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Zusammenfassung

In dieser Arbeit benutzen wir Lévy-Copulas, um die Abhängigkeitsstruktur multi-

variater Lévy-Prozesse zu beschreiben und konstruieren mehrere Modelle, die auf Lévy-

Copulas basieren. Die Parameterschätzung dieser Modelle ist der Hauptteil dieser Arbeit.

Das Schätzverfahren basiert auf dem Maximum-Likelihood-Prinzip.

Für zusammengesetzte Poisson-Prozesse, die endliches Lévymaß haben, zerlegen wir

die Träger der Maße in den Teil auf den Achsen und den Teil außerhalb der Achsen.

Für einen bivariaten zusammengesetzten Poisson-Prozess erzeugt diese Zerlegung drei

unabhängige Komponenten; zwei zeigen nur die Sprünge in einer Komponente, der dritte

Teil betrachtet die bivariaten Sprünge in beiden Komponenten. Die Likelihood-Funktion

kann mit Hilfe dieser unabhängigen Teile hergeleitet werden. Wir stellen überdies einen

neuen Simulationsalgorithmus für einen bivariaten zusammengesetzten Poisson-Prozess

vor. Wir wenden unsere Methode an, um Schadendaten einer dänischen Feuerversicherun-

gen zu modellieren und die Parameter zu schätzen.

Die Erweiterung dieser Methode für Lévy-Prozesse mit unendlichem Lévymaß wird im

zweiten Teil dieser Arbeit diskutiert. Genauer gesagt betrachten wir einen bivariaten sta-

bilen Lévy-Prozess und schneiden alle kleinen Sprünge ab. Die statistische Analyse basiert

nun auf dem daraus hervorgegangenen zusammengesetzten Poisson-Prozess. Die Fisher-

Informationsmatrix wird ebenfalls analytisch berechnet und die asymptotische Normalität

der Schätzer bewiesen, wenn die Anzahl der Sprünge gegen unendlich strebt. In diesem

Modell kann dies geschehen entweder, wenn die Beobachtungsperiode unendlich groß wird,
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oder wenn der Stutzungspunkt der kleinen Sprünge gegen 0 geht. Eine Simulationsstudie

untersucht den Effizienzverlust durch das Abschneiden der kleine Sprünge.

Schließlich wird im letzten Kapitel ein neue Schätzmethode eingeführt. Die Haup-

tidee dieses Ansatzes, der zwei-Schritt-Methode, ist ähnlich zur IFM (inference func-

tions for margins) für multivariate Verteilungsfunktionen. Wir schätzen die Parameter

der Randprozesse zunächst getrennt. Gegeben die Schätzwerte aus dem ersten Schritt,

transformieren wir die Randprozesse und schätzen im zweiten Schritt die Parameter

der Abhängigkeitsstruktur. Die Godambe-Informationsmatrix wird ebenfalls analytisch

berechnet und die asymptotische Normalität der Schätzer bewiesen, wenn die Anzahl

der Sprünge gegen unendlich strebt. Eine Simulationsstudie vergleicht die Effizienz der

vorgestellten drei Methoden.
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Abstract

In this thesis, we apply Lévy copulas to describe the dependence structure of multivariate

Lévy processes and build some Lévy copula-based models. Parameter estimation of the

models is the main part of this work. The estimation procedure is based on maximum

likelihood principles.

For compound Poisson processes (CPP) which have finite Lévy measure, we decom-

pose the mass on the axes and outside of the axes. This decomposition for a bivariate

CPP generates three independent components and shows either the jumps only in one

component, or the bivariate jumps in both components. The likelihood function can be

derived based on these independent parts. We also suggest a new simulation algorithm for

a bivariate CPP. We apply our method to model Danish fire insurance data and estimate

the parameters of the model.

The extension of the method for Lévy processes with infinite Lévy measure is discussed

in the second part. More precisely we take a bivariate stable Lévy Process and truncate

all the small jumps. We base the statistical analysis on the resulting CPP. The Fisher

information matrix is also calculated and the asymptotic normality of the estimators is

proved as the number of jumps tends to infinity. In this model this may happen either

for the observation period going to infinity, or the truncation point going to 0 for a fixed

observation period. A simulation study investigates the loss of efficiency because of the

truncation.

Finally, a new estimation procedure is introduced in the last chapter. The main idea

of this approach, which we call two-step method, is similar to IFM (inference functions
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for margins) for multivariate distribution functions. First, the parameters of the marginal

processes are estimated. Then, given the estimates from the first step, we estimate in

a second step only the dependence structure parameters. This method is applied to a

bivariate α-stable Clayton subordinator with different or common marginal parameters.

For the latter, the Godambe information matrix and asymptotic covariance matrix are

analytically calculated. Moreover, the asymptotic normality of the estimators is proved

as the time span goes to infinity or the truncation point goes to zero. A simulation study

compares the quality of all three estimation methods: the two-step estimates, the MLEs

of a full model and the MLEs based on joint jumps only.
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Chapter 1

Introduction

Before giving an outline of the thesis, we review some topics that are common in the

following chapters. We start with the definition of a Lévy process and present the depen-

dence structure in a Lévy process in terms of the notion of a Lévy copula. For general

treatment of Lévy processes we refer to Applebaum [1], Bertoin [7], Sato [32] and Cont

and Tankov [13].

1.1 Lévy processes

A càdlàg stochastic process S = (S(t))t≥0 on a filtered probability space (Ω,F , (Ft)t≥0,P)

with values on Rd, for d ∈ N is called a Lévy process1 if and only if

(i) S(0) = 0 a.s.

(ii) S has independent increments, i.e. for all n ∈ N and 0 ≤ t0 < t1 < . . . < tn the

random vectors S(t0), S(t1) − S(t0), . . . ,S(tn) − S(tn−1) are independent.

(iii) S has stationary increments, i.e. the distribution of S(t+ h)−S(t) does not depend

on t.

1The term “Lévy process” is in honor of the French mathematician Paul Lévy, one of the founding

fathers of modern theory of stochastic processes.
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(iv) S is stochastically continuous, i.e. for every t > 0 and ε > 0

lim
h→0

P (|S(t+ h) − S(t)| > ε) = 0.

Stochastic continuity does not imply that the sample paths of the process are continuous,

but says that discontinuities occur at random times. In other words, the probability of a

jump at any fixed time t > 0 is zero.

For each t > 0 the distribution of S(t) will be in the class of infinitely divisible

distributions, i.e. for each n ∈ N, there exist n i.i.d. random vectors Yt,1, . . . ,Yt,n such that

Yt,1+. . .+Yt,n has the same distribution as S(t). This is obvious by setting Yt,1 = S(t/n),

Yt,2 = S(2t/n) − S(t/n), . . . , Yt,n = S(t) − S((n− 1)t/n).

The distribution of a Lévy process (S(t))t≥0 is characterized by the Lévy-Khintchine

representation of the characteristic function

E
[
ei(z,S(t))

]
= etΨ(z), t ≥ 0, z ∈ Rd,

with

Ψ(z) = i(γ, z) − 1

2
z⊤Az +

∫

Rd

(
ei(z,x) − 1 − i(z, x)1{|x|≤1}

)
Π(dx), , (1.1.1)

where (. , .) denotes the inner product in Rd, | · | is an arbitrary norm in Rd and 1A rep-

resents the indicator function of set A. The triplet (γ,A,Π) with γ ∈ Rd, the symmetric

non-negative definite d× d matrix A and the measure Π satisfying (1.1.1) uniquely deter-

mines the distribution of S and is called the characteristic triplet. The vector γ is not an

intrinsic quantity and depends on the truncation function in the Lévy Khintchine repre-

sentation, which in (1.1.1) is chosen to be 1. Although it does not have in general a clear

intuitive meaning, in some cases one can write the representation differently to give such

a parameter the meaning of a drift. The matrix A in characteristic triplet represents the

covariance matrix of Gaussian part of the Lévy process. The Lévy measure Π is a measure

on Rd satisfying

Π({0}) = 0 and

∫

Rd

(|x|2 ∧ 1) Π(dx) < ∞.
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The class of Lévy processes is very rich and consists of a wide range of applicable

processes. Brownian motion is a well-known Lévy process with a.s. continuous sample

paths. The characteristic triplet for a Brownian motion without drift will be (0, A, 0).

The Lévy measure Π for a Borel set B ⊂ Rd denotes the expected number of jumps per

unit of time with size in B. For a d-dimensional Lévy process the Lévy measure Π is either

finite or infinity. If Π(Rd) < ∞, the process is a compound Poisson process (CPP), and

with probability one it has finitely many jumps in each bounded time interval. The Lévy

process with infinite Lévy measure, i.e. Π(Rd) = ∞, has countably many jumps in every

bounded time interval forming a dense subset of [0,∞), cf. Theorem 21.3. of Sato [32].

An important class of Lévy processes are the spectrally one-sided Lévy processes. These

are the processes, which have a.s. only positive jumps or only negative jumps. For the class

of spectrally positive Lévy processes, there is a subclass called increasing Lévy processes

or subordinators which are very important ingredients for building Lévy-based models in

finance, cf. [13], Section 3.5. A subordinator is a spectrally positive Lévy process with a.s.

non-decreasing sample paths, i.e. it has with probability one positive jumps and a positive

drift. This implies immediately that it has sample paths of finite variation. According to

Theorem 21.5 in Sato [32] or Proposition 3.10 in Cont and Tankov [13] a subordinator

does not have a Gaussian part, i.e. A = 0, and its Lévy measure Π satisfies

Π(Rd \ Rd
+) = 0 and

∫

Rd
+

(|x| ∧ 1) Π(dx) < ∞,

where Rd
+ = [0,∞)d \ {0} and 0 is the zero in Rd.

1.2 Dependence of random variables

Let X = (X1, . . . , Xd) be a d-dimensional random variable in Rd. Its distribution function

(d.f.) F is usually defined by

F (x1, . . . , xd) := P (X1 ≤ x1, . . . , Xd ≤ xd) , (x1, . . . , xd) ∈ R
d
,

with one-dimensional marginal d.f.s Fi(xi) := P (Xi ≤ xi) for i = 1, . . . , d. The dependence

between the components of X is usually modelled by a so-called (distributional) copula.
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Before giving a definition for a copula function, we start with some definitions from Kallsen

and Tankov [25], Section 2.

Definition 1.2.1. Let A ⊂ R
d

and define F : A → R. For a,b ∈ A with a ≤ b

(componentwise) and (a,b] ⊂ A, the F -volume of (a,b] is defined by

VF
(
(a,b]

)
=

∑

u∈{a1,b1}×...×{ad,bd}
(−1)N(u)F (u)

where N(u) = #{k |uk = ak}.

In particular, VF ((a, b]) = F (b) − F (a) for d = 1 and VF ((a,b]) = F (b1, b2) + F (a1, a2) −
F (a1, b2) − F (b1, a2) for d = 2. The F-volume of any interval is equal to its Lebesgue

measure provided F (u1, . . . , ud) =
∏d

i=1 ui.

Definition 1.2.2. Let A ⊂ R
d

and define F : A → R. F is called d-increasing if

VF
(
(a,b]

)
≥ 0 for all a, b ∈ A with a ≤ b and (a,b] ⊂ A.

Definition 1.2.3. A d-increasing function C : [0, 1]d → [0, 1] is called a (distributional)

copula if

(i) C(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, 2, . . . , d},

(ii) C(1, . . . , 1︸ ︷︷ ︸
i−1

, ui, 1, . . . , 1) = ui for every i ∈ {1, 2, . . . , d} and ui ∈ [0, 1].

The property (i) in Def. 1.2.3 is called groundedness and a function with this property

called a grounded function. From a probabilistic point of view Definition 1.2.3 means

that a copula is a distribution function on [0, 1]d with uniform margins. For the theory

of copulas the fundamental theorem is Sklar’s theorem in [33] which represents a copula

as dependence structure of a random vector or of a multivariate distribution function. In

fact, for a multivariate d-dimensional distribution function F with marginals F1, . . . , Fd

and for all x = (x1, . . . , xd) ∈ R
d
,

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
. (1.2.1)
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The copula C is unique, if the marginal distribution functions are all continuous; otherwise,

C is uniquely determined on RanF1 × . . .×RanFd. Conversely, the function F in (1.2.1)

is a d-dimensional distribution function if C is a copula and F1, . . . , Fd are distribution

functions. That is, the copula C determines the characteristics of a distribution that do

not depend on the margins, but together with the margins, allow to reconstruct the entire

distribution. This is what is called the “dependence structure”.

The survival function F corresponding to the d.f. F is defined by

F (x1, . . . , xd) := P (X1 > x1, . . . , Xd > x)

with univariate margins F i(xi) := P (Xi > xi) for i = 1, . . . , d. Equation (1.2.1) can

be reformulated for a d-dimensional survival function F in terms of a copula C and the

univariate survival functions F 1, F 2, . . . , F d, i.e.

F (x1, . . . , xd) = C
(
F 1(x1), . . . , F d(xd)

)
.

The function C is called the survival copula.

1.3 Dependence of Lévy processes

In principle, the whole distribution of a d-dimensional Lévy process S is determined by

the law of S(t) for some t > 0. Therefore, one can model the dependence structure among

the components of S by the distributional copula Ct of the random vector S(t). However,

this approach as discussed in Kallsen and Tankov [25] has two drawbacks:

• For given infinitely divisible one-dimensional laws the copulas that can yield an

infinitely divisible d-dimensional law depend strongly on the margins and can not

be calculated in general.

• The distributional copula Ct of S(t) depends on t and for some h 6= t the copula

Ch of S(h) cannot in general be computed from Ct. One also needs to know the

marginal distributions at times h and t. Furthermore, even if Ch can be calculated

from Ct and the margins, the numerical computation will be very demanding.
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We need therefore to redefine the notion of dependence structure, independent of the

margins and with preserving the Lévy property and the dynamic structure of the Lévy

process. The dependence of a Lévy process in general has two parts. First, the depen-

dence of the Gaussian part which is entirely determined by its covariance matrix A in

the characteristic triplet. Second, the dependence structure of jump part of the process

which is completely characterized by the Lévy measure Π. As a result of the Lévy-Itô de-

composition the Gaussian part of every Lévy process is independent from its jump part,

cf. Theorem 19.2 of Sato [32]. Therefore, these two dependence structures can be treated

separately from each other. Since the covariance matrix of a Lévy process is well-studied,

the processes in this thesis are supposed to have no Gaussian part and their dependence

is studied in terms of the Lévy measure.

Since the Lévy measure is a measure on Rd and not on [0, 1]d, we need to define a

suitable notion of a copula. Moreover, one has to take care of the fact that the Lévy

measure is possibly infinite with a singularity at the origin. Because the singularity is in

the center of the domain of interest, each corner of the Lévy measure must be treated

separately. Therefore, we need a special interval associated with every x ∈ R.

Definition 1.3.1. (Tail integral, Def. 3.3 in [25])Let S = (S(t))t≥0 be a Rd-valued Lévy

process with Lévy measure Π. The tail integral of S is the function Π : (R \ {0})d → R

defined by

Π(x1, . . . , xd) :=
d∏

i=1

sgn(xi)Π
( d∏

i=1

I(xi)
)
.

where sgn(x) = 1{x≥0} − 1{x<0} and

I(x) =





[x,∞), x ≥ 0,

(−∞, x), x < 0.

As known from the definition of the tail integral, the Lévy measure is always considered

on the cones away from the origin because of the singularity at zero, see Fig. 1.1 for an

illustration of a bivariate tail integral. From Def. 1.3.1, the tail integral for x = (x1, x2) > 0

is given by

Π(x1, x2) = Π([x1,∞) × [x2,∞)).

6
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Figure 1.1: Illustration of the support of a bivariate tail integral Π in Def.1.3.1 for a value x in different

quadrants.

This corresponds to the tail integral of a bivariate spectrally positive Lévy process where

the process has only positive jumps. This is somehow similar to the survival function and

will be discussed later. Now we define the margins of a Lévy process.

Definition 1.3.2. (I-margins of a Lévy process, Def. 3.4 in [25]) Let S = (S1, . . . , Sd)

be a Lévy process with values in Rd and with Lévy measure Π. Let I ⊂ {1, 2, . . . , d} be

a non-empty index set. The I-margin of S is the Lévy process SI := (Si)i∈I . The Lévy

measure and the tail integral of SI are denoted by ΠI and ΠI and given by

ΠI(B) = Π({x ∈ Rd : (xi)i∈I ∈ B}), B ∈ B(R|I| \ {0})

ΠI((xi)i∈I) =
∏

i∈I
sgn(xi) ΠI

(∏

i∈I
I(xi)

)
.

where |I| denotes the cardinality of I.

For every i ∈ {1, 2, . . . , d} we simplify the one-dimensional marginal process, Lévy measure

and tail integral by Si, Πi and Πi.Moreover, in this thesis a margin (without clarifying

the index set I) always denotes a one-dimensional margin.

Now before starting to define a suitable notion of a copula for the dependence structure

of a Lévy measure, we recall from Def. 1.3.1 that the tail integrals are supported by R.
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Therefore, the domain of a copula for a Lévy measure should suitably be generalized from

[0, 1]d to Rd.

Definition 1.3.3. (Lévy copula, Def. 3.1 in [25]) A function C : R
d → R is called a Lévy

copula if

(i) C is a d-increasing function,

(ii) C is grounded, i.e. C(u1, . . . , ud) = 0, if ui = 0 for at least one i ∈ {1, . . . , d},

(iii) C(u1, . . . , ud) 6= ∞ for (u1, . . . , ud) 6= (∞, . . . ,∞),

(iv) C has Lebesgue margins, i.e. Ci(u) = u for i ∈ {1, . . . , d} and u ∈ R.

The next theorem plays a fundamental role to link the tail integral of a multidimen-

sional Lévy process to the tail integrals of its margins. It is similar to Sklar’s theorem for

distribution functions and called Sklar’s theorem for tail integrals or Lévy processes.

Theorem 1.3.4. (Sklar’s theorem for Lévy processes, Theorem 3.6. in [25])

(i) Let S = (S1, . . . , Sd) be a Rd-valued Lévy process. Then there exists a Lévy copula

C such that the tail integrals of S satisfy

Π((xi)i∈I) = CI((Πi(xi))i∈I) (1.3.1)

for every non-empty I ⊂ {1, . . . , d} and every (xi)i∈I ∈ (R \ {0})|I| with

CI((ui)i∈I) := lim
a→∞

∑

(uj)j∈Ic∈{−a,∞}
C(u1, . . . , ud)

∏

j∈Ic

sgn(ui).

The Lévy copula C is unique on
∏d

i=1RanΠ.

(ii) Let C be a d-dimensional Lévy copula and Πi, for i = 1, . . . , d tail integrals of real-

valued Lévy processes. Then there exists a Rd-valued Lévy process S whose compo-

nents have tail integrals Π1, . . . ,Πd and whose marginal tail integrals satisfy equa-

tion (1.3.1) for every non-empty I ⊂ {1, . . . , d} and every (xi)i∈I ∈ (R\{0})|I|. The

Lévy measure of S is uniquely determined by C and Πi, for i = 1, . . . , d.
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In particular, for I = {1, . . . , d}

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)).

1.3.1 Stable Lévy processes

Since chapters 3 and 4 in this thesis deal mainly with the Stable Lévy processes, we review

in this section some results and facts about the class of α-stable Lévy processes. For

more details we refer to Samorodnitsky and Taqqu [31], Chapter 7, Sato [32], Chapter 4,

Bertoin [7], Chapter VIII and Cont and Tankov [13], Section 3.7.

A stable Lévy process is a Lévy process S = (S(t))t≥0 in which each S(t) is a stable

random variable in Rd. Its stability or scaling property is characterized by the index α.

That is, for every a > 0 the processes (S(t))t≥0 and (a−
1
α S(at))t≥0 have the same finite-

dimensional distributions. It follows from the Lévy-Khintchine formula that the range of

the index α is (0, 2]. The cases α = 1 and α = 2 are special and correspond to Cauchy and

Gaussian processes, respectively. We only consider α ∈ (0, 2). Theorem 14.3 in Sato [32]

gives the characteristic triplet of an α-stable Lévy process.

Theorem 1.3.5. (Theorem 14.3 (ii) in [32]) Let S be a Lévy process in Rd with charac-

teristic triplet (γ,A,Π) and α ∈ (0, 2). The following statements are equivalent:

(i) S(1) is α-stable.

(ii) A = 0 and Π is homogeneous of order α, i. e. for all t > 0, it holds

Π(tB) = t−αΠ(B) for B ∈ B(Rd).

(iii) A = 0 and there is a finite measure ρ̃ on the unit sphere Sd−1 := {x ∈ Rd : |x| = 1}
such that

Π(B) =

∫

Sd−1

∫ ∞

0

1B(rξ)r−α−1drρ̃(dξ) for B ∈ B(Rd).
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The probability measure ρ̃(·)
ρ̃(Sd−1)

is called the spectral measure of Π. If d = 1, then S0 =

{1,−1} and the Lévy measure Π is absolutely continuous w.r.t. the Lebesgue measure,

with density

Π(dx) =





c1x
−1−αdx if x > 0,

c2|x|−1−αdx if x < 0,

with c1 ≥ 0, c2 ≥ 0 and c1 + c2 > 0. The process has no positive jumps if c1 = 0 and no

negative jumps if c2 = 0. It is symmetric if c1 = c2.

1.4 Outline of the thesis

This thesis is based on three papers written jointly with Professor Claudia Klüppelberg.

Besides developing a general MLE theory for Lévy processes, we exemplify this theory

for compound Poisson and stable Lévy processes with dependence structure given by

a Clayton Lévy copula. We also introduce a new parameter estimation method for a

multidimensional Lévy process. In this approach which we call the two-step estimation

method, we first estimate the parameters of marginal processes, and then estimate in a

second step the dependence parameter. In the following we present an overview to the

thesis, summarized from Chapter 2 to Chapter 4.

Chapter 2 is devoted to the parameter estimation of a bivariate compound Poisson

process. This chapter is organized as follows. After a short introduction in Section 2.1,

multivariate compound Poisson processes and their possible dependence structure are

discussed in Section 2.2. The dependence structure of a bivariate model and the decom-

position of a process into three independent processes is also shown in detail. Section 2.3

is devoted to the definition of a tail integral, a Lévy copula and Sklar’s theorem for Lévy

processes. Section 2.4 presents the likelihood function of a bivariate compound Poisson

process by means of the aforementioned decomposition of a process. The likelihood func-

tions of an exponential Clayton model and a Weibull Clayton model are also calculated in

this section. These likelihood functions are needed for the maximum likelihood estimation

of the parameters in the following section of this chapter. The distributional copula of
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the joint jumps for a bivariate compound Poisson process is also calculated in this sec-

tion. It is proven that the copula of joint jumps for a CPP with a Clayton Lévy copula

regardless of jump size distributions is a distributional Clayton copula. A new simulation

method for a bivariate compound Poisson process is proposed in Section 2.5, where the

idea of the decomposition of a process in Section 2.2 is used. Moreover, the parameters of

a bivariate exponential Clayton model are estimated by a maximum likelihood approach.

The parameters are estimated either for different values of the dependence parameter or

for all parameters of a full model. Section 2.6 presents a real data analysis. The Danish

fire insurance data are analysed in detail and, based on this analysis, a Weibull-Clayton

model is fitted to the data.

Chapter 3 is devoted to the parameter estimation of a bivariate stable Lévy process.

The dependence of the process is modelled by a Clayton Lévy copula, a homogeneous

Lévy copula of order one. Following an introduction into the problem in Section 3.1, some

definitions on Lévy processes and Lévy copulas are presented in Section 3.2. In Section 3.3

the maximum likelihood estimation of the parameters of a one-dimensional Lévy process is

explained in detail. The characteristic function of a jump-truncated process is calculated

to show the intensity and the jump size distribution function of the resulting CPP. These,

of course, are the base for the likelihood function of a one-dimensional CPP. As observation

scheme for one-dimensional Lévy processes all the jumps larger than some ε > 0 are taken

into account. The asymptotic behaviour of the estimates based on the Fisher information

matrix is discussed in Section 3.3.2. Asymptotic normality is proved when the number of

jumps tends to infinity regardless of whether the observed time interval tends to ∞ for a

fixed truncation point ε > 0 or the truncation point tends to 0 over a fixed observed time

interval. Section 3.4 extends this ML theory to a bivariate stable Lévy process where

the small jumps are truncated and the likelihood function is based on bivariate jumps

larger than ε in both components. The consequence of jump truncation on Lévy copula

and the asymptotic behaviour of estimates are also discussed in this section. Section 3.5

contains the simulation study for a bivariate α-stable Clayton subordinator. As expected

the more precise estimates are obtained by taking a smaller value of the jump truncation
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point. Moreover, the asymptotic covariance matrix of estimators for a bivariate α-stable

subordinator is calculated by a numerical integration and by a Monte Carlo simulation.

In Chapter 4 a new estimation method for multivariate Lévy processes is introduced.

In this parametric approach which we call a two-step method, the parameters of the

marginal processes are estimated first, and then in a second step we estimate only the

dependence parameter. In Section 4.2 we explain the truncation scheme of the observed

jumps and present the bivariate α-stable Clayton subordinator. Section 4.3 is dedicated to

the two-step estimation procedure. We introduce this method for Lévy processes and com-

pare the likelihood equations in a two-step method with the equations for the maximum

likelihood estimation. We apply the two-step estimation procedure to a bivariate α-stable

Clayton subordinator. The parameters estimation of the model is explained for different

marginal parameters and its reduction for common marginal parameters. In Section 4.4

we calculate the Godambe information matrix for a bivariate α-stable Clayton subordi-

nator analytically. The consistency of the two-step estimators as well as their asymptotic

normality are proved in this section. The asymptotic covariance matrix is calculated as

the observation interval tends to ∞ for a fixed truncation point ε, or as ε tends to zero for

a fixed observation interval. The log-likelihood and the score functions of the full model

are calculated in Section 4.5. These can be compared with the log-likelihood of a bivariate

compound Poisson process based only on the joint jumps of a bivariate α-stable process as

discussed in Section 3.4. Finally, in Section 4.6, a small simulation study is performed to

compare the quality of all three estimation methods: the maximum likelihood estimation

based only on joint jumps of the process larger than some ε > 0 in both components,

the maximum likelihood estimation of a full model based on single and joint jumps larger

than ε, and the two-step estimation method. These three procedures are discussed in

Sections 3.4, 4.3 and 4.5, respectively.
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Chapter 2

Parameter Estimation of a Bivariate

Compound Poisson Process

SUMMARY

In this article, we review the concept of a Lévy copula to describe the dependence structure

of a bivariate compound Poisson process. In this first statistical approach we consider a

parametric model for the Lévy copula and estimate the parameters of the full dependent

model based on a maximum likelihood approach. This approach ensures that the estimated

model remains in the class of multivariate compound Poisson processes. A simulation

study investigates the small sample behaviour of the MLEs, where we also suggest a new

simulation algorithm. Finally, we apply our method to the Danish fire insurance data.

2.1 Introduction

Copulas open a convenient way to represent the dependence of a probability distribution.

In fact they provide a complete characterization of possible dependence structures of a

random vector with fixed margins. Moreover, using copulas, one can construct multivariate

distributions with a pre-specified dependence structure from a collection of univariate

laws. Modern results about copulas originate more than fifty years back when Sklar [33]
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defined and derived the fundamental properties of a copula. Further important references

are Nelson [27] and Joe [23]. Financial applications of copulas have been numerous in

recent years; cf. Cherubini, Luciano and Vecchiato [12] for examples and further references.

We are considering multivariate Lévy processes, whose dependence can be modelled

by a “copula” on the components of the Lévy measure. This has been suggested in

Tankov [34] for subordinators, the case of general Lévy processes was treated in Kallsen

and Tankov [25]; Lévy copulas can also be found in the monograph of Cont and Tankov [13].

Modelling dependence in multivariate Lévy processes by Lévy copulas offers the same

flexibility for modelling the marginal Lévy processes independently of their dependence

structure as we know from distributional copulas. Statistical methods, which have existed

for distributional copulas for a long time, still have to be developed for Lévy copulas. The

present paper is a first step.

The Lévy copula concept has been applied to insurance risk problems; more precisely,

Bregman and Klüppelberg [8] have used this approach for ruin estimation in multivariate

models. Eder and Klüppelberg [14] extended this work to derive the so-called quintuple

law for sums of dependent Lévy processes. This describes the ruin event by stating not only

the ruin probability, but also quantities like ruin time, overshoot, undershoot; i.e. they

present a ladder process analysis. The notion of multivariate regular variation can also be

linked to Lévy copulas, which is investigated and presented in Eder and Klüppelberg [15].

In a series of papers, Böcker and Klüppelberg [9, 10, 11] used a multivariate compound

Poisson process to model operational risk in different business lines and risk types. Again

dependence is modelled by a Lévy copula. Analytic approximations for the operational

Value-at-Risk explain the influence of dependence on the institution’s total operational

risk.

In view of these economic problems, which are well recognised in academia and among

practitioners, the present paper is concerned with statistical inference for bivariate com-

pound Poisson processes. Our method is based on Sklar’s theorem for Lévy copulas, which

guarantees that the estimated model is again multivariate compound Poisson.

This approach, whose importance is already manifested by the above mentioned eco-
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nomic applications as well as in a data analysis at the end of our paper, will have far

reaching implications for the estimation of multivariate Lévy processes with infinite ac-

tivity sample paths as is relevant in finance. This has been worked out in Esmaeili and

Klüppelberg [18].

Our paper is organized as follows. Section 2.2 presents the definition of a multivariate

compound Poisson process (CPP) and explains the dependence structure in three possible

ways. This prepares the ground for a new simulation algorithm for multivariate compound

Poisson processes and for the maximum likelihood estimation. Then we define the concept

of a tail integral and a Lévy copula for such processes in Section 2.3. In Section 2.4 we

derive the likelihood function for the process parameters, where we assume that we observe

the continuous-time sample path. In Section 2.5 we suggest a new simulation algorithm for

multivariate compound Poisson processes and show it at work by simulating a bivariate

CPP, whose dependence structure is modelled by a Clayton Lévy copula. Finally, in

Section 2.6 we fit a compound Poisson process to the bivariate Danish fire insurance data,

and present some conclusions in Section 2.7.

2.2 The multivariate compound Poisson process

A d-dimensional compound Poisson process (CPP) is a Lévy process S = (S(t))t≥0, i.e.

a process with independent and stationary increments, defined on a filtered probability

space (Ω,F , (Ft)t≥0, P ), with values in Rd. It is stochastically continuous, i.e. for all a > 0,

lim
t→h

P (|S(t) − S(h)| > a) = 0 , h ≥ 0 ,

and as is well-known (see e.g. Sato [32], Def. 1.6), a càdlàg version exists, and we assume

this property throughout. For each t > 0 the characteristic function has the so-called

Lévy-Khintchine representation:

E[ei(z,S(t))] = exp

{
t

∫

Rd

(
ei(z,x) − 1

)
Π(dx)

}
, z ∈ Rd , (2.2.1)

where (·, ·) denotes the inner product in Rd. The so-called Lévy measure Π is a measure

on Rd satisfying Π({0}) = 0 and
∫

Rd Π(dx) < ∞. Moreover, CPPs are the only Lévy
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processes with finite Lévy measure.

According to Sato [32], Theorem 4.3, a compound Poisson process is a stochastic

process

S(t) =

N(t)∑

i=1

Zi , t ≥ 0 , (2.2.2)

where (N(t))t≥0 is a homogeneous Poisson process with intensity λ > 0 and (Zi)i∈N is a

sequence of i.i.d. random variables with values in Rd. Moreover (N(t))t≥0 and (Zi)i∈N are

independent and the Zi’s have no atom in 0, i.e. P (Z1 = 0) = 0.

To prepare the ground for our statistical analysis based on a Lévy copula to come,

we present a bivariate CPP in more detail. In particular, we give three approaches to

understand the dependence structure of such a process in more detail.

Assume that for i ∈ N the bivariate vector Zi has df G with components Z1i and Z2i

with dfs G1 and G2, respectively. It is, of course, possible that single jumps in one of the

marginal processes occur, in which case the probability measure of the marks Z1i and Z2i

have atoms in 0; i.e. they are not continuous.

In our first approach we write

S(t) =

N(t)∑

i=1

(Z1i, Z2i) =
( N(t)∑

i=1

Z1i,

N(t)∑

i=1

Z2i

)
, t ≥ 0, (2.2.3)

where we set p1 := P (Z1i = 0) and p2 := P (Z2i = 0) and recall that possibly p1, p2 > 0.

Then for almost all ω ∈ Ω,

S1(t) =

N1(t)∑

i=1

Xi, t ≥ 0 and S2(t) =

N2(t)∑

i=1

Yi, t ≥ 0, (2.2.4)

where Xi and Yi take only the non-zero values of Z1 and Z2, respectively, and inherit the

independence of N1(·) = (1− p1)N(·) and N2(·) = (1− p2)N(·). To make this precise, for

i = 1, 2 and a Borel set A ⊂ R \ {0} we can write

P
( N(t)∑

j=1

Zij ∈ A
)

= P
(N i1(t)∑

j=1

Zij 1{Zij 6=0} +

N i2(t)∑

j=1

Zij 1{Zij=0} ∈ A
)
, t ≥ 0 , (2.2.5)
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where N i1(·) and N i2(·) count the non-zero and zero jumps, respectively. By the thinning

property of the Poisson process, they are again Poisson processes. Since the last summation

in (2.2.5) is zero, we conclude that for almost all ω ∈ Ω

N11(t)∑

j=1

Z1j =

N1(t)∑

j=1

Xj, t ≥ 0, and

N21(t)∑

j=1

Z2j =

N2(t)∑

j=1

Yj , t ≥ 0,

are compound Poisson processes. Here (N1(t))t≥0, (N2(t))t≥0 are Poisson processes with

intensities λ1 = (1 − p1)λ and λ2 = (1 − p2)λ, respectively, and (Xi)i∈N and (Yi)i∈N are

sequences of i.i.d. random variables with dfs given for all x ∈ R by

F1(x) = P (Z1 ≤ x | Z1 6= 0) and F2(y) = P (Z2 ≤ y | Z2 6= 0)

Unlike G1 and G2, the dfs F1 and F2 have no mass in 0.

Our second approach is based on the representation of a compound Poisson process

as an integral with respect to a Poisson random measure M ; cf. Sato [32], Theorems 19.2

and 19.3. For almost all ω ∈ Ω we have the representation

S(t) =

N(t)∑

i=1

(Z1i, Z2i)

=

∫ t

0

∫

R2\{0}
zM(ds× dz) (2.2.6)

=

∫ t

0

∫

(R\{0})×{0}
zM(ds× dz) +

∫ t

0

∫

{0}×(R\{0})
zM(ds× dz)

+

∫ t

0

∫

(R\{0})2
zM(ds× dz)

where M is a Poisson random measure on [0,∞) × (R2 \ {0}) with intensity measure

dsΠ(dz).

Corresponding to the first two integrals we can introduce two compound Poisson pro-

cesses S⊥1 and S⊥2 , which are called the independent parts of (S1, S2). They are independent

of each other and never jump together. On the other hand, the third integral corresponds

to a compound Poisson process which is supported on sets in (R \ {0})2, and this part

of (S1, S2) measures the simultaneous jumps of S1 and S2. We denote it by (S
‖
1 , S

‖
2), and
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it is the (jump) dependent part of (S1, S2). Since its components S
‖
1 and S

‖
2 always jump

together, they must have the same jump intensity parameter, which we denote by λ||.

Now we can decompose (S1(t), S2(t))t≥0 for almost all ω ∈ Ω into

S1(t) = S⊥1 (t) + S
‖
1(t) , t ≥ 0 , (2.2.7)

S2(t) = S⊥2 (t) + S
‖
2(t) , t ≥ 0 .

Here we see clearly the decomposition of the bivariate compound Poisson process in single

jumps in each marginal process and the process of common jumps in both components. It

is clear from the properties of the Poisson random measure that the three processes S⊥1 ,

S⊥2 and (S
‖
1 , S

‖
2) are compound Poisson and independent.

Our last approach is similar to the previous one, but based on a decomposition of the

Lévy measure. It also prepares the ground for the following Section 2.3. Recall that for

any Borel set A ⊆ R2 \{0} its Lévy measure Π(A) denotes the expected number of jumps

per unit time with size in A. This can be formulated as

Π(A) = E

[
#{(t, (∆S1(t),∆S2(t))) ∈ (0, 1] × A}

]
.

This set, and hence Π can be decomposed into the following components:

Π1(A) = E

[
#{(t, (∆S1(t),∆S2(t))) ∈ (0, 1] × A | ∆S1(t) 6= 0 and ∆S2(t) = 0}

]
,

Π2(A) = E

[
#{(t, (∆S1(t),∆S2(t))) ∈ (0, 1] × A | ∆S1(t) = 0 and ∆S2(t) 6= 0}

]
,

Π3(A) = E

[
#{(t, (∆S1(t),∆S2(t))) ∈ (0, 1] × A | ∆S1(t) 6= 0 and ∆S2(t) 6= 0}

]
.

Since Π(A) = Π1(A)+Π2(A)+Π3(A), the integral of the characteristic function in (2.2.1)

can be decomposed into three integrals with different Lévy measures Π1(A), Π2(A) and

Π3(A), respectively. Clearly Π1 is supported by the set {(x, 0) ∈ R2 | x ∈ R}. We set

Π1(A) = Π⊥1 (A1), where A1 = {x ∈ R | (x, 0) ∈ A}. Then the first integral reduces to a

one-dimensional integral related only to the component S1. Similarly, for the second part

Π2(A) = Π⊥2 (A2), where A2 = {y ∈ R | (0, y) ∈ A}; hence the second integral also reduces

to a one-dimensional integral. By introducing the notation Π‖ for Π3, the characteristic
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function in (2.2.1) can be decomposed into

E
[
eiz1S1(t)+iz2S2(t)

]

= exp

{
t

∫

R

(eiz1x − 1)Π⊥1 (dx) + t

∫

R

(eiz2y − 1)Π⊥2 (dy) + t

∫

R2

(eiz1x+iz2y − 1)Π‖(dx× dy)

}

= E
[
eiz1S

⊥
1 (t)
]
E
[
eiz2S

⊥
2 (t)
]
E
[
eiz1S

‖
1 (t)+iz2S

‖
2 (t)
]
. (2.2.8)

Note that the Lévy measure Π⊥1 gives the mean number of jumps of S1 such that S2 does

not have a jump at the same time. Similarly, the mean number of jumps for S2, when

S1 has no jump, is measured by Π⊥2 . Corresponding to Π⊥1 and Π⊥2 we find again the

two processes S⊥1 and S⊥2 which we called the independent parts of (S1, S2). On the other

hand, Π‖ is supported by sets in (R \ {0})2, and we denoted this part by (S
‖
1 , S

‖
2), which

is the (jump) dependent part of (S1, S2). This results in the same representation (2.2.7)

as above.

This decomposition has also been presented in Cont and Tankov [13], Section 5.5 and

Böcker and Klüppelberg [9], Section 3. Note that for completely dependent components

we have S⊥1 = S⊥2 = 0 a.s. On the other hand, for independent components, the third part

of the integral (2.2.6) or (2.2.8) is zero and this means that the components a.s. never

jump together.

2.3 The Lévy copula

We shall present an estimation procedure for a bivariate compound Poisson process based

on Lévy copulas. The reason for this is two-fold. Working with real data it may not

be so easy to estimate statistically the components on the right-hand side of (2.2.7) so

that the resulting statistical model is a bivariate compound Poisson process. Moreover,

the ingredients require quite a number of parameters, which makes it desirable to find a

parsimonious model. We are convinced that the notion of a Lévy copula plays here the

same important role as a copula does for multivariate dfs.

Mainly for ease of notation we shall present our Lévy copula concept for spectrally

non-negative CPPs only; i.e. for CPPs with non-negative jumps only. Since the Lévy
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copula for a general CPP is defined for each quadrant separately, this is no restriction of

the theory developed. Furthermore, the insurance claims data considered later also justify

this restriction.

Lévy copulas are defined via the tail integral of a Lévy process.

Definition 2.3.1. Let Π be a Lévy measure on Rd
+. The tail integral is a function Π :

[0,∞]d → [0,∞] defined by

Π(x1, . . . , xd) =





Π([x1,∞) × · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d

0 , if xi = ∞ for at least one i.
(2.3.1)

The marginal tail integrals are defined analogously for i = 1, . . . , d as Πi(x) = Πi([x,∞))

for x ≥ 0.

Next we define the Lévy copula for a spectrally positive Lévy process; for details see

Nelson [27], Tankov [34] or Cont and Tankov [13].

Definition 2.3.2. The Lévy copula of a spectrally positive Lévy process is a d-increasing

grounded function C : [0,∞]d → [0,∞] with margins Ck(u) = u for all u ∈ [0,∞] and

k = 1, . . . , d.

The notion of groundedness guarantees that C defines a measure on [0,∞]d; indeed a

Lévy copula is a d-dimensional measure with Lebesgue margins.

The following theorem is a version of Sklar’s theorem for spectrally positive Lévy

process; for a proof we refer to Tankov [34], Theorem 3.1.

Theorem 2.3.3 (Sklar’s Theorem for Lévy copulas).

Let Π denote the tail integral of a spectrally positive d-dimensional Lévy process, whose

components have Lévy measures Π1, . . . ,Πd. Then there exists a Lévy copula C : [0,∞]d →
[0,∞] such that for all (x1, x2, . . . , xd) ∈ [0,∞]d

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)). (2.3.2)

If the marginal tail integrals are continuous, then this Lévy copula is unique. Otherwise,

it is unique on RanΠ1 × . . .×RanΠd.
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Conversely, if C is a Lévy copula and Π1, . . . ,Πd are marginal tail integrals of a spectrally

positive Lévy process, then the relation (2.3.2) defines the tail integral of a d-dimensional

spectrally positive Lévy process and Π1, . . . ,Πd are tail integrals of its components.

This result opens up now a way of estimating multivariate compound Poisson processes

by separating the marginal compound Poisson processes and coupling them with the

dependence structure given by the Lévy copula. We shall show the procedure in details

in the next section.

2.4 Maximum likelihood estimation of the parame-

ters of a Lévy measure

Now the stage is set to tackle our main problem, namely the maximum likelihood estima-

tion of the parameters of a bivariate spectrally positive CPP based on the observation of

a sample path of the bivariate model in [0, T ] for fixed T > 0.

Obviously, representation (2.2.3) suggests estimating the rate of the compound Poisson

process based on the i.i.d. exponential arrival times and, independently, the bivariate

distribution function of (Z1, Z2). Since both marginal random variables may have an

atom in 0, and in the examples we are concerned about, they indeed have, we are faced

with the estimation of a mixture model. This is one reason, why we base our estimation

on representation (2.2.8). The other motivation comes from possible extensions of our

estimation method to general Lévy processes; cf. Esmaeili and Klüppelberg [18].

Consequently, we assume throughout that the decomposition (2.2.7) holds for the

observed path. We write for t ∈ [0, T ],


 S1(t)

S2(t)


 =



∑N1(t)

i=1 Xi

∑N2(t)
j=1 Yj


 =


 S⊥1 (t) + S

‖
1(t)

S⊥2 (t) + S
‖
2(t)




=



∑N⊥

1 (t)
i=1 X⊥i +

∑N‖(t)
j=1 X

‖
j

∑N⊥
2 (t)

i=1 Y ⊥i +
∑N‖(t)

j=1 Y
‖
j


 (2.4.1)
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with the familiar independence structure of the Poisson counting processes and the jump

variables. Although, as described above, every bivariate CPP has three independent parts,

the parts are linked by a common set of parameters in the frequency part as well as in

the jump size distributions.

Our approach is an extension of the maximum likelihood method for the one-dimensional

compound Poisson model; see e.g. Basawa and Prakasa Rao [6], Chapter 6.

Assume that we observe the bivariate CPP (S1, S2) continuously over a fixed time

interval [0, T ]. The process S1 has frequency parameter λ1 > 0 and jump size distribution

F1 and the process S2 has frequency parameter λ2 > 0 and jump size distribution F2.

Observing a CPP continuously over a time period is equivalent to observing all jump

times and jump sizes in this time interval.

Let N(T ) = n denote the total number of jumps occurring in [0, T ], which decompose

in the number N⊥1 (T ) = n⊥1 of jumps occurring only in the first component, the number

N⊥2 (T ) = n⊥2 of jumps occurring only in the second component, and the number N‖(T ) =

n‖ of jumps occurring in both components. We denote by x̃1, . . . , x̃n⊥
1

the observed jumps

occurring only in the first component, by ỹ1, . . . , ỹn⊥
2

the observed jumps occurring only

in the second component, and by (x1, y1), . . . , (xn‖ , yn‖) the observed jumps occurring in

both components.

Theorem 2.4.1. Assume an observation scheme as above. Assume that θ1 is a parameter

of the marginal density f1 of the first jump component only, and θ2 a parameter of the

marginal density f2 of the second jump component only, and that δ is a parameter of the

Lévy copula. Assume further that ∂2

∂u∂v
C(u, v; δ) exists for all (u, v) ∈ (0, λ1) × (0, λ2),
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which is the domain of C. Then the full likelihood of the bivariate CPP is given by

L(λ1, λ2,θ1, θ2, δ)

= (λ1)
n⊥

1 e−(λ⊥1 )T

n⊥
1∏

i=1

[
f1(x̃i; θ1)

(
1 − ∂

∂u
C(u, λ2; δ)

∣∣∣∣
u=λ1F 1(exi;θ1)

)]

×(λ2)
n⊥

2 e−(λ⊥2 )T

n⊥
2∏

i=1

[
f2(ỹi; θ2)

(
1 − ∂

∂v
C(λ1, v; δ)

∣∣∣∣
v=λ2F 2(eyi;θ2)

)]
(2.4.2)

×(λ1λ2)
n‖
e−λ

‖T

n‖∏

i=1

[
f1(xi; θ1)f2(yi; θ2)

∂2

∂u∂v
C(u, v; δ)

∣∣∣∣
u=λ1F 1(xi;θ1),v=λ2F 2(yi;θ2)

]

with λ‖ = λ‖(δ) = C(λ1, λ2, δ) and λ⊥i (δ) = λi − λ‖(δ) for i = 1, 2.

Proof. To calculate the likelihood function, we use representation (2.2.7) in combination

with the independence as it is manifested in (2.2.8). This corresponds to the representation

of the tail integrals for i = 1, 2 as

Πi =: Π
⊥
i + Π

‖
i ,

where Πi denotes the marginal tail integral and Π
⊥
i and Π

‖
i are the tail integrals of the

independent and jump dependent parts, respectively. Then, setting

λ‖ = lim
x,y→0+

Π(x, y) = C(λ1, λ2; δ) and λ⊥i = λi − λ‖ for i = 1, 2 ,

we obtain the independent parts and the jump dependent part of (S1, S2) as

λ⊥1 F
⊥
1 (x) = λ1F 1(x) − λ‖F

‖
1(x) = λ1F 1(x) − C(λ1F 1(x), λ2; δ) ,

λ⊥2 F
⊥
2 (y) = λ2F 2(y) − λ‖F

‖
2(y) = λ2F 2(y) − C(λ1, λ2F 2(y); δ) , (2.4.3)

λ‖F
‖
(x, y) = C(λ1F 1(x), λ2F 2(y); δ) , x, y > 0

Let now L1(λ
⊥
1 ,θ2) be the marginal likelihood function based on the observations of the

jump times and jump sizes of the first component S⊥1 . To derive L1 let t̃1, . . . , t̃n⊥
1

denote

the jump times of S⊥1 , and define the sequence of inter-arrival times T̃k = t̃k − t̃k−1 for

k = 1, . . . , n⊥1 with t̃0 = 0. Then the T̃k are i.i.d. exponential random variables with mean
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1/λ⊥1 and they are independent of the observed jump sizes x̃1, . . . , x̃n⊥
1
. The likelihood

function of the observations concerning S⊥1 is given by

L1(λ
⊥
1 ,θ1) =

n⊥
1∏

i=1

(
λ⊥1 e

−λ⊥1 eTi

)
× e

−λ⊥1 (T−et
n⊥
1

) ×
n⊥

1∏

i=1

f⊥1 (x̃i; θ1)

= (λ⊥1 )n
⊥
1 e−λ

⊥
1 T

n⊥
1∏

i=1

f⊥1 (x̃i; θ1) , (2.4.4)

where the density f⊥1 is found by taking the derivative in the first equation of (2.4.3). The

second part S⊥2 is treated analogously and we obtain L2(λ
⊥
2 ,θ2) as (2.4.4) with λ⊥1 replaced

by λ⊥2 and f⊥1 (x̃i,θ1) replaced by f⊥2 (ỹi,θ2). For the joint jump part of the process, that is

(S
‖
1 , S

‖
2), we observe the number n‖ = n1−n⊥1 = n2−n⊥2 of joint jumps with frequency λ‖

at times t1, . . . , tn‖ with the observed bivariate jump sizes (x1, y1), . . . , (xn‖ , yn‖). Denote

Tk = tk − tk−1 and F ‖(x, y) the joint distribution of the jump sizes with joint density

f ‖(x, y). These are observations of a jump dependent CPP with frequency parameter λ‖

and Lévy measure concentrated in (0,∞)2. Recall the formula for (x, y) ∈ (0,∞)2, which

is a consequence of the formula after Theorem 5.4 on p. 148 in Cont and Tankov [13],

Π(dx, dy) =
∂2

∂u∂v
C(u, v, δ)

∣∣∣∣
u=λ1F 1(x,θ1),v=λ2F 2(y,θ2)

Π1(dx)Π2(dy) .

In our case the joint density of the Lévy measure on the left hand side is given by

λ‖f ‖(x, y). The derivative ∂2

∂u∂v
C(u, v, δ) exists by assumption. Then the likelihood of the

joint jump process is given by the product in the third line of (2.4.2). This concludes the

proof. �

Remark 2.4.2. Note that this estimation procedure ensures that the estimated model is

again a bivariate CPP.

This applies for instance to the following parametric Lévy copula family.

Example 2.4.3. [Clayton Lévy copula]

The Clayton Lévy copula is defined as

C(u, v) = (u−δ + v−δ)−1/δ , u, v > 0 ,
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where δ > 0 is the Lévy copula parameter. We calculate

∂

∂u
C(u, v) =

(
1 + (

u

v
)δ
)−1/δ−1

,

∂2

∂u∂v
C(u, v) = (δ + 1)(uv)−δ−1(u−δ + v−δ)−1/δ−2 ,

= (δ + 1)(uv)δ(uδ + vδ)−1/δ−2 , u, v > 0 .

We observe that the joint jump intensity is given by

λ‖ = (λ−δ1 + λ−δ2 )−
1
δ .

Two specific examples, which will be used later, are the following:

(i) For the exponential Clayton model the marginal jump distributions are for i = 1, 2

exponentially distributed with parameters θi > 0 and densities fi(z; θi) = θie
−θiz for z ≥ 0.

The likelihood function for the continuously observed bivariate process (S1(t), S2(t))0≤t≤T

with the notation as in Theorem 2.4.1 is given by

L(λ1, λ2, θ1, θ2, δ) = (θ1λ1)
n⊥

1 e−λ
⊥
1 T−θ1

Pn⊥
1

i=1 exi

n⊥
1∏

i=1

[
1 −

(
1 + (

λ1

λ2

)δe−δθ1exi

)− 1
δ
−1
]
,

× (θ2λ2)
n⊥

2 e−λ
⊥
2 T−θ2

Pn⊥
2

i=1 eyi

n⊥
2∏

i=1

[
1 −

(
1 + (

λ2

λ1

)δe−δθ2eyi

)− 1
δ
−1
]
,

×
(
(1 + δ)θ1θ2(λ1λ2)

δ+1
)n‖

e−λ
‖T−(1+δ)(θ1

Pn‖

i=1 xi+θ2
Pn‖

i=1 yi)

×
n‖∏

i=1

(λδ1e
−θ1δxi + λδ2e

−θ2δyi)−
1
δ
−2 .

(ii) For the Weibull Clayton model the marginal jump distributions are for i = 1, 2 Weibull

distributed with parameters ai, bi > 0 and densities wi(z; ai, bi) = bi

a
bi
i

zbi−1e−(z/ai)
bi for z ≥

0. The likelihood function for the continuously observed bivariate process (S1(t), S2(t))0≤t≤T
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is given by

L(λ1, λ2, a1, b1, a2, b2, δ) (2.4.5)

=
(
λ1b1a

−b1
1

)n⊥
1 e−λ

⊥
1 T−

Pn⊥
1

i=1 (exi/a1)b1

n⊥
1∏

i=1

[
x̃b1−1
i

(
1 −

(
1 +

(λ1e
−(exi/a1)b1

λ2

)δ)−1/δ−1
)]

×
(
λ2b2a

−b2
2

)n⊥
2 e−λ

⊥
2 T−

Pn⊥
2

i=1 (eyi/a2)b2

n⊥
2∏

i=1

[
ỹb2−1
i

(
1 −

(
1 +

(λ2e
−(eyi/a2)b2

λ1

)δ)−1/δ−1
)]

×
(
(1 + δ)(λ1λ2)

1+δb1b2a
−b1
1 a−b22

)n‖

e−λ
‖T−(1+δ)

Pn‖

i=1((xi/a1)b1+(yi/a2)b2)

×
n‖∏

i=1

[
xi
b1−1yi

b2−1

((
λ1e
−(xi/a1)b1

)δ
+
(
λ2e
−(yi/a2)b2

)δ)−1/δ−2
]

�

For a bivariate CPP, where dependence is modelled by a Lévy copula, the bivariate

distribution of the joint jumps of the process exhibits a specific dependence structure,

which can also be described by a distributional copula, or better by the corresponding

survival copula. We explain this for the Clayton Lévy copula.

Example 2.4.4. [Continuation of Example 2.4.3]

Denote by C the survival copula of the joint jumps of (S
‖
1(t), S

‖
2(t))t≥0 given by

F
‖
(x, y) = C

(
F
‖
1(x), F

‖
2(y)

)
. (2.4.6)

Assume further that the jump distributions F1 and F2 have no atom at 0. From the last

equation of (2.4.3) we see that

F
‖
1(x) = lim

y→0

1

λ‖
C(λ1F 1(x), λ2F 2(y))

and analogously for F
‖
2. Here equation (2.4.6) can be rewritten as

1

λ‖
C(λ1F 1(x), λ2F 2(y)) = C

(
1

λ‖
C(λ1F 1(x), λ2),

1

λ‖
C(λ1, λ2F 2(y))

)
.

For the Clayton Lévy copula C the right hand side is equal to

C

((
(λ1F 1(x))

−δ + λ−δ2

λ−δ1 + λ−δ2

)− 1
δ

,

(
λ−δ1 + (λ2F 2(y))

−δ

λ−δ1 + λ−δ2

)− 1
δ

)
=

(
(λ1F 1(x))

−δ + (λ2F 2(y))
−δ

λ−δ1 + λ−δ2

)− 1
δ
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Abbreviating the arguments of C by u and v (note that u, v ∈ (0, 1)) gives

(λ1F 1(x))
−δ = u−δ(λ−δ1 + λ−δ2 ) − λ−δ2 and (λ2F 2(y))

−δ = v−δ(λ−δ1 + λ−δ2 ) − λ−δ1 ,

such that

C(u, v) =

(
u−δ(λ−δ1 + λ−δ2 ) − λ−δ2 + v−δ(λ−δ1 + λ−δ2 ) − λ−δ1

λ−δ1 + λ−δ2

)− 1
δ

= (u−δ + v−δ − 1)−
1
δ ,

which is the well-known distributional Clayton copula; cf. Cont and Tankov [13], eq. (5.3)

or Joe [23], Family B4 on p. 141. �

2.5 A simulation study

In this section we study the quality of our estimates in a small simulation study. This

means that we first have to simulate sample paths of a bivariate CPP on [0, T ] for pre-

specified T > 0, equivalently, we simulate the jump times and jump sizes (independently)

in this time interval.

In Section 6 of Cont and Tankov [13] various simulation algorithms for Lévy processes

have been suggested. We extend here their Algorithm 6.2 to a bivariate setting by invoking

decomposition (2.4.1) for given λ1, λ2, marginal jump distribution functions F1, F2 and a

Lévy copula C.

As we work with a fully parametric bivariate model, we assume that we are given

frequency parameters λ1, λ2 > 0, the parameters of the marginal jump size distributions

θ1 ∈ Rk1 , θ2 ∈ Rk2 for some k1, k2 ∈ N and, finally, the dependence parameter δ ∈ Rm of

the Lévy copula. Moreover, we choose a time interval [0, T ].

Then the number of points in the first component is Poisson distributed with frequency

λ1T , so generate a Poisson random number N1(T ) with mean λ1T . The number of points

in the second component is Poisson distributed with frequency λ2T , so generate a Poisson

random numberN2(T ) with mean λ2T . Then λ‖T = C(λ1, λ2)T is the frequency parameter
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Figure 2.1: Simulation of three bivariate CPPs with exponentially distributed jumps and a Clayton Lévy

copula with dependence parameter δ = 0.3 (top), δ = 2 (middle) and δ = 10 (below). The left hand

figures show the sample paths of the CPPs, whereas the right hand figures present the same paths as

marked Poisson process.
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of the joint jumps, so simulate another Poisson random number N‖(T ) with frequency

λ‖T . This implies then that N⊥1 (T ) = N1(T ) −N‖(T ) and N⊥2 (T ) = N2(T ) −N‖(T ).

Now conditional on these numbers, the Poisson points are uniformly distributed in

the interval [0, T ], so simulate the correct number of [0, T ]-uniformly distributed random

variables, independently for the three components: U⊥1,i for i = 1, . . . , N⊥1 (T ), U⊥2,i for

i = 1, . . . , N⊥2 (T ), and U
‖
i for i = 1, . . . , N‖(T).

Next we simulate the jump sizes. Denote by (U⊥1,i, X
⊥
i ) for i = 1, . . . , N⊥1 (T ), (U⊥2,i, Y

⊥
i )

for i = 1, . . . , N⊥2 (T ) and (U
‖
i , X

‖
i , Y

‖
i ) for i = 1, . . . , N‖(T ) the marked points of the single

jumps and the joint jumps, respectively, then the bivariate trajectory is given by


 S1(t)

S2(t)


 =



∑N⊥

1 (T )
i=1 1{U⊥

1,i<t}X
⊥
i +

∑N‖(T )
i=1 1{U‖

i <t}
X
‖
i

∑N⊥
2 (T )

i=1 1{U⊥
2,i<t}Y

⊥
i +

∑N‖(T )
i=1 1{U‖

i <t}
Y
‖
i


 , 0 < t < T .

For the marks on these points given by the corresponding jump sizes we need then N⊥1 (T )

i.i.d. jump sizes with df F⊥1 , N⊥2 (T ) i.i.d. jump sizes with df F⊥2 , and N‖(T ) bivari-

ate jump sizes with df F ‖, all of them independent. Single jump sizes are generated by

X⊥i
d
= F⊥←1 (Ui), i = 1, · · · , N⊥1 (T ) and Y ⊥i

d
= F⊥←2 (Ui), i = 1, · · · , N⊥2 (T ), where for any

increasing function h its generalized inverse is defined as

h←(u) := inf{s ∈ R : h(s) ≥ u} ,

(which coincides with the analytical inverse, provided h is strictly monotone).

It remains to simulate the joint jumps (X
‖
j , Y

‖
j ) for j = 1, . . . , N‖(T ). We use the

joint survival copula C as in (2.4.6). We simulate standard uniform independent random

variables U1, . . . , UN‖(T ), V1, . . . , VN‖(T ) and recall that X
‖
j

d
= F

‖←
1 (Uj). Then the following

standard calculation for a generic pair (X‖, Y ‖) is well-known:

lim
∆x→0

P (Y ‖ > y | x < X‖ ≤ x+ ∆x) = lim
∆x→0

F
‖
(x, y) − F

‖
(x+ ∆x, y)

P (x < ∆X‖ ≤ x+ ∆x)

= −∂F
‖
(x, y)

∂x

1

f
‖
1 (x)

= −∂C(F
‖
1(x), F

‖
2(y))

∂x

1

f
‖
1 (x)

=
∂

∂u
C(u, F

‖
2(y))

∣∣∣
u=F

‖
1(x)

=: Hx(y) . (2.5.1)
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Value m̂ean M̂SE M̂AE M̂RB

δ= 0.5 0.4995 0.0036 0.0492 -0.0012

(0.0597) (0.0054) (0.0339)

δ= 1 0.9896 0.0094 0.0748 0.0147

(0.0964) (0.0150) (0.0617)

δ= 3 3.0583 0.0834 0.2314 -0.0321

(0.2828) (0.1121) (0.1727)

δ= 5 5.0279 0.2027 0.3511 0.0147

(0.4494) (0.2764) (0.2819)

Table 2.1: Mean, mean squared errors (MSE), mean absolute error (MAE) and mean relative bias (MRB)

are presented for 100 MLEs of the Lévy copula parameter of a bivariate exponential Clayton model

(Example 2.5.1). Each estimate is calculated from an observed sample path of a bivariate CPP with

parameters λ1 = 100, λ2 = 80, θ1 = 1, θ2 = 2 (which are assumed to be known) and unknown dependence

parameter δ. The values in brackets show the standard deviation of estimates.

Now we take the generalized inverse H←x and define Y
‖
j

d
= H←x (Vj). Then the following

calculation convinces us that this algorithm works:

P (F
‖←
1 (U) > x,H←X‖(V ) > y) = P (X‖ > x)P (H←X‖(V ) > y | X‖ > x)

= P (X‖ > x)

∫ ∞

x

P (Y ‖ > y | X‖ = t)dF
‖
1 (t)

= P (X‖ > x)P (Y ‖ > y | X‖ > x)

= P (X‖ > x, Y ‖ > y) .

Example 2.5.1. [Simulation of a bivariate exponential Clayton model, continuation of

Examples 2.4.3 and 2.4.4]

Let (S1, S2) be a bivariate CPP with exponentially distributed jump sizes, i.e. F i(z) =

e−θiz, z > 0, for i = 1, 2, and the dependence structure of a Clayton Lévy copula C with

parameter δ > 0. Assume further λ1, λ2 > 0 are the intensities of the marginal Poisson

processes. We simulate a bivariate exponential Clayton model over the time interval [0, 1].
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Figure 2.2: Box-plots of the relative bias for the estimates of the exponential Clayton model with param-

eter values as in Table 2.2.

We apply the above simulation algorithm. The distribution functions of the single

jump sizes of the process are for i = 1, 2 given by

F
⊥
i (z) =

1

λ⊥i

{
λie
−θiz −

(
λ−δ1 eθ1δz(2−i) + λ−δ2 eθ2δz(i−1)

)− 1
δ

}
, z > 0 ,

and the bivariate distribution function for the joint jumps has the form

F
‖
(x, y) =

1

λ‖
(
λ−δ1 eθ1δx + λ−δ2 eθ2δy

)− 1
δ , x, y > 0

with margins F
‖
1(x) = 1

λ‖

(
λ−δ1 eθ1δx + λ−δ2

)− 1
δ , x > 0, and F

‖
2(y) = 1

λ‖

(
λ−δ1 + λ−δ2 eθ2δy

)− 1
δ ,

y > 0.

The simulation algorithm:

(i) Generate two random numbers N1 and N2 from Poisson distributions with parame-

ters λ1 and λ2, respectively. GenerateN‖ from a Poisson distribution with parameter

λ‖ = C(λ1, λ2) = (λ−δ1 + λ−δ2 )−1/δ.

(ii) Generate N‖, N⊥1 = N1 − N‖ and N⊥2 = N2 − N‖ independent [0, 1]-uniformly

distributed random variables. These are the Poisson points of joint and single jumps.
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λ̂1 λ̂2 θ̂1 θ̂2 δ̂

Values 100 80 1.00 2.00 1.00

m̂ean
100.8377

(9.8302)

80.4022

(8.7985)

1.0105

(0.0979)

2.0326

(0.2158)

1.0097

(0.1197)

M̂SE
97.3344

(141.0848)

78.9570

(113.1887)

0.0097

(0.0168)

0.0476

(0.0714)

0.0144

(0.0202)

M̂RB 0.0116 0.0203 -0.0087 0.0022 0.0423

Table 2.2: Estimated mean, mean squared error (MSE) and mean relative bias (MRB) of 100 MLEs of

an exponential Clayton model with estimated standard deviations for mean and MSE in brackets.

(iii) Generate independent U1, . . . , UN⊥
1

and V1, . . . , VN⊥
2

standard uniform random vari-

ables. Then the single jump sizes of both components are found by taking the inverse

of F⊥1 and F⊥2 , that is, X⊥i
d
= F⊥←1 (Ui), i = 1, . . . , N⊥1 and Y ⊥j

d
= F⊥←2 (Vj), j =

1, . . . , N⊥2 .

(iv) For the bivariate jump sizes, generate new independent [0, 1]-uniform U1, . . . , UN‖

and V1, . . . , VN‖ random variables. Then X
‖
i

d
= F

‖←
1 (Ui) and, given X

‖
i = x, Y

‖
i

d
=

H←x (Vi), i = 1, . . . , N‖, where for fixed x > 0, as shown in (2.5.1),

Hx(y) =
∂

∂u
C(u, F

‖
2(y))

∣∣∣
u=F

‖
1(x)

=
(
1 + (

u

v
)δ − uδ

)−1/δ−1 ∣∣∣
u=F

‖
1(x),v=F

‖
2(y)

=

(
1 +

λ−δ1 + λ−δ2 eθ2δy

λ−δ1 eθ1δx + λ−δ2

− λ‖
−δ

λ−δ1 eθ1δx + λ−δ2

)−1/δ−1

=

(
λ−δ1 eθ1δx + λ−δ2 eθ2δy

λ−δ1 eθ1δx + λ−δ2

)− 1
δ
−1

, y > 0 .

Various scenarios are depicted in Figure 2.1. �

Next we show the performance of the MLE estimation from Section 2.4 based on

simulated sample paths.

Example 2.5.2. [Estimation of a bivariate exponential Clayton model, continuation of

Examples 2.4.3, 2.4.4, and 2.5.1]
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Figure 2.3: The Danish fire insurance data: The top figures show the total losses (left) and the individual

losses (right) over the period 1980-1990. The figures below depict the data only for the one-month period

of January 1980.

Let (S1, S2) be a bivariate CPP with exponentially distributed jump sizes, i.e. F i(z) =

e−θiz, z > 0, for i = 1, 2, and the dependence structure of a Clayton Lévy copula C with

parameter δ > 0. Assume further λ1, λ2 > 0 are the intensities of the marginal Poisson

processes. We simulate 100 sample paths of a bivariate exponential Clayton model with

parameters λ1 = 100, λ2 = 80, θ1 = 1, θ2 = 2 and different δ over the time interval

[0, 1] and estimate for each sample path the parameters. The results are summarized in

Tables 2.1 and 2.2 and Figure 2.2. Note that the critical parameter is the dependence

parameter δ; cf. Figure 2.2. From Table 2.1 we note from the estimated MSE and MAE

that its estimation is more precise for small δ than for large. The mean relative bias,
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on the other hand, remains for all δ near 0. Similar interpretations can be read off from

Table 2.2. �

2.6 A real data analysis

In this section we fit a CPP to a bivariate data set. The data we fit is called the Danish

fire insurance data and appears in aggregated form in Embrechts et al. [16], Figure 6.2.11.

The data are available at www.ma.hw.ac.uk/∼mcneil/. As described there, the data were

collected at Copenhagen Reinsurance and comprise 2167 fire losses over the period 1980

to 1990. They have been adjusted for inflation to reflect 1985 values and are expressed in

millions of Danish Kroner. Every total claim has been divided into loss of building, loss

of content and loss of profit. Since the last variable rarely has non-zero value, we restrict

ourselves to the first two variables. Figure 2.3 shows the time series and the aggregated

process of the data in the whole and in a one-month period of time.

We shall estimate a full bivariate parametric model based on the likelihood function

of Theorem 2.4.1. This means that we have to specify the marginal distributions for the

losses of buildings and the losses of contents, and we do this for the logarithmic data.

As explained above the bivariate data come from originally aggregated data, where the

claims (sum of losses of buildings, contents and profits) are larger than one million Danish

Kroner. Due to the splitting of the data in losses of buildings and losses of contents, certain

losses have become smaller than the threshold for the aggregated data, such effects also

appear due to the inflation adjustment. To guarantee that the bivariate data we want

to fit come from the same distribution, we have based our analysis on those data, which

are larger than one million Danish Kroner after inflation adjustment in both coordinates.

This amounts to 940 data points.

An explorative data analysis shows that the family of two-parameter Weibull distribu-

tions are appropriate for the log-data. We present the histograms of the log-transformed

data in Figures 2.4 with fitted marginal Weibull densities as presented in Example 2.4.3(ii).

34



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log−loss of building (million DKK)

pr
ob

ab
ili

ty
 d

en
ss

ity

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log−loss of content(million DKK)

pr
ob

ab
ili

ty
 d

en
ss

ity

Figure 2.4: Histogram (and estimated Weibull density) of the logarithmic losses of buildings (left) and

logarithmic losses of content based on the Danish fire insurance data larger than 1 million Danish Kroner

in both variables.

The marginal parameters have been fitted by maximum likelihood estimation giving

f1(x) = 1.5225(log x)0.1954 exp
(
−1.2737(log x)1.1954), x > 1

f2(y) = 1.0863(log y)0.1289 exp
(
−0.9622(log y)1.1289), y > 1.

The corresponding QQ-plots are depicted in Figure 2.5.

It is worth mentioning that modelling with Lévy copulas is useful, when the depen-

dence structure of the Poisson processes matches the dependence of the jump sizes. The

reason for this is that the parameter of the Lévy copula models the dependence structure

of the Lévy measure, which comprises the intensity of the jumps and the distribution of

the jump sizes. By Sklar’s theorem for Lévy copulas (cf. Theorem 2.3.3), if the data follow

a bivariate compound Poisson process, this kind of dependence structure is exactly, what

we expect.

To check the suitability of the model for these data, we first estimate the parameter

of the Clayton Lévy copula based on the point processes only. This results in solving the

equation

(λ̂−δ1 + λ̂−δ2 )−
1
δ = λ̂‖ ,
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Figure 2.5: QQ-plot of the logarithmic Danish fire insurance data versus their estimated Weibull distri-

butions, with parameters estimated from the data set. Left (loss of building), right (loss of content)

where λ̂1, λ̂2 and λ̂‖ are the estimated intensities for each of the marginal univariate

Poisson processes and the jump dependent part of the process. We obtain δ̂ = 1.0546.

Second, we should compare this estimator with the corresponding estimator based on

the jump sizes. For this we invoke Example 2.4.4, which shows that the Clayton Lévy

copula for a bivariate CPP implies a distributional Clayton copula for the joint jump

sizes of the process. The maximum likelihood estimator of the parameter δ based on the

joint jumps is obtained as δ̂ = 0.8675. This is close enough to convince us that a bivariate

compound Poisson process is a good model for the Danish fire insurance data, and that

the Clayton Lévy copula is an appropriate model.

Now we consider the full likelihood as given in equation (2.4.2), with two-parametric

marginal Weibull distributions for the log-sizes of the claims and a Clayton Lévy copula

C. Furthermore, we denote by λ1 and λ2, the intensities of losses in each component. Then

the full likelihood including seven parameters is given by equation (2.4.5).

The resulting maximum likelihood estimates of the parameters are as follows.

Parameters λ1 λ2 a1 b1 a2 b2 δ

Estimates 76.5643 44.7933 0.8302 1.1308 1.0898 1.0805 0.9531
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From this table it can be seen that the estimator of the Lévy copula parameter δ̂ =

0.9531 for a Weibull-Clayton model is between the estimator only based on point processes

and the estimator only based on joint jumps of the process This is as expected.

2.7 Conclusion

We have suggested a maximum likelihood estimation procedure for a multivariate com-

pound Poisson process, which guarantees that the estimated model is again a compound

Poisson process. This is achieved on the basis of Sklar’s theorem for Lévy copulas by a

detailed analysis of the dependence structure. We have also suggested a new simulation

algorithm for a multivariate compound Poisson process. A small simulation study has

shown that the estimation procedure works well also for small sample sizes. For the Dan-

ish fire insurance data, after some explorative data analysis to find a convincing model, we

have fitted a seven parameter compound Poisson process model. The use of a Lévy copula

approach for the dependence modelling has proved extremely useful in this context.
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Chapter 3

Parametric estimation of a bivariate

stable Lévy process

SUMARRY

We propose a parametric model for a bivariate stable Lévy process based on a Lévy

copula as a dependence model. We estimate the parameters of the full bivariate model by

maximum likelihood estimation. As an observation scheme we assume that we observe all

jumps larger than some ε > 0 and base our statistical analysis on the resulting compound

Poisson process. We derive the Fisher information matrix and prove asymptotic normality

of all estimates when the truncation point ε tends to zero. A simulation study investigates

the loss of efficiency because of the truncation.

3.1 Introduction

The problem of parameter estimation of one-dimensional stable Lévy processes has been

investigated already in the seventies of the last century by Basawa and Brockwell [4, 5].

Starting with a subordinator model, they assumed that it is possible to observe n(ε) jumps

in a time interval [0, t], all larger than a certain small ε > 0. Based on this observation

scheme, they estimated the parameters by a maximum likelihood procedure, and investi-

gated the distributional limits of the MLEs for n(ε) → ∞, which in this model happens
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by t→ ∞ and/or ε→ 0.

The task of estimating multivariate stable processes is usually solved by estimating

the parameters of the marginal processes and the spectral measure separately; cf. Nolan,

Panorska and McCulloch [28] and Höpfner [21] and references therein.

The rather recent modelling of multivariate Lévy processes by their marginal processes

and a Lévy copula for the dependence structure (cf. Cont and Tankov [13], Kallsen and

Tankov [25], and Eder and Klüppelberg [15]) allows for the construction of new paramet-

ric models. This approach is similar to the representation of a multivariate distribution

function by its marginal distributions and a copula and is valid for all multivariate Lévy

processes.

Moreover, various estimation methods of the parameters of the marginal processes

and the dependence structure either together or separately can be applied. Obviously, it

is more efficient to estimate all parameters of a model in one go, but often the attempt fails.

Problems may occur because of the complexity of the numerical optimization involved to

obtain the MLEs of the parameters or, given the estimates, their asymptotic properties

are not clear concerning their asymptotic covariance structure.

This is an important point in the context of Lévy processes, since these properties

may depend on the observation scheme. In reality it is usually not possible to observe

the continuous-time sample path, but it may be possible to observe all jumps larger than

ε as in the one-dimensional problem studied by Basawa and Brockwell [5]. For a stable

subordinator we obtain asymptotic normality for such an observation scheme, provided

that n(ε) → ∞ or equivalently ε→ 0.

With this paper we want to start an investigation concerning statistical estimation of

multivariate Lévy processes in a parametric framework. In a certain sense the present pa-

per is a follow-up of Esmaeili and Klüppelberg [17], where we concentrated on parametric

estimation of multivariate compound Poisson processes.

Since our observation scheme involves only jumps larger than ε, the observed process

is a multivariate compound Poisson process. But in contrast to [17], we now assume that

the Lévy process has infinite Lévy measure and we investigate asymptotic normality also
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for ε→ 0.

Our paper is organised as follows. In Section 3.2 we present some basic facts about Lévy

copulas and recall the estimation procedure as presented in Basawa and Brockwell [4, 5] for

one-dimensional α-stable subordinators in Section 3.3. Section 3.4 contains the theoretical

body of our new results. In Section 3.4.1 we present the small jumps truncation and

its consequences for the Lévy copula; Section 3.4.2 presents the maximum likelihood

estimation for the α-stable Clayton subordinator, including an explicit calculation of the

Fisher information matrix, which ensures joint asymptotic normality of all estimates.

Section 3.5 presents a simulation study and Section 3.6 concludes and gives an outlook

to further work.

3.2 Lévy processes and Lévy copulas

Let S = (S(t))t≥0 be a Lévy process with values in Rd defined on a filtered probability

space (Ω, (Ft)t≥0,F ,P); i.e S has independent and stationary increments, and we assume

that it has cádlág sample paths. For each t > 0, the random variable S(t) has an infinitely

divisible distribution, whose characteristic function has a Lévy-Khintchine representation:

E[ei(z,S(t))] = exp

{
t

(
i(γ, z) − 1

2
z⊤Az +

∫

Rd

(
ei(z,x) − 1 − i(z, x)1|x|≤1

)
Π(dx)

)}
, z ∈ Rd ,

where (·, ·) denotes the inner product in Rd, γ ∈ Rd and A is a symmetric nonnegative

definite d × d matrix. The Lévy measure Π is a measure on Rd satisfying Π({0}) = 0

and
∫

Rd\{0}min{1, |x|2}Π(dx) < ∞. For every Lévy process its distribution is defined by

(γ,A,Π), which is called the characteristic triplet. It is worth mentioning that the Lévy

measure Π(B) for B ∈ B(Rd) is the expected number of jumps per unit time with size in

B.

Brownian motion is characterised by (0, A, 0) and Brownian motion with drift by

(γ,A, 0). Poisson processes and compound Poisson processes have characteristic triplet

(γ1, 0,Π). The class of Lévy processes is very rich including prominent examples like sta-

ble processes, gamma processes, variance gamma processes, inverse Gaussian and normal
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inverse Gaussian processes. Their applications reach from finance and insurance applica-

tions to the natural sciences and engineering. A particular role is played by subordinators,

which are Lévy processes with increasing sample paths. Other important classes are spec-

trally one-sided Lévy processes, which have only positive or only negative jumps.

We are concerned with dependence in the jump behaviour S, which we model by an

appropriate functional of the marginals of the Lévy measure Π. Since, with the exception

of a compound Poisson model, all Lévy measures have a singularity in 0, we follow Cont

and Tankov [13] and introduce a (survival) copula on the tail integral, which is called

Lévy copula and, because of the singularity in 0, is defined for each quadrant separately;

for details we refer to Kallsen and Tankov [25] and to Eder and Klüppelberg [15] for a

different approach.

Throughout this paper we restrict the presentation to the positive cone Rd
+, where

only common positive jumps in all component processes happen. To extend this theory

to general Lévy processes is not difficult, but notationally involved.

We present the definition of the tail integral on the positive cone Rd
+. For a spectrally

positive Lévy process this characterises the jump behaviour completely.

Definition 3.2.1. Let Π be a Lévy measure on Rd
+. The tail integral is a function Π :

[0,∞]d → [0,∞] defined by

Π(x1, . . . , xd) =





Π([x1,∞) × · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d \ {0}
0 , xi = ∞ for at least one i

∞ , (x1, . . . , xd) = 0.

The marginal tail integrals are defined analogously for i = 1, . . . , d as Πi(x) = Πi([x,∞))

for x ≥ 0.

Also the Lévy copula is defined quadrantwise and the following characterises the de-

pendence structure of a spectrally positive Lévy process completely.

Definition 3.2.2. A positive Lévy copula is a d-increasing grounded function C : [0,∞]d →
[0,∞] with margins Ck(u) = u for all u ∈ [0,∞] and k = 1, . . . , d.
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The following theorem is a version of Sklar’s theorem for Lévy processes with positive

jumps, proved in Tankov [34], Theorem 3.1; for the corresponding result for general Lévy

processs we refer again to Kallsen and Tankov [25].

Theorem 3.2.3 (Sklar’s Theorem for Lévy copulas). Let Π denote the tail integral

of a spectrally positive d-dimensional Lévy process, whose components have Lévy mea-

sures Π1, . . . ,Πd. Then there exists a Lévy copula C : [0,∞]d → [0,∞] such that for all

x1, x2, . . . , xd ∈ [0,∞]

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)). (3.2.1)

If the marginal tail integrals are continuous, then this Lévy copula is unique. Otherwise,

it is unique on RanΠ1 × · · · ×RanΠd.

Conversely, if C is a Lévy copula and Π1, . . . ,Πd are marginal tail integrals of a spectrally

positive Lévy process, then the relation (3.2.1) defines the tail integral of a d-dimensional

spectrally positive Lévy process and Π1, . . . ,Πd are tail integrals of its components.

Remark 3.2.4. In the case of multivariate stable Lévy processes the Lévy copula carries

the same information as the spectral measure. By choosing a slightly different approach

this was shown in Eder and Klüppelberg [15]. Note, however, that the spectral measure

restricts to stable processes, whereas the Lévy copula models the dependence for all Lévy

processes.

We are concerned with the estimation of the parameters of a multivariate Lévy process

and assume for simplicity that we observe all jumps larger than ε > 0 of a subordinator.

This results in a compound Poisson process and we recall the following well-known results;

see e.g. Sato [32], Theorem 21.2 and Corollary 8.8.

Proposition 3.2.5. A pure jump Lévy process S in Rd is compound Poisson if and only

if it has a finite Lévy measure Π with limx→0 Π(x) = λ, the intensity of the d-dimensional

Poisson process, and jump distribution F (dx) = λ−1Π(dx) for x ∈ Rd.
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3.3 Maximum likelihood estimation of the parame-

ters of a one-dimensional stable Lévy process

3.3.1 Small jumps truncation

With the understanding that the Lévy measure can be decomposed in positive and neg-

ative jumps we restrict ourselves to subordinators.

Let S be a one-dimensional subordinator with unbounded Lévy measure Π, without

drift or Gaussian part. For all t ≥ 0 its characteristic function has the representation

EeiuS(t) = etψ(u) for u ∈ R with

ψ(u) =

∫

0<x<ε

(
eiux − 1

)
Π(dx) +

∫

x≥ε

(
eiux − 1

)
Π(dx), u ∈ R , (3.3.1)

for arbitrary ε > 0. The last integral in (3.3.1) is the characteristic exponent of a com-

pound Poisson process with Poisson intensity λ(ε) ∈ (0,∞) and jump distribution function

F (ε)

λ(ε) =

∫ ∞

ε

Π(dx) and F (ε)(dx) = Π(dx)/λ(ε) on [ε,∞).

As an observation scheme we assume that we observe the whole sample path of S

over a time interval [0, t], but that we only observe jumps of size larger than ε. Then

our observation scheme is equivalent to observing a compound Poisson process, say S(ε),

given in its marked point process representation as {(T (ε)
k , X

(ε)
k ), k = 1, . . . , n(ε)}, where

n(ε) = n(ε)(t) = card{T (ε)
k ∈ [0, t] : k ∈ N}. We also assume that Π(dx) = ν(x; θ)dx

where θ is a vector of parameters of the Lévy measure so that the density of X
(ε)
k is given

by f (ε)(x; θ) = ν(x, θ)/λ(ε) for x ≥ ε. The likelihood function of this compound Poisson

process is well-known, see e.g. Basawa and Prakasa Rao [6], and is given by

L(ε)(θ) = (λ(ε))n
(ε)

e−λ
(ε)t ×

n(ε)∏

i=1

f (ε)(xi, θ) = e−λ
(ε)t ×

n(ε)∏

i=1

ν(xi; θ)1{xi≥ε}. (3.3.2)

3.3.2 Asymptotic behaviour of the MLEs

MLE is a well established estimation procedure and the asymptotic properties of the

estimators is well-known for i.i.d. data, but also for continuous-time stochastic processes,
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see e.g. Küchler and Sorensen [26] and references therein. However, this theory is usually

concerned about letting the observation time, i.e. t tends to infinity. We are more interested

in the case of fixed t and ε ↓ 0, and here there exist to our knowledge only some specific

results in the literature; see e.g. Basawa and Brockwell [4, 5] and Höpfner and Jacod [22].

We start with a general Lévy process S and base the maximum likelihood estimation on

the jumps ∆Sv > ε for v ∈ [0, t]. The MLEs are, in fact, those obtained from the CPP S(ε)

as described in Section 3.3.1 above. Therefore, under some regularity conditions (see e.g.

Prakasa Rao [29], Section 3.11) the MLEs are consistent and asymptotically normal. In the

context of a compound Poisson process the asymptotic behavior of estimators is considered

for t → ∞. In our set-up, however, it is also relevant to consider the performance of

estimators as ε→ 0 with t fixed.

We investigate the asymptotic behavior of estimators for a stable Lévy process as

n(ε) → ∞ and shall show that this covers the cases of t → ∞ as well as ε → 0. Asymp-

totic normality of the estimators has been derived in Basawa and Brockwell [4, 5]. For

comparison and later reference we summarize these results in some detail.

Example 3.3.1. [α-stable subordinator]

Let (S(t))t≥0 be a one dimensional α-stable subordinator with parameters c > 0 and 0 <

α < 1, such that the tail integral is given by Π(x) = cx−α for x > 0. Observing all jumps

larger than some ε > 0, the resulting CPP has intensity and jump size density

λ(ε) =

∫ ∞

ε

Π(dx) = cε−α , f (ε)(x) =
Π(dx)/dx

λ(ε)
= αεαx−1−α, x > ε.

If we observe n(ε) jumps larger than ε in [0, t], we estimate the intensity by λ̂(ε) = n(ε)

t
.

Moreover, by (3.3.2) the loglikelihood function for θ = (α, log c) is given by

ℓ(α, c) = n(ε)(logα+ log c) − elog cε−αt− (1 + α)
n(ε)∑

i=1

log xi .

We calculate the score functions as

∂ℓ

∂α
=

n(ε)

α
+ telog cε−α log ε−

n(ε)∑

i=1

log xi ,

∂ℓ

∂ log c
= n(ε) − elog cε−αt
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To obtain candidates for maxima we calculate

elog c =
n(ε)

tε−α
=
λ̂(ε)

ε−α
,

1

α
= − t

n(ε)
cε−α log ε+

1

n(ε)

n(ε)∑

i=1

log xi

=
1

n(ε)

n(ε)∑

i=1

(log xi − log ε) + log ε
(
1 − λ(ε)

λ̂(ε)

)
.

Consequently, we have the maximum likelihood estimators

α̂ =


 1

n(ε)

n(ε)∑

i=1

(
logX

(ε)
i − log ε

)
+ log ε

(
1 − λ(ε)

λ̂(ε)

)


−1

,

l̂og c = log λ̂(ε) + α̂ log ε .

Next we calculate the second derivatives as

∂2ℓ

∂α2
= −n(ε) 1

α2
− ctε−α(log ε)2 = −tcε−α

(
λ̂(ε)

λ(ε)

1

α2
+ (log ε)2

)

∂2ℓ

∂α ∂ log c
= ctε−α log ε =

∂2ℓ

∂ log c∂α

∂2ℓ

∂(log c)2
= −tcε−α .

Consequently, the Fisher information matrix is given by

I
(ε)
α,log c = tcε−α




1
α2 + (log ε)2 − log ε

− log ε 1


 .

We calculate the determinant as det(I
(ε)
α,log c) = c2t2α−2ε−2α. Using Cramer’s rule of in-

version easily gives

(I
(ε)
α,log c)

−1 = (ct)−1εαα2


 1 log ε

log ε 1
α2 + (log ε)2


 .

We are interested in the asymptotic behaviour of the MLEs α̂ and l̂og c based on a fixed

time interval [0, t] and letting ε → 0. Note that we have to get the variance-covariance
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matrix asymptotically independent of ε. Division of l̂og c by log ε changes the matrix I
(ε)−1

α,log c

into

(Ĩ
(ε)

α, log c
log ε

)−1 = t−1c−1εαα2


 1 1

1 1
α2(log ε)2

+ 1


 .

Since

√
n(ε)

(
λ̂(ε)

λ(ε)
− 1

)
=

√
n(ε)

(
n(ε)

tcε−α
− 1

)
d→ N(0, 1) , n(ε) → ∞ , (3.3.3)

and the regularity conditions of Section 3.11 of Prakasa Rao [29] are satisfied, classical

likelihood theory ensures that

√
n(ε)




α̂− α

log ĉ− log c

log ε


 ∼ AN


0, α2


 1 1

1 1
α2

1
(log ε)2

+ 1




 , n(ε) → ∞ .

Consistency of λ̂(ε), obtained from (3.3.3), and a Taylor expansion of log x around c

ensures with Slutzky’s theorem that for ε→ 0,

√
ctε−α/2




α̂

α
− 1

1
α log ε

(
ĉ

c
− 1

)


 d→ N


0,


 1 1

1 1




 =


 N1

N2


 ,

where N1, N2 are standard normal random variables with cov(N1, N2) = 1, which implies

that N1 = N2 = N . So the limit law is degenerate.

It has been shown in Jacod and Höpfner [22] that the natural parameterization is not

(c, α), but (λ(ε), α), which leads to asymptotically independent normal limits. Indeed, we

have

√
n(ε)




α̂

α
− 1

λ̂(ε)

λ(ε)
− 1


 d→ N


0,


 1 0

0 1




 , n(ε) → ∞ ,

where n(ε) can again be replaced by tcε−α and the same result holds for t→ ∞, equivalently,

ε→ 0. �
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3.4 Maximum likelihood estimation of the parame-

ters of a bivariate Lévy process

3.4.1 Small jumps truncation

Let S be a bivariate Lévy process with unbounded Lévy measure Π in both components

and marginal Lévy measures Π1 and Π2 corresponding to the components S1 and S2,

respectively. It has an infinite number of jumps in the observation interval [0, t]. Several

observation schemes are possible here concerning the truncation of the small jumps.

We consider only jumps (x, y), where both x ≥ ε and y ≥ ε at the same time. This

leads to a bivariate compound Poisson model with joint jumps larger than ε.

Consider the truncated process S(ε) with total Lévy measure

Π(ε)(R2
+) = Π{(x, y) ∈ R2

+ : x ≥ ε, y ≥ ε} =: λ(ε) <∞ .

Then there exists a representation

S(ε)(t) =

∫ t

0

∫

x≥ε
xM(ds× dx) =

N(t)∑

i=1

Xi , t ≥ 0 ,

where ≥ is taken componentwise and M is a Poisson random measure, which has support

[0,∞) × [ε,∞)2 with intensity measure dsΠ(ε)(dx) on its support; cf. Sato [32], The-

orem 19.2. This means that S(ε) is a compound Poisson process with intensity λ(ε) and

leads to the observation scheme as described in Section 4 of Esmaeili and Klüppelberg [17]

in detail, where now all jumps are larger than ε in both components. We now investigate

the influence of the truncation on the Lévy copula (see Figure 3.1).

Lemma 3.4.1. Let S be a bivariate Lévy process with continuous marginal tail integrals.

Assume that the unbounded Lévy measure Π concentrates on R2
+ with Lévy copula C,

which is different from the independent Lévy copula. Consider only those jumps, which

are larger than ε in both component processes.Then the Lévy copula of the resulting CPP

is given by

C̃
(ε)(u, v) = C(C←1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)), 0 < u, v ≤ λ(ε). (3.4.1)
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-

6

ε

ε x

y

Figure 3.1: Illustration of the support of the bivariate tail integral Π
(ε)

(x, y) and the marginal tail integrals

Π
(ε)

1 (x) and Π
(ε)

2 (x).

where C
←
k , k = 1, 2 is the inverse of C with respect to the k-th argument, λ

(ε)
k = Πk(ε), k =

1, 2, and λ(ε) = Π(ε, ε).

Proof. If the Lévy copula is the independent Lévy copula, then there is only mass on

the axes and there are a.s. no jumps in both components at the same time. So, assume

that the Lévy copula is different from the independent Lévy copula. The marginal tail

integrals of the CPP are given by

Π
(ε)

1 (x) = Π(x, ε) = C(Π1(x),Π2(ε)) = C(Π1(x), λ
(ε)
2 ), x > ε,

Π
(ε)

2 (y) = Π(ε, y) = C(Π1(ε),Π2(y)) = C(λ
(ε)
1 ,Π2(y)), y > ε,

(3.4.2)

whereas the bivariate tail integral is

Π
(ε)

(x, y) = Π(x, y) = C(Π1(x),Π2(y)), x, y > ε. (3.4.3)

Denote by C̃
(ε) the Lévy copula of the CPP, and from (3.4.3) we have

C̃
(ε)(Π

(ε)

1 (x),Π
(ε)

2 (y)) = C(Π1(x),Π2(y)), x, y > ε.

Together with (3.4.2) this implies that

C̃
(ε)(C(Π1(x), λ

(ε)
2 ),C(λ

(ε)
1 ,Π2(y))) = C(Π1(x),Π2(y)), x, y > ε.

49



Setting u := C(Π1(x), λ
(ε)
2 ) and v := C(λ

(ε)
1 ,Π2(y)), we see that for x, y > ε

Π1(x) = C
←
1 (u, λ

(ε)
2 ) and Π2(y) = C

←
2 (λ

(ε)
1 , v),

and, hence, for 0 < u, v ≤ λ(ε)

C̃
(ε)(u, v) = C

(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)
.

�

Proposition 3.4.2. Assume that the conditions of Lemma 3.4.1 hold and that Lévy copula

C is continuous on [0,∞]2. Then

lim
ε→0

C̃
(ε)(u, v) = C(u, v) , u, v > 0 .

Proof. Take arbitrary u, v > 0. Then there exists some ε > 0 such that 0 < u, v ≤ λ(ε).

Invoking the Lipschitz condition for Lévy copula (Theorem 2.1, Barndorff-Nielsen and

Lindner [3])and (3.4.1), we have

|C̃(ε)(u, v) − C(u, v)| =
∣∣∣C
(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)
− C(u, v)

∣∣∣

≤
∣∣∣C←1 (u, λ

(ε)
2 ) − u

∣∣∣+
∣∣∣C←2 (λ

(ε)
1 , v) − v

∣∣∣ .

Since the Lévy copula C has Lebesgue margins, i.e. C(u,∞) = u and C(∞, v) = v, we

have C
←
1 (u,∞) = u and C

←
2 (∞, v) = v. This implies that

|C̃(ε)(u, v) − C(u, v)| ≤
∣∣∣C←1 (u, λ

(ε)
2 ) − C

←
1 (u,∞)

∣∣∣+
∣∣∣C←2 (λ

(ε)
1 , v) − C

←
2 (∞, v)

∣∣∣ .

The terms on the rhs tend to zero because the Lévy measure is unbounded and limε→0 λ
(ε)
1 =

limε→0 λ
(ε)
2 = ∞. �

Now we proceed as in Esmaeili and Klüppelberg [17] and use the same notation.

Denote by (x1, y1), . . . , (xn(ε) , yn(ε)) the observed jumps larger than ε in both components,

i.e. occurring at the same time during the observation interval [0, t]. Assume further that

the dependence structure of the process S = (S1, S2) is defined by a Lévy copula C with
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a parameter vector δ. We also assume that γ1 and γ2 are the parameter vectors of the

marginal Lévy measures Π1 and Π2.

Using the notation νk(·) = λ
(ε)
k f

(ε)
k (·) for the marginal Lévy densities on (ε,∞) for

k = 1, 2 we can reformulate Theorem 4.1 of Esmaeili and Klüppelberg [17] as follows.

Theorem 3.4.3. Assume an observation scheme as above for a bivariate Lévy process

with only non-negative jumps. Assume that γ1 and γ2 are the parameters of the marginal

Lévy measures Π1 and Π2 with Lévy densities ν1 and ν2, respectively, and a Lévy copula C

with parameter vector δ. Assume further that ∂2

∂u∂v
C(u, v; δ) exists for all (u, v) ∈ (0,∞)2,

which is the domain of C. Then the full likelihood of the bivariate CPP is given by

L(ε)(γ1, γ2, δ) = e−λ
(ε)t

n(ε)∏

i=1


ν1(xi; γ1)ν2(yi; γ2)

∂2

∂u∂v
C(u, v; δ)

∣∣∣∣
u=Π1(xi;γ1),

v=Π2(yi;γ2)


 (3.4.4)

where

λ(ε) =

∫ ∞

ε

∫ ∞

ε

Π(dx, dy) = C(Π1(ε; γ1),Π2(ε; γ2); δ).

3.4.2 Asymptotic behaviour of the MLEs of a bivariate stable

Clayton model

A spectrally positive Lévy process is an α-stable subordinator if and only if 0 < α < 1

and there exists a finite measure ρ̃ on the unit sphere Sd−1 := {x ∈ Rd
+ | ‖x‖ = 1} in Rd

+

(for an arbitrary norm ‖ · ‖) such that the Lévy measure

Π(B) =

∫

Sd−1

ρ̃(dξ)

∫ ∞

0

1B(rξ)
dr

r1+α
, B ∈ B(Rd

+) ,

(cf. Theorem 14.3(ii) and Example 21.7 in Sato [32]).

From Kallsen and Tankov [25], Theorem 4.6, it is known that a bivariate process is

α-stable if and only if it has α-stable marginal processes and a homogeneous Lévy copula

of order 1; i.e. C(tu, tv) = tC(u, v). The Clayton Lévy copula

C(u, v) =
(
u−δ + v−δ

)−1/δ

, u, v > 0 ,

is homogeneous of order 1. Hence it is a valid model to define a bivariate α-stable process.
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Suppose S1 and S2 are two α-stable subordinators with same tail integrals

Πk(x) = cx−α , x > 0 , for k = 1, 2.

Assume further that S = (S1, S2) is a bivariate α-stable process with dependence structure

modelled by a Clayton Lévy copula. The joint tail integral is then given by

Π(x, y) = C(Π1(x),Π2(y)) = c
(
xαδ + yαδ

)− 1
δ , x, y > 0 . (3.4.5)

The bivariate Lévy density is given by

ν(x, y) = c(1 + δ)α2(xy)αδ−1
(
xαδ + yαδ

)− 1
δ
−2
, x, y > 0 , (3.4.6)

We assume the observation scheme as in Section 3.4.1. The Lévy measure Π will be

considered on the set [ε,∞) × [ε,∞) with jump intensity

λ(ε) = Π(ε, ε) = c
(
εαδ + εαδ

)− 1
δ = c2−1/δε−α. (3.4.7)

and marginal tail integrals

Π
(ε)

k (x) = c(xαδ + εαδ)−1/δ , k = 1, 2. (3.4.8)

Moreover, for k = 1, 2,

Π
(ε)

k (ε) = c2−1/δε−α = λ(ε) ,

and

G
(ε)

k (x) = P(X > x) = P(Y > x) =
Π

(ε)

k (x)

λ(ε)
(3.4.9)

=
[1
2

(
1 +

(x
ε

)αδ)]−1/δ

, x > ε .

The Lévy copula of the CPP is by Lemma 3.4.1 given by

C̃
(ε)(u, v) = C

(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)

= C

((
u−δ − λ

(ε)
2

−δ)−1/δ

,
(
v−δ − λ

(ε)
1

−δ)−1/δ
)

=
(
u−δ + v−δ − 2c−δεαδ

)−1/δ
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From the Lévy density in (3.4.6) the intensity in (3.4.7) the joint probability density of

the bivariate jumps is given by

g(ε)(x, y) = α2(1 + δ)εα2
1
δ (xy)αδ−1(xαδ + yαδ)−

1
δ
−2 , x, y > ε , (3.4.10)

we note that our model is a bivariate generalized Pareto distribution (GPD); cf. Model I

of Section 5.4 in Arnold et al. [2]. They present some properties of the model, and in our

case X,Y are positively correlated.

We now turn to the MLE procedure. Noting that the parameterisation (c, α, δ) creates

various problems taking derivatives, we propose a different choice of parameters. First

we set αδ = θ. Furthermore, recalling from the one-dimensional case that λ(ε) is a more

natural choice than c, we decided to use the parameters (λ(ε), α, θ). Recall from (3.3.2)

for the bivariate CPP based on observations (xi, yi) > ε for i = 1, . . . , n(ε),

L(ε)(λ(ε), α, θ) = e−λ
(ε)t

n(ε)∏

i=1

ν(xi, yi)

= e−λ
(ε)t(λ(ε))n

(ε)

(α(α+ θ))n
(ε)

εαn
(ε)

2
n(ε)α

θ

n(ε)∏

i=1

[
(xiyi)

θ−1
(
xθi + yθi

)−α
θ
−2
]
.

Then the log-likelihood is given by

ℓ(ε)(λ(ε), α, θ) = −λ(ε)t+ n(ε) log λ(ε) + n(ε)(logα+ log(α+ θ)) + αn(ε) log ε+ n(ε)α

θ
log 2

+(θ − 1)
n(ε)∑

i=1

(log xi + log yi) − (2 +
α

θ
)
n(ε)∑

i=1

log(xθi + yθi ) .

Note that the last term prevents the model to belong to an exponential family, so we have

to be very careful concerning exchanging differentiation and integration. For the score
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functions we obtain

∂ℓ(ε)

∂λ(ε)
= −t+

n(ε)

λ(ε)

∂ℓ(ε)

∂α
=

n(ε)

α
+

n(ε)

α+ θ
+ n(ε) log ε+

n(ε) log 2

θ
− 1

θ

n(ε)∑

i=1

log(xθi + yθi )

∂ℓ(ε)

∂θ
=

n(ε)

α+ θ
− n(ε)α

θ2
log 2 +

n(ε)∑

i=1

(log xi + log yi) +
α

θ2

n(ε)∑

i=1

log(xθi + yθi )

−(2 +
α

θ
)
n(ε)∑

i=1

∂

∂θ
log(xθi + yθi ) .

From this we obtain the MLE λ̂(ε) = n(ε)

t
, whose asymptotic properties are well-known,

and note that λ̂(ε) is independent of α̂ and θ̂. So we concentrate on α̂ and θ̂.

Note first that, as a consequence of (3.4.9), the d.f. of X∗ = X
ε

is given by

P (X∗ > x) = P (X > εx) = 2α/θ(xθ + 1)−α/θ for x > 1.

Since also the distributions of (X∗, Y ∗) = (X
ε
, Y
ε
) is independent of ε, the following quan-

tities are independent of ε.

Lemma 3.4.4. The following moments are finite.

E

[
log
(X
ε

)]
= 2

α
θ

∫ ∞

1

(1 + yθ)−
α
θ

y
dy

E

[
log

(
1

2

((X
ε

)θ
+
(Y
ε

)θ))]
=

θ

α
+

θ

α+ θ

E

[
∂

∂θ
log

((X
ε

)θ
+
(Y
ε

)θ)]
= (2 +

α

θ
) log ε+

2

θ
+ E

[
log
(X
ε

)
+ log

(Y
ε

)]

= (
2θ

2θ + α
)

(
1

θ
+ 2

α
θ

∫ ∞

1

(yθ + 1)−
α
θ

y
dy

)
.

Proof. The first equality is a consequence of the joint density (3.4.10) and marginal tail

distribution (3.4.9) with some standard analysis.

The second equality is calculated from the score function for α and (3.4.11).
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For the last identity we calculate

(2 +
α

θ
)E

[
∂

∂θ
log(Xθ + Y θ)

]

=
1

α+ θ
− α

θ2
log 2 + E [logX + log Y ] +

α

θ2
E
[
log(Xθ + Y θ)

]

=
1

α+ θ
− α

θ2
log 2 + E [logX + log Y ] +

α

θ2
(θ log ε+

θ

α
+

θ

α+ θ
+ log 2)

=
1

α+ θ
(1 +

α

θ
) + E [logX + log Y ] +

1

θ
+
α

θ
log ε

= E [logX + log Y ] +
2

θ
+
α

θ
log ε

= (2 +
α

θ
) log ε+

2

θ
+ 2

α
θ
+1

∫ ∞

1

(yθ + 1)−
α
θ

y
dy .

�

The following is a first step for calculating the Fisher information matrix.

Lemma 3.4.5. For all ε > 0,

E

[∂ℓ(ε)
∂α

]
= E

[∂ℓ(ε)
∂θ

]
= 0. (3.4.11)

Proof. We show the result for the partial derivative with respect to α, where we use a

dominated convergence argument. Since derivatives are local objects, it suffices to show

that for each α0 ∈ (0, 1) there exist a ξ > 0 such that for all α in a neighbourhood of α0,

given by Nξ(α0) := {α ∈ (0, 1) : 0 < α0 − ξ ≤ α ≤ α0 + ξ < 1} there exists a dominating

integrable function, independent of α. We obtain

∣∣∣∣
∂ℓ(ε)

∂α

∣∣∣∣ ≤ n(ε)

α0 − ξ
+

n(ε)

α0 − ξ + θ
+ n(ε) log ε+

n(ε) log 2

θ
+

1

θ

n(ε)∑

i=1

∣∣∣ log(xθi + yθi

∣∣∣.

The right-hand side is integrable by Lemma 3.4.4, which can be seen by multiplying and

dividing the xi and yi by ε and using the second identity of Lemma 3.4.4.

The proof for the partial derivative with respect to θ is similar, invoking Lemma 3.4.4. �
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Next we calculate the second derivatives

∂2ℓ(ε)

∂α2
= n(ε)

(
− 1

α2
− 1

(α+ θ)2

)

∂2ℓ(ε)

∂α∂θ
= n(ε)

(
− 1

(α+ θ)2
− 1

θ2
log 2

)
− 1

θ

n(ε)∑

i=1

∂

∂θ
log(xθi + yθi ) +

1

θ2

n(ε)∑

i=1

log(xθi + yθi )

∂2ℓ(ε)

∂θ∂α
=

∂2ℓ(ε)

∂α∂θ

∂2ℓ(ε)

∂θ2
= −n(ε)

(
1

(α+ θ)2
− 2α

θ3
log 2

)
− 2α

θ3

n(ε)∑

i=1

log(xθi + yθi ) +
2α

θ2

n(ε)∑

i=1

∂

∂θ
log(xθi + yθi )

−(2 +
α

θ
)
n(ε)∑

i=1

∂2

∂θ2
log(xθi + yθi ).

In order to calculate the Fisher information matrix we invoke Lemma 3.4.4.

The components of the Fisher information matrix are then given by

ĩ11 = E

[
− ∂2

∂α2
ℓ(ε)
]

= λ(ε)t

[
1

α2
+

1

(α+ θ)2

]

=: λ(ε)i11 t

ĩ12 = ĩ21 = E

[
− ∂2

∂α∂θ
ℓ(ε)
]

= λ(ε)t

[
1

(α+ θ)2
− 1

αθ
− 1

θ(α+ θ)
+

1

θ
E

[
∂

∂θ
log

((X
ε

)θ
+
(Y
ε

)θ)]]

= λ(ε)t

[
1

(α+ θ)2
+

2

θ(2θ + α)
− 1

αθ
− 1

θ(α+ θ)
+

2α/θ+1

2θ + α

∫ ∞

1

(1 + uθ)−
α
θ

u
du

]

=: λ(ε)i12 t = λ
(ε)
21 i12 t

ĩ22 = E

[
− ∂2

∂θ2
ℓ(ε)
]

= λ(ε)t

[
1

(α+ θ)2
− 2α log 2

θ3
+

2α

θ3
E
(
log(Xθ + Y θ)

)

−2α

θ2
E

(
∂

∂θ
log(Xθ + Y θ)

)
+ (

α

θ
+ 2)E

(
∂2

∂θ2
log(Xθ + Y θ)

)]

= λ(ε)t

[
1

(α+ θ)2
+

2

θ2
+

2α

θ2(α+ θ)
− 4α

θ2(α+ 2θ)
− α2α/θ+2

θ(2θ + α)

∫ ∞

1

(uθ + 1)−α/θ

u
du

+(
α

θ
+ 2)g(α, θ)

]

=: λ(ε)i22 t ,
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where

g(α, θ) := E

[
∂2

∂θ2
log(Xθ + Y θ)

]
= E

[
∂2

∂θ2
log

((X
ε

)θ
+
(Y
ε

)θ)]

does not depend on ε. This implies in particular that all ikl are independent of ε. Conse-

quently, the Fisher information matrix is given by

I
(ε)
α,θ = λ(ε)t


 i11 i12

i12 i22


 .

Recall the asymptotic normality of the estimated parameters in the one-dimensional case

of Example 3.3.1. In our bivariate model we have additionally to those parameters the

dependence parameter θ. This means that we have to check the regularity conditions (A1)-

(A4) in Section 3.11 of Prakasa Rao [29] for this model. (A1) and (A2) are differentiability

conditions, which are satisfied. As a prerequisite for (A3) and (A4) we need to show

invertibility of the Fisher information matrix I
(ε)
α,θ, which we are not able to do analytically.

A numerical study for a large number of values for α and θ, however, always gave a positive

determinant, indicating that the inverse indeed exist. Since the Fisher information matrix

depends on t only by the common factor, it is not difficult to convince ourselves that (A3)

and (A4) are satisfied. Hence, classical likelihood theory applies and ensures that

√
n(ε)


 α̂− α

θ̂ − θ


 ∼ AN


0,


 i11 i12

i12 i22



−1
 , n(ε) → ∞ .

As in the one-dimensional case, we use the consistency result in (3.3.3) and Slutzky’s

theorem, which gives for n(ε) → ∞, equivalently, ε→ 0,

√
c2−α/θε−αt


 α̂− α

θ̂ − θ


 d→ N


0,


 i11 i12

i12 i22



−1
 .

In reality the parameters are estimated from the data and plugged into the rate and

the ikl. Moreover, the unknown expectations in the Fisher information matrix have to

be either numerically calculated by the corresponding integrals or estimated by Monte

Carlo simulation. In Section 3.5 we shall perform a simulation study and also present an

example of the covariance matrix for some specific choice of parameters.
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Before this we want to come back to our change of parameters and, in particular, want

to discuss estimation of the parameter c of the stable margins. From (3.3.3) and the fact

that λ̂(ε), α̂ and θ̂ are consistent, we know that for n(ε) → ∞,

ĉ := λ̂(ε)2bα/bθεbα

is a consistent estimator of c.

We calculate as follows

l̂og c = log λ̂(ε) +
α̂

θ̂
log 2 + α̂ log ε

= log
λ̂(ε)

λ(ε)
+ log c− α

θ
log 2 − α log ε+

α̂

θ̂
log 2 + α̂ log ε .

Consistency of λ̂(ε) implies that

l̂og c− log c = oP (1) + (α̂− α) log ε+
( α̂
θ̂
− α

θ

)
log 2

= oP (1) + (α̂− α) log ε+
(1

θ̂
− 1

θ

)
α log 2 + (α̂− α)

log 2

θ̂

= oP (1) + (α̂− α) log ε+
(θ
θ̂
− 1
)α
θ

log 2

+(α̂− α)
log 2

θ
(1 + oP (1)) ,

where we have used the consistency of α̂ and θ̂. This implies for ε→ 0

l̂og c− log c

log ε
= (α̂− α)(1 + oP (1)) .

Consequently, analogously to the one-dimensional case, we obtain the following result.

Theorem 3.4.6. Let (ĉ, α̂, θ̂) denote the MLEs of the bivariate α-stable Clayton subordi-

nator. Then, as ε→ 0,

√
c2−α/θε−αt




l̂og c− log c

log ε

α̂− α

θ̂ − θ




d→




N1

N1

N2


 ,

where Cov(N1, N2) =


 i11 i12

i12 i22



−1

is independent of ε.
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Obviously, we can do all again a Taylor expansion to obtain the limit law for ĉ instead

of l̂og c as in the one-dimensional case.

3.5 Simulation study for a bivariate α-stable Clayton

subordinator

We start generating data from a bivariate α-stable Clayton subordinator over a time

span [0, t], where we choose t = 1 for simplicity. Recall that our observation scheme

introduced in Section 3.4.1. assumes that from the α-stable Clayton subordinator we only

observe bivariate jumps larger than ε. Obviously, we cannot simulate a trajectory of a

stable process, since we are restricted to the simulation of a finite number of jumps. For

simulation purpose we choose a threshold ξ (which should be much smaller than ε) and

simulate jumps larger than ξ in one component, and arbitrary in the second component.

To this end we invoke Algorithm 6.15 in Cont and Tankov [13].

The simulation of a bivariate stable Clayton subordinator is explained in detail in

Example 6.18 of [13]. The algorithm starts by fixing a number τ determined by the

required precision. This number coincides with λ
(ξ)
1 and fixes the average number of terms

in (3.5.1) below.

We generate an i.i.d. sequence of standard exponential random numbers E1, E2, . . ..

Then we set Γ
(1)
0 = 0 and Γ

(1)
i = Γ

(1)
i−1 +Ei until Γ

(1)

n(ξ) ≤ τ and Γ
(1)

n(ξ)+1
> τ resulting in the

jump times of a standard Poisson process Γ
(1)
0 ,Γ

(1)
1 , . . . ,Γ

(1)

n(ξ) . Besides the marginal tail

integrals we also need to know for every i the conditional distribution function given for

Γ
(1)
i = u > 0 by

F2|1(v | u) =
(
1 + (u/v)δ

)−1/δ−1
, v > 0 .

We simulate Γ
(2)
i from the d.f. F2|1(v | u = Γ

(1)
i ). Finally, we simulate a sequence U1, U2, . . .

of i.i.d. uniform random numbers on (0, 1). The trajectory of the bivariate Clayton sub-
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ε δ = 2 α = 0.5 c = 1

Mean 2.0861 (0.8245) 0.5323 (0.1233) 1.0642 (0.6848)

0.001
√
MSE 0.8290 (1.3074) 0.1275 (0.0340) 0.6878(0.9855)

MRB 0.0476 0.0658 0.0232

Mean 2.0180 (0.4333) 0.5110 (0.0637) 1.0531 (0.5174)

0.0001
√
MSE 0.4337 (0.2831) 0.0647 (0.0078) 0.5201(0.5170)

MRB 0.0108 0.0216 0.0423

Mean 2.0029 (0.2364) 0.5041 (0.0348) 1.0270 (0.3713)

0.00001
√
MSE 0.2364 (0.0781) 0.0350 (0.0021) 0.3722 (0.2730)

MRB 0.0015 0.0081 0.0240

Table 3.1: Estimation of the bivariate 1
2 -stable Clayton process with jumps truncated at different ε: the

mean of MLEs of the copula and the margins parameter δ, α and c with
√

MSE and standard deviations

(in brackets). This is based on a simulation of the process in a unit of time, 0 ≤ t < 1, for τ = 1000,

equivalent to truncation of small jumps at the cut-off point ξ = Π
←

(τ) = 10−6.

ordinator has the following representation


 S

(ξ)
1 (t)

S
(ξ)
2 (t)


 =



∑n(ξ)

i=1 1{Ui≤t}Π
←
1 (Γ

(1)
i )

∑n(ξ)

i=1 1{Ui≤t}Π
←
2 (Γ

(2)
i )


 , 0 < t < 1 , (3.5.1)

where (Γ
(1)
i ,Γ

(2)
i ) carry the dependence structure of the Lévy copula. Note that the jump

times in both components always coincide.

Table 4.1 summarizes the results of a simulation study based on 100 trajectories of

the bivariate α-stable Clayton subordinator with parameters α = 0.5, c = 1 and Clayton

dependence parameter δ = 2.

Finally, we also want to give an idea about the theoretical properties of our MLE

procedure. To this end we calculate the theoretical asymptotic covariance matrix for the

same set of parameters (c, α, θ) = (1, 0.5, 1). Note that in this case we can calculate

the integral in the Fisher information matrix explicitly. The expectation of the second

derivative we obtain from a Monte Carlo simulation based on simulated (X,Y ).
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We conclude this section with an example of the covariance matrix Cov(N1, N2) of

the normal limit vector of the parameter estimates as given in Theorem 3.4.6. We do

this for the model with parameters c = 1, α = 0.5 and θ = 1 as used for the simulation

with results summarized in Table 4.1. We present the matrix resulting from two different

methods. The left hand matrix has been calculated by numerical integration, whereas the

right hand matrix is the result of a Monte Carlo simulation based on 1000 observations

from the bivariate Pareto distribution (3.4.10).

Numerical integration Monte Carlo simulation

 0.2492 −0.1885

−0.1885 1.4686





 0.2487 −0.1867

−0.1867 1.4700




3.6 Conclusion and outlook

For the specific bivariate α-stable Clayton subordinator with equal marginal Lévy processs

we have estimated all parameters in one go and proved asymptotic normality for n(ε) →
∞. Observation scheme were joint jumps larger than ε in both components and a fixed

observation interval [0, t]. This limit result holds for t→ ∞ or, equivalently, for ε→ 0.

Since this estimation procedure requires even for a bivariate model with the same

marginal processes a non-trivial numerical procedure to estimate the parameters, it seems

to be advisable to investigate also two-step procedures like IFM (inference for the marginals).

In such a procedure the parameters of the marginals may well be different, and the model

of arbitrary dimension, since marginals are estimated first and then the marginals are

transformed before estimating the dependence structure in form of the Lévy copula. This

well-known estimation procedure in the copula framework will be investigated in a follow-

up paper.

Alternatively, one can apply non-parametric estimation procedures for Lévy measures

as e.g. in [35].
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Chapter 4

Two-step estimation of a

multivariate Lévy process

SUMARRY

Based on the concept of a Lévy copula to describe the dependence structure of a mul-

tivariate Lévy process we present a new estimation procedure. We consider a parametric

model for the marginal Lévy processes as well as for the Lévy copula and estimate the

parameters by a two-step procedure. We first estimate the parameters of the marginal

processes, and then estimate in a second step only the dependence structure parameter.

For infinite Lévy measures we truncate the small jumps and base our statistical analy-

sis on the large jumps of the model. Prominent example will be a bivariate stable Lévy

process, which allows for analytic calculations and, hence, for a comparison of different

methods. We prove asymptotic normality of the parameter estimates from the two-step

procedure and, in particular, we derive the Godambe information matrix, whose inverse

is the covariance matrix of the normal limit law. A simulation study investigates the loss

of efficiency because of the two-step procedure and the truncation.
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4.1 Introduction

In Esmaeili and Klüppelberg [18] we presented the maximum likelihood estimation (MLE)

for a bivariate stable subordinator. We assumed for the marginal subordinators to be both

stable with the same parameters and modelled the dependence structure by a Clayton

Lévy copula. Estimation was based on observed jumps larger than some predefined ε > 0

in both components within a fixed interval [0, t]. For this model we computed the MLEs

numerically and proved asymptotic normality for ε → 0 and/or for t → ∞, respectively.

It is certainly useful to know that such a procedure works; but for more general models

as, for instance, for higher dimensional models with different marginal Lévy processes,

this estimation method becomes computationally very expensive.

Consequently, we present in this paper an alternative, which is a Lévy equivalent of the

so-called IFM (inference functions for margins) method, a standard method in multivariate

statistics; cf. Godambe [20], Joe [23], Ch. 10, and Xu [36], Ch. 2. The observation scheme

as chosen in Esmaeili and Klüppelberg [18] was simple in the sense that we only considered

observations with jumps in both components larger than some ε > 0. For this observation

scheme, however, the marginally truncated processes are not independent of the Lévy

copula parameter.

The appropriate observation scheme to separate marginal and dependence parameters

of the small jumps truncated processes requires to consider each component process sep-

arately and observe jumps larger than ε in each single component. This results again in

a compound Poisson process (CPP), where jumps larger than ε in both components are

seen as joint jumps, and those jumps with sizes larger than ε only in one component (and

smaller in the other) are treated as positive jumps in one component and jump size 0 in

the other.

Separation of the marginals and the Lévy copula is based on Sklar’s theorem for

Lévy measures. Due to the fact that all Lévy processes with the exception of a CPP

have a singularity in 0, the Lévy measure is considered on quadrants in Rd avoiding the

origin. The simplest object to consider is, hence, a d-dimensional subordinator, which
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allows for only positive jumps in all components. We restrict ourselves in this paper to

such processes, extensions to general Lévy processes are not difficult, but notationally

involved; see Kallsen and Tankov [25] or Eder and Klüppelberg [15].

Our paper is organised as follows. In Section 4.2 we introduce the notion of a Lévy

copula needed later to model the dependence structure between the components of a

multivariate Lévy process. Here we also explain the truncation scheme of the observed

jumps and present our prominent example, the bivariate α-stable Clayton subordinator.

Section 4.3 is dedicated to the two-step estimation procedure. We prove asymptotic nor-

mality of the estimates in Section 4.4 including the calculation of the covariance matrix as

the inverse of the Godambe information matrix. For a comparison with MLE based on the

full model we calculate the log-likelihood function in Section 4.5. Finally, in Section 4.6,

we perform a small simulation study, where we compare the quality of all three estima-

tion methods: the full MLE and the MLE based on joint jumps only, and the two-step

procedure.

4.2 Preliminaries

4.2.1 The Lévy copula

Throughout this paper we denote by S = (S(t))t≥0 an increasing Lévy process with values

in Rd
+ defined on a filtered probability space (Ω,F , (Ft)t≥0,P). This means that S is a

subordinator without Gaussian component, drift γ and a Lévy measure Π on Rd
+ satisfying

Π({0}) = 0 and
∫

Rd
+

min{x, 1}Π(dx) <∞; cf. Sato [32], Th. 21.5, or Cont and Tankov [13],

Prop. 3.10.

The tail integral of the Lévy measure Π is the function Π : [0,∞]d → [0,∞] defined

by

Π(x1, . . . , xd) =





Π([x1,∞) × · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d \ {0}
0 , xi = ∞ for at least one i,

∞ , (x1, . . . , xd) = 0.

(4.2.1)
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The marginal tail integrals are defined analogously for i = 1, . . . , d as Πi(x) = Πi([x,∞))

for x ≥ 0; cf. Cont and Tankov [13], Def. 5.7, and Kallsen and Tankov [25], Def. 3.3

and 3.4.

The jump dependence of the process S is part of the multivariate tail integral and

can be described by a so-called Lévy copula. We recall the notion of a Lévy copula from

[13, 25] to be a measure defining function C : [0,∞]d → [0,∞] with Lebesgue margins

Ck(u) = u for all u ∈ [0,∞] and k = 1, . . . , d.

The following result, called Sklar’s Theorem for Lévy copulas, is central for our set-up;

it has been proved in Cont and Tankov [13], Th. 5.4, for a bivariate Lévy process and in

Kallsen and Tankov [25], Th. 3.6, for a d-dimensional Lévy process.

Theorem 4.2.1. Let Π denote the tail integral of a spectrally positive d-dimensional

Lévy process, whose components have Lévy measures Π1, . . . ,Πd. Then there exists a Lévy

copula C : [0,∞]d → [0,∞] such that for all x1, x2, . . . , xd ∈ [0,∞]

Π(x1, . . . , xd) = C
(
Π1(x1), . . . ,Πd(xd)

)
. (4.2.2)

If the marginal tail integrals are continuous, then this Lévy copula is unique. Otherwise,

it is unique on Ran(Π1) × · · · ×Ran(Πd).

Conversely, if C is a Lévy copula and Π1, . . . ,Πd are one-dimensional tail integrals of

spectrally positive Lévy processes, then the relation (4.2.2) defines the tail integral of a

d-dimensional spectrally positive Lévy process and Π1, . . . ,Πd are tail integrals of its com-

ponents.

4.2.2 Truncation of the small jumps

For notational convenience we proceed with a bivariate subordinator. As truncation point

we choose ε > 0. Figure 4.1 shows how the Lévy measure Π on R2
+ \ (0, ε)2 is divided

into two parts, the part concentrated on [ε,∞)2, and the part concentrated on the axes,

which is in fact the projected measure of Π on [ε,∞) × (0, ε) and (0, ε) × [ε,∞) to the

horizontal and vertical axes, respectively.
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Figure 4.1: Illustration of the tail integral Π of a truncated bivariate Lévy process at (x, y) for a process

with jump sizes of max{x, y} ≥ ε (left) and a process with jump sizes of x ≥ ε and y ≥ ε (right). Note

that in the right plot the mass, where only one component is larger than ε > 0 and the other smaller, is

projected to the axes.

4.2.3 The observation scheme

It is based on all jumps of the process larger than some ε componentwise within the

observation interval [0, t]. That is, we may observe a single jump x or y either in the first

or in the second component. The other observed jumps are (x, y), where x ≥ ε and y ≥ ε

at the same time. Let n = n1 + n2 denote the total number of jumps occurring in [0, t] in

either component, where we denote by n1 and n2 the number of jumps in each marginal

process, respectively. This means that we count every joint jump in both components as

two jumps. Then n decomposes in the number n⊥1 of jumps occurring only in the first

component, the number n⊥2 of jumps occurring only in the second component, and the

number 2n‖ of jumps occurring in both components.

We denote by (x1, . . . , xn1 , y1, . . . , yn2) the observed jumps. By the independence prop-

erty of the jumps of a Lévy process the order does not matter as long as concurrent

jumps remain in the same coordinate. Consequently, throughout the paper we place

w.l.o.g. all joint jumps at the beginning of the x- and y-observations so that (x‖,y‖) =

((x1, y1), . . . , (xn‖ , yn‖)).

The resulting n‖+ n⊥1 + n⊥2 observations can be attributed to a bivariate CPP similar
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to the model considered in Esmaeili and Klüppelberg [17]. We shall need the marginal

truncated Lévy measures Π
(ε)
k for k = 1, 2. They will be calculated by first determining

the Lévy measures of those processes representing joint jumps larger than ε, denoted by

Π(ε)‖, single jumps larger than ε in the first or second component, denoted by Π
(ε)⊥
1 and

Π
(ε)⊥
2 , respectively.

The tail integrals of the observed CPP are given for x, y > ε by

Π
(ε)‖

(x, y) = Π(x, y) ,

Π1
(ε)⊥

(x) = Π(x, 0) − Π(x, ε) , (4.2.3)

Π2
(ε)⊥

(y) = Π(0, y) − Π(ε, y) .

The jump intensities of these CPPs are

λ(ε)‖ = Π(ε, ε) ,

λ1
(ε)⊥ = Π(ε, 0) − Π(ε, ε) , (4.2.4)

λ2
(ε)⊥ = Π(0, ε) − Π(ε, ε).

The corresponding jump size distributions are given by the Lévy measures divided by the

intensities, respectively. The marginal tail integrals of the truncated processes are now

calculated as

Π
(ε)

1 (x) = Π
(ε)‖

(x, ε) + Π
(ε)⊥
1 (x) = Π(x, 0) , x ≥ ε

Π
(ε)

2 (y) = Π
(ε)‖

(ε, y) + Π
(ε)⊥
2 (y) = Π(0, y) , y ≥ ε ,

which implies intensities λ
(ε)
k = λ(ε)‖ + λ

(ε)⊥
k = Πk(ε).

Lemma 4.1 in Esmaeili and Klüppelberg [18] explains the consequence of the small

jumps truncation to the Lévy copula. We shall need the notion of a generalized inverse

function: for g : R → R increasing define the generalized inverse of g as g←(x) = inf{u ∈
R : g(u) ≥ x}. The definition extends naturally to other supports. For more details and

properties of the generalized inverse we refer to Resnick [30], Section 0.2.

From Lemma 4.1 in Esmaeili and Klüppelberg [18] the Lévy copula of the CPP is
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given by

C
(ε)(u, v) = C

(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)
, 0 < u, v < λ(ε)‖, (4.2.5)

where for k = 1, 2 the symbol C
←
k denotes the generalized inverse of C with respect to the

k-th argument.

The following will be our prominent example.

Example 4.2.2. [Bivariate α-stable Clayton subordinator]

Let c1, c2 > 0 and 0 < α1, α2 < 1. Assume that Π1(x) = c1x
−α1 for x > 0 and

Π2(y) = c2y
−α2 for y > 0 and that dependence is modelled by a Clayton Lévy copula,

which is given by

C(u, v) =
(
u−δ + v−δ

)−1/δ
, u, v > 0 ,

with dependence parameter δ > 0.

By (4.2.3) the tail integrals of the observed CPP are given by

Π
(ε)‖

(x, y) =
(
(c1x

−α1)−δ + (c2y
−α2)−δ

)− 1
δ , x, y ≥ ε , (4.2.6)

Π
(ε)

1

⊥
(x) = c1x

−α1

[
1 −

(
1 +

( c2ε−α2

c1x−α1

)−δ)−1/δ
]
, x ≥ ε ,

Π
(ε)

2

⊥
(y) = c2y

−α2

[
1 −

(
1 +

( c1ε−α1

c2y−α2

)−δ)−1/δ
]
, y ≥ ε .

From (4.2.4) we calculate the jump intensities

λ(ε)‖ =
(
(c1ε

−α1)−δ + (c2ε
−α2)−δ

)− 1
δ , (4.2.7)

λ
(ε)
1

⊥
= c1ε

−α1

[
1 −

(
1 +

(c2ε−α2

c1ε−α1

)−δ)−1/δ
]
,

λ
(ε)
2

⊥
= c2ε

−α2

[
1 −

(
1 +

(c1ε−α1

c2ε−α2

)−δ)−1/δ
]
.

The marginal tail integrals and intensities of the truncated process are now calculated for

k = 1, 2 as

Π
(ε)

k (x) = ckx
−αk , x ≥ ε , and λ

(ε)
k = ckε

−αk .
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This implies for the marginal jump size distributions

P (X > x) = Π
(ε)

1 (x)/λ
(ε)
1 = εα1x−α1 , x ≥ ε ,

P (Y > y) = Π
(ε)

2 (y)/λ
(ε)
2 = εα2y−α2 , y ≥ ε .

By (4.2.5) the Lévy copula of the observed CPP is for 0 < u, v < λ(ε)‖ given by

C
(ε)(u, v) = C

((
u−δ − (λ

(ε)
2 )−δ

)−1/δ

,
(
v−δ − (λ

(ε)
1 )−δ

)−1/δ
)

=
(
u−δ + v−δ − (c−δ1 εα1δ + c−δ2 εα2δ)

)−1/δ
.

4.3 Two-step parameter estimation of a Lévy process

The idea of a two-step procedure for subordinators is similar to the IFM method for

multivariate distributions. The term IFM is the acronym for “inference functions for mar-

gins” and has been applied in various areas of multivariate statistics; cf. Godambe [20]

and Joe [23], Ch. 10. Obviously, the maximization of a likelihood with many parame-

ters can be numerically sophisticated and computationally time-consuming; in a two-step

method the parameters of the marginal components are estimated first and the Lévy cop-

ula parameters in a second step, thus reducing the dimensionality of the problem. For

multivariate distribution functions, the algorithm is explained, for instance, in Joe [23],

Ch. 10.

For a multivariate Lévy process in Rd for arbitrary dimension d ∈ N, the two-step

algorithm can be formalized as follows.

Step 1 : We do not distinguish between single and common jumps, but make use of all

data available; i.e., we take all observations xik > ε for i = 1, . . . , nk and all k = 1, . . . , d.

We denote by γ = (θ1, . . . , θd) the vector of all marginal parameters (the θi are usually

vectors) and let l
(ε)
1 , . . . , l

(ε)
d be the marginal log-likelihood functions with respect to the

parameters. Determine

γ̃ := argmaxγ

d∑

k=1

l
(ε)
k (θk | xk) , (4.3.1)
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where xk = (x1k, x2k, . . . , xnkk) are all observations in component k larger than ε.

Step 2 : Write the log-likelihood l(ε) of a CPP, whose jumps are only the common

jumps of xik > ε for i = 1, . . . , n‖ and k = 1, . . . , d, plug in the marginal parameter

estimates from Step 1, resulting in the log-likelihood of a CPP with only dependence

structure parameter δ. Maximize the log-likelihood function over δ; i.e., estimate the

Lévy copula parameter vector δ ∈ Rm for some m ∈ N, based on the common jumps:

δ̃ := argmaxδ l
(ε)(δ | γ̃,x‖1, . . . ,x

‖
d) , (4.3.2)

where γ̃ = (θ̃1, . . . , θ̃d) and x
‖
k = (x1k, . . . , xn‖k) for k = 1, . . . , d.

Remark 4.3.1. The MLE η̂ of the parameter vector η = (θ1, . . . , θd, δ) is derived by

maximization of the log-likelihood of the multivariate CPP l(ε) over the parameter vector

η (as done in [18]). The estimate η̂ is the solution of

(
∂l(ε)

∂θ1

, . . . ,
∂l(ε)

∂θd
,
∂l(ε)

∂δ

)
= 0.

This is in contrast with the two-step method, where the estimate η̃ is the solution of
(
∂l

(ε)
1

∂θ1

, . . . ,
∂l

(ε)
k

∂θk
,
∂l(ε)

∂δ

)
= 0.

Remark 4.3.2. The aim of the two-step method is in fact to reduce the dimension of

the parameter vector to have a simpler structure for the optimization of the likelihood

function. Note that the observation scheme in [18], which takes only the n‖ observations

of the joint jumps in both steps into account, fails this goal, since the observation scheme

used there introduces the dependence parameter into the marginal likelihoods.

4.3.1 Two-step estimation method of an α-stable Clayton sub-

ordinator with different marginal parameters

The following algorithm works in principle in every dimension. For notational simplicity

we formulate it only for dimension d = 2. Let S = (S1, S2) be a bivariate α-stable

Clayton subordinator as introduced in Example 4.2.2 with different marginal parameters

71



θ1 = (α1, c1) and θ2 = (α2, c2) with αk ∈ (0, 1) and ck ∈ (0,∞) for k = 1, 2 and a

Lévy copula parameter δ ∈ (0,∞). We assume the observation scheme as described in

Section 2.4. We denote by (X1, . . . , Xn‖ , . . . , Xn1 , Y1, . . . , Yn‖ , . . . , Yn2) the vector of jumps

larger than ε for the component processes S
(ε)
1 and S

(ε)
2 , respectively. As before, all double

jumps are numbered as (Xi, Yi) for i = 1, . . . , n‖.

Step 1 : Since the marginal log-likelihoods have the same structure with no com-

mon parameters, (4.3.1) decomposes in its components for S1 and S2, and maximiza-

tion is done separately. We proceed as in Basawa and Brockwell [4, 5]; cf. Esmaeili and

Klüppelberg [18], Example 3.1, and exemplify it for the first component:

l
(ε)
1 (log c1, α1; x) = −c1tε−α1 + n1(log c1 + logα1) − (α1 + 1)

n1∑

i=1

log xi .

From Basawa and Brockwell [4, 5] we know that the marginal MLEs of c1 and α1 and the

intensity parameter λ
(ε)
1 are given by

λ̃
(ε)
1 =

n1

t
,

α̃1 =

(
1

n1

n1∑

i=1

(
logXi − log ε

)
+ log ε

(
1 − λ

(ε)
1

λ̃
(ε)
1

))−1

, (4.3.3)

log c̃1 = log λ̃
(ε)
1 + α̃1 log ε .

Furthermore, asymptotic normality holds with degenerate limit for (c̃1, α̃1) and with

asymptotic independence for (λ̃1, α̃1) as n1 → ∞. Limit laws hold for both situations,

t → ∞ or ε → 0. The first limit was derived in Basawa and Brockwell [5]. Asymptotic

independence for the second vector was shown in Höpfner and Jacod [22]. Both results

are reported with precise rates and the asymptotic covariance matrix in Esmaeili and

Klüppelberg [18], Example 3.1.

Step 2 : We first determine the log-likelihood function in (4.3.2) for the bivariate CPP

of common jumps larger than ε. By (4.2.7) the intensity is λ(ε)‖ = (c−δ1 εα1δ + c−δ2 εα2δ)−
1
δ .

Together with (4.2.6) this yields the survival function of bivariate joint jumps

F
(ε)

(x, y) =

(
c−δ1 xα1δ + c−δ2 yα2δ

c−δ1 εα1δ + c−δ2 εα2δ

)− 1
δ

, x, y ≥ ε,
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with density given by

f (ε)(x, y) =
α1α2(1 + δ)(c−δ1 εα1δ + c−δ2 εα2δ)

1
δ

(c1c2)δ
xα1δ−1yα2δ−1

(c−δ1 xα1δ + c−δ2 yα2δ)
1
δ
+2
. (4.3.4)

This results in the log-likelihood function

l(ε)(c1, c2, α1, α2, δ; x
‖,y‖) = −λ(ε)‖t+ n‖ log(1 + δ) − n‖δ(log c1 + log c2)

+n‖(logα1 + logα2) + (α1δ − 1)
n‖∑

i=1

log xi + (α2δ − 1)
n‖∑

i=1

log yi

−(
1

δ
+ 2)

n‖∑

i=1

log
(
c−δ1 xα1δ

i + c−δ2 yα2δ
i

)
,

where (x‖,y‖) = ((x1, y1), . . . , (xn‖ , yn‖)).

Given the marginal parameter estimates from the first step, the score function with

respect to the dependence parameter δ is given by

∂l(ε)(δ | γ̃,x‖,y‖)
∂δ

= −∂λ
(ε)‖

∂δ
t+

n‖

1 + δ
− n‖(log c̃1 + log c̃2)

+α̃1

n‖∑

i=1

log xi + α̃2

n‖∑

i=1

log yi +
1

δ2

n‖∑

i=1

log
(
c̃ −δ1 xeα1δ

i + c̃ −δ2 yeα2δ
i

)

−
(1

δ
+ 2
) n‖∑

i=1

∂

∂δ
log
(
c̃ −δ1 xeα1δ

i + c̃ −δ2 yeα2δ
i

)
.

The parameter estimate δ̃ can be found numerically by solving the following equation for

δ:
∂l(ε)(δ | γ̃,x‖,y‖)

∂δ
= 0.

Remark 4.3.3. The vector of score functions in the two-step method is given by

J(ε)(X,Y; η) =
(∂l(ε)1 (log c1, α1;X)

∂ log c1
,
∂l

(ε)
1 (log c1, α1;X)

∂α1

,
∂l

(ε)
2 (log c2, α2;Y)

∂ log c2
,
∂l

(ε)
2 (log c2, α2;Y)

∂α2

,
∂l(ε)(δ;X‖,Y‖)

∂δ

)T
,

where η = (log c1, log c2, α1, α2, δ)
T is the parameter vector, X = (X1, . . . , Xn1), Y =

(Y1, . . . , Yn2) and (X‖,Y‖) = ((X1, Y1), . . . , (Xn‖ , Yn‖)).
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4.3.2 Two-step method for a bivariate α-stable Clayton subor-

dinator with common marginal parameters

For an analysis of the two-step estimation procedure we simplify the model as follows.

Let S = (S1, S2) be a bivariate α-stable subordinator as in Example 4.2.2 with common

marginal parameters θ1 = θ2 = (α, c) and a Clayton Lévy copula parameter δ. Assume an

observation scheme as explained in Section 2.4. Maximum likelihood estimation for the

parameters of this model was discussed in Esmaeili and Klüppelberg [18] in detail. In this

section we estimate the parameters with the two-step method.

Step 1 : The log-likelihood function (4.3.1), which ignores the dependence structure,

is given by

l
(ε)
12 (log c, α) = l

(ε)
1 (log c, α) + l

(ε)
2 (log c, α)

= −2ctε−α + n(log c+ logα) − (α+ 1)
n∑

i=1

log zi, (4.3.5)

where n := n1 + n2 is Poisson distributed. Since n1 and n2 have both intensity λ(ε) :=

λ
(ε)
1 = λ

(ε)
2 , n has intensity 2λ(ε) = 2cε−α and (z1, . . . , zn) = (x1, . . . , xn1 , y1, . . . , yn2).

Note that the corresponding random variables log(Zi

ε
), for i = 1, . . . , n are exponentially

distributed with density f(u) = αe−αu for u > 0. The log-likelihood has score functions

with respect to the marginal parameters log c and α as follows:

∂l
(ε)
12 (log c, α)

∂ log c
= n− 2ctε−α = n− 2λ(ε)t (4.3.6)

∂l
(ε)
12 (log c, α)

∂α
=

n

α
+ 2ctε−α log ε−

n∑

i=1

log zi = −
n∑

i=1

(
log

zi
ε
− 1

α

)
− (n− 2λ(ε)t) log ε .

The common intensity parameter λ(ε) = cε−α and the marginal parameters log c and α

can be estimated by (4.3.3) as

λ̃(ε) =
n

2t

α̃ =

(
1

n

n∑

i=1

(logZi − log ε) +
(
1 − λ(ε)

λ̃(ε)

)
log ε

)−1

log c̃ = log λ̃(ε) + α̃ log ε .
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Step 2 : As explained in Esmaeili and Klüppelberg [18], for simplifying the calcu-

lations of the second derivatives later we reparameterize the dependence to θ = αδ. The

joint density of bivariate jumps is a special case of (4.3.4) and has been calculated in

(4.10) in Esmaeili and Klüppelberg [18]. From (4.2.7) we know that λ(ε)‖ = cε−α2−
α
θ ,

which we use for abbreviation. Then the log-likelihood in (4.3.2) is

l(ε)(log c, α, θ) = −λ(ε)‖t+ n‖ logα+ n‖ log(α+ θ) + n‖ log c (4.3.7)

+(θ − 1)
n‖∑

i=1

(log xi + log yi) − (2 +
α

θ
)
n‖∑

i=1

log(xθi + yθi ) .

The score function with respect to the parameter θ is then given by (the derivatives of

λ(ε)‖ are calculated in Lemma 4.3.5 below)

∂l(ε)

∂θ
= −∂λ

(ε)‖

∂θ
t+

n‖

α+ θ
+

n‖∑

i=1

(log xi + log yi) (4.3.8)

+
α

θ2

n‖∑

i=1

log(xθi + yθi ) − (2 +
α

θ
)
n‖∑

i=1

∂

∂θ
log(xθi + yθi ).

Given the estimates of the marginal parameters c̃ and α̃ from the first step, the estimate

of θ can be computed numerically as the argmax of the right hand side of (4.3.8).

Remark 4.3.4. The vector of score functions from Remark 4.3.3 reduces to

J(ε)(X,Y; η) =
(∂l(ε)12 (log c, α;Z)

∂ log c
,
∂l

(ε)
12 (log c, α;Z)

∂α
,
∂l(ε)(log c, α, θ;X‖,Y‖)

∂θ

)T
, (4.3.9)

where η = (log c, α, θ)T is the parameter vector, Z = (X1, . . . , Xn1 , Y1, . . . , Yn2) and

(X‖,Y‖) = (X1, Y1), . . . , (Xn‖ , Yn‖).

We shall need the following derivatives of λ(ε)‖.

Lemma 4.3.5. For λ(ε)‖ = cε−α2−
α
θ the partial derivatives are given by

∂λ(ε)‖

∂ log c
= λ(ε)‖ ,

∂λ(ε)‖

∂α
= −λ(ε)‖( log ε+

1

θ
log 2

)
,

∂λ(ε)‖

∂θ
= λ(ε)‖α log 2

θ2
.
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The second derivatives can be calculated as

∂2λ(ε)‖

∂θ∂ log c
= λ(ε)‖α log 2

θ2
,

∂2λ(ε)‖

∂θ∂α
= −λ(ε)‖ log 2

θ2

(
α log ε+

α

θ
log 2 − 1

)
,

∂2λ(ε)‖

∂θ2
= λ(ε)‖α log 2

θ2

(α log 2

θ2
− 2

θ

)
.

4.4 Asymptotic properties of the two-step estimates

4.4.1 The Godambe information matrix

In the two-step estimation procedure, the Godambe information matrix plays the role of

the Fisher information matrix in classical MLE. We explain this for our situation. Let

S = (S1, S2) be a bivariate α-stable Clayton subordinator with parameter vector η ∈ Rk

including marginal and dependence parameters. Assume further an observation scheme

as explained in Section 2.4. In principle the two-step estimation procedure can be applied

to both situations of Section 4.3.1 with η ∈ R5 or of Section 4.3.2 with η ∈ R3.

For the vector of score functions, denoted by J(ε)(X,Y; η) as in Remarks 4.3.3 and 4.3.4,

the so-called Godambe information matrix is calculated as

G := DTM−1D, (4.4.1)

where

D :=
1

2λ(ε)t
E

[
− ∂J(ε)(X,Y; η)

∂η

]
, (4.4.2)

M :=
1

2λ(ε)t
E

[
J(ε)(X,Y; η)J(ε)(X,Y; η)

T
]

(4.4.3)

are k×k-matrices. Under some regularity conditions (see below) the asymptotic covariance

matrix of n−
1
2 (η̃ − η) is equal to the inverse of G; cf. Joe [23], Section 10.1.1.

For the rest of this section we restrict the process S again to the model in Section 4.3.2,

a bivariate α-stable subordinator with common marginal parameters log c and α, and

dependence parameter θ. We denote by l
(ε)
12 the log-likelihood of the common marginal
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parameters γ := (log c, α) as in (4.3.5), and by l(ε) the log-likelihood of the bivariate

CPP in the second step as in (4.3.7). Assume further that η0 = (log c0, α0, θ0) is the

true parameter vector. We prove consistency of the two-step estimators, and their joint

asymptotic normality. We calculate the Godambe information matrix G as well as the

asymptotic covariance matrix of the estimators. We do this step by step, calculating the

matrices D and M from (4.4.2) and (4.4.3), respectively.

There is a minor difference between our approach and the classical in Joe [23], Sec-

tion 10.1.1. Whereas he can work with a fixed number of multivariate data, our process

structure with observations on an interval [0, t] implies a random number of data points.

Moreover, we have to deal with the problem of single and common jumps. However, this

imposes no real difficulties, since we can invoke Slutzky’s theorem.

Lemma 4.4.1. Assume a bivariate α-stable Clayton subordinator with common marginal

parameters (log c, α) and dependence parameter θ = αδ. Assume also the observation

scheme given in Section 2.2. Recall that λ(ε) = λ
(ε)
1 = λ

(ε)
2 = cε−α is the marginal intensity

parameter, λ(ε)‖ = cε−α2−
α
θ is the joint jumps intensity parameter. Define d = λ(ε)‖

2λ(ε) =

2−
α
θ
−1. Then the matrix D of (4.4.2) is given by

D =




1 − log ε 0

− log ε 1
α2 + (log ε)2 0

dα log 2
θ2

d
(
− α log 2

θ2
log ε+ a

)
d b


 . (4.4.4)

Furthemore, a = a(α, θ) and b = b(α, θ) are given in (4.4.7) and (4.4.8). They are deter-

ministic functions of the parameters and do not depend on t or ε.

Proof. The score functions in (4.3.6) have derivatives

∂2l
(ε)
12 (log c, α)

∂(log c)2
= −2ctε−α = −2λ(ε)t

∂2l
(ε)
12 (log c, α)

∂α∂ log c
=

∂2l
(ε)
12 (log c, α)

∂ log c ∂α
= 2ctε−α log ε = 2λ(ε)t log ε (4.4.5)

∂2l
(ε)
12 (log c, α)

∂α2
= − n

α2
− 2ctε−α(log ε)2 = − n

α2
− 2λ(ε)t(log ε)2.
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This means that the upper left 2 × 2-matrix is the Fisher information matrix to the

MLE of (log c, α), calculated by Basawa and Brockwell [5] and presented in Esmaeili and

Klüppelberg [18], Example 3.1 (up to a deterministic factor), since here all observations

from both marginals are considered. Since the score functions in (4.3.6) are independent

of the parameter θ, the matrix D has the structure as given in (4.4.4). It remains to

calculate the last row of D. We calculate the derivatives of the score function in (4.3.8)

as follows:

∂2l(ε)(log c, α, θ)

∂ log c∂θ
= − ∂2λ(ε)‖

∂ log c∂θ
t = −λ(ε)‖t

α log 2

θ2

∂2l(ε)(log c, α, θ)

∂α∂θ
= −∂

2λ(ε)‖

∂α∂θ
t− n‖

(α+ θ)2
+

1

θ2

n‖∑

i=1

log (Xθ
i + Y θ

i )

−1

θ

n‖∑

i=1

∂

∂θ
log (Xθ

i + Y θ
i ) (4.4.6)

∂2l(ε)(log c, α, θ)

∂θ2
= −∂

2λ(ε)‖

∂θ2
t− n‖

(α+ θ)2
− 2α

θ3

n‖∑

i=1

log (Xθ
i + Y θ

i )

+
2α

θ2

n‖∑

i=1

∂

∂θ
log (Xθ

i + Y θ
i ) − (2 +

α

θ
)
n‖∑

i=1

∂2

θ2
log (Xθ

i + Y θ
i ).

It remains to calculate the following expectations:

d31 =
1

2λ(ε)t
E

[
− ∂2l(ε)

∂ log c∂θ

]
= d

α log 2

θ2

d32 =
1

2λ(ε)t
E

[
− ∂2l(ε)

∂α∂θ

]
=

1

2λ(ε)t

(
∂2λ(ε)‖

∂θ∂α
t+

λ(ε)‖t

(α+ θ)2
− λ(ε)‖t

θ2
E

[
log(Xθ

1 + Y θ
1 )
]

+
λ(ε)‖t

θ
E

[ ∂
∂θ

log (Xθ
1 + Y θ

1 )
])

= d
(
− α log 2

θ2
log ε− α(log 2)2

θ3
+

log 2

θ2
+

1

(α+ θ)2
− 1

θ2
E

[
log(Xθ

1 + Y θ
1 )
]

+
1

θ
E

[ ∂
∂θ

log (Xθ
1 + Y θ

1 )
])
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d33 =
1

2λ(ε)t
E

[
− ∂2l(ε)

∂θ2

]
=

1

2λ(ε)t

(
∂2λ(ε)‖

∂θ2
t+

λ(ε)‖t

(α+ θ)2
+

2αλ(ε)‖t

θ3
E

[
log (Xθ

1 + Y θ
1 )
]

−2αλ(ε)‖t

θ2
E

[ ∂
∂θ

log (Xθ
1 + Y θ

1 )
]

+ (2 +
α

θ
)λ(ε)‖tE

[ ∂2

∂θ2
log (Xθ

1 + Y θ
1 )
])

= d

((α log 2

θ2

)2

− 2α log 2

θ3
+

1

(α+ θ)2
+

2α

θ3
E

[
log (Xθ

1 + Y θ
1 )
]

−2α

θ2
E

[ ∂
∂θ

log (Xθ
1 + Y θ

1 )
]

+ (2 +
α

θ
)E
[ ∂2

∂θ2
log (Xθ

1 + Y θ
1 )
])

.

Since only the first term of d32 in the bracket depends on ε, and d33 is independent of ε,

the proof is complete by setting

a(α, θ) = −α(log 2)2

θ3
+

log 2

θ2
+

1

(α+ θ)2
− 1

θ2
E

[
log(Xθ

1 + Y θ
1 )
]

+
1

θ
E

[ ∂
∂θ

log(Xθ
1 + Y θ

1 )
]

(4.4.7)

b(α, θ) =
(α log 2

θ2

)2

− 2α log 2

θ3
+

1

(α+ θ)2
+

2α

θ3
E

[
log(Xθ

1 + Y θ
1 )
]

−2α

θ2
E

[ ∂
∂θ

log(Xθ
1 + Y θ

1 )
]

+
2θ + α

θ
E

[ ∂2

∂θ2
log(Xθ

1 + Y θ
1 )
]

(4.4.8)

�

Remark 4.4.2. We shall need the following inverse:

D−1 =




1 + α2(log ε)2 α2 log ε 0

α2 log ε α2 0

−1
b

(
aα2 log ε+ α log 2

θ2

)
−a
b
α2 1

d b


 , (4.4.9)

In order to calculate the matrix M below we shall need the following result on the

dependence of n and n‖.

Lemma 4.4.3. Recall that n = n1 + n2 = 2n‖ + n⊥1 + n⊥2 . Then

E[nn‖] = 2λ(ε)‖t(1 + λ(ε)t) and cov(n, n‖) = 2λ(ε)‖t .

Proof. We calculate the expectation, the result for the covariance is then obvious. By
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independence of the Poisson processes of joint and single jumps,

E
[
nn‖
]

= E
[
(2n‖ + n⊥1 + n⊥2 )n‖

]

= 2
(
var(n‖) + (E[n‖])2

)
+ E[n⊥1 + n⊥2 ]E[n‖]

= 2(λ(ε)‖t+ (λ(ε)‖t)2) + (λ
(ε)⊥
1 + λ

(ε)⊥
2 )λ(ε)‖t2

= 2λ(ε)‖t(1 + λ(ε)t).

Lemma 4.4.4. Assume a bivariate α-stable Clayton subordinator with common marginal

parameters (log c, α) and dependence parameter θ = αδ. Assume also the observation

scheme given in Section 2.2. Define d = λ(ε)‖

2λ(ε) = 2−
α
θ
−1 and

T (x, y) := (log x+ log y) +
α

θ2
log(xθ + yθ) − (2 +

α

θ
)
∂

∂θ
log(xθ + yθ) . (4.4.10)

Then the matrix M introduced in (4.4.3) is given by

M =




1 − log ε 2dα log 2
θ2

− log ε 1
α2 + (log ε)2 −d

(
2α log 2

θ2
log ε+m

)

2dα log 2
θ2

−d
(
2α log 2

θ2
log ε+m

)
db


 , (4.4.11)

where b is given by (4.4.8) and

m = 2 cov
(

log
X1

ε
, T
(X1

ε
,
Y1

ε

))
. (4.4.12)

Moreover, this covariance is independent of ε.

Proof. Recall the definition of the Zi for i = 1, . . . , n as in Step 1 of Section 4.2 and the fact

that log Z1

ε
, . . . , log Zn

ε
are exponential random variables with expectation α−1, and that in

this first step they are treated as independent. The entries of the matrix M = (mij)1≤i,j≤3

are calculated from the score functions (4.3.9) in Remark 4.3.4 as follows:

m11 =
1

2λ(ε)t
E

[( ∂l
(ε)
12

∂ log c

)2]
=

1

2λ(ε)t
E

[
− ∂2l

(ε)
12

∂(log c)2

]
= d11

m12 =
1

2λ(ε)t
E

[(∂l(ε)12

∂α

)( ∂l
(ε)
12

∂ log c

)]
=

1

2λ(ε)t
E

[
− ∂2l

(ε)
12

∂α∂ log c

]
= d12 = d21 = m21

m22 =
1

2λ(ε)t
E

[(∂l(ε)12

∂α

)2]
=

1

2λ(ε)t
E

[
− ∂2l

(ε)
12

∂α2

]
= d22.
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We abbreviate Ti := T (Xi, Yi) and find from Lemma 4.4 in [18] that µT := E(Ti) =

α log 2
θ2

− 1
α+θ

. Then by (4.3.6) and (4.3.8) we find

m13 =
1

2λ(ε)t
E

[( ∂l
(ε)
12

∂ log c

)(∂l(ε)
∂θ

)]

=
1

2λ(ε)t
E

[
(n− 2λ(ε)t)

(
− λ(ε)‖t

α log 2

θ2
+

n‖

α+ θ
+

n‖∑

i=1

(Ti − µT ) + n‖(
α log 2

θ2
− 1

α+ θ
)
)]

=
1

2λ(ε)t
E

[
(n− 2λ(ε)t)

(α log 2

θ2
(n‖ − λ(ε)‖t) +

n‖∑

i=1

(Ti − µT )
)]

=
α log 2

2λ(ε)tθ2
E

[
n(n‖ − λ(ε)‖t)

]
+

1

2λ(ε)t
E

[
E

[
n

n‖∑

i=1

(Ti − µT )
∣∣∣n, n‖

]]

=
α log 2

2λ(ε)tθ2

(
E[nn‖] − 2λ(ε)λ(ε)‖t2

)
=

α log 2

2λ(ε)tθ2
cov(n, n‖) = 2d

α log 2

θ2
,

where we have used Lemma 4.4.3.

m23 =
1

2λ(ε)t
E

[(∂l(ε)12

∂α

)(∂l(ε)
∂θ

)]

= − 1

2λ(ε)t
E

[( n∑

i=1

(log
Zi
ε

− 1

α
) + log ε(n− 2λ(ε)t)

)(α log 2

θ2
(n‖ − λ(ε)‖t) +

n‖∑

i=1

(Ti − µT )
)]

= − 1

2λ(ε)t
E

[( n∑

i=1

(log
Zi
ε

− 1

α
)
)( n‖∑

i=1

(Ti − µT )
)]

− α log 2

2λ(ε)tθ2
log εE

[
(n− 2λ(ε)t)(n‖ − λ(ε)‖t)

]

Now note that the jumps (Xi, Yi)i=1,...,n‖ are independent and independent of all single

jumps in either component. Recall that Ti = T (Xi, Yi) = T (Xi/ε, Yi/ε), where the last

equality is easily checked. Hence, the right hand side above reduces to

= − 1

2λ(ε)t
E

[ n‖∑

i=1

(log
Xi

ε
+ log

Yi
ε
− 2

α
)(Ti − µT )

]
− α log 2

2λ(ε)tθ2
log ε cov(n, n‖)

= −λ(ε)‖t

2λ(ε)t
E

[(
log

X1

ε
+ log

Y1

ε
− 2

α

)(
Ti − µT

)]
− 2λ(ε)‖t

2λ(ε)t

α log 2

θ2
log ε

= −d
(
m+

2α log 2

θ2
log ε

)
.

Finally,

m33 =
1

2λ(ε)t
E

[(∂l(ε)
∂θ

)2]
= − 1

2λ(ε)t
E

[∂2l(ε)

∂θ2

]
= d33. �
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Now we can calculate the Godambe information matrix as in (4.4.1).

4.4.2 Consistency and asymptotic normality of the two-step es-

timators

Assume that the log-likelihood l
(ε)
12 (log c, α) in (4.3.5) is used for estimating the marginal

parameters log c and α in the first step and the log-likelihood l(ε)(log c, α, θ) in (4.3.7) for

estimating the dependence parameter θ in the second step; i.e. we work with J(ε)(X,Y; η)

as given in Remark 4.3.4. As before we denote the resulting estimates by γ̃ = (log c̃, α̃)

and η̃ = (log c̃, α̃, θ̃). Assume further that γ0 = (log c0, α0) and η0 = (log c0, α0, θ0) are the

true parameter vectors.

A Taylor expansion of the score functions in (4.3.6) and (4.3.8) implies

∂l
(ε)
12 (log c,α)

∂ log c

∣∣∣
γ=eγ

=
∂l

(ε)
12 (γ)

∂ log c

∣∣∣
γ=γ0

+ (log c̃− log c0)
∂2l

(ε)
12 (γ)

∂(log c)2

∣∣∣
γ=γ∗

+ (α̃− α0)
∂2l

(ε)
12 (γ)

∂α∂ log c

∣∣∣
γ=γ∗

∂l
(ε)
12 (log c,α)

∂α

∣∣∣
γ=eγ

=
∂l

(ε)
12 (γ)

∂α

∣∣∣
γ=γ0

+ (log c̃− log c0)
∂2l

(ε)
12 (γ)

∂ log c∂α

∣∣∣
γ=γ∗

+ (α̃− α0)
∂2l

(ε)
12 (γ)

∂α2

∣∣∣
γ=γ∗

∂l(ε)(log c,α,θ)
∂θ

∣∣∣
η=eη

= ∂l(ε)(η)
∂θ

∣∣∣
η=η0

+ (log c̃− log c0)
∂2l(ε)(η)
∂ log c ∂θ

∣∣∣
η=η∗∗

+ (α̃− α0)
∂2l(ε)(η)
∂α∂θ

∣∣∣
η=η∗∗

+(θ̃ − θ0)
∂2l(ε)(η)
∂θ2

∣∣∣
η=η∗∗

(4.4.13)

where the vector γ∗ = (log c∗, α∗) is between γ̃ = (log c̃, α̃) and γ0 = (log c0, α0) and the

vector η∗∗ = (log c∗∗, α∗∗, θ∗∗) is between η̃ and η0, componentwise.

Since the left hand side of the equations in (4.4.13) are zero, so are the equations on
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the right hand side. Therefore, these equations can be written in matrix form as follows




∂2l
(ε)
12 (log c,α)

∂(log c)2

∣∣∣
γ=γ∗

∂2l
(ε)
12 (log c,α)

∂α∂ log c

∣∣∣
γ=γ∗

0

∂2l
(ε)
12 (log c,α)

∂ log c ∂α

∣∣∣
γ=γ∗

∂2l
(ε)
12 (log c,α)

∂α2

∣∣∣
γ=γ∗

0

∂2l(ε)(log c,α,θ)
∂ log c∂θ

∣∣∣
η=η∗∗

∂2l(ε)(log c,α,θ)
∂α∂θ

∣∣∣
η=η∗∗

∂2l(ε)(log c,α,θ)
∂θ2

∣∣∣
η=η∗∗




×




log c̃− log c0

α̃− α0

θ̃ − θ0




= −




∂l
(ε)
12 (log c,α)

∂ log c

∣∣∣
γ=γ0

∂l
(ε)
12 (log c,α)

∂α

∣∣∣
γ=γ0

∂l(ε)(log c,α,θ)
∂θ

∣∣∣
η=η0



. (4.4.14)

We denote by H(ε) the matrix of the second-order derivatives of the log-likelihoods in

(4.4.14) at η = (log c, α, θ) and by H(ε)∗ the matrix of H(ε) at γ∗ and η∗∗ as in (4.4.14).

(Note that D = 1
2λ(ε)t

E[−H(ε)].) Moreover, we recall the vector of the score functions

J(ε)(η) from Remark 4.3.4; then the right hand side of equation (4.4.14) is equal to

−J(ε)(η)
∣∣
η=η0

.

Furthermore, equation (4.4.14) becomes

H(ε)∗ (η̃ − η0) = −J(ε)(η)
∣∣∣
η=η0

. (4.4.15)

The common marginal log-likelihood in (4.3.5) and the log-likelihood in (4.3.7) have the

score functions (4.3.6) and (4.3.8), respectively. They can be rewritten as

∂l
(ε)
12 (log c, α)

∂ log c
= 2λ(ε)t

( λ̂(ε)

λ(ε)
− 1
)

(4.4.16)

∂l
(ε)
12 (log c, α)

∂α
= 2λ(ε)t log ε

( λ̂(ε)

λ(ε)
− 1
)
−

n∑

i=1

(
log(

Zi
ε

) − 1

α

)
(4.4.17)

∂l(ε)(log c, α, θ)

∂θ
=

n‖∑

i=1

Ti +
n‖

α+ θ
− λ(ε)‖t

α log 2

θ2

=
n‖∑

i=1

(Ti − µT ) +
α log 2

θ2
λ(ε)‖t

( λ̂(ε)‖

λ(ε)‖ − 1
)
. (4.4.18)

The next result shows the consistency of the estimator η̃.
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Proposition 4.4.5. Assume the bivariate α-stable Clayton subordinator with common

marginal parameters (log c, α) and dependence parameter θ = αδ. Assume also the obser-

vation scheme as described in Section 2.4. Let b be defined as in (4.4.8). If b(α0, θ0) 6= 0,

then the two-step estimator η̃ is a consistent estimator; i.e., as n‖ → ∞ (then also n→ ∞)

for a fixed ε,

η̃
P→ η0.

Proof. We divide (4.4.15) by n and obtain

1

n
H(ε)∗(η̃ − η0) = − 1

n
J(ε)(η)

∣∣∣
η=η0

. (4.4.19)

From the equations in (4.4.16), (4.4.17) and (4.4.18) the vector on the right hand side of

(4.4.19) is given by (note that λ̂(ε) = n
2t

estimates λ(ε))

1

n
J(ε)(η)

∣∣∣
η=η0

= (1 + oP (1))




bλ(ε)

λ(ε) − 1

log ε
(

bλ(ε)

λ(ε) − 1
)
− 1

2λ(ε)t

∑n
i=1

(
log(Zi

ε
) − 1

α

)

1
2λ(ε)t

∑n‖

i=1 (Ti − µT ) + α log 2
θ2

λ(ε)‖

2λ(ε)

(
bλε)‖

λ(ε)‖ − 1
)



η=η0

,

where we have used Slutzky’s theorem together with the LLN, which implies that n
2λ(ε)t

P→
1. We shall show that all vector components tend to 0 as n‖ → ∞ in probability. It is a

well-known fact that
√
n(

bλ(ε)

λ(ε) −1)
d→ N(0, 1). By Slutzky’s theorem again, log ε(

bλ(ε)

λ(ε) −1) =

(1 + oP (1)) log ε√
2tcε−α

√
n(

bλ(ε)

λ(ε) − 1)
P→ 0. This implies that the first component as well as the

first term in the second component tend to 0. Since E
[
log(Zi

ε
)
]

= 1
α
, also the second term

tends to 0 by the LLN. For the third component it suffices to note that λ(ε)‖

2λ(ε) = 2−
α
θ
−1,

then it tends to 0 also as a consequence of the LLN and the fact that
bλ(ε)‖

λ(ε)‖

P→ 1.

We show now that the matrix 1
n
H(ε)∗ is an invertible matrix and does not converge to

a zero-matrix as n‖ → ∞, which proves consistency of η̃. We show, first, that the limit of

1
n
H(ε) is deterministic and independent of t as n‖ → ∞. From (4.4.5) we can read off the

upper left 2× 2-matrix, and from (4.4.6) we obtain the last line of H(ε). We denote again

d = λ(ε)‖

2λ(ε) = 2−
α
θ
−1, then

84



H(ε) = 2λ(ε)t




−1 log ε 0

log ε − n
α22λ(ε)t

− (log ε)2 0

−d α log 2
θ2

d
(
α log 2
θ2

log ε− A
)

−dB


 (4.4.20)

where

A := −α(log 2)2

θ3
+

log 2

θ2
+

n‖

λ(ε)‖t(α+ θ)2
− 1

λ(ε)‖tθ2

n‖∑

i=1

log(Xθ
i + Y θ

i )

+
1

λ(ε)‖tθ

n‖∑

i=1

∂

∂θ
log(Xθ

i + Y θ
i ),

B :=
(α log 2

θ2

)2

− 2α log 2

θ3
+

n‖

λ(ε)‖t(α+ θ)2
+

2α

λ(ε)‖tθ3

n‖∑

i=1

log(Xθ
i + Y θ

i )

− 2α

λ(ε)‖tθ2

n‖∑

i=1

∂

∂θ
log(Xθ

i + Y θ
i ) +

2θ + α

λ(ε)‖tθ

n‖∑

i=1

∂2

∂θ2
log(Xθ

i + Y θ
i ).

Note that the distributions of A and B do not depend on t and ε (replacing Xi and Yi

by Xi/ε and Yi/ε does not change A and B, respectively). It remains to show that the

matrix 1
n
H(ε)∗ is invertible.

From (4.4.20) the determinant of matrix 1
n
H(ε) for an arbitrary parameter η is given

by

det
( 1

n
H(ε)

)
= (1 + oP (1))

(
− 2−α/θ−1B

α2

)
.

Since by the LLN n
2λ(ε)t

P→ 1 and B
P→ b(α, θ) 6= 0, the determinant does not converge to

zero as n→ ∞, i.e. t→ ∞. That is, the matrix 1
n
H(ε)∗ is invertible and does not converge

to a zero matrix and this completes the proof. �

Remark 4.4.6. Note that E[A] = a = a(α, θ) and E[B] = b = b(α, θ) as defined in (4.4.7)

and (4.4.8). As a consequence of the LLN in combination with Slutzky’s theorem we have

that A
P→ a and B

P→ b.

We are now ready to formulate the main result of our paper.
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Theorem 4.4.7. Assume a bivariate α-stable Clayton subordinator with common marginal

parameters (log c, α) and dependence parameter θ = αδ. Assume also the observation

scheme as described in Section 2.4. Let a and b be defined as in (4.4.7) and (4.4.8),

respectively, and let m be as in (4.4.12). If b(α, θ) 6= 0, then as ε→ 0,

√
2cε−αt




log ec−log c
log ε

α̃− α

θ̃ − θ




d→ N3 (0, V ) , (4.4.21)

where

V =




α2 α2 −α2(a+m)
b

α2 α2 −α2(a+m)
b

−α2(a+m)
b

−α2(a+m)
b

1
bd
− 3α2(log 2)2

b2θ4
+ aα2(a+2m)

b2


 . (4.4.22)

Proof. We start with the left hand side of equation in (4.4.19), where η0 is the true

parameter vector and we write η∗ for the “combination” of γ∗ and η∗∗. Then

1

n
H(ε)∗(η̃ − η0)

=
2λ(ε)∗t

n




−1 log ε 0

log ε − n
α22λ(ε)t

− (log ε)2 0

−d α log 2
θ2

d
(
α log 2
θ2

log ε− A
)

−dB



η=η∗

×




log c̃− log c0

α̃− α0

θ̃ − θ0




=
2λ(ε)∗t

n




− log ε log ε 0

(log ε)2 − n
α22λ(ε)t

− (log ε)2 0

−dα log 2
θ2

log ε d
(
α log 2
θ2

log ε− A
)

−dB



η=η∗

×




log ec−log c0
log ε

α̃− α0

θ̃ − θ0


 .

where λ(ε)∗ := λ(ε)|η∗ .
Multiplying both sides of (4.4.19) by

√
n and using n

2λ(ε)t

P→ 1 yields

√
n

(
log c̃− log c0

log ε
, α̃− α0, θ̃ − θ0

)⊤

= −(
n

2λ(ε)∗t
)




− log ε log ε 0

(log ε)2 − n
α22λ(ε)t

− (log ε)2 0

−dα log 2
θ2

log ε d
(
α log 2
θ2

log ε− A
)

−dB




−1

η=η∗

× 1√
n
J(ε)(η)

∣∣∣
η=η0
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= (
n

2λ(ε)∗t
)




1
log ε

+ (2λ(ε)t
n

)α2 log ε (2λ(ε)t
n

)α2 0

(2λ(ε)t
n

)α2 log ε (2λ(ε)t
n

)α2 0

−Aα2

B
(2λ(ε)t

n
) log ε− α log 2

θ2B
−Aα2

B
(2λ(ε)t

n
) 1

dB



η=η∗

× 1√
n
J(ε)(η)

∣∣∣
η=η0

=




1
log ε

( n
2λ(ε)t

) + α2 log ε α2 0

α2 log ε α2 0

−Aα2

B
log ε− α log 2

θ2B
( n

2λ(ε)t
) −Aα2

B
1
dB



η=η∗

× 1√
n
J(ε)(η)

∣∣∣
η=η0

= (1 + oP (1))




1
log ε

+ α2 log ε α2 0

α2 log ε α2 0

−Aα2

B
log ε− α log 2

θ2B
−Aα2

B
1
dB



η=η∗

× 1√
n
J(ε)(η)

∣∣∣
η=η0

= H
(ε)
1

−1
∣∣∣
η=η∗

× 1√
n
J(ε)(η)

∣∣∣
η=η0

. (4.4.23)

The vector 1√
n
J(ε)(η) is a zero-mean vector with covariance matrixM = 1

2λ(ε)t
E
[∂l(ε)(η)

∂η
∂l(ε)(η)
∂η

T ]

calculated in Lemma 4.4.4. Since γ∗ lies between γ̃ and γ0 and η∗∗ between η̃ and η0, from

the consistency of the estimators in Proposition 4.4.5, η∗ can in the limit be replaced by

η0. Then, according to equation (10.6) in Joe [23], for n→ ∞ the asymptotic covariance

matrix of
√
n
(

log ec−log c0
log ε

, α̃− α0, θ̃ − θ0

)⊤
is given by

G−1
ε = D−1

1 M(D−1
1 )⊤

∣∣∣
η=η0

=




1
(log ε)2

+ α2
0 α2

0 − (a0+m0)α2
0

b0
+ α0 log 2

b0θ20 log ε

α2
0 α2

0 − (a0+m0)α2
0

b0

− (a0+m0)α2
0

b0
+ α0 log 2

b0θ20 log ε
− (a0+m0)α2

0

b0
1

b0d0
− 3α2

0(log 2)2

b20θ
4
0

+
a0α2

0(a0+2m0)

b20


 .

where D1 is the componentwise mean of the matrix H
(ε)
1 presented in (4.4.23).

Now note that by the LLN n
2λ(ε)t

= n
2cε−αt

P→ 1 as n → ∞ (either ε ↓ 0 or t → ∞),

hence the rate
√
n can be replaced by

√
2ctε−α. Finally, G−1

ε → V0 as ε → 0 and this

completes the proof. �

Remark 4.4.8. (i) Note that for t → ∞ and fixed ε > 0 the asymptotic covariance

matrix in (4.4.21) is given by G−1
ε .

87



(ii) The above theorem implies that the normal limit vector has representation

(N1, N1, N2)
⊤,

where N1 has variance α2, N2 has variance 1
bd

+ α2

b2

(
− 3(log 2)2

θ4
+ a(a + 2m)

)
, and the

correlation between N1 and N2 is given by

corr(N1, N2) = − a+m√
1
α2d

− 3(log 2)2

bθ4
+ a

b
(a+ 2m)

.

Example 4.4.9. [Asymptotic covariance matrix for a bivariate α-stable Clayton subordi-

nator]

Let S = (S(t))t≥0 be a bivariate α-stable subordinator with a Clayton Lévy copula as in-

troduced in Example 4.2.2. Assume further its parameters c1 = c2 = c, α1 = α2 = α and

θ = αδ are estimated by a two-step method as in Section 4.2. The asymptotic covariance

matrix as ε → 0 for the model with parameter values c = 1, α = 0.5, θ = 1 can be com-

puted numerically similar to the calculation at the end of Section 5 in [18]. Note that it

involves the numerical integration of certain integrals. We find the asymptotic covariance

matrix of η̃ = (log c̃, α̃, θ̃) as

V =




0.25 0.25 0.1042

0.25 0.25 0.1042

0.1042 0.1042 2.6273


 .

Alternatively, this matrix can also be estimated replacing the numerical integration by a

Monte Carlo simulation. For this the expectations in (4.4.7) and (4.4.8) and the covari-

ance m from (4.4.12) are empirically estimated by generating bivariate observations from

(4.3.4) with parameter values mentioned above. Based on 106 bivariate observations, this

yields the same asymptotic covariance matrix as above (4 leading decimals coindice).

From this, we calculate corr(N1, N2) = 0.1286.

Remark 4.4.10. For the bivariate α-stable Clayton Lévy process with equal marginal

processes we have been able to calculate the Godambe information matrix analytically.

However, for most models this is too complicated. It requires derivatives of first and second
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order, the integration of some compound functions and the inverses and multiplications

of possibly high dimensional matrices. As an alternative, a jackknife resampling method

has been suggested and can also be applied in this context for arbitrary Lévy processs; cf.

Joe [23], Section 10.1, and references given there.

4.5 Maximum likelihood estimation of the full model

We compare the two-step procedure presented in Section 2.4 with two alternatives. Firstly,

we consider the estimation method presented in [18] based on only common jumps. Sec-

ondly, we also compare this method with the full likelihood, based on single and common

jumps. For this reason we present here the likelihood function of the full model. The

observation scheme is as explained in Section 2.4, where n‖ + n⊥1 + n⊥2 is the number of

observations.

From (4.2.6) the Lévy densities of Π
(ε)⊥
1 , Π

(ε)⊥
2 and Π(ε)‖ are given by

ν⊥1 (x) = cαx−α−1
[
1 −

(
1 + (x/ε)−αδ

)−1/δ−1
]
, x > ε

ν⊥2 (y) = cαy−α−1
[
1 −

(
1 + (y/ε)−αδ

)−1/δ−1
]
, y > ε ,

ν‖(x, y) = cα2(1 + δ)(xy)αδ−1
(
xαδ + yαδ

)−1/δ−2

.

As intensities we obtain from (4.2.7) λ(ε)‖ = c2−1/δε−α. Moreover, the marginal intensities

are λ
(ε)
1 = λ

(ε)
2 = cε−α, so that λ

(ε)⊥
1 = λ

(ε)⊥
2 = cε−α(1 − 2−1/δ). This implies the intensity

of the bivariate CPP ρ(ε) := λ(ε)‖ + λ
(ε)⊥
1 + λ

(ε)⊥
2 = cε−α(2 − 2−1/δ).

For simplicity we reparameterize the model again as in Section 4.2 by setting αδ = θ

and take log c instead of c as second marginal parameter. Now we recall Th. 4.1 of [17]

for a bivariate CPP and obtain the likelihood function; here (xi, yi)i=1,...,n‖ denote the

common jumps in both components and x̃i for i = 1, . . . , n⊥1 and ỹi for i = 1, . . . , n⊥2
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denote the single jumps. The likelihood function of the bivariate CPP is then given by

L(ε)(log c, α, θ) =
(
e−ρ

(ε)t

n‖∏

i=1

ν‖(xi, yi)
)
×
(
e−λ

(ε)⊥
1 t

n⊥
1∏

i=1

ν⊥1 (x̃i)
)
×
(
e−λ

(ε)⊥
2 t

n⊥
2∏

i=1

ν(ỹi)
)

= e−ctε
−α(2−2−α/θ)(α+ θ)n

‖

(αc)n
‖+n⊥

1 +n⊥
2

n‖∏

i=1

[
(xiyi)

θ−1(xθi + yθi )
−α/θ−2

]

×
n⊥

1∏

i=1

[
x̃−α−1
i

(
1 −

(
1 + (x̃i/ε)

−θ)−α/θ−1
)]

(4.5.1)

×
n⊥

2∏

i=1

[
ỹ−α−1
i

(
1 −

(
1 + (ỹi/ε)

−θ)−α/θ−1
)]
.

The log-likelihood is given by

l(ε)(log c, α, θ) = −ctε−α(2 − 2−α/θ) + n‖ log(α+ θ) + (n‖ + n⊥1 + n⊥2 )(logα+ log c)

+(θ − 1)
n‖∑

i=1

(log xi + log yi) − (2 +
α

θ
)
n‖∑

i=1

log(xθi + yθi )

−(α+ 1)

n⊥
1∑

i=1

log x̃i +

n⊥
1∑

i=1

log
[
1 −

(
1 + (x̃i/ε)

−θ)−α/θ−1
]

−(α+ 1)

n⊥
2∑

i=1

log ỹi +

n⊥
2∑

i=1

log
[
1 −

(
1 + (ỹi/ε)

−θ)−α/θ−1
]
.

For the score functions we obtain

∂l(ε)

∂ log c
= −ctε−α(2 − 2−α/θ) +

n‖ + n⊥1 + n⊥2
c

∂l(ε)

∂α
= ctε−α

(
2 log ε− 2−α/θ log ε− 2−α/θ log 2

θ

)
+

n‖

α+ θ
+
n‖ + n⊥1 + n⊥2

α

−1

θ

n‖∑

i=1

log(xθi + yθi ) −
n⊥

1∑

i=1

log x̃i +

n⊥
1∑

i=1

∂

∂α
log
[
1 −

(
1 + (x̃i/ε)

−θ)−α/θ−1
]

−
n⊥

2∑

i=1

log ỹi +

n⊥
2∑

i=1

∂

∂α
log
[
1 −

(
1 + (ỹi/ε)

−θ)−α/θ−1
]
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∂l(ε)

∂θ
=

ctαε−α2−α/θ log 2

θ2
+

n‖

α+ θ
+

n‖∑

i=1

(log xi + log yi) +
α

θ2

n‖∑

i=1

log(xθi + yθi )

−(2 +
α

θ
)
n‖∑

i=1

∂

∂θ
log(xθi + yθi ) +

n⊥
1∑

i=1

∂

∂θ
log
[
1 −

(
1 + (x̃i/ε)

−θ)−α/θ−1
]

+

n⊥
2∑

i=1

∂

∂θ
log
[
1 −

(
1 + (ỹi/ε)

−θ)−α/θ−1
]
.

The three parameters are obtained by numerical optimization.

It is possible to prove joint asymptotic normality of (log c, α, θ) similar to our calcula-

tions in Esmaeili and Klüppelberg [18] and in Section 4.4 of the present paper. However,

for the observation scheme of the present paper this is even more complicated than in [18].

We refrain from this tedious analytic exercise and, instead, present the results of a simu-

lation study in the next section, where we compare all three methods presented.

4.6 Comparison of the estimation procedures

In this section we compare the quality of the MLEs η̂ = (log ĉ, α̂, θ̂) of the full model

of Section 2.6 with the estimates η̃ = (log c̃, α̃, θ̃) obtained by the two-step method in

Section 2.5. Moreover, we also include in our comparison those estimates obtained from

bivariate jumps larger than ε only as derived in Th. 4.6 of [18]. Since this last method

means to base the statistical analysis on less data, we expect that this method is less effi-

cient than the MLE based on all available data. More precisely, for the first two parameters

log c and α, the rate has simply changed from
√
c2−α/θε−αt to

√
c2ε−αt.

The simulation study

We simulate sample paths of the bivariate α-stable Clayton subordinator with equal

marginals and parameters given by c = 1 (log c = 0), α = 1/2 and δ = 2 (θ = 1). We

generate sample paths of this process over a time span [0, t], where we choose t = 1 for

simplicity. Recall from our observation scheme introduced in Section 2.2 that we observe

all jumps larger than ε either in one component or in both. Obviously, we cannot simulate
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a trajectory of a stable process, since we are restricted to the simulation of a finite number

of jumps. For simulation purposes we choose a threshold ξ (which should be much smaller

than ε) and simulate jumps larger than ξ in one component, and arbitrary in the second

component. To this end we invoke Algorithm 6.15 in Cont and Tankov [13].

The simulation of a bivariate α-stable Clayton subordinator is explained in detail

in Example 6.18 of [13]. The algorithm starts by fixing a number τ determined by the

required precision. This number coincides with the jump intensity λ
(ξ)
1 , which fixes the

average number of terms in the approximating CPP. More details can be found in [18].

For the estimation we first consider ε = 0.001, i.e. a relatively large truncation point.

Not surprisingly, the MLEs based on the full model discussed in Section 2.6 are definitely

better than the other estimates in Table 4.1. We find it, however, remarkable that the

two-step method outperforms the MLE based on joint jumps only. The reason for this

is presumably that the MLE’s based only on joint jumps use only such data with Lévy

measure on [ε,∞)2. The two-step method, however, uses also data, which are only in

one component larger than ε in its first step. The marginal parameters are based on

substantially more data.

When we consider also smaller jumps; i.e., if we choose ε = 10−5, the estimates will

be more precise with less variation and smaller bias. In Table 4.1, the results in the lower

part of each estimation method show this fact. It can also be seen from this table that the

MLEs from a full model have the least mean relative bias (MRB) and mean square errors

(MSE) as expected. In Figure 4.2 we visualize the situation for the this jump truncation

point of ε = 10−5 based on 1000 simulated sample paths. Again all three estimation

methods are performed for each sample path.
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Figure 4.2: Histogram with statistically fitted normal density (red) and theoretical limit distribution

(green) for 1000 parameter estimates of a bivariate Clayton stable Lévy process. The parameter values

are c = 1, α = 0.5 and δ = 2 and the jump-truncated point is ε = 0.00001. The estimation procedures

are MLEs based on joint jumps only (first row, limit distribution derived in Theorem 4.6 of [18]), the

two-step method (second row, limit distribution derived in Theorem 4.4.7 above) and MLEs based on all

jumps (third row, without theoretical limit law).
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Method of estimation Truncation point c = 1 α = 0.5 δ = 2

Mean 1.0678 0.5289 2.1489

ε = 0.001
√
MSE 0.6344 0.1206 0.9511

MLE MRB 0.0517 0.0525 0.0842

(only bivariate jumps) Mean 1.0460 0.5020 2.0301

as in Section 3.4 ε = 0.00001
√
MSE 0.3677 0.0349 0.2488

MRB 0.0413 0.0044 0.0144

Mean 1.0177 0.5216 2.0129

ε = 0.001
√
MSE 0.5248 0.0777 0.4337

MLE MRB 0.0072 0.0423 0.0119

(full model) Mean 1.0175 0.5021 2.0091

as in Section 4.5 ε = 0.00001
√
MSE 0.2808 0.0239 0.1253

MRB 0.0142 0.0045 0.0042

Mean 1.0453 0.5231 2.0762

ε = 0.001
√
MSE 0.5535 0.0859 0.6764

Two-step method MRB 0.0264 0.0471 0.0379

as in Section 4.3 Mean 1.0301 0.5021 2.0149

ε = 0.00001
√
MSE 0.3003 0.0257 0.1696

MRB 0.0249 0.0048 0.0065

Table 4.1: Comparison of estimates for a bivariate 1
2 -stable Clayton process with common marginal

parameters. We simulated 100 sample paths and estimated all parameters 100 times. Each of the 100

estimates was based on one sample path, on which all three methods were performed. From each sample

path we truncated the small jumps based on the two truncation points (ε = 0.001 and ε = 0.00001),

respectively. Each sample path of the process was simulated as a continuous time realization of a CPP

in one unit of time, 0 ≤ t < 1, for τ = 1000, equivalent to truncation of the small jumps at the cut-off

point ξ = Π
←

(τ) = 10−6.
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List of Abbreviations and Symbols

Abbreviation or Symbol Explanation

a.s. almost surely

B(·) Borel σ-algebra

| · |,# cardinality of a set

C distributional copula

C survival copula

C Lévy copula

CPP compound Poisson process

E[·] expectation operator

ε cut-off point

F , F distribution and survival function of jumps

(γ,A,Π) characteristic triplet

I(x) (−∞, x) for x < 0 and [x,−∞) for x ≥ 0

i.i.d. independent and identically distributed

1B indicator function of set B

(· , ·) inner product

λ intensity of jumps for a CPP

λ⊥, λ‖ intensity of single and joint jumps

l.h.s. left hand side

n number of jumps for a CPP

Π,Πk multi-/one-dimensional Lévy measure

Π(ε) Lévy measure of a jump-truncated process
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Π tail integral

Π
(ε)

tail integral of a jump-truncated process

R real line

Rd
+ [0,∞) \ {0}

R [−∞,∞]

Ran range

r.h.s. right hand side

r.v. random variable

S, S multi-/one-dimensional Lévy process

S(ε), S(ε) jump-truncated multi-/one-dimensional Lévy process

S⊥k process constructed by means of single jumps

S‖ process constructed by means of joint jumps

Z = (X,Y ) jump size of a bivariate Lévy process

0 (0, . . . , 0)
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