
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Chapter 1

Introduction

The requirement of an economically and ecologically viable energy source is one of the
main challenges mankind is facing. This statement was broadly underlined in a study on
the future of worlds economy by Meadows, et al. already in 1972 [1], on behalf of the Club
of Rome, right before the 1973 oil crisis put the public attention on this topic. The main
outcome of the report was that in case of further exponential growth of worlds popula-
tion, food and industrial production, exploitation of natural resources, and environmental
pollution, as it is suggested by extrapolation of statistical data, the absolute limits to
growth will be reached within the next 100 years and a collapse will occur. However, by
fulfilling all the necessary requirements even in the presence of a higher energy demand
than at present, the state of a sustainable society can be reached. Nevertheless, since the
publication of this study the initial position did not change significantly, as it was shown
for instance in the 30-year update of this report [2]. Therefore, it remains essential that
an enduring state is strongly associated with a clean and (relatively) cheap energy source,
which may be nuclear fusion.

1.1 Fusion energy and magnetic confinement

The vital impact of energy provided by the Sun on the daily life of humankind has been
known for a long time and resulted in astonishing cultural achievements like the Neolithic
and Bronze Age monuments in Stonehenge (England) or the Pyramide of the Sun in
Teotihuacán (Mexico). In contrast, the physics mechanism of the power generation has
been largely obscure until the late 30s of the last century. At this time, the increased
knowledge in nuclear physics and quantum mechanics led to the star model by Weizsäcker
[3] and Bethe [4], which was able to explain the enormous energy production by nuclear
fusion. The basic principle can be illustrated in Fig. 1.1, where the average binding energy
per nucleon is shown as a function of its mass. The binding energy shows a maximum for
medium-weight nuclei around 56Fe, while the fusion of light nuclei or the fission of heavy
nuclei increases the binding energy. These mechanisms lead to a net gain of energy of
the order of mega electron-volts (MeV) per event, roughly six orders of magnitude higher
than in chemical processes like combustion. From this figure it is also clear that the
energy release per reaction is much higher in the case of fusion compared to fission. For
that reason, the former was particularly interesting as a giant energy source, and mankind
started to use it as a weapon. Beyond that the peaceful application of fusion energy
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Figure 1.1: Binding energy of nuclei as a function of the mass (Source:
http://www4.nau.edu).

is extremely attractive, mainly for three reasons. Firstly, nuclear fusion is inherently
safe since no critical mass of fuel is needed for energy production. Secondly, the fuel
is extremely abundant, making a long term use possible. Thirdly, and probably most
important, the fusion reaction is environmentally benign since no long life radioactive
waste and practically no greenhouse gases are produced. It became clear very soon that
the fusion reaction providing the major amount of the power production on the Sun,
namely the proton-proton reaction, which requires high pressures, is hardly applicable for
energy production on Earth. Therefore, a reaction with a much higher cross-section and
therefore higher reaction rate, namely the deuterium-tritium fusion reaction,

2
1H +3

1H → 4
2He +1

0n + 17.6MeV, (1.1)

is favored instead. Both 2
1H and 3

1H can be extracted from seawater in very large amounts,
the former directly and the latter via lithium, from which tritium can be obtained by
nuclear activation using neutrons. While the reaction in Eq. (1.1) can be achieved rather
easily for a few reactions, it is extremely difficult to realize it on a large scale with a
positive energy balance needed for energy production, for both fundamental scientific and
technological barriers.

In that respect, one of the most important issues is the question of confinement. The
concept of magnetic confinement turned out to be the most promising. This is directly
connected with the state of matter of the fuel at the high velocities provided by high
temperatures required to overcome the Coulomb repulsion, namely the plasma state in
which the burning material builds up a quasi–neutral gas consisting of deuterium and
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tritium with the electrons entirely stripped off. The positively charged protons need to
come very closely together (approximately 10−15 m) in order to experience the attractive
nuclear force and agglomerate, releasing a huge amount of energy. Therefore, a kinetic
energy of the order of 10 keV in a thermal plasma, or correspondingly a temperature of
about 100 million degrees, is required in order to obtain fusion reactions with an acceptable
rate. For this reason, the burning plasma needs to be kept away from the walls of the
vacuum chamber because they would be destroyed very soon. Moreover, the plasma would
be cooled and polluted. Magnetic fields are the best candidate for a confinement preventing
the contact with the surrounding material. The charged particle motion in the presence
of a magnetic field is described by the Lorentz force. Along a homogeneous magnetic field
of straight field lines, the motion is restricted to a gyration perpendicular to the field lines
while the motion parallel to the field lines remains unconstrained. For this reason, early
linear fusion devices used magnetic field inhomogeneities in order to create a mirror force
reflecting most of the charged particles at both ends. This is the concept of a ’magnetic
bottle’. It turned out quite soon that a too large fraction of the fast particles was not
reflected and led to unsatisfactorily high losses.

An alternative approach is to connect both ends and by this to form a toroidal de-
vice, thereby avoiding those losses. This attempt was firstly applied in Russia under the
acronym ’tokamak’ standing for ’toroidal chamber with magnetic coils’ and turned out to
be the most successful up to now. The main benefits in comparison to other magnetic
confinement concepts like the ’reversed field pinch’ are better energy confinement proper-
ties, with an acceptable magnetohydrodynamical stability. The basic principle is shown in

Figure 1.2: Basic concept of the tokamak (Source: http://www.ipp.mpg.de).

Fig. 1.2. The toroidal magnetic field is generated using toroidal field coils with a poloidal
current. However, with a purely toroidal magnetic field, the magnetic field curvature and
gradient result in a vertical drift which is in opposite directions for ions and electrons,
as it is shown in Fig. 1.3. The resulting electric field causes an outward E×B drift of
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Figure 1.3: Vertical drifts and associated E×B drift in a toroidal field (Source: Script of
IPP summer university of plasma physics 08).

the whole plasma, and therefore such a simple magnetic configuration will not confine the
particles. The charge separation can be avoided by a poloidal magnetic field component,
which is produced by a toroidal current. However, the latter reduces the magnetohydro-
dynamical stability, and is the main limitation of the tokamak concept since the toroidal
current is produced by magnetic induction, along the transformer principle. According to
the Maxwell–Faraday equation, the loop voltage is associated with a magnetic flux, which
has to be varied in time and has to be provided from outside. In present day tokamaks
the normal operation is inductive leading to an operation of tokamaks only in a pulsed
regime, with typical pulse durations of the order of a few seconds. In the last decades, lots
of work has been done in order to find non–inductive operational scenarios. These can be
realized by current drive due to tangential neutral beam injection heating, lower hybrid or
electron cyclotron current drive. Also, in the last years important progress has been made
in order to reach and maintain high values of a self–generated toroidal plasma current,
the so–called bootstrap current, and fully non–inductive scenarios can be realized [5, 6].
Stellerators, on the other side, are very promising in terms of long pulse operation since
they do not need a plasma current. The very complicated field coil geometry, as it can be
seen from Fig. 1.4, ensures the magnetic confinement. The main drawback of present day
stellerators is the fact that they show energy confinement times of roughly one order of
magnitude lower than in tokamaks of comparable vessel volume. Moreover, the research
in terms of plasma behavior as well as engineering developments are still lagging behind
compared to tokamaks, such that the latter ones will be the working–horse for the next
decades in order to realize a viable energy source.

A figure of merit for the advances in confinement is the so–called Lawson criterion [7],
which gives a lower boundary for the ’triple–product’, namely density times temperature
times energy confinement time, for a deuterium-tritium plasma to reach the ’break–even’
point, where the amount of the total power Pfus generated by the fusion reactions in the
plasma is equal to the total loss power of energy, Ploss, such that Q = Pfus/Ploss = 1 and
the same amount of energy is generated from the fusion reactions as the applied energy
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Figure 1.4: Coil and plasma geometry of the optimized stellerator (Source:
http://www.ipp.mpg.de).

in order to heat the plasma and to compensate for energy losses. For the D-T reaction, it
reads

neTτE ≥ 1021keVs/m3, (1.2)

where the energy confinement time τE is given by the fraction of the total stored energy
Wint in the plasma divided by the total loss power. The challenge for plasma physicists is to
obtain all three values needed for the Lawson–criterion at the same time, namely pressures
of the order of several atm and energy confinement times of the order of a few seconds. The
triple–product is shown in Fig. 1.5. Here and in the following, temperatures are measured
in terms of energy, kBT → T . It is clear that in the last decades enormous progress has
been made, but there is still a step to take in order to reach the goal of an economically
viable energy source. One important milestone will be the International Thermonuclear
Experimental Reactor (ITER) [8], a tokamak which is designed to overcome ’break–even’
by reaching Q = 10 and to explore the plasma behavior under those conditions in order
to build a power plant in the next future.

1.2 Charged particle trajectories and transport

In order to get a better understanding of the confinement in a tokamak, it is instructive to
discuss the trajectory of a single charged particle. For typical operational parameters of
present day devices, namely magnetic fields ∼3 T and temperatures of ∼3 keV, the parti-
cles are forced to a gyration around magnetic field lines with cyclotron angular frequencies
Ωc,σ = ZσeB/(mc), where σ denotes the species. For deuterium ions, Ωc,i ' 2.9 ·108 rad/s
and for electrons, Ωc,e ' 5.3 ·1011 rad/s. Thermal velocities are given by vth,σ =

√
Tσ/mσ,

for deuterium ions vth,i ' 5.4 · 105 m/s, and for electrons vth,e ' 3.2 · 107 m/s. These cor-
respond to average Larmor radii ρL,σ = vth,σ/Ωc,σ of about 0.19 mm for deuterium ions
and 61 µm for electrons. Thus, they are much smaller than the characteristic variation
length of the equilibrium parameters in the core, which are of the order of the tokamaks
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Figure 1.5: Fusion triple product as a function of temperature measured in keV (Source:
http://images.iop.org).

minor radius and therefore a∼1 m. Under these conditions, the trajectory of a particle
can be decomposed into its fast gyration, the slower motion of the center of gyration
called guiding–center (GC) of the order of 106 s−1, and the even slower drift frequencies
of the GC across the magnetic field of the order of 103 s−1. Following [9], a systematic
perturbation series of the Lorentz force with electric and magnetic fields slowly varying
compared to the gyration frequency in the sense that 1� δ ∼ ρL|∇B|/B, (ΩcB)−1dB/dt
in combination with a very small electric field can be made in order to determine the
equation of motion. If not specified otherwise, a gradient ∇ refers to the radial derivative
of a quantity throughout this thesis. The perturbation series reads

δ
d2x

dt2
=

e

m
E +

Zσe

mc

dx

dt
×B. (1.3)

The particle trajectory x(t) is then given by

x(t) = x0(t) + δx1(f(t), t) + δ2x2(f(t), t) + ..., (1.4)

where x0(t) denotes the GC motion independent of the gyration with the gyration phase
f(t), which is included in x1,2,..(f(t), t). After a lengthy calculation one arrives at the
following expressions:

v0,⊥ = c
E×B

B2

v1,⊥ =
1

Ωc,σB
B× dv0

dt
+

µB,σ

mΩc,σ
b×∇B

dv0,||

dt
= ZσeE|| − µB,σb · ∇B(x0) (1.5)
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Here, b = B/B, and µB,σ = mσv
2
⊥,σ/(2B) is the magnetic moment connected with the fast

gyro–motion and therefore temporally nearly constant, an adiabatic invariant. The zero–
order velocity is the E×B velocity, while the first–order velocity is given by the inertial
drift consisting of the curvature and the polarization drift, and the ∇B drift. The parallel
motion is given by the parallel electrostatic force and the so–called mirror force due to
parallel inhomogeneities in the magnetic field. The latter one provides a special implication
to the trajectories of charged particles in a tokamak: in case of large µB corresponding to
large perpendicular velocities, particles can change their parallel direction depending on
the actual direction of the magnetic field and its gradient, as it can be seen from the last
expression in Eq. (1.5). This leads to trapping of particles and to the so–called banana
orbits in the poloidal projection of the trajectory, and can be seen in Fig. 1.6.

Particles with small perpendicular energy do not change direction and are therefore
passing, which means that they move around the full torus. In this sense, a useful pa-
rameter is the pitch angle defined as θp = arctan(v⊥/v||). From the energy conservation
and the adiabatic invariance of µB it can be concluded that in a simple, large aspect ratio
R/a geometry, for pitch angles satisfying tan2(θp) > R/(2r), where R and r are the major
and the local minor radius of the tokamak, respectively, particles have a too small parallel
velocity and are therefore trapped. Here, a the plasma minor radius, defined by redge = a.
Accordingly, the trapped fraction is given by ft =

√
2r/R, and the passing particle frac-

tion by (1 − ft). For typical values in present day tokamaks at mid–radius, r/R = 0.17,
and approximately 58% of the particles are trapped.

Figure 1.6: Schematic view of charged particle orbits in a tokamak poloidal cross section
(Source: http://iter.rma.ac.be).

Apart from the drifts included in the GC trajectory, given by Eq. (1.5), magnetized
tokamak plasmas exhibit an additional fluid drift resulting from the interplay between
spatial inhomogeneities of temperature and density and the finiteness of the Larmor radius.
The former are generally in radial direction since on a flux tube, which is characterized by
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the current j and field lines of B (and therefore at constant minor radius), the pressure
gradient is zero in the MHD approximation. This behavior can be seen from the stationary
MHD equation of motion ∇p = j × B, in which flows have been neglected. Due to this
interplay, the diamagnetic drift arises and can be illustrated as follows. Suppose the
particle distribution to be a Maxwellian to zeroth order, i.e.

FM(x0, E) =
n(x0)

(2πT (x0))3/2
exp(−E/T (x0)), (1.6)

where E is the particle energy and n and T depend on the GC position. Then, expansion
to first order in Larmor radius leads to

FL1 =

[
1 + ρL(x0)

(
d ln n(x0)

dr
+
dT

dr

∂

∂T (x0)

)]
FM(r, E). (1.7)

With this at hand, the average diamagnetic drift is given by

v∗,σ '
1

n(x0)

∫
d3vFL1v = −∇p(x0)

n(x0)
× b

ZσeB
, (1.8)

where p(x0) = n(x0)T (x0).
At this point it is instructive to summarize the different kind of drifts. They can be

all written in the general form

vdrift =
F× b

ZσeB
, (1.9)

where F is the corresponding force, for instance the electric force ZσeE, the ∇B force
−mσµσ or the pressure gradient force −∇p/n. The latter two forces do not depend on
the charge, and therefore the corresponding drifts are in opposite direction for ions and
electrons, while the electric force is charge dependent leading to the charge independent
E×B drift. These properties are summarized in Fig. 1.7.

As already discussed, transport in the direction parallel to the magnetic field lines is
very efficient and thus the density and temperature are nearly constant on a flux surface.
What causes the quality of confinement is the radial transport of particles, (angular)
momentum and energy. This can be directly seen from Eq. (1.2). The achievable densities
depend on the transport of particles, while the temperature and the energy confinement
time are up to the transport of energy. Those parameters are influenced by the transport
of (angular) momentum, since this affects the transport of both particles and heat.

Cross–field transport describes the displacement of particles away from their original
magnetic field line determining their trajectory. The basic classical transport mechanism
is given by Coulomb collisions, causing a radial displacement of the size of the gyration
radius ρL. A random–walk model leads to particle and thermal diffusivities of D,χ ∼ ρ2

Lν
with the collision frequency ν of particles of the same species. This leads to an estimate for
the energy confinement time of τE ∼ a2/χ, which is of the order of several minutes (a=0.5
m). Such a long energy confinement time is in clear disagreement with the experimental
findings of τE .1 s in present day tokamaks. Even when magnetic field inhomogeneities are
taken into account in the neoclassical transport, the confinement is usually overestimated.
There, the fact that particle GCs are not longer attached to magnetic field lines, but
drift across them, is included. The toroidal geometry and the occurrence of banana orbits
leads to larger displacement scales and thus to diffusion coefficients of about one order
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Figure 1.7: Schematic view of drifts of charged particles in a magnetic field (Source:
http://www.plasma-universe.com/Charged particle drift).

of magnitude higher. While under certain conditions, like transport barriers with a very
narrow radial extension, the level of the ion heat transport indeed can be attributed to
these mechanisms and is therefore rather low, the transport level over the whole minor
radius is undervalued by approximately one order of magnitude for ions and two orders of
magnitude for electrons, see for instance [10].

Radial transport has to be ascribed to an ’anomalous’, non–neoclassical, nature, as it
has been reported for instance in [11] and references therein. Today, it is widely accepted
that turbulence produced by small scale instabilities, which have a typical size of the
order of the Larmor radius and is therefore called ’microturbulence’, is responsible for
large particle and thermal transport. These instabilities are fed by large gradients of
temperature and density unavoidably connected with the concept of a tokamak (remember
that the required central temperature of ∼100 million degrees drops to a few hundred
degrees at the plasma edge within approximately one meter of distance). The most relevant
and prominent examples for this kind of small scale turbulence are the ion temperature
gradient (ITG) mode and the trapped electron mode (TEM), which will be discussed in
detail in Chapter 3.
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1.3 The plasma beta

The most important parameter characterizing the economical efficiency of a tokamak
plasma is the plasma beta, defined as the ratio of kinetic to magnetic pressure,

β =
8π〈p〉
B2

T

, (1.10)

where 〈p〉 is the volume average kinetic pressure and BT the toroidal magnetic field.
Loosely speaking, this quantity determines the ratio of how much energy one can get out
of fusion reactions in a tokamak compared to how much has to be provided for confinement.

A high value of β therefore has beneficial effects, namely the fusion reaction power is
proportional to β2. In terms of long discharge durations the bootstrap fraction, which
is proportional to β, has a big influence. This fraction describes the amount of toroidal
plasma current responsible for the poloidal magnetic field and generated within the plasma
itself compared to the one induced by the transformer. This so–called bootstrap current is
associated with the existence of trapped (banana) particles in toroidal magnetic confine-
ment systems. These trapped particles must be able to complete their (banana) orbits,
so a requirement for the existence of the bootstrap current is that the collision frequency
is less than the banana bounce frequency. The difference in particle density on banana
orbits crossing a given radial position then leads to a net toroidal current at this position.

For these reasons it is clear that operational scenarios with preferably high values
of β are extremely attractive, but some limitations exist. The main one is related to
large scale magnetohydrodynamic (MHD) modes which are very deleterious to the plasma
confinement. This implies an upper limit to β. The most prominent limit is the Troyon
limit [12], which was calculated from simulations on the onset of MHD ballooning modes,
and reads

βmax[%] ≈ 2.8
Ip[MA]

a[m]BT[T ]
, (1.11)

where Ip the plasma current. This implies a β–limit of a few percent. The parameter

βN =
β

Ip/(aBT)
(1.12)

is regularly used today to quantify a dimensionless form of the plasma pressure reached
by operational scenarios.

The basic idea behind ballooning modes, a kind of interchange mode with a mode
structure highly elongated along a magnetic field line, is the following: at the inner side
of the torus, the curvature of the magnetic field acts stabilizing, while on the outer side
it is destabilizing. In case of high pressure gradients, included in the parameter αMHD =
−(8πq2R/B2)∇p and therefore connected with a finite value of β, modes tend to balloon
in the region of destabilizing curvature. The potential destabilizing energy available from
the pressure gradient may exceed the energy needed for field line bending, which is higher
the stronger the magnetic shear is, such that an unstable mode is driven. This kind of
mode is essentially a destabilized Alfvén mode and, as such, of electromagnetic type. From
Fig. 1.8 it is seen that at low values of α = αMHD and high magnetic shear a stable region
exists. A second stability region is located at very low magnetic shear.

Even below this β–limit, kinetic ballooning modes (KBMs) can occur with a strong
decrease of confinement. They are the analogon to MHD ballooning modes, but calculated
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Figure 1.8: Stability diagram for ballooning modes (modified from [13]).

within a kinetic approach, which leads to modifications due to the treatment of finite
Larmor radius effects and kinetic resonances [14, 13]. The main outcome of this approach
is that KBMs are unstable within the second stability region of MHD ballooning modes as
it can be seen in Fig. 1.8 [13]. Moreover, it is found that for magnetic shear values in the
range 0.3-1.5, typical for tokamak plasmas at mid–radius, KBMs exhibit a slightly smaller
α for the onset as compared to MHD ballooning modes. In a more recent publication
[15], it has been found that the unstable behavior of KBMs at high α is connected with
parallel magnetic field fluctuations, which increase the linear growth rate, but leave the
onset of KBMs approximately constant. Another work dedicated to the problem of kinetic
ballooning stability of internal transport barriers (ITBs) in tokamaks showed that in case
of small shear s � 1, where the magnetohydrodynamic ballooning mode is known to
be stable, the kinetic ballooning mode is stable only if the pressure gradient exceeds a
threshold of αMHD of the order of one [16]. It has to be noted that the effect of E×B
shearing was not included in the latter study.

Also changes in magnetic topology due to magnetic reconnection at finite values of βe

which may be smaller than the threshold for KBMs, lead to so–called micro–tearing modes
(MTMs) with short wavelength and high poloidal wave numbers. They form small scale
magnetic islands due to magnetic perturbations. MTMs are driven unstable by a large
electron temperature gradient, which exceeds the stabilization due to field line bending
forces in a sufficient collisional plasma. They are not to be confused with neoclassical
tearing modes (NTMs), which are destabilized and maintained by the loss of the bootstrap–
current in (large scale) magnetic islands due to the vanishing pressure gradient therein, and
connected with resonant surfaces at low poloidal to toroidal wave number ratio (usually
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2/1 and 3/2).
Lastly, also electrostatic modes like ion temperature gradient (ITG) [17] or trapped

electron modes (TEM) [18], typical for tokamak operation at low β, are modified due to
finite values of β. These two kind of instabilities are driven by temperature and density
gradients in the plasma, and will be the subject of Chapter 3.

1.4 Content of thesis

This thesis is structured as follows. In Chapter 2, the electromagnetic gyrokinetic set of
equations, which provide the most appropriate model in order to describe microturbulent
modes in tokamak plasmas, are introduced and the numerical solution with GYRO [19] is
discussed. In Chapter 3, the physics mechanisms generating ITG and TEM instabilities are
highlighted. In addition, a simple fluid model originating from conservation laws is derived
in order to shed light on the properties of core plasma turbulence and the interplay of these
two most common modes for tokamak operation. The impact of electromagnetic effects in
conditions of ITG and TEM microinstabilities with respect to various transport channels
will be discussed in the following. Chapter 4 includes electromagnetic investigations on
the transport of electrons, from both analytical (gyrokinetic) calculations highlighting
the main physics mechanism, and numerical simulations. In Chapter 5, the transport
of impurities is discussed. To this purpose an analytical electromagnetic fluid model is
used in order to interpret the numerical results. Chapter 6 deals with electromagnetic
momentum transport. The main emphasis is put on the influence of the self–consistent
mode structure. In Chapter 7, the electromagnetic transport of energy is considered and
a particular comparison with experimental data is performed. Finally, Chapter 8 draws
the main conclusions and gives an outlook.
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Chapter 2

Gyrokinetic model and numerical
solution with GYRO

In this Chapter, the most general approach for the description of electromagnetic low fre-
quency modes in tokamak plasmas, namely the gyrokinetic Vlasov–Maxwell set of equa-
tions, is presented. Furthermore, its solution via the gyrokinetic simulation code GYRO
[19, 20], which has been utilized in the framework of the present thesis, is briefly reviewed.

2.1 Gyrokinetic equation

In plasma theory, a kinetic problem can in principle be set up, in which the exact micro-
scopic description is applied. That means to write down Newton’s law, F = ma, for about
1020 individual particles and solving for all 1020 interacting trajectories. This, however,
can not be realized even by the most advanced present day computers. Also, such a sys-
tem is known to exhibit chaotic behavior, and the exact solution is extremely sensitive to
the initial conditions, which are practically unknown from the experimental point of view.
Microscopic theory moves to kinetic theory by the application of probabilistic concepts.
Since one is not interested in all the microscopic particle data, one considers statistical
ensembles of systems. This leads to the introduction of a distribution function, which de-
fines the number of particles per unit volume in phase space. Then, kinetic equations can
be found by averaging the microscopic information in the exact theory. While the particle
locations are lost, the detailed knowledge of particle motion is required. In this sense,
kinetic theory is still microscopic. The aim of this section is the derivation of a kinetic
model for microturbulence in the plasma. It turns out that the gyrokinetic model, which
is introduced below, is the most practical approach in order to describe low frequency
plasma turbulence, which leads to the anomalous transport.

2.1.1 The idea

Microturbulent modes in magnetized plasmas have ω ∼ 105Hz, which is much slower than
the basic plasma oscillation frequency ωp,e =

√
4πnee2/me of several hundreds of GHz,

and also slower than compressional Alfvén oscillations with ω = k⊥vA ∼ 100 MHz. More-
over, also the gyration frequency of ions and electrons within a tokamak plasma is much
higher. In the sense of a statistical description, where the detailed knowledge of the parti-
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cle position in the gyro orbit is not needed, these fast timescales are averaged out by the
assumption that the particle motion is given by its gyrocenter movement, while the charge,
which is interacting with the fields, is distributed on the ring of the gyration. This, in
turn, implies a modification of the trajectory due to ’ring’–averaged fields with respect to
the guiding center trajectory determined by fixed fields. The averaging procedure implies
the suppression of the gyro–angle, leading to a five dimensional (three in configuration
space and two in velocity space) instead of a six dimensional treatment. Therefore, gy-
rokinetic theory is well suited for numerical investigations of microturbulence since the
computational costs are significantly lowered as compared to the ’full’ kinetic problem,
while all the physics of interest is retained.

Gyrokinetic theory was originally developed in the 1960’s as an extension to guiding
center theory [21] to include finite gyroradius effects, which have to be necessarily kept due
to the fact that density fluctuation spectra found peaks in the perpendicular wavenumber
spectra at k⊥ρs ∼ 0.2 − 0.5 [22, 23], on low frequency, short perpendicular wavelength
electrostatic fluctuations in general geometry [24, 25]. In 1978, Catto [26] developed an
important approach for the derivation of the gyrokinetic equation by first transforming
the particle coordinate to those of the guiding center (GC) in the Vlasov equation (or
collisionless Boltzmann equation) before performing the gyrophase averaging. This result
then triggered a more consistent development of the linear theory [27, 28] and an early
formulation of nonlinear gyrokinetic theory [29]. In the early 1980’s, two important ad-
vances in GC theory were developed. First, Boozer [30] developed particle drift motion in
magnetic coordinates which greatly simplifies the analysis of orbits in complex geometry
and second, Littlejohn [31] introduced guiding center theory based on action variational
and Lie perturbation methods [32] in order to obtain phase space conserving equations
following the Liouville theorem. This was soon followed by an extension of the method to
gyrokinetic theory [33]. In the late 80’s, Hahm [34], Brizard [35] and co–workers extended
the methodology to general magnetic geometries. A comprehensive recent review on the
rigorous perturbation approach using action variational principles can be found in [36].
This includes the most general approach for the derivation of the gyrokinetic equation.

2.1.2 The system of equations

The modern derivation of the (collisionless) gyrokinetic equation consists of an initial
formulation, which sets up a least action principle in phase space, and then two steps
which are ultimately regarded as coordinate transformations. Here, we sketch a deriva-
tion following the Goal Oriented Training in Theory (GOTiT) lecture series course about
gyrokinetic theory by B. D. Scott at the Max Planck Institut für Plasmaphysik (IPP) in
2008 (see http://www.ipp.mpg.de/˜bds/lectures/gotit).

Firstly, the derivation of the guiding center Lagragian of Littlejohn [37] is outlined.
Starting point is the general Lagrangian for a particle of charge e and mass m in an
electromagnetic field, with potentials φ and A. It reads

L = m
|ẋ|2

2
+
e

c
A · x− eφ. (2.1)

The canonical momentum p for the coordinate variable q = x is given by

p =
∂L

∂ẋ
=
e

c
A +mẋ. (2.2)
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Then, the Hamiltonian is given by

H = p · q̇− L =
1

2m
|p− e

c
A|2 + eφ (2.3)

in the {p,q} representation. The least action principle states that the action γ, which
is given by the integral over time along the particle trajectory of the Lagrangian in Eq.
(2.1), can be used in order to find the equations of motion through the variation

δγ = δ

∫
dtL = 0. (2.4)

In order to perform this step, it is useful to convert the Lagragian given by Eq. (2.1) into
a phase space Lagrangian over the extended six dimensional space {p,q} by absorbing
the factor of dt into L. The resulting differential form, which will be called the differential
one–form,

dγ = p · dq−Hdt, (2.5)

can be expressed in symplectic representation for the phase space {x,v = ẋ}, namely

dγ =
(e
c
A +mv

)
· dx−Hdt with H = m

v2

2
+ eφ. (2.6)

Then, in a non–relativistic treatment, where the time is considered as an independent
variable, Eq. (2.6) can be rewritten in terms of covariant coordinates za, dγ = γadz

a−Hdt,
such that the least action principle leads to Euler–Lagrange equations for a, b ∈ {1, ..., 6}

(γb,a − γa,b)
dzb

dt
= H,a +

∂γa

∂t
, (2.7)

where γb,a − γa,b is called the symplectic structure with for instance γb,a ≡ ∂γb/∂z
a,

and includes the summation over repeated indices. This allows for the derivation of the
equations of motion, which read

dx

dt
= v and m

dv

dt
= e

(
E +

1

c
F · v

)
, (2.8)

where E = −∂A/(c∂t) − ∇φ and F = ∇A − (∇A)T . The latter represents the Lorentz
force, since [

∇A− (∇A)T
]
· v = (∂iAj − ∂jAi)vj

= (δilδjm − δimδjl)∂lAmvj

= εijkεklmvj∂lAm

= v ×∇×A ≡ v ×B, (2.9)

where δ denotes the Kronecker delta and ε is the total antisymmetric (Levi–Civita) tensor.
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Transformation to guiding center coordinates

Now, the change to GC coordinates {R, U, µ, θ} is straightforward. Using x = R + ρ and
v = Ub + ρ̇, where ρ includes the particle gyroradius and b = B/B, the fundamental
one–form, Eq. (2.6), can be evaluated at the GC position R to order ρ/LB (LB being the
magnetic field length scale). With

dγ =

(
e

c
A +

e

c
ρ∇A +mUb +m

Ωc

B
ρ×B

)
· (dR + dρ)−

(
m
U2

2
+ µB

)
dt, (2.10)

where µ is the magnetic moment and the electrostatic potential φ is absent since it does
not enter the equilibrium, a gauge transformation γ → γ + dS with S = −(e/c)ρ ·A −
(e/(2c))ρ · ∇A · ρ can be used to eliminate the θ dependence in first and second order in
ρ and find the guiding center one form of Littlejohn [37]. The latter reads

dγ(R, U, µ, θ) =
e

c
A∗ · dR +

mc

e
µdθ −H0dt, (2.11)

where

H0 = m
U2

2
+ µB

A∗ = A +
mc

e
Ub

F∗ = ∇A∗ − (∇A∗)T

B∗ = ∇×A∗

B∗‖ = b ·B∗ = B +
mc

e
Ub · ∇ × b

b∗ =
B∗

B∗‖
(2.12)

From the corresponding Euler–Lagrange equations, it can be derived that θ̇ = Ωc and µ̇ = 0
(adiabatic invariance). Moreover, the GC drift dynamics, as it was introduced in Chapter
1, is retained. Electric and magnetic field disturbances, which arise self consistently with
the motion of the charged particles gyrocenters, are accounted for in these perturbed
dynamical equations. Again, it is important to note that the background is expected to
have no electric field, since any background electric field would lead to strong acceleration
of particles, leading to huge charge separations and therefore electric fields on very short
timescales. This, however, would violate the basic assumptions of gyrokinetics, namely
ρ/LB � 1 and 1/(Ωct) � 1, implying only small spatial and temporal fluctuations of
the fields φ and A. In conclusion, this step separates the fast gyromotion from the much
slower GC motion in the background magnetic field, as it can be seen from the one–form,
Eq. (2.11). It has to be mentioned that using Eq. (2.11) the drift–kinetic equation can
be obtained.

Transformation to gyro–center coordinates

The second step includes a Lie transformation [32] taking the guiding centers to the corre-
sponding gyrocenters including time–dependent field fluctuations, and expresses the field
disturbances in terms of gyrophase averaged quantities. It is important to note that Lie
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perturbation theory can be used to generate equations of motion that are gyrophase in-
dependent to any desired order in a smallness factor ε, for instance for spatial expansion
εB = ρ/LB. In this formalism, the particle dynamics transforms simply under coordinate
change, included in the Lie transformation at each order of the expansion, since a one–form
transforms covariantly. The gauge freedom attributed to the one–form formalism leads to
the elimination of the gyrophase dependence.

The Lie transform is a near identity transformation, defined by

T = exp (εL) (2.13)

with its inverse
T−1 = exp (−εL) , (2.14)

where L is the Lie derivative of order n (not to be confused with the Lagrangian), de-
fined by its influence on a scalar Lnf = gan∂f/∂z

a = ganf,a and on a one–form Lnγ =
gb

n(γa,b − γb,a)dza. It is crucial to note that the actual choice of the generating functions
ga is completely arbitrary. This means that one is free to chose a convenient member of
the family of Lie transformations in order to maximize the simplicity of the gyrokinetic
equation. While this attribute is extremely helpful, the actual choice affects, however, the
derivation of the polarization equations for φ and A, since for these the back transfor-
mation, Eq. (2.14) has to be applied. This can lead to an increase of complexity in the
derivation of the field equations.

The Lie transform action on a scalar is defined by F = T−1f and on a one–form by
Γ = T−1γ + dS (gauge freedom through adding dS), and it is manifestly covariant, such
that Γ = ΓadZ

a and γ = γadz
a. Furthermore, it is important to note that coordinates and

distribution functions are transformed together in a consistent way. Then, at each order
of the transformation, gauge freedom in addition to the Lie derivative leads to

dΓ0 = dγ0 + dS0

dΓ1 = dγ1 − L1dγ0 + dS1

dΓ2 = dγ2 − L1dγ1 +

(
1

2
L2

1 − L2

)
dγ0 + dS2. (2.15)

By adjusting the gauge functions dS0, dS1 and dS2 appropriately, the one forms dΓ0, dΓ1

and dΓ2 will be independent of the gyro–angle. The freedom of choosing the generating
functions ga in the Lie derivatives is used to move the field dependences, which themselves
depend on time, to the Hamiltonian H, where already time dependences occur. Thus,
all time dependences will be stored in H at each order of the expansion. The lengthy
calculations are given in the mentioned lecture notes. Here, only the important results are
outlined.

Using appropriate gauge and generating functions up to first order in the expansion,
see Eq. (2.15), the perturbed one–form Γ1 has the desired result

dΓ1 = −e〈φ− U

c
A‖〉dt. (2.16)

The brackets 〈...〉 denote the gyro–averaging over θ. This implies a dynamical equation for
S1, which results in the fact that the gauge function S1 is simply a gyroaverage, defined
by

S1 =
1

Ωc

∫
dθeψ̃, (2.17)

18



where ψ̃ = ψ−〈ψ〉 and ψ = φ− (U/c) ·A is the generalized potential. Then, to this order
in the expansion, one gets

dΓ(0+1) =
e

c
A∗ · dR +

mc

e
µdθ −H(0+1)dt, (2.18)

where

H(0+1) = m
U2

2
+ µB + e〈ψ〉, (2.19)

where quantities with index (0 + 1) contain both zeroth and first order contributions. In
particular,

H0 = m
U2

2
+ µB

H1 = e〈ψ〉. (2.20)

All the changes compared to the guiding center one form, Eq. (2.11) are included in
H(0+1). This, in turn, implies that the Euler–Lagrange equations remain the same as for
the GC motion, such that

Ṙ = b∗
(

1

m

∂H

∂U

)
− c

eBB∗‖
F · ∇H(0+1) (2.21)

and

U̇ = − 1

m
b∗ · ∇H(0+1). (2.22)

Also the results for gyromotion, namely θ̇ = Ωc and the adiabatic invariance of the mag-
netic moment, µ̇ = 0, are recovered.

These are the equations of motion for individual gyrocenters. For the distribution func-
tion f , Eqn. (2.21) and (2.22) can be used in order to re–express phase space conservation
of the distribution,

df

dt
=
∂f

∂t
+ Ṙ · ∇f + U̇

df

dU
= 0 (2.23)

in the form

∂f

∂t
− c

eBB∗‖
F · ∇H(0+1)∇f −

[(
b∗ · ∇H(0+1)

)( 1

m

df

dU

)(
1

m

dH(0+1)

dU

)
(b∗ · ∇f)

]
= 0.

(2.24)
The form of this Eq. (2.24) is interesting. Due to the antisymmetry of F and of the
combination of the last set of terms, each combination of pairs of derivatives appears in
the form of a Poisson bracket, such that the gyrokinetic Eq. (2.24) can be written in the
simple form

∂f

∂t
+
{
H(0+1), f

}
= 0 (2.25)

with{
H(0+1), f

}
= ∇H(0+1) ·

cF

cBB∗‖
· ∇f + b∗ ·

(
∂H(0+1)

∂p‖
∇f − ∂f

∂p‖
∇H(0+1)

)
, (2.26)

where p‖ = mU is used. This shows that the Hamiltonian structure for the gyrocenter
motion is preserved. The form of the Poisson bracket is more complicated than the usual

19



one in Hamiltonian theory by involving F under the low frequency drift ordering. More-
over, since H(0+1) itself depends on f through the fields φ and A‖, the gyrokinetic Eq.
(2.25) is nonlinear. The phase space volume element is given by B∗‖ .

The usual particle drifts defined in Chapter 1 appear in the gyrokinetic equation under
different terms. The E×B and ∇B drifts enter through the −cF · ∇H/(eBB∗‖). The
curvature drift involving ∇×b enters through the correction to the magnetic unit vector,
b∗−b. Motion parallel to the unperturbed magnetic field is included in the terms involving
b∗ ·∇ and ∂/∂U , in particular the magnetic trapping arises from b∗ ·∇H, while the motion
parallel to the perturbed magnetic field lines enters through the part of −cF ·∇H/(eBB∗‖)
due to A‖.

While the form of the gyrokinetic Eq. (2.25) with Eq. (2.26) is already the final one,
the restriction to the zeroth and first order in the Lie transformation has the disadvantage
of not providing a closed energy theorem (energy conservation) and no quasineutrality,
which is given by the role of polarization not introduced yet. Thus, it is necessary to go to
the second order of the Lie transform formalism. It has to be mentioned that the choices
made at first order have consequences at second order. Especially the choice of S1, which
was arbitrary up to first order, will enter the generalized potential to second order.

Polarization, induction and conservation properties

Here, the most general and elegant way in order to derive the gyrokinetic polarization,
induction and energy conservation is briefly outlined. This is done by using gyrokinetic
field theory [38], where the Lagrangian for a single particle p is given in the GC coordinates

Lp =
(e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ −H (2.27)

with

H = m
U2

2
+ µB + eΦ and mU = p‖ −

e

c
J0A‖ (2.28)

using J0 = J0(k⊥ρ) from the gyro–averaging, where the gyro–average operation 〈Q(R)〉 =
J0(Q(x)) is defined by

1

2π

∫
dθ exp [ρ · ∇] =

1

2π

∫
dθ exp [ik⊥ρ cos θ] = J0 (k⊥ρ) . (2.29)

With this notation, the gyroaveraged and screened electrostatic potential is given by

eΦ = eJ0φ−
e2

2B

∂

∂µ

[
J0(φ2)− (J0φ)2

]
. (2.30)

In the total Lagrangian, the magnetic field energy is also included,

L =
∑
σ

∫
d3vLpf −

∫
dV

B2
⊥

8π
, (2.31)

where
∑

σ denotes the summation over all particles and the velocity space integral is given
by ∫

d3v = 2πm−2

∫
dp‖

∫
B∗‖dµ. (2.32)
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Then, according to the least action principle, the variation of Eq. (2.31) with respect to
φ gives the gyrokinetic polarization equation (Poisson law), which reads∑

σ

∫
d3v [eJ0f + (J0MJ0 − J0Mφ)] = 0, (2.33)

where M = −(e2/B)(∂f/∂µ) is the polarisability. For the induction (Ampère’s law) one
varies with respect to A‖, finding

∇2
⊥A‖ = −4π

c

∑
σ

∫
d3veJ0(Uf). (2.34)

Here, it is important to note that the right hand side of this equation contains A‖ as well
due to mU = p‖ − (e/c)J0A‖.

With this at hand, it is also easy to derive the electromagnetic energy conservation.
The Noether theorem states that energy is preserved for the system having a symmetry
in time, that is a transformation t→ t+ δt does not change the equations of motion and
the field equations. The energy conservation is proven by using

E =
∑
σ

∫
dΛHf −

∫
dV

B2
⊥

8π
, (2.35)

where Λ is the full phase space volume. With (derivation details see reference to the
GOTiT course given above)

∂E
∂t

=
∑
σ

∫
dΛH

∂f

∂t
= −

∑
σ

∫
dΛH {H, f} = −

∑
σ

∫
dΛ

1

2

{
H2, f

}
= 0, (2.36)

it is clear that energy is conserved. The result of Eq. (2.36) was obtained using
∫
dΛ {H, f} =

0 and {H, g(f)} = {H, f} ∂g/∂f .
With these relations and keeping Eq. (2.25) in mind, the particle and entropy conser-

vations are easy to prove. The former is simply given by setting g(f) = f and the latter
by g(f) = −Tf log f such that ∂g/∂f = −T (1 + log f). It is important to note that, while
the proof of the latter two works for each species separately, the conservation of energy
is applicable across species and requires the fields as well. This usually leads to the defi-
nition of free (thermal) energy EF =

∑
σ dΛH0f , where H0 = mU2/2 + µB, E×B energy

EE×B =
∑

σ dΛeΦf and magnetic energy EM =
∑

σ dV B
2
⊥/(8π). The transfer of energy

between these three channels is an important measure for the turbulence properties.
In conclusion, the appropriate use of the Lie transform technique (and the gauge free-

dom) up to the second order enables the derivation of the gyrokinetic equation together
with the polarization (Poisson) and induction (Ampère) equation, and a consistent con-
servation of particles, entropy and energy. Thus, it is convenient to stop at this order of
the expansion, also because the consistency with the lower order pieces is guaranteed.

2.1.3 Linearization

The fully nonlinear gyrokinetic Eq. (2.25) is transformed to the linear case, being helpful
for analytical calculations. To this purpose, the total distribution function f is split into an
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equilibrium part FM, which is assumed to be a Maxwellian independent of time, and a time
dependent perturbed part δf , where the δ is a formal parameter in order to characterize
the disturbance as small. It can be easily shown that the linearized equation follows

∂δf

∂t
+ {δf,H0} = −{FM, H1} , (2.37)

where the definition of the zeroth and first order Hamiltonian, Eq. (2.20), was used. It is
noteworthy that the zeroth order implies FM to be time independent, such that the latter
indeed describes a proper equilibrium. It is also instructive to write this equation also in
a different set of coordinates, namely X = (R, H0 = ε, µ, θ) with ε = E/Te. Then, the
usual evolution equation for the non–adiabatic part of δf ,

h = δf − H1

T

∂FM

∂ε
, (2.38)

is derived. It reads

∂h

∂t
+ (v‖b + vd)∇h =

[
cb

eB
×∇FM · ∇ −

∂FM

∂ε

∂

∂t

]
H1, (2.39)

where the linearized drift velocity

vd = − cb
eB
×
(
mv2
‖(b · ∇)b + µ∇B

)
(2.40)

comprising both the curvature and the ∇B drifts, is introduced. Consistent conservation
laws for the linearized system can be still derived.

The physical interpretation of Eq. (2.39) is the following. It describes the linear evo-
lution of the nonadiabatic component of the distribution of ’rings’, which represent the
gyrating particles. This evolution is subject to physics processes, namely the ’rings’ experi-
ence streaming in the parallel direction (v‖b) and drifts perpendicular to the (equilibrium)
magnetic field (vd), represented by the left hand side of the equation. Note again that
here no background electric field is assumed to be present, and the fluctuating E×B drift
is left out due to the linearization. The right hand side introduces the effect of collisionless
work done on the ’rings’ by gyro–averaged (fluctuating) electromagnetic fields in H1, and
can be seen as the wave–’ring’ interaction.

2.2 Numerical solution with GYRO

Before the numerical solution of the nonlinear gyrokinetic set of equations, Eqn. (2.25),
(2.33) and (2.34), is discussed, it is instructive to introduce a few basic concepts helping
to understand the definitions made in GYRO [20, 19], which is the simulation code used
throughout this thesis. The discussion is close to that in [39].

In order to fulfill the boundary conditions, a plasma perturbation in a torus must be
a superposition of elementary perturbations of the form

f(r, θ, φ) = f̄(r) exp [i(mθ − nφ)] , (2.41)
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where θ is the poloidal and φ the toroidal angle. The phase angle can be written as
mθ− nφ = kθrθ+ kφRφ with kθ = m/r and kφ = −n/R. The magnetic field is written as
B = Bθeθ +Bφeφ. Introducing the safety factor as

q(r) =
∆φ

∆θ
=
Bφr

BθR
, (2.42)

where ∆φ and ∆θ represent changes in φ and θ an the translation along a field line,
respectively, the parallel wavenumber is given by

k‖ =
k ·B
B

=
[m− nq(r)]

Rq
, (2.43)

where Bθ � Bφ such that B ≈ Bφ has been assumed. Since modes are generally most
unstable around rational surfaces (at which q(r) = m/n is a rational number), and q(r)
usually is a monotonically growing function of r, instabilities tend to be localized and
exhibit a small k‖. Taylor expansion around a rational surface at r0 gives

k‖ = − n

qR

dq

dr
(r − r0) = −n s

rR
(r − r0) (2.44)

with the magnetic shear

s ≡ r

q

dq

dr
. (2.45)

For a tokamak core, typically, s is small at the magnetic axis and otherwise of order
1. It can, however, become large at the edge, but this region is not considered in the
framework of the present thesis. Another quantity of interest is the distance between
neighboring rational surfaces since it can be used to define a radial length. If q(r0) = m/n
and q(r0 + ∆r) = (m+ 1)/n, then

∆r =

(
n
dq

dr

)−1

. (2.46)

2.2.1 Flux surface geometry

The explanation of the flux surface geometry and the code discretization used by GYRO
follows the users manual (https://fusion.gat.com/theory/Gyrodoc). A more detailed and
comprehensive description explanation of the gyrokinetic simulation code can be found
there. Here, only the essential points are briefly discussed. In order to solve the gyrokinetic
set of equations, Eqn. (2.25),(2.33) and (2.34), it is useful to introduce a right–handed,
field–aligned coordinate system (ψ, θ, α) together with the Clebsch representation [40] for
the magnetic field

B = ∇α×∇ψ such that B · ∇α = B · ∇ψ = 0. (2.47)

The angle α is written in terms of the toroidal angle φ as

α ≡ φ+ ν(ψ, θ), (2.48)
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where ψ is the poloidal flux divided by 2π representing the radial coordinate, and θ is the
poloidal angle. The Jacobian is given by

Jψ =
1

∇ψ ×∇θ · ∇α
=

1

∇ψ ×∇θ · ∇φ
. (2.49)

Then, the magnetic field is written in those coordinates as

B = ∇φ×∇ψ +
∂ν

∂θ
∇θ ×∇ψ. (2.50)

The safety factor is written as a function of the poloidal flux,

q(ψ) ≡ 1

2π

∫ 2π

0

B · ∇φ
B · ∇θ

dθ = − 1

2π

∫ 2π

0

(
−∂ν
∂θ

)
dθ. (2.51)

The toroidal flux is defined by

Ψt ≡
∫ ∫

St

B · dS =
1

2π

∫ ∫ ∫
Vt

B · ∇φdV, (2.52)

and the poloidal flux is written as

Ψp ≡
∫ ∫

Sp

B · dS =
1

2π

∫ ∫ ∫
Vp

B · ∇θdV. (2.53)

Using these two definitions, q = dΨt/dΨp. The effective minor radius r is defined as the
half width of the flux surface elevation, the effective major radius R as the average of the
major radius at the inner and outer side of the flux surface, and the effective magnetic
field strength, Bunit, as

Bunit ≡
1

2πr

dΨt

dr
. (2.54)

The Miller flux surface model shape [41] in (R,Z) coordinates, where Z is the centroid
elevation, is generalized and given by

R(r, θ) = R(r) + r cos(θ + arcsin δ sin θ),

Z(r, θ) = Z(r) + κ(r)r sin(θ + ζ sin 2θ), (2.55)

where κ is the elongation, δ the triangularity and ζ is the squareness. In order to calculate
the shape functions for the flux surface at r according to this model, ten parameters are
required, namely {

R,
dR

dr
, Z,

dZ

dr
, κ, sκ, δ, sδ, ζ, sζ

}
. (2.56)

However, within this thesis the squareness has been set to be zero. Thus, only eight
parameters are required to model the flux surface shape. The required radial derivatives
of elongation and triangularity are given by sκ ≡ (r/κ)(∂κ/∂r) and sδ ≡ r(∂δ/∂r).

As an example, the large aspect ratio limit of the general geometry is given. Consid-
ering a shifted circular (Shafranov) flux–surface shape,

R(r, θ) = R+ ∆(r) + r cos θ

Z(r, θ) = r sin θ, (2.57)
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with the Shafranov shift ∆(r) = wr2/(2R) with w being a constant, the shape functions
are given in a Taylor series in the small parameter r/R to first order by

|∇r| ∼ 1− w r

R
cos θ,

Bt(r, θ)

Bunit(r)
∼ 1− r

R
cos θ,

Bp(r, θ)

Bunit(r)
∼ r

qR

[
1− (w + 1)

r

R
cos θ

]
,

B(r, θ)

Bunit(r)
∼ 1− r

R
cos θ,

gsin(r, θ) ∼ sin θ
[
1− r

R
cos θ

]
,

gcos1(θ) ∼ cos θ − r

R

[
cos2 θ − 1

q2

]
,

Θ(r, θ) ∼ sθ − q2Rβ∗ sin θ + Θ1
r

R
,

Gq(r, θ) ∼ 1 + (w − 1)
r

R
cos θ,

Gθ(r, θ) ∼ 1 + w
r

R
cos θ (2.58)

Here, Θ1 is the function

Θ1 = (1− 2w)sθ sin θ + sin θ

[
(3w − 1)s− 2(1 + w) +

1

2
(w − 3)q2Rβ∗ cos θ

]
. (2.59)

The first four relations in Eq. (2.58) characterize the flux surface shape directly while the
last five relations enter the perpendicular drifts and the flux surface average, for instance

vd · ∇⊥ = −kθGq

(
v2
‖ + µB

Ωc,σR

)
(gcos1 + Θgsin) . (2.60)

Here, kθ = i(q/r) ∂
∂α has been introduced. From the shape functions it is instructive to

introduce the popular s−α equilibrium model [42]. This means to take the limit r/R→ 0
in all the expressions above, and B/Bunit = 1. Then the pressure parameter β∗ is included
in

αMHD ≡ q2Rβ∗ = −q2R
8π

B2
unit

dp

dr
> 0. (2.61)

In this equilibrium, which is clearly not an exact Grad–Shafranov equilibrium, the per-
pendicular ∇B and curvature drifts are combined in the drift frequency

ωd,k = ωD,k

[(
v2
|| + v2

⊥/2
)
/v2

th,σ

]
[cos θ + (sθ − αMHD sin θ) sin θ] , (2.62)

where ωD,k = kyρscs/R. It has to be noted that the subscript ’MHD’ is often left out.
Then, α has not to be confused with the angle α in the Clebsch representation of the
magnetic field.
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2.2.2 Code discretization

The spatial discretization of the gyrokinetic set of equations is done by a spectral decom-
position in toroidal direction. The fluctuating quantities (φ̂, Â||, hσ) are expanded as a
Fourier series in the coordinate α. For example, the electrostatic potential is written as

φ̂(r, θ, α) =

Nn−1∑
j=−Nn+1

φn(r, θ) exp [−inα] such that n = j∆n, (2.63)

with Nn being the parameter TOROIDAL_GRID and ∆n → TOROIDAL_SEP. The r– and θ–
dependence of φn reflects the coupling of poloidal harmonics due to the θ–dependence of
curvature and ∇B drift. The θ–periodicity condition requires that

φ̂(r, 0, φ+ ν(ψ, 0)) = φ̂(r, 2π, φ+ ν(ψ, 2π)). (2.64)

Thus, although the physical field, φ̂, is 2π–periodic in θ, the Fourier representation has
the implication that the coefficients, φn, are nonperiodic, and satisfy the phase condition

φn(r, 0) = exp(2πinq(r))φn(r, 2π). (2.65)

Then, the spectral form defined in Eq. (2.63) is (2π/∆n)–periodic in both α and φ at
fixed (r, θ). The poloidal wavenumber is defined as a proper flux–surface function by
kθ = nq(r)/r. As it will be shown below, it is also interesting to consider a periodic
toroidal representation in the Fourier space. It is emphasized that GYRO does not make
use of this.

The gyrokinetic operators are discretized via finite–difference methods for the deriva-
tives. Gyro–orbit integral operators are derived using banded pseudo–spectral methods.
The parallel motion is discretized on an orbit–time grid. The reason for this approach
is the fact that the gyrokinetic Eq. (2.25) is subject to short–wavelength instabilities in
regions where the variation of v‖,σ(θ) is sufficiently strong. This well– known property
leads to the requirement that time–explicit schemes must normally include dissipative
smoothing in case of a solution to be found on an equally–spaced θ–grid. Moreover, at
bounce points θb, where v‖(θb) = 0, the distribution function might develop cusps, such
that the accuracy of finite difference schemes on such a grid is questionable. In order to
overcome those, GYRO introduces a normalized orbit time grid with

τ0(λ, θ) ≡
∫ θ

−θb

Gθ(θ)dθ
′√

1− λB̂(θ′)
if λ ≤ 1

B̂(π)
trapped

τ0(λ, θ) ≡
∫ θ

−π

Gθ(θ)dθ
′√

1− λB̂(θ′)
if λ >

1

B̂(π)
passing, (2.66)

where B̂ ≡ B(r, θ)/Bunit(r) and λ = v2
⊥/(v

2B̂) is the pitch angle parameter. Then, a
normalized orbit time τ , which runs from 0 to 2 for a given λ and covers both signs of
parallel velocity, is introduced by

τ(λ, θ) ≡ τ0(λ, θ)/τ̂ for 0 ≤ τ ≤ 1(ς = 1)

τ(λ, θ) ≡ 2− τ0(λ, θ)/τ̂ for 1 < τ ≤ 2(ς = −1), (2.67)
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where τ̂ = τ0(λ, θb) for trapped particles, and τ̂ = τ0(λ, π) for passing particles. The
important result of this is that the trapped distribution will be not only continuous, but
also smooth across bounce points as a function of τ . The physical interpretation of the
location of orbit time grid–points is that they are equally spaced in time, not space, along
an orbit. In GYRO, the default settings are 20 points for passing and trapped particles
each. The Poisson–bracket nonlinearities are decomposed with a spectral method, and
the discrete forms of the derivatives are used. The fields are expanded using blending
functions since the distribution function hn,σ is computed at different θ–points for each
discrete value of λ such that there is no natural way to solve the Maxwell equations using
finite–difference methods on a fixed grid. The expansion coefficients are then obtained
using the Galerkin method.

The velocity space discretization is performed on a energy–pitch angle grid with
ε = E/Tσ. This is obtained by introducing a finite number of energy and pitch–angle
gridpoints. The GYRO default settings are 8 energy points and 4 pitch angle points for
both passing and trapped particles. The energy integration is done introducing

x(ε) ≡ 2√
π

∫ εmax

0
dε exp [−ε]

√
ε, (2.68)

where εmax denotes the highest point in the energy grid (default 5). For numerical purposes
(Gauss–Legendre integration), this integral is split into two parts, which are summed in
the end. The pitch angle integration is performed using

x(λ) ≡ 1

Jr

∫ λ

0
dλ′τ̂(λ′), (2.69)

where Jr is defined through Eq. (2.49) by Jr = (∂ψ/∂r)Jψ. The temporal discretization
is done using implicit–explicit (IMEX) Runge–Kutta schemes. This is required since the
gyrokinetic treatment of electrons is particularly problematic because of the emergence of
numerical instabilities connected with the discretization of the electron parallel motion.
In the general form of the nonlinear gyrokinetic equation, the fluctuation electrostatic
potential is present in the advection term,

∂h

∂t
+
v‖(θ)

qR

∂

∂θ
(h− φ̂) + ... = 0. (2.70)

Physically, the parallel term leads to (pathological) high–frequency electrostatic Alfvèn
waves. At βe = 0, one gets

ωH =
k‖

kr

√
mi

me
Ωc,i. (2.71)

The frequency of this mode increases indefinitely as me decreases or kr decreases, which
means a larger radial box size. The IMEX Runge–Kutta schemes are written for equations
in the canonical form

ẏ = Ỹ (y) + Y (y), (2.72)

with Ỹ the explicit right hand side and Y the implicit right hand side. The connection is
given by

y = [hi, he]
T , Ỹ =

[
f̃σ, f̃e

]T
, Y = [0, fe]

T , (2.73)
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such that only the electron motion is treated partly in an implicit way. This includes the
advantage of removing the constraint of explicit schemes to resolve the fastest dynamics
in the system.

The boundary conditions in GYRO can be defined in two ways. The treatment on
(φn, A‖,n, hn,σ) is either periodic (usually called flux–tube, or local) or nonperiodic (global).
Introducing

ri = r − L

2
+ ∆r(i− 1) for i = 1, ..., nr, (2.74)

where ∆r ≡ L/nr for periodic and ∆r ≡ L/(nr − 1) for nonperiodic boundary conditions.
The central radius is denoted by r, while nr defines the radial box size. Together with the
box size in the θ direction, defined by kθ = nq(r)/r, it is clear that the simulation domain
is a rectangle in (r, θ) following a field line.

Within this work, all simulations are done using periodic boundary conditions. This is
computationally very efficient since for instance φn(r1, θ) = φn(rnr , θ), implying a period-
icity in r. However, this choice is incompatible with the variation of equilibrium profiles.
In order to model that, it is necessry to abandon the flux tubes and use some type of
nonperiodic boundary conditions. Global gyrokinetic simulations of turbulence include
physical effects that are not retained in local flux–tube simulations. Nevertheless, in the
limit of sufficiently small ρ∗ = ρs/a, representing the gyroradius compared to system size,
it is expected that a local simulation should agree with a global one (at the local simulation
radius), since all effects that are dropped in the local simulations are expected to vanish
as ρ∗ → 0. As it is shown for instance in [43], global simulations of a well–established test
case are indeed shown to recover the flux–tube limit at each radius.

2.2.3 Ballooning reconstruction

While GYRO solves the n–th toroidal harmonic of the gyrokinetic set of equations in
the space (r, θ, α; ε, λ), where θ is an angle in the poloidal plane, it is also instructive to
introduce the ’ballooning’ phase space. The following discussion is close to the one in
[44], and restricted to a s − α equilibrium. The ballooning phase space is of particular
importance in local flux tube simulations, since the solution of the gyrokinetic equations
naturally exhibit the so called ’ballooning’ symmetry, that is the symmetry transformation

Pball : θ → θ + 2π , α→ α− 2πq (2.75)

leaves the solution unchanged. For illustration, one supposes to have for a single toroidal
harmonic of the electrostatic potential, Φn, an eikonal representation given by

Φn(r, θ, φ) = exp [−in (φ− q(r)θ)]φn(r, θ), (2.76)

The origin of this expansion is the fact that b ·∇φ ' 0. The problem, however, is that Eq.
(2.76) is generally not periodic in θ, which is in contradiction to the tokamak topology.
Then, expansion about the surface r = r0 gives

Φn = exp [−in (φ− q0θ) + iθ (r − r0) /∆]φn(r, θ), (2.77)

with ∆ = 1/(n∇q) = 1/(skθ), s being the magnetic shear, and q0 = q(r0). Physically, ∆
is the distance between adjacent rational surfaces. The ballooning transformation, which
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was firstly introduced by [45], is embodied in the non–standard Fourier expansion

φn(r, θ) =
∑

b

cb(θ, θ0) exp [i (θ0 + 2πb) (r − r0) /∆] , (2.78)

where θ0 is a linear eigenmode label. This representation ensures the required periodicity,
since the choice of θ0 = 0 allows for functions, which are periodic on r − r0 ∈ [0,∆],
while the choice θ0 = 0, π form a basis for functions periodic on r − r0 ∈ [0, 2∆]. Thus,
adding more values of θ0 allows progressively greater coverage on the radial direction (in
this sense, θ0 is equivalent to nr defining the radial grid), and a general solution of the
gyrokinetic equation is a linear combination of eigenmodes for different values of θ0. From
the Fourier coefficients one can define the ballooning potential

ΦB(θb, θ0) = cb(θ, θ0) exp [−inq0 (θ0 + 2πb)] , (2.79)

where the extended poloidal angle θb = θ + 2πb ∈ [−∞,∞]. Then, it is also possible to
rewrite Eq. (2.39) in the ballooning space,[

∂

∂t
−

v‖

JB

∂

∂θ
+ ik · vd

]
hn(r, θ; t) =[

q

T
FM

∂

∂t
+
dFM

dr

ikθ
B

]
J0 (k⊥ρs)

[
φn(r, θ; t)−

v‖

c
A‖(r, θ; t)

]
, (2.80)

where parallel magnetic field fluctuations due to A⊥ are left out for simplicity. Moreover,
the subscrips ’B’ have been left out. This form of the gyrokinetic equation is particularly
suited for modes having an interchange character, like ITG and TEM. The general solution
of the linear gyrokinetic equation is then given by

Φn(r, θ, φ) =
∑
θ0

∑
b

exp [−in (φ− q(r)(θb − θ0))] ΦB(θb, θ0). (2.81)

Since θ0 appears as a parameter in the gyrokinetic, it is clear that the two dimensional cal-
culation required to compute φn(r, θ) is reduced to a series of one dimensional calculations
for ΦB(θb, θ0). As already stressed, GYRO does not make use of the ballooning transfor-
mation, but nonetheless local linear numerical solutions will exhibit the exact ballooning
symmetry and therefore a reconstruction of the ballooning potentials is possible.

2.2.4 The challenge of nonlinear electromagnetic simulations

It has been known for a long time that the Ampère equation, Eq. (2.34), is extremely
difficult to solve numerically owing to a delicate cancelation in the electron current, which
occurs when βe > me/mD. This condition is well satisfied for experimentally relevant
values of βe. The origin of the cancelation problem can be seen from the Ampères equation,
rewritten in the form

2(kθρs)
2

βe
A‖,n ∝

∫
d3vv̂‖,eδfn,e −

∫
d3vv̂2

‖,eA‖,n, (2.82)

where only the dominant electron current has been used. Assuming kθρs ∼ 0.1 and
βe ∼ 1%, the left hand side of Eq. (2.82) is approximately 2A‖,n, while the second
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term on the right hand side is approximately 3600A‖,n for a deuterium plasma due to
the dependence on v̂2

‖,e = (v‖,e/cs)
2. Therefore, the two velocity integrals on the right

hand side have to cancel almost exactly, the difference determining the physics. However,
for Eulerian codes like GYRO it has been found out that a term by term cancelation
of the terms of order mD/me in the electron current can be made. This is achieved
by the numerical computation of both velocity integrals on the right hand side using
exactly the same discretization scheme. For codes using an explicit scheme for the time
evolution, this means to increase the temporal resolution by a factor of

√
mD/me in order

to resolve correctly the fast parallel electron dynamics, which carries the main part of
the parallel current fluctuation causing magnetic field fluctuations. However, experience
from nonlinear simulations with GYRO, which uses a implicit–explicit scheme for the
time evolution of the electron dynamics, shows that an approximately ten times higher
time resolution at βe = 1% as compared to the electrostatic case is requested. This is in
agreement with the fact that the shear Alfvèn time scales have to be resolved. They scale
like vA/cs =

√
2/βe, such that the temporal resolution has to be increased by ∼

√
βe.

Moreover, GYRO has the option to treat the electron dynamics in three different ways,
namely in an adiabatic, driftkinetic or gyrokinetic way. The first option neglects particle
trapping and electromagnetic effects and is therefore never used within this thesis. The
latter two are giving very close results, since the electron FLR effects are only very small.
However, in terms of computational costs, the second option is preferable to the third and
is therefore the one mainly used here. Ionic species, on the other side, are always treated
in a fully gyrokinetic way.
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Chapter 3

Fluid model for ion temperature
gradient and trapped electron
modes

In this Chapter, the physics mechanisms leading to the most common microinstabilities
in the core of tokamaks, namely ion temperature gradient (ITG) and trapped electron
(TEM), are discussed. Special attention is paid on the impact of an electromagnetic
treatment, namely considering perpendicular magnetic field fluctuations. For the physics
modeling, a basic fluid model following the Weiland model [46, 47] is derived, aiming at
highlighting the interplay of the two different modes.

3.1 Fluid model

3.1.1 Basic idea

Here, the case of an even further simplification compared to the gyrokinetic approach in
Chapter 2, namely a fluid model, which consists of velocity moments of kinetic equations,
is considered. This consists of conservation equations, where only macroscopic quantities
like density, temperature and fluid drift velocities are involved. Closed equations for their
evolution in space and time are presented. The derivation of the fluid model strongly
follows the works of J. Weiland, H. Nordman and coauthors, in particular [46, 47], with
the book “Collective Modes in Inhomogeneous Plasma” by J. Weiland [39]. The electro-
magnetic treatment follows the works of [48, 49]. It has to be mentioned that the final
linearized fluid equations, which will be presented in this Chapter, can also be obtained
from moments of the gyrokinetic equation.

3.1.2 Model equations

Four particle species are considered, namely main ions (hydrogen or hydrogen isotopes)
with density nH and temperature TH, first impurity ions with density np, temperature
Tp and charge number Zp, trapped electrons with density net and temperature Te, and
passing (free) electrons, with density nef . For these species, the following fluid equations
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are considered. The continuity equation for a species σ reads

∂nσ
∂t

+∇ · (nσ vσ) = 0, (3.1)

where σ = H, p, et. It is important to note that this equation implies the conservation of
particles, and therefore holds for the full density nσ consisting of a background density
n0,σ plus a fluctuating part ñσ, which is assumed to be given by a harmonic variation via

ñσ = δnσ exp(i(k · r− ωt)) (3.2)

(the same decomposition will also be done for parallel velocity, temperature and elec-
tromagnetic field potentials). Depending on the particle species different expressions are
considered for the fluid velocity vσ. The chosen coordinate system is highlighted in figure

Figure 3.1: Geometry used in the fluid model.

3.1. The unit vector ẑ ≡ ê‖ ≡ B/B ≡ B̂, the unit vector x̂ is directed in the radial
direction, perpendicular to the magnetic surface, and ŷ ≡ ẑ× x̂ is the binormal direction.

Firstly, the continuity equations of main ions and first impurities are considered. The
fluid velocities are given by

vi = vE×B + v∗i + vP,i + vπ,i + ê‖v‖,i, (3.3)

where i stands for H,p. It is noteworthy that the included velocities are fluctuating quan-
tities. In particular

vE×B =
E× ê‖

B
=

ê‖ ×∇φ
B

= −ikyδφ

B
x̂ (3.4)

is the E cross B drift, where δφ is the fluctuating electrostatic potential (a equilibrium
electrostatic potential is omitted, as it is explained in Chapter 2 in the derivation of the
gyrokinetic equation). Also the other drifts like the diamagnetic drift

v∗,i =
ê‖ ×∇(niTi)

ZieniB
= i(1 + ηi)

ω∗i
ky

ŷ, (3.5)

where ω∗,i = −kyTi(ZieBLn,i)
−1 has been used, Zi = 1 for hydrogen isotopes and Zi = Zp

for the first impurity ions, do contain fluctuations (the diamagnetic drift via ni and Ti). It
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is noteworthy that this drift (and also the following ones) are pointing in opposite direction
for the electrons. Moreover, e denotes the elementary charge and

Lni ≡ −
ni

x̂ · ∇nσ
is the radial density gradient scale length,

εn,i ≡ 2
x̂ · ∇B/B
x̂ · ∇ni/ni

= 2
Ln,i

LB
,

which is two times the dimensionless density gradient scale length, and

ηi ≡
nix̂ · ∇Ti

Tix̂ · ∇ni
=
Ln,i

LT,i
.

The polarization drift is given by

vP,i =
dE

dt
/(BΩc,i),

The drift originating from the off–diagonal elements of the stress tensor πi reads

vπi =
ê‖ ×∇ · πi

ZieniB
.

By inclusion of the latter two, finite Larmor radius effects (FLR) are considered in both
the description of the main ion species and the first impurity species.

For the electron species, Ωc,e is much higher as compared to the ions and impurities.
Therefore, for the trapped electrons, both FLR effects and parallel motion are neglected.
Thus, for those the continuity equation reads

∂net

∂t
+∇ · (net vet) = 0, (3.6)

where vet = vE×B + v∗e. Here

v∗e = −
ê‖ ×∇(neTe)

eneB
= i(1 + ηe)

ω∗e
ky

ŷ where ω∗e =
kyTe

eBLne
, (3.7)

and
Lne ≡ −

ne

x̂ · ∇ne

.
The parallel motion v‖,σ is determined by the parallel momentum equations driven

by electromagnetic forces and pressure gradient along the field lines. The electrostatic
equation for the parallel motion reads

mσnσ
∂v‖,σ

∂t
= −eZσnσ∇‖φ−∇‖(nσTσ). (3.8)

Here, it has been assumed that the electric field is solely given by the electrostatic potential
φ. The corresponding electromagnetic parallel motion equation reads

mσnσ
∂v‖,σ

∂t
= −eZσnσ

[
∇‖φ+

1

c

(
∂A‖

∂t
− (v∗,σ ×B⊥) · B̂

)]
−∇‖(nσTσ), (3.9)
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where both the parallel component of the vector potential A‖ as well as the parallel
projection of the v ×B force are taken into account. The latter is given by an interplay
of the (binormal) diamagnetic drift and the perpendicular component of the fluctuating
magnetic field, which, in turn, includes the parallel component of the vector potential since
B⊥ = ∇× (A‖B̂) ≈ ∇A‖× B̂. It is noted that in this treatment the compressional Alfvèn
dynamics due to a fluctuating parallel magnetic field corresponding to A⊥ is neglected
because of its smallness in conventional tokamak plasmas.

The energy balance equation is given for all considered species by

3

2
nσ

(
∂

∂t
+ vσ · ∇

)
Tσ + nσTσ∇ · vσ = −∇ · qσ, (3.10)

where σ= H, p, et. In the energy balance equation FLR effects are neglected in the
expression for vσ for both the ion species and for the trapped electrons, while the parallel
fluid velocity is not included since its contribution drops in the linearization.

The fluid closure is obtained assuming

qσ = q∗,σ

for all the particle species, where q∗,σ is the diamagnetic heat flow

q∗,σ =
5

2

nσTσ
mσΩc,σ

(ê‖ ×∇Tσ).

The gradient of this expression yields

∇ · q∗,σ =
5

2
nσ(v∗,σ − vD,σ) · ∇Tσ,

where

vD,σ =
Tσ

mσΩc,σ
B̂×

(
∇B
B

+ κ

)
(3.11)

is the drift due to ∇|B| and magnetic curvature κ = B̂ · ∇B̂. They are combined in the
∇B and curvature drift frequency given by

k · vD,σ = ωD,σ =
−2kyTσ
ZσeBR

. (3.12)

This leads to the useful relations εn,σ = ωD,σ/ω∗,σ and ωD,i/ω∗,e = −Ti/ZiTeεne with
i = H, p.

The trapped electron fraction is given by ft with ft = net/ne. As already mentioned,
net is the density of trapped electrons and nef the density of free (circulating) electrons.
Then

ne = net + nef .

The perturbed density δne = δnet + δnef can be written

δne

ne
=
δnet

ne
+
δnef

ne
= ft

δnet

net
+ (1− ft)

δnef

nef

Let fZ be the fraction of impurity ions with charge Zp relative to the electron density
fZ = np/ne. Quasi–neutrality gives ne = nH + Zpnp, where, nH is the density of the
Hydrogen isotopes and nZ is the density of the impurity species. Then

δne

ne
=
δnH

ne
+
ZδnZ

ne
= (1− ZpfZ)

δnH

nH
+ ZpfZ

δnp

np
. (3.13)

.
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3.1.3 Dispersion relation

The goal of this section is the derivation of the generalized eigenvalue problem, which in
turn leads to the dispersion relation for turbulent modes. To this purpose, Eq. (3.1) is
re–written in the form

nσ∇ · vσ = −∂nσ
∂t
− vσ · ∇nσ.

Therefore the continuity equation can be used to eliminate ∇ · vσ in the energy equation,
Eq. (3.10). Here, when replacing ∇ · vσ from the continuity equation in the energy
equation, vσ = vE×B + v∗,σ, the FLR effects from the polarization drift and the off–
diagonal elements of the stress tensor have been neglected consistently with the assumption
made for the energy balance equation for all particle species σ. One gets

nσ

(
∂

∂t
+ vσ · ∇

)
Tσ −

2

3
Tσ
∂nσ
∂t
− 2

3
Tσvσ · ∇nσ =

5

3
nσ(v∗,σ − vD,σ) · ∇Tσ.

The v∗,σ contributions cancel. This is because

nσv∗,σ · ∇Tσ −
2

3
Tσv∗,σ · ∇nσ −

5

3
nσv∗,σ · ∇Tσ = −2

3
v∗,σ · ∇(nσTσ) = 0,

since the diamagnetic drift v∗,σ = B̂×∇(nσTσ)/ZσeBnσ is perpendicular to the gradient
of the pressure ∇(nσTσ). Thus, the remaining terms in the energy balance equation read

nσ
∂Tσ
∂t

+ nσvE×B · ∇Tσ −
2

3
Tσ
∂nσ
∂σ
− 2

3
TσvE×B · ∇nσ +

5

3
vD,σ · ∇Tσ = 0

In a curved magnetic field, as it is considered here, the divergence of the fluid velocities has
to be evaluated. Following [39], it is concluded that the divergence of the diamagnetic drift
flux and of the E×B flow would be zero in the absence of curvature and ∇B. Similarly,
the divergence of the polarization drift and the divergence of the drift resulting from the
off–diagonal part of the stress tensor are modified in the presence of a curved magnetic
field. This leads to the so–called curvature relations,

∇(nσv∗,σ) = vD,σ · ∇(nσTσ)/Tσ,

∇vE×B =
Zσe

Tσ
vD,σ · ∇δφ,

∇ · [nσ(vp,σ + vπ,σ)] ≈ −inσk2
yρ

2
s,σ[ω − ω∗,σ(1 + ησ)]

eδφ

Te
,

where ρ2
s,σ =

Te

mσΩ2
σ

. (3.14)

As usual Zσ = 1 for σ = H, Zσ = Zp for first impurities σ = p, and Zσ = −1 for
σ = et. Using Eq. (3.2) and the aforementioned relations in the continuity, momentum,
and energy equations, Eqs. (3.1, 3.8, 3.6, 3.10), linearized equations for the perturbations
are obtained. This is shown explicitly for the hydrogen species equations in order to point
out the derivation of the linearized equation for the perturbed variables term by term. For
simplicity the tilde for the perturbed quantities is omitted from now on.

The hydrogen continuity equation reads

∂nH

∂t
+ nH∇ · vE×B + vE×B · ∇nH +∇ · (nH v∗,H)+

∇ · [nH (vP,H + vπ,H)] +∇ · (nH B̂v‖,H) = 0,
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which is transformed to

− ωδnH

nH
+ ωD,H

Te

TH

e δφ

Te
− ω∗,H

Te

TH

e δφ

Te
+

ωD,H
δnH

nH
+ ωD,H

δTH

TH
− k2

yρ
2
s,H(ω − ω∗,H(1 + ηi))

e δφ

Te
+ k‖v‖,H = 0.

The (electromagnetic) hydrogen parallel motion equation is given by

mH

∂v‖,H

∂t
+ e

[
∇‖φ+

1

c

(
∂A‖

∂t
− (v∗,H ×B⊥)

)
· B̂
]

+
1

nH
∇‖(nHTH) = 0,

which leads to

− ωmHv‖,H + k‖Te
e δφ

Te
− Te

ω

c

eA‖

Te
+
Te

c
(1 + ηH)ω∗,H

eA‖

Te
+

+k‖TH

(
δnH

nH
+
δTH

TH

)
= 0.

The hydrogen energy balance equation is given by

nH
∂TH

∂t
+

5

3
vD,H · ∇TH −

2

3
TH

∂nH

∂t
+ nHvE×B · ∇TH −

2

3
THvE×B · ∇nH = 0,

which is written as

−ωδTH

TH
+

5

3
ωD,H

δTH

TH
+

2

3
ω
δnH

nH
+ ω∗,e

εne

εnH
ηH
e δφ

Te
− ω∗e

εne

εnH

2

3

e δφ

Te
= 0

Reordering the previous equations and producing the same operation for the other two
particle species, one obtains the following set of equations. The ion continuity equation is
given by

(−ω + ωD,i)
δni

ni
+ ωD,i

δTi

Ti
+

+

{
(ωD,i − ω∗,i)

Te

Ti
− k2

yρ
2
s,i [ω − ω∗,i(1 + ηi)]

}
e δφ

Te
+ k‖v‖,i = 0.

(3.15)

The ion parallel motion equation reads

−ωmiv‖,i + k‖Te
e δφ

Te
− Te

ω

c

eA‖

Te
+
Te

c
(1 + ηi)ω∗,i

eA‖

Te
+

+k‖Ti

(
δni

ni
+
δTi

Ti

)
= 0. (3.16)

The ion energy balance equation is(
−ω +

5

3
ωD,i

)
δTi

Ti
+

2

3
ω
δni

ni
+ ω∗,e

εn,e
εn,i

(
ηi −

2

3

)
e δφ

Te
= 0. (3.17)

The trapped electron continuity equation is written as

(−ω + ωD,e)
δnet

net
+ ωD,e

δTe

Te
− (ωD,e − ω∗,e)

e δφ

Te
= 0. (3.18)

36



The trapped electron parallel motion is not useful in the context of low frequency modes,
since the bounce time is much lower compared to the characteristic time scales of the
turbulent modes under consideration, i.e. ωb,et � ω. Therefore, the parallel motion of
trapped electrons averages to zero. On the other hand, the parallel motion equation for
passing electrons reads

−ωmev‖,ef − k‖Te
e δφ

Te
+ Te

ω

c

eA‖

Te

−Te

c
(1 + ηef)ω∗,ef

eA‖

Te
+ k‖Te

(
δnef

nef
+
δTe

Te

)
= 0. (3.19)

From this equation an important consequence can be derived: Neglecting the first term as
a consequence of the smallness of the electron mass, and assuming isothermal electrons,
which in the electrostatic limit (A‖ = 0) means δTe = 0, as it will be shown below, one
finds the so–called Boltzmann or adiabatic response for the electrons, namely

δne

n0
=
eδφ

Te
. (3.20)

In this case there exists no phase shift between electron density fluctuations and electro-
static potential fluctuations. On the other hand, when electromagnetic effects are taken
into account (A‖ finite), passing electrons tend to leave the adiabatic response, and a
phase shift between δnef and φ is obtained. This can be seen by the following reasoning.
In the isothermal limit where electron inertia is ignored, the electron temperature is ho-
mogeneous along magnetic field lines, namely B · ∇Te = 0. From the linearization in the
perturbations of B and Te, one finds for the temperature response

δTe

Te
e = ηe

ω∗,e
k‖c

eA‖

Te
. (3.21)

Combining parallel force balance for the electrons, where the inertial term is neglected,
with Eq. (3.21), one gets the generalized Boltzmann relation for electromagnetic electrons,

δne

ne
=
eδφ

Te
+
ω∗,e − ω
k‖c

eA‖

Te
. (3.22)

The trapped electron energy balance equation reads(
−ω +

5

3
ωD,e

)
δTe

Te
+

2

3
ω
δnet

net
+ ω∗,e

(
ηe −

2

3

)
e δφ

Te
= 0. (3.23)

Lastly, using Eq. (3.22), the quasi–neutrality condition is written as

ft
δnet

net
+ (1− ft)

(
e δφ

Te
+
ω∗,e − ω
k‖c

eA‖

Te

)
= (1− ZfZ)

δnH

nH
+ ZfZ

δnp

np
. (3.24)

It is clear that in the electrostatic limit Eq. (3.20) instead of Eq. (3.22) has to be used.
The present set of equations (3.15), (3.16), (3.17), (3.18), (3.23), and (3.24) can be

regarded as a homogeneous set of nine equations for ten unknowns δφ, A‖, δnH, δTH, δnet,
δTe, δnp, δTp, v‖,H and v‖,p. These equations define the generalized eigenvalue problem,
for whose solution the relation between δφ and A‖ has to be found. This will be derived
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below. The solution of the generalized eigenvalue problem provides real eigenfrequencies
ωr and growth rates γ of the unstable modes.

Before introducing the relation between δφ and A‖ and discussing the physics mech-
anisms of the two most common microturbulence modes in tokamak plasmas at low βe,
namely the ITG and the TEM, the dimensionless form of the above equations is intro-
duced. Using

φ̂ ≡ e δφ

Te
, Â‖ =

eA‖

Te
, n̂H ≡

δnH

nH
, T̂H ≡

δTH

TH
, v̂‖,H ≡

v‖,H

csH

n̂et ≡
δnet

net
, T̂e ≡

δTe

Te
, n̂p ≡

δnp

np
, T̂p ≡

δTp

Tp
, v̂‖,p ≡

v‖,p

csp

where cs,i ≡
√
Te/mi is the ion sound speed (i = H, p). Moreover, all frequencies

are normalized to the ion fluid curvature and ∇B drift frequency ωD,i = k · vD,i =
−2kyTi/(ZieBR), such that the dimensionless frequency is introduced. For instance ω̂
is defined as ω̂ ≡ ω/ωD,H. From now on the FLR corrections in the continuity equations
of both the hydrogen and the impurity species are neglected in the following in order to
keep the derivation simple. Thus, the continuity equation reads

−ω̂n̂σ +
n̂σ + T̂σ
Zσ

−
(

R

2Ln,σ
− 1

)
Te

Tσ
φ̂+ k̂||v̂|| = 0. (3.25)

In this equation, the second term on the left hand side arises from a finite value of the
divergence of the diamagnetic drift, which is due to magnetic field curvature and therefore
proportional to 1/Zσ. The third term includes E×B advection and compression, respec-
tively. Both are therefore independent of the species charge. The last term on the left
hand side describes compression in the parallel velocity.

The electromagnetic parallel force balance is given by

−Aσ
Ai
ω̂v̂|| +

ZσTe

Tσ
k̂||φ̂−

ZσTe

Tσ

cs

c

[
ω̂ − 1

Zσ

(
R

2Ln,σ
+

R

2LT,σ

)]
Â|| +

k̂||

(
n̂σ + T̂σ

)
= 0, (3.26)

where we introduced Ap = mp/mH and assumed Ti = Tp and Zi = 1. The factor in
front of Â|| is composed of terms proportional to the logarithmic gradients of density and
temperature, arising from the diamagnetic drift velocity and therefore charge dependent,
and a term proportional to the complex eigenfrequency due to the time derivative ∂tA‖.
The last term on the left hand side of Eq. (3.26) represents the influence of a parallel
pressure gradient.

Lastly, the energy balance equation is written as(
−ω̂ +

5

3Zσ

)
T̂σ +

2

3
ω̂n̂σ −

(
R

2LT,σ
− R

3Ln,σ

)
Te

Tσ
φ̂ = 0. (3.27)

The first term on the left hand side includes the diamagnetic heat flow and therefore a
dependence on Zσ, the second term stems from the divergence of the fluid velocity using
the continuity Eq. (3.25), and the third term includes temperature and density advection
due to the E×B flow, respectively.
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The resulting equation system can be computed analytically in simplified cases, as well
as by numerical routines solving the generalized eigenvalue problem of the kind

A · x = ωB · x, (3.28)

where A and B are given matrices and x is a vector of unknown variables. In the case of
an electrostatic description the dimension of x is 8, which provides a dispersion relation
of order 8, since e. g. the trapped electron density can be eliminated using the quasi–
neutrality condition Eq. (3.24) in the electrostatic limit, where the Â||–term is absent.

Thus, its elements are the unknowns φ̂, n̂H, T̂H, T̂e, n̂p, T̂p, v̂‖,H, v̂‖,p defined above.

3.1.4 Relationship between fluctuating potentials φ̂ and Â||

In order to perform an electromagnetic treatment (finite Â||), the set of equations to
be considered are Eqn. (3.15), (3.16), (3.17), (3.18), (3.23), and (3.24). They can be
regarded as a homogeneous set of nine equations for ten unknowns φ̂, Â||, n̂H, T̂H, n̂et,

T̂e, n̂p, T̂p, v̂‖,H and v̂‖,p. It is clear that a relation of the fluctuating potentials φ̂ and Â||
is necessary in order to solve the generalized eigenvalue problem, Eq. (3.28). Following
[48, 49], and combining passing electron continuity equation and parallel force balance
with the Ampère’s law, the relationship between the fluctuating electrostatic potential φ̂
and magnetic vector potential Â|| is derived. This will be explained in more detail in the
following.

Considering the continuity equation for passing electrons, Eq. (3.1), the relation be-
tween the potentials φ̂ and Â|| is found. The parallel velocity is related to the magnetic
vector potential through Ampère’s law by using the approximation that the total parallel
current, j‖, is equal to the parallel electron current, j‖ = −c/(4π)∆A‖. Using again Eq.
(3.21), the density response is written as

n̂e =
ω∗,e − ωD,e

ω − ωD,e
φ̂

+

(
ηe
ωD,eω∗,e
ω − ωD,e

− k2
⊥ρ

2
s

k2
‖v

2
A

ω − ωD,e

)
Â||

k‖c
. (3.29)

Finally, the combination of Eqn. (3.22) and (3.29) leads to

Â|| = k̂||
c

cs

{
−Te

Ti

R

2Lne
− ω̂

}
×{

ω̂

(
Te

Ti

R

2Lne
− ω̂

)
− Te

Ti

[
ω̂ − (1 + ηe)

Te

Ti

R

2Lne

]
+ k2
⊥ρ

2
i k

2
||
v2

A

c2
s

}−1

φ̂.

(3.30)

In a more compact form, this can be written as

Â|| = k̂||Ω̂(ω̂) φ̂. (3.31)

The Alfvén velocity is given by v2
A = B2/(4πnemi). In order to identify the explicit

occurrence of electromagnetic terms in Eq. (3.30), a re–arrangement of the third term in
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the denominator is made. This one is the leading contribution in the limit of small βe.
Assuming ne = ni, one finds v2

A/c
2
s = 2βe(Ti/Te) with βi = Te/Ti βe. The definition of k|| =

(qR)−1 in the simple model leads to the normalized parallel wave vector k̂2
|| = (4q2k2

yρ
2
i )−1.

Therefore the last term is k2
⊥ρ

2
i k

2
||v

2
A/c

2
s = k2

⊥/(2q
2k2

yβi). Since usually ω̂ = O(1) and, in

the limit of small βi, k
2
⊥/(2q

2k2
yβi) = O(10) to O(100) (assuming k⊥ ≈ ky), we identify

the leading terms in Ω̂(ω̂), Eq. (3.31) via

Ω̂(ω̂) = −2
c

cs
βeq

2k
2
⊥
k2

y

(
R

2Lne
+
Ti

Te
ω̂

)
. (3.32)

It is important to note that according to this Eq. (3.32) electromagnetic effects (due to a
finite A‖) scale like βeq

2 [50]. This will become important in Chapter 6.

3.2 Ion temperature gradient mode

3.2.1 Historical overview

The first investigations on the ion temperature gradient (ITG) mode have been performed
at the beginning of the 1960s by Rudakov and Sagdeev [51]. They solved the local dis-
persion relation in a slab geometry with a straight and constant magnetic field. The slab
counterpart of the toroidal ITG is the so–called slab ITG, where an ion acoustic wave is
driven unstable by the ion temperature gradient, and is due to parallel dynamics. The
effect of a twist in the magnetic field lines was included by Coppi, et al. [52] in a sheared
slab geometry. The development of the ballooning representation by Connor, Hastie and
Taylor [45, 53] provided an important contribution to linear investigations in full toroidal
geometry. In the local treatment, each Fourier harmonic is assumed to be independent by
neglecting the harmonic coupling resulting from physical inhomogeneities. Harmonic cou-
pling, for instance, leads to the fact that the poloidal variation of curvature and ∇B drifts
in a tokamak introduces a coupling of different poloidal harmonics and makes the problem
two–dimensional. The ballooning formalism reduces the toroidal gyrokinetic problem to
a one dimensional one by exploiting the scale separation in the perpendicular direction
between fast varying fluctuations and the equilibrium. This formalism was originally de-
veloped for MHD instabilities, but revealed its power also in the framework of drift waves
[17], which led to the identification of the toroidal ITG mode. The work of Horton and
co–workers [17] also identified the presence of a critical value ηi = Ln,i/LT,i above which
the toroidal ITG is unstable, for the first time. In following works, the inclusion of kinetic
effects of drift resonances in the ballooning formalism or in the local limit determined the
critical threshold to ηi,crit ' 1, as it was reported in [54, 55]. The influence of a finite β
on the ITG growth rate has been identified in [56, 57], where a stabilizing influence of the
toroidal ITG was reported. Also, using fully toroidal calculations, a strong dependence of
the ITG growth rate on the magnetic shear has been reported [58]. It is noted that the
ballooning theory is able to model finite magnetic shear effects in the case of an evaluation
of the radial mode structure.

3.2.2 Physics mechanism

The physics mechanism leading to an ITG mode is presented. An initial periodical tem-
perature perturbation on a flux surface is considered. This implies the existence of regions
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with higher temperature and thus thermal velocities. Since curvature and∇B drift depend
on particle energy, an initial temperature perturbation produces a density perturbation.
As a consequence of quasi–neutrality and the higher parallel mobility of electrons com-
pared to the ions, they compensate the charge accumulations produced by the density
fluctuation. This is due to parallel motion, and leads to a modified condition of parallel
force balance, Eq. (3.19), which involves a fluctuating electric field. In the electrostatic
limit, passing electrons are adiabatic (see discussion in Chapter 3.1.2), such that they
instantaneously follow the perturbed electric field. As already noted above, their density
fluctuation is equal to the (normalized) electrostatic potential fluctuation, given by Eq.
(3.20). Trapped electrons are excluded in this simple picture, since their parallel motion is
zero due to bounce–averaging. The fluctuating electric field due to electrons streaming in
parallel direction is the origin of an E×B drift. This, in turn, leads to a plasma flow from
the high temperature side into the hot spots of the initial perturbation in the presence of a
background temperature gradient. Fig. 3.2 shows the steps that lead to a destabilization
of the initial temperature perturbation in the ’bad curvature region’, i.e. the outer side of
the torus, where the magnetic field is lower (the magnetic field in a circular large aspect
ratio tokamak is given by B = B0R0/R(eφ + reθ/(qR0)), where R0 is the tokamak major
radius). In the ’good curvature region’ on the inner side of the torus, the curvature and
∇B drift is still in the same direction, but the pressure gradient is reversed, leading to
an E×B convection of hot plasma into cold spots of the initial temperature perturbation.
Thus, on the high field side of the torus, initial perturbations are effectively damped. In
the electromagnetic case with a finite β, perpendicular magnetic field fluctuations set in,
leading to a lower parallel mobility of passing electrons due to radial displacements. As
a consequence of their low inertia, electrons, which are responsible to establish plasma
neutrality, are particularly susceptible to this kind of non–adiabatic response, leading to
a phase shift and a smaller amplitude of the fluctuating electrostatic potential. The latter
is the main reason for the electromagnetic stabilization of the ITG mode.

3.2.3 Critical temperature gradient

A complete description of the toroidal ITG mode requires to solve the gyrokinetic equation.
However, the simple fluid model described above is able to describe the basic mechanism
and the dynamics in a more transparent way. To this purpose, the hydrogen ion fluid
equations (3.15) and (3.17) are taken into account. They allow for a coupling of density and
temperature fluctuations. For simplicity, the parallel motion is neglected in the continuity
equation (3.15). This approach is motivated by the fact that ion inertia is very high
compared to the electron inertia. The coupling to the electrostatic potential is given by
the parallel electron force balance, Eq. (3.19), where electromagnetic effects are included
in contrast to usual simple derivations. Using the relation between φ̂ and Â||, Eq. (3.30),
the electromagnetic passing electron response, Eq. (3.22) can be written as

δni

ni
=
[
1 + β#

e (ω̂)
] eφ
Te
, (3.33)

with β#
e (ω̂) = 2βeq

2 [R/(2Ln,e) + ω̂] [ω̂ + (1 + ηi)ω̂∗,i] (k2
⊥/k

2
y). For simplicity, in the fol-

lowing analytical calculation of the ITG dispersion relation, a large ion temperature gradi-
ent is assumed such that β#

e can be written as β#
e = βeq

2(R/LT,i)(ω∗,ik
2
⊥/k

2
y) is a positive

number independent of ω̂. Then, Eq. (3.33) basically means that with a finite β#
e density
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Figure 3.2: Main steps in the formation of an ion temperature gradient (ITG) mode. The
initially unperturbed temperature profile leads to different curvature and ∇B drift veloc-
ities in the hot and cold region, respectively (a). A temperature perturbation causes a
density perturbation (b), which is neutralized by the passing electrons producing a fluc-
tuating electric field (c), leading to an E×B drift that destabilizes the initial temperature
perturbation on the low field side (d).

fluctuations are able to only produce potential fluctuations of lower amplitude as com-
pared to the electrostatic case, where β#

e = 0. Using Eqs. (3.15) without FLR effects, Eq.
(3.17) and Eq. (3.33), and noting that ω∗,eεn,e/εn,i = −ω∗,i for Zi = 1 and equal ion and
electron temperatures, the dispersion relation is given by

(−ω̂ + 1)

(
−ω̂ +

5

3

)(
1 + β#

e

)
−

2

3
ω̂
(

1 + β#
e

)
+ ω̂∗,i

(
ηi −

2

3

)
+ (1− ω̂∗,i)

(
−ω̂ +

5

3

)
= 0. (3.34)
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This equation has the two following roots in the flat density limit, Ln,i →∞,

ω ≈ 1

6 + 6β#
e

[
ωD,i

(
13 + 10β#

e

)
±
√
ω2

D,i

(
49 + 80β#

e

)
− 36ωD,iω∗,iηi

(
1 + β#

e

)]
,

(3.35)

where terms proportional to (β#
e )2 are omitted due to their smallness. This expression

shows the basic properties of the ITG mode. Firstly, in order to get an unstable mode,
that is an imaginary part in ω, the last term in Eq. (3.35) has to overcome the first one.
This is the typical situation of a threshold behavior, and it depends critically on the ion
temperature gradient scale length LT,i, which is directly included in ηi (also indirectly in

β#
e ). When R/LT,i is large enough, ITG modes grow exponentially in time, proportional

to exp(γt) with a growth rate γ, arising from an imaginary part of the eigenfrequency ω =
ωr + iγ. The crucial role of the perturbed E×B and magnetic curvature drifts is apparent
through the dependence of the growth rate on ω∗,i and ωD,i. Secondly, according to the
definitions of ωD,i and ω∗,i, Eqs. (3.5) and (3.11), the necessary requirement ωD,iω∗,i > 0
can be achieved only when ∇(niTi) and ∇B point in the same direction, otherwise the
mode is stable. The requirement for an unstable mode is fulfilled at the low field side
of the tokamak, whereas at the high field side ωD,i and ω∗,i point in opposite directions,
leading to a stabilization. Thirdly, the inclusion of electromagnetic effects, which is done
here in a very crude simplification, stabilizes the ITG mode, at large ηi & 2 mainly due
to the denominator dependence of Eq. (3.35). At small ηi, however, the stabilization is
mainly due to a shift of the critical ηi towards higher ηi (in this simple model a change

of β#
e from 0 to 0.05 with ωD,i = ω∗,i = 0.3cs/R caused an increase of the critical ηi

from approximately 1.35 to 1.4). Lastly, as already mentioned, the toroidal ITG mode
is primarily driven due to curvature and ∇B drift, which is reflected by the occurrence
of ωD,i in Eq. (3.35). Moreover, the magnitude of ω is approximately the same as ωD,i,
typical for drift modes like the ITG, and the drift direction is the ion curvature and ∇B
direction, such that ω̂r = ωr/ωD,i > 0.

It is also instructive to discuss the additional effect of the phase shift between density
and potential fluctuations due to the imaginary part of β#

e in Eq. (3.33). In the simplest
picture of a drift wave, which is connected to the ITG mode, E×B convection is caused
by density fluctuations,

∂ni

∂t
+ vE×B,x

∂ni

∂x
= 0. (3.36)

The electron density response is given by

n̂e = φ̂(1 + iβ̄#
e ), (3.37)

where β̄#
e > 0 is due to the electromagnetic correction from parallel dynamics. Using

quasi–neutrality and with vE×B,x = −1/B ∂yφ, the dispersion relation

ω =
kyv∗

1 + iβ̄#
e

(3.38)

from this simple model consisting of Eq. (3.36) and (3.37) can be found. For β̄#
e small,

but positive, the latter expression can be simplified to ω ≈ kyv∗(1− iβ̄#
e ). Thus, the linear

ITG growth rate γ = −kyv∗β̄
#
e is negative, which corresponds to a stable mode. Then, it
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is clear that for the electromagnetic ITG mode the nonadiabatic response of electrons to
density fluctuations implies a phase shift for the potential fluctuations. This phase shift
acts against the mode drive and leads to a stabilization.

The simple fluid model does not contain FLR corrections or parallel dynamics of the
ions. Moreover, a complete description requires the solution of the appropriate kinetic
equation. The behavior of real eigenfrequencies and growth rates is shown in figure 3.3,
for a typical ITG case, namely the GA-standard case with R/LT = 9, R/Ln = 3, q = 2 and
s = 1 as a function of the normalized binormal wave number kyρs using the gyrokinetic
code GYRO [19]. The typical ITG binormal scale length is above the ion gyroradius and

Figure 3.3: Binormal wavenumber spectrum of real eigenfrequency ωr and linear growth
rate γ for an ITG case, namely the GA standard case (parameters see text).

reaches its maximum, identified by the maximal growth rate, near kyρs = 0.3, see Fig. 3.3.
For scales much larger than this value the instability is stabilized by parallel dynamics, for
smaller scales it is stabilized by finite Larmor radius effects. Moreover, a clear stabilization
of the ITG growth rate is visible in the comparison of the electrostatic case with βe = 0%
with the electromagnetic case at βe = 0.5%.

3.3 Trapped electron mode

3.3.1 Historical overview

Trapped particle modes have been described in a general review article on the subject by
Kadomtsev, et al. [59]. More specific, the trapped ion mode was considered in the absence
of an ion temperature gradient. It has been reported that under those conditions ion
collisions are destabilizing. In a later publication the effects of a finite ηi were investigated
[60]. It was found that for ηi > 4/3 ion collisions become destabilizing by tapping the free
energy source of the ion pressure gradient. For the trapped electron mode (TEM), which
was firstly reported in 1974 [61], an analytical threshold has been derived by Manheimer
in 1976 [62]. First numerical investigations of TEM have been performed by Rewoldt
and co–workers [63], which led to a more complete picture of TEMs and other small scale
instabilities. The coupling between TEMs and toroidal ITG modes was shown by Weiland,
Nordman and co–workers, and Romanelli and Briguglio, in 1990 [47, 64]. Below the ITG
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critical threshold, the TEM can be unstable, depending on ηe = Ln,e/LT,e and on the
electron collisionality.

3.3.2 Physics mechanism

The usual TEM is driven by R/LT,e and a similar picture of the mechanism can be drawn
as for the ITG (for TEM, the difference in parallel dynamics between passing and trapped
particles is the cause for the instability instead of the different mobility of ions and electrons
in the ITG case). Here the basic picture for the formation of a TEM instability driven
by a density gradient is explained. Thus, both ion and electrons are involved. Again,
the focus is put on low frequency modes with typical frequencies much lower than the
bounce frequency of trapped electrons. The density fluctuation causes a charge separation
due to the opposite direction of curvature drifts for ions and trapped electrons. The low
parallel mobility of trapped electrons is due to their very low bounce averaged parallel
velocity, while for the ions inertia causes a low parallel mobility. Thus, ions and trapped
electrons can be considered in the same way neglecting parallel motion. In this context it
is noteworthy to point out that since trapped electrons spend most of their time on the
low field side of the torus, the curvature drift has a preferred direction, whereas passing
particles experience both the good and bad curvature regions and average this effect out.
As in the ITG case, passing electrons neutralize the charge separation and introduce a
fluctuating electrostatic potential. In the presence of a background density gradient, the
resulting E×B flow enhances the density perturbation, such that the instability grows.
This mechanism is shown in Fig. 3.4.

Figure 3.4: Physics mechanism leading to the formation of a trapped electron mode
(TEM). A density fluctuation in connection with the different direction of ion and elec-
tron curvature drift (a) cause a charge separation. The resulting fluctuating electric field
originating from passing electrons leads to an E×B flow, which enhances the initial per-
turbation (b).
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3.3.3 Critical density gradient

Similar to the ITG case, the basic fluid model is considered in order to derive a critical
density gradient for the TEM instability. In the most simple attempt, the ion and trapped
electron continuity equations (3.15) and (3.18) can be written (in ion curvature and ∇B
normalization) as

(−ω̂ + 1) n̂i −
1

τ

(
R

2Ln
− 1

)
φ̂ = 0 (3.39)

and (
−ω̂ − 1

τ

)
n̂et −

1

τ

(
R

2Ln
− 1

)
φ̂ = 0 (3.40)

where temperature fluctuations are neglected for simplicity, and τ = Ti/Te has been in-
troduced. The quasi–neutrality condition is written as

n̂i = ftn̂et + (1− ft)(1 + β#
e )φ̂, (3.41)

where the electrostatic potential has been modified in the same way as in the discussion of
the electromagnetic ITG mode. Then, Eqn. (3.39),(3.40) and (3.41) define the dispersion
relation. It shows that, in contrast to the ITG mode, the TEM drift direction is opposite
to the ion curvature and ∇B direction, such that ω̂r = ωr/ωD,i < 0. From the solution of
the dispersion relation, the condition for a critical density gradient above which the TEM
is unstable, can be derived. In the electrostatic limit, the expression reads

R

Ln
> 2

2 + τ(1 + ft)− 2(1 + τ)
√
ft

1− ft
. (3.42)

It is apparent that the threshold depends critically on both the trapped particle fraction
ft and the ion to electron temperature ratio τ . Figure 3.5 shows the dependence on these
two parameters. Thus, for typical trapped particle fractions of tokamak plasmas at mid–
radius, ft ≈ 0.5, and equal ion to electron temperature, the threshold R/Ln,crit is below 3.
A finite value of βe does not change the TEM significantly, as it can be seen in figure (3.6)
for the real eigenfrequency and the linear growth rate for a modified GA standard case
with R/LTi = 3 instead of R/LTi = 9, while the other ones were kept fixed, leading to a
dominant TEM instability. The TEM is much less affected by a finite value of β. This can
be understood from figure 3.7. The ITG case is the GA-std case, while the TEM case is the
modified GA-std case defined above (GA-std-TEM). At kyρs = 0.3, both show a similar
electrostatic growth rate of ∼ 0.65[cs/R], such that a direct comparison is meaningful in
terms of the ratio of perpendicular magnetic field fluctuations to electrostatic potential
fluctuations. As a function of βe, this ratio increases for both modes, but the absolute
value is approximately one order of magnitude lower in the TEM case suggesting a much
more electrostatic–like drive as compared to the ITG case. The physics picture of this
difference is that for TEM the driving species, i.e. trapped electrons, experience density
fluctuation, which cannot couple to parallel velocity due to the fast bounce averaging
(〈v||〉bounce = 0), and therefore are not susceptible to A||. ITG modes, on the other side,
are driven by temperature fluctuations which couple to density fluctuations and due to
Eq. (3.25) also to parallel velocity fluctuations. Therefore, they are stronger influenced
by a fluctuating perpendicular magnetic field.
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Figure 3.5: Threshold behavior of an electron temperature gradient mode (TEM) as a
function of trapped particle fraction ft and the ion to electron temperature ratio τ .

Figure 3.6: Binormal wavenumber spectrum of real eigenfrequency ωr and linear growth
rate γ for an TEM case (parameters see text).

Another important feature of TEMs is the fact that they are stabilized by electron–ion
collisions, in contrast to ITG modes, which are practically unaffected. Collisions lead to
trapping and de–trapping processes, and have a strong influence particularly on trapped
electrons. They produce Coulomb diffusion in velocity space pushing the distribution
function towards a Maxwellian. In the following it is shown how a finite electron to ion
collision frequency νei affects the growth rate of a TEM. To this purpose, the dissipative
TEM is considered, which is driven by the combined effects of the trapped electron col-
lisions and an electron temperature gradient. The discussion follows the work of Nilsson
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Figure 3.7: Ratio of perpendicular magnetic field fluctuations to electrostatic potential
fluctuations as a function of βe for an ITG (GA-std) and a TEM (GA-std-TEM) case
(parameters see text).

and Weiland [65]. The trapped electron continuity equation is written as

∂net

∂t
+∇ · (net vet) = −νth [δnet − Γneφ/Te] , (3.43)

with the collision frequency νth = νeiR/r and Γ = 1 + ηeω∗,e (ω − ωD,e + iνth)−1, obtained
from a kinetic treatment. The latter kind of derivation is necessary since the collision
frequency depends on the velocity. The purpose of the present calculation is to obtain
fluid equations that do not contain velocity space integrals or plasma dispersion functions.
Therefore, an approximate method is used where the velocity dependence of ν is firstly
ignored. Owing to the inverse velocity dependence of ν, this method overestimates large
velocities in the distribution function. Thus, the second part of the right hand side of Eq.
(3.43) compensates this overestimation (details see [65]). Then, for the collision dominated
TEM, one may approximate Γ = 1 − iηeω∗,e/νth. Taking vet = vE×B, the continuity Eq.
(3.43) can be written as

n̂et =
ω∗,e + iνth (1− iηeω∗,e/νth)

ω + iνth
φ̂. (3.44)

Using Eq. (3.20) and (3.13) with n̂i = ω∗,e/ωφ̂, and taking the limit νth � ω, the dispersion
relation reads

ω = ω∗,e + iftηeωω∗,e/νth. (3.45)
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Since with the previously introduced limits νth � ω∗,e, it is ω ≈ ω∗,e, and the growth rate
is

γ ' ftηeω
2
∗,e/νth. (3.46)

This relation shows the stabilization of the TEM with increasing collisionality.

3.4 Interplay of ITG and TEM

3.4.1 Eigenvalue problem

The aim of this Section is the discussion of the interplay between ITG and TEM microin-
stabilities. As it was explained in the previous sections, the inclusion of electromagnetic
effects (A‖ finite) does almost not change the thresholds of the unstable modes. Therefore,
the electrostatic limit is assumed in the following. From the discussion in the last sections
it can also be concluded that under realistic tokamak plasma conditions with mid–radius
logarithmic temperature gradients of R/LT = 6 − 9 and logarithmic density gradients of
R/Ln = 2− 4, both ITG and TEM may be unstable at the same time. This is underlined
by the fact that the physics mechanism leading to both unstable modes are similar, and
they occur at similar spacial scales. The fluid equations derived above are well suited for
the study of the interplay of both modes. Impurities are present in tokamak plasmas only
with a (very) low charge concentration (typically less than 5%). Therefore they are ne-
glected for simplicity. Consequently, the five Eqn. (3.15), (3.17), (3.18), (3.23) and (3.24)
in the electrostatic limit (A‖ = 0) with fZ = 0 are considered. As explained above, this
set of equations is sufficient in order to cover the physics mechanisms responsible for both
microturbulent modes. They lead to a generalized eigenvalue problem, which provides a
dispersion relation of order four. Its solution implies the distinction between ITG and
TEM, which is done by the sign of the real eigenfrequency corresponding to the largest
growth rate, namely it is a dominant ITG for ω̂r = ωr/ωD,i > 0 or a dominant TEM for
ω̂r = ωr/ωD,i < 0.

3.4.2 Numerical solution

Despite the simplicity of the equation system consisting of Eqn. (3.15), (3.17), (3.18),
(3.23) and (3.24) in the electrostatic limit (A‖ = 0) with fZ = 0 and its corresponding
dispersion relation, an analytical solution is impossible due to the fact that the dispersion
relation is of order four. Therefore, the solution of the eigenvalue problem is calculated
using a Mathematica routine, which is documented in the Appendix. Figure 3.8 shows
four cases of a stability diagram for the combined ITG–TEM eigenvalue problem. In figure
3.8a), the case of typical tokamak plasma parameters at mid–radius with ft = 0.5, τ = 1
is presented. If not stated otherwise, the logarithmic density and temperature gradients
are the same for ions and trapped electrons and labeled by R/Ln and R/LT, respectively.
For small R/Ln and R/LT within the green area, the plasma is stable, which means
that no imaginry part for ω̂ is found. Increasing the logarithmic temperature gradient,
the plasma gets unstable for R/LT approximately exceeding 2. In the violet region, one
single unstable root, that is γ > 0, is found, and the corresponding real eigenfrequency
is positive. This defines the parameter area of a pure ITG. For even larger R/LT & 4,
two unstable roots occur. In the parameter range defined by the yellow color, the real
eigenfrequency corresponding to the larger growth rate is positive, while the smaller growth
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Figure 3.8: Stability diagrams for the ITG–TEM eigenvalue problem as a function of
R/Ln,i = R/Ln,e ≡ R/Ln and R/LT,i = R/LT,e ≡ R/LT, in the case of ft = 0.5, τ = 1 (a),
ft = 0.5, τ = 0.5 (b), ft = 0.3, τ = 1 (c) and ft = 0.5, τ = 1 with R/LT,i = (3/2)(R/LT,e)
(d).

rate is connected with a negative real eigenfrequency. Therefore, the dominant instability is
an ITG with a subdominant TEM. For high logarithmic temperature gradients (R/LT > 6)
and logarithmic density gradients exceeding four, the situation is reversed. This leads to a
dominant TEM with a subdominant ITG instability within the cyan area. For high R/Ln

(and high R/LT), only one unstable root is found. The corresponding real eigenfrequency
is negative. Thus, the red area denotes the parameter range of a pure TEM.

The same color coding is used also for figures 3.8b),c) and d). In b), the same pa-
rameters as in a) have chosen, except the ion to electron temperature ratio was reduced
to τ = 0.5. This has the effect of slightly decreasing the TEM threshold at vanishing
R/LT. More pronounced and experimentally relevant is the strong shift of the boundary
at which ITG and TEM have an equal growth rate, i.e. the transition from yellow to
cyan, towards lower logarithmic density gradients. This means a stronger destabilization
of TEMs with increasing R/Ln as compared to the τ = 1 case in a). In figure 3.8c),

50



the ion to electron temperature ratio was reset to 1, but the trapped particle fraction is
reduced to ft = 0.3. This essentially means to move from mid–radius towards the core
of the plasma. Therefore, the drive of the TEM is reduced, leading to a slightly higher
threshold at vanishing temperature gradient in comparison to figure 3.8a). It also means
a higher logarithmic temperature gradient threshold for subdominant TEM instabilities,
since the parameter region where the ITG mode is the only unstable one, is strongly
enlarged. Moreover, the transition from ITG to TEM dominated instability is shifted
towards larger R/Ln. In figure 3.8d), the effect of a larger ion logarithmic temperature
gradient compared to the electron one is shown. As it will be presented in the chapter
on heat transport, R/LT,i clearly exceeds R/LT,e in the core of high β, low collisionality
H–mode plasmas with large neutral beam or ion cyclotron resonance heating in present
devices. Therefore, the assumption R/LT,i = (3/2)(R/LT,e) made here can be considered
to be of relevance. Compared to figure 3.8a), this leads to a stabilization of TEMs at
R/LT,i & 4, and to larger regions in which ITG alone or ITG and subdominant TEM are
unstable. For experimentally relevant parameters of R/LT,i = 6 − 8 and R/Ln = 2 − 4,
the ITG is clearly the most unstable mode under those conditions.
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Chapter 4

Investigations of electromagnetic
effects on electron particle
transport

4.1 Formulation of the problem

The increasing interest in high βN scenarios, like the hybrid scenario with βN up to 3
[66, 67, 68], for the operation of future fusion experiments like ITER motivates the study of
the impact of β on the electron particle transport in tokamak plasmas. Particle transport
determines the peaking of the density profile, which directly impacts the fusion power,
since this is proportional to the density squared. The interplay between these parameters
is underlined by recent studies pointing out that the cost of fusion electricity will be
proportional to β−0.4

N (n/nG)−0.3 [69], where nG is the Greenwald density limit [70]. Thus,
operational scenarios combining both high βN and high densities are required to reach the
goal of an economically viable energy source.

As it can be already concluded from Chapter 3, particle transport in the core of toka-
maks is produced by microturbulence, mainly due to ion temperature gradient (ITG) and
trapped electron modes (TEM), see [71] and references therein. This has been underlined
by large amount of studies performed during the last decade from both the experimental
and the theoretical standpoint. However, only a rather limited amount of experimen-
tal studies have been performed so far specifically on the dependence of electron particle
transport and density peaking on β. This might be a consequence of the fact that from
the experimental side, statistical analysis over large data sets have found weak effects of
β on the density peaking in general [72, 73, 74]. Interestingly, however, an increase of
β in all these studies has been found to be correlated with a reduction, albeit weak, of
the density peaking. From the theoretical standpoint, electromagnetic effects on particle
transport have been investigated with both fluid [49] and gyrokinetic [75] approaches. In
[49], a quasi–linear study has revealed the existence of a convective contribution due to
electromagnetic induction which is directed outward in the case of ITG modes, and which
can reverse direction and become a pinch in the case of TEM. This result is consistent with
the nonlinear gyrokinetic results presented in [75], where in an ITG turbulence simulation
the increase of βe is found to strongly affect the particle flux, and to reverse its direction
from inward, in the electrostatic case, to outward when βe exceeds the experimentally rel-
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evant value of 0.5%. In both these previous works, the magnetic equilibrium parameters
were not varied consistently with increasing βe. Those theoretical results indicate a rather
strong impact of electromagnetic effects on particle transport, which might be interpreted
as being in quantitative disagreement with the experimental observations obtained so far,
although qualitatively consistent with the theoretical prediction of a reduction of density
peaking with increasing β.

In the framework of this thesis, specifically the effect of β on particle transport con-
sidering both the electromagnetic effect due to the inclusion in the turbulent fields of the
magnetic field fluctuations given by the solution of the Ampére’s law, and the geometri-
cal (electrostatic) effect produced by an increase of β in the magnetic equilibrium, which
affects the vertical drift, is studied. The investigation of both these two effects allows us
to perform simulations in which the problem of the β dependence of density peaking in
experimental conditions can be addressed in a realistic way. In fact, these two effects are
unavoidably combined in an experiment, while they can be separated in theoretical stud-
ies, which are appropriate and interesting for specific analysis. In the following Sections,
results from linear and nonlinear gyrokinetic simulations are presented, and the underlying
physics is explained by means of an analytical derivation in which both the E × B and
the magnetic flutter transport are computed starting from a formal analytical solution of
the gyrokinetic equation. Magnetic flutter is caused by the fluctuating magnetic field in
the direction perpendicular to that of the equilibrium field [76, 77, 78]. A quasi–linear
approach is applied, justified by present knowledge of turbulent transport in the core of
tokamak plasmas, which reveals that most of the main features obtained in nonlinear sim-
ulations are well captured by quasi–linear models [79, 80, 81]. In addition, comparisons
among different assumptions for the wave number spectrum in quasi–linear calculations
and nonlinear results, which require very high computational effort particularly for elec-
tromagnetic cases so far, show the critical role played by this ingredient in the quasi–linear
models for the prediction of the logarithmic density gradients at the null of the flux. This
quantity turns out to be a particularly well suited figure of merit for models of the wave
number spectrum assumed in quasi–linear transport calculations.

Following the discussions in [82], the problem of the effects of β on electron particle
transport is studied as follows. In the next Section, an analytical calculation is presented
by which expressions of the electromagnetic effects on particle fluxes are derived and
directly compared with the numerical results, which allows the identification of the main
physical mechanisms at play. Then, a set of quasi–linear calculations with GYRO show
the impact of βe on the logarithmic density gradient at the null of the particle flux,
considering separately both the effect due to magnetic field fluctuations and the effect
due to the geometrical modification of the curvature drift produced by the compression of
the magnetic flux surfaces with increasing β. Both collisionless and collisional simulations
are performed, given the important role played by collisionality on particle transport [83].
Afterwards, a realistic case with typical parameters of a high confinement (H–) mode at
mid–radius is considered and the effect of β on the logarithmic density gradient at the null
of the particle flux is computed with both linear and nonlinear gyrokinetic calculations
including a detailed comparison between quasi–linear and nonlinear spectra and addressing
the problem of the comparison of the theoretical results with the experiment. In the end
the main conclusions of this study are presented.
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4.2 Analytical investigations

A detailed analytical description of particle transport is presented, in which electromag-
netic effects provided by Ampère’s law with a finite value of βe are included. In the main
part of this Section it will be shown that the most significant effect is on passing particles,
consistently with a previous fluid calculation [49]. The passing particle flux is finite due
to the loss of adiabaticity induced by the additional (v||/c)A|| term in the gyrokinetic
equation of motion. The loss of adiabaticity of passing electrons was also pointed out in
[84], and has a strong influence in ITG dominated microturbulence. A set of subsections
has been included with the aim of discussing the separation of electromagnetic fluxes into
their E×B and flutter components, the impact of shear and the pressure gradient param-
eter α, the role of collisions and the behavior in TEM dominated microturbulence. The
parameter α = αMHD encapsulates the pressure gradient contribution to the curvature
drift in the s− α geometry model of circular flux surfaces in the large aspect ratio limit.

Following the discussion of Chapter 2, the linear gyrokinetic equation for a particle
species σ is given by an evolution equation for the non-adiabatic component of the per-
turbed distribution function δfσ, i.e. hσ. The gyrokinetic equation for the perturbed
distribution function hk at the wave number ky, binormal to the unperturbed magnetic
field, is obtained from the ballooning representation in Eq. (2.80) and reads[

ωr,k + i (γk + νk)− k||v|| − ωd,k/Zσ
]
hk,σ ={

ωr,k + iγk −
ωD,k

Zσ

[
R

Ln,σ
+

(
E

Tσ
− 3

2

)
R

LT,σ

]}
Zσe

Tσ
FMJ0,σUk (4.1)

where ωr and γ are respectively the real part and the growth rate in the complex eigenfre-
quency ω. The subscript || denotes the direction parallel to the unperturbed background
magnetic field, and E is the kinetic energy of a particle. Here, the operator describing
the spatial derivative along the field line is formally replaced by a parallel wave number
k|| and treated as a numerical factor proportional to 1/(qR). Similarly, a Krook collision
operator is included, with a generic collision frequency ν(E, λ) with the energy E and
the pitch angle parameter λ. The generalized potential Uk ≡ φk − (v||/c)A||,k consists of
the fluctuating electrostatic potential φk and the parallel component of the fluctuating
vector potential A||,k. The effect of the compressional Alfvén dynamics due to δB‖ has
been computed for typical tokamak parameters used in this study and turns out to impact
the results in a negligible way (less than 2% for the highest βe values considered here).
Therefore it is neglected. However, it is worth noting that parallel magnetic field fluctua-
tions can have an important influence at the very high values of βe obtained in spherical
tokamaks, as it has been shown in [85]. Here, the simplified s−α geometry model is used.

The radial electron particle flux, comprising both E×B and magnetic flutter, is given
by

Γσ = <
∑

k

〈
∫
d3v J0,σh

∗
k

( c
B

e|| ×∇Ũk

)
∇r〉FS = <

∑
k

〈
∫
d3v J0,σh

∗
k

(
ikyρscsÛk

)
〉FS.

(4.2)
Here, the normalization Ûk = eUk/Te has been included. The 〈...〉FS operator denotes the
flux surface average and the asterisk ’∗’ the complex conjugate. Then, Eq. (4.1) can be
formally solved for hk,σ, and the result can be used in Eq. (4.2) to find an analytical ex-
pression for the particle flux. Direct electromagnetic effects caused by (v||/c)A|| on trapped
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electrons can be considered small due to the small average parallel velocity produced by
the fast bouncing. Therefore, for trapped electrons, electrostatic expressions, like those
derived in [86] remain applicable, and indirect electromagnetic effects on trapped particle
fluxes are produced by the change of the real eigenfrequency and the linear growth rate
caused by the inclusion of a finite βe. These effects, which are similar to the leading ones
identified for impurity transport [87], as it will be presented in the next Chapter, remain
only a minor correction in electron particle transport, as compared with the impact of the
additional terms due to (v||/c)A|| for passing particles. Thus, in the analytical derivations
focus is put on the passing electron response. A formal solution of Eq. (4.1) for hk reads

hk,σ =
Npass,k,σ

Dpass,k,σ
ZσFM,σJ0,σÛk,

Npass,k,σ =

{
ωr,k + iγk − ωD,k/Zσ
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]}
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Zσ
− i (γk + νk)

}
,

Dpass,k,σ = (γk + νk)2 +
(
ωr,k − k||v|| − ωd,k/Zσ

)2
. (4.3)

In order to compare the expression containing Â|| through Û with the electrostatic one
in former works [71, 86, 88], it is instructive to reformulate the phase correlation between
fluctuating density and the generalized potential Û used for the electromagnetic radial
electron flux. Thus, Eq. (4.2) is rewritten in a form containing only φ such that the
electromagnetic effects caused by A|| are explicitly included in the phase shift. This in
turn allows us to underline the actual electromagnetic ingredients in the physics. To this
purpose, a relation between Â|| and φ̂ is required. This can be obtained using the Fourier
transformed Ampère’s law for the parallel component of the vector potential, given by

k2
⊥A||,k = −4πe

c

∑
σ

∫
d3vv||Zσδfσ,kJ0,σ. (4.4)

Keeping in mind that only the non-adiabatic part of δfσ,k, namely hσ,k, produces a net

current, and taking Eq. (4.3) for the passing particles, the relation between Â||,k and φ̂k

reads Â||,k = (c/cs)Ω̂kφ̂k = (c/cs)
(

Ω̂r,k + iΩ̂i,k

)
φ̂k, with

Ω̂k =
βe
∑

σ

∫
d3vv||/cs (−ZσNpass,k,σ/Dpass,k,σ)FM,vJ0,σ

2 (k⊥ρs)
2 + βe

∑
σ

∫
d3vv2

||/c
2
s (−ZσNpass,k,σ/Dpass,k,σ)FM,vJ0,σ

, (4.5)

where FM,v = FM/n0. From this description it is apparent that βe is the parameter imply-
ing perpendicular magnetic field fluctuations. In present day tokamaks this parameter can
reach relatively large values, typically from 0.6 % to 1.3 % in hybrid scenario operation,
like in the experiments presented in [89]. Thus, the absolute value of Ω̂k is of the order of
a few percent. At this point it is also important to discuss the symmetry properties of the
additional terms originating from fluctuations in Â|| and contributing to Eq. (4.2) with
respect to the ballooning angle θb, because the expression of the particle flux contains the
integration over θb in the flux surface average. Since φ̂k is symmetric in θb and Â||,k is

antisymmetric, Ω̂k must be antisymmetric as well.

55



Introducing the trapped particle fraction ft, the expression for the radial particle flux
caused by passing electrons reads

Γpass = (1− ft)
∑

k

〈kyρscs

∫
d3v

[
1− 2v̂||Ω̂r,k + v̂2

||

(
Ω̂2

r,k + Ω̂2
i,k

)]
F0J

2
0,e|φ̂k|2 ×

(γ̂k + ν̂k) kyρs [R/Ln + (E/Te − 3/2)R/LTe]−
[
γ̂k

(
k̂||v̂|| + ω̂d,k

)
− ω̂r,kν̂k

]
(
ω̂r,k + k̂||v̂|| + ω̂d,k

)2
+ (γ̂k + ν̂k)2

〉FS.

(4.6)

Note that here all the frequencies have been normalized to cs/R and velocities to cs. This
has not to be confused with the frequency normalization used in the fluid model, where
a hat identified the normalization to ωD,i. The sign convention is such that a positive
value of ω̂r denotes a mode propagating in the ion diamagnetic direction, that is an ITG.
Compared to former works [71], the new terms in the expression of the flux are those
proportional to Ω̂r,k and Ω̂i,k.

The calculation of |Uk|2 yields the three terms in the first square bracket at the right
hand side of Eq. (4.6), where the electrostatic component, and the two electromag-
netic components, at the first and the second power of v‖, and given respectively by
−2Re(φ∗k A‖,k)v‖/c, and by |A‖,k|2(v‖/c)

2, can be easily identified. It is important to
note that the radial particle flux is not linear in the logarithmic gradients of density and
temperature due to the implicit dependence of ω̂r and γ̂ on the gradients. In addition Ω̂
contains R/Ln and R/LT as well, providing a new source of nonlinearity. However, Eq.
(4.6) can be still decomposed, and allows the identification of diffusive, thermodiffusive
and convective parts due to the explicit occurrence of terms proportional R/Ln and R/LT

or terms not explicitly proportional to any gradient, originating from the right hand side
of the gyrokinetic Eq. (4.1).

In order to check the relative importance of electromagnetic effects on passing and
trapped electrons, a standard case of ITG dominated microturbulence for a plasma of
deuterons and electrons is defined. That case is used throughout this Section unless spec-
ified otherwise. The local parameters are the inverse aspect ratio r/R = 0.17, the safety
factor q = 1.4 with a magnetic shear of s = (r/q)∂rq = 0.8, the normalized logarithmic
temperature gradients for deuterons and electrons R/LTi = R/LTe = 9 ≡ R/LT and the
deuterium to electron temperature ratio Ti/Te = 1.

Fig. 4.1 shows the fluxes computed in GYRO linear simulations at a single kyρs = 0.1
(where the maximum of the linear wave number spectrum of γ/ < k2

⊥ > is located), with
different values of R/Ln in circular geometry neglecting the effects of pressure gradients
on the magnetic equilibrium (α = 0), as a function of the pitch angle parameter λ. The
normalization has been taken in such a way that the total flux is given by the integral
over λ, i.e. Γ =

∫ λmax

0 Γ(λ)dλ. The transition from passing to trapped particles is denoted
by the black vertical line. From the βe = 0 curves it is apparent that the passing particles
do not produce a significant flux since they are nearly adiabatic. Thus, the total flux
is mainly given by the trapped particles, and it is inward for low R/Ln, Fig. 4.1(a, b),
while it points outward for large R/Ln, Fig. 4.1c. At low logarithmic density gradients, the
thermodiffusive and convective trapped electron fluxes are directed inwards and dominate,
while at higher R/Ln the increasing contribution of the outward directed diffusive term
reverses the direction of the electron flux. The reversal of the direction is qualitatively the
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Figure 4.1: Normalized electrostatic (βe = 0) and electromagnetic (βe = 0.5%) linear
electron flux as a function of the pitch angle parameter λ for the logarithmic density
gradient R/Ln = 0 (a), R/Ln = 3 (b) and R/Ln = 6 (c). A single poloidal wavenumber
kyρs = 0.1 in circular geometry has been chosen. The electron fluxes are normalized to
the full velocity space integrated ion heat flux Qi,tot. Symbols over the curves identify the
grid points in λ used in the GYRO calculations.

same also for trapped electrons at finite βe, see the total electromagnetic flux in Fig. 4.1.
The latter is calculated as the sum of the E×B and the magnetic flutter contribution (Fl),
which is usually very small for the trapped particle fraction. The differences with respect
to the trapped electrostatic fluxes are, as mentioned previously, due to an increase of ω̂r,k

in the ion diamagnetic direction and a decrease of γ̂k with increasing βe.
The physics behind the strong push of the electron flux in the outward direction by
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including electromagnetic effects is the loss of adiabaticity of the passing particle fraction
as compared to the electrostatic cases. This can be seen in Fig. 4.1. Electromagnetic
passing particle fluxes are directed outwards as much as the trapped fluxes are directed
inwards. Thus, the resultant total flux is strongly reduced in the inward direction or even
reversed at finite βe, as it will be shown in Section III. This behavior can be explained
within the analytical description. To this end, Eq. (4.6) is rewritten in a more explicit and
simple form for passing electrons which have λ = 0 already providing the full qualitative
information. It reads

Γpass = (1− ft)
∑

k

〈kyρscsn0

∑
ς=±1

1√
π

∫ ∞
0

dε
√
ε exp(−ε)×

×
[
1− 2ς

√
2εµ̂Ω̂r,k + 4εµ̂

(
Ω̂2

r,k + Ω̂2
i,k

)]
×

×
(γ̂k + ν̂k) kyρs [R/Ln + (ε− 3/2)R/LT]−

[
γ̂k

(
ς
√

2εµ̂/q + ω̂d,k

)
− ω̂r,kν̂k

](
ω̂r,k + ς

√
2εµ̂/q + ω̂d,k

)2
+ (γ̂k + ν̂k)2

|φ̂k|2〉FS.

(4.7)

The sign of the velocity in the parallel direction is included using ς = v‖/|v‖| = ±1. Here,
J0(k⊥v⊥/Ωc,e) is approximated to unity due to the smallness of k⊥v⊥/Ωc,e. Here and in
the following derivations, the parallel wave number is put to k|| = 1/(Rq). The high value
of the deuterium to electron mass ratio is given by µ̂ = mD/me, and has not to be confused
with the magnetic moment.

Electromagnetic contributions in Eq. (4.7) coming from A‖,k can still be identified in
the second and third term in the first square bracket at the right hand side. In order to
identify the dominant electromagnetic contributions to the particle flux, it can be deduced
that the product εµ̂, occurring both at the numerator and at the denominator in Eq. (4.7),
is usually much larger than unity, unless particles with energies much smaller than the
thermal energy are considered. However the relative magnitude of the electromagnetic
terms for those particles in Eq. (4.7) remains small due to the smallness of βe, and the
contribution to the total particle flux of particles at very low energy has small weight
over the energy integral. Therefore, passing particles whose energy is of the order of the
thermal energy, and for which εµ̂ is large, are considered.

Inserting Eq. (4.5) in Eq. (4.7), it is found that most of the contributions to the total
flux are very small due to the deuterium to electron mass ratio in the denominator. In
particular, it is clear that the electrostatic passing electron flux, which is determined by
Eq. (4.7) imposing Ω̂r,k = Ω̂i,k = 0, is close to the null due to the fact that the large slab
term in the denominator (∝ εµ̂) is not balanced in the numerator, where the strongest
contribution is ∝

√
εµ̂. This provides an almost adiabatic response and agrees with the

simulation results of Fig. 4.1.
In the case of a finite βe, the situation changes. The reason for this is that the dominant

term in the mass ratio µ̂ at the denominator can be balanced by finite βe terms in the
numerator. In particular, it is found that the term proportional to (Ω̂2

r,k + Ω̂2
i,k) is linear

in εµ̂ and therefore of the same order as the denominator. However, at the same time
this term is of order β2

e , and does not give the major contribution to the flux, even when
multiplied by the

√
εµ̂ term, coming from the v‖k‖ at the left hand side of the gyrokinetic

equation, Eq. (4.1), in the last square bracket of the numerator in Eq. (4.7). The dominant
electromagnetic contribution to the particle flux comes from the second term 2ς

√
2εµ̂Ω̂r,k
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in the first square bracket in the right hand side, when it multiplies the k̂||v̂|| term, that is
γ̂kς
√

2εµ̂/q in the last square bracket at the right hand side of Eq. (4.7), resulting in a term
of order O(βeεµ̂), that is of the same order in µ̂ as the leading term at the denominator,
and yields an outward directed contribution proportional to βe. Thus, the dominant
electromagnetic contribution to the particle flux is of pure convective type, since not
provided by any term directly proportional to a density or temperature gradient, and it is
produced by the phase shift between electrostatic potential and electromagnetic potential
fluctuations, due to the non–adiabatic motion of passing electrons, in combination with
the parallel streaming of the passing electrons described by the slab term k̂||v̂||. Moreover
it is not caused specifically by the resonance in the denominator of Eq. (4.7), but it is
present over the full velocity space of the passing electrons. A deeper demonstration of this
last point is shown in subsection 4.2.5, also with the help of linear gyrokinetic calculations
with GYRO. Here, on the basis of the derivation performed so far, it is interesting to
discuss the following further points.

4.2.1 Separation of particle fluxes into E×B and magnetic flutter

It is instructive to separate electromagnetic fluxes into their E×B and magnetic flutter
(Fl) components in an analytical way. Generally, a particle flux is given by the real part
of the phase relation between density and velocity fluctuations. For the E×B component
of the flux, the corresponding fluctuating velocity is vE×B, as the name suggests. The
velocity which corresponds to the flutter motion, on the other side, is the the parallel
velocity which is tilted to the direction perpendicular to the equilibrium magnetic field
due to B̃⊥ for a short time, such that vFl = (B̃⊥/B)v‖. This means that by taking Eq.
(4.2), the phase correlation of the non-adiabatic part of hk with the electrostatic potential
φk and with the parallel component of the vector-potential A||,k gives the E×B and flutter
contributions, respectively. Therefore, using

Ûk =

[
1−

v||

cs

(
Ω̂r,k + iΩ̂i,k

)] [
φ̂r,k + iφ̂i,k

]
, (4.8)

and keeping only the leading order terms in the deuterium to electron mass ratio, Eq.
(4.7) is rewritten as follows,

Γpass,E×B = (1− ft)
∑

k

〈kyρscsn0

[
2q
(
kyρsΩ̂i,kR/Ln + γ̂kΩ̂r,k + ω̂r,kΩ̂i,k

)]
|φ̂k|2〉FS (4.9)

and

Γpass,Fl = (1− ft)
∑

k

〈kyρscsn0

[
2q
(
−kyρsΩ̂i,kR/Ln + γ̂kΩ̂r,k − ω̂r,kΩ̂i,k

)]
|φ̂k|2〉FS.

(4.10)
Here, a term proportional to the temperature gradient does not contribute after the inte-
gration over energy and is therefore left out in both expressions. From Eq. (4.9) and Eq.
(4.10) one realizes that the total passing flux, i.e. the sum of both contributions, recovers
the result of Eq. (4.7) in the same limit of large εµ̂, since the terms proportional to Ω̂i in
the two equations balance exactly. Therefore, the total electromagnetic passing particle
flux, i.e. the sum of the E×B and the flutter contribution, has no explicit dependence
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on the logarithmic gradients of density and temperature in leading order of µ̂, and there-
fore it is of pure convective type, as already concluded, while both the E×B and flutter
contributions separately exhibit a direct dependence on the logarithmic density gradient.

At this point it is instructive to simplify the relation between Â|| and φ̂, Eq. (4.5). It
is of interest to have a closer look on how the two potentials influence the calculation of
the fluxes. It is clear that φ ∝

∑
σ Zσ

∫
d3vδfσ from the Poisson equation, as it can be

seen from Eq. (2.33), and iB̃x ∝ −A|| ∝
∑

σ Zσ
∫
d3vv‖,σhσ from Ampére’s law, see Eq.

(2.34). Therefore,

ΓE×B,e ∝ <〈i
∫
d3v

∫
d3vδfe(δfi − δfe)

∗〉FS = <〈i
∫
d3v

∫
d3vδfeδf

∗
i 〉FS, (4.11)

since <〈i
∫
d3v

∫
d3vδfeδf

∗
e 〉FS is identically zero due to δfeδf

∗
e = |δfe|2. For the flutter,

one gets similarly

ΓFl,e ∝ <〈i
∫
d3v

∫
d3vv‖,ehev‖,ih

∗
i 〉FS, (4.12)

where the first part, v‖,ehe, comes from the density fluctuation of the transported electron
species, and the second part, v‖,ih

∗
i , from perpendicular magnetic field fluctuations, ex-

pressed through the parallel current. From Eqn. (4.11) and (4.12) it is clear that for the
E×B component of the electron particle flux, the full parallel current in the computation
of the relationship between Â|| and φ̂ should be taken into account. On the other hand,

for the flutter component only the ion current gives a contribution through Ω̂.
However, for the E×B component of the flux, only the electron current is considered

here while the ion current is neglected for simplicity. This approximation is valid since
the electron current gives the dominant contribution to Ampére’s law, especially in the
cases of large real eigenfrequencies and growth rates (for ω̂r, γ̂ of the order of one, the
electron current contribution is typically one order of magnitude larger than the ion current
contribution). Moreover, only the leading order terms proportional to εµ̂e are taken into
account. Then, as explained in more detail in the Appendix, the dominant part of the
relation between Â||,k and φ̂k can be written as

Ω̂k =
qβe (kyρsR/Ln + ω̂r + iγ̂)

(k⊥ρs)
2 . (4.13)

The real part of Eq. (4.13), Ω̂r, is proportional to ω̂r and therefore a positive number
for ITG modes, while it can become negative for TEM modes. The imaginary part Ω̂i is
always a positive number independent of the sign of the real frequency. This expression
shows a strong similarity compared to the one obtained from the fluid model, Eq. (3.30).
The latter, which is normalized in ωD,i units, see Eq. (3.12), can easily be rewritten to

Â|| = 2
k4
⊥ρ

2
s

k2
y

c

cs
βe

q

(k⊥ρs)2

[
kyρs

R

Ln,e
+ ω̂

]
φ̂, (4.14)

where τ = 1 and k̂|| = k‖cs/ωD,i has been used. The hat in Eq. (4.14) now means the
normalization to cs/R. It is clear that Eq. (4.13) and Eq. (4.14) show the same parametric
dependence. The additional factor 2k4

⊥ρ
2
s/k

2
y is usually of order unity.

For the flutter component, it can be directly calculated that combining Eq. (4.10)
with Eq. (4.13) the flux vanishes identically. Thus, only the ion current contribution in
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Ampére’s law has to be considered, as already mentioned. Then, in the denominator of
Eq. (4.5), the integral proportional to v̂2

|| is small compared to 2 (k⊥ρs)
2 and is therefore

neglected, such that Eq. (4.5) can be written as

Ω̂k ≈ − βe

(2k⊥ρs)
2

∫
d3vF0,vv̂||

{
γ̂(γ̂ + ν̂) + (ω̂r − ω̂∗) (ω̂r − k̂||v̂|| − ω̂d)

+i
[
γ̂(ω̂r − k̂||v̂|| − ω̂d)− (γ̂ + ν̂) (ω̂r − ω̂∗)

]}{
(ω̂r − k̂||v̂|| − ω̂d)2 + (γ̂ + ν̂)2

}−1
,

(4.15)

where ω̂∗ = kyρs [R/Ln + (ε− 3/2)R/LT]. For this expression it can be shown that the
real part of Ω̂ is proportional to −ω̂r while the imaginary part is a positive number (pro-
portional to 1/γ̂).

By comparing the expressions of the E×B, Eq. (4.9) together with Eq. (4.13), and
the flutter components, Eq. (4.10) together with Eq. (4.15), of the passing particle flux,
it has to be noted that the flutter component is approximately one order of magnitude
smaller compared to the E×B. As explained above, this is due to the fact that the electron
current provides the dominant contribution in Ampére’s law. The direction of E×B and
flutter fluxes, inward or outward, depends on the interplay among the signs of ω̂r and Ω̂r,
which can change depending on the type of instability, and the relative magnitude of the
various terms (we remind that Ω̂i is always positive). In particular, for ITG modes ω̂r > 0,
Ω̂r > 0 and Ω̂i > 0, the three components of the E×B passing particle flux in Eq. (4.9)
are all directed outward, acting in the same direction. Instead, the three magnetic flutter
components are in opposite directions and partly balance each other. The inward directed
terms ∝ Ω̂i are larger than that ∝ Ω̂r, directed outward, and the flutter flux is slightly
inward. In contrast, for sufficiently large TEM real frequencies in absolute value, Ω̂r

becomes negative, and E×B passing electron flux can be directed inward, when the terms
γ̂Ω̂r + ω̂rΩ̂i exceed kyρsΩ̂iR/Ln in Eq. (4.9). The flutter component is directed outwards
since the term −kyρsΩ̂iR/Ln in the flutter expression Eq. (4.10) is usually smaller than
the other two. For very large density gradients in TEM turbulence, however, the situation
is reversed and the E×B passing electron flux is directed outwards while the flutter is
directed inwards, in agreement with simulation results.

In conclusion, for ITG modes the E×B passing flux is always outward and significant,
while the magnetic flutter is inward and usually smaller in size. For TEMs with large
real frequencies in absolute value, the situation is reversed, and the E×B passing flux can
become directed inward, while the magnetic flutter part becomes directed outward. The
reversal of the convective part of the E×B flux for modes propagating in the electron drift
direction with respect to the ion drift direction has also been found in the fluid description
of [49]. Differently from ITG modes, the electromagnetic contribution of passing electrons
to the particle flux in the case of TEMs is usually small as compared to the one produced
by trapped electrons. This will be shown below.

4.2.2 Impact of shear and α

The understanding of the role of parallel dynamics in the electromagnetic description of
particle fluxes is deepened by studying the separate impact of the parameter s and α in
the s − α model. Fig. 4.2 shows the GYRO computations of real eigenfrequency ωr (a),
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linear growth rate γ (b), normalized particle TiΓe/Qi (c) and normalized electron to ion
heat flux Qe/Qi (d) as a function of (s−α) for the logarithmic density gradient R/Ln = 3
and a single poloidal wave number kyρs = 0.1. Both electrostatic and electromagnetic

Figure 4.2: Electrostatic (βe = 0) and electromagnetic (βe = 0.5%) dependence of real
eigenfrequency ωr (a), linear growth rate γ (b), normalized particle flux TiΓe/Qi (c) and
normalized electron to ion heat flux Qe/Qi (d) as a function of s − α for the logarithmic
density R/Ln = 3 and a single poloidal wave number kyρs = 0.1 in circular geometry.

dependence have been evaluated changing α while keeping the shear constant (s = 0.8,
circles) or vice versa, i.e. scanning shear at α = 0 (squares), respectively. For (s−α) values
larger than ≈ 0.6, ωr as well as γ show almost the same values regardless of the parameter
which was changed, see Fig. 4.2(a, b). At (s − α) < 0.6 and varying shear, stronger
deviations to the behavior obtained with changing α can be found. The electrostatic
(s − α) dependence of the electron flux, Fig. 4.2c, is in both cases (fixed shear or fixed
α) nearly the same, while the electromagnetic dependence shows strong differences. A
similar conclusion for the heat flux dependence can be drawn, Fig. 4.2d. This can be
understood from the analytical derivation. Since the relation between A|| and φ is given
by the Ampère’s law, Eq. (4.4), the perpendicular wave number k⊥ plays an essential
role to determine the magnitude of Ω̂, see Eq. (4.5). Within the s − α model, shear
and pressure gradient enter in different ways in the expression for k⊥, since the shear is
multiplied by the extended ballooning angle θ and α by sin θ (an expression of k⊥ is given
in Eq. (4.16)). Thus, there is a substantial difference in k⊥ by either varying shear or α
when the eigenfunctions become extended in θ, that is along the field line, as it is generally
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the case at finite βe, due to the non–adiabatic passing electron dynamics.

4.2.3 Effect of finite collisionality

From the physical point of view, electromagnetic effects imply radial magnetic field fluc-
tuations which effectively decrease the otherwise fast parallel velocity of passing electrons
by rapid radial displacements of their positions. A finite collisionality acts in the same
way and therefore also leads to non–adiabaticity. But unlike a finite βe, the latter enters
through diffusive and thermodiffusive effects, which gives an inward contribution at small
R/Ln. For the convective part, an additional flux is generated via finite collisionality being
directed outwards with ITG as the most unstable mode, as shown in [71, 86, 90]. The
same considerations are true for the trapped particle fraction.

4.2.4 Trapped electron modes

Linear gyrokinetic simulations for microturbulence in the TEM domain are performed. To
this purpose, an electron logarithmic temperature gradient R/LT,e = 9 is chosen, while
the other gradients are R/LT,i = R/Ln = 3 and other parameters remain as in the ITG
standard case. Figure 4.3 shows the electrostatic and electromagnetic components of the
passing and trapped particle fluxes. The most important difference compared to the ITG
case is the fact that the trapped particle flux in the case of TEM becomes much larger
than the passing particle flux, in both electrostatic and electromagnetic cases. Thus, the

Figure 4.3: Normalized electrostatic (βe = 0) and electromagnetic (βe = 0.5%) linear
electron flux as a function of the pitch angle parameter λ for a trapped electron mode
(TEM) case (see text). A single poloidal wavenumber kyρs = 0.1 in circular geometry has
been chosen. The electron fluxes are normalized to the full velocity space integrated ion
heat flux Qi,tot. Symbols over the curves identify the grid points in λ used in the GYRO
calculations.

impact on the particle flux due to a finite value of βe can be expected to remain small
in the case of TEMs. Moreover, it is apparent that already at βe = 0 the passing flux
is finite. The reason for this behavior is the fact that the mode real eigenfrequency is
negative and thus the slab resonance in the denominator of Eq. (4.7) is obtained at higher
particle energy which in turn leads to more particles encountering non–adiabaticity. The
electromagnetic E×B component is still slightly positive but rather small due to the fact
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that Ω̂r changes sign which leads to counteracting terms in Eq. (4.9). However, due to the
stronger non–adiabaticity of low energetic passing particles the total E×B flux remains
slightly inwards. The total electromagnetic passing flux contribution is almost at the
null since the outward flutter component balances the E×B one. Trapped particles are
directed more inwards with increasing βe due to changes in the real eigenfrequency and
growth rate. These considerations are in agreement with the previous discussions based
on the analytical results.

4.2.5 Loss of adiabaticity in the full energy range

In order to show the loss of adiabaticity of passing electrons in response to electromagnetic
fluctuations over the full energy range, the energy dependences of quasi–linear electrostatic
(βe = 0) and electromagnetic (βe = 0.5%) electron fluxes are shown in Fig. 4.4. Three
different values of λ in the passing range have been chosen, and an ITG case with R/Ln =
R/LTe = 0.1 and all other parameters equal to the standard ITG case introduced in this
Chapter is considered. This choice of parameters allows us to focus on the convective
part of the electron particle flux. The normalization is taken in such a way that the
resulting quasi–linear fluxes are plotted divided by the function of energy

√
ε exp(−ε),

which includes the dependence on energy of both the Maxwellian and the Jacobian. This
procedure allows the identification of the physics differences between an electrostatic and
an electromagnetic description of electron fluxes by focusing on the resonant term in Eq.
(4.6). Figure 4.4a shows the quasi–linear electrostatic fluxes for λ = 0.02, λ = 0.44 and λ =
0.79. Particles at very low energy experience the resonance, see Eq. (4.6), and therefore
give a contribution to the particle flux. However, the comparison with the quasi–linear
electromagnetic E×B flux, Fig. 4.4b, reveals that the electrostatic flux is very low since
the electrons are almost adiabatic. The electromagnetic E×B and flutter contributions do
not have a strong resonance behavior at low energy, as shown in Fig. 4.4(b, c). Instead
they exhibit finite contributions in the full energy range. These numerical results are
consistent with the analytical derivations obtained in Section II.

4.2.6 Conclusive remarks

In conclusion, the dominant term providing an outward push of the electron particle flux
in ITG turbulence in which electromagnetic effects are included, i.e. Ampère’s law due to
finite βe, has been identified. This is given by the phase shift between electrostatic poten-
tial fluctuation and magnetic vector fluctuations produced by the non–adiabatic dynamics
of passing electrons, in combination with the compression of their parallel streaming. As
such, this dominant transport mechanism is of pure convective type, that is, it is not
directly proportional to a logarithmic density or temperature gradient. It is significant
over the entire energy range, and is mainly carried by E×B transport, while magnetic
flutter transport provides a smaller, inward directed, contribution. For TEM with large
real frequencies in absolute value, the situation can be reversed, with the E×B transport
being directed inward, while the magnetic flutter part is directed outward. However, elec-
tromagnetic passing particle fluxes in case of TEM instabilities remain small as compared
to the mainly electrostatic trapped electron fluxes. These can be indirectly affected by
changes of the real frequency and the growth rate produced by finite βe.
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Figure 4.4: Normalized electrostatic (βe = 0, a) and electromagnetic (βe = 0.5%, b, c)
quasi–linear electron fluxes as a function of the normalized energy ε = E/Te for an ITG
case with all parameters like the standard ITG case of this Chapter. A single poloidal
wavenumber kyρs = 0.1 in circular geometry has been chosen. The electron fluxes are
normalized to the full velocity space integrated ion heat flux Qi,tot, and divided by the
Jacobian and the Maxwellian. Symbols over the curves identify the grid points in ε used
in the GYRO calculations.

4.3 Numerical investigations

When both particle sources and neoclassical transport are negligible, the condition of
turbulent particle flux at the null can be applied to compute the stationary logarithmic
density gradient as a function of β, keeping fixed all the other local plasma parameters.

The stationary normalized logarithmic density gradient R/Ln,stat is defined as the
value of R/Ln = −(R/n)∂rn where the turbulent particle flux Γe = 0. As anticipated
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in the analytical Section, a variation of β is considered having two effects. One is the
electromagnetic effect connected with the fluctuations of the magnetic field, which are
given by the solution of the Ampère’s law, and in which βe appears directly as scaling
parameter for the strength of the magnetic field fluctuations. The second effect is purely
geometrical (electrostatic) and it is related to the role of the radial derivative of the total
plasma pressure ∂rp in the magnetic equilibrium and consequently in the expression of the
curvature drift. For given logarithmic gradients of the temperature and density profiles
and given ion to electron temperature ratio, this term is proportional to the total plasma
β.

4.3.1 Density gradient dependence of fluxes

The quasi–linear calculations in this Section are performed using the same standard ITG
case in s− α geometry as before. With the linear version of the gyrokinetic code GYRO
particle fluxes as a function of R/Ln are computed. In all the quasi–linear calculations the
particle flux Γ is normalized to the ion heat flux Qi. Fig. 4.5 shows the electromagnetic
gyrokinetic numerical calculations of the quasi–linear electron particle fluxes as a function
of the logarithmic density gradient R/Ln for both βe = 0, as well as for βe = 0.5%. The
resultant fluxes consist of the sum of E×B and magnetic flutter contributions. Two differ-
ent models for the wave number spectrum of the saturation amplitude of the electrostatic
potential are used. Following the works of [88, 92], either the fully computed poloidal
wave number spectrum (12 points from kyρs = 0.05 to kyρs = 1.5 in logarithmic spac-
ing) with weighting due to γ/〈k2

⊥〉, see Fig. 4.5a, or the model proposed in [91] is chosen,
which assumes an exponential decrease of the saturation amplitude of the potential at kyρs

smaller or larger than the ky value at which γ/〈k2
⊥〉 is at the maximum, see Fig. 4.5b.

This exponential shape of the saturation amplitude is motivated by measurements of the
density fluctuations at high wave numbers [93]. In the s − α model, the perpendicular

wave number is defined as k⊥ =

√
k2

x + k2
y

[
1 + (sθ − α sin θ)2

]
such that 〈k2

⊥〉 is given by

〈k2
⊥〉 = k2

x + k2
y

[
1 + 〈(sθ − α sin θ)2〉

]
, (4.16)

where

〈(sθ − α sin θ)2〉 =

∫
(sθ − α sin θ)2 |φ̃k(θ)|2dθ∫

|φ̃k(θ)|2dθ
(4.17)

with θ being the extended ballooning angle and φ̃ the fluctuating electrostatic potential.
It is found that γ/〈k2

⊥〉 has its maximum around kyρs ≈ 0.1 (slightly shifted towards
higher values for low R/Ln and towards lower values at high R/Ln and βe), and strongly
decreases with increasing poloidal wave number such that the ratio of the maximum value
of γ/〈k2

⊥〉 to the value at kyρs = 0.5 is of order 100, as also found in [88].

4.3.2 Stationary density gradient for increasing β

The gyrokinetic calculations in Fig. 4.5 show that with a finite βe the fluxes are pushed
in the outward direction for R/Ln < 3 while they are only weakly affected at high R/Ln,
as already pointed out in the analytical Section. Such a behavior leads to a reduction
of the logarithmic density gradient at which the flux is zero. This effect is larger in the
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Figure 4.5: Normalized electrostatic (βe = 0, full symbols) and electromagnetic (βe =
0.5%, open symbols) quasi–linear electron particle flux TiΓe/Qi as a function of the log-
arithmic density gradient R/Ln with α = 0 and collisionless (circles), with α varied con-
sistently with β and collisionless (squares), and with α = 0 and collisional (diamonds).
Wave number spectra proportional to γ/〈k2

⊥〉FS (a) or as proposed in [91] (b) have been
assumed for the fluxes.

case where α = 0 (open circles) compared to the case in which it is included consistently
with the value of βe = 0.5% (open squares). A finite experimentally relevant collisionality,
here (R/cs)νei = 0.06, has also the effect of pushing the fluxes in the outward direction,
see diamond symbols in Fig. 4.5. This is consistent with the discussion in the Section
containing the analytical calculations. From the collisional curve with βe = 0.5% it is
concluded that the wave number model proportional to γ/〈k2

⊥〉 predicts a value of R/Ln

close to zero.
Using these R/Ln scans, the value of the logarithmic density gradient at the null of the

fluxes can be identified, and computed for increasing values of β. The influence of a finite
βe on the logarithmic density gradient at zero electron particle flux is presented in Fig. 4.6
for the two different models for the saturation amplitude of the wave number spectrum.
The cases with concentric circles (a), with a self-consistent value of α(b) and with finite
collisionality of (R/cs)νei = 0.06 using concentric circles for the magnetic equilibrium
(c) are considered. It can be seen that in the first case the decrease of the stationary
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Figure 4.6: Electromagnetic dependence of logarithmic density gradient R/Ln at the null
of the quasi–linear electron flux as a function of βe. A circular case (a), a case with values
of α consistent with β (b), and a circular case with finite collisionality of (R/cs)νei = 0.06
(c) with two models for the wave number spectrum of the linear fluxes are considered.

logarithmic density gradient with increasing βe is weak at low values of βe while it becomes
strong for βe approaching 0.5%. The inclusion of a consistent value of α reduces this effect.
Also in the collisional case, the drop of R/Ln,stat is more linear. It is interesting to note
that the model proposed in [91] predicts generally larger R/Ln,stat than the γ/〈k2

⊥〉 model
at high values of βe, while at low βe both models show similar values in the collisionless
cases. The reason for this behavior is the fact that fluxes at high kyρs, which are directed
inwards have a larger weight in the model of [91]. Moreover, for increasing βe the high ky

contributions become larger in the inward direction while they are quite small at βe = 0.
It is also of interest to note that, using a corresponding circular Miller geometry [41] at
the place of the s−α model geometry, the predicted stationary density gradient decreases
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by about 10%. These results motivate further investigations of the poloidal spectrum of
particle fluxes and a detailed comparison of linear with nonlinear gyrokinetic calculations
in realistic geometry. This point is adressed below for parameters close to those measured
in ASDEX Upgrade.

4.4 Comparison of quasi–linear and nonlinear fluxes

In the last Section it has been pointed out that the logarithmic density gradient R/Ln, at
which the particle flux is at the null, decreases with increasing βe in Ampère’s equation.
However, it was shown that different choices of the wave number spectra of the fluxes
provide differentR/Ln,stat. The main goal of this Section is the calculation of finite β effects
on the peaking of the density profile containing both electromagnetic and geometrical
implications on a realistic case. In addition, the stationary logarithmic density gradients
is computed using nonlinear simulations. The comparison with linear calculations helps to
identify a quasi–linear model which predicts R/Ln,stat in good agreement with nonlinear
results.

To this purpose, calculations of electron transport including electromagnetic effects are
performed for H–mode parameters around mid-radius using the Miller geometry model for
the magnetic equilibrium. The choice of dimensionless parameters which are applied in the
gyrokinetic simulations are typical of an ASDEX Upgrade plasma and therefore should be
considered more realistic than the reference cases discussed previously. The equilibrium
parameters are given by r/a = 0.56, R/a = 3.53, q = 1.33, s = 1.12, Shafranov shift ∆ =
−0.11, elongation κ = 1.38 with elongation shear sκ = (r/κ)∂rκ = 0.11, and triangularity
δ = 0.032 with triangularity shear sδ = r∂rδ = 0.055. The local parameters for the two
species plasma consisting of deuterons and electrons are R/LTi = 6.13, R/LTe = 6.13,
Ti/Te = 1, βe = 0.65%. The collisionality is (R/cs)νei = 0.067, and Zeff = 2. The value of
βe is scanned while the magnetic equilibrium was held constant.

In linear simulations, the dominant micro-instability under these conditions is an ITG
mode for kyρs . 0.7. Beyond that value a TEM mode is found. A spectrum from
kyρs = 0.05 to kyρs = 1.5 is chosen with 12 points logarithmically spaced. A sufficiently
high number of radial simulation points is taken in order to keep the radial resolution
dx/ρs . 0.5. For nonlinear flux tube simulations, a spectrum from kyρs = 0.04 to kyρs =
2.68 using 64 toroidal modes is taken. The simulation box is chosen to be Lx/ρs = 82
and Ly/ρs = 148. Using 216 radial points, a radial resolution of dx/ρs = 0.38 is obtained.
Moreover, a grid of 256 points in the velocity space (8 energies, 8 passing and 8 trapped
pitch angles and two signs of velocity) is used.

Figure 4.7 shows the nonlinear spectrum of electrostatic and electromagnetic particle
fluxes at R/Ln = 2, normalized to the GyroBohm diffusion χGB = ρ2

scs/a. It is found that
while the position of the peak for both the electrostatic flux and the electromagnetic E×B
flux component remains at kyρs ≈ 0.2, the former is directed less strong in the outward
direction compared to the latter. The peak of the electromagnetic flutter component is
at slightly higher kyρs and the flux is negative over the full range of the wave number
spectrum.

69



Figure 4.7: Nonlinear gyro-Bohm normalized electron particle flux spectra for plasma
parameters similar to ASDEX Upgrade hybrid discharges (see text). The electrostatic as
well as the electromagnetic E×B and magnetic flutter contributions are shown.

4.4.1 Stationary density gradient for increasing βe

Figure 4.8 shows the results for the stationary logarithmic density gradient using linear
and nonlinear simulations at increasing βe in Ampère’s equation. Electromagnetic fluxes
consist of the sum of E×B and magnetic flutter components. For the quasi–linear fluxes,
different wave number spectra have been used for comparative purposes, i.e. fluxes ac-
cording to the maximum of γ/〈k2

⊥〉 and to the maximum of γ (in the ITG branch), wave
number spectra according to (γ/〈k2

⊥〉) and (γ/〈k2
⊥〉)0.7 as well as the wave number spec-

trum proposed in [91].
In linear simulations, the logarithmic density gradient decreases with increasing βe

regardless of the wave number spectrum, which is consistent with the results from the
parameter study in the last Section and with the analytical results. However, there are
big differences in the predicted values at which the electron flux vanishes. Using the wave
number spectral weight due to the maximum in γ/〈k2

⊥〉, which peaks at kyρs ≈ 0.18, or
due to the spectral average using (γ/〈k2

⊥〉)2 results in a very low positive (or even negative)
density gradient, while the wave number due to the maximum in γ or the spectrum due to
γ/〈k2

⊥〉 allows for moderate values of R/Ln at vanishing electron flux. Larger stationary
gradients are obtained using the wave number spectrum proposed in [91].

Taking the nonlinear simulation results it is found that the decrease of R/Ln is quite
substantial and rather linear with increasing βe. The comparison to quasi–linear results
reveals that the wave number spectrum proposed in [91] and (γ/〈k2

⊥〉)z with z = 0.7 works
best for these cases, while the other ones do not deliver satisfactory agreements. At βe ap-
proaching 1% the former turn out to give higher stationary density gradients compared to
the nonlinear results. However, it was impossible to obtain meaningful fluxes for βe > 1%
in linear simulations since the smallness of linear growth rates and subsequently the re-
duction of turbulence due to electromagnetic stabilization led to strong spectral variations
of the fluxes such that a adequate comparison of quasi–linear and nonlinear stationary
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Figure 4.8: Stationary logarithmic density gradient using nonlinear simulations and quasi–
linear calculations with different assumptions for the poloidal wave number spectrum of
electron particle fluxes as a function of βe.

density gradients cannot be made. In order to check the impact of a realistic description
of the geometry, the value of R/Ln,stat at βe = 0.65% has been computed with a corre-
sponding s − α geometry. It is found that in s − α the value of R/Ln,stat is reduced by
30%.

4.4.2 Stationary density gradient for increasing βe and β′

A more appropriate and realistic description of the experimental conditions considers not
only the effect of βe in the Ampére’s equation, but also the impact of β′ = 8π ∂rp/Bunit in
the curvature drift. To this purpose, Fig. 4.9 compares quasi–linear with nonlinear sim-
ulation results. The experimental stationary logarithmic density gradient at βe = 0.65%
remains unchanged, but in the cases with quasi–linear calculations including averages over
the wave number spectrum (open triangles and stars), the consistent inclusion of finite β
in both the Ampère’s law and the magnetic equilibrium shows a much weaker dependence
of R/Ln,stat on βe compared to the case in which only Ampère’s equation is considered.
This is consistent with the results in the last Section, Fig. 4.6. In nonlinear simulations,
it is found that the reduction of R/Ln,stat with increasing βe, while changing consistently
also β′ in the magnetic equilibrium parameters in input (open circles), is much closer to
the result obtained with increasing βe only and keeping β′ fixed (full circles), with respect
to the result from quasi–linear simulations. Moreover, it is apparent that the same quasi–
linear rules for the wave number spectrum, which reproduced the nonlinear results when
only βe is changed in a fairly good way, do not agree with the nonlinear results. The reason
for these differences has been investigated and is shown in Fig. 4.10, for simulations with
R/Lne = 2. In Fig. 4.10a, a comparison of |φ̃k|2 between the linear (black, full line for
(γ/〈k2

⊥〉)0.7 and dashed line for spectrum proposed in [91]) and nonlinear wave number
spectra (color, circle for βe = β′ = 0, square for βe = 0 with β′ consistent to a value if βe

was 0.65%, and diamond for βe = 0.65% with a β′ consistent with βe = 0.65%) are shown
for R/Ln = 2. The normalization is done in such a way that the integral over all binor-
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Figure 4.9: The influence of finite β exclusively in Ampère’s equation (’βe only’) as well
as in both Ampère’s equation and the consistent magnetic equilibrium (βe and β′) on the
stationary electron particle flux are shown using quasi–linear and nonlinear calculations.
The chosen plasma parameters are similar to ASDEX Upgrade hybrid discharges

mal wave numbers ky gives one. The main difference between the linear choices and the
nonlinear simulation results is the fact that in linear calculations large ky values play an
important role while in nonlinear simulations the kyρs values around 0.2-0.3 have a much
stronger impact. Moreover it is interesting to note that for this case the linear choices for
|φ̃k|2 do not change in the three cases (maximum of γ/〈k2

⊥〉 remains at kyρs = 0.18) while
for the nonlinear cases shifts of the maximum are obtained, namely large scales reveal
non–negligible differences in the three cases while the small scale behavior (kyρs > 0.4)
can be described by the power law |φ̃k|2 ∝ k−5

y (|φ̃ky<1|2 ∝ k−4.8
y and |φ̃ky>1|2 ∝ k−5.2

y ),
which is slightly steeper than the k−4.3

y result for density fluctuations found in [94].

Such large differences between the spectra of |φ̃k|2 applied in the quasi–linear cal-
culations, and the actual ones obtained in the nonlinear simulations might lead to the
conclusion that the total quasi–linear particle fluxes are always significantly far from the
nonlinear ones. However this is not always the case. The reason for this is shown in Fig.
4.10b, where the quasi–linear weights =(ñkφ̃

∗
k)/|φ̃k|2 are directly compared with those ex-

tracted from the actual nonlinear saturated state. Full symbols show the linear results,
whereas open symbols show the results from nonlinear simulations. In the comparison,
it is found that a clear difference appears in the high kyρs part of the spectrum, where
linear results are more strongly directed outwards, and cross the zero line at larger val-
ues of kyρs, as compared with the nonlinear spectra. Moreover, from the comparison
between βe = β′ = 0 (circles) with βe = 0, β′(βe = 0.65%) (squares) and βe = 0.65%,
β′(βe = 0.65%) (diamonds) of the linear simulations, the cause of the larger discrepancy
between nonlinear and quasi–linear stationary logarithmic density gradients in the case a
consistent variation of β′ is included in the simulations, shown in Fig. 4.9, can be identi-
fied. At kyρs > 0.7, the βe = β′ = 0 values are shifted in the outward direction compared
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Figure 4.10: Potential fluctuation spectra |φ̃k|2 from nonlinear gyrokinetic simulations
(a). Circles denote the case of βe = β′ = 0, squares represent βe = 0 with β′ consistent
to a value if βe was 0.65%, and diamonds for βe = 0.65% with a β′ consistent with a βe

of 0.65%. Also the quasi–linear rules are shown. The normalization is
∫
dky|φ̃ky |2 = 1.

Quasi–linear weights =(ñkφ̃
∗
k)/|φ̃k|2 obtained from linear (continuous lines) and nonlinear

(dashed lines) simulations (b). The chosen plasma parameters are similar to ASDEX
Upgrade hybrid discharges with R/Ln = 2.

to the cases with fixed β′, thus lowering the stationary density gradient, particularly in
the case of a wave number spectrum giving a large impact to small scales, like the one
proposed in [91].

From the detailed comparisons presented in Fig. 4.10 it can be concluded that, partic-
ularly when the particle flux is close to the null, the inward contribution from the relatively
small scales is usually weaker in linear calculations compared to nonlinear simulations, a
feature which was already observed in Ref. [90]. Thereby, in these cases, the use of the
actual nonlinear spectrum for |φ̃k|2 in quasi–linear models does not necessarily provide the
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most accurate quasi–linear evaluation of the total nonlinear particle flux. A compensa-
tion should take place for a more accurate matching of the total flux, where quasi–linear
weights, which are too small in size at small scales, have their contribution enhanced in
a quasi–linear model in which the corresponding values of the |φ̃k|2 spectrum at those
scales are relatively larger with respect to the actual nonlinear ones. These considerations
can be of particular importance for quasi–linear models of particle transport, since in this
transport channel quasi–linear weights usually change their sign from outward to inward
with increasing wave number, as a consequence of the different impact of collisionality
at the different scales [90]. Finally, it has to be noted that in the present comparison,
linear results consider only one mode at each wave number, that is the most unstable one,
whereas a more appropriate approach, like for instance that undertaken in [91], should
take into account the entire spectrum of unstable (or perhaps even stable) modes at each
wave number. This indeed can play a role in the establishment of the quasi–linear weights
in the nonlinear simulations. In addition, it is reasonable to assume that a strong com-
ponent in the differences between linear and nonlinear results comes from the impact of
wave number (toroidal mode) coupling, which takes place in the nonlinear simulations,
but which is not included in the quasi–linear models.

4.4.3 Effect of a particle source due to NBI heating

The decrease with increasing β of the predicted value of R/Ln,stat obtained by the nonlinear
simulations with consistent variation of β′, presented in Fig. 4.9, remains rather strong,
and does not appear to be qualitatively consistent with the weak effect documented so
far in non–dedicated experimental studies [72, 73, 74]. In order to address this problem
within a more realistic approach, also the impact of a particle source like the one provided
by neutral beam injection (NBI) fueling on the theoretically predicted dependence of
R/Ln,stat on β is considered. This can be done by looking for the value of R/Ln at which
a given predicted ratio ΓeT/Qtot matches the corresponding ratio of the volume integral
of the particle source to the volume integral of the heat source, instead of more simply
the condition Γe = 0, which assumes no particle source. A rough estimate of the ratio
of the volume integral of the particle source density delivered by the beams, ΓNBI, to the
volume integral of the NBI heat power density QNBI is given by ΓNBI/QNBI = 1/ENBI,
where ENBI is an effective (averaged) beam ion injection energy. Therefore, in the presence
of beam fueling, and in stationary conditions, with negligible neoclassical transport, the
value of R/Ln,stat can be expected to be given by the following condition ΓeT/Qtot '
ΓNBIT/QNBI (QNBI/Qtot) ' (T/ENBI) (QNBI/Qtot). At constant plasma density, β ∝ T
and by this it is found that with increasing β, the value of ΓeT/Qtot at which R/Ln,stat

can be identified, increases as well. Considering that most of the present experiments
are heated with intense neutral beam injection, it is of interest to check whether, on the
basis of our nonlinear simulations of a realistic ASDEX Upgrade case, this source effect is
significant in determining an “apparent” β dependence (or β independence) of the density
peaking. For this reason typical parameters of the ASDEX Upgrade neutral beam injection
system are taken, and an effective beam energy ENBI = 70 keV is considered, which yields,
with a toroidal magnetic field of 2.4 T and a fixed density of 6× 10−19m−3, the following
scaling T/ENBI = 3.41βe. Figure 4.11 shows the results of this exercise, in which three
different fractions of QNBI/Qtot, that is 0, 50% and 100%, are considered. On the basis of
the nonlinear simulations presented in this Chapter, it is found that the effect is significant
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Figure 4.11: Stationary logarithmic density gradient from nonlinear simulations chang-
ing both βe and β′ consistently for three different assumptions of the fraction of neutral
beam injection heating to the total heating mix for plasma parameters similar to ASDEX
Upgrade hybrid discharges.

and suggests that plasma discharges in which a large fraction of the heating power is not
delivered by NBI systems should observe a stronger decrease of the density peaking with
increasing β with respect to experiments in which the plasma is heated almost exclusively
by beams. In the latter case, a β independence or even a moderate increase of the peaking
with increasing β is predicted.

4.5 Summary and conclusions

Finite β effects on electron transport in tokamak plasmas due to both Ampère’s law and
changes in the magnetic equilibrium have been investigated using linear and nonlinear
gyrokinetic flux tube simulations. The logarithmic density gradient at the null of the
turbulent particle flux R/Ln,stat has been calculated as a function of βe. In ITG turbulence,
the electromagnetic effect due to the inclusion of fluctuations of the magnetic field in the
perpendicular direction implies a non–adiabatic response of the passing electrons, as it
was pointed out also in [84]. This produces an outward directed convection and strongly
reduces the value of R/Ln,stat with increasing βe. In TEM turbulence the effect is found
to be weaker. The physics of the electromagnetic effects on the particle flux has been
investigated by means of an analytical derivation, starting from a formal solution of the
gyrokinetic equation, and the analytical results have been shown to be fully consistent
with the numerical simulations. The contribution due to magnetic flutter transport has
been investigated, and has been found to be directed inward in ITG turbulence and non–
negligible at the highest values of βe. In this context, the present gyrokinetic study agrees
and extends a previous analysis based on a fluid model [49], and confirms the reversal of
the particle flux from inward to outward with increasing βe previously found in nonlinear
gyrokinetic simulations of ITG turbulence [75].

Within a more realistic description of the impact of β on the density peaking, sim-
ulation results have been presented in which also the effect of the total plasma pressure
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gradient in the curvature drift, due to the modification of the magnetic equilibrium, is in-
cluded consistently. The two effects are of course strongly combined in experiments, while
they can be separated in the theoretical calculations. The present study shows that once
both effects are included consistently in a realistic case, the predicted decrease of density
peaking with increasing β becomes weaker. A significant difference has been found in
these cases between quasi–linear results and nonlinear simulations, since in the latter the
inclusion of a consistently varying plasma pressure gradient has a more limited impact. In
fact, in quasi–linear calculations, the predicted value of the logarithmic density gradient
at the null of the particle flux R/Ln,stat is found to be strongly affected by the assumptions
made on the binormal wave number spectrum of the fluctuating potential. It has been
shown that contributions to the particle flux at different wave numbers can be directed
inward or outward, and therefore require an appropriate weighting rule in quasi–linear
models in order to reproduce the total nonlinear flux. A detailed comparison between the
quasi–linear and the nonlinear spectra shows that linear calculation based on the most
unstable linear mode at each wave number produce contributions to the particle flux at
small scales which are significantly more outward or less inward directed with respect to
the corresponding nonlinear results. In this context, the predicted value of R/Ln,stat is
an appropriate and experimentally relevant parameter over which the adequacy of the
assumptions on the wave number spectrum made in the quasi–linear models can be tested
against the nonlinear results.

In order to address at a qualitative level of the comparison with the experimental
observations, the effect of core fueling by neutral beams has been included in the estimate of
the predicted stationary value of the logarithmic density gradient R/Ln,stat. In conditions
of neutral beam injection heating only, at constant plasma density, the impact of the
beam fueling on R/Ln,stat increases with increasing β. On the basis of the nonlinear
gyrokinetic simulations presented here, for typical ASDEX Upgrade parameters, this is
found to have non–negligible consequences on the dependence of the predicted R/Ln,stat

on β. In conditions of dominant neutral beam injection heating and constant density,
R/Ln,stat is found to become almost independent of β, in contrast with the prediction of a
rather strong decrease of R/Ln,stat with increasing β when core fueling by neutral beams is
absent. These theoretical results should motivate further dedicated experimental research
on this important aspect for the performance of high β tokamak scenarios.

The present results are also relevant in other fields of plasma physics. Due to the
importance of the parallel velocity for the behavior of electromagnetic particle fluxes it is
emphasized that an electromagnetic kinetic treatment and in particular the consideration
of magnetic flutter transport is crucial for small scale turbulence in slab-like astrophysical
plasmas, since in particular the value of β in interstellar (β ∼ 1, see e. g. [95]) or
intergalactic media (β ∼ 10 − 100, see e. g. [96]) as well as in jet-formation regions at
the black hole magnetosphere (β ∼ 1− 100, see e. g. [97]), is significantly higher than in
tokamak plasmas.
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Chapter 5

Investigations of electromagnetic
effects on trace impurity transport

5.1 Formulation of the problem

While the presence of impurities in the edge and divertor regions of a tokamak has ben-
eficial effects like the reduction of heat loads on the first wall elements and a cold gas
target around the divertor, in the central region it might imply serious limitations of
performance and operation in a fusion reactor. Thus, the possibility of reaching plasma
conditions with reduced inward convection or even outward convection of impurities in
the core is extremely attractive for reactor operation. This is of particular importance in
the presence of highly charged plasma facing components, like tungsten.

In this framework, the increasing interest in high βN scenarios, like the hybrid scenario
[66, 67, 68] for ITER operation, motivates the study of the impact of electromagnetic
effects at finite β on the transport of impurities from the theoretical standpoint. The
impact of finite β effects on light impurity transport has received some consideration from
the experimental side [98, 99]. A decrease of the helium diffusivity with increasing β has
been observed in DIII–D [98], and, consistently, a decrease of trace T diffusivity with in-
creasing β has been documented in the Joint European Torus (JET) [99]. The consistency
between these experimental observations provides an important test for theory validation
in the prediction of the effect of increasing β on the transport of impurities. This is of
particular relevance for nuclear fusion applications, since a decrease of helium diffusivity
with increasing β might have negative consequences on the central helium ash concentra-
tion due to the effect of the central helium ash particle source in a burning plasma. This
problem is considered in the present Chapter, and, by this, aimed at complementing re-
cent theoretical works dedicated to impurity turbulent transport in the electrostatic limit
[100, 101, 102, 103, 91, 104, 105, 106, 107, 108, 109].

Both light and heavy impurities are considered. It is shown that for experimentally
achievable values of β, electromagnetic effects can be significant in some conditions. By
means of an approach already applied in electrostatic calculations [104], diffusive and con-
vective contributions to the impurity transport are identified, and both the E×B as well as
the magnetic flutter transport are computed. The decomposition of the fluxes in diffusive
and convective contributions allows the direct comparison with the experimental results.
Experimental measurements, usually obtained by means of the analysis of transients pro-
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duced by gas puff or laser ablation of impurities, yield separately the values of the diffusion
coefficient and of the total convective velocity.

In order to reach the purpose of the desired investigations, and to consider a large
range of impurity charges in different turbulence conditions, an extensive set of numerical
calculations is required exploring different domains of plasma parameters. For this reason,
the present study is mainly limited to the calculation of quasi–linear transport, while
nonlinear electromagnetic simulations of impurity transport, which are highly demanding
in computer time, are shown in only one example. Plasma parameters providing both ITG
and TEM as most unstable microinstabilities in the background have been considered.
Analytical derivations, starting from a simple fluid model, are performed in order to shed
light on the physics processes which are responsible of the numerical gyrokinetic results.
Reference cases providing strongly unstable ITG and TEM modes are used first to study
the impurity transport in the two limits. Then, a more realistic case with typical plasma
parameters of an H–mode plasma, like those expected in the ITER standard scenario,
is considered, in order to investigate the impurity transport in the more experimentally
relevant condition of an ITG mode with similar electron and ion logarithmic temperature
gradients, closer to the threshold.

This Chapter is organized as follows. The next Section introduces the ITG and TEM
reference cases and shows the numerical results, investigating the effects of β on impurity
transport as a function of the impurity charge (Zp) and mass (Ap = mp/mH). Then,
a simple fluid model based on the derivations in Chapter 3.1 is discussed allowing for
the analytical calculation of the electromagnetic effects on impurity transport. It is used
for the interpretation of the numerical results. Afterwards, the specific case of typical
realistic parameters of an H–mode plasma at mid–radius are considered. The results are
compared qualitatively with the experimental observations documented in the literature
and discussed in projection to the operation of future fusion devices like ITER. Finally,
the last section draws the main conclusions.

5.2 Gyrokinetic calculations of electromagnetic effects on
trace impurity transport

In this section, results of gyrokinetic calculations are reported, in which a third particle
species, namely an impurity, is included in very small charge concentration. As it can
be seen from the discussion in Chapter 4, the gyrokinetic equation for a particle species
σ is linear in the normalized logarithmic temperature and density gradients, respectively
R/LT,σ = −R∇rTσ/Tσ and R/Ln,σ = −R∇rnσ/nσ, see Eq. (4.1). Therefore, in a local
description, a formal expression for the linear response of the perturbed distribution func-
tion δfσ to an electromagnetic potential fluctuation U , which is the generalized potential
as it was defined in 4.2, is provided by the following linear combination of these gradients,

δfσ =

(
Aσ

R

Ln,σ
+Bσ

R

LT,σ
+ Cσ

)
U, (5.1)

where the coefficients Aσ, Bσ and Cσ do not depend on the logarithmic gradients them-
selves, but are complicated functions in the phase space.

The particle flux Γσ in the radial direction is given by Eq. (4.2). As a direct conse-
quence, the linearity in the gradients is formally preserved, leading to an expression for
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the particle flux which is usually written as

RΓσ
nσ

= Dσ
R

Ln,σ
+DT,σ

R

LT,σ
+RVP,σ, (5.2)

where Dσ denotes the diagonal diffusion coefficient, DT,σ the thermodiffusion coefficient
and VP,σ is the pure convection velocity. Recently it has been noted that in the presence
of a radial gradient of the toroidal rotation velocity profile an additional term is present
in the decomposition, which is proportional to the gradient of the toroidal velocity and
can be labeled as roto–diffusion [110]. This term is not considered in this study. While
Eq. (5.2) provides a useful physical decomposition, it cannot be considered as a real linear
relationship for bulk plasma species, since the transport coefficients depend on the loga-
rithmic gradients. However, for an impurity species p with a charge concentration npZp/ne

small enough to be negligible in the Poisson and Ampère’s equations, the coefficients Dp,
DT,p and VP,p become independent of the logarithmic density and temperature gradients
of that species and the impurity behaves like a trace. The flux of this trace species is a
linear function of the logarithmic gradients. In particular, VP,p provides the residual flux
in the absence of gradients of the impurity, that is when R/Ln,p = 0 and R/LT,p = 0.

As a consequence of such a linear relationship, the three coefficients Dσ, DT,σ and
VP,σ can be easily computed with a gyrokinetic code using an appropriate set of linear
gyrokinetic simulations. Recasting Eq. (5.2) in the form,

RΓp

np
= Dp

(
R

Lnp
+ CT

R

LTp
+ CP

)
, (5.3)

the coefficients CT = DTp/Dp and CP = RVPp/Dp can be identified from the slope of the
particle flux as a function of the logarithmic temperature and density gradients, as well
as from the residual flux at zero gradients. In stationary conditions, in the absence of a
source and for negligible neoclassical transport, the turbulent flux is at the null, namely
Γp = 0, and the coefficients CT and CP provide the stationary logarithmic density gradient,
through the relationship R/Lnp = −CTR/LTp − CP. It is worth mentioning that first
comparisons between linear and nonlinear gyrokinetic calculations of these parameters in
the electrostatic limit have shown a satisfactorily good agreement [108].

Here, such an approach is applied in order to compute the electromagnetic effects on
the transport of an impurity. An impurity species with a charge concentration of 1/1000
in a plasma of deuterons and electrons is included. In order to investigate the different
role of ITG and TEM microinstabilities, reference cases are chosen, namely r/R = 0.17,
q = 1.4, s = 0.8 and R/Ln = 3 as common parameters, R/LT,i = 9 and R/LT,e = 3 for
ITG and R/LT,i = 3 and R/LT,e = 9 for the TEM case, respectively. A s–α geometry [42]
is assumed, and ion, impurity and electron temperatures have been chosen to be equal.
Collisions are excluded.

The linear dependence of the impurity flux on the logarithmic gradients have been
verified in both linear and nonlinear electrostatic simulations [101, 104, 108]. Figure 4.1
shows for the ITG case that a linear dependence is also given in calculations at a finite
βe of 1% for both the E×B (a, c) and the magnetic flutter component from fluctuations
of A|| (b,d) of the flux as functions of R/Ln,p and R/LT,p, respectively, where βe takes
electromagnetic effects into account. Here, a single value of kyρs = 0.3 in the spectrum has
been selected. The contributions are calculated consistently in such a way that the sums
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Figure 5.1: Electromagnetic (βe = 1%) gyrokinetic calculations of particle fluxes RΓp/np

for trace impurity helium (charge concentration npZp/ne = 1/1000) as a function of
the normalized logarithmic gradients R/Lnp (a, b) and R/LTp (c, d) using GYRO. The
background fluctuations in the electron–deuteron plasma have been chosen to be ITG
dominated according to the ITG reference case.

of the E×B and the magnetic flutter components give the total flux. The dimensionless
transport coefficients CT and CP become independent of the saturation amplitude of the
fluctuating electrostatic and magnetic potentials, which makes them particularly suited
for linear calculations.

Such a normalization cannot be applied directly to the dimensional impurity diffusion
coefficient. However, an appropriate and experimentally relevant normalization can be
easily identified. The average effective heat conductivity χeff of the plasma is defined such
that

Qtot

2nT
=

Qi

2nT
+

Qe

2nT
= χeff

∇T
T
, (5.4)

where Qtot, Qi and Qe are the total, ion and electron heat fluxes, respectively, T =
(Ti + Te)/2 and ∇T/T = ∇(Ti + Te)/(Ti + Te). Using the definitions in Eq. (5.4), it can
be directly derived that

χeff =
χi · ∇Ti/Ti · Ti/T + χe · ∇Te/Te · Te/T

∇Ti/Ti · Ti/T +∇Te/Te · Te/T
, (5.5)

and therefore with Ti = Te and ∇Ti = ∇Te, χeff = (χi + χe)/2, where χi and χe are the
ion and electron effective heat conductivities, respectively. These can be computed within
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the quasilinear gyrokinetic model by χi,e(r) = −Qi,e(r)/ni,e∂Ti,e/∂r with

Qi,e(r) = 〈
∫
d3v

mi,ev
2

2
δfi,e

(
B×∇U/B2

)
|r〉. (5.6)

These coefficients correspond to the power balance heat conductivities determined in ex-
periments, which easily allows direct comparisons between our quasi–linear results and
the experimental observations.

The E×B and magnetic flutter transport coefficients are separated using the following
definitions

CT = (CT)E×B + (CT)Fl =
DE

Dtot
CTE +

DF

Dtot
CTF (5.7)

and

CP = (CP)E×B + (CP)Fl =
DE

Dtot
CPE +

DF

Dtot
CPF, (5.8)

where DE and DF are the diagonal diffusion coefficients with Dtot = DE + DF, CTE =
DTE/DE, CTF = DTF/DF, CPE = RVPE/DE and CPF = RVPF/DF. The quantities DTE

and DTF are the thermodiffusion coefficients and VPE and VPF are the pure convective
velocities due to E×B (E) and magnetic flutter (F) transport, respectively.

Figure 5.2 shows the poloidal spectrum of the linear eigenfrequency ωr (a) and growth
rate γ (b) in [cs/R] units using c2

s = Ti/mD, as well as the E×B and magnetic flutter (Fl)
components of the transport coefficients Dp,E×B/χeff (c+d), (CT)E×B (e+f) and (CP)E×B

(g+h) for the ITG and TEM cases, with helium as impurity species. The value of βe =
0.5% has been chosen. The spectrum of γ has its maximum at kyρs ≈ 0.3 in the ITG case,
whereas for TEM a continuous increase up to high poloidal wave numbers is found, since
also electron temperature gradient (ETG) modes are unstable for this case, because the
reference case was chosen with Te = Ti.

The magnetic flutter transport reveals a significant dependence on the poloidal wave
number, and is strongly reduced at large values of kyρs. However, it remains small with
respect to the total transport, with a contribution which is of the order of 1% (or 10%
for CP) of the E×B transport. The latter, instead, does not exhibit strong variations as a
function of the poloidal wave number. For this reason, for the qualitative purposes of the
present study and considering also the large number of calculations required to explore
the dependence of impurity species with various charge and mass in different turbulence
conditions, most of the calculations presented in the followings are limited to the single
representative value of kyρs = 0.3, where the maximum growth rate in the ITG case
occurs. This choice is preferred to that of considering a single kyρs value at which γ/〈k2

⊥〉
is maximum. As already shown in Chapter 4.4, the latter choice provides results which are
in larger disagreement with nonlinear results of electron particle transport. A comparison
between results based on a single wave number at this binormal scale and those obtained
applying an appropriate average over the wave number spectrum, is provided in [87] for
the case of helium transport. The difference is reported to be rather small, especially
for the E×B component, while for the flutter larger deviations are present. This can be
expected from Fig. (5.2). Thus, the choice on the binormal spectrum only considering a
single value at kyρs = 0.3, can be considered to be realistic.

In Figs. 5.3a and 5.3b the electromagnetic dependence of the normalized eigenfre-
quency and linear growth rate are shown for helium as impurity species. The values of
ωr, being positive for modes in the ion diamagnetic direction and negative in the electron
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Figure 5.2: Linear gyrokinetic calculations of eigenfrequencies ωr (a), growth rates γ (b),
and of the E × B coefficients Dp,E×B/χeff (c), (CT)E×B (e) and (Cp)E×B (g), as well as
of the corresponding magnetic flutter (Fl) components (d, f, h), as a function of kyρs for
trace impurity helium at βe = 0.5%.

diamagnetic direction, remain almost unchanged with increasing βe in both cases. In con-
trast, the linear growth rate γ shows different behaviors in the ITG and TEM cases, it
decreases with increasing β in the ITG reference case, while it remains almost unaffected
in the TEM case [111, 75]. As it will be shown in the next Section, this difference in the
behavior of the growth rate is responsible for the differences found in the dependence of
impurity transport on β in the ITG and TEM cases.

Figure 5.3 shows also the behavior of the coefficients Dp/χeff (c,d), CT (e,f) and CP

(g,h) as a function of βe in linear gyrokinetic simulations, both for E×B and magnetic
flutter (Fl) transport, respectively. First, transport due to E×B motion plays the major
role. It is interesting to note that the dominant contribution of the magnetic flutter
transport has the nature of a pure convection and can be up to 10% in the ITG case
at high βe. On the contrary, the diagonal diffusion and thermodiffusion contributions
provided by magnetic flutter are ≈ 1% in the ITG case, or even smaller for the TEM case.
Second, Dp,E×B/χeff decreases with βe in the ITG case, while in the TEM case it is slightly
increasing. As it will be shown, the reduction of Dp,E×B/χeff in the ITG case is connected
with the reduction of γ, where Dp,E×B decreases stronger that χeff . As usual, in both cases
positive values of Dp,E×B/χeff are obtained, that is outward diagonal diffusion. This is in
contrast to the magnetic flutter component. Moreover, for all the flutter components of
the transport coefficients, the directions exhibit a change going from ITG to TEM. Third,
both the thermodiffusion and the pure convection are directed inwards in the TEM case, as
indicated by the negative value of the coefficients (CT)E×B and (CP)E×B. For ITG modes,
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Figure 5.3: Gyrokinetic calculations of eigenfrequencies ωr (a), growth rates γ (b), and
of the E × B coefficients (CT)E×B (c) Dp,E×B/χeff (e) and (Cp)E×B (g), as well as of the
corresponding magnetic flutter components (d, f , h), as a function of βe for trace impurity
helium at kyρs = 0.3. The full symbols represent simulations with only changing βe in
Ampère’s law, while open symbols indicate cases in which both βe and β′ are changed
consistently.

the thermodiffusion is directed outwards. The present results agree with previous results
in the electrostatic limit [112, 113, 101, 103, 91]. In the case of TEM, electromagnetic
effects are weak, while they play a strong role in the ITG case. In particular, the increase
of the thermodiffusion factor (CT)E×B in the outward direction can dominate over the
increase of the pure convection term (CP)E×B in the inward direction (we remind that in
the calculation of the total impurity flux Γp the coefficient (CT)E×B has to be multiplied
by R/LT,p, which is ≥ 5 for typical parameters at mid-radius). In Fig. 5.3, the transport
coefficients are calculated not only by changing βe in Ampère’s law, but also including the
consistent change of β′ through a consistent β′. By this the impact on the He behavior
can be compared with that on electron transport presented in Chapter 4.4. This leads to
only small deviations from the cases in which only βe was varied. The largest difference
in the E×B coefficients is obtained for the convection, which shows a smaller increase of
the pinch with increasing βe and β′. Considering the total flux, this smaller dependence
is balanced by an also smaller dependence of the outward thermodiffusion. Moreover,
flutter coefficients exhibits only small differences. For these reasons, and for the fact that
nonlinear simulations for electron transport have shown only small differences (see Chapter
4), in the following only βe with a fixed equilibrium is considered.

At this point, it is of interest to investigate the behavior of trace transport coefficients
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due to changes in the impurity charge (Zp) and mass (Ap). Figure 5.4 shows the co-

Figure 5.4: Electromagnetic dependence of the trace impurity E×B and magnetic flutter
(Fl) transport coefficients Dp/χeff (a-d), CT (e-h) and CP (i-l) for increasing impurity
charge Zp with impurity mass Ap = 2Zp. Left column plots show results for the ITG
reference case, while right column plots show results for the TEM reference case.

efficients Dp/χeff (a-d), CT (e-h) and CP (i-l) for the ITG (left panel) and TEM (right
panel) cases with increasing Zp = Ap/2. Contributions from E×B and magnetic flutter
(Fl) have been separated, and one observes again that E×B transport exceeds the lat-
ter by at least a factor of 10 in the ITG case and more than a factor 100 in the TEM
case for small Zp = Ap/2. With increasing impurity charge, the flutter contribution be-
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comes completely negligible for diagonal diffusion and thermodiffusion at all βe, while it
reaches a finite asymptotic value for pure convection at large Zp. The charge dependence
of Dp,E×B/χeff for different impurity species is not strongly affected by electromagnetic
effects because all the curves at different charge are almost parallel. In contrast, (CT)E×B

and (CP)E×B exhibit different dependences on β depending on the impurity charge, in
particular, dependences are stronger for light impurities.

Figure 5.5: Electromagnetic dependence of the trace impurity E×B and magnetic flutter
transport coefficients Dp/χeff (a-d), CT (e-h) and CP (i-l) for increasing impurity charge
Zp, while keeping the impurity mass fixed (Ap = 1). Left column plots show results for
the ITG reference case, while right column plots show results for the TEM reference case.
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In order to separate the effects of impurity charge and mass on the transport coeffi-
cients, also a scan of Zp at fixed Ap = 1 has been performed. They are presented in Fig.
5.5. For Dp,E×B/χeff the behavior for both ITG and TEM is recovered. Therefore, the
impurity charge is the quantity dominating diagonal diffusion coefficients. The mass Ap

weakly lowers the values of Dp,E×B/χeff , see Figs. 5.4c and 5.5c (for instance for Zp = 1).
The coefficients Dp/χeff and CT show an asymptotic behavior with increasing Zp, while
CP grows linearly at high values of Zp, as expected from previous results [101]. Compared
to Fig. 5.4, this shows that the impurity mass counteracts the effect of charge at finite
values of βe for both E×B and flutter diagonal and thermodiffusion, and prevents the
linear increase of the pure convection. Obviously, the relative magnitude between E×B
and magnetic flutter transport cannot be considered realistic for these cases with fixed
mass.

In the next section, the simplified fluid model of Chapter 3 is used in order to shed light
on the main physical processes which are responsible of the dependence of the impurity
transport on βe and of the results found in the numerical calculations.

5.3 Analytical fluid model

In order to understand the physics mechanisms which are responsible of the numerical
results for the transport coefficients Dp, CT and CP including electromagnetic effects, the
fluid model derived in Chapter 3 is considered. As already noted, the definition of the
transport coefficients like in the previous section, Eqn. (5.3) and (5.4), implies that no
saturation amplitude is required, making a linear model well suited. For a more direct
comparison with previous analytical fluid a analysis, Eqn. (3.25), (3.26), (3.27) and (3.30)
(or with (3.32) for small–βi approximation) are used allowing for an analytical derivation
of the trace impurity particle transport coefficients Dp, CT and CP.

5.3.1 E×B transport coefficients

The impact of electromagnetic effects on the E×B transport is studied. As already pointed
out in the last section, electromagnetic effects can occur in two ways. The first way is
through the modification of the phase shift between impurity density fluctuations and
electrostatic potential fluctuations in the electrostatic limit produced by changes of the
eigenfrequencies in response to an increase of β in the background plasma. The second way
is by means of additional terms in the impurity flux introduced directly by fluctuations
in the parallel vector potential. From the discussion in Chapter 4.2 it can be concluded
that the first way is the one which produces the dominant effects. This is because the
fluctuating vector potential A|| is always connected with a parallel velocity. As it was
shown, the latter scales with

√
µ̂, and is therefore small for impurities as compared to the

electrons. This results in the fact that additional electromagnetic terms due to A|| are
very small, and implies that changes of ωr and γ play the major role in understanding
the electromagnetic behavior of the transport coefficients. Moreover, already electrostatic
passing impurity fluxes are nonzero, in contrast to the electron species, as it can be seen
from Fig. (5.6) for the diffusive part of trace helium.

Therefore, the impact of ωr and γ is discussed firstly by focussing on the ratio of the
impurity diffusivity to the total effective heat conductivity Dp,E×B/χeff . The effect of
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Figure 5.6: Electromagnetic dependence of the trace impurity E×B and magnetic flutter
transport coefficients Dp/χeff (a-d), CT (e-h) and CP (i-l) for increasing impurity charge
Zp, while keeping the impurity mass fixed (Ap = 1). Left column plots show results for
the ITG reference case, while right column plots show results for the TEM reference case.

changing βe on impurity diagonal diffusivity and total effective heat conductivity is calcu-
lated adopting the fluid model consisting of the continuity equation, the energy balance
equation and the parallel motion equation of the trace species. According to Fig. 5.3b,
the linear growth rate remains almost constant with increasing βe for the TEM case while
it strongly decreases in the ITG case. Thus, in the latter case, where χeff is mainly deter-
mined by the ion heat conductivity, the ratio Dp,E×B/χeff due to this model is given by
the coefficients

Dp,E×B = 2
γγ̂2
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(5.9)
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and

χi = 2
γγ̂2
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where ω̂ = ω̂r + iγ̂ in the fluid equations such that |ω̂|2 = ω̂2
r + γ̂2. For both, the usual

mixing length estimate applied in Ref. [46] has been used, where the saturation level is
assumed to be provided by the balance between linear growth rate and the dominant E×B
convective nonlinearity. It is noteworthy that the saturation amplitude cancels identically
when the ratio of the two quantities is performed and a single wave number is considered.

In order to explain the behavior of the ratio Dp,E×B/χeff , it turns out that parallel
motion, which has been included in the lengthy calculation of Eq. (5.9) and Eq. (5.10), is
important, because in this way the diagonal diffusion coefficient decreases in the ITG case
with increasing βe due to its strong dependence on γ̂, while χeff only weakly decreases
with increasing βe. This leads to a ratio Dp,E×B/χeff , which decreases with decreasing
γ̂, in agreement with the gyrokinetic results. For impurities with high Zp = Ap/2, the
decrease of Dp,E×B with raising βe becomes stronger, but also the ratio of the respective
denominators increases. This implies that the decrease of Dp,E×B/χeff is not strongly
affected by increasing impurity charge, as also found in the gyrokinetic results, Figs. 5.4
and 5.5. The ratio Dp,E×B/χeff is mainly determined by the dependence of Dp,E×B with
increasing βe. It is underlined that, like often performed in experimental comparisons
between particle diffusion and heat conduction, the coefficient Dp,E×B is the diagonal
impurity diffusivity, while χeff is the total power balance (effective) heat conductivity.
Therefore, only a part of the phase shift between n̂ and φ̂ is considered in the former case,
while in the latter one the total phase shift between T̂ and φ̂ is taken into account. In the
TEM case, the linear growth rate is changing very weakly with increasing βe, and therefore
neither Dp,E×B nor χeff show a significant change, which explains why Dp,E×B/χeff remains
almost constant in gyrokinetic simulations.

Now, we turn to the effect caused by the variation of linear growth rates with increasing
β on the coefficients CT and CP produced by electrostatic fluctuations is discussed. This
can be readily discussed using the expressions in [101]. It is recalled that, neglecting
parallel velocity fluctuations, the electrostatic E×B thermodiffusion coefficient for the
impurities reads,

(CT)ES,T =
2

Zp

ω̂r − 5/(3Zp)

|ω̂|2 − 14ω̂r/(3Zp) + 55/(9Z2
p)
, (5.11)
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where again |ω̂|2 = ω̂2
r + γ̂2. Therefore, it can be observed that a decrease of γ̂ with

increasing β leads to a decrease of the denominator and therefore an increase of the
coefficient CT, as found in the gyrokinetic results for the ITG reference case. On the
contrary, in the TEM case the linear growth rates are only weakly affected with consequent
small changes of the impurity thermodiffusive coefficient.

The same considerations can be made for the pure convection coefficient CP. Neglecting
again parallel velocity fluctuations, (CP)ES,T = −2 (1 + 2 (CT)ES,T/3), which consistently
provides an increase in size of CP in the inward direction due to an increase of CT in the
case of the ITG mode, while it remains almost constant in the TEM case. The consistency
with the gyrokinetic results indicates that the main mechanism through which an increase
of β affects the transport of impurities derives from the coupling between density and
temperature fluctuations produced by the ∇B and curvature drift.

It is certainly of interest for the physical understanding to investigate also the depen-
dence of thermodiffusion and pure convection on the impurity charge and mass by means
of the fluid model. In addition, this allows to more directly separate transport processes
due to perpendicular drifts from those arizing from parallel dynamics. To this end, the
full electrostatic fluid model is considered, including also the electrostatic part of the par-
allel motion equation, and noting that in the limit of very large impurity charge, that is
Zp � 1, the coupling between density fluctuations and parallel velocity fluctuations is the
only one which does not vanish. In the thermodiffusion coefficient, parallel dynamics in-
troduces additional terms with respect to Eq. (5.11), yielding the following more complete
expression
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which reduces to Eq. (5.11) in the limit of k̂2
|| = 0. From this expression, it is evident that

at high Zp and high mass Ap = 2Zp the thermodiffusion coefficient vanishes. The role
of parallel dynamics can be put in evidence by studying the behavior in the ideal limit
of large Zp with fixed impurity mass Ap = 1, as it was already done in the numerical
gyrokinetic results presented in Fig. 5.5. With Zp � 1 and Ap = 1 the thermodiffusion
coefficient (CT)ES does not vanish in the limit βe = 0 for both ITG and TEM instabilities,
which means positive or negative values of ω̂r, but decreases to finite small values. In
addition, in the ITG case, the coefficient (CT)ES is found to increase in the limit Zp � 1
with increasing βe and therefore with decreasing of γ̂, due to the concurrent increase of the
numerator and the decrease of the denominator, consistently with the gyrokinetic results
shown in Fig. 5.5. In contrast, no strong dependence on βe is obtained in the TEM case,
where the eigenfrequencies are found to very weakly depend on βe.

Then, the effect of parallel dynamics on the pure convection coefficient is considered.
Neglecting temperature fluctuations this is directly given by the results in [101],

(CP)ES || = −
2|ω̂|2 + 4ω̂rk̂

2
||ZpAi/Ap

|ω̂|2 + k̂2
||Ai/Ap

. (5.13)
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This yields an inward contribution, increasing in size with increasing Zp for the ITG
case (positive ω̂r). In contrast, in the TEM case it is directed inward for small impurity
charge, but reverses direction with increasing charge due to the outward contribution of
the second term at the numerator (negative ω̂r). These behaviors are also found in the
numerical gyrokinetic results presented in Fig. 5.4, in the limit of βe = 0. The dependence
on βe found in the ITG case can be also explained by the simple fluid model, observing that
with increasing βe and therefore decreasing γ̂, the second term −4ω̂rk̂

2
||ZpAi/Ap/(|ω̂|2 +

k̂2
||Ai/Ap) in Eq. (5.13) increases in size, in the inward direction.

All these considerations based on the simple fluid model, and the consistency found
with the more complete numerical gyrokinetic results, allow us to explain the dependence
on βe and impurity charge and mass found in the gyrokinetic calculations and to iden-
tify the main physical processes which are responsible for these. The main dependence
arise from electrostatic type of transport processes, mainly connected with the perpen-
dicular dynamics. An increase of βe affects the electrostatic impurity transport through
the dependence on βe of the eigenfrequencies, and in particular the growth rate, of the
background instabilities.

As mentioned above, in addition to the influence of the variation of the linear growth
rates on the electrostatic part of the impurity flux, electromagnetic effects on the E×B
transport are produced also by additional contributions due to the presence of electromag-
netic fluctuations in A||, which imply additional terms proportional to β itself. Despite
the fact that these play only a minor role in the relatively low β limit of typical tokamak
plasmas, it is interesting to explore their specific dependence on the mode frequency with
the analytical model. In order to single out the electromagnetic contribution proportional
to β, and adopt equations simple enough to perform analytical calculations, only the
electromagnetic part in the parallel motion equation is kept,
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In addition, temperature fluctuations, i.e. the T̂p term in the continuity equation, whose
main effect has been considered in the previous discussion, are neglected, and, by this, the
coupling with the energy balance is removed, which reduces the order of the algebraic sys-
tem. As already underlined, the coupling between continuity and parallel motion equation
is actually the only one remaining in the limit of large Zp.

Including the relationship between the fluctuating potentials φ̂ and Â|| given by Eq.
(3.30), one finds
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where
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Ω̂(ω̂). (5.16)

By expanding the complex quantities as follows, ω̂ = ω̂r + iγ̂, K̂ = K̂r + iK̂i, the results
for the transport coefficients are
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The terms proportional to K̂r or K̂i identify explicitly electromagnetic contributions
through their dependence on βi. The first term in Dp,E×B is the usual term due to E×B

advection, while the second and the third include the additional term due to Â|| propor-
tional to the density gradient in the Lorentz force, which has its origin in the diamagnetic
drift. Within these, the contributions proportional to (1/Zp) enter due to the divergence
of the diamagnetic heat flow, which is in fact a curvature effect. In Dp,E×B(CT)E×B the
same terms as the last two in Dp,E×B appear due to the additional term proportional to
the temperature gradient. The electrostatic part in Dp,E×B(CP)E×B occurs from E×B
compression, and the last two arise again from electromagnetic additions proportional to
ω̂ in the Lorentz force (coming from the ∂tA|| term), where contributions proportional to
(1/Zp) are again due to curvature effects.

In order to simplify these results, Dp,E×B as well as the dimensionless quantities
(CT)E×B and (CP)E×B are calculated in the limit of small βe, i.e. using Eq. (3.32).
After this reduction, K̂r includes a term ∝ R/Lne arising from the E×B advection term
in the electron continuity equation used to relate Â|| to φ̂, and a term ∝ ω̂r, while K̂i is
proportional to γ̂ only. The latter two are due to the time derivative of the fluctuating
electron density. Then, the additional contributions proportional to β in the transport
coefficients are,
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and
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Here, only the leading order electromagnetic terms O(β1
i ) have been taken into account.

The first and second terms in Dp,E×B and (CT)E×B have the same origin, namely E×B
advection and time derivative of the fluctuating electron density, respectively. The co-
efficient (CP)E×B is given by E×B advection and a curvature term. Eqn. (5.21), (5.22)
and (5.23) provide small additions on the charge and mass dependence of trace impurity
coefficients Dp,E×B, (CT)E×B and (CP)E×B in electromagnetic simulations.

It can be concluded that these contributions proportional to β are such that in the
case of diffusion and thermodiffusion the coefficients Dp,E×B and (CT)E×B depend on the
real frequency of the mode, and consist of terms which are all in the outward direction for
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the case of a ITG mode (ω̂r > 0), while they can balance in the case of TEM (ω̂r < 0). In
the thermodiffusion coefficient, this part proportional to β enhances the effect previously
described in the electrostatic part of the flux by the reduction of the growth rate of
the instability with increasing β. On the contrary, the part of the coefficient (CP)E×B

proportional to β given by Eq. (5.23), increases in size in the inward direction with
increasing βe for both the ITG and the TEM case.

5.3.2 Magnetic flutter transport coefficients

Although the magnetic flutter contribution to the total transport is small in the low βe

limit, the gyrokinetic results exhibit the interesting feature that magnetic flutter transport
components can reverse their direction from the ITG to the TEM instabilities. This is
particularly the case for the dominant term of the magnetic flutter transport, that is
the pure convective flux. In order to investigate the main physical reason behind the
numerical results, the same fluid model is applied also to the analytical calculation of
the magnetic flutter flux ΓFl/np = −ky〈ṽ||,pA||/B〉, and compared with the gyrokinetic
results. The complete analytical calculation of the complex phase relationship between
parallel velocity fluctuations ṽ||,p and parallel magnetic vector potential fluctuations Â||
is as lengthy as that for the E×B transport, which instead implies the calculation of
the complex phase relationship between density and electrostatic potential fluctuations.
However, a rather strong simplification can be obtained keeping only first order terms in
β in the expression for the flux and focusing on the calculation of the term in the pure
convective contribution which survives in the limit of highly charged impurities. This shall
allow us to provide an example of the dependence of the direction of the magnetic flutter
transport on the sign of the real frequency of the unstable mode. Firstly, since Â|| ∝ βe,

terms directly proportional to Â|| in the expression of ṽ|| p given by Eq. (3.26), which stem
from the electromagnetic part of the Lorentz force in the parallel motion equation, yield
contributions which are proportional to β2 in the final expression of the flux and therefore
can be neglected. Moreover, is is noted that in Eq. (3.26), the effect of the parallel pressure
gradient term vanishes with increasing impurity inertia, while the parallel gradient of the
electrostatic potential fluctuations produces a residual effect at high charge, due to the
presence of the charge in the Lorentz force. Of course, through the parallel pressure
gradient, contributions to the parallel velocty fluctuations which are proportional to the
radial logarithmic gradients of the equilibrium impurity density and temperature R/Ln,p

and R/LT,p occur, and these will not be included in our analytical calculation. By focusing
only on the leading term for highly charged impurities, our calculation will deliver a pure
convective term only. For such a term, the calculation of the phase relationship between
φ̂ and Â||, which is first order in β, is required. Eq. (3.31) in the small β limit is used.
Recalling the discussion about the calculation of flutter fluxes in Chapter 4, and especially
Eq. (4.12), whose dominant part for impurities changes to

ΓFl,p ∝ <〈i
∫
d3v

∫
d3vv‖,phpv‖,eh

∗
e〉FS, (5.24)

it is clear that the approximation of only considering the electron current in Ampère’s law
is a meaningful simplification.

It is underlined that in Eq. (3.31) the quantity Ω̂ depends critically on the eigenfre-
quency of the instability, which occurs here due to the reactive passing electron response
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given by the continuity equation in the presence of magnetic fluctuations. The analytical
expression of the magnetic flutter pure convection coefficient in this limit is,

(CP)Fl = − 4γγ̂2
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where the prevailing contribution in Dp, tot is given by the E×B diffusion and therefore
is positive. The saturation level has been estimated as before, applying the relationship
between Â|| and φ̂, see Eq. (3.31) in the small β limit. The analytical expression can be
compared with the gyrokinetic results. It is found that (CP)Fl in Eq. (5.25) is negative
for ITG modes, that is, it describes an inward directed convection. In addition, it can
reverse sign in case of TEM instabilities with sufficiently large absolute values of ω̂r. This
behavior agrees with the numerical results of our ITG and TEM reference cases presented
in Figs. 5.3, 5.4 and 5.5, where a reversal of the sign of the coefficient is obtained in the
two cases. It is also interesting to note that while in the TEM case the dependence of
(CP)Fl on β is linear, since the eigenfrequencies of the instability are weakly affected by an
increase of β itself, in the ITG case, the dependence on β is stronger, since the decrease of
the growth rate of the instability with increasing β implies a reduction of the denominator
in Eq. (5.25), which leads to a more parabolic type of dependence.

In a similar way, the occurrence of the mode eigenfrequency in the relationship between
φ̂ and Â|| impacts also the behavior of the magnetic flutter components of the diagonal
diffusion and the thermodiffusion. The calculation of these terms is however longer, since
it requires the derivation of the relationship between parallel velocity fluctuations and
electrostatic potential fluctuations occurring through the E × B advection in the impu-
rity continuity and energy balance equations. As already mentioned, these contributions
decrease with increasing impurity mass Ap.

5.3.3 Conclusive remarks

In conclusion, this Section allowed us to identify the main physical mechanisms through
which an increase of β affects the E×B transport of impurities. It was shown that the
main variations are directly connected with the electrostatic part of the flux, which is
modified by to the influence of β on the growth rate of the instability in the background
plasma. In particular for the off–diagonal coefficients CT and CP, this is related to the
electrostatic coupling between density and temperature impurity fluctuations produced by
the ∇B and curvature drift, and explains why β effects are strongly reduced at large values
of the impurity charge and mass. At high impurity charges with a fixed impurity mass,
additional terms due to parallel motion lead to finite electromagnetic contributions to the
thermodiffusion and pure convection coefficients. Also the additional contributions to the
E×B transport produced by the coupling with the fluctuations of the magnetic parallel
vector potential A|| in the small β limit were investigated specifically. It is found that in
the case of the diffusion and thermodiffusion coefficients, these contributions depend on
the sign of the real frequency of the mode, and in particular in the ITG case, can enhance
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the thermodiffusion in the outward direction, which is a particularly relevant result for the
transport of light impurities. In the case of the pure convection coefficient, the contribution
to the transport produced by A|| are directed inward for both ITG and TEM, since they
are found to be independent of the direction of propagation of the mode. The transport
coefficients of the magnetic flutter contribution are given by the phase relation between
parallel velocity fluctuations and the fluctuations in the parallel component of the vector
potential. The comparison of the explicitly derived pure convection coefficient with the
gyrokinetic results indicates that the main physics mechnism responsible for the reversal
of the magnetic flutter convection when moving from the ITG to the TEM reference case is
connected with the occurence of the mode eigenfrequency in the relationship between the
fluctuating electrostatic and vector potentials, due to the non–adiabatic passing electron
response in the presence of magnetic flucutations.

5.4 Impurity transport for typical H–mode plasma param-
eters

In this section, calculations of impurity transport including electromagnetic effects are
made for typical H–mode parameters around mid–radius. It is underlined that the chosen
plasma parameters are also very close to those predicted for the ITER standard scenario
[114], in the dimensionless form which is applied in the gyrokinetic calculations. The
logarithmic gradients at mid-radius are R/LTi = 5.0, R/LTe = 5.3 and R/Ln = 2.1, the
safety factor is q = 1.1, the magnetic shear is s = 0.4, the ion to electron temperature
ratio is Te/Ti = 1.05, while the geometry parameters (elongation of 1.5 and triangularity
of 0.1) have been used in Miller geometry [41]. Collisions have been included. The local
collisionality is νei [cs/R] = 0.06. The dominant micro–instability in these conditions is a
ITG mode for all presented values of βe. Therefore no large difference with respect to the
ITG reference case is expected. However, here the realistic situation of comparable ion
and electron logarithmic temperature gradients is considered, which is more suited for at
least qualitative comparisons with the experimental results available in the literature on
the impact of β on the transport of impurities. Of course, for quantitative comparisons,
the actual measured experimental profiles should be used as input in the gyrokinetic
calculations, and, if possible, nonlinear simulations should be performed.

Linear gyrokinetic simulations for the interesting ion species tritium, helium, carbon,
nickel and tungsten with a ionization stage 46+ typical of H–modes in present devices
around mid–radius (Te ≈ 3 keV) are shown in Fig. 5.7. Vertical lines in the figure identify
the value of βe = 1.8 % at the ITER standard scenario parameters, and which can be
also considered typical for usual H–mode operation. Results qualitatively similar to those
presented in Fig. 5.4 are obtained. The results of Fig. 5.7 allow us to draw some specific
conclusions which can be expected to be directly applicable to typical H–mode plasmas.

Magnetic flutter diffusion and thermodiffusion provide only small contributions for all
ion species and at all experimentally relevant values of βe. In contrast, more significant
can be the convective part of the magnetic flutter, particularly for fully ionized heavy
impurities. The magnetic flutter convection for high–Z impurities can be as large as 10
% of the corresponding pure convective E×B transport. However, for small–Z impurities
like tritium or helium it is practically negligible, as it can be seen from Fig. 5.7f). Thus,
for the latter the total magnetic flutter contribution to the transport is only of the order
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Figure 5.7: Electromagnetic dependence of E × B (left) and magnetic flutter (Fl, right)
transport coefficients for the impurities tritium, helium, carbon, nickel and tungsten (at
the ionization stage of 46+) using typical H–mode profile data, as those predicted for the
ITER standard scenario. The charge concentration is assumed to be Zpnp/ne = 1/1000.

of 1% at the highest values of βe considered here.
The ratio of the E×B diagonal diffusion to the total effective conductivity reaches

a finite asymptotic value with increasing charge and decreases with increasing βe at all
charges. As discussed in the previous Section, this is caused by the drop of the linear
growth rate, which is found to affect the diagonal diffusivity much more than the total
effective conductivity. The larger value of Dp,E×B/χeff obtained in this case as compared
to the ITG reference case can be understood as a consequence of the lower logarithmic
temperature gradient applied here, and therefore in terms of proximity to linear stability,
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which implies a stronger reduction in χeff as compared to Dp,E×B. The theoretical result
of a decrease of the light impurity diffusivity with increasing β agrees with experimental
observations for helium transport in DIII-D [98] and for trace T transport in JET [99].
Since the magnitude of diagonal diffusion of helium governs the impact of the central
helium source produced by fusion reactions on the helium ash concentration profile, the
reduction of Dp,E×B/χeff with βe deserves consideration in the prediction of the helium
ash profile in high β operational scenarios and certainly requires further theoretical and
experimental investigations. It is also noted that the diffusion coefficient for helium in the
electrostatic limit agrees with previous linear and nonlinear calculations [108].

At moderate values of βe tritium thermodiffusion is directed inwards, while all heavier
impurities move outwards. This shows an interesting difference with respect to the results
for (CT)E×B obtained for the ITG case shown in Fig. 5.4e. This behavior can be understood
through Eq. (5.11), and shows that for sufficiently low charges the inward contribution
−5/(3Zp) can prevail over the outward contribution provided by ω̂r for ITG modes. In
the present case, with comparable temperature gradients and not too large value of ω̂r,
which is typical of reactor relevant H–mode plasmas, such a transition in the direction
of thermodiffusion takes place between the charge Zp = 1 of hydrogenic species and the
charge Zp = 2 of helium. In the case of TEM instabilities, thermodiffusion is always
directed inwards, for any particle charge. For (CP)E×B, negative values are found for all
impurity species, that is an inward pure convection. Its absolute value increases with
increasing Zp/Ap, while a reduction of the charge to mass ratio, like in the case of the not
fully ionized W, acts to reduce the contribution.

Also the nonlinear behavior of diagonal diffusion for the considered ITER case has
been calculated. Since three gyrokinetic species are required, the computational cost
was reduced compared to the nonlinear runs presented in Chapter 4 by considering a
spectrum of 32 toroidal modes, which leads to a coverage kyρs = 0.04 to kyρs = 1.33. This
is sufficient to appropriately describe impurity transport, which takes place mainly in the
range kyρs < 1. The simulation box is chosen to be Lx/ρs = 85 and Ly/ρs = 146. Using
196 radial points a resolution of dx/ρs = 0.45 is obtained. In velocity space, 128 points
are used (8 energies, 4 passing and 4 trapped pitch angles with two signs of velocity).
The result is shown in Fig. (5.8). The decrease of the normalized diagonal E×B diffusion
with increasing βe is also present in nonlinear calculations and is therefore in qualitative
agreement with experimental results. For helium, however, generally larger values of
Dp/χeff are found, while for Nickel the deviation from quasi–linear results are only small.
This is connected to the choice of the quasi–linear weighting, namely only considering the
fluxes at kyρs = 0.3. The flutter component is again small compared to the E×B one, but
stronger deviations between the nonlinear and linear results are obtained. The reason is
again the spectral weighting, which is here particularly problematic due to the stronger
ky dependence of flutter fluxes as compared to their E×B counterparts, as is can be also
concluded from Fig. (5.2).

Lastly, the total convection to diffusion ratios obtained in linear calculations are pre-
sented in Fig. 5.9. Here the thermodiffusion coefficient CT has been multiplied by the
actual logarithmic temperature gradient R/LTi and summed to CP to obtain the ratio
of the total off–diagonal flux to the diagonal diffusion. As already illustrated previously,
such a ratio is equal to the value of R/Ln of the impurity in the absence of a particle
source and for negligible neoclassical transport in stationary conditions. The E×B and
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Figure 5.8: Electromagnetic dependence of trace helium and Nickel normalized diagonal
diffusion coefficient for both E×B (a) and magnetic flutter (b) obtained from nonlinear (full
symbols) and quasi–linear calculations (open symbols). The error bars for the nonlinear
results indicate the variance of the fluctuation level.

magnetic flutter parts of the off–diagonal flux have been separated in Fig. 5.9a and Fig.
5.9b, respectively, and divided by the total diagonal diffusivity, sum of the E×B and the
magnetic flutter diffusivities. Consistently with all previous results, the magnetic flutter
contribution to the ratio RV/D is small for the range of standard operational scenarios
(βe = 1.6% − 1.9%). Nevertheless, it can reach ≈ 10% of the E×B transport at the pro-
jected hybrid operation, with βe = 2.3% − 2.6%. The dominant E×B part is increasing
with β at small values of the impurity charge, as a consequence of the effect of thermod-
iffusion. This result is of particular interest for He, which turns out to have the smaller
value of RV/D. On the contrary, the total convection to diffusion ratio decreases (that
is, it increases in size, in the inward direction) for heavy impurities. The effect, however,
remains small, and no case of real strong accumulation with increasing β is predicted to
occur, which is a result favorable for nuclear fusion applications.

5.5 Summary and conclusions

Electromagnetic effects on the transport of trace impurities in tokamaks have been com-
puted using linear gyrokinetic simulations and analytical calculations based on a simplified
fluid model. The E×B and magnetic flutter components of the transport have been cal-
culated separately, in order to investigate their relative contribution to the total impurity
flux. Both components have been decomposed in their diffusive, thermodiffusive and pure
convective contributions, making use of the linear dependence of the flux of trace impuri-
ties on the density and temperature logarithmic gradients. Reference cases with dominant
ITG and TEM modes in the plasma background have been considered, and the dependence
of the transport on charge and mass investigated.

In conditions of both ITG and TEM instabilities, the transport produced by magnetic
flutter is found to be usually only of the order of 1% with respect to the E×B transport.
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Figure 5.9: Electromagnetic dependence of the ratio of the E×B (a) and magnetic flutter
(b) off–diagonal contributions (including both thermodiffusion and pure convection) to
the total diagonal diffusion, RV/Dp,tot, for tritium, helium, carbon, nickel and tungsten
(at a ionization stage of 46+), using typical H–mode profile data as those predicted for
ITER. The charge concentrations are assumed to be Zpnp/ne = 1/1000. The shaded areas
denote the projected βe values for standard and hybrid operational scenarios.

Interestingly, the dominant part of flutter transport is of pure convective type. For ITG
modes and at large values of β it can be as large as 10% as compared to the pure convection
produced by E×B transport, providing a non–negligible component of the dependence of
the pure convection coefficient on β. The ITG and TEM reference cases allowed us to
show that changes in the background instability can strongly affect the dependence of the
impurity transport coefficients on βe. In the ITG case, the diagonal diffusion normalized to
the effective total heat conductivity decreases with increasing βe, while it remains almost
constant in the TEM reference case. Thermodiffusion is found to increase in the outward
direction with increasing βe at all impurity charges in the ITG case. This can lead to a
reversal of the thermodiffusive flux from inward to outward for very light impurities with
increasing βe, since, differently from heavy impurities, the thermodiffusive contribution of
very light impurities can be directed inward in the electrostatic limit in the ITG case. In
the TEM case, thermodiffusion is almost independent on βe and directed inwards at all
charges. The pure convection term is directed inwards in both cases and increases in the
inward direction with increasing βe. The latter effect is stronger in the ITG case, whereas
in the TEM case this behavior is rather weak.

The dependence of the transport on the impurity charge is also of interest. It is found
that the diagonal E×B diffusion decreases in the ITG case while it increases in the TEM
case with increasing impurity charge. Impurity mass does not have a strong impact. On
the other hand, as it can be easily expected from simple considerations, inertia strongly
impact the properties of the magnetic flutter transport. In particular, the diagonal flutter
diffusion vanishes for heavy impurities. The same is obtained for both E×B and magnetic
flutter thermodiffusion. Pure convection remains finite at high Zp = Ap/2 for both the
E×B and the flutter component.
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The numerical results have been interpreted by means of a reduced fluid model, con-
sisting of the continuity, the parallel force balance including the electromagnetic Lorentz
force terms and the energy balance equation for the impurity species, taken from Refs.
[46, 47, 48, 39, 49]. Analytical expressions for the various impurity transport coefficients
have been derived, which have been used in order to identify the main coupling mecha-
nisms leading to electromagnetic effects on impurity transport. It is found that the main
effects obtained in the gyrokinetic calculations are due to the impact on the electrostatic
part of the E×B transport produced by the modification of the linear growth rate of the
instability in the background plasma with increasing βe. The main differences between
ITG and TEM therefore are directly a consequence of the fact that an increase of βe pro-
duces a reduction of the linear growth rate in ITG modes, while it affects very weakly the
linear growth rate in TEM modes.

The behaviors of diagonal diffusion, thermodiffusion and pure convection have been
investigated for a realistic case of typical H–mode plasma parameters, similar to those
predicted for ITER. The dominant background microinstability turns out to be an ITG
mode. Here, more physics effects like plasma shape and collisions are taken into account
compared to the reference cases used for parametric studies. The transport coefficients
show mainly the same properties as in the reference ITG case. In particular, the decrease
of diagonal diffusion with increasing βe found in the reference ITG case is confirmed by
these more realistic linear and nonlinear calculations and it is in qualitative agreement
with observations obtained with light impurities in DIII-D [98] and JET [99]. This result
certainly requires some consideration, since too strong a reduction of diagonal diffusion of
He with increasing βe might lead to an accumulation of helium ash in the center in high β
scenarios in a reactor due to an increase of the effect of the central helium source produced
by fusion reactions. Our theoretical result should motivate further experimental investi-
gations on this specific problem and direct quantitative comparisons between theoretical
predictions and experimental measurements, in order to increase our predictive capability
of the consequences of high β operation on helium ash accumulation in a burning plasma.

An additional interesting result is related to the behavior of the total off–diagonal
transport, sum of thermodiffusion and pure convection. This is directed inwards for im-
purities at all charges in the realistic H–mode case. The ratio of the total off–diagonal
transport to the diagonal diffusion decreases weakly in size with increasing βe for light
impurities, while it increases in size with increasing βe for heavy impurities. Therefore, in
the absence of significant central impurity sources and with small neoclassical transport,
an increase of βe is predicted to produce a small flattening of light impurity density profiles
and a peaking of heavy impurity density profiles.
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Chapter 6

Investigations of electromagnetic
effects on parallel momentum
transport

6.1 Formulation of the problem

The study of turbulent toroidal momentum transport currently receives much attention
in the field of fusion plasma physics. Because of the toroidal symmetry properties of toka-
maks, the toroidal angular rotation is undamped, in contrast to the poloidal component.
The shear of toroidal velocity goes into both the E×B shear, which is perpendicular to
the unperturbed magnetic field, and the shear of the parallel velocity. It was investigated
that the latter may enhance turbulent transport due to the fact that a parallel velocity
gradient adds a drive to ITG modes [115, 116, 117]. E×B shearing, on the other hand,
is known to have a stabilizing influence and thus has a beneficial effect on energy con-
finement in fusion devices. This was reported for instance in [118] and references therein.
The relative contribution of these two mechanisms is mainly determined by the ratio of
poloidal to toroidal magnetic field strength. For typical values of Bp/Bt in tokamaks, the
E×B shearing effect dominates and turbulence is suppressed. Another helpful effect is
the stabilization of the resistive wall mode by a sufficiently large toroidal rotation, see for
example [119]. From initial studies of Mattor and Diamond a strong coupling between
ion heat and momentum transport was identified, see [120] and references therein. Conse-
quently, the diagonal transport coefficients of both channels may be of similar magnitude.
This was conjectured from experiments with large external torque on the plasma provided
by NBI heating, see e.g. [121]. However, even without an external torque a so–called
intrinsic rotation is observed. The latter is of particular interest for plasma experiments
going towards a reactor size scale since only a very small external torque will be present
there. Moreover, a recent work [110] showed the impact of a finite toroidal rotation on
heavy impurity transport.

Besides the mentioned fast progress made in the last years on this topic, electromag-
netic effects on turbulent toroidal momentum transport have hardly been studied up to
now. This might be connected with the fact that theoretical works firstly focussed on the
mechanism responsible for the generation of toroidal momentum transport. Technically,
flux–tube codes usually calculate the parallel momentum transport, which is very close
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to the toroidal one since the poloidal component included in the first is strongly damped.
Then, the transport is given by the parallel velocity moment of the perturbed distribution
function, given by the gyrokinetic equation, times the fluctuating E×B velocity in ra-
dial direction. For local simulations in an up–down symmetric equilibrium geometry and
without toroidal rotation, the gyrokinetic equation is symmetric under certain symmetry
transformations, as is explained in [120]. Since parallel velocity fluctuations are an an-
tisymmetric quantity, the momentum flux will be exactly zero under the aforementioned
conditions. However, as it is explicitly discussed in [120], there is a finite momentum
flux if the symmetry in the direction along the magnetic field line is broken. This can
be caused by a finite toroidal velocity gradient û′ = −R/cs∂ru‖, where u‖ is the parallel
rotation of the plasma. This symmetry breaking mechanism is the origin of the diagonal
part and usually expressed in terms of the Prandtl number χφ/χi defined as the ratio
of viscosity to thermal conductivity. The second mechanism originates from the toroidal
rotation itself, and can be elegantly derived by transforming to the reference frame which
moves with the plasma. In such a frame inertial forces, namely the Coriolis force and the
centrifugal force, occur. While the latter plays only a minor role in tokamak plasmas due
to the quadratic dependence on û = u‖/cs, which is usually less than 0.5, the former is an
important contribution leading to an inward momentum flux, the so–called Coriolis pinch.
As a consequence, a radial gradient of the toroidal velocity profile is generated even in the
absence of an external torque [122]. There are additional leading order contributions to a
finite momentum flux, namely due to the particle flux effect, E×B shearing and up–down
asymmetric plasma shape, but here the focus is put on the modification of the first two
due to electromagnetic effects. These can be expected to be the leading terms in the core
of a low ρ∗ = ρs/a, fastly rotating plasma [120].

For the diagonal part, the consequence of a finite βe has already been explored in
[123] for the GA-std case, which shows an approximately 20% reduction of the Prandtl
number at βe = 0.5% as compared to the electrostatic case. In the present study the
electromagnetic influence under different physics parameters will be presented. While
the main focus of this Chapter is on electromagnetic effects on the Coriolis pinch, which
was never investigated up to now, also the diagonal part is studied. In this context, the
influence of the self–consistent parallel mode structure, as it was explicitly reported in
[124], plays a crucial role in explaining the behavior of both the pinch and the Prandtl
number. There exists, however, also an additional symmetry breaking due to the inclusion
of a finite βe, but this has only a very small influence.

This Chapter is organized as follows. The next section includes gyrokinetic results of
the electromagnetic effect on both the Prandtl number and the Coriolis pinch. The latter
is shown to be strongly influenced by the parallel mode structure, which is inherent to the
parallel wave vector k‖. More specifically, the implication of different values of the safety
factor, which in this context turns out to be the most important parameter, is discussed
by use of gyrokinetic simulation results as well as by semi–analytical considerations. The
obtained results are summarized in the end, and the main conclusions are drawn.

6.2 Linear simulations

As explained above, the breaking of the symmetry in the parallel direction is the cause of
a finite momentum flux. The additional terms in the expression for the main contribution
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to the momentum flux, which is similar to Eq. (4.7), with the additional factor miv‖ =

ς(2µ̂iεT̂σ(1−λB̂))0.5, suggests that additional terms proportional to Ω̂ being defined as the
relation between φ̂ and Â||, Eq. (4.5), may account for a modification of the momentum

flux due to electromagnetic effects in case of Â|| deviating from perfect antisymmetry
due to a finite toroidal rotation and/or its gradient. Indeed, the parallel structure of the
electrostatic potential φ̂ shows a breaking of symmetry when the toroidal rotation is finite,
as it was reported in [124]. This is in particular visible for the imaginary part of φ̂(θb), as
it is shown in Fig. 6.1a for the GA-std case defined in Chapter 4, with û = 0.2 and û′ = 0.
The imaginary part of the parallel component of the vector potential, however, does not
exhibit a strong deviation from a perfect antisymmetry, see 6.1b, while the real part does.
Qualitatively the same effect is also seen in cases with pure diagonal momentum transport,

Figure 6.1: ITG mode ballooning dependence of the electrostatic potential for û = 0.2
and three different values of βe (a). Parallel component of vector potential for û = 0.2
and βe = 0.25, 0.5% (b). The GA-std case has been used.

for example when taking û = 0 and û′ = 0.2. As a consequence, Ω̂ has to compensate
the symmetry breaking through the dependence on k‖ and/or through additional terms

originating from the Coriolis drift in Eq. (4.5). This implies that Ω̂ remains no longer
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fully antisymmetric, and additional terms in the expression for the momentum flux are
present.

However, as it will be explained below, these additions impact the momentum flux
only by a very small amount. From the discussions in Chapter 4 it was apparent that
new terms, namely the ones proportional to Ω̂ and therefore to βe, play a crucial role in
explaining the influence of electromagnetic effects on electron transport. The reason for
their importance is the fact that parallel dynamics scales with

√
µ̂, which is important

for electrons (
√
µ̂e ∼ 60). For impurities, however, the additional terms imply only a

very small contribution because µ̂i ≤ 1. Since toroidal momentum transport is practically
exclusively given by the ions through their higher mass as compared to the electrons
(momentum transport is

√
µ̂e smaller for electrons), the aforementioned additional terms

do neither influence the magnitude of the ’electrostatic’ symmetry breaking nor they play
a strong role through the additional phase shift since they are proportional to

√
µ̂iβe ∼ βe

and therefore very small for βe–values being reached in tokamaks. Thus, it it expected that
the influence of a finite βe on momentum transport is an indirect, ’electrostatic–like’ one,
as it was the case for impurity transport. It will be shown that the modification of k‖ due
to electromagnetic effects is the leading order influence responsible for the modification of
momentum transport.

6.2.1 Influence of the self consistent mode structure

While the mechanism of the symmetry breaking due to a finite toroidal rotation resulting
in a Coriolis pinch is known for a while [122], the influence of the self–consistent mode
structure was discussed only more recently [124]. In the latter reference, a low field side
gyrofluid model was used in order to show that it is possible to formally combine the
Coriolis drift with the parallel dynamics. The equations for continuity, parallel motion
and energy balance read

ω̂n̂+ 2n̂+ 2T̂ + 4ūv̂|| =

[
R

Ln
− 2

]
φ̂,

ω̂v̂|| + 4v̂|| + 2ūn̂+ 2ūT̂ =
[
û′ − 2ū

]
φ̂

ω̂T̂ +
4

3
n̂+

14

3
T̂ +

8

3
ūv̂|| =

[
R

LT
− 4

3

]
φ̂. (6.1)

The effects from Coriolis drift and parallel mode structure are combined into one single
term ū = û + k̂‖, where k̂‖ = k‖R/(2kyρs) is the normalized parallel wave vector. This
suggests that the two can actually be interchanged. There is, however, an important differ-
ence between the two. The Coriolis drift terms are entirely determined by the prescribed
background rotation velocity, while the parallel wave vector has to be determined from
the solution of the dispersion relation.

The following discussion is limited to the most unstable mode corresponding to a
particular choice of k̂‖. This is a common assumption made in the literature. It can be
shown, that for adiabatic electrons the most unstable mode satisfies ū = 0 or

û = −k̂‖. (6.2)

According to this solution, the parallel dynamics is such that it effectively eliminates
the Coriolis drift from the equations. This is referred to as the ’compensation effect’
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in Ref. [124]. However, the gyrofluid model, which led to this conclusion, has some
limitations. It uses a single wave vector in order to describe the mode structure along
the field line, while in toroidal geometry the direction along the magnetic field line is
not homogeneous and various k‖ modes would couple. This and other limitations [124]
could lead to the conclusion that the simple fluid model is not able to capture the full
physics effect. But in contrast, it was shown that this compensation is indeed present, and
gyrokinetic simulations with adiabatic electrons give zero momentum flux. Simulations
with kinetic electrons, which include kinetic electrons, reveal that the compensation is
imperfect such that a finite momentum flux is obtained. This can be seen from Fig. 6.2,
modified from [124], which is suited for discussing the physics mechanisms at play. The

Figure 6.2: Time traces of the momentum flux for the adiabatic electron case, the kinetic
electron case, and the 2D adiabatic electron case. The dashed line gives the part of the
momentum flux not including the particle flux. Until the normalized time t = 30R/vth was
reached, the rotation is zero (û = 0, û′ = 0). At this point, a restart using û = 0.2, û′ = 0
was made (from [124]).

momentum flux is shown for different electrostatic simulations of the GA-std case in s−α
geometry, namely a simulation with adiabatic electrons, one with kinetic electrons and
one called two dimensional (2D) adiabatic electrons. The latter has k̂‖ = 0 due to the fact
that all parallel derivatives are set to zero. All simulations start with û = 0, û′ = 0. At the
normalized time t = 30R/vth, a restart using û = 0.2, û′ = 0 was made. The normalization
is done in such a way that the y–axis represents RVφ/χi for the case of û = 0.2. For the
kinetic electron case, which has a finite particle flux, the dashed line gives the sum of the
Coriolis pinch and the particle flux contribution. The difference to the dominant Coriolis
part is small.

Without toroidal rotation, the momentum flux is at the null, as it could have been
expected from the previous discussion based on the symmetry properties. The symmetric
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electrostatic potential, which implies k̂‖ = 0 due to the definition

k‖ ≡ 〈k‖〉 = − i

Rq

∫
dθbφ

∗ ∂θbφ∫
dθbφ∗φ

(6.3)

in combination with an antisymmetric parallel velocity fluctuation leads to a zero flux.
With toroidal rotation, the electrostatic potential is asymmetric, and the Coriolis drift
generates an asymmetric parallel velocity perturbation [122] such that the flux is finite. In
the 2D adiabatic case, the compensation is absent due to 〈k̂‖〉 = 0 and the pinch saturates
at a high negative value. For kinetic electrons, the mode structure along the field line
adjusts and generates a finite 〈k̂‖〉 leading to a compensation effect. The latter is (almost)
perfect for adiabatic electrons, as it was concluded from the simple gyrofluid model. This
shows that the breaking of symmetry is a necessary but not sufficient condition for the
generation of a finite momentum flux. Since electromagnetic effects modify the parallel
mode structure through a decrease of the mobility of passing electrons, as it can be already
seen from Fig. 6.1, it has to be expected that also the momentum pinch will change.

From Eq. (6.1) also the effect of a finite βe on the diagonal part can be understood.
The toroidal rotation gradient is removed from the parallel force balance equation if û′ −
2〈k̂‖〉 = 0 which implies that in this case 〈k̂‖〉 has to be a finite positive number for this
compensation to take place, in contrast to the Coriolis pinch case. Consequently, the
specific impact of a finite 〈〈k̂‖〉〉 is discussed below in more detail using linear gyrokinetic
simulations.

6.2.2 Results for Coriolis pinch and Prandtl number

Firstly, it is interesting to explore the influence of electromagnetic effects on the Coriolis
pinch. The discussion is focussed on the behavior on βe keeping fixed β′ = 0. The
following parameters have generally been used in order to compute the momentum flux
for the Coriolis effect, namely û = 0.2 with û′ = 0. Figure (6.3a) shows the dependence
of the Coriolis pinch RVφ/χi as a function of βe. It is apparent that the pinch is strongly
reduced with raising βe. This result has been benchmarked with two other gyrokinetic
codes, namely GKW [125] and GS2 [126, 127]. The results are very similar, especially at
low βe, where the ITG mode is the most unstable, and at high βe, where a KBM shows the
largest growth rates. For intermediate values of βe, there are some discrepancies, especially
at the transition from ITG to KBM, which may be caused by different resolutions due
to the partly different discretization schemes used in the three codes. As it has been
anticipated, the main reason for the decrease of the pinch is due to an increase of 〈k̂‖〉 in the
negative direction, thus increasing the compensation of the toroidal velocity influence with
raising βe. In the electrostatic case, the normalized parallel wave vector is approximately
〈k̂‖〉 = −0.1, which would cause a 50% reduction of the pinch since û = 0.2 according to
the gyrofluid model, Eq. (6.1). This can be also seen from Fig. 6.2 [124]. With increasing
βe, the value of 〈k̂‖〉 increases in absolute values up to approximately −0.17 for the last
ITG dominated value at βe = 0.6%, as shown in Fig. 6.3b, which leads to the conclusion
that the pinch should be reduced drastically. This is clearly the case, as it is shown in Fig.
6.3a. The increase of 〈k̂‖〉 with βe means a stronger symmetry breaking of the electrostatic

potential φ̂, which can be already deduced from Fig. 6.1a. Approaching the KBM branch,
the pinch can even reverse its sign from inward to outward, as a consequence of the effects
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Figure 6.3: Benchmark of the electromagnetic dependence of the Coriolis pinch using GKW
[125], GS2 [126, 127] and GYRO [19](a). Ballooning angle averaged parallel wavenumbers
〈k̂‖〉 and 〈k̂2

‖〉
0.5 as a function of βe, obtained with GYRO (b).

of 〈k̂‖〉, 〈k̂2
‖〉

0.5 and ωr. This behavior will be explained using the gyrokinetic formulas

Eqn. (6.4) and (6.5). For KBM, 〈k̂‖〉 is practically zero, which can be expected because
for ballooning modes A‖ is the dominant fluctuating field. The latter is less affected by
a finite toroidal rotation because the electron motion, which mainly determines A‖ (see
Chapter 4.2), is much faster than û.

For illustration, a simple approximate gyrokinetic formula in s − α geometry with
α = 0 is derived in order to explain the electromagnetic behavior of the pinch in both the
ITG and the KBM branch. It consistently allows for a finite distortion of the electrostatic
potential symmetry through 〈k̂‖〉. An analytical expression for RVφ reads

RVφ ∝ =

∫ d3v
v̂||(ω̂ − ω̂∗,0)FMJ0

ω̂ − 〈ω̂d,0〉 − 2kyρs〈cos θb + sθb sin θb〉v̂||
(
〈k̂‖〉+ û

)
 /û, (6.4)

where the θb dependence of ωd has been kept, see Eq. (2.62), and k̂‖ = k‖R/(2kyρs(cos θb+
sθb sin θb)). This gyrokinetic derivation includes the property that the Coriolis pinch goes
to zero for 〈k̂‖〉 + û = 0, corresponding to the case of adiabatic electrons in Fig. 6.2 and
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consistent with the gyrofluid model, Eq. (6.1). For the ion heat conductivity, a finite
width of φ̂ in the ballooning direction through 〈k̂2

‖〉
0.5 is used. Then, χi is given by

χi ∝ =

[∫
d3v

(v̂2
|| + v̂2

⊥)(ω̂ − ω̂∗,0)FMJ0

2(ω̂ − 〈k̂2
‖〉0.5v̂|| − 〈ω̂d〉)

]
/
R

LT
. (6.5)

In the latter formula, the effect of the distortion of the ballooning symmetry through 〈k̂‖〉
is only a small correction and therefore neglected. The diagonal part is given by

χφ ∝ =

[∫
d3v

v̂||(ω̂ − ω̂∗,0 − kyρsv̂||û
′)FMJ0

ω̂ − 〈ω̂d,0〉 − 2kyρs〈cos θb + sθb sin θb〉v̂||〈k̂‖〉

]
/û′. (6.6)

The relation of Eq. (6.4) to Eq. (6.6) defines the Coriolis pinch and Eq. (6.6) to Eq. (6.5)
the Prandtl number, where the drifts

ω̂d,0 = kyρs

(
v̂2
|| +

1

2
v̂2
⊥

)
(cos θb + sθb sin θb) (6.7)

and

ω̂∗,0 = kyρs

[
R

Ln
+

(
ε− 3

2

)
R

LT

]
(6.8)

have been used. It is emphasized that the decrease of the pinch in the ITG branch with
raising βe is found to be predominantly due to the increase of 〈k̂‖〉. Then, at βe & 0.6%,

it appears that the pinch changes its sign due to an interplay of a smaller 〈k̂‖〉 in negative
direction, see Fig. 6.3b, in combination with a much higher mode rotation frequency.
When βe is raised even further, the KBM growth rate increases and the real eigenfrequency
decreases, leading to another sign reversal and an increase of the pinch in the negative
direction. Therefore, since the influence of 〈k̂‖〉 is very weak in the KBM branch, the
physics mechanism for a finite momentum flux has to be attributed to a symmetry breaking
of parallel velocity fluctuations through a finite û‖, and by the changes of ωr and γ.

Inserting the parameters 〈k̂‖〉, 〈k̂2
‖〉

0.5, ωr and γ, which are obtained from GYRO, into the

simple gyrokinetic model, Eqn. (6.4) and (6.5), and assuming realistic parameters for the
drifts, the behavior of the pinch with increasing βe is qualitatively recovered, as it can be
seen in Fig. 6.4. However, the drastic change of the pinch in the KBM branch might not
be relevant for experiments, since it is unlikely that tokamaks can operate in this regime.
In the experimentally relevant ITG regime, on the other hand, the reduction of the pinch
is sizeable for this case.

These results motivate further studies of electromagnetic effects on the Coriolis pinch,
but also on the Prandtl number. From the previous results in Fig. 6.3 it could be
conjectured that the decrease of the Coriolis pinch with increasing βe is particularly strong
in the vicinity to the onset of the KBM. From Eq. (3.32) and consistently Chapter 4.2.1 it
is clear that the effect of finite perpendicular magnetic field fluctuations scales like βeq

2, as
it was already reported in [50]. Thus, it is instructive to explore the behavior of both the
Prandtl number and the Coriolis pinch as a function of βe using different values of q. This
is done for the GA-std case using q = 1.1, 1.5, 2.0 and 2.5. The results are shown in Fig.
6.5. From Fig. 6.5a it is apparent that with increasing safety factor q, the KBM becomes
the most unstable mode at lower values of βe. Therefore, both the Prandtl number, Fig.
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Figure 6.4: Theoretical model using the gyrokinetic formalism to compute βe behavior of
the Coriolis pich for the GA-std case. The numerical values for 〈k̂‖〉, 〈k̂2

‖〉
0.5, γ and ωr

obtained by GYRO have been used.

6.5b, and the Coriolis pinch, Fig. 6.5c, are clearly reduced with increasing βe already in the
ITG domain in case of high safety factors, which in turn means a closer proximity to the
KBM threshold. These results are explained by the behaviors of the parallel wavenumbers
〈k̂‖〉, shown in Fig. 6.5d for both the cases (û = 0, û′ = 0.2, squares), used to calculate
the Prandtl number, and (û = 0.2, û′ = 0, circles), used to calculate the Coriolis pinch,
respectively. In the case of high q, 〈k̂‖〉 increases in absolute values much stronger with
increasing βe in the ITG branch compared to the electrostatic value, such that according
to the previous discussions both the Prandtl number, for which 〈k̂‖〉 is indeed positive, and

the Coriolis pinch, for which 〈k̂‖〉 is negative, decrease. The different signs of 〈k̂‖〉 reflect
the fact that the symmetry of the electrostatic potential in the case of a finite û′ and û = 0
is broken in different directions with respect to the ballooning angle as compared to a finite
û and û′ = 0. Moreover, the βe–behavior of the Prandtl number is also consistent with a
gyrokinetic derivation, Eq. (6.6). The resulting Prandtl number behavior with respect to
βe is shown in Fig. 6.6. Again, a good qualitative agreement is obtained. Moreover, Eq.
(6.6) clearly shows that it is impossible to fully balance the effect of a finite û′ through
〈k̂‖〉.

Lastly, the magnitude of 〈k̂‖〉 in both cases is also in good agreement with the gyroki-

netic results of Fig. 6.5. For instance, taking βe = 0.4%, 〈k̂‖〉 ≈ −0.15 for the Coriolis
pinch case, such that the û = 0.2 is practically completely balanced according to the com-
pensation condition, Eq. (6.2). The resulting Coriolis pinch is indeed close to zero, as it
can be seen in Fig. 6.5. This example shows that both the fluid model, Eqn. (6.1), and the
gyrokinetic model derived within this work, Eqn. (6.4), (6.5) and (6.6) work satisfactorily
well in order to explain the physics effects responsible for the electromagnetic behaviors,
provided that the appropriate self–consistent k̂‖ is included.

Since the reduction of the Prandtl number and the Coriolis pinch with increasing βe

is strongly connected to the proximity to the onset of KBMs, and keeping the scaling of a
finite A‖ proportional to βeq

2 in mind, it is also instructive to show the results of Fig. 6.5
plotted as a function of the parameter βeq

2. This is presented in Fig. 6.7. The fact that
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Figure 6.5: Electromagnetic behavior of γ (squares) and ωr (circles, a), Prandtl number
χφ/χi (b), Coriolis pinch RVφ/χφ (c) and parallel wavenumbers 〈k̂‖〉 for both (û = 0, û′ =
0.2, squares) and (û = 0.2, û′ = 0, circles, d) for different values of the safety factor q,
respectively.

the linear growth rates and in particular the real eigenfrequencies are matching very well
for the different values of q, as it can be seen in Fig. 6.7a, leads to the conclusion that
the normalization used here is indeed appropriate. The electromagnetic behavior of the
Prandtl number shows a decrease, which is stronger for higher values of the safety factor,
Fig. 6.7b. The Coriolis pinch, which can be seen in Fig. 6.7c, decreases with increasing
βeq

2 in the same way for different values of q. This, in turn, further confirms the fact
that the use of the simple fluid model, Eq. (6.1), contains the main physics mechanism
at play and in particular the fact that k̂|| is able to counteract both û and û′, depending

on the sign of 〈k̂‖〉, as it can be deduced from Fig. 6.7d. The electrostatic values of both
the Prandtl number and the Coriolis pinch, which are generally higher for higher safety
factor, further underline the crucial impact of parallel dynamics, as it can be seen in Fig.
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Figure 6.6: Theoretical model using the gyrokinetic formalism to compute βe behavior of
the Prandtl number for the GA-std case. The numerical values for 〈k̂‖〉, 〈k̂2

‖〉
0.5, γ and ωr

obtained by GYRO have been used.

6.7b,c,d.
The difference mentioned above between the behavior of the Prandtl number and

the Coriolis pinch regarding parallel dynamics is further investigated. Since the main
difference of kinetic electrons to adiabatic electrons in the description of momentum flux
is the existence of trapped electrons, which generate the differences observed in Fig. 6.2,
it has to be expected that the momentum flux scales with the trapped particle fraction,
at least for the Coriolis part [124]. Figure (6.8) shows both χφ/χi as well as RVφ/χi as
a function of (r/R)0.5 being a measure for the fraction of trapped particles. The Coriolis
pinch exhibits a strong reduction with decreasing (r/R)0.5. This is obtained for all the
three values of βe. Electrostatically, the extrapolation of the GYRO results reveals that
for purely passing electrons ((r/R)0.5 = 0), which are fully adiabatic due to βe = 0, the
pinch is indeed at the null, consistent with [124]. For finite βe, however, passing electrons
are no longer fully adiabatic, as it was pointed out in Chapter 4.2, such that a reduction
of the pinch is obtained (or even a reversal when the trapped particle fraction is low). In
this context it has to be underlined that, while the momentum flux is mainly given by the
ions due to their high inertia, the electrons play a crucial role through their influence of
the parallel mode structure and therefore on 〈k̂‖〉, which is clearly demonstrated by Fig.
6.8. The results are consistent with those obtained in Figs. (6.3) and (6.5). The Prandtl
number, on the other side, does not go to zero for electrostatic fully passing electrons (the
limit (r/R)0.5 → 0), which shows that the compensation mechanism explained above is not
complete for this quantity. The decrease of χφ/χi with increasing βe is nevertheless visible.
The (unphysical) negative values of the Prandtl number, obtained for βe = 0.5% at small
(r/R)0.5 . 0.15, are caused by the fact that while the trapped particle fraction is reduced
because of moving towards the magnetic axis, the other parameters are held fixed. This
unrealistic assumption produces negative values of χφ/χi. It has to be mentioned that
while the electrostatic dependence of both the Prandtl number and the Coriolis pinch is
almost linear (thus, linear fits are performed), especially the electromagnetic dependence
of RVφ/χi is no longer linear (thus, quadratic fits are performed for βe = 0.25, 0.5%).
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Figure 6.7: Electromagnetic behavior of γ (squares) and ωr (circles, a), Prandtl number
χφ/χi (b), Coriolis pinch RVφ/χφ (c) and parallel wavenumbers 〈k̂‖〉 for both (û = 0, û′ =
0.2, squares) and (û = 0.2, û′ = 0, circles, d) for different values of the safety factor q,
respectively. The normalization to βe[%]q2 is used.

The electromagnetic runs on the Prandtl number show an almost linear behavior with
increasing (r/R)0.5.

Lastly, the realistic H–mode case close to parameters measured at ASDEX-Upgrade,
as they were defined in Chapter 4, is considered. In order to study only the effect of a finite
toroidal rotation and its gradient, a s − α equilibrium has been assumed. For this case,
both the Prandtl number and the Coriolis pinch are calculated. The results are shown
in Fig. 6.9. Due to the fact that the experimental value of βe is 0.65% but the onset of
KBMs is around βe = 3%, both the Prandtl number and the Coriolis pinch do practically
not show any decrease with increasing βe in the ITG branch. It is interesting to note that
the former is higher as compared to the GA-std case considered before, which is due to
the fact that the ion heat conductivity χi is smaller since the ion temperature gradient
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Figure 6.8: Prandtl number and Coriolis pinch as a function of (r/R)0.5, which is a measure
for the trapped particle fraction, for different values of βe. Dashed and full lines denote
linear and quadratic (see text) fits to the numerical results on the Prandtl number and
the Coriolis pinch obtained with GYRO, respectively.

is lower. Additional simulations revealed that an increasing collisionality decreases the
electromagnetic influence on the Prandtl number and in particular on the Coriolis pinch.
An increasing value of the magnetic shear also acts to lower the finite βe influence on
RVφ/χφ, as it could have been expected from the larger KBM threshold according to Fig.
1.8.

For higher values of βe, a different kind of mode is found, namely a micro–tearing
mode (MTM) between βe ∼ 1.3% and βe ∼ 3%. These are characterized by the fact
that magnetic field perturbations form small scale magnetic islands. The mode has a
short wavelength with high poloidal mode number m. For these, the tearing parameter
∆′ ≈ −2m/r is negative such that the standard tearing mode theory, which is based
on resistive MHD, predicts stability. There are, however, mainly two effects which can
compete with ∆′ and result in a growth of a magnetic perturbation to a saturated island,
namely nonlinear effects, which are absent in the linear simulations considered here, and
kinetic effects in a sufficiently collisional plasma. Indeed, here a finite collisionality of
(R/cs)νei = 0.067 has been used. Then, theory predicts that a necessary condition for
for MTMs to occur is that the electrons satisfy ω/(k‖v‖) > 1. Since k‖ ∼ m/r, the
perturbation corresponds to a narrow layer around rational surfaces for thermal velocities.
This property can be seen from the elongated ballooning structure of the potentials φ
along the field line in Fig. 6.9b. According to Eq. (2.78), a largely extended φ–mode in
the ballooning parameter θb corresponds to a thin extension in the radial direction. This
and the fact that the symmetry of both φ and A‖ is changed compared to an ITG/TEM
instability, such that the electrostatic potential becomes antisymmetric and the parallel
component of the vector–potential symmetric, are clear signs of MTMs. When the latter
are the most unstable ones, the Coriolis pinch changes sign, like it is the case for the
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Figure 6.9: Prandtl number and Coriolis pinch as a function of βe for the AUG similar case
defined in Chapter 4(a) with a s−α equilibrium. The vertical line denotes the experimental
value of βe. The ballooning mode structure in φ and A‖ for a micro–tearing mode (MTM)
case at βe = 2.5% with û = 0.2 and û′ = 0 is shown in (b) and (c), respectively.
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KBM onset. The Prandtl number is much larger than compared to the ITG domain. The
behavior of the latter and of the Coriolis pinch is also consistent with Eqn. (6.4), (6.5)
and (6.6). The reversal of the Coriolis pinch and the increase of the Prandtl number for
βe & 1.3% is mainly due to a reversal of the sign of ω̂r in the electron drift direction and a
reduction of ω̂d,0 by ∼ 20%, while 〈k̂‖〉 and 〈k̂2

‖〉
0.5 as well as γ are practically unchanged.

Finally, also the electromagnetic influence under TEM conditions has been investi-
gated. It is found that both the Prandtl number as well as the Coriolis pinch are almost
unaffected by a finite value of βe. This is attributed to the fact that TEMs produce
smaller fluctuations of the magnetic field lines, as it was already explained in Chapter 3.3.
Consequently, the averaged parallel wave vector 〈k̂‖〉 remains constant with increasing βe

in the TEM branch. Moreover it can be deduced from Figs. (3.3) and (3.6) that since
for TEM modes the linear growth rate remains almost constant with increasing βe, while
ITG modes are stabilized, the onset of the KBM to become the dominant mode is shifted
towards higher βe.

6.3 Summary and conclusions

Using linear gyrokinetic simulations with a fixed magnetic equilibrium, the effects of a
finite βe on the diagonal part of the momentum transport, namely the Prandtl number,
as well as on a contribution of the off–diagonal components, namely the Coriolis pinch,
are investigated. For dominant ITG modes, both the Prandtl number and the Coriolis
pinch are reduced by a finite βe. For the GA-std case defined in Chapter 3, the former is
Pr ∼ 1.3 and decreases to Pr ∼ 0.8 at βe = 0.5%, while the latter is at RVφ/χφ ∼ −4
and decreases in absolute values to RVφ/χφ ∼ −2.5 at βe = 0.5%. At βe > 0.6%, the
most unstable mode changes from ITG to KBM, leading to a reversal of the Coriolis pinch
direction from inwards to outwards at the onset of the KBM. At βe & 1%, the direction
of the pinch again changes to become inward. The Prandtl number increases slightly in
the KBM branch.

The physics mechanisms for the electromagnetic reduction of both the Coriolis pinch
and the Prandtl number in the experimentally relevant ITG domain have been investi-
gated. It is found that the self–consistent mode structure of the electrostatic potential is
the main cause of the decrease. Finite values of βe cause an increase of 〈k̂‖〉 in the nega-
tive direction for the Coriolis pinch and in the positive direction for the Prandtl number,
respectively. As it has been newly shown using a gyrokinetic approach for the Coriolis
pinch and the Prandtl number, the increase of 〈k̂‖〉 in absolute values leads to stronger
balancing of the drive of the momentum flux when electromagnetic effects are taken into
account. This can be also concluded from a simple gyrofluid model.

From a specific parameter analysis it is shown that the electromagnetic reduction of
both the Prandtl number and the Coriolis pinch is connected with the onset of the KBM.
In this context, the value of the safety factor is the most important quantity. This can
be concluded from the fact that the onset of KBMs critically depends on βeq

2. Thus, for
low values of q, both the Prandtl number and the Coriolis pinch are only weakly affected
by a finite βe–values smaller than 1%, while for higher q the onset of KBM is localized
at smaller βe, causing strong electromagnetic effects. Using a more realistic AUG similar
parameter case with a finite collisionality and a low value of q, it is found that both χφ/χi

and RVφ/χi are practically unaffected by the small experimental value of βe = 0.65%. By
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increasing both collisionality and magnetic shear, the electromagnetic influence is reduced.
The results reveal that finite–βe effects become significant close to the KBM threshold.
Hybrid scenarios at high β can be close to that limit, as it will be shown in the next
Chapter, such that the decrease of the Prandtl number and the Coriolis pinch may be
significant under these operational conditions.

Lastly, the reported higher values of the Prandtl number of Pr & 1.5 [128] as compared
to the gyrokinetic results may be attributed to the fact that the latter are usually obtained
at a single kyρs = 0.3. The behavior of both the Prandtl number and the Coriolis pinch
shows an increase in absolute values with raising kyρs. This result is consistent with the

gyrokinetic and the gyrofluid model, which predict a decrease of k̂‖ = k‖R/(2kyρs) for
increasing kyρs (assuming k‖ to be unchanged) and subsequently a less effective balance of
the driving parallel velocity û (and also the parallel velocity gradient û′) in the equations.
Therefore, as it can be concluded from the discussion in Chapter 4 for the particle flux, it
is important to perform an appropriate average on the wave number spectrum, possibly
taking also subdominant modes or even stable modes into account (it is emphasized that
for instance χφ/χi for TEMs is significantly larger than 1), or better nonlinear simulations
to obtain a more realistic estimate of momentum transport levels.

115



Chapter 7

Investigations of electromagnetic
effects on heat transport

7.1 Formulation of the problem

The confinement properties of a plasma can be described in a global, zero dimensional
description by the confinement time, as it was discussed in Chapter 1.2. The IPB98(y, 2)
scaling [129], on which the design of a future fusion device like ITER is based, shows
the main dependences of the energy confinement time on various parameters. For H–
mode plasmas with edge localized modes, so–called ELMy H–modes, the main parametric
dependences in terms of dimensional parameters are reported to be

ΩcτE(IPB98(y, 2)) = ρ−2.70
∗ β−0.90ν−0.01

∗ m0.96q−3.0(r/R)0.73κ2.3. (7.1)

Here, Ωc is the cyclotron frequency, ρ∗ = ρs/a is the normalized Larmor radius, ν∗ =
νeff/ωb is the normalized collision frequency (where νeff = νei/(r/R) is the effective colli-
sion frequency for particle detrapping, and ωb ≈ (r/R)0.5vth/(Rq) is the trapped particle
averaged bounce frequency), m is the average ion mass, q is the safety factor, (r/R) is the
inverse aspect ratio and κ is the elongation. This scaling includes a strong degradation
of energy confinement with increasing β. However, (early) dedicated experiments on the
beta–scaling of energy confinement in H–modes did not find a strong beta–dependence at
all, as it is reported in [130] and references therein. On the other hand, as it is partly
also reported in [130], recent experimental data from JT60U [131], AUG [132] and JET
[133] support the ITER scaling by finding exponents of −0.6, −0.9 and −1.4, respectively.
From the theoretical side, there have been lots of studies investigating the heat transport
within tokamak plasmas dominated by ITG microturbulence. Generally, a decrease of ion
heat conductivity with increasing beta is found by gyrofluid calculations, see for instance
[134, 50], gyrokinetic particle–in–cell codes, see e.g. [135, 136], and gyrokinetic Vlasov
codes, see for example [137, 75, 138].

Therefore, the numerical investigations of the present work are dedicated to a specific
set of well diagnosed AUG and DIII-D H–mode plasmas [89] in hybrid scenario operation,
which is synonymously also called the improved H–mode at AUG [139, 140]. This scenario
is considered to be a very interesting operational scenario for ITER, since it combines both
high confinement factors H98(y, 2) > 1 relative to the IPB98(y, 2) scaling with high values
of βN in stationary discharges. In this context, ’stationary’ means discharge timescales
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longer than several energy confinement times τe or more than twice the current diffusion
time.

Aiming at exploring heating conditions similar to those of a reactor, the hybrid scenario
in AUG was obtained also using strong central ICRH. The latter was up to 50% of the
total heating power, leading to a strongly reduced Ti/Te. Central ICRH has been reported
to cause a reduction of the toroidal plasma rotation in AUG NBI heated H–modes [141].
Under these conditions, the reduction is observed over the full minor radius and reaches
a factor of 2 in the plasma center. It was shown that this reduction of vtor is attributed
to an increase in momentum diffusivity connected with the confinement degradation by
the additional ICRH power flux. Also in DIII-D a degradation of energy confinement is
found in experiments with reduced NBI toroidal torque, obtained by a combination of co–
and counter–NB heating [142]. In both machines the reduction of E×B shearing leads to
increased levels of microturbulence and transport in the confinement region, thus reducing
the energy confinement.

The confinement enhancement, which outbalances the degradation, has different rea-
sons. For instance in AUG, an improvement was found to be connected to density peak-
ing, namely higher core densities led to higher stored energies at fixed (stiff) temperature
profiles [143, 83]. The strong density peaking was connected with operation at low colli-
sionality of roughly 1-3 times the one proposed for ITER’s reference scenario at 15MA.
The peaking of density, however, is limited by impurity accumulation, as it was pointed
out in Chapter 5, which dilutes the burning material content and leads to increased radi-
ation losses. The latter is of particular concern in tokamaks using high–Z metals as first
walls like in AUG or as it is foreseen in ITER. Dominant neoclassical transport tends
to accumulate high–Z impurities in the core. For AUG it has been shown that tungsten
accumulation may be suppressed by increasing the anomalous transport in the core due
to additional central electron cyclotron resonance heating (ECRH) [144].

Moreover, it has been shown that the confinement enhancement using hybrid opera-
tional scenarios was due to an improved pedestal (i.e. the steep gradient region at the
plasma edge in H–mode) confinement in AUG, whereas in DIII-D it is due to a better
core confinement [145]. In order to further clarify the reason of this difference in the two
machines, dedicated power scans have been carried out. One of the main goals was to
determine whether in hybrid discharges the pedestal pressure reaches a limit as the total
input power is increased, or whether the pedestal β keeps on increasing with increasing
heating power. The experimental aim was to perform power scans at constant q95 ∼ 4.6
matched in both machines, constant density and fixed plasma shape. This turned out
to be well suited for the comparison of pedestal heights and widths at increasing βe in
the two tokamaks. Also the different behaviors of core confinement in the two machines
can be investigated in a convenient way. In this sense it has to be emphasized that the
experiments were not intended to be dimensionless identity experiments in order to enable
power scans in the largest possible range of β within the scenario.

Following [89], the present Chapter is organized as follows. Firstly, the main result
from power scan experiments, namely the increase of confinement due to an increasing
pedestal confinement in AUG and due to a better core confinement in DIII-D, respectively,
is shown. In order to investigate the physics reason for the difference in core confinement,
the main part of this Chapter consists of a heat transport analysis by means of gyrokinetic
modeling. This is developed in three studies. Firstly, linear βe scans are performed in order
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to identify the most unstable modes. Secondly, linear R/LTi scans are used to identify
the γnet, which is the linear growthrate minus the E×B shearing rate. Thirdly, nonlinear
scans on R/LTi are used to compare the thermal fluxes with the experimental heating
power. In the end, the results are summarized and the main conclusions are drawn.

7.2 Power scans in ASDEX Upgrade and DIII-D hybrid dis-
charges

7.2.1 ASDEX Upgrade and DIII-D hybrid discharges

Power scans carried out in AUG hybrid discharges over two experimental campaigns are
considered, namely in 2005 with an approximately 70% tungsten coverage of the plasma
facing components and in 2008 with a fully covered tungsten wall. In addition to the
aforementioned criterion for useful hybrid discharges, namely the constancy of all main
plasma parameters over at least three times the energy confinement time, only those
plasmas with sufficiently good pedestal measurements have been considered. The latter
is achieved by performing a slow (600ms period) sweep of the outer plasma during the
stationary phase(s) of the discharge in order to increase the spatial resolution of the edge
diagnostics. All discharges were carried out at a plasma current of IP = 1.0MA and with
similar plasma shape, a lower single null configuration with average triangularity δ ∼ 0.25.

The main difference of the shots in the 2005 campaign compared to 2008 is that in
the former about 1.4MW of central electron cyclotron resonance heating (ECRH) was
applied in addition to the main NBI heating because of the tungsten coating of the ICRH
antenna limiters, while in the latter 3MW of ICRH have been used. In 2008, hybrid
operation requested Bt = 2.55T due to the central ECRH in order to prevent tungsten
accumulation, in contrast to the Bt = 2.4T in 2005, thus changing q95 from approximately
4.6 to 4.8. The line averaged densities were ne ∼ (5− 6)× 1019m−3 in the 2005 shots and
ne ∼ 8 × 1019m−3 for the 2008 hybrids. Further information of the hybrid discharges in
2005 and 2008 can be found in [89].

For the hybrid discharges in DIII-D, the same selection criterion, namely the constancy
of the profiles over t > 3 × τe, has been used. The power scans were performed at fixed
q95 ∼ 4.6 with a constant density of ne ∼ 4 × 1019m−3. One peculiarity of the DIII-D
plasmas is the fact that the plasma shape was changed in order to differentiate between
power and shape dependence of the pedestal pressure. The two low single null plasma
shapes are shown in Fig. 7.1. The high (δ = 0.5) shape is optimized for hybrid studies in
DIII-D and the low (δ = 0.23) ’AUG shape’ was developed in order to match the reference
plasma shape used in the AUG hybrids. In order to determine whether changes in the
plasma stored energy of the hybrid scenario were linked to changes in the pedestal as the
toroidal rotation was varied significantly, co– and counter–directed NBI was performed in
the DIII-D high δ shape. With counter–NBI, the toroidal rotation was reduced to ∼ 30km
s−1 from ∼ 200km s−1 in the co–NBI cases. Further information is found in [89].

7.2.2 Pedestal and global confinement

As it is typically found in hybrid discharges, the H98(y, 2) confinement factor increases
with total βN both in the AUG and DIII-D power scans. This is shown in Figs. (7.2a,b)
for AUG and DIII-D, respectively. The DIII-D experiments indicate that at a given βN
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Figure 7.1: High triangularity (δ = 0.5) ’DIII-D shape’ and low triangularity (δ = 0.23)
’AUG shape’ matched at DIII-D (from [89])

the confinement factor is higher in the high δ shape. This well known experimental result
for H–mode discharges is related to the improved edge stability, leading to higher pedestal
pressure, as it can be seen from Fig. 7.2d. This beneficial property, in turn, leads to less
input power needed to achieve a given βN as compared to hybrid discharges run at a low
δ shape. Moreover, as it can be seen from Fig. 7.2b, a low toroidal rotation causes a
decrease of the confinement factor. But despite the significant decrease in the pedestal
toroidal rotation, the pedestal confinement remains similar to what was obtained with
high vtor at the same βN–value. It is reported that this lack of dependence of the pedestal
pressure on variations of the momentum input is consistent with edge stability studies
showing that the pedestal gradient stability limit is not significantly affected by toroidal
rotation [146, 147]. Additionally, the gradient of the pedestal electric field, which along
theoretical models is linked to supression of transport in the edge transport barrier, is
generally dominated by the gradient of the pressure profile and not by the gradient of the
toroidal rotation.

The analysis of the total and pedestal betas, shown in Figs. 7.2c,d, indicates a different
behavior of these two parameters in the two machines. While βPEDN increases linearly with
βN in AUG hybrid discharges, in DIII-D the pedestal beta increases only weakly for the low
triangularity cases and seems to even decrease with raising βN at high δ. The dependence
found in DIII-D is in contrast to what is found in another study of hybrid scenarios in
the same tokamak [147], where the pedestal pressure was also increasing with βN. The
latter result is reported to be due to an increase of the pedestal width. The difference in
the behavior of βPEDN , however, is not fully understood yet, but might be attributed to
changes in the edge current density profile due to differences in the plasma shape.

The variation of the ratio of total to pedestal stored energy as a function of increasing
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Figure 7.2: H98(y, 2) confinement factor versus the total normalized beta for the AUG
(a) and DIII-D (b) power scans. Pedestal versus total normalized beta for the AUG (c)
and the DIII-D (d) power scans. Ratio of total to pedestal stored thermal energy as a
function of net input power for AUG (e) and DIII-D (f) hybrid discharges. In the legends,
’EH’ and ’LH’ denote early and late heating, respectively (see [89]).

net input power PNET is a suited measure for the core confinement properties in the
two machines. To this purpose, Wth/WPED is shown in Figs. 7.2e,f for AUG and DIII-D,
respectively. In AUG, this ratio is found to be rather constant with increasing PNET, which
implies no significant improvement in core confinement with raising power. The variation
of Wth/WPED with increasing PNET in DIII-D shows a larger scatter, which is partly due to
the variation of plasma shape (low and high triangularity) and momentum input (co–NB
and balanced NB injection at high δ). Despite the fact that the considered set of discharges
is very limited, different trends may be identified depending on the operation scenario. In
the DIII-D power scans with high momentum input and early heating, i.e. the red and
the violet points in Fig. 7.2f, the ratio of total to pedestal stored energy is increasing with
PNET, for the high triangularity case at least at high powers. This implies a increase in
core confinement that is larger as the one which could have been expected from profile
stiffness. On the other hand, in both cases of late heating ’LH’ and low toroidal rotation
velocity vtor (due to counter–NBI), no (or only a small) increase of core confinement can
be deduced. Thus, in conclusion with the observations from Figs. (7.2b,d), it is reasonable
to assume that the reduction of global confinement at low vtor is due to a reduction in core
confinement, most likely to be driven by the decrease in E×B flow shear in the core, which
leads to enhanced turbulence. The pedestal confinement on the other hand is practically
not changed. Lastly, it is interesting to note that the power scan at low δ, the ’AUG
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shape’ matched in DIII-D, exhibits behaviors that are kind of intermediate between the
AUG power scans and the ones in DIII-D with high triangularity. The edge stability is
reduced due to lower shaping, leading to lower pedestal pressures. However, a ∼ 20%
increase in the H98(y, 2) factor is observed with increasing βN, mainly due to an increase
in core confinement, in contrast to the hybrids in AUG with the same plasma shape.

The above observations lead to the following conclusive picture. In the DIII-D hybrid
discharges with the (original) high triangularity, the increase in H98(y, 2) confinement
factor with input power is due to an increased core confinement, independently of whether
the pedestal pressure reacts on the increase in input power. Conversely, in the AUG
hybrid scenario, which has a low triangularity and is predominantly run with the early
heating scheme , the confinement factor enhancement with raising βN is due to an increase
in pedestal confinement. This different response motivates more detailed studies on both
core heat transport and edge stability. The former is subject of the next Section. For
specific details of the latter studies, which are not subject of the present thesis, the reader
is referred to [89], Sections 5 and 6.

7.3 Turbulent core heat transport

7.3.1 Experimental profile data of the selected discharges

For a detailed study of the core transport of the discharges presented here and in order to
understand similarities and differences between AUG and DIII-D hybrids with increasing
βN, selected discharges are analyzed. To this purpose, high quality kinetic profiles and good
’Motional Stark Effect’ (MSE) data, which constrain the equilibrium reconstructions, are
necessary as input for the analysis. Because the AUG 2005 hybrids were run at pedestal
collisionalities closer to the ones at DIII-D as compared to the AUG 2008 shots, and
MSE data as well as kinetic profiles are available only for the 2005 data set, the low and
high power phases of a well analyzed AUG 2005 power scan (#20116) are taken in two
corresponding time windows. For DIII-D, the representative shots are the ones at lowest
and highest power in the dataset, namely (#128250) and (#128249), respectively. Both
exhibit the ’normal’, high triangularity DIII-D shape.

As an example for the corresponding profiles, the dependence of ion and electron
temperatures in both the AUG low power (βN = 2.0) and high power (βN = 2.7) as well
as the DIII-D low power (βN = 2.0) and high power (βN = 2.8) are shown in Fig. 7.3 as a
function of the normalized radius ρpol, defined via the poloidal flux. For each parameter
all profiles within the stationary time window selected for the analysis have been combined
together. The solid lines are fits to the experimental data. There exists a clear difference
in the ratio of ion and electron temperature profiles in the two machines. Despite the lower
pedestal density than in the AUG hybrid discharge, TPEDi ∼ TPEDe in DIII-D and the
ion and electron temperature profiles remain very similar further inside the confinement
region as far as ρpol ∼ 0.6. In the AUG power scan Ti/Te increases at the plasma edge
from low to high power, particularly in the region just inside the pedestal top (e.g. Ti/Te

increases from 1.2 at low power to 1.46 at high power at ρpol = 0.8). The comparison
of the kinetic profiles at mid–radius reveals that Ti ∼ Te at low beta both in AUG and
DIII-D, with Ti/Te(ρpol = 0.5) ∼ 1.1, whereas at high beta a higher ratio is obtained in
AUG (with Ti/Te ∼ 1.5 at βN = 2.7) compared to DIII-D (Ti/Te ∼ 1.2 at βN = 2.8).

In AUG hybrid discharges with no external gas fueling, which is the case of the shot
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Figure 7.3: Ion and electron temperature profiles for low (a) and high (b) power cases of
AUG hybrid power scan #20116, and for low (c) and high (d) power cases of the DIII-D
hybrid power scan at high δ. Black solid lines are fits to the data. The density of the
DIII-D data points in (c) and (d) has been reduced by a factor of 10 in order to allow for
a distinction of the fitted profiles (from [89]).

analyzed, ne typically increases with beam fueling as the total input power is increased.
The increase in nPED by 20% from low to high power represents the upper bound of the
density variation observed in the hybrid power scans. In DIII-D, good density control
during the discharge allows the hybrid power scan to be run at constant density. In
the stationary phase of DIII-D hybrid discharges, the control over the particle inventory
is maintained by active feedback and pumping, with the wall playing a small role in the
particle balance [148]. Some of these differences between the two devices are related to the
fact that the wall behavior is likely to be different in a tokamak with tungsten compared
to carbon plasma facing components [149]. The increase in pedestal density with beam
fueling in the AUG hybrid power scans without external D2 fueling contributes to the
increase in the pedestal pressure with power in such discharges. However, the ion and
electron temperature at the pedestal top increase from low to high power in the AUG
hybrid power scans analyzed in this work, independently of the level of external gas fueling.
Therefore, differences in the wall conditions of the two tokamaks are not likely to be the
main reason for the different response to power of the AUG and DIII-D pedestals. In the
DIII-D power scan the pedestal density is lower and the density profile is more peaked
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than in the AUG hybrid discharge, with a peaking factor of 1.8 (defined here as the ratio
of core to pedestal density) compared with 1.37 (at low power) and 1.25 (at high power)
in the AUG case. However, in DIII-D the peaking factor remains constant as the NBI
power is increased in the power scan, and thus density peaking is not likely to play a role
in the relative increase in core confinement from low to high beta. In particular, it has
to be mentioned that the logarithmic density gradient in DIII-D is more than a factor 2
higher as compared to AUG at mid–radius (see Table 7.1).

Figure 7.4: Fitted toroidal rotation profiles at low and high power for the AUG (a) and
DIII-D (b) hybrid power scan (from [89]).

The rotation profiles, shown in Fig. 7.4, are quite different in the two devices, espe-
cially at outer radii, where vtor is significantly higher in DIII-D than in AUG. At low βN,
the toroidal rotation is significantly lower in the AUG discharge. These differences may
be partly related to the lower pedestal density in the DIII-D discharges (thus less NB
attenuation compared with the AUG case) and the additional ICRH heating in the AUG
discharge (3MW throughout the pulse to prevent tungsten accumulation, as described in
section 2.1). In the core plasma the toroidal rotation shear plays a dominant role in the
E×B shearing rate and thus in the core transport properties. As will be shown below, E×B
shearing rate stabilization of core turbulence is significant in both machines at mid–radius
at increasing input power, with ωE×B being larger for DIII-D than for AUG.

The profiles of the normalized ion temperature gradient length R/LTi for AUG and
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DIII-D reveal that as the total input power is increased, R/LTi at mid-radius increases
from 5 to 5.7 in DIII-D, but remains constant in the AUG power scan. At larger values
of ρtor, for instance at ρtor ∼ 0.65, R/LTi increases with beta in both machines. The
most important parameters for the low and high power discharges of AUG and DIII-D
at ρtor = 0.5 are summarized in Table 7.1. It has to be noted that the toroidal velocity

AUG LP DIII-D LP AUG HP DIII-D HP

βN 2.0 2.0 2.7 2.8
q 1.51 1.69 1.69 1.69
s 0.8 1.20 0.56 1.14

Ti/Te 1.10 1.02 1.55 1.13
R/LTi 6.12 5.00 6.07 5.70
R/LTe 5.49 3.92 5.27 3.88
R/Ln 1.15 2.73 0.95 2.67

vtor [km/s] 74 154 126 198

Table 7.1: Main plasma parameters for the low (LP) and high power (HP) discharges from
AUG and DIII-D at ρtor = 0.5 used for the core thermal transport study.

profile was only used for calculation of the E×B shearing rate. The effect of a finite parallel
velocity gradient on heat transport was not included.

7.3.2 Numerical investigations

The AUG and DIII-D power scans for the selected discharges have been analyzed per-
forming gyrokinetic simulations with GYRO in order to identify the dominant unstable
modes and the proximity to KBM or MTM regimes. The largest variation in experimental
parameters important for ion heat transport is found in R/LTi and Ti/Te, as it can be
deduced from Table 7.1. The local analysis is firstly performed at ρtor = 0.5. At this
radius, the normalized ion temperature gradient length does not change to the increase in
input power in the AUG power scan, whereas it increases by about 15% from low to high
beta in the DIII-D power scan. The GYRO simulations show that at low βN the most
unstable linear mode is an ITG mode in both machines. At high power the most unstable
linear mode is an ITG mode for the DIII-D case and a microtearing mode for the AUG
case (compare, e.g. [111]). As already discussed in the previous Chapters, a stabilizing
effect on the ITG modes of these plasmas is due to the inclusion of electromagnetic effects,
namely a finite value of βe (the magnetic equilibrium is kept fixed within this study), in the
gyrokinetic calculations. A detailed analysis of the electromagnetic effects at mid-radius
is shown in Fig. 7.5, where the variation of the growth rate of the most unstable mode
with βe is studied for the AUG and DIII-D discharges as the input power is increased in
each power scan.

The numerical study uses the local values and gradients of the experimental profiles,
as described in Table 7.1, from a given power level. As βe is increased, the most unstable
mode changes from ITG modes at low βe, occasionally to MTMs at intermediate values of
βe, and finally to KBMs at high values of βe. The actual ranges of βe corresponding to the
transition from one mode to another are listed in Table 7.2. The vertical lines in Fig. 7.5
intercept the values of βe at the operational points. In the calculations at mid-radius, it is
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Figure 7.5: Linear growth rate of the most unstable mode at ρtor = 0.5 versus βe for
AUG (blue), DIII-D high δ shape (red) and additionally DIII-D low δ shape (green). The
most unstable mode changes from ITG at low values of βe to MTM at intermediate βe

in some cases (see Table 7.2) to kinetic ballooning at high values of βe. Open symbols
correspond to low power and full symbols to high power in each beta scan. The vertical
lines intercept the values of βe at the operational points (same color convention), dashed
lines corresponding to low power and solid lines to high power in each beta scan. The
arrow indicates the increase in βN in the experiment, from low power to high power in
each scan (from right to left in the plot).

ITG MTM KBM exp. βe[%]

AUG, βN = 2.0 βe < 2.5 – βe > 2.5 0.77
AUG, βN = 2.7 βe < 0.5 0.5 < βe < 1.8 βe > 1.8 1.17

DIII-D, low δ, βN = 2.0 βe < 2.8 – βe > 2.8 0.83
DIII-D, low δ, βN = 2.5 βe < 2.0 2.0 < βe < 2.7 βe > 2.7 1.04
DIII-D, high δ, βN = 2.0 βe < 1.7 1.7 < βe < 3.5 βe > 3.5 1.14
DIII-D, high δ, βN = 2.8 βe < 2.8 – βe > 2.8 1.36

Table 7.2: Changes in the most unstable mode as βe is increased in the gyrokinetic sim-
ulations illustraded in Fig. 7.5. The last column lists the experimental values of βe in
%.

found that in both machines the onset of kinetic ballooning modes shifts to lower values
of βe as the input power is increased in the experiments (see Table 7.2). However, the
experimental point is much closer to the onset of kinetic ballooning modes in AUG than
in DIII-D, as shown by Fig. 7.5 and Table 7.2. For example, for the AUG hybrid case at
βN = 2.7, βe(experiment) = 1.17% and the onset of kinetic ballooning modes occurs at
βe > 1.8%, while for the DIII-D hybrid discharge at high δ and βN = 2.8, βe(experiment)
= 1.36% compared with βe > 2.8 for kinetic ballooning mode onset. The specific influence
of the different parameters between AUG and DIII-D, high δ, for the low and high power
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cases is shown in Fig. 7.6a,b, respectively. It turns out that the safety factor profile

Figure 7.6: Linear growth rate of the most unstable mode at ρtor = 0.5 versus βe for AUG
low power (a) and high power (b) mid–radius parameters going to the corresponding
DIII-D, high δ parameters, respectively.

has a strong influence. For example, as shown in Fig. 7.6a, the increase of the safety
factor from 1.51 → 1.69 has a strong influence on the onset of the KBM to be the most
unstable, in such a way that it is shifted towards smaller values of βe, as it was also shown
in Chapter 6 by the scaling βeq

2, see Fig. 6.7. A higher value of magnetic shear shifts
the onset of KBM towards higher β and leads to the destabilization of a wider window
with MTMs. Also the ion to electron temperature ratio Ti/Te has a strong influence, as
it is particularly visible in Fig. 7.6b. The decrease from Ti/Te = 1.55 in AUG high power
to Ti/Te = 1.13 in DIII-D leads to a shift of KBMs towards higher βe. The gradients of
density and temperature as well as the geometry have only a smaller influence. Moreover,
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it is clear that mainly differences in Ti/Te are responsible for the differences of the KBM
onset between low and high power discharges of the two machines. The DIII-D power
scan at low δ (i.e. the AUG plasma shape matched in DIII-D) lies between the AUG case
and the DIII-D case at high δ. The main reason for this is the fact that the DIII-D low
δ discharges have a higher magnetic shear, namely s = 1.19 for the low power case and
s = 1.12 for the high power case, as compared to the AUG shots. The onset of KBMs
for the DIII-D low δ shots is at lower βe as compared to the high δ DIII-D shots since
the former exhibit higher ion temperature gradient scale length. Lastly, a similar local
analysis performed at ρtor = 0.65 shows, that both AUG and DIII-D plasmas are far from
the kinetic ballooning threshold. In fact at this radius MTMs are the most unstable modes
and the kinetic ballooning threshold is found at much higher values of βe.

Figure 7.7: Linear growth rate of the most unstable mode (ITG mode) versus R/LTi at
ρtor = 0.5 for the low and high power phases of (a) the AUG hybrid #20116 and (b) the
DIII-D hybrid scan at high δ shape (#128250 and #128249). Open symbols correspond
to the electrostatic calculations, full symbols indicate the calculations including finite βe.
Vertical lines mark the variation in R/LTi in the experiment from low power (blue line) to
high power (red line). Horizontal lines denote the E×B shearing rate, calculated according
to [150], for the low power (blue line) and high power (red line) cases.

Figure 7.7 shows the dependence of the linear growth rate of the ITG mode on R/LTi

at mid-radius for the AUG power scan (a) and the DIII-D power scan at high δ (b) at
low and high βN. The vertical lines mark the variation in R/LTi at mid-radius in the
experiment from low power (blue lines) to high power (red lines). The results of both
electrostatic and electromagnetic calculations are shown by the circle and square symbols,
respectively, and both calculations were again performed for the same geometry and thus
the same Shafranov shift. The figures reveal the significant E×B shearing rate stabilization
in both machines as beta is increased (where ωE×B is calculated as in [150] and is indicated
by the horizontal lines in Figs. 7.7a,b, for the low power (blue lines) and high power (red
lines) cases). In addition, the figures illustrate the non-negligible stabilizing effect of βe on
the ITG modes of these plasmas. The electromagnetic calculations for the AUG discharge
at high beta are not plotted in figure Fig. 7.7a because the experimental point falls in
the micro-tearing domain. In this case the ITG mode becomes subdominant mainly due
to the large Ti/Te ratio that stabilizes the ITG modes and destabilizes the micro-tearing
modes. Subdominant modes are not followed in these simulations, which use the GYRO
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initial value solver (and not the GYRO eigenvalue solver). The electrostatic calculations
show a reduction in the linear growth rate as the power is increased in the AUG beta
scan, which is due to the increase in Ti/Te at mid–radius in the experiment (Fig. 7.3).
In the DIII-D scan, for which the variation of Ti/Te(ρtor = 0.5) from low to high beta is
much smaller, see Figs. (7.3c,d), such a stabilization is not found in the calculations, as
shown in Fig. 7.7b. This analysis indicates that a sizeable reduction in core transport is
predicted at mid–radius in both machines as βN is raised in the experiment. The predicted
increase in R/LTi with βN is due to a significant E×B shearing rate stabilization of the ITG
modes and to the inclusion of electromagnetic effects in the gyrokinetic calculations, which
provide additional stabilization at βN values achieved in the experiment. However, while
in the DIII-D case the predicted increase in R/LTi is of the same order as the measured
one, in the AUG case R/LTi is constant as the heating power is increased. The proximity
of the AUG plasma at high βN to the onset of kinetic ballooning modes might explain the
constancy of R/LTi(ρtor = 0.5) when the heating power is increased. As mentioned above,
this picture changes at outer radii, where R/LTi increases with power in both machines
and the AUG and DIII-D plasmas are both far from the onset of kinetic ballooning modes.

In order to further clarify this issue, the variation of the total ion heat flux as a
function of R/LTi with increasing input power has been examined. Nonlinear gyrokinetic
simulations with the same resolution as the ones in Chapter 5.4 are performed in flux-
tube geometry using periodic boundary conditions with and without the inclusion of E×B
shearing. They allow us to determine the slope of the ion heat flux Qi as a function of
the driving logarithmic gradient R/LTi . The dependence of the heat flux as a function of
R/LTi is usually very close to a linear function (e.g. [137, 151]). It is often not appreciated
in the behavior of core confinement in H-mode plasmas, that, as a consequence of the
increase in the temperature at the pedestal top, the normalized heat flux in the core can
be reduced when the auxiliary heating power is increased in a power scan. This is visible in
Fig. 7.8, showing the normalized ion heat flux Qi,norm as a function of R/LTi. Here, Qi is
normalized using Qi,norm = RQi/(niTi) expressed in gyroBohm units, where χGB = ρ2

scs/a.
This normalization reflects the fact that the natural scaling of diffusivity for turbulent heat
transport in local simulations is proportional to λ2

turbγ, where the growth rate γ ∼ cs/a.
The gyroBohm (GB) scaling is to be expected when the turbulence length scale λturb

is not affected by the system size a and is usually found under experimental conditions.
From a simple random walk argument, λturb = ρs and the normalization to χGB appears
naturally. It is noteworthy that the GB scaling predicts the energy confinement time to
be proportional to ρ−3

∗ , which is not too different from the IPB98(y, 2) scaling, see Eq.
(7.1). The normalized ion heat fluxes from power balance for AUG and DIII-D low and
high power cases are compared in Fig. 7.8 (horizontal lines, with solid lines for low beta
case and dashed lines for high beta case) to the ion heat flux calculations from GYRO
at low power (open circles) as a function of R/LTi. The comparison is performed at
ρtor = 0.5. Power balance analysis was performed using ASTRA [152] for the AUG power
scan, with FAFNER calculations [153] as input for the neutral beam sources and TORIC
runs [154] providing the ICRH sources. For the DIII-D discharges power balance analysis
was performed with the ONETWO transport code [155], which uses a Monte Carlo code
to calculate the neutral beam deposition profiles. As βN increases in the experiment, the

reduction in heat flux in AUG is much larger than in DIII-D (Qi,norm ∼ T
5/2
i and Ti/Te

increases more in AUG than in DIII-D as the input power is increased). As can be expected
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Figure 7.8: Nonlinear electromagnetic flux–tube simulations with GYRO for the normal-
ized ion heat flux Qi,norm at ρtor = 0.5 for the AUG and DIII-D low beta cases, without
(open symbols) and with (full symbols) E×B shearing. The error bars indicate the fluc-
tuation levels of the calculations. Vertical lines denote the experimental R/LTi at low
beta in the two machines, horizontal lines mark the values of the normalized ion heat flux
from power balance (see text) at low power (solid line) and high power (dashed line). The
arrows indicate the increase in βN from low to high power in each experiment (blue for
AUG and red for DIII-D).

from previous results [137], nonlinear simulations without E×B shearing deliver heat fluxes
which are generally larger than those found in the experiments. In this analysis, however,
also the runs with ωE×B–inclusion reveal higher fluxes as compared to the experimental
ones. It is emphasized that simulations at lower values of R/LTi as the ones shown in
Fig. 7.8 having the lowest heat flux, are stable, which implies no meaningful fluxes as
result. Nevertheless, linear extrapolation of our nonlinear results to the lower heat fluxes
allows a rough estimate for the differences in R/LTi to be expected. This is done via
crossing of the simulated slopes from both cases without and with E×B shearing with
the heat fluxes from power balance, respectively. As a result, a sizeable reduction in the
normalized logarithmic temperature gradient of order ∆R/LTi ∼ 1 for AUG is obtained,
while the shift in R/LTi for DIII-D is practically negligible, as it can be deduced from Fig.
7.8. Thus, as the input power is increased in the AUG hybrid scan, the power balance
analysis presented above predicts a decrease in R/LTi of order one. On the other hand,
the linear calculations shown in Fig. 7.7 predict a gain in R/LTi of order one from low to
high power in the scan, due to the combined stabilizing effects of Ti/Te, ωE×B and beta
on the ITG modes. It is thus possible that these two compensating effects account for
the lack of variation in R/LTi at mid-radius as the input power is increased in the AUG
hybrid discharge. In the DIII-D power scan, on the other hand, the reduction in Qi,norm

is smaller (due to the smaller increase in Ti/Te with power) and the associated variation
in R/LTi negligible, as shown in Fig. 7.8. This supports the result found with the linear
simulations shown in Fig. 7.7b, namely that E×B shearing rate and beta stabilization
of the ITG modes can explain the magnitude of the measured increase in R/LTi in the
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plasma core of the DIII-D hybrid discharges.
From this analysis it can be concluded that the observation that in AUG hybrid dis-

charges R/LTi is roughly constant at mid–radius as beta is increased is not explained
by profile stiffness, as it may appear at first glance, but by a more complex combination
of effects. Namely, Ti/Te, ωE×B and beta stabilization of ITG modes at mid–radius is
compensated by a sizeable reduction in the normalized ion heat flux as the input power
is increased. While these effects are analyzed in the core, they are not independent of the
boundary conditions at the edge. As noted before, the increase in Ti in the pedestal region
in AUG from low to high input power drives a reduction in the normalized ion heat flux
in the core. The larger increase in Ti/Te at the plasma edge in AUG than in DIII-D as
the auxiliary heating is increased leads to a higher Ti/Te ratio at mid–radius in AUG. In
addition, proximity of the AUG experimental point at high βN to the kinetic ballooning
threshold may also play a role in keeping R/LTi constant at mid–radius as the input power
is increased in AUG. It must be stressed, however, that analysis at outer radii shows that
in this region both AUG and DIII-D hybrids are far from the onset of kinetic ballooning
modes and although the normalized ion heat flux decreases as the input power is increased
in the experiment, a strong increase in R/LTi occurs there in both machines.

Figure 7.9: Linear growth rate of the most unstable mode versus R/LTi at ρtor = 0.65.
The same conventions as in Fig. 7.7 are used.

In Fig. 7.9, the dependences of the linear growth rate of the most unstable mode
on R/LTi at ρtor = 0.65 for the AUG power scan (a) and the DIII-D power scan at
high δ (b) at low and high βN are illustrated, respectively. There, a different picture
as compared to the mid–radius scans emerges. The increase of R/LTi with βN in both
machines, denoted by the vertical lines, leads to a stronger γnet = γ − γE×B in AUG, and
therefore can be expected to be responsible for stronger turbulence levels, since in AUG
smaller E×B shearing rates as compared to DIII-D are found, especially in the high power
cases. Consequently, the DIII-D discharges are at the γnet threshold, whereas the AUG
shots do not show this behavior. It has to be noted that in AUG higher logarithmic ion
temperature gradients are found than in DIII-D. These observations, in turn, also support
the idea that in DIII-D the better overall confinement is due to a better core confinement.
Moreover, it is interesting to note that for electromagnetic calculations at the high power
discharges MTMs are the most unstable modes at the experimental conditions, such that
their influence is increased for DIII-D as compared to the simulation results at mid–radius.
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The ITG mode at high R/LTi is strongly stabilized for the AUG high power shot, which
is mainly due to a higher Ti/Te in comparison to DIII-D.

7.4 Summary and conclusions

In this study, aspects of core and partly pedestal confinement of the hybrid scenario in
ASDEX Upgrade and DIII-D with increasing auxiliary heating are illustrated. Power scans
were carried out in each device at fixed q95 (matched in both machines), constant density
and fixed plasma shape. In addition, DIII-D spanned the hybrid plasma shapes of the two
devices, a low δ shape for AUG and a high δ shape for DIII-D, to separate between shape
and power dependence of the pedestal pressure. Elements of similarity are found between
the two tokamaks (which should be expected, given the similarity of the two devices in
terms of engineering parameters), but also different responses of the plasma performance
to heating power (βN).

The H98(y, 2) confinement factor is found to increase with the total βN in both toka-
maks and it is higher in DIII-D with a higher δ plasma shape at a given βN. This is
understood in terms of improved edge stability at higher shaping, a well-known property
of type I ELMy H-modes, and confirmed by MHD stability analysis of selected AUG and
DIII-D hybrid discharges. Thus hybrid operation at high plasma triangularity benefits
from higher pedestal pressures, since less input power is needed to achieve a given βN as
compared with hybrid discharges in a low triangularity shape.

As the additional NB heating power is increased, the confinement enhancement with
respect to the IPB98(y, 2) scaling is due to an increase in pedestal confinement in the
AUG hybrid scenario and to an increase in core confinement in the DIII-D hybrid scenario.
Analysis of turbulence and transport in the plasma core of selected AUG and DIII-D power
scans of this study shows that the largest variation in experimental parameters related to
microinstabilities are found in R/LTi and Ti/Te. At mid–radius, AUG exhibits a larger
increase in Ti/Te with heating power than DIII-D. This is partly related to the larger Ti/Te

ratio at the plasma edge observed in AUG as compared to DIII-D in the hybrid power
scans considered, despite the lower pedestal density in DIII-D.

Linear gyrokinetic simulations of the selected power scans at mid-radius indicate that
ITG modes are usually the most unstable modes in both machines (with the exception
that, for AUG at high power, micro-tearing modes dominate). In both devices a sizeable
reduction in core transport is predicted as the input power is increased in the experiment.
The increase in R/LTi with beta at mid-radius is predicted to be due to a significant E×B
shearing rate stabilization of the ITG modes in the selected power scans of both AUG and
DIII-D. Both at low and high βN at mid-radius ωE×B is larger in DIII-D than in AUG.
These results are related to differences in the toroidal velocity profiles of the AUG and
DIII-D hybrid power scans. While vtor increases significantly with power in both machines,
it is higher in DIII-D at a given βN value. Such differences in the toroidal rotation profiles
may be partly related to the lower pedestal density of the DIII-D hybrid power scan
and to the additional ICRH heating in the AUG hybrid power scan, which reduces vtor

in AUG NBI heated H-modes. Inclusion of electromagnetic effects in the gyrokinetic
calculations provides additional stabilization at βN values achieved in the experiment. At
mid-radius, the predicted increase in R/LTi with beta is of the same order of that measured
experimentally in the DIII-D power scan. In AUG, proximity to the kinetic ballooning
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threshold and/or a stronger reduction in normalized ion heat flux with power (due to the
larger increase in Ti/Te and in the pedestal top temperature) are possible explanations
for the constancy of R/LTi at mid-radius as beta is increased. Similar analysis at outer
radii shows that in this region both AUG and DIII-D hybrids are far from the onset of
kinetic ballooning modes and although the normalized ion heat flux decreases as the input
power is increased in the experiment, a strong increase in R/LTi occurs there in both
machines. An additional linear analysis of growth–rates at ρtor = 0.65 reveals that ωE×B

acts strongly stabilizing in the DIII-D tokamak, while there is practically no stabilization
for AUG. The results at ρtor = 0.5 are in agreement with the experimental observation of
a confinement improvement with increasing βN, which is in DIII-D mainly due to a better
core confinement, whereas in AUG it has to be attributed to pedestal physics.

The present study of the core heat transport is intended to give a first hint of the
different physics mechanisms leading to the different response of AUG and DIII-D hybrid
scenario shots investigated here for increasing levels of βN. The difficulties in order to
obtain a consistent picture from local analysis at ρtor = 0.5 and ρtor = 0.65 are connected
to different physics behaviors. This suggests that the best framework are global electro-
magnetic nonlinear simulations of the chosen plasmas at ρ∗ . 1/300 possibly with the
measured heating profiles in order to capture the full interplay of the various effects listed
above and possibly also others. Especially for the high power cases, ρ∗ is smaller than
the above value (for AUG at Ti = 5keV one gets ρ∗ ≈ 170 while for Ti = 2keV ρ∗ ≈ 270,
such that for the latter the flux tube limit is better satisfied, as it was demonstrated for
instance in [44]). Of course, global electromagnetic simulations are more consuming in
terms of computer time.

132



Chapter 8

Conclusion

In this Chapter, the main results obtained in the framework of the present thesis are
summarized, highlighting analogies and differences of the electromagnetic effects in the
various transport channels. Finally, the results are put in perspective by discussing their
implications to a high–β operational scenario, required for a burning plasma in a fusion
reactor.

The main scope of this PhD work has been to investigate the effects of a finite β,
defined as the kinetic to magnetic pressure ratio, on the various transport channels, mainly
from the theoretical standpoint. This is of strong importance for fusion development
towards a reactor, since economically viable tokamak operation implies a high β (of the
order of a few percent), such that its influence cannot be neglected in the modeling.
Moreover, the investigations of finite–β effects are interesting from the physics point of
view, because they imply the presence of two fluctuating electromagnetic fields through
both the fluctuating electrostatic potential and the parallel magnetic vector potential.
The latter two are closely connected such that the study of the relationship between
them, mainly produced by passing electron dynamics, is required. This relation is given
by Ampère’s law, which connects the electromagnetic potential A‖ due to perpendicular
magnetic field fluctuations with the current parallel to the equilibrium magnetic field,
and depends only on the electron pressure parameter βe. The parallel current is mainly
determined by the fluctuating electrostatic potential φ, whose gradient points primarily in
poloidal direction, as it was shown in Chapter 4.2. In the electromagnetic description, the
potentials φ and A‖ lead to two processes for turbulent transport, the E×B and magnetic
flutter, respectively. In addition to affecting mainly electrostatic type of instabilities and
turbulence, like ion temperature gradient (ITG) and trapped electron modes (TEM), which
are usually the most important microturbulent modes leading to anomalous transport, a
finite β can also lead to the destabilization of electromagnetic type of instabilities, like
microtearing modes (MTM) and kinetic ballooning modes (KBM), whose occurrence and
relevance in present and future high–β experimental scenarios has to be explored.

Due to the complex interplay of the implications connected with a finite βe, a realis-
tic description requires numerical calculations, but deeper physical understanding can be
obtained only by concurrent analytical investigations. For this reason, numerical calcula-
tions have been always performed in concert with analytical derivations, developed within
gyrokinetic and fluid models in the framework of the present thesis. These also allowed
us to clarify the connection between the electromagnetic results obtained here, and their
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corresponding limits in the electrostatic case, which were often already documented in the
previous literature.

In conclusion, a rather broad and comprehensive theoretical investigation of electro-
magnetic effects on the various transport channels, in particular for electron, impurity
and toroidal momentum transport, has been obtained. These effects received very limited
consideration by the nuclear fusion community so far, or were practically neglected. The
investigations on the different transport channels allows also the assessment of different
physical mechanisms, by which a finite β can impact the transport (direct and indirect
mechanisms).

8.1 General conclusions

Finite β effects on electron, trace impurity, parallel momentum and ion heat transport in
tokamak plasmas have been studied in the present thesis by means of analytical calcula-
tions and numerical simulations.

The effects of a finite βe on the different transport channels can be divided into two
branches. Direct βe effects are due to the additional terms proportional to the fluctuating
A‖ in the expression of the fluxes, whereas indirect βe effects are caused by changes of the
eigenfrequency and/or the eigenfunction of the considered mode. It has to be mentioned
that both effects are always present, but one of them is usually the dominant contribution.
For instance, the electromagnetic behavior of electron particle transport is mainly due to
the large parallel mobility of passing electrons. This implies the loss of adiabaticity and
therefore additional leading order terms proportional to βe in the formula for the flux,
Eq. (4.7), such that a finite βe has a direct effect. In contrast, indirect effects due to
the modification of the eigenfrequency of the dominant mode can be regarded as a small
correction. The transport of trace impurities, parallel momentum (mainly due to ions)
and ion heat shows that the indirect effects are dominant since the parallel mobility of
ions is of order (mi/me)

0.5 smaller than that of electrons. This leads to the conclusion
that the main electromagnetic effect in the latter channels is caused by both trapped and
passing particle physics, while for electron transport it is passing particle physics alone.

Finite–βe effects have been investigated for various transport channels under conditions
of both ITG and TEM microturbulence. The latter two instabilities, which are usually
the most important ones in the core of tokamak plasmas, cause different behaviors of the
various transport channels with respect to an increase of βe. It has been found that ITG
turbulence is significantly affected by a finite βe, while TEM turbulence shows only weak
effects. This is due to the fact that ITG modes are connected with larger fluctuating
perpendicular magnetic field due to the stronger coupling to the parallel velocity. In the
theoretical modeling, the latter is always connected with A‖ being proportional to βe. Due
to this difference, microturbulence in which ITG modes are dominant, shows a decrease of
the stationary density gradients of electrons and low–Z trace impurities. Furthermore, the
momentum transport flux decreases as well as the ion heat flux. These common behaviors,
however, are due to very different reasons connected with the above mentioned different
physics processes ongoing in the case of finite perpendicular magnetic field fluctuations.

These differences, in turn, also imply that the main role of β takes place in different
components of the transport (diagonal or off–diagonal) depending on the transport chan-
nel. The finite βe effects on electron transport lead to a non–adiabatic response of passing
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electrons and are mainly of convective type. This implies that in conditions of dominant
ITG modes the passing particle flux is directed outwards, and results in lower stationary
density gradients. Thus, the predicted density peaking is reduced with increasing βe, par-
ticularly in the absence of neutral beam injection (NBI) fueling, as shown in Chapter 4.
For trace impurity transport, both the diagonal and off–diagonal transport coefficients are
affected by an increase of βe. The normalized diffusion coefficient decreases with increasing
βe, while the off–diagonal thermodiffusion and pure convection coefficients both increase
in absolute values, the former in outward direction and the latter in inward direction.
Thus, the off–diagonal finite βe effects are partly balanced such that the convection to
diffusion ratio determining the stationary trace impurity density gradient is usually only a
weakly varying function of βe. The diagonal component of turbulent parallel momentum
transport shows a decrease with raising βe. This behavior is also obtained for the Coriolis
pinch, which is the off–diagonal contribution considered in the framework of the present
thesis (see discussion in Chapter 6.1). Both the ratios of viscosity to heat conductivity and
Coriolis pinch to viscosity decrease with increasing βe. In high–β operational scenarios
in present devices, and therefore usually in the presence of substantial NBI torque, the
two effects can balance, since the first implies an increase of the toroidal rotation velocity
gradient, while the second a decrease. In the absence of NBI torque, which is likely to
be the case in a fusion reactor, the toroidal rotation velocity gradient will be mainly de-
termined by the ratio between the off–diagonal contributions to the momentum flux and
the diagonal viscosity, and in this case, the second effect will be dominant. This leads
to the prediction of a decrease of the toroidal rotation velocity gradient in operational
conditions close to the trigger of KBMs. It is therefore important to establish how close
high–β scenarios can be with respect to the trigger of these modes. In Chapter 7.3.2 we
have shown that the experimental condition of proximity to KBMs can occur in hybrid
scenarios.

Another aspect connected with the physics differences of the finite βe contributions
for each transport channel is the relative importance of E×B and magnetic flutter. For
low–Z trace impurities and ion heat it can be practically neglected. The reason for this
difference is the fact that electrons are stronger affected by perpendicular magnetic field
fluctuations due to their smaller inertia as compared to the ions and impurities. Generally,
it is found that E×B transport is dominant, and magnetic flutter transport provides only a
small addition. For instance, in the case of low–Z trace impurities and ion heat transport,
magnetic flutter is usually around 1% of the E×B part at βe = 1%. High–Z impurities
show a stronger influence of magnetic flutter fluxes (up to 10% for the highest βe values
considered in this work). For electron and parallel momentum transport, magnetic flutter
plays also a weak role (around 1% of the E×B part at βe = 1%). However, in conditions
of a very small E×B component, which is the case at the stationary density gradient
determined by the requirement of the electron particle flux to be at the null (see Chapter
4.3), or at the transition from ITG to KBMs for the parallel momentum transport (see
Chapter 6.2), the flutter flux is in general not vanishing, but can be as big as the E×B
contribution or even dominant.

For a more realistic treatment, the inclusion of a finite β implies another aspect for
the theoretical modeling of tokamak plasmas, namely the inclusion of the geometrical
(electrostatic) effect produced by an increase of β in the magnetic equilibrium, which
affects the vertical drift. Of course, in experiments this effect is inevitably closely connected
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to a finite βe in Ampère’s law, but in theoretical investigations it can be distinguished.
As it was shown in Chapters 4.4.2 and 5.2 for electron and trace impurity transport, the
influence of the geometrical effect is observed to be weak. In particular, this was found
from nonlinear simulations for electron transport, see Fig. 4.9. However, quasi–linear
studies showed a larger effect. This underlines the importance of appropriate spectral
weighting of quasi–linear fluxes in order to match the nonlinear results.

Lastly, the proximity to MHD instabilities plays an important role for the behavior
of the parallel momentum transport coefficients. For ITG modes, an increasing βe in the
vicinity of the kinetic ballooning mode threshold leads to stronger decrease of the diagonal
parallel momentum transport, and can even reverse the sign of the Coriolis pinch, as it
was discussed in Chapter 6.2.2. Instead, the proximity to the micro–tearing mode thresh-
old does not show large variations of the transport coefficients. For the other transport
channels, in the vicinity to the KBMs similar behaviors are found, as it was also reported
in [50] for the ion heat transport.

8.2 Outlook

The electromagnetic effects on the different transport channels discussed in the framework
of the present thesis are relevant for future fusion experiments towards the goal of energy
production. In this context, operational scenarios which combine both large confinement
factors with high values of β, are of particular importance. In contrast to present day
experiments, a burning plasma in a tokamak device will be mainly heated through α–
particles generated from the D–T fusion reaction, with no or only weak additional heating
due to neutral beam injection (NBI). As it was explained in Chapter 4.4.3, the absence
of NBI heating in combination with high values of βe is predicted to lead to a substantial
decrease of the peaking of the density profile and therefore to a smaller amount of stored
energy. This unfavorable result, however, might be beneficial in case impurity transport
in the core is dominated by neoclassical transport. In contrast, electromagnetic effects on
turbulent impurity transport do not exhibit mechanisms leading to strong accumulation,
as it was shown in Chapter 5.4. These two points may be confirmed or rejected by
experimental studies in present fusion experiments using a large fraction of ion/electron
cyclotron resonance heating with only a small fraction of NBI.

Moreover, a burning plasma in a tokamak device will only experience a weak external
torque (also because of the minimal NBI heating with respect to present devices). Then,
the plasma rotation in the core will depend on Coriolis pinch and intrinsic rotation mech-
anisms (all of the off–diagonal terms in the expression of the momentum flux, as it was
explained in Chapter 6.1). For operation at high βe, presumably close to the trigger of
MHD modes like the KBM, the Coriolis pinch will be close to the null or even reversed,
as it can be concluded from the discussion in Chapter 6.2. Therefore, also the stationary
toroidal velocity gradient may become small, leading to lower values of E×B shearing and
thus larger turbulence levels, which, in turn, cause a decrease in the energy confinement
time. Another interesting point is that one of the most important parameters to get large
Coriolis pinch is the logarithmic density gradient. Since the latter is predicted to decrease
significantly with increasing βe, also the pinch in the momentum decreases, which is an
indirect effect in addition to the direct reduction due to high β. Moreover, MHD modes
like the resistive wall mode are less stabilized by a smaller toroidal rotation, which can

136



lead to a strong limitation for the parameter space in which a high–β operation is possible,
especially in the case of a broad current profile.

From the previous discussions it can be concluded that electromagnetic effects cause
a large diversity of operational consequences. Moreover, the interplay of the different
transport channels sketched above further increases the complexity of the studies in order
to get the ultimate answer to the question of the influence of electromagnetic effects on
tokamak plasmas. From the theoretical standpoint, further investigations have to be made,
for many reasons. Firstly, most of the results in the framework of the present thesis are
obtained at mid–radius. Thus, simulations with global codes over a large radial window
(ideally the full radial domain) might fortify the present result on a global scale, or might
be giving new insights on the transport properties. The complexity in transport modeling
due to the interplay of the different transport channels on an energy confinement time
scale could be tackled by a new kind of approach like TGYRO [156] or TRINITY [157],
whose aim is to manage execution of multiple instances of a global kinetic neoclassical code
together with a (local) gyrokinetic code. Equilibrium profiles of density and temperature
are modified by an iteration procedure until measured losses from collisions and turbulence
balance experimental power and density sources.

Of course, all the results presented in the framework of this thesis may also be confirmed
or rejected by further experimental studies using high β operational scenarios in present
fusion devices. Especially conditions with the absence of strong NBI heating, and therefore
small beam fueling and external torque, have to be investigated. This is the best method
to study the full physics of the mentioned effects and their interplay, which is extremely
helpful for the next steps towards a fusion reactor.
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Appendix

Mathematica routine for ITG–TEM stability analysis

The following Mathematica-5.0 routine has been used for the calculation of figure 3.8.

(*Frequencies in \[Omega]_Di - Normalisation,

note : \[Tau] = Ti/Te;

order (\[Phi], ni, net, Ti, Tet)*)

Mat := {{(1 - 1/2*RLni)/\[Tau],-om + 1, 0, 1, 0},

{(1/2*RLTi-1/3*RLni)/\[Tau], -2/3*om, 0, om -5/3, 0}, {1/2*RLne -

1,0, 1 +\[Tau]*om, 0, 1}, {1/2*RLTe - 1/3*RLne, 0, -2/3*\[Tau]*om,

0,\[Tau]*om + 5/3}, {1 - ft, -1, ft, 0, 0}};

Mat//MatrixForm

Matdet[om_, ft_, \[Tau]_, RLni_, RLTi_, RLne_,RLTe_] = Det[Mat];

Matdets[ft_, \[Tau]_, RLni_, RLTi_, RLne_, RLTe_] :=

Solve[Matdet[om, ft, \[Tau], RLni, RLTi, RLne, RLTe] == 0, om];

growthrate[ft_, \[Tau]_, RLni_, RLTi_, RLne_, RLTe_] :=

Module[{i,r, s, t},

t := Sort[Table[om /. Matdets[ft, \[Tau], RLni,

RLTi, RLne, RLTe][[i]],{i,1,4}], Im[#1] > Im[#2] &];

s :=Select[

Table[Abs[Im[om /.Matdets[ft, \[Tau], RLni, RLTi, RLne, RLTe]

[[i]]]],{i, 1,4}], # > 0 &][[1]]; t];

Counter[ft_, \[Tau]_, RLni_, RLTi_, RLne_, RLTe_] :=

Count[Im[growthrate[ft, \[Tau], RLni, RLTi, RLne, RLTe]],

_?Positive];

casefunction[ft_, \[Tau]_, RLni_, RLTi_, RLne_, RLTe_] :=

Module[{x},Switchfunction[x_] :=

Switch[x, _Real, 0, _Complex,

Counter[ft, \[Tau], RLni, RLTi, RLne, RLTe]*Sign[Re[x]]];
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Switchfunction/@

growthrate[ft, \[Tau], RLni, RLTi, RLne, RLTe]][[1]]

Using the functions listed above, figure 3.8a) was plotted using

DensityPlot[casefunction[0.5, 1, i, j, i, j], {i, 0.05, 8},

{j,0.05,12}, PlotPoints -> 60, Frame -> True, FrameLabel ->

{"R/Ln","R/LT"}, RotateLabel -> False, FormatType -> OutputForm,

ColorFunction -> (Hue[0.35 - 0.61*#] &), ColorFunctionScaling ->

False]

Normalized velocity space variables and gyrokinetic deriva-
tion of Ω̂

The normalized velocity–space coordinates (ε, λ, ς) are defined as

ε =
mσv

2

2Tσ

λ =
v2
⊥

v2B̂
ς = sgn(v̂‖,σ). (1)

Then,

v2
‖ = v2(1− λB̂)

v2
⊥ = v2λB̂. (2)

The sign of the velocity, ς, is required in order to separate two populations of trapped
particles for each value of λ. With these definitions, the normalized parallel velocity
becomes

v̂‖,σ = ±
√

2µ̂σεT̂σ(1− λB̂), (3)

where T̂σ = Tσ/Te. Then, the Jacobian J of the coordinate transformation from (v⊥, v‖)→
(ε, λ, ς) is given by

J = ς
Tσ
mσ

1

2

√
λB̂(λB̂ − 1)

. (4)

Consequently, the velocity integral over a Maxwellian is given by∫
d3vFM,v =

∑
ς

2π

∫ ∞
0

∫ ∞
0

ςv⊥FM,vdv‖dv⊥

=
∑
ς

2π

∫ ∞
0

∫ 1

0
ς
Tσ
mσ

1

2

√
λB̂(λB̂ − 1)

ς

√
2ε
Tσ
mσ

λB̂ ×

(
mσ

2πTσ

)3/2

exp [−ε] d(λB̂)dε

=
∑
ς

1

2
√
π

∫ ∞
0

∫ 1

0
ς2

√
ε

1− λB̂
exp [−ε] d(λB̂)dε

= 1 (5)
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Using this, the relation Eq. (4.5) can be simplified in the case of only considering the
electron current. This means that the

∑
σ reduces to one term given by the electrons.

Assuming J0,e = 1 and taking only the large parallel velocity terms to leading order in µ̂e,
this gives ∫

d3vv̂||
Npass,k

Dpass,k
FM,v =

=
∑
ς

1

2
√
π

∫ ∞
0

∫ 1

0
ς2

√
ε

1− λB̂
exp [−ε] ς

√
2µ̂σεT̂σ(1− λB̂)×{

k̂‖ς

√
2µ̂σεT̂σ(1− λB̂)

[
kyρs

(
R

Ln,e
+

R

LT,e

(
ε− 3

2

))
+ ω̂r + iγ̂

]}
×{

2k̂‖ς
2µ̂eε

(
1− λB̂

)}−1
d(λB̂)dε

=
q√
π

∫ ∞
0

∫ 1

0

√
ε exp [−ε] 1√

1− λB̂

[
kyρs

R

Ln,e
+ ω̂r + iγ̂

]
d(λB̂)dε

= 2q

[
kyρs

R

Ln,e
+ ω̂r + iγ̂

]
, (6)

where k̂‖ = 1/q was taken for simplicity. Note that a term proportional to the temperature
gradient, namely kyρs (ε− 3/2)R/LT, has been left out since it does not give a contribution
after integration over energy.

The integral
∫
d3vv̂2

||Npass,k/Dpass,kFM,v vanishes identically under the assumptions
mentioned above because of an additional ς under the sum over ς = ±. This leads to the
expression of Eq. (4.13).
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L. Horton, V. Igochine, D. Jacobi, M. Jakobi, F. Jenko, A. Kallenbach, O. Kar-
daun, M. Kaufmann, A. Keller, A. Kendl, J.-W. Kim, K. Kirov, R. Kochergov,
H. Kollotzek, W. Kraus, K. Krieger, B. Kurzan, P. T. Lang, P. Lauber, M. Laux,
F. Leuterer, A. Lohs, A. Lorenz, C. Maggi, H. Maier, K. Mank, M.-E. Manso,
M. Maraschek, K. F. Mast, P. McCarthy, D. Meisel, H. Meister, F. Meo, R. Merkel,
D. Merkl, V. Mertens, F. Monaco, A. Mück, H. W. Müller, M. Münich, H. Murmann,
Y.-S. Na, G. Neu, R. Neu, J. Neuhauser, J.-M. Noterdaeme, I. Nunes, G. Pau-
tasso, A. G. Peeters, G. Pereverzev, S. Pinches, E. Poli, M. Proschek, R. Pugno,
E. Quigley, G. Raupp, T. Ribeiro, R. Riedl, S. Riondato, V. Rohde, J. Roth,
F. Ryter, S. Saarelma, W. Sandmann, S. Schade, H.-B. Schilling, W. Schneider,
G. Schramm, S. Schweizer, B. Scott, U. Seidel, F. Serra, S. Sesnic, C. Sihler, A. Silva,
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