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Abstract

One of the biggest problems of magnetic confinement fusion is the loss of heat and particles
due to plasma micro-turbulence. Geodesic acoustic modes (GAMs), oscillating plasma
flows, which are induced by radial gradients of the electrostatic potential, have the ability
to control the turbulent transport.

The main subject of this thesis is the radial propagation of GAMs, which is crucial for the
understanding of experimental GAM frequencies measured, for example, in the tokamaks
ASDEX Upgrade and TEXTOR. The GAM group velocity is estimated from the ratio of
the radial free energy flux of the GAM to its total free energy applying linearised two-
fluid and gyrokinetic equations. This method is much more robust than approaches which
calculate the group velocity directly and can be generalised to include additional physics,
e.g. the influence of the X-point, which is out of reach of a direct analytical calculation
of the dispersion relation. Since the individual terms of the energy-flux of the GAM can
be explained by specific physical effects, deep insight into the propagation mechanisms is
gained. Useful approximations for the radial GAM group velocity are derived for circular
and elliptic flux-surfaces and for a simple single-null divertor model. The results are verified
with numerical gyrokinetic and two-fluid computations.

The influence of the turbulence on the dispersion relation of GAMs is studied in numerical
two-fluid studies. The nonlinear GAM dispersion can be much stronger than the linear
dispersion implying that a GAM mode with one specific frequency can have a considerable
radial mode width, which can be an explanation of the frequency plateaus observed in
ASDEX Upgrade. The nonlinear driving term responsible for the modification of the
GAM dispersion is identified and the correlation between the GAM dispersion and the
position of reflection and absorption layers of the GAM is discussed.

The results of a comparative numerical study of turbulence generated GAMs applying the
two-fluid code NLET and the gyrokinetic code GYRO is presented and good qualitative
agreement is observed. The reasons for quantitative differences are discussed.

Linear GAM frequency spectra are calculated for experimental equilibrium data of NSTX
and ASDEX Upgrade discharges obtained from equilibrium reconstruction routines like
EFIT and Cliste. Very good agreement between the theoretical GAM frequencies com-
puted with real ASDEX Upgrade equilibria and the corresponding experimental frequen-
cies is observed. Earlier studies, which used Miller type equilibria to approximate the
experimental configuration, deviated significantly from the experimental values.

Linear and nonlinear numerical two-fluid studies for NSTX show that the frequency of
periodically appearing quiet periods with reduced turbulence intensity, which have been



observed in recent experiments, is of the order of the numerical GAM frequencies. Due
to their ability to modulate the turbulent transport, GAMs could therefore account for
the observed phenomenon. Moreover, a different mechanism leading to a modulation of
the turbulent transport is identified, which is caused by a geometry induced preferential
(turbulent) excitation of GAMs with negative radial wave numbers in conjunction with
non-Boussinesq effects.
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Chapter 1

Introduction

One of the biggest problems of magnetic confinement fusion is the turbulent transport of
heat and particles out of the confinement region [1]. For an efficient fusion reactor, those
energy losses have to be minimised to maximise the net output of electrical power. Zonal
flows (ZFs) [2| and geodesic acoustic modes (GAMs) [3], stationary and oscillating plasma
flows, respectively, which are induced by radial gradients of the electrostatic potential, are
promising candidates for controlling the turbulent transport [4, 5, 6]. The basic mechanism
is that the turbulent vortices are sheared and eventually torn apart between flux-surfaces
with opposite flow velocities.

The key issue in the following chapters is the radial propagation of GAMs, which is crucial
for the understanding of the experimentally observed GAM frequencies [7]. It provides an
explanation for the frequency plateaus observed in ASDEX Upgrade. Another application
is the excitation of GAMs through resonant magnetic perturbations in TEXTOR |8, 9.

The analysis starts by developing an elegant method to estimate the GAM group velocity
vg by constructing a Poynting theorem. It allows to estimate the group velocity even
for asymmetric magnetic configurations like the single-null divertor geometry common in
today’s tokamaks, which is out of reach of a direct analytical calculation of the dispersion
relation. Moreover, specific physical effects can be assigned to the individual terms in the
energy-flux providing insight into the propagation mechanisms.

As evident from numerical turbulence studies, the turbulence can significantly alter the
GAM frequency and can thus lead to a nonlinear GAM dispersion relation with a greatly
enhanced radial group velocity. In realistic systems, in which the GAM dispersion and
the turbulence properties depend on the radial position, high group velocities allow for
GAM modes fulfilling wgan(r, k) = const. [10] with a large radial extent. These modes
may also be trapped radially between reflection and absorption layers and form eigenmodes
with specific radial mode structures. Numerical non-Boussinesq turbulence studies are per-
formed to investigate the nonlinear GAM dispersion relation and the resulting radial mode
structures. The influence of turbulence and non-Boussinesq effects on the propagation of
GAMs and the formation of eigenmodes may provide an explanation for the frequency
plateaus observed in ASDEX Upgrade [7].

Since poloidal flows can couple to various sound waves in realistic magnetic configurations
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— thus giving rise to more than one oscillating flow mode with the characteristics of a GAM
— the GAM frequency spectra for several ASDEX Upgrade and NSTX discharges are cal-
culated using experimental equilibrium data. Calculation of the GAM frequency using
experimental geometries leads to better agreement between the GAM frequencies mea-
sured in ASDEX Upgrade and the numerical ones compared to earlier studies [11]|, which
only approximated the experimental configuration using Miller equilibria [12|. Recent dis-
charges in the spherical tokamak NSTX [13], displayed an oscillation of the turbulent heat
transport at a frequency comparable to that of a GAM. Turbulence simulations and GAM
spectra based on experimental equilibrium data are analysed to verify whether the observed
phenomenon can be caused by GAMs.

The numerical turbulence studies presented in the following apply almost exclusively two-
fluid theory, which does not cover collisionless effects like Landau damping. In order to
demonstrate the qualitative agreement between the two-fluid code NLET [14] and the
gyrokinetic code GYRO [15] in case of ZF and GAM studies, the transition from zonal
flow activity in the plasma core to dominating GAM activity in the plasma edge is studied
in numerical turbulence simulations.

1.1 Zonal flows and geodesic acoustic modes

Zonal flows and geodesic acoustic modes are collective plasma flows that are able to reduce
the diffusion of energy due to turbulence [4]|. This property makes them interesting for
magnetic confinement research.

The term zonal flow originates from meteorology and oceanography, where the term zonal
flow simply denotes large scale east-west flows of air or water along lines of constant latitude
[16, 17, 18, 19]. An especially pronounced flow system is formed by the zonal winds in the
atmosphere of Jupiter [20], which are visible as coloured rings.

In the context of magnetically confined plasmas the term zonal flow describes a plasma flow
resulting from differences between the electrostatic potential on neighbouring flux-surfaces.
The corresponding radial electric field E in conjunction with the magnetic field B leads to
a rotation of the plasma in the direction of E x B (see Fig. 1.1 a)).

Commonly, such a flow is called zonal flow if it is stationary. However, if it periodically
changes its direction, it is called geodesic acoustic mode. This name already conveys the
mechanism causing the oscillatory nature of the GAM. Geodesic refers to the geodesic
curvature of the magnetic field, that is the component of the curvature vector tangential
to the flux-surface. The coupling of the GAM to sound waves is implied by the term
acoustic. To clarify this connection, consider the curvature vector of a magnetic field line,
which is defined by

k=(b-V)b (1.1)
with b = B/B. The curvature of the equilibrium field can be transformed into [21]
2
FLZST‘_BQVJ_ (87p + B?), (1.2)

where V; = V — b(b - V) is the component of the gradient perpendicular to B. From
Eq. (1.2) it is evident that k is always perpendicular to the magnetic field. Since Vp
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Figure 1.1: Schematic picture of poloidal E x B-flows. a) Cross-section of torus with
two zonal flow layers and the corresponding electric fields. b) Divergence of poloidal flow
cancelled by parallel return-flow, therefore stationary ZF. ¢) Without return-flow up-down
asymmetric pressure perturbations acting as restoring force, therefore oscillating ZF, i.e.

GAM.

is perpendicular to the flux-surfaces, a geodesic component of the field line curvature can
arise only due to the gradient of the magnetic field strength. Thus, if a geodesic component
of V| B? exists, it is naturally parallel (or anti-parallel) to the zonal flows, i.e. Ky || E x B
with the geodesic curvature k4. In order to close the line of argument, a result of ideal
magnetohydrodynamic theory is applied. In an ideal plasma, the magnetic flux through any
closed contour moving with the plasma is conserved (see [21, 22]). Thus, the cross section
of a magnetic flux-tube moving in the direction of the geodesic curvature, i.e. to a region
of higher field, is compressed and vice versa. If the plasma could not move parallel to B,
it would therefore be compressed in any case. However, the compression can be cancelled
if the plasma can evade the compression of the flux-tube by a parallel flow. Consequently,
in a system with geodesic curvature, a zonal flow is associated to a divergence of the
corresponding density flux. If this divergence is compensated by a parallel flow, the flow is
stationary, if not, a pressure perturbation arises, which absorbs the kinetic energy of the
flow. Thus, the flow is braked, stopped and eventually reversed resulting in an oscillating
flow. The geodesic acoustic mode was studied first by Winsor et al. [3] when analysing
a magnetohydrodynamic (MHD) model for arbitrary toroidal field geometry. The GAM
frequency was found to be proportional to 2'/2¢,/R, where ¢, = ((T; + T.)/m;)"/? with
the ion and electron temperatures 7; and T, the ion mass m;, and the major radius R.

Figure 1.1 illustrates the above discussion for a tokamak equilibrium with circular flux-
surfaces. In Fig. 1.1 a) the radial electric field is shown with the resulting zonal flows.
In the case under consideration, the curvature vector is mostly in negative major radial
direction. Therefore, the divergence of the flow induced density flux is maximal at the top
and the bottom of the device. In case of stationary zonal flows, the divergence is cancelled
by an adequate return-flow parallel to the field lines as shown in Fig. 1.1 b). If the flow
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Figure 1.2: Turbulent vortices in a sheared E x B-flow. a) Initial state. b) Turbulent
eddies are distorted. c¢) When distorted by approximately their initial diameter, eddies
break up into smaller vortices.

divergence is not cancelled by parallel flows, the flow oscillates according to the discussion
above, i.e. a GAM arises (see Fig. 1.1 c)).

The fact that makes zonal flows and GAMs interesting for magnetic confinement research
is their potential to reduce the turbulent diffusion of heat and particles. The basic idea of
how zonal flows reduce the turbulence intensity is simple, the details can be found in Refs.
[4, 5, 6, 23, 24, 25]. Imagine, as sketched in Fig. 1.2, a series of nested zonal flow layers
with alternating flow direction and a turbulent vortex transporting heat and particles by
moving perpendicular to the flux-surface. Let the initial diameter of the vortex be of the
order of the minor radial extent of the flow layers. When moving across the flow layers,
the vortex is sheared due to the variation of the flow velocity, the so-called shearing rate.
Provided a large enough shearing rate, the flows tear the vortex apart into smaller scale
vortices thereby absorbing part of the vortex’s energy via the induced turbulent stress.
Since the instability creating the turbulent eddies usually grows at a specific scale length,
the reduction of the vortex scale length by sheared flows shifts the turbulence into a damped
region of the wave number spectrum. Both effects lead to reduced anomalous transport.

1.2 Outline and motivation

Geodesic acoustic modes have been found experimentally in many tokamaks over the last
few years, and therefore seem to be an ubiquitous phenomenon in tokamak edge plasmas
at least in ohmic and L-mode discharges [26, 27, 28, 29, 30, 31, 32]. Hence, developing a
detailed understanding of the properties of the GAM and its interaction with turbulence is
not a merely academic challenge. The main subject of the following chapters is the radial
propagation of the GAM (see e.g. [33, 34, 35|), which is important for several reasons. First,
the group velocity contains information on the dispersion relation. In the calculation of the
GAM frequency, finite Larmor radius effects are often neglected (e.g. in [11]) sometimes
for convenience, sometimes due to the too high complexity of the considered situation (e.g.
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magnetic geometry). Since, naturally, the scale length of GAMs in experiments is finite
— typically ~ 1 cm (see above Refs.) — depending on the form of the dispersion relation,
this can lead to significant discrepancies between experiment and theory. Second, due to
their finite radial scale length, GAMs are influenced by the spatial variation of the plasma
parameters, e.g. by the background temperature gradient, which can introduce reflection
layers determining the radial mode structure of the GAM. This can, for example, lead to
the formation of frequency plateaus as observed in ASDEX Upgrade [7]. According to Refs.
[10, 33|, for example, the radial mode structure of a GAM with wgan(r, k) = const., i.e.
whether the temperature gradient accelerates the GAM propagation towards the high or
the low temperature region, depends on whether group and phase velocity have equal or
opposite sign. In any case, the existence and properties of such eigenmodes strongly depend
on the GAM dispersion. Therefore, GAM propagation is also an issue if one considers the
excitation of GAMs by external antennas (see Refs. [8, 9]) in order to build up internal
transport barriers.

The dispersion relation of the GAM mainly depends on two factors, the magnetic geometry
and the turbulence. Most tokamak experiments run highly shaped plasma equilibria, often
in divertor configurations, that deviate substantially from circular flux-surfaces at high
aspect ratio which are often used in theory. This configuration is comfortable for numerical
and analytical studies because it avoids the complexity of experimental equilibria while
preserving the fundamental effects of toroidicity. However, since the properties and the
excitation of GAMs and turbulence are closely related [36, 37, 38, 39] and both depend on
the magnetic geometry, it is necessary, to develop an understanding of how the geometry
can change the properties of the GAM and its impact on turbulent transport. The strong
geometry dependence of the GAM frequency found by McKee et al. and Conway et al. |7,
40] and the problems in explaining theoretically from first principles the GAM frequencies
found in experiments [11] underlines this necessity.

The aforementioned questions represent the starting point of this thesis. The basic methods
and theories which are applied in the remainder of this work are reviewed in Chap. 2.
Among those are gyrokinetic and two-fluid theory, calculation and modelling of plasma
equilibria, and a basic explanation of micro-instability mechanisms.

The linear properties of GAM propagation are studied analytically and numerically in
Chap. 3 applying linearised gyrokinetic and two-fluid theories. The results of this study
have also been published in Refs. [41, 42]. Since the basic characteristics of the GAM
such as its frequency and dispersion are determined by the geodesic curvature in the first
place, starting with a set of linear differential equations and thus excluding turbulence is
reasonable. A linear system allows for isolated treatment of GAMs and their geometry
dependence.

The formal calculation of the GAM dispersion relation — as done for example in Refs.
[33, 43, 44] — from which the radial group and phase velocity can be computed as vy, =
Okwaam (kr) and vy, = wgan(kr)/kr, respectively, tends to become very difficult for
increasingly complex magnetic configurations. Therefore, an elegant way of computing the
group velocity of the GAM via its free energy or Poynting flux is developed. A GAM
can be constructed as a wave packet of the form [ A(k,) exp(i(k,r — w(k,)t))dk, centered
around a flux-surface. Since its energy is transported with its group velocity, it is possible
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to compute the group velocity of the wave packet as the ratio of its energy-flux to its
total energy. The Poynting flux is obtained by expressing the equation describing the time
evolution of the total energy of the GAM as a continuity equation. Evaluating the energy-
fluxes of the GAM applying two-fluid and gyrokinetic descriptions of the plasma, various
contributions to the total energy-flux are identified. A detailed and vivid interpretation
of the individual Poynting fluxes admits physical insights into the mechanisms of GAM
propagation, which could be used for manipulation of the GAM group velocity by changing
the magnetic geometry, and thus for influencing the global mode structure of the GAM.
Moreover, estimation of the GAM group velocity applying the energy approach is still
feasible for complicated magnetic geometries. Predictions on the propagation behaviour of
the GAM can be obtained with relatively little effort even for single-null divertor configura-
tions. The advantages of the method are demonstrated by deriving estimates of the group
velocity of the GAM for up-down symmetric elongated flux-surface shapes. Specific atten-
tion is paid to the effects of up-down asymmetry of the flux-surfaces, which is important
in experiments using a divertor configuration. The possible symmetry breaking between
inward and outward propagating GAMs may have implications for the L-H-transition in
divertor configuration, where the L-H-power threshold depends on the position of the X-
point [45].

The analytical calculations are verified with numerical studies applying the two-fluid code
NLET [14], and the gyrokinetic codes GYRO [15] and GS2 [46]. These, furthermore,
provide a complete linear spectrum including, besides the GAM dispersion, the sound
wave spectrum and other modes, which may become resonant with the GAM and can thus
limit the group velocity.

Gyrokinetic simulations tend to be computationally quite expensive in comparison to fluid
simulations. Furthermore, because of the familiarity of its variables density, temperature
and velocity, a fluid description is in many cases more intuitive than a gyrokinetic treat-
ment. However, kinetic effects like trapped particles or Landau damping are not contained
in a two-fluid description. Therefore, the gyrokinetic code GYRO and the two-fluid code
NLET are benchmarked against each other for three different parameter sets, which rep-
resent the transition from core to edge parameters, in Chap. 4 in order to show that both
codes produce equivalent results and to justify the almost exclusive use of two-fluid theory
for the turbulence studies analysed in this thesis. Due to the strong Landau damping of the
GAMs, stationary zonal flows are expected for core parameters. Since the effective mass of
the ZFs increases towards the edge whereas Landau damping becomes significantly weaker,
GAMs are expected to be dominant for edge parameters [11]. The central part of Chap.
4 is therefore given by the analysis of those turbulence studies intended to reproduce the
transition from stationary zonal flows in the core plasma to geodesic acoustic modes in the
edge.

Most numerical results of this thesis are obtained applying the Boussinesq approximation
(the local limit), i.e. under the assumption that the background gradient scale length Ly
is much larger than the turbulence scale length. This implies that the fluctuations of den-
sity, temperature etc. are much smaller than the corresponding background values, and
that the properties of GAMs (like wgapr) and turbulence are constant over the computa-
tional domain. Since the local limit allows for significant simplifications of the governing
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equations of motion, it is applied where the focus is on the pure parameter dependence
of the phenomenon under consideration, for example the relation of the level of turbulent
transport and GAM amplitude. If the influence of specific background density and tem-
perature profiles, i.e. the variation of the plasma parameters, is of interest, the local limit
has to be dropped. Non-local effects can become important when trying to match numer-
ical studies and experiments. In this context, consider GAM measurements in ASDEX
Upgrade. Conway et al. report radial frequency profiles displaying regions with constant
GAM frequency in spite of the background temperature gradient, which are interrupted by
regions in which the GAM frequency scales with v/T as expected (see Sec. 1.1) [7]. Ttoh et
al. in Ref. [10] describe a mode with constant frequency despite the variation of the local
GAM frequency in terms of geodesic acoustic eigenmodes, whose radial structure depends
on the GAM dispersion relation.

The latter, which is extensively discussed in Chap. 3, depends on the plasma parameters
and the magnetic geometry. This dependence, however, can be influenced by the turbulence
and therefore deviate from the linear predictions. Hence, the nonlinear GAM dispersion
relation is studied numerically in Chap. 5. The radial mode structure of a GAM fulfilling
the condition wg (7, k) = const. — this is called eigenmode in Ref. [10] — is discussed on
the basis of a model dispersion relation. By deriving an expression for the wave front — a
curve of constant phase — of such a global GAM, a method to measure the nonlinear GAM
dispersion relation in non-Boussinesq turbulence simulations by fitting the numerical wave
front to the analytical prediction is developed.

The propagation of GAMs in non-Boussinesq NLET simulations, in which the local GAM
frequency varies significantly between the inner and outer radial boundary, is studied first
in the linear case. Finally, the method for measuring the nonlinear GAM dispersion is
demonstrated for an NLET turbulence simulation, in which the observed GAM frequencies
waam (1, ky) exceed their local values wgan,o(r) by up to 30 % suggesting a much stronger
dispersion and much higher group velocities than in linear calculations. By splitting the
nonlinear terms which drive the GAMs into terms acting as energy source and terms shifting
the phase of the GAM oscillation, the drive mechanism responsible for the modification
of the GAM dispersion relation can be identified. The nonlinear dispersion relations of
two GAM studies discussed in Chap. 4 are also measured and give hints on a possible
parameter dependence of the propagation direction of the GAM.

In Chap. 6, experimental geometries of the National Spherical Torus Experiment (NSTX)
and ASDEX Upgrade (AUG) obtained by equilibrium reconstruction routines are analysed
according to their GAM properties. In ASDEX Upgrade GAMs have been found in nu-
merous ohmic and L-mode discharges [47]. Therefore, the analysis of the AUG equilibria
is focused in the first place on finding a theoretical explanation of the features observed
experimentally. The theoretical GAM frequencies in an earlier study [11], computed using
Miller-type equilibria [12], deviated from the values found experimentally by a factor of
up to two. In order to achieve better agreement, the GAM frequencies are calculated with
experimental equilibrium data. Besides the the frequency comparison, the radial regions
in which GAMSs can be observed in experiment are discussed. In divertor discharges with a
pronounced edge density and temperature pedestal, GAMs are measured only in a narrow
radial region in the plasma edge whereas GAMs are excited until further inside the plasma
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in limiter discharges with less pronounced pedestals |7, 48|. This question is approached
using NLET turbulence calculations, and possible relations to the plasma parameters are
discussed.

The analysis of NSTX equilibria is based on recent observations made using a gas puff
imaging (GPI) diagnostic [13|. Shortly before the L-H-transition, a quasi-periodic os-
cillation of the GPI-intensity in the scrape-of-layer (SOL) at approximately 3kHz was
detected, which was interpreted as a periodic suppression of turbulence. The oscillation of
the GPI-intensity was accompanied by an oscillation of the poloidal velocity. In total these
observations suggest to further investigate, whether the oscillation can be attributed to a
geodesic acoustic mode. In a first approach, the GAM frequency is calculated from lin-
earised two-fluid equations using experimental equilibrium data and temperature profiles.
Such an analysis is necessary since in realistic geometries and especially in rather extreme
configurations like spherical tokamaks, there may be more than one mode showing distinct
characteristics of a GAM. Which one of these GAM candidates is eventually excited de-
pends on the turbulence. Moreover, another mechanism is discussed, which can cause the
turbulent heat-flux to oscillate at the GAM frequency. Instead of directly modulating the
turbulence intensity, GAMs could also influence the turbulence indirectly via their radial
scale length (i.e. their shearing rate), which may depend on the magnetic geometry and
can fluctuate in time in non-Boussinesq turbulence studies.

Finally, a summary of the results presented in this thesis is given in Chap. 7.



Chapter 2

Methods

In the following, the fundamental theories and concepts used throughout this thesis, are
reviewed in a concise way. Since most of the topics addressed here are discussed in more
detail in standard text books, this chapter shall serve as a reminder or a short reference.
Since the influence of the geometry of the magnetic field on geodesic acoustic modes an
important issue of this thesis, Sec. 2.1 is dedicated to the theoretical description of plasma
equilibria in axisymmetric magnetic confinement devices like tokamaks, i.e. the calculation
of the equilibrium magnetic field. Section 2.2, which gives a short introduction to the gy-
rokinetic and two-fluid description of plasma dynamics, depends on Sec. 2.1 insofar as the
differential operators appearing in the equations of motion are determined by the magnetic
geometry. The mechanisms that lead to the growth of small perturbations of the equilib-
rium and to turbulence with the corresponding radial particle and energy transport are
discussed in Section 2.3. Finally, the calculation of the geodesic acoustic mode frequency
for zero minor radial wavenumber is discussed exemplarily for a geometrically simple two-
fluid system. The generalisation to arbitrary magnetic geometry is straightforward.

2.1 Plasma equilibrium

The first step in describing a magnetically confined plasma is equilibrium analysis. Equi-
librium theory aims at finding a stationary state in which the plasma is confined by the
magnetic field. Therefore, equilibrium analysis is time-independent. Its basic condition
expresses the force balance between pressure and Lorentz forces:

cVp =jxB. (2.1)

From Eq. (2.1) it is immediately clear that the magnetic field is perpendicular to the
pressure gradient everywhere, and that the magnetic field lines lie on surfaces of constant
pressure. Of course Eq. (2.1) also allows field line chaos, but for the derivation of a
stationary equilibrium, it is assumed that pressure and magnetic field are well behaved
such that the confinement volume is filled with nested isobars which are densely covered
by a magnetic field line, i.e. one assumes the existence of flux-surfaces. This assumption
already simplifies the problem significantly. In addition, the flux-surfaces are assumed to
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Figure 2.1: Schematic drawing of the magnetic field configuration of a tokamak.

be axisymmetric because only tokamak equilibria — a schematic of a tokamak equilibrium
is shown in Fig. 2.1 — are considered in this thesis.

In the following, a more convenient and frequently used form of the equilibrium condition
exploiting the benefits of axisymmetry — the Grad-Shafranov equation — will be derived,
and a strategy to compute local approximate solutions of this equation will be explained.
For detailed discussions of those two topics the reader is referred to Refs. [12] and [21].

2.1.1 Symmetry coordinates

Assuming the existence of axisymmetric flux-surfaces allows for the use of a very convenient
set of coordinates, namely symmetry coordinates, which are a special case of magnetic flux
coordinates. The name “flux-surface” stems from the fact that the magnetic flux enclosed
by the flux-surface is constant on the surface. The toroidal and poloidal magnetic fluxes
are defined by

\I’TE/dSIl'B7 \I’pE /dSIlB7 (22)
St Sp

where n is the unit normal from the surfaces S and Sp, which are indicated in Fig. 2.2.
Functions f fulfilling B - Vf = 0 are called flux labels. It is therefore natural to choose a
flux label as radial coordinate r, since it uniquely labels a flux surface. To make the set
of coordinates complete, two angle variables are to be specified. In order to make use of
axisymmetry, the toroidal angle ¢ is defined as the negative cylindrical azimuthal angle,
¢ = —¢ (¢ clockwise with respect to the Z-axis). Axisymmetry implies

OB
ac =" (2.3)
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Figure 2.2: Integration surfaces for the calculation of the poloidal and toroidal magnetic
fluxes ¥p and Wp — for the sake of clarity — in cylindrical geometry.

The poloidal angle coordinate 6 can then be chosen such that the magnetic field can be
written in terms of flux labels and the covariant basis vector V( [21],

B =1(r)V(+ V( x Vyx, (2.4)

where the covariant (-component of B, B = I(r) is a flux label and x = ¥p/27m. The
coordinate set (7,0, () with the corresponding covariant basis vectors Vr, V6, and V( is
partially orthogonal,

V(- Vr=0=V(- V. (2.5)
The metric tensor simplifies to
9rr gro O
gij = |90 900 0 |, (2.6)
0 0 R?

where R is the usual cylindrical radius. Thus, }VC ’ = (¢°)'/2 = 1/R. The determinant of
the metric tensor is given by

ox R?
=./d i) = g ——. 2.
\/§ et (g ]) qar I(T) ( 7)
For the poloidal and toroidal magnetic field follows
Vx

Br| = [v¢ x 7] = 24,

I(r
|Br| = |1(r)V¢| = g%). (2.8)

2.1.2 Grad-Shafranov equation

The coordinates defined in the previous section simplify the derivation of the Grad-
Shafranov equation, which is a special form of the equilibrium condition (2.1) for
axisymmetric systems. In addition, further conventions are specified for convenience.
Partial derivatives with respect to the radial coordinate are denoted by f' = 9f/0r. Any
vector V can be constructed as the sum of a vector parallel and a vector perpendicular to
the magnetic field B:

V= V” +V,. (2.9)
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With b = B/B, the parallel and perpendicular parts of V can be written as
Vi=bdb-V), V,=(I-bb)-V,. (2.10)
Thus, Eq. (2.1) yields an expression for the diamagnetic current j; :
c
i == . 2.11
ji=pbxVp (2.11)

Therefore, the contravariant radial component of the current, j° = j-Vr = j, - Vr
vanishes, which in conjunction with the contravariant radial component of Ampére’s law
(4m/c)j = V x B and axisymmetry implies that B¢ is indeed a flux label.

Since B" = 0 = j", only the radial component of the equilibrium condition (2.1) has to be
considered:

NG, (jaBC - j439> = (2.12)

The components of the plasma current can be eliminated from Eq. (2.12) applying Am-
pere’s law. Its radial component has been used to prove that B = I is a flux label. The
remaining two components determine j¢ and j¢:

i =V6-(V xB),
j¢=V(-(V xB). (2.13)

Using the identity V€ - (V x A) =V - (A x V¢) for any &, one finds

o__c 1
4 qx'R?’
¢ c _9

Thus, after substitution of the currents, the equilibrium condition becomes
R*V - (R?*Vyx) X = —1I' — 47 R?p, (2.15)

which is called Grad-Shafranov equation. Choosing r = y implies f' = df/dx and x' = 1.

2.1.3 Mercier-Luc formalism and Miller geometry

The Grad-Shafranov equation (2.15) is a second order partial differential equation for the
flux label x = Up/27. It can in principle be solved when the right-hand-side is known,
i.e. I and I’, which determine the toroidal field profile and the poloidal current, and the
pressure gradient p’ (in this section f' = 9f/0x). However, finding a solution can be
challenging, especially if one wants to reconstruct an experimental equilibrium from the
limited information available from the diagnostics.

In numerical studies the problem can be simplified significantly by using the local limit.
When the radial extent of the simulation domain is small compared to the system size,
the solution of the Grad-Shafranov equation has to be computed only for a narrow region
around one flux surface. A convenient way of obtaining such a local solution [12] is to
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[
\/

Figure 2.3: a) Flux surface in the poloidal plane with corresponding basis vectors Vp
and VI. b) Representation of an arbitrary point (R, Z) in the poloidal plane with the
Mercier-Luc coordinates p and [, and the angle 9.

specify first the solution on a flux-surface y = xg, which can be done by defining the
shape of the flux-surface, R;(1) and Zs(l), the poloidal magnetic field Bps(l), the pressure
gradient p’(xo), I(x0), and I'(xo). Here, R and Z are cylindrical coordinates, [ is the
poloidal arc length, the magnetic field is given by Eq. (2.4) and the field strength of the
poloidal and toroidal fields by Eq. (2.8). Based on the specified flux-surface shape, one
can then define the set of coordinates (p,l, (), where p is the the distance normal to the
flux-surface (R, Zs), and expand x in terms of p. The corresponding basis vectors are
illustrated in Fig. 2.3 a). With the specified information one can compute an approximate
solution of the Grad-Shafranov equation correct to first order in p.

In terms of the coordinates defined above, each point (R, Z) in the poloidal plane can be
written as

R = Rs(l) + psin(d(1)),
Z = Zs(l) + pcos(¥(1)), (2.16)

where the angle 9 is the angle between the Z-axis and Vp (Fig. 2.3 b). Thus, it follows
immediately that

R,
50 — cos(¥),
2Zs .
50 = sin(19),
1 RO} Zs — O*Rs0,Z5 AV
= | 3/2\ = — (2.17)
Re(l)  "((O1Rs)? + (81 Z5)?) di

with the radius of local curvature of the flux-surface shape R.. The calculation of the
metric coefficients and the Grad-Shafranov operator RV - (R™2V) can be found in App. A.
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With the expansion x = xo+px1(1)+p*x2(l)+. .. one finds by evaluating Bps = ‘VCX Vx‘
that
x1(1) = Rs(1)Bps(1). (2.18)

The second order term xo is obtained from the Grad-Shafranov equation

R (R2Vy) = Rf o () 5 (e )] = -t - 1), 219

Substituting the expansion of x and the metric coefficients (A.3), one finds

xall) = 5 [(gg; T sinw(z))) Bpa(l) — 11’ — Rs<l>2p'] . (2.20)

What remains to be computed now are the safety factor ¢(xo) and the global shear sq4(x0) =
0q/0x(xo0). The local field line pitch is given by the ratio of the toroidal to the poloidal
arc length dl¢/dl, = Br/Bp. Therefore, the safety factor is given by

1 _ 1) dip
S 2r fdg 27 J R2Bp’ (221)

For g(xo) the leading order of Eq. (2.21) is sufficient whereas the first order in p yields the
global shear. The latter requires the first order expressions of 1/R?, 1/Bp and dl,,, which
are

dl, = <1 - 15) dl. (2.22)

Eventually, the safety factor and global shear are given by

_ 1(xo0) -
100) = 27 R,Bps 2m( ax/ap (2.23)
and
_ Oq _ I'(x0)
I(XO)j{ i/ 2 2sin(W)  Reop'(xo) | 1I'(x0)
T P\ "R R T Be | RBe ) %Y

Equations (2.23) and (2.24) are convenient, since they allow to specify the safety factor
and shear instead of I and I’.

The formalism presented here will be applied in two ways in the following chapters. The
first application is the calculation of local equilibria with specific features such as X-points.
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The second application is the computation of local equilibria using the results of the nu-
merical reconstruction of experimental plasma equilibria.

A useful parametrisation of the flux-surface shape — in the following referred to as Miller
geometry — allowing a systematic study of the effects of plasma elongation and triangularity,
which are important features of divertor configurations, has been given in [12] and is cited
here as an example for the formalism explained before. The flux-surface is defined by

Ry = Ry + rcos (0 + arcsin(d) sin()) ,
Zs = krsin(). (2.25)

In order to derive a parametrisation of the poloidal magnetic field in terms of the elongation
k and the triangularity , one assumes for the moment that neighbouring flux surfaces are
parametrised like (Rs, Zs), i.e. Ro = Ro(r), kK = k(r), and § = 6(r). The poloidal field
Bps = ‘Vx‘/RS in the coordinate system (r,6,() can then be shown to be

Bps = (8rx)\/sin2(0 + zsin(0))(1 + z cos(#))? + k2 cos2(0) /
{kRs[cos(xsin(f)) + O, Ro cos(8) + (s, — s5cos(0)
+ (1 + sx)xcos(f))sin(f) sin(f + xsin(6))]}, (2.26)

where x = arcsin(6), s, = (rd,k)/k, and ss = (rd,0)/(1— )2, The assumption made on
the form of neighbouring flux-surfaces is now dropped, since it was needed only to derive
an expression of Bpg consistent with the parametrisation of the flux-surface. It is in no
way necessary for the subsequent calculation of the local equilibrium data.

2.2 Theories of plasma dynamics

After the discussion of time-independent equilibrium analysis in the previous chapter, the
theories applied in this thesis to study turbulence in such equilibria are introduced in the
following.

The theoretical description of the dynamics of a magnetised plasma presents a complicated
problem due to the large number of particles involved, which, furthermore, are charged.
A plasma can contain many different positively and negatively charged particle species,
each of them with particle numbers Ny ~ 10?3, The formally exact physical representation
of plasma dynamics is comprised of the Lorentz force and Maxwell’s equations, resulting
in a problem in 6 - 1023 dimensional phase-space. Neither is such a system manageable
by today’s computers, nor would the full solution — if it could be obtained somehow — be
helpful in any way because of the huge amount of information it contains. The route to
go is therefore to simplify the governing equations as far as allowed by the question one is
interested in.

A simplification common to all approaches to plasma dynamics is the reduction of the
dimensionality of the problem from d ~ 6 - 10> to just d = 6 by means of the BBGKY-
approximation (see e.g. [49]), which transforms the Liouville equation into the Boltzmann
equation and thereby wraps microscopic particle interactions into a collision operator.
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Instead of the position and momentum of every particle in the plasma, for each particle
species a six dimensional distribution function fs(x,v,t) is evolved specifying the density
of the particles of species s at a certain position with a certain velocity.

Since only the lowest moments of each distribution function fs are needed to compute p
and j, i.e. the particle density and the velocity moment (the source terms in Maxwell’s
equations), and since several different solutions of fs can yield the same charge density
and currents, further simplifications are possible. Two approaches that are common in
plasma physics are the fluid and the (gyro-) kinetic description. Fluid theory is based
on the derivation of equations describing the time evolution of the lowest moments of the
distribution function, density, temperature and velocity . Since the time derivative of one
moment of the distribution function necessarily involves the next higher moments, fluid
models rely on closure relations that truncate the hierarchy of moments at some point of
the approximation.

The kinetic approach can be simplified by exploiting the smallness of the gyroradius com-
pared to the system size and the rapidity of particle gyration compared to other processes.
The kinetic Boltzmann description can thus be expanded in terms of a small parameter,
which after averaging over the gyration leads to the driftkinetic and gyrokinetic description
of a plasma.

In general, fluid equations are much cheaper regarding computational effort and easier to
evaluate. However, some kinetic effects cannot be reproduced exactly by fluid theories.
Two theories of plasma dynamics are applied in this thesis — mainly two-fluid theory and
at some points gyrokinetic theory — and are therefore discussed in the remainder of this
section.

2.2.1 Gyrokinetic theory

The derivation of the gyrokinetic equation presented here follows Ref. [21| and is mainly
based on the application of an ordering principle and physical reasoning. A technically
strict derivation applying Hamiltonian techniques is reviewed in Ref. [50]. However, the
former approach suffices to demonstrate briefly the basic principle of gyrokinetics.
Starting in 6-dimensional phase-space and excluding atomic and nuclear reactions, i.e.
keeping the particle number constant, conservation of phase-space density yields the kinetic
equation

df _ of

E—E‘FV'Vf‘i‘a'vvf:Cfv (227)

where C is the particle collision operator and the acceleration a is given by the Lorentz
force

1
a:\'f:q(E+v><B> (2.28)
m C

'Magnetohydrodynamic theory, which computes the current and charge density instead and is also a
fluid theory, will not be discussed here.
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with particle mass m and charge q. The source terms of Maxwell’s equations needed to
close the problem are given by

p= ZQS/d3Uf87
i= qu/dSUst- (2.29)

Here, the index “s” refers to the particle species. The problem may be simplified by
introducing an ordering principle which selects from the kinetic equation (2.27) the terms
of interest for the problem under consideration. The study of a magnetised plasma requires
the (background) scale length L (or system size) of the plasma to be much larger than the
thermal ion gyroradius

Pi
—~) 1 2.
T <1, (2.30)

where p; = v;/Q with the thermal velocity v, = (27;/m;)/? and the ion gyro-frequency
Q) = ¢;B/mjc. The plasma is allowed to vary on two different length scales L and \ ~ p;.
All features contained in f varying at the scale L describe the plasma equilibrium, for
example the background density and temperature gradients, whereas the features varying
at the size of a gyroradius describe small perturbations of the equilibrium quantities,
especially the response of the plasma to small scale field fluctuations. The latter need to
be small in amplitude compared to the former because fluctuations at the gyroradius scale
with amplitudes comparable to the equilibrium quantities would demagnetise the plasma
[21] by effectively destroying the gyro-orbits. Therefore, gyrokinetic theory — at least in the
ordering used here — can be applied only to instabilities with small fluctuation amplitudes.
Thus, the distribution function can be decomposed into

f=l+h (2.31)
with

SN (2.32)

fo

where the index “0” refers to scale L and the index “1” to scale p;. In this context, the
definitions of the parallel unit vector b and the gyro-frequency {2 are refined to b = By/By
and Q = ¢;By/m;c. Next, all terms in the kinetic equation (2.27) have to be ordered
according to the parameters § and A. Although the single particles are gyrating around
the field lines with the gyro-frequency, it is plausible to assume that the macroscopic
quantities of the plasma vary at a much longer time scale. And since the focus of gyrokinetic
theory is on the time evolution of instabilities, whose time scale is shorter than that of the
equilibrium, it is assumed that

9o df1
— =0, —— ~JiAQ. 2.33
ot ot (2:33)
The velocity in v - V f is of order vy, whence
v-VfN%JrA%:thrAQ:Q((SJrA). (2.34)
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Figure 2.4: Relation between particle position x and guiding centre position X. Since the
motion of a particle at x is determined by the fields at position x, the gyro-radius vector
p, the basis vectors (b, &y,8&3) and the guiding centre position X relate to the particle
position x, not vice-versa.

Here, wy = v/ L is the transit frequency and w;/€Q ~ §. Clearly, the magnetic field part of
the acceleration term fulfills
%(va).vvaQf (2.35)

because it contains the acceleration involved in particle gyration. The collision operator is
assumed to be small,

Cf~df, (2.36)

which seems reasonable, since the plasma cannot be considered magnetised if the particle
collision frequency is of the order of or higher than the gyro-frequency. The magnetic
moment of the particles would no longer be an adiabatic invariant. As a consequence, the
acceleration term due to the parallel component of the electric field has to be small to keep
the approach consistent because the only term in Eq. (2.27) being able to cancel the accel-
eration along the field lines is the collision term. Choosing the parallel electric acceleration
larger than the collision term would result in a continuous unbalanced acceleration of the
parallel rotation of the plasma. Therefore,

q by, _
—E-Vyf~—f=vpf~if (2.37)
m muy
Finally the acceleration term due to the perpendicular electric field can be expressed as
IE, .v.f ~ Eaf, (2.38)
m V¢

where vg is the magnitude of the E x B drift velocity vig = (¢/B)E x b. In gyrokinetic
theory, E x B drifts are assumed to be small compared to the thermal velocity,

VE
~§ 2.39
=, (2:39)
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enabling the study of electrostatic instabilities, which represent an important class of micro-
instabilities (see Ref. [21]).

The following derivation of the gyrokinetic equation uses guiding centre coordinates X
rather than particle coordinates x in position space, where X is simply the current centre of
the gyration of a particle at position x with a certain velocity v at time ¢. The connection
between those two positions is the gyroradius vector p. With (b, &2, &;3) being a right-
handed orthonormal basis set at the particle position x the velocity can be expressed as

v=u+s=ub+ s§ =ub+ s (& cos(y) — éssin(y)), (2.40)

where 7 is the gyrophase. The gyroradius vector is given by

7b><s
P=70

The relation between x and X is

= pp = p(&zsin(y) + &3 cos(y)) . (2.41)

X=x-—p. (2.42)

These relations are illustrated in Fig. 2.4.

In velocity space, the magnetic moment y = ms?/2By of a particle, the particle energy
U = mv?/2 — q® and the gyrophase 7 are used as coordinates. The kinetic equation (2.27)
therefore takes the form

of dX 9of dwpof dUOIf dyof A
=t sttt =C 2.43
8t+dt 0X+dt8u dt oU ~ dt dy / (243)
so the first task is to compute the equations of motion of the variables (see App. B). The

results are

d . .
£:N0+N1Nwtﬂ+AQM7
. 1% mu q
— Py VB - s (v-V)b+ ~s-E
[10 Bov V By Bos (v-V) +Bos 0,
. q < us >
=—(s-Ei——p-B 2.44
H1 By s - I CP 1) ( )
d
£:W0+WIN<Q+wt)+AQ7
wo=Q+8-(v-V)és+—p-(v-V)b— L p. By,
S ms
w=—-LpB+0(b-"s) B, (2.45)
ms S
dU od, q 0A
- _ I B i AN 2.4
a Tor T o U, (246)
dX
EZVoJrle(thrcSvt)JrAvt,
1 -V)B
vo:u+on+—vx(v-V)Vb+pu,
’ Q By
b-B
Vi=VE1—V ! Y Bl, (2.47)

By +§0
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where v o/ are the E x B velocities computed with Eg and E;, respectively. Since
variations on the time scale of the gyration are not of interest in the discussion of plasma
instabilities, those variations are eliminated from Eq. (2.43) by taking its gyro-average at
fixed X defined by

_ 1
A= (4), = o f A+ p.U )y (2.48)

Since the collision operator is an approximate term anyway and does not influence the
argumentation below, it is dropped now. Afterwards, the collisionless gyrokinetic equation
can be modified by introducing an appropriate collision operator. It is convenient to make
the following ansatz for the distribution function f

f=fo(Uo+ U1) + f1(Uo), (2.49)

which includes part of the linear (in A) perturbation in the background distribution. The
perturbed distribution function f;(Uy) is assumed to be independent of the gyrophase and
the only gyrophase dependent part is due to the perturbed field Uy in fo(Uy + Uy). This
part is comparable to fi; and will be seen to represent plasma polarisation. The point in
doing so is that the function fo(Up+ Uy) is assumed to be the exact solution to the kinetic
equation in case of time-independent fields ® and A, this is it solves

0fo(Up + U 0fo(Up + U . L O0fo(Upg + U
fo(Uo 1)+(v0+v1)- fo(Uo+ Un) + (io + 1) fo(Uo + Uy)
ot oX o
=0
- 0fo(Up + Un) Ofo(Uo +U1)
F USRS () FEE T =0, (2:50)
-0

The two terms involving partial time derivatives of the fields vanish in case of time-
independent fields. However, even if the time-dependence of the perturbed fields ®; and A4
is included, the terms in Eq. (2.50) containing no time derivatives of the fields with the dis-
tribution function fy(Up+U;) sum up to zero. So the kinetic equation with time-dependent
fluctuating fields consists of the kinetic equation (2.43) with f — f1(Up) and the correction
terms of Eq. (2.50) due to the time dependence of ®; and A;. To keep the notation simple,
f1(Uo) = f1 = f1 and due to the smallness of Uy, fo(Up + Uy) = fo(Uo) + U1(dfo(Up)/OU)
and fo(Uo) = fo = fo. Thus, one has for f;

of1 on . . \0fh 0N
g LI LN e 2.51
5 T (Vo vi) 6X+(“0+“1)8M+U6U (2.51)

—_—

~OAQH+AZQ ~OAQ+A2Q ~OA2Q

It is reasonable to distinguish the parallel and perpendicular scale lengths of the perturbed
quantities. Since relevant instabilities vary on the gyroradius scale only perpendicular to
the magnetic field, V| fi ~ A/p;, while varying on the system scale parallel to the field,
O)fi ~ A/L, the partial time derivative of f as well as the linear (in the perturbations)
part of the advection terms are of order JAS). The nonlinear part of the advection term
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vy - (0f1/0X) is of order A%2Q. The terms involving /i are of order JAQ and A%Q. The U
term is of order 6A%Q) and is therefore neglected. The correction terms due to Eq. (2.50)
are

8U1 8f0 8f() 8 fO

— 2.52
ot 8U+U8U+UU Elick (2:52)
———
N(SAQ ~O0A20

where the last term of order A2 is also neglected. The gyrokinetic equation is obtained
by summing and gyro-averaging Egs. (2.51) and (2.52):

0 0 0 oU- 0
O vorw)- 2t >f1+<8t1 <U>> Oh _y (2.53)

The gyro-averages <v0 + v1>7 <ﬂ1> and <U2 are calculated in App. B. It is intuitive to
write the gyrokinetic equation in terms of 6 f = (f — fo(Up)). Since f = fo(Uo+U1) + f1,
the averaged deviation from the unperturbed equilibrium distribution fy(Up) is given by

dfo
oU’

whence the full distribution function f can be decomposed into its gyro average and its
gyrophase dependent part yielding

(Sf fi+ U= (2.54)

dfo

F=T+T=(fo+df)+ (U -Th) 55 (2.55)
The gyrokinetic equation in terms of § f is
00 0 0
8f + <V() + V1> <5f Ul 8?) + (2'56)
dfo Ofo _
— =0. 2.
s (5701 aU) 5 257)
The total perturbed distribution function is given by
; dfo
2.
of + (= Th) 57 (2.58)

where the second term yields a density perturbation linear in ®; which represents the
polarisation density pp,. In order to calculate p,, at the particle position x, the second
term in Eq. (2.58) has to be integrated over velocity space taking U; at position x and Uy
at X 4 p, because the gyro-average implies that U; is known only at the guiding centre X
and has to be translated to x = X + p. Therefore, the integration of Uy (X + p)(9fo/0U)
eventually results in the “double gyro-average” of U; averaged over the background distri-
bution fy. This average can be written in terms of an integral operator fo, whose exact
form depends on fy(Up) (which usually is a Maxwellian). Finally, with the background
density ng, the polarisation density is given by:

¢°no 2
ppol(r) = —T(l — FO)(I)l. (259)
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Quasineutrality then requires that the densities of all species sum up to zero:
Z gsns + Z Ppol,s = 0. (2.60)
S S

A detailed derivation of the gyrokinetic equation as implemented in the gyrokinetic code
GYRO, which is used for most of the numerical gyrokinetic investigations, can be found
in Ref. [15].

2.2.2 Two-fluid theory

As pointed out in the previous section, the quantities needed to close Maxwell’s equations
are the sources of the electromagnetic fields. Instead of evolving the plasma by means of
an approximate equation of motion for the distribution function in five-dimensional phase
space and afterwards calculating the sources from the approximate distribution function
as done in gyrokinetic theory, conventional fluid theory derives approximate equations of
motion for the plasma density, temperature and velocity directly as moments of the Boltz-
mann equation. The need for approximation arises from the fact that the time derivative
of one moment of the distribution function inevitably involves higher moments, which can
be understood presently from a simple example. The time derivative of the density in a
co-moving reference frame — as is common in fluid dynamics — is given by

((iT?Z = ?Z + v - Vn = source terms (2.61)
and is directly seen to involve the fluid velocity, the next higher moment. The equation
of motion of velocity in turn follows an equivalent equation involving acceleration, i.e.
heat sources and sinks. This hierarchy of fluid moments has to be cut at some point by
adequate closure relations in order to obtain a numerically and if applicable analytically
manageable system of equations. The approach discussed here is termed “two-fluid”, since
fluid equations are derived for both main species of the plasma, electrons and ions. A
“one-fluid” model, in which fluid equations are obtained by averaging over velocity space
and species, is represented for example by MHD.
Since the formal derivation outlined before will not be discussed in detail here, it is instruc-
tive to construct the general form of the class of fluid equations applied in this thesis. The
requirements to be met by the fluid equations are equivalent to the basic idea of gyrokinetic
theory: The phenomena described by the desired equations shall have frequencies much
smaller than the ion cyclotron frequency. One can therefore expect that the perpendicular
motion of a fluid element is described sufficiently accurate by the particle drift velocities.
Thus, the time derivative of the density moment becomes

d on

" (x(t),t) = (VDrigt +v||) - Vn + T (2.62)
On the other hand, the conservation of particle number gives
on
5 —V - (n(vprigt + ) = — (VDrige +v|) - V=V - (Vprige + V) (2.63)
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and therefore q
n

Equation (2.64) implies that in a co-moving reference frame the time evolution of the
density is mainly determined by the divergence of the particle drift velocities. The drift
velocities of concern are the E x B drift vg, the curvature drift v, the VB drift vyp and
the polarisation drift v, (see e.g. Ref. [21]) given by

ExDb
Vg =¢C B
u? T
VH—@BXKNCEbXK,
T
VVB:%bXVB%cq—Bbx (VInB),

oo S B e d
PL OB dt . QBdt

In the polarisation velocity the electromagnetic part of the electric field arising from
OA | /Ot can usually be neglected since it is small compared to E; [51]. These drifts
can be explained by noting that the motion of a charged particle due to an arbitrary force
perpendicular to the magnetic field after averaging over the gyro-motion can be expressed
to lowest order as a drift motion perpendicular to the arbitrary force and the magnetic
field. In analogy to the E x B drift, one finds that vp,izr = ¢(F/q) x (b/B). Thus, the
curvature drift can be interpreted as a result of the centrifugal forces on a particle moving
along a curved magnetic field line, the VB drift as the result of the force on a magnetic
dipole in a nonuniform magnetic field, and the polarisation drift as the result of the varying
electric field, F = mvpg.

Defining the time derivative d/dt as 0/0t + vg - V, one obtains with the drift velocities
(2.65)

V. ®. (2.65)

dn

dt
To obtain the equation of motion of the fluid density in a reference frame co-moving with
the E x B velocity one now has to calculate the divergence of vy and the divergence of
the drift particle fluxes and the parallel particle flux. In App. B it is shown that

=-nV-vg—V- [(VH—FVVB—FVPO[—FVH) n] . (2.66)

V.-vg = c% X (k+V(nB))-V,®=-Cd (2.67)
and X
V- (n(ve + vup)) = —cg, (2.68)

where C' is called curvature operator. It is worth noting at this point that the divergence
of the currents induced by the magnetic inhomogeneity drift v, + vyp is nearly equal to
the divergence of the diamagnetic current density.

With Egs. (2.67) and (2.68) equations of motion for electron and ion density can be
constructed. Since the polarisation drift is proportional to the particle mass, it can be
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neglected completely in the electron density equation. For the same reason — the parallel
velocity is proportional to the thermal velocity which again depends on the particle mass
— the parallel velocity is defined only for the ions while the difference between V-nv| ; and
V - nv| . is accounted for by the parallel current density in the electron equation. Thus,
one arrives at the following equations of motion for electron and ion densities:

dn. - De Ji
c (‘I) + q> =0y~ (nvy4) — 3llgv

dt
dn; - i
i =C <‘1) + (]) -V (anol) — E)H . (nv”ﬂ-) . (2.69)

Similar equations can be derived for ion and electron temperatures. To close the system,
one needs three more equations (apart from those for the temperatures): one for the
divergence of the polarisation flux, one for the parallel ion motion and one for the parallel
current. Without discussing the details, one can guess the general form of those equations.
The parallel ion velocity mainly depends on parallel pressure gradients plus some term
involving perpendicular magnetic field fluctuations arising from the parallel component of
the vector potential A = ¥, therefore

Vi _ g piFw 2.70
G = ot [V]. (2.70)
The parallel current density has to fulfill some form of Ohm’s law relating the current to
the parallel electric field

j|| = UE” — apaupe =—0 <8||(I) + i%f) — Up8||pe, (2.71)
where o is the parallel conductivity and o), is a proportionality factor to correctly include
the parallel pressure gradient.

The divergence of the polarisation flux can be obtained by exploiting quasineutrality.
Therefore the charge density p. = > ,qsns = 0 at all times and the charge continu-
ity equation is just V - j = 0. The total current consists of the diamagnetic current
Jdia = ¢(b/B) x Vp = qn(v, + vvp) + V x M with the magnetization density M, the po-
larisation current and the parallel current. Combining Egs. (2.65), (2.68) and V-V xA = 0,

one obtains 2 4
nggcdtVJ_(t) —Cp—i-aHj” =0, (2.72)
which is called vorticity equation. Due to the definition of the charge density, it represents
the difference between the ion and electron density equations (2.69). Therefore, a closed
two-fluid system is comprised of six equations: the electron density equation, the vorticity
equation, the ion and electron temperature equations, the parallel ion velocity equation
and a generalised Ohm’s law.

Although the principle structure of two-fluid theory can be understood from the consid-
erations above, those equations are lacking important physics. Particle collision induced
effects like viscosity and collisionless damping effects like phase mixing have been neglected

ij—VL<
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completely. In order to include these effects, the two-fluid equations have to be derived in
a consistent approach as demonstrated for example in Refs. [51, 52, 53]. Starting from the
Boltzmann equation (2.27) with an approximate collision operator, one computes first the
corresponding density, velocity and temperature moments for ions and electrons to obtain
the density continuity equations, the momentum conservation equations and the temper-
ature equations, which are commonly called Braginskii equations. This of course requires
certain assumptions, for example that the distribution function is close to a Maxwellian
at each position, that the background quantities vary on a timescale longer than the col-
lisional time scale, that the parallel scale length L) is longer than the mean free path
along the field, and that the perpendicular scale length is longer than the ion gyroradius.
Through the collision operator momentum exchange and heat transport enter the fluid
equations. In a second step — discussed in detail in Ref. [51] — the Braginskii equations can
be transformed into drift reduced Braginskii equations by applying an ordering principle
which eliminates the time scale of particle gyration. In spite of the use of a “poor-man’s”
approach, the fluid equations derived above display striking similarity to the drift reduced
Braginskii system derived in Ref. [51]. The specific fluid equations used for numerical
studies with the two-fluid code NLET in this thesis are given in [14].

2.2.3 Discussion

Both approaches discussed in the previous sections, gyrokinetic and two-fluid theory, have
the same scope, the study of instabilities and microturbulence in plasmas. Therefore, it
seems appropriate to discuss shortly the strengths and shortcomings of the two theories.
One of the first advantages of fluid theory compared to gyrokinetic theory to cross one’s
mind is the lower dimensionality of the system to be solved. Since fluid theory is situated in
the three-dimensional real space instead of five-dimensional phase space, a fluid code runs
much faster for a given spatial resolution of the computational domain than a gyrokinetic
code. Or conversely, much higher resolutions can be computed with given computational
resources using a fluid description.

Additionally, since fluid theory describes the time evolution of densities, velocities and
temperatures, it is much more intuitive and easier to understand. Furthermore, extensive
diagnostics can be computed with little effort in fluid theory while the calculation of equiv-
alent quantities with kinetic theory involves the calculation of possibly quite complicated
moments of the distribution function by numerical integration.

The most prominent advantage of fluid theory, however, is the fact, that in contrast to
gyrokinetic theory it does not require the use of the local approximation (see e.g. [14])
to describe small scale fluctuations. In gyrokinetic theory as presented in Sec. 2.2.1, the
assumption that the perturbed quantities comprising instabilities and turbulence are small
compared to the background is essential for the theory to work. The problem with this re-
striction is that in the edge of fusion plasmas the amplitudes of the turbulent perturbations
can be of the order of the background quantities which makes this gyrokinetic approach
break down.

But there are also kinetic effects that are not naturally contained in fluid theory. The
influence of trapped particles for example, which has at least quantitative influence on
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the results of numerical studies, is not reproduced by fluid equations. However, the most
important kinetic effect missing in fluid theory is collisionless damping. Fluid theory
is based on the assumption of high collisionality |21, 51, 22|. Therefore, since damping is
mostly collisional, fluid treatment is very reliable in the edge region of fusion plasmas where
temperatures are low and collisionality is high. Further inside, temperatures are high and
the collision frequency becomes very low. In this regime collisionless effects like Landau
damping and phase mixing dominate the dynamics of the plasma. If nevertheless one would
like to use a fluid description in the low collisionality regime, collisionless damping has to
be modeled in some way, for example by modified heat fluxes. The role of collisionless
damping with respect to zonal flows and geodesic acoustic modes is discussed for example
in Ref. [54].

In summary it can be stated that the predominant use of two-fluid theory in this thesis
is justified since geodesic acoustic modes are indeed an edge phenomenon. However, a
comparison of gyrokinetic and two-fluid results is presented in Chap. 4 to back up this
statement. Furthermore, gyrokinetic theory is applied in addition to fluid theory in wide
parts of Chap. 3.

2.3 Imstability and turbulence

In the following, the two main mechanisms leading to instability and turbulence in a
magnetised plasma are discussed trying to focus more on physical reasoning than on explicit
calculations. Detailed discussions of those two instability mechanisms can be found in Refs.
[1, 51]. In slab geometry, the magnetic field has no curvature and the dominant unstable
modes are drift waves. In realistic geometries — realistic in the sense of tokamaks — the
magnetic field is curved and sheared, which favours curvature driven instabilities. Common
to both mechanisms is the need of density or temperature gradients, which act as energy
sources for the growth of unstable modes.

2.3.1 Drift wave instability

Drift waves are fluctuations of the density and the electrostatic potential that can become
unstable and turbulent. Since the drift wave instability occurs already in a very simple
system — a homogeneous magnetic field with a non-vanishing plasma density gradient —
and since the properties of drift waves like their scale length and frequency are in accord
with experimental observations of turbulent transport, drift waves are often considered as
the paradigm of microturbulence in magnetised plasmas.

The principle of drift waves and their instability can be explained without using heavy
mathematics. Consider the situation depicted in Fig. 2.5. The magnetic field is assumed
to be homogeneous, the density gradient is perpendicular to b. One isobar is indicated in
Fig. 2.5 a) to clarify the physical configuration. The electron response to any electrostatic
potential perturbation is assumed to be adiabatic and parallel resistivity is neglected, i.e. if
a potential fluctuation arises somewhere, the electrons adjust their density instantaneously,
ne = (1 + e®/T)ng, where ng is the equilibrium density. Therefore, any density pertur-
bation goes along with a corresponding potential perturbation as shown in Fig. 2.5 a).
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Figure 2.5: Stable drift waves. a) Due to the inhomogeneous density, the initial per-
turbation is moving with the electron diamagnetic velocity. Since density and potential
perturbation are in phase, the fluctuation amplitude is constant. b) One-dimensional pic-
ture. Density and potential are in phase. The divergence of the E x B particle flux causes
the potential and density fluctuations to move.

Due to the gradient of the potential perturbation, the density perturbation is surrounded
by an E x B drift vortex. Since the density is not homogeneous, the component of the
corresponding particle flux parallel to the density gradient has a divergence leading to an
increase of the initial perturbation where vg is antiparallel to Vn and to a decrease where
vg and Vn are parallel. Consequently, the divergence of the E x B flow leads to a motion
of the initial perturbation perpendicular to the magnetic field and the density gradient,
ie. v oc —(b) X Vn o Vgige. For reasons of clarity, the situation is illustrated in one
dimension in Fig. 2.5 b). Indeed, a proper calculation yields that the perturbations move
exactly with the electron diamagnetic velocity vgiq. = —c/(enB)b x Vp, (see e.g. Ref.
1]).

This discussion explains the motion of a density perturbation but not its growth. There-
fore, instead of a localised density perturbation consider now a perturbation sinusoidal
in the diamagnetic direction. Measuring this density n(x,t) at a fixed position while the
perturbation is moving in the electron diamagnetic direction results in a periodic density
oscillation. To understand how the perturbation can gain energy from the density gradient,
an analogy can be drawn between drift wave growth and a driven harmonic oscillator. With
the driving term taken as proportional to the velocity with a phase shift ¢, the oscillator
equation is

mi + kx = Dexp'® i. (2.73)
Thus, the rate of change of the total energy of the oscillator becomes
dEl 1d .12 2 P
PR (m‘m‘ + k"m’ ) = QD‘J" COs . (2.74)

From equation (2.74) it is concluded that if the driving term is in phase with the velocity
% (i.e. out of phase with z), the energy input is maximal whereas the energy is conserved
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Figure 2.6: Unstable drift waves. a) Density and potential perturbations are phase shifted
such that the maximum of the density perturbation is close to the maximum of the diver-
gence of the E x B particle flux. Therefore, the initial perturbation is continuously fed
by the E x B flow, the drift wave is unstable. b) Same situation in one dimension with
sinusoidal perturbation.

if driving term and velocity are phase-shifted by m/2. For ¢ = 7 the oscillation is damped.
Even if the driving term does not change the total energy for ¢ = 7/2, it modifies the
oscillation frequency.

The transition to drift waves is straightforward. The density perturbation represents the
oscillating quantity and the corresponding E x B drift the driving term. The difference
between the simple drift wave picture is the lacking of a restoring force represented by
kx in Eq. (2.73). The oscillation of the density perturbation at fixed position is due to
the driving term alone. As long as density and potential perturbation, where the latter
is responsible for the “external” drive, are in phase, drift waves do not grow. Note that
the vanishing phase shift is based upon the assumption that the plasma has been assumed
ideally conducting. If this assumption is dropped, the electron response to the density
perturbation is delayed, resulting in a phase shift between n and ¢, which goes along
with growth or damping of the initial perturbation. Therefore, the existence of parallel
resistivity is essential for the instability of drift waves. The effect of the phase shift between
density and potential perturbation is illustrated in Fig. 2.6.

Assuming now the existence of a growing drift wave, there must be a saturation mecha-
nism preventing infinite growth, since otherwise the plasma would collapse rapidly. This
mechanism is illustrated in Fig. 2.7. Density and potential perturbations periodic in the
diamagnetic direction as in Fig. 2.6 go along with opposite E x B flows. Such sheared flows
if strong enough become unstable themselves due to the Kelvin-Helmholtz instability [51].
Small perturbations of the E x B flows generated by the primary instability perpendicular
to the density gradient and the magnetic field start to grow deforming the initially straight
flows to wiggly lines which eventually form vortices. Interaction between the vortices makes
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Figure 2.7: From a linear instability to turbulence (computed with the two-fluid code
NLET [14]). The initial density fluctuation is periodic in the diamagnetic direction (top
left). Having grown to a certain amplitude the opposite radial flows corresponding to
the density fluctuation become unstable leading to small flow fluctuations in the poloidal
direction, which deform the initial density perturbation (top right). The deformation
generates vortices (bottom left) which due to their interaction decay into smaller and
smaller vortices resulting in turbulence (bottom right). Length is measured in units of the
sound Larmor radius pse.

them break up into smaller and smaller eddies thus starting a turbulence cascade to smaller
wave numbers at which the instability does not grow any longer or is even damped.

2.3.2 Curvature-driven instability

Although the drift wave instability is often cited as the paradigm for microturbulence in
magnetically confined fusion plasmas, it essentially plays a minor role in tokamak geometry
because drift waves are stabilised by magnetic shear [51]. Therefore, another mechanism
is needed to explain the destabilisation of the plasma. Magnetic curvature, unavoidable
in a closed confinement device, provides such a mechanism. Instabilities caused by non-
vanishing curvature are categorised as curvature driven instabilities. Like the drift wave
instability, curvature driven modes require an inhomogeneous plasma, e.g. a density (bal-
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looning modes) or temperature gradient (ion temperature gradient driven modes, ITG) as
their energy source. In tokamak geometry, the curvature vector k can roughly be identified
as the toroidal curvature, pointing to the symmetry axis with the curvature radius equal
to the major radius R.

Figure 2.8 a) shows a situation typical for the outboard midplane of a tokamak. Density
gradient (— ballooning mode) and curvature vector are pointing to the symmetry axis. On
an isobar, a perturbation of the density is indicated. Due to the magnetic inhomogeneity
drifts given in Eq. (2.65), which depend on the particle charge ¢, the ion density drifts in
the ion diamagnetic direction and the electron density in the electron diamagnetic direc-
tion. Since the density perturbation provides a component of the density gradient in this
direction, the magnetic inhomogeneity drifts lead to a charge separation and an electric
field. The E x B flow resulting from the density perturbation (Fig. 2.8 b)) is — in principle
— equivalent to the one shown in Fig. 2.5 a). Therefore, the explanation of the growth
of the ballooning mode is analogous to the drift wave instability except for the E x B
convection being induced by the curvature drift. Like the drift wave instability, ballooning
modes become unstable due to parallel resistivity. However, also electromagnetic effects
and electron inertia can drive the ballooning mode unstable [51].

In case of Vn = 0 and VT # 0 (— ITG mode), on the contrary, the growth of an initial
temperature fluctuation is due to the temperature dependence of the magnetic inhomo-
geneity drift: Hot particles drift faster than cold particles. Therefore, ions are compressed
where electrons are expanded and vice versa, which induces a charge separation as in case
of an initial density perturbation. Since the I'TG instability requires a phase shift between
the electrostatic potential and the temperature perturbation — instead of the density per-
turbation as in case of the ballooning modes — it can be unstable even in the electrostatic,
ideally conducting limit.

Furthermore, it is obvious from Fig. 2.8 b) that the initial perturbation can only grow
for V(n,T) - & > 0. The development of curvature driven modes from linear instability to
turbulence is similar to that of drift waves.

2.4 GAM frequency in general geometry

The calculation of the GAM frequency in general geometry will become important in Chap.
6, however, just as a tool for the analysis of magnetic geometry effects on GAMs. Therefore,
the algorithm upon which the results discussed in Chap. 6 are based is explained in this
introductory section. Results obtained this way for Miller type geometries (Sec. 2.1.3 and
[12]), are discussed in Ref. [11].

The following calculation is based upon two-fluid theory in the local and infinite aspect
ratio limit as given in Ref. [51]. The coordinate system (z,y, z) therein is a flux-tube with
the flux-label x indicating the minor radial position and z increasing along the field line.
The coordinate y is chosen such as to be constant along a field line, i.e. y is a field line
label, and a derivative with respect to y corresponds to a derivative with respect to the
toroidal coordinate. Since, as explained in Sec. 1.1, GAM oscillations are the result of the
coupling between a poloidal (m,n) = (0,0) E x B flow, where n and m are the toroidal



2.4 GAM FREQUENCY IN GENERAL GEOMETRY 31

o= const. n = const.
® Ry
bxk b x«\VE
Density
perturbation
Charge separation Electrons
duetov,

Figure 2.8: Growth mechanism of curvature driven instabilities. The magnetic inhomo-
geneity drifts try to advect ions and electrons in opposite directions resulting in a charge
separation and a corresponding electric field. The E x B drift amplifies the initial per-
turbation when & - Vn > 0. The indicated charge separation is exaggerated to clarify the
growth mechanism.

and poloidal mode numbers, and a pressure perturbation acting as the restoring force, the
linearised vorticity and the density equation are needed for the description of GAMs. If the
coupling to the parallel velocity, i.e. to sound waves, is to be considered, one additionally
needs the parallel velocity equation. Derivatives with respect to y are neglected for reasons
of symmetry and the electron response is assumed adiabatic. From the sum of the vorticity
and the electron density equation, one obtains the ion density equation, and integration of
the vorticity equation over x and z yields the equation for the poloidal flow velocity. The
vorticity, the ion density and the parallel velocity equation are given by

B 5 P*p; :
0a? ~ P T T3 O
o . o ?
8—7; =e,C (¢ + agpi) + €,0)v) + agen (1 + T)aig (¢ + Taap;),
O _ .4 (2.75)
o & |Ps '

where the curvature operator is given by C' = sin(272)d/dx, and 7 = T; /T 0 is the ratio
of the ion to electron background temperature. For a discussion of the other parameters
appearing in Eq. (2.75) see Ref. [51]. Equation (2.75) contains only the fluctuating parts
of density, temperature and pressure, which is why p; . = n+T; . and p = (pe+7p;)/(1+7).
Assuming constant ion entropy, one can approximate T; ~ 2n/3 and p; ~ 5n/3. Neglecting
electron temperature perturbations, the pressure becomes (14-57/3)/(147)n. The poloidal
E x B velocity is given by 9¢/0x. Since the GAM frequency is to be calculated in the
limit 9/0x — ik, — 0, some terms can be neglected in addition to the y-derivatives.
Those terms can be identified by an order analysis. One characteristic of the geodesic
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acoustic mode is that the energy contained in the pressure perturbation and the poloidal
flow averaged over one oscillation period are equal. The kinetic energy of the E x B flow
is according to Refs. [51] and [55] Ekinpot = (1/2)€n(1 +7)(ky¢)? and that of the pressure
perturbation E, = (1/2)(1 4+ 57/3)n?. Therefore, a GAM has to fulfill n ~ k¢, and the
GAM equations (2.75) in the limit k, — 0 become

GvE_ 1+5§T

% = 11- sin(27wz)n,

0

a—? = &, sin(272)vE + €,0)v),
8’UH 1+ %z—

For simplicity, the parallel motion is neglected in the following. To find the solution of
the resulting system of partial differential equations for a geodesic acoustic mode, the
flow velocity vg is taken to be independent of y and z, whereas the density, which may
depend on x and z is decomposed into a Fourier series in sin(27wmz) and cos(27wmz) with
the poloidal mode number m. To simplify the form of the equations, the flow velocity is
normalised to 75 = (e,/2)"?vE and the density to 72 = ((1 4+ 57/3)/(2 + 27))"/?n. Thus,

0 . : _ . ~
HiE = ~wo sin(27z) Z (Tog,m sin(2rmz) + e cos(2mmz))
m
0 _ . - . -
g Z (Mog,m sin(2rmz) + e m cos(2mmz)) = sin(272)wo g, (2.77)
m
where wq is given by
€, 1+ %T
=1/= . 2.
0 2 1+7 (2.78)

Due to the simplicity of the curvature operator in the local limit with infinite aspect ratio
the flow of the GAM couples only to the sinusoidal pressure perturbation:

o . 0 . _
§<’UE> = 50 = ~Wolls 1. (2.79)

Therefore, only the sinusoidal component of the density equation is necessary to solve the
problem, which can now be represented as the eigenvalue problem

0 UE . 0 —wo 05
(i) =6 07) (o) )

with the eigenvalues w = iwgam = Liwp. Including the parallel velocity in the limit of
infinite aspect ratio is straightforward.

However, in realistic geometry, the aspect ratio is finite, the magnetic field strength is no
longer constant along a field line and the curvature operator C xb x K-V becomes far
more complex than sin(27z). Thus, the flux surface averaged poloidal flow U couples to
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many components 7. ,, of the density, and the GAM eigenvalue problem in principle has
infinite dimensionality. When a specific magnetic geometry is analysed numerically with
the method described in Sec. 2.1.3, one typically samples one toroidal circuit of a field line
with a finite number of data points nyum allowing for the computation of Fourier series with
Npum/2 modes. In numerical computations, the calculation of the GAM frequency can thus
be reduced to a n,u, dimensional eigenvalue problem that can easily be solved — once all
geometric coefficients have been calculated — yielding n,um eigenvalues and eigenvectors.
This of course raises the question which of the eigenmodes correspond to a geodesic acoustic
mode and which have dominating sound wave character. This question can be answered
with the information provided by the eigenvectors, which allow to calculate the energies
contained in the geodesic acoustic oscillation, i.e. in vg and n, and the parallel flow v).
Thus, according to the ratio Ekn, 1 /Ejp | of perpendicular to parallel kinetic energy, the
“GAM-ness” of an eigenmode can be judged. Naturally, to be considered a GAM, the
energy of the poloidal rotation must at least be comparable to the energy of the parallel
flow whereas a mode with Ey;, | > Ejin, 1 is considered a sound wave.






Chapter 3

Linear GAM dispersion

This chapter, which is based on Refs. [41, 42| (see also App. E), is dedicated to the
linear group velocity vy = Ow(k,)/0k, of the GAM. Although GAMs are normally part of
a turbulent system, it is nevertheless very useful to study their linear behaviour, in order
to be able to judge how the turbulence modifies their properties. The nonlinear GAM
dispersion is discussed in Chap. 5. A convenient and robust approach to the calculation of
the group velocity — which contains much information on the dispersion relation — applying
an energy principle will be presented. This energy approach allows for a relatively quick yet
rather accurate calculation of the group velocity even for complicated magnetic geometries,
and provides theoretical insight into the mechanisms of GAM propagation. The latter plays
an important role in the formation of the global mode structure of the GAM as discussed
in Ref. 10, 33].

The basic concepts of the method are demonstrated for two-fluid equations for cold ions
and large safety factor q. The generalisation to warm ions, arbitrary safety factors and a
gyrokinetic model is straightforward. Effects of the magnetic geometry are also considered,
especially the influence of up-down asymmetric configurations like the single-null divertor
configuration. The calculations are corroborated with exact analytical calculations for
simple test cases and with numerical results obtained by the gyrokinetic codes GYRO [15]
and GS2 [46], and the two-fluid code NLET [14].

This chapter is organised as follows. The basic idea of the approach presented here is
discussed in Sec. 3.1. The energy functional which is applied to calculate the total energy
and the Poynting flux of the GAM is introduced in Sec. 3.2. In Sec. 3.3 the equations for
the free energy, its flux and the group velocity are derived within a two-fluid framework for
7 =0, g = o0, low 3, and high aspect ratio circular magnetic geometry. The calculation
is generalised in Secs. 3.4 and 3.5 to the warm ion, finite ¢ case and to the gyrokinetic
model. In Sec. 3.6, the effects of plasma shaping on GAM propagation are discussed and
an estimate of the group velocity for elongated plasmas is derived. The influence of up-
down asymmetry of the magnetic geometry is investigated in Sec. 3.7 thereby generalising
the results of Secs. 3.4 and 3.5.

35
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3.1 Basic idea — the energy approach

Consider a flux-surface and a thin layer around it, and suppose that a geodesic acoustic
mode is excited in this layer whereas outside of this layer the GAM intensity is zero. Since
the geodesic acoustic mode is an axisymmetric perturbation, the plasma quantities related
to the geodesic acoustic oscillation, the E x B velocity and the corresponding pressure
perturbation, can be expressed as wave packets centered around the flux-surface under
consideration, constructed of plane waves with specific radial wave numbers. Due to its
symmetry, the GAM can only propagate in the minor radial direction.

The energy contained in a wave packet can be shown to be transported with the group
velocity of the wave packet (e.g. Ref. [49]). This will be demonstrated in the following
with the example of a one-dimensional Gaussian wave-packet of the quantity u and the
corresponding energy ‘u‘Q The motivation of this approach is given by the nature of the
GAM, which consists of an E x B velocity fluctuation, in the notation of Sec. 2.4 vg = k¢
with energy ‘kzrqﬁf /2, and a pressure perturbation p with energy ’ p’Q /2. The wave packet
is defined by

o0

u(r,t) = / (ky)exp [i (kyr — (w(ky) + iy(ky))t)] dky, (3.1)
—0o0
where w(k,) is (the real part of) the dispersion relation and v(k,) the corresponding damp-
ing rate. The weight function @(k,) is supposed to be Gaussian with a half width o that
is assumed to be small, such that the wave number dependence of the frequency and the
damping rate can be approximated by their lowest order Taylor expansion in k.. Thus,
the wave packet becomes

(e 9]

urt) = [ —=ex [— (’“‘U’”)] expli (b7 = (o + 70))]

x exp [—i(vg.0 + iv0) (kr — kro)t] dkr  (3.2)

with wo = w(krp), 70 = V(kro), vg,0 = Ow/0ky(ky o) and ) = 0v/0ky(krp). This is easily
integrated to

o r—t(v ivh))? o2
u(r,t) = \/gexp [i (kror — wot)] exp [’yﬁ _ (r=Hvg0+ 1)) ] (3.3)

4

and

(3.4)

—t 2—t2 /2
’u(r,t)‘Q = %exp [27075 —o? (r = tv0) o ] .

2

The total energy is obtained by integrating Eq. (3.4) over space, which yields Eyy(t) =

explt(4vo + t'y(’)QJQ) /2]. It is instructive to calculate the barycentre of the energy of the

wave packet:

0o 2
rlu(r,t)|"dr
= f_oo ‘ ( >‘ = vg,0t. (3.5)



3.2 THE GENERALISED GRAND CANONICAL POTENTIAL 37

This shows that the energy of the wave packet is at least on average transported with the
group velocity. The energy-flux of the wave packet can be computed via the continuity
equation O|ul?/0t = —V -j + S. with a source term S accounting for the dissipation.
Since Eq. (3.4) can be expressed as |u|? = (0/2)Etot(t) exp[—0?(r — vg0t)?/2], it is im-
mediately clear that the divergence of the energy-flux is given by O|u|?/0t|g,,,—const.=
(0/2)Eior0 exp|—0?(r — vg0t)?/2]/0t. Thus, the energy-flux becomes

r

._ Oul®
J __/ ot

—0o0

dr = [ul*vg0, (3.6)

FEiot=const.

which is exactly the product of group velocity and energy.
Thus, one can calculate the group velocity of a GAM wave packet by comparing its to-
tal energy to its energy-flux (Poynting flux). This provides a rather powerful tool for
determining the direction and speed of GAM propagation.

3.2 The generalised grand canonical potential

The basic idea of the energy approach is vivid, however, the question remains which con-
crete energy functional is appropriate for the study of the propagation of geodesic acoustic
modes. Looking at the orders of magnitude of the energies involved in the problem, one
finds that the kinetic energy of the poloidal E x B rotation as well as the energy of the
pressure perturbations of the GAM are of second order in the fluctuating quantities (see
Sec. 2.4). Since GAM propagation is studied in the local limit in this chapter, these energy
fluctuations are much smaller than, for example, the internal energy fluctuations, which
are of first order in the fluctuations (proportional to noT with the background particle
density ng and the temperature fluctuation 7). If the time evolution of the turbulent —
i.e. nonlinear — system is not known exactly, e.g. only to second order in the fluctuations,
problems can arise when trying to derive the time evolution of the energies connected with
the propagation of the GAM. The discussion of this issue in Ref. [55] is summarised here
and some points of the argumentation therein are clarified by explicit calculations.

In the local limit, the gradient scale lengths are assumed to be much larger than the com-
putational domain. Let the ratio of these two scales be described by the small parameter e.
The time evolution of the perturbations can be described as in Ref. [55] by a state vector

¥ and the equation

R
P = vt o0 1 0(), (37)

where, due to the local limit, only the quadratic nonlinearity is retained. The coefficient
c1 of the linear term must be of order € whereas ¢y is of order unity. The state vector ¥ is
also of order € [55]. Thus the time derivative of ¥ becomes

W _ iy (cw 4 9) 10() = (%‘f) + (), (3.5)

~O(e)
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where (...); is the i-th order term of (...). Therefore, the time derivative of ¥ is known
only to order €2, i.e. to second order in the fluctuations. The derivation of the energy-flux
of the GAM relies on energy conservation 0;E[¥] = —V - jg[V], where E[V] is the energy
functional that exactly conserves the GAM energy. Suppose for the moment that E[¥]
is the internal energy, which contains also energies linear in the fluctuations. Since WV is
small, in order to compute 0; E[¥] the energy functional is expanded as a power series in
Y, such that

ov ow?
) V24 ) =a;— —_— ...
ag + a1V + as + ) al ot + ao ot +

8E[\Il]_7(

ot ot
_ OEL[V]  OE»[Y]
=— + 5t +...,

(3.9)

which can be evaluated by substituting the expression for 0;¥. It is straightforward to
show that since 9; ¥ is known only to order €2 the time derivative of the energy functional
is also known only to that order, OE[¥] = a1(9,¥)s + O(e®). However, this implies that
the functional in the given approximation only conserves the first order term E;[¥] and is
therefore inappropriate for the description of GAM propagation which requires the second
order energies to be conserved.

If in contrast the linear term of the energy functional vanished, the time dependence of
the second order term, 9;FE2[V], could be correctly described by (0;¥)s. Therefore, the
desired energy functional should be minimal or maximal in the unperturbed ground state
of the plasma, i.e. when ¥ = 0. This prerequisite is met by the generalised grand-canonical
potential K introduced in Ref. [55], which is defined similar to the ordinary grand-canonical
potential Q of classical thermodynamics:

K=U— ugN —TpS + poV, (310)

where U is the internal energy, N the particle number, S the entropy, and V' the volume of
the system, and g, Ty and pg are the unperturbed (i.e. background) chemical potential,
temperature and pressure, respectively. Since U =TS 4+ uN —pV and Q =U — uN =TS
it follows immediately, that

K =N +TS -3V, (3.11)

where [, T, and p are the fluctuating parts of the chemical potential, the temperature
and the pressure. The generalised grand-canonical potential can therefore be regarded as
a functional of the fluctuating quantities fi, T, and p and is consequently minimal in the
unperturbed state when all fluctuations are zero. Thus, the generalised grand-canonical
potential — in the remainder of this Chapter also referred to as free energy or simply energy
— is appropriate for the description of the propagation of geodesic acoustic modes. For the
derivation of gyrokinetic and fluid expressions of the second order term K3[¥| of K and
of two-fluid equations that exactly conserve Ky except for dissipation — which is beyond
the scope of this thesis — the reader is referred to Ref. [55]. In the following, the tilde
indicating fluctuating quantities is suppressed.
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Figure 3.1: Sketch of a geodesic acoustic mode. (a) The poloidal E x B-flow, moving with
the GAM phase velocity v, leads to compression or expansion of the plasma (indicated
by the filled and striped areas, respectively). Thus, an up-down antisymmetric m = 1
density perturbation arises, which is phase-delayed against the flow by 7/2. (b) Density
perturbations are associated with an E x B flow, which leads to compression or expansion of
the plasma, causing the density perturbations to drift with the ion magnetic inhomogeneity
drift velocity. (c) Parallel drift and phase velocity enhance the density perturbations caused
by the GAM poloidal rotation, antiparallel v4 and v, weaken the perturbations.

3.3 Fluid Model for cold ions and infinite safety factor

The units used in the following are chosen such that the magnetic drift velocity is unity.
Density, n, temperature, T; and T, and electric potential perturbations ¢ are normalised
to

TO e

p*n()a p*TO,i/ev p*T’v (312)

respectively, where the subscript 0 indicates the corresponding background value and p* is
given by pse/R with the major torus radius R, cse = (Tgve/mi)l/Q, and pse = (micse) / (eB).
The time scale is tg = R/(2¢se).
Beforehand, it is useful to recall the main characteristics of the GAM. An (m,n) = (0,0)
E x B plasma flow, is generated by the flux-surface averaged electric field —V¢g, with
¢o = (¢) and (...) indicating flux-surface averaging. The divergence of the flow due to the
magnetic inhomogeneities gives rise to a mainly up-down-antisymmetric m = 1 pressure
perturbation [Fig. 3.1 (a)]. Since the compression of plasma requires work taken from the
kinetic energy (Vg)?/2 of the flow, a restoring force is generated, the flow is slowed down,
stopped, and eventually reversed. An oscillation between pressure perturbations and flow
results, in which the maximal energy stored in the pressure perturbations is comparable
to the initial kinetic energy.

3.3.1 GAM Poynting flux and group velocity

As a first approach, the Poynting flux (and group velocity) of the GAM is calculated for
the cold ion two-fluid equations according to Ref. [55] neglecting sound waves. Since in the



40 CHAPTER 3: LINEAR GAM DISPERSION

absence of perturbations the free energy is minimal, it is second order in the fluctuations.
In the chosen framework, the free energy functional [55] is given by

@%ﬁ&+EﬁzC§+G?f> (3.13)

where E. and E; are the electron and the ion free energy density, respectively, n?/2 is the
energy of the electron density perturbations, and (V¢)?/2 the ion kinetic energy. The ion
density fluctuations obey

7 —Ad — Co =0, (3.14)

where C' = —vg - V and vg = —(1/2)(k + RV In B) X b is the sum of the curvature and
V B-drifts of the electron density fluctuations, and A¢ is the divergence of the polarisation
current. The electrons are assumed to be adiabatic

n=a¢-—a¢o, (n)=0, (3.15)

because the GAM frequency is much smaller than the electron bounce and transit frequen-
cies. By combining (3.13), (3.14), (3.15), and representing the time derivative of (E) as
the divergence of a radial Poynting flux one obtains

’Udn2

8t(E>:—(V-S):<—V-< ; )+v-(nvn)>. (3.16)

The first term, vgn?/2, represents the flow of the energy of electron pressure perturbations
in ion magnetic drift direction. Since the radial component of v4 is up-down antisymmetric
(for symmetric flux-surfaces), this energy-flux has a non-vanishing flux-surface average only
if n? has an up-down asymmetry. That such an asymmetry exists and that the energy
transport is in the ion drift direction can be shown as follows.

Due to adiabaticity, Eq. (3.15), the pressure fluctuations shown in Fig. 3.1 (a) are con-
nected to potential fluctuations, which are encircled by E x B-flows as indicated in Fig.
3.1 (b). Similar to the poloidal flow, the vortices lead to compression or expansion of
the plasma owing to the magnetic field variations. This effect is equivalent to the advec-
tion of the density perturbation by the ion curvature drift, computed with the electron
temperature. Due to resonance between GAM phase and magnetic drift velocity, the
pressure perturbations are enhanced at poloidal angles where drift and phase velocity are
parallel, whereas they are weakened where those velocities are antiparallel. Therefore,
an up-down asymmetry of the energy density arises, which leads to a net radial energy
transport through the flux-surface parallel to the phase velocity. Due to the asymmetry
requirement, this flux somewhat resembles neoclassical density or temperature transport.
Owing to adiabaticity (3.15), pressure and potential perturbations are equal, so that the
gradient of the local density fluctuations causes an electric field, whose time dependence
gives rise to a polarisation current density —Vn. Since the temperature is normalised to
Ty,e, the term —nVn can be interpreted as hydraulic energy-flux p.j,, consisting of the
electron pressure Ty .n and the polarisation current density. It will be referred to as the
polarisation energy-flux in the following. As the E x B-flow associated with the density
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perturbations is proportional to the density gradients, the polarisation energy-flux can be
regarded as the energy-flux —vp(Vn)z, counter-intuitively with the reversed phase velocity
Up.

The requirement of up-down asymmetry of the free energy density n?/2 makes the curva-
ture flux comparable in size to —nVn, a polarisation effect. Whether the radial group and
phase velocities eventually are parallel or antiparallel depends on the relative size of those
two fluxes.

Next, the free energy and the Poynting flux, Egs. (3.13) and (3.16), are evaluated in Fourier
space for a circular high aspect ratio magnetic geometry. Recalling that the curvature
operator C is up-down antisymmetric for circular flux-surfaces, one obtains an estimate
for the density perturbations by splitting the ion density equation (3.14) into an up-down
antisymmetric and a symmetric part with the corresponding densities n, and ns. Since the
kinetic energy of the flow and the energy of the density fluctuations are of the same order,
k2¢o ~ n?, only terms up to first order in k, are kept in the antisymmetric equation. The
symmetric density fluctuations are of second order in k,. Thus, with C=-— sin(6)0,, the
density becomes

k.
o = —sin (0) ¢o,
n wsm( ) do

L.
ng & [“’2 sin (0)% — 1] k2. (3.17)
Due to electron adiabaticity the GAM frequency w determined by (n) = (ns) = 0 is given
by w = 272, Inserting (3.17) into (3.13) and (3.16) one obtains for the radial group
velocity

S) _ k
Vgr = RN (3.18)
Since the ratio of curvature to polarisation flux is —1/2, the total Poynting flux and the
group velocity are antiparallel to the phase velocity for cold ions.
The free energy approach only requires knowledge of the up-down antisymmetric density
fluctuation n, and its symmetric correction ns. The electron adiabaticity condition for n as
given by Eq. (3.17) only yields the GAM frequency to Oth order in k,. Thus, higher order
corrections to the density have to be computed in order to calculate the group velocity
directly from the dispersion relation. Hence, an advantage of the free energy approach is
that less information is necessary compared to a direct calculation of the GAM frequency.
The approximation (3.18) can be compared to the exact solution of (3.14), which due to
the simplicity of the situation considered here can be obtained analytically and is given by

- V2 -1 1
n = ¢o m— )

(3.19)

with Q = (w/k-)(1 + k2). The GAM frequency follows from the condition (nsin(0)) =
—wky¢o, which is obtained from Eq. (3.14) by using (3.15), yielding w = (2 4 k2)~ /2 and
the corresponding radial group velocity

k k
Vgr = — " ~-———_+0IE, 3.20
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Figure 3.2: Exact GAM group velocity for 7 = 0, ¢ — oo (3.20) (solid) and approximation
(3.18) (dashed).

which to lowest order in k, is identical to the approximation (3.18). Figure 3.2 shows the
exact group velocity in comparison with the approximated result. For small wave numbers
the latter converges against the exact result. Deviations for larger wave numbers are due
to drift velocity resonances. The resonance condition can be obtained from Eq. (3.14)
giving

w k-vy _ sin(0)

— = _ 3.21
k., 1+k2 1+ k2 (3.21)

Up =

for circular flux-surfaces. A mode loses the character of a GAM, if, due to resonances,
the energy of the density perturbations becomes significantly larger than the kinetic en-
ergy. When the GAM frequency approaches a resonance, the density amplitude becomes
very large compared to the poloidal rotation and dominates the mode. The resonant pres-
sure perturbations propagate with the group velocity of the resonant drift mode, which
is characterised as a n = 0 density perturbation localised at a specific poloidal angle 6.
Accordingly, (3.14) and (3.17) imply, that the modes discussed here are GAMs for small
radial wave numbers k, < 1 only. Therefore, the deviations of the approximate frequency
from the exact one shown in Fig. 3.2 are due to the transition of the mode from a GAM
to a magnetic drift mode.

3.3.2 Numerical studies with NLET

To corroborate the analytical insights, linear numerical studies were carried out with the
two-fluid code NLET. The computations were performed on a grid of 1024 radial and
32 parallel grid points with high aspect ratio circular geometry. The radial width of the
computational domain was 400 pse. The remaining parameters are ¢ = a/R = 0, 7 = 0,
and ¢ ranging between 3 and co. The GAMs have been initialised at time ¢ = 0 with an
(m,n) = (0,0) electrostatic potential, which then evolves self-consistently.

An example for the resulting spectral density of the radial E x B-flow profile vg(r,t) is
shown in Fig. 3.3. The exact frequency, which also agrees with the numerical result,
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flow spectral density
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Figure 3.3: NLET computed log-colour-coded GAM spectrum (Fourier transform of ¢) for
7 =0 and ¢ = 30 with exact analytical frequency (solid), approximate frequency [dotted,
obtained by integrating Eq. (3.18)] and magnetic drift resonance frequency k,/ (1 + k:?)
(dashed). The exact frequency (bright line) interpolates between the approximate and the
resonance frequency. Also visible are additional drift modes enclosed by the resonance line.

interpolates between the approximation obtained by integrating (3.18) and the resonance
frequency. For k, < 0.5 the mode is obviously a GAM, whereas for larger k, it is gradually
taken over by the magnetic drift resonance. For k, 2 2 the mode is completely dominated
by resonant pressure perturbations as discussed in Sec. 3.3.1 and has lost the character
of a GAM. The structure of the magnetic drift mode spectrum deserves comment here.
Resonance of the GAM with the magnetic inhomogeneity drift occurs where the radial
component of the magnetic drift velocity is equal to the GAM phase velocity resulting in
a density perturbation localised at the poloidal position of the resonance. Therefore, one
would expect the spectrum of the magnetic drift modes to be continuous, enclosed by the
drift mode with the highest frequency, indicated by the dashed line in Fig 3.3. Instead,
the spectrum consists of discrete lines. However, this is an artifact due to discretisation.
Doubling the number of parallel grid points also doubles the number of drift modes observed
in the spectrum.

3.4 Generalised fluid model

The generalisation of the preceding calculations is straightforward. Following Ref. [55],
one can obtain the generalised ion free energy functional

1 3 1 5 1
Byi= g’ 4+ SrT2 4 D[V (947 (n+ TP+ (Ve + 5 (f +7 (Vo)) (3:22)



44 CHAPTER 3: LINEAR GAM DISPERSION

which includes ion temperature and parallel velocity. For warm ions, the ion density and
temperature fluctuations contribute to the total free energy with (1/2)7n?+(3/4)7T2. The
FLR (finite Larmor radius) heat flux contributes the energy density (5/4)(V7T;)?. The
energy density of the diamagnetic drift velocity increases by 7V (n + T;). For finite safety
factor, the parallel flow (1/2)vﬁ and the FLR correction (1/2)7(Vu)? also contribute to
the total energy density. Fluid equations which exactly conserve the free energy functional
[55] are given by

- A (gi> +7h+ TT) + <1 - ?A) Oy — C (¢ +mn+7T; — T7Aa) = 0, (3.23)

.2 . ST 7 A 7

T; — 3 {A <¢+7’n+ 27T2~> + (1 - 37’A> Iy —C ((;H—Tn—k §TT,~ —TAb>:| =0,
(3.24)

1f|| — TAQfH + (1 — 27’A> 8” (¢+T(R+Tz)) - §T2A3HT1' — 27’6’ ((1 — TA) UH) = 0,
(3.25)

with a = a(¢p+7n) + B7T; and b = (¢ + mn) +y7T;. For a collisionless plasma, the three
coefficients «, § and ~ are given by (11/6,11/3,85/12). Inserting (3.23-3.25) into ;£ and
writing the result in terms of divergences, the Poynting flux is seen to be

0= (.ot St )

+V- [(n +7p;) V (2 + 78;) + TT; Vo + gT2EVTi + m”w}
A 2 2

-7V - qvg 5 (ac + 2Bcd 4 vd ) —

— ¢polAa+T1 (Avﬁ -3 (Vv”)zﬂ }> , (3.26)

g ((Ve)* +26Vevd + 5 (Va)?)

in which ¢ = ¢ + 7 and d = 71;. The first two divergences on the right hand side of
Eq. (3.26) represent the advection of the fluctuation energy by the magnetic drifts and
the polarisation drift in complete analogy to the first term on the right hand side of Eq.
(3.16). The last divergence in (3.26) is an FLR correction to the first one.

The two functionals (3.22), (3.26), and the group velocity can be approximated by splitting
the fluctuations in (3.23-3.25) according to their up-down symmetry and keeping only the
lowest order terms as in Sec. 3.3.1. When the GAM frequency approaches the sound fre-
quency, the ratio of the energy densities of parallel flow velocity and density perturbations
to the ion kinetic energy densities increases and tends towards infinity close to the reso-
nance. Hence, the mode loses the character of a GAM. Sound wave resonance is negligible,
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Figure 3.4: Ion temperature dependence of the fluid [Eq. (3.27)] and the kinetic [Eq.
(3.34)] GAM group velocities for k, = 0.1.

if ¢ > 1 (in practice ¢ 2 3 is sufficient). Inserting the approximate perturbations into
(3.22) and (3.26), one obtains the group velocity
_ kr
T 9B (3 1 51
1
RIS

[(=9 + 217 + 1897% + 2657%)

(135 + 10267 + 332472 + 53607° + 36757%) | . (3.27)

(For details see appendix C.2.) All additional terms compared to Eq. (3.18) are positive,
which causes the group velocity to change sign at 7 ~ 0.16 (Fig. 3.4). When calculating
GAM eigenmodes as in Ref. [33], regions of evanescent and propagating GAM would be
switched at this critical 7 because the group velocity is reversed. Since this might change
the interaction of GAMs with the turbulence and since GAMs have recently been found
to play an important role in nonlinear turbulence saturation [56|, their propagation might
influence turbulent transport.

3.5 Gyrokinetic model

For the generalisation of the previous discussion to gyrokinetic theory the linear model [57|
(compare Sec. 2.2.1)

. v .
ouf + 22V (vf + Fodos ) + L0y (vf + Fodog) = 0 (3.28)
is applied with the quasineutrality condition
1-T .
n+ Ogb—/,]ofd%:o. (3.29)
T

The velocity vq is the sum of the curvature and VB drift of the individual particles. Fy is
the thermal background distribution function, which is normalised such that [ Fy v = 1.



46 CHAPTER 3: LINEAR GAM DISPERSION

Gyro averaging is represented by the operator Jo and the thermal average of JO is defined
by FO fFoJO d3v. The Fourier representations of J(] and JO are Jo(T V29 ky ) and
Lo(k,) = exp(—7k2)Io(Tk?), respectively, with the Bessel function of the first kind J and
the modified Bessel function of the first kind Iy. The ion free energy density [55] is

1 1-Ty
E;, = A3+ = .
/ 2F0 v+2¢ =04, (3.30)

in which the first term represents the energy of the fluctuations of the gyro-averaged dis-
tribution function, and the second one the energy of the gyrophase dependent fluctuations,
i.e. the plasma polarisation. Using (3.28), 9;E' can be written as

8t(E>:<—/[V ?fFO—{”Td.VK,n}JO—{"T”-vrf,n}JO+{rf,1’T‘1-v¢o}JO

{nFo, - Vo } }d% - {<z> qﬁ}l 5 v-(¢>0>zatE0)> (3.31)

with K = 7f 4+ JynFy. The susceptibility operator x is defined by its Fourier transform
x(ky) = (1 —To(k,))/(Tk2). The brackets denote

{a,b}p =a(Kxb) —b(K *a), (3.32)

with * indicating convolutions. As shown in appendix C.1, {a, b}, can always be written
as a divergence, provided the kernel K is symmetric.

The first term on the right hand side of Eq. (3.31) represents the advection of the free
energy of gyro-averaged fluctuations by magnetic drifts. The remaining four terms in the
integral are FLR corrections (e.g. gyroviscosity) equivalent to the FLR energy-fluxes in Eq.
(3.26). The last two terms describe the polarisation energy-flux. They can be expressed as

X |kro> 9lny
2 Ok’

— xn (wkyn) — vy (3.33)
where the first term is the gyrokinetic equivalent to the fluid term —nVn, and the second
one is an FLR correction.

Keeping only the lowest order terms, an approximation of the group velocity as in Secs.
3.3.1 and 3.4 can be computed by splitting f and n in (3.30) and (3.31) according to their
up-down symmetry, and even and odd terms in v|. One obtains the radial group velocity
(App. C.2)

ky
8v2 (4 +77)

1
+ ————— (640 + 87367 + 550007 + 2152687 + 5600747" + 5262097°)
4q% (44 77)

Vg = 573 [(—32+ 247 + 58677 + 12777°)

(3.34)

Far from drift and sound resonances, for k, < 1, ¢ > 1, the gyrokinetic equation can be
solved alternatively by a power series expansion in terms of k. and ¢ yielding an identical
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Figure 3.5: GYRO computed log-colour-coded GAM spectrum (Fourier transform of ¢) for
7 = 0.5 and large safety factor ¢ = 30. The analytical kinetic frequency (3.34) is indicated
by the dashed black line. Due to damping of the resonant modes, the simulated dispersion
ends at k. ~ 0.4, as for warm ions the number of resonant particles increases with 7, so
that Landau damping has to be taken into account.

result, also in agreement with [34]. The difference between the kinetic (3.34) and the fluid
(3.27) group velocity is negligible for ¢ — oo (Fig. 3.4) and for 7 = 0. For ¢ 2 3 and
7 2 0.2 the kinetic group velocity tends to be higher than the fluid one (75% at 7 = 1,
increasing with 7). This is caused by an earlier onset of the coupling to parallel modes due
to hot particles.

Computational analyses with GYRO confirm the analytical results obtained from the ki-
netic and the fluid calculation. The simulations have been performed on a grid of 800 radial,
1 toroidal, 6 orbit and 8 energy gridpoints with a radial box size of 400ps., 0 < 7 < 0.5,
and 3 < ¢ < 30. Beforehand, agreement with NLET for cold ions has been checked. An
example for 7 = 0.5 and ¢ = 30 is shown in Fig. 3.5 together with the frequency obtained
by integrating Eq. (3.34).

3.6 Magnetic geometry effects

Since magnetic geometry may influence the propagation of GAMs, the effects of plasma
shaping on the Poynting flux in general and in the special case of elongated plasmas are
discussed in this section. The case of up-down asymmetric flux-surfaces is investigated in
the succeeding sections.
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Assuming, for simplicity, cold ions, infinite safety factor, and neglecting the polarisation
drift, one can approximate Eq. (3.14) at § = £x/2 (where k,, vg4, and v, are parallel)

QUE . 2’UE
(w—ky-vy) R Rk, (v, —vg)’

n~

(3.35)

in which R is the major radius, and vg = k,¢g is the E x B-drift velocity. For k, < 1,
equivalent to v, > vg, Eq. (3.35) implies

4v3 < 20q )
2 B s
n &~ 1+ , (3.36)
w?R? Up

va,r being the radial component of v,. Accordingly, the flux-surface averages of the two
terms on the right hand side of Eq. (3.16) (the Poynting flux) can be estimated by

1 2 krv3 207
B (va,m?) ~ Z‘; (n?) = jd (n?), kyw (n?) ~ krﬁ. (3.37)

Since (E) ~ (n?) and vy = 1 in the units defined in 3.3, the group velocity is of order
O(ky). As the typical velocity scale of turbulent motion is vgq, Vgia > vg, and k, < 1,
GAMs generally propagate much slower than turbulence and the magnetic drifts.

The specific magnetic geometry enters the calculation by means of the factors k,.(0)/w
and k,(f)w in the neoclassical and the polarisation and FLR fluxes, respectively. Experi-
mentally, only the radial wavenumber at the outboard midplane, kg, is known. However,
the GAM pressure fluctuations, energy-fluxes, and group velocity have to be estimated at
0 = +m/2, where k, is smaller due to, e.g., ellipticity or Shafranov shift. For an elliptic
Miller equilibrium [12], the radial wavenumber at § = /2 is given by

b= g, (3.38)
where k is the elongation and r the minor radius at the outboard midplane (r and R refer
to the flux-surface center).

Typical values of the geometry parameters are [12| O,k = (k — 1)/, O,R = —1/3 and
aspect ratio A = 3.5. The x dependence of w for k, = 0 can be obtained numerically (see
2.4 and [11]) and is rather accurately described for k = 1..2 and ¢ > 1 by

1 5 2.7
(14— )y 12— 3.39
w (x) (+4q2> 371 373n (3:39)

Other possible parametrisations are discussed in Ref. [7]. Substitution of these parameters
into Eq. (3.38) yields
2
ky o —— k. 3.40
32k—1) " (340)
Multiplying the magnetic drift energy-fluxes (C.5-C.7) with k2w(1)/(k3w(x)) and the po-
larisation energy-fluxes (C.8-C.12) with k2w(k)/(k3w(1)), and defining k = 1 + dk, the
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following approximations of the group velocities at the outboard midplane are obtained for
T=0

ko
0K) ~ -
Vo (0K N a5 156 1 5.316n2 1 55463 1 261
[~0.050 — 0.0215% + 0.196%> + 0.0626
0.062 4 0.266K + 0.336K2 + 0.116K3
+ TO2R0n OO FDLOR (3.41)
q
and 7 =1
(6r) o
v K)~
ar 0.32 + 2.150kK + 5.310K2 + 5.546K3 + 20k
[0.59 + 1.845k + 1.575k* + 0.526K>
0.54 + 2.510kK + 3.455k% + 1.140K3
i + K+ - K* + K (3.42)

q

Figure 3.6 shows the x dependence of the group velocity. In the cold ion case, increasing
plasma elongation leads to a change of sign of the group velocity when the “neoclassical”
fluxes become larger than the polarisation terms. Compared to circular flux-surfaces, the
group velocity for warm ions is reduced in elliptic geometry. Therefore, far from resonances,
vg ~ k,vg remains small compared to the diamagnetic velocity and the magnetic drift. The
cold ion approximation agrees with numerical studies performed with NLET.

However, in single-null configuration near the separatrix, the perturbations vanish at the
X-point due to the magnetic null and GAMs are located opposite to the X-point. Con-
sequently, the neoclassical energy-flux is (vg,n?)/2 ~ vg(n?) and vy, ~ v, because the
polarisation energy-flux is one order smaller and can be neglected. Hence, independent of
the ion temperature, GAMs propagate in the ion magnetic drift direction, which is usually
directed towards the X-point, i.e. radially inward. The GAM dispersion must be linear in
this case. In the up-down symmetric case, the radial mode structure can show standing
waves while in up-down asymmetric geometry propagating waves are expected as the wave
numbers of incoming and reflected wave at a cutoff layer are different.

3.7 Influence of up-down asymmetry

In the previous sections the energy-flux of GAMs has been shown to consist of two kinds of
transports, the advection of free energy with the magnetic inhomogeneity drift (curvature,
V B) and the polarisation energy-flux. In case of up-down symmetric plasma equilibria the
magnetic inhomogeneity fluxes are of order k;pscvqE 1. due to neoclassical cancellation
effects, where vg is the sum of curvature and VB drifts and Eyy,. is the energy of the
fluctuations. Since the polarisation fluxes are also of order k;pscvqE 1 and opposite to
the curvature energy-flux, the observed group velocities are much smaller than vg. In this
section, the geometry analysis is generalised to up-down asymmetric magnetic geometries
including a model for single-null configuration. In these cases, the curvature energy-fluxes
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Figure 3.6: Estimates of the radial group velocities for k, = 0.1, 7 = 0 (solid) and 7 =1
(dashed) plotted against the elongation .

can be of order vgE . since the asymmetry removes the neoclassical cancellation, and
larger group velocities of order vy and above are expected.

Here as well as in the following, r is defined as the minor radius of a particular flux-surface
at the outboard midplane, which makes r a flux-surface label. Thus, &, is the wavenumber
and v, the velocity with respect to the coordinate r.

3.7.1 Fluid model

The units used in the following are in principle analogous to those of the previous sec-
tions. However, due to the magnetic geometry, the definitions of Sec. 3.3 are defined
more precisely such that the magnetic drift velocity equals unity at the outboard midplane.
Density n, ion and electron temperature 7T; and T, and electric potential perturbations ¢
are normalised to p*ng, p*1p /e, P*T0.e /e, respectively, where the subscript 0 indicates the
corresponding background value and p* is given by ps./Rop with the major torus radius at
the outboard midplane Ry, cse = (Tove/mi)l/z, and pse = (mycse) / (eBoy) with the magnetic
field at the outboard midplane By. The time scale is tg = Ro/(2¢se).

The evaluation of the time derivative of the total free energy for the cold ion equation
(3.14) in general geometry yields:

0, () = <—v- <”d”2> Ly V) +v-<nv¢0)>, (3.43)

2 B? B2

rel

where vy is the sum of curvature and V B-drift, and B,..; = B/By. The additional factor
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1/B,¢; appears because the polarisation related terms in Eq. (3.16) implicitly contain a
factor p? (normalised to its value at the outboard midplane). The flux-surface average in
general geometry is defined by Ay = (A) = (§ B~*dl)~! § AB~'dl, where dlj denotes
the line element parallel to the magnetic field. With adiabatic electrons, ¢ = ¢¢ + n and
ng = 0 still hold.

The first term on the right hand side of Eq. (3.43) is the flow of the energy of the electron
pressure perturbations in the ion magnetic drift direction. The second term is a polarisation
energy-flux, which can be interpreted as an hydraulic energy-flux, p.vy, consisting of the
electron pressure and the polarisation drift velocity. A detailed discussion of the two terms
can be found in Sec. 3.3.1. The term anlﬁo/Bfel appearing in Eq. (3.43) is an additional
component of the polarisation energy-flux caused by the fluz-surface averaged potential ¢,
and vanishes for up-down-symmetric magnetic geometries. Since the kinetic energy of the
poloidal rotation V¢y = ik,.¢g, does not vanish for k. — 0, this term contributes to the
Poynting flux of GAMs for k, = 0.

In Sec. 3.6, the density perturbation for k, < 1 was approximated by

4v? < 204 >

2 E 5

n° ~ 1+ (3.44)
w?R2 Up

with the E x B-drift velocity vg, the radial component of the magnetic inhomogeneity drift
V4, the major radius R and the GAM phase velocity v,. Whereas in circular geometry,
the first term in Eq. (3.44) and the last term on the right hand side of Eq. (3.43) do
not contribute to the flux-surface averaged energy-flux — implying zero group velocity for
k. = 0 — in general geometry, they can give rise to a non-vanishing vy(k,. = 0) and can be
much larger than the k,-dependent part of the polarisation energy-flux, nVn/ Bfel.
Circular flux-surfaces [12] augmented with an r-dependent vertical shift Zy(r), i.e.
R(r,0) = Ry + rcos() and Z(r,0) = Zy(r) — rsin(f), may serve as the most straightfor-
ward test of up-down asymmetric geometry in numerical studies. The Z-shifted geometry
is the simplest modification of the circular equilibrium which shows the basic effects of
up-down asymmetry while avoiding the complexity of force-free asymmetric configurations.
Lacking complete consistency, it can be thought of as being maintained by a conductor
inside the considered flux-surface. The dependence of v,y (k, = 0) on the differential Z-shift
s, = 0rZy (which can take values between —1 and 1) was studied for cold ions and infinite
safety factor using the two fluid code NLET [14], the gyrokinetic codes GS2 [46] and
GYRO [15], and direct numerical solutions of the GAM equation.

A GAM spectrum computed with NLET, in which vy is parallel to the Z-axis, for s, = 0.3
is shown in Fig. 3.7. As an effect of the additional k,.-independent terms in the group
velocity, the extremum of the GAM dispersion is shifted away from k., = 0. The group
velocity at k, = 0 is positive. Thus, as conjectured in Sec. 3.6, vy(k, = 0) # 0 due to the
up-down asymmetry of the flux-surfaces. Note also the deformation of the spectral lines of
the magnetic drift modes due to the up-down asymmetry. It arises due to the localisation
of the drift modes (see Sec. 3.3.2) and the -dependence of their radial wave number.
The group velocity at k, = 0 is rather accurately linear in (1 + |s.|)/(1 — |s.|) (Fig. 3.8),
the ratio of the inverse flux-surface distances at the poloidal positions of the maximum
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Figure 3.7: NLET computed log-colour-coded GAM spectrum (Fourier transform of ¢)
for 7 = 0, ¢ = 100, and s, = 0.3 with direct numerical solution of the GAM equations
(dashed). The extremum of the GAM dispersion is shifted along the k,-axis due to the
up-down asymmetric magnetic geometry.

and the minimum of the poloidal magnetic field, i.e. |Vr(0 = 7/2)|/|Vr(0 = —x/2)| for
s, > 0. This implies vy(k, = 0) — oo for s, — 1.

A very realistic up-down asymmetric magnetic geometry can be constructed with the mag-
netic field of three toroidal current loops, representing the plasma current and the currents
of two coils, used to elongate the plasma and to generate separatrices. For large aspect
ratios, the corresponding vector potentials are given by A; = a;/21In((Ro+ R)%+ (Z + 2;)?)
where a; measures the current and z; the position of conductor 7 on the Z-axis. Since, due
to axisymmetry, equipotential surfaces of the vector potential (of the poloidal field) are also
surfaces of constant poloidal flux, the flux-surface shape is determined by the condition
Z?:o A; = U = const. with ¥,,,.. = VU for the last closed flux-surface. In order to assure
that the vertical forces on the flux-surface balance to zero, a1 = mas and z; = —mzo with
a real factor m > 0. The necessary geometry data can then be calculated analogous to
an ordinary Miller equilibrium (see Sec. 2.1.3 and Ref. [12]). As in Miller geometry r is
defined as the minor radius of a particular flux-surface at the outboard midplane. The
corresponding value at the separatrix is referred to as ryqz-

In this geometry, (1 + |s.|)/(1 — |s;|) corresponds to = = |Vr(0 = —n/2)|/|Vr(0 = 7/2)|.
Thus, the separatrix geometry can be compared to the shifted circular geometry by plotting
vg versus s; = (x —1)/(x + 1) (Fig. 3.9). The group velocity at k, = 0 obtained from the
numerical solution of the GAM equations for ag = 1, 20 =0, a1 = 2a3 = 2, 21 = —229 = 2
is positive. The values of s, for which v, is plotted correspond to r = (0.055...0.999) 7z
For small s, the group velocities of the shifted circular and the separatrix geometry are
of the same order, but for s, — 1 the latter stays finite whereas the former diverges.

An estimate of the group velocity for 7 > 0 and large safety factor can be derived by
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Figure 3.8: GAM group velocity vg(k, = 0) in shifted Miller geometry plotted against
(14s,)/(1—s;). For s, — 1, the ratio (14s.)/(1—s,) diverges, implying v,(k, = 0) — oo.

04
Sz

0.6

0.8

Figure 3.9: GAM group velocity vy(k, = 0) in single-null (crosses) and shifted Miller
geometry (solid) plotted against s,. When approaching the X-point, i.e. s, — 1, the
single-null group velocity approaches a finite maximum, while v, diverges in case of the

Miller equilibrium with Z-shift.
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evaluating the two-fluid Poynting flux for warm ions and infinite safety factor. This in
turn is obtained by a straightforward modification of Eq. (3.26) to general geometry —
analogous to Eq. (3.43) — and adding the third term on the right hand side of Eq. (3.43).
In the infinite safety factor limit, all terms involving v - V can be neglected, and since
ko < k, for GAMs, only the radial component of V| has to be considered. In flux
coordinates using the normalisation defined at the beginning of this section, V| can be
written as Y0y = ¢ 0r. Here, ¥ is the poloidal flux, v = |V, 7 is the value of v at
the outboard midplane, and v, = v/70. The partial derivative 9, corresponds to ik, in
Fourier space, where k, is the minor radial wave number at the outboard midplane. Thus,

the radial component of the curvature operator C=—-vy Vis —vq,,0, with
VA Ro’yrel <A \Ya'J
= o bx VI B> L 3.45
Ud,r YrelUd ‘V\I/‘ Brel X n |V‘~IJ| ( )

The ordering k.9 ~n ~ T; ~ Ejlcl/j . is applied and only Poynting fluxes of order vq F fj, are
retained. Assuming constant ion entropy, T; ~ 2n/3, and neglecting polarisation effects,
n = (vg,kro)/w, where w = w(k, = 0) ~ ((1+ 57/3)/2)'/2. The total free energy of the
GAM is E ~ k2¢3(v%,/B2,). Combining everything, one obtains the group velocity

rel

2 2
(1+2)" + 18~ 117 /42,04 57\ /72 va
vg (T) = (1_|_5i) <Udvr>g+ﬁ < %2 7’> — <1—|—3> < %2 7’> , (3.46)
3 g g

rel rel

where (...)y = (v2,;/B2,)"*(...). The first term on the right hand side of Eq. (3.46)
corresponds to the first term in Eq. (3.43), the second term is a finite Larmor radius (FLR)
correction to the first one, and the third term corresponds to the polarisation energy-flux
nV¢o/B2, in Eq. (3.43).

With large aspect ratio and small s,, vy, ~ —sin(f)(1 + s.sin(d)) and v ~ (1 —
s, sin(f))~!. Thus, to first order in s, one obtains <U(31),r>g ~ —3s./4 and (v, va,/B%,)) g ~
—58z.

As mentioned before, the parameters a; and z; of the separatrix geometry have been chosen
such that the vertical magnetic forces on the central current loop (i.e. the flux-surfaces)
balance, which corresponds to the condition Fz = [[pipzdf = 0 on each flux-surface.
Here, p; = B?/(2ug) is the perpendicular component of the magnetic pressure, pz the
vertical component of the flux-surface normal vector, and df is an infinitesimal flux-surface

element. This can be reduced to ¢ 4?9 In Rdlj = 0. With vg, = FByRo/~0(0In B)/B,

one obtains ) 5 )
Vil Vd,r 1 FBjRy 7{ ~
= — 0y In Bdlj. A4

< B2 > s, g J BB (3.47)

rel

For large aspect ratio, B is approximately constant and, due to ¢ > 1, §|In B ~ —9) In R.
Thus, the second integral on the right hand side of Eq. (3.47) reduces to the force-balance
condition.

Therefore, (v2,v4,/B>,)¢ ~ 0 in contrast to the shifted-circle geometry. This implies that
for k, = 0, the energy of GAMs is transported essentially by the magnetic drift energy-flux
vaEf1uc. In case of vertical force-balance this result agrees with the conjecture in Sec. 3.6,



3.7 INFLUENCE OF UP-DOWN ASYMMETRY 55

1.5 e

1.0f h

0.5

0.0

-0.5

-1.0F

50
-1.0 -0.5 0.0 0.5 1.0

Figure 3.10: Single-null geometries computed with the model described in Sec. 3.7.1 for
¥ = [0.2,0.4,0.6,0.8,0.999]V, .. Compared to the flux-surface shape obtained with two
shaping coils (dashed), the flux-surfaces obtained with four coils (solid) are compressed at
the top, which leads to an enhanced group velocity of the GAM compared to Fig. 3.9.

that in single-null geometry v, (k, = 0) has the sign of vg4, at the position opposite to the
X-point. However, with low aspect ratio, when the variation of B across the flux-surface
cannot be neglected any longer, the remaining two terms in Eq. (3.46) might be significant.

Numerical calculations suggest that for large aspect ratio one can approximate the geom-
etry coefficient (v3 ), by 0.028(1 — (s, — 1)*)7/2 for ag = 1, 20 = 0, a1 = 2a2 = 2, and
zZ1 = —222 = 2.

In order to have high GAM group velocity, the magnetic geometry should have a maximum
of the poloidal magnetic field — corresponding to the flux-surfaces being close to each other
— at a poloidal position where the magnetic inhomogeneity drift has a significant radial
component. In case of the single-null geometry in Sec. 3.7.1, this could be realised by
adding an indentation coil — with a current opposite to the elongation currents — close
to the plasma column opposite to the X-point. Instead of one upper coil, one has three
upper shaping coils: the indentation coil opposite to the X-point and and two coils at each
side of the indentation coil assuring the force balance. Preliminary studies easily yield a
group velocity three times larger that way. In Fig. 3.10, this geometry is compared to
the conventional single-null geometry discussed before, which only needs two shaping coils.
The indentation coil presses the flux surfaces closer to each other, such that the asymmetry
in the flux-surface distances at and opposite to the X-point is larger.
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3.7.2 Gyrokinetic model

To elaborate the analogies between gyrokinetic and two-fluid theory, the linear gyrokinetic
framework (3.28) already used in Sec. 3.5 is used again in the following. As in the previous
sections, only cases, in which the parallel ion dynamics can be neglected, i.e. high safety
factors g, are considered. In practice, this is hardly a restriction because modes lose the
character of a GAM due to resonances with sound-waves at low ¢ (see Sec. 3.3 and [11]).
For effects of finite orbit width (FOW) on GAMs in that regime see e.g. Ref. [58].

With arbitrary geometry but infinite safety factor and the conventions of Sec. 3.5, the
expression for 0;(F) is given by:

00 (E) — <_/ [v ?f};_{jdw,n}jo
{Tf quo} {nFo, v¢0} ] dPv

) {Qb, éf)}ﬂ +V- (¢0>28tE)> : (3.48)

As in section 3.7.1, one can write the curvature operator v4-V as vq 0, with the appropriate
kinetic expression for vy, when evaluating Eq. (3.48). The operators Jo, T and X are
defined by their Fourier transforms (using flux coordinates and the normalisation given
in Sec. 3.7.1). The gyro-average Jo corresponds to Jo(7Y2v ) kyYrer/Byrel), the thermal
average of J2, Tg, to To(k,) = exp(—7 r7rel/Brel)IO(Tkr')’rel/Brel> and the susceptibility
operator ¥ to x(k,) = (v2,/B2;)(1 — To)/(7k?) with the Bessel function of the first kind
Jo and the modified Bessel function of the first kind Ij.
The first term on the right hand side of Eq. (3.48) represents the advection of the free
energy of gyro-averaged fluctuations by magnetic drifts. It is the equivalent to the first
term on the right hand side of Eq. (3.43). Since k.9 ~ n ~ Ejlcl/jc, this energy-flux is
of order vqEf;yc.. The remaining three terms in the integral are FLR corrections. As Jy
is O(k?) in the commutator brackets, those terms correspond to energy-fluxes of order
krpsevaE 1ue and will therefore be neglected. The last two terms describe the polarisation
energy-flux.
Different from Eq. (3.31), the very last term contains the entire electric field instead of its
flux-surface average. Analogous to Eq. (3.33) the polarisation energy-flux can be expressed
as
X |krg* 9Inx
2 Olnk,

Vzelx
BQ

rel

Since x is O(1) and vpx(01Inx/0Ink,) = w(0x/0k,) is O(k;), only the very first term in
Eq. (3.49) contributes to vy(k, = 0). In Sec. 3.5 this term vanished due to flux-surface
symmetry. It can therefore be considered as the equivalent of the additional polarisation
flux in Eq. (3.43).

The 7-dependence of vy(k, = 0) for the shifted circular flux-surfaces defined in section
3.7.1 has been studied using the gyrokinetic codes GS2 [46] and GYRO [15]. The plot
of vg(k, = 0) for s, = 0.3 and 0.5 against 7 (Fig. 3.11) illustrates that the additional

kyw (on + n2) + vy (3.49)
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Figure 3.11: GAM group velocity — computed with GS2, GYRO and with the estimate
(3.46) — at k, = 0 for s, = 0.3 and s, = 0.5 vs. the ratio of ion to electron temperature .
Since contrary to NLET, GS2 and GYRO take vy to be in negative Z-direction, one has
to compare the results with Eq. (3.46) for s, — —s,.

polarisation flux discussed here [see Eq. (3.49)] and in section 3.7.1 exceeds the energy-flux
due to the magnetic inhomogeneity drift in the cold ion case. When the ion temperature
is increased (7 2 0.3) gyroradius effects overcompensate this effect such that the group
velocity changes sign and behaves as suggested in Sec. 3.6. This behavior and the order
of magnitude of v, is quite well reproduced by the two-fluid approximation (3.46).






Chapter 4

GAMs in two-fluid and gyrokinetic
simulations

Since, in general, fluid simulations require significantly less computational resources than
gyrokinetic ones, it would be convenient to apply only fluid theory in numerical studies.
However, there are effects like particle trapping or collisionless damping that are not con-
tained in conventional fluid theory and may have an important influence on the result of
the computations. Therefore, it is important to make sure that purely kinetic effects are
sub-dominant for the problem under consideration such that one can safely assume that
the results of fluid theory differ only quantitatively from kinetic calculations.

Since GAMs are mainly observed in the edge of tokamak plasmas, it seems reasonable to
assume that GAMs and their interaction with turbulence is adequately described by two-
fluid theory (see Sec. 2.2.3). In Chap. 3, where the linear properties of the geodesic acoustic
mode have been studied, good agreement between gyrokinetic and two-fluid codes has been
found. In order to back up the previous statement in case of nonlinear simulations, the
two-fluid code NLET [14] and the gyrokinetic codes GYRO [15] and (to a limited extent)
GS2 [46] are compared for three different parameter sets.

The first parameter set to be studied is the Cyclone base case [59, 60|, which is the standard
set for comparisons between kinetic plasma codes. Therefore, it is the natural starting point
for a comparison between the two-fluid code NLET and gyrokinetic codes. The parameters
of the Cyclone base case are based upon a real discharge of the DIII-D tokamak, however,
with idealised physics. The background electron and ion temperatures are assumed to
be equal, 7 = Tj/T.0 = 1, the electron response is adiabatic and the plasma is in the
electrostatic limit, collisions are neglected. Only one ion species is considered. The flux-
surfaces are assumed to have circular s — « flux-tube geometry. The inverse aspect ratio
e = r/R, where r is the local minor radius and R the major radius at the flux-surface
centre, is € = 0.18. The safety factor is ¢ = 1.4 and the global shear is s, = 0.786.
The normalised background density gradient, that is the ratio of the major radius to the
density gradient scale length L,, = —(dn/dr)/n is R/L, = 2.2. The analogously defined
normalised temperature gradient is R/Lp = 6.9. The centre of the simulation domain is
at r/a = 0.5, where a is the minor radius of the separatrix. The local limit is applied,

99
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Cyclone base case | GAM case 1 | GAM case 2
€ 0.18 0.1 0.1
r/a 0.5 0.5 0.5
P 4-1073 1.739-107° 4.4-1076
R/Lr | 6.9 27.27 113.64
R/L, 2.2 9.09 22.73
Lr/L, | 3.14 3.0 5.0
T 1 1 1
Sg 0.786 1 1
q 1.4 5 5

Table 4.1: Parameter sets for the comparison of NLET, GYRO and GS2.

i.e. p* = pse/a =4-107* < 1. Due to this choice of the parameters, especially the low
safety factor and the shallow gradients, the situation represented by the cyclone base case
corresponds to the core of a tokamak plasma.

The Cyclone base case parameters are then modified in order to represent the physical
situation at the tokamak edge. The safety factor is increased to ¢ = 5. The gradients are
steeper: R/Lp = 27.27 and R/L,, = 9.09 in one parameter set, and R/Lpy = 113.64 and
R/L,, = 22.73 in another one. The corresponding ratios of the density to the temperature
gradient scale lengths are L, /L7 = 3.0 and L,,/L7 = 5.0. The ratios of the sound Larmor
radius to the minor radius of the separatrix are p* = 1.739 - 107° and p* = 4.4 - 1079,
respectively. The shear is set to s; = 1 and 7 remains 1. In order to reduce the influence of
trapped particles, a potential source of discrepancies between gyrokinetic and fluid codes,
the inverse aspect ratio is reduced to € = 0.1. The parameters of those three parameter
sets are summarized in Tab. 4.1.

For convenience, the units used in this chapter differ from those in Chap. 3. Instead, the
normalisation used by GYRO is preferred. Therefore, the frequency is normalised to the
ratio of the thermal sound velocity cse (as defined in Chap. 3) to the minor radius of the
separatrix a. The radial wave number, however, is still normalised to the sound Larmor
radius ps.. Heat fluxes are measured in gyro-Bohm units Qgp = noTocsep*Q.

Although the Cyclone base case is originally intended for the numerical study of tokamak-
core turbulence, which is actually not the scope of this thesis, it is worth to be discussed
for two reasons. First, by comparing NLET and GYRO for Cyclone base case parameters
here, NLET results can immediately be compared to the results published in many other
benchmark studies using Cyclone base case parameters. And second, GAMs are expected
to be absent for core parameters but to be the dominant zonal flow for edge parameters.
Thus, a transition from zero frequency zonal flows in the core to oscillating GAMs in the
edge is expected to be observed when going from cyclone base case parameters to the edge
parameters given in Tab. 4.1. Even if the results of GYRO and NLET may not match
quantitatively, they should nevertheless produce qualitatively equivalent results.
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Figure 4.1: Growthrates computed with NLET, GYRO and GS2 for the parameter sets
given in Tab. 4.1. a) Cyclone base case. b) GAM case 1. ¢) GAM case 2. The fluid
growth rate in a) is higher than those of the two gyrokinetic codes for kyps 2 0.2. In
cases b) and c) the growth rates of the three codes agree reasonably well. The quench of
the fluid growth rate at k,pse ~ 0.5 is a result of the fluid approximation, which excludes

perturbations at the gyro radius scale and smaller.

The first quantity to be considered in a proper benchmark of plasma turbulence codes is
the growth rate of instabilities. The growth rates are obtained from code runs solving the
linearised gyrokinetic or fluid equations, initialised with small random perturbations upon
a large density and temperature background. The results for the growth rates for k. pse = 0
are summarized in Fig. 4.1. In all three cases, the growth rates calculated with GYRO
and GS2 are in very good agreement. The growth rate obtained with NLET also agrees
with the gyrokinetic results, at least for small wave numbers k,. However, the growth
rate obtained with NLET for the Cyclone base case, is larger than the gyrokinetic result
for wave numbers ky,ps. > 0.2. Since the aspect ratio in the Cyclone base case is about
half the value used in the two GAM cases, this discrepancy might be due to the increased
importance of trapped particles. It could also be caused by collisionless damping effects,
which are more important in core-turbulence simulations than for edge parameters, for
which the growth rates of all three codes agree very well for small wave numbers kypge.
Differences in the growth rates arising from collisionless effects can be compensated by
adapting the parallel heat conduction coefficients in NLET, which partly account for e.g.
Landau damping. The sudden quench of the fluid growth rates at kypse ~ 0.5 is a typical
feature of the fluid approximation, which excludes fluctuations at the gyro radius scale and
smaller.

Since the linear calculations do not reveal significant and unforeseen differences between
the tested fluid and gyrokinetic codes, one can be confident that NLET and GYRO deliver
equivalent results for small £, in the linear case, and one can continue and compare the
nonlinear behaviour of the two codes.

When comparing the nonlinear results of NLET and GYRO, aiming at the investigation
of geodesic acoustic modes, it is important in first place, that both codes display qualita-
tively equivalent turbulence and zonal flow behaviour. Numerical differences may often be
explained by conceptual differences between gyrokinetic and two-fluid theory or by specific
features of the turbulence codes. But it is indispensable for example that in both codes
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Parameters Code | L; (pse) | Ly (pse) | nr Ty (vg) (va) | Q (QcB)
Cyclone base case | NLET | 114 140 320 320 1.54 4.29
GYRO | 114 140 114 | 16 1.54 3.17
GAM case 1 NLET | 150 150 512 | 512 | 9.52 11.06
GYRO | 150 150 304 | 64 24.01 12.06
GAM case 2 NLET | 150 150 1024 | 1024 | 34.51 211.49
GYRO | 150 150 500 | 64 45.51 69.85

Table 4.2: Domain and grid sizes as well as RMS amplitudes of the flux-surface averaged
E x B flow (in units of the magnetic inhomogeneity drift) and heat flux (in gyro-Bohm
units) for the code runs used for Figs. 4.2, 4.3, and 4.4.

the turbulence excites zonal flows for core parameters and GAMs for edge parameters.
This transition from stationary zonal flows to GAMs can be tested with the parameter
sets defined before.

For the following comparison, numerical turbulence studies using a variety of grid sizes
and computational domains were performed. However, the gyrokinetic results for the
cyclone base case are mainly based upon a run with a computational domain of L, x L, =
114pse x 114p,, with a grid of 114 radial points and 16 toroidal modes. The corresponding
fluid simulations, used equivalent domain sizes with various resolutions. The simulations
for the two GAM parameter sets mainly used domains of 150ps X 150p,.. The gyrokinetic
code runs were performed primarily with 64 toroidal modes. The radial grid sizes ranged
from 128 up to 700 points. The fluid simulations used grid sizes from 1282 up to 10242.
The domain and grid sizes as well as the RMS amplitudes of the heat flux and the flow
velocity for the simulations used for Figs. 4.2, 4.3, and 4.4 are summarized in Tab. 4.2.

The turbulence intensity, which may be measured by the turbulent radial heat flux, in
the stationary state is discussed first. The flux-surface averaged heat fluxes for the given
parameters are plotted versus time in Fig. 4.2. For better comparability, NLET and GYRO
heat fluxes for each parameter set are arranged next to each other, and the average heat
fluxes of both codes are indicated in each plot.

For Cyclone base case parameters, the average heat fluxes agree reasonably well. The fluid
heat flux is about 26% smaller compared to the gyrokinetic result thereby confirming the
result of an earlier comparison in Ref. [61]. However, the gyrokinetic heat flux drops to
a value of 4.07 upon increasing the number of toroidal modes to 64, thus reducing the
difference a bit.

The agreement between the heat fluxes for the parameters of GAM case 1 is better. The
difference between the two code runs shown in 4.2 is only 8%. The corresponding compu-
tational domains had an extent of 150ps. X 150ps. with 304 radial points and 64 toroidal
modes in case of GYRO and 5122 points in case of NLET. However, the gyrokinetic heat
flux fluctuates a bit between runs with varying numbers of radial grid points. For radial
grid sizes of 180, 256, 304 and 500, the corresponding average heat fluxes are 11.97, 11.52,
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Figure 4.2: Radially and flux-surface averaged heat fluxes vs. time. The time averaged
heat fluxes are indicated by dashed lines. a) Cyclone base case. b) GAM case 1. ¢) GAM
case 2. The heat fluxes in a) agree reasonably well; the fluid result is about 26% smaller
than the gyrokinetic result. The agreement is better in b), where the difference is only
8%. In case ¢) with the steepest gradients, the fluid heat flux is about a factor of 3 larger
than the gyrokinetic value, presumably due to the overestimated collisionless damping of
the GAM by the NLET parameters or the neglect of collisions in GYRO.
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Figure 4.3: Flux-surface averaged poloidal flow velocity vs. radial position and time. a)
Cyclone base case. b) GAM case 1. ¢) GAM case 2. Neither strong stationary zonal flows
nor strong GAMs are observed for the Cyclone base case parameters. Only weak zonal
flows are excited by the turbulence. The oscillations visible in a) are sub-dominant GAMs.
In contrast, b) and c¢) display distinct GAM characteristics. The more accented GAM
oscillations in the gyrokinetic simulation in ¢) correspond to the lower turbulence intensity
shown in Fig. 4.2.
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Figure 4.4: k,-w-spectra of the flux-surface averaged flow velocity with logarithmic colour
scale. a) Cyclone base case. b) GAM case 1. ¢) GAM case 2. The spectra corresponding
to the flow profiles shown in Fig. 4.3 confirm the observations made before. GAMs are
sub-dominant in a), most of the flow activity is located at w = 0. GAMs are dominant in
b) and ¢) with similar frequencies. The excited wave numbers differ slightly.
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12.06 and 10.16. The difference between the mean of these values and the fluid result is
only 3%.

For the parameters of GAM case 2, the turbulence intensity obtained with NLET is larger
than the gyrokinetic one by a factor of 3. The general trend to a significantly increased
heat flux for steep gradients, however, is the same in the gyrokinetic and the two-fluid
calculation. Possible reasons for the observed difference in case of edge parameters are
on the one hand an overestimated collisionless damping of the geodesic mode by the fluid
parameters used. On the other hand the neglect of collisions in the gyrokinetic calculation
could account at least for part of the discrepancy, since collisions should usually increase
the heat flux and become increasingly important the closer one approaches the separatrix.
Indeed, it was found that a reduction of the parallel heat conduction coefficient for the GAM
results in an enhanced RMS-amplitude (root-mean-square) and a significantly reduced heat
flux.

The transition from core to edge parameters is accompanied by increasing GAM activity
as is evident from Figs. 4.3 and 4.4. For the core adapted parameters of the cyclone base
case the dominant zonal flow is expected to be stationary whereas GAMs should only occur
sub-dominant due to collisionless damping [54]|. This expectation is fulfilled and the results
of GYRO and NLET agree very well in that both codes yield only sub-dominant GAMs
and most of the zonal flow activity is concentrated at w = 0. However, the stationary zonal
flows are weak. Strong stationary flows would form a rather stable radial mode structure
with a characteristic wavenumber. Due to the local limit, which makes the flow velocities
small compared to cge, velocities are given in units of the magnetic inhomogeneity drift
instead (see Chap. 3). The RMS flow amplitude in the stationary phase for the Cyclone
base case parameters is 1.54 in GYRO and NLET.

For the parameters of GAM case 1, GAMs become the dominant zonal flow for both codes.
The flow amplitudes are considerably higher than in the Cyclone base case, where the value
obtained with GYRO with 24.0 is more than twice the value of NLET, 9.5. The NLET
GAM spectrum is broader than the spectrum computed with GYRO, and the frequencies
are slightly lower. This difference may be explained by the fluid equations implemented
in NLET, in which a term which is responsible for the sign change of the GAM group
velocity for increasing 7 (see Sec. 3.4) is neglected. However, the neglect of this term
does not distort the general physics of turbulent transport and saturation through zonal
flows (as can be seen from the results of earlier studies |14, 36, 61] and from the behaviour
observed in this study), it only changes the GAM dispersion. Keeping in mind that the
linear GAM dispersion might also be changed to some extent by the turbulence (see Chap.
5), it is in any case safe to say that the observed differences in the equilibrium between
GAMs and turbulence may be caused by the neglect of the aforementioned term in NLET.
Furthermore, collisions are neglected in the GYRO runs, which may also play a role for
edge turbulence simulations. Similar observations are made for the parameters of GAM
case 2. The GAM frequency is slightly lower in NLET simulations, the wave numbers are
similar yet not equal. The flow amplitude obtained with GYRO (45.5) is again higher
than that obtained with NLET (34.5). The GAM pattern in the GYRO flow profile in Fig.
4.3 ¢) is much sharper than its NLET equivalent, implying that GAMs in this case are
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stronger compared to the turbulence intensity in GYRO than in NLET, i.e. very coherent
mode structures can be formed in the GYRO simulation.

In summary, turbulence simulations performed with GYRO and NLET for the parameters
given in Tab. 4.1 display qualitatively good agreement. Especially, the increasing GAM
activity during the transition from core to edge parameters is well reproduced by both
codes. The quantitative differences can partly be ascribed to the individual properties
of two-fluid and gyrokinetic theories, which were discussed in Sec. 2.2.3. This is, the
neglect of collisions in the gyrokinetic code for edge parameters and the only approximate
implementation of collisionless damping in the two-fluid code. Judging the results discussed
here, it seems reasonable to assume that the exclusive use of the two-fluid code NLET in
the following chapters is justified, and that the nature of the interaction between the
turbulence and the GAMs is not changed drastically by kinetic effects.






Chapter 5

Nonlinear GAM dispersion

The linear dispersion relation of GAMs — or to be precise their radial group velocity —
has been discussed thoroughly in Chap. 3, including the effects of the magnetic geome-
try. The drive of the geodesic acoustic modes, which is provided by nonlinear terms (i.e.
the turbulence), was of course neglected there. It is, however, very important because,
analogous to the discussion in Sec. 2.3.1, it may modify the GAM frequency and thus the
dispersion relation and the group velocity. Since GAMs are excited by and interact with
the turbulence, it is necessary to investigate to what extent the dispersion is changed by
the turbulence.

An example for the presumable influence of the turbulence on the GAM frequency is given
by Conway’s GAM measurements at the ASDEX Upgrade tokamak [7, 48|, which display
radial regions of constant GAM frequency (in spite of the temperature gradient) taking
turns with regions in which the GAM frequency scales with 7%/2. Such behaviour, a
geodesic acoustic mode with spatially constant frequency despite a non-negligible temper-
ature gradient, has been discussed by Itoh in Ref. [10]. Assuming a quadratic dispersion
relation of the form wean (7, kr) = waano(r)(1 + ak?) for small radial wave numbers k.,
the radial amplitude dependence of a mode with w(r, k) = const. was found to have the
form of an Airy function. Roughly speaking, the amplitude has a maximum at a radial
position close to wgan (r, kr) = waano(r), from which the amplitude decays exponentially
in one direction and propagates with slowly decaying amplitude in the other direction. The
directions of evanescent and propagating GAM depend on the sign of the group velocity,
vg = 20k, wganm,o(r), as has been discussed in Chap. 3.

The sign of the group velocity as well as its magnitude depend on «, which, due to the
turbulence, may in turn deviate from its linear value in Chap. 3. Furthermore, the form of
the dispersion can be influenced by the magnetic geometry. Using for example an X-point
geometry as discussed in Secs. 3.6 and 3.7.1, the dispersion becomes effectively linear for
small k.. The radial mode structure according to Ref. [10] is influenced by all of the
aforementioned points.

Therefore, the problem of the radial mode structure will be reviewed (following Ref. [62])
in Sec. 5.1 in order to elucidate the influence of the dispersion and to introduce a method to
measure the coefficient « in the quadratic dispersion defined above. In Sec. 5.2, the linear
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behaviour of GAMs in such slightly nonlocal systems will be discussed. Finally, in Sec.
5.3, the nonlinear GAM dispersion is studied with nonlocal, nonlinear NLET simulations,
which allows the identification of the nonlinear driving term responsible for the frequency
modification.

5.1 Radial mode structure

The flow profiles in Fig. 4.3 b) and ¢) and the corresponding spectra in Fig. 4.4 b) and
c) are typical examples for GAMs in local turbulence simulations. The GAM activity is
concentrated at two points of a presumed dispersion relation, which may be close to the
linear one, if the influence of the turbulence on the GAM frequency is weak. Thus, the
characteristic criss-cross pattern observed in the GAM flow profiles results in principle from
the superposition of the two Fourier modes (£k;,,wganr). If the local limit is relaxed, the
radial mode structure becomes more complex because, due to the temperature gradient, a
Fourier mode with a specific frequency contains contributions of various radial scales k.
The degree of locality in NLET simulations is described by the ratio of the turbulence- to
the background-gradient scale lengths A=' = L /L, which is proportional to p* = ps./a.
A ratio of A ~ 5 — 50 is typical for the situation in the edge region. Local simulations
typically use A ~ 1-10°. However, with a high degree of non-locality, the plasma pa-
rameters and therefore also the characteristics of the turbulence vary drastically over the
computational domain. Thus, even if GAMs might be excited everywhere in the simulation
domain, it is not clear whether the turbulence alters the GAM dispersion in the same way
at each radial position. For simulations intended to measure the nonlinear GAM dispersion
higher values of A ~ 200 are preferred, which implies slow parameter variation. Thus, the
turbulence is kept sufficiently homogeneous while the GAM frequency varies considerably
by Awgam ~ wgam,o/2, where the subscript “0” marks the reference frequency at the
centre of the computational domain.

Looking at the results of GAM measurements in Refs. |7, 48|, one may be directed to
the conjecture that the GAMs organise themselves in a global mode with a specific radial
mode structure determined by the following condition for the mode frequency

weanm (1, ky) = const. (5.1)

According to the arguments in Chap. 3 and the numerical results of Chap. 4, GAMs are
likely to be excited at small radial wave numbers. Therefore and due to the assumption
of slow parameter variation, it is reasonable to approximate the dispersion relation of the

GAM by
waam (1 k) = waanmo(r)(1+ akf), (5.2)

where wganro(r) is the local GAM frequency at k, = 0, which is basically proportional
to the square root of the sum of the ion and electron background temperatures. The
constant factor o accounts for the influence of turbulence, which may enhance or weaken
the dispersion. The form of the dispersion can be controlled by the exponent 3. For
circular magnetic geometry, the linear dispersion has been shown to be quadratic in k, in
the vicinity of k. = 0 in Chap. 3, whence the natural choice for 8 is 8 = 2. However,
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Figure 5.1: Idealised picture of the radial mode structure corresponding to the superpo-
sition of plane waves with fixed frequency, wave numbers according to Eq. (5.3) and an
r-dependent phase shift assuring that the phase is constant on the curve (5.5) with g = 2.
In the plot on the left, « = 5. Group velocities comparable to those calculated in Chap.
3 correspond to a = 0.25. The plot on the right with @ = 100 illustrates the effect of a
strong dispersion. The incoming waves are reflected at r = 0 and form a standing wave
pattern with the reflected waves. The red lines indicate a curve of constant phase.

as shown for X-point geometry in Sec. 3.7.1, the dispersion can be nearly linear for small
wave numbers, which would justify the choice 8 = 1. As a generalisation of this approach,
the GAM dispersion could be approximated by a Taylor series.

In order to satisfy the condition (5.1) with the GAM frequency given by Eq. (5.2), the
wave number must vary with r:

1 1/ 10, 1/8
ko(r)=|— _veam ~ ——WGAM’O(TO) (ro—r) , (5.3)
a \waganmo(r) o weAM

where wganm = waanm,o(ro) is fixed. If the dispersion is quadratic, i.e. f = 2, Eq. (5.3)
has no real solution for wgan,o(r) > wganm if a > 0 or for wganmo(r) < wgan if o < 0.
Since wgam o decreases towards the edge, this means that the mode is restricted to r > 7
or r < 7, respectively, which is in line with the result in Ref. [10]. Thus, the mode is
reflected at 7 = rg and since the frequencies of incoming and reflected wave are equal, a
standing wave pattern can form. If 5 = 1, however, Eq. (5.3) has a unique solution for all
r. Therefore, at a given radius r at given ‘kr‘ incoming and outgoing waves have different
frequencies, whence no standing wave pattern can develop.

A point moving with the phase velocity on a curve of constant phase r(t) (or ¢(r)) of a
mode obeying Eq. (5.1) has to fulfill the equation of motion

Tk (r) = waam- (5.4)
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Substituting the approximated right-hand-side of Eq. (5.3), this can be integrated over
time in order to obtain a wave front ¢(r):

1

1 0 g 1
tr)=—-7 [ - T‘“GAf‘fg)(’"O) (r —1o)"F + 1 (5.5)
143 WG AM

An idealised picture of the radial mode structure corresponding to this wave front can be
obtained by the superposition of plane waves with fixed frequency, wave numbers according
to Eq. (5.3) and an r-dependent phase shift assuring that the phase is constant on the curve
(5.5). Figure 5.1 shows examples for § = 2 for two different values of a. The reflection layer
at r = rg is clearly visible, and incoming and reflected wave form a regular standing wave
pattern with a radial scale that varies with . For a weak dispersion (small «), k, increases
rapidly with increasing distance from rg. Since, due to the resonances discussed in Chap.
3, GAMs with larger wave numbers are expected to be damped in turbulence simulations,
the resulting modes are expected to have a rather small radial extent. On the contrary,
if the dispersion is strong, larger radial structures are expected to be observed. By fitting
the wave front (5.5), i.e. a function t(r) = to +a(r — o) *1/7 to the frequency filtered flow
profile obtained from a nonlocal nonlinear NLET run, the underlying dispersion relation
can be approximated.

5.2 GAMs in linear nonlocal simulations

As a preparation for the nonlinear case, it is useful to have a look at the behaviour of
GAMs in linear nonlocal simulations. The interpretation of the results of such studies
thereby benefits from the fact that the linear dispersion for circular geometry is known.
The situation of a GAM that propagates radially, parallel to a temperature gradient, is
completely equivalent to the propagation of a wave, e.g. an electromagnetic wave, in a
dispersive medium. In a stationary situation, the frequency of the wave stays constant
even if the properties of the medium (the refractive index) change. The phase velocity,
however, depends on the medium. Therefore, a change of the medium goes along with a
change of the wave number of the wave in order to keep the frequency constant. The effect
of the temperature gradient on the GAM dispersion is basically a (radius dependent) up-
or downshift of the frequency referring to some reference radius. Consider now a GAM
wave packet at r = rg with wave numbers centered around an initial k.. The wave packet
propagates radially with its group velocity to r = rg + 07 into a region with temperature
T =T(r¢) + 0T and a dispersion relation which is, in principle, the dispersion relation at
ro shifted by dw(0T"). Depending on dw, the wave number of the initial wave packet either
increases or decreases. However, it is straightforward to show that in the case 0,7 < 0 —
which is the case in tokamak plasmas — the wave number will always increase (including
sign changes), no matter what the dispersion looks like.

Consequently, a GAM wave packet obeying the dispersion relation (5.2) with f = 2 and
a < 0 (as in the case of cold ions in circular geometry, Chap. 3) will always propagate
towards higher temperatures, whereas it will propagate towards lower temperatures for
a > 0. In either case, the wave packet is accelerated by the temperature gradient. On the
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Figure 5.2: Flux-surface averaged poloidal flow velocity vs. radial position and time. The
background temperature varies slowly with radius. At ¢ = 0 two GAM wave packets
are initialised at different radial positions, as can be seen from the differing frequencies.
Since the frequency of a wave remains constant, the radial wave number has to change
on radial propagation. Therefore, the wave packets are accelerated radially inward by the
temperature gradient, since group and phase velocity in this case have opposite sign. If
group and phase velocities had equal sign, the acceleration would be radially outward.

contrary, the propagation velocity is not influenced by the temperature gradient in case of
a linear dispersion, 8 = 1, which applies for small k, in a single-null geometry.

The above discussion is illustrated by Figs. 5.2 and 5.3, which show the result of a cold
ion nonlocal linear run. At time t = 0 two GAM wave packets are initialised at different
radial positions. The electron background temperature profile (normalized to T o/A) is
given by A — 0.34r with A = 100, where the radial position r is measured in ps and
r = 0 in the middle of the radial domain. The box size in radial and toroidal direction is
400pse X 400pse. Due to the assumption of cold ions, the GAM dispersion relation has the
form of Eq. (5.2) with 5 = 2 and a < 0. From the poloidal flow velocity plotted versus
radius and time in Fig. 5.2, it is easily seen, that the frequencies of the two wave packets
differ. Components of the wave packets with negative wave numbers initially propagate to
the low temperature region. As discussed above, the temperature gradient accelerates the
GAM radially inward and shifts the excited wave numbers to larger values. Therefore, the
propagation radially outward is slowed down, stopped, and finally reversed. The k, — w
spectrum is shown in Fig. 5.3 for two different time intervals. The left plot in Fig. 5.3
shows the Fourier transform of the flow profile in Fig. 5.2 in the time interval from ¢t =0
to t = 200, which is close to the initial state. The full time interval is covered by the
right plot in Fig. 5.3. Corresponding to the acceleration up the temperature gradient, the
GAM intensity in the spectrum moves at constant frequency to larger wave numbers. For
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Figure 5.3: Flow spectra (with logarithmic colour scale) at two different times correspond-
ing to the flow profile in Fig. 5.2. The approximated dispersion relations for the middle
of the radial domain as well as for the initial radial positions of the GAM wave packets
are indicated by the solid lines. Left: Fourier transform of Fig. 5.2 in the time interval
(0,180). Right: Time interval (0,900). The excited wave numbers increase with time,
corresponding to an acceleration radially inwards.

the initial phase on the left-hand side of Fig. 5.3, the excited GAMs agree with the linear
dispersions, which are indicated by solid curves for » = 0 and r = +60.

In another nonlocal linear NLET run, whose results are shown in Figs. 5.4 and 5.5, the
temperature variation is stronger than in the case discussed before. The locality parameter
A is now 225 and T (r) = A—1.13r. Moreover, GAMs are initialised at ¢ = 0 over the whole
radial width of the computational domain. The resulting poloidal flow velocity is plotted
against radius and time in Fig. 5.4 a). The flow velocity is seen to oscillate at each radial
position essentially at the local GAM frequency, whence the observed radial wave numbers
increase with time. The fact that the GAM oscillates at its local frequency is also evident
from the temporal Fourier transform corresponding to the flow profile, shown in Fig. 5.4
b). The intensity follows the local GAM frequency, which is indicated by the dashed line.
Only small deviations from the local frequency are observed, which is in line with the weak
linear dispersion (a ~ —0.25, Secs. 3.3 and 5.1). The radial mode structure of a GAM with
a distinct frequency can be compared to the generic mode structures shown in Fig. 5.1, by
extracting one frequency component from the flow profile in Fig. 5.4 a). The flow profile
of the Fourier mode with the local frequency at r = 0 is shown in Fig. 5.5. Due to the
initialisation at t = 0, only very small wave numbers are excited, which then increase with
time. Therefore, positive k, dominate in Fig. 5.5, and no standing wave pattern develops.
Nevertheless, the observed wavenumber increases rapidly with decreasing r, which again
confirms the weakness of the linear dispersion. As conjectured in Sec. 5.1, the mode is
evanescent for r > rg, since a < 0.
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Figure 5.4: Result of a linear nonlocal NLET run, in which a GAM is initialised at ¢ =0
over the full radial domain. The electron temperature decreases linearly from the inner to
the outer radial boundary. The ratio of ion to electron temperature is 7 = 0. a) Flux-
surface averaged poloidal flow velocity vs. radial position and time. The flow velocity
oscillates at each radial position with the local GAM frequency. Therefore, the excited
radial wave numbers increase with time. b) Temporal Fourier transform of the flow profile
on the left with linear colour scale. The dependence of the local GAM frequency on the
square root of the background temperature (dashed line) is clearly visible.
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Figure 5.5: Fourier mode of the flow profile of Fig. 5.4 a). The frequency shown here is the
local frequency in the middle of the radial domain, w ~ 1/v/2. As anticipated from Fig.
5.4 a), the mode width is very small, corresponding to a weak dispersion. Apart from the
fact that almost only modes with positive phase velocity are present, the observed mode
structure is similar to the one in Fig. 5.1 with a = 0.25. The faint oscillations far from
r = 0 are remnants of the Fourier transform.
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5.3 Nonlinear GAM dispersion in nonlocal simulations

Having established a basis for the investigation of the nonlocal properties of GAMs with
the detailed discussion in the previous sections, the influence of the nonlinear terms in the
fluid equations is considered in the following.

The results for the poloidal flow velocity of a nonlinear, nonlocal NLET code run are shown
in Fig. 5.6. The computational domain extends over 800ps. in the radial as well as in the
toroidal direction. The ratio of the density to the ion temperature gradient scale length
is ; = L,/Lt, = 2.4 and A = 200. The background density and temperature profiles
are linear, and the parallel ion dynamics are neglected (¢, = 0). Thus, the local GAM
frequency wganro(r) varies by roughly +0.3wganr,o(r = 0), where 7 = 0 marks the middle
of the radial domain. Furthermore, €, = 0.05 and ag = 0.5 (for a definition, see Ref. [14]).

The corresponding flow profile is shown in Fig. 5.6 a). The frequencies at the inner and the
outer boundary are seen to differ. Apart from that, the flow profile appears rather similar
to, for example, the flow profiles shown in Fig. 4.3 b) and ¢). However, the corresponding
temporal Fourier transform, shown in Fig. 5.6 b), reveals the influence of the turbulence.
The local GAM frequency is indicated in the spectrum by the dashed red line. In contrast
to the linear run discussed in the previous section, whose spectrum is shown in Fig. 5.4 b),
the GAM activity is not concentrated in a narrow region around wgano(r). Rather, the
GAMs with the local frequency wgano(ro) radiate outwards considerably, starting from
the radius ro. Frequencies which are about 30% higher than the local frequency can be
observed. Judged on the basis of Secs. 5.1 and 5.2, this points towards a much stronger
dispersion than in the linear case.

A quantitative conclusion on the nonlinear dispersion can be drawn from the Fourier com-
ponent of 5.6 a) with w = 1.14, which is slightly lower than the local GAM frequency at
r =0, wgamo(r = 0) = (8/6)'/2. This mode displays a very clear radial mode structure,
as can be seen in Fig. 5.6 ¢). However, the preference of this frequency is only a statistical
effect due to the finite simulation time. For very long run times, all modes are expected
to be equivalent. The observed radial mode structure in the nonlinear case shows a much
larger radial scale length of roughly 100ps. compared to the linear case shown in Fig. 5.5
with a radial scale length of about 10p,.. Indeed, a least-squares fit to a curve of constant
phase according to Eq. (5.5) with 8 = 2 — indicated by the solid blue line in Fig. 5.6 c¢) —
yields a &~ 109, which is about a hundred times the value of the linear dispersion relation.

In Fig. 5.7 a), this result is compared to the GAM spectrum obtained from an equivalent
local NLET run with A = 10%. Analogous to the examples shown in Fig. 4.3, the GAM
is excited at a preferred ‘kr} with the corresponding frequency. The quadratic dispersion
relations according to Eq. (5.2) with a = 1, which is roughly the linear value, and o = 1009,
the result for the fitting curve, are plotted over the spectrum. The dispersion for o =1 is
clearly much too weak to explain the excited frequencies. On the contrary, the dispersion
obtained from the nonlocal run fits very well to the GAM spectrum of the local simulation.
The cause for the nonlinear frequency shift is investigated below with the two-fluid equa-
tions as implemented in the NLET code [14]. Since €, = 0, all terms involving the parallel
velocity are neglected as well as all terms of order k?p?. The electron response is assumed
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Figure 5.6: Results of a nonlinear, nonlocal NLET code run with slow parameter variation,
A = 200. a) Flow profile. b) Temporal Fourier transform (linear colour scale) of a) with the
local GAM frequency indicated by the dashed line. c) Single Fourier mode of the flow profile
with w = 1.14 with a fit to a curve of constant phase according to Eq. (5.5). The radial
position where wganro(ro) = 1.14 is indicated by the dashed line. The radially varying
GAM frequency is already visible in the flow profile. The temporal Fourier transform of the
flow reveals that, in contrast to Fig. 5.4 b), the GAMs are also excited by the turbulence at
frequencies considerably higher (~ 30%) than the local frequency. The filtered flow profile
displays a radial mode structure similar to the strong dispersion case in Fig. 5.1.
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adiabatic. Therefore, the resulting fluid equations for the vorticity, the ion density and the
ion temperature are given by

n d oqT 1
Vi-T— (Vﬂﬁ + %lei) +3

T Cpy = 9)3) =0,

d n /[~ QqT ~

a" ey (Co SCm) =0,

d 2 TZ' ~ aqT A 9 ~

—T; — Sen— —Cp; + 5 T; ) =0, .
iy 36 <C¢—|— " Cp +2adTC ) 0 (5.6)

where n is the density, 7; the ion temperature, p; . = nT;. and py = (pe + 7p;)/(1 + 7).
The E x B velocity is given by vg = 2 x V¢. The total time derivative is defined by
d; = 0¢ + vg - V. The fluid system (5.6) contains three nonlinear terms which may either
transfer energy to the GAM oscillations or modify the GAM frequency. Separating linear
and nonlinear terms in the flow and the density equation yields

n aqT 1. . n ogT _
VL-X&‘/ (VLQS‘FTVLI%) +ch9_a||]\\+VL'XVE'V<VL¢+TVLZ%) =0,

~
Reynolds stress

on — 6nﬁé¢> + vgE-Vn _ QT Cpi =0. (5.7)
A ——

asymmetric transport V

diamagnetic drive

The flow velocity component of the GAM can exchange energy with the turbulence via the
Reynolds stress. The GAM induced density fluctuation is coupled to the turbulence, on the
one hand, through the up-down asymmetric component of the transport term v - Vn. On
the other hand, the flux-surface averaged transport can modify the background gradients.
Through the curvature term €, (n/ )\)Cpi, the GAM is therefore also indirectly coupled to
the flux-surface averaged transport. For further reference on the nonlinear mechanisms
driving the GAM see Refs. |11, 36, 63].

Setting k, = 0, it is straightforward to transform the linearised Eqs. (5.6) into an eigen-
value problem for the total pressure and the flow velocity of the GAM analogous to Eq.
(2.80). The corresponding eigenvalues are as in Sec. 2.4 given by the local GAM frequency
+iwgan,o(r). Using the notation of Sec. 2.4, the present state of the GAM oscillation is
characterised by its pressure p and its poloidal flow velocity 0. At each r, the Fourier
components of p and 0 with frequency wgan,o(r) can therefore be regarded as the com-
ponents of a vector ¥ of constant length in the n — vg plane, whose base point is at the
origin and whose tip rotates with w = wganr0(r) around the origin. The length of the state
vector, \Il‘ is defined as the energy contained in the GAM. In this picture, the linear (in
the perturbations p, vg) parts on the right-hand-side of the equations of motion d;p = ...
and 0,0 = ... (see Eq. (5.7)) for density and flow correspond to differential vectors § Wy,
which are perpendicular to ¥ and thus rotate the tip of ¥ around the origin with the lin-
ear GAM frequency, keeping the energy constant. The nonlinear terms W, o150, however,
do not need to be perpendicular to the state vector ¥, since they can exchange energy
between GAMSs and turbulence. Thus, they have to be decomposed into their components
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Figure 5.7: a) Flow spectrum of a local simulation (A > 1) otherwise equivalent to the one
shown in Fig. 5.6 (using the parameters at 7 = 0). The result of the fitting curve of Fig.
5.6 c) corresponds to a = 109. The resulting dispersion wgan (7, kr) = waano(r)(1+ ak?)
agrees well with the result of the local simulation. The dispersion relation for a = 1 is
also indicated as reference. b) Nonlinear frequency shift. The frequency shift required to
explain the radial mode structure of the mode with w = 1.14 is indicated by the dashed-
dotted orange line. The solid black line is the frequency shift resulting from the up-down
asymmetric component of the turbulent transport. The contribution of the frequency shifts
induced by the diamagnetic (dashed, orange) and the Reynolds stress (dotted, green) to
the total nonlinear frequency shift is marginal.

parallel to ¥, which account for the energy exchange, and their components perpendicular
to W. Clearly, the latter account for the nonlinear frequency shift.

These frequency shifts due to the various nonlinear terms have been computed for the
nonlocal NLET run discussed above. The results for the mode with w = 1.14, shown in
Fig. 5.6 c), are plotted against the radial position r in Fig. 5.7 b). The frequency shift
required to explain the radial mode structure in Fig. 5.6 c) is indicated by the dashed-
dotted, orange line. The frequency shift induced by the up-down asymmetric component of
the nonlinear transport, represented by the solid black line, agrees well with the expected
value, apart from statistical noise. The remaining nonlinear terms, the diamagnetic drive
and the Reynolds stress, do not contribute to the nonlinear frequency shift in the case
discussed here. However, the influence of the nonlinear terms on the GAM frequency may
depend sensitively on the properties of the turbulence. The flow spectrum in Fig. 4.4 b) for
example rather suggests a negative value of «, corresponding to a GAM radiating radially
inward. Indeed, if A is reduced to 100, an NLET run with otherwise equal parameters
confirms this conjecture, yielding o = —1. A value of a = +2 is obtained in an analogous
simulation for the run shown in Fig. 4.4 ¢). Since the only difference between those two
runs are the values of €, = 2L, /R and L,,/Ly (0.2 and 0.08, and 3 and 5, respectively),
one may speculate, whether the steepness of the gradients, given by €,, is one relevant
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parameter controlling the nonlinear GAM dispersion. The NLET run analysed in this
section (see Fig. 5.6) has an even smaller value of ¢, = 0.05 and displays a stronger
dispersion with a = 109. Regarding the dependence of a on the plasma parameters, one
is led to the conjecture that GAMs can also exist as modes which are “trapped” between
reflection and absorption layers on different flux-surfaces. Within the framework of the
preceding discussion, an absorption layer would occur where o = 0. If the group velocity is
zero, only GAMs at the local GAM frequency wgan,o(r) can exist. If a GAM with different
frequency approaches the absorption layer, k. — oo, which results in strong damping by
the resonance effects discussed in Chap. 3. GAMs at the local GAM frequency can be
expected to be strongly damped due to phase mixing effects. This situation somewhat
reminds of a GAM amplitude profile measured in TEXTOR [64], which displays a narrow
amplitude dip in a region where the GAM frequency scales with the square-root of the
temperature. Regarding the above result that this scaling can be due to a weak dispersion,
it may well be that the dip is due to a sign change of «, i.e. due to an absorption layer.



Chapter 6

GAMs in NSTX and ASDEX
Upgrade

As outlined in the introduction, GAMs are an ubiquitous phenomenon in the edge of
tokamak plasmas. Naturally, the existence of experimental data demands for comparisons
between theory and experiment. In this context, the following numerical studies contribute
to the understanding of certain aspects of GAM measurements performed in the tokamaks

ASDEX Upgrade and NSTX.

6.1 Quiet periods in NSTX — GAMSs?

The GAM analysis for experimental NSTX equilibria is motivated by findings of Zweben
et al. [13]. Edge turbulence structures can be measured in NSTX by the GPI diagnostic
(see Ref. [13] and references therein), whose main component is a fast camera system
able to record images at a frame rate of up to 285000 frames per second for a period of
up to 50ms. The cameras capture the light emitted by neutral gas, which is puffed into
the plasma edge. The intensity of the emitted light depends on the plasma density and
temperature, whence the captured light also reflects the turbulence intensity.

In many neutral beam injection heated discharges, the GPI data indicates that the L-H-
transition is preceded by roughly periodic (v ~ 3kHz) quiet periods, that is time intervals
with suppressed turbulence activity. During these quiet periods, the intensity captured by
the GPI diagnostic — though still in L-mode — is of the order of the intensity level measured
after the L-H-transition. Since the quiet periods are observed to be correlated with an
inversion of the poloidal flow velocity, the experimental results resemble the modulation of
the turbulence intensity by geodesic acoustic modes described for example in [36]. Thus,
the question arises whether the quiet periods are indeed caused by a modulation of the
turbulence by GAMs.

The first step of this investigation is the calculation of the linear GAM frequency for the
experimental equilibrium data, which is obtained via an EFIT equilibrium reconstruction
[65]. From this data — particularly from the poloidal flux data ¥p(R,Z) and the safety
factor profile ¢(¥p) — the local magnetic geometry is computed applying the Mercier-Luc

81
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formalism described in Sec. 2.1. Afterwards, the linear GAM frequency (in dimensionless
units) at zero radial wave number, k, = 0, is evaluated for the experimental equilibrium
as explained in Sec. 2.4. Finally, by combining the GAM frequency data with the experi-
mental temperature profile, a radial GAM frequency profile in SI units is obtained, which
can easily be compared to experimental data. Let the dimensionless GAM frequency be
denoted by G here. The sound speed is ¢; = [y(T; + T¢)/m;]'/?, and 7 is the adiabatic ex-
ponent of the system, which ranges between 1 for isothermal and 5/3 for adiabatic systems.
Thus, the GAM frequency in SI units is given by

c

5 G. (6.1)

VGAM = o

In the following, when a frequency is given in SI units, it is assumed that v is 4/3, that
the ion mass m; is the mass of deuterium, and that T; ~ T,. For comparison with results
obtained with NLET, whose frequencies are measured in units of 2cs. /R, the geometry
factor G has to be multiplied with (R/2) - (ye + 57/3), where 7 = T, /T; and v, = 1 if
electron temperature fluctuations are neglected, and . = 5/3 when electron temperature
fluctuations are included.

The NSTX discharges analysed this way are shot 135042! at ¢t = 232ms, shot 139436 at
t = 243 ms, shot 139442 at t = 289 ms and shot 139448 at t = 1630 ms. The corresponding
separatrix shapes are shown in Fig. 6.1 e). The results for the GAM frequencies are plotted
against the major radius R and the safety factor ¢ in the upper parts of Fig. 6.1 a)-d) in
the radial domain from ¥p = 0.65...0.98 ¥, which is equivalent to p,,; = 0.81...0.99
with pper = (Up — \lisep)/\llsep)l/2. Here, W, is the poloidal flux at the separatrix. Since,
as explained in Sec. 2.4, in realistic geometries there may be more than one mode that
displays the characteristics of a GAM, each of the plots 6.1 a)-d) shows the frequencies of
the five flow eigenmodes with the highest ratios of perpendicular to parallel kinetic energy.
The corresponding energy ratios are plotted in the lower parts of Fig. 6.1 a)-d), and the
mode with the highest ratio is indicated by the solid red line.

Despite the differences of the magnetic geometries of the considered discharges, the GAM
frequencies close to the separatrix are comparable in all cases, ranging between 3 and
17kHz. It is interesting to note here, that the variation of the shown frequencies is mainly
due to the temperature profile. In dimensionless units, i.e. in terms of the geometry factor
G, the frequency of the strongest GAM candidate hardly varies with R. Each discharge
exhibits three eigenmodes with comparable energy ratios of E| /E) ~ 1 at Up = 0.98W,
which are therefore classified as GAMs. Since the parallel kinetic energy dominates in case
of the remaining eigenmodes, those modes can at this stage be classified as sound waves.
In case of shot 135042, the eigenmode with the lowest frequency — which is actually only
the fifth GAM candidate with E, / E) = 0.02 - is interesting due to the poloidal amplitude
structure of the corresponding parallel flow velocity, which corresponds to what is the “m =
1 up-down antisymmetric” soundwave in circular geometry. The (n = 0,m = 1)-sound

'For shot 135042, no temperature profile was at hand. The T. profile was therefore estimated (with
T. in eV and R in m) as T.(R) ~ 250 — (250/0.14) - (R — 1.39) based on a plot of T, vs. major radius in
Ref. [13]. In the radial interval covered by the spectra in Fig. 6.1 a)-d), this approximation fits the real
temperature profile reasonably well.
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Figure 6.1: a)-d) Eigenfrequencies and corresponding ratios of perpendicular to parallel
kinetic energy of the corresponding flow eigenmodes of the linear GAM eigenproblem for
NSTX equilibria plotted against major radius and the safety factor. The GAM candidate
with the highest ratio of E /E) is marked by a thick red line. e) Separatrix shapes of
the analysed NSTX discharges. f) Linear NLET computed GAM spectrum for NSTX shot
135042 with the frequencies obtained from the GAM eigenproblem for k., = 0 indicated
by the solid lines. The difference between the NLET spectrum and the eigenfrequencies is
readily explained by the reduction of v, from 5/3 to 1 by the parallel heat conductivity.
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Shot R deep | Te | G1 | 11 Gy | 12 Gz | v3 Glow | Viow
135042 | 150.7 | 0.8 42 | 0.64 | 7.47 | 0.39 | 4.6 0.85 | 9.86 | 0.26 | 3.06
139436 | 140.9 | 0.7 70 | 0.55 | 824 | 0.73 | 10.93 | 0.34 | 5.12 | 0.22 | 3.33
139442 | 144.2 | 0.7 55 | 0.51 | 6.87 | 0.7 9.3 0.32 | 4.25 | 0.21 2.87
139448 | 144.1 | 0.6 50 | 0.7 8.94 | 0.54 | 6.86 0.32 | 4.11 | 0.21 2.63

Table 6.1: GAM candidates obtained by solving the GAM eigenproblem for k., = 0 for
different NSTX shots. Lengths are measured in cm, temperatures in eV and frequencies v
in kHz. Frequencies G are in dimensionless units.

mode has two polarisation directions, which in circular geometry would consist of a sin(6)
pressure perturbation with a cos(f) parallel velocity perturbation, and a cos(f) pressure
perturbation with a sin(6) parallel velocity perturbation, respectively. The former couples
to the poloidal E x B-flow and results in the GAM, whereas the latter does not interact
with the GAM at all and therefore has F, /E| = 0. Nevertheless, the corresponding
mode appears with a non-vanishing ratio £, /F) in the GAM spectrum of shot 135042,
which can be attributed to the lack of up-down symmetry in the experimental NSTX
equilibria. Indeed, calculating the flow eigenmodes using an up-down symmetric Miller
type equilibrium (see Sec. 2.1.3 and [12]) with parameters similar to those of the actual
discharge, i.e. R = 0.85, a = 0.65, elongation x = 2, triangularity § = 0.5, ¢ = 8, s, = 0.5,
and differential Shafranov shift 0, Ry = —0.4, yield £, /E = 0. However, adding a small
vertical shift of the flux-surfaces in order to break up-down symmetry — as in Sec. 3.7.1 —
increases EJ_/EH to 4-107%. Checking shots 139436, 139442 and 139448 explicitly for the
mode discussed before, shows that in all three cases, the energy ratio E /E| of the mode
is only slightly too low (0.01,0.01 and 0.003, respectively) to be included in the plots in
Fig. 6.1.

The three most probable GAM candidates at Up = 0.98W,,, and, in addition, the low
frequency mode are listed in Tab. 6.1 together with the reference radius of the corre-
sponding flux-surface, the distance to the separatrix, and the electron temperature. Since
the numerical solution of the GAM eigenproblem is based on the same equations as the
NLET code, linear NLET runs, in which all damping terms such as parallel heat conduc-
tion or viscous damping are deactivated (analogous to the linear simulations discussed in
the previous chapters), can be expected to agree exactly with the spectra shown in Fig.
6.1 for k, = 0. Nonetheless, linear simulations are useful, since they allow to check for the
influence of parallel electron heat conduction on the GAM frequency. As no artificial GAM
driving mechanism is implemented in NLET, ion heat conduction cannot be considered in
such simulations due to the corresponding high GAM damping rate.

The linear GAM spectrum for shot 135042, including electron heat conduction, is shown
in Fig. 6.1 f). For a summary of the parameters used for the NLET simulations discussed
here as well as in the following section, see App. D. While the frequencies at zero radial
wave number are identical to those shown in Fig. 6.1 a) and listed in Tab. 6.1 for zero heat
conductivity k., the frequencies computed with x. = 0.174 are reduced by about 10 %.
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This reduction is readily explained by the reduction of the electron adiabatic coefficient
from 5/3 to 1, implying that the GAMs behave as in the case of isothermal electrons.
However, this does not mean that the electron temperature fluctuations can be neglected
in nonlinear NLET runs, since they can be important for the turbulence.

The ‘GAM-ness” of the various eigenmodes excited in Fig. 6.1 f) is well reflected in the
intensity of the corresponding spectral lines. The GAM frequencies for shot 135042 display
only weak dispersion. However, the up-down asymmetry of the magnetic configuration
causes an non-vanishing group velocity at k. = 0 in case of GAM candidate 1 with G; =
0.64 < wgam = 0.88.

Based on the results of the linear calculations discussed above, it is indeed possible that the
phenomenology of the quiet periods observed in NSTX is caused by GAMs and their ability
to modulate the turbulence intensity. The three strongest GAM candidates for shot 135042
with v = 1...5/3 and T = 42eV suggest a frequency interval from v ~ 4...11kHz in
which GAMs are most likely to be observed. Taking into account the frequency reduction
by the electron heat conduction, the lower bound of this interval can be lowered to 3.6 kHz,
which is close to the frequency measured in NSTX. Another factor that has to be discussed
here is the temperature profile. For the calculation of the aforementioned frequencies the
temperature on the flux-surface under consideration was used. On the one hand, temper-
ature measurements are not completely accurate and allow the calculated frequencies to
vary within the error bars of the temperature diagnostic. On the other hand, it has been
shown in Chap. 5 that GAMs may radiate in the radial direction, such that it may well
be that the measured frequency belongs to a GAM excited on a flux-surface with lower
temperature. The fact that in case of shot 135042 the temperature within +2 cm around
the separatrix varies between 10 and 100eV allow for a variation of the frequencies by a
factor of roughly 1.5. In addition, there exists a low frequency mode, which in case of shot
135042 has a frequency of rather accurately 3kHz. Despite its low ratio of perpendicular
to parallel kinetic energy, it may nevertheless be excited and modified by the turbulence
and thus account for the behaviour observed in experiment.

Therefore, it is indispensable to compare the results obtained from linear calculations
with nonlinear turbulence simulations. The computational domain used in these studies is
2T4pse X 274pse in radial-toroidal direction and one magnetic connection length in parallel
direction. The simulations are fully electromagnetic and include the effects of ion and
electron heat conduction, electron inertia, and viscous stresses. The most important pa-
rameters are R = 1.507m, ¢, = 0.08, reflecting the steep gradients in the edge, ag = 0.82,
€ =9-1073, oy, = 0.55, and n; = ne = 3. The global shear is s, = 8.48. Figure 6.2 a)
shows the resulting poloidal flow profile and the corresponding flow spectrum. A coherent
pattern of outward propagating flows oscillating at a low frequency is observed. In contrast
to the results presented in the previous chapters, e.g. in Fig. 4.3, no criss-cross flow pattern
is excited by the turbulence, which is reflected in the asymmetry of the flow spectrum for
this NLET run. The oscillations of the flux-surface averaged poloidal flow in Fig. 6.2 a)
is well correlated with the up-down antisymmetric component of the pressure fluctuations
as well as the up-down antisymmetric and in-out antisymmetric component of the paral-
lel flow velocity, and the flux-surface averaged heat transport. The correlation with the
pressure fluctuations and the modulation of the turbulent heat transport is typical for a
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Figure 6.2: Nonlinear NLET runs for NSTX shot 135042. Left: flow profiles. Right: flow
spectra. a) A slow GAM oscillation of the flow is observed that may be attributed to the
low frequency GAM candidate. The corresponding heat flux profile is strongly modulated
by the flow. b) Same parameters as a) but with electron heat conduction disabled. Higher
frequency GAMSs are excited, which can be ascribed to the strongest GAM candidates
instead of the low frequency eigenmode. c¢) Same parameters as a) but with reduced global
shear.
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GAM. The RMS amplitudes of the poloidal flow (in the units defined in Chap. 3) and the
flux-surface averaged heat flux (in gyro-Bohm units) in the stationary turbulent state are
v = 7.2 and Q = 30.6. Thus, in physical units the average flow velocity is roughly 2 % of
the sound speed, i.e. vy ~ 1km/s, which is the same order of magnitude as the poloidal
flow velocities observed in NSTX [13]. The flow spectrum in Fig. 6.2 a) shows that the
frequency of the observed flows is slightly lower than that of the low frequency mode given
in Tab. 6.1. However, keeping in mind that this frequency was calculated for k. = 0, that
electron heat conduction may lower the GAM frequencies, and that turbulence generally
broadens the linear spectra and can influence the dispersion relation, it is plausible to
assign the observed oscillation to the low frequency mode. However, the poloidal flow is
much stronger than it could be expected to be from the linear value of E, / E).

In a subsequent NLET run shown in Fig. 6.2 b), the electron heat conduction was deac-
tivated. As a result, GAMs are excited at higher frequencies. The flow spectrum shows
activity in a broad range around the three strongest GAM candidates, which are indicated
by dashed lines. The RMS flow amplitude is v = 21.3, corresponding to vp ~ 3km/s.
The RMS heat-flux is Q = 61.5. As in the NLET run with activated electron heat conduc-
tion, the heat-flux is modulated by the flow oscillations. The GAM spectrum in Fig. 6.2
b) is equivalent to that of a corresponding NLET run which neglects the electron temper-
ature fluctuations completely, except for a lower RMS flow of v = 12.1 and an increased
heat-flux of Q = 111.7. In this case, finite electron heat conduction leads to a qualitative
change of the observed GAM spectrum, while the electron temperature fluctuations alone
cause only quantitative changes.

In another NLET run, the global shear was reduced to s, = 3. The effect is shown in
Fig. 6.2 ¢). The GAM oscillations are very coherent, the spectrum is asymmetric, positive
radial wave numbers are preferred. The major part of the intensity in the flow spectrum is
concentrated around the low frequency mode and GAM candidate 2 with G2 = 0.39 (see
Tab. 6.1). The RMS amplitudes of poloidal flow and heat-flux are lower than in the cases
discussed before, 5 = 4.0 and Q = 9.6. In contrast to the NLET run shown in Fig. 6.2 a)
and b), electron heat conduction is of minor importance. Neglecting electron temperature
fluctuations completely does not change the results qualitatively.

Interestingly, the the asymmetry of the flow spectra seems to be a systematic feature of
the magnetic geometry. In order to test this statement, the run shown in Fig. 6.2 c)
was started with initial noise generated with a modified random seed. Although GAMs
with negative k, are excited in the beginning, the modes with positive k, always dominate
the long term evolution. NLET runs using a high aspect ratio single-null geometry as
discussed in Sec. 3.7.1 yield preferred growth of negative k, if the ion curvature drift is
directed towards the X-point and preferred growth of positive k,. if the curvature drift is
in the opposite direction (Fig. 6.3 a)). The latter case applies to the results shown in Fig.
6.2.

This behaviour has consequences for non-Boussinesq studies. According to the discussion in
Sec. 5.2, the wave number of a GAM wave packet propagating on a significant background
temperature gradient increases with time. When a GAM excited at a positive wave number
k. is shifted to a higher wave number k, o+ 0k,, the GAM induced shearing rate increases.
As a result, the turbulence intensity will be reduced due to the enhanced shearing, which
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Figure 6.3: Flow profiles of NLET turbulence simulations using the same parameters as
in Fig. 5.6 but with a single-null geometry as discussed in Sec. 3.7.1. a) Boussinesq
simulation with A = 10°. With the magnetic inhomogeneity drift v; pointing away from
the X-point (left) only GAMs with positive group velocity are excited. The situation
is reversed with v, pointing towards the X-point (right). b) Non-Boussinesq simulation
with A = 200 and vy towards the X-point. The negative wave number GAMs excited
predominantly by the turbulence are not stable but are shifted towards k, = 0. Where the
radial GAM scale approaches k, = 0, GAM activity and turbulent transport are enhanced,
which manifests in b) as a slow modulation of the GAM activity. This modulation is
correlated to a modulation of the turbulent heat-flux, which is shown by the black and
white curves. The black curve is the (scaled) amplitude of the k., = 0 component of the
E x B flow within the shaded region. The white curve represents the (scaled) RMS heat-
flux within the shaded region, where the modulation of the RMS heat-flux at the GAM
frequency has been averaged out.
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also means that the GAM drive is reduced. Thus, the GAM amplitude will decrease with
increasing shift dk,. On the contrary, if a GAM excited at k.o < 0 is shifted to higher &,
the shearing rate decreases until k, = 0, implying that both, the GAM and the turbulence
amplitude, increase. As soon as k, crosses k, = 0, the shearing rate due to the GAM
increases again thereby reducing the turbulent heat-flux.

Non-Boussinesq runs of the NLET calculations shown in Fig. 6.3 b) support this consid-
eration. If vq is directed away from the X-point, i.e. GAMSs are excited predominantly at
k, > 0, the system evolves to a stable equilibrium between GAM activity and turbulence
level. The flux-surface and radially averaged GAM amplitude and heat-flux are basically
constant after an initial phase. However, if vq is directed towards the X-point and GAMs
are excited at k. < 0, modulations of the GAM activity correlated to oscillations of the
turbulent heat flux are observed (Fig. 6.3 b)). The initial GAM pattern displaying a
characteristic radial wave number persists only until ¢ ~ 50. After this time, the increase
of k, and the GAM activity becomes obvious. The flow profile in Fig. 6.3 b) shows, that
the GAM amplitude increases until k. = 0 and then quickly drops. The GAM activity
at k. > 0 is negligibly small. In this study, the GAMs not only modulate the turbulence
intensity directly (which has been averaged out to obtain the curves in Fig. 6.3 b)) but also
indirectly via their radial scale length, which is time-dependent in nonlocal simulations.
The results presented in this section support the hypothesis that the quiet periods in
NSTX may be caused by a transport modulation due to geodesic acoustic modes. Linear
calculations of the GAM frequency NSTX discharges yielded various GAM candidates,
which were classified according to their ratio of perpendicular to parallel kinetic energy.
Among the three modes with the highest values of E| / E)|, there was one with a frequency
between 4 and 5 kHz. This is close to the 3 kHz oscillation observed in the experiment
if one keeps in mind that the temperature within the radial window observed by the GPI
diagnostic varies strongly. In case of shot number 135042, for example, the temperature
ranges from 10 eV to 100 within +2 cm around the separatrix [13]. However, one has to
be aware of the fact that the observed GAM frequencies depend strongly on the properties
of the turbulence, i.e. on the plasma parameters, which are not known accurately.
Additionally, a low frequency mode with v ~ 3 kHz but lower values of £, /F) was found
for each of the considered discharges. A nonlinear NLET study for discharge 135042
showed, that the low frequency mode can be excited by the turbulence and that it strongly
modulates the turbulence level. Furthermore, a mechanism able to modulate the turbulent
heat-flux in non-Boussinesq studies was found. But since the modulation observed in the
corresponding NLET calculation was much slower than the GAM oscillations, it would be
subject to further studies whether this effect could be important for NSTX. However, the
numerical observation displays some similarity to the I-phase in ASDEX Upgrade [47], a
state in which the turbulence intensity oscillates about five times slower than the GAM.

6.2 GAMs in ASDEX Upgrade

In contrast to the observation of quiet periods in NSTX, whose origin is not finally clear,
the observations made in ASDEX Upgrade using Doppler reflectometry can rather cer-
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Figure 6.4: a) and b) Eigenfrequencies and corresponding ratios of perpendicular to parallel
kinetic energy of the corresponding flow eigenmodes of the linear GAM eigenproblem for
ASDEX Upgrade equilibria plotted against p,, and the safety factor. The GAM candidate
with the highest ratio of £ /E is marked by a thick red line. The results of the GAM
measurements of Ref. [7] are marked by the dashed blue line in a) and highlighted in blue
in b). c¢) Flux-surface shapes of the analysed ASDEX Upgrade discharges at ppo = 0.995.
d) Linear NLET computed GAM spectrum for ASDEX Upgrade discharge 20787 with the
frequencies obtained from the GAM eigenproblem for k. = 0 indicated by the solid lines.
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tainly be attributed to geodesic acoustic modes |7, 48]. However, some aspects of those
measurements require further theoretical consideration.

First, the measured frequencies deserve some attention. A comparison between experi-
mental GAM frequencies in ASDEX Upgrade and linear GAM frequencies can be found
in Ref. [11]. This study applied a Miller type equilibrium [12| with parameters chosen
such that the model geometry approximately fitted the real magnetic configuration. The
frequencies obtained this way, however, deviated from the experimental results by a factor
of up to 2. Of course, this mismatch could be ascribed to the influence of turbulence,
where the observations in the previous section may serve as an example, or to inaccuracies
of the temperature profiles. On the other hand, an experimental equilibrium exhibits more
features that can be covered by the parametrisation proposed by Miller and co-workers in
Ref. [12]. Thus, using the data from the equilibrium reconstruction code Cliste [66] for the
computation of the linear GAM frequency can be expected to result in a better agreement
between theory and experiment.

Another experimental finding concerns the effect of the density pedestal on the GAM
activity. According to Ref. [48|, discharges with X-point divertor configuration display
a steep edge density pedestal whereas the pedestal is much less pronounced in limiter
discharges. In the latter case, GAMs are observed within a radial range from p,, ~ 0.75
to the edge. The inner cut-off can be ascribed to the safety factor, which decreases towards
the core implying increasing Landau damping. In the former case, the GAM activity
vanishes for pp, < 0.94. At this radius, the safety factor in case of shot number 18813 is
approximately 3, a value at which GAMs can actually be expected to be excited.

In this context, for the discharges 20787 at ¢ = 1ms and 18813 at ¢ = 0.9 ms, the linear
GAM frequencies are computed and analysed analogous to the previous section by solving
the GAM eigenproblem for k., = 0 and by linear NLET simulations. Whether GAMs are
excited or not depends in the end on the properties of the turbulence. Therefore, nonlinear
NLET runs with parameters based on the experimental data are also analysed.

The shapes of the flux-surfaces at pp, = 0.995 of the two discharges under consideration
are shown in Fig. 6.4 ¢). Shot 20787 is an inner limiter discharge, shot 18818 a lower
single-null divertor discharge. In dimensionless units, the GAM frequency can be expected
to be smaller in shot 18813 than in shot 20787 due to the influence of the elongation
[11, 7, 39]. However, the more pronounced pedestal of the density and temperature profile
in the divertor shot make up for the elongation effect, such that the frequencies in SI units
predicted by linear theory are actually higher in the edge for the divertor discharge as is
obvious in the spectra shown in Fig. 6.4 a) and b).

The experimental results for shot 20787 are indicated by the dashed, blue line in Fig. 6.4
a), which roughly interpolates the data points shown in Ref. [7]. In the region between the
frequency plateaus, around p,, ~ 0.91, where the GAM frequency was found to scale with
the square-root of the temperature, the experimental data agrees very well with the linear
prediction. However, in the plateau regions, the frequency deviates from the frequency of
the strongest GAM candidate. It is smaller than the linear value at the inner plateau and
larger at the outer plateau. Taking into account that the density and temperature profiles
become steeper towards the edge, reflected in €, decreasing from 0.187 at p,, = 0.84 to
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Figure 6.5: Results of a nonlinear NLET run for ASDEX Upgrade discharge 20787 at
ppol = 0.91. Left: flow profile. Right: flow spectrum. Coherent GAM activity is observed
in the flow profile. The corresponding spectrum displays two symmetric, broad but still
clear GAM activity peaks. The corresponding frequency is 13.7 kHz. The linear frequency
of the strongest GAM candidate, shown in Fig. 6.4 d), is indicated by the solid line in the
flow spectrum.

0.026 at ppe = 0.97, this behaviour might be caused by the nonlinear effects on the GAM
dispersion discussed in the Chap. 5.

However, there is more than one GAM candidate that can be excited by the turbulence
and could therefore account for the experimental observations, though E, / E) for the main
GAM candidate is at least a factor 100 higher than for all other GAM candidates, which
makes the first hypothesis seem more plausible. The flow spectrum obtained by a linear
NLET run for shot 20787 at pp,, = 0.91 is shown in Fig. 6.4 d) with the frequencies
obtained from the GAM eigenproblem for k, = 0 indicated by solid lines. As discussed in
the previous section, electron heat conduction in this case makes the GAM behave as in a
system with isothermal electrons.

In case of shot 18813 the experimental GAM frequencies are distributed in the highlighted
region in Fig. 6.4 b). Again, the experimental results show good agreement with the linear
predictions. This, however, does not explain the suppression of the GAM for p,, < 0.94.
This has to be investigated in nonlinear NLET runs.

Coherent GAMs with intensities well above the turbulent background are found in a non-
linear NLET run for shot 20787 at p,, = 0.91, shown in Fig. 6.5. The observed frequency
corresponds to 13.7kHz, which is 17 % lower than the frequency of the strongest GAM
candidate. From the nonlinear simulation, it is not clear, to which GAM candidate the
observed GAM can be ascribed. The linear frequency of the strongest GAM candidate
indicated by the solid line in the flow spectrum in Fig. 6.5 could serve to explain the
intensity obtained from the simulation.

In any case, the nonlinear NLET runs for shot 20787 at p,, = 0.84, 0.91 and 0.97 largely
agree with the linear predictions. The corresponding GAM frequencies are 17.8, 13.7, and
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9.4 kHz, where the first two values are smaller and the last one is larger than the frequencies
predicted by linear theory. The RMS amplitudes of the poloidal flow are 0.3, 0.5, and 2.4
km /s, where the first two values are of the same order as the GAM amplitudes given in
Ref. [7].

The nonlinear runs for shot 18813 at p,, = 0.88, 0.97, and 0.99 — except at p,o = 0.97
— show weak GAM activity. Nevertheless the observed frequencies agree reasonably with
the linear values. At pp,, = 0.88, weak GAMSs with intensities of the order of the turbulent
background are found at a frequency between 15 and 20 kHz. At p,, = 0.97, GAMs with
v = 10 kHz are found, and at pp, = 0.99 v = 3...7 kHz. The RMS flow velocities are of
order 0.5 km/s. The GAMs observed in the nonlinear NLET run at pp, = 0.88 are weak.
The low intensity can be traced back to the viscous stress term in the vorticity equation
(see [14]), which can counteract the coupling of the poloidal flow to the m = 1 pressure
sideband. The coefficient 7, of the viscous stress mainly depends on the background
temperature and ¢,. Since the gradients in case of shot 18813 are much steeper than
those of shot 20787, v, at pp, = 0.88 is 1.75 whereas for shot 20787 +, is only 0.68 at
Ppol = 0.84. In order to verify this hypothesis, two nonlinear NLET runs have been started
— for simplicity neglecting electron temperature fluctuations — one with «, = 1.75 and one
with 7, = 0. In the former case, no GAM activity is found. However, with deactivated
viscous stress, strong, coherent GAMs are excited by the turbulence at a frequency of 20.8
kHz.

Concluding, the linear as well as the nonlinear results obtained with NLET two-fluid
simulations show, overall, good agreement with ASDEX Upgrade data. However, one has
to be aware of the sensitive dependence of the observed GAM frequencies and intensities
on the properties of the turbulence, which in turn depend on the applied parameters.
Since the simulation parameters are calculated from experimental data, which is subject to
measurement errors (especially the gradient scale lengths), the numerical studies discussed
here cannot reproduce exactly the experimental results. However, in conjunction with
the characteristics of the GAMs discussed in Chaps. 3 to 5, the above results reflect the
behaviour observed in experiment relatively well.






Chapter 7

Summary and conclusions

Their ability to control the turbulent transport of heat and particles out of the confinement
region makes GAMs an interesting topic for magnetic confinement fusion research. The
key issue of this thesis, was the radial propagation of GAMs, which is important for the
interpretation of the experimental GAM frequency profiles in ASDEX Upgrade and TEX-
TOR. Furthermore, GAM propagation and its implications on the existence and position
of reflection and absorption layers might be a relevant factor for the excitation of GAMs
by externally applied electromagnetic fields (see Refs. [8, 9]).

In Chap. 3 (see also Refs. [41, 42]), an elegant way of calculating the radial group velocity
of the GAM via its free energy or Poynting flux was developed, which provides theoretical
insight into the mechanisms of GAM propagation. Considering the GAM as a wave packet,
whose energy is transported with its group velocity, the radial propagation velocity was
computed as the ratio of the energy-flux of the GAM to its total energy. In the first step, the
GAM energy-flux was calculated in a two-fluid framework for cold ions, infinite safety factor
and circular flux-surfaces, and two kinds of transport mechanisms have been identified. The
curvature energy-flux, which represents the advection of the free energy of the fluctuations
with the magnetic inhomogeneity drift, (v, FE ), is always parallel to the phase velocity.
However, the polarisation energy flux, <—k%p§evafluc>, is always antiparallel to the phase
velocity. Therefore, the one of the two fluxes which is dominant controls the propagation
direction of the GAMs, and thus the form of the dispersion relation. This result has been
generalised to include ion temperature and parallel flows and to a gyrokinetic model, in
which equivalent energy transport mechanisms have been found.

In the second step, the group velocity, which is given by the ratio of the Poynting flux to
the total free energy, has been evaluated for circular high aspect ratio flux surfaces and
estimated for elliptic plasmas. The results agree with NLET and GYRO computations
and alternative analytical calculations of the GAM dispersion. For cold ions, group and
phase velocity have been found to be opposite. For 7 > 0.2 or k = 1.5, they are parallel.
The magnetic inhomogeneity energy-flux requires an up-down asymmetry of Fy,. to give
non-zero values. In case of up-down symmetric flux surfaces, the asymmetry is of order
ErpseE fiuc, which makes the curvature energy-flux comparable to the polarisation energy-
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flux. Therefore, the group velocity vg, = (Sy)/(Efiue) is of order k;pgevq, i.e. much smaller
than the magnetic inhomogeneity drift.

Due to resonances with magnetic drift modes (not drift waves) and sound waves, the prop-
agation speed of GAMs is limited. Close to such a resonance, the poloidal rotation becomes
negligible compared to the remaining degrees of freedom, as the amplitudes of density and
temperature, or parallel flow velocity diverge. The characteristics of the resulting mode
are completely determined by the resonant mode, and it should not be called GAM any
longer. The resonances restrict GAMs to k, < 1 and ¢ > 1 and limit the group velocity.

Since the GAM induced pressure fluctuations are drastically reduced at the X-point of
single-null configurations, which are common in today’s experiments, the curvature energy-
flux becomes of order v4Ey,. and outweighs the other energy-fluxes. Therefore, GAMs
can be expected to propagate at the magnetic drift velocity. Because usually v, is directed
towards the X-point, GAMs would propagate radially inward in this case.

However, a generalisation of the two-fluid expression for the Poynting-flux of GAMs in the
cold ion and infinite safety factor limit with large aspect ratio circular flux-surfaces to arbi-
trary toroidal geometries, furthermore, yielded an additional component of the polarisation
energy-flux of order vgE .. Together with the curvature energy-flux of the same order
— discussed above — it generally leads to a non-vanishing group velocity at k, = 0, whose
sign and magnitude depend on the ratio of ion to electron temperature 7 and the magnetic
geometry. Analogous terms have been found in the generalised gyrokinetic expression of
the GAM Poynting flux.

The geometry and temperature dependencies of vy(k, = 0) have been studied numerically
using the two-fluid code NLET, and the gyrokinetic codes GS2 and GYRO as well as
analytically by deriving a group velocity estimate for arbitrary 7 in a two-fluid framework.
By means of the estimate, it was found that it is important for the energy transport at
large aspect ratios, whether the vertical magnetic forces on the flux-surfaces balance or
not. While in the former case, the energy of GAMs is transported essentially by the
magnetic inhomogeneity drift — which confirms the conjecture made before, that in single-
null geometry vy(k, = 0) has the sign of vg, at the position opposite to the X-point — the
polarisation energy-flux might become important in the latter case.

In order to achieve a high GAM group velocity (~ vg), the magnetic geometry should be
up-down asymmetric and have a maximum of the poloidal magnetic field — corresponding
to the flux-surfaces being close to each other — at a poloidal position where the magnetic
inhomogeneity drift has a significant radial component. By adding an indentation coil —
with a current opposite to the elongation currents — to the single-null geometry used in Sec.
3.7.1, which pushes the flux-surfaces closer together opposite to the X-point, the observed
group velocities increased by a factor of three. In a real device, such a configuration could
be generated by appropriately combining the plasma shaping coils, for example in DIII-D,
where the shaping system is located close to the plasma [67].

Altering the direction and speed of the GAM propagation might be used to search for its
potential influence on the confinement and even on the H-mode. For example, it would be
interesting to determine whether the dependence of the H-mode power-threshold on the
magnetic drift direction [45] is really due to its relation to the X-point or possibly rather
due to its influence on the GAM propagation direction.
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Calculating the group velocity by means of the Poynting flux turns out to be advantageous
compared to a direct calculation of the GAM dispersion relation because only lowest order
approximations of the fluctuations are required to gain insights into effects induced by
ion temperature, sound waves or magnetic geometry. Requiring relatively little effort, the
energy approach allowed for a rather accurate calculation of the group velocity for circular
high aspect ratio geometry and for the derivation of estimates for elliptic Miller equilibria
and even for single-null configurations. The radial propagation of GAMs due to their
linear dispersion relation was found to be slow compared to the typical velocity scale of
the turbulent motions, the diamagnetic velocity, in all considered cases. However, much
higher group velocities are possible in turbulent systems, which was discussed in Chap. 5.
Due to the additional two dimensions in gyrokinetic theory, fluid simulations can be much
more economic for problems requiring highly resolved computational grids. In order to
check for a potential influence of kinetic effects and to justify the use of a two-fluid code
for the succeeding numerical turbulence studies, the results obtained in linear and nonlinear
studies with the two-fluid code NLET and the gyrokinetic code GYRO were compared for
three parameter sets in Chap. 4. The Cyclone base case parameters, which represent the
tokamak core plasma, and two parameter sets, which are better adapted to the situation
in the plasma edge, allowed for studying the transition from stationary zonal flows in the
core to GAMs in the edge.

First, the growth rate of the fastest growing instability was calculated. In case of the two
edge parameter sets the gyrokinetic and two-fluid growth rates agreed very well for small
poloidal wave numbers up to about kypse ~ 0.5. For higher wave numbers, the two-fluid
growth rates break down as a consequence of the fluid approximation, which excludes small
scale fluctuations at the scale of the gyro radius and below. In case of the cyclone base case,
the two-fluid growth rates agree with the gyrokinetic results only up to kypse ~ 0.2 but
increase to larger values than in the gyrokinetic case for kypse > 0.2. This may, however,
be explained by an underestimation of the collisionless damping effects by the parameters
used to model collisionless damping in the NLET code.

Good qualitative agreement was observed in the turbulence simulations. In case of the Cy-
clone base case parameters, especially due to the low safety factor and the corresponding
Landau damping, GAMs are suppressed in the gyrokinetic and the two-fluid codes. The
E x B flow spectrum was dominated by stationary flows. The turbulent heat-fluxes agreed
reasonably well, where the fluid heat-flux was about 26 % smaller than the gyrokinetic one,
which confirmed the result of an earlier comparison [61]. In case of the two edge param-
eter sets, GAMs were dominant in the flow spectrum. The excited radial wave numbers
and frequencies were similar. The average fluid heat-flux for the first edge parameter set
deviated by only 8 % from the gyrokinetic value. In case of the second edge parameter set,
which corresponds to steeper edge background profiles than the first one, the fluid heat-flux
was roughly a factor of 3 higher than the gyrokinetic heat-flux. The observed differences,
however, could be attributed to collisionless damping effects, which are not retained in the
two-fluid approximation. A modification of the parallel heat conductivities in NLET in
order to model collisionless damping, which is more important in the core than in the edge
plasma, the heat-flux could be reduced considerably.

In summary, the turbulence studies with GYRO and NLET display good quantitative
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agreement. The increasing GAM activity during the transition from core to edge parame-
ters is well reproduced by both codes and the quantitative differences between the results
can be ascribed to the differences between the gyrokinetic and the fluid approach, which
have been discussed in Sec. 2.2.3. The interaction between the turbulence and the GAMs
does not seem to be changed drastically by kinetic effects.

Geodesic acoustic modes are driven by the turbulence. However, the turbulent drive is not
only the energy source for the GAM; it can also modify its frequency. An experimental
example for such behaviour is given by GAM measurements in ASDEX Upgrade and also
in TEXTOR [7, 48, 64|, where the GAM frequency was observed to be constant over a
certain radial range instead of scaling with the square-root of the background temperature.
Taking up a theoretical discussion by Itoh [10] of such behaviour — which was referred to
as GAM eigenmodes — the radial mode structure of GAMs on a strongly varying temper-
ature background was studied analytically and numerically applying the NLET code in
Chap. 5. The radial mode structure and its dependence on the GAM dispersion relation
was discussed analytically on the basis of an approximate dispersion relation of the form
waam (T, kr) = waanmo(r)(1+ ozk:rﬁ) for k.pse < 1. The strength of the dispersion relation,
i.e. the radial group velocity, is determined by «, the form of the dispersion is given by 5.
As discussed in Chap. 3, for up-down symmetric flux surfaces, the GAM frequency can
be assumed to depend quadratically on k. whereas the frequency depends linearly on the
radial wave number in case of up-down asymmetric magnetic configurations. The distance
a GAM can propagate radially before being damped is equivalent to the radial mode
width of a GAM fulfilling the condition wgans(r, k) = const. In case of a weak dispersion
(v ~ 0.1pse), as obtained in the linear GAM calculations in Chap. 3, the mode width
of such a mode is small (several gyro radii, depending on the background temperature
gradient). However, the factor o can be enhanced significantly by the turbulence.
Therefore, a method to measure the nonlinear GAM dispersion using the results of non-
Boussinesq turbulence calculations was developed. The approximate dispersion relation
was used to derive an expression for the wave front of a GAM with a specific frequency,
i.e. a curve of constant phase. By fitting this expression to a wave front obtained from
a non-local numerical calculation, the strength and form of the dispersion relation can be
measured.

Nevertheless, since the linear GAM dispersion relation is known, the propagation of GAMs
was studied first with linear NLET calculations to develop a basic understanding of the
influence of the non-constant temperature background. In case of a quadratic dispersion
relation (8 = 2), the temperature gradient was shown to accelerate the radial motion of the
GAMs by shifting their radial wave number to higher values while the frequency remained
constant. The temperature gradient is, therefore, able to induce a reflection layer for the
GAMs. Depending on the dispersion relation (here: the sign of «), it is possible that
GAMSs can, overall, propagate only radially outward or only radially inward. If group and
phase velocity are in the same direction, the GAM propagates radially outward and vice
versa.

The method for measuring the nonlinear GAM dispersion was then applied for a non-
Boussinesq, nonlinear NLET run which displayed a very strong dispersion. The observed
group velocity was much higher than the linear one (o = 109) resulting in GAM frequen-
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cies deviating by up to 30 % from the frequencies predicted by the v/T scaling. The corre-
sponding dispersion relation was verified with a turbulence study applying the Boussinesq
approximation. The nonlinear term responsible for the modification of the linear disper-
sion was identified as the up-down asymmetric component of the density transport. The
nonlinear dispersion was measured additionally for the two GAM simulations discussed
in Chap. 4. The finding that eigenmodes propagate radially inward in case of shallow
gradients of the background density and temperature and radially outward in case of steep
gradients, suggests a possible dependence of the direction of the GAM group velocity on
the parameter €, = 2L,,/R, which controls the steepness of the background density and
temperature profiles. Thus, the results of Chap. 5 can provide an explanation of the
frequency plateaus observed in ASDEX Upgrade. Another conclusion can be drawn from
the parameter dependence of the GAM dispersion relation. If the sign of a changes, an
absorption layer at the radial position where o = 0 results, close to which GAMs are ex-
pected to be strongly damped due to resonance and phase mixing effects. This reminds of
a GAM amplitude profile measured in TEXTOR, which displayed a sharp amplitude drop
in a radial region, where the measured GAM frequency scaled with /T, i.e. in a region
with weak dispersion, where a sign change of « is possible.

Finally in Chap. 6, linear and nonlinear NLET studies using experimental equilibrium
data were compared to experimental results of NSTX and ASDEX Upgrade. The study for
NSTX was motivated by the observation of periodically appearing quiet periods, in which
the turbulence intensity during the L-mode was reduced to the turbulence level usually
observed during the H-mode. Since GAMs are likely to modulate the turbulence intensity
given they are strong enough, the question arose, whether the quiet periods could be
attributed to geodesic acoustic modes. Complicated magnetic configurations as in NSTX,
due to the complex coupling of the poloidal flow to the sound wave spectrum, allow for the
existence of more than one mode displaying the character of a GAM. Which one of these
modes is excited in the end depends on the properties of the turbulence. Indeed, the results
discussed in Chap. 6.1 would be consistent with a GAM oscillation at the frequency of
the quiet periods. Each of the analysed NSTX discharges exhibited a low frequency mode,
whose frequency is close to the frequency of the quiet periods. Nonlinear NLET runs
further showed, that this mode can be excited by the turbulence and is able to modulate
the turbulent heat flux. However, slight changes of the simulation parameters can result
in the excitation of a different GAM mode. Thus, being aware of the strong dependence
of GAM excitation on the turbulence properties and on the simulation parameters, which
cannot be measured exactly in experiment, it can be summarised that the quiet periods
observed in NSTX may be caused by GAMs. However, further experiments are needed to
give the final answer to this question.

Another mechanism leading to a modulation of the turbulent heat-flux was identified. The
GAM spectra for the experimental NSTX equilibria — lower single-null divertor discharges
— displayed an asymmetry between positive and negative k,., which was found to be inde-
pendent of the random seed used for the initialisation of the NLET simulations. GAMs
with negative k, were nearly completely suppressed. Local NLET turbulence studies using
the simple single-null model introduced in Chap. 3 showed that the asymmetry in the
GAM amplitudes for positive and negative radial wave numbers were related to the direc-
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tion of the magnetic inhomogeneity drift relative to the position of the X-point. When the
magnetic inhomogeneity drift was directed towards the X-point, relaxing the local limit
resulted in a slow (compared to the GAM period) modulation of the turbulent heat-flux
which was related to the change of the radial scale length of the GAMs due to their prop-
agation (see the discussion in Chap. 5). Since the magnetic drift was, indeed, directed
towards the X-point in all NSTX discharges analysed in Ref. [13], the observed nonlocal
effect might also be relevant for the quiet periods. The numerical observation also displays
some similarity to the I-phase in ASDEX Upgrade [47], a state in which the turbulence
intensity oscillates about five times slower than the GAM.

Being aware of the strong dependence of GAM excitation on the turbulence properties and
thus on the simulation parameters, which cannot be measured exactly in experiment, it
can be summarised that the quiet periods observed in NSTX may be caused by GAMs.
However, further experiments are needed to give the final answer to this question.

The study for ASDEX Upgrade was intended on the one hand to check whether agree-
ment between theory and experiment concerning the observed GAM frequencies can be
obtained using experimental equilibrium data. An earlier comparison of numerical and
experimental frequencies using a Miller type geometry for the calculation of the two-fluid
GAM frequency yielded significant differences [11]. Another question concerned the exper-
imental observation that the radial range in which GAMs can be measured is reduced to a
narrow region in the edge in case of pronounced density and temperature pedestals, while
GAMs can be measured in a wide radial domain if the edge pedestals are less pronounced.
The linear frequencies agreed very well with the experimental values within the limitations
set by the accuracy of the equilibrium data and the temperature profiles. An explanation
for the aforementioned frequency plateaus can be seen in the nonlinear modifications to
the GAM dispersion relation discussed in Chap. 5. A continuous change of the dispersion
parameter o with the plasma parameters from « > 0 in the edge to a < 0 in the core can
result in a similar frequency profile. Nonlinear, local NLET runs displayed no significant
differences concerning the observed GAM frequencies. An explanation for the narrow region
of GAM activity in case of a pronounced profile pedestal could be given, considering the
results obtained with NLET, by studying effect of viscous stresses, which increases for
steeper profiles and higher temperature. Thus, viscous damping of the GAM becomes
important relatively close to the last closed flux surface in case of a pronounced pedestal
whereas in the absence of a pedestal, this damping term becomes relevant only further
inside the plasma. Nonlinear NLET runs with the viscous stress deactivated indeed yielded
considerable GAM activity.

In summary, the propagation properties of the GAM in linear as well as in turbulent systems
were extensively discussed including also magnetic geometry and non-Boussinesq effects.
It was shown that GAM propagation can be relevant in experiments, e.g. concerning the
origin of the frequency plateus observed in ASDEX Upgrade [7], especially in cases in which
the turbulence strongly enhances the radial GAM group velocity. This finding as well as
the observed wavenumber dependence of the nonlinear GAM growth rate, which requires
the use of precise magnetic geometry data, are of special interest for further research due
to the possible consequences for experiments, e.g. for the quiet periods in NSTX [13] or
the I-phase in ASDEX Upgrade [47].



Appendix A

Metric coefficients of Mercier-Luc
geometry

The Mercier-Luc coordinate system (£%) = (p,[,¢) and its relation to cartesian coordinates
is given by

R =2 +y* = Ry(l) + psin(d(1)),
Z =z =Z(l) + pcos(d(1)),

_ Y
¢ = —( = arctan (x) . (A1)
The Jacobi matrix is

cos(Q)sin() —sin(¢)sin(¥)  cos(¥)

37 351 cos(() cos(V sin(¢) cos(¥ sin(9
o (35) = | e moen e g
__sin(¢) __cos(¢) 0
R R

where 1/R. = dv/dl. The calculation of the metric tensor results in

1 0 0
oxk ok
0 0 R?
Thus, the Jacobian J = det(J¥V) = (det(gij))_l/Q Is
gt (A.4)

\/§ _R(l - p/Rc) .
Finally, with (Vf)! = ¢¥(0f/0¢) and V - A = J(9/9¢")(A?/J) the Grad-Shafranov

operator becomes

_ 0 g7 Ox
2 2 2
R°V-(R*Vx)=JR o€ (JR28§j>’ (A.5)

which after substitution of the metric coefficients results in the left-hand-side of Eq. (2.19).
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Appendix B

Calculations for chapter 2.2

B.1 Equations of motion in gyrokinetic theory

The equations of motion of the phase-space variables X, U, p and v used in the derivation
of the gyrokinetic equation (2.53) have been given in Eqgs. (2.44)-(2.47) without proof.
The derivation of those equations as well as of their gyroaverages is demonstrated in the
following.

The necessary equations of motion can be obtained as

dA  dA| dv 04

E—Ev—i_E'aiv, (B.l)

where the first term on the right hand side is the total time derivative at fixed velocity and
the total time derivative of the velocity v is given by the Lorentz force Eq. (2.28), which

can be expressed as

dv ¢ . q

The partial time derivative of y = mv? /2By = m(v? — vﬁ) /2By at fixed velocity is zero
since the unperturbed quantities are assumed stationary. The partial velocity derivative
of 1 is Ou/0v = ms/By. Therefore,

2

dp| mv?
atl, ~ 7 ( 9B 0 2Bov(b V)>
K _mu '
= —Bov VB —Bos ((v-V)b). (B.3)

Combining the results above, Eq. (2.44) is obtained:

d . .
£=uo+u1~wtu+AQu,

i =L <s Ei——p- B1> (B.4)
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For 0v/0v one has
098 1
= _ = B.5
ov s (B:5)
S\S, = 88v (cos(y)és — sin(y)és) = —ﬁgz. (B.6)
Thus, 9v/0v = —p/s. For the calculation of (dvy/dt)|y, it is recalled that at fixed velocity

dv/dt = 0. Therefore,

and

d
:p-dt(u—l—s)——dzv—i—ég-(v-V)ég, (B.7)
and the equation of motion of 7 results in
d
£ = wp + w1 ~ (Q+wt)+AQ,

wo=Q+85 (v -V)és+—p-(v-V)b— —p.Ey,
S ms

wlz—iﬁ'El'f'Q(b_gé) - B1. (BS)
ms S

The straightforward calculation of dU/d¢ yields

du  0®1 q 0A4
P A T B9

Some care has to be taken when calculating the guiding centre motion
X _ | gy y VOX (B.10)

where X can be replaced by x — p with p = (bxs)/Q = p = (b xv)/Q. Thus, one obtains
in cartesian coordinates

1 0b b, 0N
vVE = (Ve = o (W e (9 . @ ax>>
A\ VB()

By

dv 0X q R q 1
1 . = 7Ea - fo' — Cak KB A Ca b
(dt>a<8v>aﬂ (m P +mc6 A 1’\)< Qo 7>

b-B; U
—B,. B.12
By By (B.12)

Combining both of the above results, one obtains Eq. (2.47)

ax
dt

1
=v+—-—vx(v-Vb)+p

5 (B.11)

and

=Vg—S—V

=vo+ vy ~ (wy + dvy) + Avy,
(V . V) B()
Q By
b'Bl u

2B, B.13
By By (B.13)

1
vo=u+vgo+ =vx(v-V)Vb+p

V1 =VE71 —V
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The gyrokinetic equation needs the gyroaverages of dX/d¢, du/dt and dU/dt. Note, that
the average of an unperturbed quantity, which varies on a spatial scale much larger than a
gyroradius, is the quantity itself plus order 62 corrections which are neglected in the current
approximation. A potential complication arises from the use of the guiding centre position
X as coordinate in position space because the exact gyroradius vector is calculated at fixed
particle position x while the gyroaverage is carried out at fixed guiding centre. However,
for the current approximation the lowest order term in ¢ of p(X) is sufficient. It is given
by
1

p(X) = g P(X) x5 (B.14)

The average of the time derivative of the particle energy U is simply

U . (01, 1, 0A,
dt_U_q<<8t 2V >

The particle drifts are given by the average <dX / dt> = <V0 + V1>. The first term of the
average of the unperturbed guiding centre velocity is <u> = u, the second is <on> =
vio + O(6%). The nonvanishing components of the third term in (vo) are

(B.15)

2 u2

1 u 1 1
<§V X (v-Vb)) = ﬁb X n—|—§<s>< (s- Vb)) = ﬁbx l@—i—ﬁb(b-v x b), (B.16)
where the first term is the curvature drift and « the curvature vector, and the last term,
a parallel guiding centre drift, will be neglected against the thermal parallel motion u (see

also [21]). Finally

V- VB(] 1%
=—b B B.1
<p Bo > Qm x VB (B.17)
is the VB drift. Altogether, one obtains
1 H 2
<v0>:u+vD0:u+on+§bx <EVB()+U h:). (B.18)

Since the average <V1> involves the field components varying on the gyroradius scale, it
cannot be simplified further. As an effect of the approximate invariance of u, the average
</10> vanishes. To be more explicit, <(q/Bo)s-E0> =0 and <— (1/Bo)v-VBy—(mu/By)s-
(v- Vb)) = 0. Therefore,

(o + fin) = (jn) = T ({s-Br) = =(p-B1)). (B.19)

B.2 Some identities in fluid theory

The divergence of the E x B drift can be expressed as

b b
V'VE:_CEL'VXEZCVLCD'VXE~ (BQO)



106 APPENDIX B: CALCULATIONS FOR CHAPTER 2.2

The curl of b/B can then be written as

b 4w 2 _ B?
VX —==—77j— =V1i— B.21
B CB2J B4 1 9’ ( )
where the last perpendicular gradient can be simplified using the equilibrium condition
F,, = Vp. The Lorentz force F,, is given by the divergence of the magnetic Maxwell stress

tensor,

1 B?
¥,=-VvV.T,=—V. <I—BB>
47 2

1 B? B?
= Bk -V, —
in (V 2 RV )
1 B?
- Z _ B2k =Vp. B.22
(v - ) = (B.22)
Therefore, one obtains
BQ
~ Vi =4rVp - B’k. (B.23)

Noting that Vp = (1/¢)j x B, one finds that

b 7 47Vp b 4, b
and therefore b
Vevp=cp x(k+V(nB)) V. &= —Cd. (B.25)

Since in low g plasmas k ~ V(In B), the operator C is called curvature operator. The
divergence of the particle flux due to curvature and VB drifts is found to be

b R
V- (n(ve + vvp)) ~ gg x (k+V(InB)) Vp= fcg, (B.26)

where p = nT is the pressure and the divergence of (b/B) x (k4 V(In B)) can be neglected.
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Calculations for chapter 3

C.1 Gyrokinetic commutators as divergences

The brackets defined in Eq. (3.32) in Sec. 3.5 can always be written as a divergence.

Consider the expression
C=a(Kx*b)—b(K=xa) (C.1)

where a(z) and b(z), K (x) = K (—z) is a symmetric convolution kernel and * indicates
the convolution operation. Because of this symmetry one may express equation (C.1) as

8ZJEC:az//L(z—a:,z—y)a(:v)b(y)dxdy (C.2)
with L(z,y) = [#(z)—0(y)] K (x —y). For purely harmonic waves a(z), b(z) =
R{(A, B) exp (ikx — iwt)}, the resulting flux J is given by

J = (8:)"" {a,b} p = S{A*B} Oy K (k) (C.3)

where K is the Fourier transform of K. The application of this theorem to, for instance,
the first bracket in Eq. (3.31) yields the corresponding free energy flux

K Vg n* (¢ + Fydon)} . (C.4)

JFLR = /Jl (k1)

T

C.2 Individual Poynting fluxes

Evaluating Eq. (3.26) for circular flux surfaces by using estimates of the up-down symmet-
ric and antisymmetric fluctuation amplitudes (as described in Sec. 3.3.1) the individual
Poynting fluxes result up to order O[k3],

_ Klep [
663 +57)

(2 ) = 2T
4 3v/6 (3 + 57)%/2

1
<% (n+ Tp¢)2> 94 307 + 5577 4+ — (81 + 3427 + 45572)] , (C5)

442

34207 + (C.6)

442 (3 +57)

(81 + 3877 + 50072)]
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o\ TESGR (9 + 397 + 5072)
<Ud7_'UH> = 9 3/2
¢2V6 (3 + 57)
A, 2 3 2 2
T4 | = (ac? 4 2Bcd +~vd”) + doAa + 5 (Oé (Vo)™ +26VeVd + v (Vd) ) -

- (o -3 (7)) = <1 i 4112) 131\76{23(234?5;1772)7 )

1\ k23 (3+57)%?

(—(n+7pi)V(n+7p)) = — <1 + 4q2> r% (3\—;6 7) , (C.9)

5 oo 3 1072k3 3
—ZPTVT ) = — (14— , C.10
< 2" > ( +4q2> 3v6 (3 + 57)1/2 (6.10)

. 1 1072k} ¢
—7T,V =—(14+— L , C.11
< ! ¢0> ( +4q2> 3v6 (3 + 57)/2 (G.11)

- k293 (3 +57)'7

(—Tv||Vv||> =1 T%Q(\/EZQ ) (C.12)

For the gyrokinetic framework, Eq. (3.31), the individual fluxes are

K2 k:3 2
</ D42 d3v> = r0 =75 16 + 1407 + 4817° + 74777+
T 2Fy 42 (44 77)%

+ 5 (576 + 65767 + 3606877 + 13014473 + 3176877* + 2930677°) |, (C.13)
q? (44 77)
(e )
21k3 % (2
(v (= [{2 wrin} 0)) =2 BC R0 (g
T Jo @ (4+77)
<v—1 </ {Tf vq V¢0} d3v>> _ Tk} [13 | 28+ 1967 + 16372}
T Jo 2v2 (4 4 77)1/? c@a+1)?
(C.16)
<v1 (/ {nFO Vg WO} d3v>> _ Tklep [12+ 48 + 1687+6072]
T g3 202 (4 + 77) /2 2A+r)? |’
(C.17)

1 (1 ; ci \ ks
<v <2 {Wb}lf‘)) - ¢°XEO> 8204 +07T)1/2 -

x [—16 +127 4 2177 4 — 5 (—192 + 6567 — 25272 + 6127° + 4837-4)} . (C.18)

> (4+77)
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NLET parameters for experimental
equilibrium data
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Machine NSTX | AUG | AUG | AUG | AUG | AUG | AUG
Shot # 135042 | 20787 | 20787 | 20787 | 18813 | 18813 | 18813
Time (ms) 232 1000 | 1000 | 1000 | 900 900 900
Ppol 0.99 084 | 091 |097 |08 |097 |0.99
Ryes (m) 1.507 | 2.05 | 209 |213 |206 |212 | 214
no (10m=3) 0.75 1.75 | 1.3 0.7 2.1 1.25 |09
T.o (eV) 50 280 140 42 443 167 87
Br magn. axis (T) | 0.43 1.94 | 194 | 194 | 194 | 194 | 1.94
Br(Rres) (T) 0.29 1.56 | 153 | 150 | 155 | 1.51 | 1.50
pse (cm) 0.34 022 | 016 |009 |028 |018 |0.13
L, (cm) 6 192 | 124 |28 30.7 | 4.0 2.8
Lt (cm) 2.0 7.8 4.0 2.1 8.5 3.0 1.4
Ly (m) 23.6 26.0 |30.0 |353 |251 |389 |47.0
Ni = Ne 3.0 245 313 | 133 | 3.6 1.33 | 2.0
Sg 9.1 1.46 | 1.64 | 1.98 | 225 | 426 | 8.34
€n 0.08 019 | 0.12 |0.026 | 030 |0.04 |0.03
€v 0.009 | 0.017 | 0.012 | 0.005 | 0.022 | 0.006 | 0.004
d 0.82 3.73 | 1.87 | 0.73 | 537 | 223 | 1.11
m 0.55 0.07 | 0.06 |006 | 008 |030 |0.26
I 0.36 214 | 0.92 | 034 |344 |222 | 1.09
Ki 0.005 | 0.10 | 0.002 | 0.001 | 0.29 | 0.012 | 0.002
Ke 0.017 |3.69 |0.78 | 0.047 | 10.2 | 0.41 | 0.087
Yp 0.05 0.68 | 0.19 | 0015 | 1.75 | 0.16 | 0.049

Table D.1: Parameters used for the calculation of the dimensionless NLET parameters and
dimensionless NLET parameters. For a definition see Ref. [14].
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List of publications in peer-reviewed
journals

Parts of this thesis have been published in peer-reviewed journals in the following articles.

1. R. Hager and K. Hallatschek. Radial Propagation of geodesic acoustic modes.
Physics of Plasmas, 16(7):072503, 2009.

2. R. Hager and K. Hallatschek. Radial Propagation of geodesic acoustic modes
in up-down asymmetric magnetic geometries.
Physics of Plasmas, 17(3):032112, 2010.

3. S. J. Zweben, R. J. Maqueda, R. Hager, K. Hallatschek, S. M. Kaye,
T. Munsat, F. M. Poli, a. L. Roquemore, Y. Sechrest, and D. P. Stotler.
Quiet periods in edge turbulence preceding the L-H transition in the National
Spherical Torus Experiment. Physics of Plasmas, 17(10):102502, 2010.
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