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Abstract

Mechanical ventilation is a vital supportive therapy for many intensive care patients. Pre-
existing heterogeneous lung damages, however, predispose patients towards ventilator-
associated lung injuries (VALI). Biologically, these severe complications manifest them-
selves at the alveolar level in terms of inflammatory responses resulting from mechanical
overstraining. Since the exact mechanisms that mediate lung injury are still unclear, the
definition of ventilation strategies aimed at reducing the incidence of VALI is hampered.

The present work is concerned with the development of computational approaches en-
abling the detailed investigation of respiratory mechanics in general and VALI in partic-
ular. Conceptually, the lung is divided into two main subsystems, namely the conducting
airways and the respiratory zone also known as lung parenchyma. The complexity inherent
to both components inhibits a direct numerical simulation considering all relevant struc-
tures. Hence, only small portions of each subsystem can be resolved in detail. With regard
to computational modeling, therefore, the major challenges are to adequately consider the
unresolved parts and merge the individual components into one overall virtual lung model.
Within this work, corresponding approaches are derived and their functionality is demon-
strated by simple examples.

As a first step, a detailed computational model of alveoli, the parenchymal micro-structure,
is established. Due to the limited availability of imaging-based geometries, a method for
generating artificial ventilatory units is developed. For the mathematical description of
alveolar soft tissue behavior, a hyperelastic constitutive model based upon general mor-
phological information is suggested. The influence of the fluid film covering alveolar
walls is also considered. For this purpose, a novel surface coupling of tissue and interfa-
cial mechanics is proposed. To model the complex behavior of the surface active agents
in the liquid lining, an elaborate constitutive law relating the local concentration of these
substances to the surface stresses is employed.

On the global level, lung parenchyma is modeled as a homogenized continuum. At cer-
tain “hot spots”, however, the complex alveolar micro-structure is resolved to enable the
quantification of local stresses and strains. To bridge the gap between global parenchy-
mal and local alveolar level, a novel multi-scale method is proposed. The benefit of this
strategy is twofold; firstly, improved overall parenchyma properties are derived based on
a detailed modeling of the underlying micro-structure. Secondly, the global model serves
as an “embedding” of locally resolved ventilatory units, thereby providing physiologically
reasonable boundary conditions for alveolar simulations.

Finally, a novel approach to combining parenchyma and airway models into one overall
lung model is established. Since only parts of both the airway tree and the alveolar struc-
tures can be resolved, the transport of air down to the respiratory zone cannot be simulated
explicitly but has to be modeled. To consider the interplay of airflow in the resolved do-
main and tissue deformation, a coupling of air and parenchyma volumes is proposed. A
combination of the developed multi-scale and volume coupling approaches enables the
sensible investigation of local alveolar behavior during (mechanical) ventilation for the
first time.
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Zusammenfassung

Für viele Intensivpatienten ist die künstliche Beatmung lebensnotwendig. Bei Vorerkran-
kungen des Atemapparats besteht jedoch die Gefahr von beatmungsinduzierten Lungen-
schäden. Typische Symptome sind Entzündungsreaktionen im Alveolarbereich, die durch
eine mechanische Überbeanspruchung hervorgerufen werden. Die genauen Ursachen für
diese schwere Komplikation sind derzeit noch unklar. Daher ist es sehr schwierig, Beat-
mungsstrategien, die auf eine Verringerung der beatmungsinduzierten Lungenschäden ab-
zielen, zu entwickeln.

Die vorliegende Arbeit beschreibt die Entwicklung numerischer Methoden, die die Mo-
dellierung der Lungenmechanik im Allgemeinen und beatmungsinduzierter Lungenschä-
den im Speziellen ermöglichen. Die Lunge wird gedanklich in die Atemwege und das
als Parenchym bezeichnete Lungengewebe unterteilt. Beide Teilsysteme sind für sich
genommen so komplex, dass sie sich einer ausführlichen Modellierung entziehen. De-
mentsprechend können stets nur kleine Bereiche detailliert aufgelöst werden. Die beson-
dere Herausforderung bei der Modellbildung besteht daher darin, die nicht aufgelösten
Bereiche sinnvoll abzubilden und die Einzelteile zu einem umfassenden virtuellen Lun-
genmodell zu verbinden. Nach der Vorstellung der hierzu entwickelten Methoden wird
deren Funktionalität anhand einfacher numerischer Beispiele demonstriert.

In einem ersten Schritt wird ein detailliertes Modell für die alveoläre Mikrostruktur des
Parenchyms entwickelt. Wegen der begrenzten Möglichkeiten bildgebender Verfahren
wird zunächst eine Methode zur Generierung künstlicher Alveolargeometrien entwickelt.
Das Verhalten des weichen Gewebes wird mit Hilfe eines hyperelastischen Materialge-
setzes modelliert, das auf allgemeinen morphologischen Informationen basiert. Der Ein-
fluss des Flüssigkeitsfilms, der die Alveolarwände bedeckt, wird ebenfalls berücksichtigt.
Zu diesem Zweck wird eine neue Oberflächenkopplung von Gewebs- und Grenzflächen-
mechanik entwickelt. Das komplexe Verhalten der grenzflächenaktiven Moleküle im Flüs-
sigkeitsfilm wird mit einem Modell beschrieben, das die lokale Konzentration dieser Sub-
stanzen mit den zugehörigen Oberflächenspannungen korreliert.

Auf globaler Ebene wird Lungenparenchym als ein homogenisiertes Kontinuum model-
liert. An ausgewählten “Hotspots” wird jedoch die alveoläre Mikrostruktur aufgelöst, um
eine Bestimmung der lokalen Spannungen und Dehnungen zu ermöglichen. Zur Über-
brückung des vorhandenen Skalenunterschieds wird eine neuartige Mehrskalenformulierung
vorgeschlagen. Dieser Ansatz ermöglicht einerseits die Bestimmung verbesserter globaler
Parenchymeigenschaften durch die genaue Modellierung der zugrunde liegenden Mikro-
struktur. Andererseits werden physiologisch sinnvolle Randbedingungen für die Alveo-
larsimulationen definiert, indem die lokal aufgelöste Mikrostruktur in das globale Modell
eingebettet wird.

In einem letzten Schritt wird ein neuer Ansatz für die Verbindung von Parenchym- und
Atemwegsmodellen zu einem Gesamtlungenmodell etabliert. Da nur Teile des Atemwegs-
baums und der parenchymalen Mikrostruktur aufgelöst werden können, kann der Gastrans-
port in die Alveolen nicht direkt simuliert werden. Um das Zusammenspiel von Luftströ-
mung und Gewebedeformation dennoch zu berücksichtigen, wird eine Kopplung von Luft-
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und Parenchymvolumina vorgeschlagen. Eine Kombination der in dieser Arbeit entwickel-
ten Mehrskalen- und Volumenkopplungsansätze ermöglicht erstmalig eine sinnvolle Anal-
yse des lokalen alveolären Verhaltens während der (Be-)Atmung.
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1 Introduction

“Being able to breathe without any apparent difficulty is something that healthy
people take for granted, and most of us generally go about our daily lives with-
out giving it a second thought.” (Bates, 2009)

If breathing becomes difficult or even impossible, however, a thorough knowledge of in-
volved phenomena is essential for an appropriate treatment. While this seems to be an ex-
clusively medical problem at first sight, it has to be emphasized that breathing is basically
a mechanical process. In the healthy lung, i.e. in case of spontaneous breathing, a negative
pressure is generated on the outside of the lungs by contraction of both the diaphragm and
the intercostal muscles which cause an elevation of the rib cage. This pressure serves to
overcome lung recoil forces, expand the parenchymal tissue, and prompt gas to flow in the
airways in direction of the decreasing pressure. During expiration, muscle relaxation leads
to a decrease of lung volume and, consequently, a backflow of air. In both stages of the
respiratory cycle, the specific relationship between muscular pressures, airflow, and lung
volume is governed by the mechanical properties of the respiratory system. Hence, when
considering pulmonary dysfunction, mechanical models can support and amplify medical
knowledge. This is particularly true since the possibilities to image structures in the lung
and measure relevant quantities in vivo are still limited.

Compared to other areas in biomechanics like the circulatory or the muscosceletal system,
surprisingly many open questions related to structural-functional correlations in the lung
remain. Much of the uncertainty stems from the difficulties in documenting lung mechan-
ics on the “micro-level”, given the small size of corresponding interior structures and the
large movement of the lung during breathing. For instance, a prominent controversial is-
sue is the question whether specific “micro-structures” in the lung are actually expanded or
rather recruited during breathing. This lack of knowledge is quite astonishing, especially
when considering the impact a better understanding of respiratory mechanics can offer.
A sound standing “virtual lung model” combining medical knowledge with mechanical
background could be a valuable tool for various applications ranging from the better un-
derstanding of lung diseases like asthma, to progress on individual therapeutic approaches,
e.g. by improving drug delivery. The main motivation for this thesis is related to under-
standing complications of mechanical ventilation in case of acute lung diseases. In this
context, a detailed computational model can provide essential insights and open up new
vistas towards improved patient-specific ventilation protocols in the long term.

Before summarizing the objective in detail and providing a short outline of this thesis,
some general information about the structure of the respiratory system will be given along
with an overview of acute lung diseases and related complications. Particularly, problems
arising from mechanical ventilation of heterogeneously damaged lungs will be addressed.
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1 Introduction

1.1 Anatomy and physiology of the respiratory system

The development of reasonable computational models for biomechanical applications ne-
cessitates in-depth knowledge of relevant biological and medical aspects as well as a quan-
tification of crucial mechanical properties. This section gives a brief overview of lung
anatomy and physiology following Gray (1918), Weibel (1963), Weibel (1984), Drenck-
hahn and Zenker (1985), Guyton and Hall (1997), West (2008), and Bates (2009). It has
to be noted, though, that the variability of both anatomy and mechanical behavior between
different individuals (not to mention different species of mammals) is distinct. However,
the general information provided in standard textbooks is sufficient if basic phenomena are
of interest. For individual prognoses envisaged in the future, patient-specific data would
be required.

The prime function of the mammalian lung is to continuously mediate the transport of
oxygen and carbon dioxide between environment and blood. In the human being, as much
as 12,000 l air and 6,000 l blood pass through the lung per day. Efficient gas exchange
requires that the blood-gas barrier possesses an extremely large surface area combined
with a very small thickness, such that the passage of gas molecules is impeded as slightly as
possible. As stated in Weibel (1984), the barrier’s surface is about the size of a tennis court
and its thickness is 50 times smaller than a sheet of air-mail paper. For serving this purpose,
multiple thin interior walls are formed, thereby subdividing the lung into a large number
of small air chambers (also known as alveoli) which are connected with the outside air
through a system of branched tubes (i.e. the airway tree). The pulmonary arteries and veins
form similar trees that finally converge in dense capillary networks wrapped around the
alveoli. The driving force for the gas exchange is the partial pressure difference for oxygen
between the alveolar air and the capillary blood. According to Weibel et al. (2005), several
physical parameters govern oxygen uptake at the alveolar level, such as alveolar membrane
permeability, blood hemoglobin content, and its reaction rate with oxygen. Thus, efficient
gas exchange can only be maintained if the capillaries are perfused at a high rate and
alveolar air is continuously replenished with oxygen, even at the most distal points in the
lung. Conversely, carbon dioxide is discharged from the blood to the alveolar gas through
diffusion across the barrier and into the airways. In all these processes, lung morphology
plays an essential role.

The general composition of the human respiratory system along with some relevant no-
tations is shown schematically in Figure 1.1.1. As already indicated above, the lung can
basically be subdivided into a conducting part and a distal respiratory zone where the actual
gas exchange takes place.

Concerning the conducting zone, upper and lower airways have to be distinguished. The
nasal cavity and the throat are part of the upper airways. The larynx (i.e. the voice box)
marks the transition to the lower airways comprising the entire bronchial tree from the
trachea down to the terminal bronchioles. Since the tubus of the ventilator is situated in
the trachea during artificial respiration, the upper airways are of no particular interest for
the models developed as part of this thesis. Hence, explanations are restricted to the lower
airways and the respiratory zone from now on. The latter is often also referred to as the
lung parenchyma, meaning the functional parts of the organ participating in gas exchange.
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1.1 Anatomy and physiology of the respiratory system

Figure 1.1.1: Overview of lung anatomy and definition of airway generations (from
http://www.meb.uni-bonn.de/Cancernet/CDR0000062956.html and West (2008)).

In the following, the main focus is on the human respiratory system, although information
concerning other species will also be provided in some places. This seems necessary
since in many cases, experimental investigations are limited to laboratory animals. For
a reasonable interpretation of corresponding data, detailed knowledge of differences in
anatomy between the distinct species is essential.

1.1.1 Tracheo-bronchial tree

The trachea constitutes the trunk of the so-called tracheo-bronchial tree. With a rough
length of 10 cm and a diameter of around 2 cm, the trachea is the largest among the lower
airways, extending from the larynx to approximately the fifth thoracic vertebra. At this
point, the trachea divides into the two main bronchi passing into each lung. The bifur-
cation is slightly asymmetric, with a stronger, but shorter right bronchius compared to
the left one. Furthermore, the angle between right bronchius and trachea is smaller such
that contaminants (and possibly also a misplaced tubus of the ventilator) enter the right
bronchius rather than the left one. Both main bronchi continuously branch into subsequent
so-called bronchioles penetrating deeper in the lungs, thereby progressively reducing their
dimensions. In simple terms, the diameter of an airway is proportional to the volume of
peripheral lung that is supplied by this branch (Weibel, 1984). Interestingly, the average
length-to-diameter ratio is about the same on all levels of the airway tree. After roughly 14
generations of bronchioles, the terminal bronchioles mark the end of the conducting zone.
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The total number of generations is quite variable since the airways form a space-filling
tree whose endings must be homogeneously distributed and reach into every gap in the
available volume of the chest cavity (Weibel et al., 2005). Thereby, some spaces are filled
more rapidly such that the airways stop dividing, whereas in other regions more branches
are needed. A detailed notation of the distinct airway generations in an idealized lung is
provided in Figure 1.1.1.

The number of airways in the tracheo-bronchial tree multiplies throughout the conducting
zone following a branching pattern known as irregular dichotomy. This simply implies
that each parental airway divides into two child vessels with possibly different dimensions.
Thereby, irregularity is mostly due to a variation in length rather than due to differences in
diameters (Weibel, 1963). Although the mentioned pattern describes lung branching sat-
isfactorily, the assumption of dichotomy does not strictly hold in individual human lungs.
Instead, Weibel (1984) found that the branching ratio is about 1.4, meaning that on average
each parental airway splits into 1.4 daughter airways. The degree of irregularity strongly
varies between different species of mammals. The branching pattern is quite unsymmet-
ric in the rat lung and large differences in diameter and branch lengths can be observed
(Weibel et al., 2005). This probably comes about due to the more stocky shape of the rat
lung compared to the rather “spherical” human lung.

As the name suggests, the primary function of the conducting airways is the distribution
of air to the peripheral respiratory zones. Since the airways do not participate directly in
gas exchange, they constitute the anatomic dead space of the lung, which approximately
amounts to 150 ml in a young adult male (Guyton and Hall, 1997). Gas transport through
the larger conducting passages occurs by convective flow, whereas diffusion dominates
in the peripheral airways. The decrease in axial flow velocity is due to the fact that the
total airway cross section increases almost exponentially with distance into the lung as a
consequence of branching. Direct measurements of the pressure drop along the bronchial
tree have shown that the major site of airflow resistance is the medium-sized bronchi (West,
2008).

All respiratory passages are lined by a continuous epithelial cell sheet and kept moist by
a layer of mucus that coats the entire surface. This mucus is secreted by individual goblet
cells in the epithelial lining and small submucosal glands. Apart from wetting the surface,
the mucus also subserves a protective function for the lung. It traps small particles from the
inspired air, thereby preventing them from entering the respiratory zone. Upward beating
so-called cilia cause a slow mucus flow towards the pharynx (i.e. the throat) where it is
either swallowed or coughed to the exterior.

Airway wall composition strongly depends on the location within the tree, i.e. the airway
generation. Multiple cartilage rings enveloping the front and side walls of the trachea
increase its stability and prevent collapse. In the walls of the bronchi, plate-like cartilage
structures can be found. These plates become progressively less pronounced in later gener-
ations until they are completely absent. Except for cartilage, the airway walls mainly con-
sist of smooth muscle cells which regulate local airflow resistance. In the larger bronchi,
smooth muscles occur as relatively thin circular sleeves whereas they are arranged rather
helically in the smaller airways. While muscle activity can cause only minor changes in
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1.1 Anatomy and physiology of the respiratory system

the diameter of the mid-sized bronchi, the compression of small airways can be significant.
Many obstructive diseases of the respiratory system result from the narrowing of smaller
bronchioles due to the excessive contraction of smooth muscles, e.g. in case of asthma.

The connective tissue surrounding all airways is commonly referred to as the peribron-
chium. During breathing, this layer allows limited movements of the conducting passages
relative to the lung parenchyma. The peribronchial tissue is connected to the surround-
ing parenchyma by tissue fibers that keep the airways tensioned in the unfolded lung.
Thereby, sufficient stability is provided also for the smaller vessels without reinforcing
cartilage structures. In case of lung diseases, though, pathological changes of local me-
chanical properties may lead to reduced tension forces and, consequently, to a collapse of
peripheral airways, thereby cutting off successive parts of the tree from oxygen supply.
The entrapped air is then absorbed within minutes to hours by the capillary blood. If the
tissue is compliant enough, this leads to local parenchyma collapse. Otherwise, isolated
airspaces are filled completely with fluid pulled out of the interstitium as a consequence of
the tremendous negative pressures.

1.1.2 Lung parenchyma

Parenchyma refers to the portion of the lung made up of the small air chambers partic-
ipating in gas exchange. These so-called alveoli are separated from each other by thin
membranous structures containing the capillary network. Thus, they form the barrier sepa-
rating air and blood. Alveoli are arranged in foam-like structures and fill the entire volume
of the lungs surrounding the conducting passages (see Figure 1.1.2). Remarkably, the hu-
man lung consists of approximately 500,000,000 alveoli in total (Ochs et al., 2004) with an
average surface area of 140 m2 (Weibel, 1963). In this section, the complex morphology
of lung parenchyma will be discussed in general, followed by a detailed characterization
of the blood-gas barrier and its liquid lining.

1.1.2.1 Morphology of lung parenchyma

Lung parenchyma is separated from the chest walls by a narrow gap between parietal and
visceral pleura which line the thoracic cavity and the lungs, respectively. Each of the two
pleurae is a porous membrane through which small amounts of interstitial fluid continually
transude into the pleural space. These fluids carry tissue proteins, giving the pleural fluid
a mucoid characteristic which allows easy slippage of the moving lungs during breathing.
Excess fluid is pumped away by the lymphatic vessels. The resulting negative pressure in
the pleural space is required to keep lung parenchyma expanded.

The interior design of lung parenchyma is determined by the branching of the conducting
airways. Right and left lung are partitioned in three and two lobes, respectively, each en-
closed by the visceral pleura (cf. also Figure 1.1.1). Lung segments of conic shape are the
first subdivision of the lobes. These structures are incompletely bounded by connective
tissue septa such that surgical separation is often possible. In the right lung, there are usu-
ally ten segments whereas only nine can be found in the left one. Within the segments, the
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Figure 1.1.2: Organization of alveoli around conducting passages (scanning electron mi-
croscopy, from http://imglib.lbl.gov).

bronchi branch about six to twelve times. Subsequent bronchioles feed the lobules, which
themselves subdivide into approximately 30,000 so-called acini. These compartments rep-
resent the largest lung units of which all airways are alveolated and, thus, participate in gas
exchange.

According to Haefeli-Bleuer and Weibel (1988), an acinus starts with the first respira-
tory bronchiole and contains all following generations down to the terminal alveolar sacs.
Thereby, the degree of alveolarization increases gradually towards the periphery. While
only several alveoli are attached to the three generations of respiratory bronchioles, the
circumference of subsequent so-called alveolar ducts is totally occupied by alveoli. In
the dead-end alveolar sacs, even the terminal surface is covered with alveoli. In general,
alveoli are collocated in clusters with a common opening towards the duct lumen. As
a consequence of this specific arrangement, the surface area available for gas exchange
is about five times larger than the surface of the associated duct. At the same time, the
diffusion distance for oxygen molecules remains small (Weibel et al., 2005). Due to dif-
ferent numbers of generations and individual segment lengths, this overall diffusion path
length – which is an important morphometric trait of the acinus – varies noticeably, with
an estimated average of around 8 mm.

In general, data concerning the characteristic dimensions of the acinus differ considerably
in literature. Therefore, only widespread morphological information will be summarized.
Haefeli-Bleuer and Weibel (1988) found that the average volume of a human acinus at
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1.1 Anatomy and physiology of the respiratory system

total lung capacity (i.e. maximum inflation) is 187 mm3. The internal airway or duct di-
ameter falls from 500 µm to 270 µm in the acinus, whereas the outer diameter (including
the sleeve of alveoli) remains constant at 700 µm. This is attributed to the increase in alve-
olar size and the number of alveolar complexes towards the acinar periphery. Hansen and
Ampaya (1975) determined the average “diameter” of an alveolus as 238 µm. An interest-
ing comparison of alveolar sizes in different species can be found in Mercer et al. (1994).
They observed a trend for larger lungs to be composed of both more numerous and larger
alveoli. However, the proportional changes in number and size do not exhibit an apparent
pattern. For instance, alveoli of the rabbit are comparable in size to those of the rat, which
has a six- to sevenfold smaller lung.

Although alveoli are commonly depicted as a bunch of grapes, histological investigations
clearly reveal predominantly plane walls shared among adjacent alveoli and connected in
an irregular polyhedral configuration (see for instance Schreider and Raabe (1981) and
Oldmixon et al. (1989)). Hence, the deformation of an alveolus is never independent from
the movement of the surrounding parenchyma. Consequently, any tendency to reduce or
increase the volume relative to the rest of the structure is accompanied by large oppos-
ing forces. This effect, denoted by Mead et al. (1970) as interdependence, is meanwhile
universally accepted in the medical community. The exact mechanisms of alveolar defor-
mation are, however, still controversial. The conventional approach assumes more or less
uniform expansion of alveoli throughout the respiratory cycle. By contrast, some investi-
gators believe that alveolar volume changes as a result of septal folding (comparable to the
crumpling and uncrumpling of a paper bag) in the normal breathing range and that alveoli
get stretched only at high lung volumes. Others state that only the alveolar ducts expand
during breathing, whereas alveolar volume and surface area remain constant. Gatto and
Fluck (2004) proposed that lung volume change at the alveolar level is a combination of
the previously mentioned mechanisms. An overview of the different point of views can be
found e.g. in Hubmayr (2002), Carney et al. (2005), and DiRocco et al. (2005).

Today’s knowledge of the structure of lung parenchyma as summarized in this section
predominantly stems from morphological investigations. A detailed survey of several as-
sociated methodological problems is given e.g. in Weibel (1984). First of all, the tissue
has to be prepared such that it becomes accessible to microscopic observation. For this
purpose, the tissue must be fixed and embedded in some suitable material. Most fixation
techniques, however, come along with some more or less severe disadvantages such as
removal of blood from the tissue, shrinkage, or cell damage. The second methodologi-
cal problem results from the fact that morphological studies usually need to be done on
thin sections of the tissue. However, the process of cutting or slicing destroys the three-
dimensional nature of the structure. For instance, a slice of lung tissue rarely contains
characteristic cross sections of the three-dimensional structure, thereby rendering reliable
measurements difficult. When employing casting techniques (cf. e.g. Haefeli-Bleuer and
Weibel (1988)), it cannot be assured that the lungs are filled homogeneously with material.
Furthermore, the effective pressure (or inflation) state of the lung during the preparation is
unclear. Interpretation of measured dimensions may therefore be delicate. In general, “in
vitro” studies of excised human parenchyma are often limited to a small number of speci-
mens due to the poor availability of healthy lungs. In contrast to popular laboratory animals
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like small rodents, however, the variability of decisive attributes in the human lung is very
high due to differences in environment and preexisting conditions. Therefore, statistical
inference is often problematic in these cases. Non-invasive “in vivo” imaging techniques
such as magnetic resonance tomography (MRT) or computed tomography (CT) are inap-
plicable to lung tissue due to the small characteristic size of alveoli in combination with
the high water content of the septal walls. In summary, a lot of experimental difficulties are
encountered when investigating lung parenchyma anatomy. It is therefore, at least partly,
understandable that many contrary statements can be found in the literature.

1.1.2.2 Composition of the air-blood barrier

The air-blood barrier is lined by two cell layers – the epithelium on the air side and the
endothelium on the blood side – which can control the transit of water and solutes and
repair damage to the barrier. Since these cell layers have to be very thin in order to allow
efficient diffusion of oxygen, they must be supported by a scaffold of connective tissue
fibers spreading within the alveolar septa. At the openings towards the alveolar ducts
or sacs, these fibers form the alveolar “entrance rings” with diameters in the range from
150 µm to 290 µm (Matsuda et al., 1987). In the alveolar walls, the fibers are interlaced
with the meandering single-layer capillary network containing approximately 200 ml of
blood. Due to the small diameter of the capillaries (which is about 10 µm according to
West (2008)), alveolar blood appears like a single layer of erythrocytes. In this way, each
red blood cell is optimally exposed to the air. The transport of oxygen and carbon dioxide
across the barrier occurs solely by passive diffusion. Weibel et al. (2005) put the effective
barrier thickness at only 1 µm in the human lung. The overall thickness of the alveolar
septal wall in general highly correlates with both alveolar surface curvature and radius
(Mercer et al., 1994).

The alveolar epithelium is composed of two distinct cell types with different morphology
and function. About 93% of the alveolar surface is lined by long and slender type I cells
also known as squamous pneumocytes. The remaining 7% are occupied by single bulky
type II cells (granular pneumocytes) that are responsible for the synthesis, storage, and
secretion of specific phospholipids. These substances are needed for the formation of the
alveolar liquid lining which will be addressed later in more detail. Another essential func-
tion is the renewal of alveolar type I cells which are incapable of mitosis. On top of the
alveolar type I cell layer, several alveolar macrophages are situated. These scavenger cells
imbibe germs and other contaminants, thereby serving vital protective functions. Further-
more, they are involved in the continuous replacement of the liquid lining. When acti-
vated, alveolar macrophages can generate a multitude of “pro-inflammatory mediators”
which play a key role in the development of distinct pulmonary diseases. A schematic
overview of the different cell types lining the alveolar wall is given in Figure 1.1.3. The
alveolar pores introduced in this illustration connect neighboring alveoli by interrupting
the continuous alveolar wall. Thereby, links between alveoli belonging to the same duct
are usually established. However, connections between alveoli of sacs and those of pre-
ceding generations as well as between alveoli of neighboring acini have also been reported
by Haefeli-Bleuer and Weibel (1988).
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1.1 Anatomy and physiology of the respiratory system

Figure 1.1.3: Illustration of different important cell types in alveolar walls (modified from
http://academic.kellogg.edu/herbrandsonc/bio201_mckinley).

The space between the cell layers described above is also referred to as the interstitium
or the extracellular matrix (ECM). Within an amorphous, hydrophilic ground substance
composed of mainly proteoglycans, it contains some fine microfibrils and fibroblasts as
well as wide-meshed bundles of elastin and collagen fibers. Like all structures of the body,
these connective tissue fibers are subject to continuous turnover, breakdown, and renewal,
albeit at a slow rate. Occasionally, some free cells also reside in the interstitium. Towards
the lining cell layers, the ground substance condenses into a basal membrane. In regions
where the capillaries are located directly beneath the epithelium, both basal membranes
merge in favor of a small barrier thickness.

According to Humphrey (2003), the ECM serves many functions. Apart from endowing
the tissue with strength to maintain its shape, it serves as a biologically active scaffold on
which cells can migrate or adhere. Furthermore, it provides an aqueous environment for the
diffusion of nutrients, ions, hormones, and metabolites between the cell and the capillary
network. In a sense, therefore, the ECM regulates cell shape, orientation, movement, and
overall function. However, it is the cells (i.e. fibroblasts) that fashion and maintain the
ECM. A detailed review of the composition of the ECM and its interaction with the cells
can also be found in Suki et al. (2005).

The three-dimensional architecture of elastin and collagen fiber networks in the intersti-
tium was investigated by Toshima et al. (2004) (see also Figure 1.1.4). They found that
collagen fiber systems extend throughout the lung and pleura. In the alveolar entrance
rings, collagen fibers are condensed, whereas they subdivide into smaller fibers running in
various directions in the alveolar septa, thus forming basket-like networks. Elastin fibers
are arranged in band-like structures around the alveolar entrances and are only sparsely
distributed in the alveolar septa. Yager et al. (1992) interpreted this condensation of fibers
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Figure 1.1.4: Scanning electron micrographs of connective tissue fiber systems in the hu-
man lung (from Toshima et al. (2004)). Scale bar: 100 µm. (a) Collagen network with
pronounced condensation of fibers in alveolar entrances (AE). Arrowheads indicate pores
devoid of collagen fibers. (b) Elastin network with bands of fibers around alveolar en-
trances (*). Blood vessels (V) possess layers of dense elastin fiber systems.

around the alveolar orifices as a mechanical equivalent to missing alveolar walls. The con-
tribution of the connective tissue fibers to the overall volume of the interstitial space was
investigated by Mercer et al. (1994) for a number of distinct species. They concluded that
the amount of collagen and elastin fibers was significantly increased over other intersti-
tial components in species with thicker septal walls. Thereby, according differences were
considerably greater than the corresponding changes in alveolar diameter. For instance,
in the human lung with fourfold larger alveoli than the mouse, the normalized volumes of
collagen and elastin in the entrance ring were both increased by a factor of approximately
ten. Yager et al. (1992) assumed that the specific fiber volume fractions in human and
dog parenchyma are responsible for the significant differences in microscopic deformation
behavior of biaxially stretched tissue strips. Interestingly, the actual spatial concentrations
of elastin and collagen fibers also varies significantly between different species (Mercer
and Crapo, 1990). In rat lungs, the majority of the elastin fiber volume (77%) and half of
the collagen fiber volume (44%) is located in the first 10 µm compartment adjacent to the
entrance ring. By contrast, in human lungs, only 22% of the elastin and 18% of the colla-
gen fibers are present within 20 µm of the alveolar duct wall. Thus, fibers are considerably
more dispersed throughout the alveolar septal walls of human lungs. Furthermore, the
collagen-to-elastin fiber ratio differs between rat (~2) and human (1.5) specimens. How-
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ever, this average does not accurately reflect the spatial relationships of both fiber systems.
Indeed, the ratio is approximately 1 in the entrance rings where the connective tissue fibers
are most prominent. Although the average collagen and elastin content is more comparable
in mouse and rat lungs, fiber composition and architecture was also found to be different
(Faffe et al., 2002).

Sobin et al. (1988) investigated the orientation of the fibers in human alveolar walls. Al-
though both fiber networks may exhibit predominant directions in individual septa, no clear
trend of the orientation relative to the borders of the alveolar wall could be ascertained for
a large number of alveoli considered. Therefore, they assumed that fiber directions are so
random that statistically they are uniformly distributed in every direction.

Concerning the interconnection of both fiber networks, reported experimental results are
ambiguous. Toshima et al. (2004), for instance, reported that both fiber systems are
strongly intermingled. Mercer and Crapo (1990), however, stated that less than half of
the elastin fibers are interwoven with collagen in the alveolar entrance rings. The inter-
weavement was completely denied by Matsuda et al. (1987), although a spatial relation
between the fibers was in general admitted.

Elastin is one of the most “linearly” elastic biosolid materials known (Fung, 1981). Ac-
cording to Ethier and Simmons (2007), the Young’s modulus of elastin fibers is around
30 kPa. They are highly flexible and can be stretched to about 200% of their original
length (Larsen and Ziegenfuß, 2004). Furthermore, they can be compressed to approxi-
mately 60% while still being straight. Therefore, alveolar septa are assumed to become
wrinkled not until alveolar volume goes below 20% of its maximum value. Collagen fibers
exhibit a strongly nonlinear mechanical behavior. At low levels of strain (in the so-called
“toe” region of the stress-strain curve), the fibrils making up single collagen fibers take a
wavelike configuration and are easily extended with most of the stress being borne by ad-
jacent elastin fibers. At higher levels of strain (in the “heel” and “linear” region), however,
collagen fibrils become straight and resist further stretch by increasing the stiffness of the
fiber significantly. Compared to elastin, the Young’s modulus of collagen is about 10,000
to 100,000 times larger (Ethier and Simmons, 2007). Thus, collagen is assumed to provide
a mechanical framework to limit excess distension, whereas elastin seems to permit the
lung to effectively recoil in the normal breathing range.

A concluding overview of the composition of the respiratory zone is given in Table 1.1.
Most of lung parenchyma consists of air residing in the alveoli and the peripheral passages.
About 1% is occupied by pre- and post-capillaries representing the entrance and exit points
of the capillary beds. Alveolar septa containing both capillary blood and tissue composed
of cells and interstitium amount to approximately 7% of lung parenchyma.

1.1.2.3 Alveolar liquid lining

It is widely known that alveolar walls are covered by a film of surface active agents, the
so-called surfactant. According to Ingenito et al. (1999), this substance is a mixture of sev-
eral phospholipids (PL), neutral lipids, and surfactant apoproteins (SP). The PL fraction
is the major constituent of surfactant by weight (80%). Its most abundant and important
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Lung parenchyma

“Tissue” septa
(~7%)

pre-/post-
capillaries

(~1%)

alveolar/
duct air
(~92%)

capillary
blood

(~50%)

alveolo-capillary tissue
(~50%)

epithe-
lium

(~30%)

inter-
stitium
(~40%)

endo-
thelium
(~30%)

Table 1.1: Components of lung parenchyma on different levels of detail (from Weibel
(1963)).

representative is dipalmitoyl phosphatidylcholine (DPPC). This molecule possesses a par-
ticular amphiphilic structure with a hydrophilic tail and a hydrophobic lipid head-group.
Owing to this special dual configuration, DPPC plays an essential role in interfacial phe-
nomena at the gas interface. The SP, which comprise only about 8% of lung surfactant,
appear to be critical for the effective physiological function of surfactant, e.g. by improv-
ing adsorption and spreading behavior. More details on the biochemical composition and
the morphological organization of surfactant are given in Griese (1999).

The exact appearance of the surface film has been quite controversial. The most popular
notion is based on the assumption that an aqueous film of variable thickness called the
hypophase underlies a monomolecular layer of surfactant molecules. This “conventional
model” of the liquid lining was supported by investigations of frozen lungs reported by
Bastacky et al. (1995). By analyzing the profiles of the preserved lining, they identified a
thin continuous fluid film with deeper pools in the alveolar corners. From their point of
view, this subphase serves to smooth the air-liquid interface and provide a substrate for
surfactant movement. Similar conclusions were drawn more recently by Takayama et al.
(2000). However, Hills (1999) argued that these results are purely artificial owing to the
inflation of the lungs before freezing. In his opinion, the continuous liquid lining would
promote excessive suction of fluid into airspace, particularly in the septal corners. In-
stead, he advocated a “morphological model” based on the presumption that alveolar fluid
is confined to convex “pools” at the septal corners and rough spots. Surfactant adsorbs
to both pools and the epithelial surface, thereby rendering the tissue less wettable. As a
consequence, the formation of a continuous hypophase is prevented and a significant part
of the alveolar surface is fluid-free. The control of the remaining fluid is self-regulating
since surface forces tend to return any edema to the interstitium. This theory is based
upon earlier studies of normal frozen lungs. Another interesting (though more exotic) the-
ory was introduced by Scarpelli (1998). He claimed that the terminal lung units are filled
with a foam of ultrathin surfactant films. This “alveolar surface network” can basically
be interpreted as an agglomeration of surfactant bubbles that impart structural stability
of the alveoli and modulate surfactant circulation. Due to the small thickness of about
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Figure 1.1.5: Schematic diagram of the surfactant system in a single alveolus (from Haw-
good and Clements (1990)). 1-4 illustrates surfactant synthesis within type II cells. After
secretion into the liquid lining, surfactant forms tubular myelin (5) before generating the
aligned monolayer (6) at the water-air interface. Subsequently, surfactant components are
taken back into type II cells by different mechanisms indicated in 7-9. Some surfactant in
the liquid layer is also taken up by alveolar macrophages as shown in 10.

7 nm, the surfactant bubbles do not impair gas transport throughout the respiratory zone.
It is noteworthy that the cumulative foam thickness is substantially less than the suggested
mean thickness of the continuous lining proposed in the “conventional model”. The alveo-
lar surface network theory was affirmed by stereomicroscopic examination of fresh lungs.
Bubble clusters could be clearly identified and even manipulated by imposing gentle mi-
croprobe pressures. However, these observations are again disputed by the proponents of
the other models. An enraged debate about the validity of the “morphological model” and
the “alveolar surface network” can e.g. be found in Scarpelli and Hills (2000). A clarifi-
cation of the controversial liquid lining issue is beyond the scope of this thesis. All of the
positions presented above were supported by experimental studies. However, the results
themselves were contradictory. Due to its wide acceptance in the medical community, the
“conventional model” is presumed to be valid in the following.

In Figure 1.1.5, the assumed composition of the liquid lining is shown along with some
details concerning surfactant movement. Surfactant is synthesized by type II alveolar ep-
ithelial cells and released to the continuous aqueous film. After secretion, the molecules
form a surfactant specific lipid lattice commonly known as tubular myelin. From these
structures, lipids can rapidly adsorb to the air-water interface and form a monomolecular
surfactant layer. Thereby, the hydrophilic polar group is immersed in the water and the hy-
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drophobic part sticks out. By rendering the interface more compatible with air, surfactant
substantially lowers the interfacial energy. Veldhuizen and Haagsman (2000) assumed that
lipid bilayer structures are attached to the surfactant monolayer, thereby forming a lipid
reservoir. During breathing, several complex dynamic processes occur in the film such as
adsorption, desorption, and squeeze-out of DPPC molecules, lipid reservoir formation and
modulation of monolayer packing. A single transit of the surfactant molecules through the
alveolar lumen normally takes a few hours. The PLs are then taken back into the type II
cell in large part. Before being degraded, the PLs can be reutilized about 10 times.

By comparing normal and liquid-filled lungs, von Neergaard (1929) demonstrated that in-
terfacial effects account for two thirds of lung recoil forces. Hence, in case of surfactant
deficiency, lung compliance is significantly reduced, the work of breathing is increased,
and alveoli as well as small airways are likely to collapse or fill with fluid. According to
Griese (1999), a pathophysiological role for surfactant was first discovered in premature
infants. Surfactant is formed relatively late in fetal life and babies born without adequate
amounts develop respiratory distress, a condition which is nowadays routinely treated with
exogenous surfactant replacement. Biochemical surfactant abnormalities of varying de-
grees have also been described in acute lung failure and various other obstructive or infec-
tious diseases. In particular, data obtained in several studies strongly suggest that surfactant
dysfunction is also involved in the development of sudden infant death syndrome (SIDS).

Apart from being relevant for lung stability and compliance, surfactant also serves sev-
eral other vital functions. For instance, the dissemination pressure of surfactant causes the
aqueous hypophase to thin, thereby facilitating efficient gas exchange. Additionally, the
surfactant layer keeps the alveolar epithelium moist and, therefore, prevents the cells from
rupturing. By reducing the interfacial energy of the liquid lining and, thus, the stresses
in the tissue surrounding the capillaries, excessive transudation of fluid into the alveolar
lumen is obviated. Furthermore, it is widely assumed that inhaled particles and micro-
organisms entering the alveolar space are rendered innocuous by surfactant. Hence, sur-
factant also plays an important role in terms of lung protection.

1.2 Ventilator-associated lung injuries

“[...] the rationales for the various ventilatory settings are largely empiri-
cal, because the physiology and mechanics of lung inflation are poorly under-
stood.” (Gatto and Fluck, 2004)

The complications of mechanical ventilation in case of acute lung diseases are the main
motivation for this work. Therefore, some related information will be provided in the
following.

1.2.1 Acute lung diseases

The nervous system normally adjusts the rate of alveolar ventilation to the demands of
the body, such that arterial blood oxygen and carbon dioxide pressure are hardly altered
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even during moderate to strenuous exercise. In case of respiratory insufficiency, however,
the lung is unable to sustain arterial blood gases in the normal range, thereby necessitat-
ing intubation and mechanical ventilation. This dysfunction may be brought about by a
perturbation of ventilation, pulmonary gas exchange, or perfusion.

A prominent type of respiratory failure is the acute lung injury (ALI) which was defined
by the American European consensus conference (AECC) as a syndrome of inflammation
and increased permeability that is associated with a constellation of clinical, radiologic,
and physiologic abnormalities (Bernard et al., 1994; Bernard, 2005). ALI can be initi-
ated by a wide variety of direct insults to the lung such as aspiration of gastric content
or pneumonia as well as lung injury from extra-pulmonary origin like multiple trauma or
sepsis. Consequently, the diagnosis of ALI is difficult and not exclusive. The presence
of secondary factors such as chronic lung diseases or multiple predisposing disorders sub-
stantially increases the risk of progression to ALI. Furthermore, the risk of developing
ALI significantly depends on the specific initial insult. While 40% of patients with severe
sepsis develop lung injury, the incidence following trauma is only 20% or less (MacCal-
lum and Evans, 2004). A subset of ALI is the more severe acute respiratory distress syn-
drome (ARDS). Although not consistent with the original definition of the AECC, the term
“acute” is sometimes replaced by “adult” to indicate that ARDS is an adult version of the
well-known infant respiratory distress syndrome (IRDS), which is the most frequent cause
of death in premature babies. The exact classification of ALI and ARDS is based on the
oxygenation index, i.e. the ratio of the partial pressure of arterial oxygen to the fraction
of inspired oxygen, which can be easily determined in the clinical setting. Both ALI and
ARDS are acute in onset, persistent, and characterized by diffuse, heterogeneous lung in-
juries. As a consequence, the mechanical properties of the respiratory system are known to
be adversely affected, with an increased resistance and a reduced compliance as hallmarks
(Frantzeskaki et al., 2003).

According to Ware and Matthay (2000), an accurate estimation of the incidence of ALI and
ARDS is difficult due to the heterogeneity of causes and clinical manifestations. Rubenfeld
et al. (2005) reported that in a large-scale clinical trial in King County (US), the incidence
of ALI and ARDS was found to be 86.2 and 64.0 per 100,000 person-years, respectively.
From these data, they estimated that each year in the US, there are 190,600 cases of ALI
which are associated with 3.6 million hospital days. Survival of affected patients strongly
depends on age, chronic diseases, and non-pulmonary organ dysfunctions. In general, the
primary cause of death is a multiple organ dysfunction syndrome (MODS) rather than
primary respiratory failure. Therefore, the initial degree of gas exchange impairment –
unless very severe – is a rather poor predictor of outcome. However, the failure of pul-
monary function to improve during the first week of treatment is a negative prognostic
factor (Ware and Matthay, 2000). As stated by Bernard (2005), patient mortality within
the first 28 days after onset ranges between 35 and 40%. These numbers are in line with the
findings of Rubenfeld et al. (2005), who specified an in-hospital mortality rate of 41.1%
in case of ARDS and 38.5% for all ALI patients, corresponding to 74,500 deaths per year
in the US. Interestingly, this figure is comparable to the number of adult deaths attributed
to breast cancer or HIV. Since both incidence and mortality increase with age, associated
numbers are assumed to nearly double within the next 25 years due to the expected de-
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Figure 1.2.1: Comparison of normal (left) and injured (right) alveolus (from Ware and
Matthay (2000)).

mographic development. Apart from being associated with considerable mortality rates,
it is widely known that severe ARDS in combination with prolonged mechanical ventila-
tion can also be associated with long-term disability, for instance persistent neuromuscular
weakness (Bernard, 2005). In most surviving patients, however, pulmonary function re-
turns to nearly normal within 6 to 12 months despite the severe lung injuries (Ware and
Matthay, 2000).

Radiographic and computed tomographic scanning have demonstrated that ALI/ARDS –
although affecting the lung as a whole – is mainly related to local pathologic changes on
the alveolar level. The syndrome is usually progressive, i.e. distinct stages can be clearly
distinguished (Ware and Matthay, 2000). The acute phase is characterized by the rapid
onset of diffuse alveolar damage as shown in Figure 1.2.1. Capillary injury and disruption
of the alveolar epithelium results in the increase of barrier permeability, thereby promoting
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flooding of the alveolar spaces with protein-rich edema fluid followed by the inactivation
of surfactant. The decrease in the amount of aerated alveoli due to pulmonary edema is
closely related to the overall reduction of compliance, a phenomenon commonly known
as “baby lung”. Injury to type II cells impairs removal of the edema fluid and reduces the
production and turnover of surfactant, thereby contributing to the characteristic surfactant
abnormalities. Furthermore, neutrophils migrate to the alveolar space where they are ac-
tivated by alveolar macrophages and release pro-inflammatory molecules. However, the
question whether neutrophilic inflammation is the cause or the result of lung injury is not
yet fully elucidated. In the so-called fibroproliferative phase (which is associated with an
increased risk of death), protein-rich hyaline membranes form on the denuded basement
membranes. This stage is characterized by varying degrees of interstitial fibrosis, i.e. the
development of excess fibrous connective tissue (Tsushima et al., 2009). The possibly
following recovery phase then involves removal of neutrophils as well as edema fluid and
remodeling of the ECM. As a consequence, lung compliance increases again and hypox-
emia (i.e. the decreased partial pressure of arterial oxygen) is gradually resolved. As the
different stages of ALI/ARDS already suggest, the factors dominating the abnormalities in
lung mechanics are assumed to vary in time. Ingenito et al. (1994) found that significant
changes in parenchymal elastance and resistance occur 48 hours after the onset of severe
lung injury. They concluded that surface film dysfunction and alveolar flooding dominate
the early phase and parenchymal abnormalities may play a role in the later stages of acute
lung diseases.

Another proposed mechanism of ALI/ARDS is atelectasis, i.e. the collapse of peripheral
airspaces due to surfactant deficiency in the alveolar liquid lining or obstruction of the
corresponding feeding airway. Although this notion is prevalent among many scientists
and clinicians (cf. e.g. Gatto and Fluck (2004), Carney et al. (2005), and DiRocco et al.
(2005)), its actual occurrence is still controversial. One reason might be the difficulty
in clearly identifying these phenomena from experiments. For instance, differences in
regional air distribution seen in CT images have frequently been interpreted as evidence
for regional collapse of alveoli. However, Hubmayr (2002) emphasized that gradients in
aeration do not necessarily imply differences in tissue expansion or alveolar size but may
equally implicate pulmonary edema. Considering the well-known interdependence effects,
the actual collapse of alveoli seems to be questionable since the local pressure must fall
so much that edema would again be promoted. Hubmayr (2002) pointed out that there is
only sparse morphometric evidence of alveolar collapse (as opposed to flooding), which,
however, may be due to difficulties in the preservation of the in situ lung architecture
during fixation. A clarification of this controversy is again beyond the scope of this thesis.
Following Mols et al. (2006), its is assumed that collapsed and flooded alveoli might co-
exist in the same lung in different regions. For simplicity, the term atelectasis will be
equally used for fluid filled and collapsed peripheral airspaces in the following. However,
it is obvious that the basic mechanisms that initiate and mediate the progression of acute
lung injury still need to be investigated in more detail.

So far, there are no methods of therapy specific to ALI/ARDS and care of patients with
this syndrome remains primarily supportive and empiric (Ingenito et al., 1994). Clini-
cal management involves prevention and aggressive treatment of infections, since the most
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common cause of death is uncontrolled infection with associated organ dysfunctions (Mac-
Callum and Evans, 2004). A reduction in mortality has been observed when low-dose
steroids are administered in the later phases of ALI/ARDS. All other trials of pharmaco-
logical interventions have failed to prove a positive effect on survival in large-scale trials.
Because of the success of surfactant replacement therapy in IRDS patients, it has also been
proposed as a treatment for ALI/ARDS. However, although a positive effect on oxygena-
tion can be assumed according to Bernard (2005), the actual preparation, exact dosage, and
delivery of synthetic surfactant still have to be investigated in more detail. Consequently,
surfactant replacement is not a standard procedure for ALI/ARDS patients. The major vi-
tal supportive therapy of ALI/ARDS patients is mechanical ventilation used to maintain
adequate systemic oxygenation and rest respiratory muscles (Ranieri et al., 1999). There-
fore, the following sections will provide some information about this treatment along with
a brief survey of ALI/ARDS-specific complications.

1.2.2 Mechanical ventilation

In intensive care medicine, mechanical ventilation is utilized to assist or replace sponta-
neous breathing of patients whenever oxygen supply is inadequate to maintain life. The
ventilator is a pneumatically driven device that generates a controlled flow of gas into
the patient’s lung. Although other types of artificial respiration exist, positive pressure
ventilation involving endotracheal intubation prevails in the clinical setting. Modern ven-
tilators are electronically controlled and equipped with monitoring systems for various
parameters. By choosing diverse machine settings, different patterns of respiration can be
induced. According to Larsen and Ziegenfuß (2004), important variables are, for exam-
ple, tidal volume, ventilation frequency, inspiratory flow, relation between inspiration and
expiration time as well as end-expiratory and upper inspiratory pressure. The chosen ven-
tilation mode in general depends on the specific disease, the available equipment, and the
preferred protocols of the intensive care unit. As will be discussed also in the following
section, so far no consensus on optimal ventilation strategies has been reached.

Two basic types of ventilation can be distinguished depending on the variable controlled
primarily by the respirator, namely pressure or volume (Haberthür et al., 2001). In both
cases, the specific target values are usually accomplished by regulating airflow. The ac-
tive controlling process is in general confined to the inspiration phase, i.e. by initiating,
limiting, and aborting inspiratory flow. In the subsequent no-flow-phase (the so-called
inspiratory pause), a pressure plateau develops. This stage is followed by the expiration
phase, which is passive in almost all common ventilation modes. This means that air flows
back spontaneously due to the removal of positive tracheal pressure. Depending on the
specific protocol, the end-expiratory pressure (EEP) is zero (ZEEP), negative (NEEP), or
positive (PEEP). In line with the famous “open lung” concept, PEEP is usually chosen to
prevent atelectasis and keep the lungs recruited in large part (Larsen and Ziegenfuß, 2004).

Although being a vital therapy for all patients undergoing surgery or suffering from venti-
latory failure, Mols et al. (2006) argued that the actual process of mechanical ventilation
is inherently unphysiological and artificial. After all, the mechanisms for providing the
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tidal volume during artificial respiration substantially differ from spontaneous breathing.
The latter involves the development of a pressure gradient by means of muscular contrac-
tion. As a consequence, tracheal pressure is zero and alveolar pressure is negative. By
contrast, the mechanical ventilator elevates tracheal pressure relative to the atmosphere,
thereby forcing the air into the lungs. In addition to causing this substantial increase in
intrapulmonal pressures, mechanical ventilation delivers uniform breaths. Normal venti-
lation, however, is characterized by continuously changing tidal volumes and flow rates.
Although novel so-called polymorphous ventilation protocols (see e.g. Spieth et al. (2009))
attempt to mimic this intrinsic spontaneous breath-to-breath variability, they have not been
fully evaluated clinically yet.

1.2.3 Complications

Artificial ventilation of patients without preexisting lung diseases (for example during
anesthesia) is usually uncomplicated and not deleterious, even when high tidal volumes
are utilized. According to Bates and Lutchen (2005), sub-pleural alveolar pressures are
almost identical at different locations in the lung within the range of normal breathing.
Hence, despite its complex structure, the lung behaves remarkably homogeneous in the
healthy state. Pathology, though, invariably afflicts the lung in a heterogeneous manner
which predisposes patients towards a number of complications when being mechanically
ventilated. Since they are of utmost importance for the outcome of ARDS, the different
side effects of artificial respiration will be briefly summarized in the following. More in-
formation (particularly on the many underlying studies) can be found e.g. in Dreyfuss and
Saumon (1998), International Consensus Conferences in Intensive Care Medicine (1999),
Slutsky (1999), and Oeckler and Hubmayr (2007).

In case of ARDS, three different regions of the lung can be distinguished (Gattinoni et al.,
1993, 2001). Acute lung injuries occur predominantly in the dependent zones of the lung
which denote the lower parts in direction of gravity. While these regions are atelectatic,
the non-dependent areas are continuously open to ventilation. The transitional domains
can be recruited or derecruited (i.e. aerated or atelectatic), depending on the particular
point in time in the respiratory cycle and the specific ventilation protocol. When utiliz-
ing conventional ventilation strategies, the relatively normal non-dependent lung regions
are at risk of overdistension. This phenomenon is commonly denoted as volutrauma and
is associated with local cellular damage and a further increase in the permeability of the
blood-gas barrier. Similar consequences (known as atelectrauma) are observed in the tran-
sitional domains where peripheral airspaces are repeatedly recruited and derecruited. In
this context, Hubmayr (2002) defines the term “recruitment” as the aeration of previously
airless regions which does not necessarily imply the reversal of collapse. Hence, the term
atelectrauma is subsequently not restricted to collapse and opening of alveoli but may also
refer to the repeated flooding and aeration of airspaces. It has to be noted, though, that
the conventional definition of atelectrauma usually denotes the former mechanism only.
However, the reinterpretation of this term is in line with the particular definition of at-
electasis in section 1.2.1 and seems acceptable given the ongoing controversy. Although
the existence of atelectrauma is widely accepted in the medical community and has been
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frequently demonstrated in animal models, the relevance to humans is still not firmly es-
tablished (Moloney and Griffiths, 2004; Dirocco et al., 2006).

Both clinical and basic research have demonstrated that injurious ventilation strategies
can initiate or perpetuate local and systemic inflammations (Uhlig, 2002). This so-called
biotrauma plays an important role in the outcome of ARDS. In general, two basic mech-
anisms of biotrauma can be distinguished. First, stress failure of single cell membranes
or the entire barrier due to volutrauma or atelectrauma leads to liberation and spreading
of inflammatory mediators and bacteria. However, apart from physically damaging alve-
olar tissue, mechanical ventilation can also elicit the release of mediators in intact cells
by activating stretch-induced signaling cascades. This process is also known as mechano-
transduction since a mechanical stimulus is converted into chemical activity (for details
see e.g. Vlahakis and Hubmayr (2003) and Kamm and Kaazempur-Mofrad (2004)). In
addition to the exacerbation of preexisting injuries, inflammations can also be initiated in
the formerly spared regions due to volutrauma. One involved group of inflammatory medi-
ators are the cytokines that initiate and organize the host’s response to different biological
stresses (Ranieri et al., 1999). Cytokines interact with highly specific cell-surface recep-
tors, causing a series of intracellular signaling events. If these processes are not adequately
regulated, they may result in excessive amplification of the inflammatory cascade, thereby
causing the uncontrolled activation of the immune system. By raising the production of
pulmonary cytokines due to biotrauma and increasing the permeability of the blood-gas-
barrier through volutrauma and/or atelectrauma, mechanical ventilation is likely to play
an important role in the development of systemic inflammation. This might at least partly
explain why most ARDS patients succumb to MODS rather than respiratory failure.

Volutrauma, atelectrauma, and biotrauma are collectively termed ventilator-associated lung
injuries (VALI) and deemed among the most important factors in the pathogenesis of
ARDS. Since the symptoms of VALI closely resemble those of ARDS (e.g. severe alveolar
damage and inflammations), it is difficult to attribute the impairment to mechanical ventila-
tion only (International Consensus Conferences in Intensive Care Medicine, 1999). In fact,
changes in lung structure could also be due to the progression of ARDS. Consequently, the
diagnosis of VALI in the clinical setting is inherently hampered. The sometimes equally
used term ventilator-induced lung injuries (VILI), by contrast, usually defines acute lung
injuries directly caused by mechanical ventilation in otherwise healthy animal lungs. Al-
though the situation is inherently different, many insights into the underlying mechanisms
of VALI described above were obtained from these animal experiments and the clinical rel-
evance is now widely accepted. The development of specific ventilation strategies aimed
at the protection and recovery of the lung, however, remains challenging.

According to Ware and Matthay (2000), the most appropriate method of mechanical ven-
tilation in case of ALI has been controversial since the syndrome was first described. Al-
though the tidal volume in normal breathing is 4 to 7 ml/kg body weight, critical care
books had long recommended ventilation of ARDS patients with tidal volumes of 12 to
15 ml/kg body weight. Though this may have been suitable in case of surgery patients, it
was soon found that this guideline does not hold for ARDS patients (Bernard, 2005). In
1994, the ARDS Clinical Trials Network (ARDSNet) was launched in order to investigate
phenomena related to mechanical ventilation in the acutely injured lung in more detail.
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In their pioneering first study (The Acute Respiratory Distress Syndrome Network, 2000),
the outcomes of mechanical ventilation with 6 ml/kg and 12 ml/kg body weight were com-
pared in 861 patients. Although the trial was initially planned for 1,000 subjects, it had to
be cut short because of a striking reduction in mortality in the lower tidal volume group
(31%) compared to the group treated with traditional ventilation (39.8%). The observed
benefits of low-tidal volume ventilation were attributed to the protection of non-dependent
airspaces against overdistension (i.e. volutrauma).

Another established recommendation for the ventilation of ARDS lungs is the mainte-
nance of PEEP. Halter et al. (2003) stated that the noticed improvement of oxygenation
is related to the prevention of flooding and/or collapse of small airways and possibly also
individual alveoli during expiration. By keeping peripheral airspaces aerated throughout
the respiratory cycle, damage caused by atelectrauma can potentially be impeded. Be-
sides, PEEP may restrict the leakage of liquids from the vessels of pulmonary circulation
towards the interstitial as well as the alveolar space by increasing both the perivascular
and the alveolar pressure. Water already present in the alveolar space can be redistributed
to the interstitium more easily. In this way, PEEP may also improve the function of the
surfactant system (Larsen and Ziegenfuß, 2004). The implications of lower versus higher
PEEP levels were addressed in another ARDSNet trial (Brower et al., 2004). Although
oxygenation efficiency as well as lung compliance were increased in the group with higher
PEEP, no benefits to survival, required ventilation time, or non-pulmonary organ function
were observed. However, considering several limitations of the ARDSNet trial, Mols et al.
(2006) stated that no conclusive evidence against the protective effect of an appropriately
chosen PEEP could be provided and the rationale for the use of PEEP remains in general
valid. However, there is again no consensus on the optimum level of PEEP in patients with
ARDS (Moloney and Griffiths, 2004), although values between 5 and 15 mbar are usually
utilized. Since the severity of injury varies throughout the lung, the proper selection of
PEEP is further complicated.

Different alternative ventilation protocols have been formulated (e.g. alveolar recruitment
maneuvers, partial liquid or high-frequency oscillatory ventilation), but none of these
strategies have been shown to improve survival in randomized clinical trials (Tsushima
et al., 2009). The only intervention that evidentially achieved mortality benefit has been
low-tidal volume ventilation (see e.g. Amato et al. (1998)). As a consequence, many con-
sider the ARDS Network protocol as the current standard for ventilation of ALI/ARDS
patients (MacCallum and Evans, 2004). However, although providing evidence that “pro-
tective” ventilation strategies for ARDS patients can in general reduce mortality, only two
distinct levels of tidal volumes were tested in this large-scale clinical trial. Hence, so far
no concluding statements can be made about the optimal ventilation protocol. There is
growing evidence that ventilatory variables in fact need to be adjusted individually at the
bedside (Mols et al., 2006).
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1.3 Objectives and outline

“It will probably take a multidisciplinary approach to fully elucidate alveolar
mechanics [...] in both the normal and acutely injured lung.” (Gatto and
Fluck, 2004)

The work described in this thesis was part of an interdisciplinary research project within
the priority program “Protective artificial respiration” of the German Research Foundation
(DFG). The long-term goal of this particular project is the identification of local in vivo
stresses and strains in the lung during mechanical ventilation. These conditions can then be
simulated experimentally in a specifically designed “bioreactor” enabling the well-defined
mechanostimulation of living lung tissue slices (see Dassow et al. (2010) for details). The
combination of computational models and experimental methods will help understand-
ing how realistic mechanical forces are translated into biological responses such as pro-
inflammatory gene expression. Particularly, this concept will allow for the comparison of
different ventilation protocols with respect to local mechanical loadings and their corre-
sponding biological effects. To the author’s knowledge, no comparable approach aimed
at quantitatively correlating mechanical stimuli and signaling responses during artificial
respiration is available so far.

In this context, the main objective of the present thesis is the development of novel compu-
tational approaches enabling the detailed investigation of respiratory mechanics. Thereby,
the focus will be clearly on the modeling aspects. The individual building blocks of a con-
tinuum lung model will be derived and their functionality will be demonstrated by simple
numerical examples. Extensive studies based on patient-specific data, however, are beyond
the scope of this work.

As already mentioned, remarkably little is known about lung mechanics even during nor-
mal breathing. This lack of understanding handicaps the investigation of pathophysiolog-
ical changes in the diseased lung. Therefore, in this thesis, basic approaches to modeling
the healthy lung will be developed as a first step. However, the requisites for a model
of disease will always be kept in mind. Moreover, since all approaches will be built up
mainly from first principles, a wide range of applicability can be assumed. The established
models should be usable for both obtaining physiological insights from experimental data
and testing specific hypotheses in the sense of a “virtual laboratory” in the future.

The success of any simulation strategy substantially depends on the level of detail that can
be incorporated into the models. However, sophisticated models are of no practical use
if not supplied with sufficient experimental data. Striking the balance of these opposing
demands is among the principal tasks of an engineer. Hence, one has to formulate adequate
simplifications of the real system under investigation and carefully define the resultant
scope of application of the developed model. This thesis aims at providing methodologies
for a detailed overall lung model that can be used to establish a better understanding of
the phenomena occurring during VALI. Application of this rather complex model in the
clinical setting, though, is not intended. Eventually, the insights gained by combining the
developed computational models with the planned experimental investigations should be
utilized to improve existing simple models that can be applied individually at the bedside.
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Currently, these approaches are based on measurements of global lung mechanics only
and, therefore, cannot give indication of local diseases. However, when provided with
additional information obtained from detailed modeling, the simple models should help
clinicians to choose patient-specific protective ventilation protocols in the future.

All methods and models devised as part of this work were implemented in the in-house
finite element (FE) software platform BACI (Wall and Gee, 2010). This multi-purpose
parallel research code is written in C++ and integrates open-source libraries of the trilinos
project (Heroux et al., 2005). BACI has been developed jointly at the Institute for Com-
putational Mechanics (Technische Universität München). Consequently, existing features
like different element formulations or multigrid solver techniques could be easily utilized
and complemented with additional implementations.

The remainder of this thesis is organized as follows. Chapter 2 will provide a short re-
view of fundamental governing equations and relevant FE formulations. In the following
chapters, the novel virtual lung model will be presented in detail.

A comprehensive alveolar model enabling the quantification of local stresses and strains
will be introduced in chapter 3. Due to the poor disposability of imaging-based alveolar
geometries, a new method to create artificial acinar representations suitable for FE simula-
tions will be developed. Subsequently, the constitutive law utilized for describing alveolar
tissue behavior will be presented. At the close of this chapter, a novel approach to consid-
ering surfactant film dynamics in the FE model will be devised.

Since the consideration of all 500 million alveoli is not feasible, specific approaches to
establishing an overall model of lung parenchyma will be introduced in chapter 4. In this
context, the alveolar micro-structure will be resolved only at certain “hot spots”, whereas
a homogenized model will be utilized for the bulk of lung parenchyma. To bridge the
gap between global parenchymal and local alveolar level, a nested dynamic multi-scale
approach will be devised. After a short validation of the developed algorithm, its suitability
for alveolar micro-structures will be demonstrated.

Chapter 5 will address the combination of the overall parenchyma model and the conduct-
ing airways to an overall continuum lung model. For this purpose, a physically motivated
coupling of airflow and parenchyma volume change will be developed. The corresponding
constrained fluid-structure interaction problem will be derived and specific solution pro-
cedures will be introduced. After some validating numerical examples, the novel volume-
coupling approach will be shown to enable realistic simulations of coupled airflow and
parenchyma deformations.

The presented computational approaches will be briefly summarized and discussed in
chapter 6. Finally, a short outlook to possible and necessary enhancements of the mod-
els and future research directions will be provided.
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2 Governing Equations and Finite
Element Formulations

This chapter is intended to provide a basis for the development of computational models in
respiratory mechanics. First, relevant continuum mechanical equations for solid dynamical
problems will be reviewed. Furthermore, a few details about space and time discretization
will be given. In the subsequent two sections, the governing equations and FE formulations
for fluid flow on deformable domains will be addressed. Afterwards, approaches to con-
sidering the interaction of fluids and solids will be presented. Finally, two basic methods
of constraint enforcement will be discussed.

2.1 Solid mechanics

The following introduction to nonlinear structural dynamics will focus on aspects neces-
sary for the development of lung models. More extensive reviews can be found in the liter-
ature, e.g. in the standard textbooks Marsden and Hughes (1983), Ogden (1997), Holzapfel
(2001), Bonet and Wood (2008), or the lecture notes of Wall et al. (2010a).

2.1.1 Kinematics

Kinematics of three-dimensional bodies

In continuum mechanics, the term kinematics denotes the mathematical description of the
motion and deformation of a body. The following derivations are restricted to the total
Lagrangian formulation since it is utilized exclusively in this thesis for the kinematics of
solids. In this case, the reference or material configuration ΩS

0 denotes the domain that all
points x0 of the undeformed body occupy at t = 0. The nonlinear map

φ :

ΩS
0 7→ΩS

x0 7→ x = φ(x0)
(2.1.1)

then completely defines the motion of the body from its reference to the current deformed
configuration ΩS with spatial positions x (cf. also Figure 2.1.1). The superscript S is uti-
lized whenever there is danger of confusion with quantities of the fluid field (indicated by
superscript F, cf. section 2.2) or the ALE field (identified by superscript A, cf. section 2.3).
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2 Governing Equations and Finite Element Formulations

t = 0 t

xPx0;3, x3

P

P
ΩS

0

ΩS

dP (x0;P , t)

x0;1, x1

x0;2, x2

x0;P

φ

Figure 2.1.1: Total Lagrangian description of motion.

A common interpretation of the total Lagrangian formulation is that the observer describ-
ing the deformation moves with a fixed material point x0 of the body, thereby continuously
determining its current position x in space.

Unless otherwise stated, a common Cartesian coordinate system is assumed for all con-
figurations considered (see again Figure 2.1.1). Hence, the absolute displacement d of a
material point x0 can be determined by

d(x0, t) = x(x0, t)− x0. (2.1.2)

For a description of the time-dependent course of deformation, the material velocity ḋ and
acceleration d̈ of a point x0 are introduced based on the corresponding total derivatives of
d, viz.

ḋ (x0, t) =
dd (x0, t)

dt
=
∂d (x0, t)
∂t

∣∣∣∣∣x0

=
∂x (x0, t)
∂t

∣∣∣∣∣x0

(2.1.3)

d̈ (x0, t) =
d2d (x0, t)

dt2
=

dḋ (x0, t)
dt

=
∂ḋ (x0, t)
∂t

∣∣∣∣∣∣x0

. (2.1.4)

In order to characterize the volume and shape changes of a body, absolute displacements
are unsuitable. For this purpose, appropriate strain measures are introduced based on the
deformation gradient F given by

F =
∂x(x0, t)
∂x0

=
∂d(x0, t)
∂x0

+ I (2.1.5)

where I denotes the identity tensor and the derivative of a vector with respect to a vector
defines a tensor. This symbolic notation will be utilized for convenience throughout this
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2.1 Solid mechanics

thesis. The index notation of equation (2.1.5) reads

FkL =
∂xk

∂x0;L
=
∂dk

∂x0;L
+ IkL. (2.1.6)

The deformation gradient is a two-point tensor with one basis (i.e. index) in the current
and the other in the reference configuration. For simplicity, co- and contravariant compo-
nents are not distinguished here and in the following unless explicitly indicated. F can be
interpreted as the mapping of a tangential vector dx0 in the reference state to its equivalent
dx in the spatial configuration via

dx = F ·dx0. (2.1.7)

Due to this transformation property, F and its inverse F−1 are also known as push-forward
and pull-back operations. The determinant of the deformation gradient, det (F), correlates
infinitesimal volume elements of both configurations, i.e.

dV = det (F) dV0. (2.1.8)

Furthermore, F also maps infinitesimal area elements between the reference and the cur-
rent configuration by means of Nanson’s formula

ndA = det (F) F−T · n0 dA0. (2.1.9)

In this context, n and n0 denote the spatial and material unit normal vector of the area
element.

F can be decomposed into a rotation tensor R̃ and a stretch tensor Ũ, i.e.

F = R̃ · Ũ. (2.1.10)

Consequently, F is not invariant with respect to rigid body rotations. By contrast, the right
Cauchy-Green deformation tensor

C = FT · F = (2.1.11)
= ŨT · R̃T · R̃︸︷︷︸

I

· Ũ = ŨT · Ũ

is a function of the stretch tensor only. Since C is unaffected by superimposed rigid body
motions, this tensor field is materially objective and, therefore, particularly suited for the
description of the internal state of a body. While the deformation gradient maps line ele-
ments between different configurations, C correlates their squares, i.e.

dx ·dx = dx0 ·C ·dx0, (2.1.12)

thereby quantifying also the enclosed angle. The index notation of equation (2.1.11) is
given by

CKL = FT
KkFkL (2.1.13)
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ξ2

ξ3

ξ1

ζ

x1
0, x1

φ ◦ ζ

x3
0, x3

x2
0, x2

dA
g1

P

g2

dA0

P

g0;2

g0;1
ñ

ñ0

φ

Figure 2.1.2: Mapping of an infinitesimal surface element between curvilinear coordinate
space (bottom), undeformed (top left) and deformed (top right) configuration.

where Einstein summation convention is utilized. The right Cauchy-Green deformation
tensor is exclusively defined in the material (i.e. reference) configuration.

Often it is desirable to ensure zero strains in the undeformed configuration (corresponding
to F = I). For this purpose, the so-called Green-Lagrange strains are introduced as follows

E =
1
2

(C− I) =
1
2

(
FT · F− I

)
. (2.1.14)

E is a suitable nonlinear material strain measure that is commonly used in solid mechanics.
However, since strains are no physical quantities, other definitions are equally possible. For
instance, the so-called Euler-Almansi tensor represents a spatial strain measure given by

A =
1
2

(
I−F−T · F−1

)
. (2.1.15)

Kinematics of curved surfaces

Several models presented in subsequent chapters rely on the characterization of arbitrarily
curved surfaces in space. In the following, therefore, necessary expressions for surface
areas and normal vectors will be derived.

The environment of a point P on a surface can be described by the tangent space with
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2.1 Solid mechanics

covariant basis vectors
g0;s =

∂x0

∂ξs (2.1.16)

in the reference configuration and

gs =
∂x
∂ξs (2.1.17)

in the deformed configuration (see Figure 2.1.2). In this context, ξs (with s ∈ {1,2,3})
denote the curvilinear coordinates. The infinitesimal oriented surface area spanned by the
in-plane basis vectors g1 and g2 then reads

dA = g1dξ1× g2dξ2 = ñdξ1dξ2 (2.1.18)

with the surface normal ñ given by

ñ=


∂x2

∂ξ1
∂x3

∂ξ2
− ∂x

2

∂ξ2
∂x3

∂ξ1

∂x3

∂ξ1
∂x1

∂ξ2
− ∂x

3

∂ξ2
∂x1

∂ξ1

∂x1

∂ξ1
∂x2

∂ξ2
− ∂x

1

∂ξ2
∂x2

∂ξ1

 =
1

det
(
J̄
) g3. (2.1.19)

In this context, g3 is the contravariant basis vector in surface normal direction and J̄ refers
to the Jacobian of the mapping φ◦ ζ (cf. Figure 2.1.2) defined by

J̄ =


∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ3
∂x3

∂ξ3

 =
 g1

g2
g3

 . (2.1.20)

The corresponding (scalar) physical area of the infinitesimal surface is the absolute value
of the oriented area given in equation (2.1.18), i.e.

dA = |ñ|dξ1dξ2 =

√(
∂x2

∂ξ1
∂x3

∂ξ2
− ∂x

2

∂ξ2
∂x3

∂ξ1

)2

+

(
∂x3

∂ξ1
∂x1

∂ξ2
− ∂x

3

∂ξ2
∂x1

∂ξ1

)2

+

+

(
∂x1

∂ξ1
∂x2

∂ξ2
− ∂x

1

∂ξ2
∂x2

∂ξ1

)2

dξ1dξ2. (2.1.21)

Although above derivations are universally valid, the curvilinear coordinates can also be
interpreted as a parameter space in line with the notation utilized for spatial discretization
with FE. Therefore, equations (2.1.19) and (2.1.21) can be easily adopted for the descrip-
tion of element surfaces later on.
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2 Governing Equations and Finite Element Formulations

2.1.2 Definition of stresses

For defining the internal stress state of a deformed body, first the traction vector tS is
introduced as follows

tS(n, x, t) = lim
∆A→0

∆r̃
∆A

(2.1.22)

where∆A denotes an element of area with unit surface normal n= ñ
|ñ| and∆r̃ is the resultant

force acting on this area. According to Cauchy’s theorem, the stresses in the deformed
configuration are related to the surface traction via

tS = σ · n. (2.1.23)

These so-called Cauchy stresses σ refer to an a priori unknown configuration. There-
fore, alternative stress measures are often utilized in practice. For instance, the first Piola-
Kirchhoff stresses P refer the resultant force to the undeformed element of surface area.
Analogous to equation (2.1.23), the definition of P is given by

tS
0 = P · n0 (2.1.24)

where tS
0 denotes a pseudo-traction vector defined by

tS
0 =

dA
dA0

tS (2.1.25)

and n0 is the unit normal vector of the surface in the reference configuration. The first
Piola-Kirchhoff stresses can be obtained from the Cauchy stresses by applying equation
(2.1.9), i.e.

P = det (F)σ · F−T. (2.1.26)

From the corresponding index notation,

PkL = det (F)σkl F−T
lL , (2.1.27)

the two-point tensor characteristic of the first Piola-Kirchhoff stresses can be identified.
By contrast, the second Piola-Kirchhoff tensor is a stress measure referring exclusively to
the reference configuration. In this case, also the resultant force needs to be transformed
to the material frame, yielding

S = F−1 · P = det (F) F−1 ·σ · F−T (2.1.28)

or, in index notation,
S IJ = det (F) F−1

Ik σkl F−T
lJ . (2.1.29)

Unlike the Cauchy stresses, both first and second Piola-Kirchhoff stresses cannot be inter-
preted easily. For example, the diagonal components do not correspond to normal stresses
and the remaining components are not equivalent to shear stresses. However, material rep-
resentations of tensorial quantities are often the preferred choice since they refer to the

30



2.1 Solid mechanics

known reference configuration.

Any of the above introduced stress measures can be used to express the internal energy of
a body. However, if a certain stress measure is chosen, the strain variable used in com-
bination cannot be selected arbitrarily. Since stresses and strains are tensorial quantities,
their components depend on their respective reference frame (e.g. the material configura-
tion in case of Green-Lagrange strains and second Piola-Kirchhoff stresses). By contrast,
the scalar value of the internal power PS is frame-invariant, i.e. objective. It can be easily
shown that certain stress-strain pairs fulfill this condition, viz.

PS =

∫
ΩS
σ : Lt [A]dV =

∫
ΩS

0

P : ḞdV0 =

∫
ΩS

0

S : ĖdV0 (2.1.30)

where Lt [A] denotes the Lie (or objective) derivative of the Euler-Almansi strains, i.e.

Lt [A] = φ
[

d
dt

(
φ−1[A]

)]
. (2.1.31)

Stresses and strains are correlated by means of a constitutive model describing the response
of a material to applied loads. A popular example is the isotropic compressible Neo-
Hookean law given by

S = µS
1

(
I−C−1

)
+µS

2 ln (det (F))C−1. (2.1.32)

In this context, the so-called Lamé constants µS
1 and µS

2 can be referred to the Young’s
modulus ES and the Poisson’s ratio νS of the material via

µS
1 =

ES

2
(
1+ νS

) , µS
2 =

νSES(
1+ νS

) (
1−2νS

) . (2.1.33)

Further constitutive relations will be introduced in section 3.2 and chapter 4 for the char-
acterization of alveolar and parenchymal tissue, respectively.

2.1.3 Governing equations

Conservation of mass

Introducing the spatial and reference mass densities ρS and ρS
0 , i.e.

ρS
0 =

dV
dV0
ρS = det (F)ρS, (2.1.34)

the global conservation of mass can be stated as

dm
dt
=

d
dt

∫
ΩS
ρSdV =

d
dt

∫
ΩS

0

ρS
0 dV0 = 0. (2.1.35)
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2 Governing Equations and Finite Element Formulations

Since the reference domain does not depend on time, the global mass conservation in the
material description simplifies to ∫

ΩS
0

ρ̇S
0 dV0 = 0. (2.1.36)

The spatial version of mass conservation can be reformulated using Reynold’s transport
theorem (cf. e.g. Belytschko et al. (2005)), i.e.

d
dt

∫
ΩS
ρSdV =

∫
ΩS

(
ρ̇S+ρS∇ · ḋ

)
dV = 0. (2.1.37)

In this context, “∇ · ” denotes the spatial divergence operator. For instance, application of
“∇ · ” to a first- and second-order tensor results in

∇ · ḋ = ḋk,k, (2.1.38)

(∇ ·σ)k = σkl,l. (2.1.39)

Since both equation (2.1.36) and (2.1.37) have to be fulfilled in any arbitrary subfield, the
following local forms of mass conservation can be established:

ρ̇S
0 = 0 (2.1.40)

ρ̇S+ρS∇ · ḋ = 0 (2.1.41)

Conservation of linear momentum

The conservation of linear momentum implies that the temporal change of a body’s mo-
mentum is equivalent to the forces acting upon it. In the deformed configuration, this
requirement can be mathematically formulated as

d
dt

∫
ΩS
ρS ḋdV =

∫
∂ΩS

tS dA+
∫
ΩS

b̂S dV (2.1.42)

with b̂S referring to an arbitrary body load and ∂ΩS denoting the boundary of the body.
Application of Reynold’s transport theorem to the left-hand side of equation (2.1.42) and
introduction of the spatial form of local mass conservation (2.1.41) yields

d
dt

∫
ΩS
ρS ḋdV =

∫
ΩS

(
ρ̇S ḋ+ρS d̈+ρS ḋ∇ · ḋ

)
dV =

=

∫
ΩS

(
ḋ
(
ρ̇S+ρS∇ · ḋ

)
+ρS d̈

)
dV = (2.1.43)

=

∫
ΩS
ρS d̈dV. (2.1.44)
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2.1 Solid mechanics

Introducing furthermore equation (2.1.23) and making use of Gauss divergence theorem,
the balance of linear momentum (2.1.42) simplifies to∫

ΩS
ρS d̈dV =

∫
ΩS

(
∇ ·σ+ b̂S

)
dV. (2.1.45)

Again, relation (2.1.45) needs to be fulfilled also locally, i.e.

ρS d̈ =∇ ·σ+ b̂S. (2.1.46)

After transformation of the integration domains from the current to the reference config-
uration and introduction of b̂S

0 = det (F) b̂S as well as equations (2.1.25) and (2.1.34), the
material version of the balance of linear momentum (2.1.42) is determined by∫

ΩS
0

ρS
0 d̈dV0 =

∫
∂ΩS

0

tS
0 dA0+

∫
ΩS

0

b̂S
0 dV0. (2.1.47)

Insertion of equation (2.1.24) and application of Gauss divergence theorem allows for the
following reformulation ∫

ΩS
0

ρS
0 d̈dV0 =

∫
ΩS

0

(
∇0 · P+ b̂S

0

)
dV0 (2.1.48)

with the material divergence operator defined by

(∇0 · P)k = PkL,L. (2.1.49)

The corresponding local form is given by

ρS
0 d̈ =∇0 · P+ b̂S

0 . (2.1.50)

It is important to note that equation (2.1.50) still characterizes equilibrium in the deformed
configuration. However, due to the transformation of vectors and tensors to the reference
frame, the material approach is often more convenient and, therefore, utilized exclusively
in this work. In combination with a constitutive model and the kinematical relations intro-
duced previously, the material form of the equation of motion (2.1.50) constitutes a non-
linear coupled system of partial differential equations. The present double derivative with
respect to time necessitates the specification of initial conditions for both displacements
and velocities, i.e.

d0 = d(t = 0) = d̂0 in ΩS
0 (2.1.51)

ḋ0 = ḋ(t = 0) = ˆ̇d0 in ΩS
0 . (2.1.52)

As with the body load, the superimposed hat identifies prescribed quantities here. The
initial boundary value problem is completed by the definition of the following boundary
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2 Governing Equations and Finite Element Formulations

conditions

d = d̂ on ∂ΩS
0;D (2.1.53)

P · n0 = t̂0 on ∂ΩS
0;N (2.1.54)

where ∂ΩS
0;D and ∂ΩS

0;N denote the Dirichlet and Neumann portions of the enclosing refer-
ence boundary with ∂ΩS

0;D∪∂Ω
S
0;N = ∂Ω

S
0 and ∂ΩS

0;D∩∂Ω
S
0;N = 0.

The above system of partial differential equations defines the strong form of the structural
mechanics problem. Discretization with FE, however, requires the weak form as a starting
point. This means that some relations are fulfilled in an integral sense only. In the present
case, the essential idea is to satisfy weakly both balance equations (2.1.50) and traction
boundary conditions (2.1.54). Their corresponding residuals are defined by

rBE = ρS
0 d̈−∇0 · P− b̂S

0 in ΩS
0

rTBC = P · n0− t̂S
0 on ∂ΩS

0;N.
(2.1.55)

The method of weighted residuals then brings about the following weak form of equation
(2.1.55) ∫

ΩS
0

(
ρS

0 d̈−∇0 · P− b̂S
0

)
·wdV0+

∫
∂ΩS

0;N

(
P · n0− t̂S

0

)
·wdA0 = 0 (2.1.56)

which is formulated in terms of a single scalar value for the entire system. The solution of
the local strong equations also satisfies this weak form. w is a weighting function vector
meeting the requirement

w = 0 ∀ x0 ∈ ∂ΩS
0;D. (2.1.57)

The weighting functions may be associated with virtual displacements, i.e.

w = δd. (2.1.58)

The weak form (2.1.56) can then be interpreted as a virtual work expression. Integration
by parts of the divergence term and insertion of equations (2.1.28) and (2.1.57) results in∫

ΩS
0

(
ρS

0 d̈− b̂S
0

)
·δddV0+

∫
ΩS

0

(∇0 δd)T : (F ·S)dV0−
∫
∂ΩS

0;N

t̂S
0 ·δddA0 = 0 (2.1.59)

with
(∇0 δd)kL = δdk,L (2.1.60)

denoting the material gradient operator. This relation can be further simplified to∫
ΩS

0

ρS
0 d̈ ·δddV0︸              ︷︷              ︸
−δWkin;S

+

∫
ΩS

0

S : δEdV0︸            ︷︷            ︸
−δW int;S

−
∫
ΩS

0

b̂S
0 ·δddV0−

∫
∂ΩS

0;N

t̂S
0 ·δddA0︸                                           ︷︷                                           ︸

−δWext;S

= 0 (2.1.61)
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where δE is obtained from the total variation of the Green-Lagrange strains given by

δE =
1
2

((
FT ·∇0 δd

)T
+FT ·∇0 δd

)
(2.1.62)

and advantage is taken of the symmetry of S. As already indicated in equation (2.1.61),
the weak form consists of a kinetic, internal, and external virtual work contribution.

Whenever an underlying energy potential WS exists, the weak form can alternatively be
obtained by variation of this functional. This corresponds to the principle of minimum
of total potential energy. However, since the existence of such a functional cannot be
generally presumed, the universal principle of virtual work was utilized here.

2.1.4 Space and time discretization

In order to enable the numerical solution of the weak form resumed in the previous section,
the equations need to be discretized in space and time. For spatial discretization, the finite
element method (FEM) is utilized exclusively throughout this thesis. A detailed introduc-
tion is beyond the scope of this work but may be found in many textbooks like Hughes
(2000), Belytschko et al. (2005), Zienkiewicz et al. (2005), and Zienkiewicz and Taylor
(2006). The purpose of this section is to provide some basic relevant notations.

The FEM is based on the spatial approximation of continuous functions via interpolation
of discrete values. For this purpose, discrete points, the so-called nodes, are introduced in
the computational domain. By combining several nodes to elements, ΩS

0 is partitioned into
a finite number nele of non-overlapping subdomains ΩS;(e)

0 , viz.

ΩS
0 ≈

nele⋃
(e)=1

Ω
S;(e)
0 . (2.1.63)

Introduction of the shape functions Ñ and the nodal displacements d allows for the follow-
ing approximation of the displacements within an element

d(e)(x0, t)≈ dh;(e)(x0, t) =
nnod∑
I=1

ÑI(x0)dI(t) (2.1.64)

where the superscript h indicates spatial discretization and nnod refers to the number of
element nodes. The accelerations d̈, the virtual displacements δd, and the material rep-
resentation of the element x0 are discretized equally. The shape functions utilized for
interpolation are typically polynomials whose order is chosen according to the specific
differentiability requirements resulting from the weak form.

The integrals in the weak form (2.1.61) can be evaluated elementwise using Gaussian
quadrature (see e.g. Hughes (2000) for details). To simplify matters, ΩS;(e)

0 is mapped to a
reference element geometry – for instance the normalized cube [−1;1]3 – in the parameter
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space ξ via

ζ : ξ 7→ xh;(e)
0 (ξ) =

nnod∑
I=1

NI(ξ)x0;I (2.1.65)

where NI is the shape function of node I in the parameter space. After assembly of the
individual element contributions, the resulting spatially discretized equations of motion
are given by (

MSd̈+ fint;S(d)− fext;S
)
δd = 0 (2.1.66)

with the global mass matrix MS, the internal force vector fint;S, and the external force vector
fext;S. δd and d̈ refer to the discrete global virtual displacement and acceleration vector,
respectively. Equation (2.1.66) has to hold for arbitrary δd, i.e.

MSd̈+ fint;S(d)− fext;S = 0. (2.1.67)

In order to consider viscous damping, the semi-discrete equations of motions (2.1.67) are
sometimes extended to

MSd̈+DSḋ+ fint;S(d)− fext;S = 0 (2.1.68)

where ḋ denote the global, spatially discrete velocities discretized analogous to the dis-
placements (2.1.64) and D refers to a damping matrix given e.g. by

DS = cMMS+ cKKS
0 . (2.1.69)

In this context, cM, cK are empirical parameters and KS
0 refers to the initial tangential

stiffness matrix introduced in the following section. This so-called Rayleigh ansatz is a
simple, widely used phenomenological approach to viscous damping.

For time discretization of equation (2.1.68), the generalized-αmethod introduced by Chung
and Hulbert (1993) is utilized here. This one-step integration scheme is based on Newmark-
like approximations in the time domain. Hence, the approximate velocities vn+1 ≈ ḋ (tn+1)
and accelerations an+1 ≈ d̈ (tn+1) at the end of a discrete time step [tn, tn+1], i.e. at time tn+1,
can be formulated in terms of known quantities at tn and the unknown end-displacements
dn+1 only

vn+1 (dn+1) =
γ̄

β̄∆t
(dn+1−dn)− γ̄− β̄

β̄
vn−

γ̄−2β̄
2β̄
∆t an (2.1.70)

an+1 (dn+1) =
1
β̄∆t2

(dn+1−dn)− 1
β̄∆t

vn−
1−2β̄

2β̄
an (2.1.71)

with γ̄ ∈ [0,1], β̄ ∈ [0, 12 ], and time step size ∆t. Introducing these approximations in equa-
tion (2.1.68) would result in the discrete equilibrium equations at the end of the current
time step tn+1. The key idea of the generalized-α method is a modification of the time
point at which these discretized equations of motion are set up. The evaluation point is
shifted from tn+1 to generalized mid-points tn+1−αf and tn+1−αm , respectively. Correspond-
ing mid accelerations, velocities, displacements, and external forces are then given by
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2.1 Solid mechanics

linear combinations of the corresponding start and end vector, i.e.

dn+1−αf = (1−αf)dn+1+αfdn (2.1.72)
vn+1−αf = (1−αf)vn+1+αfvn (2.1.73)

an+1−αm = (1−αm)an+1+αman (2.1.74)

fext;S
n+1−αf

= (1−αf) fext;S
n+1 +αff

ext;S
n . (2.1.75)

The spectral radius of a time integration method is a measure of numerical dissipation.
Thereby, a smaller spectral radius corresponds to greater algorithmic damping. Although
controllable dissipation in the high-frequency domain is desired, it should be achieved
without inducing excessive damping in the important low-frequency domain. Hence, the
spectral radius has to decrease smoothly with increasing frequency. This demand poses
several restrictions on the parameters of the generalized-α scheme. Introducing ρ∞ as the
user-defined value of the spectral radius in the high-frequency limit, the optimal choice of
algorithmic parameters is given by

αf =
ρ∞
ρ∞+1

, αm =
2ρ∞−1
ρ∞+1

(2.1.76)

β̄ =
1
4

(1−αm+αf)2 γ̄ =
1
2
−αm+αf. (2.1.77)

In this case, the resulting time integration scheme is second-order accurate and stable. For
the simulations in this work, ρ∞ is chosen to be 0.7.

The discrete linear momentum balance finally reads

MSan+1−αm +DSvn+1−αf + fint;S
(
dn+1−αf

)
− fext;S

n+1−αf
= 0. (2.1.78)

2.1.5 Linearization

The system of nonlinear equations (2.1.78) is solved iteratively with the help of Newton’s
method. In a given iteration step i, the residual of the discrete linear momentum balance
can be defined as follows

reffdyn;S
(
di

n+1

)
=MSai

n+1−αm
+DSvi

n+1−αf
+ fint;S

(
di

n+1−αf

)
− fext;S

n+1−αf
. (2.1.79)

The linearized form of the residual (2.1.79) is obtained by expanding reffdyn;S in a Taylor
series around the current solution di

n+1 and truncating it after the linear term, i.e.

Lin reffdyn;S
(
di

n+1

)
= reffdyn;S

(
di

n+1

)
+
∂reffdyn;S (dn+1)
∂dn+1

∣∣∣∣∣∣
i

︸                ︷︷                ︸
Keffdyn;S

(
di

n+1

)
∆di+1

n+1. (2.1.80)

Using Newmark’s approximations as well as equations (2.1.72), (2.1.73), and (2.1.74),
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Keffdyn;S is obtained as

Keffdyn;S
(
di

n+1

)
=
∂reffdyn;S (dn+1)
∂dn+1

∣∣∣∣∣∣
i

=

=

[
1−αm

β∆t2
MS+

(1−αf)γ
β∆t

DS+ (1−αf)KS
(
dn+1−αf

)]i

. (2.1.81)

For simplicity, the external forces were assumed to be independent of the unknown dis-
placements here. Therefore, the tangential stiffness matrix KS is simply given by

KS
(
dn+1−αf

)
=
∂fint;S

(
dn+1−αf

)
∂dn+1−αf

∣∣∣∣∣∣∣∣
i

. (2.1.82)

In equilibrium, the residual and its linearized form need to vanish. From

Lin reffdyn;S
(
di

n+1

) !
= 0, (2.1.83)

the following linear system of equations is obtained

Keffdyn;S
(
di

n+1

)
∆di+1

n+1 =−reffdyn;S
(
di

n+1

)
. (2.1.84)

After solution of equation (2.1.84) for ∆di+1
n+1, the displacement vector can be updated as

follows
di+1

n+1 = di
n+1+∆di+1

n+1. (2.1.85)

The iterative procedure is aborted, i.e. di+1
n+1 = dn+1, when a user-specified convergence

criterion for the residual (2.1.79) is met.

2.2 Fluid mechanics

For the development of an overall lung model, airflow in the conducting passages needs to
be considered. This section should, therefore, provide a succinct overview of the governing
equations for incompressible flows within the context of the FEM. More detailed informa-
tion on the theoretical background and appropriate numerical methods can be found e.g.
in Wall (1999), Gresho and Sani (2000), Donea and Huerta (2003), Förster (2007), and
Gamnitzer (2010).

2.2.1 Kinematics and constitutive relations

The kinematics of flow problems is often characterized with the help of an Eulerian ap-
proach. In this case, a figurative observer is situated at a fixed spatial point and describes
the properties of fluid particles passing by. In contrast to the Lagrangian approach de-
scribed in section 2.1.1, the Eulerian formulation easily facilitates the treatment of large
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2.2 Fluid mechanics

distortions in fluid motion. However, the detection of free surfaces or interfaces between
different media is intricate. To overcome this problem, an Arbitrary Lagrangian Eulerian
(ALE) approach combining the advantages of both kinematical formulations can be uti-
lized. The key concept of the ALE formulation is the introduction of a computational
mesh that can move independently of the velocity of the material particles. The mapping
between the location of a particular point in the ALE reference system specified by χ and
its position in the spatial frame is then given by

ϕ(χ, t) : χ 7→ x(χ, t). (2.2.1)

The absolute fluid velocity is again the material time derivative of the spatial position, i.e.

u =
dx
dt
=
∂x(χ, t)
∂t

∣∣∣∣∣
χ
+
∂x(χ, t)
∂χ

∂χ

∂t
. (2.2.2)

Introducing the ALE grid velocity

uA =
∂x(χ, t)
∂t

∣∣∣∣∣
χ

(2.2.3)

and the convective velocity
c = u−uA, (2.2.4)

the material time derivative of a given quantity f can then be determined by

d f (χ, t)
dt

=
∂ f (χ, t)
∂t

∣∣∣∣∣
χ
+
∂ f (χ, t)
∂x

∂x
∂χ

∂χ

∂t
=

=
∂ f (χ, t)
∂t

∣∣∣∣∣
χ
+

(
u−uA

)
·∇ f (χ, t) =

=
∂ f (χ, t)
∂t

∣∣∣∣∣
χ
+ c ·∇ f (χ, t) = (2.2.5)

= f̊ + c ·∇ f (χ, t). (2.2.6)

According to this fundamental ALE equation, the material time derivative of f depends
on a temporal change of f in the reference frame and a convective term accounting for the
relative motion of this system.

Another important kinematic quantity is the strain rate tensor given by

ε(u) =
1
2

(
∇u+ (∇u)T

)
. (2.2.7)

Based on this definition, the following constitutive relation can be assumed for an incom-
pressible Newtonian fluid

σ = 2µFε(u)− p̄I (2.2.8)

where µF is the dynamic viscosity and p̄ refers to the hydrostatic pressure.
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2 Governing Equations and Finite Element Formulations

2.2.2 Governing equations

The incompressible Navier-Stokes equations utilized for modeling airflow are based on
the local conservation of mass and linear momentum. Since the procedures for setting up
this system of equations are comparable to the ones presented in section 2.1.3, the detailed
derivations are spared here. Defining the kinematic viscosity

νF =
µF

ρ
(2.2.9)

and the kinematic pressure

p =
p̄
ρ
, (2.2.10)

the resulting density-scaled strong form of the incompressible Navier-Stokes equations in
the deformed domain ΩF is given by

ů+ c ·∇u−2νF∇ ·ε(u)+∇p = b̂F (2.2.11)
∇ ·u = 0 (2.2.12)

with initial and boundary conditions

u0 = u(t = 0) = û0 in ΩF (2.2.13)

u = û on ∂ΩF
D (2.2.14)

1
ρ
σ · n= t̂F on ∂ΩF

N (2.2.15)

u · n= uA · n on ∂ΩF
B. (2.2.16)

In this context, equation (2.2.16) ensures that no fluid particles cross a deformable bound-
ary or material interface ∂ΩF

B. The special case u = uA corresponds to a local Lagrangian
description of ∂ΩF

B (Wall, 1999). In order to guarantee a well-posed problem, the pre-
scribed velocity field (2.2.13) has to satisfy the continuity condition (2.2.12). The same re-
quirement applies to equation (2.2.14) in case of solely Dirichlet bounded problems. More
details on mathematically permissible boundary conditions of the Navier-Stokes equations
can be found e.g. in Gresho and Sani (2000).

Introducing the virtual velocities δu (with δu = 0 on ∂ΩF
D) and the virtual pressure δp, the

weak form of equations (2.2.11) and (2.2.12) reads∫
ΩF

ů ·δudV +
∫
ΩF

(c ·∇u) ·δudV−
∫
ΩF

(
2νF∇ ·ε(u)

)
·δudV +

∫
ΩF
∇p ·δudV+

+

∫
ΩF

(∇ ·u)δpdV =
∫
ΩF

b̂F ·δudV. (2.2.17)

Integration by parts of the viscosity as well as pressure gradient terms and consideration
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of the symmetry of the strain rate tensor results in∫
ΩF

ů ·δudV +
∫
ΩF

(c ·∇u) ·δudV +
∫
ΩF

2νFε(u) : ε(δu)dV−
∫
ΩF

p∇ ·δudV+

+

∫
ΩF

(∇ ·u)δpdV =
∫
ΩF

b̂F ·δudV +
∫
∂ΩF

N

t̂F ·δudA. (2.2.18)

In contrast to the weak form of the solid mechanics problem (2.1.61), equation (2.2.18)
does not correspond to a virtual work δW but can be interpreted as a virtual power expres-
sion δP .

2.2.3 Space and time discretization

For discretization in space of equation (2.2.18), the FEM is utilized again. After mapping
to the parameter space denoted by ξ, the velocity and the pressure within each element (e)
can be approximated by

u(e)(ξ, t)≈ uh;(e)(ξ, t) =
nnod∑
I=1

Nu
I (ξ)uI(t) (2.2.19)

p(e)(ξ, t)≈ ph;(e)(ξ, t) =
nnod∑
I=1

Np
I (ξ)pI(t) (2.2.20)

with velocity and pressure shape functions Nu and Np, respectively. The corresponding vir-
tual counterparts are discretized analogously. In general, the polynomial orders of Nu and
Np cannot be chosen independently of each other. In order to prevent spurious pressure os-
cillations and guarantee optimal convergence, the so-called inf–sup or LBB condition has
to be fulfilled (see e.g. Gresho and Sani (2000) for more details). To put it simply, this con-
straint means that the polynomial order of Np has to be lower than the one of Nu. However,
the LBB condition can be circumvented by introducing specific stabilization terms, thereby
facilitating equal-order interpolation of pressure and velocity. Since this alternative is very
convenient with regard to computational implementation, the equal order approach with
Nu = Np = N is utilized exclusively in this work. Corresponding stabilization techniques
will be addressed briefly in the following subsection.

Introduction of equations (2.2.19), (2.2.20), and their virtual counterparts into the weak
form (2.2.18) results in the following semi-discrete system of equations[

MF
(
dA

)
ů+NF

(
u,dA

)
u+GF

(
dA

)
p
]
δu = fF;ext

(
dA

)
δu (2.2.21)(

GF
(
dA

))T
uδp = 0 (2.2.22)

where MF is the fluid mass matrix, NF represents the linear viscous and nonlinear con-
vective terms, GF refers to the discrete gradient operator, and fF

ext constitutes the external
forces. Since the Navier-Stokes equations have been formulated on a deforming domain
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2 Governing Equations and Finite Element Formulations

ΩF, all terms depend on the mesh positions denoted by dA. Equations (2.2.21) and (2.2.22)
have to hold for arbitrary δu and δp. Consequently, the semi-discrete forms of the linear
momentum balance and the continuity equation are obtained as

MF
(
dA

)
ů+NF

(
u,dA

)
u+GF

(
dA

)
p = fF;ext

(
dA

)
(2.2.23)(

GF
(
dA

))T
u = 0. (2.2.24)

The fluid acceleration ů is approximated using the one-step-θ method, i.e.

un+1−un

∆t
= θ ůn+1+ (1− θ) ůn. (2.2.25)

Within this work, θ is chosen to be 0.66. Insertion of relation (2.2.25) into (2.2.23) and
multiplication with ∆t yields[

MF
(
dA

n+1

)
+ θ∆tNF

(
un+1,dA

n+1

)]
un+1+ θ∆tGF

(
dA

n+1

)
pn+1 =

=MF
(
dA

n+1

) [
un+ (1− θ)∆tůn

]
+ θ∆tfF;ext

(
dA

n+1

)
. (2.2.26)

In above system of equations, a discrete representation of the mesh positions is assumed.
More details on the corresponding time integration scheme will be provided in section
Section 2.3.

Although equation (2.2.26) is still a nonlinear problem, the discrete form of the incom-
pressible Navier-Stokes equations can be written for illustrative purposes in compact ma-
trix format as MF+ θ∆tNF θ∆tGF(

GF
)T

0


n+1

[
u
p

]
n+1
=

[
MF [

un+ (1− θ)∆tůn
]
+ θ∆tfF;ext

n+1
0

]
. (2.2.27)

The continuity equation can be interpreted as a constraint enforced by the pressure. In sec-
tion 2.5.1, a similar system of equations will be derived for general constrained problems
in the context of the Lagrange multiplier method.

2.2.4 Stabilization

As already indicated in the previous section, the chosen equal-order interpolation of pres-
sure and velocity violates the LBB condition. As a consequence, the system of equations
becomes singular. Another source of instability is the insufficient resolution of boundary
layers in case of convection-dominated flows. Spurious velocity oscillations emanating
from the unresolved high gradients tend to spread over the entire domain, thereby globally
disturbing the velocity solution. Thus, whenever flow problems with considerable convec-
tive transport are encountered and/or the LBB condition is violated, the FE formulation
needs to be stabilized. For this purpose, additional terms weighted with problem-specific
parameters are included in the discrete form of the incompressible Navier-Stokes equa-
tions. A detailed survey of different stabilization techniques and the choice of adequate
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stabilization parameters can be found e.g. in Wall (1999), Förster (2007), and Gamnitzer
(2010).

Within this thesis, three different types of stabilization terms are utilized. To enable equal-
order interpolation, the pressure stabilizing Petrov-Galerkin (PSPG) method (Hughes et al.,
1986) is employed. This approach is based on the relaxation of the incompressibility
constraint such that LBB incompatible spaces can be used. Convection stabilization is
achieved by means of the streamline upwind Petrov-Galerkin (SUPG) approach (Brooks
and Hughes, 1982). Practically, the SUPG term increases the fluid’s viscosity in flow
direction, thereby smoothing the velocity field and preventing spurious oscillations. Fur-
thermore, an additional term for the stabilization of the continuity equation is introduced
(Franca and Hughes, 1988). Inclusion of this bulk viscosity term is invariably advanta-
geous in view of stability, particularly in case of higher Reynolds numbers (Wall, 1999).

2.2.5 Linearization

The residuals of the stabilized linear momentum balance (marked by index m) and conti-
nuity equation (labeled by c) are defined by

rF;m
stab

(
un+1,pn+1,d

A
n+1

)
=

[
MF

(
dA

n+1

)
+ θ∆tNF

(
un+1,dA

n+1

)]
un+1+ θ∆tGF

(
dA

n+1

)
pn+1−

−MF
(
dA

n+1

) [
un+ (1− θ)∆tůn

]− θ∆tfF;ext
(
dA

n+1

)
+S m

(
un+1,pn+1,d

A
n+1

) !
= 0 (2.2.28)

rF;c
stab

(
un+1,pn+1,d

A
n+1

)
=

(
GF

(
dA

n+1

))T
un+1+S c

(
un+1,pn+1,d

A
n+1

) !
= 0. (2.2.29)

In this context, S m and S c denote the additional stabilization terms. The nonlineari-
ties present in equations (2.2.28) and (2.2.29) stem from the convective term in NF, the
stabilization terms, and the dependencies on the grid displacements. The unknown state
(un+1,pn+1) at the end of the current time step is again determined iteratively by means of
Newton’s method. The corresponding linearized equations in a given iteration step i are
given by

∂rF;m
stab

∂u


i

n+1

∆ui+1
n+1 +

∂rF;m
stab

∂p


i

n+1

∆pi+1
n+1 +

∂rF;m
stab

∂dA


i

n+1

∆dA;i+1
n+1 = −

(
rF;m
stab

)i

n+1
(2.2.30)

∂rF;c
stab

∂u


i

n+1

∆ui+1
n+1 +

∂rF;c
stab

∂p


i

n+1

∆pi+1
n+1 +

∂rF;c
stab

∂dA


i

n+1

∆dA;i+1
n+1 = −

(
rF;c
stab

)i

n+1
(2.2.31)

or, in compact matrix format,

 KF
uu KF

up KF
udA

KF
pu KF

pp KF
pdA


i

n+1


∆u
∆p
∆dA


i+1

n+1

=−

 rF;m
stab

rF;c
stab


i

n+1

. (2.2.32)
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Detailed information on the involved linearizations can be found in Gamnitzer (2010).

In order to ease the notation introduced above (particularly in the context of fluid-structure
interaction problems discussed in section 2.4), the momentum and continuity equations
are henceforth not differentiated anymore. Likewise, velocity and pressure degrees of
freedom (DOFs) are subsequently combined in the vector u, thereby eliminating p as a
separate vector of unknowns. Furthermore, the index stab can be dropped in the following
due to the exclusive use of stabilized fluid formulations. The overall fluid problem is, thus,
simply given by

KF;i∆ui+1
n+1 =−rF;i. (2.2.33)

The new solution guess can then be obtained as

ui+1
n+1 = ui

n+1+∆ui+1
n+1. (2.2.34)

The Newton loop is terminated, i.e. ui+1
n+1 = un+1, if user-defined convergence criteria for

the residuals (2.2.28) and (2.2.29) are satisfied.

2.3 ALE mesh motion algorithm

The ALE formulation of the incompressible Navier-Stokes equations necessitates the defi-
nition of the mapping ϕ (2.2.1). In case of the fluid-structure interaction problems consid-
ered here, the boundary of the ALE mesh is coupled to the Lagrangian mesh of the flanking
structures and an Eulerian mesh at the in- and outflow portions. Within the domain, the
ALE mesh is in general allowed to deform arbitrarily, although a uniform distortion is
commonly preferred. For the description of the domain mesh motion, different approaches
have been developed. Within this work, the ALE field is treated as a linear pseudo-structure
with pseudo-stiffness matrix KA (for details see e.g. Wall (1999)). Consequently, the fol-
lowing linear problem needs to be solved for dA

I

KA
II d

A
I =−KA

IBdA
B (2.3.1)

where the indices I and B mark the interior domain and the boundary, respectively. In
general, subscripts indicate the respective dimensions of the involved submatrices of KA.
For example, the number of rows in KA

IB equals the number of interior ALE DOFs whereas
the number of columns corresponds to the number of boundary ALE DOFs. The known
forces resulting from the prescribed boundary deformation were shifted to the right-hand
side of the linear problem (2.3.1).

For the determination of the convective velocity c, the ALE grid velocity uA needs to
be determined. In this thesis, a one-step theta scheme is utilized for time integration of
equation (2.2.3). Consequently, the resulting discrete mesh velocity is given by

uA
n+1 =

dA
n+1−dA

n

θ∆t
− 1− θ
θ

uA
n . (2.3.2)
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More details on requirements regarding the update of mesh positions and velocities are
provided e.g. in Wall (1999) and Förster (2007).

2.4 Fluid-structure interaction

When simulating airflow in the deformable conducting passages, fluid-structure interaction
(FSI) phenomena need to be considered. An extensive survey and comparison of related
solution methods can be found in Küttler (2009). In summary, FSI approaches can be
classified according to their specific coupling algorithms. The main representatives are the
so-called partitioned and monolithic algorithms, although different intermediate methods
also exist.

Partitioned FSI approaches are based on the staggered solution of the individual fields.
Interaction effects are taken into account by means of a transfer of loads and boundary
deformations between the independent field solvers. In this context, one way staggered
and iterative staggered schemes can be distinguished. Utilization of the latter approach
enables convergence of the field solutions to an equilibrium state. By contrast, the one
way staggered scheme is based on one solution per field and time step only. Consequently,
the FSI coupling conditions are usually not exactly satisfied in this case. Partitioned FSI
approaches are very flexible with respect to the formulation and solution methods of the
involved problems. Hence, existing field-specific software packages can be easily com-
bined. Furthermore, the decomposition of the overall problem into smaller blocks comes
along with reduced memory requirements, albeit at the expense of increased computing
time. Details on the theoretical background, methodological aspects, and implementation
of partitioned methods can be found e.g. in Wall (1999), Förster (2007), and Küttler (2009).

Monolithic FSI approaches are based on the solution of the fully coupled nonlinear FSI
problem within one global Newton loop. Consequently, the individual field variables, i.e.
fluid velocities, ALE mesh positions, and solid displacements, are determined simultane-
ously. In contrast to the partitioned schemes, monolithic methods inherently require the
development of specific solution techniques since the application of field-specific “black-
box” solvers is not possible. This implies a reduced flexibility of the monolithic schemes
as compared with the partitioned ones. However, solver robustness and efficiency is in
general improved considerably. In Küttler et al. (2010), monolithic approaches were found
to be the best choice for complex biological problems involving the coupling of incom-
pressible flows and soft tissue. Therefore, monolithic schemes are utilized exclusively in
this thesis. Accordingly, the following considerations are restricted to this kind of coupling
algorithm.

The overall residual of the monolithic FSI problem is given by

rFSI
n+1 = rFSI

(
dn+1,un+1,dA

n+1

) !
= 0 (2.4.1)

where un+1 was introduced in section 2.2.5 as the discrete vector of fluid velocities and
pressures. The contributions of the single field equations to rFSI

n+1 were already derived in
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sections 2.1–2.3. In addition, two kinematic coupling conditions need to be satisfied at the
FSI interface. In the following, the different meshes at the FSI interface are assumed to be
conforming. In this case, solid and ALE meshes need to coincide at any time, i.e.

dB;n+1 = dA
B;n+1, (2.4.2)

where the index B marks the interface. Furthermore, solid displacements and fluid veloci-
ties are coupled at the interface. Förster (2007) derived the following relation

uB;n+1 = 2
dB;n+1−dB;n

∆t
−uB;n. (2.4.3)

This trapezoidal rule for the interface velocity correctly preserves the size of the fluid
domain and is exact for every fluid time integration scheme that assumes constant accel-
erations within the time step ∆t. Rearrangement of equation (2.4.3) yields the subsequent
expression for the increments of fluid velocities

∆uB;n+1 =
2
∆t︸︷︷︸
τ

∆dB;n+1−2uB;n. (2.4.4)

Integration of the kinematic coupling conditions into the field equations allows for the
statement of a global linearized FSI problem, i.e.
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(2.4.5)
For the sake of clarity, contributions of solid and fluid fields are highlighted in pink and
blue, respectively. As a consequence, the “overlap” of the distinct field equations at the
interface can be easily identified. The dimensions of the involved submatrices are char-
acterized by means of subscripts in combination with superscripts. This notation can be
illustrated using the example of KFA

II which results from the linearization of the incom-
pressible Navier-Stokes equations with respect to the mesh positions. The number of rows
in KFA

II corresponds to the number of “interior” fluid DOFs whereas the number of columns
is equivalent to the number of “interior” ALE DOFs. In this context, the “interior” DOFs
comprise all DOFs not situated along the FSI interface. Hence, fluid in- and outflow bound-
aries are, for example, also part of this subset. To simplify matters, the subscript effdyn
employed usually to identify the effective dynamic residual or stiffness matrix in solid
mechanics is abandoned here.

When combining fluid and solid contributions at the FSI interface, the scaling of the fluid
residual with 1

ρF (cf. equations (2.2.11) and (2.2.12)) needs to be taken into account. Fur-
thermore, the factor τ introduced in equation (2.4.4) for the transformation of interface
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velocity increments into displacement increments needs to be included. In the first New-
ton step, the dependency of ∆uB;n+1 on the absolute velocity of the old time step uB;n also
needs to be considered, i.e.

(
rFSI

)0

n+1
=
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. (2.4.6)

For i , 0, the global linearized FSI problem (2.4.5) can be written in a more compact form
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(2.4.7)

where the following abbreviations are utilized for different scalings of arbitrary vectors or
matrices #

# = ρF# #˜= τ# #˜= ρFτ#. (2.4.8)

The kinematic coupling condition (2.4.4) can of course also be reformulated such that the
interface velocities are retained in the overall system, whereas the interface displacements
are converted. Both alternatives are in general equivalent but may exhibit different numer-
ical behavior. In case of non-conforming meshes at the interface, the coupling conditions
need to be properly adapted (cf. e.g. Klöppel et al. (2011) for a dual mortar formulation).

Details on the solution of the linear system (2.4.7) are given in Küttler (2009) and can
also be found in section 5.3 where specific procedures suitable for FSI problems subject to
constraints will be derived.

2.5 Constrained problems

In the following, two different methods of constraint enforcement utilized for the formula-
tion of (nearly) incompressible materials as well as the coupling of airway and parenchyma
models will be briefly discussed. The presented approaches are well-known e.g. from
optimization or contact problems. Accordingly, further details can be found in standard
textbooks, see e.g. Strang (1986), Hughes (2000), and Luenberger (2003).

To simplify matters, subsequent derivations are based on a conservative solid problem. In
this case, a stable equilibrium solution is found by minimizing an underlying potential W .
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2 Governing Equations and Finite Element Formulations

The constrained problem can then be formulated as

minW (d) subject to C (d) = 0 (2.5.1)

where C (d) = 0 is the constraint on the system.

2.5.1 Lagrange multiplier method

In this most classical approach, an additional unknown variable – the Lagrange multiplier
λ – is introduced. The modified potential WLM is then given by the sum of the objective
function W and the constraint equation C weighted by the Lagrange multiplier λ:

WLM (d,λ) =W (d)+λC (d) (2.5.2)

The total variation of the overall potential (2.5.2) reads

δWLM (d,λ) = δW (d)+δ (λC (d)) =

=

(
∂W (d)
∂d

+λ
∂C (d)
∂d

)
δd+C (d)δλ. (2.5.3)

Since both the displacements d and the Lagrange multiplier λ represent primary unknowns,
equation (2.5.3) corresponds to a mixed variational formulation. The solution of this saddle
point problem is on the one hand a minimum of WLM with respect to the displacements
d and on the other hand a maximum of WLM with respect to the Lagrange multiplier λ
(Strang, 1986). The corresponding linearized problem can be stated as follows[

KLM BT

B 0

] [
∆d
∆λ

]
=−

 rLM
d

rLM
λ

 (2.5.4)

with
rLM
d =

∂W (d)
∂d

+λ
∂C (d)
∂d
, (2.5.5)

rLM
λ =C (d) , (2.5.6)

KLM =
∂

∂d

(
∂ (W (d)+λC (d))

∂d

)
, (2.5.7)

and
B =
∂C (d)
∂d
. (2.5.8)

The main advantage of the Lagrange multiplier method is that it allows for the exact sat-
isfaction of the imposed constraint. In return, an additional unknown, i.e. the Lagrange
multiplier, has to be introduced into the global system. Furthermore, the system matrix of
the linearized problem (2.5.4) is not positive-definite because of the zeroes on the diagonal.
Solving saddle point problems iteratively therefore poses some numerical difficulties. This
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subject will be addressed in more detail in section 5.3.

2.5.2 Penalty method

The second approach is based on enforcing the constraint by means of a penalty term. In
this case, the modified potential WP is given by

WP (d) =W (d)+
1
2
ε (C (d))2 (2.5.9)

Here, ε is no additional unknown but an unphysical parameter penalizing a violation of
C (d) = 0. The total variation of the overall potential (2.5.9) is determined by

δWP = δW (d)+ εC (d)δC (d) =

=

(
∂W (d)
∂d

+ εC (d)
∂C (d)
∂d

)
δd. (2.5.10)

The corresponding linearized problem simply reads

KP∆d =−rP
d (2.5.11)

with
rP
d =
∂W (d)
∂d

+ εC (d)
∂C (d)
∂d

(2.5.12)

and

KP =
∂

∂d

(
∂W (d)
∂d

)
+ εC (d)

∂

∂d

(
∂C (d)
∂d

)
+ ε
∂C (d)
∂d

(
∂C (d)
∂d

)T

. (2.5.13)

It can be shown that for ε →∞, the solution of the Lagrange multiplier approach is re-
covered. However, a large number for ε leads to an ill-conditioned numerical problem. In
general, the choice of the penalty parameter is problem-specific and somewhat arbitrary.
At the end of the day, an adequate trade-off between accuracy and stability needs to be
found.

A major advantage of the penalty method over the Lagrange multiplier approach is the
fact that no additional unknowns enter the global system (2.5.10). Given that the original
Jacobian is positive-definite – as is the case for the conservative problem assumed here –,
then the augmented system is also positive-definite. Due to its easy implementation, the
penalty method is widely used, e.g. in the context of elasticity, where the incompressible
case is approximated by employing a slightly compressible formulation.

After having surveyed relevant governing equations and general FE formulations, the com-
putational models developed specifically for the investigation of respiratory mechanics will
be presented in the following chapters.
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“Make things as simple as possible – but not simpler.” (Albert Einstein)

A consistent feature of all mechanisms of VALI identified so far is that the injury manifests
itself at the alveolar level. Thus, improving ventilation strategies in order to prevent VALI
requires a detailed knowledge of alveolar mechanics. However, as already mentioned in
the introductory chapter, experimental investigations in literature come up with conflicting
results. Again, this may be attributed to different preparation and imaging techniques. In
order to gain more insights into involved phenomena, a three-dimensional computational
model considering the geometrical and mechanical properties of alveoli was developed
as part of this thesis. Subsequently, a brief overview of existing alveolar models, their
particular fields of application, and limitations will be given. More details on individual
aspects will be provided in the respective sections of this chapter.

Perhaps one of the most frequently repeated figures in discussions of alveolar mechanics is
the Y-tube with two unequal bubbles attached. This model is utilized in many textbooks to
claim that, without intervention, a small alveolus ought to collapse into its larger neighbor.
This phenomenon is attributed to the Laplace-Young law stating that the pressure inside a
body with curved surface is inversely proportional to the radius given that the surface stress
is constant. The effect of the surfactant lining is then assumed to alter the surface stresses
of alveoli of different radii such that Laplace’s law is exactly counteracted at any volume.
Prange (2003) elegantly demonstrated, though, that the application of Laplace’s law to
individual alveoli is a misconception of anatomy and a misapplication of physics. Not
only are alveoli rather polygonal in shape, they also share common walls with interalveolar
pores. Consequently, transalveolar pressure differences are very unlikely to develop. The
fact that the “collapsing bubble” model is still in the minds of some physicians is probably
due to the insufficient cross linking of medical and engineering sciences.

In fact, the modeling of alveolar mechanics has made substantial progress over the last
decades. Mead et al. (1970), for instance, established a relationship between transpul-
monary pressure and the stresses distending individual regions of the lung. Despite a
number of simplifying assumptions, their general findings concerning interdependence ef-
fects and lung stability were pioneering. Unfortunately, however, the most frequently cited
aspect of their work is a simplistic sample calculation concerning the pressure required
to expand an atelectatic region. Although the limitations of this particular analysis were
already pointed out in the original paper, the estimated opening pressure is now widely
established in the medical community.

More recent approaches to investigating the mechanical properties of alveoli were based
on the application of the FEM. Dale et al. (1980) and Kowe et al. (1986), for instance,
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compared simulated alveolar pressure-volume characteristics with curves determined ex-
perimentally for the lung as a whole. Kimmel and Budiansky (1990) calculated macro-
scopic elastic moduli of lung parenchyma based on a simple model of an isolated alveolus.
A survey of these early approaches can be found e.g. in Stamenovic (1990). A more ad-
vanced FE model was proposed by Gefen et al. (1999) who analyzed the distribution of
stresses within individual alveolar septa of normal and simulated diseased lungs. The most
comprehensive alveolar model so far has been established by Denny and Schroter in a
series of publications (Denny and Schroter, 1995, 1997, 2000, 2006). Although they did
not claim their model to be a precise representation of the micro-mechanics of actual lung
parenchyma, it exhibited a sufficient level of realism to draw meaningful general conclu-
sions under a range of conditions. Hence, the influence of various parameters on alve-
olar duct recoil could be investigated. In this context, dynamic effects and non-uniform
parenchyma distortion were also considered. The focus of these studies, though, was on
the macroscopic behavior of the alveolar duct model and no statements regarding local
stresses and strains in alveolar septa could be made.

Depending on the particular objective of the studies mentioned above, different geometric
representations of alveoli and alveolar ducts were employed. Furthermore, distinct aspects
of alveolar mechanics were included in the models. In general, it is not only necessary
to investigate soft tissue characteristics but also the influence of the surfactant film on the
overall behavior, both as a direct component of lung recoil and through distortion of alve-
olar geometry. Previous alveolar models, however, usually focused on only one of these
two aspects. Dale et al. (1980), for example, modeled an alveolus as a network of fibers
without considering either the effect of interfacial phenomena or an underlying ground
substance. Some subsequent approaches based on the work of Kowe et al. (1986) retained
the idea of reducing alveolar soft tissue to a network of fibers while additionally consider-
ing surface tension effects. Partly, also dynamic surfactant models were employed in this
context, e.g. in Denny and Schroter (2000) and Denny and Schroter (2006). Other attempts
concentrated on the modeling of continuum tissue mechanics whereas interfacial phenom-
ena were treated in a simplified manner (Karakaplan et al., 1980) or even totally neglected
(Gefen et al., 1999, 2001). Contrary to the afore mentioned approaches, the alveolar model
developed as part of this thesis (cf. Wiechert et al. (2009)) combines a detailed constitutive
law for alveolar soft tissue with an elaborate dynamic surfactant model. In particular, the
interaction of tissue and interfacial forces is taken into account.

The remainder of this chapter is organized as follows. First, the generation of alveolar
geometries applicable to computational simulations will be addressed. Subsequently, a
continuum constitutive model previously developed for arteries will be adopted for alve-
olar tissue. After a general discussion of interfacial phenomena, the chapter will close
with the presentation of a novel approach to considering surfactant film dynamics in the
computational model.
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3.1 Artificial Morphology

Realistic representations of alveoli are important if dependable statements regarding local
stresses and strains are required. Obtaining the necessary geometric information, however,
still remains a very challenging task. Subsequently, different approaches to investigating
alveolar morphology will be briefly discussed.

Previously, casting techniques were utilized to gain knowledge about the general struc-
ture of the acinus (see e.g. Hansen and Ampaya (1975), Schreider and Raabe (1981), and
Haefeli-Bleuer and Weibel (1988)). However, geometries suitable for computational sim-
ulations could not be obtained by this means.

More recently, different microscopy techniques were utilized to characterize the organi-
zation of alveolar tissue. Brewer et al. (2003) and Cavalcante et al. (2005), for example,
employed fluorescent microscopy for visualization of alveoli in isolated tissue strips. Perl-
man and Bhattacharya (2007) applied real-time confocal microscopy to isolated, perfused
rat lungs in order to view single alveoli in a 2 µm-thick optical section below the pleural
surface. Carney et al. (2005) and Dirocco et al. (2006) performed in vivo videomicroscopy
to obtain photomicrographs of the outer face of subpleural alveoli. A further development
of this technique was reported by Stahl et al. (2006) who developed a novel endoscopic
device to enable measurement and control of the pressure applied to the pleural surface
under view.

A major drawback of all microscopy approaches, however, is the inherent restriction to
two-dimensional views. Although attempts to reconstruct alveoli based on photographs of
different sections were reported (cf. e.g. Mercer et al. (1987), Mercer and Crapo (1987),
and Berend et al. (1991)), these procedures are unlikely to provide an adequate basis for
detailed FE modeling. The first suitable three-dimensional dataset for human alveoli was
obtained by Watz et al. (2005). They excised, fixated, and stained specimens from different
regions of autopsy lungs before imaging with µ-CT. Recently, Popp et al. (2006) performed
real-time three-dimensional imaging of isolated, perfused, and ventilated rabbit lungs by
means of optical coherence tomography.

All approaches mentioned so far served to either characterize alveolar tissue with regard to
morphological and mechanical properties or investigate specific medical problems. How-
ever, the data obtained in these studies have not been used for computational simulations.
The first realistic FE models were proposed by Gefen et al. (1999) who digitized a scanning
electron micrograph of mouse lung parenchyma to yield a geometric replica of a typical
two-dimensional alveolar sac. Local strain distributions in realistic three-dimensional rat
alveoli were investigated for the first time by Rausch et al. (2011a). The underlying acinar
geometry was obtained by means of a synchrotron-based X-ray tomographic microscopy
technique described in detail in Schittny et al. (2008).

In the long term, utilization of imaging-based alveolar geometries is definitely desirable.
So far, however, realistic representations are only available for excised small animal lungs.
Therefore, finding ways to create artificial acinar geometries, particularly for the human
lung, still seems to be worthwhile. Apart from providing flexibility with respect to the
modeled species, artificial representations usually have the advantage of being easy to
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handle, e.g. concerning FE meshing. However, it has to be assured that the simplification
of the complex, irregular geometric features is justifiable. Thus, in the future, the simpler
artificial models need to be validated by comparing with the results obtained from realistic
(i.e. imaging-based) geometries.

In the past, various approaches to generating artificial acinar representations were devel-
oped. To study screening phenomena, i.e. the effectivity of diffusion in the acinus, Sapoval
et al. (2002) introduced a simplified two-dimensional model based on the space-filling
Hilbert curve. Kitaoka et al. (2000) proposed an acinar model based on an assemblage
of cubic cells representing alveolar ducts and alveoli. Connections between different cells
were established by means of a labyrinthine algorithm ensuring minimum path lengths
within the assemblage. Felici et al. (2003) utilized this set-up to investigate above men-
tioned screening phenomena in a more realistic geometry. Although models based on the
labyrinthine algorithm were shown to be in good agreement with published morphological
data, acinar geometries were locally fairly unrealistic. Especially if the mechanical behav-
ior of pulmonary alveoli is to be investigated, this is a very significant drawback. A more
authentic shape for alveolar ducts based on a quadrangular prism was proposed by Kitaoka
et al. (2007). Each square was divided into four parts which were shifted alternatively in-
side and outside. Secondary septa were attached at the edges of the deformed parts, so that
overall eight alveoli were generated within one duct. By combining several alveolar ducts
by means of the labyrinthine algorithm, a spring-hinge parenchyma model was developed
and employed in simplified simulations of alveolar dynamics.

Other frequently used shapes for alveolar ducts and alveoli are different polyhedra. Frankus
and Lee (1974) and Kimmel and Budiansky (1990), for instance, proposed utilization of the
dodecahedron since the angle between any two intersecting planes is close to the reported
angle of 120° between alveolar walls. However, when assembled into a cluster of many
units, the dodecahedron is not space-filling, i.e. the formation of alveolar ducts and acinar
structures without leaving any voids is not possible. Therefore, the so-called tetrakaideca-
hedron seems to be a more appropriate choice for approximating alveolar structures. This
space-filling 14-sided Archimedean polyhedron is constructed from a regular octahedron
by removal of six right square pyramids, one from each point (see Figure 3.1.1). The result-
ing tetrakaidecahedron has 8 regular hexagonal faces, 6 square faces, 24 vertices, and 36
edges. Remarkably, most common shapes of alveoli found in photographs of parenchymal
micro-structures are of hexagonal and rectangular type (Fung, 1988). Among all space-
filling polyhedra of the same volume, the 14-hedron has the minimum surface-to-volume
ratio, which is an important factor in the stability of alveoli under the action of surface
tension (Fung, 1975). It has to be noted, though, that the tetrakaidecahedron has three
orthogonal planes of symmetry in its undistorted state. Hence, the truncated octahedron is
in general not structurally isotropic. However, Denny and Schroter (2006) demonstrated
that corresponding alveolar models have very similar elastic properties when distorted in
different directions.

Tetrakaidecahedra were widely used as a geometric description for pulmonary alveoli and
alveolar ducts in the literature. However, usually only geometries based on single alve-
oli as in Dale et al. (1980) and Kowe et al. (1986) or simple assemblages of alveoli were
employed, cf. e.g. Denny and Schroter (1995), Denny and Schroter (1997), Denny and
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Figure 3.1.1: Tetrakaidecahedral geometry. (a) Construction by truncation of regular octa-
hedron. (b) Three-dimensional view of tetrakaidecahedron. (c) Introduction of character-
istic length L in developed view of tetrakaidecahedron.

Schroter (2000), and Denny and Schroter (2006). In the latter case, fixed arrangements
of single cells opened to a straight conducting unit were utilized. A more elaborate ap-
proach to forming acinar structures based on tetrakaidecahedral alveoli was proposed by
Fung (1988) and utilized by Sznitman and Heimsch (2009) to investigate respiratory flow
phenomena and gravitational deposition. The basic unit of Fung’s artificial acinus was a
single tetrakaidecahedron which was referred to as an order-1 polyhedron. By connecting
a central order-1 polyhedron with 14 identical surrounding tetrakaidecahedra, a so-called
order-2 polyhedron was formed. Alveolar ducts were then constructed by connecting sev-
eral order-2 polyhedra with each other or with respiratory bronchioles. Since order-2 poly-
hedra are not exactly space-filling, some isolated order-1 polyhedra had to be specifically
connected to the ductal structure. Despite the good correlation with available morpho-
metric data, therefore, the generation of acinar structures appeared somehow arbitrary. A
different approach to creating artificial alveolar geometries was suggested by Burrowes
(2005). Although the employed Voronoi meshing technique sounds promising in general,
the underlying procedure was not explained satisfyingly and, thus, the generation process
again seemed rather discretionary.
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To overcome the shortcomings of previous approaches, an alternative method for generat-
ing artificial acinar representations has been developed as part of this work (cf. also Wall
et al. (2010b)). Briefly, the labyrinthine algorithm introduced by Kitaoka et al. (2000)
for cubic cells has been extended to tetrakaidecahedral geometries. In the following, the
labyrinthine algorithm will be briefly summarized. It will be shown that a simple modifi-
cation of the connection rules to account for the geometric characteristics of tetrakaideca-
hedra is not sufficient to ensure minimal path lengths within the acinus. For that purpose,
a new approach to formulating optimal interalveolar connections will be proposed. After
an illustration of the versatility of the developed procedure, a comparison of an artificial
acinar model with silicone rubber casts of human lungs will be drawn.

3.1.1 Original labyrinthine algorithm

In general, a labyrinthine algorithm enables the creation of a network of interconnected
cells. Point of origin is an a priori defined assemblage of identical initially closed cells. By
successively opening faces, connections of all cells to a given starting cell are established.
Assuming that the design of peripheral airspaces is guided by effective gas transport, the
generated paths should have minimal length. Hence, certain connection rules are intro-
duced to ensure that detours are precluded and each cell is passed only once except at
branching points. Thereby, optimality of paths through the assemblage is already guar-
anteed after the first passage of all cells. By contrast, alternative approaches are usually
based on the incremental optimization of a given random configuration (cf. e.g. Denny and
Schroter (1996) for a corresponding annealing algorithm).

In the following, the general procedure of the labyrinthine algorithm introduced by Kitaoka
et al. (2000) will be shortly summarized by means of a simple example (see Figure 3.1.2).
If a cell is affiliated in the course of the labyrinth creation, it is stored in a queue. In every
step, the first cell in the queue can actively create a path to one of its neighbors that are
not already passed. Thereby, directions pointing from the starting cell to the center of the
assemblage are pioritized. If there are several priority cells, one of them can be chosen
randomly. If, otherwise, priority directions are lacking, then a cell is selected randomly
from non-priority directions. After having established the connection, the active cell and
the newly affiliated cell are moved to the end of the queue. However, if the active cell has
no other unpassed admissible neighbors, it is deleted from the queue. This procedure is
repeated until the queue is worn out.

For square and cubic base cells, the concept of priority directions effectively ensures op-
timal path lengths in the created artificial acinus. In case of tetrakaidecahedral base cells,
however, the labyrinthine algorithm needs to be appropriately adapted to account for the
more complicated geometry.
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3.1 Artificial Morphology

Figure 3.1.2: Example of a simple two-dimensional labyrinth with quadratic base cells
numbered as shown on the left-hand side. Cyan cells are not yet passed, light blue cells
are members of the queue and white cells are already affiliated but have no admissible
neighbors and are therefore deleted from the queue. Black arrows show chosen directions
whereas white arrows indicate possible other connections. Queue vectors for the corre-
sponding steps are given below the individual figures. The symbols •, ◦, and in the final
labyrinth denote starting cell, branching, and dead end cells, respectively.

3.1.2 Extension to truncated octahedra

Basic notation

Before extending the original labyrinthine algorithm to tetrakaidecahedral cells, some ba-
sic notations have to be introduced. To simplify the search of neighbor cells, utilization
of cell center coordinates is beneficial. However, since the coordinate system only serves
for a characterization of cells in the process of pathway generation, it does not have to
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3 Alveolar Model

Figure 3.1.3: (a) Definition of coordinate system employed for later labyrinth generation.
(b) Illustration of cell numbering for one main (marked in gray) and one ancillary (marked
in yellow) plane of the assemblage shown in (a).

reflect realistic physical dimensions. Hence, for simplicity, it is defined such that the cen-
ter coordinates of each cell can be characterized by three integers (cf. Figure 3.1.3(a)). In
space-filling assemblages of truncated octahedra, cells are either located on main or an-
cillary planes as shown in Figure 3.1.3. In this context, the staggered ancillary planes fill
the space between two consecutive main planes. As shown in Figure 3.1.3(a), cells on
main planes are denoted by even coordinates whereas cells on ancillary planes exhibit odd
coordinates.

With these definitions, the coordinates of all neighboring cells xN =
(
xN

1 , x
N
2 , x

N
3

)
of a given

active cell xA =
(
xA

1 , x
A
2 , x

A
3

)
can be simply calculated to

xN
k = xA

k +ak (3.1.1)

with k ∈ {1,2,3} and ak ∈ {−2,−1,0,1,2}. Thereby, the different components of a have
to go well together, i.e. even and odd numbers must not be combined. Otherwise, equation
(3.1.1) does not yield a valid cell (cf. Figure 3.1.3). If the given cell is situated along the
boundary, the domain of ak has to be appropriately adapted.

Sometimes it is more convenient to address an individual cell by a unique ID. For this
purpose, cells are numbered consecutively starting from 0 in the coordinate origin. In
Figure 3.1.3(b), this numbering scheme is illustrated by the example of the first main and
ancillary plane of a small assemblage. Consequently, each cell can be identified either by
its ID or by its cell center coordinates. For instance, the highlighted cell in Figure 3.1.3(a)
possesses the ID 28 and the coordinates (4,4,0). A convenient way to convert between
cell ID and center coordinates (and vice versa) is presented in Appendix A.1.
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3.1 Artificial Morphology

Figure 3.1.4: (a) Local surface IDs for tetrakaidecahedral cell. (b) Exemplary connection
of three tetrakaidecahedra. Corresponding connecting surfaces are (in the respective local
numbering scheme) 10/4 (connection of yellow and red cell), 6/8 (connection of yellow
and blue cell), and 11/1 (connection of blue and red cell).

For the later generation of three-dimensional geometries, the surfaces between connected
alveoli have to be deleted. To enable the unique identification of these connecting surfaces,
a local numbering scheme for each cell is introduced as shown in Figure 3.1.4.

Concept of priority directions

In case of square and cubic cells, the pathway from one cell to each of its neighbors is
of equal length. For tetrakaidecahedral cells, however, two kinds of connections have
to be distinguished as a consequence of the more complicated geometry. If neighboring
cells are connected via square faces this connection is subsequently denoted as straight.
The corresponding path between cell centers is 2

√
2L long with L being the length of the

edges of the tetrakaidecahedron (cf. Figure 3.1.1(c)). By contrast, the distance between
centers of cells connected via hexagonal faces is

√
6L. In the following, these pathways

are referred to as diagonal.

Without violating the concept of priority directions, different pathways are conceivable
connecting two given cells. This finding is demonstrated in the top row of Figure 3.1.5,
where possible connections between cell A and cell E are displayed. The shortest way
takes course along the diagonal connecting A and D, whereas the orthogonal path via cell
B and C is longer because it involves the passing of an additional cell.

Since diagonal and orthogonal pathways are not equally long, overall path lengths may
differ even if the number of intermediate cells is equal. An illustrative example is provided
in the bottom row of Figure 3.1.5. Here, the path connecting A and D via C is shorter
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3 Alveolar Model

Figure 3.1.5: Comparison of different pathways connecting two cells. Top: Different path
lengths arising from different numbers of connections. Bottom: Different path lengths
due to different lengths of straight and diagonal connections in spite of equal numbers of
intermediate cells.

than the orthogonal connection via B, even if the concept of priority directions is partially
violated due to the change in one coordinate direction. This strongly suggests that diago-
nal pathways should be generally preferred whereas pathways running orthogonally with
respect to the previous path should be prohibited. Therefore, if overall minimal path length
should be preserved, the conventional concept of priority directions has to be modified.

To account for the characteristics of tetrakaidecahedral cells discussed above, three cate-
gories of possible pathways have to be distinguished. First, a preferred (meaning diagonal)
path in priority directions can be defined. The second class of pathways is composed of
diagonal paths exhibiting one non-priority coordinate direction and is called the group of
preferred directions. Eventually, if neither preferred priority nor preferred directions are
available, then a direction can be chosen from so-called admissible priority directions.
Here, priority directions are said to be admissible if they do not process orthogonally to
the previous pathway.

As can be seen in the very simple case of 35 tetrakaidecahedra in Figure 3.1.6, the modified
algorithm nevertheless fails in preserving optimal path length. The highlighted pathway
in Figure 3.1.6(a) is larger than the optimal one depicted in Figure 3.1.6(b) due to two
non-diagonal connections. Thus, even if all requirements are met, minimal path length can
not be guaranteed. Since the creation of labyrinths is a random process, potentially only
pathways with lengths greater than the minimal one are generated. In Figure 3.1.7, overall
path lengths of networks created in 100 consecutive runs of the modified labyrinthine al-
gorithm were evaluated. Interestingly, none of the created labyrinths matched an optimal
configuration (which would have an overall path length of 230.9 L).
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3.1 Artificial Morphology

Figure 3.1.6: Comparison of the configuration obtained by means of the adapted algorithm
(a) and the optimal configuration (b) in case of an ensemble of 35 tetrakaidecahedra. For
the sake of clarity, only cell center connections are displayed here.

To conclude, an extension of the concept of priority directions fails to ensure minimal path
lengths in tetrakaidecahedral assemblages. Therefore, a novel connection rule that was
developed as part of this work will be introduced in the following section.

Explicit check for optimality

To ensure that a chosen new cell N can be connected to the active cell A in an optimal way,
all possible pathways to this cell have to be compared. Introducing PA as the path length
from the starting cell S to A, the length of the path to N via A can be calculated by

PN = PA+

2
√

2L for straight connection√
6L for diagonal connection.

(3.1.2)

The other cells in the queue might not be located in direct adjacency of N. In this case, the
shortest path to N via a queue cell C includes as many connections in diagonal direction
as possible. To determine the exact number of diagonal connections along the optimal
path between C with xC =

(
xC

1 , x
C
2 , x

C
3

)
and N with xN =

(
xN

1 , x
N
2 , x

N
3

)
, first the differences in

corresponding coordinates have to be evaluated, i.e.

∆x1 = xN
1 − xC

1 (3.1.3)

∆x2 = xN
2 − xC

2 (3.1.4)

∆x3 = xN
3 − xC

3 . (3.1.5)
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Figure 3.1.7: Evaluation of overall dimensionless path length p/L for 100 runs of the
modified conventional labyrinthine algorithm in case of 35 tetrakaidecahedral base cells.
N denotes the respective occurrences of individual path lengths.

Note that ∆x1, ∆x2, and ∆x3 are defined as integer parameters. The maximum and mini-
mum absolute coordinate differences are then given by

∆vmax =max{|∆x1|, |∆x2|, |∆x3|} (3.1.6)

∆vmin =min{|∆x1|, |∆x2|, |∆x3|} (3.1.7)

whereas the absolute value of the remaining difference in coordinates is denoted by ∆vmid.
Using these definitions, the number of diagonal and straight connections along the optimal
pathway between C and N can be determined by

ndiag = ∆vmid (3.1.8)

nstraight =
1
2

(∆vmax−∆vmid) . (3.1.9)

Consequently, the overall path length to N via C results in

P̃N = PC+2
√

2L ·nstraight+
√

6L ·ndiag. (3.1.10)

If none of the alternative path lengths P̃N is smaller than PN, i.e. P̃N
min > PN, then N can be

connected to A. Otherwise another cell has to be selected from the range of neighbors. In
case that either no other adjacent cell is at hand or can be connected optimally, A is deleted
from the queue and its successor is activated. The general procedure is summarized in
Algorithm 3.1.
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3.1 Artificial Morphology

Algorithm 3.1 Labyrinthine algorithm for tetrakaidecahedral ensembles.
Define dimensions of assemblage and starting cell S
Calculate individual cell coordinates C̄ (A.1.3), (A.1.4)/(A.1.6), (A.1.5)/(A.1.7)
Determine IDs of neighbors of each cell N̄ (3.1.1), (A.1.11)
Define possible connecting surfaces S̄
Construct vector of active cells in queue q̄ = [S] and vector of passed cells p̄ = []
Initialize vector of path lengths l̄ and list of deleted surfaces per cell D̄

while length(p̄) , total number of cells:
Set active cell A = q̄[0] (*)
for all N in N̄[A]:

if N ∈ p̄:
Delete N from N̄[A] and connecting surface from S̄

if N̄[A] = []:
Delete A from q̄ and continue with (*)

else:
Initialize PN and P̃N

min
while PN > P̃N

min:
Randomly choose new cell N from N̄[A]
Calculate PN (3.1.2)
Initialize P̃N

min
for all C in q̄:

Calculate P̃N (3.1.10)
if P̃N < P̃N

min:
P̃N

min = P̃N

if PN > P̃N
min:

Delete N from N̄[A] and connecting surface from S̄
if N̄[A] = []:

Delete A from q̄ and continue with (*)
else:

Append N to p̄ and connecting surfaces to D̄[A] and D̄[N]
Store PN in l̄
Move A from first to last position in q̄
Append N to q̄

Examples

In Figures 3.1.8, 3.1.9, and 3.1.10, the universality of the presented new labyrinthine algo-
rithm is illustrated. For the sake of clarity, the surrounding tetrakaidecahedra are again left
out and only the pathways connecting the cell centers are displayed. The new labyrinthine
algorithm enables the generation of random configurations with optimal mean path length
and applies for arbitrary starting points and assemblage sizes.
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Figure 3.1.8: Different realizations of optimal pathways through an assemblage of 35
tetrakaidecahedral base cells. Colors indicate distances to the starting cell with blue denot-
ing proximal and red meaning distal.

Figure 3.1.9: Optimal pathways through an assemblage of 35 tetrakaidecahedral base cells
with different starting points. Colors indicate distances to the starting cell with blue denot-
ing proximal and red meaning distal.

Figure 3.1.10: Optimal pathways through tetrakaidecahedral assemblages of different
sizes. Colors indicate distances to the starting cell with blue denoting proximal and red
meaning distal.

For a comparison with published anatomical data, the mean longitudinal path length within
an assemblage of 3514 cells (22 ·13 ·7 on the main planes) was calculated. The starting
point was located at a vertex and an edge length L = 0.082 mm was chosen in line with
Denny and Schroter (1997). In this case, a mean longitudinal path length of 4.17 mm
from the fourth acinar generation after the transitional bronchiole to the termination in
the alveolar sacs was obtained. It is noteworthy that the mean longitudinal path length

64



3.2 Alveolar soft tissue behavior

is not the same as the overall path length since only dead-end cells are included in the
calculation. Assuming that the average path length in the first three generations is equal
to 3.4 mm (Haefeli-Bleuer and Weibel, 1988), the mean longitudinal path length from the
transitional bronchiole to the alveolar sacs was determined as 7.57 mm. The deviation of
this result from the longitudinal path length measured in silicone rubber casts by Haefeli-
Bleuer and Weibel (1988) was approximately 4.9%.

3.1.3 Generation of three-dimensional acinar geometries

Information provided by the labyrinthine algorithm regarding connections between cells of
acini or subacini can be directly used for the generation of three-dimensional geometries
(see Figures 3.1.11(a) and 3.1.11(b)). In this context, the characteristic length L of the
tetrakaidecahedron (cf. Figure 3.1.1(c)) as well as the wall thickness t can be chosen de-
pending on the species to be modeled. This flexibility is a major advantage of the presented
methodology.

In a first step, the mid planes of the artificial alveoli are constructed. Thereby, surfaces be-
tween connected cells (see Algorithm 3.1) are omitted. Based on that, interior and exterior
surfaces are created by intersecting planes parallel to the mid surfaces at intervals of t

2 . A
specific procedure is then employed to construct the alveolar entrance rings by intersecting
planes owned by connected alveoli. The mechanical properties of these regions are – de-
pending on the species – significantly different than those of the remaining alveolar wall.
The developed approach enables the specific handling of these entrance rings, which is
beneficial e.g. for the definition of constitutive models and material parameters. A detailed
overview of the generation of three-dimensional acinar geometries is given in Appendix
A.2.

Finally, batch files specific to preprocessing programs such as GiD or CUBIT are gener-
ated. In this way, the created objects can be easily imported and prepared for computational
simulations. The acinar models can be structurally meshed with hexahedral elements in a
straightforward manner as illustrated in Figure 3.1.11(c).

An obvious drawback of the created artificial geometry is that all alveoli or alveolar ducts
are of the same shape and size. This characteristic is inconsistent with morphological
measurements provided e.g. in Haefeli-Bleuer and Weibel (1988). A better agreement
with the in vivo situation can be attained by simply introducing statistical fluctuations of
the vertex positions during the generation of the three-dimensional geometry. In the scope
of this work, however, only regular tetrakaidecahedral shapes have been utilized.

3.2 Alveolar soft tissue behavior

For the determination of stresses and strains in individual alveolar walls, an accurate de-
scription of lung tissue behavior is indispensable. To frame the requirements of a suitable
constitutive law, the properties of lung parenchyma as assessed from experiments will be
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Figure 3.1.11: Three-dimensional geometry of an assemblage of 35 alveoli based on in-
formation provided by the labyrinthine algorithm. (a) Outside view. (b) Clipped view
illustrating interalveolar connections. (c) View of generated FE mesh.

discussed in the following. After a survey of existing material models for alveolar tissue,
selected constitutive equations developed for other soft biological tissues will be briefly
reviewed. Thereupon, the material model chosen within the scope of this thesis will be
presented in more detail. A brief remark on the consideration of residual stresses will
conclude this section.

3.2.1 Survey of experimental results

The characteristics of lung parenchyma have been investigated extensively in literature.
However, none of these studies have been able to provide information about the behav-
ior of individual alveolar walls. At most, alveolar properties have been deduced from
experiments with larger tissue strips based on very simple model assumptions. Although
available data are not directly applicable to the alveolar model developed within this thesis,
selected studies will be surveyed subsequently in order to illustrate experimental capabili-
ties and define the requirements of suitable constitutive models.

Several investigations were aimed at the characterization of the overall behavior of lung
tissue. Fukaya et al. (1968) were the first to perform tension tests on small cat lung tissue
strips in vitro. The obtained length-tension curves were highly nonlinear and hysteretic,
i.e. with a pathway different on extension and release. Furthermore, time-dependent phe-
nomena like stress relaxation and recovery were observed. Sugihara et al. (1971) demon-
strated that the maximum extensibility of human lung tissue diminishes with aging and
the presence of diffuse lung diseases. Tai and Lee (1981) studied the dependency of the
mechanical behavior of dog parenchyma on the location within the lung and the direction
of force application. They concluded that the common assumption of isotropy and ho-
mogeneity in gross modeling of lung deformation is justified. First approximate elastic
constants of dog lung tissue were derived by Hoppin et al. (1975) from three-axial tension
tests. A more elaborate approach was proposed recently by Rausch et al. (2011b) who in-
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vestigated the material behavior of viable precision-cut rat lung slices. In contrast to most
other studies, also transversal deformations were recorded, thereby enabling the fitting of
more complicated three-dimensional constitutive models.

Other studies were concerned with analyzing the influence of the different constituents of
alveolar tissue (cf. also section 1.1.2.2) on the overall behavior. For instance, Yuan et al.
(1997) showed that interstitial cells within normal lung parenchyma do not directly affect
tissue stiffness at the macroscopic level and may contribute to tissue resistance by less than
12%. Hence, the macroscopic elastic and dissipative properties are mainly dominated by
the connective tissue fibers. In a later study, the respective roles of collagen and elastin
were investigated by examining the properties of tissue strips before and after treatment
with elastase and collagenase (Yuan et al., 2000). Corresponding data suggested that both
collagen and elastin contribute to tissue elasticity during normal breathing. Besides, it
was demonstrated that the elastance coefficient of the tissue strip is far less than that of
the fibers alone. This phenomenon was attributed to a pronounced network effect. Al Ja-
mal et al. (2001) studied the influence of the glycosaminoglycans (GAGs) in the ground
substance on the visco-elastic behavior of lung tissue. The observed effect of the GAGs
was attributed to their interactions with the cell membrane or other ECM molecules. The
mechanical interaction between proteoglycans and collagen fibers was analyzed by Cav-
alcante et al. (2005). They hypothesized that the proteoglycans (which can resist com-
pression and shear) stabilize the fiber network and contribute to lung elasticity at low to
medium lung volumes. Using a two-dimensional hexagonal network model of the alveolar
structure, they also roughly estimated the Young’s modulus of a single alveolar wall and a
collagen fiber.

In summary, many insights into the properties of lung parenchyma have been gained. How-
ever, there still remain large gaps in the understanding of how precisely the rheological
behavior of alveolar tissue is related to the properties of its constituents and their respec-
tive interaction. Hence, when developing a constitutive model, inappropriate complexity
should be avoided.

3.2.2 Outline of existing modeling approaches

Several attempts to model alveolar soft tissue behavior have been reported in the literature.
In this context, two basic approaches can be distinguished. The first alternative is based
on the assumption that the resistance to deformation is provided solely by the supporting
fiber network. Corresponding models approximate alveolar tissue by an arrangement of
discrete elements representing the connective tissue fibers without considering the effect
of the surrounding ground substance. For instance, Maksym et al. (1998) idealized individ-
ual septal walls in lung tissue strips by a two-dimensional network of elastin and collagen
fibers arranged in parallel. Elastin was represented by a linear spring, whereas collagen
was modeled by a stiff string extending without resistance until taut. Corresponding “knee
lengths” of the collagen fibers (i.e. the lengths at which the individual strings become taut)
were distributed according to an inverse power law. Dale et al. (1980) modeled a single
alveolus as a symmetric arrangement of pin-jointed bars which were constrained to lie in
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planes corresponding to the faces of a tetrakaidecahedron. A similar approach was pursued
by Kimmel and Budiansky (1990) who, however, utilized an analytical approach based
on a dodecahedral alveolar geometry. In the alveolar duct model of Denny and Schroter
(1995), elastin and collagen fibers were arranged along the edges and surface diagonals of
individual tetrakaidecahedral alveoli. The density and distribution of both fiber types could
be varied separately, thereby easily facilitating the study of diseases such as emphysema
in which a degradation of predominantly elastin occurs. While elastin fiber bundles were
assumed to obey a simple linear material law, the behavior of collagen fibers was modeled
using an exponential stress-strain relationship. In later studies (Denny and Schroter, 2000,
2006), viscous effects were taken into account by introducing a transient relaxation func-
tion into afore mentioned fiber models. In all discrete approaches discussed so far, only
few individual fibers with an arbitrarily chosen orientation represented the complex net-
work structure. As opposed to this, the tissue model proposed by Bates (1998) was based
on the summed effects of many randomly interacting fibers. When suddenly stretched uni-
axially, the fibers aligned themselves preferentially in the strain direction before slowly
reverting back to random orientation due to thermal motion.

The second alternative is to model the alveolar wall as a continuum by integrating over the
properties of its constituents. Frankus and Lee (1974), for example, approximated alveolar
tissue by a plane membrane material derived from isotropically distributed pseudo-fibers.
These fictitious structures represented the composite material found in the alveolar wall
and, hence, were not synonymous with real tissue fibers. A membrane material was also
proposed by Karakaplan et al. (1980). However, they formulated a material model based
on a phenomenological strain energy density function (SEF). As the name suggests, this
kind of constitutive law describes distinct macroscopic phenomena which can be observed
in experiments without requiring a detailed knowledge of the underlying micro-structure.
Consequently, related parameters in general do not possess a clear physical interpretation
like the elastic modulus of a collagen fiber. However, they can be determined by fitting
the model to corresponding experimental data. Gefen et al. (1999), for instance, suggested
a constitutive law based on a one-dimensional polynomial stress-stretch relation. Corre-
sponding parameters were determined from uni-axial tension tests performed by Sugihara
et al. (1971). Another more micro-structurally motivated – albeit still phenomenological
– approach to characterizing alveolar tissue behavior was introduced by Lanir (1983) who
utilized a SEF for fibrous connective tissues.

Over the last decade, various models have been developed for other soft biological mate-
rials such as arterial or aortic tissues. Although specific properties are likely to be distinct,
there are a number of common characteristics. This can be attributed to the presence of
similar micro-structural constituents. Therefore, it seems possible to adapt some of these
material models to alveolar tissue. For instance, Humphrey and Yin (1987) developed
a model that synthesized certain desirable features from phenomenological and micro-
structurally motivated approaches. They assumed that many soft tissues can be ideal-
ized as being composed of a homogeneous matrix and various families of non-interacting
densely distributed fibers. In this context, each fiber family was allowed to possess dif-
ferent material properties and orientations. The SEF was then formulated as the sum of
matrix and fiber contributions. The same concept was employed by Holzapfel et al. (2000)
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for a constitutive model of arterial tissue. The two mechanically relevant layers (i.e. the
media and the adventitia) were treated as orthotropic fiber-reinforced materials whose ori-
entations were obtained from a statistical analysis of histological sections. Balzani et al.
(2006) showed that the proposed SEFs for the matrix material and the fiber families satisfy
general polyconvexity conditions (cf. Ball (1977)), thereby ensuring a numerically stable
and physically reasonable material model. In the same study, a general construction prin-
ciple for polyconvex constitutive models suitable for the description of various biological
soft tissues was formulated. Since collagen fibers are usually not perfectly aligned even
if a prevalent direction exists, Gasser et al. (2006) introduced a generalized version of
the Holzapfel model by incorporating a parameter characterizing the dispersion of colla-
gen fiber orientations. Ehret and Itskov (2007) proposed an alternative polyconvex SEF
for collagenous tissues such as coronary arteries and the abdominal aorta. To control the
anisotropic behavior, they introduced specific weight factors into the fiber functions. Zul-
liger et al. (2003) expanded the idea of structural SEFs by including also the volume frac-
tions of both elastin and collagen contained in arterial tissue. The parameters of the novel
SEF had the physical meaning of the elastic moduli of collagen and elastin, the collagen
waviness, and the collagen fiber angle. Maceri et al. (2010) developed a multi-level model
for soft collagenous tissues with regular fiber arrangement. Their formulation was based on
few parameters which were directly related to histological information. The resulting con-
stitutive model accounted for effects on the nano-, micro-, and macro-scale of the tissue.
Application to several tissues such as tendon and ligaments showed good agreement with
experimental data. Another hierarchical approach proposed by Tang et al. (2009) estab-
lished a link between nano-scale collagen features and material properties at larger tissue
scales. A quantitative comparison between simulation results and experimental measure-
ments, however, has not been performed yet.

After having discussed different approaches to modeling the mechanical behavior of bio-
logical materials, a constitutive law suitable for the intended application has to be chosen.
The discrete models discussed above are out of question since they oversimplify the com-
plex structure of lung tissue. By contrast, the multi-level approaches proposed recently
seem to complicate the alveolar model without being supported by appropriate data con-
cerning e.g. the exact amount and three-dimensional distribution of fibers. To find a com-
promise between structural accuracy and mathematical simplicity, it seems reasonable to
start with a well-established phenomenological constitutive law that is based on general
micro-structural information.

3.2.3 Constitutive model for alveolar tissue

In the experimental studies discussed in section 3.2.1, time-dependent phenomena such
as stress relaxation and recovery were observed. As a first step, however, viscous effects
are neglected and alveolar tissue is assumed to be hyperelastic. In this case, the material
response can be determined based on a SEF Ψ defined per unit reference volume such that

S = 2
∂Ψ

∂C
. (3.2.1)
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Since biological tissues (like many other materials) are characterized by a quite different
behavior with regard to volumetric and isochoric deformations, it is beneficial to define
the following multiplicative split of the deformation gradient F into dilatational and dis-
tortional parts

F =
(
J1/3I

)
· F̄. (3.2.2)

In this context, F̄ refers to the isochoric part of the deformation gradient, J is the de-
terminant of F, and, hence, J1/3I denotes the volumetric part of F. The isochoric right
Cauchy-Green tensor is then defined by

C̄ = F̄T · F̄. (3.2.3)

Based on this split, the following decoupled form of the SEF is postulated

Ψ(C) = U(J)+Ψ̄(C̄) (3.2.4)

with U and Ψ̄ being the volumetric and the isochoric contributions to the overall strain
energy density, respectively. In the following, specific functions suitable for the description
of alveolar soft tissue behavior will be proposed.

Although a phenomenological model has been chosen in this work, as much information
about the underlying micro-structure as possible should be included. As already discussed
in section 1.1.2.2, the constituents of alveolar tissue exhibit significantly different mechani-
cal properties. The chosen material model should enable a distinction of the corresponding
contributions to the overall energy. In line with the model presented by Holzapfel et al.
(2000) for arterial tissue, Ψ̄ is proposed to consist of two main parts related to the major
stress-bearing elements. It seems reasonable to adapt this approach as well as the indi-
vidual SEFs also for alveolar tissue albeit hard experimental evidence for this choice is
missing.

The first part of the SEF Ψ̄gs represents mainly the elastin fiber system and the amorphous
ground substance. Following Holzapfel et al. (2000), Holzapfel et al. (2004), and Gasser
et al. (2006), Ψ̄gs is approximated by an isochoric Neo-Hookean model, i.e.

Ψ̄gs
(
Ī1
)
= c

(
Ī1−3

)
. (3.2.5)

In this context, c > 0 is a shear modulus-like parameter and Ī1 is the first principal invariant
of the isochoric right Cauchy-Green tensor defined by

Ī1 = tr
(
C̄
)

(3.2.6)

with tr(C̄) denoting the trace of C̄.

The second contribution to the isochoric SEF is related to the collagen fiber network. Fol-
lowing Gasser et al. (2006), collagen fiber directions are assumed to be distributed around
a preferential direction a according to an orientation density function ρ̂. To allow for a
coordinate-invariant formulation of the constitutive equations in the presence of anisotropy,
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3.2 Alveolar soft tissue behavior

a general structural tensor H can be introduced as follows

H = ηI+ (1−3η) a⊗ a. (3.2.7)

The parameter η is given by

η =
1
4

∫ π

0
ρ̂
(
θ̂
)
sin3

(
θ̂
)
dθ̂ (3.2.8)

where θ̂ denotes the angle between a fiber and the preferential orientation a. Experimental
results of Sobin et al. (1988) and Toshima et al. (2004) suggest that fiber orientation in
alveolar tissue is rather random. Consequently, lung parenchyma can be treated as a ho-
mogeneous, isotropic continuum. According to Gasser et al. (2006), η is equal to 1

3 in this
case. Based on the general structural tensor H, an additional so-called mixed invariant J̄4
of the isochoric right Cauchy-Green tensor can be introduced as follows

J̄4 = tr
(
H · C̄

)
=

1
3

Ī1. (3.2.9)

J̄4 in general denotes the square of the stretch in fiber direction given that affine kine-
matics can be presumed. It has to be noted, though, that this assumption is not in line
with the experimentally observed network effect in lung tissue (Yuan et al., 2000) that,
according to theoretical studies of Chandran and Barocas (2006), potentially leads to a
three-fold decrease of fiber stresses compared to the macroscopic stress. However, bearing
in mind that the proposed constitutive model is still a phenomenological one, introduction
of more complex approaches to considering realistic fiber behavior seems to be pointless
here. Hence, for simplicity, the validity of affine kinematics is presumed in the following.
Consequently, it seems reasonable to formulate the SEF representing the contribution of
the collagen fibers based on J̄4. Due to the highly nonlinear behavior of collagen, expo-
nential functions are widely used in biomechanical modeling since the pioneering work of
Fung (1967). For instance, the SEF proposed by Holzapfel et al. (2000) and Gasser et al.
(2006) for the collagen fibers in arterial tissue reads

Ψ̄fib
(
J̄4

)
= δ

k1

2k2

{
exp

[
k2

(
J̄4−1

)2]
−1

}
(3.2.10)

with k1 ≥ 0 being a stress-like parameter, k2 > 0 denoting a dimensionless parameter, δ = 0
for J̄4 < 1, and δ= 1 for J̄4 ≥ 1. This case distinction is necessary since J̄4 < 1 characterizes
a shortening of the fibers which are assumed to have no compressive strength. Introducing
the mixed invariant (3.2.9) into the fiber SEF (3.2.10) yields

Ψ̄fib
(
Ī1
)
= δ

k1

2k2

exp

k2

(
1
3

Ī1−1
)2−1

 (3.2.11)

with δ = 0 for Ī1 < 3 and δ = 1 for Ī1 ≥ 3. This isotropic variant is chosen as the collagen
fiber SEF for alveolar tissue. Except for a different coefficient, the fiber function (3.2.11)
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essentially equals the SEF introduced by Delfino et al. (1997) for the description of arte-
rial tissue. Remarkably, Sansour (2008) found that formulating anisotropic fiber SEFs like
(3.2.10) based on C̄ instead of C may lead to unphysical results. He demonstrated that, in
the compressible anisotropic case, any spherical state of stress produces a change of both
volume and shape, even if the volumetric stress is assumed to depend solely on J. Further-
more, he argued that utilization of the isochoric deformations in fiber-related expressions
causes spurious multi-dimensional fiber stresses. Therefore, he suggested to formulate
any anisotropic fiber function using the original (i.e. complete) right Cauchy-Green tensor.
Although in the limiting case of incompressibility, both alternative fiber SEFs coincide,
associated volumetric stresses still differ in the presence of anisotropy. However, since the
collagen fiber function chosen for alveolar tissue is isotropic, the split of deformations is
permissible in any case and, hence, retained in equation (3.2.11).

After introduction of the isochoric SEFs, now the volumetric contribution will be briefly
discussed. Due to their high water content, biological soft tissues are commonly assumed
to be incompressible. In this case, U(J) can be interpreted as an additional kinematic
constraint potential with the hydrostatic pressure p as a Lagrange multiplier. Exact sat-
isfaction of the incompressibility condition, therefore, involves a mixed FE approach in-
cluding displacement and pressure DOFs. However, as already indicated in section 2.5.2,
the incompressible case can also be approximated by employing a slightly compressible
formulation based on a penalty method. Due to its ease of implementation, this concept
is widely spread and, therefore, also chosen for the modeling of the volumetric behavior
of alveolar tissue. Within this thesis, the following volumetric SEF introduced by Balzani
et al. (2006) was implemented

U(J) = ε1

(
J2ε2 +

1
J2ε2

−2
)

(3.2.12)

where ε1 > 0 is the penalty parameter and ε2 > 1 acts as a parameter controlling the shape
of the function. For ε1 →∞, the penalty function (3.2.12) ensures vanishing volumetric
deformations. In practice, ε1 is a problem-specific parameter chosen sufficiently large
to satisfy the incompressibility constraint approximately, but small enough to prevent ill-
conditioning of the numerical problem.

Finally, the overall SEF for alveolar tissue takes the following form

Ψ
(
Ī1, J

)
= Ψ̄gs

(
Ī1
)
+Ψ̄fib

(
Ī1
)
+U (J) . (3.2.13)

It is noteworthy that each part fulfills the principles of objectivity as well as the require-
ments of polyconvexity and a stress-free reference state.

Based on equations (3.2.1) and (3.2.13), the corresponding second Piola-Kirchhoff stress
tensor can be specified for a given deformation state. It has to be noted that the determina-
tion of S involves differentiation of the SEF with respect to the original right Cauchy-Green
tensor C. For this purpose, the following relations between the isochoric invariants utilized
in equation (3.2.13) and the corresponding invariants of C need to be defined

I3 = det (C) = J2, I1 = tr(C) = Ī1J2/3 = Ī1I1/3
3 . (3.2.14)
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The second Piola-Kirchhoff stresses then read

S = 2
∂Ψ

∂C
= 2

[
∂Ψ

∂Ī1

∂Ī1

∂I1

∂I1

∂C
+

(
∂Ψ

∂Ī1

∂Ī1

∂I3
+
∂Ψ

∂J
∂J
∂I3

)
∂I3

∂C

]
=

= 2
[
∂Ψ

∂Ī1
I−1/3
3 I+

(
−1

3
∂Ψ

∂Ī1
I1I−4/3

3 +
1
2
∂Ψ

∂J
I−1/2
3

)
I3C−1

]
(3.2.15)

where the derivatives of I1 and I3 with respect to C can be found e.g. in Holzapfel (2001)
and differentiation of the overall SEF (3.2.13) with respect to the invariants of C̄ yields

∂Ψ

∂J
= 2ε1ε2

(
Iε23 − I−ε23

)
I−1/2
3 (3.2.16)

∂Ψ

∂Ī1
= c+δ

1
3

k1exp
(
k2Q2

)
Q. (3.2.17)

In this context, the following abbreviation is introduced for the sake of lucidity

Q =
(
1
3

Ī1−1
)
=

(
1
3

I1I−1/3
3 −1

)
. (3.2.18)

Differentiation of the second Piola-Kirchhoff stresses (3.2.15) with respect to the Green-
Lagrange strains yields the associated elasticity tensor

CCC =
∂S
∂E
= 2
∂S
∂C
= 4
∂2Ψ

∂C∂C
. (3.2.19)

The most general form of CCC in terms of the principal invariants of C can be found in
Holzapfel (2001). In the present case, the elasticity tensor reduces to

CCC = δ1I⊗ I+δ3
(
I⊗C−1+C−1⊗ I

)
+δ6C−1⊗C−1+δ7C−1�C−1 (3.2.20)

with the symbols ⊗ and � denoting tensor products given by

(I⊗ I)JKLM = IJK ILM (3.2.21)(
C−1�C−1

)
JKLM

=
1
2

(
C−1

JL C−1
KM +C−1

JMC−1
KL

)
(3.2.22)

and the coefficients δ1, δ3, δ6, and δ7 defined by

δ1 = δ
4
9

k1exp
(
k2Q2

)
I−2/3
3

(
2k2Q2+1

)
, (3.2.23)

δ3 =−
4
3

cI−1/3
3 −δ 4

27
k1exp

(
k2Q2

)
I−2/3
3

(
I1+2k2I1Q2+3I1/3

3 Q
)
, (3.2.24)
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δ6 =
4
9

cI1I−1/3
3 +δ

4
81

k1exp
(
k2Q2

)
I1I−2/3

3

(
I1+2k2I1Q2+3I1/3

3 Q
)
+

+4ε1ε22
(
Iε23 + I−ε23

)
, (3.2.25)

δ7 =
4
3

cI1I−1/3
3 +δ

4
9

k1exp
(
k2Q2

)
I1I−1/3

3 Q−4ε1ε2
(
Iε23 − I−ε23

)
. (3.2.26)

Due to the lack of data for individual alveolar walls, the material model introduced above
was fitted to experimental stress-strain curves published in Al Jamal et al. (2001) for lung
tissue sheets (Röhrnbauer, 2006). As a consequence, current parameters model a homog-
enized continuum of alveolar tissue and air rather than a single alveolar interseptum. The
parameters found for ground substance and fiber function were c = 1 kPa, k1 = 13.5 kPa,
k2 = 76.5 and the penalty parameters were chosen to be ε1 = 10 kPa, ε2 = 1.0. A more
realistical approach to determining material constants was employed by Karakaplan et al.
(1980) who chose the parameters for their alveolar duct FE model such that its predic-
tions matched experimental results obtained from triaxial tension tests on larger specimens
(Hoppin et al., 1975). A similar procedure that is currently under way will be briefly ad-
dressed in section 6. For the time being, however, the parameters given above are utilized.

The resulting contributions of the individual functions to the overall potential in case of
uniaxial tension can be seen in Figure 3.2.1. The principal stretches are denoted byΛ1 =Λ2
perpendicular to and Λ3 in load direction. The presented ground substance function is
compared to a standard Neo-Hookean material governed by the following SEF

ΨNH (I1) = c (I1−3) (3.2.27)

with c chosen to be identical to the homonymous parameter of the ground substance func-
tion.

The influence of the different material parameters on the uniaxial stress-strain behavior is
illustrated in Figure 3.2.2. Plots show the relationship between the principal stretch Λ and
the Cauchy stress σ in load direction in case of perfect incompressibility. In each plot, one
constitutive parameter is varied, whereas the other two are kept constant. Clearly, elastin
fibers and ground substance (represented by the parameter c) control the material response
in the lower stretch regime rather, whereas k1 and k2 (the parameters of the collagen func-
tion) govern the behavior at higher strains.

Although the constitutive model adapted here for alveolar walls is widely accepted in soft
tissue mechanics, it has to be again emphasized that viscous effects are likely to play an
important role. Fortunately, the developed alveolar model is by no means restricted to
the presented material law. Hence, extensions to visco-elasticity can be integrated in the
future.

3.2.4 Remark on residual stresses

It is well-known that most soft biological tissues are not stress-free in their unloaded con-
figuration. For instance, after cutting in radial direction, excised arterial segments spring
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3.2 Alveolar soft tissue behavior

Figure 3.2.1: Contributions to the overall potential depending on the stretches Λ1 = Λ2
and Λ3. The thick black curve indicates the incompressible state of uniaxial deformation
in each plot. (a) Potential of the ground substance Ψ̄gs (white) compared to a standard
Neo-Hookean material ΨNH (gray). (b) Potential of the collagen fiber network Ψ̄fib. (c)
Potential of the penalty function U.

open into sectors corresponding to their zero-stress state (Fung, 1981). The consideration
of so-called residual stresses is essential for the determination of both realistic stresses and
strains. Therefore, in their simulation of arterial behavior, Holzapfel et al. (2000) started
with the open sector of an idealized artery which was then closed by an initial bending to
arrive at the load-free, but stressed cylindrical configuration. In case of alveolar tissue, the
relevance of residual stresses is not definitively proven. Due to the small dimensions of
alveolar walls, experiments demonstrating a “spring open” effect are not feasible. In many
photomicrographs of excised lung tissue in the literature, alveolar walls seem to be buck-
led. For instance, Gil et al. (1979) studied the geometry of peripheral airspaces in air- and
saline-filled rabbit lungs. In the latter case, interfacial phenomena are absent and alveolar
morphology is governed predominantly by tissue tensions. They found that alveolar septa
in saline-filled lungs appear undulated at low and medium inflation levels, suggesting that
substantial parts of the connective tissue network are at their resting lengths. However,
Fung (1981) argued that the observed wrinkling of alveolar tissue is an artifact attributed
to the incomplete fixation of elastin fibers. If the tissue is fixed in a state of tension, e.g.
in the inflated lung, and then sectioned in the absence of loads, the residual stresses in the
elastin are released and the fibers shrink to their length at a zero-stress state. The fixed
part of the tissue is then wrinkled by the shortening of the elastin fibers. Consequently,
no conclusions with regard to the presence of residual stresses can be drawn from these
photomicrographs. Likewise, Sobin et al. (1988) reported that in many hundreds slices of
quick-frozen lung tissue, they found no fibers folding or pleating.

Since the question as to whether residual stresses are present in lung tissue cannot be an-
swered conclusively, it seems reasonable to assume that alveolar walls are stress-free in
the unloaded configuration. In the in vivo situation, however, alveolar tissue is always pre-
stressed by the negative pleural pressure that keeps the lungs expanded. The exact amount
of prestress in individual alveolar walls, though, is not known. Therefore, any approach
to imposing an imprinted stress state due to pleural pressure directly in the alveolar model
seems to be futile. However, the computational model developed within this thesis is not
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(a) (b) (c)

Figure 3.2.2: Influence of material parameters on the appearance of the stress-stretch curve
in case of uniaxial tension. (a) Variation of parameter c (dotted line: c =0.1 kPa; solid line:
c =1 kPa; dashed line: c =3 kPa). (b) Variation of parameter k1 (dotted line: k1 =30 kPa;
solid line: k1 =76.5 kPa; dashed line: k1 =130 kPa). (c) Variation of parameter k2 (dotted
line: k2 =13.5; solid line: k2 =200; dashed line: k2 =500).

restricted to the alveolar level but, eventually, comprises the lung as a whole. Hence, pleu-
ral pressure can be applied to the overall parenchyma model presented in chapter 4 using
a prestressing technique as proposed by Gee et al. (2010). Their modified updated La-
grangian formulation (MULF) was shown to yield physically meaningful results on com-
plex three-dimensional models of aortic aneurysms. In this case, the geometry obtained
from medical imaging is also not stress-free but represents a predeformed spatial config-
uration loaded by the blood pressure. To account for this prestressing, they performed a
load-controlled calculation where the structure does not deform but builds up an imprinted
deformation gradient and, thereby, also an initial stress state which is in equilibrium with
the imposed blood pressure. In the future, MULF – which is available in the FE code
BACI – can be applied to the developed multi-scale parenchyma model to account for the
effect of pleural pressure. This methodology will enable the simulation of physiologically
reasonable stresses also in locally resolved alveoli.
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3.3 Interfacial phenomena

3.3 Interfacial phenomena

As already discussed in section 1.1.2.3, alveolar walls are covered by a continuous sur-
factant film which is assumed to influence the overall mechanical behavior significantly.
In order to ensure that the developed computational model is of predictive value, the in-
teraction of tissue and liquid lining mechanics needs to be considered. In this section, a
corresponding computational framework will be derived. After a short introduction into
the fundamentals of interfacial phenomena, a novel approach to considering general sur-
face stress effects in the context of the FEM will be proposed. Subsequently, an elaborate
surfactant model enabling the determination of local surface stresses will be presented.
Important features of the presented methodology will be illustrated by selected numerical
examples.

3.3.1 The concept of surface stress

All interfacial phenomena originate from complex molecular interactions between differ-
ent phases. Molecules at an interface are in an energetically unfavorable state compared
to those in the bulk due to reduced intermolecular attractions. As a consequence, surface
stresses arise that tend to minimize the surface area and, by this means, also the interfacial
energy. Surface phenomena manifest themselves in many ways such as the surface tension
of water, the separation of two immiscible liquids after shaking, or the resulting contact
angle when a droplet of water is placed on a solid surface (Hills, 1999). In this section,
a short summary of existing terminology will be given. A more detailed introduction into
the physics of surfaces can be found e.g. in Butt et al. (2003).

When considering interfacial effects, different mechanisms of surface area change have to
be distinguished. In case of an ideal liquid, the area per molecule Amol always remains
constant and the number of interfacial molecules Nmol changes proportional to the surface
area (cf. Figure 3.3.1(a)). For an ideal solid, however, this so-called plastic area change is
not the only possible process since relaxation occurs much slower and, more importantly,
only after a yield strength is exceeded. Therefore, elastic changes of surface area can
also occur. In this case, the distance between neighboring molecules – and, thus, also the
area per molecule Amol – changes while the number of interfacial molecules Nmol remains
constant (see Figure 3.3.1(b)).

To consider this in more detail, a simple example will be discussed in the following. In
case of a one-dimensional interface, the overall scalar interface strain reads

ε =
dA
A
= εp+εe (3.3.1)

where A denotes the surface “area” and εp, εe refer to the plastic and elastic surface strains,
respectively. With each surface molecule, an excess energy Emol can be associated. In a
one-component system, the surface tension γ̂ equals the specific free surface energy, i.e.

γ̂ =
Emol

Amol
=

NmolEmol

A
. (3.3.2)
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Figure 3.3.1: Different mechanisms of surface area change. (a) Ideally plastic area change
with constant area per molecule Amol and variable number of interfacial molecules Nmol.
(b) Ideally elastic area change with constant number of interfacial molecules Nmol and
variable area per molecule Amol.

This central thermodynamic quantity corresponds to the reversible work required to create
unit area of surface at constant temperature, volume, and chemical potentials (Vermaak
et al., 1968). Based on the surface tension (3.3.2), the infinitesimal increase in free energy
related to the stretching of an interface equals

dWsurf = d(NmolEmol) =
(
γ̂+
∂γ̂

∂A
A
)
dA =

(
γ̂+
∂γ̂

∂ε

)
dA =

= γdA (3.3.3)

where γ denotes the surface stress given by

γ = γ̂+
∂γ̂

∂ε
. (3.3.4)

This most general relation between surface stress and surface tension simplifies to

γp = γ̂ (3.3.5)

in case of an ideally plastic area change or

γe = γ̂+
∂γ̂

∂εe
(3.3.6)

if the area change is purely elastic.

In the general multi-dimensional case, surface stresses are tensorial quantities, whereas
surface tension is a scalar. However, within this work only isotropic interfacial effects
are considered so that equations (3.3.3) and (3.3.4) are sufficient for the characterization
of surface energy changes. The surface stress can then be interpreted as a force per unit
length of exposed edge which must be applied to a terminating surface in order to keep
it in equilibrium (Vermaak et al., 1968). That is why γ has often been referred to as
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Figure 3.3.2: Surface change of a planar surface constrained along three edges. The abso-
lute value of the surface force resultant is γh and, correspondingly, the surface work done
equals γh∆b = γ∆A.

“surface tension”, thereby contributing to the widely spread confusion in the literature. γ
is tangential to the interface and, in the isotropic case, perpendicular to every cut edge (see
Figure 3.3.2).

The effect of interface curvature can be illustrated using the example of a spherical droplet.
If the radius r is increased by an increment dr, the droplet’s volume and surface area
changes are given by

dV =
4
3
π(r+dr)3− 4

3
πr3 ≈ 4πr2dr (3.3.7)

dA = 4π(r+dr)2−4πr ≈ 8πrdr (3.3.8)

where higher order terms in dr have been neglected. The associated variation of the inter-
facial energy (3.3.3) needs to be compensated by a pressure difference p between the two
phases, i.e.

γdA = pdV. (3.3.9)

Introduction of dV (3.3.7) and dA (3.3.8) into relation (3.3.9) then yields the well-known
Laplace-Young equation for a spherical interface

p =
2γ
r
. (3.3.10)

By mistake, this relation has frequently been used to deduce γ̂ from experiments. Despite
converse claims, however, measurements of surface stress, but not surface tension, are
possible from the effect of hydrostatic pressure if the area change is not purely plastic
(Vermaak et al., 1968). This finding also has to be considered when experimental results
concerning the interfacial properties of surfactant should be assessed.

After this short general introduction into interfacial phenomena, now the computational
modeling in the context of the FEM can be addressed.
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3.3.2 Coupling of solid and interfacial mechanics

In the literature, different approaches to modeling multi-phase problems including the ef-
fects of surface stresses have been proposed. Olson and Kock (1994), for instance, simply
added the additional surface work (3.3.3) to the existing variational formulation for invis-
cid fluids. In most other computational fluid dynamics (CFD) models, though, a modified
traction boundary condition based on the generalized Laplace-Young equation has been
applied at the interface, i.e.

σ · n=−pintn=−pextn+ κγn (3.3.11)

with κ denoting the interface curvature (cf. e.g. Chessa and Belytschko (2003) and Dettmer
and Peric (2005)). Although above formulation is equivalent to the surface work in case of
curved interfaces (see equation (3.3.9) for a verification in the spherical case), the treatment
of planar surfaces is not possible with this approach. Furthermore, direct computation of
κ is difficult for linear FE shape functions since the involved second derivatives vanish in
the element interiors. According to Gross and Reusken (2007), however, inadequate ap-
proximation of the surface force terms often leads to unphysical oscillations of the velocity
vector at the interface. Adami et al. (2010) avoided the calculation of the surface curvature
in their smoothed particle hydrodynamics (SPH) model by rewriting the surface traction as
a gradient of a stress tensor. This tensor was defined in a transition region between the two
phases which approximated the actual, sharp interface. In the resulting continuous surface
force model, tangential surface stress gradient forces were additionally considered. These
so-called Marangoni forces were also considered by Wei et al. (2005) in their simplified
two-dimensional model of an alveolus partially filled with liquid.

The CFD approaches mentioned above are based on the explicit modeling and discretiza-
tion of all liquid phases involved. The alveolar model developed within this thesis, how-
ever, is primarily aimed at quantifying in vivo stresses and strains in the septal walls.
Therefore, the detailed modeling of the covering fluid film is of little interest, except inas-
much as it influences the overall behavior. Due to its small thickness, the main effect of the
liquid lining on alveolar mechanics can essentially be attributed to interfacial phenomena.
Assuming that the impact of the solid-liquid interface is negligible, considerations can be
restricted to the surface stresses in the surfactant layer. Following this line of argument,
two basic modeling strategies have been established in the past. The first one is based
on adding the liquid-gas interfacial energy to the SEF of alveolar tissue (see e.g. Lanir
(1983) and Kowalczyk and Kleiber (1994)). This easy-to-implement approach is, how-
ever, restricted to membrane discretizations of the alveolar septa. In case of a continuum
tissue model, the additional SEF would also be taken into account in the bulk of the walls,
thereby spuriously increasing the surface force resultant. The second strategy involves the
formulation of an interface FE accounting for the surface stresses in the surfactant layer.
This approach originally proposed by Karakaplan et al. (1980) has been applied in several
models of individual alveoli and alveolar ducts (cf. e.g. Kowe et al. (1986) and Denny
and Schroter (1997)). So far, however, only triangular (i.e. planar) interface elements have
been utilized in combination with discrete fiber models (cf. section 3.2.2).
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Figure 3.3.3: Left: Schematic of the actual configuration including FE discretization of
the alveolar wall, aqueous fluid film, and covering surfactant layer. Right: Simplified FE
model based on including the interfacial energy of the surfactant layer in the surface of the
alveolar wall.

As part of this work, the basic concept of a surface stress element has been developed
further and integrated in the alveolar model. Since an isolated surface stress element as
suggested by Karakaplan et al. (1980) degenerates to an ideal point without appropriate
boundary conditions, it seems more sensible to establish a direct coupling between bulk
and interface mechanics. That is why the novel approach proposed here is based on includ-
ing the interfacial energy of the surfactant layer in the surfaces of the alveolar wall model
(see Figure 3.3.3). According to equation (3.3.3), the corresponding additional infinitesi-
mal work done by the surface stresses γ is defined by

dWsurf = γdA (3.3.12)

with dA representing the change in infinitesimal interface area in the deformed configura-
tion. In this context, the surface area of the surfactant-air interface and the alveolar wall are
assumed to be identical due to the small thickness of the liquid lining. The overall surface
work can be determined by integrating dWsurf (3.3.12), i.e.

Wsurf =

∫ A

A0

γdA∗ (3.3.13)

where A and A0 denote the current and reference surface area, respectively. Hence, the
limits in equation (3.3.13) already indicate that integration is performed over area changes
and not the current surface area. After discretization in space, the surface work for an
individual element located at the alveolar surface correspondingly reads

Wsurf(e) =

∫ A(e)

A(e)
0

γ(e)dA∗ (3.3.14)

where γ is assumed to be constant within the surface element. Although a continuous
distribution of surface stresses is also possible, this approach – which follows the original
formulation of Karakaplan et al. (1980) – has been chosen here for simplicity. The variation
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of the overall surface work (3.3.14) then takes the following form

δWsurf(e) =
∂

∂d(e)

∫ A(e)

A(e)
0

γ(e)dA∗
δd(e) =

=
∂

∂A(e)

∫ A(e)

A(e)
0

γ(e)dA∗
 ∂A(e)

∂d(e) δd
(e). (3.3.15)

Application of the fundamental theorem of calculus to equation (3.3.15) yields

δWsurf(e) = γ(e)∂A
(e)

∂d(e) δd
(e) = fsurf(e)δd(e) (3.3.16)

where fsurf(e) has been introduced as the surface stress resultant vector. At the alveolar
wall surface, the equilibrium equation (2.1.78) is complemented by fsurf(e) evaluated at the
generalized mid-point. In this context, the following approximation of the surface stresses
is made

γ(e)
n+1−αf

= (1−αf)γ
(e)
n+1+αfγ

(e)
n . (3.3.17)

Accordingly, the index notation of fsurf(e)
n+1−αf

at node I is given by

(
fsurf
I;r

)(e)

n+1−αf
=

(
γ
∂A
∂dI;r

)(e)

n+1−αf

(3.3.18)

with r denoting the respective coordinate direction.

The iterative solution of the modified equilibrium equation by means of Newton’s method
necessitates the linearization of the surface force (3.3.18). In addition to the nonlinearity
of the interfacial area A, a possible nonlinearity of γ(e) also needs to be taken into account
(cf. equation (3.3.4)). The derivative of the surface stresses (3.3.17) with respect to the
nodal displacements at the generalized mid-point in general reads(

∂γ

∂d

)(e)

n+1−αf

= (1−αf)
∂γ(e)

n+1

∂d(e)
n+1−αf

. (3.3.19)

For the sake of lucidity, the nonlinear iteration step is omitted here. In view of the sur-
factant constitutive model presented in detail in section 3.3.3, a reformulation of equation
(3.3.19) in terms of the interfacial area is convenient, i.e.(

∂γ

∂d

)(e)

n+1−αf

= (1−αf)
∂γ(e)

n+1

∂A(e)
n+1

∂A(e)
n+1

∂d(e)
n+1

∂d(e)
n+1

∂d(e)
n+1−αf︸     ︷︷     ︸

(1−αf)−1

=

=

(
∂γ

∂A

)(e)

n+1

(
∂A
∂d

)(e)

n+1
. (3.3.20)
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The overall surface stress contribution to the effective dynamic stiffness matrix (2.1.81) is
then obtained as(

Ksurf
(I;r)(J;s)

)(e)

n+1
= (1−αf)

(
Ksurf

(I;r)(J;s)

)(e)

n+1−αf
=

= (1−αf)
(γ ∂2A
∂dI;r∂dJ;s

)
n+1−αf

+

(
∂γ

∂A
∂A
∂dJ;s

)
n+1

(
∂A
∂dI;r

)
n+1−αf

(e)

. (3.3.21)

In contrast to previous interface FE formulations, the restriction to triangular surface dis-
cretizations is lifted here. Following the derivations in section 2.1.1, the area of the arbi-
trarily curved surface of an alveolar wall element is in general given by

A(e) =

∫ 1

−1

∫ 1

−1

√
ñ2

1+ ñ2
2+ ñ2

3 dξ1dξ2 =
∫ 1

−1

∫ 1

−1
|ñ|dξ1dξ2. (3.3.22)

The derivative of the element surface area with respect to the displacement in s-direction
at node I reads (

∂A
∂dI;s

)(e)

=

∫ 1

−1

∫ 1

−1

∂ |ñ|
∂dI;s

dξ1dξ2 (3.3.23)

with
∂ |ñ|
∂dI;s

=
1
|ñ|

(
ñr
∂ñr

∂dI;s
+ ñt
∂ñt

∂dI;s

)
. (3.3.24)

Thereby, the directions r, s, t ∈ {1,2,3} are mutually distinct, i.e. s , r, t , r, and s , t. By
way of example, the derivative of ñr with respect to the displacement dI;s is given by

∂ñr

∂dI;s
= Erst

∂

∂dI;s

(
∂xs

∂ξ1

∂xt

∂ξ2
− ∂xs

∂ξ2

∂xt

∂ξ1

)
. (3.3.25)

The distinction of co- and contravariant components is dropped here for simplicity. Erst
corresponds to the Levi-Civita symbol defined by

Erst =


0 if r = s or s = t or r = t
1 if (r, s, t) is (1,2,3) or (2,3,1) or (3,1,2) (even permutation)
−1 if (r, s, t) is (3,2,1) or (2,1,3) or (1,3,2) (odd permutation).

(3.3.26)

Introducing
∂xs

∂ξl
=

nnod∑
J=1

(
∂NJ

∂ξl
xJ;s

)
=

nnod∑
J=1

[
∂NJ

∂ξl

(
x0;J;s+dJ;s

)]
(3.3.27)

into equation (3.3.25) finally results in

∂ñr

∂dI;s
= Erst

∂NI

∂ξ1

nnod∑
J=1

(
∂NJ

∂ξ2
xJ;t

)
− ∂NI

∂ξ2

nnod∑
J=1

(
∂NJ

∂ξ1
xJ;t

) . (3.3.28)
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The derivative of ñt with respect to the displacement dI;s can be determined analogously.

For the calculation of the stiffness matrix (3.3.21), the second derivative of the surface
area with respect to the displacements is needed. From equation (3.3.23), this term is
determined by (

∂2A
∂dI;s∂dJ;t

)(e)

=

∫ 1

−1

∫ 1

−1

∂2 |ñ|
∂dI;s∂dJ;t

dξ1dξ2 (3.3.29)

with

∂2 |ñ|
∂dI;s∂dJ;t

=− 1
|ñ|
∂ |ñ|
∂dI;s

∂ |ñ|
∂dJ;t

+
1
|ñ|

(
∂ñr

∂dI;s

∂ñr

∂dJ;t
+ ñr

∂2ñr

∂dI;s∂dJ;t

)
. (3.3.30)

The second derivative of ñr is given by

∂2ñr

∂dI;s∂dJ;t
= Erst

(
∂NI

∂ξ1

∂NJ

∂ξ2
− ∂NI

∂ξ2

∂NJ

∂ξ1

)
. (3.3.31)

In practice, the index pairs utilized above are substituted by global DOF identifiers. Intro-
ducing ndim = 3 as the number of spatial dimensions, the global ID z can be determined
from (I;r) via

(I;r)→ z = ndim · I+ r. (3.3.32)

The methodology developed for considering the effect of interfacial energy applies to es-
sentially any kind of thin liquid film. In case of an ideal fluid lining, some expressions
simplify due to the constancy of surface stresses. For the more complicated surfactant
film, corresponding derivations are presented in the following.

3.3.3 Modeling of surface active agents

Due to their particular amphiphilic structure, surfactant molecules in the aqueous alveolar
lining migrate to the liquid-gas interface where they form a buffer zone between the two
phases (cf. Figure 1.1.5). As a consequence, the free energy of the surfactant-solvent sys-
tem is significantly decreased (Otis et al., 1994). The effective surface stress depends on the
interfacial concentration of surfactant, which is governed by various factors including the
rate and the history of the surface strain. During breathing, the liquid lining cyclically ex-
pands and contracts, resulting in a periodic variation in interfacial surfactant concentration
and, thereby, also surface stress. When plotted against interfacial area, the surface stress
typically forms a hysteresis loop, revealing the complex nonlinear behavior of surfactant.

Several surfactant constitutive models allowing for the determination of the surface stress
have been reported in the literature. In many cases, separate pseudo-elastic functions for
the inflation and deflation paths of selected hysteresis loops have been utilized. This ap-
proach was pursued by Kimmel and Budiansky (1990) who assumed γ to be uniform over
the faces of their dodecahedron model, but permitted to vary with the total surface area. By
comparing their simulation results with experimentally derived pressure-volume curves,
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3.3 Interfacial phenomena

the parameter for the deflation branch was derived. Kowe et al. (1986) formulated the
surface stresses as exponential functions of local area changes. A similar path-dependent
model was also utilized by Denny and Schroter in their first studies on alveolar duct models
(Denny and Schroter, 1995, 1997). A major drawback of these pseudo-elastic functions is
the fact that usually only one experimentally derived hysteresis loop is fitted. Hence, uti-
lization of these functions for surface area ratios other than the measured one necessitates
scaling of the curves (cf. e.g. Kojic et al. (2006)). Moreover, consideration of different
surface area strain rates is in general not possible.

More accurate models have been developed based on the consideration of time-dependent
surfactant transport between bulk film and interface. For example, Archie (1973) sug-
gested an inverse relation between the interfacial surfactant concentration calculated from
a diffusion equation and the surface stress. However, his simplified model was aimed at
predicting spatial average values for the lung as a whole and not for individual alveoli.
Wei et al. (2005) combined semianalytical and numerical techniques to determine the flow
field and sorption-controlled surfactant transport in a thick fluid film subject to prescribed
breathing motions. The surface stress was then assumed to be a linear function of the cal-
culated surfactant concentration. For characterizing the steady-state oscillatory behavior
of surfactant, Otis et al. (1994) proposed a transport model considering adsorption, des-
orption, and squeeze-out processes. To relate surfactant concentration and surface stress,
they formulated a piecewise linear relation. Due to its good agreement with experimental
measurements, the Otis model has been widely used for simulating surfactant dynamics.
For instance, Denny and Schroter utilized this approach in their later studies on alveolar
duct mechanics (Denny and Schroter, 2000, 2006). Morris et al. (2001) extended the Otis
model to allow for diffusion processes in the liquid phase. Recently, Adami et al. (2010)
additionally included diffusion of surfactant on the interface in their detailed model of the
alveolar liquid lining. A slightly different approach was followed by Krueger and Gaver
(2000) who claimed that the consideration of multilayer dynamics is necessary to mimic
the ultralow surface stresses of surfactant. They established an analytical model for a bi-
layer system including also film collapse and respreading. A rather complicated piecewise
defined equation of state was proposed to correlate the surfactant concentration and the
corresponding surface stress. In contrast to the purely adsorption-limited approach pro-
posed by Otis et al. (1994), the latter more sophisticated models enable the consideration
of varying bulk surfactant concentrations due to transport processes.

For the alveolar model developed within this thesis, a suitable compromise between ac-
curacy and simplicity must be found. Pseudo-elastic functions that need to be adapted to
each particular application are deemed inappropriate. Therefore, a transport model is cho-
sen to reasonably describe dynamic surfactant behavior during ventilation. As noted by
Krueger and Gaver (2000), the qualitative agreement of the Otis model with experimental
data demonstrates that significant properties of the hysteresis loop can be attributed to ad-
sorption and desorption alone. In this work, therefore, the Otis model is favored over the
more complex approaches considering diffusion or multi-layer phenomena. Subsequently,
the chosen model and its implementation in the context of the FE approach presented in
section 3.3.2 will be discussed in more detail.

Originally, the Otis model was developed for simulating γ-A measurements of the semi-
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Figure 3.3.4: Typical surface stress versus normalized area loop demonstrating surfactant
transport mechanisms in the different regimes. First regime (γ ≥ γ∗): kinetic adsorption
(segment A-B) or desorption (segments B-C and F-A). Second regime (γmin < γ < γ

∗):
insoluble monolayer (segments C-D and E-F). Third regime (γ = γmin): squeeze-out (seg-
ment D-E). The direction of the loop is indicated by tangential arrow heads. Outward and
inward normal arrows represent transport of surfactant to the interface (i.e. adsorption) and
from the interface (i.e. desorption/squeeze-out), respectively.

synthetic surfactant TA performed using a pulsating bubble surfactometer (PBS). A small
spherical bubble of air was formed at the lower end of a 0.4 mm capillary in a suspension
containing surfactant. The bubble volume was cycled while measuring the current bubble
pressure. From the Laplace-Young equation (3.3.10), the corresponding surface stress
γ was determined. A typical surface stress vs. normalized area loop (generated using
the model described in the following) is shown in Figure 3.3.4. As already mentioned,
Otis et al. (1994) assumed that transport of surfactant is adsorption-limited, i.e. diffusional
processes occur on a time scale much shorter than those for sorption. As a consequence, the
bulk suspension is considered to be well mixed at any time at a constant bulk concentration
C̄. The kinetics of surfactant transport is defined by three interfacial concentration (Γ)
regimes. Γ can be thought of as the mass of surfactant or the number of occupied binding
sites per unit interfacial area.

Within the first regime, Γ is less than the maximum equilibrium concentration Γ∗ and
surfactant transport is modeled using Langmuir kinetics. This approach is based on the
assumption that all adsorption sites are equivalent and intermolecular interactions in the
adsorbed layer can be neglected. Hence, the probability of adsorption to an empty site
does not depend on the presence of molecules at the surrounding sites (von Bahr, 2003).
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3.3 Interfacial phenomena

Consequently, adsorption is proportional to the number of available sites on the interface
Γ∗−Γ whereas desorption is proportional to the number of occupied sites Γ. After normal-
ization with Γ∗, the temporal development of the mass of interfacial surfactant molecules
ΓA can then be modeled as

d
dt

(
ΓA
Γ∗

)
= A

(
α1C̄

(
1− Γ
Γ∗

)
−α2

Γ

Γ∗

)
=

= α1C̄A−α1C̄
(
Γ

Γ∗
A
)
−α2

(
Γ

Γ∗
A
)
. (3.3.33)

Here, α1 and α2 are the adsorption and desorption coefficient, respectively, whereas C̄
refers to the constant bulk concentration of surfactant molecules in the hypophase. At
equilibrium, there is no interfacial mass flux and equation (3.3.33) reduces to

Γeq

Γ∗
=
α1C̄
α1C̄+α2

(3.3.34)

with Γeq denoting the equilibrium surfactant concentration. During cyclic loading, how-
ever, the normalized mass of surfactant at the interface periodically changes. For time
discretization of equation (3.3.33), the Backward Euler approach is utilized in this work.
Hence, the corresponding discrete form reads

∆
(
ΓA
Γ∗

)
n+1

∆t
= α1C̄An+1−α1C̄

(
ΓA
Γ∗

)
n+1

−α2

(
ΓA
Γ∗

)
n+1
. (3.3.35)

Introducing

∆

(
ΓA
Γ∗

)
n+1
=

(
ΓA
Γ∗

)
n+1

−
(
ΓA
Γ∗

)
n

(3.3.36)

and solving for the normalized mass of surfactant at tn+1 yields(
ΓA
Γ∗

)
n+1
=

1
∆t

(
ΓA
Γ∗

)
n
+α1C̄An+1

1
∆t +α1C̄+α2

. (3.3.37)

Mutual division by the current interfacial area An+1 finally results in(
Γ

Γ∗

)
n+1
=

1
∆t

(
ΓA
Γ∗

)
n
+α1C̄An+1

An+1
(

1
∆t +α1C̄+α2

) . (3.3.38)

For relating the surface stress γ to the nondimensionalized surfactant concentration, Otis
et al. (1994) proposed a linear isotherm. Its time-discrete form is defined by

γn+1 = γ0−m1

(
Γ

Γ∗

)
n+1

(3.3.39)

where γ0 is the reference surface tension of water and m1 refers to the experimentally
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derived isotherm slope for the first regime. By means of equations (3.3.38) and (3.3.39),
the upper portion of the γ-A loop (segment F-C in Figure 3.3.4) is completely defined.
Within this Langmuir regime, surfactant adsorbs to the interface if γ > γeq (corresponding
to Γ < Γeq) whereas desorption occurs if γ < γeq (conforming with Γ > Γeq). For the
determination of the consistent tangent stiffness matrix (3.3.21), the surface stress needs to
be differentiated with respect to the interfacial area. From equations (3.3.38) and (3.3.39),
the corresponding time-discrete derivative is determined by(

∂γ

∂A

)
n+1

= −m1
∂

∂An+1

(
Γ

Γ∗

)
n+1

(3.3.40)

with
∂

∂An+1

(
Γ

Γ∗

)
n+1
=−

1
∆t

(
ΓA
Γ∗

)
n

(An+1)2
(

1
∆t +α1C̄+α2

) . (3.3.41)

Morris et al. (2001) found that in certain situations, the surface stress remains constant at its
minimum equilibrium value γ∗ while the film is compressed. Hence, the system is unable
to reach sufficient interfacial surfactant concentration to enter the next regime. While the
compression of the interface raises the concentration by compacting the surface film, it is
lowered due to simultaneous desorption of molecules from the interface. The identification
of this mechanism could be important for the design of surfactant replacements. Increasing
the adsorption rate (which has been considered beneficial for a long time) in general also
increases the desorption rate, thereby carrying the risk of surface stresses stagnating at a
relatively high level.

Within the second regime, surfactant concentrations range between the maximum equi-
librium and the absolute maximum concentration (Γ∗ < Γ < Γmax). In this interval, no
exchange of surfactant material with the subphase is assumed to occur, so that the mono-
layer is modeled as insoluble (segments C-D and E-F in Figure 3.3.4). Consequently, the
normalized surfactant mass is constant, i.e.

d
(
ΓA
Γ∗

)
dt
= 0. (3.3.42)

After discretization in time, equation (3.3.42) can be rewritten as

∆

(
ΓA
Γ∗

)
n+1
= 0. (3.3.43)

Introduction of relation (3.3.36) then allows for the determination of the current nondi-
mensionalized surfactant concentration(

Γ

Γ∗

)
n+1
=

(
Γ

Γ∗

)
n

An

An+1
. (3.3.44)

Hence, the concentration changes merely due to variations of interfacial area. Again, sur-
face stresses can be calculated with the help of a linear isotherm. For the second regime,
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this equation of state is given in its discrete form by

γn+1 = γ
∗−m2

((
Γ

Γ∗

)
n+1

−1
)

(3.3.45)

with m2 denoting the isotherm slope for the second regime. The time-discrete derivative
of the surface stress with respect to the interfacial area is then obtained from equations
(3.3.44) and (3.3.45) as (

∂γ

∂A

)
n+1

= −m2
∂

∂An+1

(
Γ

Γ∗

)
n+1

(3.3.46)

with

∂

∂An+1

(
Γ

Γ∗

)
n+1

= −
(
Γ

Γ∗

)
n

An

(An+1)2 =

= −

(
Γ
Γ∗

)
n+1

An+1
. (3.3.47)

Following Morris et al. (2001), the adsorption and desorption coefficient are allowed to
drop continuously to zero when approaching Γ∗ to facilitate a smooth transition between
the Langmuir and the insoluble regime, i.e.

ᾱ1 =
α1

ς

(
1− Γ
Γ∗

)
if
Γ

Γ∗
> 1−ς (3.3.48)

ᾱ2 =
α2

ς

(
1− Γ
Γ∗

)
if
Γ

Γ∗
> 1−ς. (3.3.49)

Here, ς is an arbitrarily chosen small number defining the range of concentrations in which
the sorption parameters diminish to zero. According to Morris et al. (2001), the specific
value of ς does not significantly affect the results of the model except in direct vicinity of
the phase transition between both regimes. In the simulations presented within this work, ς
was chosen to be 0.02, corresponding to a linear decrease of α1 and α2 between Γ

Γ∗ = 0.98
and Γ

Γ∗ = 1.0.

In the third regime (segment D-E in Figure 3.3.4), Γ equals the maximum concentration
Γmax and, accordingly, the surface stress reaches its minimum. Consequently, the follow-
ing relations hold (

Γ

Γ∗

)
n+1
=
Γmax

Γ∗
(3.3.50)

∂

∂An+1

(
Γ

Γ∗

)
n+1
= 0, (3.3.51)

γn+1 = γmin, (3.3.52)(
∂γ

∂A

)
n+1
= 0. (3.3.53)
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α1C̄ [µs-1] 1.0
α2 [µs-1] 0.016

m1 [dyn/cm] 48.0
m2 [dyn/cm] 140.0
γmin [dyn/cm] 2.0
γ0 [dyn/cm] 70.0

Table 3.1: Surfactant model parameters utilized within this work.

Since any further decrease of the interfacial area results in a “squeeze-out” of molecules to
the bulk fluid, this part of the hysteresis loop is often also referred to as the film collapse
regime. Both the second and the third regime can only be reached during dynamic loading.
However, while the insoluble state can be maintained during contraction (segment C-D in
Figure 3.3.4) as well as extension (segment E-F in Figure 3.3.4) of the interfacial area A,
film collapse can only occur if A is compressed. As soon as the interfacial area increases
again, the second regime is entered (point E in Figure 3.3.4).

Otis et al. (1994) determined the material constants of the presented model by fitting the
simulated γ-A loops to data obtained from their PBS measurements. A summary of param-
eters utilized in this thesis is given in Table 3.1. Since the accuracy of the PBS is reduced
in the low surface stress region (Veldhuizen and Haagsman, 2000), γmin was taken to be
2.0 dyn/cm following Denny and Schroter (2000) rather than 10.0 dyn/cm as proposed by
Otis et al. (1994). Figures 3.3.5-3.3.10 illustrate the influence of the distinct parameters on
the resulting hysteresis loops when interfacial area is cycled sinusoidally according to

A(t) = 1+
∆A
A0

sin
(
2π

t
T

)
(3.3.54)

with T =3 s being the cycle duration, A0 denoting the original surface area, and ∆A
A0
= 0.33

referring to the nondimensionalized amplitude of area change. In each plot, the solid line
corresponds to the standard choice of parameters according to Table 3.1. In Figures 3.3.11
and 3.3.12, different area amplitudes ∆A and cycle times T have been prescribed. The ap-
pearance of the simulated γ-A loops varies significantly for different material parameters or
prescribed dynamic loadings. Since it is very unlikely that pseudo-elastic functions could
model similar effects, the application of the more complicated surfactant transport model
seems to be justified. Another particular advantage of the Otis model is the physical mean-
ing of involved material constants. In the literature, several studies addressed pathological
changes in the chemical composition of surfactant in ARDS and other diseases (see e.g.
Gregory et al. (1991) and Griese (1999)). Corresponding results could be combined with
experimental data concerning the specific effect of each constituent (cf. Morris (1998) and
Ingenito et al. (1999)), thereby enabling qualitative predictions for the altered behavior of
surfactant under cyclic loading in the ARDS lung.
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Figure 3.3.5: Surface stresses depending on normalized interfacial area for different
choices of α1C̄ (solid line: α1C̄ = 1.0 µs-1; dashed line: α1C̄ = 2.0 µs-1; dotted line:
α1C̄ =5.0 µs-1).
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Figure 3.3.6: Surface stresses depending on normalized interfacial area for different
choices of α2 (solid line: α2 = 0.016 µs-1; dashed line: α2 = 0.1 µs-1; dotted line: α2 =

0.2 µs-1).
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Figure 3.3.7: Surface stresses depending on normalized interfacial area for different
choices of m1 (dashed line: m1 = 40 dyn/cm; solid line: m1 = 48 dyn/cm; dotted line:
m1 =55 dyn/cm).
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Figure 3.3.8: Surface stresses depending on normalized interfacial area for different
choices of m2 (dashed line: m2 = 80 dyn/cm; solid line: m2 = 140 dyn/cm; dotted line:
m2 =250 dyn/cm).
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Figure 3.3.9: Surface stresses depending on normalized interfacial area for different
choices of γ0 (dashed line: γ0 = 60 dyn/cm; dotted line: γ0 = 65 dyn/cm; solid line:
γ0 =70 dyn/cm).
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Figure 3.3.10: Surface stresses depending on normalized interfacial area for different
choices of γmin (solid line: γmin = 2 dyn/cm; dashed line: γmin = 6 dyn/cm; dotted line:
γmin =10 dyn/cm).
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Figure 3.3.11: Surface stresses depending on normalized interfacial area for different
choices of ∆A/A0 (dashed line: ∆A/A0 = 0.27; solid line: ∆A/A0 = 0.33; dotted line:
dA/A0 = 0.4).
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Figure 3.3.12: Surface stresses depending on normalized interfacial area for different
choices of T (dashed line: T =1.5 s; solid line: T =3.0 s; dotted line: T =5.0 s).
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3.3 Interfacial phenomena

As already indicated above, the model is intended to predict the steady-state behavior of
an ideally spherical bubble with spatially constant surfactant concentration under cyclic
loading. In an irregularly shaped alveolus, however, temporarily distinct surfactant con-
centrations may develop over the interface due to locally different area changes. Instead
of constraining the liquid lining to a spatially constant surface stress, the relationships es-
tablished in Otis et al. (1994) are used here for the description of local – i.e. elementwise
– changes in surfactant concentrations and surface stresses. It has to be noted that for

application of Newton’s method, γ(e) and
(
∂γ
∂A

)(e)
have to be computed in every nonlinear

iteration step. Furthermore, both A(e) and
(
Γ
Γ∗

)(e)
of the last time step need to be stored

to calculate the current surfactant concentration. Details on the integration of the surface
stress contribution into the nonlinear dynamic framework introduced in section 2.1 are
provided in Algorithms 3.2-3.4.

To illustrate some features of the presented model, selected numerical examples will be
discussed in the following. In all cases, first the equilibrium surface stresses were gradu-
ally applied (cf. Algorithm 3.2) before the cyclic loading was initiated. In Figure 3.3.13,
the deformation of a cuboid with two-sided surfactant lining is shown. The cuboid was
constrained on the bottom surface, whereas the top surface was loaded by a sinusoidally
varying pressure after application of equilibrium surface stresses. For simplicity, only ver-
tical displacements were admitted. A comparison of the deformation states obtained using
different interface discretization clearly demonstrates the mesh independency of simulation
results.

Figure 3.3.14 displays the simulated distribution of normalized surfactant concentrations
in an alveolus during sinusoidal pressure loading. Locally different concentrations de-
veloped depending on the corresponding change in interfacial area. In reality, gradients
in surface stresses cause so-called Marangoni flows on the interface. Although a direct
exchange of surfactant molecules between neighboring interface elements has not been
explicitly considered in the numerical model, the nodal surface stress resultants allow for
an indirect compensation. For instance, during inflation, elements with lower surfactant
concentrations exhibit larger contracting forces fsurf(e). As a consequence, the increase in
interfacial area is impeded compared to those elements with higher concentrations. Ac-
cording to Figure 3.3.11, a smaller amplitude of area change is associated with reduced
surface stresses during inflation since surfactant adsorption is promoted. Therefore, local
concentration gradients balance out implicitly if there is enough time for accommodation.
In the absence of dynamic interfacial area changes, the concentration in all elements should
ultimately reach the equilibrium value Γeq. However, the presented approach only partly
allows for the modeling of this behavior. Figure 3.3.15 shows the development of the nor-
malized surfactant concentration in a single interface element over simulated time steps.
After gradual application of the equilibrium surface stress (cf. Algorithm 3.2), the steady
state was reached after approximately two loops of area change. The interfacial area was
then instantaneously fixed at different points in the sixth loop. The equilibrium state could
only be recovered from the first regime, whereas concentrations were trapped in the oth-
ers. This behavior directly resulted from the specific formulation of the surfactant model.
In both the second and the third regime, a change of state inherently necessitates a variation
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Algorithm 3.2 Consideration of surfactant surface stresses in alveolar FE model.
for each element (e):

Γ
(e)
n=0 = Γeq, γ(e)

n=0 = γeq (arbitrary choice)

Calculate A(e)
n=0 = A(e)

0 (3.3.22),
(
∂A
∂d

)(e)

n=0
=

(
∂A0
∂d

)(e)
(3.3.23)

Starting phase (gradual application of equilibrium surface stresses):
for each time step [tn, tn+1] with tn ≤ ts:

for each Newton iteration i until convergence:
for each element (e):

Determine A(e)i+1
n+1−αf

(3.3.22),
(
∂A
∂d

)(e)i+1

n+1−αf
(3.3.23), and

(
∂2A
∂d2

)(e)i+1

n+1−αf

(3.3.29)

Compute
(
∂A
∂d

)(e)i+1

n+1
(3.3.23)

γ(e)i+1
n+1 = γeq and

(
∂γ
∂A

)(e)i+1

n+1
= 0

Calculate scaling factor ŝ from user-defined time curve (ŝ(ts) = 1.0)

Compute and assemble ŝ ·
(
fsurf

)(e)i+1

n+1
(3.3.18), ŝ ·

(
Ksurf

)(e)i+1

n+1
(3.3.21)

Add ŝ ·
(
fsurf

)i+1

n+1
to (2.1.79) and ŝ ·

(
Ksurf

)i+1

n+1
to (2.1.81)

Solve linear system (2.1.84) for ∆di+1
n+1 and update di+1

n+1 (2.1.85)
Check for convergence and update i

Update n

Dynamic loading phase:
for each time step [tn, tn+1] with tn > ts:

for each Newton iteration i:
for each element (e):

Determine A(e)i+1
n+1−αf

(3.3.22),
(
∂A
∂d

)(e)i+1

n+1−αf
(3.3.23), and

(
∂2A
∂d2

)(e)i+1

n+1−αf

(3.3.29)

Compute
(
∂A
∂d

)(e)i+1

n+1
(3.3.23)

Calculate
(
Γ
Γ∗

)(e)i+1

n+1
and

(
∂(Γ/Γ∗)
∂A

)(e)i+1

n+1
{ Algorithm 3.3

Determine γ(e)i+1
n+1 and

(
∂γ
∂A

)(e)i+1

n+1
{ Algorithm 3.4

Compute γ(e)i+1
n+1−αf

(3.3.17)

Compute and assemble
(
fsurf

)(e)i+1

n+1
(3.3.18),

(
Ksurf

)(e)i+1

n+1
(3.3.21)

Add
(
fsurf

)i+1

n+1
to (2.1.79) and

(
Ksurf

)i+1

n+1
to (2.1.81)

Solve linear system (2.1.84) for ∆di+1
n+1 and update di+1

n+1 (2.1.85)
Check for convergence and update i

Update n
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3.3 Interfacial phenomena

Algorithm 3.3 Computation of element interfacial surfactant concentration and its deriva-
tive at tn+1.

if
(
Γ(e)

Γ∗

)
n
≤ 1.0:

if
(
Γ(e)

Γ∗

)
n
> 0.98:

Determine modified sorption coefficients (3.3.48), (3.3.49)(
Γ(e)

Γ∗

)(e)i+1

n+1
,
(
∂(Γ/Γ∗)
∂A

)(e)i+1

n+1
{ (3.3.38), (3.3.41)

else if 1.0 <
(
Γ(e)

Γ∗

)
n
< Γmax
Γ∗ :(

Γ(e)

Γ∗

)(e)i+1

n+1
,
(
∂(Γ/Γ∗)
∂A

)(e)i+1

n+1
{ (3.3.44), (3.3.47)

else:
if A(e)i+1

n+1 < A(e)
n :(

Γ(e)

Γ∗

)(e)i+1

n+1
,
(
∂(Γ/Γ∗)
∂A

)(e)i+1

n+1
{ (3.3.50), (3.3.51)

else: (
Γ(e)

Γ∗

)(e)i+1

n+1
,
(
∂(Γ/Γ∗)
∂A

)(e)i+1

n+1
{ (3.3.44), (3.3.47)

Validity check:

if
(
Γ(e)

Γ∗

)
n+1
> Γmax
Γ∗ :(

Γ(e)

Γ∗

)
n+1
= Γmax
Γ∗

Algorithm 3.4 Computation of element surface stress and its derivative at tn+1.

if
(
Γ(e)

Γ∗

)(e)i+1

n+1
≤ 1.0:

γ(e)i+1
n+1 ,

(
∂γ
∂A

)(e)i+1

n+1
{ (3.3.39), (3.3.40)

else if 1.0 <
(
Γ(e)

Γ∗

)(e)i+1

n+1
< Γmax
Γ∗ :

γ(e)i+1
n+1 ,

(
∂γ
∂A

)(e)i+1

n+1
{ (3.3.45), (3.3.46)

else:
γ(e)i+1

n+1 ,
(
∂γ
∂A

)(e)i+1

n+1
{ (3.3.52), (3.3.53)

of interfacial area. This shortcoming of the model, however, seems acceptable considering
the intended application of use. During both normal breathing and mechanical ventilation,
the assumption of a constantly changing alveolar surface area is justified.
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3 Alveolar Model

(a)

(b)

Figure 3.3.13: Mesh independency of simulation results. Each interface was meshed with
(from left to right) a single 4-noded quadrilateral, 213 3-noded triangles, 100 4-noded,
and 100 9-noded quadrilaterals, respectively. (a) Deformation state after application of
equilibrium surfactant concentration. (b) Deformation state under maximum load.

Figure 3.3.14: Left: Geometry of simulated artificial alveolus. Right: Clipped view show-
ing a snapshot of the distribution of normalized element surfactant concentrations during
sinusoidal pressure loading.

As already indicated above, a few loops of interfacial area changes are usually necessary
before the steady state is reached. Depending on the arbitrarily chosen initial state, dif-
ferent intermediate configurations are adopted which are, however, in general not physio-
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Figure 3.3.15: Development of surfactant concentrations in a single element over simu-
lated time steps. When fixing the interfacial area, equilibrium surfactant concentration
was only recovered from the first regime (widely dashed, dotted, and dash-dotted lines),
whereas concentrations were trapped in the second (solid line) and third (closely dashed
line) regimes, respectively.

logically relevant. Reasonable predictions of alveolar behavior are, therefore, not possible
until the course of surfactant concentrations has become stationary. Apart from the chosen
material parameters, the exact number of required preceding loops also depends on the
dynamic loading conditions. Figure 3.3.16 shows the course of the normalized surfactant
concentration in a single element over several simulated cycles for two different prescribed
area amplitudes ∆A/A0. The dashed horizontal lines correspond to the step-wise applica-
tion of the equilibrium surfactant concentration in the beginning of the simulations. In case
of the smaller ∆A/A0, seven loops were required before the process levels off, whereas the
steady state was attained already in the second cycle in the example with the larger value of
∆A/A0. Corresponding lead times must be taken into account when evaluating simulation
results.

After having investigated some important implications of the chosen surfactant model, the
influence of the liquid lining on the overall mechanical behavior will now be illustrated by
means of a simple numerical example (cf. Figure 3.3.17). Single artificial alveoli (edge
length L = 60.0 µm, wall thickness t = 8.0 µm) were loaded by a sinusoidally varying hy-
drostatic pressure given by

p =
pmax

2

[
1+ sin

(
2πt
T
− π

2

)]
(3.3.55)

with pmax = 600 Pa, T = 3.0 s. For the description of soft tissue behavior, the material
model presented in section 3.2.3 was utilized. On the interior surfaces, three different
surface configurations were prescribed. The first alveolus was assumed to be completely
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Figure 3.3.16: Reaching the steady state (solid line) for surfactant concentration changes
in case of a (a) small and (b) large prescribed amplitude of area change.

filled with liquid, hence no interfacial phenomena were considered in this case (see Figure
3.3.17(c)). The second alveolus was lined by a surfactant layer with parameters given
in Table 3.1 (see Figure 3.3.17(d)). In the third alveolus, a water lining with constant
surface tension (γ̂ =70.0 dyn/cm) was modeled to simulate surfactant deficiency in a gas-
filled alveolus (cf. Figure 3.3.17(e)). The differences in the overall deformation states
affirmed the importance of considering interfacial phenomena in alveolar mechanics. A
comparison of the results for surfactant and water films demonstrated the efficiency of
surfactant in decreasing the surface stress of the aqueous hypophase, thereby reducing
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(a) (b) (c) (d) (e)

Figure 3.3.17: Single alveolus with different interfacial configurations under sinusoidally
varying hydrostatic pressure. (a) Undeformed geometry with mesh. (b) Section of unde-
formed geometry. (c)-(e) Sections of deformed geometries under maximum load in case of
(c) tissue alone, (d) tissue coupled with surfactant, and (e) tissue coupled with water film
on the interior surface (each 1.5 times exaggerated).

the overall stiffness of alveoli. This already provides an indication of the altered alveolar
behavior in the ARDS lung where surfactant may be partly or even completely disabled.

Since available experimental data almost exclusively stem from animal experiments, the
question whether the effect of interfacial phenomena is species-dependent is crucial. It
is known that all mammals exhibit comparable surface stresses at the air-liquid interface
(Lum and Mitzner, 1987). Because the retractive interfacial forces decrease with increas-
ing radius of curvature, larger lungs could be expected to be more compliant than smaller
ones. This presumption was supported by simulations comparing the effect of different
liquid linings on maximum inflation states in human and hamster alveoli (Wiechert et al.,
2008). For simplicity, identical tissue behavior was assumed in both cases. In reality,
however, alveolar wall composition is also highly species-dependent (Mercer et al., 1994).
Larger alveoli are characterized by a higher amount of connective tissue and a more dis-
persed distribution of fibers throughout the septal walls (cf. section 1.1.2.2 and references
therein). According to Mercer and Crapo (1990), this increase in tissue stiffness may reflect
the need to compensate for the reduced lung recoil due to surface stresses. In consequence
of the complex interplay of tissue and interfacial mechanics, the overall mechanical behav-
ior is potentially independent of the individual alveolar size. However, although general
considerations support this theory, detailed investigations remain to be done.
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4 Multi-Scale Model of Lung
Parenchyma

“Almost all problems in science and engineering are multiscale in nature.” (E
et al., 2007)

In the preceding chapter, an extensive computational model of individual alveoli has been
derived. So far, however, the statement of appropriate boundary conditions has not been ad-
dressed. Although neighboring lung regions are known to be highly interdependent (Mead
et al., 1970), this effect was completely neglected in previous alveolar models. Due to the
lack of physiologically reasonable boundary conditions, clinically relevant predictions of
local stresses and strains in alveoli have not been feasible up to now.

One possibility to overcome this problem is to consider lung parenchyma as a whole in-
stead of restricting analyses to isolated alveolar domains. In this case, the formulation
of suitable boundary conditions is straightforward. For instance, pleural pressure (cf. e.g.
West (2008) for the definition of a corresponding profile) or a deformation state obtained
from four-dimensional CT imaging can be applied at the surface of the lungs.

In the literature, several approaches to simulating the overall behavior of lung tissue can be
found. In all cases, parenchyma has been approximated as a homogeneous and isotropic
continuum. Although anisotropy may be present at the alveolar level where the alveolar
ducts exhibit distinct axes, the orientation of respiratory units is rather random on a larger
scale (Frankus and Lee, 1974; Hoppin et al., 1975). Hence, the assumption of homogeneity
and isotropy at the parenchymal level is justified (at least for the healthy lung).

In general, two distinct kinds of global parenchyma models can be distinguished. The first
class of approaches focuses on the solid part. Lanir (1983), for example, derived constitu-
tive equations for lung tissue on the basis of a stochastic approach to the micro-structure.
Alveolar walls were approximated by membranes with a given orientation density func-
tion. Assuming affine deformations on both levels, the macroscopic stresses were then
derived from the algebraic sum of the elastic potentials of all alveolar membranes within
a unit volume. Other models (cf. e.g. Vawter (1980), Stamenovic and Wilson (1985), and
Gao et al. (2006)) were based on describing the mechanical behavior of lung parenchyma
by means of phenomenological SEFs. The most recent material model of this kind was
proposed by Rausch et al. (2011b). They conducted uniaxial tension tests on living lung
tissue prepared from isolated rat lungs. An inverse analysis was then performed to op-
timize the material parameters of different combinations and recombinations of existing
SEFs. By comparing the best-fits of the tested SEFs, an optimal constitutive model was
identified (cf. also Figure 4.0.1).
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4 Multi-Scale Model of Lung Parenchyma

The second class of approaches is based on the combined description of homogenized
tissue deformation and airflow. For instance, Owen and Lewis (2001) proposed a visco-
elastic porous medium model of lung parenchyma. For determining macroscopic airflow,
pressure, and tissue deformation, volume averaging was performed over a cubic unit cell
without considering specific features of alveolar geometry. The theoretical solution ob-
tained was applied and extended by Lande and Mitzner (2006) to derive a general formula
for the overall impedance of the lung. Another approach based on the theory of porous
media was developed by Kowalczyk and Kleiber (1994). They modeled the solid phase
representing the lung tissue as a nonlinearly elastic, highly deformable continuum. To
account for the effect of the surfactant film, a pseudo-elastic surface stress function (cf.
section 3.3.3) was considered.

Although the parenchyma models addressed above are capable of reproducing global lung
tissue behavior, a link to the alveolar level is completely missing. However, in order to al-
low for the determination of local stresses and strains involved in the development of VALI,
the complex micro-structure has to be taken into account. The need for resolving the real-
istic alveolar morphology was confirmed by a study of Rausch et al. (2011a). They found
that local strains in individual alveolar walls can reach a multiple of the prescribed global
value, thereby rendering statements about overall strains pointless. However, explicitly
modeling all 500 million alveoli present in the human respiratory system is not feasible. In
this thesis, therefore, a combination of two complementary approaches is proposed. Novel
multi-scale techniques are utilized to resolve the alveolar micro-structure only at certain
“hot spots”, whereas lung parenchyma is modeled as a homogenized continuum otherwise
(see Figure 4.0.1 for a schematic overview).

For the bulk of lung tissue, utilization of an existing approach is suggested. Since the
interaction of airflow and tissue deformation will be considered separately in chapter 5,
the global parenchyma model can be confined to the solid phase. In this regard, the phe-
nomenological SEF introduced by Rausch et al. (2011b) is considered as the most conve-
nient approach. To bridge the gap between the global parenchymal and the local alveolar
level in regions of particular interest, a suitable multi-scale model needs to be formulated.
The remainder of this chapter is devoted to this specific topic. In the following, a brief
overview of existing micro-macro methods will be provided. Afterwards, a novel approach
extending available methods to coupled and dynamic scenarios inherent to (mechanical)
ventilation will be presented. Since the micro-level (i.e. alveolar) stresses and strains are of
particular interest for the intended application, a concurrent coupling of scales will be pro-
posed. After defining the governing equations on both levels as well as appropriate scale
bridging conditions, some information concerning the computational implementation will
be provided. The chapter is completed by selected numerical examples which validate the
developed approach and illustrate its applicability to lung parenchyma.

4.1 Survey of existing micro-macro approaches

Over the last decades, there has been increasing interest in modeling multi-scale phenom-
ena in both solid and fluid mechanics. The particular complexity inherent in these kinds of
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Figure 4.0.1: Schematic of the intended parenchyma model. For the bulk of lung tissue, a
phenomenological constitutive model fitted to experimental data (Rausch et al., 2011b) is
employed (left-hand side). At a hot spot, a multi-scale approach is utilized to zoom in on
the local alveolar micro-structure (right-hand side).

problems is due to the interplay of effects on different length (and possibly time) scales. In
case of a multi-phase material, for instance, the macroscopic behavior is governed by the
morphology and the properties of its micro-constituents. Another well-known example for
multi-scale problems is turbulent flow. For high Reynolds numbers, eddies develop that
break up into smaller and smaller structures in a cascade-process. In order to allow for
an accurate prediction of material or flow behavior, actually all phenomena down to the
smallest scale of interest need to be taken into account. However, as in the case of the lung
with its 500 million individual alveoli, this approach is impractical in most cases due to
limited computational resources. Therefore, a plethora of different so-called multi-scale
methods has been developed in the past. As a matter of principle, these approaches aim
for integrating fine-scale effects in a coarse-scale model while avoiding a direct numerical
simulation of the completely resolved micro-structure. By combining information avail-
able on different levels, advantage can be taken of both the simplicity of a macroscopic
description and the accuracy of a fine-scale model.

Due to the variety of (commonly problem-specific) methods, the field of multi-scale ap-
proaches is too wide a subject to be surveyed extensively in this thesis. A comprehensive
review and taxonomy of different existing methodologies can be found e.g. in Gravemeier
et al. (2008). The subsequent overview will be confined to a specific class of methods that
is deemed suitable for the intended scope of application. Particularly, approaches based
on the detailed discretization (as opposed to a mere approximation) of the micro-structure
will be reviewed. These so-called micro-macro approaches fall within the scope of the
heterogeneous multi-scale method (HMM) proposed by E et al. (2007). Simply put, the
HMM is a framework for designing multi-scale approaches that can be applied to problems
for which the macroscopic model is either only partly known or valid only on part of the
physical domain. In both cases, the missing information on the global level is obtained by
solving problems locally on finer scales. Hence, the HMM can also be interpreted as an
adaptive model refinement that allows to efficiently move between different scales. Usu-
ally, there is a distinct gap in the scale spectrum of the HMM, i.e. only a finite number
of different levels is covered. In most cases, two scales are considered explicitly, namely
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Figure 4.1.1: Basic types of micro-macro approaches. (a) Sequential homogenization. (b)
Concurrent homogenization. (c) Concurrent volume-coupled approach.

the macroscopic level (also known as the coarse-scale or macro-level) and a representative
fine-scale. In the following, this level will often be referred to as the micro-scale regardless
of the actual characteristic size. The models at the different levels can be of very differ-
ent nature, e.g. continuum mechanics on the macro-level and molecular dynamics on the
micro-scale. Concerning the coupling of the individual levels, two basic strategies have
to be distinguished. In the following, corresponding approaches will be briefly discussed
using the example of a micro-heterogeneous solid.

The first type of scale bridging is also known as sequential homogenization (cf. Figure
4.1.1(a)). To describe the effective macroscopic behavior, a suitable phenomenological
constitutive model is chosen. The constants of this equivalent homogeneous substitute
material are determined from calculations on representative volume elements (RVEs) of
the heterogeneous micro-structure in a preprocessing step. Details on related analytical
and computational approaches can be found e.g. in Nemat-Nasser and Hori (1999), Zo-
hdi and Wriggers (2005), and references therein. In the linear elastic regime, sequential
homogenization analyses are well-established and provide accurate estimates for the ef-
fective macroscopic elasticity tensor. In the nonlinear realm, however, making reasonable
assumptions concerning the macro-level constitutive behavior can be very difficult. Even
for combinations of relatively simple materials on the micro-level, it may not be possible
to predict the explicit form of the macroscopic constitutive equation in advance. Although
some promising approaches have been proposed (see e.g. Temizer and Zohdi (2006) for
the construction of a pre-computed effective “material map”), homogenization in the pres-
ence of nonlinearities is still a less developed field. Another major drawback of sequential
multi-scale methods is their inherent “bottom-up” characteristic. Since microscopic pro-
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cesses are considered only a preprocessing step, the current state of the micro-structure is
unknown during simulation of the macro-level response.

If the micro-scale solution itself is of particular interest, macro- and micro-level need to
be linked together “on-the-fly”. This kind of scale bridging is typical for concurrent multi-
scale approaches based on the simultaneous simulation of the mutually coupled scales. In
this case, detailed current micro-structural information can be introduced in the macro-
scopic analysis. Over the years, different concurrent approaches have been developed. In
case of the so-called computational homogenization, each macro-level integration point
is implicitly identified with an RVE representing the micro-structure in its vicinity. The
local macroscopic mechanical behavior can then be represented via the average response
of the RVE (cf. Figure 4.1.1(b)). In contrast to sequential homogenization procedures,
concurrent methods dispense with any constitutive assumption on the macro-level. In-
stead, the effective stresses at a macro-level point are determined by solving the boundary
value problem (BVP) of the associated RVE for each macroscopic deformation state. Cor-
responding methods are suitable for arbitrary micro-level geometries as well as material
behavior and enable the consideration of nonlinearities on both scales. Basic principles of
this class of multi-scale approaches have been introduced for example in Suquet (1985),
Terada and Kikuchi (1995), and Smit et al. (1998). Further and more recent developments
can be found e.g. in Michel et al. (1999), Feyel and Chaboche (2000), Ghosh et al. (2001),
Terada and Kikuchi (2001), Kouznetsova et al. (2001), Miehe (2003), Peric et al. (2010),
and Geers et al. (2010). In general, any modeling technique is possible on the micro-scale
(e.g. molecular dynamics (E et al., 2007), Voronoi cell approaches (Ghosh et al., 2001),
or Fast Fourier Transform models (Michel et al., 1999)). For computational homogeniza-
tion methods based on a FE discretization of both macro- and micro-level problems, the
term FE2 has been coined. Corresponding approaches have been employed for a wide
range of applications, e.g. biomechanical modeling of human eye tissues (Grytz, 2008),
thermo-mechanical analysis of heterogeneous solids (Oezdemir et al., 2008), solidification
(Lee and Sundararaghavan, 2009), and thermo-mechanical contact problems (Temizer and
Wriggers, 2010).

The improved description of the coarse-scale behavior by means of a detailed solution of
the micro-level BVP comes along with high computational costs. Therefore, usage of con-
current multi-scale models in critical regions only while reverting to classical constitutive
laws in non-critical domains was proposed by Ghosh et al. (2001). Another option is uti-
lization of model reduction methods for solving the micro-level problem (Yvonnet and He,
2007). This approach (also known as the reduced model multi-scale method or R3M) was
shown to lower computing times and storage requirements significantly.

Both sequential and computational homogenization methods inherently assume a strict
separation of scales (cf. Figure 4.1.2). Since fine-scale dimensions are supposed to be
infinitely small compared to the characteristic coarse-scale size, macroscopic fields are
uniform over the RVE and standard local continuum mechanics concepts hold. As a con-
sequence, macro-scale stresses rely on the first gradient of displacements only. Therefore,
corresponding approaches are also commonly known as first-order methods. Although be-
ing a versatile strategy to describe the behavior of micro-heterogeneous materials on dif-
ferent scales, first-order homogenization techniques suffer two major disadvantages. First,
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Figure 4.1.2: Concept of scale separation: L1 � L2 � L3, where Lk (k ∈ {1,2,3}) denotes
a scale-specific characteristic dimension or wave length.

geometrical size effects cannot be simulated since the macro-level solution is insensitive
to the absolute dimensions of the micro-structure (Kouznetsova et al., 2004). The second
difficulty arises from the intrinsic assumption of uniformity of the macroscopic fields over
the RVE (Kouznetsova, 2002). This hypothesis is not admissible in critical regions of high
gradients, where the macroscopic fields can vary rapidly. In case of localization phenom-
ena, for instance, the scale separation assumption breaks down and first-order schemes
exhibit both macro-level mesh and micro-scale sample size dependency (Gitman, 2006).

To overcome these drawbacks, so-called higher-order or non-local approaches have been
proposed (see e.g. Kouznetsova (2002), Feyel (2003), and Kouznetsova et al. (2004)).
These methods are based on an enhanced continuum formulation on the macro-scale,
while the micro-level BVP remains classical. Although the scale bridging still happens
pointwise, the coupling involves strain gradients and higher order stresses. Thereby, non-
uniform macroscopic deformation fields within the RVE can be considered and a micro-
structural length scale parameter automatically enters the macro-level problem. As a con-
sequence, the macro-scale mesh sensitivity of simulation results for localization problems
is resolved. Unfortunately, however, non-local multi-scale approaches also exhibit sev-
eral disadvantages. First, the micro-scale size dependency cannot be handled since the
length scale parameter is always proportional to the size of the microscopic sample (Git-
man, 2006). Besides, the implementation of higher-order schemes is considerably more
involved compared to a first-order approach. After all, the proper description of the macro-
level requires a full higher-order equilibrium formulation. Suitable FE formulations must
be based either on C1-continuous interpolation functions or mixed approaches introducing
an additional second-order tensor field (Kouznetsova et al., 2004). Furthermore, closed-
form constitutive relations for higher-order continua are difficult to formulate and contain a
large number of parameters (Feyel, 2003). Although this problem is bypassed by a concur-
rent multi-scale approach, utilization of phenomenological material models in non-critical
regions of the macroscopic domain is complicated.

A conceptually different class of concurrent multi-scale methods is based on a volume-
coupled scale bridging (cf. e.g Ibrahimbegovic and Markovic (2003), Gitman (2006), and
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Hund and Ramm (2007)). These approaches abandon the idea that the finite micro-scale
cell size is linked to an infinitely small macro-level material point. Instead, the dimensions
of the micro-level sample are chosen identical to the size of its associated macro-scale
element (see Figure 4.1.1(c)). The overall solution is then composed of a coarse- and
a fine-scale part. Due to the unique coupling of micro-scale cell and macro-level mesh
sizes, corresponding approaches do not rely on the definition of an RVE anymore. Hence,
in contrast to the concurrent methods discussed before, the cell size dependency of the
solution in case of localization problems is overcome. However, this benefit comes at
the cost of a completely resolved micro-structure. Therefore, volume-coupled approaches
can be interpreted as domain decomposition methods rather than classical heterogeneous
multi-scale procedures. Ideally, the micro-structure is fully resolved in regions of high
macroscopic field gradients only, whereas point-coupled multi-scale schemes are utilized
in more uniformly deformed parts of the domain (Ghosh et al., 2001).

In contrast to spatial multi-scale methods, temporal multi-scale approaches have received
relatively little attention so far. However, it is well-known that spatial and temporal scales
are tightly coupled in many cases. The so-called “gap-tooth scheme” (Samaey et al., 2005)
or the “divide-and-conquer” multi-scale method (Gravemeier and Wall, 2008) are among
the few coherent multi-scale methods in space and time. Key idea behind these approaches
is to solve small-scale problems in a subset of the domain over short time intervals. Macro-
scopic information is then recovered by interpolation in space and extrapolation in time.
This strategy is particularly suitable if the time scale separation is particularly pronounced,
e.g. in case of molecular dynamics simulations on the micro-level. In the present applica-
tion, though, the time scale of interest (i.e. the breathing cycle) is equal on both the overall
parenchyma and the local alveolar level. Therefore, corresponding space-time multi-scale
methods are not pursued in the following.

After having discussed different micro-macro methods, an approach suitable for the ap-
plication to lung parenchyma has to be proposed now. Obviously, sequential methods are
out of the question since they do not provide detailed information on the current state of
the micro-structure. After all, the determination of local alveolar stresses and strains dur-
ing ventilation is the primary purpose of the developed overall lung model. Therefore,
utilization of a concurrent multi-scale approach is indispensable here. Resolving the alve-
olar micro-structure completely over large domains of lung parenchyma, however, seems
to be impracticable. Therefore, a point-coupled scheme is preferred to a volume-coupled
method. Since a pronounced separation of scales can be assumed and localization phenom-
ena are not to be expected, application of a complicated higher-order approach currently
appears to be unnecessary. Moreover, as the combination with classical constitutive mod-
els in the bulk of lung parenchyma is complicated, non-local continuum formulations are
deemed inconvenient here. Considering all arguments brought forward so far, a first-order
computational homogenization method seems to be the most reasonable choice. So far,
corresponding approaches were restricted to static and mostly two-dimensional problems.
Breathing, however, is a three-dimensional and highly dynamic process. Therefore, a novel
method extending existing first-order schemes to three-dimensional dynamic scenarios was
devised as part of this work (cf. Wiechert and Wall (2010)). In the following, the developed
FE2 approach, its implementation, and application to lung parenchyma will be presented.
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4.2 Dynamic first-order FE2 approach

As already indicated in the previous section, computational homogenization is based on
the determination of the macroscopic constitutive response by means of the adequate def-
inition and solution of an associated micro-level BVP. In this context, the following ba-
sic building blocks can be distinguished: (i) definition of a representative sample of the
underlying micro-structure; (ii) formulation of the macroscopic nonlinear BVP; (iii) de-
termination and application of micro-scale boundary conditions based on known macro-
scopic data (macro-micro transition); (iv) formulation of the microscopic nonlinear BVP;
(v) calculation of the macroscopic stress and constitutive tensor by averaging over the
RVE (micro-macro transition). This classification applies to essentially any computational
homogenization method. The differences in distinct approaches result from varying im-
plementations of the individual building blocks. When comparing first- and higher-order
schemes, for instance, modules (ii), (iii), and (v) differ, whereas the other components are
equal. Subsequently, the building blocks of the developed dynamic FE2 approach will
be introduced in detail. The main difference as compared to existing static methods re-
sults from the time-dependent formulation of the macro-level problem. In order to ensure
a consistent information transfer between scales, the micro-level BVP and the transition
procedures will be properly restated. Albeit not being specific to the novel approach, some
guidelines concerning the identification of the micro-structural RVE will also be provided
for the sake of completeness.

4.2.1 Definition of the RVE

The sensible definition of an RVE of the micro-structure is crucial for any homogenization
approach. Particularly in the nonlinear regime, the behavior may be very sensitive to the
chosen sample size (Terada et al., 2000). Although the meaning of the term RVE seems to
be quite self-explanatory at first sight, several distinct interpretations can be found in the
literature. Without any claim to completeness, some relevant definitions will be surveyed
subsequently.

One of the first RVE specifications was given by Hill (1963) who argued that representative
samples have to be entirely typical of the whole micro-structure on average. Accordingly,
different microscopic “realizations” should exhibit a statistically similar micro-structure
(Shan and Gokhale, 2002). According to Kouznetsova (2002), however, sample sizes that
rigorously satisfy this condition are rarely utilized in actual homogenization analyses.

A less stringent condition states that an RVE is the smallest volume that is sufficiently
representative for the effective macroscopic properties of interest. Particular caution has to
be exercised to capture the overall material symmetries. For instance, small sample sizes
often exhibit pronounced anisotropy, although the macroscopic behavior may in fact be
isotropic (Temizer and Zohdi, 2006).

Whenever precise knowledge of microscopic quantities is also important, the sample should
be chosen such that predicted micro-structural stress and strain distributions are represen-
tative (Terada et al., 2000; Shan and Gokhale, 2002). During the homogenization process,
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oscillations in microscopic quantities usually cancel out. As a consequence, fluctuations
in micro-scale properties are significantly more pronounced than variations in the corre-
sponding macroscopic counterparts. Hence, RVE size requirements based on this criterion
are much stricter compared to those resulting from an analysis of effective properties.

Another well-known prerequisite is that effective moduli obtained by averaging over the
RVE should be independent of the nature of applied boundary conditions (i.e. displacement
versus traction control), as long as they are “macroscopically uniform” (Hill, 1963). Later
on, this requirement was expanded by Shan and Gokhale (2002) from the effective prop-
erties also to the microscopic fields. In both cases, the sample has to contain a sufficiently
large number of micro-heterogeneities (i.e. L2 � L3, cf. Figure 4.1.2) and must be large
enough to have small boundary field fluctuations relative to its size (Zohdi and Wriggers,
2005). In practice, however, this requirement is frequently circumvented by utilization of
periodic boundary conditions (see section 4.2.3).

The bottom line of the RVE definitions discussed so far is that the larger the micro-
structural sample, the better the quality of the prediction. However, there are also several
factors limiting the feasible maximum size of the RVE. First, the micro-structural vol-
ume must be small compared to the macroscopic structure (i.e. L1 � L2, cf. Figure 4.1.2).
Otherwise, the RVE cannot be regarded as a point on the macro-level anymore. Besides,
computing time and memory requirements also play an important role. This issue has to be
considered particularly in case of concurrent approaches based on the repetitive solution
of microscopic BVPs in each macro-level Gauss point. In practice, therefore, the smallest
possible size of the micro-structural sample has to be chosen.

Details on specific procedures for the determination of appropriate RVE sizes can be found
e.g. in Shan and Gokhale (2002), Gitman (2006), and Temizer and Zohdi (2006). In gen-
eral, the parameters of interest are compared on successively larger samples until they
converge with respect to a specified criterion. Although corresponding analyses have not
been performed for lung parenchyma yet, it is subsequently assumed that an alveolar RVE
exists1 and its optimum size is known.

4.2.2 Dynamic macro-level problem

As already mentioned, the developed multi-scale model of lung parenchyma should ac-
count for transient effects inherent to (mechanical) ventilation. On the macro-level, there-
fore, a nonlinear dynamic problem has to be formulated. Corresponding weak and discrete
forms have already been derived in section 2.1.3. Accordingly, the material description of
the macroscopic principle of virtual work is given by

δWM;0 =

∫
ΩM;0

ρM;0 d̈M ·δdM dV0+

∫
ΩM;0

SM : δEM dV0−
∫
ΩM;0

b̂M;0 ·δdM dV0−

−
∫
∂ΩM;0;N

tM;0 ·δdM dA0
!
= 0

(4.2.1)

1An RVE does not exist, for instance, in case of softening when the material loses its statistical homogeneity
(Gitman, 2006). However, occurrence of this type of phenomena is not expected here.
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with appropriate initial and boundary conditions. In this context, subscript M refers to
macro-scale quantities. For the sake of clarity, the superscript S introduced in section 2.1 to
denote solid mechanical quantities is dropped here and in the following. The macroscopic
reference density ρM;0 and the second Piola-Kirchhoff stresses SM are highlighted in yellow
and blue, respectively.

After discretization of the weak form (4.2.1) in space and time, the nonlinear discrete equa-
tion of motion (cf. equation (2.1.78)) is obtained. Linearization then yields the following
system of equations at the macroscopic iteration step iM

Keffdyn
M

(
diM

M;n+1

)
∆diM+1

M;n+1 =−reffdyn
M

(
diM

M;n+1

)
(4.2.2)

with the dynamic residual defined by

reffdyn
M

(
diM

M;n+1

)
= MM aiM

M;n+1−αm
+ DM viM

M;n+1−αf
+ fint

M

(
diM

M;n+1−αf

)
−

− fext
M;n+1−αf

(4.2.3)

and the effective dynamic stiffness matrix given by

Keffdyn
M

(
diM

M;n+1

)
=

[
1−αm

β∆t2
MM +

(1−αf)γ
β∆t

DM + (1−αf) KM
(
dM;n+1−αf

)]iM
(4.2.4)

Again, a Rayleigh ansatz is utilized to consider viscous damping. Since the mass matrix
MM and the internal force vector fint;iM

M;n+1−αf
are based on ρM;0 and SiM

M;n+1;−αf
, they are also

marked in yellow and blue, respectively. The tangent stiffness matrix KiM
M;n+1−αf

involves

the constitutive matrix CCCiM
M;n+1−αf

(i.e. the derivative of SiM
M;n+1−αf

with respect to the Green-

Lagrange strains EiM
M;n+1−αf

), whereas the damping matrix DM is composed of the mass
matrix and the initial stiffness matrix KM;0. To demonstrate their indirect dependency on
ρM;0 or SiM

M;n+1−αf
, DM and KiM

M;n+1−αf
are highlighted in green.

Classical single-scale simulations are based on deriving the marked quantities from a
phenomenological constitutive law. In the FE2 approach, however, ρM;0, SiM

M;n+1−αf
, and

CCCiM
M;n+1−αf

are directly computed from the RVE associated with the local Gauss integration

point. In the following sections, this approach will be presented in detail.

4.2.3 Macro-micro scale transition

Each RVE can be thought of as an infinitely small sample cut out of the micro-structure in
the vicinity of the macroscopic Gauss integration point. When applying the consistent in-
ternal forces, the micro-structural deformation state of the RVE can be determined exactly.
In practice, however, these forces are unknown since the surrounding micro-structure is
not resolved explicitly. Therefore, approximate boundary conditions need to be deduced
from the current macro-level state in a so-called macro-micro transition.
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To simplify the following considerations, the geometric center of the RVE – which cor-
responds to the macroscopic Gauss point – is assumed to be located at the origin of the
reference frame. In this case, the current position xm of any material point x0;m of the
RVE is given by

xm = FM · x0;m+ w̃m
(
x0;m

)
(4.2.5)

with subscript m identifying micro-scale quantities and FM denoting the deformation gra-
dient at the associated macroscopic Gauss integration point. w̃m refers to the non-homo-
geneous (or non-affine) fine-scale contribution to the deformation. These so-called dis-
placement fluctuations directly result from the presence of heterogeneities on the micro-
level. The choice of suitable boundary conditions is essential for the accurate determina-
tion of w̃m and, thereby, also the averaged stresses and constitutive tensors passed back to
the macro-level BVP.

In homogenization analyses, three basic types of boundary conditions are of practical inter-
est, viz. (i) homogeneous displacements, (ii) periodic displacements, or (iii) uniform trac-
tions. Resultant boundary displacement fluctuations are (i) zero, (ii) periodic, or (iii) un-
constrained. Corresponding to the degree of the imposed kinematical constraint, prescrip-
tion of homogeneous boundary displacements gives the stiffest RVE response, whereas
utilization of traction boundary conditions produces the most compliant solution. Ac-
cordingly, employment of periodic boundary displacements in general yields intermediate
results. Strictly speaking, periodic boundary conditions are valid only for perfectly peri-
odic media. It has been shown, though, that even for non-periodic materials, application
of these boundary conditions provides the most expedient effective response under a wide
range of conditions (Zohdi and Wriggers, 2005). Therefore, many FE2 models are based
on periodic displacement boundary conditions on the micro-scale (cf. e.g. Kouznetsova
et al. (2001), Feyel (2003), Kouznetsova et al. (2004), and Oezdemir et al. (2008)).

However, when the sample is arbitrarily large compared to the present heterogeneities,
it can be argued that the behavior is in the limit independent of the boundary conditions
(Hill, 1972). Hence, the advantages of one boundary condition over another diminish as
the sample size increases (see e.g. Terada et al. (2000) and Peric et al. (2010) for numerical
examples attesting this convergence). As a first step, therefore, it seems reasonable to fo-
cus on the simplest of the three alternatives. In contrast to the homogeneous displacement
boundary conditions, the kinematical constraints involved in uniform traction and periodic
boundary conditions are rather non-conventional. This is due to the fact that correspond-
ing conditions cannot be described in terms of either fully constrained or completely free
nodal DOFs (Peric et al., 2010). Although several approaches to imposing these kinds of
constraints in a deformation-driven procedure have been proposed in the literature (cf. e.g.
Kouznetsova (2002), Miehe and Koch (2002), Miehe (2003), Somer et al. (2009), and Peric
et al. (2010)), homogeneous displacement boundary conditions will be utilized exclusively
within this work for simplicity.

In this case, equation (4.2.5) reduces to

xm;∂Ωm = FM · x0;m;∂Ωm (4.2.6)

at the RVE boundary ∂Ωm. Using a more convenient matrix notation, the boundary defor-
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mation of the RVE in the iM-th macro-scale iteration at tn+1−αf is, thus, given by

xiM
m;n+1−αf;∂Ωm

= DTFiM
M;n+1−αf

. (4.2.7)

In this context, D is a matrix containing the positions of the undeformed RVE boundary
nodes, i.e.

D =



x0;m;1;1 0 0 x0;m;2;1 0 0 · · ·
0 x0;m;1;2 0 0 x0;m;2;2 0 · · ·
0 0 x0;m;1;3 0 0 x0;m;2;3 · · ·

x0;m;1;2 0 0 x0;m;2;2 0 0 · · ·
0 x0;m;1;3 0 0 x0;m;2;3 0 · · ·
0 0 x0;m;1;1 0 0 x0;m;2;1 · · ·

x0;m;1;3 0 0 x0;m;2;3 0 0 · · ·
0 x0;m;1;1 0 0 x0;m;2;1 0 · · ·
0 0 x0;m;1;2 0 0 x0;m;2;2 · · ·


, (4.2.8)

with x0;m;I;r being the r-th component of the reference position vector of node I. FiM
M;n+1−αf

is the macro-scale deformation gradient given in Voigt’s notation by

FiM
M;n+1−αf

=



F11
F22
F33
F12
F23
F31
F13
F21
F32



iM

M;n+1−αf

. (4.2.9)

Depending on the specific element technology utilized on the macro-level to prevent lock-
ing, the actual macroscopic deformation gradient may not be directly accessible. If, for
example, an enhanced assumed strain (EAS) formulation involving a modification of the
Green-Lagrange strains is employed, a consistent deformation gradient has to be recalcu-
lated. It seems suitable to assume that the EAS approach affects the stretch tensor only.
Hence, the unaltered rotation tensor can be computed from the original deformation gradi-
ent

FM = R̃M · ŨM (4.2.10)

by means of a singular value decomposition. The modified stretch tensor ŨEAS
M itself is

determined from the enhanced Green-Lagrange strains

EEAS
M =

1
2

((
ŨEAS

M

)T
· ŨEAS

M − I
)

(4.2.11)

via another singular value decomposition. A possible (although not unique) consistent
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deformation gradient is then given by

FEAS
M = R̃M · ŨEAS

M . (4.2.12)

By contrast, approaches based on the direct modification of the deformation gradient (e.g.
the so-called F-bar method (De Souza Neto et al., 1996)) can be utilized on the macro-level
without necessitating additional computational effort.

The boundary constraint (4.2.6) can be enforced directly by adequate modification of the
RVE linear system introduced in section 4.2.4. Alternatively, a formulation based on the
Lagrange multiplier approach (cf. e.g. Miehe (2003)) or the penalty method (see e.g. Tem-
izer and Wriggers (2008)) is also possible. In this work, the first option is chosen since
it enables exact satisfaction of the boundary condition without introducing additional un-
knowns.

It is important to remember that the definition of reasonable boundary conditions for
alveolar simulations is one of the main reasons to develop a multi-scale model of lung
parenchyma. The macro-micro transition discussed previously can be interpreted as an em-
bedding of individual alveolar ensembles into a global lung parenchyma model. Thereby,
the influence of the unresolved surrounding micro-structure is incorporated via the macro-
level in a simplified way.

4.2.4 Quasi-static micro-level problem

After having derived suitable boundary conditions from the macro-level, the local micro-
scale problem can now be addressed in more detail. In the following, the RVE is sup-
posed to be devoid of any discontinuities, whereas the presence of voids is not excluded.
Furthermore, its is assumed that the microscopic material behavior can be described by
phenomenological constitutive models given in general by

Sm = g(EiM
m , x

iM
0;m,Ξ

iM
m , t) (4.2.13)

with ΞiM
m denoting possible internal variables. Within this work, only convex problems

satisfying material and structural stability conditions on the micro-level are considered.

Since inertial effects are already fully taken into account on the macro-scale (cf. equation
(4.2.1)), a quasi-static formulation is chosen for the micro-level problem. The correspond-
ing weak form is then defined by∫

Ωm;0

SiM
m ·δEmdV0−

∫
Ωm;0

b̂iM
m;0 ·δdmdV0−

∫
∂Ωm;0;N

t̂iM
m;0 ·δdmdA0 = 0 (4.2.14)

where the dependence on the coarse-scale iteration index iM comes about due to the bound-
ary conditions stated in (4.2.7). From the equivalence of the virtual work on micro- and
macro-level (see also section 4.2.5), Peric et al. (2010) deduced that the contributions of
the body force and surface traction fields have to vanish. Hence, no micro-level forces are
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permitted except the reaction forces associated with the imposed kinematical constraints.
Consequently, the weak form (4.2.14) reduces to

δWm;0 =

∫
Ωm;0

SiM
m : δEm dV0 = 0. (4.2.15)

After spatial discretization with FE, equation (4.2.15) can be simply reformulated as

fint
m

(
diM

m

)
= 0 (4.2.16)

with diM
m as the global vector of displacements and fint;iM

m denoting the global vector of
internal forces on the micro-level.

Due to the mutual coupling of scales, a pseudo time step as well as a generalized mid-point
tn+1−αf need to be introduced also on the micro-level. By this means, equilibrium can be
evaluated at the same physical point in time and information can be transferred between
the scales consistently. For solving the nonlinear problem (4.2.16), Newton’s method is
again utilized. The linearized system at the pseudo generalized mid-point is then given by

Keffdyn
m

(
diM;im

m;n+1

)
∆diM;im+1

m;n+1 =−reffdyn
m

(
diM;im

m;n+1

)
(4.2.17)

where superscript im indicates the micro-level iteration step which is strictly distinct from
the coarse-scale iteration step iM. From equation (4.2.16), the micro-scale residual of linear
momentum balance can be identified as

reffdyn
m

(
diM;im

m;n+1

)
= fint

m

(
diM;im

m;n+1−αf

)
. (4.2.18)

The corresponding effective “dynamic” stiffness matrix for the quasi-static problem re-
duces to

Keffdyn
m

(
diM;im

m;n+1

)
=
∂reffdyn

m
(
dm;n+1

)
∂dm;n+1

∣∣∣∣∣∣∣
iM;im

= (1−αf)Km
(
diM;im

m;n+1−αf

)
(4.2.19)

with Km denoting the current fine-scale tangential stiffness matrix at tn+1−αf . Introducing
furthermore

∆diM;im+1
m;n+1−αf

= (1−αf)∆diM;im+1
m;n+1 , (4.2.20)

the subsequent linear system of equations on the micro-scale is obtained

Km
(
diM;im

m;n+1−αf

)
∆diM;im+1

m;n+1−αf
=−fint

m

(
diM;im

m;n+1−αf

)
. (4.2.21)

For convenience, all quantities are expressed at the pseudo generalized mid-point. Solving
equation (4.2.21) for ∆diM;im+1

m;n+1−αf
then allows for the update of the displacements at tn+1−αf ,

i.e.
diM;im+1

m;n+1−αf
= diM;im

m;n+1−αf
+∆diM;im+1

m;n+1−αf
. (4.2.22)

The iterative procedure is aborted, i.e. diM;im+1
m;n+1−αf

= diM
m;n+1−αf

, when a user-specified micro-
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level convergence criterion is met. In some cases, convergence of the RVE problem is
critical and macro-scale time step sizes have to be chosen very small. Alternatively, a sub-
stepping scheme based on a step-wise application of the macroscopic deformation gradient
can be utilized (Somer et al., 2009). This procedure was shown to substantially increase
the robustness and efficiency of the numerical solution on the micro-level.

For the converged RVE problem, effective macroscopic stresses and constitutive tensors at
iteration step iM can be determined by volume averaging (see section 4.2.5). After having
reached a converged state on the macro-level as well, fine-scale displacements – as well as
any history variables, e.g. time-dependent surface stresses – have to be updated to the end
of the pseudo time step tn+1 as follows

dm;n+1 =
dm;n+1−αf −αf dm;n

1−αf
. (4.2.23)

Micro-level deformations and internal variables need to be stored in every macroscopic
Gauss point, thereby requiring a large amount of computational resources in practical ap-
plications.

4.2.5 Micro-macro scale transition

Once the micro-scale BVP associated with the iM-th macroscopic iteration at tn+1−αf is
solved, local stresses and strains are available. In a next step, global quantities needed for
the formulation of the macro-level problem (cf. section 4.2.2) can be derived in a so-called
micro-macro scale transition.

In experiments, the mechanical behavior is usually characterized based on measured loads
or mean displacements at the surfaces of a representative sample. Therefore, Hill (1972)
proposed that the macro-variables in homogenization analyses should also be defined in
terms of surface data alone. Although it is not necessary that these macro-variables are
unweighted volume averages of their microscopic counterparts, he argued that quantities
possessing this particular property are naturally the easiest to handle analytically in the
transition between scales. Since the deformation gradient and the first Piola-Kirchhoff
stresses meet this criterion, Hill (1972) concluded that their averages are acceptable as
macro-variables.

Subsequently, corresponding expressions for FM and PM will be derived. For this purpose,
an alternative representation of F is introduced, i.e.

F =
∂x
∂x0
= (∇0 · (I⊗ x))T . (4.2.24)

By making use of Gauss divergence theorem, the macroscopic deformation gradient is then
obtained as

FM =
1

V0;m

∫
Ωm;0

Fm dV0 =
1

V0;m

∫
Ωm;0

(∇0 · (I⊗ xm))T dV0 =
1

V0;m

∫
∂Ωm;0

xm⊗ n0;m dA0

(4.2.25)
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with RVE reference volume V0;m including also all interior holes. It has to be noted that
the equivalence of volume and boundary integrals as stated in equation (4.2.25) is valid in
the absence of RVE discontinuities only. Otherwise, the volume average has to be com-
plemented by corresponding surface integrals (Bayreuther, 2004). Due to the assumptions
made in section 4.2.4, the homogeneous displacement boundary conditions employed in
the macro-micro transition fulfill relation (4.2.25) without further modifications.

In case of the first Piola-Kirchhoff stresses, the correlation between volume and surface
integrals can be derived by making use of the following expression

∇0 · (Pm⊗ x0;m) = (∇0 · Pm)⊗ x0;m+ Pm · (∇0x0;m) (4.2.26)

with ∇0x0;m = I. Recalling furthermore that there are no inertial and body forces on the
micro-level, i.e. ∇0 · Pm = 0, equation (4.2.26) reduces to

Pm =∇0 · (Pm⊗ x0;m). (4.2.27)

The macroscopic first Piola-Kirchhoff stresses are then given by

PM =
1

V0;m

∫
Ωm;0

Pm dV0 =
1

V0;m

∫
Ωm;0

∇0 · (Pm⊗ x0;m)dV0 =

=
1

V0;m

∫
∂Ωm;0

(
Pm⊗ x0;m

)
· n0;m dA0 =

1
V0;m

∫
∂Ωm;0

f m;B⊗ x0;m dA0 (4.2.28)

where f m;B is the vector of boundary forces. Note that equation (4.2.28) is valid in general
since local equilibrium at possible inner surfaces and discontinuities implies that corre-
sponding surface integrals always vanish.

In order to allow for a consistent transition between scales, the so-called Hill-Mandel con-
dition has to be satisfied. Essentially, this criterion implies that the volume average of
the variational work on the fine-scale equals the local variational work on the coarse-scale
(Hill, 1963), i.e.

δWm;0 = δWM;0. (4.2.29)

It can be easily verified that this requirement is a priori fulfilled in case of the chosen set
of macro-variables. To this end, the volume average of the virtual work on the micro-level
is first expressed in terms of RVE surface quantities as follows

δWm;0 =
1

V0;m

∫
Ωm;0

Pm : δFmdV0 =
1

V0;m

∫
∂Ωm;0

f m;B ·δxdA0. (4.2.30)

Introduction of the homogeneous displacement boundary condition (4.2.6) then yields

δWm;0 =
1

V0;m

∫
∂Ωm;0

f m;B ·
(
δFM · x0;m

)
dA0 =

1
V0;m

∫
∂Ωm;0

f m;B⊗ x0;m dA0 : δFM =

= PM : δFM = δWM;0. (4.2.31)

By contrast, the volume averages of second Piola-Kirchhoff stresses and Green-Lagrange
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strains do not satisfy the Hill-Mandel condition and are, therefore, not suitable for the
scale transition (Temizer and Zohdi, 2006). Therefore, in line with many other micro-
macro approaches (cf. e.g. Kouznetsova (2002), Miehe (2003), and Temizer and Zohdi
(2006)), the recommendation of Hill is followed here, although the general formulation of
the BVPs on both scales is based on S and E.

For a discrete expression of the macroscopic first Piola-Kirchhoff stress (4.2.28), it is ben-
eficial to split the micro-scale equilibrium equations (i.e. the converged version of equation
(4.2.17), therefore dropping the iteration index im) into prescribed boundary (with index
B) and unconstrained interior (with index I) DOFs as follows KiM

m;BB KiM
m;BI

KiM
m;IB KiM

m;II

 ·

 ∆diM
m;n+1−αf;B

∆diM
m;n+1−αf;I

 =  fiM
m;n+1−αf;B

0

 . (4.2.32)

The macro-level first Piola-Kirchhoff stress in Voigt’s notation then simply reads

PiM
M;n+1−αf

=
1

V0;m
D fiM

m;n+1−αf;B
(4.2.33)

with D given in equation (4.2.8). The second Piola-Kirchhoff stresses SiM
M;n+1−αf

needed

for the chosen macro-level formulation (cf. also section 4.2.2) can be obtained based on
the well-known continuum mechanics relation

S = F−1 · P. (4.2.34)

For application of Newton’s method on the macro-scale, the consistent tangent stiffness has
to be computed. In a first step, therefore, a constitutive matrix relating first Piola-Kirchhoff
stresses and the deformation gradient at the generalized mid-point can be calculated from
equation (4.2.33), viz.

AAAiM
M;n+1−αf

=
∂PiM

M;n+1−αf

∂FiM
M;n+1−αf

=
1

V0;m
D

∂fiM
m;n+1−αf;B

∂diM
m;n+1−αf;B

∂diM
m;n+1−αf;B

∂FiM
M;n+1−αf

(4.2.35)

=
1

V0;m
D K̃iM

m;BB D
T (4.2.36)

with K̃iM
m;BB relating micro-scale boundary displacements and respective forces as follows

K̃iM
m;BB ·∆diM

m;n+1−αf;B
= fiM

m;n+1−αf;B
. (4.2.37)

K̃iM
m;BB can be determined from the linear system (4.2.32) by static condensation of the

interior DOFs

K̃iM
m;BB = K̃m;BB

(
diM

m;n+1−αf

)
= KiM

m;BB−KiM
m;BI

(
KiM

m;II

)−1
KiM

m;IB. (4.2.38)

Since the macro-level problem is formulated in terms of second Piola-Kirchhoff stresses
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and Green-Lagrange strains, the constitutive tensor CCC relating S and E has to be deter-
mined. For this purpose, it is convenient to switch from Voigt’s notation to a tensorial
representation. Introducing AAA as the tensor form ofAAA, the following relation is obtained
based on the chain rule

AAA =
∂P
∂F
=
∂ (F ·S)
∂F

= F ·
∂S
∂E

·
∂E
∂F
+
∂F
∂F

·S =

= F ·CCC · FT+ I⊗S. (4.2.39)

Hence, the desired constitutive tensor is given in index notation by

CIJKL =
1
4

[
F−1

Ir (ArJsL− IrsS JL) F−T
sK +F−1

Jr (ArIsL− IrsS IL) F−T
sK +

+ F−1
Ir (ArJsK− IrsS JK) F−T

sL +F−1
Jr (ArIsK− IrsS IK) F−T

sL

]
(4.2.40)

where a symmetrization is performed in order to comply with the minor symmetries of CCC ,
i.e.

CIJKL = CJIKL = CJILK = CIJLK . (4.2.41)

Based on equation (4.2.40), the sought constitutive matrix in Voigt’s notation CCCiM
M;n+1−αf

can be defined in a straightforward manner.

It is noteworthy that the determination of the consistent constitutive tensor necessitates
the computation of a Schur complement (cf. equation (4.2.38)). Therefore, this procedure
is computationally very expensive in practice. Since the tangential stiffness matrix does
not change the physical result but only the convergence behavior, approximations are in
general possible. For instance, a modified Newton approach could be utilized. In this
case, the stiffness matrix is evaluated only once at the beginning of the time step and kept
constant during the nonlinear iteration process. Alternatively, a perturbation technique
based on a forward difference approximation of the tangent modulus could be employed
(cf. e.g. Miehe (1996)). This procedure essentially reduces the determination of the tangent
moduli to multiple stress computations based on a perturbed deformation gradient. In the
present case, though, this approach would necessitate the solution of six nonlinear micro-
level BVPs per macroscopic Gauss point and iteration. Another option is the application of
Jacobian-free Newton-Krylov methods to obtain the macro-level solution (see e.g. Knoll
and Keyes (2004) for a concise survey). Primary motivation for the development of these
approaches has been the ability to perform a Newton iteration without explicitly forming
the tangential stiffness matrix. In fact, Krylov solvers (cf. section 5.3) require the action of
the Jacobian only in form of matrix-vector products, which may be approximated by

Kz≈−1
υ

[r (d+υz)− r (d)] (4.2.42)

where r is the residual vector and υ denotes a small perturbation. In contrast to the per-
turbation technique addressed before, equation (4.2.42) involves the evaluation of only
one additional residual in a perturbed state. It has to be noted, though, that utilization of
any approximation to the stiffness matrix renders Newton’s method inexact, thereby drop-
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Figure 4.2.1: Schematic overview of the nested dynamic multi-scale method for a given
time step [tn, tn+1].

ping its quadratic convergence behavior. Increasing the number of macroscopic iterations,
however, comes along with high computational costs since the nonlinear micro-level prob-
lems have to be solved more often. Hence, it is highly doubtful that application of these
techniques really pays off. Therefore, in all simulations performed within this work, a
consistent constitutive tensor is determined as outlined above.

The final step in the micro-macro transition consists in calculation of the reference density
ρM;0 needed for the macro-level consistent mass matrix via

ρM;0 =
1

V0;m

∫
Ωm;0

ρm;0dV0. (4.2.43)

In contrast to the stresses and the constitutive tensor, this quantity needs to be computed
only once and not in every coarse-scale iteration step.

With this, all macro-variables of interest have been derived and the macroscopic system
of equations can be solved. Thereupon, all steps discussed in sections 4.2.2-4.2.5 are
repeated until convergence is achieved on the macro-scale. The presented nested multi-
scale approach is sketched in Figure 4.2.1 and summarized in detail in Algorithm 4.1.
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Algorithm 4.1 Nested dynamic multi-scale approach.
for each time step ∈ [tn, tn+1]:

Explicit predictor for diM=0
M;n+1{ diM=0

M;n+1−αf
(2.1.72), viM=0

M;n+1−αf
(2.1.73),

aiM=0
M;n+1−αm

(2.1.74)
Compute fext

M;n+1−αf
(2.1.75)

Compute reffdyn
M

(
diM=0

M;n+1

)
(4.2.3), Keffdyn

M

(
diM=0

M;n+1

)
(4.2.4):

for each Gauss integration point:
if application of multi-scale approach:

Prescribe boundary displacements (4.2.6)
Compute fint

m

(
diM=0;im=0

m;n+1−αf

)
and Km

(
diM=0;im=0

m;n+1−αf

)
for each iteration im until fine-scale convergence:

Solve (4.2.21) for ∆diM=0;im+1
m;n+1−αf

and update diM=0;im+1
m;n+1−αf

(4.2.22)

Compute fint
m

(
diM=0;im+1

m;n+1−αf

)
and Km

(
diM=0;im+1

m;n+1−αf

)
Check for fine-scale convergence and update im

Calculate SiM=0
M;n+1−αf

(4.2.34), CCCiM=0
M;n+1−αf

(4.2.40)
else

Calculate SiM=0
M;n+1−αf

, CCCiM=0
M;n+1−αf

from empirical constitutive law
for each iteration iM until coarse-scale convergence:

Solve (2.1.84) for ∆diM+1
M;n+1 and update diM+1

M;n+1 (2.1.85)

{ diM+1
M;n+1−αf

(2.1.72), viM+1
M;n+1−αf

(2.1.73), aiM+1
M;n+1−αm

(2.1.74)

Compute reffdyn
M

(
diM+1

M;n+1

)
(4.2.3), Keffdyn

M

(
diM+1

M;n+1

)
(4.2.4):

for each Gauss integration point:
if application of multi-scale approach:

Prescribe boundary displacements (4.2.6)
Compute fint

m

(
diM+1;im=0

m;n+1−αf

)
and Km

(
diM+1;im=0

m;n+1−αf

)
for each iteration im until fine-scale convergence:

Solve (4.2.21) for ∆diM+1;im+1
m;n+1−αf

Update diM+1;im+1
m;n+1−αf

(4.2.22)

Compute fint
m

(
diM+1;im+1

m;n+1−αf

)
and Km

(
diM+1;im+1

m;n+1−αf

)
Check for fine-scale convergence and update im

Calculate SiM+1
M;n+1−αf

(4.2.34), CCCiM+1
M;n+1−αf

(4.2.40)
else

Calculate SiM=0
M;n+1−αf

, CCCiM=0
M;n+1−αf

from empirical constitutive law
Check for coarse-scale convergence and update iM

for each Gauss integration point:
if application of multi-scale approach:

Update dm;n+1 (4.2.23) and potential internal micro-variables
Update n
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Figure 4.3.1: Basic organization of the multi-scale implementation in BACI.

4.3 Implementation details

In contrast to standard constitutive models, the implementation of a nested multi-scale
approach is significantly more involved. Particularly, if a multi-purpose FE code like BACI
should be utilized, the reasonable organization of data structures is essential. In Figure
4.3.1, a schematic overview of the basic code architecture is given.

On the macro-level, the dynamic simulation is governed by a corresponding control routine
including time and nonlinear iteration loops. For setting up corresponding internal forces,
mass and stiffness matrices, the macroscopic discretization has to be accessed. Apart from
defining the topology of the mesh, this class provides functions for evaluating all kinds of
element integrals.

Each individual macro-element refers to a specific material. As indicated in Figure 4.3.1,
both standard constitutive models (macro element 1) and multi-scale schemes (macro el-
ements 2-4) can be employed within one simulation. By defining distinct classes of so-
called micro materials, different RVEs can be associated with the macro elements. In
Figure 4.3.1, accordingly, the same RVE is applied in macro elements 2 and 3, whereas a
different realization of the micro-structure is assumed in macro element 4. The possibility
of assigning distinct RVEs to different locations in the macroscopic domain is particularly
important when heterogeneous lung damages have to be considered. In this case, the alve-
olar morphology, material, and surfactant behavior may vary significantly in different lung
regions.
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(a) (b)

Figure 4.3.2: (a) Serial computation on both levels. Each RVE discretization needs to be
defined only once. (b) Parallel simulation on the macro-scale and serial computation on
the micro-level. Colors represent individual processors. RVE discretizations have to be
accessible on every processor containing macro-elements with the corresponding micro
material.

The actual scale transition is performed in every Gauss point of an element implementing a
micro material. For organizing local microscopic deformation states and history variables
(such as time-dependent surface stresses), a corresponding interface class has to be pro-
vided for each Gauss point. In Figure 4.3.1, these structures (indicated by the abbreviation
“GP” followed by the ID of the Gauss point) are shown exemplarily for four integration
points per element. To avoid redundant information, all Gauss points belonging to elements
with an identical micro material resort to the same RVE discretization and corresponding
microscopic control routine. Therefore, the GP classes have to provide routines for passing
current state vectors to the micro control routine. After having solved the nonlinear BVP
in the individual Gauss point, updated microscopic state vectors need to be collected from
the control routine again.

The presented implementation essentially allows to hide the complex micro-macro scheme
behind a specific material class. Since no modifications of the macroscopic formulation
are necessary, the multi-scale approach can be directly applied to coupled scenarios such
as FSI problems (see section 5.4.2 for a corresponding numerical example).

A fully coupled multi-scale analysis – especially in case of large three-dimensional prob-
lems – is computationally very expensive in practice. Therefore, efficient solvers and
parallel computing are of course indispensable and, therefore, utilized in this work (see
Wiechert et al. (2007) for details). In each macroscopic iteration step, all RVE simulations
can be performed simultaneously without necessitating any data exchange. Therefore, par-
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allelization of the macroscopic problem is straightforward. The individual RVE computa-
tions, however, are currently performed serially on each processor. The resulting distribu-
tion of macro- and micro-scale discretizations is shown schematically in Figure 4.3.2(b).
For comparison, the general set-up of a serial macroscopic simulation is given in Figure
4.3.2(a). In this case, only one RVE discretization per micro material needs to be available.
By contrast, RVE discretizations have to be stored redundantly if macro elements referring
to the same micro material are distributed over different processors. Depending on the size
and complexity of the RVE problem, the chosen serial framework may soon become pro-
hibitive. Therefore, the combination of parallel and serial algorithms implemented within
this work can only be regarded as a first step towards nested parallelization (cf. e.g. an Mey
et al. (2007) for an implementation using OpenMP).

4.4 Numerical examples

After having discussed in detail the dynamic multi-scale scheme and its implementation,
some illustrative numerical examples will now be provided. First, the micro-macro pro-
cedure will be validated for homogeneous materials with differently shaped RVEs. Sub-
sequently, simple multi-scale simulations of lung parenchyma will be presented, thereby
demonstrating that the developed approach is suitable for coupled, dynamic problems on
the micro-level.

4.4.1 Validation

In case of a homogeneous material, the mechanical behavior can be accurately modeled
in a single-scale simulation. Corresponding results may, therefore, serve as a reference
solution for several multi-scale computations with homogeneous micro-structures of the
same material. Exemplarily, a dynamic tension test of a steel cube (edge length l =1.0 cm)
modeled by a St. Venant-Kirchhoff material (E = 210 GPa, ν = 0.3, ρ0 = 7.85 g/cm3) and
discretized with 27 linear hexahedral elements is presented here. The deformation of the
bottom surface was fixed and the cube was sinusoidally loaded by a uniformly distributed
tension load on the top surface (cf. equation (3.3.55) with pmax = 40 GPa, T = 4 s). In
the multi-scale simulations, three different scenarios were investigated. Firstly, a cubic
micro-structure consisting of 27 linear hexahedral elements was associated with every
coarse-scale Gauss point. Secondly, a solid tetrakaidecahedron discretized with 162 linear
hexahedral elements was employed as RVE throughout the macro-scale domain. Thirdly,
multi-scale models based on both previously mentioned micro-structures were utilized in
four coarse-scale elements only whereas a standard constitutive law was applied in the
remaining macro-level elements.

Exemplary deformation states are depicted in Figure 4.4.1. The reference solutions of the
single-scale simulation were reproduced for all configurations at any time. Owing to the
consistent constitutive tensor derived in the micro-macro transition, quadratic convergence
behavior was achieved.
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(a)

(b)

(c)

Figure 4.4.1: Deformation states for different fine-scale configurations at different points
in time. Colors indicate vertical displacements in cm. Left: Reference solution obtained in
single-scale simulation. Right: Multi-scale or combined single- and multi-scale solution
with different RVEs. Exemplary micro-structures are enlarged compared to the macro-
scale. (a) t = 0.1 s, cubic fine-scale. (b) t = 9.0 s, solid tetrakaidecahedral fine-scale. (c)
t =10.0 s (under maximum load), combined single- and multi-scale solution with different
RVEs.
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Figure 4.4.2: General set-up of example simulation. In marked coarse-scale elements a
multi-scale model was used, whereas a phenomenological constitutive law was employed
in the others. The fine-scale was realized by an assemblage of nine hollow tetrakaidecahe-
dra. To show the interior connections between alveoli, a clipped view is provided. Half of
the micro-structures were covered with a water film (γ = const.), the other half was coated
with a surfactant lining (γ = γ(A)).

4.4.2 Simple multi-scale model with alveolar micro-structure

Subsequently, the general applicability of the presented approach to lung parenchyma
will be demonstrated. In Figure 4.4.2, the set-up of a simple example simulation is il-
lustrated. On the macro-level, a lung tissue strip (5.0 mm×5.0 mm×10.0 mm) was dis-
cretized with 16 linear hexahedral elements. The bottom surface was fixed and the top
surface was cyclically loaded by a uniformly distributed tension load (cf. equation (3.3.55)
with pmax =1.0 kPa, T =0.2 s) in the second part of the simulation. In four macro-scale ele-
ments, the developed multi-scale scheme was employed, whereas a classical Neo-Hookean
constitutive law (EM =3.0 kPa, νM = 0.3, ρM;0 =2.0 kg/dm3) was utilized otherwise.

On the micro-scale, an assemblage of nine hollow tetrakaidecahedra (edge length L =
31.8 µm, wall thickness t =10.0 µm) representing pulmonary alveoli was discretized with
1340 linear hexahedral elements. Connections between alveoli were established based on
the labyrinthine algorithm presented in section 3.1. For modeling the microscopic material
behavior, a Neo-Hookean material model (Em = 6.75 kPa, νm = 0.49, ρm;0 = 1.0 kg/dm3)
was utilized in all alveolar samples. In order to introduce regional heterogeneities in the
tissue strip, locally different liquid lining compositions were assumed. Half of the micro-
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structures were coated with a surfactant layer, whereas the other half was covered with
a water film. This configuration modeled a domain with surfactant deficiency, a compli-
cation often occurring in case of acute lung diseases (see also section 1.2.1). The chosen
micro-structure is not expected to be representative for lung parenchyma, i.e. the term RVE
actually does not apply here. Furthermore, correct material parameters for alveolar wall
tissue are not available at present. However, the resulting inaccuracy seems acceptable
since the purpose of this simulation is not to provide quantitatively relevant results, but to
illustrate the general suitability of the multi-scale approach for lung parenchyma.

As a start, the influence of the micro-structural heterogeneities on the overall parenchyma
behavior was investigated. In the first phase of the simulation, equilibrium surface stresses
were gradually applied on alveolar walls. The micro-structures deformed such that the
surface energy tending to minimize interfacial area equilibrated the opposing structural
energy. Alveolar distortion was more pronounced in ensembles covered with a water film
because of the higher surface stresses. Due to the coupling of scales, application of the sur-
face stresses on the micro-level directly induced a heterogeneous macro-scale deformation
in the absence of any external loading. Thereby, the coarse-level elements employing the
multi-scale approach deformed actively, whereas those elements using the empirical con-
stitutive model were distorted passively. In the second part of the simulation, the uniformly
distributed tension load described above was applied on the macro-structure. While sur-
face tension remained constant in the micro-structures covered with a water film, surface
stresses in the ensembles coated with a surfactant film varied dynamically according to the
time-dependent constitutive model (cf. section 3.3.3). In Figure 4.4.3, selected deforma-
tion states of the macro-structure and two representative fine-scale discretizations (one per
liquid lining configuration) are shown.

The main motivation for developing a multi-scale model of lung parenchyma is to formu-
late physiologically reasonable boundary conditions for alveolar simulations. Hence, the
impact of the macro-level on the micro-level is also of particular interest here. In order to
investigate this effect, a comparative single-scale simulation of the chosen micro-structure
with traction-free boundary conditions was conducted. When applying a constant surface
tension load on the interior surfaces, the alveolar structure was allowed to deform freely in
this case, while it was constrained by the local macro-level deformation state in a multi-
scale simulation. In Figure 4.4.4, considerable differences in the resulting alveolar distor-
tions are depicted. Although imposed multi-scale boundary conditions were still simple,
alveolar deformation was simulated more realistically than in the comparative simulation
neglecting the influence of the surrounding tissue completely.

In summary, the example simulation attested that the devised multi-scale approach enables
the mutual coupling of micro- and macro-scale. Furthermore, the algorithm’s capability
of dealing with coupled, dynamic problems on the fine-scale was demonstrated, thereby
proving the general suitability for alveolar micro-structures.
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Figure 4.4.3: Deformation states of macro-scale and selected micro-structures (enlarged
compared to the macro-scale). Colors indicate displacements in µm. Left: Application of
equilibrium surface stresses on fine-scale without any other external loads. Right: Combi-
nation of (dynamic) surface stresses on micro-level and maximum external load on macro-
level.

Figure 4.4.4: Deformation state under constant surface tension on the interior surfaces.
Undeformed configurations are shown in gray and discretizations are clipped for reasons
of visualization. Colors indicate displacements in µm. Left: comparative simulation with
traction-free boundary conditions. Right: simulation considering effect of surrounding
alveoli through multi-scale boundary conditions (taken from the simulation shown in Fig-
ure 4.4.3).
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5 Coupling to Airway Model

As discussed in section 1.2, VALI is known to occur primarily in the respiratory zone of
the lung. Therefore, novel approaches enabling the simulation of lung parenchyma as a
whole while still resolving alveolar scales locally have been derived in the previous chap-
ter. However, for a reasonable investigation of respiratory mechanics during mechanical
ventilation, the conducting part of the lung also has to be included in the model. After
all, local parenchyma deformations are determined by the distribution of airflow into the
peripheral domains. Hence, the development of an overall lung model combining airway
and parenchyma models is indispensable.

In the literature, several simplified approaches to characterizing respiratory mechanics at
the system level have been reported. Corresponding overall lung models were predomi-
nantly based on electrical analogues, see e.g. Lutchen and Gillis (1997), Yuan et al. (1998),
Massa et al. (2008), Ganzert et al. (2009), Kent et al. (2009), and the extensive reviews by
Bates and Lutchen (2005) and Bates (2009). Main application of these approaches were,
for example, the determination of global pressure-volume curves or the calculation of over-
all properties like the total lung resistance and compliance. However, since the contribution
of the peripheral domains to the global lung resistance is small, alveolar structures may de-
velop significant pathology before overall lung function is impaired noticeably. Therefore,
although providing valuable general insights, these kinds of global lung models are not
suitable for detailed investigations concerning the mechanisms of VALI.

The first step towards a more advanced overall lung model were made by Kowalczyk and
Kleiber (1994), who treated parenchyma as a two-dimensional deformable porous medium
coupled with a system of branching one-dimensional conduits distributing the air. To the
author’s knowledge, more elaborate models including both the conducting and the res-
piratory part of the lung are not yet available. Instead, detailed continuum models were
always restricted to isolated domains of the respiratory system, such as individual alveoli
(cf. chapter 3), lung parenchyma (cf. chapter 4), or parts of the airway tree.

In Grotberg (2001), Bertram and Gaver (2005), and Kleinstreuer and Zhang (2010), vari-
ous aspects of flow and transport processes within the conducting zone have been reviewed.
Main objectives of previous studies were the investigation of airflow distribution, airway
stability, particle deposition, or optimal drug-aerosol targeting. For these purposes, exten-
sive models of idealized airway geometries based on Weibel or Horsfield models (Weibel,
1963; Horsfield et al., 1971) were proposed (cf. e.g. Liu et al. (2002), Green (2004), and
Zhang and Kleinstreuer (2004)). However, it was recognized that geometry-specific fea-
tures have a major influence on local airflow distribution. Therefore, anatomically based
airway models were utilized recently, for example in Baoshun and Lutchen (2006), Lin
et al. (2007), Luo and Liu (2009), Ma and Lutchen (2009), and Comerford and Wall (2011).

131



5 Coupling to Airway Model

The effects of FSI, though, received relatively little attention so far. Studies concerning
closure and reopening of collapsible airways were restricted to idealized models of single
airways, see e.g. Heil (1999), Grotberg and Jensen (2004), Hazel and Heil (2005), and Gha-
diali and Gaver (2008). The first numerical simulations utilizing CT-based airway models
including FSI effects were reported in Wall and Rabczuk (2008) and Küttler et al. (2010).
It was demonstrated that airflow patterns, including both axial and secondary velocity pro-
files, are different when considering the interaction of airflow and wall movement.

Apart from enabling a better reproduction of the in vivo fluid mechanics, FSI simulations
also allow for the determination of strains and stresses in the airway wall given that an ap-
propriate constitutive model is chosen. Unfortunately, however, knowledge of wall prop-
erties is still quite sparse (Kamm, 1999). In the few published experiments, the behavior
of airway tissue was shown to be different in axial and circumferential direction. Values of
corresponding Young’s moduli, though, varied widely. McKay et al. (2002) investigated
the zero-stress state of intra- and extraparenchymal airways experimentally. They found
that the level of residual stresses was very different among the studied species. While
sheep and rabbit airways exhibited large opening angles when cut open, this was not the
case for porcine and human lungs. Therefore, the widespread assumption of negligible
residual stresses in computational models of human airways seems to be justified.

When introducing airway flexibility, also the influence of the surrounding lung parenchyma
on airway motion and wall stresses needs to be considered. Adler et al. (1998) utilized a
rat lung explant system to demonstrate the airway-parenchymal interdependence in bron-
choconstriction. To account for this tethering effect in a simplified way, Xia et al. (2010)
applied pleural pressure directly to the airway wall. A more realistic approach was pro-
posed by Comerford and Wall (2011) who embedded the airway tree in a block of homog-
enized compressible tissue loaded by pleural pressure on the enclosing surfaces. Thereby,
also the interdependence of neighboring airways not present in the isolated airway tree was
taken into account.

An important, even though often disregarded issue for the set-up of computational air-
way models is the formulation of reasonable flow boundary conditions. Due to limited
computational resources and the insufficient resolution of CT imaging techniques (mini-
mum voxel size of 0.5 mm×0.5 mm×0.5 mm), a detailed modeling of all relevant airway
structures from the trachea – where the endotracheal tube is situated during mechanical
ventilation – down to the terminal bronchioles is not possible. Therefore, airway models
are usually restricted to the first generations of the tracheo-bronchial tree. Many existing
models simply neglect the influence of the unresolved peripheral structures by imposing
zero-traction, i.e. “do-nothing”, boundary conditions at the outlets. Consequently, simu-
lated pressure levels in the resolved domain are far from being physiologically reasonable.
A different type of boundary conditions was proposed recently by Yin et al. (2010). They
prescribed airflow at the outlets according to information on regional ventilation obtained
from CT datasets. However, airflow is completely prescribed in this model since the result-
ing problem is of pure Dirichlet type. Thus, it is unclear what kind of information should
actually be provided by corresponding CFD simulations. More reasonable approaches
were based on the inclusion of reduced-dimensional models for the non-imageable ves-
sels. For instance, Maury et al. (2005) accounted for the effect of the peripheral airways by
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means of an equivalent resistance at the outlets. Baffico et al. (2010) complemented this
approach by a spring model representing the motion of the thoracic cage. Comerford et al.
(2010) proposed to consider the impedance rather than the resistance of the unresolved
airways to enable a reasonable investigation of frequency-dependent phenomena.

The formulation of appropriate boundary conditions is particularly difficult if expiratory
flow is to be modeled. When prescribing zero-traction boundary conditions on the out-
lets and Dirichlet conditions on the inlet of the simulation domain, a reversal of the flow
direction at the inlet potentially leads to an unstable solution (cf. e.g. Kim et al. (2009)).
Therefore, Freitas and Schröder (2008) simply reversed the boundary conditions for the
trachea and the single outlets. However, no information about the “inflow” at the outlets
during expiration is actually available. More precisely, neither the specific total amount of
air flowing into each outlet nor the corresponding variation in time is known. Although
many authors claim to simulate expiratory flow in the tracheo-bronchial region, from the
author’s point of view, no convincing concepts for prescribing physiologically sensible
boundary conditions have been proposed so far.

Above mentioned difficulties come about due to an oversimplified consideration of the
unresolved peripheral domain. Thus, if detailed models of the conducting and the respi-
ratory zone were linked, two problems would be solved at once. As already mentioned,
local parenchyma deformations could be determined depending on the distribution of air
into the peripheral regions. At the same time, airflow in the resolved conducting passages
could be simulated more realistically.

In this chapter, a novel approach to combining airway and parenchyma models into one
overall continuum lung model will be presented. To compensate for the gap between re-
solvable airways and the acinar region, general concepts for the homogenization of unre-
solvable structures will be derived. Based on these preliminary considerations, a coupling
of air and parenchyma volumes will be proposed. After setting up the linearized system
of equations, corresponding numerical solution procedures will be addressed specifically.
The chapter will be completed by first numerical examples illustrating the versatility of the
developed volume-coupling approach.

5.1 Preliminary considerations

Since only parts of both the airway tree and the alveolar structures can be resolved, the
transport of air down to the respiratory zone cannot be simulated explicitly but has to be
modeled. Before the actual coupling approach will be presented in section 5.2, the under-
lying concepts based on the homogenization of unresolvable structures will be discussed
subsequently.

In Figure 5.1.1(a), a CT-based representation of lung parenchyma and the embedded tra-
cheo-bronchial tree is shown. In the last imageable generation, airways end in artificial
outlets. In reality, however, branching of the conducting passages continues until the alve-
olar region is reached. For subsequent considerations, the parenchyma model is concep-
tually subdivided into different regions. Thereby, each region is assumed to be supplied
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Figure 5.1.1: Different modeling approaches for peripheral regions of the lung. (a) CT
data illustrating resolved lung lobes and tracheo-bronchial region. The peripheral region
considered in the following is marked. (b) Model of peripheral region resolving all airways
and individual alveoli. (c) Mixture model with overlapping homogenized fluid and struc-
ture domains (indicated by hatching) coupled along the boundary B̃∪ B̄. (d) Homogenized
solid model.

with air by exactly one terminal branch of the resolvable airway tree. In the following, one
of these peripheral domains will be considered exemplarily (see marked region in Figure
5.1.1(a)). First, it will be assumed that all conducting passages and alveoli subsequent to
the feeding airway can be resolved (cf. Figure 5.1.1(b) and section 5.1.1). In a next step,
the explicit modeling of the peripheral structures will be spared and a homogenized mix-
ture model will be established (cf. Figure 5.1.1(c) and section 5.1.2). Finally, the mixture
model will be reformulated such that peripheral airflow is considered only in an implicit
way. The resulting purely solid model for the peripheral domain (cf. Figure 5.1.1(d) and
section 5.1.3) will be utilized as a basis for a novel approach to coupling continuum mod-
els of the airways and lung parenchyma in section 5.2. In the following, the different
pre-stages summarized above will be presented in more detail.
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5.1.1 Fully resolved model

In reality, the peripheral structures subsequent to the end of the airway tree shown in Figure
5.1.1(a) cannot be modeled explicitly. As a start, however, it is assumed that all conducting
passages and alveoli in the region of interest are resolvable. This conceptual model will
serve as a starting point for the development of the homogenized models proposed in the
following sections.

In Figure 5.1.1(b), a schematic of the fully resolved model is shown. When simulating
airflow down to the terminal alveolar sacs, fluid and structure interact at both airway and
alveolar walls, which are collectively termed the FSI interface B subsequently. Following
the derivations presented in section 2.4, the linear monolithic FSI problem is given by
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(5.1.1)

with underlines and tildes denoting different scalings of the vectors or matrices (cf. equa-
tion (2.4.8) for a definition of corresponding abbreviations). For simplicity, information
about the current time and nonlinear iteration step as well as dimensions of the zero matri-
ces – which are obvious from the context – is left out here and in the following.

5.1.2 Homogenized mixture model

As a next step, the conducting passages and alveolar sacs peripheral to the last imageable
airway are no longer resolved. Instead, tissue and air are “smeared” over the peripheral do-
main by means of homogenization. Given that the terminal structures are small compared
to the overall domain under consideration, it can be assumed that fluid and solid phases in
this region are superimposed in time and space. Each macroscopic point in the peripheral
domain is, thus, occupied simultaneously by fluid and solid “particles” following their in-
dividual motion. In line with the well-known theory of mixtures (Atkin and Craine, 1976),
this approach is referred to as the “mixture model” albeit the kinematic assumption is the
only congruence. The peripheral region can then be thought of as a balloon inflated by the
air transported in the feeding vessel. While the superimposed fluid and solid phases are
supposed to be independent of each other in the interior of the homogenized domain, both
fields interact along the enclosing boundary. Consequently, airflow into this region directly
induces deformation of the homogenized parenchymal structure.

In Figure 5.1.1(c), the outlined scenario is shown schematically. Lumen and wall of the
resolved feeding airway (both referred to as Ir) are explicitly modeled. At the FSI boundary
B, airflow and wall deformation are coupled as usual. The transition section between the
resolved airway and the homogenized domain Iu is denoted by B̂. It can be thought of as the
outflow surface of the feeding vessel into the peripheral region. In the fully resolved model,
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only conducting passages would meet at this purely artificial boundary. As a consequence
of the homogenization process, smeared tissue structures adjoin B̂ in the mixture model.
To approximate the physics of the fully resolved model adequately, the overlapping fields
have to be completely independent of each other at B̂. Hence, the air transported in the
resolved airway enters the homogenized domain without affecting the deformation of the
superimposed structure in this section. Along the enclosing boundary of the homogenized
domain B̄∪ B̃, however, the interaction of overlapping fluid and solid fields has to be
considered.

Based on these modeling assumptions, the monolithic FSI problem for the mixture model
can be formulated. Since the ALE field is not directly involved in above considerations,
corresponding contributions are omitted for the sake of comprehensibility. The resulting
linearized system of equations then reads

Kmix∆umix =−rmix (5.1.2)

with

Kmix =
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and

∆umix =
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. (5.1.4)

The entries in the stiffness matrix (5.1.3) connecting different domains and boundaries of
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the individual fields simply evolve as a consequence of spatial vicinities. KSS
B̃Ir

and KSS
IrB̃

, for
example, result from the adjacency of the FSI boundary of the homogenized region and
the resolved airway wall. For the FSI contributions in (5.1.3), suitable abbreviations are
introduced, e.g.

KSS/FF
BB = KSS

BB+K˜FF
BB
. (5.1.5)

5.1.3 Condensed homogenized model

For the investigation of VALI, the determination of local parenchyma deformations is es-
sential. By contrast, airflow in the peripheral region is only of minor interest. Therefore, in
the following, corresponding fluid DOFs uIu are eliminated from the system of equations
by means of static condensation. Starting point is the linearized FSI problem of the mix-
ture model (cf. equations (5.1.2)-(5.1.4)). As a first step, all entries associated with uIu are
highlighted in color, i.e.

Kmix∆umix =−rmix (5.1.6)
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From the last equation of the system, the increment of the peripheral airflow velocities is
determined by

∆uIu =
(
KFF

IuIu
)−1 [

rF
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]
. (5.1.9)

Introduction of equation (5.1.9) into the linear system (5.1.6) yields the following con-
densed monolithic problem

Kcond∆ucond =−rcond (5.1.10)

with
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B̄B̃
KFF

B̄Ir ǨFF
B̄B̂

0 0 KSS
B̂B̄r KSS

B̂B̂
KSS

B̂Iu
0 0 0

0 0 KSS
IuB̄ KSS

IuB̂
KSS

IuIu KSS
IuB̃

0 0

KSS
B̃Ir

0 ǨSS/FF
B̃B̄

0 KSS
B̃Iu

ǨSS/FF
B̃B̃

0 ǨSF
B̃B̂

0 K˜FF
IrB K˜FF

IrB̄ 0 0 0 KFF
IrIr KFF

IrB̂

0 0 Ǩ˜FF
B̂B̄ 0 0 Ǩ˜FF

B̂B̃ 0 ǨFF
B̂B̂
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(5.1.11)

and

∆ucond =



∆dIr

∆dB

∆dB̄

∆dB̂
∆dIu

∆dB̃

∆uIr

∆uB̂


, rcond =



rS
Ir

rS
B+ rF

B
řS
B̄
+ řF

B̄
rS
B̂

rS
Iu

řS
B̃

rF
Ir

řF
B̂


. (5.1.12)

In this context, the superimposed accent denotes that corresponding submatrices or -vectors
are changed compared to their counterparts in equation (5.1.7) or (5.1.8). For clarification,
the modified equations are additionally highlighted in gray. Accordingly, peripheral air-
flow affects parenchyma deformation along B̄∪ B̃ and flow in the resolved domain at B̄∪ B̂.

The linear problem (5.1.10)-(5.1.12) is absolutely equivalent to the original mixture model
(5.1.6)-(5.1.8). However, this reformulation will prove useful for the derivation of the
novel coupling approach presented in the following section.
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5.2 Volume-coupled fluid-structure interaction

To simplify the condensed homogenized model presented in section 5.1.3 further, it is now
additionally assumed that airflow velocities in the peripheral parts are negligible and the
problem is mainly pressure-dominated. This hypothesis is deemed suitable since the over-
all airway cross section increases exponentially as branching progresses by generations
(Sapoval et al., 2002). Convective flow velocities decrease as the air moves deeper into
peripheral regions until, finally, gas transport is governed by diffusion only. Hence, sim-
ulating in detail the fluid field in the homogenized domain is unnecessary. Therefore, the
static condensation performed in the previous section is now replaced by an approximate
model for the effect of peripheral airflow. This model is based on the insight that the air
transported in the feeding vessel causes an inflation of the downstream peripheral region.
Assuming that both airflow and (resolved) tissue structures are incompressible, the change
in volume of the homogenized parenchyma model, thus, needs to equal the volume of air
flowing into it.

Subsequently, a general procedure to determine both airflow and parenchyma volumes
will be presented. Furthermore, the coupling of volume changes within the framework
of FSI problems will be addressed in detail. Thereby, an efficient approach to combining
continuum models of lung parenchyma and the resolved airway tree into one overall lung
model will be derived.

5.2.1 Determination of field volume changes

In line with the derivations in the previous section, the following considerations refer to
a single feeding airway and its associated peripheral domain (cf. 5.1.1(d)). However, all
relationships naturally apply also for the case of multiple outlets and parenchyma regions
as will be illustrated by several numerical examples in section 5.4.

5.2.1.1 Outflowing air volume

The volume of air flowing through the artificial outlet B̂ in the time interval [t1; t2] can be
determined by integrating the flow rate q in time

∆VF =

∫ t2

t1
qdt. (5.2.1)

Thereby, q is defined as the scalar product of the convective fluid velocity at the outlet and
the corresponding area vector in the current (i.e. deformed) configuration, viz.

q =
∫

B̂

(
u−uA

)
·dA. (5.2.2)

Introducing the convective velocity (2.2.4) and dA = ndA, the discrete version of the flow
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rate through an element situated at the outlet reads

q(e) =

∫
B̂(e)

c · ndA. (5.2.3)

From equation (2.1.19), the unit normal vector of the outlet surface n is obtained as

n=
ñ
|ñ|
. (5.2.4)

Using relations (5.2.4) and (2.1.21), the element flow rate (5.2.3) can be reformulated as

q(e) =

∫ 1

−1

∫ 1

−1
(c1 · ñ1+ c2 · ñ2+ c3 · ñ3) dξ1dξ2. (5.2.5)

Application of Gaussian quadrature then yields

q(e) =

ngp∑
gp=1

wgp

ndim∑
r=1

nnod∑
I=1

(
NI

(
ξgp

) (
uI;r−uA

I;r

))
ñr

(
ξgp

)
 =

=

ngp∑
gp=1

wgp

ndim∑
r=1

ndim∑
s=1

ndim∑
t=1

1
2
Erst

nnod∑
I=1

(
NI

(
ξgp

) (
uI;r−uA

I;r

))
·

nnod∑
J=1

(
∂NJ

∂ξ1

(
ξgp

)
xJ;s

)
·

·
nnod∑
K=1

(
∂NK

∂ξ2

(
ξgp

)
xK;t

)
−

nnod∑
J=1

(
∂NJ

∂ξ2

(
ξgp

)
xJ;s

)nnod∑
K=1

(
∂NK

∂ξ1

(
ξgp

)
xK;t

)

 (5.2.6)

with NI
(
ξgp

)
being the value of the I-th shape function at the Gauss integration point

and wgp referring to the corresponding Gaussian weight. ngp, nnod, and ndim denote
the number of element Gauss points, nodes, and dimensions (i.e. ndim = 3 in the three-
dimensional case). Erst corresponds to the Levi-Civita symbol (3.3.26). The factor 1

2 in
equation (5.2.6) comes about due to the nested sum of the dimensional identifiers r, s, and
t.

For time integration of the air volume change (5.2.1), a one-step theta scheme is employed,
i.e.

∆VF
n+1 = ∆t (θqn+1+ (1− θ)qn) . (5.2.7)

Since the fluid acceleration is assumed to be constant over the time step ∆t, fluid velocities
vary linearly in time. If the outflow surface was invariant, the flow rate q would, hence, also
be a linear function of t. In this case, equation (5.2.7) would be exact given that θ is chosen
to be 0.5. In general, however, the outflow surface is changing in time and, thus, ∆VF

n+1
also depends nonlinearly on the time-dependent grid displacements dA

n+1. Although the
accuracy and stability of the time integration scheme (5.2.7) has not yet been investigated
in detail for this case, it is utilized exclusively in the following.

In section 5.2.2, the proposed volume constraint will be linearized to enable the application
of Newton’s method. For this purpose, derivatives of ∆VF with respect to airflow veloc-
ities and grid displacements have to be calculated. From equation (5.2.7), the following
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relationship is obtained
∂∆VF

n+1

∂zn+1
= ∆tθ

∂qn+1

∂zn+1
(5.2.8)

where zn+1 denotes an arbitrary discrete vector. The derivatives of the element flow rate
with respect to the airflow velocities in general read

∂q(e)

∂uI;s
=

ngp∑
gp=1

[
wgpNI

(
ξgp

)
ñs

(
ξgp

)]
(5.2.9)

∂2q(e)

∂uI;s∂uJ;t
= 0 (5.2.10)

with s, t ∈ {1,2,3}. The first derivative of q(e) with respect to the grid displacement is given
by

∂q(e)

∂dA
I;s

=

ngp∑
gp=1

wgp

ndim∑
r=1

nnod∑
K=1

(
NK

(
ξgp

) (
uK;r−uA

K;r

)) ∂ñr

∂dA
I;s

(
ξgp

)−
−NI

(
ξgp

) ∂uA
I;s

∂dA
I;s

ñs
(
ξgp

)
 . (5.2.11)

The derivatives of the grid velocities and the surface normals with respect to the grid dis-
placements can be determined based on equations (2.3.2) and (3.3.28), respectively. Even-
tually, the following expression is obtained for the “mixed” derivative

∂2q(e)

∂uI;s∂dA
J;t

=

ngp∑
gp=1

wgpNI
(
ξgp

) ∂ñs

∂dA
J;t

(
ξgp

) . (5.2.12)

5.2.1.2 Change in parenchymal volume

In the following, the change in volume of the parenchyma region associated with the feed-
ing airway will be determined. Introducing VS

n and VS
n+1 as the volume of the domain at

the beginning and the end of the time step, the volume change simply reads

∆VS
n+1 = VS

n+1−VS
n . (5.2.13)

In this context, the parenchyma volume is in general given by

VS =

∫
ΩS

dV =
1
3

∫
ΩS

(
∂x1

∂x1
+
∂x2

∂x2
+
∂x3

∂x3

)
dV

=
1
3

∫
ΩS
∇ · xdV. (5.2.14)
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Application of the divergence theorem then yields

VS =
1
3

∫
∂ΩS

x · ndA (5.2.15)

with ∂ΩS = B̄∪B̂∪B̃ denoting the enclosing surface and n referring to the local unit normal
vector. After introduction of equations (5.2.4) and (2.1.21), the contribution of an element
(e) situated at the boundary ∂ΩS can be determined by

VS(e) =
1
3

∫ 1

−1

∫ 1

−1
(x1 · ñ1+ x2 · ñ2+ x3 · ñ3)dξldξm. (5.2.16)

To evaluate the integrals, Gaussian quadrature is again utilized, i.e.

VS(e) =
1
3

∑
gp

wgp

ndim∑
r=1

(xrñr)

 =
=

1
3

∑
gp

wgp

ndim∑
r=1

ndim∑
s=1

ndim∑
t=1

1
2
Erst

nnod∑
I=1

(
NI

(
ξgp

)
xI;r

) nnod∑
J=1

(∂NJ

∂ξ1

(
ξgp

)
xJ;s

)
·

·
nnod∑
K=1

(
∂NK

∂ξ2

(
ξgp

)
xK;t

)
−

nnod∑
J=1

(
∂NJ

∂ξ2

(
ξgp

)
xJ;s

)nnod∑
K=1

(
∂NK

∂ξ1

(
ξgp

)
xK;t

)


 .
(5.2.17)

The considerations presented in the previous section regarding the nested sum of dimen-
sional identifiers r, s, and t also hold in this case.

The linearization of the volume constraint introduced in section 5.2.2 involves derivatives
of ∆VS

n+1 with respect to the boundary displacements. From equation (5.2.13), the follow-
ing expressions are obtained

∂∆VS
n+1

∂dn+1
=
∂VS

n+1

∂dn+1
,

∂2∆VS
n+1

∂dn+1∂dn+1
=
∂2VS

n+1

∂dn+1∂dn+1
. (5.2.18)

Corresponding derivatives of the element contributions to the absolute parenchymal vol-
ume read

∂VS(e)

∂dI;s
=

1
3

∑
gp

wgp

NI
(
ξgp

)
ñs

(
ξgp

)
+

ndim∑
r=1


nnod∑

K=1

NK
(
ξgp

)
xK;r

 ∂ñr

∂dI;s

(
ξgp

)

 , (5.2.19)

∂2VS(e)

∂dI;s∂dJ;t
=

1
3

∑
gp

{
wgp

[
NI

(
ξgp

) ∂ñs

∂dJ;t

(
ξgp

)
+NJ

(
ξgp

) ∂ñt

∂dI;s

(
ξgp

)
+

+

ndim∑
r=1

nnod∑
K=1

(
NK

(
ξgp

)
xK;r

) ∂ñ2
r

∂dI;s∂dJ;t

(
ξgp

)

 (5.2.20)
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where the derivatives of the surface normal vectors can be found in equations (3.3.28) and
(3.3.31).

5.2.2 Coupling of volume changes

In the previous sections, general expressions for changes in air and parenchyma volumes
as functions of boundary displacements and/or velocities have been derived. For a rea-
sonable combination of airway and parenchyma models, corresponding volume changes
have to be coupled. Hence, the volume of air flowing through the artificial outlet B̂ has to
equal the change in volume of the surrounding parenchyma domain enclosed by B̄∪ B̂∪ B̃.
Furthermore, ALE and solid meshes need to be tied along B̂ in order to preclude any gaps
between the resolved airway and homogenized peripheral domain.

For the enforcement of the volume constraint, the Lagrange multiplier method as intro-
duced in section 2.5.1 is employed. The corresponding constraint potential is given by

WC = λ
(
∆VS−∆VF

)
(5.2.21)

where λ denotes the Lagrange multiplier associated with the volume constraint. ∆VS and
∆VF refer to the parenchymal volume change and the outflowing air volume as introduced
in equations (5.2.13) and (5.2.7), respectively. The total variation of the constraint potential
(5.2.21) is obtained as

δWC = δλ
(
∆VS−∆VF

)
+λδ

(
∆VS−∆VF

)
. (5.2.22)

In order to determine δ
(
∆VS−∆VF

)
, corresponding primary variables critical for the vol-

ume changes need to be identified. In this context, airflow velocities as well as boundary
displacements play a role. As already discussed in section 5.1.2, B̂ is a purely artificial
boundary introduced in the homogenization process as the transition between resolved and
unresolved domains. Consequently, B̂ should deform solely in a passive manner follow-
ing the motion of the remaining parenchymal boundary. For the volume constraint, B̂ can
thus be interpreted as a Dirichlet boundary for parenchymal displacements and coupled
fluid grid velocities. Therefore, no variations of the volume changes with respect to these
quantities occur.

It is also easy to see that ∆VF is not influenced by the fluid velocities and displacements
along B̄. This enclosing boundary of the artificial outlet is part of the FSI interface and,
hence,

cB̄ = 0 (5.2.23)

holds at any time. Therefore, the flow rate does not depend on uB̄ as well as dA
B̄ and

corresponding variations vanish.
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Consequently, equation (5.2.22) can be restated as follows

δWC = δλ
(
∆VS

(
dB̃, dB̄, dB̂

)
−∆VF

(
uB̂, dB̂

))
+λ
∂∆VS

(
dB̃, dB̄, dB̂

)
∂dB̃

δdB̃+

+λ
∂∆VS

(
dB̃, dB̄, dB̂

)
∂dB̄

δdB̄−λ
∂∆VF

(
uB̂, dB̂

)
∂uB̂

δuB̂. (5.2.24)

The above variational form implies that the volume constraint is enforced at any time.
For a combination with the models developed so far, however, equation (5.2.24) needs
to be discretized in time. In this context, several alternatives are in general conceivable.
One possibility would be to satisfy the constraint on average over the time step. Another
approach – employed subsequently – is based on the enforcement of the constraint at a
discrete point in time, e.g. at the end of the time step [tn, tn+1]. Hence, the continuous
Lagrange multiplier λ is replaced with its discrete counterpart λn+1 in the following.

The Lagrange multiplier enforces the volume constraint globally and is, thus, not dis-
tributed in space. Therefore, spatial discretization of the variational form (5.2.24) basically
reduces to discretizing boundary displacements and velocities. Hence, the discrete weak
form of the volume coupling constraint evaluated at tn+1 reads

δWC
n+1 = δλ

(
∆VS

(
dB̃,dB̄,dB̂

)
−∆VF

(
uB̂,dB̂

))
n+1
+λn+1

∂∆VS
(
dB̃,dB̄,dB̂

)
∂dB̃


n+1

δdB̃+

+λn+1

∂∆VS
(
dB̃,dB̄,dB̂

)
∂dB̄


n+1

δdB̄−λn+1

∂∆VF
(
uB̂,dB̂

)
∂uB̂


n+1

δuB̂. (5.2.25)

For the sake of clarity, the following abbreviations are introduced

rC;C
I;n+1 =

(
∆VS

(
dB̃,dB̄,dB̂

)
−∆VF

(
uB̂,dB̂

))
n+1
= ∆VS

n+1−∆VF
n+1, (5.2.26)

fC;S
#;n+1 = λn+1

∂∆VS
n+1

∂d#;n+1
, (5.2.27)

hC;F
B̂;n+1

= λn+1
∂∆VF

n+1

∂uB̂;n+1
(5.2.28)

with # denoting a particular solid boundary. Hence, the discrete variation of the constraint
potential simplifies to

δWC
n+1 = rC;C

I;n+1δλ+ fC;S
B̃;n+1
δdB̃+ fC;S

B̄;n+1
δdB̄−hC;F

B̂;n+1
δuB̂. (5.2.29)

Equation (5.2.29) can also be interpreted as the additional virtual work due to the volume
coupling. Depending on the involved virtual quantity, the summands can be attributed to
either the constraint or the solid and fluid parts, i.e.

δWC
n+1 = δW

C;C
n+1 +δW

C;S
n+1 +δW

C;F
n+1 (5.2.30)
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with
δWC;C

n+1 = rC;C
I;n+1δλ, (5.2.31)

δWC;S
n+1 = fC;S

B̃;n+1
δdB̃+ fC;S

B̄;n+1
δdB̄, (5.2.32)

δWC;F
n+1 =−hC;F

B̂;n+1
δuB̂. (5.2.33)

As already discussed in section 2.2, the weak form of the Navier-Stokes equations cor-
responds to a virtual power expression. Hence, for combining equations (2.2.21) and
(5.2.33), the time derivative of the latter needs to be evaluated. In the continuous case,
this is equivalent to

δPC;F =
∂
(
δWC;F

)
∂t

. (5.2.34)

Since the following relations hold

∂∆VF

∂t
=
∂
(∫

qdt
)

∂t
= q,

∂
(
δuB̂

)
∂t

= 0, (5.2.35)

the discrete form of the virtual power (5.2.34) is determined by

δPC;F
n+1 =−λn+1

∂qn+1

∂uB̂;n+1
δuB̂ =−fC;F

B̂;n+1
δuB̂ (5.2.36)

with
fC;F
B̂;n+1

= λn+1
∂qn+1

∂uB̂;n+1
(5.2.37)

being a physical force along boundary B̂. Although the Lagrange multiplier also varies
with time, it enforces the constraint instantaneously at a discrete point in time indepen-
dently of its history. Therefore, no time derivative of λ appears in equation (5.2.36).

Based on the derivations presented so far, the overall residual of the volume-coupled FSI
system can be set up and linearized consistently. However, since the FSI part has already
been presented before, the focus remains on the additional contributions due to the volume
constraint to simplify matters for the time being. Recalling that ALE and solid meshes are
tied along the artificial outlet, i.e. dB̂ = dA

B̂
and dB̄ = dA

B̄, the following linearized problem
is obtained

C
KSS

B̃B̃

C
KSS

B̃B̄

C
KSS

B̃B̂

C
KSF

B̃B̂

C
KSC

B̃I
C
KSS

B̄B̃

C
KSS

B̄B̄

C
KSS

B̄B̂

C
KSF

B̄B̂

C
KSC

B̄I
C
KFS

B̂B̃

C
KFA

B̂B̄

C
KFA

B̂B̂

C
KFF

B̂B̂

C
KFC

B̂I
C
KCS

IB̃

C
KCS

IB̄

C
KCS/CA

IB̂

C
KCF

IB̂

C
KCC

II



i

n+1︸                                               ︷︷                                               ︸
C
Ki

n+1



∆dB̃

∆dB̄

∆dB̂

∆uB̂

∆λ



i+1

n+1

=−



rC;S
B̃

rC;S
B̄

rC;F
B̂

rC;C
I



i

n+1

(5.2.38)

145



5 Coupling to Airway Model
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and
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Advantage is taken of the fact that the change in fluid volume does not depend on the ve-
locities and coupled displacements at the FSI boundary as discussed above. Consequently,
corresponding linearizations are omitted here. Introducing equations (5.2.8), (5.2.10),
(5.2.26), (5.2.27), and (5.2.37) into the constraint system matrix (5.2.40) then yields
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. (5.2.41)

Corresponding derivatives of the field volume changes were already determined in sec-

tions 5.2.1.1 and 5.2.1.2. The resulting constraint stiffness matrix
C
Ki

n+1 is rectangular and
unsymmetric. This is partly due to the power formulation of the fluid field as pointed out
above. Besides, the weak form of the volume constraint does not contain any variations
with respect to displacements at B̂ as discussed previously. For a consistent linearization
of rλ, however, corresponding derivatives need to be included.

Finally, the overall system of equations for the volume-constrained FSI problem is given
by

KCFSI;i
n+1 ∆yCFSI;i+1

n+1 =−rCFSI;i
n+1 (5.2.42)

or, in more detail,
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where an overbar denotes scaling with 1
ρF . In contrast to the definitions given in Figure

5.1.1, all solid DOFs not situated along the boundaries are marked by the identifier I.
Hence, the distinction of DOFs associated with the resolved airway wall and those in the
homogenized domain is dropped for simplicity. Furthermore, several abbreviations for the
FSI contributions are introduced in addition to (2.4.8), e.g.

KFF/FA
IB = K˜FF

IB +KFA
IB = τK

FF
BB+KFA

BB (5.2.44)

KSFA
BB = KSS

BB+KFF/FA
BB = KSS

BB+ρ
FKFF/FA

BB . (5.2.45)

Again, the right-hand side vector has to be modified appropriately in the first iteration to
account for the history terms in equation (2.4.4).

The Lagrange multiplier can be interpreted as a uniform pressure acting on corresponding
boundaries. The contributions of the volume constraint in the FSI system can then be re-
garded as the resulting nodal forces on the air at the outlet and on the parenchyma block
along the enclosing boundary. It is noteworthy that fluid pressure and Lagrange multiplier
are not directly coupled at B̂. Instead, the fluid pressure automatically adjusts itself to equi-
librate the additional tractions due to the volume constraint. For instance, if the pressure at
the outlet would be equal to a given positive pressure at the inlet, no fluid flow would occur
in the unconstrained system. However, a positive pressure in general implies a non-zero
traction at the outlet. Since the system has to be in equilibrium, the additional forces due
to the volume constraint have to equilibrate these tractions, thereby yielding a non-zero
Lagrange multiplier. The resulting volume change of the parenchyma block would then
directly induce flow in the resolved airway. As a consequence, the outlet pressure would
also be adjusted. The above should illustrate conceptually that the solution to the problem
is uniquely defined.

In the linear system (5.2.43), the additional constraint equation as well as all linearizations
with respect to the Lagrange multiplier are highlighted in yellow. Modified equations of the
initial FSI system, i.e. rows in the stiffness matrix and residual vector, are marked in light
gray. A comparison with equations (5.1.11)-(5.1.12) reveals that the effect of the volume
constraint is similar to that of the static condensation performed in section 5.1.3. Thus,
the developed volume coupling approach is deemed suitable for modeling the interplay
between airflow in the resolved bronchial tree and parenchyma deformation in an efficient,
simplified way.

5.3 Solution techniques

In the previous section, the linearized system for the volume-coupled FSI problem has
been derived. Subsequently, the numerical solution of this system will be addressed. After
a short introduction to iterative solution techniques in general, a preconditioner developed
specifically for the constrained FSI problem will be presented in detail.
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5.3.1 General iterative solution procedure

Direct linear solvers, e.g. based on an LU-decomposition of the matrix, are in general not
suitable when the system

Ax = f (5.3.1)

is large and sparse. The inevitable “fill-in”, i.e. the replacement of zero matrix entries with
non-zero ones during the elimination or factorization process, causes a significant increase
in both memory requirements and computation times. Furthermore, the scalability of these
solution methods in case of parallel computations is rather poor.

Therefore, usually iterative methods are employed for determining the solution of large
and sparse linear systems. Starting with an initial guess x0, a sequence of solution vectors
xk is determined that converges towards the exact solution

x = A−1f. (5.3.2)

The iterative procedure is aborted if∣∣∣rlin;k
∣∣∣ = ∣∣∣f−Axk

∣∣∣ < ε lin (5.3.3)

holds. In this context, rlin;k denotes the residual of the linear system at iteration k and ε lin

refers to a user-defined convergence criterion. Consequently, the linear system is solved
only approximately. An in-depth overview of available iterative solvers is provided e.g. in
Saad (2003).

For the simulations presented in this thesis, an implementation of the generalized mini-
mal residual algorithm – also known as GMRES (Saad and Schulz, 1986) – provided by
the AZTEC package (Tuminaro et al., 1999) is employed. This solution method has the
property of minimizing for every k the norm of the residual vector

∣∣∣rlin;k
∣∣∣ over the Krylov

subspace given by

Kk
(
A, rlin;0

)
= span

{
rlin;0, Arlin;0, A2rlin;0, ..., Ak−1rlin;0

}
(5.3.4)

where rlin;0 is the initial residual.

The convergence behavior of any iterative solver strongly depends on the spectral proper-
ties of the system matrix. In this context, the condition number of A is defined by

κ̄ (A) =
Λ̄max (A)
Λ̄min (A)

(5.3.5)

with Λ̄max (A), Λ̄min (A) being the maximum and minimum eigenvalue of A, respectively.
A small κ̄ usually implies fast convergence of the linear solver, whereas a large κ̄ may
render the application of an iterative algorithm nearly impossible. To improve its eigen-
value spectrum, the linear system is usually preconditioned by means of suitable linear
transformations. For instance, the system (5.3.1) can also be restated as

AM−1
R MRx = f (5.3.6)
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where MR is an appropriate preconditioning matrix. In this context, the identifier R indi-
cates that equation (5.3.6) involves right (in contrast to left) preconditioning. Subsequent
considerations are restricted to this alternative, since it is employed exclusively throughout
this work. For determining x, first the intermediate system(

AM−1
R

)
x́ = f (5.3.7)

is solved iteratively with the GMRES method based on the modified Krylov space

Kk
prec

(
AM−1

R , r
lin;0
prec

)
= span

{
rlin;0
prec, AM−1

R rlin;0
prec, ...,

(
AM−1

R

)k−1
rlin;0
prec

}
(5.3.8)

with
rlin;0
prec = f−AM−1

R x́0. (5.3.9)

Finally, the original solution can be obtained as

x =M−1
R x́. (5.3.10)

From equations (5.3.8)-(5.3.10), it becomes clear that the solution process involves the
application of the inverse preconditioning matrix M−1

R on different vectors. However, M−1
R

is in general not computed explicitly by inverting MR. Instead, any matrix vector product

z =M−1
R y (5.3.11)

with arbitrary vectors z and y is computed by approximately solving the corresponding
linear system

MRz = y (5.3.12)

either directly or iteratively. Therefore, the strict distinction between “solver” and “pre-
conditioner” is usually somewhat blurry. In fact, the preconditioner can be interpreted as
the actual solver, whereas the Krylov method serves as an accelerator only. Hence, the
approximate application of M−1

R to a vector is subsequently referred to as the solution of
the corresponding linear system for simplicity.

Basically, a preconditioner can be any subsidiary approximate solver combined with an
outer iteration technique as indicated above. Apart from reducing the condition number
of the system matrix, the inverse preconditioning matrix should be easily applicable to a
given vector, i.e. solving the linear system (5.3.12) should be as inexpensive as possible,
particularly in the parallel case. The specific choice of MR is strongly problem dependent.
In the following subsection, a preconditioner specifically suitable for the volume-coupled
FSI problem will be introduced.
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5.3.2 Preconditioner for volume-coupled FSI

The linear problem (5.2.43) corresponds to an unsymmetric saddle point system (cf. also
section 2.5.1). A comprehensive review on possible solution methods for this type of
problems can be found e.g. in Benzi et al. (2005). Subsequently, a novel precondition-
ing algorithm will be introduced based on the combination and modification of existing
techniques for generalized saddle point problems and monolithic FSI problems.

5.3.2.1 Block preconditioner for saddle point problem

Due to the different characteristics of the involved equations, block preconditioning, i.e.
a decomposition into simplified subproblems, seems to be particularly suitable here. An
appropriate splitting of the constrained FSI problem is given by[

F BT

B̂ 0

] [
∆u
∆λ

]
=−

[
ru

rλ

]
(5.3.13)

with the modified FSI matrix

F =



KSS
II KSS

IB KSS
IB̄ KSS

IB̂
KSS

IB̃
0 0 0

KSS
BI KSFA

BB KSFA
BB̄ 0 0 KFF

BI 0 KFA
BI

KSS
B̄I KSFA

B̄B KSFA
B̄B̄ +

C
KSS

B̄B̄ KSS
B̄B̂
+

C
KSS

B̄B̂
+KFA

B̄B̂
KSS

B̄B̃
+

C
KSS

B̄B̃
KFF

B̄I KFF
B̄B̂

KFA
B̄I

KSS
B̂I

0 KSS
B̂B̄

KSS
B̂B̂

0 0 0 0

KSS
B̃I

0 KSS
B̃B̄
+

C
KSS

B̃B̄
0 KSS

B̃B̃
+

C
KSS

B̃B̃
0 0 0

0 KFF/FA
IB KFF/FA

IB̄
KFA

IB̂
0 KFF

II KFF
IB̂

KFA
II

0 0 KFF/FA
B̂B̄

+
C

K
FA
B̂B̄

C

K
FA
B̂B̂+KFA

B̂B̂
0 KFF

B̂I
KFF

B̂B̂
KFA

B̂I

0 KAA
IB KAA

IB̄ KAA
IB̂

0 0 0 KAA
II



,

(5.3.14)
the constraint “coupling” matrices

BT =



0
0

C
KSC

B̄I

0
C
KSC

B̃I
0

C

K
FC
B̂I

0



, B̂ =
[

0 0
C
KCS

IB̄

C
KCS/CA

IB̂

C
KCS

IB̃
0

C
KCF

IB̂
0

]
, (5.3.15)
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the modified FSI residual and vector of unknowns

ru =



rS
I

rS
B+ rF

B

rS
B̄
+ rF

B̄
+ rC;S

B̄
rS
B̂

rS
B̃
+ rA

B̃
+ rC;S

B̃
rF
I

rF
B̂
+ rC;F

B̂

rA
I



, ∆u =



∆dI

∆dB

∆dB̄

∆dB̂

∆dB̃

∆uI

∆uB̂

∆dA
I



(5.3.16)

and the constraint residual rλ = rC;C
I . In contrast to equation (5.2.43), the constrained FSI

problem is now set up for the case of multiple outlets and associated parenchyma blocks.
In this case, each pair of outlet and tissue block requires the introduction of a volume
constraint condition enforced by an additional Lagrange multiplier. Hence, the scalar La-
grange multiplier λ and constraint residual rC;C

I in equation (5.2.43) are replaced by their
corresponding vectorial counterparts λ and rC;C

I , respectively. For simplicity, identifiers
for the current time and nonlinear iteration step are omitted here and in the following.

A well-established block preconditioner for this type of linear system is the semi-implicit
method for pressure-linked equations (SIMPLE), which was proposed by Caretto et al.
(1972) and Patankar and Spalding (1972) for the Navier-Stokes equations. SIMPLE is
based on solving the linear system (5.3.13) approximately by a cyclic series of guess-and-
correct operations. The corresponding preconditioning matrix is chosen as the following
incomplete factorization of the original Jacobian

A =
[

F BT

B̂ 0

]
≈

[
I 0

B̂F−1 I

] [
F 0
0 −Ŝ

] [
I D−1BT

0 1
α I

]
=

=

[
F 0
B̂ −Ŝ

]
︸       ︷︷       ︸

MR;1

[
I D−1BT

0 1
α I

]
︸            ︷︷            ︸

MR;2

=MR. (5.3.17)

In this context, the matrix D contains the entries of the modified FSI matrix F on the main
diagonal, i.e.

D = diag(F) (5.3.18)

and Ŝ refers to the approximate Schur complement

Ŝ = B̂D−1BT. (5.3.19)

α ∈ (0,1] serves as a damping parameter as will become clear later on.

The preconditioning process now involves application of M−1
R on different vectors. As

already mentioned in the previous section, this basically implies the solution of a linear
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system. For simplicity, subsequent derivations are made with respect to an abstract vector y
representing either a vector of the hitherto existing Krylov space (5.3.8) or the intermediate
solution vector in equation (5.3.10). The corresponding linear system (5.3.12) can then be
solved by means of a stationary iteration, i.e.

z j+1 = z j+M−1
R

(
y−Az j

)
. (5.3.20)

Although not representing the solution and right-hand side vector of the original system
(5.3.13), the vectors z and y can also be split into an FSI and a constraint part. Hence, the
detailed version of equation (5.3.20) reads[

zu; j+1

zλ; j+1

]
=

[
zu; j

zλ; j

]
+M−1

R

([
yu

yλ

]
−

[
F BT

B̂ 0

] [
zu; j

zλ; j

])
. (5.3.21)

Defining now the increment of the solution vector and the residual of the linear system

∆z j+1 =

[
zu; j+1

zλ; j+1

]
−

[
zu; j

zλ; j

]
=

[
∆zu; j+1

∆zλ; j+1

]
, (5.3.22)

rlin =

[
yu

yλ

]
−

[
F BT

B̂ 0

] [
zu; j

zλ; j

]
(5.3.23)

allows to restate the stationary iteration (5.3.21) in terms of the following linear problem

MR;1MR;2∆z j+1 = rlin. (5.3.24)

Here, the decomposition of the preconditioning matrix given in equation (5.3.17) is uti-
lized. The solution of the linear system (5.3.24) can be obtained in two consecutive steps.
First, the simplified system

MR;1∆z̃ j+1 = rlin (5.3.25)

is solved for the intermediate increment

∆z̃ j+1 =MR;2∆z j+1. (5.3.26)

Inserting equations (5.3.17) and (5.3.23) into the simplified system (5.3.25) then yields[
F 0
B̂ −Ŝ

] [
∆z̃u; j+1

∆z̃λ; j+1

]
=

[
yu−Fzu; j−BTzλ; j

yλ− B̂zu; j

]
. (5.3.27)

Due to the chosen decomposition of the preconditioner, FSI and constraint DOFs are de-
coupled in the first block of equations. Therefore, the FSI part of the problem given by

Fzu; j+ 1
2 = yu−BTzλ; j (5.3.28)

can be treated separately. In this context, the intermediate FSI solution vector zu; j+ 1
2 satis-
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5 Coupling to Airway Model

fies the first block of equations for a given vector zλ; j and is defined by

zu; j+ 1
2 = zu; j+∆z̃u; j+1. (5.3.29)

The actual solution of equation (5.3.28) will be discussed in more detail in section 5.3.2.2.
Thus, for the time being, the focus remains on the SIMPLE procedure.

As a next step, the intermediate constraint increment is calculated from the second block of
equations representing the imposed constraint conditions. Moving the summand involving
the known intermediate FSI increment vector ∆z̃u; j+1 to the right-hand side, the second
part of equation (5.3.27) reads

− Ŝ∆z̃λ; j+1 = yλ− B̂
(
zu; j+∆z̃u; j+1

)
. (5.3.30)

After introduction of the intermediate FSI solution vector (5.3.29), the following linear
problem is obtained

Ŝ∆z̃λ; j+1 =−yλ+ B̂zu; j+ 1
2 . (5.3.31)

The size of the above linear system depends on the number of airway outlets and associ-
ated parenchyma regions in the simulation model. In general, the number of constraints
involved is rather small so that the application of a direct solver like UMFPACK (see Davis
and Duff (1997) for details) is acceptable.

Since both blocks of ∆z̃ j+1 are known now, the actual increment vector ∆z j+1 can be
determined from equation (5.3.26), i.e.[

I D−1BT

0 1
α I

] [
∆zu; j+1

∆zλ; j+1

]
=

[
∆z̃u; j+1

∆z̃λ; j+1

]
. (5.3.32)

Hence, the constraint increment vector simply equates to

∆zλ; j+1 = α∆z̃λ; j+1. (5.3.33)

Accordingly, the corresponding solution vector reads

zλ; j+1 = zλ; j+∆zλ; j+1 = zλ; j+α∆z̃λ; j+1 (5.3.34)

where α ∈ (0,1] can now be easily interpreted as a relaxation parameter in the update of
the constraint part of z j+1. Unfortunately, an appropriate α can only be found by trial and
error. According to Rehman et al. (2009), however, a good choice for this parameter is
more important when SIMPLE is employed as a stand-alone iterative solver than when it
is used as a preconditioner.

The constraint increment vector (5.3.33) can be introduced into the first block of equation
(5.3.32), i.e.

∆zu; j+1 = ∆z̃u; j+1−D−1BT∆zλ; j+1 =

= ∆z̃u; j+1−αD−1BT∆z̃λ; j+1. (5.3.35)
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Algorithm 5.1 SIMPLE procedure employed as preconditioner for the volume-coupled
FSI problem.
for each iteration j:

FSI part:
Solve (5.3.28) for the intermediate FSI solution vector zu; j+ 1

2 (cf. Algorithm 5.2)
Constraint part:

Solve (5.3.31) for the intermediate constraint increment vector ∆z̃λ; j+1

Calculate the new constraint solution vector zλ; j+1 (5.3.34)
Compute the new FSI solution vector zu; j+1 (5.3.37)

The FSI solution vector is then given by

zu; j+1 = zu; j+∆zu; j+1 (5.3.36)

or, using the intermediate FSI solution vector (5.3.29),

zu; j+1 = zu; j+ 1
2 −αD−1BT∆z̃λ; j+1. (5.3.37)

At this point, the current overall solution vector z j+1 is completely known and can be used
as a starting point for the next iteration.

In summary, one SIMPLE iteration consists of two basic steps (cf. also Algorithm 5.1).
Initially, a new intermediate FSI solution vector zu; j+ 1

2 is determined from the first block
of equations using the old constraint solution vector zλ; j. Since zu; j+ 1

2 does not satisfy the
imposed constraint conditions, the second block of equations is then utilized to adjust the
constraint solution vector zλ; j+1. Based on that, the new FSI solution vector zu; j+1 can be
calculated in a straightforward manner.

The SIMPLEC preconditioner is an alternative to the classical SIMPLE procedure that can
be easily implemented once the general framework is set up. In this case, the diagonal
approximation D of the modified FSI matrix F is replaced with a diagonal matrix D̃ whose
entries contain the absolute values of the row sums of F. According to Elman et al. (2008),
this choice is more effective than the classical one since D̃ provides a better approximation
to F.

Because the different blocks of z are calculated successively, the SIMPLE(C) algorithm
is characterized by a high flexibility with regard to the underlying solution methods. As
already mentioned, for the constraint part (5.3.31), a direct solution method is utilized. The
solver employed for the FSI part will now be presented in more detail.

5.3.2.2 Block preconditioner for FSI problem

The determination of the intermediate FSI vector involves the solution of the following
linear system (cf. equation (5.3.28))

Fzu; j+ 1
2 = yu−BTzλ; j. (5.3.38)
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In this context, the modified FSI matrix F reads

F =



KSS
II KSS

IB KSS
IB̄ KSS

IB̂
KSS

IB̃
0 0 0

KSS
BI KSFA

BB KSFA
BB̄ 0 0 KFA

BI KFF
BI 0

KSS
B̄I KSFA

B̄B KSFA
B̄B̄ +

C
KSS

B̄B̄ KSS
B̄B̂
+

C
KSS

B̄B̂
+KFA

B̄B̂
KSS

B̄B̃
+

C
KSS

B̄B̃
KFA

B̄I KFF
B̄I KFF

B̄B̂

KSS
B̂I

0 KSS
B̂B̄

KSS
B̂B̂

0 0 0 0

KSS
B̃I

0 KSS
B̃B̄
+

C
KSS

B̃B̄
0 KSS

B̃B̃
+

C
KSS

B̃B̃
0 0 0

0 KAA
IB KAA

IB̄ KAA
IB̂

0 KAA
II 0 0

0 KFF/FA
IB KFA/FF

IB̄
KFA

IB̂
0 KFA

II KFF
II KFF

IB̂

0 0 KFF/FA
B̂B̄

+
C

K
FA
B̂B̄

C

K
FA
B̂B̂+KFA

B̂B̂
0 KFA

B̂I
KFF

B̂I
KFF

B̂B̂


(5.3.39)

where the dashed lines indicate the partitioning of the matrix into blocks representing the
solid, ALE, and fluid fields. Hence, after introduction of some appropriate abbreviations,
F can be simply restated as

F =


FSS FSA FSF

FAS FAA 0
FFS FFA FFF

 . (5.3.40)

It is noteworthy that the order of equation blocks has been changed here in preparation
for the solution process. Accordingly, the constraint coupling matrix as well as the FSI
solution and right-hand side vectors can be split into field-specific components, i.e.

BT =

[
0 0

C
KSC

B̄I 0
C
KSC

B̃I
0 0

C

K
FC
B̂I

]T
=

 BT;S

0
BT;F

 , (5.3.41)

and

zu; j+ 1
2 =



zu;S
I

zu;S
B

zu;S
B̄

zu;S
B̂

zu;S
B̃

zu;A
I

zu;F
I

zu;F
B̂



j+ 1
2

=

 zu;S

zu;A

zu;F


j+ 1

2

, yu =



yu;S
I

yu;S
B

yu;S
B̄

yu;S
B̂

yu;S
B̃

yu;A
I

yu;F
I

yu;F
B̂



=

 yu;S

yu;A

yu;F

 . (5.3.42)

Since the determination of zu; j+ 1
2 is part of the preconditioning process, the linear problem
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(5.3.38) is solved only approximately. Therefore, a block preconditioning technique as
proposed by Küttler (2009) and Küttler et al. (2010) can be adopted here. This approach
has proven to be very convenient for complex monolithic FSI problems. Starting point is
the following decomposition of the block system matrix

F = L+D+U (5.3.43)

with

L=


0 0 0

FAS 0 0
FFS FFA 0

 , D=


FSS 0 0

0 FAA 0
0 0 FFF

 , U=

 0 FSA FSF

0 0 0
0 0 0

 . (5.3.44)

being the lower, diagonal, and upper matrix, respectively. The intermediate FSI solu-
tion vector is computed using a relaxed Gauss-Seidel method as e.g. described in Saad
(2003). The application of this procedure – which is also known as successive overrelax-
ation (SOR) – to the linear system (5.3.38) yields

(D+ωL)zu; j+ 1
2 ;l+1+ (ωU− (1−ω)D)zu; j+ 1

2 ;l = ω
(
yu−BTzλ; j

)
(5.3.45)

where l denotes the Gauss-Seidel iteration counter and ω ∈ (0,2) refers to a constant relax-
ation parameter. After some restructuring, equation (5.3.45) reads

zu; j+ 1
2 ;l+1 = (D+ωL)−1

(
ω

(
yu−BTzλ; j

)
+ ((1−ω)D−ωU)zu; j+ 1

2 ;l
)
=

= (D+ωL)−1
(
ω

(
yu−BTzλ; j

)
−ω (L+D+U)zu; j+ 1

2 ;l+ (D+ωL)zu; j+ 1
2 ;l

)
=

= zu; j+ 1
2 ;l+ω (D+ωL)−1

(
yu−BTzλ; j−Fzu; j+ 1

2 ;l
)
. (5.3.46)

Introduction of the iteration residual

r̄u; j+ 1
2 ;l =

 r̄u;S

r̄u;A

r̄u;F


j+ 1

2 ;l

=

=


yu;S−BT;Szλ; j+ 1

2 −FSSzu;S; j+ 1
2 ;l−FSAzu;A; j+ 1

2 ;l−FSFzu;F; j+ 1
2 ;l

yu;A−FASzu;S; j+ 1
2 ;l−FAAzu;A; j+ 1

2 ;l

yu;F−BT;Fzλ; j+ 1
2 −FFSzu;S; j+ 1

2 ;l−FFAzu;A; j+ 1
2 ;l−FFFzu;F; j+ 1

2 ;l

 (5.3.47)

and the inverse “preconditioning” matrix

(
M̄u

)−1
= (D+ωL)−1 =


FSS 0 0
ωFAS FAA 0
ωFFS ωFFA FFF


−1

(5.3.48)
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Algorithm 5.2 Relaxed Block-Gauss-Seidel (SOR) procedure employed as approximate
solver for the modified FSI problem (5.3.38).
for each iteration l:

Compute solid solution increment ∆zu;S; j+ 1
2 ;l+1 from (5.3.51){ field-specific solver

Update structure solution zu;S; j+ 1
2 ;l+1 (5.3.52)

Compute ALE solution increment ∆zu;A; j+ 1
2 ;l+1 from (5.3.55){ field-specific solver

Update ALE solution zu;A; j+ 1
2 ;l+1 (5.3.56)

Compute fluid solution increment ∆zu;F; j+ 1
2 ;l+1 from (5.3.58){ field-specific solver

Update fluid solution zu;F; j+ 1
2 ;l+1 (5.3.59)

allows for the following short notation of equation (5.3.46)

zu; j+ 1
2 ;l+1 = zu; j+ 1

2 ;l+ω
(
M̄u

)−1
r̄u; j+ 1

2 ;l (5.3.49)

which can now be identified as a stationary Richardson iteration.

The determination of the updated intermediate FSI vector, thus, requires the solution of the
following linear problem

M̄u∆zu; j+ 1
2 ;l+1 = r̄u; j+ 1

2 ;l. (5.3.50)

In this context, the different equation blocks are solved successively taking into account
the modified order introduced above. Thereby, field-specific parallel solvers like multi-grid
methods can be utilized. First, the solution of the solid field is determined from

FSS∆zu;S; j+ 1
2 ;l+1 = r̄u;S; j+ 1

2 ;l =

= yu;S−BT;Szλ; j+ 1
2 −FSSzu;S; j+ 1

2 ;l−FSAzu;A; j+ 1
2 ;l−FSFzu;F; j+ 1

2 ;l (5.3.51)

and
zu;S; j+ 1

2 ;l+1 = zu;S; j+ 1
2 ;l+ω∆zu;S; j+ 1

2 ;l+1. (5.3.52)

In a next step, the update of the ALE solution is calculated from

FAA∆zu;A; j+ 1
2 ;l+1 = r̄u;A; j+ 1

2 ;l−ωFAS∆zu;S; j+ 1
2 ;l+1. (5.3.53)

Introducing the expression for the ALE iteration residual into above equation yields

FAA∆zu;A; j+ 1
2 ;l+1 = yu;A−FASzu;S; j+ 1

2 ;l−FAAzu;A; j+ 1
2 ;l−ωFAS∆zu;S; j+ 1

2 ;l+1, (5.3.54)

which can be simplified using relation (5.3.52), i.e.

FAA∆zu;A; j+ 1
2 ;l+1 = yu;A−FASzu;S; j+ 1

2 ;l+1−FAAzu;A; j+ 1
2 ;l. (5.3.55)

The new ALE solution vector then reads

zu;A; j+ 1
2 ;l+1 = zu;A; j+ 1

2 ;l+ω∆zu;A; j+ 1
2 ;l+1. (5.3.56)
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Finally, the increment of the fluid solution vector is computed by solving the linear system
given by

FFF∆zu;F; j+ 1
2 ;l+1 = r̄u;F; j+ 1

2 ;l−ωFFS∆zu;S; j+ 1
2 ;l+1−ωFFA∆zu;A; j+ 1

2 ;l+1. (5.3.57)

Insertion of the fluid iteration residual as well as the increments of the solid and ALE
solution vectors allows to rewrite equation (5.3.57) as

FFF∆zu;F; j+ 1
2 ;l+1 = yu;F−BT;Fzλ; j+ 1

2 −FFSzu;S; j+ 1
2 ;l+1−FFAzu;A; j+ 1

2 ;l+1−

−FFFzu;F; j+ 1
2 ;l. (5.3.58)

The old fluid solution vector is then updated according to

zu;F; j+ 1
2 ;l+1 = zu;F; j+ 1

2 ;l+ω∆zu;F; j+ 1
2 ;l+1. (5.3.59)

The order of the equation blocks is defined such that solid and ALE fields directly influence
the fluid solution, whereas the fluid field does not feed back until the next Gauss-Seidel
step, see equation (5.3.51). According to Küttler (2009), this choice is beneficial since
the effect of the structure field on the fluid is commonly stronger than vice versa. For the
same reason, in general no symmetric Gauss-Seidel method is employed for this type of
problems.

A summary of the presented relaxed Block-Gauss-Seidel procedure for the modified FSI
problem is given in Algorithm 5.2.

5.4 Numerical Examples

5.4.1 Validation

The set-up of a simple numerical simulation suitable for validating the presented volume-
coupling approach is shown in Figure 5.4.1. Basically, a cubic parenchyma block (edge
length 10 mm) was inflated with air transported through the associated cuboid conducting
airway (2.5 mm×2.5 mm×6 mm). Both domains were bordered by a layer of elements
(thickness 0.5 mm) representing the block and airway walls, respectively.

For reference purposes, a simulation based on the homogenized mixture model was per-
formed. In this case, fluid and solid domains were superimposed in the peripheral region
and coupled at the interior surface of the enclosing block wall denoted by B̃, see Figure
5.4.1(b). In the volume coupling simulation, the fluid field was not resolved in the pe-
ripheral domain. Instead, the volume coupling constraint was introduced to capture the
influence of peripheral airflow on parenchyma deformation and flow in the resolved ves-
sel in a simplified way. More precisely, the volume of air flowing through the artificial
boundary B̂ in a time step ∆t was constrained to be equal to the change in volume of the
parenchyma block enclosed by B̃∪ B̄∪ B̂ as defined in 5.4.1(c). In both simulations, FSI
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5 Coupling to Airway Model

Figure 5.4.1: General set-up of validation example. (a) Definition of points for compar-
ing the fluid pressure (A) and the overall solid displacements (B) in the reference and
model simulation. (b) Configuration of reference simulation. (c) Configuration of volume-
coupled simulation.

was considered along the resolved airway wall B∪ B̄. Subsequently, simulation results
of the volume-coupled model are referred to as the “model solution” in contrast to the
“reference solution” provided by the homogenized mixture model.

A Neo-Hookean constitutive law was chosen for airway and block walls (with Young’s
modulus ES

wall =50 kPa, Poisson’s ratio νSwall = 0.3, and density ρS
wall =1000 kg/m3) as well

as for the parenchyma block itself (with Young’s modulus ES
block = 0.675 kPa, Poisson’s

ratio νSblock = 0.3, and density ρS
block = 1000 kg/m3). For the air in the resolved feeding

vessel, the kinematic viscosity was given by νF = 15 mm2/s and the density was chosen
as ρF =1 kg/m3. On the inlet of the resolved airway, a parabolic inflow profile in vertical
direction was prescribed. The maximum velocity was given by

umax = u0 sin
(
2πt
T

)
(5.4.1)

with u0 =2 m/s and T =100 ms. The total simulation time was 50 ms in both cases.

The development of the fluid pressures and the overall parenchyma displacements in points
A and B defined in Figure 5.4.1(a) is shown in Figure 5.4.2. Reference and model results
were in remarkable agreement at all simulated time steps.

In Figure 5.4.3, the distribution of the overall displacements at t = tend is given for both
cases. The overall fluid velocities under maximum inflow – i.e. at t = tmid – are shown
throughout the respective simulation domains in Figure 5.4.4. Flow patterns in the resolved
airway were nearly the same. In Figure 5.4.5, corresponding fluid pressures at t = tmid are
depicted. Although the pressure at the inlet (cf. Figure 5.4.2(b)) was almost identical in
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Figure 5.4.2: Development of (a) displacements at node B and (b) pressures at node A
(confer Figure 5.4.1(a) for positions) over simulated time steps in reference and model
simulation.

both cases, its distribution over the length of the resolved airway was slightly different.
This comes about due to the flow in the peripheral region (see also Figure 5.4.4) which
was assumed to be negligible in the derivation of the volume coupling. Accordingly, the
outlet pressure provided by the novel model corresponded to the average of the pressure
along B̃ in the reference simulation. It should be noted that, in reality, airflow within the
peripheral domain is impeded by the narrow ramifications. Therefore, the results obtained
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5 Coupling to Airway Model

Figure 5.4.3: Clipped view of reference (left) and model (right) solution for overall dis-
placements in mm at t = tend (i.e. under maximum deformation).

Figure 5.4.4: Clipped view of reference (left) and model (right) solution for overall fluid
velocities in m/s at t = tmid (i.e. under maximum inflow).

by means of the volume-coupled model may be deemed even more physiological than the
actual reference solution.

For illustrative purposes, the additional forces due to the volume coupling constraint are
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5.4 Numerical Examples

Figure 5.4.5: Clipped view of reference (left) and model (right) pressure solution in Pa at
t = tmid (i.e. under maximum inflow).

Figure 5.4.6: Forces in µN on parenchyma (left) and air (right) due to the coupling of
volume changes.

given in Figure 5.4.6. Consistent with the derivations presented in previous sections, the
parenchyma block experienced tractions along B̃∪ B̄, whereas the fluid field was loaded
along B̂. In this way, the effect of peripheral flow on parenchyma deformation and airflow
in the resolved vessel was taken into account properly.
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5 Coupling to Airway Model

Figure 5.4.7: Dimensions of airways and parenchyma blocks in mm.

Figure 5.4.8: Definition of boundaries of left (identifier “L”) and right (identifier “R”)
blocks and associated airways.

In summary, the model solutions for all simulated fields convincingly matched the corre-
sponding reference solutions. In the following, the applicability of the developed volume
coupling approach to cases with multiple airway outlets and associated parenchyma blocks
will be demonstrated.

5.4.2 Multiple outlets

In Figure 5.4.7, the geometry of an embedded Y-shaped bifurcation employed subse-
quently in several numerical simulations is displayed. The cubical parenchyma model
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was split into two equally big blocks consistent with the two outlets of the immersed cylin-
drical airways. For simplicity, the wall of the resolved terminal airway was not modeled
explicitly. Hence, the homogenized parenchyma directly adjoined the FSI interface that
was denoted by B̌L or B̌R, respectively (see Figure 5.4.8 for a detailed definition of deci-
sive boundaries). However, the modeling approach introduced beforehand was of course
applicable also in this case without further modifications.

For each subsystem, a separate volume constraint was introduced. Therefore, the air
flowing through the left outlet B̂L was coupled to the deformation of the left block en-
closed by B̃∪ B̃L ∪ B̌L ∪ B̄L ∪ B̂L. Analogously, the volume of air flowing through the
right outlet B̂R was constrained to equal the volume change of the right block enclosed by
B̃∪ B̃R∪ B̌R∪ B̄R∪ B̂R.

The kinematic viscosity and the density of air were again assumed as νF = 15 mm2/s and
ρF = 1 kg/m3, respectively. The homogenized parenchyma was modeled using a Neo-
Hookean constitutive law with Poisson’s ratio νS = 0.3 and density ρS =1000 kg/m3.

Subsequent simulations were performed on three processors in parallel. For distribut-
ing the meshes over the different processors, the open-source MPI-based parallel library
ParMETIS was employed. A typical partitioning of the solid and fluid meshes is shown
in Figures 5.4.9(a) and 5.4.9(b), respectively. Even though the enclosing boundaries of
the parenchyma blocks were distributed over all three processors, evaluation of the surface
integrals involved in the computation of the volume changes was straightforward. The
accuracy of the results has been verified by comparing with a serial simulation (data not
shown).

In the first numerical example, a Young’s modulus of ES
L = ES

R = 6.75 kPa was chosen,
i.e. both blocks exhibited the same material properties. On the inlet of the bifurcation, a
parabolic inflow profile in vertical direction was prescribed with maximum velocity

umax =

15 m
s2 · t for t ≤ 0.1s

1.5 m
s for 0.1s < t ≤ 0.15s

(5.4.2)

In Figure 5.4.10(a), the overall deformation of the parenchyma blocks is displayed. To
visualize flow patterns in the resolved airways, selected streamlines are shown in Figure
5.4.10(b) where the colors represent the absolute local velocities. The additional forces on
parenchyma and air due to the volume constraint are given in Figure 5.4.11. In contrast
to the validation example, the FSI interfaces B̌L and B̌R were also loaded since they were
part of the enclosing boundaries. Due to the locally different element sizes, the absolute
value of the forces – which represent the stress resultants of the inflating pressure – varied.
On the shared part of the enclosing boundaries B̃, the forces canceled as expected. The
plot in Figure 5.4.12 illustrates the uniform splitting of the outflowing air volume between
the two outlets. Hence, the presented example was characterized by a perfectly symmetric
distribution of all fields.

In the second example, the Young’s modulus of the left parenchyma block was doubled,
i.e. ES

L = 13.5 kPa. This setting represented a simplified model of heterogeneous lung
damage, e.g. resulting from the instability and collapse of peripheral, unresolved airspaces
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5 Coupling to Airway Model

Figure 5.4.9: Distribution of solid (a) and fluid (b) meshes on three processors. For the
sake of clarity, a clipped view of the parenchyma blocks is provided.

Figure 5.4.10: Symmetric case with prescribed inflow. (a) Overall deformation of
parenchyma model in mm. (b) Streamlines of airflow with colors indicating overall ve-
locities in m/s. For the sake of clarity, clipped views are provided.
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Figure 5.4.11: Forces in µN on parenchyma (left) and air (right) due to the coupling of
volume changes in the symmetric case. For the sake of clarity, clipped views are provided.
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Figure 5.4.12: Splitting of overall outflowing air volumes between the two outlets in the
symmetric case.

followed by local atelectasis. Corresponding simulation results for the distribution of over-
all displacements and air velocities are shown in Figures 5.4.13(a) and 5.4.13(b), respec-
tively. The splitting of air volumes between the two blocks is given in Figure 5.4.14. Most
of the incoming air was transported into the softer right parenchyma block resulting in an
unsymmetric deformation state.

The next example illustrates that the volume coupling approach can be easily combined
with the nested multi-scale method presented in chapter 4. In this way, a simplified overall
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5 Coupling to Airway Model

Figure 5.4.13: Unsymmetric case (inhomogeneous material parameters) with prescribed
inflow. (a) Overall deformation of parenchyma model in mm. (b) Streamlines of airflow
with colors indicating overall velocities in m/s. For the sake of clarity, clipped views are
provided.
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Figure 5.4.14: Splitting of overall outflowing air volumes between the two outlets in the
unsymmetric case (inhomogeneous material parameters).
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Figure 5.4.15: Combination of volume-coupled FSI and multi-scale approach in the un-
symmetric case. Left: overall deformation of parenchyma model in mm. Right: overall
deformation of alveolar micro-structures in µm at different locations. For the sake of clar-
ity, clipped views are provided.

lung model comprising the conducting and the respiratory part of the lung down to single
alveoli can be established. Throughout the bulk of the parenchyma blocks, the same ma-
terial model and parameters as in the heterogeneous example discussed beforehand were
utilized. At one selected Gauss point in each block, however, the multi-scale approach
was employed. In this context, a simple artificial alveolar ensemble was again chosen as
a “representative” micro-structure (see also section 4.4.2). For simplicity, no interfacial
phenomena were considered in this example. The resulting alveolar displacements were
governed by the associated macro-scale deformation state (cf. the right-hand side of Figure
5.4.15). However, since the FE2 method was applied in two Gauss points only, the specific
parameters on the micro-scale hardly affected the overall behavior. Therefore, the defor-
mation state of the parenchyma blocks displayed in Figure 5.4.15 basically coincided with
the one given in Figure 5.4.13 for the single-scale simulation.

The previous two examples have shown that a heterogeneous state can be modeled by
selecting different material parameters for the parenchyma blocks. However, the overall
stiffness also significantly depends on the respective size of the blocks. Therefore, in the
following example, the right parenchyma block was enlarged compared to the left one.
The other settings were the same as in the symmetric case discussed above. In Figures
5.4.16(a) and 5.4.16(b), the distribution of the overall displacements and airflow veloci-
ties is displayed. For a given volume change, the strains in the right parenchyma block
were smaller than in the left one due to its larger reference size. Since the stiffness of
the material increases with increasing strain, the right block behaved softer than the left
one. As a consequence, more air flowed into the right block as is also demonstrated in Fig-
ure 5.4.17. Thus, when setting up an overall lung model, the different ventilation units have

169



5 Coupling to Airway Model

Figure 5.4.16: Unsymmetric case (different block sizes) with prescribed inflow. (a) Overall
deformation of parenchyma model in mm. (b) Streamlines of airflow with colors indicating
overall velocities in m/s. For the sake of clarity, clipped views are provided.
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Figure 5.4.17: Splitting of overall outflowing air volumes between the two outlets in the
unsymmetric case (different block sizes).

to be carefully defined in order to avoid the accidental introduction of an unphysiological
heterogeneity.
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Figure 5.4.18: Overall deformations in mm (left) as well as distribution of airflow veloci-
ties in m/s (right) at (a) t1 =0.125 s and (b) at t2 =0.375 s. For the sake of clarity, clipped
views are provided.

So far, the coupling of airflow and parenchyma deformation has been studied for a pre-
scribed inflow at the inlet of the airway model. In case of normal breathing, however, flow
is induced by chest wall deformation and diaphragm contraction. The following example
demonstrates that the presented volume coupling approach is also suitable for this kind of
boundary conditions. At the bottom surface of the blocks, a uniform vertical displacement
was prescribed as follows

d(t) = dmax sin
(
2πt
T

)
(5.4.3)

with dmax = 2 mm and T = 1.0 s. The simulation ended at tmax = T/2 = 0.5 s. A zero-
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traction boundary condition (also known as “do nothing” condition) was imposed on the
air at the inlet. Material models and parameters were adopted from the first example pre-
sented in this section, i.e. both parenchyma blocks exhibited the same properties. In Figure
5.4.18, simulation results at t1 =0.125 s and t2 =0.375 s are shown. In both cases, the pre-
scribed bottom displacement was exactly the same. Hence, apart from some insignificant
dynamic effects, the overall parenchyma displacements were the same at both points in
time. However, airflow patterns differed considerably as can be seen on the right-hand
side of Figure 5.4.18. At t1, air had to flow into the blocks to compensate for the increase
in parenchymal volume. By contrast, at t2, the parenchyma volume was decreased again
resulting in a reverted flow direction. It is noteworthy that airflow was only induced by
the additional forces due to the volume coupling since no other driving forces or Dirichlet
boundary conditions were prescribed.

Above example raises hope that the developed overall lung model may enable the simula-
tion of expiration in a reasonable way. During inspiration, the parenchyma blocks serve as
air reservoirs that are fed by the associated resolved vessels. Therefore, in the expiration
phase, airflow through each outlet is uniquely defined by the strain state and the consti-
tutive model of the associated parenchyma domain. However, detailed investigations to
prove the general suitability for expiratory flows still need to be done.
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6 Summary and Outlook

In this thesis, the basic building blocks of a continuum lung model have been developed.
As a first step, a computational model of pulmonary alveoli has been established. Due to
the poor disposability of imaging-based alveolar geometries, a method for generating arti-
ficial acinar structures has been derived. A novel labyrinthine algorithm was proposed to
generate random pathways through an assemblage of tetrakaidecahedral cells representing
individual alveoli. Thereby, specific connection rules were formulated to guarantee the
preservation of minimal path lengths within the alveolar ensemble. It has been shown that
information provided by the labyrinthine algorithm can be directly used for the generation
of three-dimensional geometries suitable for subsequent FE analyses.

For modeling of alveolar tissue behavior, a hyperelastic constitutive law developed origi-
nally for arterial tissue has been adapted. The proposed isotropic SEF is composed of two
main parts related to the major stress-bearing elements, i.e. the matrix material including
elastin fibers and the collagen fiber network. To satisfy the quasi-incompressibility con-
straint typical of all soft biological tissues, a penalty approach has been implemented. Due
to the lack of experimental data for individual alveolar walls, the material model has been
fitted to available stress-strain curves of lung tissue sheets.

Since alveolar walls are covered with a thin surfactant layer, the interaction of tissue and
liquid lining mechanics has also been included in the computational model. However, in-
stead of explicitly discretizing the fluid film, a novel approach has been proposed based on
integrating the interfacial energy in the alveolar wall model. The developed methodology
applies to essentially any kind of thin liquid lining and is suitable for arbitrarily curved sur-
faces. To model the development of local surfactant concentrations and resultant surface
stresses, a well-established dynamic transport model considering adsorption, desorption,
and squeeze-out processes has been implemented.

As a next step, an overall model of lung parenchyma has been devised. Since modeling all
500 million alveoli in the human respiratory system is not feasible, a combination of two
complementary approaches has been suggested. The complex alveolar micro-structure is
resolved at certain “hot spots” only, whereas lung parenchyma can be modeled as a ho-
mogenized continuum otherwise. To bridge the gap between global parenchymal and local
alveolar level, a three-dimensional dynamic nested multi-scale approach has been devel-
oped. Assuming a sufficient separation of length scales, a first-order scheme using homo-
geneous displacement boundary conditions on the fine-scale has been implemented. For
the micro-macro transitions, existing homogenization procedures have been adopted. The
benefit of the proposed multi-scale approach is twofold; firstly, improved homogenized
parenchyma properties are derived based on a detailed modeling of the underlying micro-
structure. Secondly, the global parenchyma model serves as an “embedding” of locally
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resolved acinar structures, thereby providing physiologically reasonable boundary condi-
tions on the micro-scale. As a consequence, the quantities of interest on the alveolar level
(e.g. stresses and strains in case of VALI) can be simulated more realistically compared to
previous models. In first example simulations, the suitability of the developed approach
for the intended application has been demonstrated.

Finally, a novel approach to combining the conducting and the respiratory domains in
one overall lung model has been derived. Since only parts of both the airway tree and
the alveolar structures can be resolved, the transport of air down to the respiratory zone
cannot be simulated explicitly but has to be modeled. The developed methodology is
based on dividing the parenchyma model into subdomains associated with the outlets of
the resolved three-dimensional airway tree. The volume of air passing through each outlet
has to be on par with the change in volume of the corresponding tissue subdomain. To
enforce this constraint within the framework of FSI problems, the Lagrange multiplier
technique has been utilized. For the parallel and iterative solution of the resulting linear
systems, a specific preconditioning algorithm has been introduced. The functionality of
the developed volume-coupled FSI approach has been proven by first numerical examples
illustrating the mutual interaction of airflow and parenchyma deformation.

In summary, it can be stated that continuum models for distinct parts of the lung – i.e.
the tracheo-bronchial, the global parenchymal and the local alveolar region – have been
developed and successfully combined for the first time. However, although substantial
progress towards an overall “virtual lung” model has been made, there is still a lot of work
to be done in the future. Subsequently, selected concepts for improving the individual
building blocks will be briefly addressed.

The first issue is related to the geometric representation of alveoli. In the long term, utiliza-
tion of imaging-based alveolar geometries is definitely desirable. So far, however, realistic
representations are only available for small animal lungs. Therefore, computational mod-
els will continue to rely on artificial acinar morphologies in the near future. A drawback
of the geometries proposed in section 3.1, however, is that all alveoli are of the same shape
and size. As already mentioned, this limitation may be partly overcome by introducing sta-
tistical fluctuations of the vertex positions. The necessary level of irregularity can be spec-
ified by comparing available imaging-based and artificial alveolar geometries for smaller
species. This information may then be utilized to improve also artificial representations of
human alveoli.

With regards to the constitutive model of individual alveolar walls, reliable material param-
eters still have to be derived. Since corresponding data cannot be obtained experimentally,
an alternative approach has to be pursued here. One possibility would be to combine in-
verse analysis and multi-scale techniques. In this way, the specific micro-geometry of
tested lung tissue strips could be resolved locally in the computational model. The tension
test could then be simulated repeatedly in silico with varying alveolar material parame-
ters until the computed global load-displacement curves comply with the experimentally
derived ones. After having established this procedure for deriving alveolar material param-
eters, further complexities (e.g. visco-elastic effects) should be included in the constitutive
model to allow for a more accurate description of alveolar soft tissue mechanics.
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As already indicated in section 3.3, the surfactant model also leaves room for improvement.
If ventilation patterns with breath-to-breath variability are to be studied, the description of
the steady-state behavior is not sufficient anymore. In this case, a more complicated trans-
port model considering also diffusion processes (cf. section 3.3.3) has to be implemented.

Concerning the developed multi-scale approach, a representative volume element of the
alveolar micro-structure still has to be determined. Acinar configurations of arbitrary
size needed for corresponding convergence analyses could be easily constructed using
the methodology presented in section 3.1. In order to keep the sample size as small as
possible, implementation of periodic boundary conditions on the micro-level would be ad-
vantageous. In this way, also the quality of the fine-scale solution could be improved. On
the macro-level, the phenomenological damping model should be replaced with a micro-
mechanically motivated approach in the future. Thereby, no empirical parameters will be
left in the dynamic coarse-level problem. Last but not least, the efficiency of the micro-
macro approach still has to be improved further to enable large-scale simulations based on
actual representative alveolar samples. One promising option would be the employment
of model order reduction methods based on pre-computations of micro-level responses
(Yvonnet and He, 2007).

To enhance the predictability of the overall lung model, the parenchyma subdomains in-
volved in the volume-coupling of conducting and respiratory zones should be chosen as
small as possible. However, the number of imageable airway generations is currently
limited. One possible solution to this problem is to complement the resolved airways
with reduced-order models of artificially generated space-filling trees (see e.g. Ismail et al.
(2011)). Thereby, a partitioning of lung parenchyma into very small compartments would
be facilitated.

Apart from improving the existing building blocks, future work will also be concerned
with implementing some additional functionalities. For instance, the influence of the pleu-
ral membrane or the capillary network on lung tissue mechanics needs to be considered.
Besides, gas exchange has to be modeled to allow for a reasonable evaluation of different
ventilation strategies. After all, prevention of VALI is only one issue involved in the def-
inition of clinically relevant ventilation protocols. Obviously, the most protective strategy
in this regard would imply no intervention at all. However, sufficient oxygenation has to
be guaranteed in any case.

Finally, the applicability of all developed computational approaches to realistic scenarios
has to be proven in large-scale simulations. After an adequate validation, the overall lung
model will be utilized to study the effects of different ventilator settings on local alveolar
stresses and strains. As already mentioned in section 1.3, resulting biological responses
will then be investigated by simulating these conditions experimentally in a bioreactor
(Dassow et al., 2010). Hopefully, this combination of computational and experimental
approaches will give deeper insights into the mechanisms of VALI and set the agenda for
more protective ventilation protocols. The presented models are, however, by no means
restricted to this particular application. Since the introduced approaches are mainly built
up from first principles, they could also be utilized for investigating a variety of other
interesting problems such as asthma, emphysema, or targeted drug delivery. Hence, the
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6 Summary and Outlook

developed models may be valuable for providing a better understanding of respiratory
mechanics in general and answering a number of specific questions brought up by the
medical and biological community.
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A Details concerning artificial
morphology

A.1 Conversion between cell IDs and coordinates

During the generation of a labyrinth through a given assemblage of tetrakaidecahedra, it
is beneficial to convert between the consecutive cell ID numbering and the artificial co-
ordinates of the cell center (cf. Figure 3.1.3) and the other way round. For the following
definitions, it is important to recall that the division of two integers produces an integer re-
sult by ignoring decimals. The expression int(#) is introduced to emphasize this truncation
where # denotes the corresponding quotient.

If the cell ID is known and the corresponding coordinates have to be derived, different
cases have to be distinguished. First, a temporary variable a has to be defined as follows

a = int
(

ID
mn+ (m−1)(n−1)

)
, (A.1.1)

where m and n are the number of tetrakaidecahedral cells on the main planes in x1- and
x2-direction, respectively. After introduction of another temporary variable b

b = ID−a (mn+ (m−1)(n−1)) , (A.1.2)

the x3-coordinate of the cell is evaluated as follows

x3 =

2a if int
(

b
mn

)
= 0

2a+1 if int
(

b
mn

)
, 0
. (A.1.3)

The subsequent derivation of x1- and x2-coordinates of the cell depends on whether the
previously calculated x3-coordinate is an even or an odd integer. In the former case, the
missing coordinates are obtained as

x2 = int

2
(
ID− int

( x3
2

)
(mn+ (m−1)(n−1))

)
n

 (A.1.4)

x1 = 2
(
ID− int

( x3

2

)
(mn+ (m−1)(n−1))− int

( x2

2

)
n
)
. (A.1.5)
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For x3 being odd, x1 and x2 can be calculated to

x2 = int

2
(
ID− int

( x3
2

)
(m−1)(n−1)− int

( x3+1
2

)
mn

)
n−1

 (A.1.6)

x1 = 2
(
ID− int

( x3

2

)
(m−1)(n−1)− int

(
x3+1

2

)
mn− int

( x2

2

)
(n−1)

)
+1. (A.1.7)

If, on the contrary, the coordinates of the cell center are known and the corresponding cell
ID has to be derived, three temporal variables need to be introduced, namely

c = mn, (A.1.8)

d = (m−1)(n−1) , (A.1.9)

and

e =

n if x1, x2, x3 even
n−1 if x1, x2, x3 odd.

(A.1.10)

The cell ID can then be calculated as follows

ID = int
(

x3+1
2

)
c+ int

( x3

2

)
d+ int

( x2

2

)
e+ int

( x1

2

)
. (A.1.11)

A.2 Construction of three-dimensional geometries

As already indicated in section 3.1.2, two adjacent cells within an alveolar assemblage
can be connected by deleting the common surface. Hence, the output of the labyrinthine
algorithm is a list of all deleted surfaces per cell (cf. Figure 3.1.4 for a definition of local
surface IDs). Based on this information, three-dimensional alveolar geometries can be
constructed following the procedure summarized in Algorithm A.1.

First, the mid planes of the artificial alveoli are constructed. For a given characteristic
length L defined in Figure 3.1.1, all permutations of (0,±

√
2

4 L,±
√

2
2 L) are Cartesian co-

ordinates of the vertices of a tetrakaidecahedron centered at the origin. Depending on its
unique ID, the alveolus can then be shifted to its final position within the assemblage.
Lines connecting the vertices are created as shown in Figure A.2.1. In this context, all
hexagonal faces are divided into quadrilaterals to simplify both the automatic generation
of surfaces and the structural meshing later on. However, additional lines are introduced
only if the respective surfaces are not empty according to the labyrinthine algorithm.

The resulting three-dimensional geometry should contain alveolar walls with a finite, user-
defined thickness t. After determination of the normal vectors, parallel planes at an interval
of t

2 in the inward direction can be defined for every non-empty surface. By intersecting
these planes, a new vertex associated with the given mid plane vertex can be determined.
In this context, a simple 3x3 linear system has to be solved. Interior vertices are connected
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A.2 Construction of three-dimensional geometries

Algorithm A.1 Generation of three-dimensional acinar geometries based on information
provided by the labyrinthine algorithm.
Define characteristic length L and wall thickness t of assemblage
Read input from labyrinthine algorithm (surfaces to be deleted)

for all cells on main levels:
Construct interior volumes (except intersections), see Algorithm A.2

for all cells on ancillary levels:
Construct interior volumes (except intersections), see Algorithm A.2

for all cells:
Construct interior intersection volumes, see Algorithm A.3
Construct outer volumes, see Algorithm A.4

Write all created lines, surfaces, and volumes to batch file

Figure A.2.1: Lines needed for the construction of a single closed artificial alveolus. Black
lines are located in the front whereas gray lines are hidden.

by lines with each other as well as with their mid plane counterparts. Hence, for each non-
empty mid plane surface, five additional surfaces as well as the corresponding enclosed
volume can be created. All constructed geometric entities are entitled as “interior” objects
since they are obtained by translating the mid plane in inward direction. The procedure
presented so far is subsumed in Algorithm A.2. In Figure A.2.2, selected interior volumes
created for two interconnected alveoli are displayed. The highlighted surfaces illustrate the
resulting gap at the connecting point. This comes about due to the fact that each mid plane
vertex shared by two alveoli is associated with two distinct interior vertices. Consequently,
specific so-called “intersection volumes” have to be generated in a next step in order to
enable an appropriate transition between the individual alveoli.

For each shared mid plane vertex that is part of an empty surface, an associated intersec-
tion vertex has to be determined. Again, parallel planes at an interval of t

2 in the inward
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Algorithm A.2 Construction of interior volumes of an artificial alveolus.
Mid plane surfaces
Construct all vertices Vmid of mid planes
Define all lines Lmid connecting mid plane vertices (except those crossing empty surfaces)
Define all non-empty and empty mid plane surfaces Smid and S̃mid, respectively
Determine normals of all surfaces including empty ones

Interior surfaces
Construct all vertices Vint of interior surfaces:

for all v in Vmid:
Find the 3 distinct normals of adjacent surfaces
Define parallel planes at intervals of t

2
Determine interior vertex by solving the intersection problem

Construct all lines Lint connecting interior vertices (except those crossing empty surfaces)
Construct all non-empty interior surfaces Sint

Interior volumes
for all s in Smid:

for all v in V s
mid:

Create connection line with vertex of associated interior surface
for all l in Ls

mid:
Create surface connecting l with its counterpart on interior surface

Construct interior volume

direction can be defined. In contrast to the construction of the interior volumes, however,
planes associated with different alveoli are intersected. Two different cases have to be
distinguished in general. If the empty surface is square, then the planes parallel to the
two adjacent non-empty surfaces owned by one alveolus have to be intersected with the
empty surface. If, however, the empty surface is part of a hexagon, the situation becomes
more complicated. In order to render the geometric construction as well as later meshing
as simple as possible, an approximation to the actual intersection is utilized here. The
planes parallel to the two adjacent non-empty surfaces owned by one alveolus and the
plane parallel to the neighboring quadratic surface owned by the connected alveolus are
intersected. For each line of an empty surface, two intersection nodes are created in this
way. After generation of lines connecting the intersection vertices with each other as well
as with the associated interior vertices, four additional surfaces and the corresponding en-
closed intersection volume can be created. The procedure discussed above is summarized
in Algorithm A.3.

As demonstrated in Figures A.2.3(a) and A.2.3(b), the employed approximate intersection
in case of a hexagonal connection surface leads to slight kinks in the transition regions.
The severity of this inaccuracy depends on the chosen thickness of the alveolar walls. For
comparison, the correct intersection of the interior surfaces is given in Figure A.2.3(c). The
geometry of the exact transition is far more complicated than in case of the approximate
intersection shown in Figure A.3(b). Hence, the introduced error seems acceptable here.
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A.2 Construction of three-dimensional geometries

Figure A.2.2: Interior volumes shown exemplarily for two interconnected alveoli. For the
sake of lucidity, volumes located in front are omitted.

Figure A.2.3: Intersection of walls for connected alveoli. (a) Clipped view of small alveo-
lar assemblage with two highlighted intersection volumes. (b) Detailed view of intersection
volumes generated according to Algorithm A.3. (c) Geometrically correct intersection of
alveolar walls.

It is noteworthy that the intersection volumes surrounding an empty surface can be inter-
preted as the alveolar entrance ring. Since this region is, from the geometric point of view,
separated from the remaining alveolar wall, one can easily assign specific properties to it,
e.g. in terms of different connective tissue fiber distributions.

Finally, the outer volumes of the alveolar walls have to be constructed. In Figure A.2.4,
selected interior surfaces for two neighboring, unconnected alveoli are displayed. The
shared mid plane is associated with two interior volumes. Therefore, the interior volume
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Algorithm A.3 Generation of interior intersecting volumes resulting from the connection
of alveoli through surfaces defined by the labyrinthine algorithm.
for all s in S̃mid (i.e. empty surfaces):

for all v in V s
mid:

if s is part of a hexagonal surface:
Find 2 distinct normals of adjacent non-empty surfaces owned by cell
Find normal of adjacent quadratic surface owned by connected cell
Define 3 parallel planes at intervals of t

2
Determine interior intersection vertex by solving the intersection problem

else:
Find 2 distinct normals of adjacent non-empty surfaces owned by cell
Define 2 parallel planes at intervals of t

2
Determine interior intersection vertex by intersecting the planes with s

for all l in Ls
mid:

for all v in V l
mid:

Create lines connecting v with its 2 associated interior vertices
Create lines connecting interior vertices with associated intersection vertex

Create line connecting interior intersection vertices
Construct enclosing surfaces based on line definitions
Create interior intersection volume

Figure A.2.4: Interior volumes at shared mid planes serve as outer volumes for adjacent,
unconnected alveoli.

of one alveolus serves as the outer volume of the other one and vice versa. However, for
all mid planes located on the exterior of the assemblage, additional outer volumes need to
be created. Essentially, the generation of these volumes follows the procedures described
above. Again, planes parallel to the adjacent mid planes are defined and intersected in
order to determine the outer vertices. However, the mid planes are now translated by t

2
in the outward direction. Detailed instructions for the generation of the outer volumes
are given in Algorithm A.4. Eventually, a three-dimensional alveolar assemblage with a
uniform wall thickness t is created. Since the geometry is composed of hexahedral shapes
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A.2 Construction of three-dimensional geometries

Algorithm A.4 Construction of outer volumes for exterior alveoli.
for all s in Smid:

if s is located on the outside of the assemblage:
for all v in V s

mid:
if v belongs to one cell only:

Find 3 normals of adjacent surfaces
else:

if v belongs to two cells:
Find 2 normals of adjacent outside surfaces owned by cell
Find normal of 1 adjacent outside surface owned by connected

cell
else:

Find 3 normals of adjacent outside surfaces (one per cell)
Define parallel planes at intervals of t

2
Determine exterior vertex by solving the intersection problem

Create lines connecting exterior vertices with corresponding vertices on Smid
Create lines connecting exterior vertices with each other
Construct enclosing surfaces based on line definitions
Create outer volume

only, structured meshing is straightforward. Furthermore, all constructed vertices, lines,
surfaces, and volumes can be addressed individually, thus boundary conditions can be
easily applied.
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