

around the Planck scale, ΛPlanck ∼ 1019 GeV, gravity has to enter at the quantum

level. A consistent quantum mechanical description of gravity is not known yet.

• In the SM, all fermions and gauge bosons are in principle massless due to gauge invari-

ance. Since they obtain their masses via the Higgs mechanism, their masses have to be

proportional to the electroweak breaking scale v. However, the SM Higgs-boson mass

gets radiative corrections due to quartic Higgs–self-couplings and Higgs-couplings to

massive gauge bosons and fermions. Cutting off the loop-momenta integral at the

scale Λcut where new physics enters, one finds that the dominant corrections to the

Higgs mass are given via

M2
H = (M0

H)2 +
3Λ2

cut

8πv2

(
M2
H + 2M2

W +M2
Z − 4m2

t

)
, (2.23)

where M0
H is the bare mass of the unrenormalized Lagrangian, i.e. the bare Higgs mass

squared is proportional to the cuttoff Λ2
cut. If the SM is valid up to the GUT scale

ΛGUT ∼ 1015 GeV or the Planck scale, one would suppose that the electroweak scale

is of the order of the cutoff scale. This problem is also known as the naturalness or

fine-tuning problem.

• The electric charge of the quarks and leptons are related (Qe = 3Qd = −3Qu/2) even

though the charge is arbitrary in the SM. The quantization of the electric charge can

be explained by the assumption that all three gauge groups of the SM are described

by a grand unified theory (GUT). However, with the SM particle content only, one gets

a wrong prediction of the weak mixing angle θw [39].

Experimental Observations

• From cosmological side one observes a large amount of weakly interacting cold dark

matter (DM) in the universe. The most prominent hint for cold dark matter comes

from the rotation curve of galaxies: instead of the expected behavior of the velocity

of the stars v2 ∝ 1/R at large distances, where R is the distance of the star to the

center of the galaxy, one finds that the velocity is almost constant with respect to R.

However, postulating dark matter that clumps inside the galaxies — and hence has to

be cold, would explain this phenomenon. The only DM candidates in the SM is the

neutrino since it is the only electrically neutral particle. However, neutrinos are hot

DM and hence not a candidate for the cold DM in the universe. In addition, with the

current upper bound for the neutrino mass Mν < 2 eV, the number of relict neutrinos

is not sufficient to provide the observed amount of DM.
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• To get the observed matter–anti-matter asymmetry the three Sakharov conditions

have to be fulfilled [40]. These are a set of necessary conditions a baryon-generating

interaction must satisfy:

– Baryon number violation.

– C-symmetry and CP-symmetry violation.

– Interactions out of thermal equilibrium.

At first glance, the SM seems to fulfill these conditions: Baryon number is violated

via non-perturbative effects, the so called sphaleron processes [41]. C-symmetry is

violated via the weak interaction, and CP-symmetry via the complex entry of the

CKM matrix. The required interaction out of equilibrium is given by the time of

electroweak symmetry breaking in the early universe. However, the amount of CP

violation provided by the complex phase of the CKM matrix is far too small in order

to obtain today’s matter–anti-matter asymmetry.

• The SM neutrinos are massless. This contradicts the observed neutrino oscillation

from solar, atmospheric and reactor neutrinos. The exact mass is not known, only

an upper bound is given by direct measurement, 0 < Mν < 2 eV. While it is possible

to introduce a sterile right-handed neutrino and hence generate masses via the Higgs

mechanism, it seems quite unnatural that the neutrino mass is so much smaller than

all other fermion masses.

• The Higgs particle of the SM remains to be found. It is bounded from below by

experimental searches, with the current limit mH > 114.4 GeV/c2 given by the LEP

collaboration [42]. Theoretical considerations set additional bounds by requiring that

the Higgs potential is bounded from below [43]. Even though the SM Higgs mechanism

is not ruled out, the question arises whether it is the right description of the electroweak

symmetry breaking.

• The anomalous magnetic moment of the muon, (g − 2)µ, appears to differ by over

three standard deviations from the best SM calculation based on low-energy e+e−

data [44–50].

2.2 The Minimal Supersymmetric Standard Model

As shown at the end of last section, there are phenomena that cannot be explained within

the SM. Therefore, one assumes that the SM is only a low-energy effective theory resulting

from a yet unknown underlying theory. However, possible extensions of the SM have to

fulfill the following restrictions:

1. The particle content and gauge group of the SM have to be incorporated in the new

model.
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2. The phenomenological observations, e.g. electroweak precision data and the proton

lifetime have to be in accordance with the new model.

A possible extension of the SM which fulfills this criteria is provided by supersymmetry

(SUSY) [12], especially by the Minimal Supersymmetric Standard Model (MSSM) [15,16]. In

particle physics, supersymmetry is an extension of the Poincaré symmetry, whose symmetry

generator Q when acting on particles changes its spin by a factor 1/2 and hence relates

bosons to fermions and vice versa. In the MSSM, each SM particle has a superpartner that

differs by half-integer spin: The superpartners of the SM fermions are scalar bosons and the

superpartners of the bosonic fields in the SM are given by spin-1/2 fermions.

2.2.1 Motivation

Coleman and Mandula showed in [51] that the most general Lie Algebra of symmetry op-

erators that leave the S matrix invariant, are given by the direct product of an internal

symmetry and the Poincaré symmetry, cf. Appendix D.2. The initial motivation for in-

troducing supersymmetry into particle physics came from the observation that there are

further symmetry generators that overcome this no-go theorem by requiring the algebra to

be a graded Lie Algebra and hence being constituted by symmetry generators that fulfill

commutations as well as anti-commutation relations. Such symmetries are called supersym-

metries (see also Appendix D.5). From theoretical side, supersymmetries are appealing,

since it is the only possible extension of the Poincaré spacetime-symmetry of the S matrix

that allows for non-trivial scattering processes [52].

Apart from this this original motivation, supersymmetric field theories, especially the

MSSM, were found to have many interesting phenomenological properties that may solve

some of the beforehand mentioned weaknesses of the SM.

• An astonishing fact of supersymmetry is that the fine-tuning problem is not present

in an exact supersymmetric version of the SM. The quadratically divergent radiative

contributions to the Higgs mass are exactly canceled by the contributions arising

from the supersymmetric partners.3 In softly broken SUSY, radiative corrections are

proportional to the squared-mass difference between the SUSY partners and only grow

logarithmically with the cutoff scale,

M2
H = (M0

H)2 +
m2

f

4π2v2

(
m2

f −m2
s

)
log
(
Λcut

ms

)
, (2.24)

with mf being the fermion mass and ms the mass of the corresponding supersymmetric

partner. Therefore, in softly broken SUSY, the mass difference between the super-

partners has to be of the order of the electroweak scale for not reintroducing the

fine-tuning problem.

3This follows also from a more general statement of unbroken SUSY, the non-renormalization theorem. It

states that all vacuum supergraphs vanish. [12,53–56]
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• Under the assumption of a GUT at high energies, the MSSM correctly predicts the weak

mixing angle θw, provided the superpartner masses are not heavier than O(10 TeV)

[39]. Turning the argument around, one finds that in the MSSM the three gauge

couplings meet at one point, the GUT scale, which is found to be at roughly 1016 TeV.

• SUSY models can provide a massive, weakly interacting particle that is stable at cos-

mological timescales and therefore provides a candidate for cold DM. In the MSSM

this is realized by the assumption that R-parity is realized as a discrete symmetry,

rendering the lightest SUSY particle stable.

• The MSSM is slightly preferred to the SM by electroweak precision data related to the

weak mixing angle, the W -boson mass, and the top-quark mass [57]. Also the three-

sigma standard deviation of the anomalous magnetic moment of the muon, (g − 2)µ,

can be explained within the MSSM [58]. Further, precision tests of the SM predict

that the Higgs mass is smaller than ∼200 GeV at the 99% confidence level (c.l.). The

MSSM, which is a type-II two Higgs-doublet model, naturally predicts a light Higgs

boson that cannot be heavier than ∼ 140 GeV provided that the SUSY particles are

not too heavy (i.e. at the TeV scale). A global fit to EW precision data slightly favors

a Higgs boson within the MSSM [59].

2.2.2 The MSSM: Principles and Building Blocks

The MSSM is a N = 1 supersymmetric extension of the SM. The theoretical framework

for describing supersymmetry and especially supersymmetric field theories is collected in

Appendix D. The MSSM is based on the following principles:

• The field content of the MSSM is minimal in the sense that the least possible amount

of new fields is introduced.

• The MSSM is invariant under the SM gauge groups.

• SUSY is softly broken, i.e. no new quadratic divergences arise from the breaking sector.

• R-parity is conserved and defined in such a way, that all SM particles have R-parity

+1, while the SUSY partners have R-parity −1.

• SUSY masses are close to the EW scale.

N = 1 SUSY has only one SUSY generator QA, which is a spinor doublet, cf. Appendix D.5.

Different fields belonging to a supermultiplet, i.e. the irreducible representations of the

SUSY algebra, hence differ by spin-1/2. With exact SUSY the masses of superpartners have

to be the same. Hence, in any realistic supersymmetric extension of the SM as the MSSM,

SUSY has to be broken. The SUSY breaking occurs in an a priori unknown sector and

our ignorance of the breaking mechanism is parametrized by the so-called soft-breaking

parameters. In order to construct the MSSM we make use of the concept of superfields,

cf. Appendix D.6. The irreducible representations of N = 1 superfields can be used to



16 2. From the Standard Model to the MSSM

construct supersymmetric Lagrange densities. While chiral superfields describe fields of

spin-0 and spin-1/2, vector superfields relate fields of spin-1/2 and spin-1. Hence all SM

fermions and the scalar Higgs bosons have to be assigned to chiral superfields, while the

gauge bosons are related to vector superfields. In order to obtain a supersymmetric version

of the Higgs mechanism, two Higgs doublets are required, one with U(1)Y hypercharge

Y = +1 generating masses for the up-type quarks, and one with hypercharge Y = −1

generating masses for the down-type quarks. The reason is twofold: Since the Higgs fields

are in the SU(2)L doublet representation, their supersymmetric partners are chiral fermions.

In order to cancel gauge anomalies, the hypercharge has to vanish when summing over all

fermions [60–62]. Since the SM is anomaly-free, the contributions coming from the fermionic

part of the Higgs sector have to cancel, i.e. the sum of their hypercharges has to vanish. The

second reason is that in order to construct a supersymmetric version of the Higgs-fermion

couplings, only analytic functions of combinations of chiral fields are allowed. A term like

the one in (2.12) containing H and Hc in order to give masses to the up- and down-type

fermions would spoil supersymmetry. Therefore two Higgs-doublet fields are needed, one

developing its vev in the upper and one in the lower component. The field content of the

MSSM is collected in Table 2.2. The names of superpartners of SM model particles are

chosen such that spin-0 superpartner names correspond to the SM names with a prepended

s, while spin-1/2 superpartners have an appended ino.

The supersymmetric Lagrange density of the MSSM can be written as

LMSSM = LSUSY + Lsoft , (2.25)

where the first term is invariant under SUSY transformations while the latter contains the

soft-breaking terms. The SUSY Lagrangian can be split into a kinetic term, a gauge term,

and an interaction term, which are SUSY and gauge invariant by themselves. In accordance

with Appendix D.7.1 these parts are given by

Lkin =
∫

dθ4
{
Q†e2(g1B+g2W+gsG)Q+ U

†
e2(g1B+gsG)U +D

†
e2(g1B+gsG)D

+ L†e2(g1B+g2W )L+ E
†
e2g1BE

+Hue
2(g1B+g2W )Hu +Hde

2(g1B+g2W )Hd

}
, (2.26a)

Lgauge =
1

16

∫
dθ2

{ 1

g2
s

Tr
[
(WG)A(WG)A

]
+

1

g2
2

Tr
[
(WW )A(WW )A

]

+
1

g2
1

Tr
[
(WB)A(WB)A

]
+ h.c.

}
, (2.26b)

Lint =
∫

dθ2
{
µHu ·Hd − yuijU iQj ·Hu − ydijDiQj ·Hd − yeijEiLj ·Hd︸ ︷︷ ︸

W

+h.c.
}
. (2.26c)

WG, WW , and WB are the respective supersymmetric field strengths belonging to the vector

superfields G, W , and B,

(WG)A = −1

4
D̄D̄e−GDAe

G, (2.27a)
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Name Label Bosonic Field Fermionic Field SU(3)C , SU(2)L, U(1)Y

ch
ir

al
su

p
er

fi
el

d
s

(s)quarks

Q q̃L = (ũL, d̃L) qL = (uL, dL) (3,2,+1
3)

U ũ∗
R ūL = ucR (3̄,1,−4

3)

D d̃∗
R d̄L = dcR (3̄,1,+2

3)

(s)leptons
L l̃L = (ν̃L, ẽL) lL = (νL, eL) (1,2,−1)

E ẽ∗
R ē = ecR (1,1,+2)

Higgs(ino)
Hu hu = (h+

u , h
0
u) h̃u = (h̃+

u , h̃
0
u) (1,2,+1)

Hd hd = (h0
d, h

−
d ) h̃d = (h̃0

d, h̃
−
d ) (1,2,−1)

ve
ct

or
su

p
er

fi
el

d
s

gluon/gluino G ga g̃a (8,1, 0)

W(ino) W W i W̃ i (1,3, 0)

B(ino) B B B̃ (1,1, 0)

Table 2.2: Field content of the MSSM. Superfields are labeled with capital letters. The SUSY
partners of the SM fields, cf. Table 2.1, are denoted with a tilde. The gauge group representation
and charge of the fields are arranged as (SU(3)C , SU(2)L, U(1)Y ). Generation and color indices for
chiral superfields are suppressed. The index a and i enumerates the vector superfields of SU(3)C

and SU(2)L, respectively.

(WW )A = −1

4
D̄D̄e−WDAe

W , (2.27b)

(WB)A = −1

4
D̄D̄e−BDAe

B. (2.27c)

DA and D̄Ȧ are the supersymmetric covariant derivatives defined in (D.119). The Yukawa

couplings yu,dij appearing in (2.26c) are the same as the ones in (2.12). The dot-product in

(2.26c) denotes the SU(2)L-invariant contraction of two doublet fields, i.e. A ·B = ǫijA
iBj .

The µ parameter, describing the coupling between the two Higgs doublets, and after elec-

troweak symmetry breaking also the ratio of the two Higgs vevs, tan β, are the only new

free parameters in LSUSY.

R-Parity

The superpotential W is not the most general superpotential invariant under SUSY and

gauge transformations. The possible terms have been constrained by the requirement of

R-parity (Rp) conservation. As shown in Appendix D.5.2, in N = 1 SUSY there is one U(1)

symmetry left that commutes non-trivial with the SUSY generators, called R-symmetry.

Under phase rotation of the Grassmann coordinates, θ → eiϕθ and θ̄ → e−iϕθ̄, one has

QA → e−iϕQA and Q̄Ȧ → eiϕQ̄Ȧ, (cf. (D.105)). One defines an R-transformation on a
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general left chiral superfield as

Φ(x, θ, θ̄) → Φ′(x, eiϕθ, e−iϕθ̄) = eiϕRΦΦ(x, θ, θ̄), (2.28)

i.e. the R-charge of Φ is RΦ. Considering a vector superfield V , its reality condition implies

vanishing R-charge. Turning to the component fields of Φ and V , eqs. (D.133) and (D.142),

one gets the R-charges of the component fields:

R(ϕ) = RΨ , R(ψ) = −R(ψ̄) = RΦ − 1 , R(F ) = RΦ − 2 , (2.29a)

R(Aµ) = 0 , R(λ) = −R(λ̄) = 1 , R(D) = 0 . (2.29b)

Since the kinetic part of the SUSY Lagrangian is invariant under an R-transformation, as

well as the gauge part which is trivially invariant, one could think of R-invariance as a

symmetry of nature. However, an exact R-symmetry is not possible for theoretical and

phenomenological reasons.4

Its discrete Z2 subgroup for ϕ = π, called R-parity, however, has been conjectured by [13]

to be an exact symmetry in the multiplicative sense of the MSSM. It can be seen as the

invariant remnant of a U(1)R gauge symmetry destroyed by anomalies, also called discrete

gauge symmetry [64]. The value of eiπR = (−1)R for a superfield is called matter parity

(MP ), while the value of the component fields are called the R-parity (RP ) of that field.

Since RP is always positive for a vector field whereas its fermionic partner is necessarily

negative, the matter parity of the chiral fields of the MSSM are assigned such that all SM

particles have positive R-parity while their SUSY partners have negative R-parity. This can

be achieved by assigning RΦ = 3(B−L), where B is the baryon number and L is the lepton

number of the superfield Φ. With s being the spin of each particle, one can write the MSSM

matter parity and R-parity as

MP = (−1)3(B−L), (2.30a)

RP = (−1)3(B−L)+2s. (2.30b)

In exact R-parity conserving models as the MSSM the lightest R-odd state has to be stable.

It is called lightest supersymmetric particle (LSP), which in many models serves as dark

matter candidate. In addition, R-parity does not allow for baryon and lepton number

violating terms, which are potentially dangerous since they could lead to rapid proton decay.

For completeness we give the R-parity violating terms which could in principle contribute

to the superpotential and may be present in extensions of the MSSM,

W /R = −ǫiLi ·Hu +
1

2
λijkLi · LjEk + λ′

ijkLi ·QjDk +
1

2
λ′′
ijkU iDjDk . (2.31)

4A U(1)R global symmetry would be destroyed by quantum anomalies [63]. Further a gaugino mass term

would violate such a symmetry, however their non-observation at LEP/Tevatron renders them massive.
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Soft SUSY-Breaking Terms

SUSY has to be broken in any realistic model, since it is manifestly not an exact symmetry

of the known particle spectrum. In the MSSM, SUSY is explicitly broken and the breaking is

parametrized by means of the soft breaking terms. The couplings of the soft breaking terms

have positive mass dimension and only those terms are allowed that do not introduce new

quadratic divergences.5 The most general soft Lagrangian of the MSSM that is invariant

under the SM gauge group is given by [65],

Lsoft = −q̃†
iL(M2

q̃L
)ij q̃jL − ũ∗

iR(M2
ũR

)ij ũjR − d̃∗
iR(M2

d̃R
)ij d̃jR

− l̃†iL(M2
l̃L

)ij l̃jL − ẽ∗
iR(M2

ẽR
)ij ẽjR

− 1

2

(
M1B̃B̃ +M2W̃

aW̃ a +M3g̃
ag̃a + h.c.

)
(2.32)

−m2
hu
h†
uhu −m2

hd
h†
dhd − (b hu · hd + h.c.)

−
(
(au)ij ũiR q̃jL · hu + (ad)ij d̃iR q̃jL · hd + (ae)ij ẽiR l̃jL · hd + h.c.

)
.

The allowed terms are squark and slepton mass terms (first and second line), gaugino mass

terms (third line), Higgs-boson mass terms and bilinear couplings (fourth line), and trilinear

Higgs–sfermion–sfermion interactions (last line). The i, j are generation indices and a runs

from 1 to 8 for gluinos and from 1 to 3 for winos. The trilinear couplings au,d,eij are usually

expressed in terms of the Yukawa couplings yu,d,eij ,

au,d,eij = (yu,d,eAu,d,e)ij . (2.33)

The gaugino mass terms M1,2,3 and the bilinear Higgs-boson coupling b are in general com-

plex numbers, while the mu,d are real mass parameters. Further the sfermion masses M2
f̃

and

the trilinear couplings au,d,e are hermitian 3 × 3 matrices in generation space. If one allows

all parameters to be complex one would deal with 105 new unknown parameters. All but

two, the µ parameter and tan β, are coming from the soft-breaking terms. For comparison,

the SM has 19 free parameters.

Constrained MSSM

Even though the MSSM in general introduces 105 new free parameters, an extensive range

in parameter space is excluded phenomenologically. The main reason is that most of these

parameters allow for flavor-changing neutral currents (FCNC) or introduce new sources of

CP violation, which are both not observed so far [66–69]. The concept of minimal flavor

violation assumes that the only source of CP violation is given by the CKM matrix or

rather the Yukawa couplings yu,d, and that the sfermion mass matrices M2
f̃

and the trilinear

5Positive mass dimension of the couplings is a necessary but not sufficient condition for not having quadratic

divergences. For example, a term such as dijkφ
∗
i φjφk generally tends to generate quadratic divergences

from loops.
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couplings Af are diagonal in flavor space so that FCNC are absent at tree-level,

(M2
f̃
)ij = δijM

2
f̃i
, (Af )ij = δijAfi

, (2.34)

with f̃ = {q̃, ũ, d̃, l̃, ẽ} and f = {u, d, e} and the generation indices i, j = 1, 2, 3.

The parameters can be further restricted in constrained SUSY models, where assump-

tions about the SUSY breaking at high scales and their mediation to the visible sector are

made. The most prominent symmetry breaking mechanisms are gravity mediated (mSUGRA)

[70, 71], gauge mediated (GMSB) [72–74], and anomaly mediated (AMSB) supersymmetry

breaking [75, 76]. In all these models the parameters appearing in (2.32) have a particular

simple form at the GUT scale. Renormalization group equations can then be used to run

them down to the electroweak scale.

The constrained MSSM (CMSSM) is obtained by assuming that the MSSM breaking pa-

rameters can be described by such universal braking mechanisms. However, referring to

the CMSSM without specifying the underlying mechanism commonly denotes the mSUGRA

scenario.

2.2.3 The Particle Spectrum of the MSSM

In the following we want to discuss the particle spectrum of the MSSM. If SUSY would be

unbroken, it would be a very economic theory, since all sfermion and gaugino masses would

be identical to their SM partners. The only difference would occur in the Higgs sector, since

now one has a two Higgs-doublet model instead of a single Higgs field. After eliminating

the auxiliary fields appearing in LSUSY eqs. (2.26a)–(2.26c), see also Appendix D.7.1, one

gets the mass terms of the various particles which have to be diagonalized in order to obtain

mass eigenstates.

Higgs Bosons

The MSSM Higgs sector is constituted by two (complex) Higgs-doublet fields with opposite

hypercharge. Hence, the Higgs sector has eight free parameters. As well as in the SM Higgs

mechanism, after developing its vacuum expectation value, the three would-be Goldstone

bosons vanish from the physical spectrum, giving mass to the W and Z bosons. Therefore

there are five physical Higgs bosons: three neutral Higgs bosons, two of them CP-even, h0

and H0, and one CP-odd, A0, as well as two charged Higgs bosons, H±. The Higgs potential

of the MSSM has the following form,

VH = (|µ|2 +m2
hd

)h†
dhd + (|µ|2 +m2

hu
)h†
uhu + (b hu · hd + h.c.)

+
g2

1 + g2
2

8

[
h†
dhd − h†

uhu
]2

+
g2

2

2
|h†
dhu|2.

(2.35)

Comparing this with the SM Higgs potential (2.11) one finds that the Higgs self-interaction

terms of the MSSM are no longer free parameters. Instead they are given by the gauge cou-

plings g1 and g2. In analogy to the Higgs mechanism in the SM, the Higgs fields are required
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to have non-vanishing vacuum expectation values that are annihilated by the generator Q

of the electric charge (2.7),

〈hd〉 =
1√
2

(
v1

0

)
, 〈hu〉 =

1√
2

(
0

v2

)
. (2.36)

The requirement of electroweak symmetry breaking for nonzero vacuum expectation values

v1,2 and the condition that the Higgs potential has to be bounded from below impose the

following conditions on the parameters of the Higgs potential

m2
hu

+m2
hd

+ 2|µ|2 > 2|b| , (2.37a)

(m2
hu

+ |µ|2)(m2
hd

+ |µ|2) < b2 . (2.37b)

These relations link electroweak symmetry breaking of the MSSM to the breaking of super-

symmetry, since in an unbroken theory (i.e. m2
hu

= m2
hd

= b = 0) eqs. (2.37a,b) cannot be

fulfilled simultaneously.

Expanding the two Higgs fields about the classical ground state, they can be written as

hd =

( 1√
2
(v1 + φ1 + iχ1)

h−
1

)
=

( 1√
2
(v cosβ + φ1 + iχ1)

h−
1

)
,

hu =

(
h+

2
1√
2
(v2 + φ2 + iχ2)

)
=

(
h+

2
1√
2
(v sin β + φ2 + iχ2)

)
,

(2.38)

where v =
√
v2

1 + v2
2 ≈ 246 GeV and tan β = v2/v1 with 0 < β < π/2. The minimization

condition leading to (2.36) can be written as

b = −
(m2

hd
−m2

hu
) tan 2β +M2

Z sin 2β

2
, (2.39a)

|µ|2 =
m2
hu

sin2 β −m2
hd

cos2 β

cos 2β
− M2

Z

2
. (2.39b)

The mass-squared matrix of the Higgs bosons are obtained by inserting (2.38) into (2.35)

and taking only the terms quadratic in the fields. After some simplification, it is given by

V quadratic
H = (φ1, φ2)

(
m2
A0 sin2 β +M2

Z cos2 β −(m2
A0 +M2

Z) sin β cosβ

−(m2
A0 +M2

Z) sin β cosβ m2
A0 cos2 β +M2

Z sin2 β

)(
φ1

φ2

)

+ b (χ1, χ2)
(
v2/v1 1

1 v1/v2

)(
χ1

χ2

)
(2.40)

+
(
b+

v1v2

4
g2

2

)
(h+

1 , h
+
2 )
(
v2/v1 1

1 v1/v2

)(
h−

1

h−
2

)
.



22 2. From the Standard Model to the MSSM

with m2
A0 = 2b/ sin 2β.6 The mass eigenstates are obtained by performing the following

unitary transformations

1√
2


H

0

h0


 =


 cosα sinα

− sinα cosα




φ1

φ2


 , (2.41)

1√
2


G

0

A0


 =


− cosβ sin β

sin β cosβ




χ1

χ2


 , (2.42)


G

±

H±


 =


− cosβ sin β

sin β cosβ




h

±
1

h±
2


 . (2.43)

The tree-level masses of the five physical Higgs bosons and would-be Goldstone bosons are

then given by

m2
h0,H0 =

1

2

(
m2
A0 +M2

Z ∓
√

(m2
A0 +M2

Z)2 − 4M2
Zm

2
A0 cos2 2β

)
, (2.44a)

m2
A0 =

2b

sin 2β
, (2.44b)

m2
H± = m2

A0 +M2
W , (2.44c)

m2
G0 = m2

G± = 0 . (2.44d)

The mixing angle α obeys the relation

sin 2α = −m2
H0 +m2

h0

m2
H0 −m2

h0

sin 2β . (2.45)

The Higgs mass spectrum is determined by only two new parameters, as one can see from

(2.44). Usually, they are taken to be mA0 and tan β. It follows that the CP-even and charged

Higgs-boson tree-level masses are no longer free parameters of the theory and underlie the

following constrains that emerge from (2.44),

mh0 < min(mA0 ,MZ) , (2.46a)

mH0 > max(mA0 ,MZ) , (2.46b)

mH± > max(mA0 ,MW ) . (2.46c)

One remarkable prediction is that the tree-level mass of the lightest CP-even Higgs boson

h0 is lower than the Z mass. This bound has of course already been exceeded by the

current experimental lower bound from LEP, mH > 114.4 GeV 95% c.l. [42].7 However,

6Identifying the mass of the CP-odd Higgs boson with mA0 will be validated below.
7This lower bound was derived by the negative search of Higgs bremstrahlung from Z bosons. In modified

Higgs models this coupling can get altered, e.g. in the MSSM the h0ZZ coupling is suppressed via a

factor sin(β − α) which in principle lowers the mass bound depending on the precise value of α and β.

However, in the decoupling limit, mA0 ≫ MZ , one has mA0 ∼ mH0 ∼ mH± and β − α → π/2 and the

lightest Higgs becomes SM like while the others decouple.
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since the CP-even Higgs mass is not a free parameter of the theory, it gets altered by

radiative corrections [77, 78]. Owing to the large top-quark–Higgs Yukawa coupling the

radiative corrections are dominated by the incomplete cancellation of loops involving top

quarks t and its SUSY partners, the stops t̃α. In the limit of exact supersymmetry, the

Higgs masses are protected by the non-renormalization theorem, hence the corrections have

to be proportional to ln(mS/mt), with mS being of the order of the soft breaking scale. By

neglecting squark-mixing effects for simplicity, the shift of the mass bound can be estimated

and is given via

m2
h0 < m2

Z +
3m4

t

2π2v2
ln
mS

mt
, (2.47)

i.e. the corrections go with the fourth power of the top mass. This shows that in the MSSM

it is crucial to have a heavy fermion, since otherwise radiative corrections would not be able

to shift the Higgs mass above the experimental bound.

The relations for the gauge bosons, eqs. (2.15–2.17), also hold in the MSSM with v =√
v2

1 + v2
2. The SM fermions obtain their masses in much the same way as in the SM,

however since in the MSSM hu can only couple to up-type fermions while hd couples to the

down-type fermions, the relation between masses and Yukawa couplings becomes

λu√
2

=
mu

v2
=

mu

v sin β
,

λd√
2

=
md

v1
=

md

v cosβ
,

λe√
2

=
me

v1
=

me

v cosβ
. (2.48)

Comparing this with the Yukawa couplings in the SM, eq. (2.20) one finds an additional

factor of 1/ cosβ or 1/ sin β, respectively. Hence, down-type Yukawa couplings can be

considerably enhanced for large values of tan β.

Even though true at tree-level, the relations (2.48) between masses and Yukawa couplings

get spoiled by radiative corrections. These allow for an effective coupling of down-type

quarks to the vev v2 of hu while up-type quarks get an effective coupling to v1 [79]. While the

former corrections are enhanced by tan β, the latter are suppressed by 1/ tan β. The induced

effective couplings are closely related to the soft breaking parameters, as expected due to

the non-renormalization theorem. The tan β enhanced contributions can be resummed to

all orders [79–84]
vλ0

b√
2

=
mb

1 +∆mb
, (2.49)

where λ0
b denotes the bare Yukawa coupling and ∆mb contains all tan β enhanced terms.

Further details on the effective Yukawa couplings are be given in Section 6.2 and Appendix C.

Sfermions

In principle all particles with the same spin, SU(3)C × U(1)em quantum numbers, and R-

parity can mix with each other. Since sfermions of different families can mix via the soft

breaking terms, this would lead to 6 × 6 mixing matrices for up-type squarks, down-type

squarks, and charged sleptons and to a 3×3 mixing matrix for the sneutrinos. As mentioned

before, family mixing is strongly constrained by phenomenological observations. Therefore
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in the following minimal flavor violation is assumed, resulting in reducible 6 × 6 matrices

whose irreducible elements are 2 × 2 matrices for up-type squarks, down-type squarks, and

charged sleptons, describing left-right mixing between each generation. Since only left-

handed sneutrinos are included in the MSSM, no mixing takes place in this sector. In the

gauge eigenstate basis (f̃L, f̃R), the sfermion mass matrix can be written as

Mf̃ =


M

2
f̃L

+m2
f +M2

Z cos(2β)(I3
f −Qfs

2
w) mf (A∗

f − µκ)

mf (Af − µ∗κ) M2
f̃R

+m2
f +QfM

2
Z cos(2β)s2

w


 , (2.50)

where κ = cotβ for up-type squarks and κ = tan β for down-type squarks and electron-type

sleptons. The chirality eigenstates can be rotated into the mass eigenstates with help of a

unitary matrix Uf̃ ,

(
f̃1

f̃2

)
= Uf̃

(
f̃L
f̃R

)
⇒ Df̃ ≡ Uf̃Mf̃U

†
f̃

=


m

2
f̃1

0

0 m2
f̃2


 . (2.51)

The sfermion mass eigenvalues are given by

m2
f̃1,2

=
1

2
(M2

f̃L
+M2

f̃R
) +m2

f +
1

2
I3
fMZ cos(2β) (2.52)

∓ 1

2

√[
M2
f̃L

−M2
f̃R

+M2
Z cos(2β)(I3

f − 2Qfs2
w)
]2

+ 4m2
f |Af − µκ|2 ,

with the convention mf̃1
< mf̃2

. The sfermion matrix (2.50) can be expressed in terms of

the unitary matrix Uf̃ and the physical sfermion masses

Mf̃ =


 (Uf̃11)2m2

f̃1

+ (Uf̃21)2m2
f̃2

Uf̃11Uf̃12m
2
f̃1

+ Uf̃21Uf̃22m
2
f̃2

)

Uf̃11Uf̃12m
2
f̃1

+ Uf̃21Uf̃22m
2
f̃2

) (Uf̃12)2m2
f̃1

+ (Uf̃22)2m2
f̃2


 . (2.53)

Uf̃ can be parametrized by a mixing angle θf̃ ,

Uf̃ =


 cos θf̃ sin θf̃

− sin θf̃ cos θf̃


 , or Uf̃ =


− sin θf̃ cos θf̃

cos θf̃ sin θf̃


 . (2.54)

Depending on the precise value of the parameters in (2.50) one has to choose det(Uf̃ ) = ±1

in order to realize mf̃1
< mf̃2

. Comparing (Mf̃ )1,2 of (2.50) and (2.53) and using the explicit

expression for Uf̃ given by (2.54), relates the mixing angle to the soft breaking parameters,

sin 2θf̃ = det(Uf̃ )
2mf (A∗

f − µκ)

m2
f̃1

−m2
f̃2

. (2.55)

The soft breaking parameter M2
f̃L

is the same for up- and down-type quarks of the same

generation due to SU(2)L invariance, relating the squark masses within one generation.



2.2. The Minimal Supersymmetric Standard Model 25

Comparing the (Mf̃ )1,1 of (2.50) and (2.53) one finds for each generation following relation

between the four mass eigenvalues:

(Ud̃11)2m2
d̃1

+ (Ud̃12)2m2
d̃2

= (Uũ11)2m2
ũ1

+ (Uũ12)2m2
ũ2

+m2
d −m2

u −M2
W cos 2β . (2.56)

For each generation there are five independent parameters related to the squark sector,

M2
L, M2

ũR
, M2

d̃R
, Au, and Ad (with M2

L = M2
ũL

= M2
d̃L

). All other parameters are already

determined from other sectors. Depending on the parametrization used, these parameters

can be related to the ones appearing in (2.53), namely three out of the four fermion masses

m2
ũ1

, m2
ũ2

, m2
d̃1

and m2
d̃2

and the two mixing angles θũ, θd̃.

The sfermion mixing is proportional to the corresponding fermion mass. Hence for the

third generation huge mixing effects take place, while for the first two generations mixing

effects can be safely neglected leading to trivial mixing matrices. In the squark sector

the number of free parameters is then reduced from five to three for the first and second

generation, namely M2
L, M2

ũR
, and M2

d̃R
.

Neutralinos and Charginos

The neutral higgsinos h0
u and h0

d, and the neutral gauginos B̃ and W̃ 0 mix and form four

mass eigenstates, the neutralinos. They are Majorana fermions, in the sense that their left-

and right-handed component are related via ΨR = −iσ2ΨL (cf. (D.59) and (D.81)). In the

basis

Ψ0
i = (B̃, W̃ 0, h̃0

u, h̃
0
d)

T, (2.57)

their mass matrix is given by,

MN =




M1 0 −MZsw cosβ MZsw sin β

0 M2 MZcw cosβ MZcw sin β

−MZsw cosβ MZcw cosβ 0 −µ
MZsw sin β MZcw sin β −µ 0



. (2.58)

Without electroweak symmetry breaking, this matrix would be block diagonal, and gauginos

would not mix with the higgsinos. Due to the fact that Ψ0
i are Majorana particles, MN has

to be symmetric and can be diagonalized with help of a unitary matrix N . Defining the

mass eigenstates as 


χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4




= N




B̃

W̃ 0

h̃0
u

h̃0
d



, (2.59)

the diagonalized mass matrix is given by

Mχ̃0 = N∗MNN
† . (2.60)
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N can be chosen such that all entries are non-negative and the neutralino masses obey

mχ̃0

1

< mχ̃0

2

< mχ̃0

3

< mχ̃0

4

. The diagonalization of the neutralino mass matrix is usually

done numerically.

The positive and negative charged higgsinos and winos (W̃+, h̃+
u ) and (W̃−, h̃−

d ), with

W̃± = 1√
2
(W̃ 1 ∓ W̃ 2), can mix, and their mass eigenstates are called charginos. With help

of the electric charge eigenstates

Ψ+ =


W̃

+

h̃+
u


 , Ψ− =


W̃

−

h̃−
d


 , (2.61)

the chargino mass term of the Lagrangian can be written as

−1

2

[
(Ψ+)TMT

CΨ
− + (Ψ−)TMCΨ

+
]

+ h.c. , (2.62)

with the mass matrix

MC =


 M2

√
2MW sin β

√
2MW cosβ µ


 . (2.63)

As in the neutralino case, the mixing is due to the electroweak symmetry breaking. This ma-

trix can be diagonalized by a bi-unitary transformation. Since Ψ+ and Ψ− are independent

states, they can be separately rotated. Defining the mass eigenstates as

χ̃1

+

χ̃2
+


 = V


W̃

+

h̃+
u


 ,


χ̃1

−

χ̃2
−


 = U


W̃

−

h̃−
d


 , (2.64)

the diagonalized mass matrix is obtained by

Mχ̃± = U∗MCV
† . (2.65)

This yields the following chargino masses,

m2
χ̃±

1,2

=
1

2

(
M2

2 + µ2 + 2M2
W

)

∓ 1

2

√(
M2

2 + µ2 + 2M2
W

)2 − 4
(
µM2 −M2

W sin 2β
)2
.

(2.66)

Gluino

The gluino g̃ is the superpartner of the gluon and hence a color octet fermion. Due to its

unique color and spin quantum number it cannot mix with any other particle in the MSSM.

Its Majorana mass arises from the soft SUSY breaking gluino mass term,

mg̃ = M3 . (2.67)

In supersymmetric GUT theories the three gaugino breaking parameters are related to each

other since they have to unify at the GUT scale ΛGUT. Running the scale down to low

energies with help of the renormalization-group equation (RGE), this results in

M3 =
αs
α

sin2 θwM2 =
5

3

αs
α

cos2 θwM1 . (2.68)



3 Squark and Gluino Production at Hadron

Colliders

Having introduced the MSSM in the last chapter, we now want to discuss its phenomeno-

logical implications for collider physics. Up to now, no direct evidence for supersymmetric

particles (sparticles) has been found, resulting in lower mass bounds for these particles.

However, as motivated in Section 2.2.1, there are several indications that SUSY might be

realized at the TeV scale, and hence should become detectable at the Large Hadron Collider

(LHC) at CERN.

The LHC is a proton–proton collider with a design center of mass energy (c.m.) of 14 TeV

with two high luminosity experiments, ATLAS [85] and CMS [86], aiming to a peak luminosity

of L = 1034 cm−2s−1 = 100 pb−1s−1, and two low luminosity experiments, LHCb [87] and

ALICE [88]. ATLAS and CMS are multi-purpose experiments designed for the searches of new

particles, LHCb investigates CP-asymmetry in B-meson systems while ALICE looks towards

the quark–gluon plasma induced by heavy-ion collisions.

Unfortunately, a few weeks after the successful start-up in September 2008, the LHC was

forced to shut down again due to magnetic quenching of about 100 of the superconducting

solenoids. Since November 2009 the LHC is operating again. However, the center of mass

energy is halved to 7 TeV for the first 18 month to two years, after which it will be shut

down again to prepare for the 14 TeV collisions.

If SUSY is realized at the TeV scale, colored SUSY particles, i.e. squarks and gluinos, are

expected to be produced at a high rate, since it proceeds via the strong interaction. In

R-parity conserving models, like the MSSM, SUSY particles can only be produced in pairs.

Studies for the 14 TeV LHC, based on Monte Carlo simulations have shown that there is the

possibility of early SUSY discovery within 1 fb−1 of data in the inclusive jet plus missing

energy channel, provided that the SUSY particles are not too heavy (i.e. below 2 TeV) [89].

Precise theoretical predictions for squark and gluino pair production are crucial for the

analysis of the LHC data and extraction of the SUSY parameters.

Among the final-state squarks one distinguishes the production of light-flavor squarks,

i.e. squarks belonging to the first and second generation, and the third generation squarks,

the top-squark t̃ and the bottom-squark b̃. The reasons are the following: First, in contrast

to the light-flavor squarks, the decay of top- and bottom-squarks proceeds via the decay

into a bottom-quark. Hence these processes can be triggered via B-tagging. Second, in

many SUSY models, e.g. mSUGRA, when running the common parameters from the high

scale down to the TeV scale, the third generation Yukawa-couplings have to be taken into

account in the RGE running, which drives the masses of the third generation squarks to a

lower value. Further, the left-right mixing is proportional to the Yukawa coupling, which

27
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implies a large mass splitting for the third generation squarks. Hence in many models one

of the top-squarks is the lightest squark.

Since the light-flavor squark mass-eigenstates are in a good approximation given by their

flavor eigenstates, their states will be denoted as q̃L and q̃R for the left- and right handed

squarks, respectively. In contrast top- and bottom-squarks will be labeled as t̃α and b̃α,

respectively, with α = 1, 2 denoting the mass eigenstates.

3.1 Experimental Searches

The negative search results for SUSY particles leads to lower mass bounds on the SUSY

spectrum by comparing theoretical predictions with experimental observations. These lower

mass bounds are usually defined at the 95% confidence level (c.l.). Obviously, the so de-

rived exclusion bounds usually depend on the underlying parameter space. Due to the huge

parameter space in the MSSM where the SUSY breaking is parametrized by more than hun-

dred parameters, a scan through all these parameters is not possible. Even when assuming

a breaking mechanism, where the total spectrum can be derived by a few parameters, a

sampling of these parameters is beyond present capabilities for phenomenological studies,

especially when it comes to simulating experimental signatures within detector simulation.

Therefore one defines benchmark scenarios such as the snowmass points and slopes (SPS) [90]

which exhibit specific characteristics of the MSSM. Such benchmark points are then used for

the analysis or as starting point of a one- or two-dimensional analysis.

In the following we will constrain our discussion to the R-parity conserving MSSM. The

expected signal for squark and gluino production is characterized by the presence of multiple

jets of hadrons from their cascade decays and large missing transverse energy /ET from the

presence of two LSPs in the final state.

3.1.1 Light-Flavor Squarks

The search strategy and mass reconstruction for the various SUSY particles are described in

e.g. [91] and references therein. Since the LSP will escape detection, it is not straightforward

to reconstruct SUSY events. A possible approach is to use kinematic edges of distributions

[92]. However, the search strategies are strongly model dependent. For example, in a

scenario with squark masses mq̃ significantly larger than the gluino mass mg̃, at least four

jets in the final state are expected, while for mg̃ > mq̃ dijet configurations dominate. Further

the decay chains of light-flavor squarks often depend on its chirality. For example, in the

SPA1a benchmark point the second neutralino χ̃0
2 is wino like while the first (i.e. the LSP)

χ̃0
1 is bino like. Consequently, while a right handed squark decays directly into the LSP

and a quark, a left handed squark can decay into the LSP via a decay chain with the χ̃0
2 as

intermediate state,

q̃R → q χ̃0
1 , (3.1a)

q̃L → χ̃0
2 q → q l̃ l → q l+ l− χ̃0

1 , (3.1b)
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Figure 3.1: Exclusion plane at 95% c.l. as a function of squark and gluino masses by direct searches
in the mSUGRA framework. Results from previous experiments are included. The regions where no
mSUGRA solution is possible are black shaded. The referred “squark mass” is the average mass of
all squarks considered in the analysis. DØ (left plot): All squarks other than stops are considered.
The red shaded region shows the most conservative exclusion bound, which is given by the red line
combining with the expected uncertainties, shown by the yellow region [93]. CDF (right plot): Stop
pair production processes are not considered and the contribution from hard processes involving
sbottom production is not included in the analysis. The red solid line shows the observed upper
mass limit including all uncertainties [94].

making left- and right-handed squarks distinguishable due to the two extra leptons in the

final state.

The most stringent bounds for light-flavor squark and gluino masses are obtained from the

DØ and CDF collaboration [93,94] as a result on an inclusive search for squarks and gluinos

in proton–anti-proton collisions at the Tevatron at a c.m. energy of
√
S = 1.96 TeV in events

with large /ET and multiple jets in the final state, based on 2 fb−1 of CDF Run II data and

2.1 fb−1 of DØ data, respectively. The analysis was performed in both cases within mSUGRA

scenarios fixing the high scale parameters A0, tan β, and sign(µ) and varying M0 and M1/2

which results in a scan over the squark and gluino masses. The analysis performed by the

DØ collaboration was done for A0 = 0, tan β = 3, and sign(µ) < 0, and the one performed

by CDF is done in the same region but for tan β = 5. The exclusion plane as a function of

the squark and gluino masses derived by both experiments are shown in Figure 3.1. The

squark and gluino lower mass bounds from DØ (CDF) are given by mq̃ > 392 GeV (392 GeV)

and mg̃ > 327 GeV (340 GeV). Taking theoretical uncertainties into account by allowing

for a factor of two in the choice of factorization and renormalization scale and considering

uncertainties in the parton distribution functions (PDFs), these lower mass bounds are

reduced to mq̃ > 379 GeV and mg̃ > 308 GeV. This points out the importance of accurate

theoretical predictions for precise experimental analysis.
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Figure 3.2: Exclusion plane at the 95% c.l. as a function of sbottom and neutralino mass. The
observed and expected upper limits from the new DØ [97] (left) and CDF [98] (right) analysis are
compared to the previous results from DØ and CDF experiments, and from LEP experiments with
squark mixing angle θb̃ = 0. Due to the much larger data set used in the DØ analysis, higher
exclusion bounds are obtained.

3.1.2 Bottom-Squarks

Since the bottom-squark sector is connected to the top-squark sector, often a combined

analysis is performed, with a stop and a sbottom in the final state. Even though SUSY

particles have to be pair-produced, a mixed stop–sbottom final state can occur via W -boson

production or via gluino-pair production and subsequent decay into a stop and a sbottom,

if kinematically allowed. The relevant decay modes, which in general have to be considered

are

b̃1 → b χ̃0
j (→ b l+ l− χ̃0

1) , (3.2a)

b̃i → W t̃1 → bW χ̃±
j , (3.2b)

b̃i → t χ̃±
j , (3.2c)

t̃1 → t χ̃0
j (→ b l+ l− χ̃0

1) , (3.2d)

t̃1 → b χ̃±
j , (3.2e)

where the subsequent chargino decay is not written explicitly. Depending on the decay

chain, different strategies are used for the analysis. The decay of the lighter bottom-squark

b̃1 is often studied through the decay mode (3.2a). The analysis used is similar to the

one used for the light-flavor squarks, cf. (3.1). Another analysis method is proposed in

e.g. Refs. [95, 96], by measuring the edge position of the invariant mass distribution of the

final-state top- and bottom-quarks, mtb, coming from decay modes (3.2b) and (3.2c). As

for the light-flavor squarks, the most stringent bounds are obtained from the DØ and CDF

collaboration [97–99]. The expected signal for direct sbottom production is characterized
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by the presence of two energetic jets from the hadronization of the bottom quarks and large

missing transverse energy /ET . The analysis makes use of b-tagging, based on the presence

of a displaced vertex due to the decay of a b-hadron inside the jet. Special kinematical

cuts on the pseudo-rapidity and transverse energy of the leading jet are required. The

analysis is based on 2.65 fb−1 of CDF Run II data and 5.1 fb−1 of DØ data, respectively,

collected at the
√
S = 1.96 TeV Tevatron. In contrast to light-flavor squark searches, the

analysis is not restricted to a specific mSUGRA model. It is done in a generic MSSM with

R-parity conservation assuming a mass hierarchy such that the sbottom decays exclusively

as b̃ → b χ̃0
1, i.e. corresponding to (3.2a). The exclusion planes as a function of the sbottom

mass mb̃ and LSP mass χ̃0
1 derived by DØ and CDF are shown in Figure 3.2. The sbottom

lower mass bound strongly depends on the LSP mass. For mχ̃0

1

< 70 GeV, sbottom masses

up to 240 GeV (230 GeV) are excluded by the DØ (CDF) experiment. For a heavier LSP,

these bounds are not so stringent. For mχ̃0

1

& 110 GeV (mχ̃0

1

& 95 GeV) the only constraint

on the sbottom mass is given by the requirement of being heavier than its decay products,

mb̃ > mχ̃0

1

+mb.

3.1.3 Prospects for the LHC

By using indirect experimental and cosmological information, the likely range of the param-

eters of the mSUGRA scenario are estimated using a Markov-chain Monte Carlo (MCMC)

technique to sample the parameter space [100]. Most of the constraints on new physics

beyond the SM are negative, in the sense that the data is in agreement with the SM pre-

dictions, and hence set lower limits on SUSY particles. However, the anomalous magnetic

moment of the muon (g−2)µ that differs by over three standard deviations from the best SM

calculations based on e+e− collider data [44–50], and the cold matter density ΩCMD [101]

which has no origin in the SM, may be used to set upper limits on the possible masses of

supersymmetric particles. To be consistent with current precision data, any such analysis

should also take into account the constraints imposed by electroweak precision observables

(EWPO) and B-physics observables (BPO) such as the branching ratio b → sγ. The so

achieved likely range can then be compared with the expected discovery reach at the LHC.

The left plot of Figure 3.3 shows that the 95% c.l. area in the (m0,m1/2) plane of the

CMSSM (red area) lies largely within the region that could be explored with 1 fb−1 of

integrated LHC luminosity at 14 TeV, indicated by the 5σ discovery contours published by

the ATLAS and CMS collaboration [102, 103]. For the same data set, a same sign dilepton

signal could as well be visible in the 68% c.l. area. A parameter scan through the whole

MSSM parameter space is not possible for such a large amount of free parameters which

cannot be explored with the MCMC approach due to limited available CPU power. However,

one might wonder to what extend the conclusions are valid for more general scenarios. To

get an idea, a simple extension of the CMSSM is considered, in which the high scale soft

breaking parameter for the Higgs masses differ to those of the squarks and sleptons, the

so-called non-universal Higgs model 1 (NUHM1) [104]. The results of the scan including an

additional parameter mφ are shown on the right plot of Figure 3.3. The general sizes of the
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Figure 3.3: The 95% and 68% confidence level in the (m0,m1/2) plane of the CMSSM for tan β = 10
and A0 = 0 [100]. The dark shaded area are excluded due to a scalar tau LSP and the absence of
electroweak symmetry breaking. Left: The best fit point is indicated by a filled circle, and the 68%
(95%) c.l. contours from the fit are given by the blue (red) areas scanned over all tan β and A0

values. The 5σ discovery contours for various observables at ATLAS and CMS for 1 fb−1 of data as
well as the Higgs-boson discovery via sparticle decay for 2 fb−1 of data at CMS are shown. Right:
same as left plot, but the best fit point and the 68% (95%) c.l. contours from the fit are given for
the NUHM1 scenario.

68% and 95% c.l. regions are the same as in the CMSSM, though the best fit point and the

68% c.l. region is lowered a bit and the 95% c.l. region is enlarged in m1/2. Again, a large

(whole) range of the 95% (68%) c.l. area lies within the region that can be explored with

1 fb−1 of integrated LHC luminosity at 14 TeV.

In summary one can say that there are good prospects that the initial runs of the LHC

will determine the (non)-existence of many low energy SUSY models.

3.2 Theoretical Predictions

In order to obtain reliable exclusion bounds or to claim a discovery of new SUSY particles,

precise theoretical predictions for the production cross sections and kinematical distributions

are crucial. In the event of discovering SUSY, one would like to trace back the underlying

model by measuring the low energy breaking parameters and evolve them via RGE running

to a high scale. To achieve this, experimental as well as theoretical uncertainties have to

be as small as possible. In the following we will give an overview over the status of the

work that has been done in order to get precise predictions for the cross section at hadron

colliders.

When making predictions for hadronic collision, i.e. proton–proton (PP) collisions or

proton–anti-proton (PP) collisions, one makes use of the factorization theorem which states,

that the cross section can be written as a long distance part and a short distance part, and

is the basis of perturbative QCD [105]. The long distance part is then given by the parton

distribution function (PDF), that depends on the external hadron and the interacting parton.

The PDF requires experimental inputs, since it cannot be calculated from first principles
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Figure 3.4: Factorization of the hard process from the hadrons PA and PB. The hard process
leading to the final states f1 and f2 can be calculated in perturbation theory.

in perturbation theory. The short distant part, also called the hard scattering process, can

then be calculated in perturbation theory. Since the separation into a long distance part and

a short distance part is not unique, the separation requires the definition of a soft-hard scale

parameter, the factorization scale. The choice of this scale is to a large extend arbitrary

and is a source of theoretical uncertainties. The concept of factorization is schematically

depicted in Figure 3.4. A more detailed discussion of the parton model will be postponed

to Section 4.2.

3.2.1 QCD Contributions

The dominant production mechanism for squarks and gluinos is via the strong interaction.

Due to the large interest in squark and gluino production processes first theoretical cross

section predictions based on leading order (LO) calculations, which are of O(α2
s), were

already made in the early ‘80s [17]. The processes contributing at LO can be classified by

their final-state content:

g̃g̃ : Gluino–pair production proceeds at the partonic level via two initial-state gluons or

quark–anti-quark annihilation.

q̃g̃ : Squark–gluino production (and its charge-conjugated process) only take place via the

partonic process with a quark and a gluon in the initial state.

q̃q̃ : Squark–squark production proceeds via t- and u-channel exchange of a gluino, and is

only possible if the initial- and final-state flavors are identical. However, any combina-

tion of final-state flavors and chiralities are possible, i.e. ũiαũjβ, d̃iαd̃jβ, ũiαd̃jβ, with

i, j ∈ {1, 2} and α, β ∈ {L,R}.

q̃q̃∗: Squark–anti-squark is initiated at the partonic level via gluon fusion, quark–anti-quark

annihilation, and via t-channel gluino exchange in the case where the initial-state flavor

equals the final-state favor. Due to this last production channel, any combination of

final-state flavors and chiralities are possible at leading order.
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Figure 3.5: The relative yields of light-flavor squarks and gluinos at the 14 TeV LHC. The squark
masses are set to a common value mq̃. The ratio mq̃/mg̃ is chosen to be 0.8 (1.6) left (right) plot.
Renormalization and factorization scale are set to µ = mq̃ for squarks, µ = mg̃ for gluinos and
µ = (mq̃ +mg̃)/2 for squark–gluino pairs [18].

t̃t̃∗ : Stop–anti-stop production proceeds at LO in a similar way as q̃q̃∗ production. The

only exception is that the t-channel gluino exchange is absent, due to the vanishing

top-quark density inside the proton. Hence only diagonal t̃t̃∗ occurs at LO. Due to the

non-trivial mixing and the fact that top-squarks are experimentally distinguishable to

light-flavor squarks this process has to be examined separately.

b̃b̃∗ : Sbottom–anti-sbottom production has the same production channels as q̃q̃∗ production.

In former analysis bottom-squark production was treated for simplicity inclusively with

light-flavor squark production, neglecting left-right mixing. However, in many scenar-

ios, neglecting flavor mixing is not a good approximation. In addition, bottom-squarks

are, as the top-squarks, experimentally distinguishable from light-flavor squarks.

The production of non-diagonal top-squark pairs and mixed stop–sbottom pairs is not pos-

sible at lowest order in QCD.

One might wonder, which of these processes contributing at LO QCD are most relevant,

i.e. have the highest cross section. This question cannot be answered in a general way,

since the production cross sections strongly depends on the sparticle masses (i.e. on the

underlying parameter space), on the available c.m. energy and whether PP or PP collisions

are considered. Further, the production of gluinos differs from squark production, due to

the Majorana nature of the gluino and being in a color octet representation. One also has

to consider that light-flavor squarks have a high multiplicity which considerably alters the

q̃q̃ production cross section. And as already mentioned, in many models one of the stops is

the lightest colored sparticle, relatively enhancing its production cross section. However, to

get an idea how the relative cross section behaves when varying the masses, in Figure 3.5

one finds the relative yields for g̃g̃, q̃g̃, q̃q̃∗, and q̃q̃ production at the 14 TeV LHC for two
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different ratios of mq̃/mg̃ [18]. In this scan, all light-flavor masses, including the sbottom

mass, are set to a common value mq̃. One can see that in the case of the squark being lighter

than the gluino (left plot) the production of q̃g̃ is most significant if the squarks have low

masses (in the example below 1200 GeV), while for heavier squark masses q̃q̃ production

dominates. g̃g̃ production becomes almost negligible for high squark masses. This behavior

changes completely when considering a scenario where the gluino is lighter than the squark.

Now g̃g̃ and q̃g̃ production are most important while q̃q̃ and especially q̃q̃∗ only have a small

production yield.

Since the leading order QCD cross section suffers from large renormalization and factoriza-

tion scale uncertainties, higher-order corrections have to be taken into account. The next-to

leading order (NLO) QCD cross sections, which are of O(α3
s), have been computed more

than ten years ago in [18,19] and are publicly available in the code PROSPINO [106]. It was

shown that the scale uncertainties are considerably reduced by taking into account the NLO

corrections. While at LO the cross section increases by about 35% when changing the scale

from µ = m to µ = m/2, at NLO the variation is only 5 − 10%. Here m is the average mass

of the produced particles. At NLO the dependence on the factorization scale is very mild

and the residual scale dependence is dominated by αs. To quantitatively compare the LO

and NLO cross section one defines the ratio

K = σNLO/σLO, (3.3)

usually referred to as the K-factor. Obviously, the K-factor depends on the scale chosen.

For the scale µ ∼ (0.4 to 0.5)m one finds a ratio of K = 1, i.e. LO and NLO cross sections

coincide. The K-factors at the scale µ = m for the various final states for different squark

and gluino masses are shown in Figure 3.6. One finds that the K-factor varies in a wide

range, being biggest for g̃g̃ production going up to K = 2 for heavy gluinos while for q̃q̃ the

NLO contribution rises the LO cross section by only a few percent up to 20%, depending on

the precise squark/gluino mass ratio.

The origin of such large higher-order QCD corrections in hadro-production of heavy col-

ored particles is well known, since it is related to universal QCD dynamics. As a typical

pattern so-called Sudakov logarithms show up which originate from soft gluon emission in

regions of phase space near the production threshold. These logarithms depend on the

particle velocity β2 = (1 − 4m2/ŝ) and hence become large for c.m. energies
√
ŝ near the

threshold, ŝ ≃ 4m2. Therefore, in order to further reduce remaining scale uncertainties,

the resummation of soft gluon emission from squark and gluino hadro-production was per-

formed at next-to-leading-logarithmic (NLL) accuracy [20–23], for all processes contributing

at LO QCD. The relative NLL K-factor is shown in Figure 3.7 for various production pro-

cesses. At the LHC, the scale uncertainty is reduced in the case of g̃g̃ production, while

the improvement for the other processes is quite mild. For squark and gluino masses below

1 TeV the NLO cross section increases due to NLL resummation by 1 − 5% for g̃g̃, q̃g̃ and

q̃q̃∗ production and is less than 1% in the case of q̃q̃, t̃t̃ and b̃b̃ production. For very heavy

squarks and gluinos i.e. masses between 2000 and 3000 TeV the NLL resummation gets more

pronounced and can become up to 35% (18%) of the NLO cross section in the case of g̃g̃ (q̃g̃)
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Figure 3.6: The K-factors for the 14 TeV LHC at the scale µ = m [18].

production. Such a behavior is expected due to the large Sudakov logarithms at threshold.

A second approach to reduce remaining scale uncertainties was done by taking approximate

next-to-next-to-leading order (NNLO) QCD effect into account [24]. In practice, Sudakov

resummation was employed to generate approximate NNLO QCD predictions which are ac-

curate in all log β-enhanced terms at two loops. Moreover, the complete two-loop Coulomb

corrections as well as the exact dependence on the renormalization and factorization scale

are included. However, this was only performed for q̃q̃∗ production. These results are

compatible to the ones obtained by NLL resummation.

For completeness one should mention that the strong production of non-diagonal stop-

and sbottom-pairs, t̃αt̃β and b̃αb̃β for (α 6= β), require at least one-loop diagrams and are

studied in [107, 108]. These contributions are of O(α4
s) and therefore suppressed via the

coupling constant and powers of inverse squark masses stemming from the loop integral.

Additionally these contributions suffer from large scale uncertainties induced by the scale

choice of αs.
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Figure 3.7: The relative NLL K-factor KNLL − 1 = σNLL+NLO/σNLO − 1 for squark and gluino
pair-production processes at the Tevatron as a function of the average sparticle mass m. Shown are
results for various mass ratios r = mg̃/mq̃ [22]. σNLL+NLO denotes the sum of NLL-resummed cross
section matched with the complete NLO result.

3.2.2 Electroweak Contributions

In addition to the production of squarks and gluinos via the strong interaction, also elec-

troweak (EW) production mechanisms are possible. For squark–(anti-)squark final states,

EW contributions are already present at tree-level, and due to the chiral nature of the EW

couplings also non-diagonal squark–pairs can be produced, in contrast to squark-pair pro-

duction at LO, O(α2
s). Even though EW contributions are usually expected to be small due

to the roughly ten times smaller EW coupling constant α, these contributions can have a

relatively high impact on the total cross section. In particular processes with non-vanishing

QCD–EW interference terms at tree-level, which are of O(αsα), can get a significant pro-

duction yield.

EW contributions to squark production was first considered in [107], focusing on flavor

observables. A consistent treatment of all light-flavor squark-pair processes contributing at

LO EW is given in [25].1 The size of EW contributions strongly depends on the chirality

1However, the analytic results of [25] contain some incorrect color factors, giving wrong results for the

O(α2) contribution. For q̃q̃ production the impact of these wrong factors is rather small, while for q̃q̃∗
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of the produced squarks. LO EW contributions were found to be quite small in the case

of squark production with at least one right-handed squark. However, considering only

left-handed squark production, one finds corrections to the LO cross section that amount

to 10% to 20% for typical mSUGRA scenarios. The main part contributing to the EW

cross section, is given by the non-vanishing interference terms of O(αsα). Investigating

left-handed squark production exclusively is justified by the fact that squarks of different

chirality can be distinguished experimentally.

EW contributions to the production of third-generation squarks have further been con-

sidered by [108]. Besides the loop-induced contributions for non-diagonal stop/sbottom

production, also Higgs-boson exchange at tree level owing to initial-state bottom-quarks

is taken into account. However, contributions due to Higgs-boson exchange only become

significant for resonant intermediate Higgs bosons or for a negative µ parameter, eq. (2.26c),

which is disfavored by the anomalous magnetic moment of the muon, (g − 2)µ.

Finally, one also has to consider the electroweak contribution at NLO EW, O(α2
sα), which

is formally of the same order as the NNLO and NLL-resummed QCD correction discussed last

section and hence are expected to have contributions of the same size. NLO EW contributions

have in general a non-trivial structure, since they can arise via various interference contribu-

tions, as well for the one-loop contribution as for the real emission matrix elements. Since the

EW interaction is not flavor diagonal and distinguishes between different chiralities, many

production channels have to be treated separately. This leads to effects at NLO EW which

strongly depend on the initial- and final-state particle flavor and chirality. The NLO EW

contributions for gluino-pair production, diagonal squark–anti-squark production, diagonal

stop–anti-stop production and squark–gluino production have been investigated in [26–29].

Two of the remaining processes, namely squark–squark and sbottom–anti-sbottom produc-

tion are investigated within this thesis and partly published in [30–32]. As expected the

analysis shows that the NLO EW contributions are competitive with QCD corrections beyond

NLO. Interestingly, NLO EW contributions often tend to be more important for processes

where the impact of NLO QCD corrections is rather small and less important for processes

that get huge QCD corrections. For example, on the one hand, g̃g̃ production has a NLO

K-factor of 1.5 − 2, cf. Figure 3.6, and at NLL it gets corrections of 5 − 35%, depending on

the gluino mass, while the NLO EW contributions are completely negligible. On the other

hand, q̃q̃ production gets only mild corrections at NLO with a K-factor of 1.1 − 1.2 and

NLL corrections of less than 1% for squark masses below 1 TeV, while the EW contribu-

tions up to O(α2
sα) can be as high as 20%. Moreover, for processes with huge tree-level

contributions originating from QCD–EW interferences, NLO EW contributions are needed to

reduce the scale uncertainties and make the electroweak prediction reliable. Further details

on this topic will be given in the following sections, when the production of squark pairs is

considered.

A summary of the status of higher-order corrections for the various squark and gluino

production processes, including references, is given in Table 3.1. As one can see from the

production the EW contribution to the cross section even changes sign.
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α2
s α3

s NLL NNLO LO(α4
s) αsα α2 α2

sα
α
,β

∈
{1
,2

}
g̃ g̃ [17] [18] [20–22] × − − − [29]

g̃ q̃α [17] [18] [22] × − − − [28]

q̃α q̃
∗
α [17] [18] [20–22] [24] − [25] [25] [27]

b̃α b̃
∗
α [17] [18] [23] × − [108] [108] [32]

t̃α t̃
∗
α [17] [19] [23] × − − [108] [26]

q̃α q̃
′
β [17] [18] [22] × − [25] [25] [30]

t̃α b̃
(∗)
β − − − − − − [107,108] −

q α
6=
q′ β q̃α q̃

′∗
β [17] [18] [23] × − [25] [25] ×

b̃α b̃
(∗)
β [17] [18] − − [107,108] − [107,108] −

t̃α t̃
(∗)
β − − − − [19, 107,108] − [107,108] −

Table 3.1: Summary of all squark and gluino production processes and status of higher-order
corrections. Given are the corresponding references. A “−” indicates that this process does not
contribute at the corresponding order or its contribution has been estimated as negligible, while “×”
indicates that it has not been calculated yet. NLL refers to next-to leading log resummation as
described in the text and NNLO are approximate next-to-next-to-leading order results. In contrast
LO(α4

s) only refers to processes that are LO one-loop induced.

last column, the processes presented in this dissertation, i.e. the NLO EW contributions to

squark–squark production and to sbottom–anti-sbottom production, provide an important

contribution to the knowledge of all relevant EW contributions.





4 Colored SUSY Particle Production at

Electroweak NLO

The NLO EW contributions to colored particle production are given by the radiative cor-

rections of O(α2
sα). At this order in perturbation theory, one has to take one-loop virtual

corrections into account, as well as real photon, gluon, and quark radiation. When calcu-

lating higher-order corrections, one has to deal with ultraviolet (UV) divergences as well

as infrared (IR) and collinear singularities. The UV divergences arise from very short dis-

tance physics, i.e. infinite momentum configurations. For renormalizable theories they can

consistently be absorbed by redefining the fundamental parameters of the theory, usually

referred to as renormalization. The IR singularities originate from the radiation or exchange

of massless particles with arbitrary small energy, while collinear singularities arise from the

splitting of a massless particle into two massless (virtual or real) collinear particles. However,

for inclusive enough observables, these so called mass singularities cancel order-by-order in

perturbation theory, i.e. after combining virtual and real contributions.

In this chapter, the technical details needed in order to perform a NLO EW calculation

are given. At first, the basic principles of particle scattering are reviewed in Section 4.1.

In Section 4.2 it is shown how hadronic cross sections can be calculated via factorization

of long- and short-distance physics. Afterwards, the technical issues needed in order to

obtain the (finite) cross section at O(α2
sα) to colored SUSY particle production are given.

In Section 4.3 and 4.4 the regularization and renormalization procedure used in this work are

presented. The treatment of mass singularities due to massless photons, gluons, and quarks

is discussed in Section 4.5. Finally, the parametrization for the numerical integration for

the four and five particle phase-space is given in Section 4.6. It is shown how the final-state

kinematics can be parametrized in order to take the singular behavior into account.

4.1 Preliminaries

In this section, the basic principles needed for calculating cross sections at high-energy

colliders are summarized and some useful notation used throughout this work is introduced.

Further details can be found in standard textbooks, e.g. in [109–112].

Generally, cross sections are obtained from the matrix element of the scattering matrix

also called the S matrix, which transforms incoming states into outgoing states. The formal

definition of S is given by the infinite-time limit of the time-evolution operator T in the

interaction picture and is related to the interaction Lagrangian LI via the formal power

series

S = T exp
[
i
∫

d4xLI
]
. (4.1)

41
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The probability for an incoming state |i〉 to evolve into an outgoing state |f〉 is given by

the absolute square of the S matrix element 〈f |S|i〉. This definition also contains the trivial

case of no scattering at all. Hence, for in- and outgoing momentum eigenstates |i〉 and |f〉
with momenta pi and pf one defines the invariant matrix element Mfi by

〈f |S|i〉 = 〈f |i〉 + i(2π)4δ(4)(pi − pf )Mfi . (4.2)

The delta function reflects momentum conservation of the scattering processes. The cross

section σ is defined as the number of scattering events divided by the flux of the incoming

particles. For two incoming particles with momenta p1 and p2 and masses m1 and m2

scattering into n−2 particles with momenta p3, . . . , pn, the differential cross section is given

by the squared invariant matrix element divided by the flux of the incoming particles and

multiplied with the phase-space density of the outgoing particles,

dσ =
(2π)4δ(4)(p1 + p2 −∑n

i=3 pi)

4
√

(p1p2)2 −m2
1m

2
2

|Mfi|2
d3p3

(2π)32E3
· · · d3pn

(2π)32En
. (4.3)

In the case of two final-state particles, it is common to parameterize the kinematics in terms

of the Mandelstam variables,

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (4.4)

In terms of these variables, the phase-space integration takes a simple form and the differ-

ential cross section can be written as

dσ = |Mfi|2
dt

16πs2
. (4.5)

In many cases, initial and final states are degenerate, and one has to average over the initial-

state quantum numbers and sum over the final-state quantum numbers. In practice, these

quantum numbers are often given by color and spin, since it is not possible to measure

the color quantum number of colored particles, and one often also is not interested in the

precise spin-state of the particles. In this case, the differential cross section is given in terms

of the squared matrix element, averaged over initial-state spin and color and summed over

final-state spin and color,

dσ =
∑

|Mfi|2
dt

16πs2
. (4.6)

In order to calculate cross sections for the scattering of elementary particles, we use the

framework of perturbation theory. In this approach, the gauge couplings are used as order-

ing parameters of a perturbative expansion. Matrix elements, and hence cross sections, can

then be calculated order-by-order in the gauge couplings. In particular in the SM and the

MSSM, the ordering parameters are the strong coupling constant αs and the fine-structure

constant α of the electromagnetic interaction. In the following we will denote matrix ele-

ments calculated at a given order αasα
b by Ma, b. In the same way σa, b denotes the cross

section at order αasα
b.
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Figure 4.1: Scattering of partons inside a hadron. q is the momentum transfer and p the momentum
of the hadron.

4.2 Hadronic Cross Section, Factorization, and the PDFs

In the definition of the invariant matrix element (4.2), the initial and final states are asymp-

totic states. However, when considering processes with SU(3)C color charged particles

in the initial and/or final state, no such asymptotic states for elementary particles can

be formulated due to color confinement of QCD. In order to make theoretical predictions at

hadron colliders, the cross section is factorized into a long-distance part and a short-distance

part [105], cf. Figure 3.4. The long-distance part contains the physics in the regime where

the coupling constant of QCD becomes strong and hence cannot be calculated in perturba-

tion theory. However, at short distances, i.e. high energies, the constituents of the hadrons

can approximately be described by free point-like particles, and the concepts of the parton

model can be applied [113,114]. The basic assumption of the naive parton model is that at

high energies the hadron acts like an ensemble of free massless particles, the partons. The

momentum of the hadron p is distributed over the parton momenta p̂i, with i labeling the

parton. The scattering is considered in the infinite-momentum frame in which the mass of

the hadron can be neglected. In this limit the hadron, and therefore also the partons, can

be regarded as moving at speed of light and the parton i carries the fraction ξi of the four-

momentum of the hadron, p̂µi = ξip
µ. Defining the kinematics of the scattering as depicted

in Figure 4.1, one finds that in the Bjorken limit, defined by Q2, ν → ∞ with x = Q2/(2ν)

fixed, the on-shell constraint for the outgoing parton in the infinite-momentum frame im-

plies that ξi = x. The cross section can then be calculated by the incoherent sum of the

parton–parton cross section σ̂ multiplied by the parton distribution function (PDF) fHi (x),

where fHi (x) is the probability density to find a parton i with momentum fraction x inside

the hadron H. The hadron–hadron cross section σ of hadron A and B is hence given by

summing over all partons ζi and integrating over all momentum fractions xi,

σ =
∑

ζ1,ζ2

∫ 1

0
dx1

∫ 1

0
dx2

σ̂ζ1,ζ2

1 + δζ1,ζ2

(
fAζ1

(x1, µ)fBζ2
(x2, µ) + fAζ1

(x2, µ)fBζ2
(x1, µ)

)
(4.7)

The PDFs contain the long-distance physics and hence cannot be calculated in perturbation

theory. However, these functions are universal and can be extracted from experiments like

deep inelastic lepton–hadron scattering. The key point for the extraction of the PDFs is that
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the double differential lepton–hadron cross section can be factorized into a leptonic and a

hadronic piece
dσ

dxdy
∝ LαβW

αβ , (4.8)

where the structure of the leptonic tensor Lαβ is completely determined by the EW interac-

tion and y = (p · q)/(k · p) with k being the momenta of the incoming lepton. The hadronic

tensor has the following Lorentz decomposition

Wαβ =

(
gαβ − qαqβ

q2

)
F1(x,Q2) +

(
pα +

1

2x
qα
)(

pβ +
1

2x
qβ
)

1

ν
F2(x,Q2) , (4.9)

with the structure functions F1 and F2. In the parton model, the structure function is

directly related to the PDF. Assuming photon exchange only, one finds for a spin-1/2 parton

of charge eq
F2 ≡ e2

q x q(x) . (4.10)

In the naive parton model the structure function and hence the PDFs scale, i.e. they de-

pend only on x and are independent of Q and the Callan–Gross relation F2 = 2xF1, a

characteristic of the spin-1/2 nature of the constituents, is recovered.

In the SM the partons are identified with the quarks and gluons. The quark and anti-

quark distribution functions, q(x) and q̄(x), can be extracted directly from the structure

function of deep-inelastic scattering experiments, whereas the gluon distribution function

g(x) is obtained by the condition that the hadron momentum equals the sum of the momenta

of the partons,
∑

q

∫ 1

0
dxx [q(x) + q̄(x)] +

∫ 1

0
dxx g(x) = 1 . (4.11)

In contrast to the naive parton model above, when applying it to QCD one finds that the

scaling is broken by logarithms of Q2. These come from the fact that a quark can emit a

gluon and acquire large transverse momentum kT with probability proportional to αsdk2
T /k

2
T

at large k2
T , contradicting the basic assumption of the parton model that p̂ ∝ p. This

integral breaks up at the kinematical limit k2
T ∼ Q2 and gives a contribution proportional

to αs logQ2 to the quark distribution function. Including higher-order contributions to the

structure function F2, in particular gluon radiation off a quark leg, one finds the following

expression

F2(x,Q2) = x
∑

q,q̄

e2
q

[
q0(x) +

αs
2π

∫ 1

x

dξ

ξ
q0(ξ)

{
P

(
x

ξ

)
log

Q2

κ2
+ C

(
x

ξ

)}
+ . . .

]
. (4.12)

P is known as the splitting function and C is a rational function. When calculating F2 one

has to regularize the long-distance physics that are determined by non-perturbative effects.

They arise for k2
T → 0 and are called collinear singularities. In the expression above this was

achieved by introducing a small momentum cut-off κ2. The “bare” distribution q0 in (4.12)

is not a measurable quantity. Absorbing the collinear singularities into the bare distribution
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at a factorization scale µ, one can define a renormalized distribution q(x, µ) by

q(x, µ2) = q0(x) +
αs
2π

∫ 1

x

dξ

ξ
q0(ξ)

{
P

(
x

ξ

)
log

µ2

κ2
+ C ′

(
x

ξ

)}
+ . . . . (4.13)

F2(x,Q2) can be written in terms of (4.13). For C ′ = C it is given by

F2(x,Q2) = x
∑

q,q̄

e2
q

[
q(x, µ2) +

αs
2π

∫ 1

x

dξ

ξ
q(ξ, µ2)

{
P

(
x

ξ

)
log

Q2

µ2

}
+ . . .

]
. (4.14)

As before, the distributions q(x, µ2) cannot be calculated in perturbation theory by first

principles. However, it can be determined from structure-function data at any particular

scale, since

F2(x,Q2) = x
∑

q,q̄

e2
q q(x,Q

2) . (4.15)

The factorization provides a prescription how to deal with the collinear singularities, however

there is an arbitrariness in how the finite contributions C ′ of (4.13) are treated. How much

of the finite contribution is factored out defines the “factorization scheme”. In (4.14) all of

the finite contribution was absorbed into the quark distribution, corresponding to the DIS

scheme. A more common choice is the MS scheme, in which in addition to the divergent

piece regularized in dimensional regularization, only a universal contribution, log(4π) − γE
is absorbed.1 It is important that once a scheme has been fixed, it has to be used in all

cross-section calculations.

The quark distribution function gets also a contribution from the splitting of a gluon

in a quark–anti-quark pair. In the same way, the gluon distribution function gets QCD

corrections from gluon–gluon splitting and gluon radiation off a quark leg. After extracting

the distribution functions at a given scale, one can use the fact that the structure function

(4.14) has to be independent of the factorization scale µ to determine the scale dependence.

These differential equations, determining the scale dependence of the distribution functions

are called the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations [115–118].

The DGLAP equations have been calculated up to NNLO QCD [119–125]. At LO QCD they

are given by

µ2 ∂

∂µ2
qi(x, µ

2) =
αs
2π

∫ 1

x

dz

z

(
Pqq(z) qi(

x

z
, µ2) + Pqg(z) g(

x

z
, µ2)

)
, (4.16a)

µ2 ∂

∂µ2
g(x, µ2) =

αs
2π

∫ 1

x

dz

z

(
Pqg(z)

∑

j

qj(
x

z
, µ2) + Pgg(z) g(

x

z
, µ2)

)
, (4.16b)

1Further details on dimensional regularization and the MS scheme are postponed to Section 4.3 f.
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with the splitting functions

Pqq(z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
, (4.17a)

Pqg(z) =
1

2

[
z2 + (1 − z)2

]
, (4.17b)

Pgq(z) = CF

[
1 + (1 − z)2

z

]
, (4.17c)

Pgg(z) = 2CA

[
z

(1 − z)+
+

(1 − z)(1 + z2)

z
+ δ(1 − z)

11CA − 2nf
6

]
. (4.17d)

The [. . .]+ description is defined such that the integral with any sufficiently smooth function

g is given by ∫ 1

0
dx [f(x)]+ g(x) =

∫ 1

0
dxf(x) [g(x) − g(1)] . (4.18)

When considering EW contributions at hadron colliders, large logarithmic corrections pro-

portional to α log(Q2/m2) arise from photons emitted off incoming quark lines, the analogue

of the α log(Q2/m2
e) initial-state corrections in e+e− collisions. Taking these explicitly into

account would require a precise knowledge of the incoming quark masses. Furthermore,

due to the high Q2 values probed at hadron colliders, one should in principle resum these

logarithms. Instead of doing so, one can also use the fact that the factorization theorem

of QCD also applies in QED and absorb such photon-induced collinear singularities into the

PDFs. In doing so, first of all, the normal DGLAP evolution equations are slightly modified,

since the photon carries away some of the quark momenta. This leads to isospin violation

since up- and down-type quarks evolve differently. Second, a “photon distribution” of the

hadron γ(x, µ2) is generated. This gives rise to new production channels, with photons in

the initial state. Taking QED evolution of the partons into account, the DGLAP equations

(4.16) get the following O(α) contributions,

µ2 ∂

∂µ2
qi(x, µ

2) =
α

2π

∫ 1

x

dz

z

(
P̃qq(z) e

2
i qi(

x

z
, µ2) + Pqγ(z) e2

i γ(
x

z
, µ2)

)
, (4.19a)

µ2 ∂

∂µ2
γ(x, µ2) =

α

2π

∫ 1

x

dz

z

(
Pγq(z)

∑

j

e2
jqj(

x

z
, µ2) + Pγγ(y)γ(

x

z
, µ2)

)
, (4.19b)

where,
P̃qq = C−1

F Pqq , Pγq = C−1
F Pgq ,

Pqγ = 2Pqg , Pγγ = −2

3

∑

i

e2
i δ(1 − y) .

(4.20)

Currently, the only PDF set that consistently determines a new set of QED corrected par-

tons from an overall best fit to data is the MRST2004QED [126]. The effect on the quark

distribution was found to be small when comparing with NNLO QCD contributions on the

distribution. For obvious reasons, the gluon evolution is largely unaffected by the QED

corrections. Figure 4.2 shows the parton distribution function of the proton calculated at
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sea quarksgdu
� = 5 GeVMRST2004QED

x
xf(x;�2 )

10.10.010.001

1001010.10.010.00110�4 sea quarksgdu
� = 500 GeVMRST2004QED

x
xf(x;�2 )

10.10.010.001

1001010.10.010.00110�4
Figure 4.2: Parton distribution functions of the proton for the MRSTQED set at µ = 5 GeV
(left) and µ = 500 GeV (right). The sea-quark distributions correspond to ū, d̄, s, c, b, with the b
distribution being the smallest. The photon distribution tends to a significant yield for low values
of x. The difference between the two plots is due to scaling violations, calculated at NLO QCD +
LO QED.

NLO QCD + LO QED, resulting from the global fit performed by the MRST collaboration

for two different factorization scales. For x < 0.1 one finds mainly gluons inside the proton,

while for x > 0.1 the up- and down-quarks have the highest yield. The sea quarks and

the photon distribution become relatively more important for low values of x and at high

factorization scales. The bottom distribution, which is the sea quark with the smallest yield,

is strongly suppressed at µ = 5 GeV, while for µ = 500 GeV it gets close to the other sea

quarks. This is not surprising, since the lower scale is of the scale of the bottom-quark mass

itself, while for high scales µ ≫ mb differences due to the masses become small.

For heavy final-state particles, the production threshold has to be taken into account. It

is convenient to define (τ, x) = (x1x2, x1). With this definition, the partonic c.m. energy ŝ

is related to the hadronic c.m. energy via

ŝ = τ S . (4.21)

For two massive particles in the final state with masses m3 and m4, the production threshold

is given by τ = τ0 = (m3 + m4)2/S. Putting all together, the hadronic cross section at

O(αasα
b), is given by

σa,b(S) =
∑

ξiξj

∫ 1

τ0

dτ
dLξiξj

dτ
σ̂a,bξi,ξj

(ŝ) , (4.22)
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with the parton luminosity

dLξiξj

dτ
=

1

1 + δξiξj

∫ 1

τ

dx

x

[
fAξi

(
τ

x
, µ

)
fBξj

(x, µ) + fAξj
(x, µ) fBξi

(
τ

x
, µ

)]
. (4.23)

fAξi
denotes the parton distribution function for a parton ξi in hadron A. One has to take

into account that a parton ξi with momentum fraction x can evolve from hadron A as well

as from hadron B. The Kronecker-delta in the denominator prevents double counting for

the case ξi = ξj .

The LO and NLO QCD cross sections described in Section 3.2 are in this nomenclature

given by σ2,0 and σ3,0, respectively. The LO EW contributions are labeled by σ0,2 and σ1,1,

the latter being the QCD–EW interference contribution, while the NLO EW contributions

are given by σ2,1.

4.3 Regularization

In order to consistently treat UV divergences and IR singularities that appear in the loop

momenta and phase-space integration, one has to define a regularization procedure. These

are purely mathematical prescriptions with no physical meaning. The singular or diver-

gent parts manifest by some parameter introduced by the prescription and are recovered in

specific limits of these parameters. This allows for an analytical treatment of the UV diver-

gences and IR singularities. The former can then be consistently removed by the concept of

renormalization (cf. Section 4.4), while the latter cancel in sufficient inclusive observables (cf.

Section 4.5). However, care has to be taken in order to obtain a regularized amplitude that

respects all the underlying symmetries of the theory. This can be achieved either by taking

a regularization scheme that preserves the symmetry relation by itself, or if the symmetry is

broken, by adding a (unique) symmetry restoring contribution to the amplitude. The basic

symmetry that has to hold in supersymmetric theories are the Slavnov–Taylor identities,

which incorporate the gauge symmetries and supersymmetry [127,128]. The most naive at-

tempt to regularize the divergent integrals is imposing a cutoff on the momenta. However,

this already spoils QED gauge invariance. A more sophisticated method is the Pauli–Villars

regularization prescription, introducing some fictitious fields whose masses regularize the

divergent integral. However, several sets of fields would be necessary and this regularization

method also potentially spoils gauge invariance of non-Abelian gauge symmetries. The reg-

ularization procedures applied in this work are dimensional regularization and dimensional

reduction in order to regularize the UV divergences. Soft and collinear singularities are

regularized via mass regularization, i.e. giving a fictitious mass to the massless particles.

Dimensional Regularization

In dimensional regualrization (DREG) the calculations are performed in D instead of 4

dimensions [35,129]. A precise definition of dimensional regularization can be found in [130].

It is based on the observation that UV divergent loop diagrams converge for small enough
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dimension D. The analytic structure of the loop integrals such as linearity, translational,

and rotational invariance allows for analytic continuation to arbitrary complex values of

D. In DREG spacetime coordinates, momenta, γ-matrices, and the quantum fields are

treated in D dimensions. This D-dimensional space is only realized formally as an infinite

dimensional vector space on which one defines a metric operator with all desired properties

that resemble D-dimensional behavior. Care has to be taken when generalizing γ5 to D

spacetime dimensions. By changing the value of the dimension of the integral an arbitrary

mass parameter µ has to be introduced, in order to retain the correct dimension of the

coupling constant. This method of regularizing the divergent integrals has the advantage

that it respects Lorentz and gauge invariance. The UV divergences manifest themselves as

poles at integer values of D. At one loop, one finds that in the limit D → 4 all divergent

integrals have a part proportional to

∆ =
1

ǫ
− γE + log 4π , D = 4 − 2ǫ . (4.24)

However, DREG explicitly breaks supersymmetry since the number of degrees of freedom of

gauge bosons and gauginos does not match for D 6= 4.

Dimensional Reduction

Dimensional reduction (DRED) is a variant of DREG proposed in order to avoid direct super-

symmetry breaking [131]. Originally, in DRED only momenta are treated in D dimensions

whereas γ-matrices and gauge fields remain ordinary 4-vectors. However, this naive defini-

tion leads to mathematical inconsistencies [132]. A consistent definition of DRED is given

in [133]. The idea is to realize the 4-dimensional space as a “quasi-4-dimensional” space that

retains essential 4-dimensional properties but is in fact infinite-dimensional. It was shown

that it is possible to construct such a space that contains the D-dimensional subspace. As

in DREG, γ5 has to be treated carefully. It was proven that DRED preserves supersymmetry

at the one-loop level. A general prove to all orders is still missing.

Mass Regularization

In much the same way as for the UV divergences one finds that the IR and collinear singular-

ities are not present for D > 4. Hence, they can be regularized by taking ǫ < 0 in eq. (4.24).

Another regularization method is given by means of mass regularization, in which the par-

ticles that cause these singularities, light-flavor quarks and massless gauge bosons, obtain

a fictitious mass. All symmetries are preserved as long as no gauge-boson self-interactions

are considered. This is the case for all processes considered in this work.

4.4 Renormalization

When performing a calculation beyond tree level, higher-order contributions often have

divergent parts. After regularizing these, they have to be absorbed by redefining the bare
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parameters. Moreover, the relation between the parameters in the Lagrangian and the

observables changes. The original parameters, the “bare” parameters, are no longer directly

related to physical quantities. In addition, also the normalization of the state vectors is

modified by higher-order corrections. This has to be taken into account by renormalization

of the external fields and state vectors. In a renormalizable theory all divergences can be

absorbed order-by-order in perturbation theory and only a finite number of renormalization

conditions is needed up to all orders. The SM as well as the MSSM are renormalizable

theories [35, 127,128].

The concept of renormalization is best illustrated when considering a theory described by

only one field ψ0 and some parameter g0 with the Lagrangian L(ψ0, g0). Quantities with

a zero as suffix are bare quantities. By measurements one can relate the bare parameter

g0 to an observable O1 = σ1(g0), where σ1 is a calculable prediction, and hence determine

g0 = σ−1
1 (O1). For n observables Oi one has now n− 1 calculable predictions σi(g0) of the

theory, that can be compared to measured values yielding n − 1 test of the theory. The

parameter g0 has no ad-hoc physical meaning. However, it can be replaced by another

parameter that has a more direct physical connection. This is achieved by introducing an

appropriate new parameter g and substituting g0 = g0(g). Under this reparametrization,

which can be also extended to the fields ψ0, one has the same relations for the theoreti-

cal predictions: σi(g) = σi(g0(g)). In practice one introduces well-defined quantities that

have been measured with high precision as parameters of the Lagrangian. When perform-

ing higher-order corrections, in addition one has to introduce a regularization parameter

ǫ whose precise form depends on the regularization scheme. Consequently the prediction

is given by σi = σi(g0, ǫ). When determining the bare parameter g0 via σ1 and O1 one

obtains a value of g0 that depends on this regularization parameter and can be ultraviolet

divergent: g0 = σ−1(O1, ǫ). Therefore the bare quantity evidently has no direct physi-

cal meaning. However, once g0 is fixed via σ1 and O1 one gets theoretical predictions for

σi = σi(σ−1(O1, ǫ), ǫ), i 6= 1, that are finite in the limit ǫ → ǫ0, where ǫ0 corresponds to the

absence of regularization. As a consequence, the bare quantities are regularization scheme

dependent, while the relations between different observables are not. The choice of taking O1

to fix g0 defines the renormalization scheme. One can define other schemes, i.e. by relating

g0 to O2. Then one gets predictions σ̃i = σ̃i(σ̃−1(O2, ǫ), ǫ), that can differ by higher-order

corrections to σi, leading to unavoidable scheme dependencies of the calculation. One has

to make sure that the residual renormalization scheme dependence in σi is small in order to

make a reliable prediction for the observables Oi.

Counterterm Formalism

An efficient way for renormalizing amplitudes is the counterterm formalism, which has the

advantage that it can be formalized quite easy. It is realized via a suitable parametrization

of the bare parameters by introducing multiplicative renormalization constants that include

the divergent parts. For a bare Lagrangian with a field ψ0 of mass m0 and a coupling
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constant g0 one defines

g0 = Zg g , m0 = Zmm, ψ0 = Z
1/2
ψ ψ . (4.25)

Applied to the Lagrangian one obtains

L(ψ0,m0, g0) = L(Z1/2
ψ ψ,Zmm,Zg g) . (4.26)

In perturbation theory these Z factors can be expanded into a power series of the ordering

parameter, in the SM and the MSSM the coupling constants α and αs,

Zn = 1 + δZn = 1 +
∞∑

i,j=1

δZi,jn , (4.27)

with δZi,jn being of order αisα
j . Inserting this expansion in (4.25), the bare quantities are

given by

g0 =
(
1 + δZ1,0

g + δZ0,1
g + δZ2,0

g + δZ0,2
g + δZ1,1

g + . . .
)
g = g + δg1,0 + δg0,1 . . . , (4.28)

m0 =
(
1 + δZ1,0

m + δZ0,1
m + δZ2,0

m + δZ0,2
m + δZ1,1

m + . . .
)
m = m+ δm1,0 + δm0,1 . . . ,

ψ0 =
(
1 +

1

2

[
δZ1,0

ψ + δZ0,1
ψ

]
+

1

2

[
δZ2,0

ψ + δZ0,2
ψ + δZ1,1

ψ − 1

4
(δZ1,0

ψ + δZ0,1
ψ )2]+ . . .

)
ψ .

This relates the bare fields and parameters ψ0, m0 and g0 to the renormalized quantities ψ,

m and g and the renormalization constants δZi,j , δmi,j and δgi,j . The Lagrangian (4.26)

can be written with help of (4.27) as the sum of a tree-level Lagrangian that contains only

the renormalized fields and couplings, and a counter-term part which in addition contains

the renormalization constants

L(ψ0,m0, g0) = L(ψ,m, g)

+ L1,0
CT(ψ,m, g, δZ1,0

ψ , δm1,0, δg1,0)

+ L0,1
CT(ψ,m, g, δZ0,1

ψ , δm0,1, δg0,1)

+ L2,0
CT(ψ,m, g, δZ1,0

ψ , δm1,0, δg1,0δZ2,0
ψ , δm2,0, δg2,0)

+ . . . .

(4.29)

For the one-loop calculations considered in this work, counterterms of order αs and α are

needed in order to obtain UV finite results. Hence the renormalization constants are required

to be evaluated at order αs and α, respectively.

4.4.1 Renormalization Schemes

The renormalization constants have to be such that the absorption of the UV divergences

is guaranteed. However, this determines those only up to finite parts. To fix the finite part,

one has to define a renormalization scheme which specifies the precise definition of physical

parameters such as the particle masses and coupling constants and allows for a convenient

normalization of the fields. In the following we list the schemes used in this work.
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On-shell scheme: In the on-shell (OS) scheme the renormalization constants are defined

in such a way that the renormalized quantities are directly related to physical observables

order-by-order in perturbation theory. The renormalized OS mass is given by defining the

physical mass as the real part of the pole of the propagator. The field renormalization

constants are fixed by proper normalization of the renormalized fields, e.g. requiring the

pole of the renormalized propagator to have residue unity. For mass matrices, the corre-

sponding mass eigenvalues are taken and one further requires the renormalized fields to be

diagonal at all orders in perturbation theory. Hence, mixing is not changed by higher-order

corrections. In the OS scheme, the coupling constant α of QED is fixed by the requirement

that the renormalized vertex function at zero momentum transfer reproduces the Thomson

cross section. Such a definition is not applicable to the strong coupling constant αs of QCD

since in this regime it becomes strong and perturbation theory breaks down. Therefore a

different renormalization scheme is required in the case of QCD. The OS renormalization

has been formulated in the SM [134,135] and generalized to the MSSM [136].

MS scheme: The renormalization in the modified minimal-subtraction (MS) scheme [137]

relies on dimensional regularization. In this scheme the renormalization constants ab-

sorb only the divergences plus the universal remnants of this regularization prescription,

eq. (4.24). As a consequence, when performing a fixed order calculation, the renormalized

amplitudes still depend on the mass scale µ introduced by this renormalization scheme.

This leads to a residual scale dependence of the cross section, namely the renormalization

scale dependence, which enters logarithmically and is proportional to the pole structure of

the amplitude. Obviously this scale dependence is unphysical. It gets reduced when includ-

ing higher-order corrections and ultimately drops out in an “all order” calculation. Hence,

the scale dependence of a given (calculated) cross section gives a hint to the remaining

uncertainties coming from higher-order corrections. The MS scheme is commonly used for

the strong coupling constant αs of QCD. This scheme is related to the minimal-subtraction

scheme (MS) [138], in which only the divergent 1/ǫ poles are subtracted, via a change in

the scale µ,

logµ2
MS − γE + log 4π = log(4πe−γEµ2

MS) → logµ2
MS

. (4.30)

In calculations µ usually enters in the form logµ2/Q2 where Q is set by the kinematics of

the process. Thus, µ should be chosen to be of the energy scale of the process, in order

to keep these logarithms small. In contrast to the MS scheme, in the on-shell scheme no

scale dependence is left, since in this scheme a natural scale is set by the masses of the

renormalized particles and by defining the coupling constant α of QED at zero momentum

transfer.

DR scheme: The DR scheme is defined in much the same way as the MS scheme. The

regularization procedure has to be performed in dimensional reduction and again only

the divergent part plus the universal remnant (4.24) are absorbed by the renormalization

constants. Since DRED preserves SUSY (at least at the one-loop level) this scheme is

commonly used in supersymmetric higher-order calculations.
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4.4.2 Renormalization Conditions

In the following we give the renormalization conditions for the sectors needed for the NLO EW

corrections to squark–squark and sbottom-pair production. It consists of the wavefunction

renormalization of quarks, squarks, and gluinos, the mass renormalization of the squarks

and gluinos, as well as the renormalization of the strong coupling constant. The Feynman

rules for the relevant counterterms needed in our NLO EW calculations are explicitly listed

in Appendix B.

Renormalization of the Quark Sector

The Fourier-transformed bare kinetic Lagrangian for a quark q after electroweak symmetry

breaking is given by

L0
quark = q̄0(/p−m0)q0, with q =

(
qL
qR

)
. (4.31)

Here q = ui, di are the Dirac fermion fields with generation index i = 1, 2, 3. We neglect

mixing between generations, i.e. suppose a diagonal CKM matrix. The left- and right-handed

states qL and qR can be projected out with help of the projection operators

PL :=
1

2
(1 − γ5), PR :=

1

2
(1 + γ5). (4.32)

Splitting the bare masses and fields into renormalized quantities plus counterterms according

to (4.28),

PL q
0 → PL(1 +

1

2
δZqL) q , (4.33a)

PR q
0 → PR(1 +

1

2
δZqR) q , (4.33b)

m0 → m+ δm , (4.33c)

one gets the tree-level (first line) and counterterm Lagrangian (second and third line),

L0
quark = q̄L/pqL + q̄R/pqR −mq(q̄RqL + q̄LqR)

+
1

2
q̄L/p

(
δZqL + δZq†L

)
qL +

1

2
q̄R/p

(
δZqR + δZq†R

)
qR

− q̄R

(
mq

2

(
δZqL + δZq†R

)
+ δm

)
qL − q̄L

(
mq

2

(
δZqR + δZq†L

)
+ δm

)
qR .

(4.34)

With the following Lorentz decomposition of the Fourier-transformed self-energy (cf. Ap-

pendix A.4),

Σ(p) = /pPLΣ
L(p2) + /pPRΣ

R(p2) + PLΣ
SL(p2) + PRΣ

SR(p2) , (4.35)
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the scalar coefficients of the renormalized self-energy are given by

Σ̂L(p2) = ΣL(p2) +
1

2

(
δZqL + δZq†L

)
, (4.36a)

Σ̂R(p2) = ΣR(p2) +
1

2

(
δZqR + δZq†R

)
, (4.36b)

Σ̂SL(p2) = ΣSL(p2) −
(
m

2

(
δZqL + δZq†R

)
+ δm

)
, (4.36c)

Σ̂SR(p2) = ΣSR(p2) −
(
m

2

(
δZqL + δZq†R

)
+ δm

)
. (4.36d)

The renormalization conditions for the masses and fields are fixed by on-shell renormalization

conditions, i.e. imposing that the masses correspond to the real part of the pole of the

propagator with residue unity,

R̃e
[
Σ̂(p)

]
u(p)

∣∣∣
p2=m2

= 0 , lim
p2→m2

1

/p−m
R̃e
[
Σ̂(p)

]
u(p) = 0 , (4.37)

with u(p) being the particle wavefunction of q. R̃e is defined such that only the real parts of

the loop integrals Li are selected while all other expressions ci like e.g. coupling constants

remain complex, R̃e
∑
ciLi =

∑
ciReLi. The renormalization constants can be evaluated

by inserting (4.35) and (4.36) into (4.37) and are given by

δm =
1

2

(
mR̃e

[
ΣL(m2) +ΣR(m2)

]
+ R̃e

[
ΣSL(m2) +ΣSR(m2)

])
, (4.38a)

δZL/R = −R̃e
[
ΣL/R(m2) +m2

(
ΣL′

(m2) +ΣR′

(m2)
)

+m
(
ΣSL′

(m2) +ΣSR′

(m2)
)]
.

(4.38b)

with Σ′(m2) = ∂
∂p2Σ(p2)|p2=m2 . Only light-flavor quarks appear as external particles in

our NLO EW calculations. Since light-flavor quark masses are not observable in squark and

gluino production processes, they will be neglected everywhere, except in collinear singular

regions where its mass is kept in order to regularize the singularities.

In contrast, the top-quark pole mass is related to experimental data. Due to the large top-

quark width of Γt ≈ 1.5 GeV, the top quark typically decays before it can hadronise [139].

The mass measurement proceeds via kinematic reconstruction from the decay products and

comparison to Monte Carlo simulations. Currently, a value of mt = 173.1±1.3 GeV is quoted

for the mass of the top quark [140], which amounts to an experimental uncertainty of less

than 1%. However, there are conceptual problems with the determination of the top-quark

mass from the kinematic reconstruction. It is not completely clear, how to interprete the

quantity measured at the Tevatron in terms of a parameter of the SM Lagrangian. In order

to circumvent this problem, in [141,142] the running top-quark mass in the MS scheme was

related to the total tt̄ production cross section. The best estimate for the running mass,

mMS
t (mt) = 160.0 ± 3.3 GeV, corresponds to a pole mass of mt = 168.9 ± 3.5 GeV and is

consistent with the current world average.

For the bottom-quark mass, non-perturbative effects are much more profound. In order

to circumvent this problem, theoretical prediction often use a running bottom-quark mass
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defined in the MS scheme. Therefore, the parameter extracted from the comparison of

theory and experiment is not the bottom-quark pole mass. The value of the bottom mass

is usually given in the MS scheme with renormalization scale chosen at the bottom-quark

mass, i.e. mMS
b (mMS

b ). For the calculation of squark-squark production, the bottom mass

parameter only enters at NLO, hence different definitions of the mass give contributions that

are formally of higher order. However, for sbottom-pair production a precise definition of

the bottom-quark mass is necessary. An appropriate treatment of the mass parameter for

NLO calculations within the MSSM is to define the bottom-quark mass in the DR scheme

within the MSSM, which determines the mass counterterm by the expression

δmDR
b =

1

2

(
mbR̃e

[
ΣL

div(m2
b) +ΣR

div(m2
b)
]

+ R̃e
[
ΣSL

div(m2
b) +ΣSR

div (m2
b)
])
, (4.39)

where Σdiv only takes the divergent part proportional to ∆ (cf. (4.24)). In order to deter-

mine mDR
b (µDR) from the value mMS

b (µMS) extracted from experiment, one has to notice

that the definition of mDR
b needed for calculations in the MSSM sector contains all MSSM

contributions at O(αs, α), while mMS
b contains only O(αs) SM corrections. However, both

definitions can easily be related to the pole mass mOS
b which is scheme invariant. Hence, for

any renormalization scheme “RS”, the on-shell mass is given by2

mOS
b = mRS

b (µRS)− 1

2

(
mbR̃e

[
Σ̂L

RS(m2
b) + Σ̂R

RS(m2
b)
]

+ R̃e
[
Σ̂SL

RS (m2
b) + Σ̂SR

RS (m2
b)
])
, (4.40)

with the self-energy being renormalized in the RS-scheme. Taking RS = DR and calculating

the OS mass from mMS
b (MZ),

mOS
b = mMS

b (MZ)

[
1 +

αs
π

(
4

3
− log

(mMS
b (MZ))2

M2
Z

)]
= mMS

b (MZ)bshift, (4.41)

the running DR bottom quark mass is evaluated as

mDR
b (µDR) = mMS

b (MZ)bshift +
1

2

(
mb

[
Σ̂L

div(m2
b) + Σ̂R

div(m2
b)
]

+ Σ̂SL
div(m2

b) + Σ̂SR
div (m2

b)
)
.

(4.42)

Renormalization of the Squark Sector (Light Flavor)

The bare kinetic Lagrangian for a squark q̃ can be written as follows,

L0
squark = (q̃0†

L , q̃
0†
R )(p2 − M0

q̃)

(
q̃0
L

q̃0
R

)
, (4.43)

with the squark mass matrix Mq̃ given in (2.50). For light-flavor squarks the corresponding

quark masses are set to zero, neglecting left-right mixing effects,

Mq̃ =


M

2
q̃L

+M2
Z cos(2β)(I3

q −Qqs
2
w) 0

0 M2
q̃R

+QqM
2
Z cos(2β)s2

w


 =


m

2
q̃L

0

0 m2
q̃R


 .

2This expression can also be derived by noticing that the bare mass has to be the same in all renormalization

schemes, and hence for two different renormalization schemes RS1 and RS2 one has, mRS1

b + δmRS1

b =

mRS2

b + δmRS2

b .
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Hence, for each generation, there are three free parameters corresponding to this sector,

M2
L = M2

ũL
= M2

d̃L
, M2

ũR
and M2

d̃R
. Splitting the bare quantities into a renormalized part

plus counterterm,

M0
q̃ = Mq̃ + δMq̃ =


m

2
q̃L

0

0 m2
q̃R


+


δm

2
q̃L

0

0 δm2
q̃R


 , (4.44a)

(
q̃0
L

q̃0
R

)
= (1 +

1

2
δZ q̃)

(
q̃L
q̃R

)
, with δZ q̃ =


δZ

q̃
LL δZ q̃LR

δZ q̃RL δZ q̃RR


 , (4.44b)

with

δm2
q̃L

= δM2
q̃L

+ (I3
q −Qqs

2
w)(δM2

Z cos(2β) +M2
Zδcos(2β)) −M2

Z cos(2β)Qqδs
2
w , (4.44c)

δm2
q̃R

= δM2
q̃R

+QqδM
2
Z cos(2β)s2

w +QqM
2
Zδcos(2β)s2

w +QqM
2
Z cos(2β)δs2

w , (4.44d)

the bare Lagrangian becomes

L0
squark = (q̃†

L, q̃
†
R)(p2 − Mq̃)

(
q̃L
q̃R

)

+ (q̃†
L, q̃

†
R)
[

1

2
(δZ q̃ + δZ q̃†)p2 − 1

2
(δZ q̃†Mq̃ + Mq̃δZ

q̃) − δMq̃

](
q̃L
q̃R

)
.

(4.45)

The renormalized squark self-energy is therefore given by

[
Σ̂ q̃
ij(p

2)
]

=
[
Σ q̃
ij(p

2)
]

+
[

1

2
(δZ q̃ + δZ q̃†)p2 − 1

2
(δZ q̃†Mq̃ + Mq̃δZ

q̃) − δMq̃

]

ij
. (4.46)

Σ q̃
ij corresponds to the self-energy of q̃i → q̃j . Due to SU(2) invariance, there are only three

independent mass parameters in the squark sector. Hence one can impose only three on-shell

conditions on the squark masses, while one squark mass remains a dependent quantity. The

left-handed down-type squark will be taken as the dependent quantity. With the squark

fields renormalized on-shell one has the following renormalization conditions,

lim
p2→m2

q̃

1

p2 −m2
q̃

R̃e
[
Σ̂ q̃
ii(p

2)
]

= 0 , (4.47a)

R̃e
[
Σ̂ q̃

12(m2
q̃i

)
]

= 0 , R̃e
[
Σ̂ q̃

21(m2
q̃i

)
]

= 0 , (4.47b)

R̃e
[
Σ̂ q̃
ii(m

2
q̃i

)
]

= 0 , for q̃ 6= d̃L . (4.47c)

The diagonal field renormalization constants follow from the first condition by requiring the

diagonal self-energies to have residue unity. The absence of the transition between different

mass eigenstates fixes the non-diagonal field renormalization constants. The last condition

fixes the mass renormalization constants for the three independent squark masses. Inserting

(4.46) into (4.47) the explicit form of the renormalization constant for the independent mass
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parameter and of the field renormalization constants are obtained,

δmq̃i
= R̃e

[
Σ q̃
ii(m

2
q̃i

)
]
, for q̃i = ũL, ũR, d̃R , (4.48a)

δZ q̃ii = − ∂

∂p2
R̃e
[
Σ q̃
ii(p

2)
] ∣∣∣
p2=m2

q̃

, (4.48b)

δZ q̃ij =
2

m2
q̃i

−mq̃j

R̃e
[
Σ q̃
ij(mq̃j

)
]
, i 6= j . (4.48c)

The renormalization constants of the mass parameters originally appearing in the La-

grangian are related to the squark mass renormalization constants via (4.44). The renor-

malization constant of the dependent squark mass δmd̃L
can be expressed in terms of the

independent ones,

δm2
d̃L

= δm2
ũL

+ cw(δM2
Z cos(2β) +M2

Zδ cos(2β)) +M2
Z cos(2β)δs2

w . (4.48d)

Hence, the pole mass of the left-handed down-type squark receives a shift due to radiative

corrections,

(mpole

d̃L
)2 = m2

d̃L
+
(
δm2

d̃L
− R̃eΣd̃

LL(m2
d̃L

)
)
. (4.49)

Renormalization of the Squark Sector (3rd Generation)

For the third generation, the corresponding quark masses cannot be neglected and left-right

mixing of the squarks has to be taken into account. In the real MSSM the mass matrix has

the following structure (cf. (2.50)),

Mq̃ =


M

2
q̃L

+m2
q +M2

Z cos(2β)(I3
q −Qqs

2
w) Yq̃

Yq̃ M2
q̃R

+m2
q +QqM

2
Z cos(2β)s2

w


 , (4.50)

with the off-diagonal entries Yq̃ given by

Yt̃ = mt(At − µ cotβ), Yb̃ = mb(Ab − µ tan β). (4.51)

Using the definition (2.51), Dq̃ = Uf̃Mf̃U
†
f̃

= diag(mq̃1
,mq̃2

), the bare Lagrangian can be

written as

L0
squark = (q̃0†

1 , q̃
0†
2 )(p2 − D0

q̃)

(
q̃0

1

q̃0
2

)
(4.52)

= (q̃†
1, q̃

†
2)(p2 − Dq̃)

(
q̃1

q̃2

)
(4.53)

+ (q̃†
1, q̃

†
2)
[

1

2
(δZ q̃ + δZ q̃†)p2 − 1

2
(δZ q̃†Dq̃ + Dq̃δZ

q̃) − δDq̃

](
q̃1

q̃2

)
, (4.54)

where in the second line the bare fields and masses are split into renormalized quantities

and counterterms according to

D0
q̃ = Dq̃ + δDq̃ ≡ Dq̃ + Uq̃δMq̃U

†
q̃ , (4.55a)

(
q̃0

1

q̃0
2

)
= (1 +

1

2
δZ q̃ij)

(
q̃1

q̃2

)
, with δZ q̃ =


δZ

q̃
11 δZ q̃12

δZ q̃21 δZ q̃22


 . (4.55b)
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Using the explicit parametrization of Uq̃ in terms of a mixing angle θq̃, eq. (2.54), the

counterterm δDq̃ is explicitly given by

δDq̃ =


 δm2

1 (m2
1 −m2

2) det(Uq̃) δθq̃

(m2
1 −m2

2) det(Uq̃) δθq̃ δm2
2


 . (4.56)

The entry (δDq̃)12 = (δDq̃)21 is conveniently defined as

δYq̃ ≡ (Uq̃δMf̃U
†
q̃ )12 = (m2

1 −m2
2) det(Uq̃) δθq̃ . (4.57)

The counterterms for δM and δD can be related mutually via (4.55a). In particular the

off-diagonal entries are related via

(δMq̃)12 = (A∗
q − µκ)δmq +mq(δA

∗
q − µ δκ− κ δµ)

= Uq̃11Uq̃12(δm2
q̃1

− δm2
q̃2

) + (Uq̃11Uq̃22 + Uq̃12Uq̃21)δYq̃ .
(4.58)

In total one has five parameters describing the heavy squark sector, two more compared to

the non-mixing case. The new parameters are given by At and Ab, or equivalently by θt̃ and

θb̃, since these two quantities are related via (2.55). The renormalized self-energies are now

given by

[
Σ̂ q̃

11(p2)
]

=
[
Σ q̃

11(p2)
]

+
1

2
(p2 −m2

q̃1
)
[
δZ q̃11 + δZ q̃∗11

]
− δm2

q̃1
, (4.59a)

[
Σ̂ q̃

22(p2)
]

=
[
Σ q̃

22(p2)
]

+
1

2
(p2 −m2

q̃2
)
[
δZ q̃22 + δZ q̃∗22

]
− δm2

q̃2
, (4.59b)

[
Σ̂ q̃

12(p2)
]

=
[
Σ q̃

12(p2)
]

+
1

2
(p2 −m2

q̃1
)δZ q̃12 +

1

2
(p2 −m2

q̃2
)δZ q̃∗21 − δYq̃ , (4.59c)

[
Σ̂ q̃

21(p2)
]

=
[
Σ q̃

21(p2)
]

+
1

2
(p2 −m2

q̃1
)δZ q̃∗12 +

1

2
(p2 −m2

q̃2
)δZ q̃21 − δYq̃ . (4.59d)

As in the non-mixing case, the fields are renormalized on-shell. Again, the requirement that

the real part of the residua of the propagators have unity value fixes the diagonal Z-factors,

while the non-diagonal Z-factors are fixed by the condition that for on-shell squarks no

transition from one squark to another occurs,

lim
p2→m2

q̃

1

p2 −m2
q̃

R̃e
[
Σ̂ q̃
ii(p

2)
]

= 0 , (4.60a)

R̃e
[
Σ̂ q̃

12(m2
q̃i

)
]

= 0 , R̃e
[
Σ̂ q̃

21(m2
q̃i

)
]

= 0 . (4.60b)

The field renormalization constants for the third generation squarks are given by

δZ q̃ii = − ∂

∂p2
R̃e
[
Σ q̃
ii(p

2)
] ∣∣∣
p2=m2

q̃

, (4.61a)

δZ q̃ij = 2
R̃e
[
Σ q̃
ij(m

2
q̃j

)
]

− δYq̃

(m2
q̃i

−m2
q̃j

)
, i 6= j . (4.61b)
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From (4.50) one finds that in addition to the parameters of the squark sector, ML, Mb̃R
,

Mt̃R
, At, and Ab also the quark masses mb and mt enter. Hence, when considering a renor-

malization scheme for the stop/sbottom sector one also has to consider the renormalization

of the top and bottom mass parameter. There are several ways of fixing the parameters in

this sector, depending on the precise parametrization chosen. The most physical one is to

define the masses and the mixing angle via on-shell conditions. For the top/stop sector this

is done by imposing

δmt̃i
= R̃e

[
Σ t̃
ii(m

2
t̃i

)
]
, (4.62)

δYt̃ =
1

2
R̃e
[
Σ t̃

12(m2
t̃1

) +Σ t̃
12(m2

t̃2
)
]
, (4.63)

and the on-shell condition (4.38) for the top-quark mass. δYt̃ is obtained from (4.59c) and

(4.60b) and the additional condition δZ q̃12 = δZ q̃∗21 as proposed in [143]. The counterterm for

the mixing angle δθt̃ is directly related to δYt̃ via (4.57). The counterterm for the trilinear

coupling δAt remains a dependent quantity. It is obtained by solving (4.58),

δAt =
1

mt

[
Ut̃11Ut̃12

(
δm2

t̃1
− δm2

t̃2

)
+ (Ut̃11Ut̃22 − Ut̃12Ut̃21) δYt̃ − (At − µ cotβ)δmt

]

+ δµ cotβ − µ cot2β δtan β . (4.64)

In the bottom/sbottom sector, only one mass can be treated as independent quantity due

to SU(2) invariance, in the same way as in the light-flavor case. Apart from that, in

principle an analogue on-shell definition as for the top/stop sector is possible, i.e. imposing

on-shell renormalization conditions on one of the bottom-squark masses, the bottom-squark

mixing angle, and the bottom-quark mass. In the following we will impose the on-shell

renormalization condition on the heavier bottom squark b̃2 which renders b̃1 as an dependent

quantity,3

δmb̃2
= R̃e

[
Σ b̃

22(m2
b̃2

)
]
. (4.65)

The counterterm for the dependent parameter Ab is then given via

δAb =
1

mbUb̃11

[
− Ub̃12δm

2
b̃2

+ Ub̃22δYb̃ −
(
Ub̃11(Ab − µ tan β) − 2Ub̃12mb

)
δmb

+ Ub̃12

(
U2
t̃11δm

2
t̃1

+ U2
t̃12δm

2
t̃2

− Ut̃12Ut̃22δYt̃

)
− 2Ub̃12mtδmt − Ub̃12 cos 2βδM2

W

+
(
Ub̃124M2

W

tan β

(1 + tan2 β)2
+mbUb̃11µ

)
δtan β +mbUb̃11 tan β δµ

]
. (4.66)

However, this scheme was found to be unreliable for large values of tan β, in particular when

(µ tan β ≫ Ab) [144]. The reason is that δAb contains a contribution

δAb =
1

mb
[−(Ab − µ tan β)δmb + . . .] . (4.67)

Hence, in parameter regions where (µ tan β) is much larger than Ab, the counterterm receives

a large finite shift when derived from the Yb̃, i.e. the sbottom mixing angle. This is not an

3This is always possible as long as b̃2 6= b̃R, which is always true for non-trivial mixing.
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issue in the stop sector, since there only the combination µ cotβ arises which is strongly

suppressed for large values of tan β. The problem of large finite contributions to the coun-

terterm can be avoided by changing to an appropriate renormalization scheme. There are

several possibilities, e.g. one can either impose on-shell conditions directly on Ab or by defin-

ing Ab or Yb̃ in the DR scheme. Another possibility is to define the bottom-quark mass in the

DR scheme, since by definition, δmDR
b does not lead to a finite contribution. In addition,

as discussed in the section of quark renormalization, by using the running bottom-quark

mass parameter defined in the DR scheme, potential problems with the bottom-pole-mass

definition can be avoided. Besides mb, we will also define the trilinear coupling Ab in the

DR scheme to avoid further potential problems due to renormalization of the mixing an-

gle. δADR
b is obtained from (4.66) by inserting the renormalization constants obtained from

(4.59) in the DR condition,

R̃eΣ̂DR(m2) = R̃eΣ(m2) − R̃eΣ(m2)|div ,

with Σ(m2)|div being the divergent part of the self-energy regularized within dimensional

reduction (i.e. the part proportional to ∆, (4.24)).

δADR
b =

1

mbUb̃11

[
− Ub̃12R̃eΣ b̃

22(m2
b̃2

)|div +
Ub̃22

2

(
R̃eΣ b̃

12(m2
b̃1

)|div + R̃eΣ b̃
12(m2

b̃2

)|div

)

−
(
Ub̃11(Ab − µ tan β) − 2Ub̃12mb

)
R̃eΣb(m2

b)|div

+ Ub̃12

(
U2
t̃11R̃eΣ t̃

11(m2
t̃1

)|div + U2
t̃12R̃eΣ t̃

22(m2
t̃2

)|div

− Ut̃12Ut̃22

2

(
R̃eΣ t̃

12(m2
t̃1

)|div + R̃eΣ t̃
12(m2

t̃2
)|div

))

− 2Ub̃12mtR̃eΣt(m2
t )|div − Ub̃12 cos 2βδM2

W |div

+
(
Ub̃124M2

W

tan β

(1 + tan2 β)2
+mbUb̃11µ|div

)
δtan β +mbUb̃11 tan β δµ|div

]
. (4.68)

The dependent counterterms for mb̃1
and Yb̃ can be expressed through the independent ones

and are given by

δm2
b̃1

=
1

U2
b̃11

[
U2
b̃12
δm2

b̃2

+
(
2Ub̃11Ub̃12(Ab − µ tan β) + 2mb(1 − 2U2

b̃12
)
)
δmb

+
(
1 − 2U2

b̃12

) (
U2
t̃11δm

2
t̃1

+ U2
t̃12δm

2
t̃2

− 2Ut̃12Ut̃22δYt̃ − 2mtδmt − cos 2βδM2
W

)

+
(
4M2

W

tan β

(1 + tan2 β)2

(
1 − 2U2

b̃12

)
− 2Ub̃11Ub̃12mbµ

)
δtan β

− 2Ub̃11Ub̃12mb tan βδµ
]
, (4.69)

δYb̃ =
1

Ub̃22

[
Ub̃12δm

2
b̃2

+ Ub̃11mbδAb +
(
Ub̃11 (Ab − µ tan β) − 2Ub̃12mb

)
δmb

+ Ub̃12

(
−U2

t̃11δm
2
t̃1

− U2
t̃12δm

2
t̃2

+ 2Ut̃12Ut̃22δYt̃ + 2mtδmt

)

− Ub̃11mb tan β δµ+ Ub̃12 cos 2β δMW
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−
(
Ub̃11mb µ+ 4Ub̃12M

2
W

tan β

(1 + tan2 β)2

)
δtan β

]
. (4.70)

As in the light-flavor case, the dependent mass parameter gets a finite shift. The pole mass

of the lightest bottom squark is hence given via

(mpole

b̃1

)2 = m2
b̃1

+
(
δm2

b̃1

− R̃eΣ b̃
11(m2

b̃1

)
)
. (4.71)

Besides this choice of fixing the counterterms in the sbottom sector, there are other possibili-

ties corresponding to different renormalization schemes. Different choices of renormalization

conditions have been investigated in [144] and [145], while in the latter a further renormal-

ization condition was imposed to fix the mass of the dependent bottom-squark on its mass

shell. The “mDR
b and ADR

b ” scheme given above was found to be reliable for the investigated

parameter spaces. Nevertheless, when considering NLO EW calculations for sbottom-pair

production, we will check whether the renormalization scheme considered is reliable by

comparing the finite contribution of the dependent counterterms to their tree-level value.

In Chapter 6 we deal with final-state bottom squarks, which have to fulfill on-shell prop-

erties. Using the “mDR
b and ADR

b ” scheme, b̃2 is defined on-shell by (4.65) fixing its on-shell

(pole) mass to be the tree-level mass at all orders in perturbation theory. Due to (4.71) the

b̃1 pole-mass differs from its tree-level mass and the finite mass-shift has to be taken into ac-

count when b̃1 appears in an external line. However, using the b̃1 pole-mass everywhere, i.e.

also for the internal bottom-quark propagators, spoils the tree-level relations of this sector

which are crucial to guarantee the cancellation of the UV divergences. A naive solution to

this problem would be to use different mass values mb̃1
and mpole

b̃1

as internal and external

mass parameters. However, this leads to inconsistencies related to the IR structure of the

virtual and real amplitudes. As we will see in Section 4.5, IR singularities have to cancel

in sufficient inclusive observables. Supposing soft photon emission, the matrix element in

the singular region becomes proportional to the tree-level cross section (cf. (4.88)) times

a universal factor which contains the singularity with the actual value depending on the

mass of the particle that emits the soft photon (cf. (4.91)). Using a different mass for the

evaluation of the virtual amplitudes than used for the external particle, obviously spoils

the cancellation of the IR singularities. In addition, if the on-shell mass is lighter than the

tree-level mass, one has to deal with unphysical resonances in the real-emission amplitudes

due to the “decay” b̃tree
1 → b̃pole

1 γ.

One approach to circumvent this problem is to use the pole-mass everywhere for the real

emission amplitudes which solves the problem of unphysical resonances. For the virtual

amplitudes one can use the fact that the IR behavior manifests itself in some scalar loop-

integral functions. The tree-level mass is used everywhere as internal mass-parameter except

for the IR singular functions which have to be evaluated using the pole-mass. By doing so,

as well the UV divergences as the IR singularities cancel.

A second approach is to impose an additional renormalization condition which ensures

the b̃1 mass to be on-shell as suggested in [145].4 This requires an input that restores

4This extra condition overconstraints the bottom-squark sector.
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symmetries, i.e. this imposes M2
t̃L

6= M2
b̃L

in (4.50). It has the advantage that the sbottom-

mass mixing-matrix correctly rotates the pole masses (instead of the tree-level masses).

In the case of b̃αb̃∗
α production we use an approach similar to the first one, i.e. using

two different masses in the virtual contributions for the internal and external b̃1. For the

processes considered at NLO EW, besides field renormalization only the sbottom mass has

to be renormalized. In particular we do not need to renormalize the sbottom mixing-

matrix. The tree-level relations requiring a tree-level sbottom mass in order to cancel the

UV divergences hence are only needed for the renormalized sbottom self-energy, eq. (4.59a)

for q̃ = b̃. Therefore, we calculate the analytic expression for the renormalized self-energy

Σ̂ b̃
11 by using the tree-level sbottom mass. After expressing the amplitude in terms of

renormalized quantities only, we can safely exchange b̃tree
1 → b̃pole

1 . In practice, we hence

use the tree-level mass only for calculating the analytic expression for Σ̂ b̃
11 and use the pole

mass elsewhere. In particular we also use the pole mass in the internal sbottom propagator

at tree-level. This introduces a contribution to the tree-level cross section which is formally

one-loop,

1

p2 −m2
b̃1

− δm2
b̃1

+ R̃eΣ b̃
11

=
1

p2 −m2
b̃1

−
−δm2

b̃1

+ R̃eΣ b̃
11

(p2 −m2
b̃1

)2
+ . . . . (4.72)

The structure of the last term in (4.72) is exactly the same as the one originating from the

counterterm contribution. Hence the one-loop contribution induced by using the pole mass

in the LO amplitude is correctly taken into account by means of the following shift,

δm2
b̃1

→ R̃eΣ b̃
11. (4.73)

Renormalization of the Glunio Sector

The gluino is renormalized on-shell. Since the gluino mass is determined through the soft

breaking parameter M3, cf. (2.67), imposing renormalization conditions on the gluino mass

mg̃ is equivalent to imposing them on M3. After splitting the bare gluino field and mass

into renormalized quantities plus counterterms,

m0
g̃ = mg̃ + δmg̃ , (4.74a)

g̃0 = (1 +
1

2
δZ g̃)g̃ , with Ψg̃ =

(
g̃
¯̃g

)
, (4.74b)

the Lagrangian reads (with a factor 1/2 because of the Majorana nature of the gluino)

L0
g̃ =

1

2
Ψ̄g̃(/p−mg̃)Ψg̃

+
1

2
Ψ̄g̃

[
1

2
/p(δZ

g̃ + δZ g̃∗) −mg̃(δZ
g̃PL + δZ g̃∗PR) − δmg̃

]
Ψg̃ .

(4.75)
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The renormalized self-energies are then given by

Σ̂ g̃
L/R(p2) = Σ g̃

L/R(p2) +
1

2

(
δZ g̃ + δZ g̃∗

)
, (4.76a)

Σ̂ g̃
SL(p2) = Σ g̃

SL(p2) −
(
mg̃δZ

g̃ + δmg̃

)
, (4.76b)

Σ̂ g̃
SR(p2) = Σ g̃

SR(p2) −
(
mg̃δZ

g̃∗ + δmg̃

)
. (4.76c)

Due to the Majorana nature of the gluino one finds in the CP-conserving case that Σ g̃
L = Σ g̃

R

and Σ g̃
SL = Σ g̃

SR. Imposing the on-shell conditions analogously to the quark case, cf. (4.37),

the renormalization constants are given via

δmg̃ = mg̃R̃e
[
Σ g̃
L(m2

g̃)
]

+ R̃e
[
Σ g̃
SL(m2

g̃)
]
, (4.77a)

δZ g̃ = −R̃eΣ g̃
L(m2

g̃) + 2m2
g̃

∂

∂p2
R̃eΣ g̃

L(p2)
∣∣∣
p2=m2

g̃

+ 2mg̃
∂

∂p2
R̃eΣ g̃

SL(p2)
∣∣∣
p2=m2

g̃

. (4.77b)

Renormalization of the Strong Coupling Constant

The strong coupling constant gs of QCD grows large at large distances which renders an

on-shell renormalization at zero-momentum transfer not well-defined. However, due to

asymptotic freedom of QCD, perturbation theory can be applied for scales at which the

strong fine structure constant αs = g2
s/4π is smaller than one. The running of αs from a

given scale M to a scale µ is at one-loop determined via

αs(µ
2) =

αs(M2)

1 + αs(M2)
4π β0 log µ2

M2

, (4.78)

with β0 depending on the particle content of the theory. (4.78) gets additional terms when

higher order contributions are taken into account. The most precise value of the parameter

αs extracted from comparison of experimental data to theoretical predictions is given in the

MS scheme at the scale µ = MZ [146],

αs(M
2
Z) = 0.1184 ± 0.0007 . (4.79)

This value together with the running of αs taking into account five active flavors, is widely

used for fits and extraction of data in QCD, as e.g. the extraction of the PDFs. Taking into

account only five active flavors is possible due to the so-called decoupling theorem [147,148].

It states that at scales much lower than the particle mass, its contribution to β0 and hence

the change in the running of αs is not observable at low energies since it can be absorbed

via a redefinition of αs.

In order to be consistent when calculating hadronic cross sections, in particular when

folding the PDFs with the calculated matrix element, cf. (4.22), it is crucial to use the same

definition of the strong coupling constant. Defining the renormalized coupling constant via

g0
s = Zgs gs = (1 + δZgs) gs , (4.80)
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heavy-flavor effects can be excluded by a proper definition of the counterterm. In particular,

the mass of the top quark, the gluinos, and the squarks has to be excluded from the running

in order to retain five-flavor running within the MSSM. The corresponding counterterm reads

δZgs = −αs
4π


∆β0

2
+

1

3
ln
m2
t

µ2
+
N

3
ln
m2
g̃

µ2
+

1

12

∑

q̃

ln
m2
q̃

µ2


 , (4.81)

β0 =
( 11

3
N − 2

3
nf

︸ ︷︷ ︸
light particles

)
+
(

−2

3
− 2

3
N − nf + 1

3︸ ︷︷ ︸
heavy particles

)
= 3 , (4.82)

with N = 3 for SU(3) and nf = 5 active flavors. The contribution to β0 can be divided

into a part with contributions from light particles, the gluons and five light quarks, and a

contribution from heavy particles, the top quark, the gluinos, and the squarks.

In supersymmetric QCD (SQCD) the qqg and q̃q̃g coupling strength is given by gs while

the qq̃g̃ coupling is given by ĝs. The supersymmetric Slavnov–Taylor identities require that

gs = ĝs. However, performing the regularization in DREG to obtain the MS definition of αs
spoils SUSY and in particular the relation between the coupling constants. This is cured by

renormalizing gs and ĝs independently and introducing a symmetry restoring counterterm

for the strong scalar coupling ĝs [18],

ĝ0
s = Zĝs ĝs = (1 + δZĝs) ĝs , (4.83a)

δZĝs = δZgs +
αs
3π

. (4.83b)

4.5 Infrared and Collinear Singularities

The UV divergences of last section arise from infinite loop-momenta and are therefore short

distance effects. They display our ignorance on physics at high energies and have to be

removed by renormalization. Besides these, quantum field theories contain singularities

related to finite momenta. In particular, some of these singularities occur independently of

the external momenta and are related to vanishing masses. Such singularities are generally

called mass singularities. They result from loop integrals as well as from integrating the

phase space of massless particles originating from real radiation processes. There are two

types of mass singularities:

• Infrared or soft singularities are related to vanishing momenta and thus long-distance

effects, i.e. when a (massive or massless) particle emits or absorbs a massless particle.

• Collinear singularities are related to collinear light-like momenta, i.e. when a massless

particle emits or absorbs two massless collinear particles.

The physical origin of mass singularities is the presence of degeneracies in the initial and final

states, respectively. In QED, for example, the states of a charged particle with an arbitrary

number of soft photons are nearly degenerate, giving rise to IR singularities. They are
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indistinguishable in real detectors due to its finite energy resolution. In the case of collinear

singularities, the state of a light-like particle with momenta p is degenerate with the states

of an arbitrary number of light-like particles with the same overall quantum numbers and

momenta pi if p =
∑
pi. These states are indistinguishable for a detector with finite angular

resolution. In sufficient inclusive observables, all these states contribute simultaneously and

the singularities cancel.

In the case of QED with finite fermion masses, the Bloch–Nordsieck theorem [149] states

that for the cancellation of IR singularities it is sufficient to sum over all degenerate final

states, i.e. all states with an arbitrary number of soft photons in the final state. A more

general theorem, the Kinoshita–Lee–Nauenberg (KLN) theorem [150], states that as a conse-

quence of unitarity, transition amplitudes are finite when summed over all degenerate initial

and final states. Both theorems hold order-by-order in perturbation theory for unrenormal-

ized and renormalized quantities as long as the renormalization schemes do not introduce

mass singularities via the renormalization constants.

The cancellation of singularities arising from virtual corrections and real radiation is a

non-trivial task since they originate from different phase-space regions. The most prominent

methods to deal with this are phase-space slicing, see e.g. [135] and dipole subtraction [151–

153].5 In the phase-space slicing method, the soft and collinear regions of the phase-space

are split off by introducing phase-space cut parameters. The singular region can then be

integrated analytically and is added to the virtual contribution leading to a finite result.

The hard real-emission contribution can be integrated numerically. The dependence on the

cutoff parameters cancel in the sum of soft and hard real emission, provided the cutoff

parameters are small enough. The dipole-subtraction method uses a completely different

approach. The general idea of this method is to introduce a set of functions that have

the same pointwise singular behavior as the real-emission contribution to the differential

cross section. These so-called “dipoles” act as local counterterms and can be integrated

analytically over the one-particle phase space. One now adds and subtracts these dipoles

twice, once to the virtual contribution and once for the real-emission contribution to the

differential cross section, and hence effectively adds a zero contribution. Each part is now

finite and can be integrated numerically. The advantage of the dipole method is that no

cutoff has to be introduced, with the result that the integration error within this method

is typically one order of magnitude smaller, depending on the number of external particles.

However, for two-to-two processes, as considered in this work, the accuracy derived using

the phase-space-slicing method is by far sufficient, which renders the implementation of the

far more sophisticated dipole method dispensable. As already mentioned in the last section,

the mass singularities will be regularized by means of mass regularization, i.e. introducing

a fictitious mass for the massless particles. Of course, the physical amplitude has to be

independent of this introduced mass parameter since it has no physical meaning. The

independence of the calculated cross section on the regularization and cutoff parameters

can be used as a consistency check.

5Further details on the difference between these both methods can be found in [154].
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4.5.1 Soft and Collinear Photon Emission

The real photon radiation processes considered in this work are of the form

a(p1) b(p2) → c(p3) d(p4) γ(k), (4.84)

with massless incoming particles a and b and massive outgoing particles c and d and the

photon γ. At O(α2
sα) it is given by the squared matrix element of a QCD tree-level diagram

with an external photon attached, |M1, 1

2

ab→cdγ |2. Initial-state radiation only contributes if at

least one of the partons is charged, i.e. either a quark or an anti-quark. The external states

considered in this work are squarks, and therefore charged and massive.

Using the method of phase-space slicing, one can divide real photon emission into singular

and non-singular regions. The non-singular regions are finite and can be integrated directly.

In the singular regions, one has to introduce regulators in order to regularize the mass

singularity and the integration is performed analytically. Soft singularities arise for k0 → 0

and collinear singularities for pi · k → 0 for i = {1, 2} since the other outgoing particles are

massive. The soft-singular region is defined by the region where the energy of the photon is

smaller than the cutoff ∆E = δs
√
ŝ/2, with the dimensionless parameter δs. The collinear

region is defined as the region in which the angle between the charged particle and the

emitted (hard) photon is smaller than an angular cutoff ∆θ, i.e. the photon is emitted

collinear (but not soft). For practical reasons it is convenient to define δθ = cos(∆θ), since

the collinear region is then given via | cos(θ)| < 1 − δθ which can be implemented easily

in the numerical integration. The partonic cross section can be decomposed into a soft, a

collinear, and a finite part

dσ̂2,1
12→34γ = dσ̂2,1

12→34γ

∣∣
soft

+ dσ̂2,1
12→34γ

∣∣
coll

+ dσ̂2,1
12→34γ

∣∣
finite

. (4.85)

The considered process is given as a subscript for clarification and particles are labeled by

i = 1 . . . 4 according to the definition of momenta pi in (4.84). In the soft and collinear

region, the squared matrix element |M1, 1

2 |2 factorizes into universal factors times the lowest

order matrix element squared |M1,0|2. The five-particle phase-space also factorizes into the

four-particle phase-space of the particles i = 1 . . . 4 times the photon phase-space. In the

soft region, the matrix element of a photon emitted from particle i factorizes according to

M1, 1

2

12→34γ

∣∣
soft

= M1,0
12→34

4∑

i=1

2eei piǫ∗λ
σi2pik + iǫ

, (4.86)

with σi = ±1 depending on whether the particle is incoming or outgoing, respectively. ei
is the charge of the ith particle in terms of the positron charge e and ǫλ is the polarization

vector of the emitted photon. Since p2
i 6= 0, the denominator is always non-zero and the iǫ can

be omitted.6 The cross section in the soft region is obtained by squaring the matrix element

(4.86). Since the soft photons are not detected, one has to sum over their polarizations and

6In the case of a massless particle i, one obtains contributions that are soft and collinear. These are

regularized by introducing a fictitious particle mass mi.
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integrate their momenta over the available phase space. Owing to charge conservation, the

gauge dependent parts of the polarization sum (A.16) vanish and one is left with

2∑

λ=1

ǫ∗µ(k, λ)ǫν(k, λ) = −gµν . (4.87)

Regularizing the IR-singular phase-space integral by a small photon mass λγ , and hence

Eγ =
√
k2 + λ2

γ , the partonic differential cross section in the soft-photon approximation is

given by

dσ̂2,1
12→34γ

∣∣
soft

= −e2dσ̂2,1
12→34

∫

|~k|≤∆E

d3k

(2π)32Eγ

4∑

i,j=1

eiejσiσj
pipj
pik pjk

(4.88)

= − α

2π
dσ̂2,1

12→34

4∑

i,j=1;i<j

eiejσiσjIij , (4.89)

with the symmetric phase-space integrals Iij ,

Iij =
∫

|~k|≤∆E

d3k

2πEγ

pipj
pik pjk

. (4.90)

The general expressions of these integrals are given in [135]. In the limit of vanishing initial-

state masses (and two massive final-state particles), i.e. m1,2 ≪
√
S, they can be further

simplified and are given by (with λ = λγ)

Iii = ln

(
4(∆E)2

λ2

)
+ ln

(
m2
i

ŝ12

)
, for i = {1, 2},

Iii = ln

(
4(∆E)2

λ2

)
+

1

βi
ln
(

1 − βi
1 + βi

)
, for i = {3, 4},

I12 =
∑

i=1,2

[
ln

(
ŝ12

m2
i

)
ln

(
4(∆E)2

λ2

)
− 1

2
ln2

(
ŝ12

m2
i

)
− π2

3

]
,

I34 =
1

v34

∑

i=3,4

[
ln
(

1 + βi
1 − βi

)
ln

(
4(∆E)2

λ2

)
− 2Li2

(
2βi

1 + βi

)
− 1

2
ln2
(

1 − βi
1 + βi

)]
,

Iij = ln

(
ŝ2
ij

m2
im

2
j

)
ln

(
4(∆E)2

λ2

)
− 1

2
ln2

(
ŝ12

m2
i

)
− 1

2
ln2
(

1 − βi
1 + βi

)
− π2

3

− 2Li2

(
1 −

2p0
i p

0
j

ŝij
(1 + βj)

)
− 2Li2

(
1 −

2p0
i p

0
j

ŝij
(1 − βj)

)
, for

i = {1, 2},
j = {3, 4},

(4.91)

with ŝij = 2pi · pj , βi = |~pi|/p0
i , vij =

√
1 − 4mimj/ŝ2

ij , and ∆E =
√
ŝ12δs/2. The initial-

state masses are used as a regulator in the singular region and set to a common value

m1 = m2 = mλ, and are neglected everywhere else. The dilogarithm Li2(x) is defined as

Li2(x) = −
∫ x

0

dt

t
ln(1 − t) . (4.92)
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Figure 4.3: Definition of the momentum fractions in hadronic collisions for collinear splitting.
Parton 1 from hadron A carries momentum fraction x1 and parton 2 from hadron B momentum
fraction x2. The collinear photon carries away a momentum fraction (1 − z). The remaining c.m.
energy for the hard process is hence given by ŝ = x1x2zs = τs. Collinear splitting from both partons
has to be taken into account.

The hadronic cross section in the soft regime is derived by inserting σ̂2,1
12→34γ(ŝ12)

∣∣
soft

obtained

from (4.88) into (4.22) for the convolution with the parton distribution functions.

Since the initial-state quarks are treated massless, one is also confronted with initial-state

collinear singularities. In Figure 4.3 the momentum fractions carried by the partons and the

collinear photon are defined. From this definition one has ŝ = zŝ12, i.e. ŝ remains the c.m.

energy of the hard process as defined in (4.21). Since the collinear photon takes away some

of the initial partonic energy, the partonic cross section is not directly proportional to the

tree-level cross section. However, it can be written in terms of the tree-level cross section,

convoluted with a universal factor,

dσ̂2, 1
12→34γ(ŝ12)

∣∣∣
coll

=
α(e2

i + e2
j )

2π

∫ 1−δs

z0

dz κqq(z, ŝ12) dσ̂2,0
12→34(zŝ12) , (4.93)

The lower bound z0 = (m2
3 +m2

4)/ŝ corresponds to production at threshold. The universal

factor κqq contains the quark–photon splitting function Pqq (compare also with (4.17) for

the quark–gluon splitting),

κqq(z, ŝ) =
1 + z2

1 − z
ln
(
ŝδθ
2mλ

)
− 2z

1 − z
, Pqq(z) =

1 + z2

1 − z
. (4.94)

The upper integration boundary in (4.93) is lowered by δs in order to avoid double counting

of the soft regime, since the soft and collinear regime is already incorporated in (4.88).

Care has to be taken when the partonic cross section is convoluted with the PDFs. With

the definition of the momentum fractions in Figure 4.3, the hadronic cross section in the

collinear region is given by

σ2,1
12→34γ(S)

∣∣
coll

=
∫ 1−δs

τ0

dτ
∫ 1−δs

τ
dx
∫ 1−δs

x
dz

1

xz
σ̂2, 1

12→34γ(ŝ)
∣∣∣
coll

(4.95)

×
{

1

1 + δq1q2

[
fAq1

(
τ

x
, µF

)
fBq2

(
x

z
, µF

)
+ fAq2

(
x

z
, µF

)
fBq1

(
τ

x
, µF

)]}
,
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=
∫ 1−δs

τ0

dτ
dLcoll

q1q2

dτ
σ̂2, 1

12→34γ(ŝ)
∣∣∣
coll

. (4.96)

The parton luminosity in the collinear region is given by

dLcoll
ξiξj

dτ
=

1

1 + δq1q2

∫ 1−δs

τ

dx

x

∫ 1−δs

x

dz

z

[
fAq1

(
τ

x
, µF

)
fBq2

(
x

z
, µF

)
+ fAq2

(
x

z
, µF

)
fBq1

(
τ

x
, µF

)]
.

(4.97)

When combining the cross section of the soft and collinear region with the virtual con-

tributions σ2,1
12→34(S)

∣∣
virt

, the IR cutoff λγ cancels, and the remaining cross section is IR

finite. However, the initial-state collinear singularities do not completely cancel. By taking

the QED evolution of the partons into account, these are absorbed into the definition of

the renormalized parton distribution functions, similar to the QCD case in (4.13). This is

achieved by the following redefinition of the quark distribution function [155,156],

fq(x, µF ) → fq(x, µF )

(
1 −

αe2
q

π

{
κv+s +

1

4
fv+s

})

−
αe2

q

2π

∫ 1−δs

x

dz

z
fq
(x
z
, µF

)(
κc(z) − fc(z)

)
,

(4.98)

where eq denotes the electric charge of quark q and

κv+s = 1 − ln δs − ln2 δs +
(

ln δs +
3

4

)
ln

(
µ2
F

m2
q

)
,

κc(z) = Pqq(z) ln

(
µ2
F

m2
q

1

(1 − z)2
− 1

)
,

(4.99)

with the splitting function (4.94). In the DIS scheme, the factorization-scheme dependent

functions are given by

fv+s = 9 +
2π2

3
+ 3 ln δs − 2 ln2 δs ,

fc(z) = Pqq(z) ln
(

1 − z

z

)
− 3

2

1

1 − z
+ 2z + 3 .

(4.100)

Making this replacement in the convolution of the O(α2
s) partonic cross section σ̂2,0

12→34, one

gets an extra contribution of O(α2
sα) that cancels the remaining collinear singularities,

σ2,0
12→34(S) =

1

1 + δq1q2

∫ 1

τ0

dτ
∫ 1

τ

dx

x

[
fAq1

(
τ

x
, µ

)
fBq2

(x, µ) + fAq2
(x, µ) fBq1

(
τ

x
, µ

)]
σ̂2,0

12→34(ŝ)

→
∫ 1

τ0

dτ
dLq1q2

dτ
σ̂2,0

12→34(ŝ) (4.101a)

− α

π

(
e2
i + e2

j

) ∫ 1

τ0

dτ
dLq1q2

dτ

(
κv+s +

1

4
fv+s

)
σ̂2,0

12→34(ŝ) (4.101b)

− α

2π

(
e2
i + e2

j

) ∫ 1−δs

τ0

dτ
dLcoll

q1q2

dτ

(
κc(z) − fc(z)

)
σ̂2, 0

12→34(ŝ) (4.101c)

= σ2,0
12→34(S) + σ2,1

12→34(S)
∣∣γ
PDF

+ σ2,1
12→34γ(S)

∣∣γ
PDF

.
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biT ai

gT a ibi
Figure 4.4: Conventions for color indices to keep track of the color correlation of the amplitudes. bi

and ci are color indices belonging to the fundamental representation and a is the color index of the
gluon belonging to the adjoint representation. The blob represents the tree-level amplitude. Left:
Initial-state radiation. Right: Final-state radiation.

σ2,1
12→34(S)

∣∣γ
PDF

, given by (4.101b), cancels the remaining collinear singularities emerging

from virtual contributions, while σ2,1
12→34γ(S)

∣∣γ
PDF

given by (4.101c), cancels the remaining

collinear singularities originating from real photon emission.

4.5.2 Soft and Collinear Gluon Emission

The real gluon radiation processes considered in this work are generally denoted by

a(p1) b(p2) → c(p3) d(p4) g(k), (4.102)

with a, b, c, and d as in (4.84). At O(α2
sα) they are given by the interference term of a

tree-level QCD matrix element and a tree-level EW matrix element, both with an external

gluon attached,

2Re(M
3

2
,0

12→34g(M
1

2
,1

12→34g)
†) .

The real gluon can in principle be emitted from any colored particle. However, real gluon

radiation from external gluons does not contribute at O(α2
sα) since in this case there is no

matrix element M
1

2
,1

12→34g which would be necessary to obtain the desired order in pertur-

bation theory.

As in the case of real photon emission, one can divide real gluon emission into singular

and non-singular regions using the phase-space slicing method. With help of the slicing

parameters ∆E and ∆θ or δs and δθ, respectively, the partonic cross section for real gluon

emission can be decomposed into a soft, a collinear, and a finite part,

dσ̂2,1
12→34g = dσ̂2,1

12→34g

∣∣
soft

+ dσ̂2,1
12→34g

∣∣
coll

+ dσ̂2,1
12→34g

∣∣
finite

. (4.103)

Since the emitted gluon changes the color of the particle it is emitted off, one has to take

into account the color correlation of the amplitudes, as depicted in Figure 4.4. The following

notation will be used to keep track of the color factors.

Let |c1, . . . , cm〉 denote a complete color basis. The color-stripped matrix element is obtained

by projecting the colored matrix element Mi,j on the color basis. For m external particles

carrying momenta pi and color ci the color-stripped matrix element is given by

Mi,j c1...cm

12→3...m =
〈
c1, . . . , cm

∣∣∣Mi,j
12→3...m

〉
. (4.104)
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For the color structure in the case of real gluon emission it is convenient to associate a color

charge Ti with the emission of a gluon of color a from parton i. The action of this color

charge onto the color space is given by

〈
c1 . . . ci . . . cm

∣∣∣Ti

∣∣∣b1 . . . bi . . . bm
〉

= δc1b1
. . . T̂ acibi

. . . δcmbm , (4.105)

with

T̂ acibi
=





−T abici
, i: incoming particle, or outgoing anti-particle,

T acibi
, i: outgoing particle, or incoming anti-particle.

(4.106)

The color charge further obeys the following relations,

TiTj = TjTi , for i 6= j; T2
i = CF =

4

3
. (4.107)

In the soft region, the color-stripped matrix element of a gluon emitted off from particle i

can be written as

Mi,j c1...c4

12→34g

∣∣∣
soft

=
4∑

i=1

2gs piǫ∗

2pik ± iǫ
T̂ acibi

Mi,j c1...bi...c4

12→34g . (4.108)

The iǫ prescription can be neglected for the same reason as in the real photon emission

case. The cross section in the soft region is obtained by squaring the matrix element (4.108)

and summing over color. After summing over the gluon polarizations and regularizing the

integration over the soft gluon phase-space via a small gluon mass λg, the partonic differential

cross section in the soft gluon approximation can be written as

dσ̂2,1
12→34g

∣∣∣
soft

= −αs
2π

{ 4∑

i,j=1;i<j

IijFij

} dt

16πŝ2
, (4.109)

where the phase-space integrals Iij are given in eq. (4.91)7 and Fij denote color correlated

amplitudes. At O(α2
sα) the Fij are given by

Fij = 2 Re
{〈

M0,1
12→34

∣∣∣TiTj

∣∣∣M1,0
12→34

〉}

= 2 Re
{[

M0,1 c1...bi...bj ...c4

12→34

]∗
T̂ abici

T̂ abjcj
M1,0 c1...ci...cj ...c4

12→34

}
.

(4.110)

In the collinear region, the partonic cross section is again given by a convolution integral,

similar to (4.93). Using the same definition of the momenta as shown in Figure 4.3, we have

dσ̂2, 1
12→34g(ŝ12)

∣∣∣
coll

=
αsCF
π

∫ 1−δs

z0

dz κqq(z, ŝ12) dσ̂1,1
12→34(zŝ12) , (4.111)

with κqq as defined in (4.94). From this, one can see that collinear singularities due to

gluon radiation are only present for processes that have non-vanishing QCD–EW interference

7In this case λ is the fictitious gluon mass.
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contributions at tree level. The hadronic cross section in the collinear region can be expressed

with help of (4.97) and is given by

σ2,1
12→34γ(S)

∣∣
coll

=
∫ 1−δs

τ0

dτ
dLcoll

q1q2

dτ
σ̂2, 1

12→34γ(ŝ)
∣∣∣
coll

. (4.112)

Combining the cross section of the soft and collinear region with the virtual contributions

σ2,1
12→34(S)

∣∣
virt

the IR cutoff λg cancels, similar to the cancellation of the photon regulator λγ .

In the presence of initial-state collinear singularities, i.e. σ̂1,1
12→34 6= 0, singular contributions

remain that have to be absorbed into the definition of the renormalized PDFs,

fq(x, µF ) → fq(x, µF )
(
1 − αsCF

π
κv+s

)
−
∫ 1−δs

x

dz

z
fq
(x
z
, µF

)(αsCF
2π

κc(z)
)
, (4.113)

with κv+s and κc given in (4.99). Using this redefined PDFs in the convolution of the partonic

cross section of the tree-level interference term σ̂1,1
12→34, effectively generates contributions of

O(α2
sα),

σ1,1
12→34(S) =

1

1 + δq1q2

∫ 1

τ0

dτ
∫ 1

τ

dx

x

[
fAq1

(
τ

x
, µ

)
fBq2

(x, µ) + fAq2
(x, µ) fBq1

(
τ

x
, µ

)]
σ̂1,1

12→34(ŝ)

→
∫ 1

τ0

dτ
dLq1q2

dτ
σ̂1,1

12→34(ŝ) (4.114a)

− αsCF
π

∫ 1

τ0

dτ
dLq1q2

dτ
κv+sσ̂

1,1
12→34(ŝ) (4.114b)

− αsCF
2π

∫ 1−δs

τ0

dτ
dLcoll

q1q2

dτ
κc(z) σ̂

1, 1
12→34(ŝ) (4.114c)

=σ1,1
12→34(S) + σ2,1

12→34(S)
∣∣g
PDF

+ σ2,1
12→34g(S)

∣∣g
PDF

.

σ2,1
12→34(S)

∣∣g
PDF

cancels the remaining collinear gluon singularities emerging from virtual cor-

rections, while σ2,1
12→34g(S)

∣∣g
PDF

cancels the remaining collinear gluon singularities originating

from real gluon radiation.

4.5.3 Collinear Quark Emission

For a consistent treatment of all O(α2
sα) contributions, also real quark radiation has to be

considered. Real quark radiation processes are generally denoted by

a(p1) b(p2) → c(p3) d(p4) q(k), (4.115)

where q is either a quark or an anti-quark, depending on the specific process. In case of

squark-pair production, exactly one of the initial-state particles has to be a fermion in order

to get only one fermion in the final state. Hence, the possible initial states in hadronic

collisions are gluon–(anti-)quark or photon–(anti-)quark. Due to the small photon PDF

inside the proton, which is formally of O(α), we will discard photon-induced processes of

O(α2
sα). The process of real quark radiation can be regarded as completely independent
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to the virtual corrections, since it is IR finite by itself. However, as in the real gluon

radiation case, collinear singularities are present for processes with non-vanishing tree-level

interferences, σ̂(1,1)
12→34 6= 0. These initial-state singularities have to be absorbed into the

definition of the PDFs,

fq(x, µF ) → fq(x, µF ) −
∫ 1−δs

x

dz

z
fg
(x
z
, µF

)αsCF
2π

Pqg(z) ln

(
µ2
F

m2
q

)
, (4.116)

with the gluon–quark splitting function

Pqg(z) = z2 + (1 − z2) . (4.117)

Performing this substitution in the definition of the hadronic cross section when convoluting

the tree-level interference term,

σ1,1
12→34(S) =

1

1 + δq1q2

∫ 1

τ0

dτ
∫ 1

τ

dx

x

[
fAq1

(
τ

x
, µ

)
fBq2

(x, µ) + fAq2
(x, µ) fBq1

(
τ

x
, µ

)]
σ̂1,1

12→34(ŝ)

→
∫ 1

τ0

dτ
dLq1q2

dτ
σ̂1,1

12→34(ŝ) (4.118a)

− αsCF
2π

∫ 1−δs

τ0

dτ

[
dLcoll

q1g

dτ
+

dLcoll
q2g

dτ

]
Pqg(z) ln

(
µ2
F

m2
q

)
σ̂1, 1

12→34(ŝ)

1 + δq1q2

(4.118b)

=σ1,1
12→34(S) + σ2,1

12→34q(S)
∣∣q
PDF

,

the initial-state collinear singularities originating from real quark radiation are canceled by

σ2,1
12→34q(S)

∣∣q
PDF

.

4.6 Phase-Space Integration

In order to obtain the total cross section one has to integrate over the phase-space of the

final-state particles and convolute the so obtained partonic cross section with the PDFs.

In the case of hadronic cross sections with two final-state particles, one has to perform

a three-dimensional integration, while for three particles in the final state the integral is

six dimensional. It is tedious to perform these multi-dimensional integrations analytically.

Even though the partonic cross section might be calculated, the convolution with the PDFs

still remains to be done. Moreover, one is often interested in differential distributions with

some kinematical cuts applied, which often are not available as analytic expressions. Hence,

numerical integration methods have to be employed. In one dimension, the numerical inte-

gration can be performed by using Gaussian quadrature, or variants of this method [157].

To compute integrals in multi-dimensions, one approach would be to use repeated one-

dimensional integration. However, in this approach the function evaluations grow expo-

nentially as the number of dimensions increases. One method to overcome this “curse of

dimensionality” [158] is to use Monte Carlo methods.

The multi-dimensional integration will be performed using Vegas [159, 160]. Vegas is

a Monte Carlo algorithm that uses importance sampling as variance-reduction technique.
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Since Vegas is integrating unit hypercubes, a suitable parametrization is needed to map the

kinematic variables onto the interval [0, 1]. The momentum fractions needed to perform

the convolution with the PDFs are trivially mapped. Since the cross section is a Lorentz-

invariant quantity, the integration is performed in the c.m. frame. Care has to be taken

when calculating differential distributions that are not Lorentz-invariant quantities, like e.g.

pseudo-rapidity distributions. In this case, the single events have to be boosted into the

lab-frame.

In the c.m. frame, the four-momenta of the incoming particles which are aligned along

the z-axis at the hadronic c.m. energy
√
S, are simply given by

p1 =
(√

τS, 0, 0,
√
τS
)
, p2 =

(√
τS, 0, 0,−

√
τS
)
. (4.119)

τ = x1x2 with x1 (x2) being the momentum fractions carried by parton 1 (parton 2) in

hadron 1 (hadron 2).

4.6.1 Final-State Kinematics

In the following the parametrizations of the two and three final-state particle phase-space

used for the numerical integration are given. In order to take into account the singular

behavior of the amplitude in the soft and collinear limit a suitable mapping of the integration

variables is necessary. The differential cross section with two incoming particles moving

along the z-axis with momenta p1 and p2 and n − 2 external particles with momenta pfn,

can generally be written as

dσ = C
dLp1p2

dτ

1

Φ

∣∣∣M(p1p2 → {pfn}
∣∣∣
2

dτ dnLips , (4.120)

with the n-particle differential Lorentz-invariant phase-space dnLips,

dnLips = (2π)4δ4
(
p1 + p2 −

n∑

i=3

pi
) n∏

i=3

d3pi
(2π)32p0

i

, (4.121)

and the flux Φ of the incoming particles

Φ ≡ 1

4
∣∣p0

1p
3
2 − p0

2p
3
1

∣∣
c.m.
= 4ECM |p3

z| . (4.122)

Since the calculation is usually performed in natural units with ~ = c = 1 one has to multiply

a conversion factor C = ~c2 in order to retain the cross section in SI units.

Two-Particle Phase-Space

The two-particle differential Lorentz-invariant phase-space is given by

d2Lips = (2π)4δ4(p1 + p2 − p3 − p4)
dp3

(2π)32E3

dp4

(2π)32E4

c.m.
=

1

16π2

|~p|
ECM

dΩ ,

(4.123)
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where p1, p2 (p3, p4) are the momenta of the incoming (outgoing) particles, and dΩ =

sin θdθdφ. The absolute value of the three-momenta ~p = ~p1 = ~p2 is given by

|~p| ≡

√
λ(ŝ,m2

3,m
2
4)

2
√
ŝ

=

√
E4

CM − E2
CM(m2

3 +m2
4) + (m2

3 −m2
4)2

2ECM
. (4.124)

In the c.m. frame the momenta of the final-state particles can be parametrized according to

p3 =




√
m3 + ~p

~p cosφ sin θ

~p sinφ sin θ

~p cos θ



, p4 =




√
m4 + ~p

−~p cosφ sin θ

−~p sinφ sin θ

−~p cos θ



. (4.125)

Due to azimuthal symmetry, no physical observable can depend on the azimuthal angle φ,

and the integration over φ results in a factor 2π. In (4.125), φ can be set to any value, e.g.

φ = 0. The integration over cos θ can be mapped linearly onto x3 = [0, 1] by defining

cos θ = 2x3 − 1 , sin θ = 2
√
x3 − x2

3 . (4.126)

The integration over the angles then becomes

∫
dΩ =

∫ 2π

0
dφ
∫ 1

−1
d cos θ = 4π

∫ 1

0
dx3 . (4.127)

In order to improve the convergence of the integration, it is often useful to parametrize the

kinematic variables according to the kinematical structure of the amplitude. For example,

for squark–squark production, only t-channel particle exchange occurs. Hence, one might

think of parametrizing the integration by the Mandelstam variable t of (4.4) instead of

parametrizing θ. This can be done with help of following considerations:

The components of t,

t = (p1 − p3)2 = m2
1 +m2

3 − 2
(
p0

1p
0
3 − ~p1~p3

)
, (4.128)

are given in the c.m. frame by

p0
1 =

ŝ− p2
2 + p2

1

2
√
ŝ

, p0
2 =

ŝ− p2
1 + p2

2

2
√
ŝ

, (4.129a)

p0
3 =

ŝ− p2
4 + p2

3

2
√
ŝ

, p0
4 =

ŝ− p2
3 + p2

4

2
√
ŝ

, (4.129b)

|~p|1 = |~p|2 =

√
λ(ŝ, p2

1, p
2
2)

2
√
s

, |~p|3 = |~p|4 =

√
λ(ŝ, p2

3, p
2
4)

2
√
s

. (4.129c)

Since | cos θ| ≤ 1 one gets for the integration boundaries of t,

tmax,min = p2
1 + p2

3 − 2
(
p0

1p
0
3 − ~p1~p3 cos θ

)
. (4.130)
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x3 can be mapped onto t according to

t = −
([
x3(−tmax +m2)1−ν + (1 − x3)(−tmin +m2)1−ν

] 1

1−ν −m2
)
, ν 6= 1 , (4.131)

with the two free parameters m and ν, which have to be chosen appropriately. With

cos θ =
t−m2

1 −m2
3

2~p1~p3
+

√
m2

1

~p2
1

+ 1

√
m2

3

~p2
3

+ 1 , (4.132)

d cos θ

dt
=

1

2~p1~p3
, (4.133)

dt

dx3
= −

[
(−tmax +m2)1−ν − (−tmin +m2)1−ν] (−t+m2

)ν

1 − ν
, (4.134)

one can write the integral over the angles as follows,
∫

dΩ =
∫ 2π

0
dφ
∫ 1

0

d cos θ

dt

dt

dx3
dx3

= 2π
∫ 1

0
dx3 −

[
(−tmax +m2)1−ν − (−tmin +m2)1−ν] (−t+m2

)ν

(1 − ν)(2~p1~p3)
. (4.135)

The parameters m and ν introduced in (4.131) can be chosen such that the factor (−t+m2)ν

flattens the integral in regions with large contributions appearing in the amplitude from

t−channel particle exchange. Hence, m should equal the mass of the exchanged particle.

The parameter ν can be used to further optimize the integration, a naive value is ν = 2,

since it should cancel the propagator structure of the squared amplitude.8 However, for

the processes considered in this work, no improvement was found by the use of t-channel

mapping instead of a linear mapping of cos θ.

Three-Particle Phase-Space

The momenta of three final-state particles are given by a total of 3×4 components. However,

not all of these parameters are independent. The on-shell requirement p2
i = m2

i gives three

constraints, and momentum conservation, p1 +p2 = p3 +p4 +p5, where p1,2 are the momenta

of the incoming particles, gives four additional constraints. Hence, one is left with a total of

five independent parameters. A common parametrization of the three-particle phase-space

is to use the energy of particle 3 and 5, and three angles,

p0
3, p

0
5, θ, φ, η. (4.136)

The variables θ and φ are the usual polar and azimuthal angles. Due to azimuthal symmetry

the amplitudes are independent of φ. In this parametrization, ~p3 and ~p5 are given by

~p5 = |~p5|




sin θ

0

cos θ


 , ~p3 = |~p3|




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







sin η sin ξ

cos η sin ξ

cos ξ


 . (4.137)

8For many processes one finds that the propagator structure is partially canceled by other effects, hence a

smaller value for ν might lead to faster convergence of the integral.
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If one of the external particles is massless, it will be identified with particle 5. In this way

one can easily apply the cuts introduced by the phase-space slicing method. ξ is the angle

between ~p3 and ~p5 and is determined via the constraint p2
4 = m2

4,

m2
4 =

(
ŝ− p0

3 − p0
5

)2
− (~p3 + ~p5)2

=
(
ŝ− p0

3 − p0
5

)2
− 2|~p3||~p5| cos ξ − |~p3|2 − |~p5|2

⇒ cos ξ = cξ ≡
(
ŝ− p0

3 − p0
5

)2 −
(
p0

3

)2 −
(
p0

5

)2
+m2

3 +m2
5 −m2

4

2
√(

p0
3

)2 −m2
3

√(
p0

5

)2 −m2
5

. (4.138)

The three-particle differential Lorentz-invariant phase-space is given by

d3Lips = (2π)4δ4(p1 + p2 − p3 − p4 − p5)
d3p3

(2π)32p0
3

d3p4

(2π)32p0
4

d3p5

(2π)32p0
5

(4.139)

=
1

8(2π)5
δ(

√
ŝ− p0

3 − p0
4 − p0

5)
1

p0
3p

0
4p

0
5

d3p3d3p5

∣∣∣
−~p4=~p3+~p5

=
1

8(2π)5
δ(

√
ŝ− p0

3 − p0
4 − p0

5)
p2

3p
2
5

p0
3p

0
4p

0
5

dΩ3dΩ5dp3dp5

∣∣∣
−~p4=~p3+~p5

=
1

8(2π)5

p3p5

p0
3p

0
4p

0
5

dΩ3 dη dcos ξ dp0
3 dp0

5

× δ

(√
ŝ− p0

3 − p0
5 −

√
m2

4 − 2|~p3||~p5| cos ξ − |~p3|2 − |~p5|2
) ∣∣∣

−~p4=~p3+~p5

=
1

8(2π)5
dp0

3 dp0
5 dΩ5 dη

∣∣∣−~p4=~p3+~p5

cosξ=cξ

. (4.140)

The integration boundaries for the angular integration dΩ5 = dφdcos θ and dη are simply

given by

(φ, η, cos θ) ∈ [0, 2π] × [0, 2π] × [−1 + δθ, 1 − δθ] . (4.141)

The integration boundaries of the polar angle are lowered by δθ in order to exclude the

collinear region defined by the phase-space slicing method. The φ integration is trivial due

to azimuthal symmetry and yields a factor 2π. Taking p0
5 as the outer integration, the

integration bounds for p0
3 can be obtained by exploiting the fact that | cos ξ| ≤ 1. The upper

and lower integration boundaries are given by

p0
3 min,max =

1

2b

(
a (b+m+m−) ∓ |~p5|

√(
b−m2

+

) (
b−m2

−
))
, (4.142)

with

a ≡
√
ŝ− p0

5 , b ≡ a2 − |~p3|2 , m± ≡ m3 ±m4 .

The lower bound of p0
5 is given by requiring p0

5 ≥ m5, while the upper bound is obtained by

the condition that p0
3 is a real quantity, i.e. the discriminant in (4.142) must not be negative,
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(b−m2
+)(b−m2

−) ≥ 0,

p0
5 min = m5 + λ , (4.143a)

p0
5 max =

ŝ− (m3 +m4)2 +m2
3

2
√
ŝ

. (4.143b)

The regulator λ has to be introduced in case of soft-photon or soft-gluon emission in order

to regularize the IR singularity. The explicit form of the four-vectors p3, p4, and p5 in terms

of the independent parameters is given by

p3 =




p0
3

|~p3|(cos θ sin η sin ξ + sin θ cos ξ)

|~p3|(cos η sin ξ)

|~p3|(− sin θ sin η sin ξ + cos θ cos ξ)



, p5 =




p0
5

|~p5| sin θ

0

|~p5| cos θ



, (4.144a)

⇒ p4 =




√
s− p0

3 − p0
5

−p1
3 − p1

5

−p2
3 − p2

5

−p3
3 − p3

5



. (4.144b)

In order to integrate the phase-space numerically, the remaining four independent parame-

ters have to be mapped onto the interval [0, 1]. A linear mapping is given by

p0
3 = (p0

3 max − p0
3 min)x3 + p0

3 min ⇒ dp0
3 = (p0

3 max − p0
3 min)dx3 , (4.145a)

p0
5 = (p0

5 max − p0
5 min)x5 + p0

5 min ⇒ dp0
5 = (p0

5 max − p0
5 min)dx5 , (4.145b)

η = 2πx4 ⇒ dη = 2πdx4 , (4.145c)

cos θ = 2(1 − δθ)x6 − (1 − δθ) ⇒ dcos θ = 2(1 − δθ)dx6 . (4.145d)

The integration over the Lorentz-invariant three-particle phase-space (4.140) is then given

by

∫
d3Lips =

1

8(2π)5

∫ p0

5 max

p0

5 min

dp0
5

∫ p0

3 max

p0

3 min

dp0
3

∫ 2π

0
dφ
∫ 2π

0
dη
∫ 1−δθ

−(1−δθ)
dcos θ (4.146)

=
1

4(2π)3

∫ 1

0
dx3dx4dx5dx6 2 (1 − δθ)

(
p0

3 max − p0
3 min

) (
p0

5 max − p0
5 min

)
. (4.147)

However, a linear mapping might not be adequate in the presence of soft and/or collinear

singularities. In the case of soft singularities the integrand is logarithmically divergent in

p5, i.e. it has a singularity proportional to 1/p0
5. Hence, a mapping that takes this pole

structure into account would be adequate. It should satisfy

dp0
5 ∝ p0

5dx5 , (4.148)



4.6. Phase-Space Integration 79

which is the differential equation of an exponential function. Taking the boundary conditions

into account, the mapping reads

p0
5 = p0

5 min exp

[
ln

(
p0

5 max

p0
5 min

)
x5

]
⇒ dp0

5 = p0
5 ln

(
p0

5 max

p0
5 min

)
dx5 . (4.149)

In the case of collinear singularities the poles are proportional to 1/(1 ± cos θ). To flatten

the integration, one needs a mapping that fulfills

dcos θ ∝ (1 + cos θ)(1 − cos θ)dx6 = (1 − cos2 θ)dx6 . (4.150)

This is the differential equation of the hyperbolic tangent. Taking the boundary conditions

into account, the mapping reads

cos θ = tanh
[

1 − 2x6

2
ln
(

δθ
2 − δθ

)]
⇒ dcos θ = ln

(
δθ

2 − δθ

)(
cos2 θ − 1

)
dx6 . (4.151)

For the processes considered in this work, one finds that the integration of the real emis-

sion amplitudes gets considerably improved by performing these mappings. The integrals

converge much faster and for the same integration error much smaller χ2 values are obtained.

4.6.2 Differential Distributions

Differential distributions of Lorentz-invariant observables are simply obtained by binning

the weighted differential cross section for each phase-space point. For np equally distributed

phase-space points, the weight factor is 1/np. Since Vegas uses importance sampling for

variance reduction, the phase-space points are not equally distributed anymore and the

weight factor is in general 6= 1/np.

Since the differential cross section is calculated in the c.m. frame, the kinematic variables

have to be boosted into the lab frame in order to generate non-Lorentz invariant observables

that depend on the z-direction, i.e. the direction of the incoming particles. The affected

observables considered in the following are rapidity distributions dσ/dy and pseudo-rapidity

distributions dσ/dη, respectively. The rapidity y and pseudo-rapidity η are defined as

y =
1

2
ln
(
E + pz
E − pz

)
, η = − ln

[
tan

(
θ

2

)]
=

1

2
ln
( |~p| + pz

|~p| − pz

)
, (4.152)

where θ is the angle between ~p and the z-axis. The boost factor is obtained by comparing

the momenta p′
1 and p′

2 of the incoming particles in the c.m.-frame (primed quantities) with

the momenta p1 and p2 if the lab-frame (unprimed quantities),

c.m.-frame: p′
1 =

√
x1x2S

2
(1, 0, 0, 1)T , p′

2 =

√
x1x2S

2
(1, 0, 0, 1)T , (4.153a)

Lab-frame: p1 = x1

√
S

2
(1, 0, 0, 1)T , p2 = x2

√
S

2
(1, 0, 0, 1)T . (4.153b)
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q2; x2 q1; x1q4
q3�PA PB q1; x1 q2; x2

q3
q4

�� �� = ��PA PB
Figure 4.5: Pseudo-rapidity η of the third particle q3 in the c.m. frame. The incoming particles q1

and q2 carry momentum fraction x1 and x2. They can emerge from proton A or proton B, yielding
the same partonic cross section. However, the pseudo-rapidity distribution is different since η̄ = −η.

Both frames are connected by a Lorentz transformation Λµν defined via pµ = Λµνp
′ν ,

Λµν =




γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ



, with

γ =
1

2

(√
x1

x2
+
√
x2

x1

)
,

β =
x2 − x1

x2 + x1
.

(4.154)

The differential partonic cross section is a Lorentz-invariant quantity, however η is not.

When calculating the differential hadronic cross section, one has an integrand of the form

fAq1
(x1)fBq2

(x2)
dσ̂(ŝ)

dη̄
+ fAq2

(x2)fBq1
(x1)

dσ̂(ŝ)

dη

A=B
= fAq1

(x1)fAq2
(x2)

(
dσ̂(ŝ)

dη̄
+

dσ̂(ŝ)

dη

)

=2 fAq1
(x1)fAq2

(x2)
dσ̂(ŝ)

dη
, (4.155)

with η and η̄ as defined in Figure 4.5. The last equation holds, since

dσ̂(ŝ)

dη̄
=

dσ̂(ŝ)

dη
.

In practice, (4.155) is used to calculate the hadronic cross section. In order to obtain the

correct η-distribution, one has to boost the kinematic variables and then bin the differential

cross section at η and −η, weighted by a factor 1/2. Special care has to be taken, when

calculating the η-distribution in the collinear region. Since the collinear particle carries

away some momentum fraction z, the boost factor (4.154) is altered. It further depends on

whether the collinear particle that takes away the momentum fraction (1 − z) is emitted

from the parton q1 carrying momentum fraction x1 or from parton q2 carrying momentum

fraction x2, cf. Figure 4.3. For real photon emission from q1 with charge e1 one finds, after

redefining the PDFs, that the integrand becomes

− α

2π
e2

1f
A
q1

(x1)fAq2
(x2)

(
dσ̂(ŝ)

dη̄1
+

dσ̂(ŝ)

dη1

)

= − 2
α

2π
e2

1f
A
q1

(x1)fAq2
(x2)

dσ̂(ŝ)

dη1
, (4.156)
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where η1 is given in the lab-frame by performing the boost (4.154) with x1 → τz/x and

x2 → x/z, i.e. using

γ1 =
1

2

(
z
√
τ

x
+

x

z
√
τ

)
, β1 =

x2 − z2τ

x2 + z2τ
. (4.157)

In the same way, for a photon emitted from q2 with charge e2 one has

− α

2π
e2

2f
A
q1

(x1)fAq2
(x2)

(
dσ̂(ŝ)

dη̄2
+

dσ̂(ŝ)

dη2

)

= − 2
α

2π
e2

2f
A
q1

(x1)fAq2
(x2)

dσ̂(ŝ)

dη2
, (4.158)

where in the lab-frame η2 is obtained by boosting with x1 → τ/x and x2 → x, i.e. using

γ2 =
1

2

(√
τ

x
+

x√
τ

)
, β2 =

x2 − τ

x2 + τ
. (4.159)

Hence by comparison with (4.101c) one finds that in order to obtain the correct η-distri-

bution in the collinear photon region, the following steps have to be performed:

• Boost the kinematical variables using γ1 (γ2) and β1 (β2) to obtain η1 (η2) and bin

the differential cross section at η1 (η2) and −η1 (−η2), weighted with the factor ω1

(ω2) given by

ω1 =
1

2

e2
1

e2
1 + e2

2

, ω2 =
1

2

e2
2

e2
1 + e2

2

. (4.160)

The factor 1/2 emerges in the same way as in the non-collinear region. Since in (4.101c) the

sum of the charges enters, the extra factor in (4.160) is needed to correct this for e1 6= e2.

In the collinear gluon region the coupling is independent of whether the collinear particle

is emitted from parton 1 or parton 2, since for the considered processes the collinear gluon

is always emitted from a quark line. The same is true for collinear quark emission, since

the collinear quark always emerges from a gluon. In these cases, the weight factor is simply

given by ω1 = ω2 = 1/4.





5 Electroweak Contributions to Squark–Squark

Production

In this Chapter we study the hadronic production of two squarks and two anti-squarks,

PP → q̃αq̃
′
β , PP → q̃∗

αq̃
′∗
β , q, q′ = {u, d, c, s}; (5.1)

where α, β = {L,R} label the chirality of the squarks, neglecting left-right mixing.

In the context of all squark and gluino production processes, squark–squark production

is of particular interest at the proton–proton collider LHC. The partonic process proceeds

at leading order (LO) from qq-induced diagrams only while squark–anti-squark and gluino–

gluino production require qq̄ or gg initial states instead. Since the final-state SUSY particles

are very massive, an important contribution to the hadronic cross sections arises from the

high-x region where valence-quark densities dominate, see also Figure 4.2, right plot. As a

result, squark–squark production has generally a higher tree-level yield than squark–anti-

squark production and can be comparable to gluino–gluino production depending on the

precise squark–gluino mass configuration, cf. Figure 3.5.

First theoretical cross section predictions for squark-pair production processes based on

LO calculations were made already many years ago [17]. Later calculations of next-to-

leading order (NLO) in perturbative QCD [18, 19] could reduce theoretical uncertainties

considerably. For renormaization and factorization scales of the order of the produced

squark, the corrections due to NLO QCD are around 5 − 20%, and hence typically much

smaller than for the other squark and gluino production processes, cf. Figure 3.6. Also

results beyond the one-loop level in QCD have become available via soft gluon resummation

at NLL accuracy [20–22], however changing the cross section less than 1% for sparticle masses

below 1 TeV, cf. Figure 3.7. The scale uncertainty is slightly reduced.

For a reliable cross section prediction, also electroweak (EW) contributions up to O(α2
sα)

have to be taken into account which are formally of the same order as NNLO QCD con-

tributions. The contributing processes are manifold and their interplay is non-trivial, in

particular since for squark–squark not only QCD-mediated but also EW-mediated produc-

tion channels exist at tree-level. These tree-level EW contributions which are of O(αsα+α2)

can rise the cross section by up to 20% [25]. The main contribution is due to the QCD–

EW interference of O(αsα) and suffers from scale uncertainties which can be considerably

reduced when taking the NLO EW contributions into account.

Squark–squark production consists of 36 processes and the same amount for anti-squark–

anti-squark production which differ in flavor and chirality, respectively. In Section 5.1 we

classify these processes and group them corresponding to their tree-level structure. The

tree-level QCD and tree-level EW hadronic cross sections including the analytic formula are

83
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given in Section 5.2. Section 5.3 shows the strategy and details for performing the NLO EW

calculation at O(α2
sα). In Section 5.4 we list the input parameters used in our numerical

analysis and show hadronic cross sections and distributions for squark–squark production

in proton–proton collisions at the LHC with
√
S = 14 TeV and

√
S = 7 TeV. Different

scenarios are considered, and we study the dependence of the EW contribution on the final-

state squark and gluino masses. Finally, we investigate the implications of an additional jet

in the final state originating from real bremsstrahlung.

5.1 Classification of Processes

At lowest order in QCD there is only one partonic channel for each process,

q(p1) q′(p2) → q̃α(p3) q̃′
β(p4),

q̄(p1) q̄′(p2) → q̃∗
α(p3) q̃′∗

β (p4),
(5.2)

where the initial-state quarks and the final-state squarks have to have the same flavor.

We thus do not consider the production of top (bottom) squarks due to the vanishing

(small) density of the corresponding quarks inside the proton. Moreover, b-squark produc-

tion has special features and will be discussed separately in Chapter 6. The unpolarized cross

sections for squark–squark and anti-squark–anti-squark production are related by charge-

conjugation. In the following we will refer to squark–squark production only, while the

charge-conjugated processes are properly taken into account in the numerical results.

Since the electroweak interaction is sensitive to flavor and chirality, one has to treat

processes with final-state squarks of different chiralities or of different isospin separately,

even in the limit of degenerate squark masses. CKM mixing effects are neglected in our

discussion.

In total we distinguish 36 processes, resulting from the various combinations of squarks

of different flavor or chirality in the final state. They can be classified as follows:

−Production of two squarks of the same flavor,

PP → ũαũβ, d̃αd̃β, c̃αc̃β , s̃αs̃β , {αβ} = {LL, RR, LR}.
(5.3a)

−Production of two squarks belonging to the same SU(2) doublet,

PP → ũαd̃β, c̃αs̃β , {αβ} = {LL, RR, LR, RL}.
(5.3b)

−Production of two squarks in different SU(2) doublets,

PP → ũαc̃β, ũαs̃β , d̃αc̃β, d̃αs̃β , {αβ} = {LL, RR, LR, RL}.
(5.3c)

The corresponding tree-level diagrams of both QCD and EW origin are listed in Figure 5.1.

QCD diagrams are of O(αs), mediated by gluino exchange. EW diagrams are of O(α) and

mediated by neutralino or chargino exchange. Quarks and squarks are of the same flavor,

also in the EW diagrams. The only exception is given by the two pure-EW chargino-mediated

subprocesses ud → d̃Lc̃L and cd → ũLs̃L belonging to the third class, which contribute to

d̃Lc̃L and ũLs̃L final states, respectively. Hence we have to take 38 partonic processes into

account. Note that only t- and u-channel diagrams are present, but no s-channel diagrams.
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Class QCD diagram(s) EW diagram(s)

PP → q̃αq̃β
same flavor

g̃ g̃ + χ̃0 χ̃0

PP → q̃αq̃
′
β

different flavor,
same doublet

g̃ + χ̃0 χ̃±

PP → q̃αq̃
′
β

different flavor,
different doublet

g̃ + χ̃0

(
χ̃±

)

Figure 5.1: Parton-level Feynman diagrams for the three classes of squark-squark production at
tree-level, where α, β = {L,R}. The first class describes the production of two squarks of the same
flavor, the second class that of two squarks of the same isospin doublet (but different flavor) and the
third class refers to the production of two squarks belonging to different isospin doublets. In the third
class, the subprocess in brackets cannot interfere with other diagrams due to different initial-state
particles. In all three classes, the final-state squarks are of the same generation as the initial-state
quarks.

For chirality-diagonal q̃αq̃′
α production the appearance of both t- and u-channel diagrams

gives rise to nonzero interferences between QCD and EW diagrams already at tree-level.1 In

particular this are the eight processes of (5.3a) for α = β and the two processes of (5.3b) for

α = β = L. The full tree-level contributions to the cross section are thus given by the O(α2
s)

Born contribution and the O(αsα+ α2) EW contributions. Photon-induced squark–squark

production is not possible at lowest order from charge and color conservation.

5.2 Tree-Level Cross Sections

To keep track of the corresponding order in perturbation theory of the various contributions,

we use the notation dσ̂a, b [Ma, b] introduced last chapter, in order to refer to the cross section

[matrix element] at a given order O(αasα
b) in the strong and electroweak couplings. Results

are given in terms of the Mandelstam variables, defined as usual,

ŝ = (p1 + p2)2, t̂ = (p1 − p3)2, û = (p1 − p4)2. (5.4)

As described in Section 4.2, the hadronic cross sections are obtained from the partonic

cross sections by convolution with the respective parton luminosity function. At O(αasα
b),

1In the non-diagonal case, q̃Lq̃
′
R production, the interference contributions vanish as a consequence of the

trivial squark mixing matrices in the limit of no L–R mixing, see also the discussion in Section 5.2.
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it is given by

dσa ,b(S) =

∫ 1

τ0

dτ
dLqq′

dτ
dσ̂a, b(ŝ), (5.5)

with
dLqq′

dτ
=

1

1 + δqq′

∫ 1

τ

dx

x

[
fAq

(
τ

x
, µF

)
fBq′ (x, µF ) + fAq′ (x, µF ) fBq

(
τ

x
, µF

)]
.

Here τ0 = (mq̃α + mq̃′
β
)2/S is the production threshold, determined by the masses of the

two squarks mq̃α and mq̃′
β
. The parton distribution functions (PDFs) fAq (x, µF ) give the

probability to find a parton q with momentum fraction x inside hadron A at a factorization

scale µF . At the LHC, both hadrons A,B are protons P . S and ŝ = τS are the squared

center-of-mass (c.m.) energies of the hadronic and partonic processes, respectively.

The differential partonic cross section for a given subprocess qq′ → q̃αq̃
′
β at LO can thus

be written as

dσ̂2, 0(ŝ) =
∑∣∣∣M1, 0

∣∣∣
2 dt̂

16πŝ2
, (5.6)

in terms of the squared lowest-order matrix element, M1, 0, averaged (summed) over initial

(final) state spin and color. Similarly, the pure EW differential cross section of O(α2) and

the QCD–EW O(αsα) interference contribution are given by

dσ̂0, 2(ŝ) =
∑∣∣∣M0, 1

∣∣∣
2 dt̂

16πŝ2
, (5.7a)

dσ̂1, 1(ŝ) =
∑

2 Re
{(

M0, 1
)∗

M1, 0
} dt̂

16πŝ2
, (5.7b)

where M0, 1 denotes the EW tree-level amplitude. In the following we give explicit expres-

sions for the tree-level differential cross sections (5.6)–(5.7) for all squark–squark production

subprocesses.2

We closely follow [25] and express the over initial (final) state color- and spin-averaged

(summed) squared t- and u-channel matrix elements and their interference in terms of the

following functions,

Φ(ξ̃1, ξ̃2, q̃α, q̃
′
β) =

1

4
cΦ(ξ̃1, ξ̃2)

1

t̂−m2
ξ̃1

1

t̂−m2
ξ̃2

[
A(ξ̃1, ξ̃2, q̃α, q̃

′
β) (5.8a)

×
(
t̂û−m2

q̃α
m2
q̃′

β

)
+B(ξ̃1, ξ̃2, q̃α, q̃

′
β)mξ̃1

mξ̃2
ŝ
]
,

Θ(ξ̃1, ξ̃2, q̃α, q̃
′
β) =

1

4
cΘ(ξ̃1, ξ̃2)

1

û−m2
ξ̃1

1

û−m2
ξ̃2

[
C(ξ̃1, ξ̃2, q̃α, q̃

′
β) (5.8b)

×
(
t̂û−m2

q̃α
m2
q̃′

β

)
+D(ξ̃1, ξ̃2, q̃α, q̃

′
β)mξ̃1

mξ̃2
ŝ
]
,

2Explicit expressions for the squared matrix elements are also given in [18,25]. However, we correct a wrong

color factor of [25], which affects the pure EW O(α2) contribution. The numerical impact is negligible for

all squark–squark production processes but it can be sizable in squark–anti-squark production channels

where the O(αsα) interference contribution is suppressed.
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ξ̃1, ξ̃2 cΦ(ξ̃1, ξ̃2) cΘ(ξ̃1, ξ̃2) cΨ (ξ̃1, ξ̃2)

g̃, g̃ 2/9 2/9 −2/27

χ̃, χ̃ 1 1 1/3

g̃, χ̃ 0 0 4/9

Table 5.1: Color factors in (5.8), with χ̃ denoting any neutralino χ̃0
k or chargino χ̃±

k .

ξ̃1,2

q̃′
β

a′, b′

q̃αa, b

t-channel: ξ̃1,2

q̃′
β

c′, d′

q̃αc, d

u-channel:

Figure 5.2: Notations for the couplings in the tree-level formulas in Section 5.2. Labels a,c refer
to the couplings to left-handed squarks, b and d to that of right-handed squarks. Couplings at the
upper and lower vertex, respectively, are denoted by distinct labels for convenience.

Ψ(ξ̃1, ξ̃2, q̃α, q̃
′
β) =

1

4
cΨ (ξ̃1, ξ̃2)

1

t̂−m2
ξ̃1

1

û−m2
ξ̃2

F (ξ̃1, ξ̃2, q̃α, q̃
′
β)mξ̃1

mξ̃2
ŝ. (5.8c)

Here, ξ̃1,2 ∈ {g̃, χ̃0, χ̃±} denote the exchanged particle in the t- or u-channel, respectively,

and c{Φ,Θ,Ψ} are color matrices which are summarized in Table 5.1. Note that the color

factors cΨ (χ̃, χ̃) differ from those in [25].

The coupling constants are collected in terms of the abbreviations A,B,C,D, F , as given

by

A(ξ̃1, ξ̃2, q̃α, q̃
′
β) =aξ̃1,q̃α

a∗
ξ̃2,q̃α

b′
ξ̃1,q̃′

β

b′∗
ξ̃2,q̃′

β

+ a′
ξ̃1,q̃′

β

a′∗
ξ̃2,q̃′

β

bξ̃1,q̃α
b∗
ξ̃2,q̃α

,

B(ξ̃1, ξ̃2, q̃α, q̃
′
β) =aξ̃1,q̃α

a∗
ξ̃2,q̃α

a′
ξ̃1,q̃′

β

a′∗
ξ̃2,q̃′

β

+ bξ̃1,q̃α
b∗
ξ̃2,q̃α

b′
ξ̃1,q̃′

β

b′∗
ξ̃2,q̃′

β

,

C(ξ̃1, ξ̃2, q̃α, q̃
′
β) =cξ̃1,q̃′

β
c∗
ξ̃2,q̃′

β

d′
ξ̃1,q̃α

d′∗
ξ̃2,q̃α

+ c′
ξ̃1,q̃α

c′∗
ξ̃2,q̃α

dξ̃1,q̃′
β
d∗
ξ̃2,q̃′

β

,

D(ξ̃1, ξ̃2, q̃α, q̃
′
β) =cξ̃1,q̃′

β
c∗
ξ̃2,q̃′

β

c′
ξ̃1,q̃α

c′∗
ξ̃2,q̃α

+ dξ̃1,q̃′
β
d∗
ξ̃2,q̃′

β

d′
ξ̃1,q̃α

d′∗
ξ̃2,q̃α

,

F (ξ̃1, ξ̃2, q̃α, q̃
′
β) =aξ̃1,q̃α

c∗
ξ̃2,q̃′

β

a′
ξ̃1,q̃′

β

c′∗
ξ̃2,q̃α

+ bξ̃1,q̃α
d∗
ξ̃2,q̃′

β

b′
ξ̃1,q̃′

β

d′∗
ξ̃2,q̃α

,

(5.9)

where the notation refers to the labels as listed in Figure 5.2. Finally the explicit coupling

constants aξ̃i,q̃α
, bξ̃i,q̃α

, . . . are listed in Table 5.2.

For the differential cross sections, we refer to the three classes of subprocesses introduced

in (5.3). α, β = {L,R} label the chirality of the squarks, k, l label the four (two) mass

eigenstates of neutralinos (charginos).
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ξ̃i, q̃α a, a′, c, c′ b, b′, d, d′

χ̃0
k, ũα − ie√

2sw

(
1
3
sw

cw
N∗
k1 +N∗

k2

)
δLα

4ie
3
√

2cw

Nk1 δRα

χ̃0
k, d̃α − ie√

2sw

(
1
3
sw

cw
N∗
k1 −N∗

k2

)
δLα − 2ie

3
√

2cw

Nk1 δRα

χ̃±
k , ũα − ie

sw
V ∗
k1 δLα 0

χ̃±
k , d̃α − ie

sw
U∗
k1 δLα 0

g̃, ũα −
√

2iĝs δLα
√

2iĝs δRα

g̃, d̃α −
√

2iĝs δLα
√

2iĝs δRα

Table 5.2: Coupling constants aξ̃i,q̃α
, bξ̃i,q̃α

, . . . for exchange particle ξ̃i and produced light-flavor
squark q̃α, following the conventions of [161]. L–R mixing of the squark mass eigenstates is neglected.
N,U, V are the unitary matrices diagonalizing the neutralino and chargino mass matrix, respectively.

P P → q̃αq̃β (two squarks of the same flavor)

The partonic process for this class of processes is qq → q̃αq̃β , i.e. all quarks and squarks are

of the same flavor. The differential cross sections at O(α2
s), O(α2), O(αsα) read, according

to the notation of Section 5.2,

dσ̂2, 0 =
{
Φ(g̃, g̃, q̃α, q̃β) +Θ(g̃, g̃, q̃α, q̃β) + 2 Re {Ψ(g̃, g̃, q̃α, q̃β)}

}
dt̂

16πŝ2
,

dσ̂0, 2 =
4∑

k,l=1

{
Φ(χ̃0

k, χ̃
0
l , q̃α, q̃β) +Θ(χ̃0

k, χ̃
0
l , q̃α, q̃β)

+ 2 Re
{
Ψ(χ̃0

k, χ̃
0
l , q̃α, q̃β)

}} dt̂

16πŝ2
,

dσ̂1, 1 =
4∑

k=1

2 Re
{
Ψ(g̃, χ̃0

k, q̃α, q̃β) + Ψ(χ̃0
k, g̃, q̃α, q̃β)

} dt̂

16πŝ2
.

(5.10)

A factor 1/2 for indistinguishable particles in the final state has correctly been taken into

account. As can be seen from the couplings in Table 5.2, the interference terms Ψ and thus

in particular the interference contribution dσ̂1, 1 are only present for diagonal squark–squark

production (i.e. α = β). This is a result from the absence of L–R mixing for the light-flavor

squarks.
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P P → q̃αq̃′
β (two squarks of different flavor in the same SU(2) doublet)

The only contributing partonic process is qq′ → q̃αq̃
′
β , with q′ being the SU(2) partner of q.

The tree-level contributions to the cross section read:

dσ̂2, 0 =Φ(g̃, g̃, q̃α, q̃
′
β)

dt̂

16πŝ2
,

dσ̂0, 2 =
{ 4∑

k,l=1

Φ(χ̃0
k, χ̃

0
l , q̃α, q̃

′
β) +

2∑

k,l=1

Θ(χ̃±
k , χ̃

±
l , q̃α, q̃

′
β)

+
4∑

k=1

2∑

l=1

2Re{Ψ(χ̃0
l , χ̃

±
k , q̃α, q̃

′
β)}
}

dt̂

16πŝ2
,

dσ̂1, 1 =
2∑

k=1

2 Re
{
Ψ(g̃, χ̃±

k , q̃α, q̃
′
β)
} dt̂

16πŝ2
.

(5.11)

In this case, the interference terms are related to chargino-mediated diagrams and thus

the interference contribution dσ̂1, 1 is only non-zero for the production of two left-handed

squarks (i.e. α = β = L).

P P → q̃αq̃′
β (two squarks in different doublets)

This class describes the production of two squarks of different flavor and of different genera-

tion, arising from the partonic process qq′ → q̃αq̃
′
β , with q 6= q′. The tree-level cross sections

read as follows,

dσ̂2, 0 =Φ(g̃, g̃, q̃α, q̃
′
β)

dt̂

16πŝ2
,

dσ̂0, 2 =
{ 4∑

k,l=1

Φ(χ̃0
k, χ̃

0
l , q̃α, q̃

′
β) + δquδq′s δq̃d̃ δq̃′c̃

2∑

k,l=1

Φ(χ̃±
k , χ̃

±
l , q̃α, q̃

′
β)

+ δqcδq′d δq̃ũ δq̃′s̃

2∑

k,l=1

Φ(χ̃±
k , χ̃

±
l , q̃α, q̃

′
β)
}

dt̂

16πŝ2
,

dσ̂1, 1 = 0.

(5.12)

Here, two additional chargino-mediated partonic processes (us → d̃Lc̃L and cd → ũLs̃L) can

give an O(α2) contribution. The O(αsα) interference contribution vanishes for this class of

processes.

5.3 Next-to Leading Order EW Contributions

At O(α2
sα), squark–squark production gets contributions from virtual corrections, real pho-

ton and gluon emission, as well as real quark radiation. The calculation suffers of ultraviolet

(UV) divergences as well as infrared (IR) and collinear singularities that are treated accord-

ing to the procedure described in Chapter 4. These divergences and singularities arise in
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Figure 5.3: Sample of Feynman diagrams to illustrate the virtual contributions at O(α2
sα). Three

gauge invariant subsets of interferences occur at this order. The label of perturbative order is attached
to each diagram. EW refers to electroweakly interacting particles and QCD refers to strongly
interacting particles in the loop insertions. The full sets of diagrams are shown in Figures 5.4, 5.5,
and 5.6.

the one-loop diagrams, see Section 5.3.1. The IR singularities cancel in sufficiently inclusive

observables once virtual and real photon- and gluon-bremsstrahlung corrections are added

(see Section 5.3.2). Remaining collinear singularities are universal and can be absorbed by

redefining the PDFs, explicit formulas are given in Section 5.3.3.

Diagrams and corresponding amplitudes are generated using FeynArts [162,163]. The al-

gebraic simplifications and numerical evaluation is done with help of FormCalc and LoopTools [161,

163]. IR and collinear singularities are regularized by means of mass regularization, i.e. we

introduce a fictitious mass for the photon and the gluon. Quarks are treated as massless,

except where their masses are needed as regulators.

5.3.1 Virtual Corrections

The virtual contributions are given by the interference of tree-level and one-loop diagrams.

In practice three types of interferences occur at O(α2
sα), as schematically depicted in Fig-

ure 5.3. All three interference terms yield non-vanishing contributions to the cross section.

For each subprocess, the partonic cross section can be written as

dσ̂2, 1
virt. =

dt̂

16πŝ2

∑
2 Re

{(
M1, 0

)∗
M1, 1

(EW) +
(
M1, 0

)∗
M1, 1

(QCD)

}

+
dt̂

16πŝ2

∑
2 Re

{(
M0, 1

)∗
M2, 0

}
.

(5.13)

The first line corresponds to (a) and (b) of Figure 5.3 and is given by the interference of

M1, 0 with M1, 1. The amplitude M1, 1 is split into two parts, M1, 1
(EW) and M1, 1

(QCD), the

first arising from tree-level QCD diagrams with EW insertions (Figure 5.3a, right), and the
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latter from tree-level EW diagrams with QCD insertions (Figure 5.3b, right). The second

line in (5.13), corresponding to Figure 5.3c, is given by the interference of M0, 1 with the

pure-QCD one-loop amplitude M2, 0. Care has to be taken with diagrams containing a

four-squark vertex. This vertex includes the electroweak as well as the strong coupling and

the appropriate part has to be selected in each interference contribution to match the right

order, as indicated in Figure 5.3.

The full set of virtual corrections is UV finite after renormalization of the theory and

the inclusion of the proper set of one-loop counterterms. The renormalization for squark–

squark production involves the renormalization of the gluino mass and gluino field, the field

renormalization of the light-flavor quarks and squarks, and the renormalization of the strong

coupling constant. The renormalization procedure is described in detail in Section 4.4 and

will not be repeated here. The relevant renormalization constants are given by eqs. (4.38),

(4.48), (4.77), (4.81), and (4.83b), while the counterterms are listed in Table B.2 of Ap-

pendix B. Each of the three interference subsets of Figure 5.3 is gauge-independent by itself

and can be renormalized separately. Further, the first set contains singularities originating

from IR and collinear photons, while the second and third exhibit singularities due to IR

and collinear gluons.

In the first group, shown in Figure 5.3a, gluino-mediated amplitudes with weak insertions

(M1, 1
(EW)) are considered. The full set of Feynman diagrams entering at O(α2

sα) consists

of vertex and box corrections and is shown in Figure 5.4. We include the diagrams with

counterterms for the qg̃q̃α vertex (cf. Table B.2), and evaluate the renormalization constants

at O(α). The whole set of diagrams enters for all three classes, of (5.3) and hence for all 36

production processes. In the case of diagonal squark–squark production q̃αq̃α, corresponding

to the first class, one in addition has to take crossed diagrams into account. At this order

in the perturbative expansion we need to renormalize quark and squark fields, while the

renormalization of gluino and strong coupling is not required. The regularization of the

divergent amplitudes in this sector is done in dimensional reduction, and renormalization of

quarks and squarks is performed in the on-shell scheme.

In the second case, Figure 5.3b, neutralino- or chargino-mediated amplitudes with strong

insertions (M1, 1
(QCD)) are considered. As in the first case, is consists of vertex and box

corrections. The full set of diagrams is shown in Figure 5.5. The diagrams are divided up

into two sets, (a) and (b). The diagrams in the first set, Figure 5.5a, enter in all three process

classes of (5.3). In the case of diagonal squark–squark production, q̃αq̃α, one again has to

consider the crossed diagrams, which are not explicitly shown. The second set of diagrams,

Figure 5.5b, is only present in the second class of processes, (5.3b). It is worth to notice,

that due to color correlations, the vertex corrections are only present for the 10 processes

of (5.3a) and (5.3b), with non-vanishing tree-level QCD–EW interference contributions. For

these processes one in addition has to include diagrams containing counterterms for the qq̃χ̃0

vertex and, if arising, for the qq̃′χ̃± vertex (cf. Table B.2) in order to obtain a UV-finite

result. The renormalization constants have to be evaluated at O(αs) and no renormalization

of the neutralino or chargino is required. Since the gluino does not enter this subset of one-

loop amplitudes, it is thus sufficient to renormalize the quark and squark sector. As before,
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Figure 5.4: Virtual corrections (I): EW one-loop insertions into QCD Born diagrams. Q and Q′

denote the SU(2) partner of quark q and q′, respectively. We use generic labels V 0 = γ, Z and
S0 = h0,H0, G0, A0. If the chirality of an internal squark is not specified, it can be any. The
diagram containing the four-squark vertex has to be taken at O(αsα). The diagrams in the third
line contribute only for u = {u, c}, d = {d, s}. The last two diagrams contain the counterterms,
whose renormalization constants have to be evaluated at O(α). For q = q′ crossed diagrams have to
be taken into account.

the divergent amplitudes are regularized in dimensional reduction and on-shell conditions

are imposed to fix the (s)quark renormalization constants.

The third subset, Figure 5.3c, refers to pure-QCD one-loop amplitudes, i.e. gluino-mediated

diagrams with strong insertions (M2, 0). It consists of vertex and box corrections, and in

addition self-energy corrections to the gluino have to be taken into account. The full set

of diagrams is shown in Figure 5.6. However, due to color correlations, the self-energy and

vertex corrections only contribute to the 10 processes with non-vanishing tree-level QCD–

EW interferences. For those, one also has to take the counterterm diagrams into account

(last three diagrams of Figure 5.6) and one has to renormalize the quark and squark sector

as well as the gluino and the strong Yukawa coupling ĝs, which appears in the qq̃g̃ vertex.

The renormalization constants have to be evaluated at O(αs). The strong scalar coupling

ĝs is related to the strong coupling gs via supersymmetry. To match the definition of the

strong coupling constant used in the extraction of the PDFs, gs has to be given in the MS

scheme with the contributions from heavy particles subtracted in the running of αs, for

further details on the definition of the PDFs, we refer to Section 4.2. We thus regularize
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d ũα

u

d

ũα
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Figure 5.5: Virtual corrections (II): QCD one-loop insertions into EW Born diagrams. For q = q′

crossed diagrams have to be taken into account. The diagrams containing the four squark interaction
vertex have to be evaluated at O(αsα). The chargino-mediated diagrams only contribute for u =

{u, c}, d = {d, s}. The renormalization constants appearing in the counterterm diagrams (last line)
have to be evaluated at O(αs).

this part of the virtual corrections using dimensional regularization. Quarks and squarks

are renormalized on-shell again, in the strong sector the MS scheme is applied. Dimensional

regularization however induces a finite difference between gs and ĝs at the one-loop level

and violates the supersymmetric relation between the two couplings [127]. We add the well-

known finite shift in the definition of the renormalization constant for ĝs in order to restore

SUSY in the physical amplitudes [18]. The explicit counterterms for gs and ĝs are given by

(4.81) and (4.83b).

The virtual corrections also exhibit photonic and gluonic mass singularities of infrared

and collinear origin. In M1, 1
(EW), mass singularities arise if two external particles exchange

a low-energetic massless photon while collinear singularities appear if one of the massless

initial-state quarks splits collinearly into a quark and a photon. In order to obtain an IR

finite result, real photon radiation at O(α2
sα) has to be added. In contrast in M1, 1

(QCD),

massless gluons running in the loops give rise to mass singularities in the soft and collinear

limit. Similarly, the diagrams contributing to M2, 0 suffer from gluonic IR and collinear

singularities. Hence we have to include real gluon bremsstrahlung at O(α2
sα) in order to
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Figure 5.6: Virtual corrections (III): QCD one-loop insertions into QCD Born diagrams. For
q = q′ crossed diagrams have to be taken into account. Here, Qi can be any of the six quark flavors.
The diagram containing the four squark vertex has to be evaluated at O(α2

s). The renormalization
constants appearing in the counter term diagrams (last three diagrams) have to be evaluated at
O(αs), i.e. the strong sector has to be renormalized.

cancel the IR singularities. We regularize the photonic singularities by means of mass regu-

larization. Owing to the photon-like appearance of the gluon in the respective diagrams, it

is also possible to regularize these IR singularities by a fictitious gluon mass. The treatment

of soft and collinear photon and gluon emission is discussed in detail in Section 4.5.

5.3.2 Real Corrections

Three independent bremsstrahlung processes contribute at O(α2
sα), as depicted in Fig-

ure 5.7. Real photon and real gluon radiation processes have to be combined with the

corresponding subset of virtual corrections to obtain an IR finite result. We use the phase-

space slicing method of Section 4.5.1 in order to divide the real photon and gluon emission

into singular and non-singular regions. For real gluon emission, color correlations have to be

taken into account, as described in Section 4.5.2. Remaining collinear singularities of pho-

tonic and gluonic origin have to be absorbed into the PDFs, see also Section 4.5.3. Also real

quark radiation gives nonzero contributions from the interference of QCD and EW mediated

diagrams and has to be included in the cross section at O(α2
sα).
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Figure 5.7: Sample of Feynman diagrams for the three subsets of real emission contributions at
O(α2

sα). The order in the perturbative expansion is specified for each diagram. The full sets of
diagrams are given Figures 5.8, 5.9, and 5.10.

Real Photon Emission

The real photon emission at O(α2
sα),

q(p1) q′(p2) → q̃α(p3) q̃′
β(p4) γ(k), (5.14)

is given by the squared matrix element of a QCD tree-level diagram with an external photon

attached (see Figure 5.7, top and Figure 5.8 for the full set of diagrams). The integration over

the photon phase-space is IR divergent in the soft-photon region, i.e. for k0 → 0. Further

singularities arise in the collinear region if pi · k → 0 for i = {1, 2}. We use phase-space

slicing and apply a cut on the photon energy, k0 > δs
√
ŝ/2, and on the angle θ between the

photon and incoming partons, | cos(θ)| < 1−δθ, to split off the singular regions. In the hard,

non-collinear region the integration is convergent and is performed numerically. The cross

sections in the soft- and collinear region can be approximated analytically and are given by,

cf. Section 4.5.1,

dσ̂2,1
12→34γ

∣∣
soft

= − α

2π
dσ̂2,1

12→34

4∑

i,j=1;i<j

eiejσiσjIij , (5.15)

dσ̂2, 1
12→34γ(ŝ)

∣∣∣
coll

=
α(e2

q + e2
q′)

2π

∫ 1−δs

z0

dz κqq(z, ŝ) dσ̂2,0
12→34(zŝ), (5.16)

ei is the charge of the ith particle and σi = ±1 depending on whether the particle is incoming

or outgoing, respectively. The universal phase-space integrals Iij are listed in (4.91), while

z0 and κqq are given by

z0 = (m2
q̃ +m2

q̃′)/ŝ, κqq(z, ŝ) =
1 + z2

1 − z
ln

(
ŝδθ
2mq

)
− 2z

1 − z
. (5.17)
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Figure 5.8: Feynman diagrams for real photon emission. For q = q′ crossed diagrams have to be
taken into account. Diagrams in the last row only contribute for u = {u, c}, d = {d, s}.

As explained in Section 4.5.1, the upper integration bound in the collinear region is lowered

by δs to avoid double counting of the soft regime.

By combining the real photon emission with the virtual EW-type corrections (Figure 5.3a),

the soft singularities cancel. Remaining initial-state collinear singularities are universal and

have to be absorbed via factorization in the PDFs, see Section 5.3.3. In the following, we

will refer to this UV-, IR- and collinear-finite combination as the EW-type corrections.

Real Gluon Emission

Real gluon bremsstrahlung at O(α2
sα) proceeds via the partonic process

q(p1) q′(p2) → q̃α(p3) q̃′
β(p3) g(k). (5.18)

It is given by the interference term of a QCD and an EW tree-level diagram, both with an

external gluon attached on (Figure 5.7, center and Figure 5.9). In the considered processes

the gluon is Abelian like and we can treat soft and collinear singularities by mass regulariza-

tion in close analogy to the photonic case. However the eikonal current has to be modified

in order to take color correlations into account. Different to real photon emission, collinear

singularities only arise for diagonal q̃αq̃α, ũLd̃L, and c̃Ls̃L production. This can be seen by

noticing that in the collinear cone the cross section becomes proportional to the correspond-

ing 2 → 2 process, which in this case would be squark–squark production at O(αsα); i.e.

the interference of tree-level QCD and EW diagrams must be non-vanishing. In the notation

of Section 4.5.2, the explicit expressions for the differential cross sections in the soft and



5.3. Next-to Leading Order EW Contributions 97

collinear limit are given by,

dσ̂2,1
12→34g

∣∣∣
soft

= −αs
2π

{ 4∑

i,j=1;i<j

IijFij

} dt

16πŝ2
, (5.19)

dσ̂2,1
12→34g(ŝ)

∣∣∣
coll

=
αsCF
π

∫ 1−δs

z0

dz κqq(z, ŝ) dσ̂1,1
12→34(zŝ), (5.20)

with the phase-space integrals Iij and the color correlated amplitudes Fij defined in (4.91)

and (4.110), respectively. z0 and κqq are the same as for collinear photon emission and

given by eq. (5.17). In the case of squark–squark production the tree-level amplitude can

be decomposed according to their color structure as

Mi,j c1c2c3c4

12→34 = δc1c3
δc2c4

Mi,j
1 + δc1c4

δc2c2
Mi,j

2 , (i, j) = (1, 0), (0, 1),

M0,1
1 = M0,1

T , M1,0
1 =

1

2

(
M1,0

U − 1

3
M1,0

T

)
,

M0,1
2 = M0,1

U , M1,0
2 =

1

2

(
M1,0

T − 1

3
M1,0

U

)
,

(5.21)

where Mi,j
U,T are the amplitudes corresponding to the u-channel and t-channel diagrams,

respectively. In this case the color correlated amplitudes Fij are given by

F12 = F34 = 4
[(

M0,1
1

)∗
M1,0

2 + M0,1∗
2 M1,0

1

]
,

F13 = F24 = −12
(
M0,1

1

)∗
M1,0

1 − 4
[(

M0,1
1

)∗
M1,0

2 +
(
M0,1

2

)∗
M1,0

1

]
,

F14 = F23 = −4
[(

M0,1
1

)∗
M1,0

2 +
(
M0,1

2

)∗
M1,0

1

]
− 12

(
M0,1

2

)∗
M1,0

2 ,

Fii = 12
[(

M0,1
1

)∗
M1,0

1 +
(
M0,1

2

)∗
M1,0

2

]
+ 4

[(
M0,1

1

)∗
M1,0

2 +
(
M0,1

2

)∗
M1,0

1

]
,

(5.22)

where in the last case i = 1, . . . , 4.

By combining real gluon emission and the two virtual QCD-type corrections (Figure 5.3b,c),

the IR singularities cancel. Remaining collinear singularities are again absorbed into the

PDFs, as described in Section 5.3.3. In the following we will refer to this UV-, IR- and

collinear-finite combination as the QCD-type corrections.

Real Quark Emission

Finally, also real quark radiation contributes at O(α2
sα),

g(p1) q(p2) → q̃α(p3) q̃′
β(p4) q̄′(k),

and if q 6= q′ g(p1) q′(p2) → q̃α(p3) q̃′
β(p4) q̄(k),

(5.23)

via the interference of a QCD-type diagram with an EW-type diagram, as shown in Figure 5.7,

bottom (see Figure 5.10 for the complete listing of diagrams). This process can be regarded

as completely independent of the virtual corrections, since it is IR finite by itself. However

it has to be taken into account in a consistent analysis of electroweak corrections up to
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Figure 5.9: Feynman diagrams for real gluon emission. Only interferences of diagrams in (a) and
(b) contribute at O(α2

sα). For q = q′ crossed diagrams have to be taken into account. Diagrams in
the last row only contribute for u = {u, c}, d = {d, s}.

O(α2
sα). Initial-state collinear singularities are present for processes with non-vanishing

tree-level interferences. The cross section in the collinear region is given by a convolution

integral, cf. Section 4.5.3,

dσ̂2,1
12→34q̄(ŝ)

∣∣∣
coll

=
αsTF

2π

∫ 1

z0

dz κqg(z, ŝ)dσ̂
1,1
12→34(zŝ), (5.24)

with TF = 1/2. κqg is given by

κqg = (z2 + (1 − z)2) ln

(
ŝδθ(1 − z)2

2m2
q

)
+ 2z(1 − z), (5.25)

while z0 is defined according to (5.17). As before, these singularities are absorbed via

factorization into the PDFs, see Section 5.3.3.

Different to photon and gluon bremsstrahlung, the internal gluino, neutralino or chargino

can go on-shell in specific SUSY scenarios, if heavier than one of the external squarks. In

these cases, we include a Breit–Wigner width for the resonant particle in the corresponding

propagators to regularize the poles. Note that physical resonances do not occur. This is

different to the case of real quark radiation in e.g. gluino–squark production processes [28],

where internal squarks can go on-shell in both the EW- and the QCD-mediated diagrams.
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Figure 5.10: Feynman diagrams for real quark emission. Only interferences of diagrams in (a) and
(b) contribute at O(α2

sα). For q 6= q′ diagrams with q and q′ exchanged have to be considered, too.
For q = q′ crossed diagrams have to be taken into account. Diagrams in the last row only contribute
for u = {u, c}, d = {d, s}.

5.3.3 Factorization of Initial-State Collinear Singularities

The remaining collinear singularities have to be absorbed by redefining the PDFs. At O(α2
sα)

this can be achieved by the replacement [155,156], cf. Section 4.5,

fq(x, µF ) → fq(x, µF )

(
1 −

αe2
q + αsCF

π
κv+s − 1

4

αe2
q

π
fv+s

)

−
∫ 1−δs

x

dz

z
fq
(x
z
, µF

)(αe2
q + αsCF

2π
κc(z) −

αe2
q

2π
fc(z)

)

−
∫ 1

x

dz

z
fg
(x
z
, µF

) αsCF
2π

Pqg(z) ln

(
µ2
F

m2
q

)
,

(5.26)

where eq denotes the electric charge of quark q, CF = 4/3, and

κv+s = 1 − ln δs − ln2 δs +
(

ln δs +
3

4

)
ln

(
µ2
F

m2
q

)
,

κc(z) = Pqq(z) ln

(
µ2
F

m2
q

1

(1 − z)2
− 1

)
.

(5.27)

The factorization-scheme dependent functions are

fv+s = 9 +
2π2

3
+ 3 ln δs − 2 ln2 δs,

fc(z) = Pqq(z) ln
(

1 − z

z

)
− 3

2

1

1 − z
+ 2z + 3,

(5.28)

with the splitting functions

Pqq(z) =
1 + z2

1 − z
, Pqg(z) = z2 + (1 − z2). (5.29)
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The factorization is done in the MS scheme at NLO QCD and in the physical DIS scheme

at NLO EW. The replacement of the PDFs in (5.5) gives further contributions of O(α2
sα) to

the total cross section. The first and second line in (5.26) cancel the remaining singularities

in the EW-type and QCD-type corrections. The third line in (5.26) cancels the collinear

singularities in the real quark radiation.

5.4 Numerical Results

In the following we illustrate the impact of the EW contributions on the production cross

section. Since we have 36 processes contributing to squark–squark production and the same

amount for anti-squark–anti-squark production, we present (at least partly) inclusive results.

We refer to four different combinations of (anti-)squarks in the final state, which differ with

respect to the chirality of the produced particles:

• q̃Lq̃
′
L or “LL” refers to the inclusive production of two left-handed squarks and two

left-handed anti-squarks.

• q̃Lq̃
′
R or “LR” refers to the inclusive production of one left-handed and one right-handed

squark and the charge-conjugated process.

• q̃Rq̃
′
R or “RR” refers to the inclusive production of two right-handed squarks and two

right-handed anti-squarks.

• q̃q̃′ or “incl.” refers to the inclusive production of all (anti-)squarks. It is given by

the sum of the three cases above, taking all 72 subprocesses of squark–squark and

anti-squark–anti-squark final states into account.

We focus here on these chirality-based classes since squarks of different chiralities are, in

principle, experimentally distinguishable by their decay chains, see e.g. Section 5.1.2 of [91].

In the discussion we refer to the following quantities, based on the cross section definitions

in Section 5.2. The leading order cross section is denoted by σBorn = σ2, 0. The tree-level

EW and the NLO EW contributions to the cross section are labeled by

∆σtree EW = (σ1, 1 + σ0, 2), ∆σNLO EW = σ2, 1, (5.30)

respectively, and∆σEW = ∆σtree EW+∆σNLO EW will be referred to as the EW contribution.

The total sum of the LO cross section with the EW contributions is denoted by σNLO =

σBorn +∆σEW. Relative EW contributions are defined by

δtree EW = ∆σtree EW/σBorn, δNLO EW = ∆σNLO EW/σBorn, δEW = ∆σEW/σBorn.

(5.31)

In distributions δ denotes the relative EW contribution defined as δ = (ONLO−OBorn)/OBorn,

where O is a generic observable and ONLO is the sum of the Born and the EW contribution.
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m0 m1/2 A0 tan β sign(µ)

SPS1a′ 70 GeV 250 GeV −300 GeV 10 +

SPS2 1450 GeV 300 GeV 0 9.66 +

SPS5 150 GeV 300 GeV −1000 GeV 4.82 +

Table 5.3: High energy input parameters for the different SUSY scenarios considered. The mass
parameters m0, m1/2 and A0 are given at the GUT scale, tan β is evaluated at MSUSY = 1 TeV.

5.4.1 Input Parameters

The Standard Model input parameters are chosen in correspondence with [14,140],

MZ = 91.1876 GeV, MW = 80.399 GeV,

α−1 = 137.036, αs(MZ) = 0.118,

mt = 170.9 GeV, mMS
b (MZ) = 2.94 GeV.

(5.32)

The strong coupling constant αs has been defined in the MS scheme using the two-loop

renormalization group equation with five light flavors, cf. Section 4.4.2. The bottom-quark

mass is taken from [164]. In particular, this value is consistent with the world average,

usually quoted as mMS
b (mb) = 4.19+0.18

−0.06 and m1S
b = 4.67+0.18

−0.06, respectively [14].

For the SUSY parameters, we refer to three benchmark mSUGRA scenarios, the SPS1a′

scenario, the SPS2, and SPS5 scenario [90, 165]. The SPS1a′ scenario can be considered as

a “typical” mSUGRA scenario. It has been proposed by the SPA convention and should

be used for comparisons with other calculations. The SPS2 scenario features relatively

heavy squarks with light charginos and neutralinos and a gluino lighter than the squarks.

The SPS5 scenario leads to a very light t̃1 with moderate light-flavor squark masses. In

each scenario, the particle spectrum is determined by universal GUT scale parameters, cf.

Table 5.3, which act as boundary conditions for the renormalization group running of the

soft-breaking parameters. We use the program SOFTSUSY [166] to evolve the soft-breaking

parameters down to the SUSY scale MSUSY. We choose a common SUSY scale MSUSY =

1 TeV for all scenarios, in reference to the SPA convention. At MSUSY a consistent translation

of the squark masses into the on-shell scheme is performed. The left-handed down-type

squark is treated as a dependent mass parameter, fixed by SU(2) invariance. It is set to its

corresponding on-shell value obtained at one-loop accuracy according to [143]. The on-shell

mass parameters for the light-flavor squarks together with the masses of the gluino and the

lightest neutralino/chargino are summarized in Table 5.4.

The technical cuts needed for the regularization of soft and collinear singularities are set to

δs = 2·10−3 and δθ = 10−4. We checked numerically that these values are sufficiently small to

justify the eikonal approximation. Figure 5.11 shows the dependence on the cut parameters

δs (first line) and δθ (second line) for ũLũL production. This process is chosen exemplary,

since it has a large tree-level contribution arising from QCD–EW interferences and hence
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ũL ũR d̃L d̃R g̃ χ̃0

1
χ̃±

1

SPS1a′ 561 543 566 539 609 101 180

SPS2 1559 1554 1561 1555 785 120 199

SPS5 677 655 681 654 724 123 225

Table 5.4: On-shell masses of the squarks, the gluino, and the lightest neutralino and chargino
within the different SUSY scenarios considered. All masses are given in GeV.

exhibits a singular behavior for collinear gluon emission, cf. Section 5.3.2. The left panels

show the contributions to ∆σNLO EW from the virtual corrections combined with the soft

singular region, from the collinear cone, and from the non-singular real radiation. For the δs
dependence one gets large cancellations between the three plotted contributions for small cut

parameters. The virtual and soft contributions are independent of the angular cut parameter

δθ. On the right panels, the sum of all three contributions, including error-bars, is plotted

separately. One can see that for small enough values of the cut parameters ∆σNLO EW

approaches an asymptotic value, i.e. the eikonal approximation becomes valid. However, for

small values δs and δθ large cancellations occur which lead to higher uncertainties due to

the numerical integration.

The results presented in this section are computed using the MRST2004QED parton dis-

tribution functions [126] and setting the hadronic center of mass energy to
√
S = 14 TeV.

For comparison, we give results at
√
S = 7 TeV in Section 5.4.5.

5.4.2 Renormalization and Factorization Scale Dependence

Figure 5.12 shows the scale dependence for the SPS1a′ scenario. Here we are inclusive with

respect to processes that contribute at O(αsα). We compare the tree-level EW contribution

with the cross section including the NLO EW contributions at O(α2
sα), i.e. one order higher in

the strong coupling. In the left panel, factorization and renormalization scales are identified,

µ = µR = µF = mq̃ with mq̃ being the average mass of the light-flavor squarks. The tree-

level EW contribution ∆σtree EW to the cross section is calculated using the MRST2001LO

PDF set [167] which is the LO PDF set corresponding to the MRST2004QED set [168]. In

the right panel the renormalization scale is fixed and only the factorization scale is varied.

For the LO EW and NLO EW contributions given by the red and blue curves, the same PDF

sets are used. The green curve, is obtained by using the MRST2004NNLO PDF set [169].

One finds that the scale dependence of the hadronic cross section is considerably reduced

by taking the NLO EW contributions into account. The residual uncertainty arises mostly

from the choice of the renormalization scale while the dependence on the factorization scale

variation is mild at NLO as can be seen from Figure 5.12 (b). From Figure 5.12 (a) one finds

that ∆σtree EW and ∆σEW coincide at the scale µ = 1.5mq̃. This scale strongly differs from

the scale proposed from NLO QCD corrections, where the LO and NLO cross section coincide

at scales µ ≈ 0.5mq̃, cf. Section 3.2. It is interesting to note that the impact of QED effects
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Figure 5.11: Dependence of ∆σNLO EW on the technical cut parameters δs (first line) and δθ (second
line). The left panels show the contributions from the virtual corrections and the soft singular region
(blue line), from the collinear cone (red line), and from the non-singular real radiation (green line).
The sum of the contributions, given by the black line, is also shown separately on the right panels
including error-bars.

in the evolution of the PDFs is small. This feature, already pointed out in [170], has been

explicitly checked using the NLO QCD PDF provided by the MRST2004NNLO set, which does

not include QED effects (green curve of Figure 5.12 (b)). In the following, the factorization

and renormalization scales are set to the common value µ = µR = µF = mq̃.

5.4.3 Total Hadronic Cross Sections

Tables 5.5–5.7 give the results for the hadronic cross sections for squark–squark production at

the LHC at
√
S = 14 TeV within the SPS1a′, SPS2, and SPS5 scenario, respectively. We refer

to the production of squarks of different chiralities separately and implicitly sum over flavor,

cf. Section 5.4. Renormalization and factorization scales are set to µ = 560 GeV (SPS1a′),

µ = 1560 GeV (SPS2), and µ = 666 GeV (SPS5). We checked that the results for the tree-

level EW contributions numerically agree with those quoted for the SPA1a scenario in [25].

Differences between [25] and Tables 5.5–5.7 are related to the choice of input parameters

and to the strong scale dependence of the tree-level EW contributions, see Figure 5.12.
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Figure 5.12: Dependence of the hadronic cross section σ on the renormalization and factorization
scale µR and µF for the SPS1a′ scenario: (a) both scales are set to a common value µR = µF = µ

with µ varied by a factor two around mq̃ = 560 GeV, (b) variation of µF , with fixed µR = mq̃.
Only processes that contribute at O(αsα) are considered. The red line shows the tree-level EW
contribution to the cross section using a LO PDF set, while the blue and green curve shows the
EW contribution up to NLO EW using NLO QCD PDF sets with (blue) and without (green) QED
evolution. Further details are given in the text.

The Born cross section is QCD mediated and does not depend on the chirality of the

produced squarks. Indeed the cross sections for the diagonal production of two squarks, LL

or RR, become equal for degenerate masses. The Born cross section for non-diagonal LR

production, however, is different in general since the final-state particles are distinguishable.

In the SPS1a′ and SPS5 scenario it happens to be of similar size as the LL and RR production

cross sections. In the SPS2 scenario, however, the LR cross section is enhanced and accounts

for 50% of the total cross section for inclusive squark–squark production. As we will see

below, cf. Figure 5.15 (b), the relative yield of the LR production cross section is determined

by the ratio of squark and gluino masses, becoming more important if the exchanged gluino

is lighter than the final-state squarks.

Due to the nature of the electroweak interaction, the EW cross section contributions

depend strongly on the chirality of the produced squarks. The tree-level EW contributions

have been studied extensively in [25]. Their impact is largest in case of the LL production

of two SU(2) gauged left-handed squarks (15 − 25% in the considered scenarios). For RR

production, where only U(1)Y couplings enter the EW-mediated diagrams, the tree-level EW

contributions are around one order of magnitude smaller. They are even further suppressed

for LR production, where the O(αsα) tree-level interference contributions are completely

absent. Also, LR production is induced by initial-state quarks of opposite helicities and

thus suffers additionally from a p wave suppression. More details can be found in [25].

The situation is different for the NLO EW contributions. These are equally important

in the case of LL and LR production (reducing the LO prediction by about 4 − 8% in

the considered scenarios), but negligible for RR production. In all three cases the NLO EW
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SPS1a′
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

q̃Lq̃′
L 1717.6(8) 378.9(1) −74.8(6) 22.1 % −4.4 % 17.7 %

q̃Rq̃′
R 1981.9(7) 31.81(2) −1.60(9) 1.6 % −0.1 % 1.5 %

q̃Lq̃′
R 1743.8(4) 2.538(1) −70.71(4) 0.1 % −4.1 % −3.9%

q̃q̃′ 5443(1) 413.3(1) −147.1(6) 7.6 % −2.7 % 4.9 %

Table 5.5: Hadronic cross sections in femtobarn (fb) for squark–squark production at the LHC
within the SPS1a′ scenario for

√
S = 14 TeV. Shown are the LO cross section, the tree-level EW as

well as NLO EW contributions and the relative corrections as defined in the text. Anti-particles are
included. The numbers in brackets refer to the integration uncertainty in the last digit.

SPS2
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

q̃Lq̃′
L 7.359(1) 1.0326(2) −0.5776(7) 14.0 % −7.8 % 6.2 %

q̃Rq̃′
R 7.529(1) 0.1005(1) −0.0052(1) 1.3 % −0.1 % 1.3 %

q̃Lq̃′
R 14.651(1) 0.0136(1) −0.8676(2) 0.1 % −5.9 % −5.8 %

q̃q̃′ 29.539(2) 1.1468(2) −1.4506(7) 3.9 % −4.9 % −1.0 %

Table 5.6: Same as Table 5.5 but for the SPS2 scenario.

corrections are negative and partially compensate the EW tree-level contributions. Summing

over all processes, the EW contributions to the total cross section for inclusive squark–squark

production decrease from about 8% to about 5% in SPS1a′ and SPS5 after the inclusion of

NLO EW corrections. In the SPS2 scenario, where LR production is the dominant production

mechanism, the NLO EW corrections even overcompensate the EW tree-level contributions

and the result turns negative.

In order to further investigate the dependence of the EW contributions on squark and

gluino masses, we perform a parameter scan over those quantities. The independent squark

masses are chosen equal to a common value mq̃, with the dependent fourth squark mass set

to its corresponding on-shell value. All other parameters are fixed to their SPS1a′ values.

The renormalization and the factorization scale are set to µR = µF = mq̃.

To start with, we show in Figure 5.13 the Born cross section (left panel) and the EW cross

section contributions (right panel) for inclusive squark–squark production as a function of

the common squark mass and for different values of the gluino mass. Both the Born and the

EW contribution strongly decrease for growing squark masses. While the Born cross section

is quite sensitive to the gluino mass for low squark masses, the EW contribution is almost

independent in this regime. For high squark masses the behavior is vice versa.
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SPS5
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

q̃Lq̃′
L 774.7(1) 185.71(4) −35.9(1) 24.0 % −4.6 % 19.3 %

q̃Rq̃′
R 888.0(1) 16.332(5) −0.69(2) 1.8 % −0.1 % 1.8 %

q̃Lq̃′
R 758.00(9) 1.1559(3) −33.68(1) 0.2 % −4.4 % −4.3 %

q̃q̃′ 2420.7(3) 203.20(4) −70.3(1) 8.4 % −2.9 % 5.5 %

Table 5.7: Same as Table 5.5 but for the SPS5 scenario.

m~g = 1000 GeVm~g = 900 GeVm~g = 800 GeVm~g = 700 GeVm~g = 600 GeVm~g = 500 GeVm~g = 400 GeV
inl. m~q[GeV℄

�Born [pb℄
1000900800700600500400300

10
1
60
0.3 inl. m~q[GeV℄

��EW [pb℄
1000900800700600500400300

1010.10.01
5

Figure 5.13: Hadronic Born cross section (left) and EW contributions (right) for inclusive squark–
squark production as a function of a common squark mass mq̃. Different gluino masses mg̃ are
considered, all other parameters are set to their SPS1a′ values.

Figure 5.14 shows the K-factor, defined as K = σNLO/σBorn, for the same parameter

range as considered in Figure 5.13. The three different combinations of chiralities of the

final-state squarks, as well as the inclusive case are considered separately. The K-factor

is largest for two left-handed squarks in the final state. Here, the EW contributions alter

the LO cross section prediction between 10 − 50%, being most important in case of light

squarks and a heavy gluino. The EW contribution is enhanced by the large tree-level EW

contribution. In the case of RR production, the EW contributions are below 3% in most

parts of the parameter space. For LR production the EW contributions are mainly given

by the NLO EW corrections, leading to a K-factor smaller than unity. The LO cross section

is reduced by −3% to −5%, most strongly in a scenario with heavy squarks and a heavy

gluino. Altogether one finds for inclusive squark–squark production EW contributions that

range from 9% for mg̃ = 400 GeV up to 22% for mg̃ = 1000 GeV for light squarks. For

heavy squarks, the EW contributions are only at the percent level due to the interplay of

positive EW corrections in the LL and RR case and negative EW corrections in the LR case,

suppressing the EW contributions by one order in magnitude.

We can understand the smallness of the EW contribution for high squark and low gluino
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m~g = 1000 GeVm~g = 900 GeVm~g = 800 GeVm~g = 700 GeVm~g = 600 GeVm~g = 500 GeVm~g = 400 GeV
inl. m~q[GeV℄

K
1000900800700600500400300

1.251.21.151.11.0510.95 LL m~q[GeV℄
K

1000900800700600500400300

1.51.41.31.21.11

RR m~q[GeV℄
K

1000900800700600500400300

1.041.031.021.011 LR m~q[GeV℄
K

1000900800700600500400300

10.990.980.970.960.95
Figure 5.14: K-factor defined as K = σNLO/σBorn, as a function of a common squark mass.
Different gluino masses mg̃ are considered, all other parameters are set to their SPS1a′ values. The
labels “incl.” and “LL”, “RR”, “LR” refer to inclusive squark–squark production and chirality-
grouped subprocesses as explained in the text.

masses by having a closer look at the interplay of the tree-level EW and NLO EW contri-

butions. The ratio ∆σNLO EW/∆σtree EW for inclusive squark–squark production is shown

in Figure 5.15a. As one can see, the NLO EW corrections become more important for

larger ratios mq̃/mg̃ and reach the same size as the tree-level EW contributions for about

mq̃/mg̃ & 1.5, depending on the precise value of the gluino mass. This is due to the fact that

the LR contribution becomes more relevant for increasing mq̃/mg̃, see Figure 5.15b. Owing

to the suppressed tree-level contributions, the EW contributions to LR production are neg-

ative and partially compensate the positive yield from LL and RR production. Figure 5.15a

also confirms our observation from the SPS2 scenario that the NLO EW corrections compen-

sate the tree-level EW contributions in the inclusive cross section, cf. Table 5.6, which seems

to be a generic feature in scenarios with the squark heavier than the gluino.
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Figure 5.15: (a) Ratio of NLO EW to tree-level EW contributions for inclusive squark–squark
production. (b) Relative contribution of LR final states to the inclusive Born cross section for a fixed
gluino mass mg̃ = 600 GeV.

5.4.4 Differential Distributions

Here, we illustrate the results for the SPS1a′ scenario. In Figures 5.16, 5.17, and 5.18

we consider the differential distributions of the EW contributions with respect to various

kinematical variables. In the left panels, the tree-level EW contributions and the three

IR and collinear safe subsets of NLO EW contributions (EW-type corrections, QCD-type

corrections, real quark radiation), as well as the summed EW contributions are shown. In

the right panels, the impact of the EW contributions relative to the Born cross section, δ,

is given.

Figure 5.16 refers to the distribution with respect to the transverse momentum pT of

the squark with highest pT . The tree-level EW contributions are always positive with a

maximum at about 250 GeV and dominate the sum over a wide range of the phase-space

for LL, RR, and inclusive squark–squark production. Again, they are suppressed for LR

production. The interplay of the NLO EW contributions is more complicated. For all

processes, the real quark radiation is small and mostly negative. For LL production, large

cancellations among the EW- and QCD-type corrections occur. As a result, the relative yield

is dominated from the tree-level contributions in the small-pT region where it is large and

positive (up to 25%). For higher values of pT , the relative corrections turn negative and

grow up to −10%. In case of RR production the EW-type corrections are suppressed from

the chirality and the QCD-type corrections are more important. However the relative EW

contributions in total do not exceed a few percent. Finally in the LR case, the QCD-type

corrections are negligible since they are related to QCD–EW interferences. The dominant

contribution arises here from the EW-type corrections. The relative contributions are always

negative, between −2% for small values of pT and up to −10% in the high-pT region. It is

important to note that even though the relative NLO EW contributions to the integrated

cross section are comparable for LL and LR production, cf. Table 5.5, they originate from
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Figure 5.16: Transverse momentum distributions for squark–squark production at the LHC within
the SPS1a′ scenario. Shown are the tree-level and NLO EW cross section contributions (left) and
the impact of EW contributions relative to the QCD Born cross section (right) for inclusive q̃q̃′ pro-
duction (top), production of two left-handed squarks q̃Lq̃

′
L (second), production of two right-handed

squarks q̃Rq̃
′
R (third), and non-diagonal q̃Lq̃

′
R production (bottom). Charge-conjugated processes are

included.
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Figure 5.17: Invariant mass distributions for squark–squark production at the LHC within the
SPS1a′ scenario. Shown are the tree-level and NLO EW cross section contributions (left) and the
impact of EW contributions relative to the QCD Born cross section (right) for inclusive q̃q̃′ pro-
duction (top), production of two left-handed squarks q̃Lq̃

′
L (second), production of two right-handed

squarks q̃Rq̃
′
R (third), and non-diagonal q̃Lq̃

′
R production (bottom). Charge-conjugated processes are

included.
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Figure 5.18: Pseudo-rapidity distributions for squark–squark production at the LHC within the
SPS1a′ scenario. Shown are the tree-level and NLO EW cross section contributions (left) and the
impact of EW contributions relative to the QCD Born cross section (right) for inclusive q̃q̃′ pro-
duction (top), production of two left-handed squarks q̃Lq̃

′
L (second), production of two right-handed

squarks q̃Rq̃
′
R (third), and non-diagonal q̃Lq̃

′
R production (bottom). Charge-conjugated processes are

included.
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Figure 5.19: (a) Transverse momentum distribution of the hardest squark for ũLd̃L produc-
tion within the SPS1a′ scenario. Strong cancellations occur between the different contributions
at NLO EW. (b) Relative NLO EW contribution, defined as the ratio of d∆σNLO EW/dpT and
dσBorn/dpT .

distinct sources and the differential distributions differ strongly.

In Figure 5.17 the distributions with respect to the invariant mass of the squark pair,

Minv = (p3 + p4)2, are shown. The interplay of the various subsets of EW contributions

is similar as for the pT distributions. For LL and RR production, the EW tree-level con-

tributions are dominant and peak at around Minv ≈ 1200 GeV. They shift the relative EW

corrections to positive values, up to 30% in the low-Minv region for LL production. In case

of non-diagonal LR production, where the EW tree-level contributions are suppressed, the

relative corrections are negative and grow up to −5% for the intermediate and high-energy

region. Finally, in the inclusive case, we find a strong energy dependence of the relative EW

corrections, ranging from +10% for Minv ≈ 1200 GeV to −5% for Minv > 3500 GeV.

In Figure 5.18 we present the pseudo-rapidity distributions, where always the squark with

the higher absolute value of the pseudo-rapidity η (in the laboratory frame) is considered.

All EW contributions are vanishing in the central η ≈ 0 region. The characteristics of the

rapidity gap in the distributions depend on the precise quantity considered and is enhanced

by our choice of referring to the larger η. The tree-level contributions peak at around |η| = 2

and dominate the total result, if present. The distributions for EW-type and QCD-type NLO

corrections differ in sign and shape from each other, leading to large cancellations over a

wide phase-space range. In total, the EW contributions alter the LO distributions by up to

20 − 40% for LL and up to 10 − 20% for inclusive squark–squark production in the strong

forward region for |η| > 2.

Up to now, our discussion has only been for inclusive combinations of final-state squarks

for given chiralities. To get further insight on the cross section, we show in Table 5.8 the

cross section divided up into the various subprocesses for squark–squark production within

the SPS1a′ scenario. Again, anti-particles are included. Owing to the degenerate masses

of first- and second-generation squarks, we do not distinguish between final states that
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SPS1a′
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

ũLũL 486.8(3) 93.78(5) −30.5(2) 19.27 % −6.26 % 13.00 %

d̃Ld̃L 143.83(8) 29.18(2) −9.85(6) 20.29 % −6.85 % 13.44 %

ũLd̃L 692.6(7) 234.8(2) −9.5(6) 33.90 % −1.38 % 32.52 %

ũLs̃L 211.3(2) 17.95(3) −8.53(1) 8.50 % −4.04 % 4.46 %

ũLc̃L 102.96(8) 1.864(2) −8.885(7) 1.81 % −8.63 % −6.82 %

d̃Ls̃L 80.19(6) 1.390(2) −7.526(4) 1.73 % −9.39 % −7.65 %

ũRũR 537.1(4) 28.58(2) −4.44(8) 5.32 % −0.83 % 4.49 %

d̃Rd̃R 173.1(1) 2.414(2) −0.318(7) 1.39 % −0.18 % 1.21 %

ũRd̃R 799.1(6) 0.4458(8) 3.41(3) 0.06 % 0.43 % 0.48 %

ũRs̃R 253.0(2) 0.1276(2) 1.36(1) 0.05 % 0.54 % 0.59 %

ũRc̃R 118.95(9) 0.2365(4) −1.337(8) 0.20 % −1.12 % −0.93 %

d̃Rs̃R 100.65(8) 0.0126(1) −0.281(2) 0.01 % −0.28 % −0.27 %

ũLũR 629.7(4) 1.288(1) −26.41(4) 0.20 % −4.19 % −3.99 %

d̃Ld̃R 165.49(9) 0.0792(1) −7.027(4) 0.05 % −4.25 % −4.20 %

ũLd̃R 328.5(2) 0.1720(1) −12.30(1) 0.05 % −3.75 % −3.69 %

ũRd̃L 321.4(2) 0.6026(6) −13.81(2) 0.19 % −4.30 % −4.11 %

ũLs̃R 82.26(4) 0.0450(1) −2.809(3) 0.05 % −3.42 % −3.36 %

ũRs̃L 79.90(4) 0.1556(1) −3.167(4) 0.19 % −3.96 % −3.77 %

ũLc̃R 38.08(2) 0.0832(1) −1.388(2) 0.22 % −3.65 % −3.43 %

ũRc̃L 38.08(2) 0.0832(1) −1.388(2) 0.22 % −3.65 % −3.44 %

d̃Ls̃R 30.24(2) 0.0149(1) −1.2015(9) 0.05 % −3.97 % −3.92 %

d̃Rs̃L 30.24(2) 0.0149(1) −1.2015(9) 0.05 % −3.97 % −3.92 %

Table 5.8: Hadronic cross section for squark–squark production at the LHC within the SPS1a′

scenario for
√
S = 14 TeV. Charge-conjugated processes are included. ũũ final states include c̃c̃, d̃d̃

include s̃s̃, ũd̃ include c̃s̃, and ũs̃ includes c̃d̃. All cross sections are given in femtobarn (fb).

result from exchanging both squarks with their first or second generation counterpart, i.e.

ũLũL production also includes c̃Lc̃L production, etc.. This reduces the number of distinct

subprocesses from 36 down to 22. The contributions to ∆σtree EW are always positive and

are largest for ũLd̃L production due to the interference of gluino and chargino exchange

diagrams and constitute 57% of the inclusive tree-level EW contribution, see also Table 5.5.

One even finds that the inclusive tree-level EW contribution is given to 98% by only five
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SPS1a′
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

q̃Lq̃′
L 342.0(1) 89.81(3) −6.1(1) 26.3% −1.8% 24.5%

q̃Rq̃′
R 408.7(1) 9.78(5) 0.40(2) 2.4% 0.1% 2.5%

q̃Lq̃′
R 274.79(7) 0.4571(2) −9.661(7) 0.2% −3.5% −3.3%

q̃q̃′ 1025.5(2) 100.05(3) −15.3(1) 9.8% −1.5% 8.3%

Table 5.9: Hadronic cross sections in femtobarn (fb) for squark–squark production at the LHC
within the SPS1a′ scenario for

√
S = 7 TeV. Notation as in Table 5.5.

processes, namely ũLũL, ũRũR, d̃Ld̃L, ũLd̃L and ũLs̃L. The contributions to ∆σNLO EW

are mostly negative, reducing the importance of EW contributions. In contrast to the

tree-level EW case, many processes contribute with a significant amount to the inclusive

NLO EW contribution of the cross section. Especially for processes with squarks of different

generations, ∆σEW is mostly dominated by NLO EW contributions. The size of the NLO EW

contributions is often reduced due to the interplay of QCD-type and EW-type corrections

as shown in Figure 5.19 in the case of ũLd̃L production. The different types of NLO EW

corrections partially cancel. Furthermore, the sum contains corrections of positive and

negative sign, leading to an integrated result ∆σNLO EW that is considerably smaller than

the corrections affecting the LO result in various phase-space regions.

5.4.5 Hadronic Cross Section for
√

S = 7 TeV

In Table 5.9 we give the results for the hadronic cross sections for inclusive squark–squark

production at the LHC for
√
S = 7 TeV within the SPS1a′ scenario. More exclusive results

are shown in Table 5.10, similar to 5.8. All other inputs are chosen as in Table 5.5 and

Section 5.4.

The integrated cross sections amount about 15−25% of their values at
√
S = 14 TeV. The

relative importance of tree-level EW contributions increases by a few percent points while the

relative NLO EW corrections are less important. All subprocesses are quark–quark initiated

and the corresponding luminosities are reduced to a similar extent. However the relative

importance of each of the 36 subprocesses changes a little. At Born level the contribution of

down-quark induced processes to the inclusive Born cross section is smaller than at 14 TeV,

whereas their impact at NLO is increased. In particular the ũαd̃α channels give large and

positive contributions at NLO EW. As a consequence, the NLO EW corrections for inclusive

RR production are now positive and those for LL production are reduced to −2%. In

summary, the full EW contributions alter the LO cross section for inclusive squark–squark

production at the LHC for
√
S = 7 TeV by 8% within the SPS1a′ scenario.
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SPS1a′
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

ũLũL 132.95(6) 29.01(1) −6.17(5) 21.8% −4.6% 17.2%

d̃Ld̃L 22.52(1) 5.094(2) −1.107(8) 22.6% −4.9% 17.7%

ũLd̃L 148.7(1) 53.73(3) 3.4(1) 36.1% 2.3% 38.4%

ũLs̃L 21.30(1) 1.697(3) −0.737(1) 8.0% −3.5% 4.5%

ũLc̃L 9.767(7) 0.1660(2) −0.8586(6) 1.7% −8.8% −7.1%

d̃Ls̃L 6.712(4) 0.1089(1) −0.6447(3) 1.6% −9.6% −8.0%

ũRũR 151.94(7) 9.209(5) −0.57(2) 6.1% −0.4% 5.7%

d̃Rd̃R 28.86(1) 0.4534(2) −0.0110(9) 1.6% <0.1% 1.5%

ũRd̃R 179.9(1) 0.0870(1) 0.980(7) 0.1% 0.5% 0.6%

ũRs̃R 27.05(1) 0.01212(1) 0.1792(9) <0.1% 0.7% 0.7%

ũRc̃R 11.824(8) 0.02097(3) −0.1408(6) 0.2% −1.2% −1.0%

d̃Rs̃R 9.118(6) 0.001012(2) −0.0270(1) <0.1% −0.3% −0.3%

ũLũR 129.47(6) 0.2853(2) −4.588(6) 0.2% −3.5% −3.3%

d̃Ld̃R 20.108(8) 0.010171(7) −0.7536(4) 0.1% −3.8% −3.7%

ũLd̃R 52.61(2) 0.02953(2) −1.702(2) 0.1% −3.2% −3.2%

ũRd̃L 50.90(2) 0.10138(8) −1.903(2) 0.2% −3.7% −3.5%

ũLs̃R 6.318(3) 0.003663(3) −0.1897(2) 0.1% −3.0% −3.0%

ũRs̃L 6.055(2) 0.01240(1) −0.2135(2) 0.2% −3.5% −3.3%

ũLc̃R 2.739(1) 0.006325(6) −0.087(1) 0.2% −3.2% −3.0%

ũRc̃L 2.739(1) 0.006325(6) −0.087(1) 0.2% −3.2% −3.0%

d̃Ls̃R 1.9164(9) 0.000993(1) −0.0679(1) 0.1% −3.5% −3.5%

d̃Rs̃L 1.9164(9) 0.000993(1) −0.0678(1) 0.1% −3.5% −3.5%

Table 5.10: Hadronic cross section for squark–squark production at the LHC within the SPS1a′

scenario for
√
S = 7 TeV. Charge-conjugated processes are included. ũũ final states include c̃c̃, d̃d̃

include s̃s̃, ũd̃ include c̃s̃, and ũs̃ includes c̃d̃. All cross sections are given in femtobarn (fb).
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SPS1a′
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

q̃Lq̃′
L 1717.6(8) 378.9(1) −155.8(6) 22.1 % −9.1 % 13.0 %

q̃Rq̃′
R 1981.9(7) 31.81(2) −15.68(9) 1.6 % −0.8 % 0.8 %

q̃Lq̃′
R 1743.8(4) 2.538(1) −78.25(4) 0.1 % −4.5 % −4.3 %

q̃q̃′ 5443(1) 413.3(1) −249.7(6) 7.6 % −4.6 % 3.0 %

Table 5.11: Hadronic cross section in femtobarn (fb) for squark–squark production at the LHC
within the SPS1a′ scenario for

√
S = 14 TeV. A kinetic cut is applied to quarks, photons, and gluons

arising from real radiation processes since events with pT > 50 GeV and η < 2.5 are rejected.

5.5 Phase-Space Cuts

In experiments the squarks cannot be measured directly and one is only sensitive to its

decay products. Depending on the precise MSSM parameter space, one is left with a certain

number of jets, leptons, and missing energy due to the undetectable neutralino which escapes

the detector leading to missing transverse momenta /pT . In order to reconstruct the squark

mass, specific observables are chosen for the experimental analysis which often rely on a fixed

number of leptons and jets in the final state, cf. [91]. The experimental observations are

then compared to theoretical (differential) cross section predictions. Care has to be taken

when higher-order corrections are included into the analysis since real radiation processes

of higher orders which lead to additional quarks, photons, and gluons in the final state can

affect the analysis. In this section, we are going to investigate the impact of an additional

massless particle in the final state arising due to NLO EW corrections on the cross section

prediction.

Obviously, only processes with additional real particles that are neither soft nor collinear

can be distinguished experimentally from the two-particle final state. Hence we require that

this additional particle has high transverse momentum and is not collinear to the beam-axis.

In the following we will define a hard non-collinear particle by the requirement that it has

pT > 50 GeV and η < 2.5. In order to investigate the impact of hard non-collinear particles

arising due to NLO EW corrections, we apply the following cuts on the final state quark,

photon and gluon phase-space,

pT < 50 GeV, η > 2.5, (5.33)

i.e. only those events are selected that are (almost) indistinguishable from two squarks in

the final state. As we will see, this cut mainly affects processes with real hard gluons in

the final state and hence it effectively corresponds on a cut on processes with an extra

separable jet. Table 5.11 shows the resulting total cross section for the (partly) inclusive

results defined at the beginning of Section 5.4. Obviously, such a cut does not alter the

Born cross section and the tree-level EW contribution. However, it has a huge impact on
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Figure 5.20: (a) Transverse momentum distribution of the hardest squark for ũLd̃L production
within the SPS1a′ scenario. Events with a real quark, gluon, or photon with pT > 50 GeV and
η < 2.5 are rejected. (b) Relative NLO EW contribution, defined as the ratio of d∆σNLO EW/dpT

and dσBorn/dpT .

the NLO EW contribution to the cross section ∆σNLO EW. Comparing with Table 5.5, i.e.

the case without any kinematical cuts, one finds that in the case of LL production, the

EW contribution becomes more than twice as big as without cuts. The impact of the EW

contribution is reduced from 22% down to 13% when taking the NLO EW contributions into

account. In the case of RR production ∆σNLO EW becomes even ten times larger, however

its contribution still remains in the one-percent regime. Interestingly, for LR production the

impact of the phase-space cut is rather small, i.e. it only changes the NLO EW contribution

by roughly 10%. The small change in the NLO EW contribution for LR production will

become clear further down, when looking at differential distributions. Considering inclusive

q̃q̃′ production, the EW contribution to the total cross section gets reduced from about 8%

to 3%, i.e. reducing the LO EW contribution by more than 50%. In order to see which

subprocesses are most affected by this phase-space cut, Table 5.12 shows the cross section

divided up into the various subprocesses in analogy to Table 5.8. Comparing these two

tables, one finds that the phase-space cut has a big impact on those processes which exhibit

a non-vanishing tree-level QCD–EW interference, while the change in ∆σNLO EW for the

other processes is quite moderate. For the former one finds large positive contributions due

to QCD-type NLO EW corrections, which get enhanced by the radiation of hard gluons into

the central region of the detector. Those events are excluded by applying the phase-space

cut (5.33). This becomes clear by comparing e.g. the differential pT distribution for ũLd̃L
production without cut, Figure 5.19, with Figure 5.20 which shows the same distribution

with the phase-space cut applied. One finds that EW-type corrections and the contribution

from real quark radiation is hardly changed, while the QCD-type corrections are strongly

reduced. The cancellations between the various contributions in Figure 5.19 is mild. In

total, one is left with a vanishing NLO EW contribution for low pT which becomes up to

40% of the differential Born cross section in the high pT region.
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SPS1a′
σBorn ∆σtree EW ∆σNLO EW

δtree EW δNLO EW δEW

O(α2
s) O(αsα+ α2) O(α2

sα)

ũLũL 486.8(3) 93.78(5) −52.7(2) 19.27 −10.83 8.43

d̃Ld̃L 143.83(8) 29.18(1) −15.48(6) 20.29 −10.77 9.52

ũLd̃L 692.6(7) 234.8(1) −61.5(5) 33.90 −8.88 25.02

ũLs̃L 211.3(1) 17.95(3) −10.13(1) 8.50 −4.80 3.70

ũLc̃L 102.96(7) 1.864(2) −8.674(7) 1.81 −8.42 −6.61

d̃Ls̃L 80.19(5) 1.391(1) −7.242(4) 1.73 −9.03 −7.30

ũRũR 537.1(3) 28.58(2) −13.15(8) 5.32 −2.45 2.87

d̃Rd̃R 173.1(1) 2.41(1) −0.955(6) 1.39 −0.55 0.84

ũRd̃R 799.1(6) 0.4458(7) −0.13(3) 0.06 −0.02 0.04

ũRs̃R 253.0(2) 0.1276(2) 0.38(1) 0.05 0.15 0.20

ũRc̃R 118.95(9) 0.2364(4) −1.511(7) 0.20 −1.27 −1.07

d̃Rs̃R 100.65(7) 0.01256(2) −0.323(1) 0.01 −0.32 −0.31

ũLũR 629.7(3) 1.288(1) −29.16(3) 0.20 −4.63 −4.43

d̃Ld̃R 165.49(8) 0.07916(6) −7.382(4) 0.05 −4.46 −4.41

ũLd̃R 328.5(2) 0.1720(1) −14.48(1) 0.05 −4.41 −4.36

ũRd̃L 321.4(1) 0.6026(5) −15.09(1) 0.19 −4.70 −4.51

ũLs̃R 82.26(4) 0.04502(4) −3.258(3) 0.05 −3.96 −3.91

ũRs̃L 79.90(4) 0.1556(1) −3.398(3) 0.19 −4.25 −4.06

ũLc̃R 38.08(2) 0.08323(8) −1.479(2) 0.22 −3.88 −3.67

ũRc̃L 38.08(2) 0.08323(8) −1.481(2) 0.22 −3.89 −3.67

d̃Ls̃R 30.24(1) 0.01490(1) −1.2579(8) 0.05 −4.16 −4.11

d̃Rs̃L 30.24(1) 0.01490(1) −1.2572(8) 0.05 −4.166 −4.11

Table 5.12: Hadronic cross section for squark–squark production at the LHC within the SPS1a′

scenario for
√
S = 14 TeV. Charge-conjugated processes are included. Events with a real quark,

gluon, or photon with pT > 50 GeV and η < 2.5 are rejected. ũũ final states include c̃c̃, d̃d̃ include
s̃s̃, ũd̃ include c̃s̃, and ũs̃ includes c̃d̃. All cross sections are given in femtobarn (fb).

One might wonder, why events with additional hard gluons in the final state arise in

NLO EW corrections. However, one has to remember that for processes that have a non-

vanishing QCD–EW interference contribution of O(αsα), the vertex and self-energy correc-

tions of Figure 5.3c give a non-zero contribution at NLO EW. These corrections involve the

renormalization of the strong sector, which explains the origin of the hard gluons.

Due to the strong impact of the phase-space cut (5.33) for left-handed squark-pair pro-



5.5. Phase-Space Cuts 119

 [GeV]
T

p
0 500 1000 1500

 [f
b/

G
eV

]
T

/d
p

σ
d

0

0.5

1

EW tree-level contib.
NLO: EW insertions
NLO: QCD insertions
NLO: Real quark radiation
Sum

LL

 [GeV]
T

p
0 500 1000 1500

[%
]

δ

-20

0

20 LL

 [GeV]invM
1000 1500 2000 2500 3000 3500

 [f
b/

G
eV

]
in

v
/d

M
σ

d

0

0.5

LL

 [GeV]invM
1000 1500 2000 2500 3000 3500

[%
]

δ

0

10

20

30

LL

η
-4 -2 0 2 4

 [f
b]

η/σ
d

0

50

LL

η
-4 -2 0 2 4

[%
]

δ

0

10

20

30

LL

Figure 5.21: Differential distributions for left-handed squark–squark production at the LHC within
the SPS1a′ scenario. Events with real quark, gluon, or photon with pT > 50 GeV and η < 2.5
are rejected. Shown are the tree-level and NLO EW cross section contributions (left) and the
impact of EW contributions relative to the QCD Born cross section (right) for the transverse mass
distribution (top), the invariant mass distribution (middle), and the pseudo-rapidity distribution
(bottom). Charge-conjugated processes are included.

duction, we show the differential transverse momentum, invariant mass, and pseudo-rapidity

distributions for LL production in Figure 5.21. In all three cases the QCD-type corrections

are significantly changed, while the other contributions are hardly affected by the cut, cf.

Figures 5.16–5.18. While the QCD-type corrections without cut exhibit in all three cases a

positive yield to the cross section it gives a negative yield when the cut is applied.





6 Electroweak Contributions to

Sbottom–anti-Sbottom Production

In this chapter the electroweak contibutions to diagonal sbottom–anti-sbottom pair produc-

tion in hadronic collisions,

PP → b̃αb̃
∗
α , (6.1)

are presented. The production of squarks of the third generation is peculiar and there are

theoretical as well as experimental aspects that render a separate discussion of this process

necessary. In contrast to squark-pair production, the mixing in the stop and sbottom sector

cannot be neglected. This induces a splitting for the mass eigenstates and hence can lead to

a relatively low mass for the lightest bottom and top squark, favoring their direct production

at the LHC. Moreover, b-tagging makes bottom- and top- squark production experimentally

distinguishable from the production of squarks of the first two generations [171–173]. A

dedicated study looking at third generation stop production at the LHC is available [174].

From theoretical side, bottom-squark pair production has some aspects that are not

present in the production of squark pairs of different flavor. Due to left- right-mixing

of the bottom squarks, the renormalization scheme for the bottom-squark sector has to be

chosen with special care, since especially the on-shell scheme can become unreliable for a

wide range of the parameter space, cf. Section 4.4.1. Further, one of the bottom-squark

masses remains a dependent quantity whose on-shell value gets radiative corrections. This

requires a proper treatment of the IR- and collinear-singular regions at NLO EW. In addi-

tion, Higgs-boson exchange contributions can become significant due to enhanced Yukawa

couplings for high values of tan β, which do not decouple at low energies and hence have

to be resummed. These features render the computation of the electroweak contributions

to sbottom-pair production substantially different from the corresponding computations for

squark–anti-squark and stop–anti-stop production.

The outline of this Chapter is as follows: In Section 6.1 we summarize the tree-level con-

tributions which can be of QCD and EW origin. Section 6.2 shows how the tan β enhanced

terms appearing in the bottom-quark sector can be resummed to all orders. The resumma-

tion alters the tree-level relation between the bottom-quark mass and its Yukawa coupling

as well as the bottom–Higgs vertices. The details on the NLO EW calculation are given in

Section 6.3. The numerical impact of the NLO EW contributions on the cross section and

on differential distributions at the LHC with
√
S = 14 TeV and

√
S = 7 TeV is presented in

Section 6.4. We consider different branchmark scenarios and investigate the dependence on

the final-state sbottom mass and on tan β.

121
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Figure 6.1: LO Feynman diagrams for sbottom-pair production. The first line corresponds to
the gluon-induced channel (6.2a), while the second line corresponds to the qq̄ channel (6.2b) (first
diagram) and the bb̄ channel (6.2c) (second and third diagram).

6.1 Tree-Level Cross Section

In this section we describe the tree-level contributions to b̃αb̃α production, which are of order

O(α2
s), O(αsα), and O(α2). We will conventionally denote the cross section (amplitude) of

a partonic process X at a given order O(αasα
b) by dσ̂a ,bX (Ma ,b

X ).

6.1.1 Tree-Level QCD Contributions

At LO three classes of partonic processes contribute,

g(p1) g(p2) → b̃α(p3) b̃∗
α(p4), (6.2a)

q(p1) q̄(p2) → b̃α(p3) b̃∗
α(p4), (6.2b)

b(p1) b̄(p2) → b̃α(p3) b̃∗
α(p4). (6.2c)

The process with initial-state bottom quarks has to be treated different to light-flavor quarks

due to t-channel gluino exchange, cf. Figure 6.1. The leading-order hadronic cross section,

which is of the order O(α2
s), is given by the convolution of the partonic cross section with

the corresponding luminosity, cf. (4.22) and (4.23),

dσLO QCD

PP→b̃ab̃∗
a

(S) =

∫ 1

τ0

dτ
dLgg
dτ

dσ̂2, 0

gg→b̃αb̃∗
α

(ŝ) +
∑

q

∫ 1

τ0

dτ
dLqq̄
dτ

dσ̂2, 0

qq̄→b̃αb̃∗
α

(ŝ) (6.3a)

+

∫ 1

τ0

dτ
dLbb̄
dτ

dσ̂2, 0

bb̄→b̃αb̃∗
α

(ŝ), (6.3b)

where τ0 = 4m2
b̃α
/S is the production threshold. S and ŝ = τS are the squared center-of-

mass (c.m.) energies of the hadronic and partonic processes, respectively. The sum runs

over q = u, d, c, s. The corresponding partonic cross section can be obtained from the

Feynman diagrams in Figure 6.1. In terms of the Mandelstam variables given in (4.4),

ŝ = (p1 + p2)2, t̂ = (p1 − p3)2, û = (p1 − p4)2, (6.4)
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the differential partonic cross section for a given subprocess ξξ′ → b̃αb̃
∗
α can be written as

dσ̂2, 0

ξξ′→b̃αb̃∗
α

(ŝ) =
∑∣∣∣M1, 0

ξξ′→b̃αb̃∗
α

∣∣∣
2 dt̂

16πŝ2
, (6.5)

with the squared lowest order matrix element averaged (summed) over initial (final) state

spin and color, cf. (4.6).

6.1.2 Tree-Level EW Contributions

The tree-level electroweak (EW) contributions are constituted out of pure EW contributions

of the order O(α2) and QCD–EW interference contributions of O(αsα). The differential

hadronic cross section is given by

dσLO EW
PP→b̃αb̃∗

α
(S) =

∑

q

∫ 1

τ0

dτ
dLqq̄
dτ

dσ̂0, 2

qq̄→b̃αb̃∗
α

(ŝ) (6.6a)

+
∫ 1

τ0

dτ
dLbb̄
dτ

[
dσ̂0, 2

bb̄→b̃αb̃∗
α

(ŝ) + dσ̂1, 1

bb̄→b̃αb̃∗
α

(ŝ)
]

(6.6b)

+
∫ 1

τ0

dτ
dLgγ
dτ

dσ̂1, 1

gγ→b̃αb̃∗
α

(ŝ). (6.6c)

The contributions of O(α2) arise from the processes (6.2b) and (6.2c), i.e. qq̄ and bb̄ annihi-

lation. The partonic cross sections,

dσ̂0, 2

qq̄→b̃αb̃∗
α

(ŝ) =
∑∣∣∣M0, 1

qq̄→b̃αb̃∗
α

∣∣∣
2 dt̂

16πŝ2
, dσ̂0, 2

bb̄→b̃αb̃∗
α

(ŝ) =
∑∣∣∣M0, 1

bb̄→b̃αb̃∗
α

∣∣∣
2 dt̂

16πŝ2
, (6.7)

are obtained from the diagrams in Figure 6.2a. Notice that for the bb̄ channel also Higgs-

boson exchange diagrams have to be taken into account. In the case of process (6.2c), the

diagrams with t-channel gluino and neutralino exchange further allow for a non-vanishing

QCD–EW interference term of O(αsα),

dσ̂1, 1

bb̄→b̃αb̃∗
α

(ŝ) = 2
∑

Re
{

M1, 0

bb̄→b̃αb̃∗
α

(
M0, 1

bb̄→b̃αb̃∗
α

)∗} dt̂

16πŝ2
. (6.8)

The non-vanishing photon density inside the proton, see also Section 4.2, allows for an

EW contribution due to the photon-induced channel. This leads to the O(αsα) contribution

in (6.6c) which arises through the partonic process

g(p1) γ(p2) → b̃α(p3) b̃∗
α(p4). (6.9)

The corresponding partonic cross section can be obtained from the diagrams in Figure 6.2b

and reads as follows

dσ̂1, 1

gγ→b̃αb̃∗
α

(ŝ) =
∑∣∣∣M1/2, 1/2

gγ→b̃αb̃∗
α

∣∣∣
2 dt̂

16πŝ2
. (6.10)
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Figure 6.2: Feynman diagrams for the EW contributions to b̃αb̃
∗
α production. V = γ, Z0, S =

h0,H0, G0. (a) qq̄ and bb̄ channel. (b) Photon-induced channel. (c) CKM-suppressed t-channel
chargino exchange.

6.2 Radiative Corrections to the Bottom Yukawa Couplings

As mentioned in Section 2.2.3, when introducing the Higgs mechanism of the MSSM, the

relation between the bottom-quark mass and its Yukawa coupling as well as the Higgs–

bottom vertices gets altered by radiative corrections. These corrections have a contribution

proportional to tan β that does not decouple at low energies. It was shown that these

tan β-enhanced contributions can be resummed to all orders in perturbation theory [79–84].

In this Section we recall how these corrections arise and give the resummed bottom-quark

Yukawa coupling and the effective Higgs–bottom vertices used in this work for sbottom-pair

production. The details of the calculation are collected in Appendix C.

(a)
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b̃ b̃

Hu

(b)

χ̃±

t̃ t̃

Hu

(c)

χ̃0

b̃ b̃

Hu

Figure 6.3: One loop SUSY diagram contributing to the effective Hbb coupling. (a) SUSY QCD
contribution. (b) Higgsino/wino–stop contribution. (c) Bino–sbottom contribution.
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The Higgs sector in the MSSM corresponds to a type-II two Higgs doublet model, i.e. the

down-type quarks couple to Hd and the up-type quarks to Hu. After spontaneous symmetry

breaking, the quarks get their mass by their coupling to the vacuum expectation value. At

tree level, the down-type quark mass is therefore given by mdi
= λdi

v1/
√

2 and the up-type

quark mass by mui
= λui

v2/
√

2, with the index i for the three quark generations. Here v1

and v2 denote the vacuum expectation values of the Higgs fields Hd and Hu, respectively.

However, by taking radiative corrections into account, the down-type quarks get an effective

coupling to Hu, and hence couple to v2, see Figure 6.3. In particular, this can have a big

impact on the relation between the bottom-quark mass and its Yukawa coupling since this

higher-order contributions do not decouple at low energies and are enhanced by a factor

tan β = v2/v1. In [83] it was shown that the tan β enhanced terms can be resummed to all

orders in perturbation theory. The relation between the physical bottom-quark mass mphys
b

and its bare Yukawa coupling λb then reads

mb ≡ λbv1√
2

=
mphys
b

1 +∆mb
, (6.11)

where ∆mb is given by

∆mb = ∆mSQCD
b +∆mYukawa

b +∆mSEW
b , (6.12)

∆mSQCD
b =

2αs
3π

µMg̃ tan β I(mb̃1
,mb̃2

,mg̃) , (6.13)

∆mYukawa
b =

λ2
t

16π2
µAt tan β I(mt̃1 ,mt̃2 , µ) , (6.14)

∆mSEW
b = − g2

16π2
µM2 tan β

[
cos2 θt̃I(mt̃1 ,M2, µ) + sin2 θt̃2I(mt̃2 ,M2, µ)

+
1

2
cos2 θb̃I(mb̃1

,M2, µ) +
1

2
sin2 θb̃2

I(mb̃2
,M2, µ)

]
,

and the vacuum integral function

I(a, b, c) =
1

(a2 − b2)(b2 − c2)(a2 − c2)

[
a2b2 log

a2

b2
+ b2c2 log

b2

c2
+ c2a2 log

c2

a2

]
. (6.15)

The contribution ∆mSQCD
b arises from SUSY QCD self-energy corrections to the bottom-

quark propagator, Figure 6.3a, while the contribution ∆mSEW
b and ∆mYukawa

b arise from

contributions due to higgsino/wino–stop exchange, Figure 6.3b,c. Bino effects in Figure 6.3c,

were found to be numerical irrelevant.

Further tan β enhancement effects arise from three-point functions involving Higgs–bottom

vertices, an example diagram is depicted in Figure 6.4. It is again possible to resum the

tan β enhanced terms. One finds that all Higgs–bottom vertices except the ones with a

charged Higgs get a modification. For b̃αb̃∗
α production the relevant Higgs–bottom vertices

are the ones involving the neutral Higgs bosons h0, H0, and A0. These appear at LO in the

bb̄ channel (6.2c) and at NLO EW in the gg channel (6.2a). The latter also involves G0bb

vertices. Performing a resummation in the Goldstone sector, and hence mixing perturbative
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h0

b̃

g̃

b̃

Figure 6.4: Example for SUSY vertex corrections to the h0bb coupling that leads to an additional
tan β enhanced contribution.

orders, is a dangerous task, since it may spoil gauge cancellations in the weak sector. For the

neutral Goldstone boson G0, we found by explicit calculating the resummed G0bb vertex,

that the contribution from the vertex corrections exactly compensates the contribution of

the bottom-Yukawa coupling resummation, see (C.29) of Appendix C.2. Even though not

relevant for this work, it is interesting to mention that we do not find such a cancellation

for the charged Goldstone, i.e. the G+bb vertex.

In our supersymmetric next-to leading order calculations, the bottom-quark mass is de-

fined in the DR scheme, cf. (4.42) of Section 4.4.2. Combining this definition with the

tan β-improved bottom-quark Yukawa coupling (6.11), care has to be taken to not double-

count the contribution ∆mb, i.e. one has to subtract it from (4.42). Therefore, the effective

bottom-quark mass in the DR scheme is given by

mDR,eff
b =

mDR
b (µR) +mb∆mb

1 +∆mb
. (6.16)

In total, the above discussed effects are correctly taken into account by the following

replacements:

1. Replace the bottom mass Yukawa coupling λb =
√

2mb/v1 by its resummed value

everywhere but in the Goldstone sector,

λb√
2

→ λ̄b√
2

=
mDR,eff
b

v1
. (6.17)

In particular we use this coupling in the sbottom-mass matrix (2.50) in order to

determine the mass eigenstates and mixing matrices.

2. Replace the Hbb and Htb1 vertices by the following effective vertices:

gh0bb → gh0bb

∣∣
λb→λ̄b

(
1 − ∆mb

tan β tanα

)
, gH±tb → gH±tb

∣∣
λb→λ̄b

, (6.18a)

gH0bb → gH0bb

∣∣
λb→λ̄b

(
1 +∆mb

tanα

tan β

)
, gG0bb → gG0bb , (6.18b)

gAbb → gAbb
∣∣
λb→λ̄b

(
1 − ∆mb

tan β2

)
. (6.18c)

1Here H stands for any of the 5 physical Higgs bosons and the three Goldstone bosons.
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The subscript λb → λ̄b denotes in accordance to (6.17), how the bottom mass in the coupling

has to be treated. Couplings involving Goldstone bosons are not changed.

Considering b̃αb̃
∗
α production, neutral-Higgs–bottom vertices are only present in the bb̄-

channel at tree level. For the gg channel, these couplings are present at NLO EW.

6.3 Next-to-Leading Order EW Contributions

In this section we list the NLO EW corrections to the process (6.1). These contributions

are of order O(α2
sα) and arise from virtual corrections and bremsstrahlung processes. The

corresponding contributions to the total cross section read as follows,

dσNLO EW

PP→b̃αb̃∗
α
(S) =

∫ 1

τ0

dτ
dLgg
dτ

[
dσ̂2, 1

gg→b̃αb̃∗
α

(ŝ) + dσ̂2, 1

gg→b̃αb̃∗
αγ

(ŝ)
]

+
∑

q

∫ 1

τ0

dτ
dLqq̄
dτ

[
dσ̂2, 1

qq̄→b̃αb̃∗
α

(ŝ) + dσ̂2, 1

qq̄→b̃αb̃∗
αγ

(ŝ) + dσ̂2, 1

qq̄→b̃αb̃∗
αg

(ŝ)
]

+
∑

q

∫ 1

τ0

dτ

[
dLqg
dτ

dσ̂2, 1

gq→b̃αb̃∗
αq

(ŝ) +
dLq̄g
dτ

dσ̂2, 1

gq̄→b̃αb̃∗
αq̄

(ŝ)

]
. (6.19)

We do not consider the contributions arising from the bremsstrahlung processes

γ(p1) q(p2) → b̃α(p3) b̃∗
α(p4) q(p5), γ(p1) q̄(p2) → b̃α(p3) b̃∗

α(p4) q̄(p5), (6.20)

since they are suppressed because of the O(α) suppression of the photon PDF inside the

proton, cf. Section 4.2. Moreover, these processes are further suppressed by an additional

factor αs with respect to the process (6.9) and thus negligible. The O(α2
sα) contributions

of the partonic processes with a bottom quark in the initial state are neglected as well. The

reason is twofold. First of all, these contributions are suppressed by the bottom PDF with

respect to the contributions in eq. (6.19) and in addition they have an additional factor αs
with respect to the O(αsα + α2) contributions of the process (6.2c), which turn out to be

small (cf. Section 6.4.3).

CKM-mixing effects are neglected since mixing effects do not enter at tree-level and hence

can be seen as a next-to-next-to leading order effect. There is one exception, the quark–anti-

quark annihilation with t-channel chargino exchange for initial uū or cc̄, see Figure 6.2c.

These channels give contributions of O(αsα) and O(α2). However, due to the small values

of the CKM mixing elements |Vub| ≈ 4.310−3 and |Vcb| ≈ 41.610−3 [175], which enter at

least quadratically, their contributions are small and can be safely neglected. In the uū

case, the CKM suppression yields a factor O(10−6) which cannot be compensated by the

high sea quark contribution which in principle enhances the uū channel. In the cc̄ channel

the CKM suppression is around two orders of magnitude smaller, however the small c-quark

PDF further reduces its importance. A numerical discussion is postponed to Section 6.4.3.

The amplitudes are generated and algebraically simplified with support of FeynArts [161,

162] and FormCalc [161, 163], while the numerical evaluation of the one-loop integrals has

been performed using LoopTools [163]. Infrared (IR) singularities are regularized giving a
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small mass to the photon, λγ , and to the gluon, λg. The mass of the light quarks is kept to

regularize the collinear singularities, see also Section 4.3.

6.3.1 Virtual Corrections

The O(α2
sα) virtual contributions to the gg channel, process (6.2a), are given in terms of

the tree-level QCD matrix element M1, 0 and the one-loop amplitude M1, 1 resulting from

EW insertions to the tree-level QCD diagrams,

dσ̂2, 1

gg→b̃αb̃∗
α

(ŝ) = 2
∑

Re
{

M1, 0

gg→b̃αb̃∗
α

(
M1, 1

gg→b̃αb̃∗
α

)∗} dt̂

16πŝ2
. (6.21)

The one-loop amplitude M1, 1 is obtained from the vertex, self-energy, and box corrections,

given by the diagrams depicted in Figure 6.5.

The virtual corrections to qq̄ channel, process (6.2b), are given by

dσ̂2, 1

qq̄→b̃αb̃∗
α

(ŝ) = 2
∑

Re
{

M1, 0

qq̄→b̃αb̃∗
α

(
M1, 1

qq̄→b̃αb̃∗
α

)∗
+ M0, 1

qq̄→b̃αb̃∗
α

(
M2, 0

qq̄→b̃αb̃∗
α

)∗} dt̂

16πŝ2
.

(6.22)

M0, 1 and M1, 0 are the tree-level EW and the tree-level QCD amplitudes respectively. M1, 1

is the one-loop amplitude obtained from the EW insertions to the leading-order diagrams

and from the QCD corrections to the tree-level EW diagrams, collected in Figure 6.6. M2, 0

is the amplitude corresponding to the QCD box diagrams depicted in Figure 6.7.

In order to cancel the UV divergences we need the O(α) renormalization of the wavefunc-

tion of the light quarks and of the sbottom sector. This is done by including the diagrams

with counterterms which are given in the last line of Figures 6.5 and 6.6, respectively. The

expressions for the counterterms are listed in Table B.1 of Appendix B. The renormalization

is performed as described in Section 4.4.2: The field renormalization constants are fixed in

the on-shell scheme and the renormalization of the sbottom sector is performed together

with the stop sector. In order to avoid numerical instabilities and artificially big contribu-

tions from the counterterms, the renormalization is performed in the “mb DR and Ab DR”

scheme. Since in particular regions of the MSSM parameter space this scheme can give rise

to numerical instabilities, we have explicitly checked its reliability in the SUSY scenarios

considered in this paper (cf. Section 6.4). The explicit expression of the renormalization

constants in the “mb DR and Ab DR” are given by (4.39) and (4.68)ff. Remind that the

counterterm δmb̃1
has to be shifted according to (4.72) in order to compensate the induced

one-loop contribution that arises by using the b̃1 pole mass for the tree-level cross section.

Having a closer look at the Feynman diagrams contributing to the virtual corrections at

O(α2
sα), one finds that the gg channel (Figure 6.5) only contains gg-vertex corrections that

couple to scalar particles (4th and 5th diagram of the second line). In principle there are also

vertex corrections with internal vector bosons, however they vanish due to the Landau-Yang

theorem [176], which states that two vector bosons cannot couple to a conserved current

of spin 1. Those diagrams with s-channel scalar particle exchange are of special interest.
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Figure 6.5: Virtual corrections to the process gg → b̃αb̃
∗
α. A common label V is used for the

neutral gauge bosons γ, Z0, while S denotes any of the neutral Higgs or Goldstone bosons and S±

denotes the charged ones. Crossed diagrams are not shown explicitly. The diagrams containing the
counterterms are depicted in the last line. The counterterms have to be evaluated at O(α).
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Figure 6.6: Virtual contributions to the process qq̄ → b̃αb̃
∗
α. The diagrams result from EW inser-

tions to tree-level QCD diagrams and from QCD insertions to tree-level EW diagrams. V , S and
S± are defined as in Figure 6.5. Crossed diagrams are not shown. The counterterm diagrams in the
last line have to be evaluated at O(α).
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Figure 6.7: Virtual QCD box contributions to the process qq̄ → b̃αb̃
∗
α. Crossed diagrams are not

shown.

They are loop corrections to the ggH vertex which can be significantly enhanced due to

tan β-enhanced Hbb-couplings. However, this is the only diagram in the gg channel that

involves tan β-enhanced couplings at O(α2
sα).

The UV divergences arising in the processes considered at O(α2
sα) cancel when adding the

counterterm diagrams with the counterterms evaluated at O(α). As shown in Section 4.5,

the soft-photon singularities arising from the diagrams in Figure 6.5 and 6.6 as well as the

soft-gluon singularities from Figure 6.7 cancel in the sum of virtual and real corrections.

Remaining initial-state photon singularities from the qq̄ channel have to be absorbed into

the definition of the PDFs.



6.3. Next-to-Leading Order EW Contributions 131

g

g

b̃α

b̃α

γ
g

g

g

b̃α

b̃α

γ

b̃α

g

g

b̃α

b̃α

γb̃α

g

g

b̃α

b̃α

γ

g

b̃α

g

g

b̃α

b̃α

γ

b̃α

b̃α

g

g

b̃α

b̃α

γ

b̃α

b̃α

(a)

q

q

b̃α

b̃α

γ
g

q

q

b̃α

b̃α

γ

g

b̃α

q

q

b̃α

b̃α

γ
q

g

(b)

Figure 6.8: Feynman diagrams contributing to real photon emission at O(α2
sα). (a) Real photon

emission for gg fusion. (b) Real photon emission for qq̄ annihilation.

6.3.2 Real Corrections

The O(α2
sα) contributions to the partonic processes (6.2a) and (6.2b) with a photon in the

final state,

g(p1) g(p2) → b̃α(p3) b̃∗
α(p4) γ(p5), (6.23a)

q(p1) q̄(p2) → b̃α(p3) b̃∗
α(p4) γ(p5), (6.23b)

are given by the squared matrix element of the tree-level QCD diagrams with an external

photon attached, see Figure 6.8. The partonic cross section is hence given by

σ̂2, 1

gg→b̃αb̃αγ
=

1

4ŝ

∫
d3Lips

∣∣∣∣M
1, 1

2

gg→b̃αb̃αγ

∣∣∣∣ , (6.24a)

σ̂2, 1

qq̄→b̃αb̃αγ
=

1

4ŝ

∫
d3Lips

∣∣∣∣M
1, 1

2

qq̄→b̃αb̃αγ

∣∣∣∣ . (6.24b)

The phase-space integration is divergent in the soft-photon region, i.e. for p0
5 → 0. In the case

of the process (6.23b), further singularities arise in the collinear region, i.e. for p1,2 · p5 → 0.

IR and collinear singularities are treated using the phase-space slicing method described in

Section 4.5.1.

The gluon bremsstrahlung process,

q(p1) q̄(p2) → b̃α(p3) b̃∗
α(p4) g(p5), (6.25)

contributes at O(α2
sα) via the interference of QCD-based (Figure 6.9a) and EW-based (Fig-

ure 6.9b) Feynman diagrams. The partonic cross section is given by
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Figure 6.9: Real gluon emission for the qq̄ channel. (a) QCD-based diagrams. (b) EW-based
diagrams.

σ̂2, 1

qq̄→b̃αb̃αg
=

1

4ŝ

∫
d3Lips 2 Re

[(
M

3

2
, 0

qq̄→b̃αb̃αγ

)∗
M 1

2
, 1
]
. (6.26)

The IR singularities of gluonic origin are in close analogy to the photonic case, however color

correlations have to be taken into account, see Section 4.5.2. Decomposing the tree-level

amplitudes according to their color structure as

M1,0 c1c2c3c4

12→34 = δc1c2
δc3c4

M1,0
1 + δc1c3

δc2c4
M1,0

2 ,

M0,1 c1c2c3c4

12→34 = δc1c2
δc3c4

M0,1
1 ,

(6.27)

the Fij of (4.108) are given by

F12 = F34 = 0,

F14 = F23 = −F13 = −F24 = 4
(
M1,0

2

)∗
M0,1

1 ,

Fii = 12
(
M1,0

1

)∗
M0,1

1 + 4
(
M1,0

2

)∗
M0,1

1 .

(6.28)

Due to the color structure, the interference term of a QCD-based and an EW-based diagram

in Figure 6.9 vanishes if both gluons are emitted from an initial-state or an final-state par-

ticle. The resulting squared matrix element is parity-odd and hence does neither contribute

to the total cross section nor for any parity-symmetric observable.

Real quark radiation contributes at O(α2
sα) as well,

g(p1) q(p2) → b̃α(p3) b̃∗
α(p4) q(p5), (6.29a)

g(p1) q̄(p2) → b̃α(p3) b̃∗
α(p4) q̄(p5). (6.29b)

This IR- and collinear-finite set is given by the interference of QCD-based and EW-based

tree-level diagrams (Figure 6.10a and Figure 6.10b). Only the interference from initial-

state and final-state radiation contributes. As in the real gluon emission case, the resulting

squared matrix element is parity odd and hence does neither contribute to the total cross

section nor for any parity-symmetric observable.
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Figure 6.10: Feynman diagrams contributing to real quark radiation. (a) QCD-based diagrams.
(b) EW-based diagrams.

The IR singularities arising in the gg channel cancel in the sum of virtual corrections,

process (6.21), and real photon radiation, process (6.23a). In the qq̄ channel the sum of

virtual corrections (6.22), real photon radiation (6.23b), and real gluon radiation (6.25) is

IR finite. This sum is affected by universal collinear singularities of photonic origin that can

be absorbed in the PDFs. This can be achieved by means of the following substitution (cf.

Section 4.5.1),

fq(x, µF ) → fq(x, µF )

(
1 −

αe2
q

π
κv+s

)
−
αe2

q

2π

∫ 1−δs

x

dz

z
fq

(
x

z
, µF

)
κc(z). (6.30)

eq is the electric charge of quark q expressed in units of the positron charge, while

κv+s = 1 − ln δs − ln2 δs +
(

ln δs +
3

4

)
ln

(
µ2
F

m2
q

)
+

1

4

(
9 +

2π2

3
+ 3 ln δs − 2 ln2 δs

)
,

κc(z) = Pqq(z) ln

(
µ2
F

m2
q

1

(1 − z)2
− 1

)
−
[
Pqq(z) ln

(
1 − z

z

)
− 3

2

1

1 − z
+ 2z + 3

]
,

(6.31)

with the splitting function Pqq(z) = (1 + z2)/(1 − z). The factorization is performed in

the DIS scheme. The replacement of the PDFs gives further contributions of O(α2
sα) to

the total cross section, canceling the remaining collinear singularities. Using the notation

of Section 4.5, the IR- and collinear-finite contributions to the partonic cross sections at

O(α2
sα) are given by

σ̂2,1

gg→b̃αb̃∗
α+X

= σ̂2,1

gg→b̃αb̃∗
α

∣∣
virt

+ σ̂2,1

gg→b̃αb̃∗
αγ

∣∣
soft

+ σ̂2,1

gg→b̃αb̃∗
αγ

∣∣
finite

,

σ̂2,1

qq̄→b̃αb̃∗
α+X

= σ̂2,1

qq̄→b̃αb̃∗
α

∣∣
virt

+ σ̂2,1

qq̄→b̃αb̃∗
α

∣∣γ
PDF

+ σ̂2,1

qq̄→b̃αb̃∗
αγ

∣∣
soft

+ σ̂2,1

qq̄→b̃αb̃∗
αγ

∣∣
coll

+ σ̂2,1

qq̄→b̃αb̃∗
αγ

∣∣γ
PDf

+ σ̂2,1

qq̄→b̃αb̃∗
αγ

∣∣
finite

,

σ̂2,1

qg→b̃αb̃∗
α+X

= σ̂2,1

qg→b̃αb̃∗
αq

+ σ̂2,1

q̄g→b̃αb̃∗
αq̄
.
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6.4 Numerical Results

In this section we perform a detailed numerical analysis for diagonal sbottom-pair production

at NLO EW. We stick to the notation introduced in Section 5.4.1. The leading order cross

section, the tree-level EW and the NLO EW contributions to the cross section are labeled by

σBorn = σ2, 0, ∆σtree EW = (σ1, 1 + σ0, 2), ∆σNLO EW = σ2, 1, (6.33)

respectively. ∆σEW = ∆σtree EW + ∆σNLO EW will be referred to as the EW contribution.

The total sum of the LO cross section with the EW contributions is denoted by σNLO =

σBorn +∆σEW. Relative EW contributions are defined by

δtree EW = ∆σtree EW/σBorn, δNLO EW = ∆σNLO EW/σBorn, δEW = ∆σEW/σBorn.

(6.34)

In distributions δ denotes the relative EW contribution defined as δ = (ONLO−OBorn)/OBorn,

where O is a generic observable and ONLO is the sum of the Born and the EW contributions.

6.4.1 Input Parameters

The Standard Model input parameters are given in (5.32).

For the numerical analysis we consider the mSUGRA scenarios SPS1a′ and SPS4. The first

one is a “typical” SUSY scenario proposed by the SPA convention for comparison with other

calculations [165]. The scenario SPS4 is characterized by a large value of tan β. Within this

scenario we study the dependence of the total cross section on the squark masses and on

tan β. The third scenario considered is the GMSB scenario SPS8.

The particle spectrum is determined following the procedure described in Section 5.4.1.

Starting from GUT-scale parameters, cf. Table 6.1, we use the program SOFTSUSY [166] to

evolve the soft-breaking parameters down to the SUSY scale MSUSY = 1 TeV. To get the

right mixing in the sbottom sector, we first translate the sbottom masses into the OS-masses

and use those to calculate the effective bottom-quark mass mDR,eff
b , eq. (6.16). This mass is

then used in the bottom-squark mass matrix to calculate the sbottom mass-eigenstates. The

lighter of the two bottom squarks is taken as the dependent squark. Its mass is therefore fixed

by SU(2) invariance. The shift ∆mb, cf. (6.12), the effective bottom-quark mass together

with the on-shell mass of the bottom squarks, the gluino and the lightest neutralino/chargino

are summarized in Table 6.2.

Unless otherwise stated, the results presented in this section are computed setting the

hadronic center of mass energy to
√
S = 14 TeV and using the MRST2004QED parton dis-

tribution functions [126]. The factorization and renormalization scales are set to a common

value, µ = µR = µF = mb̃α
, i.e. to the mass of the produced bottom squark.

6.4.2 Total Hadronic Cross Section

Table 6.3 shows the hadronic cross section for diagonal bottom-squark production within

the three considered scenarios for the
√
S = 14 TeV LHC. As expected, the total cross
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m0 m1/2 A0 tan β sign(µ)

SPS1a′ 70 GeV 250 GeV −300 GeV 10 +

SPS4 400 GeV 300 GeV 0 49.4 +

Λ Mmess Nmess tan β sign(µ)

SPS8 100 TeV 200 TeV 1 15 +

Table 6.1: High energy input parameters for the different SUSY scenarios considered. The mass
parameters m0, m1/2 and A0 are given at the GUT scale, tan β is evaluated at MSUSY = 1 TeV.

∆mb mDR,eff
b b̃1 b̃2 g̃ χ̃0

1
χ̃±

1

SPS1a′ 0.037 2.38 495 538 609 101 180

SPS4 0.22 2.08 433 633 736 123 217

SPS8 0.003 2.39 1070 1085 141 253

Table 6.2: The shift ∆mb and the resulting effective bottom-quark mass as well as the on-shell
masses of the bottom squarks, the gluino, and the lightest neutralino and chargino within the different
SUSY scenarios considered. All masses are given in GeV.

section is dominated by the LO QCD contribution of O(α2
s). The tree-level EW contributions

are dominated by the photon-induced channel which is independent of the mixing angle. In

each scenario, its yield relative to the leading-order cross section is similar for the two

processes considered. Although formally suppressed by a factor αs, the NLO EW corrections

are typically bigger than the tree-level EW contributions. In the SPS1a′ (SPS4) scenario the

tree-level and NLO EW contributions are more important in case of b̃1b̃
∗
1 ( b̃2b̃

∗
2) production.

This can be explained by the chirality dependence of the SU(2) coupling and by the fact

that in the SPS1a′ (SPS4) scenario b̃1 (b̃2) is mostly left-handed.

In the SPS8 scenario the bottom-squark masses are in the TeV range and hence twice as

heavy as in the aforementioned scenarios (cf. Table 6.2), thus the Born cross section is

about two orders of magnitude smaller. Further, the mixing between left- and right- handed

squarks is more important and the sbottom masses are nearly degenerate. These features

partially soften the differences among the tree-level EW contributions to b̃1b̃
∗
1 production

and the ones to b̃2b̃
∗
2 production.2 Huge cancellations between the qq̄ and the gg channel

amplify the dependence of the NLO EW contribution on the production process considered.

As a result the NLO EW contributions to b1b
∗
1 production and the ones to b2b

∗
2 production

have opposite sign, the latter being three times bigger than the former. Summing up the

various contributions, the relative yield in the scenarios considered is below 2%.

Table 6.4 collects the hadronic cross section for
√
S = 7 TeV. The leading-order total

2We checked that in the no-mixing limit the tree-level EW contributions to b̃L production is one order of

magnitude higher than the one contributing to b̃R production
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14 TeV
σBorn ∆σtree EW ∆σgγ ∆σNLO EW ∆σEW

O(α2
s) O(αsα+ α2) O(αsα) O(α2

sα) O(αsα+ α2 + α2
sα)

SPS1a′

b̃1b̃
∗
1 444.3(3) 0.7933(4) 2.0106(5) −6.041(9) −3.237(9)

0.18 % 0.45 % −1.36 % −0.73 %

b̃2b̃
∗
2 310.3(1) 0.00346(3) 1.4710(4) −2.892(4) −1.418(4)

0.00 % 0.47 % −0.93 % −0.46 %

SPS4

b̃1b̃
∗
1 1050.9(3) −0.3879(4) 4.255(1) −19.35(1) −15.48(1)

−0.04 % 0.40 % −1.84 % −1.47 %

b̃2b̃
∗
2 112.36(6) 0.2734(1) 0.6090(1) −2.852(2) −1.969(2)

0.24 % 0.54 % −2.54 % −1.75 %

SPS8

b̃1b̃
∗
1 3.405(1) 0.002296(1) 0.029004(7) −0.00307(9) 0.02823(9)

0.07 % 0.85 % −0.09 % 0.83 %

b̃2b̃
∗
2 3.042(1) 0.007054(3) 0.026286(7) 0.00835(9) 0.04169(9)

0.23 % 0.86 % 0.27 % 1.37 %

Table 6.3: Hadronic cross section for diagonal b̃αb̃
∗
α production at the 14 TeV LHC within three

different scenarios. Shown are the LO cross section, the tree-level EW as well as NLO EW contri-
butions and the relative corrections as defined in the text. The numbers in brackets refer to the
integration uncertainty in the last digit. All cross sections are given in femtobarn (fb).

cross sections are reduced proportionally to the mass of the produced squark. They amount

to 1 − 10% of their value at
√
S = 14 TeV. In all the scenarios considered, the contribution

of the photon induced channel is enhanced with respect to the 14 TeV case. In the SPS1a′

(SPS4) scenario the importance of the NLO EW contributions to the mostly left-handed

sbottom production, b̃1b̃
∗
1 (b̃2b̃

∗
2), is reduced. In contrast, the NLO EW contributions become

more important in case of the production of the mostly right-handed sbottom. In the

SPS8 scenario the EW contributions of the various channels are enhanced. In particular the

NLO EW contributions are positive for both production processes. This is a consequence

of the enhancement of the NLO EW contributions to the gg channel at
√
S = 7 TeV cf.

Section 6.4.4).
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7 TeV
σBorn ∆σtree EW ∆σgγ ∆σNLO EW ∆σEW

O(α2
s) O(αsα+ α2) O(αsα) O(α2

sα) O(αsα+ α2 + α2
sα)

SPS1a′

b̃1b̃
∗
1 30.42(2) 0.09993(4) 0.20183(5) −0.3480(7) −0.0462(7)

0.33 % 0.66 % −1.14 % −0.15 %

b̃2b̃
∗
2 19.286(6) 0.003521(2) 0.13565(3) −0.2027(3) −0.0636(3)

0.02 % 0.70 % −1.05 % −0.33 %

SPS4

b̃1b̃
∗
1 89.10(2) −0.00725(2) 0.5153(1) −1.689(1) −1.181(1)

−0.01 % 0.58 % −1.90 % −1.33 %

b̃2b̃
∗
2 5.175(2) 0.023176(9) 0.04325(1) −0.1251(1) −0.0587(1)

0.45 % 0.84 % −2.42 % −1.13 %

SPS8

b̃1b̃
∗
1 0.03706(1) 0.000044(1) 0.000588(1) 0.000097(1) 0.000730(1)

0.12 % 1.59 % 0.26 % 1.97 %

b̃2b̃
∗
2 0.03118(1) 0.000111(1) 0.000506(1) 0.000301(1) 0.000918(1)

0.36 % 1.62 % 0.97 % 2.95 %

Table 6.4: Same as Table 6.3 but considering diagonal b̃αb̃
∗
α production at the 7 TeV LHC.

6.4.3 Parameter Scan

The impact of tan β and of the sbottom masses on the total cross section have been studied

performing a parameter scan on these parameters. In this scan, the soft breaking parameters

ML and Mb̃R
appearing the squared mass matrix, eq. (2.50), are set to a common value

msquark. All other parameters are set to their SPS4 values. The scans presented in this

section are obtained for three different values of msquark = {300, 600, 900} GeV. tan β is

varied from 10 to 50.

In all scenarios considered, we have verified the smallness of the bottom-initiated tree-

level contributions, justifying our procedure of neglecting the O(α2
sα) contributions to this

channel. In Figure 6.11 we show the relevance of the various production channels at tree-

level. For b̃1b̃1 and b̃2b̃2 production the total cross section is dominated by the gluon induced

channel having a relative yield of 70−90%. The remaining 10−30% of the total cross section

are given by the qq̄ channel, with the relative yield increasing with tan β. As expected, the

bb̄ channel is strongly suppressed due to the small value of the bottom-quark density inside

the proton. This can be seen from the right plot in Figure 4.2 where the sea quark PDFs

including the bottom quark, given by the gray lines, are at least two orders of magnitude
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b�bq�qgg~b2~b�2, tan� = 50
msquark[GeV℄ 1000900800700600500400300

10.10.010.001b�bq�qgg~b1~b�1, tan� = 50
msquark[GeV℄ 1000900800700600500400300

10.10.010.001
Figure 6.11: The relative yield of the various production channels at tree-level scanned over the
common squark mass as defined in the text. The left (right) plot shows b̃1b̃1 (b̃2b̃2) production. In
both cases the tree-level cross section is dominated by the gluon-induced channel, while qq̄ annihi-
lation contributes to 10 − 30%. The bottom-induced channel has a relative yield which lies at the
per-mill level.

smaller in the relevant x-region. Its contribution to the tree-level cross section lies at the

per-mill level, in accordance with the analysis in Ref. [23].3 Due to the small yield of the bb̄

channel at tree-level, we will safely neglect the NLO EW contributions to this channel.

The second approximation made in our calculation was to neglect CKM mixing effects.

Figure 6.12 shows the ratio between the tree-level EW contributions to the cross section

that arise for non-trivial CKM matrix only, and the Born cross section. The red lines show

the relative yield for the cc̄ channel while the blue lines are for the uū channel. Both

channels exhibit contributions of similar size, depending on precise value of mSUSY and

tan β. However, its contribution to the cross section is of O(10−6) of the Born cross section,

which justifies our procedure of neglecting CKM effects.

The reliability of the renormalization scheme in the scenarios considered has been verified

as well. In particular we have checked that the finite part of the renormalization constant of

the dependent parameters is smaller than the parameter itself. Figure 6.13 shows the ratios

r1 =
δm2 fin

b̃1

m2
b̃1

, r2 =
δAfin

t

At
, r3 =

δθfin
b

θb
, (6.35)

as a function of tan β for the various values of msquark. r1 and r2 are below 0.2 while r3 is

at most of O(0.5) in the low tan β region. From the counterterms given in Table B.2 one

can see that δm2
b̃1

is the only dependent renormalization constant entering our NLO EW

calculation. The relative size of the finite part of this counterterm is moderate, rendering

this scheme appropriate for our calculation. Care has to be taken when using this scheme

for the calculation of observables that require the renormalization of the sbottom mixing

3The big contributions from the bb̄ channel quoted in Ref. [108] are a consequence of two enhancement

factors. First of all, resonant Higgs-boson exchange is considered. Moreover, the Hbb Yukawa coupling is

enhanced by the choice of a negative value for the parameter µ such that ∆mb ≈ −0.76. In our analysis

the Higgs-masses are not tuned to be resonant and we do not consider negative values of µ since it is

disfavored by the value of the anomalous magnetic moment of the muon (g − 2)µ [58].
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u�u; tan� = 50u�u; tan� = 10�; tan� = 50�; tan� = 10~b2~b�2
msquark[GeV℄��treeEW u�u;�=�Born 1000900800700600500400300

10�510�610�7u�u; tan� = 50u�u; tan� = 10�; tan� = 50�; tan� = 10~b1~b�1
msquark[GeV℄��treeEW u�u;�=�Born 1000900800700600500400300

10�510�610�7
Figure 6.12: Relative yield of the tree-level EW contributions which are only present for non-
trivial CKM mixing. The common squark mass mSUSY is defined in the text. The left (right) plot
shows b̃1b̃

∗
1 (b̃2b̃

∗
2) production for two different values of tan β. The red lines show the cc̄ initiated

contribution which are suppressed via Vcb, while the blue lines show the uū initiated contribution
which are suppressed via Vub.
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Figure 6.13: Reliability of the renormalization scheme for the tan β range considered and for
different squark masses. The ratios r1,r2, and r3 are defined in (6.35).

angle θb since the large relative contribution to δθb for small values of tan β might spoil

the reliability of the prediction. However, not the mixing angle itself but rather the sine or

cosine of the angle enters the calculation, and it is questionable whether the large shift in

the mixing angle propagates to the observable under consideration. For example, we have

explicitly checked that the ratios (δ sin θ/ sin θ) and (δ cos θ/ cos θ) are between 30 − 40% in

the low tan β region.

The results of the scan are collected in Figures 6.14 and 6.15. qq̄ refers to the sum

of the tree-level EW and of the NLO EW contributions from the qq̄ annihilation channel.

The peaks in the corrections correspond to neutralino, chargino, or sfermion thresholds.

These unphysical singularities affect the self-energy of the produced sbottom and can be

regularized by taking into account the finite widths of the unstable particle [177]. The right

panels of Figures 6.14 and 6.15 keep track of the particles responsible for the threshold

behavior. These plots show the mass of the produced squark as a function of tan β as
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Figure 6.14: The relative yield of the EW contribution for b̃1b̃
∗
1 production for the various produc-

tion channels as well as the combinded effect are shown on the left. The tan β dependence of the
produced bottom-squark mass, as well as the sum of the masses of particles close to it are shown on
the right. tan β is varied from 10 to 50.

well as the threshold for the production of (some of) the particle pairs entering the loops

of the sbottom self-energy. The curves in Figures 6.14 and 6.15 exhibit a step-function-

like behavior in the region where the mass of the produced sbottom is above threshold.

Since tan β affects the mixing of the bottom squarks, also their mass slightly changes by

varying tan β. mb̃1
slowly decreases while mb̃2

increases. Hence, the region above threshold

corresponds to low tan β for b̃1 and to high tan β for b̃2. Both, in the b̃1b̃
∗
1 and in the b̃2b̃

∗
2

production case the behavior of the various contributions strongly depends on the size of
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Figure 6.15: The relative yield of the EW contribution for b̃2b̃
∗
2 production for the various produc-

tion channels as well as the combinded effect are shown on the left. The tan β dependence of the
produced bottom-squark mass, as well as the sum of the masses of particles close to it are shown on
the right. tan β is varied from 10 to 50.

tan β. In the following we will distinguish between the low and the high tan β region, which

are separated by the threshold.

The case of b̃1b̃
∗
1 production is shown in Figure 6.14. The EW contributions of the qq̄

and the gg channel have substantially the same tan β dependence close to threshold. For

msquark = 300, 600 GeV one runs through threshold for tanβ = 25.6 and tan β = 43.0,

respectively. In the low tan β region the contributions from the gγ channel cancel against

the one from the qq̄ annihilation. The overall effect of the EW contribution is below 1%
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Figure 6.16: Relative difference between the EW contribution to the cross section for b̃2b̃2 produc-
tion with and without enhanced Hbb couplings (black lines). The individual effect on the gg (bb̄)
channel is depicted by the red(-dotted) lines. The qq̄ channel is not affected by the resummation
and hence not shown.

of the Born cross section, with the precise value depending on the squark mass. In the

high tan β region, the leading contributions comes from the gg channel and are only partly

canceled by the other channels. The EW contributions are of the order of a few percents.

However for msquark = 900 GeV and due to partial cancellations of the gγ and qq̄ channel

one is left with EW contributions below 1%. b̃2b̃
∗
2 production exhibits similar features. In

this case the NLO EW contributions are higher since the corrections from the gg channel are

more important. They are of the order of several percents, e.g. 5% for msquark = 600 GeV

and tan β ≥ 45.

It is worth to notice that the only practical effect of the resummation in the b/b̃ sector is

to change the values of the bottom-squark masses. Indeed, we have explicitly checked that

the impact of the effective Hbb couplings on the total cross section is negligible. This can

be seen from Figure 6.16 where the relative difference between the electroweak contribution

to the cross section, defined as

δσ :=
∆σEW

eff −∆σEW
no-eff

∆σEW
eff

, (6.36)

is given for b̃2b̃
∗
2 production. ∆σEW

eff and ∆σEW
no-eff denote the cross section with and without

the effective Hbb couplings, respectively. The overall effect of the effective Yukawa coupling,

given by the black line, is in most regions far below the per mille level. The positive peaks

for msquark = 600 GeV and msquark = 900 GeV are due to a vanishing denominator, i.e. they

correspond to zero-line transitions of ∆σEW
eff , cf. Figure 6.15.

6.4.4 Differential Distributions

Even though the EW contributions have a small impact on the total cross section, they

can become important in specific phase-space regions. In Figures 6.19 and 6.20 we consider

differential distributions with respect to three different kinematical variables within the
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SPS1a′ scenario for the 14 TeV LHC. The left panels show to total EW contributions to the

differential cross section. The tree-level EW contribution and the NLO EW contribution of

the various production channels are depicted as well. The right panels show the impact

of the EW contributions relative to the tree-level QCD cross section for each production

channel. In contrast to the left panels, in the right panels the qq̄ contribution is given by

the sum of the tree-level and NLO EW contributions.

Figure 6.19a refers to the transverse momentum distribution of the sbottom with highest

pT .4 Close to threshold, i.e. in the region pT < 300 GeV, the contribution of the gg channel

is positive. Far from threshold, this contribution becomes negative and relatively more

important. In the low pT region the two contributions from the qq̄ channel are different in

sign, and their partial cancellation reduces the overall effect of this channel. In the high

pT region the qq̄ channel increases its importance. The photon induced channel peaks at

low pT and it is almost proportional to the LO QCD cross section, i.e. its relative yield is

constant in pT . As expected, the bb̄ channel is irrelevant in the whole region. The total EW

contributions have a small positive yield of the order of 1 − 2% in the low pT region, while

for pT > 500 GeV the cross section is altered by 5 − 10%. It is interesting to note that a

lower cut pT min on the transverse momentum can significantly rise the impact of the EW

contributions. For instance the cut pT min = 320 GeV would discard the positive yield of the

gg channel in the low pT region. As a consequence the relative yield of the EW contribution

to the total cross section would become of the order of −3.2%. However, this feature is quite

academic, since only the decay product of the sbottom is measured and hence it would be

a quite difficult task from experimental side to perform such a cut on the pT distribution.

The invariant mass distribution is displayed in Figure 6.19b. The EW contributions exhibit

the same high energy behavior as in the case of the pT distribution. In this energy region

they alter the leading-order prediction up to 10%. The peaks in the gg channel are due to

particle threshold. They correspond to resonant squarks in the vertex and box diagrams of

Figure 6.5. The invariant mass corresponding to a threshold peak is directly related to the

mass of the responsible squarks, namely b̃2 and t̃2. Since b̃2 is only slightly heavier than b̃1 the

first peak appears directly after production threshold. Even though the threshold drives the

EW contribution of the gg channel to positive values which combine with the other channels

to give an overall positive contribution, the relative yield remains small in the low invariant

mass region, approx. 2%. In order to study how the EW contributions to the total cross

section are altered by a lower cut Minv,min on the invariant mass, we consider σ(Minv,min)

defined as the total cross section integrated from the value Minv,min. The upper-left plot of

Figure 6.17 shows the σ(Minv,min) dependence on the relative yield of the EW contributions

δEW defined in (6.34) together with the breakdown into the individual channels. The lower

cut Minv,min excludes the region where the EW contributions are positive. Therefore the

EW contributions decrease as Minv,min increases, while their relative impact increases. For

instance, for Minv,min ≥ 1500 GeV the relative yield of the EW contributions δEW exceeds

4Although only sbottom-pair production is considered, different transverse momenta arise due to real radi-

ation processes.
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Figure 6.17: Left: Relative yield of the EW contributions for the different production channels in
σ(Minv,min). Right: LO prediction for the same observable.

−5%. δEW is amplified by a factor of seven with respect to its value in the case of the fully

inclusive cross section given by δEW = −0.73, cf. Table 6.3, which corresponds to the left

edge of the plot. The LO cross section is reduced by a factor of five for Minv,min = 1500 GeV.

This can be seen from the upper-right panel of Figure 6.17, which shows σBorn(Minv,min).

Figure 6.19c shows the pseudo-rapidity distribution, where always the squark with the

higher absolute value of the pseudo-rapidity η (in the laboratory frame) is considered. The

gap for zero rapidity is an artefact of this definition. The NLO EW contributions peak at

|η| = 1 and dominate the EW contribution at this region. The contribution is negative for

small values of η as expected from the pT distribution, since intuitively small values of η

correspond to high pT .5 The total effect on the LO QCD cross section is up to 2%.

Figure 6.20 shows the differential distributions for b̃2b̃
∗
2 production in the transverse mo-

mentum (a), in the invariant mass (b), and in the pseudo-rapidity (c). In contrast to b̃1b̃
∗
1

production, the threshold behavior, initiated by t̃2 only, is mild and hardly visible in the

transverse momentum as well as in the invariant mass distributions. The EW contribution is

small, and its relative yield stays below 5%, even in the high energy region. This is expected

since in the SPS1a′ scenario b̃2 is mostly right handed. Interestingly, the contributions from

the gg channel and the gγ channel almost cancel in most parts of the phase-space. Therefore

5This statement gets further motivated by noticing that (in the c.m. frame) one has the relation pT =
1

2
ŝ sin θ, with the scattering angle θ, cf. (4.152).
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Figure 6.18: Differential transverse momentum distribution for b̃1b̃
∗
1 production within the SPS8

scenario for the 14 TeV (upper plots) and 7 TeV (lower plots) LHC.

the EW contributions are well approximated by the qq̄ channel corrections especially in the

hight pT region and high Minv region. The lower panels of Figure 6.17 show σ(Minv,min) in

the case of b̃2b̃
∗
2 production. In this scenario the EW contributions to b̃2b̃

∗
2 production can

be safely neglected for each value of Minv,min. Even in the case Minv,min = 2 TeV the EW

contributions change the Born cross section only by an amount of the order of 2%.

In Figure 6.18 we consider differential transverse mass distributions for b̃1b̃
∗
1 production

within the SPS8 scenario for 14 TeV (upper panels) and 7 TeV (lower panels). It is worth

analyzing the EW corrections to the gg channel in this scenario. The sbottom mass is heavier

in the SPS8 scenario than in the SPS1a′ scenario. Therefore, the typical momentum fraction

x of the initial-state gluons needed in order to be above production threshold is bigger in

the SPS8 scenario than in the SPS1a′ scenario. Since the gluon PDF falls off rapidly at

high x, the negative EW contributions of the gg channel in the high pT region are strongly

suppressed in the SPS8 scenario. For
√
S = 7 TeV the relevant x-values relevant for b̃b̃∗

production are even bigger and this phenomenon is enhanced. The cancellation between the

positive low pT corrections and the negative high pT corrections is less effective. Therefore,

as mentioned in Section 6.4.2, the overall (positive) gg channel contributions get relatively

enhanced for
√
S = 7 TeV.
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Figure 6.19: Differential distributions for the transverse momentum pT , the in variant mass Minv

and the pseudo-rapidity η for b̃1b̃
∗
1 production at the 14 TeV LHC within the SPS1a′ scenario. Shown

are the tree-level and NLO EW cross section contributions for the various production channels (left)
and the impact of the NLO EW contributions relative to the LO QCD cross section (right). In the
left panels the tree-level and NLO EW contributions for the qq̄ channel are plotted separately. In
the right panels they are treated inclusively.
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Figure 6.20: Same as Figure 6.19 but considering b̃2b̃
∗
2 production.





7 Summary and Conclusions

In this thesis we have calculated the electroweak contributions up to O(α2
sα) to squark–

squark and sbottom–anti-sbottom production processes at the LHC.

With the LHC taking data the electroweak scale will be probed in detail and reveal

the origin of electroweak symmetry breaking. A numerous amount of models beyond the

standard model will be probed and eventually be validated or falsified.

As argued at the beginning of this thesis, supersymmetry and especially the realization

via the MSSM with TeV scale SUSY particle content is an attractive extension of the SM,

which has the potential to explain some of its open questions. If SUSY is realized at the

TeV scale, colored SUSY particles will be produced at a high rate since their dominant

production mechanism proceeds via the strong interaction. For R-parity conserving theories

as considered in this work, events involving SUSY particle production are characterized via

large missing transverse energy since SUSY particles almost instantly decay into SM particles

and the LSP which escapes the detector without leaving a signal. The identification of

such events with the production of SUSY particles is done by comparing the experimental

signatures with theoretical predictions. Contrariwise, the non-observation of such signatures

can be used to derive lower SUSY mass bounds. In any case, precise theoretical predictions

are needed in order to perform a reliable analysis. Hence, in addition to the NLO QCD

corrections also corrections beyond one-loop have been calculated, reducing the remaining

uncertainties of QCD origin down to the percent region.

Besides higher-order QCD corrections also EW contributions can give significant contribu-

tions to the cross section and are essential for a reliable prediction. In order to accomplish the

same accuracy as in the QCD case, NLO EW contributions of O(α2
sα) have been considered.

These are formally of the same order than the NNLO QCD corrections. While the NLO EW

corrections to stop–anti-stop, diagonal squark–anti-squark, gluino–squark and gluino–gluino

production processes have been investigated in former work, we provided within this thesis

the yet missing NLO EW corrections to squark–squark and sbottom–anti-sbottom production

processes.

Since the EW interaction distinguishes flavor and chirality of the initial-state quarks and

final-state squarks, the contributing processes are manifold and their interplay is non-trivial.

In this work we have given all the technical issues needed in order to calculate the NLO EW

corrections to squark–squark and sbottom–anti-sbottom production processes. Appropriate

regularization procedures were presented and the renormalization constants for the relevant

sectors were given in order to obtain an UV finite result. This included the renormalization

of the quark, squark and gluino sector, as well as the renormalization of the strong coupling

constant αs. The complex structure of the NLO EW corrections required the renormalization

constants to be evaluated at O(α) and O(αs), respectively. The strong coupling constant was
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defined carefully. We used its MS definition with five active flavors in order to be consistent

with its definition used for the extraction of the PDFs. However, this explicitly breaks SUSY

and proper symmetry restoring counterterms were taken into account. Mass singularities of

photonic and gluonic origin had to be handled. They were regularized by means of mass

regularization and we used the phase-space-slicing method for the cancellation of IR and

collinear singularities originating from the virtual and real contribution. Remaining gluonic

as well as photonic initial-state collinear singularities had to be absorbed into the definition

of the PDFs.

We first applied these techniques to calculate the electroweak contributions to squark–

squark and anti-squark–anti-squark production processes up to O(α2
sα). Due to the large

amount of possible final states that differ in flavor and chirality, respectively, squark–squark

production consists of 36 processes and the same amount for anti-squark–anti-squark pro-

duction. This and the fact that the LO process proceeds via two initial-state valence quarks,

leads to a production yield that is generally higher than squark–anti-squark and can be

comparable to gluino-pair production. The electroweak contributions are special for this

process, since EW-mediated production channels exist already at tree-level and allow for

non-trivial QCD–EW interferences which can rise the LO cross section by up to 20%. These

LO QCD–EW interferences suffer from scale uncertainties and we have shown that they are

considerably reduced by taking the NLO EW contributions into account. The residual scale

uncertainties arise mostly from the choice of renormalization scale while the factorization

scale dependence is mild at NLO EW. We performed a detailed numerical analysis for two

left-handed squarks (q̃Lq̃L), two right-handed squarks (q̃Rq̃R), and one left-handed and one

right-handed squark (q̃Lq̃R), as well as for inclusive squark–squark (q̃q̃) production at the

LHC for
√
S = 14 TeV. The tree-level EW contributions are largest for q̃Lq̃L production,

where they are enhanced by O(αsα) interference terms and can easily reach the 20% level.

The interference contributions are suppressed for q̃Rq̃R production from the chiral couplings

and vanish for q̃Lq̃R production in the limit of no L–R mixing. At NLO, partial cancellations

occur among the various EW contributions. As a result, the integrated cross section is re-

duced by the NLO EW contributions by a few percent for most subprocesses. The interplay

of tree-level and NLO EW contributions is not universal and depends sensitively on the ratio

of squark and gluino masses as well as on their absolute values. The full EW contributions

affect the integrated cross section for inclusive squark–squark production at the percent level

(about 5% in SPS1a′ and SPS5, −1% in SPS2). In the distributions, however, the EW con-

tributions range from −10% to +20% and even larger values for exclusive q̃Lq̃L production.

Results for squark–squark production at the LHC for
√
S = 7 TeV were given within the

SPS1a′ scenario. We found that the relative importance of the tree-level EW contributions

increases by a few percent, while the relative NLO EW contributions are less important.

We investigated the effect of hard real radiation processes, with the photon, gluon or quark

being radiated into the central region of the detector. Such events are experimentally dis-

tinguishable from pure squark–squark production and might therefore modify the analysis

if considered inclusively. We found that by excluding those event with hard non-collinear

additional quarks, photons and gluons, the NLO EW corrections to the cross sections are



151

strongly affected and become more than twice as large as for exclusive q̃Lq̃L production.

In a next step we studied the NLO EW contributions to sbottom–anti-sbottom produc-

tion processes. We recomputed the already known tree-level EW contributions from the

qq̄-annihilation and the gluon fusion channels and included the previously unknown contri-

bution from the photon-induced channel. We presented the first complete computation of

the NLO EW contributions, which together with the QCD corrections have completed the

NLO analysis of the sbottom–anti-sbottom pair production process. We verified that CKM

effects can be safely neglected. The production of sbottom–anti-sbottom pairs is quite in-

volved due to the mixing between the left- and right-handed b-squarks, the renormalization

of the sbottom sector, and the enhanced Yukawa couplings for large values of tan β, with the

related need of resummation. We specified the precise relation between the bottom-quark

mass defined in the DR scheme and its Yukawa coupling, as well as the effective Higgs–

bottom vertices with the tan β enhanced contributions correctly resummed to all orders.

In the appendix it is shown how these resummed contributions arise in SQCD. Since the

renormalization constants of the sbottom sector can obtain large finite shifts, we checked

explicitly the reliability of our renormalization scheme for the scenarios considered. We per-

formed an extensive numerical discussion for the diagonal production of two bottom-squark

pairs at the LHC for
√
S = 14 TeV and

√
S = 7 TeV. The EW contributions to the total cross

section were found to be strongly scenario dependent. Nevertheless, in all scenarios consid-

ered they are of the order of a few percent of the LO contribution since strong cancellations

among different channels partly reduce their size. However, the EW contributions peak in

different regions of phase space and hence become enhanced for reasonable kinematical cuts.

For the same reason, the impact of the EW contributions is more important in differential

distributions, in particular in the high energy region. Considering the invariant mass and

the transverse momentum distributions for b̃1b̃1 production in the SPS1a′ scenario, they can

even exceed the LO contribution by 10%.

This work provides an important step to the knowledge of all relevant EW contributions

to squark and gluino production processes. The remaining class of processes consists of non-

diagonal squark–anti-squark production, i.e. q̃αq̃∗
β production for α 6= β and q̃αq̃′∗

β production

for q 6= q′. These processes can be classified in the same way as for squark–squark production.

Using the methods elaborated in this work, it is a straightforward task to calculate the

corresponding NLO EW corrections.





A Notation and Conventions

A.1 Metric Conventions

Elements of the four-dimensional Minkowski space are labeled by greek indices.1 A con-

travariant vector has upper indices while the covanriant vector carries lower indices. They

are related via the metric tensor g,

gµν = gµν = diag(1,−1,−1,−1), (A.1)

xµ = gµνxν . (A.2)

Repeated indices are understood to be implicitly summed.

A.2 Pauli and Dirac Matrices

The Pauli matrices σi, i ∈ {1, 2, 3} are defined as

σ1 =


0 1

1 0


 , σ2 =


0 −i
i 0


 , σ3 =


1 0

0 −1


 , (A.3)

and obey the Clifford algebra

{σi, σj} = 2δij 1 , (A.4)

and the Lie algebra

[σi, σj ] = 2iǫijkσk, (A.5)

where ǫ is the total antisymmetric third rank tensor with ǫ123 = 1. It has the following

properties,

ǫijkǫilm = δjlδkm − δjmδkl,

ǫijkǫijm = 2δkm,

ǫijkǫijk = 3!.

(A.6)

The extended Pauli matrices σµ and σ̄µ which are defined as

σµ = (1 , σi), σ̄µ = (1 ,−σi), (A.7)

1As long as not stated otherwise, greek indeces run from 0 to 4 while roman indeces run from 1 to 3.
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have the following properties:

σµσ̄ν + σν σ̄µ = 2gµν 1 ,

σ̄µσν + σ̄νσµ = 2gµν 1 ,

Tr(σµσ̄ν) = 2gµν ,

σ2σµσ2 = σ̄µT ,

σ2σ̄µσ2 = σµT .

(A.8)

The two-dimensional spin tensors are defined as

σµν =
i

4
(σµσ̄ν − σν σ̄µ) ,

σ̄µν =
i

4
(σ̄µσν − σ̄νσµ) .

(A.9)

The four-dimensional Dirac matrices form a Clifford algebra,

{γµ, γν} = 2gµν 1 . (A.10)

γ5 is defined as γ5 = iγ0γ1γ2γ3 and has the properties,

{γ5, γµ} = 0, (γ5)2 = 1. (A.11)

In the Weyl representation the Dirac matrices are given by

γµ =


 0 σµ

σ̄µ 0


 , γ5 =


1 0

0 −1


 . (A.12)

The projection operators PL,R are defined as

PL,R =
1

2
(1 ± γ5). (A.13)

A.3 Polarization Vectors

The polarization vectors ǫµ(k, λ) for massless gauge bosons depend on the on-shell momen-

tum k and polarization λ. They are transverse,

kµǫµ(k, λ) = 0 , (A.14)

and normalized according to

ǫ∗µ(k, λ)ǫµ(k, λ′) = −δλλ′ . (A.15)

There are only two physical (transverse) polarizations and the polarization sum is gauge-

dependent. In the gauge nµǫµ(k, λ) = 0 with an external four vector nµ it is given by

2∑

λ=1

ǫ∗µ(k, λ)ǫν(k, λ) = −gµν − kµkν
(kn)2

n2 +
nµkν + nνkµ

kn
. (A.16)
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A.4 Self-Energies

The unrenormalized self-energy is defined diagrammatically via	i =: i�ij(p)p � 	j1 PI . (A.17)

In the case of Ψ being a spinor or a vector particle, it is convenient to decompose the

self-energy according to its Lorentz structure:

Spinor:

Σij(p) = /pPLΣ
L
ij(p

2) + /pPRΣ
R
ij(p

2) + PLΣ
SL
ij (p2) + PRΣ

SR
ij (p2) . (A.18)

Vector:

Σµν
ij (p) = ΣT

ij(p
2) (gµν − pµpν) +ΣL

ij(p
2)pµpν . (A.19)

A.5 Grassmann Numbers

A Grassmann algebra GN is an associative algebra that contains the unity element 1 and N

elements ξi that obey the following anticommutation relation:

{ξi, ξj} = 0 . (A.20)

From (A.20) it follows that (ξI)2 = 0. Complex conjugation of the generators is defined via

(ξaξb . . . ξc)∗ = ξc . . . ξbξa. (A.21)

It follows that the generators are real since (ξi)∗ = ξi. Elements of GN are called super-

numbers. They can be written with help of the basis as

z = c0 + caξ
a +

1

2!
cabξ

aξb + . . .+
1

N !
ca1,...,aN

ξa1 . . . ξaN , (A.22)

where the factors c are complex numbers, antisymmetric in their indices. Each super-number

can be divided into an even and an odd part,

z = x+ θ. (A.23)

x contains only terms with an even number of generators, while θ has only terms with an

odd number of generators. The odd super-numbers are called Grassmann numbers and have

the following properties,

{θA, θB} = 0, θθ = 0. (A.24)
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The complex-conjugated of a Grassmann number is defined via

(θAθB . . . θC)∗ = θC∗ . . . θB∗θC∗, (A.25)

i.e. complex-conjugation equals Hermitian conjugation.

An analytic function f over the complex numbers can be continued to a function over

Grassmann variables. It is defined via its Taylor series in the Grassmann numbers

f(q, θ) = f0(q) + fAθ
A +

1

2!
fAB(q)θAθB + . . . . (A.26)

The sum breaks off for a finite number of Grassmann variables.

The differentiation with respect to a Grassmann number is defined as

∂

∂θA
θB ≡ δBA ,

∂

∂θA
1 ≡ 0 . (A.27)

For each commutation of a Grassmann differential operator with an anti-commuting object

one gets an extra factor of (−1). For the integration with respect to Grassmann variables

one requires the integral to be translation invariant. One defines
∫
θBdθA = δBA ,

∫
1dθ = 0. (A.28)

Comparing (A.27) and (A.28) one finds that integration and differentiation with respect to

Grassmann variables is the same. The differentiation with respect to Weyl spinors, whose

components are Grassmann variables, cf. Section D.4, is defined as

∂A :=
∂

∂θA
, ∂A :=

∂

∂θA
, (A.29)

∂̄Ȧ :=
∂

∂θ̄Ȧ
, ∂̄Ȧ :=

∂

∂θ̄Ȧ
. (A.30)

With the definitions (A.27) one gets

∂Aθ
B = δBA , ∂A∂B = δAB (A.31)

∂̄Ȧθ̄
Ḃ = δḂ

Ȧ
, ∂̄Ȧθ̄Ḃ = δȦ

Ḃ
(A.32)

To be consistent with the raising and lowering of indices as defined for Weyl spinors, one

defines

ǫAB∂B = −∂A, ∂BǫBA = −∂A. (A.33)

With this definitions one gets

∂A(θθ) = 2θA, ∂̄Ȧ(θ̄θ̄) = −2θ̄Ȧ, (A.34)

∂A∂A(θθ) = 4, ∂̄Ȧ∂̄
Ȧ = 4. (A.35)
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Integration with respect to Weyl spinors is defined in the same way,

∫
dθA =

∂

∂θA
= ∂A,

∫
dθA =

∂

∂θA
= ∂A, (A.36)

∫
dθ̄Ȧ =

∂

∂θ̄Ȧ
= ∂̄Ȧ,

∫
dθ̄Ȧ =

∂

∂θ̄Ȧ
= ∂̄Ȧ. (A.37)

Further one defines

dθ2 :=
1

4
dθAdθA, dθ̄2 :=

1

4
dθ̄Ȧθ̄

Ȧ, (A.38)

d4θ := dθ2dθ̄2.





B Counterterms

In this appendix, we give the explicit expressions for the counterterm (CT) diagrams entering

the NLO EW calculation to squark–squark and sbottom–anti-sbottom production processes.

b̃α b̃α = i
[(
p2 −m2

b̃α

)
δZ b̃αα − δm2

b̃α

]

g

g

b̃α

b̃α

= ig2
s (T c1T c2 + T c2T c1) δZ b̃ααgµν

g
b̃α

b̃α

= −igs T
c δZ b̃αα (k + k′)µ

g
q

q̄

= −igs T
c (δZqLγµPL + δZqRγµPR)

Table B.1: Feynman rules for the counterterms needed for sbottom–anti-sbottom production fol-
lowing the conventions of [161, 163]. Arrows indicate charge and fermion number flow, respectively.
For Majorana particles the fermion number flow has to be considered in accordance to [178]. The
counterterms enter the calculation of the NLO EW contributions via Figures 6.6 and 6.7 and the
renormalization constants have to be evaluated at O(α).
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g̃ g̃
= i

[(
/p−mg̃

)
δZ g̃ − δmg̃

]

q
g̃

q̃α

= −i gs√
2
T c
[(
δZ q̃LL + 2δZĝ + δZg̃ + δZqL

)
δaLPL − (L ↔ R)

]

q̄
g̃

q̃∗
α

= i gs√
2
T c
[(
δZ q̃RR + 2δZĝ + δZg̃ + δZqR

)
δaRPL − (L ↔ R)

]

q
χ̃0
i

q̃α

= ie 1√
2

[
−
(
N∗

i1

6cw
+ I3

q
N∗

i2

sw

) (
δZ q̃LL + δZqL

)
δαLPL

+ eqNi1

cw

(
δZ q̃RR + δZqR

)
δαRPR

]

q̄

χ̃0
i

q̃∗
α

= ie 1√
2

[
eqN∗

i1

cw

(
δZ q̃RR + δZqR

)
δαRPL

−
(
Ni1

6cw
+ I3

q
Ni2

sw

) (
δZ q̃LL + δZqL

)
δαLPR

]

q
χ̃±
i

q̃′
L

= −ie
U∗

i1
δqu+V ∗

i1
δqd

2sw

(
δZ q̃

′

LL + δZqL

)
PL

q̄

χ̃±
i

q̃′∗
L

= −ie
Ui1δqu+Vi1δqd

2sw

(
δZ q̃

′

LL + δZqL

)
PR

Table B.2: Feynman rules for the counterterms (CTs) needed for squark–squark production fol-
lowing the conventions of [161, 163]. Arrows indicate charge and fermion number flow, respectively.
For Majorana particles the fermion number flow has to be considered in accordance to [178]. The
counterterms appear in Figures 5.4, 5.5 and 5.6. The first three CTs enter the calculation of the
NLO EW corrections via Figures 5.4 and 5.6 and the renormalization constants have to be evaluated
at O(α) and O(αs), respectively. The remaining CTs enter the calculation via Figure 5.5 and the
renormalization constants have to be evaluated at O(α).



C Resummation in the Bottom-Quark Sector

In this appendix, the tan β-enhanced contributions that spoil the relation between the

bottom-quark mass and its Yukawa coupling are calculated in perturbative SQCD. Fur-

ther, the tan β-enhanced loop effects to the Higgs-bottom vertices are calculated. According

to [83], these corrections are correctly resummed to all orders.

C.1 Effective Bottom-Quark Propagator

All diagrams that give a contribution to the bottom self-energy at O(αsµ tan β/MSUSY) are

shown in Figure C.1. Higher order loop diagrams are either not enhanced by tan β or further

suppressed by 1/MSUSY.

The physical mass of the bottom quark is related to the pole of the inverse two-point

vertex function Γij . It is obtained via the Dyson summation of the diagrams in Figure C.1,

i

/p−m
+

i

/p−m

(
iΣ(/p)

) i

/p−m
+ . . . =

i

/p−m

∑(
−Σ(/p)

) 1

/p−m
(C.1)

=
i

/p− (m−Σ(/p))
.

In the limit of vanishing external momenta, the physical mass is given by mphys = m−Σ(0),

with Σ = −δmb + ΣSE + ΣCT corresponding to diagrams (b), (c), and (d) of Figure C.1.

Starting with calculating diagram (c) one finds in the limit of vanishing external momenta,

ΣSE(k) = − 2

3π
αsCF

[
mg̃ sin(θb̃) cos(θb̃)

(
B0(k2,m2

g̃,m
2
b̃1

) −B0(k2,m2
g̃,m

2
b̃2

)
)

+
(
sin2(θb̃)PL/k + cos2(θb̃)PR/k

)
B1(k2,m2

g̃,m
2
b̃2

) (C.2)

+
(
sin2(θb̃)PR/k + cos2(θb̃)PL/k

)
B1(k2,m2

g̃,m
2
b̃1

)
]

(a)

bL bR

(b)

bL bR

(c)

g̃

b̃α b̃α

bL bR

(d)

bL bR

g̃

b̃α b̃β

Figure C.1: One-loop bottom propagator in SQCD. The “×” in (b) and (d) denote mass countert-
erm insertions.
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k→0→ − 1

3π
αsCFmg̃ sin(2θb̃)

(
B0(0,m2

g̃,m
2
b̃1

) −B0(0,m2
g̃,m

2
b̃2

)
)
.

The loop integrals are given in the notation of [135]. Using

B0(0,m2
g̃,m

2
b̃1

) −B0(0,m2
g̃,m

2
b̃2

) = (m2
b̃1

−m2
b̃2

) C0(0, 0, 0,m2
g̃,m

2
b̃1

,m2
b̃2

), (C.3)

and

sin(2θb̃) =
2mb(Ab − µ tan β)

m2
b̃1

−m2
b̃2

, (C.4)

one finds in the limit of large tan β

ΣSE(0) =
2

3π
αsCF mbmg̃ µ tan β C0(0, 0, 0,m2

g̃,m
2
b̃1

,m2
b̃2

). (C.5)

With help of the recursion relations for vacuum integrals

TN0 (0, . . . , 0,m2
0, . . . ,m

2
N−1) =

N−1∑

i=0

[(
m2
i −m2

i+1

) (
m2
i −m2

i+2

)]−1
A0(m2

i ), (C.6)

A0(m2) = m2

(
∆− log(

m2

µ2
) + 1

)
,

where mN = m0, mN+1 = m1, . . . , one finds

C0(0, 0, 0,m2
g̃,m

2
b̃1

,m2
b̃2

) = −I(m2
g̃,m

2
b̃1

,m2
b̃2

), (C.7)

leading to

ΣSE(0) = − 2

3π
αsCF mbmg̃ µ tan β I(m2

g̃,m
2
b̃1

,m2
b̃2

) (C.8)

= −mb∆mb .

The next step is to calculate diagram (d) of Figure C.1 which contains the mass counterterm

insertion. Since the strong interaction is chirality conserving, only diagrams with b̃α 6= b̃β
have to be taken into account. Inserting the squark-mass counterterm eq. (4.55a), one finds

for vanishing external momenta

ΣCT (0) = − 2

3π
αsmg̃ CF (δDb̃)12 cos(2θ)

B0(0,m2
g̃,mb̃1

) −B0(0,m2
g̃,mb̃2

)

(mb̃1
−mb̃2

)
(C.9)

=
2

3π
αsmg̃ CF (δDb̃)12 cos(2θ) I(m2

g̃,m
2
b̃1

,m2
b̃2

)

= − 2

3π
αsmg̃ CF δmb µ tan β cos2(2θ) I(m2

g̃,m
2
b̃1

,m2
b̃2

)

= − 2

3π
αsmg̃ CF δmb µ tan β I(m2

g̃,m
2
b̃1

,m2
b̃2

) (1 − sin2(2θ))

= −δmb∆mb + O
(

mb

MSUSY

)
.
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(a) (b) (c)

b̃α

b̃β

g̃

(d)

b̃α

b̃β

g̃

Figure C.2: tan β enhanced Higgs-bottom vertex diagrams.

In the third line the explicit representation of the mixing angle Ub̃ with detUb̃ = 1 is inserted,

cf.(2.54). The off-diagonal sbottom mass counterterm (δDb̃)12 is given by (cf.(4.55a))

(δDb̃)12 = δ

(
cos(2θ)(Ab −mb µ tan β) +

1

2

(
(Mb̃)22 − (Mb̃)11

)
sin(2θ)

)
(C.10)

→ −δmb µ tan β cos(2θ),

where only the part proportional to (µ tan β) is taken and only δmb has SQCD contributions.

Altogether, one gets for the physical bottom-quark mass

mphys
b = mb + δmb +mb∆mb + δmb∆mb (C.11)

= (mb + δmb) (1 +∆mb)

It follows that the proper relation between the Yukawa coupling and the mass parameter

can be taken into account by replacing the bare Yukawa coupling h0
b v/

√
2 = m0

b = mb+δmb

in the Lagrangian by an effective coupling:

h0
b v√
2

=
hb v + δhb v√

2
= mb + δmb (C.12)

=
mphys
b

1 +∆mb
(C.13)

C.2 Effective Hbb Vertices

In addition to the tan β-enhanced corrections to the effective bottom-quark mass, one also

has tan β-enhanced corrections to the Higgs–bottom vertices which arise due to the diagrams

depicted in Figure C.2. Taking these diagrams into account all tan β-enhanced contributions

are correctly resummed to all orders in perturbation theory. In the following we calculate

these couplings for the neutral Higgs sector and especially show the cancellation of the

resummed terms in the neutral Goldstone sector.

h0bb̄-Vertex

We denote the tree-level coupling by Γ h
0bb

tree . It is given by

Γ h
0bb

tree = −i emb sinα

2mW cosβ sin θw
, (C.14)
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while the tree-level diagram containing the counterterm is given by

Γ h
0bb

tree,CT =
δmb

mb
Γ h

0bb
tree . (C.15)

For the one-loop contribution, Figure C.2c only diagrams with b̃α 6= b̃β have to be taken into

account, since the gluino coupling is chirality conserving. For vanishing external momenta

one finds

Γ h
0bb̄

1−loop = −i
αs emg̃C0(0, 0, 0,m2

g̃,m
2
b̃1

,m2
b̃2

)

18πcwswMW cosβ
cos2(2θw) ×

(6cwmb(Ab sinα+ µ cosα) + cosβMW MZ sin(α+ β)(3 − 4 sin2 θw) tan(2θw))

= Γ h
0bb̄

tree

αsmg̃I(,m2
g̃,m

2
b̃1

,m2
b̃2

)

18πcwmb sinα
(12cwmb(sin

2(2θw) − 1)(sinαAb + µ cosα)

+ cosβMWMZ sin(α+ β)(4 sin2 θw − 3) sin(4θw))

= −Γ h0bb̄
tree

∆mb(Ab sinα+ µ cosα)

µ sinα tan β

= −Γ h0bb̄
tree

∆mb

tanα tan β
, (C.16)

where we neglect terms that are either suppressed via mb or 1/MSUSY, or are not tan β

enhanced. For the one-loop diagram containing the counterterm, Figure C.2d, one finds

Γ h
0bb̄

1−loop,CT =
δmb

mb
Γ h

0bb̄
1−loop. (C.17)

Altogether, the effective h0bb̄ coupling is given by

Γ h
0bb̄

eff = Γ h
0bb̄

tree +
δmb

mb
Γ h

0bb̄
tree,CT + Γ h

0bb̄
1−loop +

δmb

mb
Γ h

0bb̄
1−loop,CT

=

(
1 +

δmb

mb

)(
1 − ∆mb

tanα tan β

)
Γ h

0bb̄
tree

=
Γ h

0bb̄
tree

1 + δmb

(
1 − ∆mb

tanα tan β

)
. (C.18)

H0bb̄-Vertex

The tree-level coupling ΓH
0bb̄

tree is given by

ΓH
0bb̄

tree = i
emb cosα

2MW cosβ sin θw
. (C.19)

Again the tree-level counterterm diagram is related to the tree-level coupling via a factor

δmb/mb

ΓH
0bb̄

tree,CT =
δmb

mb
ΓH

0bb̄
tree . (C.20)
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Calculating the one-loop diagram, Figure C.2c, for b̃α 6= b̃β and vanishing external momenta,

one gets

ΓH
0bb̄

1−loop = −i
αsemg̃ cos2(2θw)C0(0, 0, 0,mg̃,m

2
b̃1

,m2
b̃2

)

18πswcwMW cosβ
×
(
6cwmb(µ sinα−Ab cosα)

+ cos(α+ β)MWMZ cosβ(4 sin2 θw − 3) tan(2θw)
)

= ΓH
0bb̄

tree ∆mb (1 − sin(2θw))
(

tanα

tan β
− Ab
µ tan β

)

+ ΓH
0bb̄

tree ∆mb
cos(α+ β)MWMZ cosβ(4 sin2 θw − 3) sin(4θw)

12 cosαcwmbµ tan β

= ΓH
0bb̄

tree ∆mb
tanα

tan β
+ O

(
1

tan β

)
+ O

(
mb

MSUSY

)
. (C.21)

The one-loop counterterm diagram is again related via

ΓH
0bb̄

1−loop,CT =
δmb

mb
ΓH

0bb̄
1−loop, (C.22)

so that altogether one finds

ΓH
0bb̄

eff = ΓH
0bb̄

tree +
δmb

mb
ΓH

0bb̄
tree,CT + ΓH

0bb̄
1−loop +

δmb

mb
ΓH

0bb̄
1−loop,CT

=
ΓH

0bb̄
tree

1 +∆mb

(
1 +∆mb

tanα

tan β

)
. (C.23)

Abb̄-Vertex

The tree-level Abb̄ coupling is given by

ΓAbb̄tree =
emb tan β

2MW sw
(PL − PR), (C.24)

with the projectors PL and PR for left- and right-handed particles, respectively. At one-loop

one finds with b̃α 6= b̃β and vanishing external momenta

ΓAbb̄1−loop =
αs embmg̃(Ab tan β + µ)

3πMW sw
C0(0, 0, 0,m2

g̃,m
2
b̃1

,m2
b̃2

)(PL − PR)

= −∆mbΓ
Abb̄
tree

(
Ab

µ tan β
+

1

tan2 β

)

= 0 + O
(

1

tan β

)
, (C.25)

i.e. there is no extra enhancement factor of O(1) owing to the one-loop vertex corrections.

Hence, adding the contributions of the diagrams (a)−(d) of Figure C.2, one gets

ΓAbb̄eff = ΓAbb̄tree +
δmb

mb
ΓAbb̄tree,CT + ΓAbb̄1−loop +

δmb

mb
ΓAbb̄1−loop,CT

=
ΓAbb̄tree

1 +∆mb
. (C.26)
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G0bb̄-Vertex

The coupling of the neutral Golstone boson to fermions is closely related to the Z-boson

coupling to fermions and specific tree-level relations have to be fulfilled. Changing the G0bb̄-

coupling can give rise to gauge-symmetry violation. Fortunately, by taking consistently all

tan β enhanced corrections into account, the enhancement factors cancel and one is left with

the tree-level coupling ΓG
0bb̄

tree ,

ΓG
0bb̄

tree = − emb

2MW sw
(PL − PR). (C.27)

The one-loop correction yields for b̃α 6= b̃β and vanishing external momenta

ΓG
0bb̄

1−loop = −αs embmg̃(Ab − µ tan β)

3πMW sw
C0(0, 0, 0,mg̃,m

2
b̃1

,m2
b̃2

)(PL − PR)

= ∆mbΓ
G0bb̄
tree

(
1 − Ab

µ tan β

)

= ∆mbΓ
G0bb̄
tree + O

(
1

tan β

)
, (C.28)

so that adding all contributions yields

ΓG
0bb̄

eff = ΓG
0bb̄

tree +
δmb

mb
ΓG

0bb̄
tree,CT + ΓG

0bb̄
1−loop +

δmb

mb
ΓG

0bb̄
1−loop,CT

=
ΓG

0bb̄
tree

1 +∆mb
(1 +∆mb)

= ΓG
0bb̄

tree . (C.29)



D Supersymmetry

In this appendix the technical issues needed in order to construct supersymmetric theories

are given. First of all, we give an overview over general symmetry transformations and

representations of symmetry generators. Afterwards, in Section D.2 the generators of the

Poincaré group are derived. From this we construct the irreducible representations of the

homogeneous Lorentz group using the Weyl formalism. It is shown how these objects can

be used in order to construct Lorentz-invariant quantities. After introducing the concept of

graded Lie algebras at the beginning of Section D.5, the supersymmetry algebra is written

down in the general case. With help of the superfield formalism, introduced in Section D.6,

it is shown how one can construct supersymmetric gauge theories for N = 1 supersymmetry.

D.1 Symmetry Transformations

D.1.1 Noether’s Theorem

Noether’s theorem (due to Noether (1918) in the classical field case) claims that if a La-

grangian is invariant under a continuous transformation, then there will be an associated

symmetry current. The volume integral of the µ = 0 component of the symmetry current

is a symmetry operator, i.e. it is constant in time.

Consider a Lagrangian L depending on the fields φi. L(φi) shall be invariant under a

continuous symmetry transformations φi → φ′
i,

L(φ′
i) = L(φi). (D.1)

An infinitesimal transformation can be written as,

φ′
i = φi + δφi . (D.2)

Since L is invariant under this transformation, one finds for the variation δL,

0 = δL =
∂L

∂(∂µφi)
δ(∂µφi) +

∂L
∂φi

δφi . (D.3)

Using the Euler–Lagrange equations,

0 =
∂L
∂φi

− ∂µ

(
∂L

∂(∂µφi)

)
, (D.4)

and the fact that δ(∂µφi) = ∂µδφi one finds

0 = ∂µ

[
∂L

∂(∂µφi)
δφi

]
≡ ǫ∂µj

µ, (D.5)
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where ǫ is some expansion parameter for the symmetry transformation. This defines a

conserved symmetry current jµ,

jµ =
dj0

dt
+ ~∇~j = 0. (D.6)

Performing an integration over the whole space yields

d

dt

∫

V
d3xj0 +

∫

V
d3x~∇ ·~j = 0 (D.7)

d

dt

∫

V
d3xj0 +

∫

S→∞
d~S ·~j = 0 (D.8)

⇒ d

dt

∫

V
d3xj0

︸ ︷︷ ︸
≡J

= 0, (D.9)

i.e. the volume integral of the µ = 0 component of a symmetry current J , is a symmetry

operator.

D.1.2 Relation Between Symmetry Generators and Symmetry Operators

In the following, we show the relation between the generators of a symmetry group T̂ and

the corresponding symmetry operators T which are a field theoretical representation, i.e.

they are themselves quantum operators. The continuous symmetry transformation on the

fields that leaves the theory invariant, can be written in the form

φ′ = S(α)φ = exp[−iαT̂ ]φ. (D.10)

Since φ and φ′ obey the same (anti)commutation relations, they have to be related by a

unitary transformation

φ† = U(α)φU †(α), (D.11)

with

U = exp[iαT ]. (D.12)

It is important to notice that the T s are quantum field operators (and therefore different to

T̂ , which are the generators of a symmetry group). For an infinitesimal transformation one

gets,

φ′ = φ+ δǫφ

(D.11)
= (1 + iǫT )φ(1 − iǫT )

= φ+ iǫ[T, φ] (D.13)

(D.10)
= (1 − iǫT̂ )φ

= φ+ iǫ(−T̂ φ). (D.14)
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Comparing (D.13) and (D.14), one finds

[T, φ] = −T̂ φ. (D.15)

For quantum mechanical fields that obey the canonical equal-time (anti)commutation rela-

tions [
φ(~x, t),

∂L
∂(∂0φ)

(~y, t)
]

= iδ3(~x− ~y), (D.16)

one can easily show that the symmetry operator T in (D.15) is given by the conserved

Noether charge J introduced in (D.9). The symmetry generators of a continuous group,

especially Lie groups, are specified by their algebra, the Lie algebra. The T s are a field-

theoretical representation of the symmetry generators if they obey the same commutation

relations than the T̂ ,

[T̂i, T̂j ] = ifijkT̂k . (D.17)

To find the commutation relations of the Ti, consider the difference of two infinitesimal

transformations, (δǫiδǫj − δǫjδǫi)φ, with

δǫiφ = −iǫT̂iφ (D.18)

= iǫi[Ti, φ]. (D.19)

Using the identity (D.18) one finds,

δǫiδǫjφ = δǫi(−iǫj T̂j)φ = (−iǫj T̂j)(−iǫiT̂i)φ

= −ǫiǫj T̂j T̂iφ
⇒ (δǫiδǫj − δǫjδǫi)φ = ǫiǫj [T̂i, T̂j ]φ

= ǫiǫj i
∑

k

fijkT̂k

(D.15)
= −iǫiǫj

∑

k

fijk[Tk, φ]

= −iǫiǫj
∑

k

[fijkTk, φ].

(D.20)

In the same way, by using the identity (D.19), one gets

δǫiδǫjφ = δǫi iǫj [Tj , φ] = iǫj iǫi[Ti, [Tj , φ]]

= −ǫiǫj [Ti, [Tj , φ]]

⇒ (δǫiδǫj − δǫjδǫi)φ = −ǫiǫj ([Ti, [Tj , φ]] − [Tj , [Ti, φ]])

= −ǫiǫj [[Ti, Tj ], φ],

(D.21)

where in the last line the Jacobi identity was exploited. Comparing (D.20) and (D.21) one

finally finds that

[Ti, Tj ] = ifijkTj , (D.22)

which proves that the Tis are a field theoretical representation of the symmetry generators.
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D.2 Poincaré Group

D.2.1 Lorentz Group

A point in spacetime is characterized by a four-vector in Minkowski space

xµ =
(
x0, x1, x2, x3

)
= (ct, ~x) . (D.23)

The scalar product of two vectors is defined via the metric tensor g

x · y = xµgµνy
ν , gµν = gµν = diag(1,−1,−1,−1). (D.24)

If not stated differently, repeated indices are always understood to be summed over (Ein-

steins sum convention). Four-vectors with upper indices are called contravariant. Contract-

ing them with the metric tensor one gets the covariant components,

xµ = gµνx
ν . (D.25)

Lorentz transformations are linear transformations on the Minkowski space that leave the

scalar product invariant, i.e. rotations on the Minkowski space,

xµgµνx
ν = x′µgµνx

′ν . (D.26)

Writing the Lorentz transformation on contravariant vectors as

xµ → x′µ = Λµνx
ν , (D.27)

with a constant matrix Λ and inserting this expression in (D.26), one finds that Λ leaves

the metric invariant,

gµν = ΛρµΛ
σ
νgρσ. (D.28)

The Lorentz transformation for covariant vectors is given through Λ ν
µ = (Λ−1)µν

xµ → Λ ν
µ xν . (D.29)

The contra- and covariant differentiation operators are given by

∂µ ≡
(

∂

∂xµ

)
, ∂µ ≡

(
∂

∂xµ

)
. (D.30)

The transformation properties for the differentiation operators are easily obtained by notic-

ing that from (D.27) it follows that

Λµν =
∂x′µ

∂xν
, (D.31)

and using the chain rule for partial differentiation.

The manifold of the Lorentz group has four components, which are not simply connected.

They can be classified by the determinant of Λ, det |Λ| = ±1, and the sign of Λ0
0. The one

with detΛ = 1 and Λ0
0 > 0 preserves orientation and the direction of time and is called

proper, orthochronous Lorentz group, or restricted Lorentz group. It consists of all Lorentz

transformations which can be connected to the identity by a continuous curve lying in the

group.
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D.2.2 Poincaré Group

Poincaré transformations are transformations in Minkowski space that are constituted by

Lorentz transformations Λµν and translations aµ,

xµ → x′µ = Λµνx
ν + aµ. (D.32)

While under Lorentz transformations the scalar product of four-vectors is invariant, only

distances (i.e. (x − y)2) are invariant under Poincaré transformations. Ordinary Lorentz

transformations are often referred to as homogeneous Lorentz transformations, and Poincaré

transformations are also called inhomogeneous Lorentz transformations. Performing two

successive transformations,

xµ
(Λ,a)→ x′µ (Λ̄,ā)→ x′′µ

x′′µ = Λ̄µρx
′ρ + āµ = Λ̄µρΛ

ρ
νx

ν + Λ̄µρa
ρ + āµ,

one finds that Poincaré transformations have to satisfy

(Λ̄, ā) ◦ (Λ, a) = (Λ̄Λ, Λ̄a+ ā). (D.33)

From this, one can read off the inverse element and the one element,

(Λ, a)−1 = (Λ−1,−Λ−1a), (D.34)

1 = (1, 0). (D.35)

To get the Lie algebra of the proper, orthochronous Poincaré group, consider a representation

S(Λ, a) for an arbitrary but fixed representation space. For infinitesimal transformations,

Λµν = gµν + ωµν , aµ = ǫµ, (D.36)

S can be expanded to first order in ǫ and ω,

S(1 + ω, ǫ) = 1 − 1

2
iωµν Ĵ

µν − i ǫµ P̂
µ. (D.37)

By considering successive transformations and using the multiplication rule (D.33), one

obtains the Lie algebra of the Poincaré group,

[P̂µ, P̂ ν ] = 0,

[P̂µ, Ĵρσ] = i(gµρP̂ σ − gµσP̂ ρ),

[Ĵµν , Ĵρσ] = −i(gµρĴνσ − gµσĴνρ − gνρĴµσ + gνσĴµρ).

(D.38)

It is convenient to write these commutation relations in terms of the generators of three-

dimensional rotations Ĵ i and boosts K̂i, as well as the generators of time and space trans-

lation Ĥ and P̂ , by defining,

Ĵk =
1

2
ǫijkĴ ij = {Ĵ23, Ĵ13, Ĵ21},

K̂k = Ĵ0k = {Ĵ01, Ĵ02, Ĵ03},
Ĥ = P̂ 0,

P̂ k = P̂ i = {P̂ 1, P̂ 2, P̂ 3},

(D.39)
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with the indices i, j, k ∈ {1, 2, 3}. With this definitions, the commutation relations (D.38)

can be rewritten as

[Ĵ i, Ĵ j ] = iǫijkĴk, [P̂ i, Ĵ j ] = iǫijkP̂ k,

[Ĵ i, K̂j ] = iǫijkK̂k, [P̂ i, K̂j ] = iδijĤ, (D.40)

[K̂i, K̂j ] = −iǫijkĴk, [Ĥ, K̂i] = iP̂ i,

[Ĥ, Ĵ i] = [Ĥ, P̂ i],= [Ĥ, Ĥ] = 0.

The Poincaré group contains two Casimir operators, i.e. operators that commute with all

generators of the group. To get these it is helpful to introduce the Pauli–Lubanski vector

Wµ =
1

2
ǫµνρσP̂

ν Ĵρσ. (D.41)

The Casimir operators are given by P̂ 2 = P̂µP̂
µ and Ŵ 2 = ŴµŴ

µ.

Decomposing the generators for rotations Ĵµν into angular momentum L̂µν and spin Σ̂µν ,

Ĵµν = L̂µν + Σ̂µν ,

L̂µν ≡ x̂µP̂ ν − x̂νP̂µ, (D.42)

[P̂µ, x̂ν ] = igµν ,

one finds that only the generators Σ̂ contribute to the Pauli–Lubanski vector. Physical

states are irreducible representations of the Poincaré group and can be classified by the

eigenvalues of the Casimir operators:

1. Massive representation with P̂ 2 = m2 > 0 and Ŵ 2 = −m2s(s+ 1), s = 0, 1
2 , 1, . . . .

This representation is characterized by the mass m and spin s.

2. Massless representation with P̂ 2 = 0 and Ŵ 2 = 0.

In this case also the helicity operator h = Ŵ 0/P̂ 0 = P̂ · Ŝ/|P̂ | is a Casimir operator

with eigenvalues h = ±s. Therefore the massless states are characterized by their

helicity and spin, with h = ±s and s = 0, 1
2 , 1, . . . .

D.3 Irreducible Representation of the Homogeneous Lorentz

Group

The generators of the homogeneous Lorentz group are given by (D.40) for vanishing P̂ i

and Ĥ. The irreducible representations of the homogeneous Lorentz group are obtained by

defining

Âi ≡ (Ĵ i + iK̂i), B̂i ≡ (Ĵ i − iK̂i), (D.43)

which obey the following commutation relations,

[Âi, Âj ] = iǫijkÂ
k, [B̂i, B̂j ] = iǫijkB̂

k, (D.44)

[Âi, B̂j ] = 0. (D.45)
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The operators Â and B̂ fulfill the SU(2) Lie algebra, respectively. Because of the complex

combination (D.43) this is the complex group SL(2,C) and not the product group SU(2) ⊗
SU(2). The finite-dimensional representations are classified by the eigenvalues of the Casimir

operators Â2 and B̂2, which take the values m(m + 1) and n(n + 1), respectively. The

representations are labeled as

(m,n), with m,n = 0,
1

2
, 1,

3

2
, . . . . (D.46)

Since Ĵ i = Âi + B̂i, the spin of the representation is given by j = m + n. By defining

ω0i = −ωi0 = νi and ωij = ǫijkϕk, the Lorentz transformation S(m,n)(Λ) corresponding to

the (m,n) representation can be written as

S(m,n)(Λ) = exp
(

− i

2
ωµν Ĵ

µν
)

= exp
(

− i

2
ωij Ĵ

ij − iω0iĴ
0i
)

= exp
[
−i(ϕiĴ

i + νiK̂
i)
]

= exp
[
−i(ϕi − iνi)Â

i)
]

· exp
[
−i(ϕi + iνi)B̂

i)
]
.

(D.47)

There are two fundamental representations from which all other representations can be

derived by either the direct product or the direct sum of these.

1. (1
2 , 0) or left-handed representation:

A left-handed spinor ΨL belonging to this representation transforms as

ΨL(x) → Ψ ′
L(x′) = SL(Λ)ΨL(x), (D.48)

which is the spinor representation of (D.47) with Âi = 1
2σ

i and B̂i = 0,

SL(Λ) = S( 1

2
,0) = exp

[
− i

2
(ϕi − iνi)σ

i)
]
. (D.49)

The Pauli matrices σi are given by (A.5).

2. (0, 1
2) or right-handed representation:

A right-handed spinor belonging to this representation transforms as

ΨR(x) → Ψ ′
R(x′) = SR(Λ)ΨR(x), (D.50)

which is the spinor representation of (D.47) with Âi = 0 and B̂i = 1
2σ

i,

SR(Λ) = S(0, 1

2
) = exp

[
− i

2
(ϕi + iνi)σ

i)
]
. (D.51)

Notice that SL and SR are not unitary, since they are elements of SL(2,C). They can be

decomposed into (unitary) rotations and boosts,

SL,R(ϕ, ν) = U(ϕ)SL,R(0, ν). (D.52)
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With help of the spin tensors (A.9), the Lorentz transformations SL and SR can also be

written as

SL = exp
[
− i

2
ωµνσ

µν
]
, SR = exp

[
− i

2
ωµν σ̄

µν
]
. (D.53)

This can be verified by inserting the definition of ϕ and ν, and using (A.5) and (A.6),

ωµνσ
µν = ωijσ

ij + 2ω0iσ
01 =

i

4
ǫijkϕk [σj , σi]︸ ︷︷ ︸

=2iǫijlσl

+2
i

4
νi(−2σi)

=
1

2
ǫijkǫijlϕkσ

l − iνiσ
i = ϕiσ

i − iνiσ
i.

(D.54)

In the same way, one finds

ωµν σ̄
µν = ϕiσ

i + iνiσ
i. (D.55)

D.3.1 Lorentz Invariant Combinations of Weyl Spinors

The quantities ΨL,R in (D.48) and (D.50) are called Weyl spinors. The transformation

matrices that transform the left- and right-handed spinors, cf. (D.49) and (D.51), are related

to each other by the following algebraic relations,

S−1
L = S†

R, (D.56)

σ2SLσ
2 = S∗

R
(σ2)T =−σ2

⇒ S†
R = σ2STLσ

2 (σ2)2=1⇒ σ2 = STLσ
2SL. (D.57)

Using this properties, one can show that σ2Ψ∗
L has the transformation properties of a right-

handed spinor,

σ2Ψ∗
L → σ2S∗

LΨ
∗
L = σ2A∗

Lσ
2σ2Ψ∗

L = SR(σ2Ψ∗
L), (D.58)

and analogue σ2Ψ∗
R transforms under the left-handed representation. Therefore, left- and

right-handed spinors are related via

ΨR = −iσ2Ψ∗
L, ΨL = iσ2Ψ∗

R, (D.59)

with the proportionality constants chosen such that inserting the second equation in the

first leads to the identity. There are two contractions of spinors that are invariant under

Lorentz transformations,

Lorentz scalars: Φ†
RΨL, Φ†

LΨR, (D.60)

since,

Φ†
RΨL = iΦTLσ

2ΨL → iΦTLS
T
Lσ

2SLΨL
(D.57)

= iΦTLσ
2ΨL = Φ†

RΨL, (D.61)

and analogous for Φ†
LΨR.
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Four-Vectors

Each (real-valued) four-vector xµ can be mapped to Hermitian (2 × 2)-matrices X and X̄

with help of the extended Pauli matrices (A.7),

xµ → X = σµx
µ, xµ → X̄ = σ̄µx

µ, (D.62)

which can be inverted with help of (A.8) by multiplying with σ̄µ and σµ, respectively, and

taking the trace,

X → xµ =
1

2
Tr Xσ̄µ, X̄ → xµ =

1

2
Tr X̄σµ. (D.63)

The determinant of X and X̄ is a Lorentz invariant quantities, since

det(X) = det(X̄) = xµx
µ. (D.64)

The transformations

X′ → A X A†, X̄′ → Ā X̄ Ā†, (D.65)

with SL(2,C) elements A and Ā, define new Hermitian matrices X′ and X̄′. (D.65) describes

a Lorentz transformation, since it leaves the determinant invariant,

det(X′) = det(A X A†) = det(A) det(X) det(A†) = det(X) = xµx
µ, (D.66)

and the same for det(X̄′). Since σµ and σ̄µ form a basis of U(2), there is a unique four-vector

x′µ for which

X′ = AσµA†xµ = σµx
′µ = σµ Λ

µ
ν x

ν . (D.67)

Since this is true for all xµ one has

σµ Λ
µ
ν = AσνA

†, (D.68)

i.e. one can associate to each Lorentz transformation Λµν a matrix A(Λ). More specific, this

matrix is given by SL. This can be seen by using the representation (D.53) and looking at

infinitesimal transformations,

σµ(gµν + ωµν)
!

= (1 − i

2
ωρσσ

ρσ)σν (1 +
i

2
ωαβσ̄

αβ)

= σν − i

2
ωρσσ

ρσσν +
i

2
ωαβσ

ν σ̄αβ + O(ω2)

(A.8)
= σν − i

2
ωρσ(iσρgσν − iσσgρν + σν σ̄ρσ) +

i

2
ωαβσ

ν σ̄αβ

= σν + ωµνσµ.

(D.69)

The transformation performed by Ā is given by SR, which can also be seen by noticing that,

x′µ =
1

2
Tr(X̄′σµ) =

1

2
Tr(SRσ̄νS

†
Rσ

µ)xν

=
1

2
Tr(σ2SRσ

2

︸ ︷︷ ︸
A∗

L

σ2σ̄νσ
2

︸ ︷︷ ︸
σT

ν

σ2S†
Rσ

2

︸ ︷︷ ︸
ST

L

σ2σµσ2
︸ ︷︷ ︸
σ̄µT

)xν

=
1

2
Tr(A∗

Lσ
T
ν S

T
L σ̄

µT )xν =
1

2
Tr(σ̄µSLσνS

†
L)xν = Λµνx

ν .

(D.70)
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Due to these transformation properties of X and X̄ one can construct two new Lorentz

scalars out of two spinors Φ and Ψ ,

Φ†
LX̄ΨL → (SLΦL)†((S†

L)−1X̄S−1
L )(SLΨL) = Φ†

LX̄ΨL,

Φ†
RXΨR → (SRΦR)†((S†

R)−1XS−1
R )(SRΨR) = Φ†

RXΨR.
(D.71)

Choosing explicitly ∂µ as four-vector one gets the Lorentz invariant combinations usually

referred to as the kinetic term.

Lorentz scalars: Φ†
Lσ̄

µ∂µΨL, Φ†
Rσ

µ∂µΨR. (D.72)

D.3.2 Dirac and Majorana Spinors

A Dirac spinor Ψ and its conjugate Ψ̄ are bi-spinors which correspond to the direct sum

(1
2 , 0) ⊕ (0, 1

2),

Ψ ≡
(
ΨL
ΦR

)
, Ψ̄ ≡ Ψ †γ0 = (Φ†

R, Ψ
†
L), (D.73)

with γ0 given in (A.10). A Dirac spinor transforms under Lorentz transformations according

to (D.48) and (D.50) as

Ψ → Ψ ′ = S( 1

2
,0)⊕(0, 1

2
)Ψ =


SL 0

0 SR


Ψ. (D.74)

The Lorentz scalars (D.60) and (D.72) can be written in terms of Dirac spinors,

Ψ̄Ψ = Φ†
RΨL + Ψ †

LΦR, (D.75)

Ψ̄γµ∂µΨ = Φ†
Rσ

µ∂µΦR + Ψ †
Lσ̄

µ∂µΨL. (D.76)

In the following we will consider the transformation properties of Dirac spinors under par-

ity transformation P and charge-conjugation C. A parity transformation P : ~x → −~x
transforms Weyl spinors according to

ΨL
P→ ΨR, ΨR

P→ ΨL. (D.77)

A Dirac spinor transforms under a parity transformation by construction as

Ψ =

(
ΨL
ΦR

)
P→
(
ΦR
ΨL

)
. (D.78)

There is a second discrete transformation defined on a bi-spinor, the charge-conjugation
(
ΨL
ΦR

)
C→
(
ΦL
ΨR

)
= ΨC ≡ C Ψ̄T, (D.79)

where C is given by (according to (D.59))

C =


iσ2 0

0 −iσ2


 = iγ2γ0. (D.80)
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Performing the charge-conjugation twice leaves the state invariant, i.e. ΨCC = Ψ . A bi-

spinor that is invariant under charge-conjugation is called Majorana spinor. In terms of

Weyl spinors it has the form

ΨM =

(
ΨL
ΨR

)
= ΨC

M. (D.81)

D.4 Spinor Calculus

In this section a component notation for Weyl spinors is introduced. The components of

a spinor are anti-commuting numbers (Grassmann numbers), since otherwise the invariant

eq. (D.60) would vanish for Φ = Ψ . Spinors corresponding to the (1
2 , 0) representation get

undotted indices while spinors of the (0, 1
2) representation get dotted indices,

ΨL =

(
ψ1

ψ2

)
, Ψ †

R = (ψ1, ψ2), (D.82)

ΨR =

(
ψ̄1̇

ψ̄2̇

)
, Ψ †

L = (ψ̄1̇ψ̄2̇). (D.83)

Spinor indices are labeled in the following with capital roman letters. Since for Grassmann

numbers complex conjugation equals Hermitian conjugation, one has

(ψA)† = (ψA)∗ = ψ̄Ȧ, (ψA)† = (ψA)∗ = ψ̄Ȧ. (D.84)

As standard summation rules one defines

φψ ≡ φAψA, φ̄ψ̄ ≡ φ̄Ȧψ̄
Ȧ, (D.85)

i.e. the summation of undotted indices goes always from upper-left to lower-right and for

dotted indices from lower-left to upper-right. One can define metric tensors ǫ and ǭ that

rise and lower spinor indices. These are found by writing (D.59) in index notation,

ψA = (−iσ2)ABψB = ǫABψB, ψ̄Ȧ = ψ̄Ḃ(iσ2)ḂȦ = ψ̄Ḃǫ
ḂȦ. (D.86)

In total one finds,

(
ǫAB

)
= (ǫAB) =


0 −1

1 0


 , ǫ B

A = δBA , ǫAB = −δAB (D.87)

(
ǭȦḂ

)
=
(
ǭȦḂ

)
=


 0 1

−1 0


 , ǭȦ

Ḃ
= δȦ

Ḃ
, ǭ Ḃ

Ȧ
= −δḂ

Ȧ
. (D.88)

By writing (D.48), (D.50), (D.53), and (D.72) in index notation, one finds the index structure

of SL, SR, σµ, σ̄µ, σµν and σ̄µν ,

(SL) A
B , (S−1

L ) B
A , (SR)Ḃ

Ȧ
, (S−1

R )Ȧ
Ḃ
,

(σµ)AḂ, (σ̄µ)ȦB, (σµν) B
A , (σ̄µν)Ȧ

Ḃ
.

(D.89)
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For the extended Pauli matrices and the spin-tensors one further has the relations,

(σµ)AḂ = (σ̄µ)ḂA, (σµ†)AḂ = (σµ)BȦ, (σ̄µ†)ȦB = (σ̄µ)ḂA, (D.90)

(σµν) B
A = (σµν)BA, (σ̄µν)Ȧ

Ḃ
= (σ̄µν) Ȧ

Ḃ
, (σµν†)AB = (σ̄µν)Ȧ

Ḃ
. (D.91)

D.5 Supersymmetry Algebra

Coleman and Mandula showed in [51] that under reasonable assumptions the most general

Lie algebra of symmetry operators that commute with the S matrix, consists of the gener-

ators Pµ and Jµν of the Poincaré group, plus ordinary internal symmetry generators. The

assumptions refer to the particle content, the existence of scattering at almost all energies,

and the analyticity of the S matrix.

The generators of an internal symmetry group Ta, have the following commutation relations,

[Ta, Pµ] = 0, [Ta, Jµν ] = 0, [Ta, Tb] = ifabcTc, (D.92)

with the so-called structure constants fabc of the Lie algebra. By definition they have trivial

commutation relations with the generators of the Poincaré group, i.e. they cannot relate

particles of different spin.

The Coleman–Mandula theorem can be overcome by taking symmetry operators into

account that obey a Clifford algebra instead of a Lie algebra, hence violating one of the

conditions of the theorem. These operators can therefore have non-trivial commutation

relations with the generators of the Poincaré algebra and can connect particles of different

spin. Such a symmetry is called supersymmetry.

D.5.1 Graded Lie Algebras

Supersymmetry is expressed in terms of symmetry generators that form a Z2-graded Lie

algebra [179]. In general, a Z2-graded algebra is defined in the following way:

Consider a vector space V that is a direct sum of V0 and V1, V = V0 ⊕ V1. A Z2 graded

algebra is defined by

u1 ◦ u2 ∈ V0 for all u1, u2 ∈ V0, (D.93)

u ◦ v ∈ V1 for all u ∈ V0, v ∈ V1, (D.94)

v1 ◦ v2 ∈ V0 for all v1, v2 ∈ V1. (D.95)

A Z2-graded Lie algebra is then defined by

Grading: xi ◦ xj ∈ V(i+j)mod2. (D.96)

Supersymmetry: xi ◦ xj = (−1)i·jxj ◦ xi. (D.97)

Jacobi identity: 0 = (−1)k·m xk ◦ (xl ◦ xm) + (−1)l·k xl ◦ (xm ◦ xk) (D.98)

+ (−1)m·l xm ◦ (xk ◦ xl),
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with xi ∈ Vi, i = 0, 1. The (anti-)commutation relations of symmetry generators Ta that

form a Z2-graded Lie algebra are given by

TaTb − (−1)ηaηbTbTa = ifabcTc ≡ [Ta, Tb]± , (D.99)

where ηa is either +1 or 0, depending on the grading of the generator Ta. Generators for

which ηa = 0 are called bosonic, the ones with ηa = 1 are called fermionic. The Jacobi

identity can be written as

(−1)ηcηa [[Ta, Tb]±, Tc]± + (−1)ηaηb [[Tb, Tc]±, Ta]± + (−1)ηbηc [[Tc, Ta]±, Tb]± = 0.

D.5.2 Poincaré Superalgebra

One can now start to construct a Poincaré superalgebra, which is a Z2-graded Poincaré

algebra. The subspace V0 is spanned by the generators P̂µ and Ĵµν of the Poincaré algebra

eq. (D.38). This vector space is extended by a vector space V1 which is spanned by N

fermionic generators QA.

The variety of supersymmetries is strongly restricted by the fact, that the bosonic symme-

try generators still have to obey the Coleman–Mandula theorem. Haag, Łopuszański, and

Sohnius showed in [52] that the only fermionic symmetry generators that do not violate the

Coleman–Mandula theorem must belong to the (0, 1
2) or (1

2 , 0) representation of the Lorentz

group. It further states that the most general graded Lie algebra must have the following

form (see also [180]),

[Pµ, P ν ] = 0,

[Pµ, Jρσ] = i(gµρP σ − gµσP ρ), (D.100)

[Jµν , Jρσ] = −i(gµρJνσ − gµσJνρ − gνρJµσ + gνσJµρ),

[Pµ, QA,r] = [Pµ, Q̄Ȧ,r] = 0,

[QAr, J
µν ] =

1

2
(σµν) B

A QBr, (D.101)

[Q̄Ȧr, J
µν ] = −1

2
Q̄Ḃr(σ̄

µν)Ḃ
Ȧ
,

{QAr, Q̄Ḃs} = 2δr,s(σ
µ)AḂPµ,

{QAr, QBs} = −ǫABZrs, with Zrs = (ai)rsTi, (D.102)

{Q̄Ȧr, Q̄Ḃs} = −ǫȦḂ(Z†)rs,

[Ti, Tj ] = ifijkTk,

[Ti, QAr] = −(ti)rsQAs, ti = t†i , [ti, tj ] = ifijktk, (D.103)

[Ti, Q̄Ȧr] = Q̄Ȧs(ti)sr,

[Zrs, anything] = 0.
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As usual, capital roman letters denote the spinor indices of fermionic symmetry generators.

The lower case letters r, s, t, u are used to distinguish the N different two-component gener-

ators with the same Lorentz properties. The Ti are the generators of the internal symmetry.

Objects corresponding to the internal symmetry are labeled with the lower case indices

i, j, k. The commutator relation for the ti follows from the Jacobi identity of two T s and

one Q. Since these are Hermitian (N ×N) matrices, the largest possible internal symmetry

which can act non-trivially on Q is U(N).

The Zrs commute with all symmetry generators and are therefore called central charges.

They are antisymmetric in interchanging their indices.

If there is only one supercharge Q, i.e. N = 1, one speaks of a simple or unextended super-

symmetry. If N > 1 one speaks of extended supersymmetry.

R-Symmetry

In the case of N = 1 supersymmetry, there is no central charge due to the fact that it is

antisymmetric in its indices. The only non-trivially acting internal symmetry is a simple

U(1), generated by a charge which is called the R charge. By taking (D.103) and defining

Ri = Ti/ti one finds (suppressing the index i)

[R,QA] = −QA, [R, Q̄Ȧ] = Q̄Ȧ. (D.104)

From (D.15) together with (D.10) and (D.11) one gets the transformation of the supersym-

metry generators under R charge,

eiϕRQAe
−iϕR = e−iϕQA, eiϕRQ̄Ȧe

−iϕR = eiϕQ̄Ȧ. (D.105)

D.6 Superfields

In the following we will restrict our discussion to N = 1 supersymmetry, since it leads

to a supersymmetric field theory of phenomenological interest. The so-called superfield

formalism is a technique in which supermultiplets are gathered into superfields. A superfields

Φ depend on the four coordinates of spacetime as well as on the four fermionic coordinates

θA and θ̄Ȧ. It can be Taylor expanded in its fermionic coordinates,

Φ(x, θ, θ̄) = C(x) + θAψA(x) + θ̄Ȧξ̄
Ȧ(x) + (θθ)M(x) + (θ̄θ̄)N(x)

+ θσµθ̄A
µ + (θθ)θ̄Ȧλ̄

Ȧ + (θ̄θ̄)θAηA + (θθ)(θ̄θ̄)D(x).
(D.106)

Products of superfields are again superfields and therefore form a vector space. However,

general superfields are reducible. Before looking at irreducible superfields we will first con-

sider supersymmetry transformations on the space of superfields, since such a transformation

must map a superfield belonging to an irreducible subspace into the same subspace. A super-

symmetry transformation on the superfields is given by a unitary transformation U(x, θ, θ̄)

with a four-vector x and fermionic parameters θ and θ̄Ȧ,

U(x, θ, θ̄) = exp
[
i
(
xµP

µ + θQ+ θ̄Q̄
)]
, (D.107)
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where P , Q and Q̄ are field theoretical representations of the supersymmetry generators.

The transformed field is given by

Φ(x′, θ′, θ̄′) = U(ǫ, ξ, ξ̄)Φ(x, θ, θ̄)U−1(ǫ, ξ, ξ̄)

= U(ǫ, ξ, ξ̄)U(x, θ, θ̄)Φ(0, 0, 0)U−1(x, θ, θ̄)U−1(ǫ, ξ, ξ̄).
(D.108)

With help of the Baker–Campbell–Hausdorff formula one can show that the product of two

transformations is given by

U(ǫ, ξ, ξ̄)U(x, θ, θ̄) = exp
[
i
(
(xµ + ǫµ)Pµ + (θ + ξ)Q+ (θ̄ + ξ̄)Q̄

)

+
1

2

[
i
(
ǫµP

µ + ξQ+ ξ̄Q̄
)
, i
(
xµP

µ + θQ+ θ̄Q̄
)] ]

= exp
[
i
(
(xµ + ǫµ + iξσµQ̄− iθσµξ̄)P

µ + (θ + ξ)Q+ (θ̄ + ξ̄)Q̄
)]

= U(x+ ǫ+ iξσθ̄ − iθσξ̄, θ + ξ, θ̄ + ξ̄). (D.109)

Inserting (D.109) in (D.108) one gets an explicit expression for the transformed field. By

considering infinitesimal transformations ǫ, ξ, and ξ̄ one finds

Φ(x′, θ′, θ̄′) = Φ(x+ ǫ+ iξσθ̄ − iθσξ̄, θ + ξ, θ̄ + ξ̄) (D.110)

≈ Φ(x, θ, θ̄) +
[
(ǫµ + iξσθ̄ − iθσξ̄)∂µ + ξA∂A + ξ̄Ȧ∂

Ȧ
]
Φ(x, θ, θ̄) (D.111)

!
=
(
1 + i(ǫµPµ + ξQ+ ξ̄Q̄)

)
Φ(x, θ, θ̄)

(
1 − i(ǫµPµ + ξQ+ ξ̄Q̄)

)
(D.112)

= Φ+ iǫµ[Pµ, Φ] + i[ξQ,Φ] + i[ξ̄Q̄, Φ]. (D.113)

In the second line the expression was Taylor expanded. The third line corresponds to (D.108)

with the infinitesimal form of (D.107) inserted. The representation of the supersymmetry

generators in the space of superfields,

Φ(x′, θ′, θ̄′) = S(ǫ, ξ, ξ̄)Φ(x, θ, θ̄), (D.114)

with

S(x, θ, θ̄) = exp[−i(xµP̂
µ − θQ̂− θ̄ ˆ̄Q)], (D.115)

can be read off of (D.113) using the relation (D.15),

P̂µ = i∂µ, (D.116)

Q̂A = −i∂A + (σµθ̄)A∂µ, Q̂A = i∂A + ǫAB(σµθ̄)B∂µ, (D.117)

ˆ̄QȦ = i∂̄Ȧ − (θσµ)Ȧ∂µ,
ˆ̄QȦ = −i∂̄Ȧ + (θσµ)Ḃǫ

ȦḂ∂µ. (D.118)

By construction, his operators fulfill the super-algebra (D.102), cf. Section D.1.2. One can

define covariant derivatives that anti-commute with the differential operators (D.118),

DA = ∂A − i(σµθ̄)A∂µ, DA = −∂A + i(θ̄σ̄µ)A∂µ, (D.119)

D̄Ȧ = −∂̄Ȧ + i(θσµ)Ȧ∂µ, D̄Ȧ = ∂̄Ȧ − i(σ̄µθ)Ȧ∂µ. (D.120)
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The covariant derivatives have the following properties,

{D,Q} = {D̄, Q̄} = {D, Q̄} = {D̄,Q},
{D,D} = {D̄, D̄} = 0,

{DA, D̄Ḃ} = 2iσµ
AḂ
∂µ,

{DA, D̄Ḃ} = 2iσ̄µḂA∂µ,

D3 = D̄3 = 0.

(D.121)

An infinitesimal supersymmetry transformation in the spinorial space is given by

δǫ = i(ǫQ̂+ ǭ ˆ̄Q). (D.122)

By performing an infinitesimal supersymmetry transformation on the superfield Φ given by

(D.106), one gets the transformation properties of the component fields. Of special interest

is the transformation of the (θθ)(θ̄θ̄)-component, since it transforms as a total derivative,

δǫD =
i

2
∂µ(ǫσµλ̄− ησµǭ). (D.123)

D.6.1 Chiral Superfields

Chiral and anti-chiral superfields are defined via the following conditions.

Chiral superfield: D̄ȦΨ = 0, (D.124)

Anti-chiral superfield: DAΨ = 0. (D.125)

Since an infinitesimal supersymmetry transformation in the spinorial space (D.122), com-

mutes with the covariant derivatives (D.119), chiral superfields are an irreducible represen-

tation of the superfields. One can construct them by noticing that for yµ = xµ − iθσµθ̄ one

finds

D̄Ȧy
µ = (−∂̄Ȧ + i(θσν)Ȧ∂ν)(x

µ − iθσµθ̄) = i(θσµ)Ȧ − i(θσµ)Ȧ = 0. (D.126)

By expressing the covariant derivatives (D.119) with respect to the complex coordinates

(yµ, θ, θ̄), i.e.

∂

∂xµ
=

∂

∂yµ
,

∂

∂θA
=

∂

∂θA
− i(σθ̄)A

∂

∂yµ
,

∂

∂θ̄Ȧ
=

∂

∂θ̄Ȧ
+ i(θσ)Ȧ

∂

∂yµ
, (D.127)

one finds that D̄Ȧ is given by

D̄Ȧ(y, θ, θ̄) = − ∂

∂θ̄Ȧ
= ∂̄Ȧ. (D.128)

Expressing the condition for a chiral superfield (D.124) in terms of (yµ, θ, θ̄) one gets

∂

∂θ̄Ȧ
Φ(y, θ, θ̄) = 0, (D.129)
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i.e. Φ(yµ, θ, θ̄) has to be independent of θ̄. Taylor expanding Φ with respect to the complex

variables, it can be written as

Φ(y, θ) = ϕ(y) +
√

2θψ(y) + (θθ)F (y). (D.130)

By performing the same steps eqs. (D.126)–(D.128) but for the complex variable ȳ =

xµ + iθσθ̄ = y∗, one finds that the anti-chiral superfield (D.124) is given by the condition

∂θΨ
†(ȳ, θ, θ̄) = 0. It can therefore be Taylor expanded as

Φ†(ȳ, θ) = ϕ∗(ȳ) +
√

2ψ̄(ȳ)θ̄ + (θ̄θ̄)F ∗(ȳ). (D.131)

Reexpressing the fields Φ and Φ† in terms of the variables (x, θ, θ̄) one finally gets

Φ(x, θ, θ̄) = ϕ(x− iθσθ̄) +
√

2θψ(x− iθσθ̄) + (θθ)F (x− iθσθ̄) (D.132)

= ϕ(x) +
√

2θψ + (θθ)F − i(θσθ̄)∂µϕ

+
i√
2

(θθ)∂µ(ψσµθ̄) − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ, (D.133)

Φ†(x, θ, θ̄) = ϕ∗(x) +
√

2θ̄ψ̄ + (θ̄θ̄)F ∗ + i(θσθ̄)∂µϕ
∗

− i√
2

(θ̄θ̄)∂µ(θσµψ̄) − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ∗. (D.134)

The θθ and θ̄θ̄ components, respectively, remain unchanged after the variable transforma-

tion. Therefore, for chiral superfields one has F (y) = F (x).

An infinitesimal supersymmetry transformation, cf. (D.122), transforms the components of

Ψ in the following way:

δǫϕ =
√

2ǫψ,

δǫφ = −i
√

2σµǭ∂µϕ+
√

2ǫF,

δǫF = i
√

2∂µ (ψσµǭ) .

(D.135)

Like the D-term of the general superfield, eq. (D.123), the F -term of a chiral superfield

transforms as a total derivative.

D.6.2 Vector Superfields and Supersymmetric Field Strength

The building block for the supersymmetric field strength are vector superfields.

A vector superfield V (x, θ, θ̄) is defined by the reality condition

V (x, θ, θ̄) = V †(x, θ, θ̄). (D.136)

In components, it can be expressed as

V (x, θ, θ̄) = C +
√

2θχ+
√

2θ̄χ̄+ (θθ)M + (θ̄θ̄)M∗ + (θσµθ̄)Aµ

+ (θθ)θ̄

(
λ̄− i√

2
σ̄µ∂µχ

)
+ (θ̄θ̄)θ

(
λ− i√

2
σµ∂µχ̄

)
(D.137)

+
1

2
(θθ)(θ̄θ̄)

(
D − 1

2
∂µ∂

µC

)
,
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with real valued fields C, D, and Aµ. One defines a supersymmetric gauge transformation

on V via

V → V ′ = V + i(Λ− Λ†). (D.138)

Λ is a chiral superfield and Λ† is the corresponding anti-chiral superfield. Expanded in its

fermionic components, iΛ is given by

iΛ = a+
√

2θρ+ (θθ)b+ i(θσθ̄)∂µa

− i√
2

(θθ)∂µ(ρσµθ̄) − 1

4
(θθ)(θ̄θ̄)∂µ∂

µa. (D.139)

The components of V transform under a supersymmetric gauge transformation as

C → C + (a+ a∗), Aµ = Aµ + i∂µ(a− a∗),

χ → χ+ ρ, λ → λ, (D.140)

M → M + b, D → D.

In the Wess–Zumino gauge, the components b, ρ, and Im(a) of Λ are fixed such that the

components C, χ, and M of V vanish. The real part of a is not fixed by this gauge. Hence,

U(1) gauge transformations of the kind

Aµ → A′
µ = Aµ + ∂µ(a+ a∗) (D.141)

are still allowed. In the Wess–Zumino gauge, the vector superfield is given by

VWZ = (θσθ̄)Aµ + (θθ)θ̄λ̄+ (θ̄θ̄)θλ+
1

2
(θθ)(θ̄θ̄)D. (D.142)

One still has the freedom to perform a gauge transformation on the vector field with the

yet unfixed real part of a, Aµ → Aµ − ∂µ(a− a∗).

The supersymmetric field strength on the super vectorfield is defined as

WA ≡ −1

4
(D̄D̄)DAV (x, θ, θ̄), (D.143)

W̄Ȧ ≡ −1

4
(DD)D̄ȦV (x, θ, θ̄). (D.144)

Since D3 = D̄3 = 0, cf. (D.121), the supersymmetric field strength WA (W̄Ȧ) is a (anti-)

chiral superfield. The supersymmetric field strength is invariant under the supersymmetric

gauge transformation, (D.138). Hence, one can calculate its components in the Wess–Zumino

gauge. In the variables (y, θ, θ̄) and (ȳ, θ, θ̄) they are given by

WA = λA(y) +D(y)θA − (σµνθ)AFµν(y) + i(θθ)(σµ∂µλ̄(y))A, (D.145)

W̄Ȧ = iλ̄Ȧ(ȳ) +D(ȳ)θ̄Ȧ − (σ̄µνθ)ȦFµν(ȳ) − i(θθ)(σµ∂µλ̄(ȳ))Ȧ, (D.146)

with the usual U(1) field-strength Fµν = ∂µAν − ∂νAµ. Because of (D.140), each of this

components is by itself gauge invariant.
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D.7 Supersymmetric Lagrange Densities

With help of the in the previous section defined superfields, it is quite easy to write down

supersymmetric Lagrange densities that leave the action invariant under global supersym-

metry transformations,

S =
∫

d4xL → δǫS =
∫

d4x δǫL = 0. (D.147)

Because of Gauss’s law, in order to fulfill (D.147), the Lagrangian density has to be invariant

up to a total derrivative,

δǫL = ∂µV
µ ⇒ δǫS = 0. (D.148)

Eqs. (D.123) and (D.135) give suitable candidates for a supersymmetric Lagrange density,

since the D-term of a general superfield and the F -term of a chiral superfield transform into

a total derrivative. With help of the definition (A.38), a supersymmetric Lagrange density

can therefore be written as

L =
∫

dθ4(general superfields) +
∫

dθ2(chiral superfields) + h.c. . (D.149)

For each chiral superfield Φ one can construct a kinematic term Lkinby taking the D-term

of the product of a chiral superfield with its conjugate, and a mass term Lmass by taking

the F -term of the squared of the superfields:

Lkin ≡
∫

d4θ
(
Φ†(x, θ, θ̄)Φ(x, θ, θ̄)

)

= (∂µϕ
∗)(∂µϕ) +

i

2
(ψ̄σ̄µ∂µψ + ψσµ∂µψ̄) + F ∗F, (D.150)

Lmass ≡
∫

d2θ
m

2
Φ2(y, θ)

∣∣
y→x

+ h.c.

= −m

2
(ψψ + ψ̄ψ̄) +m(ϕF + ϕ∗F ∗). (D.151)

As one can see, in this way one recovers the Lagrangian density for chiral fermions.

The mass term as well as other interactions between several chiral superfields Φi are usually

given in terms of the superpotential W which is an analytic function of the fields. Renor-

malizability of the theory restrict the superpotential to be a Polynomial of power tree or

less,

W = ciΦi +
1

2
mijΦiΦj +

1

3!
gijkΦiΦjΦk, (D.152)

where the mij and gijk are symmetric in their indices. As a product of chiral superfields,

the superpotential is itself a chiral superfield. Hence, the supersymmetric Lagrange density

for the interaction Lagrangian Lint is given by the F -term of the superpotential,

Lint =
∫

d2θ W + h.c.

= ciFi +mij

(
ϕiFj − 1

2
ψiψj

)
+

1

2
gijk (ϕiϕjFk − ϕi(ψjψk)) + h.c. . (D.153)
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The Lagrange density for the supersymmetric field strength Lgauge is defined in such a way

that it incorporates the usual gauge kinetic terms,

Lgauge ≡
∫

d2θ

(
1

4
WA(x, θ, θ̄)WA(x, θ, θ̄)

)
+ h.c.

= i
(
λσµ∂µλ̄+ λ̄σ̄µ∂µλ

)
− 1

4
FµνF

µν +
1

2
D2. (D.154)

D.7.1 Supersymmetric Gauge Theories

The fundamental forces in nature are described in terms of local gauge-invariant field the-

ories. Hence, in a realistic model one has to incorporate local gauge transformations into

the supersymmetric Lagrangian. To construct a gauge- and supersymmetry-invariant La-

grangian density one makes use of the properties of the vector superfields, cf. Section D.6.2.

For a SU(N) gauge group with generators TA in the fundamental representation that obey

the Lie algebra

[Ta, Tb] = ifabcTc (D.155)

with the structure constants fabc, one defines the chiral superfield Λ(x, θ, θ̄) as

Λ = TaΛ
a. (D.156)

The supersymmetric gauge transformation on a SU(N) vector-superfield multiplet in the

adjoint representation V (x, θ, θ̄) is defined as

e2gV → e−i2gΛ†

e2gV ei2gΛ. (D.157)

In the case of a U(1) symmetry eq. (D.138) is recovered.

A supersymmetric gauge transformation on a chiral superfield is defined as

Φ′ = e−i2gΛ(x)Φ . (D.158)

In order to be gauge invariant, the kinetic Lagrange density (D.149) has to be altered in the

following way,

Lkin =
∫

d4θ Φ†e2gV Φ (D.159)

= (Dµϕ)†(Dµϕ) + iψσµD∗
µψ̄

−
√

2g
(
ψ̄λ̄ϕ+ ϕ∗λψ

)
+ gT aϕ∗ϕD + F †F, (D.160)

with the gauge-covariant derivative Dµ = ∂µ+igAµ. The non-Abelian supersymmetric field

strength, is defined as

WA := −1

4
(D̄D̄)e−2gVDAe

2gV , (D.161)

W̄Ȧ := −1

4
(DD)e−2gV D̄Ȧe

2gV . (D.162)
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Since V is a bosonic function, (D.143) and (D.144) are recovered in the Abelian case. The

supersymmetric field strength Lgauge is now given by

Lgauge =
1

16g2

∫
d2θ Tr

(
WAWA

)
+ h.c.

= −1

4
F aµνF

aµν + iλaσµDµλ̄
a +

1

2
DaDa. (D.163)

For the superpotential (D.152) only gauge-invariant combinations of chiral fields are al-

lowed. This strongly restricts the possible field combinations. Putting all together, the

supersymmetric Lagrange density for n chiral fields can be written as

L =
n∑

i=1

Lkin,i + Lgauge + Lint (D.164)

= (Dµϕi)
†(Dµϕi) + iψiσ

µD∗
µψ̄i −

√
2g
(
ψ̄iλ̄ϕi − ϕ∗

iλψi
)

+ gT aϕ∗
iϕiD + F †

i Fi

− 1

4
F aµνF

aµν + iλaσ̄µDµλ̄
a +

1

2
DaDa

+ ciFi +mij (ϕiFj − ψiψj) +
1

2
gijk (ϕiϕjFk − ϕi(ψjψk)) + h.c.. (D.165)

The two auxiliary fields Fi and D do not have a kinematic term and can hence be eliminated

with help of the Euler–Lagrange equation of motion,

∂L
∂Fi

=
∂L
∂D

= 0. (D.166)
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