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Abstract

This thesis is concerned with high- and infinite-dimensional jump-diffusion models. Two
applications serve as motivating examples: stock basket options and options on electric-
ity swaps. A general Hilbert space valued model is introduced, which can be applied to
both settings. We discuss the stochastic properties of the model in detail.

The focus of the thesis then lies on numerical techniques for the solution of pricing
and hedging problems. The “curse of dimensionality” prevents us from applying well-
known methods, like partial integro-differential equations (PIDEs) or Fourier methods,
directly to the high-dimensional model. Instead, we use a projection approach called
proper orthogonal decomposition (POD). This dimension reduction method is based
on a similar idea as principal component analysis in statistics. It makes use of the
correlation structure of the assets and involves the solution of an eigenvalue problem
for the covariance operator of the driving stochastic process. We apply POD to various
pricing problems and option types and establish corresponding convergence results.

First, we consider European option prices. We derive the corresponding PIDE and
employ POD to find a low-dimensional, approximating equation. Based on the varia-
tional formulation, we show existence, uniqueness, and regularity of the PIDE solution.
Next, we study the hedging problem for European options in the context of electricity
markets. The basic challenge when hedging electricity is to hedge an infinite-dimensional
forward curve with a finite set of traded assets. Thus, the electricity market is incom-
plete. We derive the stochastic dynamics of hedging portfolios and solve the quadratic
hedging problem. We show that the optimal hedging strategy at each point in time is
the solution of a linear equation system. Similar to a classical delta hedge, the strategy
depends on partial derivatives of the option price, which can be obtained from a PIDE.

The dimension reduction can also be applied to Asian options. In this case, we obtain
an additional variable in the PIDE, the arithmetic average. We examine the properties of
the average in the Hilbert space valued context and extend the convergence theorems for
the POD method accordingly. Finally, we price high-dimensional Bermudan options. We
improve the convergence speed of the well-established Longstaff–Schwarz Monte Carlo
(MC) approach through a variance reduction scheme. To this end, we use the POD
approximation as a control variable. The variance of the least-squares MC method, and
thus the overall computational effort, is reduced significantly. The expectation of the
approximated price process can be computed with any algorithm suitable for pricing
low-dimensional Bermudan options, in particular Fourier or PIDE methods.

In various numerical experiments, we evaluate the performance of the POD method.
The numerical solution of the PIDEs is based on a sparse grid combination method for
spatial discretization and a Discontinuous Galerkin time stepping method. We study
the influence of correlation and basket size on the efficiency of the pricing algorithm, the
impact of different hedging portfolios on the hedging error, and the accuracy of direct
versus duality based Bermudan pricing methods. We find that POD is an efficient
means to perform a dimension reduction if the underlying asset price processes feature
sufficiently strong correlation.





Zusammenfassung

Diese Arbeit befasst sich mit hoch- und unendlichdimensionalen Sprung-Diffusions-
Modellen. Zwei Anwendungsbeispiele dienen dabei als Motivation: Optionen auf Ak-
tienkörbe und Elektrizitäts-Swaps. Ein allgemeines, Hilbertraum-wertiges Modell, das
auf beide Produkte angewandt werden kann, wird eingeführt. Wir diskutieren die sto-
chastischen Eigenschaften des Modells im Detail.

Der Schwerpunkt der Arbeit liegt dann auf numerischen Verfahren für die Lösung
von Preis- und Hedge-Problemen. Der

”
Fluch der hohen Dimension“ hindert uns daran

bekannte Methoden, etwa partielle Integro-Differentialgleichungen (PIDEs) oder Fou-
rier Methoden, direkt auf das hochdimensionale Modell anzuwenden. Wir verwenden
stattdessen einen Projektionsansatz namens Proper Orthogonal Decomposition (POD).
Diese Dimensionsreduktion beruht auf einer ähnlichen Idee wie die Hauptkomponen-
tenanalyse in der Statistik. Sie macht sich die Korrelationsstruktur der Wertpapiere
zunutze und basiert auf der Lösung des Eigenwertproblems für den Kovarianzoperator
des stochastischen Prozesses. Wir wenden die Projektion auf verschiedene Optionstypen
an und beweisen entsprechende Konvergenzresultate.

Zunächst untersuchen wir europäische Optionen. Wir leiten die zugehörige PIDE her
und setzen die POD ein, um eine niederdimensionale, approximierende Gleichung zu er-
halten. Mit Hilfe der variationellen Form zeigen wir Existenz, Eindeutigkeit und Regula-
rität der Lösung. Danach untersuchen wir Hedging-Probleme für europäische Optionen
auf Elektrizitätsmärkten. Die grundlegende Herausforderung besteht hierbei darin, die
unendlichdimensionale Forwardkurve mit einer kleinen Auswahl handelbarer Kontrakte
zu hedgen. Der Elektrizitätsmarkt ist daher unvollständig. Wir leiten die stochastische
Dynamik des Hedge-Portfolios her und lösen das quadratische Hedge-Problem. Wir zei-
gen, dass die optimale Handelsstrategie als Lösung eines linearen Gleichungssystems
dargestellt werden kann. Genau wie ein klassischer Delta-Hedge hängt diese Strategie
von den partiellen Ableitungen des Optionspreises ab, die wir aus der PIDE erhalten.

Die Dimensionsreduktion kann auch auf asiatische Optionen angewandt werden. In
diesem Fall erhalten wir eine zusätzliche Variable in der PIDE, das arithmetische Mit-
tel. Wir untersuchen die Eigenschaften dieser Variable und erweitern die Konvergenz-
sätze für die POD-Methode entsprechend. Darüber hinaus bewerten wir bermudische
Optionen. Dabei verbessern die Konvergenzgeschwindigkeit des bekannten Longstaff–
Schwarz Monte Carlo (MC) Algorithmus durch Varianzreduktion. Hierzu setzen wir die
POD-Näherung als Kontrollvariable ein. Die Varianz des MC Verfahrens, und damit
der Gesamtrechenaufwand, kann dadurch signifikant reduziert werden. Der Erwartungs-
wert des approximierten Preisprozesses besipielsweise mit Fourier- oder PIDE-Methoden
berechnet werden.

Wir evaluieren die Leistungsfähigkeit der POD-Methode in zahlreichen numerischen
Experimenten. Für die numerische Lösung der PIDEs wird die Kombinationstechnik
für dünne Gitter in der räumlichen Diskretisierung, sowie ein Discontinuous-Galerkin
Zeitschrittverfahren eingesetzt. Wir untersuchen den Einfluss der Korrelation und der
Anzahl der Wertpapiere auf die Effizienz des Algorithmus, die Auswirkungen verschiede-
ner Hedge-Portfolios auf den Hedge-Fehler und die Genauigkeit von direkten und dualen
Preismethoden für amerikanische Optionen. Es zeigt sich, dass die POD-Zerlegung eine
effiziente Methode zur Dimensionsreduktion ist, falls die zugrunde liegenden Preispro-
zesse hinreichend starke Korrelation aufweisen.
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introduced me to the stochastic side of applied mathematics, which was a whole new
and fascinating area of research for me during my PhD studies. I am grateful for her
constant encouragement, helpful advice, and for the excellent working conditions at her
chair. She provided the perfect balance of steady support and the freedom to develop
my own ideas.

It is an honor for me to express my thanks to Prof. Fred Espen Benth. Without his
guidance and experience, this thesis would not have been possible. Not only did he
initiate my project on electricity pricing and hedging, he also provided great ideas,
patient explanations, and encouraging feedback.

Many thanks to my colleagues in the departments of stochastics as well as numerics at
the TU Munich. Their knowledge and professional advice gave me a better insight to
various aspects of my thesis. Their good company made my PhD studies an enjoyable
time.

I owe my gratitude to the International Graduate School of Science and Engineering
(IGSSE) for financial support and for the opportunity to look beyond my own subject.

Lastly, and most importantly, I am grateful to my family for their loving support and
steady encouragement. To them I dedicate this thesis.





Contents

1 Introduction and Motivating Examples 1
1.1 Example 1: Stock Basket Options . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example 2: Electricity Swaptions . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline and Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . 5

2 Hilbert Space Valued Jump-Diffusion 9
2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Properties of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Corresponding Time-Homogeneous Model . . . . . . . . . . . . . . . . . 16

3 Dimension Reduction 19
3.1 Proper Orthogonal Decomposition (POD) . . . . . . . . . . . . . . . . . 19
3.2 Numerical Computation of POD Components . . . . . . . . . . . . . . . 22

4 European Options 25
4.1 Partial Integro-Differential Equation (PIDE) . . . . . . . . . . . . . . . 25
4.2 Pricing European Options with POD . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Finite Dimensional PIDE . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Variational Formulation and Uniqueness . . . . . . . . . . . . . . 33
4.2.3 Convergence of Finite-Dimensional Approximations . . . . . . . 38

5 Hedging 41
5.1 Dynamics of Swap Rates and Swaption Prices . . . . . . . . . . . . . . . 41

5.1.1 Swap Rate Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 42
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1 Introduction and Motivating Examples

Ever since Black and Scholes published their seminal work on option pricing [15], the
evaluation of financial derivatives has been closely related to the solution of partial
differential equations (PDEs). In fact, the link between stochastic processes and deter-
ministic PDEs had already been established in the Feynman–Kac formula [50] decades
earlier. While the Black–Scholes model relies on a geometric Brownian motion to model
an asset price, Feynman–Kac type results can be extended to much more sophisticated
settings [39]. It is, e.g., possible to introduce jumps to the stochastic process. A jump-
diffusion model combines a Wiener process with a compound Poisson process. The
name “diffusion” stems from the fact that there is a diffusive (elliptic) term in the cor-
responding differential equation, similar to the heat equation. Moreover, one can add
time-dependence to the coefficients in the model. This yields additive processes, also
known as time-inhomogeneous Lévy processes. Further possible extensions, which we
will not discuss in the present thesis, include stochastic volatility and infinite jump
activity. For an overview of jump models in finance, see, e.g., [24, 74].

Elaborate models allow for a much better fit of financial data than a plain geometric
Brownian motion. They come, however, at a price. While the famous Black–Scholes
formula gives an explicit solution for the price and hedge of a plain-vanilla European
option, it is generally impossible to find analytically tractable solutions for these prob-
lems under more realistic assumptions. Therefore, efficient numerical algorithms are
essential for the application of such models in practice. The Feynman–Kac representa-
tion enables the use of PDE methods for pricing and hedging. These methods include
the PDE discretization with finite differences or finite elements [25, 36]. Their con-
vergence and performance is well-studied [18, 72, 77]. Jumps in the stochastic model
pose an additional difficulty. They result in nonlocal integral terms in the equation,
yielding partial integro-differential equations (PIDEs) [26]. These require specialized
discretization schemes [49, 61]. An alternative approach relies on Fourier methods. The
characteristic function of additive processes is usually known explicitly. The general idea
is to consider the Fourier transform of an option payoff (or an integrable modification
of the payoff) and to factorize it in such a way that the characteristic function of the
process occurs in the resulting expression. Finally, an inverse transform yields the value
of the option. Since Fourier transforms can be approximated with discrete transforms,
efficient algorithms can be obtained using fast Fourier transforms (FFTs) [22, 23, 58].

Pricing and hedging problems become much more elaborate when the derivative de-
pends on more than one asset. In principle, both PIDE and Fourier methods can be
extended to the multivariate case. The main challenge here is the exponential increase
of computational effort for higher-dimensional problems. This curse of dimensionality
makes it virtually impossible to use regular, full discretizations for options depending
on more than three assets. Sparse grids are an effective means to counter the curse.
PIDE methods have recently been extended to such multidimensional settings using
sparse grids [66, 81]. Computationally feasible dimensions n, however, are still mod-
erate, usually n ≤ 10. On the other hand, traded products often imply much higher
dimensions. Derivatives (e.g., swaptions) may even depend on a continuum of “assets”
and thus be infinite-dimensional. The following two examples illustrate the need for
high-dimensional models. The first one is concerned with basket options on the stock
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market. The second example is more elaborate and involves electricity contracts. Both
examples motivate the use of the subsequently presented dimension reduction tech-
niques. We will refer to them frequently throughout the thesis. In particular, all of the
numerical experiments are based on either of them.

1.1 Example 1: Stock Basket Options

We consider an option depending on n stocks. Let T be the time horizon (terminal date
of maturity) of the option. The multivariate asset price process is denoted

(1.1) St :=
(
St(1), . . . , St(n)

)
:=
(
S0(1) eXt(1), . . . , S0(n) eXt(n)

)
∈ Rn, t ∈ [0, T ].

For each i = 1, . . . , n, the price S(i) of the ith asset is modeled as the product of its initial
value S0(i) > 0 and the ordinary exponential of a time-inhomogeneous jump-diffusion
process (Xt(i))t≥0. We will specify the model in more detail in Section 2. As an example
for market data, Figure 1 displays the daily prices for the top eight S&P 500 stocks over
two years. Although some stocks (namely IBM) display rather singular paths, one can
easily identify clusters of stocks, which are highly correlated. We will make use of these
correlations during the dimension reduction to obtain low-dimensional approximations.
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Figure 1: Prices for eight S&P 500 stocks on the trading days from 18 Sept. 2008 to 20
Oct. 2010.

There are various types of options depending on such a basket of assets. Index options
written on a weighted average are a common example. An index put has the terminal
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value

(1.2) Pindex(T, ST ) =

(
K −

n∑
i=1

wiST (i)

)+

,

where K > 0 is the strike and wi ∈ R are constant weights. Other examples include
maximum or minimum options. Maximum or minimum basket put options correspond
to the payoff

Pmax(T, ST ) =

(
K − max

i=1,...,n
ST (i)

)+

or Pmin(T, ST ) =

(
K − min

i=1,...,n
ST (i)

)+

,

respectively. Basket call options can be defined analogously.

1.2 Example 2: Electricity Swaptions

During the last two decades, energy markets all over the world have been liberalized.
Electricity is now traded liquidly on exchanges like the Scandinavian Nordpool and the
German Energy Exchange (EEX). These relatively young markets are open to producers,
consumers, and speculating investors. Traded products include spot, futures, forwards,
and options on these. A compendium of mathematical finance for electricity markets
can be found in [13]. There are substantial differences between stock and electricity
markets. The electricity spot price exhibits several unique stylized features, including
seasonality, large jumps (many times higher than the average price), and mean reversion.
In addition, while stocks are sold at a single point in time, electricity contracts always
imply the delivery over a certain period of time. Therefore, electricity forwards and
derivatives are written on a delivery period (a week, a month, or even a year). The
most liquidly traded products on energy exchanges like EEX or Nordpool are contracts
of futures type. These are agreements on a constant delivery of 1 MW of electricity over
a certain future period of time [T1, T2]. In return, a rate F (t;T1, T2), fixed at time t ≤ T1,
is paid during this delivery period. Since a payment of a fixed rate is made in exchange
for the (unknown) future spot price, these contracts are also known as electricity swaps.
The concept is illustrated in Figure 2.

The relation of spot and forward prices is not clearly defined for electricity because
of its non-storability [9, 12]. This difficulty can be avoided by directly modeling the
forward curve under a risk neutral (with respect to swap rates) measure [3, 10, 51]. For
every maturity u ∈ [T1, T2], let

(1.3) ft(u) := lim
v→u

F (t;u, v)

be the corresponding value of the forward curve at time t ≤ u. Due to no-arbitrage
considerations, the following equality must hold for every t ≤ T1.∫ T2

T1

e−r(u−t)F (t;T1, T2) du =

∫ T2

T1

e−r(u−t)ft(u) du,

where r is the constant risk free interest rate. Thus, the swap rate F can be written as



4 1 Introduction and Motivating Examples

the weighted integral

F (t;T1, T2) =

∫ T2

T1

ω(u;T1, T2)ft(u) du,

with the nonnegative discounting factor

(1.4) ω(u;T1, T2) :=
e−ru∫ T2

T1
e−rv dv

.

Since no initial payment is needed to enter a swap contract, the swap rate F (t;T1, T2)
is a martingale under the risk neutral measure.

F(t; T1,T2)

t (today) T1
                (delivery period)

T2

p
ri
c
e

time

Figure 2: Electricity spot price, swap delivery period [T1, T2], and swap rate F (t;T1, T2).

Figure 3 displays the different prices and concepts from the energy market and their
relation. One year worth of daily spot prices are taken from actual EEX data. The
seasonality function is a truncated Fourier series fitted to the spot. Each traded swap
contract is represented by a single horizontal line; these are market data as well. The
longest lines correspond to contracts with a delivery period of one year, shorter lines
represent quarterly and monthly products. Finally, the forward curve is obtained by
smooth interpolation of the swap data, taking also the seasonality into account. For an
overview of the fitting methods confer, e.g., [11, 52]. In the lower right corner of this
thesis, a flip-book animation of the graph in Figure 3 is displayed. It illustrates the
dynamics of the spot and forward prices on the EEX. In order to watch it, place the
thesis on a table and flip the pages from back to front (the last page contains the first
image).
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Figure 3: EEX spot price data, fitted seasonality, traded swaps, and interpolated forward
curve.

The derivatives we are primarily interested in are options on electricity swaps with a
given delivery period [T1, T2]. The associated payoff of a European put option with
strike rate K > 0 and maturity T ≤ T1 is

Pswaption

(
T, F (T ;T1, T2)

)
=

(∫ T2

T1

e−r(u−T )K du−
∫ T2

T1

e−r(u−T )F (T ;T1, T2) du

)+

(1.5)

= κ

(
K −

∫ T2

T1

ω(u;T1, T2)ft(u) du

)+

,

where

κ := κ(T ;T1, T2) :=

∫ T2

T1

e−r(u−T ) du.(1.6)

1.3 Outline and Objectives of the Thesis

The payoff for an index option (1.2) and the payoff for an electricity swaption (1.5) are
very similar in their structure. The main difference is that for the swaption, the finite
weighted sum of assets has been replaced by a weighted integral. We can interpret the
latter as an infinite-dimensional “index” on a continuum of forward prices. With this
intuition in mind, we employ a common theoretical framework for both the stock baskets
and the electricity forward curve. We use a Hilbert space valued stochastic process to
model the assets. In the case of an n-dimensional basket of stocks, the Hilbert space is
n-dimensional. For the electricity market, on the other hand, we choose a function space
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containing the possible forward curves. In Section 2, we discuss the driving stochastic
process in detail. In particular, we discuss how to construct an exponential jump-
diffusion taking values in a Hilbert space. We also examine how the drift has to be
chosen in order to make such an exponential a martingale. Furthermore, we state the
characteristic function and examine further basic properties of the process.

The main objective of this thesis is to develop efficient numerical algorithms for the so-
lution of basic pricing and hedging problems in this high-dimensional setting. The main
technique used to break the curse of dimensionality is a dimension reduction method
called proper orthogonal decomposition (POD), which we present in Section 3. We
discuss the construction of low-dimensional projections, which can be used to approxi-
mate the Hilbert space valued process, and derive error estimates for the approximation.
Each of the subsequent sections is concerned with the application of the POD method to
different types of pricing and hedging problems. They are based on separate papers by
this author. In each of these sections, convergence results for the dimension reduction
are established. They rely on the general theorems in Sections 2 and 3.

Section 4 deals with European options and is based on [44]. We derive the Hilbert
space valued PIDE describing the option price. The equation is projected with POD,
yielding a finite-dimensional PIDE. Assuming Lipschitz continuity of the payoff, regu-
larity of the projected price process is shown. We also obtain existence and uniqueness
results for the PIDE. To this end, we derive the variational formulation of the PIDE,
which is also the starting point for finite element methods. Finally, we establish an
upper bound for the approximation error.

The quadratic hedging problem for European options is solved in Section 5. We
restrict ourselves to the case of electricity swaptions. This market is incomplete and
features certain intrinsic difficulties. The challenge here is to hedge an option depending
on an infinite-dimensional object (the forward curve) with a small set of traded contracts
(swaps with various delivery periods). We may, e.g., want to hedge a monthly swaption
with several weekly and one monthly swap. It is inherent to the problem that no perfect
hedge is possible, even in a pure diffusion setting. There is a so called basis risk, which
cannot be avoided or hedged with the given underlyings. Presenting the results from
[45, 47], we derive a representation of the variance-minimal hedging strategy. Similar
to a classical delta hedge, the optimal hedging strategy depends on partial derivatives
of the option price. These derivatives can be approximated numerically using POD. We
obtain convergence results for the associated hedging error.

In Section 6, we show how the approach can be extended to Asian options. It contains
the results from [46]. We introduce an additional variable to our model, the arithmetic
time average. After studying the basic properties of the average process, we describe
the POD method for Asian options in detail. Then, we generalize the low-dimensional
PIDE satisfied by the approximated price process to the case of Asian options. We show
convergence of the PIDE solution to the true value of the Asian option.

Finally, we consider Bermudan options in Section 7. Based on [48], we apply the
POD method for a finite number of exercise dates. An accurate calculation of Bermu-
dan option prices with the PIDE approach is hardly possible, even after the dimension
reduction, because sparse grids are not directly applicable here. This is due to insuf-
ficient regularity of the price process. Instead, we choose the dimension of the POD
approximation rather low (less or equal to three) and operate on full grids. We use the
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results as a control variable to achieve a significant improvement of the well-established
least-squares Monte Carlo method proposed by Longstaff and Schwartz [60]. The expec-
tation of the control variable can be computed with any numerical algorithm suitable
for low-dimensional Bermudan option pricing. In particular, PIDE solvers and Fourier
methods are applicable. The variance reduction allows for a considerable decrease in
computational effort. As an alternative to the variance reduction, the POD approxima-
tion can also be used as a candidate for the minimizing martingale in the dual pricing
approach suggested by Rogers [67]. We evaluate the performance of both approaches in
our numerical tests. Choosing the number of exercise possibilities sufficiently large, the
same techniques can be used to approximate American options.

The last section of the thesis, Section 8, is concerned with the implementation of
the presented methods. The numerical solution of the PIDEs using a discontinuous
Galerkin discretization and, in the case of European options, the sparse grid combination
technique is discussed. We then introduce a set of test problems. Numerical experiments
are performed to demonstrate the effectiveness of the dimension reduction method.
In particular, we present results for European option pricing and hedging as well as
Bermudan option pricing.
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2 Hilbert Space Valued Jump-Diffusion

Several authors propose exponential additive processes (also known as exponential time-
inhomogeneous Lévy processes) of diffusion or jump-diffusion type to model electricity
forward curves [13, 51]. Generalizing their approach, we now state the Hilbert space
valued model used throughout this thesis. We define the driving time-inhomogeneous
jump-diffusion process, declare assumptions concerning the coefficients, and state rele-
vant properties of the model. In particular, we discuss moments and martingale condi-
tions. The model is assumed to be stated under the risk neutral pricing measure. Finally,
we derive a time-homogeneous process which is equivalent to the additive model in the
sense that it has the same terminal distribution. It thus yields the same results for
European option prices, but it allows for a reduced computational complexity due to
time-constant coefficients. This is of course only applicable to derivatives which are not
path-dependent.

For a definition of stochastic processes and integration in Hilbert spaces with re-
spect to Brownian motion see, e.g., [27, 56]. An overview of Poisson random mea-
sures in Hilbert spaces can be found in [42], the case of Lévy processes is treated in
[62]. Infinite-dimensional stochastic analysis, its applications to interest-rate theory,
and Heath–Jarrow–Morton models are presented in [21].

2.1 Model Description

Let D ⊂ Rm be an arbitrary subset, and let µD be a measure on D. Then

H := L2(D,µD)

is a separable Hilbert space. For every h ∈ H, we denote the corresponding norm by

‖h‖H :=

√∫
D

[
h(u)

]2
µD(du).

For electricity swaptions, we choose D = [T1, T2] and µD = λD (the Lebesgue measure
on D). Then H can be interpreted as the space of forward curves on the delivery period
D. For basket options, we choose D to be a finite (though possibly large) index set with
n entries, each index corresponding to one asset. The measure µD is then simply the
counting measure, and the norm ‖·‖H is the Euclidean norm on Rn.

The basic driving stochastic process for our model is the H-valued additive process

(2.1) Xt :=

∫ t

0
γs ds+

∫ t

0
σs dWs +

∫ t

0

∫
E
ηs(y) M̃(dy, ds), t ≥ 0.

The diffusion part is driven by a U -valued Wiener process W , where (U, ‖·‖U ) is a
separable Hilbert space. The covariance operator of W is a symmetric, nonnegative
definite trace class operator Q. The mark space (E, ‖·‖E) of the Poisson part of the

process is a Banach space. The jumps are characterized by M̃ , the compensated random
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measure of an E-valued compound Poisson process

Jt =

Nt∑
i=1

Yi, t ≥ 0,

which is independent of W . Here, N denotes a Poisson process with intensity λ and
Yi ∼ P Y (i = 1, 2, . . .) are iid on E (and independent of N). The corresponding Lévy
measure is denoted by ν = λP Y . We denote by L(U,H) and L(E,H) the spaces of all
bounded linear operators mapping U and E to H, respectively. We assume the drift
γ : [0, T ] → H, the volatility σ : [0, T ] → L(U,H), and the jump dampening factor η :

[0, T ]→ L(E,H) to be deterministic functions. The time-dependent coefficients enable
us to reproduce the Samuelson effect of increasing volatilities close to maturity, which
can be observed in electricity prices. Subsequently, we will write ft(u) := f(t)(u) ∈ R
for every f : [0, T ]→ H, u ∈ D, and similarly gt(h) := g(t)(h) ∈ H for every g : [0, T ]→
L(H,H), h ∈ H. We make the following assumption, which is similar to the finite-
dimensional moment conditions in [71, Sec. 25]. For an introduction to time-dependent
Bochner spaces, such as L2(0, T ;H), see [33, Ch. 5.9].

Assumption 2.1. The second exponential moment of the jump distribution Y exists:

E
[
e2‖Y ‖E

]
=

∫
E
e2‖y‖EP Y (dy) <∞.

We assume further γ ∈ L2(0, T ;H), σ ∈ L2(0, T ; L(U,H)), and

‖ηt‖L(E,H) ≤ 1 for every t ∈ [0, T ].

Under Assumption 2.1, (Xt)t≥0 is an additive process with finite activity and finite
expectation. This simplifies notation, since no truncation of large jumps is needed in
the characteristic function.

We would now like to model the vector of asset prices St and the forward curve ft,
introduced in (1.1) and (1.3), respectively, as the exponential of the driving process
X in some sense. For a finite set of stocks, we have H = Rn. Since in this case
Xt =

(
Xt(1), . . . , Xt(n)

)
, we will obviously stick to (1.1) and set

(2.2) St :=
(
St(1), . . . , St(n)

)
:=
(
S0(1) eXt(1), . . . , S0(n) eXt(n)

)
∈ Rn, t ∈ [0, T ].

In the context of electricity swaps, we have an infinite-dimensional, continuous setting.
There, we could take the point-wise exponential ft(u) = f0(u) exp

(
Xt(u)

)
, u ∈ D =

[T1, T2]. While this would be possible, several technical assumptions would have to be
made to ensure that ft is again square integrable (and thus an element of the Hilbert
space H). Since we are interested in swap rates, and not in pointwise evaluations of
forward curves, a more natural way to define the exponential is the following: Choose

an orthonormal basis {ek}
dim(H)
k=1 of H and set

(2.3) ft :=

dim(H)∑
k=1

〈f0, ek〉H e〈Xt,ek〉H ek
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for t ≥ 0, with f0 ∈ H. Note that the choice of the basis {ek}k∈N is part of the modeling
process, similar to the choice of jump distributions and correlation structures. This
allows us to solve the pricing and hedging problem for various modeling paradigms with
the same, unified theoretical framework. One may use, e.g., eigenfunctions obtained
from principal component analysis of the forward market data. For this choice, (2.3) is
nothing more than a factor model describing the dynamics of each principal component.
Since electricity is usually traded on an hourly basis, another reasonable approach is to
use piecewise constant indicator functions on hourly intervals. The actually considered
Hilbert space then is a high- but finite-dimensional subspace of H. Thus, (2.3) describes
a family of models corresponding to different ways of modeling the forward curves.

It is worth mentioning that for a finite-dimensional Hilbert space, the process f is
equivalent to the point-wise exponential if {ek} are canonical unit vectors. In particular,
we can recover the setting for the multivariate stock basket (2.2) if H = Rn. Conse-
quently, we will use definition (2.3) for both the stock market and the electricity market,
except for those sections of the thesis which are applicable exclusively to a finite number
of assets.

2.2 Properties of the Model

The way we have defined the exponential in (2.3) makes it possible to show the existence
of moments and to derive sufficient conditions for f to be an H-valued martingale. We
start with a proposition concerning the properties of the additive process X defined
in (2.1). As before, let T > 0 be the finite time horizon of the option. We denote
the trace of a nuclear operator by tr(·). In all subsequent proofs, C denotes a generic
positive constant with no fixed value.

Proposition 2.2. The process (Xt)t≥0 is square-integrable:

(2.4) sup
0≤t≤T

E ‖Xt‖2H <∞.

Proof. The definition of the process (Xt)t≥0 yields

E ‖Xt‖2H ≤ 3E

[∥∥∥∥∫ t

0
γs ds

∥∥∥∥2

H

+

∥∥∥∥∫ t

0
σs dWs

∥∥∥∥2

H

+

∥∥∥∥∫ t

0

∫
E
ηs(y) M̃(dy, ds)

∥∥∥∥2

H

]
We apply three different results to the three integrals on the right-hand side. For the
first one, we use the basic properties of Bochner integrals and Jensen’s inequality to
obtain ∥∥∥∥∫ t

0
γs ds

∥∥∥∥2

H

≤
∫ t

0
‖γs‖2H ds ≤ ‖γ‖

2
L2(0,T ;H) .

By definition of the integral with respect to H-valued Gaussian processes, and the results
from [27, eqs. (4.8) and (4.10)], we have

E
∥∥∥∫ t

0
σs dWs

∥∥∥2

H
≤ tr(Q) E

∫ t

0
‖σs‖2L(U,H) ds ≤ tr(Q) ‖σ‖2L2(0,T ;L(U,H)) ,
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where tr(Q) denotes the trace of the covariance operator of W . Finally, from Young’s
inequality and [41, Prop. 3.3] we get

E
∥∥∥∫ t

0

∫
E
ηs(y) M̃(dy, ds)

∥∥∥2

H
≤ C

∫ t

0

∫
E
‖ηs(y)‖2H ν(dy) ds

≤ CλT
∫
E
‖y‖2E P Y (dy).

Combining the above estimates and employing Assumption 2.1 yields (2.4), since the
right-hand side in each estimate is independent of t.

Proposition 2.3. The characteristic function of X(t) is given by

E
[
ei〈Xt,h〉H

]
= exp

[
i

〈∫ t

0
γs ds, h

〉
H

− 1

2

〈[∫ t

0
σsQσ

∗
s ds

]
(h), h

〉
H

+

∫ t

0

∫
E

(
ei〈ηs(y),h〉H − 1− i 〈ηs(y), h〉H

)
ν(dy) ds

](2.5)

for every h ∈ H, where σ∗s is the adjoint operator of σs.

Proof. The drift γ is deterministic, and so the first term on the right-hand side of
(2.5) is trivial. Since we have finite second moments by Proposition 2.2, we may apply
[56, Thm. 4] to obtain the characteristic function of the diffusion and jump parts. It
remains to verify the expression for the covariance operator of the diffusion. Applying
[27, Prop. 4.13] yields

E

[〈∫ t

0
σsdWs, h1

〉
H

〈∫ t

0
σsdWs, h2

〉
H

]
=

〈[∫ t

0
σsQσ

∗
s ds

]
(h1), h2

〉
H

for every h1, h2 ∈ H. The integral on the right-hand side is a Bochner integral with
values in L(H,H).

Moreover, we can show the existence of certain Laplace transforms of Xt. This is similar
to the properties of additive processes in the finite-dimensional case presented, e.g., in
[71].

Proposition 2.4. There are constants C1, C2 > 0 such that for every h ∈ H with
‖h‖H ≤ 2 and a.e. t ∈ [0, T ], we have

E
[
e〈Xt,h〉H

]
= exp

[〈∫ t

0
γs ds, h

〉
H

+
1

2

〈[∫ t

0
σsQσ

∗
s ds

]
(h), h

〉
H

+

∫ t

0

∫
E

(
e〈ηs(y),h〉H − 1− 〈ηs(y), h〉H

)
ν(dy) ds

]
≤ C1 e

C2T .

(2.6)

Proof. Using the Cauchy–Schwarz inequality and Assumption 2.1, we obtain∫
E
e〈ηt(y),h〉H ν(dy) ≤

∫
E
e‖y‖E‖h‖H ν(dy) ≤ λ

∫
E
e2‖y‖E P Y (dy) <∞.
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By [62, Th. 4.30], this is sufficient for the equality in (2.6). A theorem for interchanging
linear operators and Bochner integrals [33, App. E, Th. 8] yields〈∫ t

0
γs ds, h

〉
H

=

∫ t

0
〈γs, h〉H ds,〈[∫ t

0
σsQσ

∗
sds

]
(h), h

〉
H

=

∫ t

0

〈[
σsQσ

∗
s

]
(h), h

〉
H
ds.

Hence, we have the estimate

exp

[〈∫ t

0
γs ds, h

〉
H

+
1

2

〈[∫ t

0
σsQσ

∗
sds

]
(h), h

〉
H

+

∫ t

0

∫
E

(
e〈ηs(y),h〉H − 1− 〈ηs(y), h〉H

)
ν(dy) ds

]
≤ exp

[
2

∫ T

0
‖γs‖H ds+

4

2

∫ T

0
‖Q‖ ‖σs‖2L(U,H) ds

+ Tλ

(∫
E
e2‖y‖E P Y (dy) + 1 + 2

∫
E
‖y‖E P Y (dy)

)]
≤ exp

[
2C ‖γ‖L2(0,T ;H) + 2 ‖Q‖ ‖σ‖2L2(0,T ;L(U,H))

+ Tλ

(∫
E
e2‖y‖E P Y (dy) + 1 + 2

∫
E
‖y‖E P Y (dy)

)]
This implies the statement of the proposition, again by Assumption 2.1.

The next important step is to show that the process
(
ft
)

0≤t≤T takes indeed values in

the Hilbert space H. Let I = {1, 2, . . . ,dim(H)}, if H has finite dimension, or I = N
otherwise.

Proposition 2.5. The process
(
ft
)

0≤t≤T , which is defined as an exponential of Xt by

(2.3), satisfies ‖ft‖H <∞ almost surely. Moreover, there are constants C1, C2 > 0 such
that

(2.7) E ‖ft‖2H ≤ C1 e
C2T ‖f0‖2H for a.e. t ∈ [0, T ].

Proof. It is enough to show (2.7), since this implies ‖ft‖H < ∞ almost surely. To this
end, we use monotone convergence and calculate

E 〈ft, ft〉H = E

[∑
k∈I
〈f0, ek〉2H e2〈Xt,ek〉H

]
=
∑
k∈I
〈f0, ek〉2H E

[
e〈Xt,2ek〉H

]
.

Applying Proposition 2.4 with h = 2ek yields (2.7).

Finally, we can calculate the unique drift γ ∈ L2(0, T ;H) which makes all stock prices or
swap rates, i.e., all bounded linear functionals of f , martingales. We define martingales
on Hilbert spaces in the sense of Kunita [56]: f is considered a Hilbert space valued
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martingale if and only if (
〈ft, h〉H

)
t≥0

.

is a real-valued martingale for every h ∈ H.

Proposition 2.6. The process
(
ft
)

0≤t≤T is an H-martingale in the sense of Kunita, if
and only if

(2.8) γt =
∑
k∈I

[
− 1

2

〈[
σtQσ

∗
t

]
(ek), ek

〉
H
−
∫
E

(
e〈ηt(y),ek〉H − 1− 〈ηt(y), ek〉H

)
ν(dy)

]
ek

for a.e. t ∈ [0, T ].

Proof. By definition, f is an H-martingale if and only if

(
〈ft, h〉H

)
t≥0

=

(∑
k∈I
〈f0, ek〉H e

〈Xt,ek〉H 〈h, ek〉H

)
t≥0

is a martingale for every h ∈ H. By Proposition 2.4 and the Cauchy–Schwarz inequality,
we obtain

E

[∑
k∈I
|〈f0, ek〉H | e

〈Xt,ek〉H |〈h, ek〉H |

]
≤ C1 e

C2T ‖f0‖H ‖h‖H .

Hence, we may use dominated convergence to calculate

E 〈ft, h〉H
=
∑
k∈I
〈f0, ek〉H 〈h, ek〉H E

[
e〈Xt,ek〉H

]
=
∑
k∈I
〈f0, ek〉H 〈h, ek〉H exp

[ ∫ t

0

〈
γs, ek

〉
H
ds+

1

2

∫ t

0

〈[
σsQσ

∗
s

]
(ek), ek

〉
H
ds

+

∫ t

0

∫
E

(
e〈ηs(y),ek〉H − 1− 〈ηs(y), ek〉H

)
ν(dy) ds

]
.

Consequently, the drift γ given by (2.8) makes f an H-martingale, since∑
k∈I
〈f0, ek〉H 〈h, ek〉H = 〈f0, h〉H .

On the other hand, setting h = ek (k ∈ I) in the calculation above shows that this is
indeed the only possible choice for γ.

As we are working under the risk neutral measure, we will subsequently assume that γ
is defined by (2.8), possibly modified with an additional deterministic drift due to the
interest rate.
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Due to the existence of second moments, the bounded linear covariance operator

(2.9) CXT :

{
H → H ′ ∼= H

h 7→ E
[
〈XT − E[XT ], h〉H 〈XT − E[XT ], ·〉H

]
is well-defined. The following theorem gives a summary of its properties. For notational
convenience, we define the centered process

(2.10) Zt := Xt − E[Xt] = Xt −
∫ t

0
γs ds t ∈ [0, T ].

Proposition 2.7. The operator CXT defined in (2.9) is a symmetric and nonnegative
definite trace class operator (and thus compact).

Proof. Since CXT is a covariance operator, it is symmetric and nonnegative definite
by construction. It remains to prove that the trace of CXT is finite. By dominated
convergence,

tr
(
CXT

)
=
∑
k∈I

〈
CXT ek, ek

〉
H

=
∑
k∈I

E
〈
ZT , ek

〉2

H

= E

[∑
k∈I

〈
ZT , ek

〉2

H

]
= E

∥∥ZT∥∥2

H

<∞

holds. We use [27, Prop. C.3] to conclude that CX is compact and hence a trace class
operator.

The following assumption states a non-vanishing volatility, which is usually assumed
when pricing with PIDEs. We generalize this hypothesis to the Hilbert space valued
setting. To this end, let E0(CXT ) be the eigenspace of the covariance operator CXT
corresponding to eigenvalue 0 (the kernel). Its orthogonal complement is E0(CXT )⊥.
This is the subspace of H to which the centered process

(
Zt
)

0≤t≤T is restricted almost
surely, since

E 〈Zt, h〉2H = 0 for every h ∈ E0(CXT ) and a.e. t ≥ 0.

As before, let Q be the covariance operator of W .

Assumption 2.8. For every t ∈ [0, T ], the restriction of the operator σtQσ
∗
t to the

subspace E0(CX)⊥ ⊂ H is positive definite, i.e.,

〈σtQσ∗t h, h〉H > 0 for every h ∈ E0(CXT )⊥\{0}.

This means that X has a non-vanishing Brownian component for all directions in H,
which are not almost surely orthogonal to the trajectory of the process. This is necessary
for the derivation and the regularity of the PIDE, which we are going to study in
Section 4.
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2.3 Corresponding Time-Homogeneous Model

For European options, the payoff depends only on the value of f (and thus X) at the
time of maturity T . The characteristic function of XT completely determines the price of
European derivatives. Therefore, it is possible to construct a time-homogeneous process(
XL(t)

)
t≥0

(the index L is for Lévy) which produces the same terminal distribution and

thus the same price (cf. [71, Ch. 11]). In this section, we state the characteristics of this
process. Since it involves time-constant coefficients, it can be used to simplify analytical
calculations and, most importantly, to speed up numerical computations whenever we
are not interested in path-dependent properties.

We denote the Borel sets on H by B(H) and the indicator function of a set B ∈ B(H)
by χB. The Lévy–Khinchin triplet of the time-homogeneous process is given by

AL(h1, h2) =
1

T

〈[∫ T

0
σsQσ

∗
s ds

]
(h1), h2

〉
H

,(2.11)

γL =
1

T

∫ T

0
γ(t)dt,

νL(B) =
1

T

∫ T

0

∫
E
χB
(
ηt(y)

)
ν(dy) dt for B ∈ B(H),

where AL : H × H → R is a bilinear covariance operator, γL ∈ H, and νL is a finite
activity Lévy measure on H. Note that the resulting characteristic function of XL at
time t = T is identical to (2.5).

In order to obtain a more explicit representation for XL(T ), we define

QL :

{
H → H,

h 7→ 1
T

[ ∫ T
0 σsQσ

∗
s ds

]
(h).

This is a symmetric nonnegative definite operator with finite trace, since by construction,
and by the proof of Proposition 2.2, we have∑

k∈I
〈QLek, ek〉H =

∑
k∈I

1

T
E

[〈∫ t

0
σsdWs, ek

〉
H

〈∫ t

0
σsdWs, ek

〉
H

]

=
1

T
E

∥∥∥∥∫ t

0
σsdWs

∥∥∥∥2

H

≤ (trQ) ‖σ‖2L2(0,T ;L(U,H)) .

Consequently, the operator QL is compact by [27, Prop. C.3] and, in particular, a trace
class operator. By [28, Thm. 1.2.1], there is a unique Gaussian probability measure
with mean 0 and covariance operator QL. Moreover, there is a corresponding QL-
Wiener process by [27, Prop. 4.2], which we denote WL. Let further YL,i∼P YL be iid
random variables with values in H and

P YL(YL,i ∈ B) =

{
1
λT

∫ T
0

∫
H χB

(
ηt(y)

)
ν(dy) dt if λ > 0,

χB(0) if λ = 0,
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for every Borel set B ∈ B(H). We introduce the H-valued compound Poisson process

JL(t) =

Nt∑
i=1

YL,i.

with intensity λ. The random measure corresponding to JL is denoted by ML, and its
compensated version by M̃L. This produces exactly the same average number and height
of jumps on [0, T ] as M̃ . Combined, we obtain the time-homogeneous jump-diffusion
process

XL(t) = γLt+WL(t) +

∫ t

0

∫
H
ξM̃L(dξ, ds),

with the same distribution as X at t = T . The last two summands are H-martingales.
We denote the corresponding centered process by

ZL(t) = WL(t) +

∫ t

0

∫
H
ξM̃L(dξ, ds).
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3 Dimension Reduction

The main goal of this section is to introduce a low-dimensional approximation of the
H-valued process X. To this end, we use proper orthogonal decomposition (POD), which
is very similar to a Karhunen–Loève expansion. For an overview of POD methods in the
context of deterministic differential equations, see [55]. An introduction to Karhunen–
Loève expansions of stochastic processes can be found in [59, Ch. 37]. Numerical aspects,
and most of the projection theory we need here, are presented in [75]. POD is also closely
related to principal component analysis (which is commonly used for data analysis) and
factor analysis (which uses additional error terms in the decomposition). All of these
methods are based on the construction of a small set of orthogonal basis elements which
can be used to approximate X in L2. The POD components can be used to derive
low-dimensional versions of PIDEs for approximate pricing and hedging.

3.1 Proper Orthogonal Decomposition (POD)

While principal component analysis and factor analysis are usually employed to analyze
empirical data, we apply the POD method directly to our model. The dimension reduc-
tion takes place in the state space of the previously H-valued process. Let us now give
a mathematically precise formulation of what is meant by “approximating X”. Recall
that I = {1, 2, . . . ,dim(H)}, if H has finite dimension, or I = N otherwise.

Definition 3.1. A sequence of orthonormal elements (pl)l∈I ⊂ H is called a POD basis
for XT , if it solves the minimization problem

min
〈pi,pj〉H=δij

E

∥∥∥∥XT −
(
E[XT ] +

d∑
l=1

pl 〈ZT , pl〉H
)∥∥∥∥2

H

for every d ∈ I.

In other words, a POD basis is a set of deterministic orthonormal functions such that
we expect the projection of the random vector ZT = XT − E[XT ] ∈ H onto the first d
elements of this basis to be a good approximation. The number d of components in the
projection will later be the dimension of the approximating problem. Projection to a
POD basis is equivalent to using the partial sum of the first d elements of a Karhunen–
Loève expansion, which itself is closely connected to the eigenvector problem of the
covariance operator CXT defined in (2.9). It is worth mentioning that CXT is also the
covariance operator of the centered random variable ZT . The following theorem shows
that the eigenvectors of CXT are indeed the POD basis we are looking for.

Theorem 3.2. A sequence of orthonormal eigenvectors (pl)l∈I of the operator CXT ,
ordered by the size of the corresponding eigenvalues µ1 ≥ µ2 ≥ . . . ≥ 0, solves the
maximization problem

max
〈pi,pj〉H=δij

d∑
l=1

〈CXT pl, pl〉H
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for every d ∈ I. The maximum value is

d∑
l=1

〈CXT pl, pl〉H =
d∑
l=1

µl.

Moreover, the eigenvectors are a POD basis in the sense of definition 3.1. The expecta-
tion of the projection error satisfies

(3.1) E

∥∥∥∥ZT − d∑
l=1

pl 〈ZT , pl〉H

∥∥∥∥2

H

=

dim(H)∑
l=d+1

µl.

Proof. This is an application of [75, Thm. 2.7 and Prop. 2.8].

An expression similar to the right-hand side of (3.1) will occur in almost every conver-
gence theorem throughout this thesis. Subsequently, let (pl)l∈I and (µl)l∈I denote the
POD basis and eigenvalues from Theorem 3.2. Further, let

Ud := span{p1, . . . , pd} ⊂ H

be the d-dimensional subspace spanned by the POD components corresponding to the
d largest eigenvalues. We will assume that d ≤ dim(E0(CXT )⊥), i.e., µ1 ≥ . . . ≥ µd > 0,
as there is no need to include eigenvectors of the covariance operator corresponding to
eigenvalue 0. Indeed, the projection of Z on E0(CXT ) is almost surely 0. We define the
projection operator

(3.2) Pd :

{
H → Ud ∼= Rd,
z 7→ x :=

∑d
l=1 〈z, pl〉H pl.

Wherever appropriate, we identify Ud with Rd via the isometry

(3.3) ι :

{(
Ud, ‖·‖H

)
→
(
Rd, ‖·‖

)
,

x 7→ (〈x, pl〉H)dl=1 .

In particular, we identify Pdz with the sequence (〈z, pl〉H)dl=1.

So far, we have approximated the value of Z only at time T . It turns out, however,
that this is indeed sufficient to obtain small projection errors for arbitrary t ∈ [0, T ].

Corollary 3.3. The following holds:

(3.4) sup
t∈[0,T ]

E ‖Zt − PdZt‖2H ≤
dim(H)∑
l=d+1

µl.

Proof. This is a direct consequence of the independent increments of Z. Using the



3.1 Proper Orthogonal Decomposition (POD) 21

Pythagorean theorem, we obtain

E ‖ZT − PdZT ‖2H = E ‖Zt − PdZt + (ZT − Zt)− Pd(ZT − Zt)‖2H
= E ‖Zt − PdZt‖2H + E ‖(ZT − Zt)− Pd(ZT − Zt)‖2H
≥ E ‖Zt − PdZt‖2H .

Applying Proposition 3.2 yields (3.4).

Consequently, it is not necessary to change Definition 3.1 in order to approximate every
Zt, t ∈ [0, T ]. This is due to the fact that by approximating ZT , we capture also the
events up to time T . In the time-homogeneous case, we even obtain the following,
t-dependent equality.

Corollary 3.4. Suppose that Z is a time-homogeneous jump-diffusion process, i.e., σ
and η in (2.1) do not depend on t. For every t ∈ [0, T ], we then have

(3.5) E ‖Zt − PdZt‖2H =
t

T

dim(H)∑
l=d+1

µl.

Proof. Due to iid increments, the covariance operator of Z(t) is given by

CXt =
t

T
CXT .

Hence, the eigenpairs of CXt are given by ( tT µl, pl), l ∈ N. Applying Theorem 3.2 (setting
T = t) yields (3.5).

Depending on the properties of the covariance operator CXT , bounds for the decay of
the eigenvalues µl can be found. To this end, we define the integral kernel

(3.6) K :

{
D ×D → R,
(u, v) 7→ E

[
ZT (u)ZT (v)

]
,

where as before D ⊂ Rm and H = L2(D,µD). Then K is indeed the integral kernel of
the covariance operator CXT , since by Fubini’s theorem∫

D

∫
D
K(u, v)h1(u)µD(du) h2(v)µD(dv) = E

[
〈ZT , h1〉H 〈ZT , h2〉H

]
= 〈CXT h1, h2〉H

for every h1, h2 ∈ H. Consequently,

CXT h1(·) =

∫
D
K(·, v)h1(v)µD(dv).

Moreover, K is an element of L2(D ×D), since∫
D

∫
D
K2(u, v)µD(du)µD(du) ≤

∫
D

∫
D
E
[
ZT (u)2

]
E
[
ZT (v)2

]
µD(du)µD(du)

=
[
E ‖ZT ‖2H

]2
<∞
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by Theorem 2.2. We now give a result for the eigenvalue decay, depending on the
properties of K.

Proposition 3.5. Let D ⊂ Rm be a bounded Borel set and µD be the Lebesgue measure.
If the kernel K is piecewise Hk ⊗L2 on D×D for a k ∈ N, then there exists a constant
C such that

µl ≤ C l−
k
m for every l ∈ I.

Moreover, if the kernel K is piecewise analytic, then there are constants C1, C2 such
that

µl ≤ C1e
−C2l

1
m for every l ∈ I.

Proof. These results are shown in [75, Props. 2.18 and 2.21].

Remark 3.6. A precise definition of “piecewise Hk ⊗ L2” as used in the hypothesis of
Proposition 3.5 is given in [78, Def. 3.1]. The hypothesis of the proposition is fulfilled
for the jump-diffusion model if the drift γ, the volatility σ, the Brownian covariance op-
erator Q, and the jump-dampening factors η satisfy corresponding piecewise smoothness
criteria.

3.2 Numerical Computation of POD Components

As we have seen in Theorem 3.2, the construction of a POD basis for XT can be reduced
to the eigenvalue problem

CXT pl = µl pl, l ∈ I,

with the covariance operator CXT : H → H
′ ∼= H = L2(D,µD) defined in (2.9). In gen-

eral, the eigenvectors pl are not known analytically. However, it is possible to compute
good approximations numerically. For finite index sets D (basket options), the solution
of the symmetric eigenvalue problem can be obtained with standard methods (e.g., the
QR-algorithm). For all subsequent results, we will therefore assume the more compli-
cated setting that D ⊂ Rm is a bounded Borel set and µD is the Lebesgue measure.
This holds, e.g., for electricity swaptions (with m = 1). In this case, we employ a finite
element discretization and solve a projected eigenvalue problem. Convergence results for
this technique can be shown under certain regularity conditions on the covariance kernel
K defined in (3.6). The general theory of Galerkin approximations of Karhunen–Loève
expansions is discussed in [75].

Let U∆x ⊂ H = L2(D,µD) be a finite element subspace with discretization parameter
∆x. For l = 1, . . . ,dimU∆x, the Galerkin approximations (µ∆x

l , p∆x
l ) ⊂ R× U∆x of the

eigenpairs (µl, pl) ⊂ R×H are, by definition, solutions of the following problem:

∀ϕ ∈ U∆x :
〈
CXT p

∆x
l , ϕ

〉
H

=

∫
D

(∫
D
K(u, v)p∆x

l (v)µD(dv)

)
ϕ(u)µD(du)

!
= µ∆x

l

〈
p∆x
l , ϕ

〉
H
.
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This is equivalent to the eigenvalue problem

(3.7) P∆xCXTP∆x p
∆x
l = µ∆x

l p∆x
l ,

where P∆x : H → U∆x is the projection operator onto the finite element subspace.
The operator P∆xCXTP∆x is self-adjoint and compact due to the properties of the pro-
jection and Proposition 2.7. The following proposition gives an error bound for the
approximation of ZT obtained with this Galerkin method.

Proposition 3.7. Let the covariance kernel K defined in (3.6) be a piecewise smooth
function. Further, let U∆x ⊂ H be a finite element space of piecewise polynomials of
degree q ∈ N, where ∆x denotes the mesh width of the regular triangulation. Finally,
let (µl)l∈I be the true eigenvalues of the covariance operator CXT , and let (p∆x

l )l∈I be
orthonormal solutions of the projected eigenvalue problem (3.7). Then there exists a
constant C such that

E

∥∥∥∥ZT − d∑
l=1

〈
ZT , p

∆x
l

〉
H
p∆x
l

∥∥∥∥2

H

≤ C(∆x)2q+1 +

dim(H)∑
l=d+1

µl

holds for every d ≤ dimU∆x.

Proof. The estimate is taken from [75, Prop. 3.3]. The necessary assumption [75,
Ass. 3.1] is satisfied due to the piecewise smoothness of the kernel and [78, Thm. 1.5]
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4 European Options

In this section, we derive the PIDE describing the price process of a European option.
We then apply the POD method introduced in the previous section to project the
PIDE. We show regularity of the low-dimensional, approximating equation, and obtain
existence and uniqueness results. Bounds for the approximation error are established.
We also derive the variational formulation of the projected PIDE, which is useful for
theoretical considerations as well as numerical finite element schemes.

4.1 Partial Integro-Differential Equation (PIDE)

We consider a European option depending on the value of the process f , defined in
(2.3), at maturity T . The terminal value fT is a deterministic function of XT , and XT

is distributed like its time-homogeneous analogue XL(T ) = γLT +ZL(T ). Thus, we may
equivalently price a European option whose payoff G is a function of ZL(T ). If z ∈ H
is the value of ZL at time t, the value V of the option at time t ≤ T is

V (t, z) := E
[
G
(
z + ZL(T − t)

)]
.

We will subsequently discount the value to time 0 and work with

(4.1) V̂ (t, z) := e−rTE
[
G
(
z + ZL(T − t)

)]
.

Note that V̂ is a martingale under the risk neutral measure. In this section, an Itô
formula for Hilbert space valued random variables and the martingale property of V̂ are
employed to derive a PIDE for V̂ . We make the following assumption concerning the
payoff of the option.

Assumption 4.1. Suppose that the payoff function G is Lipschitz continuous on H
with Lipschitz constant LG.

Remark 4.2. Assumption 4.1 is not necessarily satisfied for payoffs depending on the
exponential of ZL(T ), e.g., a plain call option depending on fT . However, this can be
remedied easily. In the specific case of a call, we can apply a put-call parity. More
generally, every payoff can be truncated to a bounded domain (e.g., by multiplying with
a smooth cutoff function). A payoff function has finite expectation; hence the error
introduced by truncation is arbitrarily small. Since we have to localize the computational
domain for any numerical calculation anyway (compare Section 8), Assumption 4.1 is
no substantial restriction.

Let us first recall the definition of derivatives on a Hilbert space (see, e.g., [31, Ch. VIII]).
We denote the first and second Fréchet derivative of V̂ at (t, z) ∈ [0, T ] × H by
DzV̂ (t, z) ∈ L(H,R) and D2

z V̂ (t, z) ∈ L(H,H) respectively. These are continuous linear
operators such that

V̂ (t, z + ζ) = V̂ (t, z) +DzV̂ (t, z) ζ +
1

2

〈
D2
z V̂ (t, z) ζ, ζ

〉
H

+ o(‖ζ‖2H)
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for every ζ ∈ H. The partial derivative with respect to time is denoted ∂tV̂ (t, z). It is
often convenient to identify D2

z V̂ (t, z) with a bilinear form on H ×H, setting

D2
z V̂ (t, z)(ζ1, ζ2) :=

〈
D2
z V̂ (t, z) ζ1, ζ2

〉
H
.

If V̂ is Fréchet differentiable, then the Gâteaux derivatives

∂ζ V̂ (t, z) := lim
ε→0

V̂ (t, z + εζ)− V̂ (t, z)

ε

are also well-defined for every ζ ∈ H. They satisfy

∂ζ V̂ (t, z) = DzV̂ (t, z) ζ.

If, on the other hand, V̂ has linear and continuous Gâteaux derivatives, and the mapping
z 7→ ∂·V̂ (t, z) ∈ L(H,R) is continuous, then V̂ (t, z) is continuously Fréchet differentiable
in z.

We assume the following regularity condition for V̂ , which is, in particular, a prereq-
uisite for Itô’s formula. In the context of pricing with PIDEs, it is common to assume
that V̂ is twice continuously differentiable, see, e.g., [24, 49, 61]. Note, however, that
this hypothesis is not necessary for the convergence results in Section 4.2.

Assumption 4.3. Suppose that V̂ ∈ C1,2((0, T ) ×H,R) ∩ C([0, T ] ×H,R); i.e., V̂ is
continuously differentiable with respect to t and twice continuously differentiable with
respect to z. Moreover, assume that the operator norms

∥∥D2
z V̂ (t, z)

∥∥,
∥∥DzV̂ (t, z)

∥∥, and∥∥∂tV̂ (t, z)
∥∥ are bounded.

As a direct consequence of this assumption, V satisfies the Lipschitz condition∣∣∣V̂ (t, z)− V̂ (t, z + ζ)
∣∣∣ ≤ LV ‖ζ‖H for every ζ ∈ H

with the constant LV := sup(s,z̃)∈[0,T ]×H
∥∥DzV̂ (s, z̃)

∥∥. We are now able to calculate the

stochastic dynamics of V̂ using Itô’s formula.

Theorem 4.4. The discounted price V̂ of a European option, given by (4.1), satisfies

dV̂
(
t, ZL(t)

)
=

∂tV̂
(
t, ZL(t−)

)
dt+

1

2
tr
(
D2
z V̂
(
t, ZL(t−)

)
QL

)
dt

+

∫
H

[
V̂
(
t, ZL(t−) + ζ

)
− V̂

(
t, ZL(t−)

)
−DzV̂

(
t, ZL(t−)

)
ζ
]
νL(dζ) dt

+DzV̂
(
t, ZL(t−)

)
dWL(t) +

∫
H

[
V̂
(
t, ZL(t−) + ζ

)
− V̂

(
t, ZL(t−)

)]
M̃L(dζ, dt).

(4.2)
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Proof. By Itô’s formula [56, Thm. 3], we obtain

V̂
(
t, ZL(t)

)
= V̂

(
0, ZL(0)

)
+

∫ t

0
∂tV̂

(
s, ZL(s−)

)
ds

+
1

2

〈〈∫ ·
0
D2
z V̂
(
s, ZL(s−)

)
dWL(s) ; WL(·)

〉〉
t

+

∫ t

0
DzV̂

(
s, ZL(s−)

)
dZL(s)

+
∑

0≤s≤t

[
V̂
(
s, ZL(s−) + ∆ZL(s)

)
− V̂

(
s, ZL(s−)

)
−DzV̂

(
s, ZL(s−)

)
∆ZL(s)

]
,

(4.3)

where 〈〈X ; Y 〉〉 denotes the predictable quadratic covariation of 〈X,Y 〉H , and ∆ZL(s) =
ZL(s)− ZL(s−) is the jump height of ZL at time s.

We first calculate the covariation. From [27, Cor. 4.14], we know that

E

〈∫ t2

t1

D2
z V̂
(
s, ZL(s−)

)
dWL(s),WL(t2)−WL(t1)

〉
H

=

∫ t2

t1

tr
(
D2
z V̂
(
s, ZL(s−)

)
QL

)
ds

for every 0 ≤ t1 ≤ t2. Consequently, by independence of the increments of WL, we find〈〈∫ ·
0
D2
z V̂
(
s, ZL(s−)

)
dWL(s) ; WL(·)

〉〉
t

=

∫ t

0
tr
(
D2
z V̂
(
s, ZL(s−)

)
QL

)
ds.

For the next term in (4.3), we use the dynamics of ZL to obtain∫ t

0
DzV̂

(
s, ZL(s−)

)
dZL(s)

=

∫ t

0
DzV̂

(
s, ZL(s−)

)
d

[
WL(s) +

∫ s

0

∫
H
yM̃L(dy, ds2)

]
=

∫ t

0
DzV̂

(
s, ZL(s−)

)
dWL(s)

+

∫ t

0
DzV̂

(
s, ZL(s−)

)
d

[ ∑
0≤s2≤s

∆ZL(s2)−
∫ s

0

∫
H
y νL(dζ) ds2

]
.

A theorem for interchanging linear operators and Bochner integrals [33, App. E, Thm. 8]
yields∫ t

0
DzV̂

(
s, ZL(s−)

)
d

[ ∫ s

0

∫
H
y νL(dy) ds2

]
=

∫ t

0

∫
H
DzV̂

(
s, ZL(s−)

)
y νL(dy) ds.

It remains to reorganize the jump terms in (4.3). Due to the bounded derivatives of the
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price function V̂ (Assumption 4.3), the following holds:∫ t

0
DzV̂

(
s, ZL(s−)

) ∫
H
z M̃L(dz, ds)

=
∑

0≤s≤t
DzV̂

(
s, ZL(s−)

) (
ZL(s)− ZL(s−)

)
−
∫ t

0

∫
H
DzV̂

(
s, ZL(s−)

)
z νL(dz)ds.

Moreover, we have∑
0≤s≤t

[
V̂
(
s, ZL(s)

)
− V̂

(
s, ZL(s−)

)]
=

∫ t

0

∫
H

[
V̂
(
s, ZL(s−) + z

)
− V̂

(
s, ZL(s−)

)]
M̃L(dz, ds)

+

∫ t

0

∫
H

[
V̂
(
s, ZL(s−) + z

)
− V̂

(
s, ZL(s−)

)]
νL(dz) ds.

Combining all of the results with the Itô dynamics (4.3) completes the proof.

In order to get a slightly more explicit form of the trace expression in (4.2), we insert
the orthonormal basis (ek)k∈I of H into the definition of the trace. This yields

tr
(
D2
z V̂
(
t, ZL(t−)

)
QL

)
=
∑
k∈I

D2
z V̂
(
t, ZL(t−)

) (
QLpk, pk

)
.

Theorem 4.5. The discounted price V̂ of a European option with payoff G(ZL(T )) at
maturity T satisfies the PIDE

−∂tV̂ (t, z) =
1

2

∑
k∈I

D2
z V̂ (t, z) (QLpk, pk)

+

∫
H

[
V̂ (t, z + ζ)− V̂ (t, z)−DzV̂ (t, z) ζ

]
νL(dζ),

(4.4)

with terminal condition

V̂ (T, z) = e−rTG(z),

for every t ∈ (0, T ), z ∈ E0(CXT )⊥.

Proof. We employ Theorem 4.4. The penultimate term in (4.2),∫ t

0
DzV̂

(
s, ZL(s−)

)
dWL(s),

is a martingale by [27, Thm. 4.12]. In order to show that the integral with respect to
the compensated Poisson measure is a martingale too, we apply [69, Thm. 3.11]. The
prerequisite for this theorem is a strong integrability condition, which is satisfied due to
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[69, Thm. 3.12], since∫ t

0

∫
H
E
∣∣∣V̂ (s, ZL(s−) + ζ

)
− V̂

(
s, ZL(s−)

)∣∣∣ νL(dζ)ds ≤ t
∫
H
LV ‖ζ‖H νL(dζ) <∞.

The remaining integral terms in (4.2) are continuous in t and of finite variation.
Consequently, the martingale property of V̂ , together with the fact that continuous
martingales of finite variation are almost surely constant [65, Th. 27], yields the PIDE
along almost every trajectory of ZL.

It remains to show that the PIDE indeed holds for arbitrary t ∈ (0, T ) and z ∈
E0(CXT )⊥. We denote by Bε(z) the ball with radius ε around z. Due to the non-
vanishing diffusion (Assumption 2.8), the probability for ZL(t) ∈ Bε(z) is non-zero for
every ε > 0. Thus, for every ε > 0, we can find a zε ∈ Bε(z) such that the PIDE holds
in (t, zε). Due to the regularity of V̂ (Assumption 4.3), we can conclude that the PIDE
holds for every (t, z) ∈ (0, T )× E0(CXT )⊥.

4.2 Pricing European Options with POD

We use the POD projection operator Pd defined in (3.2) to construct the finite-dimen-
sional approximation

(4.5) V̂d(t, x) := e−rTE
[
G
(
x+ PdZL(T − t)

)]
for x ∈ Ud ∼= Rd. In this section, we show that V̂d is a good approximation of V̂ . More-
over, we derive the finite-dimensional PIDE solved by V̂d and verify that this solution
is unique.

4.2.1 Finite Dimensional PIDE

Before we can derive the finite-dimensional PIDE for V̂d, we have to deal with the ques-
tion of differentiability. The following theorem shows that Assumption 4.1 is actually
enough to recover regularity of Vd.

Theorem 4.6. The finite-dimensional approximation V̂d : [0, T ] × Ud → R defined in
(4.5) satisfies V̂d ∈ C1,2((0, T )×Ud,R)∩C([0, T ]×Ud,R). Moreover, the partial deriva-
tives ∂xi V̂d(t, x), ∂xi∂xj V̂d(t, x), and ∂tV̂d(t, x) are functions of at most linear growth in
‖x‖ for i, j = 1, . . . , d.

Proof. The first step of the proof is to show the existence of a smooth density for the
random variable PdZL(t) for arbitrary t ≥ 0. To achieve this, a fast decay condition for
its characteristic function

µ̂t(x) := E
(
e
i〈x,PdZL(t)〉Ud

)
∈ C, x ∈ Ud,
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is useful. We have

E
[〈
PdWL(t), x1

〉
Ud

〈
PdWL(t), x2

〉
Ud

]
=

d∑
k,l=1

〈x1, pk〉Ud 〈x2, pl〉Ud E
[〈
WL(t), pk

〉
H

〈
WL(t), pl

〉
H

]
= 〈QLx1, x2〉H

for every x1, x2 ∈ Ud. Thus, the covariance operator for the diffusion part of PdZL is
given by PdQLPd. The same arguments as in the proof of Proposition 2.3 yield

µ̂t(x) = exp

(
− 1

2
t
〈
PdQLx, x

〉
Ud

+

∫ t

0

∫
H

(
e
i〈Pdξ,x〉Ud − 1− i 〈Pdξ, x〉Ud

)
νL(dξ)ds

)
for every x ∈ Ud. Using Assumptions 2.1 and 2.8, this implies

|µ̂t(x)| ≤ exp

(
− 1

2
t 〈PdQLx, x〉H

+

∫ t

0

∫
H

∣∣ei〈Pdξ,x〉H − 1− i 〈Pdξ, x〉H
∣∣ νL(dξ)ds

)
≤ exp

[
t

(
−1

2
C1 ‖x‖2 + C2 ‖x‖+ C3

)]
,

with positive constants C1, C2, and C3 depending on d. In particular, we have

lim
‖x‖→∞

‖x‖n µ̂t(x) = 0 for every n ∈ N.

Similarly, we obtain

|∂αx µ̂t(x)| ≤ pα(t, ‖x‖) |µ̂t(x)| and |∂αx ∂tµ̂t(x)| ≤ qα(t, ‖x‖) |µ̂t(x)|

for every multiindex α ∈ Nd0, where pα and qα are polynomials. Consequently, for every
t ∈ (0, T ), µ̂t and ∂tµ̂t are elements of the Schwartz space

S(Rd) =
{
f ∈ C∞(Rd) : lim

‖x‖→∞
‖x‖n ∂αx f(x) = 0 for every α ∈ Nd0, n ∈ N0

}
.

From [71, Prop. 28.1], we know that PdZL(t) has a density gt ∈ C∞(Rd), given by

gt(y) := (2π)−d
∫
Rd
e−i〈y,x〉µ̂t(x) dx.

Moreover, by the properties of µ̂t and [80, Thm. V.2.8], we obtain gt ∈ S(Rd) and
∂tgt ∈ S(Rd). Finally, note that V̂d can be written as a convolution of the payoff and
the density:

V̂d(t, x) = e−rT
∫
Rd
G(x+ y)gT−t(y)dy = e−rT

∫
Rd
G(y)gT−t(y − x)dy.
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Due to Assumption 4.1, we have |G(y)| ≤ |G(0)|+LG ‖y‖. Hence, for x ∈ Ud, t ∈ (0, T ),
we may compute

∂αx V̂d(t, x) = −e−rT
∫
Rd
G(x+ y) ∂αy gT−t(y) dy

and

∂tV̂d(t, x) = −e−rT
∫
Rd
G(x+ y) ∂tgT−t(y) dy

for every α ∈ Nd0. This proves continuity of the derivatives. In addition, we obtain∣∣∣∂αx V̂d(t, x)
∣∣∣ ≤ e−rT ∫

Rd
|G(y + x)| |∂αx gT−t(y)| dy

≤
∫
Rd

(
|G(0)|+ LG ‖x‖+ LG ‖y‖

)
|∂αx gT−t(y)| dy

for every α ∈ Nd0. Similarly,∣∣∣∂tV̂d(t, x)
∣∣∣ = e−rT

∣∣∣∣∫
Rd
G(y)∂tgT−t(y − x)dy

∣∣∣∣
≤
∫
Rd

(
|G(0)|+ LG ‖x‖+ LG ‖y‖

)
|∂tgT−t(y)| dy.

Thus, the growth condition is shown. It remains to prove that V̂d is also continuous for
t→ T . This is, however, a direct consequence of the fact that

lim
t→0

E ‖ZL(t)‖H = 0,

and thus ∣∣∣V̂d(t, x)− V̂d(T, x)
∣∣∣ ≤ e−rTE ∣∣G(x+ PdZL(T − t)

)
−G(x)

∣∣
≤ C E ‖ZL(T − t)‖H → 0 for t→ T.

Theorem 4.7. The function V̂d defined in (4.5) is a classical solution of the finite-
dimensional PIDE

−∂tV̂d(t, x) =
1

2

d∑
l=1

D2
xV̂d(t, x) (PdQLpl,Pdpl)

+

∫
H

[
V̂d(t, x+ Pdζ)− V̂d(t, x)−DxV̂d(t, x)Pdζ

]
νL(dζ),

(4.6)

with terminal condition

V̂d(T, x) = V̂ (T, x) = e−rTG(x),

for t ∈ (0, T ), x ∈ Ud.
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Proof. The stochastic dynamics of PdZL(t) are given by

d
(
PdZL(t)

)
= d
(
PdWL(t)

)
+

∫
H
Pdζ M̃L(dζ, dt).

The process PdWL(t) =
∑d

i=1

〈
WL(t), pl

〉
H
pl is a d-dimensional Wiener process with

correlation operator PdQLPd. The integral with respect to M̃L can easily be rewritten
as an integral over Ud, since the integrand depends only on the projection Pdζ ∈ Ud.

We apply the finite-dimensional version of Itô’s formula (cf., e.g., [24, Thm. 8.18]) to
V̂d
(
t,PdZL(t)

)
. In contrast to the Hilbert space valued case, bounded derivatives are

not needed here. The properties of V̂d shown in Theorem 4.6 are sufficient. By the same
arguments as in the proof of Theorem 4.4, we obtain the following:

dV̂d
(
t,PdZL(t)

)
=

∂tV̂d dt+
1

2
tr
(
D2
xV̂d PdQLPd

)
dt

+

∫
H

[
V̂d
(
t,PdZL(t−) + Pdζ

)
− V̂d

(
t,PdZL(t−)

)
−DxV̂d Pdζ

]
νL(dζ) dt

+DxV̂d d
(
PdWL(t)

)
+

∫
H

[
V̂d
(
t,PdZL(t−) + Pdζ

)
− V̂d

(
t,PdZL(t−)

)]
M̃L(dζ, dt).

Proceeding exactly as in the proof of Theorem 4.5, we obtain (4.6).

The PIDE in Theorem 4.7 is of course nothing more than a projected version of the
PIDE (4.4) for V̂ . The derivatives DxV̂d(t, x) ∈ L(Rd,R) and D2

xV̂d(t, x) ∈ L(Rd,Rd)
can be interpreted as a vector and a matrix, respectively. In particular, we have

d∑
l=1

D2
xV̂d(t, x) (PdQLpl,Pdpl) =

d∑
l=1

d∑
i,j=1

∂xi∂xj V̂d(t, x) 〈PdQLpl, pj〉H 〈Pdpl, pi〉H

=

d∑
i,j=1

〈QLpi, pj〉H ∂xi∂xj V̂d(t, x).

To simplify notation, we define coefficients

aij :=
1

2
〈QLpi, pj〉H , i, j = 1, . . . , d.

The PIDE can then be written as

−∂tV̂d(t, x) =

d∑
i,j=1

aij ∂xi∂xj V̂d(t, x)

+

∫
H

[
V̂d(t, x+ Pdζ)− V̂d(t, x)−

d∑
i=1

〈ζ, pi〉H ∂xi V̂d(t, x)
]
νL(dζ).

(4.7)

Moreover, we have the following ellipticity property.
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Proposition 4.8. The matrix (aij)
d
i,j=1 is symmetric positive definite.

Proof. The symmetry is obvious, since QL is self-adjoint. For arbitrary y ∈ Rd, we find

d∑
i,j=1

yi aij yj =
1

2

〈
QL

d∑
i=1

yipi,
d∑
i=1

yipi

〉
H

=
1

2

1

T

∫ T

0

〈
σsQσ

∗
s

d∑
i=1

yipi,

d∑
i=1

yipi

〉
H

ds.

Since (pl)
d
l=0 are eigenvectors of CXT corresponding to strictly positive eigenvalues, we

have
∑d

i=1 yipi ∈ E0(CXT )⊥. In addition,
∥∥∑d

i=1 yipi
∥∥
H

= ‖y‖ > 0 due to the isometry

(3.3). Thus, we can conclude that (aij)
d
i,j=1 is positive definite by Assumption 2.8.

4.2.2 Variational Formulation and Uniqueness

We have already shown that the approximation V̂d(t, x) is a classical solution of the finite-
dimensional PIDE (4.7). In this section, we introduce the corresponding variational
formulation in appropriate Hilbert spaces and show uniqueness of the weak solution.
Since the payoff is not necessarily bounded, and thus not an element of L2(Rd), we use
weighted Sobolev spaces instead. Let ρθ be the weight function with exponential decay
defined by

ρθ :

{
Rd → R,
x 7→ e−θ

√
1+‖x‖2 ,

with a parameter θ > 0. We define the scalar products

〈ψ,ϕ〉L2,θ :=

∫
Rd
ψ(x)ϕ(x)ρθ(x) dx

and

〈ψ,ϕ〉Hk,θ :=
∑

α∈Nd0,|α|≤k

〈∂αψ, ∂αϕ〉L2,θ

for functions ψ,ϕ : Rd → R. The corresponding Hilbert spaces are denoted by L2,θ(Rd)
and Hk,θ(Rd) (cf., e.g., [8, Chap. 3.1]). In particular, we consider the Gelfand triple

H1,θ(Rd) ↪→ L2,θ(Rd) ↪→
(
H1,θ(Rd)

)′
.

Finally, we define the bilinear form

a(ψ,ϕ) :=

∫
Rd

d∑
i,j=1

aij ∂xiψ(x) ∂xjϕ(x) ρθ(x) dx+

∫
Rd

d∑
i=1

bi(x) ∂xiψ(x)ϕ(x) ρθ(x) dx

−
∫
H

∫
Rd

[
ψ(x+ Pdζ)− ψ(x)−

d∑
i=1

〈ζ, pi〉H ∂xiψ(x)

]
ϕ(x) ρθ(x) dx νL(dζ)

(4.8)
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for ψ,ϕ ∈ H1,θ(Rd), where

bi(x) := −
θ
∑d

j=1 aijxj√
1 + ‖x‖2

for i = 1, . . . , d.

The coefficients bi(x) satisfy ∣∣bi(x)
∣∣ ≤ θ d max

j=1,...,d
|aij |

and are therefore bounded on Rd. We can now state a variational form of (4.7).

Proposition 4.9. The function V̂d defined in (4.5) satisfies

(4.9) −
〈
∂tV̂d(t, ·), ϕ

〉
L2,θ

+ a(V̂d(t, ·), ϕ) = 0

for every ϕ ∈ H1,θ(Rd) and every t ∈ (0, T ), with terminal condition

(4.10) V̂d(T, x) = G(x).

Proof. We first note that V̂d(t, ·) ∈ H2,θ(Rd) and ∂tV̂d(t, ·) ∈ L2,θ(Rd) hold for every
t ∈ (0, T ) due to Theorem 4.6. Starting with (4.7), partial integration yields

−
〈
∂tV̂d(t, x), ϕ

〉
L2,θ

= −
d∑

i,j=1

aij

∫
Rd
∂xi V̂d(t, x) ∂xj (ϕρθ)(x) dx

+

∫
H

∫
Rd

[
V̂d(t, x+ Pdζ)− V̂d(t, x)−

d∑
i=1

〈ζ, pi〉H ∂xi V̂d(t, x)

]
ϕ(x)ρθ(x) dx νL(dζ).

Using the product rule, we obtain

d∑
j=1

aij∂xj (ϕρθ)(x) =
d∑
j=1

aij ∂xjϕ(x) ρθ(x) + ϕ(x) bi(x) ρθ(x).

Proposition 4.10. The bilinear form a defined in (4.8) is continuous and satisfies
G̊arding’s inequality. More precisely, there are constants C > 0, c1 ≥ 0, and c2 > 0
(possibly depending on d) such that

|a(ψ,ϕ)| ≤ C ‖ψ‖H1,θ ‖ϕ‖H1,θ(4.11)

and

a(ψ,ψ) + c1 ‖ψ‖2L2,θ ≥ c2 ‖ψ‖2H1,θ(4.12)
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hold for every ψ,ϕ ∈ H1,θ(Rd).

Proof. First, we show continuity. From the definition of a, we obtain

|a(ψ,ϕ)|

≤
d∑

i,j=1

|aij |
∫
Rd

∣∣∂xiψ(x)
∣∣∣∣∂xjϕ(x)

∣∣ρθ(x) dx+
d∑
i=1

∫
Rd

∣∣bi(x)
∣∣∣∣∂xiψ(x)

∣∣∣∣ϕ(x)
∣∣ρθ(x) dx

+

∫
H

∫
Rd

∣∣ψ(x+ Pdζ)
∣∣∣∣ϕ(x)

∣∣ρθ(x) dx νL(dζ) +

∫
H

∫
Rd

∣∣ψ(x)
∣∣∣∣ϕ(x)

∣∣ρθ(x) dx νL(dζ)

+
d∑
i=1

∫
H

∫
Rd

∣∣〈ζ, pi〉H ∣∣∣∣∂xiψ(x)
∣∣∣∣ϕ(x)

∣∣ρθ(x) dx νL(dζ).

The Cauchy–Schwarz inequality yields

|a(ψ,ϕ)| ≤ max
i,j=1,...,d

|aij |
d∑

i,j=1

∥∥∂xiψ∥∥L2,θ

∥∥∂xjϕ∥∥L2,θ

+ max
i=1,...,d

∥∥bi∥∥L∞

d∑
i=1

∥∥∂xiψ∥∥L2,θ

∥∥ϕ∥∥
L2,θ + 2

∫
H

∥∥ψ∥∥
L2,θ

∥∥ϕ∥∥
L2,θ νL(dζ)

+

∫
H

d∑
i=1

∣∣〈ζ, pi〉H ∣∣ ∥∥∂xiψ∥∥L2,θ

∥∥ϕ∥∥
L2,θ νL(dζ).

Due to ∫
H
νL(dζ) <∞ and

∫
H
‖ζ‖H νL(dζ) <∞,

this proves (4.11).
For the proof of G̊arding’s inequality, we start with the ellipticity property from

Proposition 4.8. For every ζ ∈ Rd,

d∑
i,j=1

aij ζi ζj ≥ c
d∑
i=1

ζ2
i

holds, with a constant c > 0. Hence

c

∫
Rd

d∑
i=1

∣∣∂xiψ(x)
∣∣2 ρθ(x) dx ≤

∫
Rd

d∑
i,j=1

aij ∂xiψ(x)∂xjψ(x) ρθ(x) dx

= a(ψ,ψ)−
∫
Rd

d∑
i=1

bi(x) ∂xiψ(x)ψ(x) ρθ(x) dx

+

∫
H

∫
Rd

[
ψ(x+ Pdζ)− ψ(x)−

d∑
i=1

〈ζ, pi〉H ∂xiψ(x)

]
ψ(x) ρθ(x) dx νL(dζ).
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The same calculations as in the proof of continuity above yield

c
d∑
i=1

∥∥∂xiψ∥∥2

L2,θ ≤ a(ψ,ψ) + C1

d∑
i=1

∥∥∂xiψ∥∥L2,θ

∥∥ψ∥∥
L2,θ + C2

∥∥ψ∥∥2

L2,θ

≤ a(ψ,ψ) + C1

(
ε

2

d∑
i=1

∥∥∂xiψ∥∥2

L2,θ +
d

2ε

∥∥ψ∥∥2

L2,θ

)
+ C2

∥∥ψ∥∥2

L2,θ ,

where we have used Young’s inequality in the last estimate. Choosing ε so small that

C1
ε

2
≤ 1

2
c

and setting

c1 =
C1d

2ε
+ C2 and c2 =

1

2
c

yields (4.12).

With the following two theorems, we show that V̂d is indeed the unique solution of the
PIDE. We start with a lemma requiring stronger regularity hypotheses for G. After-
wards, we give a result for arbitrary Lipschitz continuous payoffs.

Lemma 4.11. Suppose that G ∈ H2,θ(Rd) has bounded first and second derivatives.
Then V̂d is the unique solution of (4.9), with terminal condition (4.10), in the space
W(0, T ) defined by

W(0, T ) :=
{
f : Rd → R : f ∈ L2

(
0, T ; H1,θ), ∂tf ∈ L2

(
0, T ;

(
H1,θ

)′)}
.

Proof. The bilinear form a is continuous and satisfies G̊arding’s inequality by Propo-
sition 4.10. Therefore, the PIDE has a unique solution in the space W(0, T ) by [82,
Thm. 26.1]. On the other hand, we know from Theorem 4.7 that V̂d satisfies (4.9). It
remains to prove that V̂d ∈ W(0, T ).

Using the same notation as in the proof of Theorem 4.6, we have

V̂d(t, x) = e−rT
∫
Rd
G(x+ y)gT−t(y)dy,

where gT−t ∈ S(Rd) is the density of PdZL(T − t). Consequently,∫
Rd
V̂ 2
d (t, x)ρθ(x) dx ≤

∫
Rd

(∫
Rd

(
C1 + C2 ‖x‖+ C3 ‖y‖

)
gT−t(y) dy

)2

ρθ(x) dx.

Since ∫
Rd
gT−t(y) dy = 1,

∫
Rd
‖y‖ gT−t(y) dy = E ‖PdZL(T − t)‖ <∞,
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and ∫
Rd
‖x‖i ρθ(x) dx <∞ (i ∈ {1, 2})

hold for every t ∈ (0, T ), this implies V̂d ∈ L2
(
0, T ; L2,θ(Rd)

)
. Moreover, we have

∂αx V̂d(t, x) = e−rT
∫
Rd
∂αG(x+ y) gT−t(y) dy

for every α ∈ Nd0, |α| ∈ {1, 2}. Due to the boundedness of the derivatives of G, the
following holds:∫

Rd

(
∂αx V̂d(t, x)

)2
ρθ(x) dx ≤ C

∫
Rd

(∫
Rd
gT−t(y) dy

)2

ρθ(x) dx = C

∫
Rd
ρθ(x) dx.

Consequently, V̂d ∈ L2
(
0, T ; H2,θ(Rd)

)
. Since V̂d satisfies the PIDE (4.7), its time deriva-

tive ∂tV̂d can be expressed in terms of its first and second spatial derivatives. Thus, we
also have ∂tV̂d ∈ L2

(
0, T ; L2,θ(Rd)

)
, and the proof is complete.

Theorem 4.12. Let G satisfy Assumption 4.1. Then V̂d is an element of the space
W(0, T ) defined in Lemma 4.11 and the unique solution of (4.9) with terminal condition
(4.10).

Proof. The key of the proof is to approximate G with a sequence of smooth functions
to which Lemma 4.11 can be applied. To this end, let (ψn)n∈N ⊂ C∞0 (Rd) be a sequence
of standard mollifiers with compact support. Define the convolution

Gn(x) :=

∫
Rd
G(x− y)ψn(y)dy ∈ C∞(Rd), x ∈ Rd.

Since G is by assumption Lipschitz, and thus uniformly continuous, the following uni-
form approximation property holds by [33, Thm. C.6]:

∀ε > 0 ∃N ∈ N : |Gn(x)−G(x)| ≤ ε for every n ≥ N, x ∈ Rd.

Moreover, for every ξ ∈ Rd and every multiindex α ∈ Nd0, we have

|∂αGn(x+ ξ)− ∂αGn(x)| ≤
∫
Rd

∣∣G(x+ ξ − y)−G(x− y)
∣∣ |∂αψn(y)| dy

≤ LG ‖ξ‖
∫
Rd
|∂αψn(y)| dy.

Thus, in particular, the first and second derivatives of Gn are bounded for every n ∈ N.
Now let

V̂ n
d (t, x) := e−rTE

[
Gn
(
x+ PdZL(T − t)

)]
be the price function associated with payoff Gn. By Lemma 4.11, V̂ n

d ∈ W(0, T ) is the

unique solution of (4.7) with terminal condition V̂ n
d (T, x) = Gn(x). Moreover, the PIDE



38 4 European Options

with terminal value G(x) also has a unique solution, which we denote by Ṽd ∈ W(0, T ).
From [82, Thm. 26.1], we obtain

(4.13)
∥∥∥V̂ n

d − Ṽd
∥∥∥

L2(0,T ;L2,θ)
≤ C ‖Gn −G‖L2,θ → 0 for n→∞.

On the other hand, by the proof of Lemma 4.11, we have V̂d ∈ L2(0, T ; L2,θ) for
every payoff G satisfying Assumption 4.1. Thus, using the notation from the proof of
Theorem 4.6, we get∥∥∥V̂ n

d − V̂d
∥∥∥2

L2(0,T ;L2,θ)

= e−rT
∫ T

0

∫
Rd

(∫
Rd

(
G(x+ y)−Gn(x+ y)

)
gT−t(y)dy

)2

ρθ(x) dx dt

≤ e−rT
∫ T

0

∫
Rd

(∫
Rd

∣∣G(x+ y)−Gn(x+ y)
∣∣gT−t(y)dy

)2

ρθ(x) dx dt

→ 0 for n→∞.

(4.14)

Combining (4.13) and (4.14), we obtain V̂d = Ṽd.

4.2.3 Convergence of Finite-Dimensional Approximations

We are interested in the convergence of V̂d to the true price function V̂ . The fair price
of the option is given by V̂ (0, 0), since we assume the time-homogeneous process ZL
starts in 0. In particular, we are looking for a pointwise convergence result.

Theorem 4.13. Let µ1 ≥ µ2 ≥ ... ≥ 0 be the eigenvalues of the covariance operator
CXT defined in (2.9). Then there exists a constant C > 0 such that

∣∣∣V̂d(0, 0)− V̂ (0, 0)
∣∣∣ ≤ C

√√√√dim(H)∑
l=d+1

µl.

Proof. By definition of V̂ and V̂d, and Assumption 4.1, we have∣∣∣V̂d(0, 0)− V̂ (0, 0)
∣∣∣ = e−rT

∣∣E[G(ZL(T )
)
−G

(
PdZL(T )

)]∣∣
≤ e−rTE

[
LG ‖ZL(T )− PdZL(T )‖H

]
.

Since ‖·‖L1 ≤ C ‖·‖L2 for finite measure spaces, we may apply Theorem 3.2 to obtain

∣∣∣V̂d(0, 0)− V̂ (0, 0)
∣∣∣ ≤ C√E[ ‖ZL(T )− PdZL(T )‖2H

]
= C

√√√√dim(H)∑
l=d+1

µl.

Note that all the results concerning regularity, variational formulation, and unique solv-
ability of the finite-dimensional PIDE are still valid when we use the Galerkin approxi-
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mation (p∆x
l )dl=1 from Section 3.2 instead of (pl)

d
l=1, if we replace Assumption 2.8 with

the following hypothesis:

(4.15) 〈QLh, h〉H > 0 for every h ∈ span{p∆x
l , l = 1, . . . , d}\{0}.

In this case, we denote the corresponding finite-dimensional price process (projected to
span{p∆x

l , l = 1, . . . , d}) by V̂ ∆x
d . We obtain the following slightly modified convergence

theorem.

Corollary 4.14. Let the hypotheses of Proposition 3.7 and (4.15) hold. Then there
exists a constant C > 0 such that

∣∣∣V̂ ∆x
d (0, 0)− V (0, 0)

∣∣∣ ≤ C
√√√√(∆x)2q+1 +

dim(H)∑
l=d+1

µl,

where q is the degree of the finite-element polynomials.

Proof. The estimate follows from Proposition 3.7 by exactly the same arguments as in
the proof of Theorem 4.13.
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5 Hedging

The main objective of this section is to solve the quadratic hedging problem for Euro-
pean electricity swaptions with the dimension reduction method presented in Section 3.
While this type of contracts bears some similarity to derivatives on interest rate mar-
kets, there are major differences concerning the hedging problem. Contracts similar to
bonds, which imply delivery at a single point in time, are not available. Moreover, the
driving factors of the forward curve are not necessarily related to the short rate and thus
the discounting factors. In particular, we will assume a constant interest rate for sim-
plicity. The challenge here is that we can only trade in various averages of the forward
curve, the swaps. With these finitely many assets, we cannot expect to hedge every
possible movement of the forward curve, which has infinitely many degrees of freedom.
This discrepancy is clearly visible in Figure 3. Consequently, the market is inherently
incomplete, even under a pure diffusion model.

Before we state a solution to the hedging problem, we study the properties of swap rates
in detail. We show differentiability and calculate their stochastic dynamics. Moreover,
we derive the time-dependent PIDE satisfied by the swaption price (without relying
on the time-homogeneous model used for option pricing in Section 4). We then find a
representation of the (not necessarily unique) optimal hedging strategy as a solution of a
linear equation system. The result is in fact a generalization of the hedging formulas in
one-dimensional jump-diffusion models. Similar to a classical delta hedge, the optimal
strategy depends on partial derivatives of the option price. These derivatives can be
approximated numerically with the POD approach. Finally, we show convergence of
this approximation.

5.1 Dynamics of Swap Rates and Swaption Prices

We consider a portfolio of n swap contracts available for trading, whose delivery periods
are given by Di := [T i1, T

i
2], i = 1, . . . , n. We may, for example, hedge a quarterly

swaption by trading the quarterly swap itself as well as three monthly swaps. The swap
rates corresponding to the swaps in our portfolio are given by

F (t;T i1, T
i
2) =

∫ T i2

T i1

ωi(u)f(t, u) du,

where

ωi(u) := ω(u;T i1, T
i
2) =

e−ru∫ T i2
T i1
e−ru du

is the discounting factor defined in (1.4). We consider a European option with maturity
T written on the swap with delivery period D = [T1, T2]. Since we cannot hedge with
swaps whose delivery periods start before maturity of the option, we will assume T ≤ T i1
for every i = 1, . . . , n.

For the computation of an optimal hedging strategy, the swap rates F (t;T i1, T
i
2), i =

1, . . . , n, play a central role. Each rate F (t;T i1, T
i
2) is a real-valued, deterministic function
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of the forward curve f . More precisely,(
F (t;T i1, T

i
2)
)

0≤t≤T =
(
〈ωi, ft〉H

)
0≤t≤T

is a real-valued martingale, since f is an H-martingale by Proposition 2.6. By (2.3),
the forward curve is in turn a deterministic function of the driving jump-diffusion X
defined in (2.1). We may thus introduce

Fi :

{
H → R
x 7→

〈
ωi,
∑

k∈I 〈f0, ek〉H e〈x,ek〉H ek
〉
H

and obtain

Fi(Xt) = F (t;T i1, T
i
2), t ∈ [0, T ].

Similarly, we write

(5.1) F (Xt) =

〈
ω,
∑
k∈I
〈f0, ek〉H e〈Xt,ek〉H ek

〉
H

= F (t;T1, T2), t ∈ [0, T ],

for the swap rate on which the option is written.

The following three subsections are devoted to the calculation of the stochastic dy-
namics of both swap rates and swaption prices. They are of a rather technical nature,
since the unbounded derivatives of the swap rates prevent us from applying the same
Itô formula which we have used in Section 4. Instead, we will show that the properties
of the derivatives satisfy the premises of a different version of Itô’ s formula. The main
results are presented in Theorems 5.5 and 5.8.

5.1.1 Swap Rate Derivatives

The first step towards calculating the stochastic dynamics of swap rates is the calcula-
tion of their derivatives as functions of the driving process X. We denote the Fréchet
derivative of Fi at x ∈ H by DxFi(x) ∈ L(H,R). The following theorem shows that
the swap rates are indeed twice differentiable. Note that all subsequent theorems on
differentiability hold for every Fi, i = 1, . . . , n, and also for F as defined in (5.1). To
simplify notation, we will thus drop the index i and show the results for the generic
swap rate F .

Proposition 5.1. The swap rate function F defined in (5.1) is of class C2, i.e., it is
twice continuously Fréchet differentiable. For every x ∈ H and arbitrary ξ, ξ1, ξ2 ∈ H,
the derivatives satisfy

DxF (x) ξ =
∑
k∈I
〈ω, ek〉H 〈f0, ek〉H e

〈x,ek〉H 〈ξ, ek〉H and

D2
xF (x) (ξ1, ξ2) =

∑
k∈I
〈ω, ek〉H 〈f0, ek〉H e

〈x,ek〉H 〈ξ1, ek〉H 〈ξ2, ek〉H .
(5.2)
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Proof. We start by computing Gâteaux derivatives of F . By definition, we have

(5.3) F (x+ εξ) =
∑
k∈I
〈ω, ek〉H 〈f0, ek〉H e

〈x+εξ,ek〉H

for every ε > 0. We define ck := 〈ω, ek〉H 〈f0, ek〉H and find that∑
k∈I
|ck| ≤ ‖ω‖H ‖f0‖H <∞.

Using the chain rule, we obtain

∂

∂ε

(
cke
〈x+εξ,ek〉H

)
= cke

〈x+εξ,ek〉H 〈ξ, ek〉H .

Moreover, the partial sums of these derivatives converge uniformly in ε for |ε| < 1, since∣∣∣∣∣
dim(H)∑
k=m

cke
〈x+εξ,ek〉H 〈ξ, ek〉H

∣∣∣∣∣ ≤ e‖x‖He‖ξ‖H ‖ξ‖H
dim(H)∑
k=m

|ck| → 0 for m→∞.

Thus, we may differentiate (5.3) term by term. This yields

∂

∂ξ
F (x) =

∂

∂ε
F (x+ εξ)

∣∣∣
ε=0

=
∑
k∈I

cke
〈x,ek〉H 〈ξ, ek〉H .

These derivatives are obviously continuous in x, since
∣∣e〈x+εξ,ek〉H−e〈x,ek〉H

∣∣→ 0 for ε→
0, uniformly in k. Since the Gâteaux derivatives of F are continuous, F is continuously
Fréchet differentiable and

DxF (x) ξ =
∂

∂ξ
F (x) =

∑
k∈I

cke
〈x,ek〉H 〈ξ, ek〉H .

Due to the isometric isomorphism L(H,R) ∼= H, we may identify DxF (x) with an
element in H and write

DxF (x) =
∑
k∈I

cke
〈x,ek〉H ek.

By the very same arguments as for the first derivative, we obtain

∂

∂ξ
DxF (x) =

∑
k∈I

cke
〈x,ek〉H 〈ξ, ek〉H ek.

This implies the second equation in (5.2).

In order to apply an Itô formula to F , we need one additional property for its derivatives,
which we state in the following lemma. We denote by LHS(H,H) ⊂ L(H,H) the space
of Hilbert-Schmidt operators defined on H.
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Lemma 5.2. The values of the second Fréchet derivative of the function F : H → R
defined in (5.1) are Hilbert-Schmidt operators. The mapping

D2
xF :

{
H → LHS(H,H)

x 7→ D2
xF (x)

is uniformly continuous on bounded subsets.

Proof. The Hilbert-Schmidt norm of D2
xF (x) is given by∥∥D2

xF (x)
∥∥2

LHS(H,H)
=
∑
k∈I

〈
D2
xF (x) ek, D

2
xF (x) ek

〉
H

=
∑
k∈I
〈f0, ek〉2H 〈ω, ek〉

2
H e

2〈x,ek〉H

≤ ‖f0‖2H ‖ω‖
2
H e

2‖x‖H .

A similar calculation shows∥∥D2
xF (x1)−D2

xF (x2)
∥∥2

LHS(H,H)

=
∑
k∈I
〈f0, ek〉2H 〈ω, ek〉

2
H

(
e〈x1,ek〉H − e〈x2,ek〉H

)2

≤ ‖f0‖2H ‖ω‖
2
H e

2 max{‖x1‖H ,‖x2‖H} ‖x1 − x2‖2H

for every x1, x2 ∈ H. This implies the uniform continuity on bounded subsets.

The statement of the following lemma is a prerequisite for applying [62, Th. 8.23]. This
will be useful for splitting the result of Itô’s formula in a martingale and a finite variation
part.

Lemma 5.3. The integrals∫ T

0

∫
E
E
∣∣F (Xt− + ηt(y)

)
− F

(
Xt−

)∣∣2 ν(dy)dt

and ∫ T

0

∫
E
E |DxF (Xt−)ηt(y)|2 ν(dy)dt

are both finite.

Proof. For the first integral, we apply Young’s inequality to obtain∣∣F (Xt− + ηt(y)
)
− F (Xt−)

∣∣2 ≤ 2
∣∣F (Xt− + ηt(y)

)∣∣2 + 2 |F (Xt−)|2 .

We deal with the two terms separately. Using the definition of F we calculate∫ T

0

∫
E
E |F (Xt−)|2 ν(dy)dt = λ

∫ T

0
E |〈ω, ft−〉H |

2 dt

≤ λ ‖ω‖2H
∫ T

0
E ‖ft−‖2H dt.



5.1 Dynamics of Swap Rates and Swaption Prices 45

This expression is finite by Proposition 2.5. Similarly,∫ T

0

∫
E
E
∣∣F (Xt− + ηt(y)

)∣∣2 ν(dy) dt

=

∫ T

0

∫
E
E

∣∣∣∣∣∑
k∈I
〈ω, ek〉H 〈ft−, ek〉H e

〈ηt(y),ek〉H

∣∣∣∣∣
2

ν(dy) dt

≤ ‖ω‖2H
∫ T

0
E ‖ft−‖2H dt

∫
E
e2‖y‖E ν(dy).

This is finite by Proposition 2.5 and Assumption 2.1.

In order to show that the second integral in the statement of the lemma is finite, we
insert the derivative of F calculated in Proposition 5.1. This yields∫ T

0

∫
E
E |DxF (Xt−)ηt(y)|2 ν(dy) dt

=

∫ T

0

∫
E
E

∣∣∣∣∣∑
k∈I
〈ω, ek〉H 〈ft−, ek〉H 〈η(y), ek〉H

∣∣∣∣∣
2

ν(dy)dt

≤ C ‖ω‖2H
∫ T

0
E ‖ft−‖2H dt

∫
E
‖y‖2E ν(dy).

We proceed with Proposition 2.5 and Assumption 2.1 as above to complete the proof.

5.1.2 Applying Itô’s Formula

The second step towards calculating the dynamics of the swap rate F is the application
of a Hilbert space valued version of Itô’s formula.

Lemma 5.4. The function F : H → R defined in (5.1) satisfies

dF (Xt) =
1

2
tr
(
D2
xF (Xt−)σt−Qσ

∗
t−

)
dt

+

∫
E

[
F
(
Xt− + ηt(y)

)
− F (Xt−)−DxF (Xt−) ηt(y)

]
ν(dy) dt

+DxF (Xt−) γt dt+DxF (Xt−)σt dWt

+

∫
E

[
F
(
Xt− + ηt(y)

)
− F (Xt−)

]
M̃(dy, dt).

(5.4)

Proof. By Proposition 5.1 and Lemma 5.2, the premises of Itô’s formula [62, Th. D.2]
are satisfied. The theorem yields

F (Xt) = F (X0) +

∫ t

0
DxF (Xs−) dXs +

1

2

∫ t

0
D2
xF (Xs−) d[X,X]cs

+
∑

0≤s≤t

[
F (Xs)− F (Xs−)−DxF (Xs−) (Xs −Xs−)

]
,

(5.5)
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where [X,X]c denotes the continuous part of the predictable quadratic covariation as
defined in [62]. By definition, we have

[X,X]ct =
∑
i,j∈I

ei ⊗ ej
(

[Xi, Xj ]
c
t

)
,

where ei ⊗ ej denotes the tensor product of the two basis elements and Xi(t) :=
〈X(t), ei〉H for i ∈ I. Let Pi denote the operator represented by the basis element
ei (i ∈ I), and P∗i be its adjoint operator:

Pi :

{
H → R
h 7→ 〈h, ei〉H

and P∗i :

{
R → H

a 7→ a · ei.

By the properties of quadratic variations for real-valued processes and [27, Cor. 4.14],
we obtain

[Xi, Xj ]
c
t = [Xc

i , X
c
j ]t =

[〈∫ ·
0
σs dWs, ei

〉
H

,

〈∫ ·
0
σs dWs, ej

〉
H

]
t

=

∫ t

0
Pi σsQσ∗s P∗j ds =

∫ t

0
〈σsQσ∗sej , ei〉H ds.

Thus, we have∫ t

0
D2
xF (Xs−)d[X,X]cs =

∫ t

0

∑
i,j∈I

D2
xF (Xs−) (ei, ej) 〈σsQσ∗sej , ei〉H ds

and hence ∫ t

0
D2
xF (Xs−)d[X,X]cs =

∫ t

0

∑
j∈I

D2
xF (Xs−)

(
σsQσ

∗
sej , ej

)
ds

=

∫ t

0
tr
(
D2
xF (Xs−)σsQσ

∗
s

)
ds.

(5.6)

It remains to reorganize the jump terms in (5.5). Due to Lemma 5.3, the following
holds:∫ t

0
DxF (Xs−)

∫
E
ηs(y) M̃(dy, ds)

=
∑

0≤s≤t
DxF (Xs−) (Xs −Xs−)−

∫ t

0

∫
E
DxF (Xs−) ηs(y) ν(dy)ds.

Moreover, we have∑
0≤s≤t

[
F (Xs)− F (Xs−)

]
=

∫ t

0

∫
E

[
F
(
Xs− + ηs(y)

)
− F (Xs−)

]
M̃(dy, ds)

+

∫ t

0

∫
E

[
F
(
Xs− + ηs(y)

)
− F (Xs−)

]
ν(dy) ds.
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Combined with (5.5) and (5.6), this implies (5.4).

As a direct consequence of this lemma, we can state the following, shorter version of the
stochastic dynamics.

Theorem 5.5. The function F : H → R, defined in (5.1), satisfies

dF (Xt) = DxF (Xt−)σt dWt +

∫
E

[
F
(
Xt− + ηt(y)

)
− F (Xt−)

]
M̃(dy, dt).

Proof. By construction, F (X) is a real-valued martingale. The last two integrals in
(5.4) are local martingales by definition of the stochastic integral [62, Ths. 8.7, 8.23].
Since continuous local martingales of finite variation are a.s. constant [65, Th. 27], the
sum of the remaining integral terms in (5.4) must equal 0.

5.1.3 Time-Inhomogeneous Swaption Price Dynamics

The remainder of the section is concerned with the stochastic dynamics of the swaption
price V̂ . Since hedging is path dependent, we cannot rely on an equivalent, time-
homogeneous model. In contrast to Section 4.1, we will hence derive a PIDE with time
dependent coefficients. Moreover, we will replace Assumption 4.3 with the following
regularity assumption. It is slightly less restrictive than Assumption 4.3 and does not
require bounded second derivatives. Consequently, we will also use a different version
of Itô’s formula than for the pricing problem.

Assumption 5.6. Suppose that V̂ ∈ C1,2((0, T ) ×H,R) ∩ C([0, T ] ×H,R), i.e., V̂ is
continuously differentiable with respect to t and twice continuously Fréchet differentiable
with respect to z. Moreover, assume that the second derivative satisfies D2

z V̂ (t, z) ∈
LHS(H,H) for every (t, z) ∈ [0, T ] ×H and the mapping D2

z V̂ : (t, z) → LHS(H,H) is
uniformly continuous on bounded subsets.

Similar to Lemma 5.3, we need a technical lemma in order to be able to rearrange the
jump terms in the dynamics of V̂ .

Lemma 5.7. The integrals∫ T

0

∫
E
E
∣∣∣V̂ (t, Zt− + ηt(y)

)
− V̂ (t, Zt−)

∣∣∣2 ν(dy) dt

and ∫ T

0

∫
E
E
∣∣∣DzV̂ (t, Zt−) ηt(y)

∣∣∣2 ν(dy) dt

are both finite.

Proof. By definition of V̂ and the Lipschitz continuity of the payoff (Assumption 4.1)
we obtain ∣∣∣V̂ (t, Zt− + z)− V̂ (t, Zt−)

∣∣∣ ≤ e−rTE[ |G(ZT + z)−G(ZT )|
∣∣Ft]

≤ e−rTLG ‖z‖H
(5.7)
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for every z ∈ H. Hence, the first integral satisfies∫ T

0

∫
E
E
∣∣∣V̂ (t, Zt− + ηt(y)

)
− V̂ (t, Zt−)

∣∣∣2 ν(dy) dt ≤ e−2rTL2
GT

∫
E
‖y‖2E ν(dy) <∞.

For the second integral, note that by (5.7) we have∥∥∥DzV̂ (t, Zt−)
∥∥∥

L(H,R)
≤ e−rTLG.

This implies∫ T

0

∫
E
E
∣∣∣DzV̂ (t, Zt−) ηt(y)

∣∣∣2 ν(dy) dt ≤ e−2rTL2
GT

∫
E
‖y‖2E ν(dy) <∞.

The regularity assumption made for V̂ is almost identical to the properties of the swap
rate F shown in Lemma 5.2. Hence, it is not surprising that we can derive very similar
stochastic dynamics for V̂ , using once again Itô’s formula on Hilbert spaces. As before,
we denote the kernel of the covariance operator CXT by E0(CXT ) and its orthogonal
complement by E0(CXT )⊥. Note that CXT is, by construction, also the covariance op-
erator of the centered process Z. The following theorem is the analog of Theorem 4.5
with time-dependent coefficients.

Theorem 5.8. For every t ∈ [0, T ], the discounted price V̂ of a European swaption,
defined in (4.1), satisfies

dV̂ (t, Zt) = DzV̂ (t, Zt−)σt dWt +

∫
E

[
V̂
(
t, Zt− + ηt(y)

)
− V̂ (t, Zt−)

]
M̃(dy, dt).

Moreover, it is a classical solution of the PIDE

−∂tV̂ (t, z) =
1

2
tr
(
D2
z V̂ (t, z)σtQσ

∗
t

)
+

∫
E

[
V̂
(
t, z + ηt(y)

)
− V̂ (t, z)−DzV̂ (t, z) ηt(y)

]
ν(dy),

with terminal condition

V̂ (T, z) = e−rTG(z),

for every t ∈ (0, T ), z ∈ E0(CXT )⊥.

Proof. The proof is mainly a collection of arguments we have already used before. By
Assumption 5.6, we may apply Itô’s formula [62, Th. D.2] to obtain

V̂ (t, Zt) = V̂ (0, Z0) +

∫ t

0
∂tV̂ (s, Zs−) ds+

∫ t

0
DzV̂ (s, Zs−) dZs

+
1

2

∫ t

0
D2
z V̂ (s, Zs−) d[Z,Z]cs

+
∑

0≤s≤t

[
V̂ (s, Zs)− V̂ (s, Zs−)−DzV̂ (s, Zs−) (Zs − Zs−)

]
.
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Since Z and X differ only with respect to a deterministic drift of finite variation, we
have [Z,Z]cs = [X,X]cs. Consequently, the calculations in the proof of Lemma 5.4 yield

dV̂ (t, Zt) = ∂tV̂ (t, Zt−) dt+
1

2
tr
(
D2
z V̂ (t, Zt−)σt−Qσ

∗
t−

)
dt

+

∫
E

[
V̂
(
t, Zt− + ηt(y)

)
− V̂ (t, Zt−)−DzV̂ (t, Zt−) ηt(y)

]
ν(dy) dt

+DzV̂ (t, Zt−)σt dWt

+

∫
E

[
V̂
(
t, Zt− + ηt(y)

)
− V̂ (t, Zt−)

]
M̃(dy, dt).

Using the same arguments as in the proof of Theorem 5.5, this yields the stochastic
dynamics (and the PIDE) for V̂ along almost every trajectory of Z. Finally, the last
paragraph of the proof for Theorem 4.5 is applied without any change to show that the
PIDE indeed holds for every (t, z) ∈ (0, T )× E0(CX(T ))

⊥.

5.2 Quadratic Hedging of Electricity

As stated before, options on electricity swaps cannot be perfectly replicated with the
products available on the market. Quadratic hedging therefore seems to be a reasonable
approach. For an introduction to quadratic hedging in the Brownian case see, e.g.,
[32, 57, 76]. Hedging with more general driving processes is discussed in [16, 64].

In this section, we derive the optimal hedging strategy for quadratic hedging with
a portfolio of swaps. Before we can compute the hedge, we need to discuss the set of
admissible strategies and the corresponding value of the portfolio. A trading strategy
is given by

(
θ0(t), θ(t)

)
, 0 ≤ t ≤ T , where θ0 ∈ R is the risk free investment and

θ(t) =
(
θ1(t), . . . , θn(t)

)
∈ Rn describes the investment in each of the n swaps at time t.

The value of the portfolio at time t is denoted by V θ(t). The value S0 of the risk free
asset solves the differential equation

dS0(t) = rS0(t)dt.

Since a swap has no inherent value (you can enter the contract without paying anything),
we have

V θ(t) = θ0(t)S0(t).

Nevertheless, changes of the swap rates affect the wealth of the investor. In order to
be self-financing, the discounted value V̂ θ of the portfolio must satisfy the following
equation:

dV̂ θ(t) =

n∑
i=1

θi(t)e
−rtκi dFi(t),(5.8)

where

κi := κ(T ;T i1, T
i
2) =

∫ T i2

T i1

e−r(u−T ) du.
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The discounting factor κ has been introduced before in (1.6). A strategy
(
θ0(t), θ(t)

)
is

admissible, if it is predictable, càglàd, and satisfies

E

∣∣∣∣∣
∫ T

0

n∑
i=1

θi(t)e
−rtκi dFi(t)

∣∣∣∣∣
2

<∞.

Quadratic hedging is equivalent to minimizing the expected global quadratic hedging
error

(5.9) J(θ) := E
∣∣∣V̂ θ(T )− V̂ (T )

∣∣∣2 .
In order to simplify and shorten notation, we define abbreviations for the jumps of

swap rates and option prices:

∆Fi(t, y) := Fi
(
Xt− + ηt(y)

)
− Fi(Xt−), i = 1, . . . , n,

∆V̂ (t, y) := V̂
(
t, Zt− + ηt(y)

)
− V̂ (t, Zt−), for y ∈ E.

Moreover, we will omit some of the more obvious function arguments and write e.g.
DxFi for DxFi(Xt−) and DzV̂ for DzV̂ (t, Zt−). The following matrix valued process A
is essential for all our calculations. It describes the sensitivity of the traded swaps to
changes of the driving stochastic processes.

aij(t) := e−2rtκiκj

(
DxFi σtQσ

∗
t DxFj +

∫
E

∆Fi∆Fj ν(dy)

)
, i, j = 1, . . . , n,

A(t) := (aij(t))
n
i,j=1 ∈ Rn×n.

(5.10)

Note that A is symmetric nonnegative definite by construction. It is worth mentioning
that we do not assume A to be strictly positive definite. Consequently, we allow for
swaps in the portfolio, which are redundant or irrelevant to the hedging strategy. In
particular, we cannot expect a unique optimal strategy under these weak assumptions.
In practice, we could then introduce a second optimization criterion, e.g., minimizing
the norm of θ.

The following proposition states a representation of the hedging error.

Theorem 5.9. Let A(t) ∈ Rn×n be the matrix valued process defined in (5.10). Define
further

bi(t) := e−rtκi

(
DxFi σtQσ

∗
t DzV̂ +

∫
E

∆Fi ∆V̂ ν(dy)

)
, i = 1, . . . , n,

and

c(t) := DzV̂ σtQσ
∗
t DzV̂ +

∫
E

(
∆V̂

)2
ν(dy).

Then the quadratic hedging error with strategy θ can be written as

(5.11) J(θ) = E

∫ T

0

[
θ(t)TA(t)θ(t)− 2b(t)T θ(t) + c(t)

]
dt.
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Proof. Inserting the dynamics of Fi and V̂ , calculated in Theorems 5.5 and 5.8, into the
definition (5.9) of J yields

J(θ) = E

[ ∫ T

0

n∑
i=1

θi(t)e
−rtκiDxFiσt dWt

+

∫ T

0

n∑
i=1

θi(t)e
−rtκi

∫
E

∆Fi(t, y) M̃(dy, dt)

−
∫ T

0
DzV̂ σt dWt −

∫ T

0

∫
E

∆V̂ (t, y) M̃(dy, dt)

]2

.

By independence of W and M̃ we hence have

J(θ) = E

[ ∫ T

0

n∑
i=1

θi(t)e
−rtκiDxFiσt dWt −

∫ T

0
DzV̂ σt dWt

]2

+ E

[ ∫ T

0

n∑
i=1

θi(t)e
−rtκi

∫
E

∆Fi(t, y) M̃(dy, dt)

−
∫ T

0

∫
E

∆V̂ (t, y) M̃(dy, dt)

]2

.

(5.12)

We denote the two expectations on the right-hand side of (5.12) with J1 and J2. We
apply [27, Cor. 4.14] to the Brownian term J1 and obtain

J1 = E

∫ T

0
tr

{[
e−rt

n∑
i=1

θi(t)κiDxFi −DzV̂

]
σtQσ

∗
t

×
[
e−rt

n∑
j=1

θj(t)κj DxFj −DzV̂

]∗}
dt.

Note that the argument of the trace operator in this equation is a function mapping R to
R. Consequently, its “trace” is in fact the application of this function to 1. Moreover, the
operators DxFi and DzV̂ are elements of L(H,R), which we can identify with elements
of H. Hence, we have[

DxF
]∗

(1) = DxF and
[
DzV̂

]∗
(1) = DzV̂ .

Combined, we obtain

J1 = E

∫ T

0

[
e−2rt

n∑
i=1

n∑
j=1

θi(t)θj(t)κiκj DxFi σtQσ
∗
t DxFj

− 2e−rt
n∑
i=1

θi(t)κiDxFi σtQσ
∗
t DzV̂ +DzV̂ σtQσ

∗
t DzV̂

]
dt.



52 5 Hedging

We use Theorem [62, Th. 23] to deal with the jump term J2 in (5.12). This yields

J2 = E

∫ T

0

∫
E

[
e−rt

n∑
i=1

θi(t)κi∆Fi(t, y)−∆V̂ (t, y)

]2

ν(dy)dt.

Adding the expressions for J1 and J2, we obtain (5.11) by definition of A, b, and c.

The expression (5.11) for the hedging error in the previous theorem involves a quadratic
form with respect to θ. The following lemma states an important property of this
quadratic form, which we will use to show existence of an optimal hedging strategy.

Lemma 5.10. The vector b(t) defined in Theorem 5.9 satisfies

∀y ∈ Rn :
(
yTA(t) = 0⇒ yT b(t) = 0

)
for every t ∈ [0, T ].

Proof. Let yTA(t) = 0. By definition of A, we have

0 = yTA(t)y = e−2rt

[( n∑
i=1

yiκiDxFi

)
σtQσ

∗
t

( n∑
j=1

yjκjDxFj

)

+

∫
E

( n∑
i=1

yiκi∆Fi

)( n∑
j=1

yjκj∆Fj

)
ν(dy)

]
Due to the positive semi-definiteness of Q, this yields( n∑

i=1

yiκiDxFi

)
σtQσ

∗
t

( n∑
i=1

yiκiDxFi

)
= 0

and ∫
E

( n∑
i=1

yiκi∆Fi

)2

ν(dy) = 0.

Using the Cauchy–Schwarz inequality, we obtain the estimate

∣∣yT b(t)∣∣ =

∣∣∣∣∣e−rt
n∑
i=1

yiκi

(
DxFi σtQσ

∗
t DzV̂ +

∫
E

∆Fi ∆V̂ ν(dy)

)∣∣∣∣∣
≤ e−rt

[( n∑
i=1

yiκiDxFi

)
σtQσ

∗
t

( n∑
i=1

yiκiDxFi

)] 1
2
[
DzV̂ σtQσ

∗
t DzV̂

] 1
2

+ e−rt
[ ∫

E

( n∑
i=1

yiκi∆Fi

)2

ν(dy)

] 1
2
[ ∫

E
(∆V̂ )2ν(dy)

] 1
2

= 0.

We are now able to derive the main result of this section, a representation of the optimal
hedging strategy for portfolios containing an arbitrary number of swaps.
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Theorem 5.11. An investment strategy θ minimizes the hedging error if and only if it
solves

(5.13) A(t)θ(t) = b(t) for a.e. t ∈ [0, T ].

There is at least one solution to this equation. It is unique if and only if A(t) is strictly
positive definite.

Proof. The minimal hedging error is achieved when the integrand

h :

{
Rn → R
θ(t) 7→ θ(t)TA(t)θ(t)− 2b(t)T θ(t) + c(t)

in (5.11) is minimized point-wise for a.e. t ∈ [0, T ]. The matrix A(t) is nonnegative
definite by construction. Consequently, h is a convex function (though not strictly
convex). For convex functions, the necessary optimality condition of first order is already
sufficient for a global minimum. Thus, every solution θ(t) of (5.13) is an optimal hedging
strategy. It is a direct consequence of Lemma 5.10 that b(t) is an element of the range
of A(t). Hence, there is at least one such solution. The uniqueness property is then
obvious.

Comparison to One-Dimensional Hedging The hedging portfolio computed in
Theorem 5.11 is in fact a generalization of the optimal hedge in a one-dimensional
jump-diffusion model. For the special case of a portfolio containing only a single swap
(n = 1), with the same delivery period D = [T1, T2] as the hedged swap itself, we obtain
the following strategy.

Corollary 5.12. The optimal investment for quadratic hedging with a single swap is
given by

(5.14) θ(t) :=
DxF σtQσ

∗
t DzV̂ +

∫
E ∆F (t, y)∆V̂ (t, y) ν(dy)

e−rtκ
[
DxF σtQσ∗t DxF +

∫
E

(
∆F (t, y)

)2
ν(dy)

] .
We will now briefly show how this result relates to the well-known hedging strategy

for a single stock. To this end, we set all the Hilbert and Banach spaces in our model
to H = U = E = R. Since W is then a one-dimensional Brownian motion, we set
Q = Id |R, η ≡ Id |R and κ = 1. Furthermore, in this case the stock price is modeled by

St = F (t,Xt) = S0 exp

(∫ t

0
γ(s)ds+ Zt

)
∈ R,

with an appropriate drift term γ. The option price can be written as a function of St−:

Ṽ (t, St−) := ertV̂ (t, Zt−).

Hence, the following holds for the derivative of the price with respect to S:

DzV̂ (t, Zt−) = e−rtDSṼ (t, St−)St−.
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Finally, we calculate

DxF (t,Xt−) = F (t,Xt−) = St−, ∆F (t, y) = (ey − 1)St,

and

∆V̂ (t, y) = V̂ (t, Zt− + y)− V̂ (t, Zt−) = e−rt
[
Ṽ (t, St−e

y)− Ṽ (t, St−)
]
.

Putting everything together, we can do a change of variable in (5.14) and obtain

θ(t) =
σ2
tDSṼ (t, St−) + 1

St−

∫
R(ey − 1)

[
Ṽ (t, St−e

y)− Ṽ (t, St−)
]
ν(dy)

σ2
t +

∫
R(ey − 1)2 ν(dy)

.

Note that this is exactly the formula for the optimal quadratic hedge in a stock market,
calculated, e.g., in [24, Rem. 10.3].

5.3 Hedging with POD

Theorem 5.11 describes the optimal quadratic hedge for a portfolio of swaps. The matrix
A(t) in the linear equation system (5.13) is determined by the swap rate functions Fi,
i = 1, . . . , n, and their derivatives, which are known in closed form. Hence, they can
be calculated directly, using a (possibly high-dimensional) discretization of the Hilbert
space H. In contrast, the right-hand side b(t) depends on the unknown option price
V̂ and its derivatives. Since it is not feasible to solve the corresponding PIDE with a
high-dimensional discretization, we will apply POD.

The goal of this section is to compute the optimal hedge with equation (5.13) by
replacing all expressions depending on V̂ with similar expressions depending on V̂d
defined in (4.5). Note that applying the chain rule [31, Th. 8.2.1] yields

DzV̂d(t,PdZt−) =
∂

∂Zt−
V̂d(t,PdZt−) = DxV̂d(t,PdZt−) ◦ Pd ∈ L(H,R).

The derivative DxV̂d is a finite-dimensional object, which we can approximate numeri-
cally by solving the PIDE for V̂d. Similarly, the jump term

(5.15) ∆V̂d(t,Pdζ) := V̂d
(
t,Pd(Zt− + ζ)

)
− V̂d(t,PdZt−)

can be evaluated numerically for every ζ ∈ H.

To simplify subsequent notation, we further introduce

〈h1, h2〉σtQσ∗t := h1 σtQσ
∗
t h2 and ‖h1‖σtQσ∗t :=

√
〈h1, h1〉σtQσ∗t

for every h1, h2 ∈ H. Due to the fact that the Cauchy–Schwarz inequality holds not
only for scalar products, but also for symmetric nonnegative definite bilinear forms (see,
e.g., [31, Thm. 6.2.1]), ‖·‖σtQσ∗t defines a semi-norm on H.
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In order to approximate b, we define

(5.16) b̃i(t) := e−rtκi

(〈
DxFi, DzV̂d(t,PdZt−)

〉
σtQσ∗t

+

∫
E

∆Fi ∆V̂d(t,PdZt−) ν(dζ)

)
,

for i = 1, . . . , n, where V̂d and ∆V̂d are the approximations defined in (4.5) and (5.15),
respectively. For t ∈ [0, T ], we consider a (not necessarily unique) solution θ̃ of

(5.17) A(t)θ̃(t) = b̃(t),

which is an approximation for an optimal strategy θ(t). Similar to (5.13), the linear
equation for θ̃(t) has at least one solution, although A might be singular.

Lemma 5.13. The vector b̃(t) defined in (5.16) satisfies

∀y ∈ Rn :
(
yTA(t) = 0⇒ yT b̃(t) = 0

)
for every t ∈ [0, T ]. In particular, b̃(t) is an element of the range of A(t).

Proof. The proof is identical to the proof of Lemma 5.10. Compare also the proof of
Lemma 5.14 below for a very similar argument.

In contrast to θ, the equation for θ̃ contains only expressions which are either analyt-
ically known or can be approximated numerically. We will show that the additional
hedging error introduced by using θ̃ converges to 0 for increasing dimension d of the
approximating problem. (The unhedgeable part of the hedging risk remains unchanged
by definition.)

Before we can show the convergence result, we analyze the relation of b(t) and b̃(t)
in greater detail. For all subsequent computations, let t ∈ [0, T ] be arbitrary, but fixed.
Since the matrix A(t) is positive semi-definite, we can find an orthonormal basis of
eigenvectors QA = (q1| . . . |qn) ∈ Rn×n with corresponding eigenvalues λi, i = 1, . . . , n,
such that

A(t) = QA diag(λ1, . . . , λn)QTA,

with diag(. . .) denoting a diagonal matrix. The following lemma states an upper bound
for the projection of the difference b(t)− b̃(t) onto each of the eigenvectors qi of A(t).

Lemma 5.14. For every l ∈ {1, 2, . . . , n}, the following estimate holds:

[(
b̃(t)− b(t)

)T
ql

]2

≤ 2λl

[∥∥DzV̂d(t,PdZt−)−DzV̂
∥∥2

σtQσ∗t
+

∫
H

(
∆V̂d(t,PdZt−)−∆V̂

)2
ν(dζ)

]
.

(5.18)
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Proof. By definition of b(t) and b̃(t), we have

[(
b̃(t)− b(t)

)T
ql

]2
= e−2rt

[〈 n∑
i=1

ql(i)κiDxFi , DzV̂d(t,PdZt−)−DzV̂

〉
σtQσ∗t

+

∫
H

( n∑
i=1

ql(i)κi ∆Fi

)(
∆V̂d(t,PdZt−)−∆V̂

)
ν(dζ)

]2

Applying the inequalities by Young and Cauchy–Schwarz yields

[(
b̃(t)− b(t)

)T
ql

]2

≤ 2e−2rt

∥∥∥∥ n∑
i=1

ql(i)κiDxFi

∥∥∥∥2

σtQσ∗t

∥∥∥∥DzV̂d(t,PdZt−)−DzV̂

∥∥∥∥2

σtQσ∗t

+ 2e−2rt

(∫
H

( n∑
i=1

ql(i)κi∆Fi

)2

ν(dζ)

)(∫
H

(
∆V̂d(t,PdZt−)−∆V̂

)2
ν(dζ)

)
On the other hand, the eigenvalues of A(t) satisfy

λl = qTl A(t)ql = e−2rt

∥∥∥∥ n∑
i=1

ql(i)κiDxFi

∥∥∥∥2

σtQσ∗t

+ e−2rt

∫
H

( n∑
i=1

ql(i)κi∆Fi

)2

ν(dζ).

Combined, we obtain (5.18).

We can now prove the main convergence result for the quadratic hedging with POD.
It gives a bound on the additional hedging error caused by the approximation of the
optimal strategy.

Theorem 5.15. There is a constant C > 0 such that the additional hedging error when
using θ̃, defined in (5.17), instead of an optimal hedging strategy θ, defined in (5.13),
satisfies

0 ≤ J(θ̃)− J(θ) ≤ Ce−2rT

dim(H)∑
l=d+1

µl.

As before, µl are the eigenvalues of the covariance operator CXT .

Proof. Since θ is an optimal strategy, we have 0 ≤ J(θ̃)− J(θ). Using Theorem 5.9, we
obtain

(5.19) J(θ̃)− J(θ) = E

∫ T

0

[
θ̃TAθ̃ (t)− 2bT θ̃ (t)− θTAθ (t) + 2bT θ (t)

]
dt.

By construction, θ̃ and θ are solutions of

(5.20) A(t)θ̃(t) = b̃(t) and A(t)θ(t) = b(t),
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respectively. Since A(t) may be singular, we cannot invert it. Instead, we introduce the
Moore-Penrose pseudo-inverse A+(t) of A(t). Suppose without loss of generality that
the eigenvalues of A(t) satisfy 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn. Suppose further that λm > 0 is
the lowest non-zero eigenvalue. Then M+(t) is given by

A+(t) = QA diag
(

0, . . . , 0,
1

λm
, . . . ,

1

λn

)
QTA.

Every pair of solutions
(
θ̃(t), θ(t)

)
to (5.20) yields the same additional hedging error.

Thus, we may replace θ̃(t) with the specific solution A+(t)̃b(t) and θ(t) with A+(t)b(t)
in (5.19). Since the pseudo-inverse satisfies A+AA+(t) = A+(t), we obtain

J(θ̃)− J(θ) = E

∫ T

0

[
b̃T (t)A+(t)̃b(t)− 2bT (t)A+b̃(t) + bT (t)A+(t)b(t)

]
dt

= E

∫ T

0

(
b̃(t)− b(t)

)T
A+(t)

(
b̃(t)− b(t)

)
dt.

Plugging in the definition of A+(t) yields

J(θ̃)− J(θ) = E

∫ T

0

n∑
i=m

1

λi

[(
b̃(t)− b(t)

)T
qi

]2
dt.

Applying Lemma 5.14, we find

J(θ̃)− J(θ) ≤ 2(n−m)E

∫ T

0

[∥∥DzV̂d(t,PdZt−)−DzV̂
∥∥2

σtQσ∗t

+

∫
H

(
∆V̂d(t,PdZt−)−∆V̂

)2
ν(dζ)

]
dt

and hence

J(θ̃)− J(θ) = 2(n−m)E

∣∣∣∣ ∫ T

0

(
DzV̂d(t,PdZt−)−DzV̂

)
σt dWt

+

∫ T

0

∫
H

(
∆V̂d(t,PdZt−)−∆V̂

)
M̃(dζ, dt)

∣∣∣∣2,
where, for the last equality, we have used [27, Cor. 4.14] for the Brownian part, [62,

Thm. 8.23] for the jump part, and in addition the independence of W and M̃ .

The very same arguments as in the proof of Theorem 5.8 yield

dV̂d(t,PdZt) = DzV̂d(t,PdZt−)σt dWt +

∫
H

∆V̂d(t,Pdζ) M̃(dζ, dt).

Hence, we have

J(θ̃)− J(θ) ≤ 2nE

∣∣∣∣∫ T

0
dV̂d(t,PdZt) dt−

∫ T

0
dV̂ (t, Zt) dt

∣∣∣∣2
= 2nE

∣∣∣[V̂d(T,PdZT )− V̂d(0, 0)
]
−
[
V̂ (T,ZT )− V̂ (0, 0)

]∣∣∣2 .
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Using Young’s inequality and the definition of V̂ and V̂d, we see that

J(θ̃)− J(θ) ≤ 4n
∣∣∣V̂ (0, 0)− V̂d(0, 0)

∣∣∣2 + 4ne−2rTE |G(ZT )−G(PdZT )|2 .

From Assumption 4.1 and Theorem 3.2 we finally obtain

J(θ̃)− J(θ) ≤ 8ne−2rTL2
G E ‖ZT − PdZT ‖

2
H = 8ne−2rTL2

G

dim(H)∑
l=d+1

µl.

Theorem 5.15 shows that every solution of (5.17) is a good approximation to an optimal
hedging strategy, if the dimension d is chosen appropriately. Note that although hedging
errors are path-dependent, choosing a POD basis which minimizes the projection error
for the terminal value ZT is sufficient for the computation of θ̃. We do not need to
approximate the whole path of the process explicitly.

Semi-Definite Quadratic Optimization Due to the results in the previous section,
the numerical hedging algorithm will be based on solving the linear equation

(5.21) A(t)θ̃(t) = b̃(t).

By Lemma 5.13, there is always at least one solution. In practice, however, finding such
a solution yields numerical issues, since the matrix A(t) is not strictly positive definite.
Even small discretization or rounding errors in the computation of A(t) and b̃(t) may
result in an unsolvable equation, where b̃(t) is no longer an element of the range of A(t).
For the remainder of the section, let once again t ∈ [0, T ] be arbitrary but fixed.

Depending on the eigenvalues of A(t), there are two possible remedies for this situ-
ation. Suppose as before that the eigenvalues satisfy 0 ≤ λ1 ≤ . . . ≤ λn, with λm > 0
being the lowest non-zero eigenvalue. The corresponding matrix of orthonormal eigen-
vectors is QA = (q1| . . . |qn). We first consider the case when the ratio λn

λm
is small, i.e.

λm is well separated from 0. Instead of looking for an arbitrary solution of (5.21), we
look for the one with the smallest norm

∥∥θ̃(t)∥∥Rn . Equation (5.21) is equivalent to

diag(0, . . . , 0, λm, . . . , λn)QTA θ̃(t) = QTA b̃(t).

Since

∥∥θ̃(t)∥∥Rn =
m−1∑
i=1

〈
θ̃(t), qi

〉2

Rn +
n∑

i=m

〈
θ̃(t), qi

〉2

Rn ,

minimizing the norm of θ̃(t) is equivalent to θ̃ being orthogonal to every qi, i = 1, . . .m−
1. Consequently, we project (5.21) to the orthogonal complement of the kernel of A(t).
Hence, we solve

(5.22) diag(λm, . . . , λn)ϕ(t) = (qm| . . . |qn)T b̃(t)
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for ϕ ∈ Rn−m+1, and set

θ̃(t) = (qm| . . . |qn)ϕ(t).

Note that the condition number of the linear system (5.22) is given by λn
λm

, which is
small by our hypothesis. Thus, the unique solution ϕ can be computed in a numerically
stable way.

We consider now the case λn
λm
� 1. The projected equation (5.22) is then ill-

conditioned. Moreover, it is difficult to identify the eigenvalues of A(t) which are equal
to 0 numerically. In this case, we can either change our portfolio and use swaps which
are less correlated, or we can apply regularization to the equation. Tikhonov regular-
ization proved to be very effective in numerical experiments. We replace (5.13) with the
minimization problem

θ(t) = argminθ(t) θ(t)
T
(
A(t) + δ ‖A‖ In

)
θ(t)− 2b(t)T θ(t), for a.e. t ∈ [0, T ],

where In ∈ Rn×n denotes the unit matrix, and δ � 1 is a small regularization parameter.
Just like the projection method discussed above, the regularization approach also gives
preference to solutions with smaller norms. For convergence results concerning the
Tikhonov regularization, we refer to [37, Ch. 6.4.3].
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6 Asian Options

In this section, we study arithmetic average Asian options. It is well known [68] that the
price of an Asian option on a single asset, modeled by a geometric Brownian motion,
is the solution of a PDE in two variables: the value of the underlying and its average
up to the current time. Using a special parametrization, it is also possible to obtain
a PIDE with only one space variable [79], but there is no obvious way to extend this
parametrization to the multi- or infinite-dimensional case. Introducing the average as
additional variable in our Hilbert space valued model, the option price can be written
as a function of time t, the average value At, and the current state of the assets Zt.
Hence, we arrive at a PIDE similar to (4.4), with one extra term accounting for the
average. We derive the low-dimensional PIDE satisfied by the dimension-reduced price
process. Convergence of the finite-dimensional PIDE solution to the true value of the
Asian option is shown. In general, the PIDEs corresponding to Asian options cannot be
solved analytically. They are, however, the basis for numerical pricing methods. Using
appropriate algorithms, the PIDEs can be solved in a numerically stable way, see [84, 30]
and the references therein. For an overview of methods for pricing Asian options see,
e.g., [73].

6.1 Value of an Asian Option

Before we can define the value of an arithmetic average Asian option, we need to clarify
what exactly average means in our Hilbert space valued setting. Consider an index
option on a basket of stocks as defined in (1.2). An Asian option could, e.g., depend on
the time-average of the index, which in turn is a weighted sum of the individual stock
values. The weight factors are nothing more than a linear mapping working on the
vector of asset prices. More generally, we consider an arbitrary bounded linear mapping
w : H → R, which we identify with w ∈ H by the Fréchet–Riesz representation theorem.
The arithmetic average up to time t > 0 is then given by

At :=
1

t

∫ t

0
〈w, Ss〉H ds ∈ R.

Note that the very same formula can be applied to electricity swap rates, replacing Ss
with fs:

(6.1) At :=
1

t

∫ t

0
F (s;T1, T2) ds =

1

t

∫ t

0
〈w, fs〉H ds.

We will subsequently use the latter notation.

Using the Jensen inequality, the Cauchy–Schwarz inequality, and Fubini’s theorem,
we obtain

E
[
A2
t

]
=

1

t2
E

[(∫ t

0
〈w, fs〉H ds

)2
]
≤ 1

t2
‖w‖2H

∫ t

0
E ‖fs‖2H ds.

This expression is finite by Proposition 2.5. Hence, the average is a well defined random
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variable in L2(Ω) for t > 0 (where (Ω,F) denotes the measurable space on which the
risk neutral measure is defined). The defining equation (6.1) is, however, not valid for
t = 0. Intuitively,

(6.2) A0 := 〈w, f0〉H

is the obvious continuation for A. The following theorem shows that this is indeed the
correct choice.

Theorem 6.1. The following convergence holds almost surely:

lim
t→0

At = 〈w, f0〉H .

Proof. Using the definition of A, we find

(6.3) |At − 〈w, f0〉H | ≤
1

t

∫ t

0
|〈w, fs − f0〉H | ds.

In order to find a bound for 〈w, fu − f0〉H , we consider the driving process X. From the
proof of Proposition 2.2, we know that

E ‖Xt‖2H ≤
∫ t

0

(
‖γs‖2H + tr(Q) ‖σs‖2L(U,H) + C

∫
E
‖ηs(y)‖2H ν(dy)

)
ds.

Thus, limt→0 ‖Xt‖H = 0 in L2(Ω). Consequently, there is a sequence {tn}n∈N ⊂ R+

satisfying limn→∞ tn = 0 such that almost surely

lim
n→∞

‖Xtn‖H = 0.

Moreover, almost surely there exists δ > 0 such that the path of X is continuous in
[0, δ). Consequently, we have almost surely

lim
t→0
‖Xt‖H = 0.

Due to the Cauchy–Schwarz inequality, this yields almost surely limt→0 〈Xt, ek〉H = 0
and thus

lim
t→0

e〈Xt,ek〉H = 1

uniformly in k. Hence, we have almost surely

|〈w, ft − f0〉H | =
∑
k∈I
〈f0, ek〉H 〈w, ek〉H

(
e〈Xt,ek〉H − 1

)
→ 0 for t→ 0.

We apply this limit to (6.3) and the proof is complete.

Let T > 0 be the maturity of the Asian option. By definition, the value of the option
depends on AT . In addition, it may depend on the state fT of the underlyings at
maturity, e.g., in the case of a floating strike. The state fT in turn is a function of the
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centered driving process ZT defined in (2.10). As before, we can write ft as the function

(6.4) ft :

{
H → H,

z 7→
∑

k∈I 〈f0, ek〉H e〈
∫ t
0 γs ds+z, ek〉H ek

for t ∈ [0, T ] (compare (2.3)).

We denote the value of the option at time t ∈ [0, T ], discounted to time 0, by

(6.5) V̂ (t, z, a) := e−rTE
[
G(ZT , AT )

∣∣Zt = z,At = a
]

for every z ∈ H, a ∈ R.

This is the conditional expectation of the payoff G : H × R → R at maturity T given
the current state z ∈ H of the underlying assets and the average a ∈ R. Generalizing
Assumption 4.1, we make the following assumption concerning the payoff.

Assumption 6.2. We assume that there are constants LGz and LGa such that the payoff
function G satisfies the Lipschitz conditions

|G(z1, a)−G(z2, a)| ≤ LGz ‖z1 − z2‖H for every z1, z2 ∈ H, a ∈ R,
|G(z, a1)−G(z, a2)| ≤ LGa |a1 − a2| for every z ∈ H, a1, a2 ∈ R.

Note that this assumption is satisfied, e.g., for Asian call and put options on AT with
fixed or floating strike. The one-dimensional partial derivative of V̂ with respect to the
average is denoted by ∂aV̂ . We can now state the Hilbert space valued PIDE for the
Asian option price V̂ .

Theorem 6.3. Suppose that the discounted price V̂ defined in (6.5) is continuously
differentiable with respect to t and twice continuously differentiable with respect to z
and a. Moreover, assume that the second derivative with respect to z restricted to an
arbitrary bounded subset of H is a uniformly continuous mapping to the Hilbert–Schmidt
space LHS(H,H). Then V̂ is a classical solution of the PIDE

−∂tV̂ (t, z, a) =
1

2
tr
(
D2
z V̂ (t, z, a)σtQσ

∗
t

)
+

1

t

(
〈w, ft(z)〉H − a

)
∂aV̂ (t, z, a)

+

∫
E

[
V̂
(
t, z + ηt(ζ), a

)
− V̂ (t, z, a)−DzV̂ (t, z, a) ηt(ζ)

]
ν(dζ)

(6.6)

with terminal condition

V̂ (T, z, a) = e−rTG (z, a)

for every t ∈ (0, T ), z ∈ E0(CXT )⊥, and a ∈ R.

Proof. The proof is very similar to that of Theorem 5.8 for the European hedging PIDE.
Applying Itô’s formula for Hilbert space valued processes [62, Thm. D.2] to V̂ (t, Zt, At),
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t > 0, yields

V̂ (t, Zt, At) =

V̂ (0, Z0, A0) +

∫ t

0
∂tV̂ (s−, Zs−, As) ds+

∫ t

0
DzV̂ (s−, Zs−, As) dZs

+

∫ t

0
∂aV̂ (s−, Zs−, As) dAs +

1

2

∫ t

0
D2
z V̂ (s−, Zs−, As) d[Z,Z]cs

+
∑

0≤s≤t

[
V̂ (s, Zs, As)− V̂ (s−, Zs−, As)−DzV̂ (s−, Zs−, As) (Zs − Zs−)

]
,

(6.7)

where [Z,Z]c denotes the continuous part of the square bracket process as defined in
[62]. Note that the average process A is continuous and of finite variation. Hence, the
jump part of the equation does not contain the partial derivative ∂aV̂ . For the same
reason, the square bracket processes [A,A]c and [A,Z]c do not occur in the equation.
We first simplify the covariation term. From the proof of Lemma 5.4, we know that

[Z,Z]ct =
∑
i,j∈I

ei ⊗ ej
(∫ t

0
〈σsQσ∗s ej , ei〉H ds

)
,

where ei ⊗ ej denotes the tensor product of the two basis elements. Thus, we get∫ t

0
D2
z V̂ (s−, Zs−, As) d[Z,Z]cs =

∫ t

0
tr
(
D2
z V̂ (s−, Zs−, As)σsQσ∗s

)
ds.

Next we calculate dAs. By definition (6.1) of A we have

〈w, fs〉H ds = d(sAs) = As ds+ s dAs.

Hence, we obtain

dAs =
1

s
(〈w, fs(Zs)〉H −As) ds.

Finally, we reorganize the jump terms in (6.7). The result is

dV̂ (t, Zt, At) =

∂tV̂ (t−, Zt−, At)dt+
1

2
tr
(
D2
z V̂ (t−, Zt−, At)σtQσ∗t

)
dt

+
1

t

(
〈w, ft(Zt−)〉H −At

)
∂aV̂ (t−, Zt−, At) dt

+

∫
E

[
V̂
(
t, Zt− + ηt(ζ), At

)
− V̂ (t−, Zt−, At)−DzV̂ (t−, Zt−, At) ηt(ζ)

]
ν(dζ) dt

+DzV̂ (t−, Zt−, At)σt dWt

+

∫
E

[
V̂
(
t, Zt− + ηt(ζ), At

)
− V̂ (t−, Zt−, At)

]
M̃(dζ, dt).

The very same martingale arguments as in the proof of Theorem 4.5 can now be used
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to conclude the proof.

6.2 Pricing Asian Options with POD

The payoff G of the Asian option depends on both the centered driving process Z and
the average process A, which is a function of f . Corollary 3.3 shows that Z can be
approximated with the POD method along its whole trajectory for t ∈ [0, T ]. Thus,
to approximate (6.6) with a low-dimensional PIDE, it remains to show that A and f
can be accurately represented with the POD basis as well. To this end, recall that f
is defined as a deterministic function of Z by (6.4). If we apply this function to the
projected process PdZ for arbitrary t ∈ [0, T ], we obtain

ft(PdZt) =
∑
k∈I
〈f0, ek〉H e〈

∫ t
0 γs ds+PdZt, ek〉H ek ∈ H.

The following proposition is the foundation for generalizing the POD method to Asian
options.

Proposition 6.4. There is a constant C > 0 (depending on T ) such that

E
∣∣∣〈w, ft(Zt)〉H − 〈w, ft(PdZt)〉H ∣∣∣ ≤ C ‖w‖H

√√√√dim(H)∑
l=d+1

µl

for every t ∈ [0, T ].

Proof. By definition of ft, we get

E
∣∣∣〈w, ft(Zt)〉H − 〈w, ft(PdZt)〉H ∣∣∣

= E

∣∣∣∣∑
k∈I
〈w, ek〉H 〈f0, ek〉H

(
e〈

∫ t
0 γs ds+Zt, ek〉H − e〈

∫ t
0 γs ds+PdZt, ek〉H

)∣∣∣∣
≤ E

[∑
k∈I

∣∣∣〈w, ek〉H 〈f0, ek〉H e
∫ t
0 〈γs, ek〉Hds

(
e〈Zt, ek〉H − e〈PdZt, ek〉H

)∣∣∣ ].
(6.8)

For the term depending on γ, we use Assumption 2.1 and obtain∣∣∣∣∫ t

0
〈γs, ek〉H ds

∣∣∣∣ ≤ ∫ t

0
‖γs‖H ds ≤ C1

(∫ t

0
‖γs‖2H ds

) 1
2

≤ C2,

with positive constants C1, C2 depending on T but not on t. Next, we apply the mean-
value theorem to the exponential function and make use of the self-adjointness of the
projection operator Pd for the estimate∣∣∣e〈Zt, ek〉H − e〈PdZt, ek〉H ∣∣∣ ≤ emax{〈Zt, ek〉H ,〈PdZt, ek〉H} |〈Zt − PdZt, ek〉H |

≤ emax{〈Zt, ek〉H ,〈Zt,Pdek〉H} ‖Zt − PdZt‖H

for every k ∈ I. Inserting these results into (6.8) and using the monotone convergence
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theorem yields

E
∣∣∣〈w, ft(Zt)〉H − 〈w, ft(PdZt)〉H ∣∣∣
≤ C

∑
k∈I
|〈w, ek〉H 〈f0, ek〉H | E

[
emax{〈Zt, ek〉H ,〈Zt,Pdek〉H} ‖Zt − PdZt‖H

]
.

With the Cauchy–Schwarz inequality, we find

E
∣∣∣〈w, ft(Zt)〉H − 〈w, ft(PdZt)〉H ∣∣∣
≤ C

∑
k∈N
|〈w, ek〉H 〈f0, ek〉H |

(
E
[
e2 max{〈Zt, ek〉H ,〈Zt,Pdek〉H}

]) 1
2
(
E ‖Zt − PdZt‖2H

) 1
2
.

For the first expectation, we use Proposition 2.4:

E
[
e2 max{〈Zt, ek〉H ,〈Zt,Pdek〉H}

]
= E

[
max{e〈Zt,2ek〉H , e〈Zt,2Pdek〉H}

]
≤ E

[
e〈Zt,2ek〉H + e〈Zt,2Pdek〉H

]
≤ C3e

C4T

with positive constants C3, C4. The Cauchy–Schwarz inequality in l2(I) yields the fol-
lowing bound for the remaining sum in k:∑

k∈I
|〈w, ek〉H 〈f0, ek〉H | ≤ ‖w‖H ‖f0‖H .

By Corollary 3.3, we thus have

E
∣∣∣〈w, ft(Zt)〉H − 〈w, ft(PdZt)〉H ∣∣∣ ≤ C ‖w‖H ‖f0‖H

(
E ‖Zt − PdZt‖2H

) 1
2

≤ C ‖w‖H ‖f0‖H

√√√√dim(H)∑
l=d+1

µl.

(6.9)

Although ft(PdZt) is still an element of the possibly infinite-dimensional Hilbert space
H, it can be computed from the d-dimensional object PdZt. This makes the approxi-
mation suitable for numerical computations. Similar to (6.1), we define the arithmetic
average corresponding to ft(PdZt) by

Adt :=
1

t

∫ t

0
〈w, fs(PdZs)〉H ds ∈ R

for t > 0. Exactly like in (6.2), we set

Ad0 := 〈w, f0(PdZ0)〉H = 〈w, f0〉H .



6.2 Pricing Asian Options with POD 67

We find the following estimate for the approximation error.

Theorem 6.5. There is a constant C > 0 (depending on T ) such that

E
∣∣∣At −Adt ∣∣∣ ≤ C ‖w‖H

√√√√dim(H)∑
l=d+1

µl

for every t ∈ [0, T ].

Proof. By definition, Ad0 = A0. For t > 0, we have

E
∣∣∣At −Adt ∣∣∣ =

1

t
E

∣∣∣∣∫ t

0

〈
w, fs(Zs)− fs(PdZs)

〉
H
ds

∣∣∣∣
≤ 1

t
E

∫ t

0

∣∣〈w, fs(Zs)− fs(PdZs)〉H ∣∣ ds.
Using Fubini’s theorem and applying Proposition 6.4 yields

E
∣∣∣At −Adt ∣∣∣ ≤ 1

t

∫ t

0
E
∣∣〈w, fs(Zs)− fs(PdZs)〉H ∣∣ ds

≤ 1

t

∫ t

0

C ‖w‖H

√√√√dim(H)∑
l=d+1

µl ds.

Since the integrand does no longer depend on the integration variable s, the proof is
complete.

In the time-homogeneous case, we obtain a t-dependent estimate for the approximation
error.

Corollary 6.6. Suppose that Z is a time-homogeneous jump-diffusion process. Then
there is a constant C > 0 (depending on T ) such that

E
∣∣∣At −Adt ∣∣∣ ≤ C ‖w‖H

√√√√ t

T

dim(H)∑
l=d+1

µl

for every t ∈ [0, T ].

Proof. The proof is identical to that of Proposition 6.4 up to equation (6.9). Starting
from there, we apply Corollary 3.4 and obtain

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H ∣∣∣ ≤ C ‖w‖H ‖f0‖H

√√√√ t

T

dim(H)∑
l=d+1

µl.
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We proceed as in the proof of Theorem 6.5 and find

E
∣∣∣At −Adt ∣∣∣ ≤ 1

t

∫ t

0

C ‖w‖H

√√√√ s

T

dim(H)∑
l=d+1

µl ds.

Since

1

t

∫
t

0

√
s

T
ds =

2

3

√
t

T
,

the proof is complete.

In the previous theorems, we have seen how to apply POD to the processes on which
the payoff G of the Asian option depends: the centered process Z and the average
A. Exactly as in the European case, we use these results to find a finite-dimensional
approximation of the discounted option value V̂ . For t ∈ [0, T ], we define

(6.10) V̂d(t, z, a) := e−rTE
[
G(PdZT , AdT )

∣∣PdZt = z,Adt = a
]

for every z ∈ Ud, a ∈ R.

In contrast to the definition of V̂ in (6.5), the payoff is applied to the projected random
variables PdZT and AdT here instead of ZT and AT . Thus, V̂d is defined on the finite
dimensional domain [0, T ]× Ud × R, which allows for numerical discretization. Similar
to Theorem 6.6, we find that V̂d satisfies a PIDE. This PIDE is finite-dimensional.

Theorem 6.7. Suppose that the approximated Asian option value V̂d defined in (6.10)
is continuously differentiable with respect to t and twice continuously differentiable with
respect to z and a. Then V̂d is a classical solution of the PIDE

−∂tV̂d(t, z, a) =
1

2

d∑
i,j=1

cij(t) ∂i∂j V̂d(t, z, a) +
1

t

(
〈w, ft(z)〉H − a

)
∂aV̂ (t, z, a)

+

∫
E

[
V̂d(t, z + Pdηt(y), a)− V̂d(t, z, a)

−
d∑
i=1

〈ηt(y), pi〉H ∂iV̂d(t, z, a)

]
ν(dy),

(6.11)

with time-dependent coefficients

cij(t) := 〈σtQσ∗t pi, pj〉H , i, j = 1, . . . , d,

and terminal condition

V̂d(T, z, a) = e−rTG (z, a)

for every t ∈ (0, T ), z ∈ Ud, and a ∈ R.

Proof. This can be shown along the very same lines as in the proof of Theorems 5.8
and 6.3. The main difference is that we make use of a finite-dimensional version of Itô’s
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formula (see, e.g., [24, Prop. 8.19]). This yields finite sums of second derivatives instead
of the trace operator.

The value of the Asian option at time t = 0 is given by V̂ (0, 0, 〈w, f0〉H), since Z0 =
0 ∈ H and A0 = 〈w, f0〉H ∈ R by definition. The solution of the finite-dimensional

PIDE yields V̂d(0, 0, 〈w, f0〉H). The following theorem states an upper bound of the
approximation error for the option value. It is our main convergence result concerning
Asian options.

Theorem 6.8. There is a constant C > 0 (depending on T and w) such that

∣∣∣V̂ (0, 0, 〈w, f0〉H)− V̂d(0, 0, 〈w, f0〉H)
∣∣∣ ≤ C

√√√√dim(H)∑
l=d+1

µl.

Proof. We start with the definition of V̂ and V̂d and make use of Assumption 4.1 to find

∣∣∣V̂ (0, 0, A0)− V̂d(0, 0, Ad0)
∣∣∣ = e−rT

∣∣∣E[G(ZT , AT )− E[G(PdZT , AdT )]
∣∣∣

≤ e−rTE
[
LGz ‖ZT − PdZT ‖H + LGa

∣∣AT −AdT ∣∣]
≤ e−rT max{LGz , LGa }

(
E ‖ZT − PdZT ‖H + E

∣∣AT −AdT ∣∣) .
With the Cauchy–Schwarz inequality, we get∣∣∣V̂ (0, 0, A0)− V̂d(0, 0, Ad0)

∣∣∣ ≤ C [(E ‖ZT − PdZT ‖2H) 1
2

+ E
∣∣∣AT −AdT ∣∣∣] .

Applying Theorem 3.2 to E ‖ZT − PdZT ‖2H and Theorem 6.5 to E
∣∣AT −AdT ∣∣ concludes

the proof.

There is an additional numerical difficulty when dealing with Asian options. The PIDE
(6.11) for Asian options features no diffusion (second derivative) with respect to the
arithmetic average a. This requires special attention. Equations of this kind are often
termed “degenerate parabolic” PIDEs. A large number of authors has dealt with such
problems, see, e.g., [5, 14, 19, 84] and the references therein. Since the dimension
reduced equation is finite-dimensional, the numerical schemes and convergence results
presented there can be applied directly. These include, among others, flux limiting
methods, operator splitting, and difference-quadrature methods.
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7 Bermudan Options

In this section, we extend the POD method to multidimensional Bermudan options
with a finite number of exercise dates. While the dimension reduction for Bermudan
options works just as well as in the case of European options, the option prices do
not satisfy similar smoothness criteria. For European options, it is possible to solve
the projected pricing problem (4.5) for relatively large dimensions, using Fourier or
PIDE methods on sparse grids. Sparse grids, though, can be applied efficiently only
for smooth functions. In the case of European options, the necessary differentiability
properties of V̂d are ensured by the smoothing effect of the diffusive part of the process.
For Bermudan options, however, a non-differentiable maximum function is involved at
every exercise point. The resulting solutions are not sufficiently smooth for sparse grid
convergence results, and the effect gets worse if the number of exercise points is increased.
Moreover, the condition number of the linear equation systems of the corresponding
time discretized PIDEs may increase substantially. Hence, the use of sparse grids in the
context of Bermudan options poses considerable theoretical and practical challenges.

Using full grids instead, we are restricted to very low-dimensional POD approxima-
tions (dimension three or less). The results from such a coarse approximation are not
always sufficiently accurate for the purpose of option pricing. Thus, we will not stop
here, but rather use the low-dimensional result as a starting point for a fast-converging
Monte Carlo (MC) method.

MC simulations for Bermudan options are often based on dynamic programming prin-
ciples. The Snell envelope is obtained through backward recursion. The conditional
expectation of future cashflows at each exercise point can be approximated using re-
gression, an idea first introduced by Longstaff and Schwartz [60], see also [7, 53]. The
option is exercised if and only if its current intrinsic value is larger than the expected
future gain. This method yields an estimate of the optimal exercise strategy, and is
thus an approximation from below for the fair price. A different approach uses a dual
representation of the price, which allows for the computation of an upper bound [67].
For an overview of Bermudan MC pricing see [54] and the references therein.

The major drawback of all MC algorithms is their comparatively slow convergence
rate. There are several techniques, subsumed under the term variance reduction, which
can help obtaining more accurate results with fewer simulated paths. These include
antithetic variables, importance sampling, and control variables [2, 36, 38]. We will
focus on the latter and present an improved Longstaff-Schwartz algorithm using the
POD approximation of the option price as the control variable.

The expectation of the low-dimensional POD approximation can be computed effi-
ciently with any method suitable for low-dimensional Bermudan options. These include
partial integro-differential equations (PIDEs) [29, 34], but also Fourier transform meth-
ods [22, 23, 58]. Once this is done, the solution can be used for two purposes: first,
it can serve as a control variable. As the approximation is highly correlated with the
full-dimensional price process, this results in a substantially decreased variance of the
modified MC estimator. Second, the POD solution is a candidate for the minimizing
martingale in Rogers’ dual MC method [67]. We discuss both approaches. The dimen-
sion of the projection can be freely chosen. This allows for a trade-off between reduced
variance and increased effort for the computation of the low-dimensional expectation.
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By choosing the number of exercise dates sufficiently high, the methods presented here
can, of course, be used to approximate American options with a continuum of exercise
possibilities. Note that, in fact, whenever MC simulation is used for pricing American
options, this actually amounts to an approximation with a Bermudan option on the MC
time discretization grid.

7.1 Pricing Bermudan Options with POD

Since we will apply MC methods, which inherently require a discretization of the state
space, we focus on the stock basket example throughout this section. We thus consider
the asset price vector St ∈ Rn, t ∈ [0, T ] for a set of n stocks, which we have introduced
in Section 1.1. We write it as a function of the centered jump-diffusion Z:

St :

{
Rn → Rn

Zt 7→
(
S0(1) e

∫ t
0 γs(1) ds+Zt(1), . . . , S0(n) e

∫ t
0 γs(n) ds+Zt(n)

)
∈ Rn,

where Z satisfies (2.10) as before.

A Bermudan option grants the holder the right to exercise at one ofNex ∈ N admissible
dates, which we denote by 0 ≤ t1 < t2 < · · · < tNex = T . Let T (t, T ) denote the set of
all stopping times with values in {ti|1 ≤ i ≤ Nex and ti ≥ t}. For simplicity, we assume
a constant interest rate r > 0. The discounted value V̂ of a Bermudan option which has
not yet been exercised at time t is the solution of the optimal stopping problem

(7.1) V̂ (t, z) := sup
τ∈T (t,T )

E
[
e−rτ G̃

(
S(Zτ )

)∣∣Zt = z
]

for t ∈ [0, T ], z ∈ H. The function G̃ : Rn → R is the payoff G written in terms of
the asset price process S, i.e., G(z) = G̃(S(z)). Throughout the section on Bermu-
dan options, we will relax Assumption 4.1 and make the following, somewhat weaker
assumption instead.

Assumption 7.1. Suppose that the payoff function G̃ is Lipschitz continuous in S on
H with Lipschitz constant L

G̃
.

The aim when pricing Bermudan options is to find the optimal exercise time for (7.1).
It is well known that this can be done by backward dynamic programming: at time
t = T the value of the option is

(7.2) V̂ (T, z) = e−rT G̃
(
S(ZT )

)
.

For any previous exercise date ti, i = 0, . . . , Nex − 1, the value is

(7.3) V̂ (ti, z) = max
{
e−rtiG̃

(
S(z)

)
, E

[
V̂ (ti+1, Zti+1)

∣∣Zti = z
]}

.

Hence, it is optimal to exercise at time ti if and only if the intrinsic value G̃
(
S(z)

)
is

larger than or equal to the expected discounted future cash flow (given the option is not
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yet exercised). Computing the conditional expectations

E
[
V̂ (ti+1, Zti+1)

∣∣Zti = z
]

for every exercise date is the basic challenge. The fair value of the option at time t = 0
is then given by V̂ (0, 0).

Corollary 3.3 shows how to approximate every Zt, t ∈ [0, T ], with POD. We use the
POD projection Pd to define the function

(7.4) V̂d(t, zd) := sup
τ∈T (t,T )

E
[
e−rτ G̃

(
S(PdZτ )

)∣∣PdZt = zd
]

for every zd ∈ Rd, t ∈ [0, T ]. This is in fact the price process of a d-dimensional
Bermudan option. If d is chosen sufficiently small, this price can be computed efficiently
with Fourier or PIDE methods. In numerical experiments (compare Section 8), d ≤ 3
gives good results. Since the payoff in (7.4) in general is different from the payoff in
(7.1), the corresponding optimal stopping times need not be identical. Nevertheless, we
can state an error estimate for the difference

∣∣V̂d(0, 0)− V̂ (0, 0)
∣∣. In order to show this

convergence result, we will make use of the following lemma. It is concerned with the
approximation error for a fixed stopping time.

Lemma 7.2. Let τ ∈ T (0, T ) be a fixed stopping time and let µ1 ≥ µ2 ≥ ... ≥ 0
be the eigenvalues of the covariance matrix CXT . Then there exists a constant C > 0
(independent of d) such that

∣∣∣E[e−rτ G̃(S(PdZτ )
)]
− E

[
e−rτ G̃

(
S(Zτ )

)]∣∣∣ ≤ C
√√√√ n∑

l=d+1

µl

for every d = 1, . . . , n.

Proof. Throughout the proof, we denote every constant factor depending on T but not
on d by C, i.e., as before, the value of C is not fixed. Using Assumption 7.1 and the
definition of S, we obtain∣∣∣E[e−rτ G̃(S(PdZτ )

)]
− E

[
e−rτ G̃

(
S(Zτ )

)]∣∣∣
≤ L

G̃
E ‖S(PdZτ )− S(Zτ )‖Rn

= L
G̃
E

∥∥∥∥(S0(i) e
∫ τ
0 γt(i) dt

∣∣∣e(PdZτ )(i) − eZτ (i)
∣∣∣ )n

i=1

∥∥∥∥
Rn
.

Since all norms on Rn are equivalent, we can use the 1-norm and obtain∣∣∣E[e−rτ G̃(S(PdZτ )
)]
− E

[
e−rτ G̃

(
S(Zτ )

)]∣∣∣
≤ C E

[
n∑
i=1

S0(i) e|
∫ τ
0 γt(i) dt|

∣∣∣e(PdZτ )(i) − eZτ (i)
∣∣∣ ].(7.5)
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For the term depending on γ, we use Assumption 2.1 and obtain∣∣∣∣∫ τ

0
γt(i) dt

∣∣∣∣ ≤ ∫ T

0
‖γt‖Rn dt ≤ C

(∫ T

0
‖γt‖2Rn dt

) 1
2

≤ C.

Next, we apply the mean-value theorem to the exponential function for the estimate∣∣∣e(PdZτ )(i) − eZτ (i)
∣∣∣ ≤ emax{(PdZτ )(i),Zτ (i)} ‖PdZτ − Zτ‖Rn .

Inserting these estimates into (7.5) and applying the Cauchy–Schwarz inequality yields

∣∣∣E[e−rτ G̃(S(PdZτ )
)]
− E

[
e−rτ G̃

(
S(Zτ )

)]∣∣∣
≤ C

n∑
i=1

S0(i)E
[
emax{(PdZτ )(i),Zτ (i)} ‖PdZτ − Zτ‖Rn

]
≤ C

n∑
i=1

S0(i)
(
E
[
e2 max{(PdZτ )(i),Zτ (i)}

]) 1
2
(
E ‖PdZτ − Zτ‖2Rn

) 1
2
.

(7.6)

In order to get rid of the stopping time τ , we will make use of Doob’s inequality.
The centered process Z is a martingale by construction, and so is PdZ, since Pd is a
linear operator. The norm function is convex. Hence, ‖PdZτ − Zτ‖Rn is a non-negative
submartingale. Doob’s inequality yields

(7.7) E ‖PdZτ − Zτ‖2Rn ≤ E
(

sup
t∈[0,T ]

‖PdZt − Zt‖Rn
)2

≤ 4E ‖PdZT − ZT ‖2Rn .

For the exponential term in (7.6), we find

emax{(PdZτ )(i),Zτ (i)} ≤ e(PdZτ )(i) + eZτ (i) = e〈Zτ ,Pdui〉Rn + e〈Zτ ,ui〉Rn ,

where ui denotes the ith standard unit vector. Since the exponential function is convex,
both

(
e〈Zt,Pdui〉Rn

)
t∈[0,T ]

and
(
e〈Zt,ui〉Rn

)
t∈[0,T ]

are submartingales. Using Young’s and

Doob’s inequalities, we get

E
[
e2 max{(PdZτ )(i),Zτ (i)}

]
≤ E

[(
e〈Zτ ,Pdei〉Rn + e〈Zτ ,ei〉Rn

)2]
≤ 2E

[(
e〈Zτ ,Pdei〉Rn

)2
+
(
e〈Zτ ,ei〉Rn

)2]
≤ 8E

[
e2〈ZT ,Pdei〉Rn + e2〈ZT ,ei〉Rn

]
With [45, Prop. 2.3], we obtain

(7.8) E
[
e2 max{(PdZτ )(i),Zτ (i)}

]
≤ C.
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Inserting (7.7) and (7.8) in (7.6) yields∣∣∣E[e−rτ G̃(S(PdZτ )
)]
− E

[
e−rτ G̃

(
S(Zτ )

)]∣∣∣ ≤ C (E ‖PdZT − ZT ‖2Rn ) 1
2

n∑
i=1

S0(i).

Including the sum
∑n

i=1 S0(i) in the constant C and applying Theorem 3.2 to the re-
maining expectation concludes the proof.

The following theorem states the main convergence result for Bermudan options.

Theorem 7.3. Let µ1 ≥ µ2 ≥ ... ≥ 0 be the eigenvalues of the covariance matrix CXT .
Then there exists a constant C > 0 such that

∣∣∣V̂d(0, 0)− V̂ (0, 0)
∣∣∣ ≤ C

√√√√ n∑
l=d+1

µl

for every d = 1, . . . , n.

Proof. Let

τn := argsupτ∈T (t,T )E
[
e−rτ G̃

(
S(Zτ )

)]
and

τd := argsupτ∈T (t,T )E
[
e−rτ G̃

(
S(PdZτ )

)]
be optimal stopping times for V̂ (0, 0) and V̂d(0, 0), respectively. Then we have

E
[
e−rτnG̃

(
S(Zτn)

)]
≥ E

[
e−rτdG̃

(
S(Zτd)

)]
(7.9)

and

E
[
e−rτdG̃

(
S(PdZτd)

)]
≥ E

[
e−rτnG̃

(
S(PdZτn)

)]
(7.10)

by construction. Moreover, we know from Lemma 7.2 that

(7.11)
∣∣∣E[e−rτxG̃(S(PdZτx)

)]
− E

[
e−rτxG̃

(
S(Zτx)

)]∣∣∣ ≤ C
√√√√ n∑

l=d+1

µl

for τx ∈ {τn, τd}. Combining (7.11) and (7.9), we find

E
[
e−rτdG̃

(
S(PdZτd)

)]
≤ E

[
e−rτdG̃

(
S(Zτd)

)]
+ C

√√√√ n∑
l=d+1

µl

≤ E
[
e−rτnG̃

(
S(Zτn)

)]
+ C

√√√√ n∑
l=d+1

µl.
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On the other hand, using (7.10) and (7.11), we get

E
[
e−rτdG̃

(
S(PdZτd)

)]
≥ E

[
e−rτnG̃

(
S(PdZτn)

)]
≥ E

[
e−rτnG̃

(
S(Zτn)

)]
− C

√√√√ n∑
l=d+1

µl.

Together, these estimates yield

∣∣∣V̂d(0, 0)− V̂ (0, 0)
∣∣∣ =

∣∣∣E[e−rτdG̃(S(PdZτd)
)]
− E

[
e−rτnG̃

(
S(Zτn)

)]∣∣∣ ≤ C
√√√√ n∑

l=d+1

µl.

7.2 Variance-Reduced Least-Squares Monte Carlo

Pricing Bermudan options with MC simulations is more demanding than pricing Euro-
pean contracts. We will use the well established Longstaff–Schwartz least-squares MC
method [60]. Starting with the terminal value (7.2) at time T , we iterate backwards
(i = Nex− 1, Nex− 2, . . . , 1) over all previous exercise dates using the recursion formula
(7.3). We denote by (Fti)

Nex
i=1 the natural filtration corresponding to the driving process

Z. The conditional expectation

(7.12) E
[
V̂ (ti+1, Zti+1)

∣∣Fti]
is assumed to be a linear combination of a set of Fti-adapted basis variables. This
set of variables may, e.g., include the current state Zti(1), . . . , Zti(n) of the driving
process, the values Sti(1), . . . , Sti(n) of the assets, and the value P (Zti) of the function
on which the option is written (the weighted average for index options, or the minimum
or maximum for the corresponding put options). Polynomials in all of these quantities
are also possible candidates for the regression. In practice, it turns out that the method
is rather insensitive to the concrete choice of basis variables.

Once a set of variables is fixed, the basis variables are evaluated in each recursion
step for each path of the MC simulation. The discounted future cashflow for each path
when the option is not exercised is already known from the backward recursion. The
conditional expectation (7.12) is then computed from simple linear regression over all
paths. This is the major difference to European options: we make use of the information
from all paths at the same time. Since the linear regression amounts to solving a
symmetric linear equation system, the computational effort of the regression step is
not linear in the number of paths. Moreover, it is harder to do these computations
in parallel. The computational time of the whole least-squares algorithm, however, is
often dominated by the simulation part (compare also the numerical experiments in
Section 8).

As with all MC methods, a rather large number of paths is needed to obtain accurate
approximations. For a discussion of convergence rates, see [6]. We denote the number
of simulated paths by N . Let V N

j , j = 1, . . . , N , be the price computed for the jth
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simulated path, using the exercise strategy given by least-squares MC. Once the number
of paths and the exercise policy are fixed, these are iid copies of a random variable V N .
The MC estimator for the option price V̂ (0, 0) is given by

ϑ =
1

N

N∑
j=1

V N
j .

In order to improve the estimate, we will employ variance reduction with a control
variable as described, e.g., in [36, chap. 1.3]. This amounts to finding a second random
variable UN , which is closely related to V N , but whose expectation E[UN ] can be
computed much more efficiently. Then, we choose α ∈ R and compute the new estimator

ϑvr(α) =
1

N

N∑
j=1

[
V N
j + α

(
UNj − E[UN ]

)]
,

where UNj are iid copies of UN . The expectation of ϑvr(α) is obviously identical to that
of ϑ, therefore no bias is introduced. The variance of the new estimator is given by

Var(ϑvr(α)) =
1

N

(
Var(V N ) + 2αCov(V N , UN ) + α2 Var(UN )

)
.

The minimal possible variance
(7.13)

ϑvr(α
∗) =

1

N

(
Var(V N )− Cov2(V N , UN )

Var(UN )

)
=

1

N
Var(V N )

(
1− Corr2(V N , UN )

)
is obtained for

α∗ = −Cov(V N , UN )

Var(UN )
.

This optimal value α∗ cannot be calculated directly in practice, since at least the covari-
ance Cov(V N , UN ) is usually unknown. Thus, α∗ has to be estimated. Since we simulate
values of V N and UN anyway, this requires no additional effort. We can use the empir-
ical estimates for Cov(V N , UN ) and Var(UN ). Equation (7.13) shows that the variance
of the improved estimator will be arbitrarily small, if the correlation Corr(V N , UN ) of
V N and UN is large.

We employ the dimension reduction presented in the previous section to obtain a
suitable choice for UN . The solution V̂d of the projected Bermudan pricing problem
(7.4) converges to V̂ according to Theorem 7.3. Therefore, we set UN equal to the
approximated value of V̂d along each path. We can obtain this approximation with the
very same regression method we use for V̂ . Once we have simulated N paths for Z and
approximated the pathwise value of V̂ with the least-squares method, computation of V̂d
can be done with small additional effort for two reasons: first, we reuse the same paths
and can thus skip the expensive simulation step. Second, since V̂d effectively depends
only on the d-dimensional process PdZ, and d� n, we can reduce the number of basis
variables for the regression significantly without loosing accuracy.
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The main benefit of this choice of the control variable UN is that any method suitable
for low-dimensional Bermudan options can be used to compute the expectation V̂d(0, 0).
The steps required for this variance-reduced least-squares MC method are summarized
in Algorithm 1.

Algorithm 1 Variance-reduced least-squares MC pricing

1: compute expectation V̂d(0, 0) = supτ∈T (0,T )E
[
e−rτ G̃

(
S(PdZτ )

)]
(PIDE or FFT)

2: simulate N paths Z(1), . . . , Z(N)
3: compute projected paths PdZ(1), . . . ,PdZ(N)
4: for j = 1, 2, . . . , N do // terminal values
5: V N

j = e−rT G̃
(
S(ZT (j))

)
6: UNj = e−rT G̃

(
S(PdZT (j))

)
7: end for
8: for i = Nex − 1, Nex − 2, . . . , 1 do // backward recursion

9: regression with large basis set for E
[
V N
j

∣∣Zti]
10: regression with small basis set for E

[
UNj
∣∣PdZti]

11: for j = 1, 2, . . . , N do // pathwise exercise decision
12: compute intrinsic values v = e−rtiG̃

(
S(Zti(j))

)
and u = e−rtiG̃

(
S(PdZti(j))

)
13: V N

j = max
{
v, E

[
V N
j

∣∣Zti(j)]}
14: UNj = max

{
u, E

[
UNj
∣∣PdZti(j)]}

15: end for
16: end for
17: estimate mean µV and variance σ2

V of V N

18: estimate mean µU and variance σ2
U of UN

19: α = 1
N−1

∑N
j=1

(V Nj −µV )(UNj −µU )

σV σU

20: θvr(α) = 1
N

∑N
j=1

[
V N
j + α

(
UNj − V̂d(0, 0)

)]
21: return θvr(α)

There is a large variety of algorithms which can be used to compute the expecta-
tion E[UN ] = V̂d(0, 0) numerically, most notably those based on PIDEs or on Fourier
transforms. An overview of available methods can be found, e.g., in [24, 36]. The
PIDE method is basically the same as discussed in Section 4, with the additional back-
ward recursion (7.3) to obtain the Snell envelope. Alternatively, the function V̂d(ti, z),
i = 1, . . . , Nex can be represented in terms of Fourier transforms:

V̂d(ti, z) = max

{
e−rtiG̃

(
S(z)

)
,

e−rti+1

(2π)d

∫
Rd
e−iz

Tu ϕti,ti+1(−u)

∫
Rd
eiu

T yG̃

(
y +

∫ ti+1

ti

γs ds

)
dy du

}
for z ∈ Rd and i ∈ 1, . . . , Nex − 1, where ϕti,ti+1 denotes the characteristic function of

the increment of Z over the interval [ti, ti+1]. In general, the payoff G̃ is not integrable.
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This can be remedied by either truncating the payoff or by subtracting a suitable smooth
function. The Fourier transforms can then be approximated very efficiently with fast
Fourier transforms (FFT). Since this is a well known method, we will not discuss it in
detail here. Option pricing with Fourier methods is presented, e.g., in [22, 58].

7.3 Dual Method

Since the exercise policy found by linear regression is not necessarily optimal, the least-
squares MC algorithm presented in the previous section actually computes an (arbitrar-
ily precise) lower bound for the option price. The same value is of course also a lower
bound for the value of the continuously exercisable American option with the same pay-
off function. The approach presented by Rogers [67] uses a duality argument to obtain
an approximation from above. The Bermudan option price can be written as

(7.14) V̂ (0, 0) = inf
M∈M1

0

E

[
sup

i=1,...,Nex

(
e−rtiG̃

(
S(Zti)

)
−Mti

)]
,

where M1
0 is the space of all martingales M satisfying M0 = 0 and

E

[
sup

i=1,...,Nex

|Mti |

]
<∞.

Rogers’ idea is to pick a suitable martingale M and compute the expectation in (7.14)
via MC simulation. Since the chosen martingale will in general not be optimal, the
computed price is larger than the infimum and thus an upper bound. According to
[40, Thm. 1], we could also insert a supermartingale into the dual formulation and still
obtain an upper bound.

The choice of a “good” martingale M ∈M1
0 is a delicate issue, since it is related to the

increments of a hedging strategy for the option. In practice, however, any martingale
related to the price of the option may yield remarkably accurate results. Since the
projected price process is an approximation for the true price, we suggest setting

Mt :=

{
V̂d(t,PdZt)− V̂d(0, 0), t ∈ [0, τ ],

e−rτ G̃(S(PdZτ ))− V̂d(0, 0), t ∈ (τ, T ],

where τ denotes the optimal stopping time for the projected Bermudan option. Note
that V̂d(τ,PdZτ ) = e−rτ G̃(S(PdZτ )) holds by construction. Moreover, Mt+ V̂d(0, 0) can
be interpreted as the discounted value of a European option which grants the holder
the same wealth as an optimally exercised Bermudan option at maturity. Thus, it is a
martingale under the pricing measure. Algorithm 2 lists the computational steps of the
POD-based dual method.

For practical applications, we are of course interested in bounds which are sufficiently
sharp to serve as approximations of the true price. Therefore, we compare the dual
MC method and the variance-reduced MC method with respect to computational speed
and accuracy. In our numerical experiments (see Section 8), the dual method showed
extremely fast convergence. A very small number of simulated paths for Z is sufficient
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Algorithm 2 Duality based MC pricing

1: compute the solution V̂d on a space-time grid (PIDE or FFT)
2: simulate N paths paths Z(1), . . . , Z(N)
3: compute projected paths PdZ(1), . . . ,PdZ(N)
4: for j = 1, 2, . . . , N do // pathwise maximum
5: initial value v(j) = G̃

(
S(0)

)
6: exercised projected = false
7: for i = 1, 2, . . . , Nex do // forward iteration
8: intrinsic value u = e−rtiG̃

(
S(Zti(j))

)
9: if not exercised projected then

10: interpolate projected continuation value M = V̂d(ti,PdZti(j))− V̂d(0, 0)
11: intrinsic projected value ud = e−rtiG̃

(
S(PdZti(j))

)
12: if ud ≥M then
13: exercised projected = true
14: end if
15: end if
16: v(j) = max{v(j), u−M}
17: end for
18: end for
19: θdual = 1

N

∑N
j=1 v(j)

20: return θdual

to approximate the limit. In addition, there is no regression step. The individual
paths can be processed completely in parallel. There are several caveats, though. In
contrast to the variance reduction method, where we have used only the value V̂d(0, 0),
we have to compute the solution V̂d on a full space-time discretization grid in order to
evaluate M . As before, this can be done with PIDE and FFT methods, but computing
the full solution has several disadvantages. First, memory consumption is increased
considerably. Second, since we have to truncate the computational domain to a compact
subset of Rd, the accuracy of the solution decreases when we approach the boundary of
this subset. Moreover, the evaluation ofMt at arbitrary arguments requires interpolation
and, thus, usually a finer discretization grid.

The most important drawback of the dual method is probably that the precision of
the result depends on the chosen martingale M . If V̂d is too far from optimal, we cannot
expect convergence to the true option value, no matter how many paths we simulate.
In particular, we will see that for large numbers of assets with moderate correlation
and many exercise possibilities, we would have to choose a large value for d in order to
obtain a reasonably sharp bound. If, on the other hand, correlation is sufficiently high,
the dual method is accurate and by far superior regarding computational speed.
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8 Numerical Experiments

In this section, we will examine the performance of the presented pricing and hedging
methods in simulation studies. It was a major part of this thesis to write efficient C++
code for this purpose. The resulting program contains methods for the simulation of
time-inhomogeneous jump-diffusion processes, PIDE solving via finite elements and fi-
nite differences, POD-based dimension reduction, semi-definite quadratic optimization,
least-squares Monte Carlo simulation, pricing with FFT, and many other mathematical
utilities related to these topics. While large parts of the code have been written from
scratch, the following open source C++ libraries have been employed for the implemen-
tation of specific tasks: the finite element framework deal.II [4], the general purpose
linear algebra library ALGLIB [17], the geometric library CGAL [1] for interpolation
tasks, and the fast Fourier transform implementation FFTW [35]. In order to make
use of parallelization (for the MC simulation as well as the sparse grid combination
technique), all experiments were run on a Linux workstation with eight Opteron CPU
cores at 2.7 GHz.

8.1 Numerical PIDE Solution

This section contains a short overview of the numerical methods for solving finite-
dimensional PIDEs of type (4.7). The same methods also apply to the hedging problem
and, in combination with backward recursion, to Bermudan options. We will not go into
details about convergence results for PIDE solvers but refer to recent literature instead.
Finite difference methods for integro-differential equations are analyzed, e.g., in [25, 70],
finite elements and wavelet compression techniques are described in [61, 81, 66].

Localization We consider PIDEs whose spatial domain is the whole of Rd. The first
step towards a numerical solution is therefore the localization to a bounded domain. To
this end, we restrict the spatial part of the equation to a d-dimensional cuboid

ΩR := [−R1, R1]× [−R2, R2]× . . .× [−Rd, Rd].

This simple domain can be described by a single vector R = (R1, . . . , Rd) ∈ Rd. The
probabilistic interpretation of the truncation is that we price a barrier option whose value
is set to 0 if the process ZL leaves ΩR at any time before maturity. Under polynomial
growth conditions for the payoff function G, one can show that the truncation error
decreases exponentially with ‖R‖ (cf., e.g., [81, Thm. 3.3.2]). The error is of course
higher if the solution is evaluated closer to the boundary of ΩR.

Analysis of the dependence of the localization error on the truncation parameter in
one-dimensional problems shows that good results are achieved for R1 greater than a
certain multiple of the standard deviation of the jump-diffusion process at time T (cf.,
e.g., [24, Fig. 12.1]). By construction of the POD basis (pl)

d
l=1, we have

〈CXT pl, pl〉H = µl for l = 1, . . . , d.

Hence, the eigenvalues µl describe the variance in direction of the POD vectors. This
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suggests an adaptive truncation strategy, setting

(8.1) Rl = C
√
µl, l = 1, . . . , d,

with a constant C > 0. This heuristic choice accounts for the decreasing variance in
the coordinate directions (compare Proposition 3.5). It results in smaller domains ΩR

(compared to cubic domains) and allows for more accurate discretization results using
the same number of grid points. We introduce artificial homogeneous Dirichlet boundary
conditions and set

V̂ h
d (t, x) = 0 for every t ∈ [0, T ], x ∈ ∂ΩR,

where ∂ΩR is the boundary of the domain and V̂ h
d is the numerical approximation of

V̂d.

Discretization We solve the PIDE using a vertical method of lines, i.e., we first
discretize the spatial operators and apply some time stepping for ordinary differential
equations afterwards. Since we have already derived the variational formulation of the
PIDE in Proposition 4.9, we can directly apply a finite element method to approxi-
mate the spatial derivatives in (4.9). Usually, finite elements have several advantages
compared to finite differences. In particular, they allow for an easy discretization of
geometrically complex domains, adaptive refinement, and higher-order approximations.
Moreover, the theory of weak solutions allows for lower regularity assumptions than the
classical differential operator.

However, in the specific setting of option pricing, these arguments are only partly
valid. First, we may choose the shape of our computational domain arbitrarily due
to localization. As described in the previous paragraph, we truncate the domain to a
d-dimensional cuboid. Second, we have already shown that the European option price
V̂d is a smooth classical solution to the PIDE (4.7). Third, despite the simple shape
of the domain, a significant overhead is needed to compute and store the geometric
information (neighbors, triangles, node ordering) for finite element discretizations.

Both finite elements and finite differences showed very similar accuracy and com-
putational performance in all the numerical tests. Hence, we only report the results
obtained with finite differences in the subsequent sections on numerical results. We
define a regular but anisotropic grid gα on ΩR. The grid is described by a multiindex
α = (α1, . . . , αd) ∈ Nd, and the mesh size in each coordinate is given by hi := 2Ri/2

αi ,
i = 1, . . . , d. The grid contains the points

x(β) :=
(
−Ri + βihi

)d
i=1
∈ Rd, β ∈ {0, 1, . . . , 2α1} × · · · × {0, 1, . . . , 2αd}.

The corresponding discretized subspace is denoted Uhd ⊂ Ud ⊂ H. The partial deriva-
tives are approximated by central differences as follows:

∂xi V̂d
(
t, x(β)

)
≈ 1

2hi

[
V̂d
(
t, x(β + ui)

)
− V̂d

(
t, x(β − ui)

)]
,
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where ui is the ith canonical unit vector. For the second derivatives, we have

∂xj∂xi V̂d(t, x(β)) ≈


1

4hihj

[
V̂d
(
t, x(β + ui + uj)

)
− V̂d

(
t, x(β + ui − uj)

)
−V̂d

(
t, x(β − ui + uj)

)
+ V̂d

(
t, x(β − ui − uj)

)]
, i 6= j,

1
h2i

[
V̂d
(
t, x(β + ui)

)
− 2V̂d

(
t, x(β)

)
+ V̂d

(
t, x(β − ui)

)]
, i = j.

The approximation of the nonlocal integral term will be addressed separately in the
next paragraph.

After applying the finite difference scheme for the discretization in space, the result-
ing system of ordinary differential equations is solved with an appropriate time step-
ping scheme. Since the differential part of the PIDE is of parabolic type, we choose
a discontinuous Galerkin method of order 1 for this purpose. Details on the topic
(in particular error estimates) can be found in [77, Chap. 12]. Defining a partition
0 = t0 < · · · < tNT = T of [0, T ], we calculate a solution in the space

Shd :=
{
v ∈ L2(0, T ;Uhd ); vχ[tm−1,tm) ∈ Π1(tm−1, tm;Uhd ), m = 1, . . . , NT

}
,

where Π1(tm−1, tm;Uhd ) is the space of polynomials of degree at most 1 having values
in Uhd . This method yields a stable algorithm, allowing for large time steps even in the
presence of convection terms.

Nonlocal integral terms One of the main difficulties when solving a PIDE is the
nonlocal nature of the integral term. In contrast to differential operators, this term
involves the solution on the whole of Rd. Since we have already introduced artificial
zero boundary conditions, the solution can easily be continued with 0 outside the trun-
cated domain ΩR. However, numerical quadrature formulas will in general lead to full
matrices. This is contradictory to the essential use of sparse matrices even for problems
on relatively low-dimensional spaces. An efficient way to reduce the number of nonzero
matrix entries is by using wavelet compression schemes. These make use of the fast
decline of entries corresponding to wavelet basis functions with larger distance of their
supports. Entries close to 0 are then discarded (cf. the references given at the beginning
of this section).

Wavelets are the method of choice if the jump distribution in the additive model (2.1)
covers large parts of the domain. The examples we are going to examine here, however,
are rather factor models where for every t ∈ [0, T ], the jumps are restricted to one-
dimensional subspaces spanned by ηk(t) ∈ H, k = 1, . . . , nJ ∈ N. If the number
nJ of driving jump factors is low, a different approach is feasible as well. Instead
of wavelet compression, direct numerical quadrature (Gauß–Kronrod or even Newton–
Cotes methods) can be applied. We will now have a closer look at this specific case.
We focus on European option pricing and use the equivalent time-homogeneous jump-
diffusion process XL defined in Section (2.3). The time-inhomogeneous case can be
treated in the very same way.

Let 0 = t0 < t1 < . . . < tNT = T , NT ∈ N, be the time discretization grid. It is
not necessary to compute the Lévy measure νL defined in (2.11) explicitly. Instead, we
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define measures

νL(tk, tl;B) :=
1

tl − tk

∫ tl

tk

∫
H
χB
(
ηs(y)

)
ν(dy) ds,

νL(t;B) :=

∫
H
χB
(
ηt(y)

)
ν(dy)

for every B ⊂ B(H), 0 ≤ k < l ≤ NT , and t ≥ 0. For each time step [tk, tk+1] in
the method of lines, we use integrals with respect to νL(tk, tk+1; ·), i.e., the equivalent
Lévy measure for the current time interval. We are looking for an approximation of the
integral ∫

H

[
V̂d(t, x+ Pdζ)− V̂d(t, x)−

d∑
i=1

〈ζ, pi〉H ∂xi V̂d(t, x)

]
νL(tk, tk+1; dζ)

=

∫
H
V̂d(t, x+ Pdζ) νL(tk, tk+1; dζ)− λV̂d(t, x)

−
d∑
i=1

∂xi V̂d(t, x)

∫
H
〈ζ, pi〉H νL(tk, tk+1; dζ)

in the PIDE (4.6). To reduce the computational effort for the method of lines, the time
steps ∆t are chosen rather large. In order to nevertheless achieve sufficient accuracy for
the approximation of the above integrals, additional substeps of each interval [tk, tk+1]
are introduced. Let ns ∈ N be the number of substeps for each major time step. Then
we have ∫

H
V̂d(t, x+ Pdζ) νL(tk, tk+1; dζ)

≈ 1

ns

ns∑
j=1

∫
H
V̂d(t, x+ Pdζ) νL

(
tk + j

tk+1 − tk
ns

; dζ
)

=
λ

ns

ns∑
j=1

∫
E
V̂d

(
t, x+ Pdηtk+j(tk+1−tk)/ns(y)

)
P Y (dy)

for 0 ≤ k < nT . Similarly, we obtain∫
H
〈ζ, pi〉H νL(tk, tk+1; dζ) ≈ λ

ns

ns∑
j=1

∫
E

〈
ηtk+j(tk+1−tk)/ns(y), pi

〉
H
P Y (dy).

The integrals with respect to P Y can then be approximated with quadrature formu-
las. This requires interpolation of the integrands at quadrature points, which are not
necessarily identical to grid points. Since we have assumed that jumps occur only along
a relatively small subspace of ΩR, only a small number of grid points is involved, and
the corresponding matrices remain sparse. The idea is illustrated in Figure 4 for a single
jump process, where P Y is defined on E = R and the jumps are given by η(t)y ∈ H.

Note that the same formulas can be applied for the time-inhomogeneous PIDE. In
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this case, however, we would choose smaller major time steps and ns = 1 (no substeps).

Figure 4: Grid points (on full grid) involved in the numerical quadrature of jump term
integrals in the time interval [t1, t2].

Sparse grids Besides the nonlocality of the integral term, the exponentially increasing
computational complexity with increasing dimension d is the major numerical problem
when solving the PIDE. This curse of dimensionality can be broken by using sparse
grids. A comprehensive overview of this topic can be found in [20]. Figure 5 shows a
sparse grid in two-dimensional space.

In particular, we make use of the combination technique [63]. Thus, we use a standard
PIDE solver on a series of full, regular, but anisotropic grids. Instead of using all grids
gα with ‖α‖∞ ≤ Ng ∈ N, only grids satisfying

(8.2) Ng ≤ ‖α‖1 ≤ Ng + d− 1

for some Ng ∈ N are employed. We denote the approximation of V̂d on the grid gα

by Ṽ α
d . An approximation Ṽ

Ng
d , corresponding to a sparse grid solution, can then be

obtained by linear combination as follows:

(8.3) Ṽ
Ng
d (x) :=

d∑
k=1

(−1)k+1

(
d− 1

k − 1

) ∑
‖α‖1=Ng+d−k

Ṽ α
d .

Since artificial zero boundary conditions are applied, grid points on the boundary ∂ΩR

can be ignored.
Due to the anisotropic truncation of the domain introduced in (8.1), an equal number

of refinements in every coordinate would result in finer mesh widths for coordinates
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Figure 5: Construction of sparse tensor product (left) and sparse grid without boundary
points (right) in R2.

which are in fact the least important ones. This mismatch can be remedied by introduc-
ing additional constraints on the multiindex of grids used. In order to achieve similar
mesh widths, we demand

αi ≤ Ng + ln

(
Ri
R1

)
/ ln(2), i = 1, . . . , d,

which is equivalent to 2αi ≤ 2Ng RiR1
. Since this yields a set of grids different from the

one obtained by condition (8.2) alone, the corresponding coefficients in (8.3) have to be
modified. For a detailed presentation of how to choose coefficients in anisotropic sparse
grids, see [43].

8.2 Test Problems

The following two paragraphs give a precise description of the models used for the
numerical experiments, one for stock basket options and one for electricity swaptions.
They correspond to the motivating examples stated in Section 1. Note that both models
can be interpreted as special cases of the general setting (2.1), (2.3). The effectiveness
of the POD method depends on the correlation structure of the underlying assets. High
correlation allows for a more efficient decrease of variance with fewer POD components.
We thus investigate the performance of the dimension-reduction for different scenarios.

Stock basket options We examine baskets of n stocks. The initial value for the
assets is Si(0) = 50, i = 1, . . . , n. We consider put options with strike K = 50. The
driving stochastic process for our test problems is a jump-diffusion of the form (2.1) with
time-constant volatility and jump distribution. Similar to [83], we include independent
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jumps for each individual asset as well as common jumps for all assets. The common
jumps are driven by a compound Poisson process with intensity λ0 and are of fixed
relative height η0. The additional individual jumps of each asset price have intensity λi
and relative height ηi, i = 1, . . . , n. The price process of each asset St(i) satisfies

dSt(i)

St(i)
= rdt+

n∑
j=1

σijdWj(t) + η0d[N0(t)− λ0t] + ηid[Ni(t)− λit].

The risk-free interest rate is assumed to be constant at r = 0.02. The Brownian motions
Wj , j = 1, . . . , n, as well as the Poisson processes N0, N1, . . . , Nn are all independent.
The entries (σij)

n
i,j=1 of the volatility matrix are chosen such that the covariance matrix

CD ∈ Rn×n of the diffusion part satisfies

CD(i, j) =
(
σσT

)
ij

= 0.2 e−ρ|i−j|, for i, j = 1, . . . , n,

where ρ ∈ R is a parameter controlling the decay of correlation. The discounted value
of every asset is a martingale under the pricing measure. The prices can be written as
exponential jump-diffusion process as follows:

St(i) = S0(i) exp

{(
r − 1

2

n∑
j=1

σ2
ij − η0λ0 − ηiλi

)
t+

n∑
j=1

σijWj(t)

+ ln
(
1 + η0

)
N0(t) + ln

(
1 + ηi

)
Ni(t)

}
, i = 1, . . . , n.

We set λ0 = λ1 = . . . = λn = 1, η1 = . . . = ηn = −0.05. For the remaining correlation
and jump parameters we use two different sets of values:

High correlation ρ = 0.1 η0 = −0.15,
Low correlation ρ = 0.4 η0 = −0.10.

Hence, we have a faster decaying correlation and less pronounced common jumps in the
“low correlation” scenario.

Figure 6 shows the eigenvalues of the covariance matrix of ZT in both scenarios. All
values are divided by the largest eigenvalue µ1 for normalization. The decay is expo-
nential. A faster decay means higher correlation and, thus, usually better performance
of the dimension reduction method. For comparison, the eigenvalues obtained from the
empirical covariance matrix of the top 20 S&P 500 stocks are also plotted. The graph
shows that these eigenvalues are between those obtained from the test problem with
the two parameter sets described above. The explained variance in the low correlation
scenario is mostly similar to that for the true stock data, but even smaller for the first
few eigenvalues.

Electricity swaptions The second test problem is an an option on an electricity
swap. We use the exponential additive model given in (2.3). The corresponding Hilbert
space is H = L2([T1, T2], λD), where D = [T1, T2] is the delivery period of the swap
and λD is the Lebesgue measure on D. For the diffusive part of the model, we use two
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Figure 6: Eigenvalue decay for different correlation scenarios and S&P 500 stocks. The
eigenvalues of the covariance matrices are ordered by size and normalized.

factors, similar to as in [51]. The driving jump-diffusion is

Xt(u) =

∫ t

0
γs(u)ds+

2∑
k=1

∫ t

0
σk(s, u) dWk(s) +

∫ t

0

∫
R
η1(s, u)y M̃k(dy, ds).

The volatilities are given by

σ1(t, u) ≡ 0.15, σ2(t, u) = 0.3 e−1.4(u−t), t ∈ [0, T ], u ∈ D.

Moreover, we assume additional normally distributed jumps, which yield a Merton
model. For the jumps, we use a compound Poisson process with intensity λ1 = 12
and jump distribution Y ∼ N (0.1, 0.1). The additional factor for dampening the jumps
is

η1(t, u) = 0.5− 0.5
u− T1

T2 − T1
, t ∈ [0, T ], u ∈ D.

Due to Proposition 2.6, the drift is given by

γt = −1

2

2∑
i=1

σ2
i (t)− λ1

∫
R

(eη1(t)y − 1− η1(t)y)P Y (dy), t ∈ [0, T ].

We consider a swap with a delivery period of four weeks (28 days) maturing in one year,
i.e., T = T1 = 1, T2 = T1+28/365. The initial forward curve at time t = 0 is S0(u) ≡ 50,
u ∈ D, and the strike is K = 50. It remains to specify the discretization of the delivery
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period. As we have a continuous forward curve model, we may use an arbitrary number
of discretization points. On energy markets, monthly swaps on electricity are usually
based on daily prices. Thus we will use exactly n = 28 components. We will further
assume that there are 8 delivery hours per day. Setting ui = T1 + (i − 1)T2−T128 for
i = 1, . . . , 28, we obtain

V (t) = e−rT · 8 · 28 · E

( 28∑
i=1

w(ui;T1, T2)ST (ui)−K

)+ ∣∣∣∣Ft


for the discounted price of a call swaption, without making any discretization error. The
constant risk-free interest rate is r = 0.02.

8.3 Experiments for European Options

In this section, the results of the POD dimension reduction for European option pricing
are presented. Since no analytical solutions are available, a large number of MC sim-
ulations were performed for each test problem to obtain a precise solution. All errors
were computed using these MC reference values.

Results for basket option We consider a European put option on the average of a
basket containing six stocks. For higher-dimensional baskets, see also the examples in
Section 8.5 below. The discounted price of the basket option with maturity T = 1.0 at
time t ≤ T is

V̂ (t) = e−rTE

[(
6∑
i=1

ST (i)−K

)+∣∣∣∣∣St
]
.

We first examine the number of POD components needed to obtain a sufficiently good
approximation. The eigenvalues µi of the covariance operator CXT defined in (2.9) are
given in Table 1. The corresponding explained variability, defined by

∑i
j=1 µj /

∑6
j=1 µj ,

is also shown in the table. For the high correlation scenario, the eigenvalues decay faster
and the explained variability is higher.

low correlation high correlation

i µi/µ1 expl. var. µi/µ1 expl. var.

1 1.0000 0.6146 1.0000 0.8711
2 0.2805 0.7869 0.0734 0.9350
3 0.1403 0.8731 0.0286 0.9599
4 0.0859 0.9259 0.0182 0.9757
5 0.0649 0.9658 0.0146 0.9885
6 0.0557 1.0000 0.0132 1.0000

Table 1: Basket option – Eigenvalues and explained variability for both correlation sce-
narios.

The POD components are displayed in Figure 7. They resemble those known from fixed
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income markets. In particular, the first three basis vectors represent the typical shift,
tilt, and bend. Further components feature higher frequencies.

-0.6
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Figure 7: Basket option – The first four POD basis components.

We now examine the errors of the PIDE method. The “exact” reference solutions
used here are the result from 107 MC paths with a standard deviation of 0.0018 and
0.0022 (estimated from 100 MC series) for low and high correlation, respectively. It
turns out that, due to the stable discontinuous Galerkin method, the mesh size for the
time variable has little influence on the PIDE results. Thus we do all computations
with fixed, equidistant time steps of size ∆t = 1

10 . The spatial grid, on the other
hand, has an impact on the accuracy. Figure 8 displays the (signed) relative error for
different dimensions d of the projected problem. The number N is the maximal number
of discretization points in one coordinate and is always taken to be a power of 2. Two
effects can be observed here. For each fixed value of N , the method converges to a certain
limit when the dimension of the problem is increased. These limits, in turn, converge to
the exact solution with increasingly fine meshes. Thus, we might accidentally get a very
precise result for a low-dimensional computation on a coarse grid if the two errors (from
dimension and mesh) happen to cancel each other. In practice, both the dimension and
the number of grid points have to be chosen large enough in order to guarantee a precise
result. With high correlation, d = 3 and N = 28 are sufficient to obtain relative errors
below 1%. With low correlation, however, we have to use d = 5 POD components to
achieve similar accuracy.

Finally, we have a look at the computational time needed for the PIDE method. To
this end, we fix N = 29 and plot the error for various dimensions. Figure 9 displays the
results; both y-axes (for time and error) have a logarithmic scale. The error decreases
approximately exponentially with increasing dimension. The computational time, on
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Figure 8: Basket option – Relative error of PIDE method with different meshes. Top:
high correlation, bottom: low correlation.
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the other hand, increases exponentially. Note that the solution of the problem without
dimension reduction takes almost 3 minutes, even though we use the sparse grid com-
bination technique. However, the increase of the projected problem dimension d by one
increases the computational effort by only a factor of 4 to 5, despite the fact that we
use up to 29 = 512 grid points in each coordinate.

A reasonably precise solution (in practice within the bounds of the model error) takes
a few seconds if the correlation is high and approximately 100 seconds if the correlation
is low. While this is slightly faster than the MC method, it is not an extreme gain.
The use of POD for variance reduction as described in Section 7 is therefore probably
the more appealing way of applying the dimension reduction. The computational effort
might be greatly reduced by using more sophisticated grids, featuring more grid points
around the origin and fewer close to the boundary of the domain, which we will not
consider here. Of course, the achieved accuracy depends on the correlation within the
basket.

Results for electricity swaption In the test case for electricity swaptions, two POD
basis components are already sufficient to explain almost 100% of the volatility. The
sum of the remaining eigenvalues satisfies

∑
i≥3 µi ≈ 0. This is of course due to the

strong correlation between the price changes for different maturities u ∈ [T1, T2], which
makes the dimension reduction technique a particularly well suited method for this type
of derivative. The forward curve defined on the delivery interval does not change its
shape arbitrarily. The two POD components accurately describe the possible shape
changes in our (rather simple) test setting. We are thus able to compute accurate prices
by solving a two-dimensional PIDE.

Figure 10 displays the relative error and time of the PIDE method for different mesh
widths. As was to be expected, the computational effort increases exponentially in the
number of grid refinements (and thus linear in the total number of grid points). The
relative error decreases exponentially. However, in contrast to the basket option, a very
accurate solution can be computed for the electricity swaption within a fraction of a
second. This is made possible by the very efficient dimension reduction from n = 28 to
d = 2.

A comparison of the PIDE method and MC simulation is displayed in Figure 11.
In addition, the result of a log-normal approximation is also included. This so called
Lévy approximation yields a relative error of 4.0%, which is by far the largest of all the
methods. MC simulation yields very good results for 106 paths and above. However,
with n = 28 it takes considerably longer than in the case of the six-dimensional basket.
The standard deviation after 106 simulations is 0.73 (estimated from 100 MC series).
The PIDE solver is indeed the fastest and most accurate method for this second test
problem.

8.4 Experiments for Hedging

In this section, we use the method developed in Section 5 to find hedging strategies
for the monthly electricity swaption which we have just priced. The swaption can be
hedged with any set of traded swaps. We start with a single swap with a delivery period
covering the whole month (28 days). Then we add further swaps whose delivery periods
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Figure 10: Swaption – Relative error and computational time of PIDE method for di-
mension d = 2.
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equal the weeks of the month. To simplify the notation, the corresponding strategies
are denoted by capital letters as shown in Table 2. Moreover, we add the index “n-n”
to the letter, if we consider only nonnegative strategies. Thus, e.g., Bn-n denotes the
nonnegative strategy using the monthly and the first weekly swap.

delivery periods of included swaps

month week 1 week 2 week 3 week 4

A x
B x x
C x x x
D x x x x
E x x x x
F x x x x x

Table 2: Hedging portfolios used for numerical experiments.

For each set of swaps, the average hedging error is computed by MC simulation. To this
end, 10000 stochastic paths for the forward curve are simulated. Along each path, the
option prices and hedging strategies are calculated by solving the corresponding PIDE.
The values of the portfolios (defined as the initial option value plus the increments
given by the dynamics (5.8)) are then compared to the true terminal option values. The
average of their differences is a good approximation for the unhedgeable component of
the option price.

The Tikhonov regularization parameter described in Section 5.3 is set to δ = 10−10.
The results are shown in Table 3. These errors equal the unhedgeable part of the
risk, which is caused by two effects: the jumps in the model (which render even a
one-dimensional market incomplete), and the fact that we use only a finite number of
assets to hedge the infinite-dimensional forward curve. As was to be expected, the error
decreases substantially if we add more swaps to the portfolio. A set of 4 swaps, however,
is sufficient to obtain a very small error. This is of course due to the rather low number
of driving factors in the test model. We also compare the terminal error with the initial
option value for our test problem. (A relative error comparing with the option value at
time T is ill-defined, since the option might be out of the money, yielding a division by
zero.) Apparently, the cost for the additional nonnegativity constraint on the portfolio
is high for portfolios which contain several swaps.

The next experiment is designed to study the influence of the regularization parameter.
Table 4 shows the average hedging error with portfolio E for different values of δ. The
error decreases monotonously with decreasing δ, until the regularizing effect is no longer
sufficient and the error increases again at δ = 10−15 (which is close to machine precision).
The error when using the projection method described in Section 5.3 is 18.25, which
is about the same size as the best result achievable with Tikhonov regularization. We
will continue to use regularization, however, since it is the more general concept, which
also works for very ill-conditioned matrices M . We set δ = 10−10 for the remaining
experiments.

Next, we examine the hedging strategies in more detail. In order to illustrate some
of their features, we pick two sample paths from the MC simulation: one where the
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portfolio A An-n B Bn-n C Cn-n

absolute error 215.81 217.58 173.01 178.75 30.90 175.74
error / initial value 0.132 0.133 0.106 0.109 0.019 0.108

portfolio D Dn-n E En-n F Fn-n

absolute error 18.86 176.70 18.77 160.47 18.87 161.88
error / initial value 0.012 0.108 0.011 0.098 0.012 0.099

Table 3: Average hedging errors for different portfolios. The bottom rows show the ratio
of the terminal hedging error at time T and the option value at time 0 (the
value of the latter is 1633.64).

δ 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15

error 30.24 28.14 21.36 18.77 18.78 18.71 18.56 18.47 18.38 18.78

Table 4: Average hedging errors for different regularization parameters in portfolio E.

option is in the money (ITM) at maturity and one where it ends up out of the money
(OTM). We first analyze the ITM case. The hedging strategy for portfolio A is shown
in Figure 12, together with the swap rate of the underlying monthly contract. This case
is similar to that of hedging a single stock in that the quantity of swaps held in the
portfolio is a number in [0, 1]. The investment jumps simultaneously with the swap rate
and in the same directions. There is, e.g., a jump of the swap rate at day 243. Since
the option changes from OTM to ITM with this jump, this has a large impact on the
optimal investment. The strategy approaches 1 when time goes to T , since the option
ends in the money.

Figure 13 displays the strategy for portfolio E. The optimal investments in the weekly
swaps are now real numbers, sometimes negative and of large absolute value. When
approaching maturity, however, the strategy satisfies |θi| < 1, i = 1, . . . , 5.

The chronological development of the hedging errors corresponding to different port-
folios in the ITM case is shown in Figure 14. When adding more swaps to the portfolio,
two effects can be seen. The error gets smaller, and it evolves more smoothly. Both the
diffusion and the jump part of the error decrease for more diverse portfolios. While the
value of the hedge portfolio is visibly different from the true option value for portfolio
A, these two curves are almost indistinguishable for portfolio E. One can also observe
the Samuelson effect of increasing volatility in the option price closer to maturity. The
volatility of the hedging error, however, is very small during the last month before ma-
turity. This is due to the fact that after a significant jump at day 318 the swap rate is
far above the strike. The option will thus very likely end in the money. The hedging
investment is then almost equal to 1 and no further hedging error is accumulated.

The strategies in the OTM case approach 0 close to maturity. This holds for the
investment in the monthly swap as well as any weekly swaps. Once again, the correlation
between the hedging strategy θ and swap rate is clearly visible, as shown in Figures 15
and 16. The terminal value of portfolio A is negative and thus slightly below the targeted
value 0 (Figure 17). The behavior of the hedging errors is very similar to the ITM case.
In particular, the error gets smaller and smoother when more swaps are included and is
almost constant 0 for portfolio E.
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Figure 12: Swap rate and hedging strategy for portfolio A when the option ends ITM.
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Figure 14: Option value, hedging portfolio value, and absolute hedging error for portfo-
lios A, B, and E (top to bottom) when the option ends ITM.
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Figure 15: Swap rate and hedging strategy for portfolio A when the option ends OTM.
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Figure 16: Hedging strategy for portfolio E when the option ends OTM.
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Figure 17: Option value, hedging portfolio value, and absolute hedging error for portfolio
A, B, and E (top to bottom) when the option ends OTM.
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8.5 Experiments for Bermudan Options

In this section, we apply the variance reduced and dual MC methods to stock basket
options. Using different types of options, basket sizes, correlation parameters, and
numbers of exercise dates, we show that the overall computational time can as a rule
be reduced by at least 50%, often even by more than 80%. We consider baskets of
n = 10, 20, and 30 assets. The admissible exercise dates are assumed to be equally
spaced: ti = i

Nex
, i = 1, . . . , Nex. Their total number is either Nex = 10 or Nex = 100.

Of course, the variance reduced MC method can also be applied to high-dimensional
European options, where the POD dimension which is necessary for sufficient accuracy
is just too high. The variance reduced MC simulation can be interpreted as a means to
further improve any low-dimensional PIDE result.

We compute the price of put options with strike K = 50 and value

V̂ (0, 0) = sup
τ∈T (0,T )

E
[
e−rτ

(
K − P

(
τ, S(Zτ )

))+ ]
,

where P is either the average

Pavg(t, S) =
1

n

n∑
i=1

S(i)

or the minimum

Pmin(t, S) = min
i=1,...,n

S(i)

for t ∈ [0, T ]. For the computation of V̂d both PIDE and FFT methods have been tested.
They yield very similar results. Without using sparse grids, the PIDE solver does not
scale any better than the Fourier method for higher dimensions. Since the FFT showed
slightly superior accuracy on identical grids in our test cases, all of the results below
refer to the FFT method. The grid refinement and domain truncation are chosen in
such a way that the absolute error of Vd(0, 0) is well below 0.005 (half a cent). Usually,
26 grid points in each coordinate are sufficient to achieve this.

Computational Time Before we analyze the gain in precision obtained with vari-
ance reduction and dual MC, we examine the additional computational cost per path
which is needed for these methods. If we fix the number N of MC paths, doing a plain
least-squares MC is obviously less time consuming than computing additional control
variables. This extra work is only worth the effort if we can reduce the number of
paths significantly, so that the total computing time needed to achieve a given precision
decreases. On the other hand, the dual method may take less time per path, since no
regression is needed and the pathwise computation of maxima is inexpensive. Figure 18
gives an overview of the computational times needed for different parts of the algorithm.
The simulation of paths is identical for all tested methods. The regression step for the
control variables takes slightly less time than the regression for the original MC data,
since it uses less basis variables. The set of basis variables for the full MC contains n+3
values (Z(1), . . . , Z(n), P, P 2, P 3), while the set for the control variable has only d + 3
elements ((PdZ)(1), . . . , (PdZ)(d), P, P 2, P 3). The cost of the FFT increases exponen-
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tially in the dimension d. Using full grids with dimensions d > 3 implies computational
times which are larger than the original MC method, even after taking the reduced
number of paths into account.
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Figure 18: Computational times using variance reduction (VarRed) or dual MC (Dual)
for N = 50000 paths. (Average put option, low correlation, n = 30, Nex =
100.) The number behind the method indicates the projected dimension d.

Reduced Variance Since we have now seen how much additional time the variance
reduction needs, the question is how much accuracy we gain from it. A measure for
the accuracy is the variance of the MC prices. It can be used to obtain bounds on the
precision, e.g., by Chebyshev’s inequality. If the number of paths is sufficiently large
and the computed exercise policies do not change substantially, when further paths are
added, the variance is inversely proportional to the number of paths. Consequently,
half the variance means that roughly half the number of simulated paths is sufficient for
identical precision.

Figures 19 and 20 show results of the variance reduction and the dual MC for differ-
ent settings. In general, the methods work better for the average option than for the
minimum option. This is not surprising, because the average is captured better by the
POD components than the minimum. The variance can of course be decreased further
if the correlation is high. The number of exercise dates Nex also has a small influence.
More exercise points yield less effective variance reduction. The dual method converges
extremely fast in every setting. Its accuracy, however, is only satisfying for highly corre-
lated baskets and the average put option. In any other case, a higher value for d (d > 3)
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and a finer grid for the FFT solution are needed to obtain a reasonable approximation
with the dual method. This is usually not worth the computational effort. The variance
reduction, on the other hand, always works, although its effect is hardly visible in the
plot for the “worst case” of a minimum put option on lowly correlated assets.

Choice of Dimension The effectiveness of the variance reduction of course also de-
pends on the dimension d of the projected problem. For the average option, it turns out
that d = 1 already yields a substantial improvement over the plain least-squares MC
method without variance reduction. Increasing the dimension gives only slightly smaller
variances. Nevertheless, d = 2 is worth considering, since the additional computational
effort is small. For the minimum put option, increasing d has a much larger impact.
Adding further POD components decreases the variance significantly. Figure 21 illus-
trates this effect. In terms of overall computational effort, d = 2 turns out to be a good
choice, although d = 3 is sometimes even better (depending on the number of assets
and the efficiency of the method used to compute Vd(0, 0)).

In order to get a good estimate for the variance of the MC price, a large number
of MC experiments (usually at least 1000), each with the given number of paths N , is
necessary. A good approximation can be obtained by computing the variance within
each set of N paths and dividing by N . In fact, this approximation is accurate if the
exercise policy does not vary for different sets of simulated paths. In order to rule out
effects due to a possible change of exercise policy between different sets of paths, we use
the mean of this value over 100 MC experiments (with N paths each).

Variance and Time Ratios Tables 5 and 6 summarize a large number of computa-
tional results for average and minimum options, respectively. Each cell of these tables
contains two numbers. The first one is the ratio of the variance σ2

vr after variance reduc-
tion to the variance σ2

MC of the plain least-squares MC method. The second one is the
ratio of total computing time tvr with variance reduction to computing time tMC using
plain MC for N = 100000 paths. While computational time increases with dimension
d, the variance ratio decreases. The product of the two quantities gives a very rough
estimate of the total computing time ratio, because the number of paths needed for a
certain accuracy of the result decreases proportionally to the variance. Taking, e.g.,
the entry for Nex = 10, n = 10, and d = 2 in Table 5, we obtain 0.04 · 1.26 = 0.05,
which means that we can save about 95% of computing time with variance reduction
of dimension 2. The entry for Nex = 100, n = 30, and d = 2 in Table 6, on the other
hand, yields 0.49 · 1.19 = 0.58, corresponding to a 42% lower computational cost due to
variance reduction.
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Figure 19: MC, variance reduced MC, and dual MC for average put option (n = 30,
d = 2). Top: high correlation, Nex = 10; bottom: low correlation, Nex = 100.
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Figure 20: MC, variance reduced MC, and dual MC for minimum put option (n = 30,
d = 2). Top: high correlation, Nex = 10; bottom: low correlation, Nex = 100.
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Figure 21: Standard deviation with and without variance reduction for d = 1, 2, 3 (low
correlation, n = 30, nex = 10). Top: average put option; bottom: minimum
put option.
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Nex = 10 Nex = 100

# assets d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

high
corr

10 0.04|1.26 0.03|1.40 0.03|1.62 0.05|1.22 0.04|1.29 0.04|1.52
20 0.06|1.24 0.05|1.31 0.03|1.63 0.08|1.21 0.06|1.30 0.05|1.65
30 0.07|1.19 0.06|1.26 0.05|1.83 0.10|1.19 0.07|1.25 0.07|1.58

low
corr

10 0.10|1.26 0.06|1.34 0.04|2.44 0.12|1.22 0.07|1.30 0.05|2.19
20 0.14|1.22 0.10|1.29 0.08|2.40 0.15|1.21 0.10|1.28 0.08|2.03
30 0.16|1.19 0.12|1.25 0.10|2.43 0.18|1.21 0.13|1.24 0.11|1.92

Table 5: Variance ratio σ2
vr

σ2
MC

and time ratio tvr
tMC

for average put option (N = 100000

paths).

Nex = 10 Nex = 100

# assets d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

high
corr

10 0.46|1.22 0.20|1.30 0.13|1.60 0.48|1.16 0.23|1.27 0.15|1.49
20 0.52|1.19 0.26|1.26 0.14|1.57 0.54|1.17 0.29|1.24 0.20|1.55
30 0.55|1.15 0.29|1.21 0.19|1.66 0.68|1.14 0.43|1.21 0.32|1.44

low
corr

10 0.64|1.20 0.36|1.30 0.24|2.23 0.66|1.18 0.39|1.27 0.26|1.97
20 0.69|1.17 0.44|1.25 0.32|2.09 0.70|1.16 0.47|1.24 0.35|1.81
30 0.70|1.14 0.47|1.20 0.37|2.07 0.71|1.13 0.49|1.19 0.39|1.67

Table 6: Variance ratio σ2
vr

σ2
MC

and time ratio tvr
tMC

for minimum put option (N = 100000

paths).
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[31] J. Dieudonné. Foundations of Modern Analysis. Academic Press, New York, 1960.



References 111

[32] D. Duffie and H. R. Richardson. Mean-variance hedging in continuous time. Ann.
Appl. Probab., 1(1):1–15, 1991.

[33] L. C. Evans. Partial Differential Equations. American Mathematical Society, Grad-
uate Studies in Mathematics, Volume 19, Providence, 1998.

[34] L. Feng and V. Linetsky. Pricing options in jump-diffusion models: An extrapola-
tion approach. Operations Research, 56(2):304–325, 2008.

[35] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[36] G. Fusai and A. Roncoroni. Implementing Models in Quantitative Finance: Methods
and Cases. Springer, Berlin, 2008.

[37] C. Geiger and C. Kanzow. Theorie und Numerik Restringierter Optimierungsauf-
gaben. Springer, Berlin, 2002.

[38] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New
York, 2004.

[39] K. Glau. Feynman-Kac-Darstellungen zur Optionspreisbewertung in Lévy-Modell-
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