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ABSTRACT 
 
The self-diffusion of myoglobin in concentrated solutions was investigated up to volume 

fractions of 0.4 by neutron back-scattering spectroscopy. The quasi-elastic spectrum can be 
decomposed into two Lorentz curves: (1) a narrow line, where the width increases with Q, which 
is assigned to translational diffusion, and (2) a broad Q-independent line, reflecting protein-
internal motions. The apparent diffusion coefficient decreases with increasing concentration and 
wave-vector, suggesting that protein diffusion deviates at high Q (1.75 Å-1) from its long-time 
Brownian limit. Jump diffusion, sample heterogeneity and time-dependent diffusion are 
discussed as possible explanations. 

 

INTRODUCTION 
 
Proteins are often studied in dilute, nearly ideal solutions. In contrast, biological fluids 

contain macromolecules at high concentration: for example, the volume fraction of hemoglobin 
in red blood cells is close to φ = 0.25. In most other cells, a large variety of macromolecules is 
present. These environments are termed “crowded” rather than “concentrated”. In both cases, 
excluded volume effects play an essential role in vivo, affecting reaction rates, association-
dissociation equilibria and molecular transport [1]. In general, studies of protein dynamics in 
solution require information on protein diffusion [2]. In this contribution we focus on the 
transport properties of myoglobin, a small globular protein with a molecular weight of 18 kDa 
and a radius of gyration of 1.48 nm [3]. Myoglobin stores oxygen in muscle tissue and facilitates 
oxygen transport by macro-molecular diffusion. 

Concentration gradients (more generally: gradients in the chemical potential) are 
compensated by collective diffusion Dc whereas the motion of the individual particle is described 
by self-diffusion Ds. We address the question whether protein self-diffusion in crowded systems 
can be understood based on concepts of colloidal solutions, with the size of the particles being in 
the range of several nanometers. In these systems dynamic forces such as hydrodynamic 



interactions, in addition to direct interactions (van der Waals and electrostatic), play an important 
role [4]. 

Direct and hydrodynamic interactions can be separated by experiments which are sensitive 
to various time and length scales: hydrodynamic interactions are established almost with the 
speed of sound. In this hydrodynamic regime, the configuration of particles is essentially 
constant and the particles are performing short-time diffusion. Direct interactions enter after 
structural relaxation on a time scale corresponding to diffusion across the inter-particle distance: 
τI = d2/6DS

s. d denotes the average center to center distance and DS
s is the short-time self-

diffusion coefficient. For times τ ≈ τI, long-time diffusion is established with DL
s < DS

s due to 
obstruction by direct interactions [4]. 

We have previously determined the inter-molecular structure factor of concentrated 
myoglobin solutions from small angle neutron scattering (SANS) data and a mean spherical 
analysis (MSA) assuming a modified hard-sphere potential [5]. Concentrated solutions up to 
volume fractions above 0.4 could be characterized as colloidal suspensions of hard-sphere 
monomers and are thus a good system to study concentration-dependent effects. 

We also investigated protein diffusion on the scale of the inter-molecular distance by 
neutron spin-echo spectroscopy [5]. The respective diffusion coefficients decrease with 
increasing wave-vectors. As the method is based on coherent scattering, it records relative 
particle motions (collective diffusion). However, for Q >> Qmax, the wave vector of the structure 
factor maximum, S(Q) approaches 1 so that the self-diffusion coefficient is determined. The 
observed wave-vector dependence thus reflects the transition between collective- and self-
diffusion. Moreover it was found that the effective friction corrected by the structure factor 
varies with the wave-vector as predicted for hydrodynamic interactions [5]. 

Due to a limited Q-range, the question of short-and long-time diffusion could not be 
addressed properly in the spin-echo experiments. To discriminate between different time-regimes 
it is necessary to extend the Q-range, while preserving the resolution of the spin-echo method. 
This is partially possible with back-scattering spectroscopy, where Q-values up to 1.75 Å-1

 at a 
resolution below 1 μeV are achieved. Moreover with this method incoherent scattering 
dominates and one determines the self-diffusion coefficient at all Q-values. For this purpose we 
employed the high flux back-scattering spectrometer at NIST [6]. 

 

EXPERIMENT 
 
Met-myoglobin (equine skeletal muscle, M0630) was obtained from Sigma Chemicals. The 

protein was dissolved in H2O and dialyzed against de-salted water to remove residual buffer. 
Subsequently, the solution was freeze-dried, then dissolved in D2O for H/D exchange. The D-
exchanged sample was freeze-dried again. For the experiment the protein powder was dissolved 
at the desired volume fraction (φ = 0.13, 0.26, and 0.39) in 100 mM NaCl/D2O and one sample 
(φ = 0.26) was prepared with pure D2O. The volume fractions were determined by weighing the 
sample. 

Approximately 1ml of the solution, containing about 200 mg protein, was filled into a 
hollow cylinder (aluminum) with a diameter of 2.9 cm and a gap of 0.2 mm. Vacuum tightness 
was checked each time before the experiment. All experiments were performed at 293 K. 

The High Flux Backscattering Spectrometer at NIST [6] covers a Q-range from 0.25 to 
1.75 Å-1. The 4 low-angle analyzers need special consideration, since they are not oriented 



exactly in back-scattering geometry and are of different design. At the higher scattering angles, a 
resolution of 0.8 μeV (FWHM) was achieved using an energy range of ±17 μeV. Measurements 
with pure D2O were performed to correct for the background, cell-, and solvent-scattering. The 
broad spectrum due to fast diffusion of water appears as an almost constant background in the 
frequency window. Subsequently, the scattering functions were normalized to vanadium. 

 
 
Figure 1: Backscattering spectra (dots with error bars) of a myoglobin solution at φ = 0.26 

(in 100mM NaCl/D2O) and Q = 0.75 Å-1 (left) resp. 1.5 Å-1 (right). Also shown are 
the two Lorentzian spectral components, L1 and L2 (dotted lines) and the fit (full line) 
as well as the resolution function (dashed line). 

 

RESULTS 
 
Figure 1 shows a typical quasi-elastic spectrum obtained with a myoglobin solution at 

φ = 0.26 for two Q-values. For display, a logarithmic scale was chosen to expose the properties 
of the line-shape more clearly at high energy transfer. Also, the data were weighted 
logarithmically (disregarding their experimental errors) for the fit. The effective width of the 
spectrum, being much wider than the resolution function, increases with Q. A convolution of at 
least two Lorentzians with the following properties is required to fit the data: (L1’) a narrow 
component with a line-width increasing with Q, it is assigned to long-range diffusion and (δ+L2’) 
a broad component where the linewidth is kept fixed. The second component thus reflects a 
localized molecular process and is assigned to protein-internal motions. The two-component 
dynamical structure factor can be written as [8]: 
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A0(Q) is the elastic incoherent structure factor (EISF) appearing here as the fraction of the 
amplitude of the translational component relative to the total scattering intensity. The broad line 
L2 is the convolution of internal and diffusive motions. Γdiff is the linewidth of translational 
diffusion, Γint denotes the (Q-independent) width of the internal process. 

 
Figure 2: Linewidth (half width at half maximum, HWHM) versus Q2 of the 2-component fit. 

The broad (internal) component Γint is represented by the data points and the dashed 
line at 10 μeV (scale on the right). The fit of the narrow (translational) component 
Γdiff is represented by the data points at the indicated volume fractions (scale on the 
left hand side). a: with 100 mM NaCl, b: without NaCl. The lines are fits assuming 
the jump diffusion model of Singwi and Sjölander [7]. The respective parameters are 
given in Table I. 

 

Long-range diffusion 
 
The resulting linewidths Γ at various volume fractions of myoglobin are displayed versus 

the squared momentum transfer in Figure 2. For the internal processes a constant width of 
Γint = 10 (±2) μeV was obtained, which was kept fixed, while Γdiff

 (Q) increases with Q. The fact 
that Γdiff

 (Q→0) = 0 shows that the broadening is indeed due to long-range diffusion. 



For regular diffusion, a linear relationship of the type Γdiff = ħ Ds Q2 is expected, where Ds 
denotes the self-diffusion coefficient. Such a Q2-dependence is not observed, the slope rather 
decreases with increasing Q. This effect cannot be attributed to rotational diffusion: as discussed 
in ref. [2], at high Q-values or short length scales the displacements due to translational or 
rotational diffusion cannot be distinguished. Thus the linear relation between linewidth and Q2 is 
not affected. One obtains an average diffusion coefficient including rotational effects. 

The peculiar behavior of D(Q) saturating at high Q resembles results which have been 
obtained for water at various temperatures and on a much shorter time scale [7]. This effect was 
explained by assuming that diffusion on a short length scale is discontinuous: for small 
molecules the increase in linewidth is limited due to a finite jump rate, which is the asymptote at 
high Q. The associated length-scale is on the order of the size of the water molecule. 

In our case of macromolecular diffusion the corresponding parameter is the volume fraction 
and not the temperature. From the class of jump diffusion models we select the Singwi-Sjölander 
model [8]. A particle executes an oscillatory motion for a time τ. Then it diffuses by continuous 
motion for a time τD, which is repeated. If the time of localization is much longer than the 
diffusion time, τ >> τD, the Singwi-Sjölander model yields the following Lorentzian line-width: 
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The line-width saturates at high Q yielding Гdiff(Q→∞) = ħ/τ. This model fits the data (see 

Figure 2). The respective parameters are given in Table I. It is striking that the resulting jump 
length is for all volume fractions on the order of 1 Å. 

 
Table I: Parameters obtained from the fit of the Singwi-Sjölander model to Γdiff. 

a: with 100 mM NaCl, b: without NaCl 
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0.13a 5.79 0.02 0.83 
0.26b 4.07 0.08 1.40 
0.26a 3.13 0.09 1.30 
0.39a 0.66 0.27 1.03 

Internal motions 
 
Because of their finite spatial range, internal motions give rise to a finite elastic peak. The 

respective elastic fraction (EISF) was denoted above by A0(Q). Moreover, the line-width of a 
localized process is constant, Γint = 10 (±2) μeV, and independent of protein concentration. The 
simplest case of a localized process is described by diffusion of a particle in a harmonic 
potential. This model predicts a Gauss distribution of displacements, and the following elastic 
fraction [10]: 
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Figure 3: The EISF A0(Q) of the 2-component fit. a: with 100 mM NaCl, b: without NaCl. 

The lines are fits to a Gauss distribution, see equation 3. The resulting squared 
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This equation fits the data quite well within experimental error as shown in Figure 3. 
As expected for a harmonic potential, the correlations decay to zero at high Q instead of 

assuming a constant value. This result, together with the correlation time of 65 ps resolved by the 
spectrometer, suggests collective motions and not a reorientation of a molecular group. The 
motional amplitudes appear to be independent of concentration, except for the highest volume 
fraction, where the displacements are lower (Figure 3). The resulting displacements of 

o
x Α≈Δ 6.02  are slightly larger than those of internal motions in hydrated proteins 

( o
x Α≈Δ 4.02 ) [2,10]. 

 



DISCUSSION 
 
The most interesting result of this study is that the line-width associated with protein 

diffusion is not increasing with Q2 but saturates at high Q, as shown in Figure 2. A jump 
diffusion model fits the data quite well, which implies discrete steps on a scale of 1 Å. The 
physical basis of discrete steps is not clear in the case of a macromolecule. One would have to 
consider a break-down of the continuum approximation due to the finite size of the water 
molecule. However even a small macromolecular displacement will displace many water 
molecules, the primary solvation shell of myoglobin contains at least 400 water molecules. We 
thus briefly discuss two alternative models, time-dependent- and heterogeneous diffusion. 

Figure 2 shows that the effective diffusion coefficient decreases with increasing Q, i.e. 
decreasing length- and herewith time-scale. The diffusion coefficient thus seems to increase with 
time. As briefly discussed in the introduction, there are different typical time scales for the 
system [4]: the shortest time scale is set by the structural relaxation of the solvent τs, which is on 
the order of 10 ps for protein hydration water [9]. This is outside the time-window of our 
measurements (τ > 35 ps). On the Brownian time scale of τB = M/f0 velocity correlations play a 
role. Here M is the mass of the protein and f0 denotes the protein-solvent friction coefficient. The 
longest time scale is the interaction time τI, which is on the order of a few nanoseconds, 
depending on protein concentration.  

In the Brownian time scale, the time-dependent diffusion coefficient D(t) is proportional to 
the integral of the velocity correlation function. Hence, D(t) increases with time, which could 
explain a decrease in D(Q) at high Q-values or short times [4]: 
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However, for myoglobin τB is presumably not much larger than τs, which is outside of our 

time window τ >> τB. For times τ > τB, hydrodynamic interactions are fully established and the 
particles are performing short-time self-diffusion Ds

S. 
The spectral component L1’ is thus possibly heterogeneous, combining short- and long-time 

diffusion. Due to the finite energy resolution of the spectrometer, only the fast component is 
resolved at low Q, giving rise to a large initial slope in Γ(Q). The slower process of long-time 
diffusion will contribute to the spectrum fully at high Q, which leads to an apparent saturation 
effect. 

The component L1’ could also be heterogeneous for a different reason: protein solutions at 
high concentration may contain a variety of oligomers differing in molecular weight. The 
resulting distribution of diffusion coefficients can give rise to deviations from a Lorentzian line-
shape. However, as mentioned above, in our previous structural and dynamic studies we could 
not detect oligomers or larger aggregates with myoglobin solutions even at high concentrations 
[5]. 

The differences observed between the samples with and without NaCl could result from 
electrostatic interactions or slight differences in concentration because of the different sample 
preparation. The effective diffusion coefficient (Table I) is slightly larger than those derived with 
the spin echo method at lower Q-values [5]. In this preliminary report we discuss some 



characteristic results; a more detailed account, including further data, will be presented 
elsewhere. 
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