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Abstract

In operational business intelligence (BI) database systems, the same database may
support mixed workloads, e. g., short-running OLTP queries and batch jobs contain-
ing multitudes of queries with varying complexity. Different workloads may have
different performance requirements, expressed in terms of service level objectives
(SLOs). It is the task of a database administrator to manage the workload in order
to fulfill the SLOs and, thus, to satisfy the objectives. This work investigates ap-
proaches and methods for using workload management policies to control complex
database workloads.

We identify basic types of queries and describe the challenges they pose for SLO-
aware workload management. We present a generic workload management framework
that assists the administrator in managing the mixed workload. The framework
implements a generic workload management architecture for a database system to
meet the service level objectives. The architecture comprises three feedback control
loops. The query control loop applies workload management policies to submitted
and executing queries. The policies, e. g., when to process which queries or when
to kill a particular query, are defined to ensure that the service level objectives are
met. The policy control loop devises the policies based on the workload objectives
and a characterization of the workload. It also adjusts the policies in response
to expected changes in the workload. The business control loop negotiates service
level agreements between the database service provider and the workload submitter
(customer). For example, when the arrival rate of a workload is higher than specified,
it may not be possible to fulfill the objectives and new service level agreements must
be negotiated in order to resolve the situation. Based on this architecture, we study
three different workload management scenarios.

First, we present a dynamic prioritization scheme for a workload where multi-
ple users submit OLTP-style business transactions to a single database system. A
common service level objective in such a transaction-processing business workload
defines constraints on the percentile response time of the transactions started on
behalf of a user. The objectives also define a deadline to avoid the starvation of
transactions. The constraints on the percentile of the response time incur a penalty
while the deadline enforces the execution of requests. The individual users may have
different priorities, which are derived from the penalties defined for violating the
constraints on the percentile response time. We devise an adaptive quality of service
(QoS) management policy that is based on an economic model, which adaptively
penalizes individual requests depending on the objectives of the respective service
class and the current degree of service level conformance that the particular ser-
vice class exhibits. We show that by using the dynamic prioritization, we can avoid
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that high-priority user classes over-exceed their objectives at the expense of their
lower-priority counterparts.

Second, mixed query workloads that run against very large data warehouses may
contain queries whose execution times range, sometimes unpredictably, from seconds
to hours. The presence of even a handful of long-running queries can significantly
slow down a workload consisting of thousands of queries, creating havoc for queries
that require a quick response. We present a systematic study of workload man-
agement policies in the query control loop, including many policies implemented by
commercial database vendors. We build a taxonomy for long-running queries based
on how they impact other queries. We describe an experimental framework that
allows us to carry out an extensive set of experiments to evaluate different manage-
ment policies and the relative and absolute thresholds that they may use. Based on
the experiments, we make recommendations for which policies to use, when to apply
them, and demonstrate how to set their thresholds.

Third, we consider database systems that run mixed workloads consisting of mul-
tiple service classes (sets of queries) where each class may have compound objectives,
e. g., desired throughput and average response time. The database system provides
control parameters for each service class where each parameter may be dynamically
adjusted to affect the performance metrics and so achieve the class objectives. For
example, the number of concurrently executing queries may be higher for a high
priority class than for a lower priority class. We formulate the problem of setting
the control parameters as a multi-dimensional search problem. We devise a model
for the search space and explain why it cannot be searched exhaustively. We then
present an algorithm that heuristically searches the space to find control parameter
settings that satisfy all objectives for all classes or else indicates that the objectives
are unsatisfiable. Our algorithm considers changes in the workload, e. g., when a
new service class arrives or objectives of active service classes change. Our algorithm
is contrasted with existing algorithms for mixed workloads where each service class
has a single objective. We improve on that work by handling compound objectives
per class. A performance analysis of our algorithm over different problem scenarios
validates the practical utility of our approach.
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1. Introduction

Workload management enforces a contract between the submitter of a workload
and the system owner. A workload manager is responsible for meeting the owner’s
objectives (e. g., reduce energy or maximize profit) while attempting to meet the
performance objectives while monitoring the workload to ensure that the contract
remains valid, e. g., the workload assumptions and characterizations are within an
acceptable range so the objectives can be met.

1.1. Problem statement

In the database context, the term workload is widely used for two different concepts:
(1) the set of queries that are submitted by a particular user or a particular ap-
plication, or a set of users and/or applications and (2) the set of queries that are
submitted by all users/applications. This work focuses on mixed workloads, i. e.,
different users and applications send queries with different characteristics and ob-
jectives to the same database. Therefore, we need to reason about finer-grained
components of a workload.

A submitted query is a single unit of physical work for the database. It comprises
an SQL string along with a user identifier, an application identifier, and a connection
identifier. Note that although we refer to the unit of work as a query, the unit of
work may also be an update operation. A request is a logical unit of work, which
either represents a single submitted query or combines multiple queries in a single
transaction. A request stream is a sequence of requests. Requests within a stream
can either be submitted serially, i. e., the previous request must terminate before the
next is submitted or as a batch, i. e., all requests are submitted at once. Note that
the requests in a stream may be sent by a (human) user or by an application on
behalf of a user. An example for a request stream is the requests that are sent on
behalf of a single user over a single database connection.

A user load captures the sense of definition (1), above, i. e., it is a set of submitted
queries that have a description and an associated service level objective. The de-
scription specifies the characteristics of the requests, such as arrival rate, arrival and
termination time, resource usage, and variance of arrival time/arrival rate/resource
usage. We also note that there may be dependencies between the requests, e. g., if
the submitted requests belong to a multi-request database transaction. A transac-
tion may comprise several individual requests. It is expected that the requests in a
user load have similar characteristics, e. g., a stream of OLTP queries or a nightly
batch of reports. However, there exist user loads where little is known or where there
is high variance in resource usage, e. g., ad hoc analysis queries. For a user load, it
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is not necessary that there is a one-to-one mapping between the submitted requests
of a stream and a user load. We give more details on the mapping from submitted
requests to user loads below.

Each user load has an associated service level objective to specify the desired level
of performance. Service level objectives are formulated based on performance met-
rics on a per-request level. The objectives can be specified per request or aggregated
for all requests in the user load. Examples for per-request metrics are maximum
response time for individual OLTP-transactions in a user load. Aggregated metrics
include throughput, average response time, nth percentile of the response time, or
deadline for multiple requests of the user load. Objectives can either define thresh-
olds for the performance metrics or require optimization of the performance values.
An example for the latter case is to maximize the throughput. We refer to objec-
tives based on multiple metrics as compound objectives. As an example, the TPC-C
benchmark [59] defines an objective based on throughput, average response time,
and the 90th percentile of the response times.

We define a workload to be the set of all user loads plus workload objectives. This
corresponds to definition (2) above with the caveat that the set of all requests is
partitioned into one or more user loads. The workload objectives differ from the
service level objectives in that they specify how to balance competing service level
objectives. For example, one user load may specify throughput requirements for
OLTP requests and a second user load may specify response time requirements for
OLAP queries. Examples for workload objectives require to maximize the profit for
the system owner or to minimize the energy usage. Given the user loads and workload
objectives, service level agreements (SLAs) for the workload and constituent user
loads are negotiated between the customer and the service provider. This defines the
“contract” mentioned earlier between the system owners and the workload submitters.
An SLA may also specify a penalty for violating the performance objectives of a user
load.

A service class defines the level of service to be allocated to individual queries
belonging to this class, e. g., the share of the resources given to queries from this
service class. The service class also defines a query’s “priority”. The priority of a
query affects its importance in the workload manager (workload manager priority),
e. g., in scheduling queues, and in the database engine (database engine priority),
e. g., how often a query can access a resource other queries are also waiting for.
Note that the workload manager priority and the the database engine priority are
different concepts. For the remainder of this thesis, we focus on workload manager
priorities. Consequently, we just use the term “priority” to denote the workload
manager priority. Details on the workload manager are shown below.

It is important to note that service level objectives are defined for user loads and
that the workload manager applies policies to queries in a service class. However,
the workload manager has no information about users, SLAs, or user loads. As a
consequence, a mapping from user loads to service classes is needed. For example,
the individual queries in an OLTP-transaction must be mapped to a service class.
We briefly describe the service mapping problem whose goal it is to infer the correct
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Figure 1.1.: Visualization of the service mapping problem

service class for individual queries. Figure 1.1(a) shows the “traditional” approach
to service mapping, which is commonly implemented in commercial workload man-
agement tools. A submitted query is mapped to a service class based on identifying
attributes of the query, e. g., the user, application, or connection identifiers. How-
ever, a single user or application may want to send requests with different service
level objectives. For example, in the TPC-C benchmark an individual user sends
different business transactions where each business transaction is associated with its
own service level objective. Using the concept of user loads allows us to formulate a
revised service mapping problem, which is shown in Figure 1.1(b). User loads add
a layer between the submitted query and the service class. Consequently, the ser-
vice mapping problem is split into two mapping problems: how to map a submitted
query to a user load (load map task) and how to map a user load to a service class
(service map task). The service map task should be straightforward because there is
a natural correspondence between user loads and service classes. The load map task
is more challenging and corresponds to the “traditional” service mapping problem
where submitted requests are mapped to service classes. However, we believe that
the load map task is more tractable because the concept of user loads encapsulates
knowledge about the characteristics of requests.

The workload manager is, in almost all commercial vendors, an add-on module
that is external to the database system. A database system exposes some metrics,
control parameters, and control actions to the workload manager. For example, the
database system provides an interface to retrieve the costs from the query optimizer
for an individual query. Examples for the control parameters are interfaces that
provide methods to kill running queries or to change the priority of running queries
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Figure 1.2.: The main components of the workload management architecture are the
workload manager and the policy controller. The workload manager
controls the execution of individual queries based on measurements it
receives from the database system. The rectangles show the query con-
trol (dotted rectangle), policy control (dashed rectangle), and business
control loop (dot-dashed rectangle).

to change the share of resources they get compared to other queries. A workload
manager may define additional metrics and control parameters that are, however,
independent of the underlying database system. For example, the workload manager
may count the number of queries running in parallel (metric) to limit the multi-
programming level (control parameter), i. e., the maximum number of requests that
are executed in parallel. It is the metrics and control parameters that are available to
the workload manager that are used for constructing policies, i. e., to decide based on
the metrics which corrective action should be applied, i. e., which parameter should
be changed.

Figure 1.2 shows the abstract of a database workload management system. The
workload manager comprises multiple components: the service mapper maps sub-
mitted queries to service classes as described above, the admission controller decides
whether or not to admit a newly arriving query into the system, i. e., either pass it to
the scheduling component or reject it. The primary goal of the admission controller
is to avoid accepting more queries than can be executed effectively with the available
resources. It depends on the objectives defined in the SLA whether or not submit-
ted queries can be rejected without penalties. Once the admission controller admits
a query, it is passed to the scheduler which maintains the pending queries in one
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or more queues. When there are enough system resources available, the scheduler
dequeues a query and sends it to the database engine. It is important to note that
admission control and scheduling apply to queries prior to their execution. These
decisions are based on compile-time information, such as the optimizer’s cost esti-
mates for queries, plus information about the current operating environment, such as
system load. However, at run-time, a query may behave significantly different from
the estimates and/or the operating environment might have changed drastically. In
order to compensate for the incomplete or imprecise knowledge about query resource
usage and the system environment, the execution controller uses both compile-time
and run-time information to apply corrective actions (e. g., kill or suspend&resume a
query). The query control loop applies admission control, scheduling, and execution
control policies to submitted and executed queries, where the policies are designed
to meet the service level objectives.

The policy controller defines admission control, scheduling, and execution control
policies, and adapts them to accommodate changes in the workload or the objectives.
The policy controller can update the workload management policies based on time,
e. g., if it is known that a certain user load arrives at a certain time. For example, we
need to set new scheduling policies to prevent the system from becoming overloaded
when a scheduled maintenance task starts. The workload manager and the policy
controller implement the policy control loop. If the information about workload
or objective changes is not known in advance, the workload manager may trigger
the policy controller when it detects that the workload has changed. Examples for
workload changes are the arrival of a new user load or when arrival rate of queries
stemming from an active user load increases drastically. The workload manager also
triggers policy changes when it detects that the objectives of the user loads cannot be
met by applying the currently active workload management policies. If, for example,
the number of admitted queries was too high, the policy controller could dial back
the number of concurrently active queries to mitigate the overload situation.

It is important to note that service level objectives may be unsatisfiable with the
current system environment. It is the task of the business control loop to detect that
the objectives cannot be met, i. e., the policy control loop cannot find policies to
meet the objectives. In that case, the business control loop must identify the root
cause of the problem and employ corrective actions, e. g., reconsider the sizing of the
system, improve the policy control loop, or renegotiate the service level agreements.
For example, consider a user load with an objective on average response time whose
characteristics do not specify a maximum arrival rate. Also suppose the queries
from this user load overload the database system and no admission control and
scheduling policy can be devised to meet the objectives. In that case, an outcome
of the business control loop may be a more precise characterization of the user load,
i. e., the specification of a maximum arrival rate for which the objectives must be
satisfied.

In this work, we concentrate on workload management for mixed workloads where
the workload on the database system comprises different user loads. The trend
towards mixed workloads is strengthened by the emergence of “operational data
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stores” where – in contrast to traditional warehouses where OLTP and business
intelligence queries were kept separate – the transactional and analytical queries are
running on the same physical database instance at the same time.

1.2. Design of experimental frameworks

An important issue in workload management research is the design of an experi-
mental framework. There are two core components that are necessary for workload
management: the workload manager and the database. In order to experiment with
workload management, there are two decisions that can be made: (1) Whether to
use a commercial workload manager or implement a proprietary workload manager
and (2) whether to use a "real" database system or implement a simulator.

Decision (1) above depends on the metrics and control parameters needed to ex-
plore the respective search space. For example, in order to explore the workload
management policies for long-running queries in Chapter 4, we could not use one of
the commercial workload managers because no single workload manager implements
all the policies we wanted to explore. Additionally, if a new workload management
policy has been devised that no workload manager implements, a workload manager
that supports the policy must be built.

Similarly, the decision to use a “real” database system or a simulated database
engine depends on what metrics the database system provides and what workload
management actions can be applied. For example, it is not possible to investigate
workload management policies for suspending queries at runtime using a commer-
cial database system – suspend and resume has only been implemented in research
prototypes so far. The options are to extend a database system for which the source
code is available or to use a simulated database engine. Additionally, if the workload
comprises long-running queries, an option is to build a simulated database engine,
which abstracts from details of the query execution to speed up a single experiment.
Results gathered using a simulated database engine may not be as accurate as those
gathered from an actual database instance, and thus the simulated database engine
must be validated thoroughly.

There are implications between the choice of the database system (real vs. simu-
lated) and the choice of the workload manager (your own or one of the commercial
ones). In almost all commercial vendors, workload managers are add-on modules
that are only slightly integrated into the database engine. However, using a com-
mercial workload manager implies that the database system for which the workload
manager was designed must be used. The reason is that workload management is
an after-thought to the design of database systems. In particular, database systems
do not provide a standardized interface workload managers could use (e. g., met-
rics (from database engine to workload manager) or setting of control parameters
(from workload manager to database)). As a consequence, it is not possible with
commercial database systems to build a generic workload manager, i. e., one that
works with an arbitrary database system. What would be needed is some equiva-
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lent to ODBC/JDBC for workload management functions (as well as administrative
functions).

In contrast, if a workload manager is built from scratch then either a “real”
database system or a simulated database engine can be used. Usually, database sys-
tems do not expose too many database system-internals, yet the workload manager
has to control the operation and efficiency of the database system. Consequently,
the database may only provide a subset of the metrics that is needed to make work-
load management decisions. Even if the interface between the database system and
the workload manager is sufficient for exploring the problem space, retrieving the
metrics necessary for the workload management decisions (e. g., estimated costs for
a query from the query optimizer) and applying the workload management actions
(e. g., killing a query) causes overhead (inter-process communication, round-trip to
the database).

Chapters 3 through 5 give more details on the experimental frameworks used for
the experiments and why they were chosen.

1.3. Contributions

As most workload management research has focused on simple, static workloads with
a single class, there is no terminology for specifying or comparing scenarios, mixed
workload management mechanisms and solutions. In particular, there is no common
understanding of how well the management capabilities of commercial vendors ad-
dress the problems posed by mixed workloads: The unpredictable variance between
queries in a mixed workload, e. g., OLTP and OLAP queries executed in parallel,
results in unpredictable resource contention, which in turn results in unpredictable
performance. Ultimately, the lack of predictability calls for adaptive workload man-
agement policies.

In principle, a mixed workload management scenario poses challenges similar to
the “traditional” workload management – where only a user load that is mapped to
a single service class runs against the database. One major difference is that the
workload management mechanisms to control a single class cannot be applied to the
multi-class case because the interaction of the queries that are mapped to different
service classes must be considered. For example, in a scenario with two classes,
increasing the number of concurrently active queries from one class not only has
impact on the performance of that class but also on the performance of the other
class because fewer resources are available to process queries from the second class.

The contributions of this thesis are as follows: We identify, examine, and present
solutions for three workload management scenarios where adaptive mixed workload
management is needed to enforce the objectives for all users in a mixed workload:
Dynamic request prioritization: The first scenario focuses on enabling qual-
ity of service (QoS) for the bottom layer of a (Web-)service infrastructure where
transaction-processing business services access a shared database. This is a very
common scenario in mission-critical enterprise services that rely on an integrated

18



database. The requests that run against the database are usually short-running and
parameterized, and must be processed quickly in order to provide immediate feed-
back. Due to the multitude of services that access the database, the workload of the
database consists of requests stemming from many different service classes each with
an associated performance objective and possibly different priority. For this scenario,
we assume that performance objectives for every service submitting requests to the
database have been negotiated. A common objective in such a transaction-processing
business workload defines constraints on the percentile response time for an individ-
ual transaction and defines a deadline to avoid the starvation of transactions. The
constraints on the percentile of the response time incur a penalty while the deadline
enforces the execution of requests. We devise a QoS management concept based
on an economic model, which adaptively prioritizes individual requests depending
on the performance objectives and the current degree of objective conformance that
the particular service class exhibits. We also present algorithms to use the penalty
specification to reorder the requests in order to minimize the incurred penalties for
violating the percentile constraints.

Long-running query control: Our second scenario focuses on workload man-
agement policies to avoid “problem queries”, e. g., queries that run far longer than
expected due to poorly-written SQL, poorly-optimized execution plans, or unex-
pected resource contention. We build a taxonomy for long-running queries based on
how they impact other queries and focus on how to identify and handle such long-
running requests in three common scenarios: unreliable cost estimates, unobserved
resource contention, and system overload. Furthermore, we describe an experimental
framework that allows us to systematically evaluate the ability of existing workload
management mechanisms to deal with these scenarios. We use the experimental
framework to methodically explore the space of policy combinations and workloads.
Finally, we make recommendations for which policies to use, when to apply them,
and demonstrate how to set their thresholds.

Policy control for mixed workloads: In the third scenario, we present an ap-
proach to policy control. In particular, we investigate how to allocate resources when
managing multiple service classes, each class with its own set of compound objectives.
In order to control the performance of the service classes we may use the different
types of control parameters mentioned earlier. For example, we may control one
service class by the number of submitted requests scheduled to run simultaneously,
while for another we might set an admission control threshold based on estimated
resource costs. Our performance objectives may be defined by a value range, which
defines a lower and an upper bound on the performance metric, instead of simply
maximizing or minimizing a performance metric (service level agreements, SLAs).
This last point means that we can essentially cast the problem as a search problem
with the goal of locating any point within an operating envelope representing all
control settings under which the workload can meet all performance objectives. We
present an algorithm that automatically locates a point in the operating envelope,
if it exists, or recognizes if no such point exists. We also define how the algorithm
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adapts policies to deal with discrete changes in the workload and devise an extended
experimental framework. Our experimental studies evaluate various algorithms for
scheduling where we automatically set the number of concurrently active queries in
a system to meet the service level objectives of all service classes.

1.4. Outline

The remainder of this thesis is organized as follows:

• Chapter 2 summarizes workload management approaches in commercial data-
base systems. In particular, we summarize the workload management policies
that are implemented in workload management tools provided by commercial
database vendors.1

• Chapter 3 introduces our quality of service management concept based on
an economic model for dynamically prioritizing requests based on the current
degree of service level conformance. We describe experimental studies based
on the TPC-C benchmark to validate the dynamic prioritization approach.2

• Chapter 4 presents the taxonomy for long-running queries. Based on the tax-
onomy, we present experiments for controlling the execution of long-running
queries using our experimental framework. In addition, we present our lessons
learned from the experiments.3

• Chapter 5 formulates the problem of allocating resources with workload man-
agement to meet the objectives in a mixed workload as a search problem.
Based on the problem formulation we devise an algorithm to solve a restricted
version of the search problem. The chapter also presents experimental studies
that show how the algorithm finds solutions of the search problem, or that no
solution exists at all. The experimental studies are carried out on an extended
version of the experimental framework described in Chapter 4.4

• Chapter 6 concludes the thesis.

1Parts of the work presented in chapter 2 appeared in [34]
2Parts of the work presented in chapter 3 appeared in [24], [32], and [36]
3Parts of the work presented in chapter 4 appeared in [34]
4Parts of the work presented in chapter 5 appeared in [33] and [35]
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2. Workload management in
commercial database systems

Research in workload management has been mostly driven by commercial vendors.
As there have been no other surveys of workload management capabilities of commer-
cial database systems, this chapter provides an overview of the workload management
tools of such systems. We note that the survey was done in 2009 and that features of
systems are constantly changing. The purpose of this chapter was to understand the
state of the art. The chapter describes the mechanisms for query control and pol-
icy control implemented in today’s database systems. We distilled the information
from the documentation of the different vendors, e. g., EMC Greenplum Database 4.0
[26], HP Neoview Workload Management Services (WMS) 2.3 [27], IBM Workload
Manager (WLM) for DB2 9.5 [17] and DB2 Query Patroller [28], Microsoft SQL
Server 2008 [45], Oracle Database [47, 51], and Teradata Dynamic Workload Man-
ager (TDWM) 13.0.0.0 [57]. For the remainder of this chapter, we anonymize the
products by referring to them as systems A-F.

Workload management is mostly accomplished through the application of pre-
defined policies to workloads in today’s database systems; only a few vendors provide
simple policy control mechanisms. The policies initiate control actions when specific
conditions are reached. Thus far, commercial database vendors have led the state
of the art in workload management, adding policies to respond to customer needs.
The policies have not been studied systematically and their interactions are not well
understood.

The goal of workload management is to satisfy the user’s (customer’s) workload
objective. A simple objective is to complete all queries in the shortest time. A
more complex objective is to provide fast response for short queries and to complete
as many long queries as possible. The workload management system uses policies,
tuned with parameter settings, to achieve these objectives.

2.1. Query control loop

This section summarizes the admission control, scheduling, and execution control
mechanisms implemented in commercial workload management tools. For perform-
ing workload management, the workload managers support different service classes
for which admission control, scheduling, and execution control policies are defined.
Note that each vendor uses different terms to describe a “service class”. As stated in
Section 1.1, the workload management policies are applied to individual requests.
The commercial workload management tools map submitted requests to service
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Num
queries

Num con-
nections

Expected
costs

Check access
permissions

System A reject — — —

System B reject — — —

System C reject; warn — reject; warn —

System D — reject reject —

System E — reject reject —

System F reject; warn reject; warn reject; warn reject; warn

Table 2.1.: Metrics and actions considered for admission control. Actions are exe-
cuted when the threshold for the metric is exceeded (exception: check
access permission returns true/false).

classes based on the identifying attributes, e. g., the name of the user, the appli-
cation, or connection identifiers.

Admission control: Admission control policies in commercial database systems
place different kinds of limits on the system, e. g., the number of requests running
concurrently, the number of concurrent users, or the expected costs of the submitted
requests. Typical admission control actions are: warn, which accepts the request
but signals a warning and triggers the collection of additional data for an offline
analysis to prevent this condition from happening again; and reject, which rejects the
request. The remainder of this section discusses the admission control policies that
are supported by commercial database vendors. Table 2.1 summarizes the policies.
Common to all workload management tools is that the administrator must set the
thresholds for triggering an action.

There are three major types of metrics for which an administrator can define
thresholds to prevent overload on the system: One metric is to limit the number of
queries (num queries). In this case, the workload manager either limits the number
of active queries, i. e., the number of requests that are currently processed in the
database, the number of queued queries in the scheduling queue, or both. A second
commonly used metric is the number of connections to the database (num connec-
tions), e. g., via JDBC or ODBC. Third, the administrator can limit the maximum
estimated costs of a query to be submitted (expected costs). The costs of a query are
either defined on the total costs as estimated by the query optimizer, e. g., the esti-
mated CPU or I/O costs, the estimated number of rows returned, or the estimated
memory consumption. A different approach is to define admission control policies
based on access permissions on database resources (e. g., database tables), which
might be valid for a given time period. For example, it is possible to reject queries
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Num active
queries

Num con-
nections

Expected
costs

Resource
usage

System A submitter — submitter —

System B — — — submitter

System C submitter;
prop submitter submitter;

prop —

System D submitter — — —

System E submitter — — —

System F submitter submitter submitter —

Table 2.2.: Metrics and actions considered for scheduling. If threshold for a metric
is exceeded, queries are put in a waiting queue.

from one user group on a table during the day. Note that the workload manager
allows exceptions to be defined so that some queries can bypass admission control.

Scheduling: Table 2.2 summarizes the metrics and queue types supported by the
schedulers in commercial products. The workload management systems provide one
or more queues to queue the incoming queries. Each queue is managed first-in,
first-out (FIFO). Database administrators can define queues on the submitter- or on
the system-level. In the former case, queries are mapped to queues based on who
submitted the query (submitter). For example, there could be different queues for
requests from business analysts, reporting queries, and executive queries. Each of
the queues can be assigned a different priority based on the priority of the submitters
of the query so that more queries from high priority submitters are allowed to run
concurrently. When queues are defined on the system-level, incoming queries from
all submitters are put in queues based on either properties assigned with the query
(prop). For example, some workload managers assign queues to requests based on
the properties associated with the incoming user connection. For each queue in the
workload manager, there is a separate threshold that controls how many queries from
a queue can be processed in parallel.

Similar to the admission control component, the most commonly used metrics are
the number of active queries (num active queries), the number of active connections
(num active connections), and the costs as estimated by the query optimizer (expected
costs). Similar to using the number of active queries allowed at a time, some workload
management tools limit the number of worker threads that are available to process
the incoming queries. If no more worker threads are available, the queries are queued.
In addition, queries may be queued when the resource usage (e. g., CPU or memory
usage) exceeds a threshold.
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Wait
time

Execution
time

Resource
time Cardinality

System A1 — — — —

System B kill kill — —

System C — kill; warn;
reprioritize warn kill; warn

System D warn — — —

System E — warn — stop

System F — kill; warn;
reprioritize

kill; warn;
reprioritize

kill; warn;
reprioritize

Table 2.3.: Metrics and actions considered for execution control. If threshold for a
metric is exceeded, actions are triggered.

Similar to the admission control, the workload managers grant a bypass privilege to
requests based on estimated costs, based on who submitted the query, or based on the
type of the request. For example, some of the workload managers can be configured
so that SELECT statements whose costs as determined by the query optimizer are
below a threshold defined by the administrator can bypass the scheduler.
Execution control: To compensate for estimation errors made at compile time,
workload management tools implement policies to perform workload management
actions during the execution time of the request. The major challenge is to detect
that a query does not behave as expected. The most common metrics to perform
workload management at runtime in commercial database systems are the time a
request is queued in the scheduler (wait time), the time the database system has
spent on processing the query (execution time), the resource time that is spent for
processing the requests (resource time), and the number of result tuples produced so
far (cardinality).

Workload management tools support three actions that can be applied to the re-
quests at runtime: reprioritize, e. g., decrease the priority of a long-running request
in order to make more resources available to other queries, stop, and kill. The latter
action cancels the request execution, frees up the used resources, and all (interme-
diate) results generated on behalf of the request are lost. After killing a request,
the request can be manually resubmitted to admission control. The actions can be
executed either manually or automatically. In the former case no automatic execu-
tion is supported, the workload manager generates a log entry or a warning message
which it sends to the database administrator, e. g., via dashboard or e-mail. It is

1The database administrator can manually kill queries
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then the task of the administrator to examine the situation and apply the appropri-
ate corrective action, or else to let the request run to completion. Similar to killing
the execution, stopping the execution of a request cancels the execution and frees up
resources. However, in contrast to killing the query, the results generated so far are
returned to the client.

2.2. Policy control loop

Some database vendors implement simple policy control mechanisms on top of their
query control loop. The tools support switching to a new set of workload manage-
ment policies, i. e., a combination of admission control, scheduling, and execution
control policies, triggered by time by an event, or both. An example for a set
of workload management policies would reject queries based on the cost estimates
(admission control), limit the number of concurrently active queries (scheduling),
and kills queries that exceed a designated resource time (execution control). Time-
triggered policy control applies different sets of policies for different times of the day
if changes in the workload depend on the time. For example, there may be different
policies for transactional loads during the business hours and analytical queries over
night. For event-triggered policy changes, applications that connect to the database
make an API call to notify the workload manager that an event occurred, e. g., the
arrival of a new user load. As a consequence, the workload manager may load a new
set of policies for admission control, scheduling, and execution control. However,
note that the policies must be predefined by an administrator. In particular, the
thresholds for the policies to trigger an action must be manually set.
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3. Dynamic request prioritization for
OLTP workloads

Future business software systems will be designed as service oriented architectures.
These services are accessed via the Internet by a variety of different users – as exem-
plified by providers and vendors of Web-based business software, including RightNow
Technologies, Salesforce.com, hosted SAP, and Oracle. This Web-based software is
characterized by a multitude of services, which invoke other enterprise services and
ultimately submit requests to databases. The Web-based business software is made
accessible for a multitude of users, where each user may have individual quality
of service (QoS) requirements. The more users access the services, the more they
compete for system resources. In an uncontrolled environment this may lead to un-
predictable and unacceptable response times. To prevent the users from suffering
bad performance in terms of response times of their invoked services, service level
objectives (SLOs) are negotiated.

The establishment of an SLO expresses the performance expectations of the user
and, thus, imposes obligations on the service provider regarding the service level of
the provided services. If the constraints formulated in the SLO are violated after a
certain time window, the measurement interval, the service provider is fined. The
penalty depends on the severity of the SLO violation and is negotiated in the SLO.
SLOs are typically only defined for services directly invoked by users, so performance
requirements for “lower-levels” of the hierarchy must be inferred from the SLO. Thus,
the goal is to establish an end-to-end control for the quality of service, which covers
all layers of the Web service architecture.

This chapter describes how to enable QoS for the bottom layer of a service infras-
tructure, where almost all services access a shared database. This is a very common
scenario in mission-critical enterprise services that rely on an integrated database.
The invocation of a service results in the execution of a multi-request business trans-
action, i. e., every transaction may comprise several individual requests. The requests
are short and parameterized and must be processed quickly in order to provide im-
mediate feedback. For example, the invocation of an “order entry” service results
in database queries that determine the tax for the order depending on where the
purchase was made, that store which items have been ordered, and that update
information about how many items are still available for future purchases. Each
service may be repeatedly invoked on behalf of a user, where all users may have
different performance expectations on a service. Using the terminology introduced
in Section 1.1, all business transactions that stem from the invocation of a service
on behalf of a user and the user’s performance objectives form a user load. Our
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particular interest is on how to meet performance objectives for “important” users
during peak loads, i. e., where more requests arrive at the database system than can
be processed.

A commonly used SLO in this OLTP-scenario requires a percentage of the trans-
actions started on behalf of a user must complete within a given time, as exemplified
by the objectives defined in the TPC-C benchmark [59]. For example, consider an
SLO that requires 90% of all transactions to be processed within a certain time win-
dow (and another requirement to limit the response times for the remaining 10%).
A penalty is due if fewer than 90% of the transactions complete within the given
time window.

We assume that the objective of the service provider is to minimize the penalties
incurred by violating the percentile response time of all user loads. There are two
measures that can be applied from a workload management point of view: First,
to avoid overload on the database system during peak loads, the workload manager
may define a scheduling policy that limits the number of requests that are executed
in parallel. If too many requests are running in parallel, the execution time, i. e.,
the time that is spent for processing the request in the database grows too large due
to resource contention and thrashing effects. So it may be beneficial to queue some
requests so that fewer requests are running in parallel but the response time is lower
and throughput is higher than when no requests are queued. Second, to minimize
the overall penalty, the queued requests can be ordered according to the penalty that
is defined in the objectives of the respective user load. Requests stemming from a
user load that incurs a high penalty for violating the percentile response time should
be executed before requests that stem from a user load with lower penalties. This
static prioritization is used to schedule the requests, so that requests stemming from
high priority user loads should complete faster on average than their low priority
counterparts.

This approach is sufficient to fulfill the objectives of particularly valuable user
loads. However, it cannot adequately manage overall SLO enforcement. Consider
the example SLO above. With static prioritization, SLOs for high priority user loads
are likely to be overfulfilled by processing almost all of the respective requests in
time. However, during peak-load times, it is likely that they overachieve their SLOs
at the expense of lower priority user loads. From a business-oriented point of view, it
is desirable to provide only the service level that has been negotiated in the SLO. If
SLOs are not overfulfilled, the additional free resources are used for satisfying SLOs
that are violated with the static prioritization.

The challenge is to schedule incoming requests that are part of a transaction in
order to meet the performance goals specified in the SLOs. Scheduling is based on
adaptive priorities which are derived from the current level of conformance with the
request’s SLO, i. e., the percentage of timely requests, and the economic importance
of this SLO relative to other pending requests’ SLOs.

For this purpose, we developed a QoS management concept based on an economic
model, which adaptively prioritizes individual requests depending on the SLO and
the current degree of SLO conformance that the particular user load exhibits. The

27



core of the QoS management consists of penalty-carrying requests, i. e., database
requests which carry the requirements needed to fulfill the SLO constraints from the
submitting service to the database.

3.1. Related work

An approach for enabling end-to-end QoS for distributed multimedia databases is
discussed in [60]. The presented idea is to generate a number of offline copies with
QoS parameters for each media object in the database. These parameters, e. g.,
spatial and temporal resolution, and color depth are passed to the database by
annotating them to the database requests. The copies are then distributed among
the servers. During runtime, the query processor generates various execution plans
for a request, depending on the information on data replication and runtime QoS
adaptation options. The generated plans are then evaluated according to a predefined
cost model.

Scheduling jobs with time-value functions has been studied in the area of real-time
systems, e. g., Chen and Muhletaler [16] and Wang and Ravindran [61]. The sys-
tem accrues some utility for completing individual jobs before their deadline. The
utility decreases if the job is processed after its deadline. Although the approaches
are feasible for arbitrary time-value functions, the time complexity of the presented
algorithms is not feasible for scheduling queue lengths that we observed in our ex-
periments.

Enabling QoS for Web service infrastructures is the focus of Braumandl et al. [6].
The work discusses distributed query processing systems on the Internet where the
requests have different QoS demands. The authors present an extension to dis-
tributed query processing to support user QoS constraints. The query processor
generates plans in such a way that its quality estimates are compliant with the user-
defined quality constraints. Seltzsam et al. [55] present a fuzzy controller module,
which supervises services in a service oriented architecture. The controller executes
appropriate actions to remedy overload, failure, and idle situations in the service
architecture.

Quality of service is an important issue for e-commerce and other e-services. Beeri
et al. [4] analyze service compositions at compile-time to gain further information on
the service’s behavior. Selecting services that are dynamically bound to composite
services at runtime to satisfy user QoS requirements is presented by Maximilien and
Singh [42], and Gibelin and Makpangou [23]. However, these approaches are only
applicable if there are several concrete services, which implement the same interface.
This is not necessarily true for enterprise services. Kraiss et al. [30, 31] describe
an analytical model for the HEART tuning tool for message-oriented middleware.
The tool assigns static priorities to different workload classes. The messages of the
different classes are then processed by a priority based scheduling algorithm in the
middleware. The approach differs from our work in three points. First, there is a
fixed number of workload classes. Second, for each class, the workload parameters
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have to manually be specified by an administrator. Third, if the workload changes,
the priorities for the classes have to be recomputed.

An admission control and request scheduling system for e-commerce Web sites is
presented by Elnikety et al. [20]. Their work focuses on achieving stable behavior
during overload and improving response times. Analogous to our SLO based re-
quest management component they install a proxy between the Web service and the
database. However, the optimization is not associated to the SLO conformance. As
we will discuss in the following, considering the conformance is an integral part of
an adaptive QoS management.

There has been some early work on meeting response time goals for multiclass
workloads with per class response time demands on traditional database systems.
The requirements are met by managing system resources or the access to system
resources. A management of the disk(s) and the buffer pools for read-only workloads
by priority-based algorithms is proposed in [10]. Other approaches are found in the
domain of memory management, e. g., [7, 8, 9] where per-class response time goals
in a multiclass workload are achieved by automatically adjusting memory allocation
for each workload class. The adjustments are based on constant monitoring of the
state of the system relative to the goals of each class. Nevertheless, these approaches
are not sufficient when the response time demands are defined by an SLO for user
loads with different economic value, which is an important part for enforcing quality
of service.

As a testament to the importance of QoS enforcement, both IBM and Oracle
provide commercial products, which can be integrated into their respective databases.
Both IBM’s DB2 Query Patroller [28] and Oracle’s Database Resource Manager [47]
let the administrator define user-groups to which a static priority and a share of
system resources for each group is assigned. The higher the priority of a group, the
more resources it is assigned. However, the static prioritization is not associated with
response time requirements and the current SLO conformance, which our approach
provides a vital part for enforcing QoS.

Recently, quality of service attracted more attention in the database community.
A QoS based extension for the cost-based query optimization in federated systems
is presented in [38]. The traditional query optimization that is based on database
statistics, query statements, and the local and remote system configurations, is ex-
tended by considering the load on remote servers, the network latency between the
nodes, and the availability of the remote sources. The work in [43] analyzes and
proposes prioritization of workloads on traditional database systems. To meet the
QoS requirements, the bottleneck resources for a DBMS are identified. These are
then scheduled using statically assigned priorities in contrast to our dynamic priori-
tization.

Schroeder et al. [53] present a framework for providing QoS where the response
time requirements are specified in an SLO. To meet the multiclass response time
goals, the number of concurrently executing requests is dynamically adjusted using a
feedback control loop which considers the available hardware resources and concur-
rently executing queries in the database. However, unlike our approach their work

29



is not based on an economic model that optimizes the overall system performance
across different classes.

3.2. Service level objectives

This section describes the type of objectives we consider for our dynamic prioritiza-
tion approach. In practice, so-called step-wise SLOs are commonly used to specify
the QoS requirements of a user load. The SLOs are defined on the percentile of the
transaction response time (percentile objective) and give a deadline for each transac-
tion (deadline objective).

3.2.1. Percentile objectives

Percentile objectives require n% of all transactions within a user load to have a
response time ≤ x seconds. The response time of a transaction is defined as the time
between sending the first byte of the first request of the transaction and receiving
the last byte of the result of the last request. If a percentile objective is violated
after a specified measurement interval, a penalty p for every m percentage points
underfulfillment is due. Furthermore, pmax denotes a maximum penalty for violating
a percentile objective. An example for a step-wise SLO with a percentile objective
d1 is shown in the following:

d1: Response time of 90% of all transactions in this user load must be
less than 5 seconds each; p = $1000 per 10 percentage points of under-
fulfillment, pmax = $2000; measurement interval: 1 month (e. g., end of
month)

The central concept of our quality of service management is adaptive prioritization
of individual requests according to the current degree of service level conformance c
of the transaction the request belongs to. The target value for the conformance can
be derived from the percentile constraint. The conformance is monitored per user
load. We define c as

c =
number of timely transaction invocations within the user load

total number of invocations of the transaction within the user load

A percentile objective in a fixed step-wise SLO implicitly defines an SLO penalty
function with n steps. The penalty function for d1 of our sample SLO is shown as
the step function in Figure 3.1. With ci, 1 ≤ i ≤ n + 1, we denote the boundaries
of the steps of the SLO penalty function. For the example in Figure 3.1, we have
c4 = 0 (not in the figure), c3 = 0.8, c2 = 0.9, and c1 = 1.

Using the SLO penalty function, we define service levels as follows: For a penalty
function with n steps, let si = [ci+1, ci[, 1 ≤ i ≤ n, denote the ith service level, which
is defined in the interval [ci+1, ci[. Dropping to a lower service level corresponds to a
higher penalty, i. e., si+1 denotes a lower service level than si. We denote Δi as the
cost difference between si+1 and si.
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Figure 3.1.: Visualization of SLO objective d1

As shown in Figure 3.1, our sample percentile objective d1 implicitly defines three
service levels: Service level s3 is defined in the interval [0, 0.8[, s2 in [0.8, 0.9[, and
s1 in [0.9, 1]. The cost difference between service levels s3 and s2 is $1000, which is
identical to the cost difference between s2 and s1.

3.2.2. Deadline objectives

Note that percentile objectives allow (100-n)% of the transactions stemming from a
user load to be delayed forever. In order to avoid the starvation of transactions, a
deadline objective enforces the execution of a transaction after a certain time. In
our model, deadline objectives are strictly required to be met; it is not an option to
violate them in exchange for incurring a penalty. As a consequence, requests that
exceed that deadline will be executed, even if there are requests with higher penalties
(derived from the percentile objective) stemming from other transactions.

There are multiple approaches to specifying deadline objectives. First, static dead-
lines define a fixed time as upper limit for the wait time of a transaction. Second,
dynamic deadlines enforce the execution of transactions depending on the current
level of service level conformance. An example for dynamic deadline objectives re-
quires the average response time of a transaction to be less than p%, 0 ≤ p ≤ 100,
of the response times monitored so far, i. e., the average response time must not
exceed the pth percentile of all monitored response times of the transaction. Let
rt (1), . . . , rt (n) denote the monitored response times ordered from the smallest to the
largest. Then, the pth percentile Xp and, thus, the dynamic deadline objective is
defined as the average response time at position k = � p

100 · n�, i. e., rt (k).
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3.3. Architecture

To provide end-to-end quality of service for Web services, it is essential to incorporate
all components of a Web service architecture, i. e., the invoked service itself, all called
sub-services and the databases at the bottom layer.

A primary design goal for the implementation of our dynamic prioritization was to
ease the future extension of the QoS management to entire Web service architectures.
We therefore encapsulated all SLO-relevant functionality, including the monitoring
of the SLO conformance and the generation of adaptive penalties, into a central
entity, the SLO component. Figure 3.2 shows the resulting architecture. The SLO
component can easily be extended to monitor the overall execution of Web service
requests and not only derive adaptive penalties for the database layer, but also for
all sub requests on the Web service layer. The adaptive penalties are piggybacked
onto the corresponding requests and transported as penalty-carrying requests to
the database. Note that, although commercial workload managers do not allow to
have an associated “penalty”. As a consequence, we implemented our own scheduler.
Section 3.6 gives details on the implementation of the scheduler.

Upon completion of the database request, the SLO component is notified of the
observed response time by the client and can thus update the current SLO confor-
mance. The SLO component can be implemented either as a central component in
the network so that it can be easily adapted to scheduling arbitrary service requests,
besides the database requests exemplified here, or the SLO component can run as
a dedicated component for each client to reduce the overhead of sending network
messages. Each “private” SLO component observes the performance and computes
the penalty function for the client it is dedicated to and does not need information
from the other clients. The reason why the components can work independent from
each other is that for computing the penalty for a particular client, no performance
information from other clients is necessary.

The actual scheduling of the requests is based on the adaptive penalties and is
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realized by the scheduler in the workload manager (for ease of presentation, Figure 3.2
just shows the scheduler and omits the other workload management components).
The scheduler intercepts all arriving requests, puts them into a queue, and determines
the appropriate order of the queued requests depending on the penalty functions of
the requests and a scheduling algorithm (the next section gives more details on the
scheduling disciplines). The scheduler releases the requests from the queue based
on the number of currently active requests. As a consequence, requests belonging
to a multi-request transaction are granted a bypass privilege, i. e., these requests
are immediately executed. Using this approach, we help to avoid lock convoys [25].
Lock convoys can arise if a transaction TL which submits various requests to the
database exclusively locks a database object and there are pending requests of other
transactions, which intend to lock the same object. The queue of waiting objects
does not shrink as long as the locking transaction is not finished. Before TL releases
the blocking lock, all of its requests need to be processed. Thus, intuitively, requests
from active transactions are prioritized over requests from pending transactions.
After dequeuing a request, the scheduler sends the request to the database system
for execution. After completion, the database system returns the results of the
request to the client.

3.4. Penalty functions

This section describes how we map the performance requirements that are defined on
the transaction level to a penalty function for an individual database request. There
are two components of the penalty information. First, we derive a penalty function
that adaptively penalizes individual requests based on the current degree of service
level conformance of the respective transaction. Second, we derive the time when
to enforce the execution of the request from the deadline objective of the respective
transaction.

3.4.1. Adaptive penalty function

In this section, we explain how we derive the penalty function for individual database
requests. A penalty function encodes information about (1) the latest possible start
time t for executing the request in order to complete the transaction in time and
(2) the penalty p if the request is started late, i. e., after time t. Figure 3.3 shows an
example for a penalty function.

Derive the penalty for an individual request

The penalty of a transaction covers two different economic aspects. Opportunity
costs model the danger of falling from service level si = [ci+1, ci[ into the next
lower service level si+1, thus causing an additional penalty Δi. If the current SLO
conformance converges towards si+1, the penalty for processing the transaction too
late increases, because delaying a further transaction increases the danger of an
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Figure 3.3.: Penalty function that encodes a penalty p for starting the execution of
a request after time t.

ultimate SLO violation. Mathematically, function oc(c) that models opportunity
costs is a piece-wise monotonically decreasing function that has its maximum at
(ci+1,Δi) and its minimum at (ci, 0). Similarly, marginal gains model the chance to
re-achieve a higher service level, i. e., to reach si from si+1, thus “saving” Δi. If this
appears to be “within reach”, transactions are penalized more and more to eventually
achieve the higher level. Function mg(c), which represents the marginal gains, is an
increasing function between points (ci+2, 0) and (ci+1,Δi).

If the SLO conformance c of a transaction’s service class is approaching the
next lower service level, the chance for reaching the next higher service level is
very small. Thus, the penalty of a transaction is dominated by the opportunity
costs. Similarly, the penalty is dominated by the marginal gain if the next higher
service level is “within reach”. Therefore, we define the penalty pen as the maxi-
mum of the computed opportunity costs and the marginal gain of this transaction:
pen(c) = max {oc(c),mg(c)}.

There are an infinite number of possible implementations for oc(c). We evaluated
two different families of functions: First, the opportunity costs can be implemented
as a parabola with degree k that has its minimum at ci+1 and its maximum at ci.
The function that defines the opportunity costs for the entire SLO is defined as:
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Figure 3.4.: Visualization of the economic model

oc(c) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
cn−1−c
cn−1−cn

)k ·Δn−1, cn ≤ c < cn−1

· · ·(
c1−c
c1−c2

)k ·Δ1, c2 ≤ c < c1

0, otherwise

Similarly, the marginal gain can be computed by a parabola of degree k:

mg(c) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
c−cn+1

cn−cn+1

)k ·Δn−1, cn+1 ≤ c < cn

· · ·(
c−c3
c2−c3

)k ·Δ1, c3 ≤ c < c2

0, otherwise

Figure 3.4 illustrates the computation of the penalty for objective d1 using oppor-
tunity cost and marginal gain functions with degree k = 2. For this example, let the
current conformance be c′ = 0.87, i. e., the current service level is s2. The additional
costs for dropping to the next lower service level s3 are Δ2 = 1000, resulting in
opportunity costs of oc(0.87) = 90. The savings for reaching the next higher service
level are Δ1 = 1000, yielding marginal gains mg(0.87) = 490. Thus, the penalty for
the current transaction is max {90, 490} = 490.

To define opportunity costs and marginal gains, we can choose different values for k
to weight the distance from the borders of neighboring service levels. For small values
for k (e. g., k = 1), transactions stemming from SLOs with high penalties will almost
always be preferred compared to their lower priority counterparts. Figure 3.5(a)
illustrates an example, with two users ul and uh that have a 90% objective. The
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Figure 3.5.: Opportunity costs in the interval [0.9, 1.0]. There are two functions
shown: one for a high priority percentile objective (red solid line) and
one for a lower priority percentile objective (blue dashed line).

costs for dropping to the next lower service level is 1000 for the “high priority” user
uh and 200 for the “low priority” user ul. Let the current conformance of ul be
0.91, i. e., very close to the 90% objective, resulting in an opportunity cost value
of 180. However, the opportunity cost values of the uh is greater than or equal to
180 for conformance values ≤ 0.982. Although there is a high risk that ul drops to
the next lower service level, transactions from uh will almost always be preferred
even though the distance to the next lower service level may by considerably big.
Figure 3.5(b) illustrates the marginal gains defined by a polynomial of degree 6.
Again, we assume that the conformance of ul is 0.91, resulting in a penalty value
of about 106. With the higher degree polynomial, uh has a higher opportunity cost
value if the conformance drops below 93.1%. As a consequence, the higher degree
polynomial gives a higher chance to lower priority users if their conformance is close
to a service class border. As a consequence, the transactions from all users have
high priority only for SLO conformances near the borders of the next higher and
next lower service level, respectively. So, if marginal gains and opportunity costs are
defined by higher order polynomials, there are only very few transactions with high
priority. If all of these transactions are delayed, e. g., by waiting for locks, the SLO
conformance falls onto the next lower service level.

Estimation of execution times

The computation of the time constraints derived from the percentile and deadline ob-
jectives requires information about the estimated execution times of queries. There-
fore, we briefly discuss our approach to estimate the execution time of requests.

For the computation of the time objective of an individual request, information
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about the number of requests belonging to a single transaction must be known. If,
e. g., requests are executed in a loop, the number of iterations must be available prior
to the execution of the first request. For transactions with unknown characteristics,
techniques like code inspection or machine learning approaches could be used to
derive for a given set of parameters the number of requests that will be sent in
this invocation of the transaction. However, the exploration of such techniques for
handling transactions with unknown characteristics is not in the scope of this thesis.

For estimating the execution time for a request, we assume a linear relationship
between the number of requests that are processed in parallel and the response time
of an individual request. We can observe this linear relationship if two conditions
hold: (1) The database systems assign the system resources in a round-robin man-
ner, i. e., all pending requests get an equal share of the resources, e. g., time-slices
on the CPU with equal length. (2) The database system is not in overload, e. g.,
switching between different requests causes significant overhead. Since the priorities
we compute do not affect the execution of requests in the database, all requests have
the same priority in the database system. As a consequence, in the database systems
we used we assume that condition (1) holds. To meet condition (2), i. e., to avoid
overload on the database system, we limit the maximum number of requests that are
processed in parallel.

One important aspect is that the influence of the server load on the execution
time is dependent on the type of the request. The impact of the database load on
very simple selects on a primary key is different than the impact on more complex
requests. As a consequence, we monitor the execution times per request type in a
user load. For every occurrence of a request, we maintain the execution time and
the number of requests that were executed in parallel when the request was started.
We note that the number of requests in the database system may change during the
execution of a request. However, since the execution times of the requests in our
scenario are short, we assume that the variance of the number of concurrent requests
is negligible. Based on the monitoring data, we apply linear regression [29]. We note
that for different workloads, different techniques for estimating the execution times
of queries may be necessary. However, further estimation techniques are not in the
focus of this thesis.

Derivation of the time objective for an individual request

With etest1 , . . . , etestn , we denote the estimated execution time of the requests in the
transaction. We explain below how we estimate the execution time of the requests
of the transaction. Since requests arrive one after the other within a transaction,∑n

k=1 et
est
k denotes the sum of execution times of the requests that are still to be ex-

ecuted in the transaction, i. e., the time needed to complete the transaction without
delaying any of the requests r1, . . . , rn. The slack, the difference between the re-
maining time before the transaction must be complete and the sum of the execution
times of the requests, defines the maximum amount of time the execution of the first
request can be delayed. Figure 3.6 summarizes the relationship between response
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Figure 3.6.: Response time for transaction (taken from SLO), (estimated) execution
time for requests, slack

time objective, estimated execution time, and slack.
As mentioned in Section 3.3, only the first request r1 of a transaction TX is

queued. All other requests r2, . . . , rn in this transaction bypass the scheduler. Let
xp denote the response time defined in the percentile objective of the transaction. As
a consequence, we can assign the entire slack to the first request in the transaction,
i. e., the time objective tc1 for the first request is tc1 = now +xp−

∑n
k=1 et

est
k where

now is the current time.

Derive the deadline objective for individual requests

The time objective of a deadline objective xd specifies an upper bound for the re-
sponse time of a transaction. Similar to the computation of the time constraint
from the percentile objective, we need to derive the deadlines for the first request
of that transaction. With enf 1, we denote the latest time at which request r1
should be executed to be able to complete the respective transaction within the
time objective given by xd. To compute enf 1, we can reuse the formula above:
enf 1 = now +xd −

∑n
k=1 et

est
k .

3.5. Request scheduling

Our goal is to dequeue requests based on their penalty functions such that the overall
sum of incurred penalties is minimized. In general, finding an optimal solution to this
minimization problem in NP-hard [37] and hence the study of heuristics is of interest.
We concentrate on three heuristic algorithms, the Most Expensive First (MEFI), the
Fisher-Krieger algorithm [21] and the Keep Approximation of the Fisher-Krieger
Algorithm (KAFKA), a simplified version of the Fisher-Krieger algorithm.

Using the MEFI algorithm, requests are scheduled based on the height of the next
step in the corresponding penalty function. Let pf r denote the penalty function
attached to a request r. Furthermore, let pr denote the penalty at the current time t,
i. e., pr = pf r(t), and let next_pr denote the penalty at the “next step” of the penalty
function. If there is no such next step, next_pr = pr. The MEFI algorithm maintains
a queue where the requests are ordered by decreasing values of next_pr − pr. Using
a priority queue implementation, requests are inserted and removed, respectively, in
O(log n) time, where n is the number of requests in the queue. A request must be
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FisherKrieger(R)
1 t← 0
2 N ← R � Requests yet to be processed
3 T ←∑

r∈R etestr � Sum of estimated execution times etestr

� of the queries r ∈ R
4 for i = 0 to |R| − 1
5 do
6 � pf r: penalty function associated to r

7 Choose r ∈ N such that pf r(T )−pf r(t)
etestr

= max
r̂∈N

({
pf r̂(T )−pf r̂(t)

et r̂

})

8 Schedule r at position i
9 t← t+ etestr

10 N ← N \ {r}

Figure 3.7.: Pseudo code of the Fisher-Krieger algorithm

KAFKA(R)
1 for all r in R
2 do pr ← penalty at current time t
3 next_pr ← penalty at the “next higher” step in the penalty function
4 etestr ← estimated execution time
5 compute Δr ← next_pr −pr

etestr

6 Sort the requests by decreasing order of Δr

Figure 3.8.: Pseudo code of KAFKA

rescheduled if its penalty function has reached the next step since the last scheduling
event. Thus, the worst case time complexity is O(n logn) if all requests have reached
their next step in the penalty function. We observed in our experiments that at each
scheduling event only few requests had to be rescheduled.

Although MEFI already yields good results for scheduling the requests – as shown
in Section 3.7 – the scheduling can be improved by additionally considering the time
restrictions for an individual request. For example, consider two requests r1 and r2
having an execution time of 50 time units. Let

pf 1 =

⎧⎨
⎩
0 if t ≤ 10

100, otherwise
and pf 2 =

⎧⎨
⎩
0, if t ≤ 100

500, otherwise

denote the penalty functions of r1, r2, i. e., no penalty is due if r1 and r2 are started
before time 10 and 100, respectively. The MEFI algorithm considers the penalties
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of the requests only, i. e., the order of execution would be to process r2 and then r1,
resulting in a penalty for starting r1 too late.

The Fisher-Krieger (FK) algorithm devised in [21] is an algorithm to schedule jobs
without preemption on a single machine to maximize profit. The main idea of the
algorithm is to use a linear approximation of the penalty function by considering the
cost increase incurred by the request r between the scheduling time t and a “time
horizon” T . FK is a heuristic approach for maximizing the sum of profits, which
is equivalent to finding the minimal sum of incurred penalties from the perspective
of optimization. Let etestr denote the estimated execution time of request r, R the
set of queued requests, and N ⊆ R the set of unscheduled requests. Furthermore,
let T denote the “time horizon”, i. e., the sum of estimated execution times of all
requests in N . The algorithm (see Figure 3.7) schedules the request first that causes
the largest cost increase. The time complexity as indicated by the implementation
above is O(n2).

We developed KAFKA to decrease the time complexity compared to the FK algo-
rithm by applying a greedy approach for the request scheduling (w. r. t. the achiev-
able profit per time unit). Figure 3.8 shows the pseudo code for KAFKA where pr and
next_pr for a request r are defined as above. In contrast to FK, where the penalty
increase between the scheduling time and the time horizon is considered, KAFKA
computes for all requests the increase of penalty between the current and the next
step of the penalty function w. r. t. the estimated execution time. Afterwards, the
requests are sorted in decreasing order according to the increase of penalty. Similar
to MEFI, the worst case running time of KAFKA is O(n logn).

3.6. Experimental setup

This section describes the experimental environment that was used to evaluate the
dynamic prioritization. For the performance evaluation, we chose the TPC-C bench-
mark [59] as a representative online transaction processing (OLTP) workload. The
TPC-C benchmark models a wholesale supplier operating several warehouses that
serve customers in geographically distributed sales districts. The database work-
load of the benchmark is centered around five principal business transactions of an
order-entry environment. The transactions are invoked by emulated users whose be-
havior is controlled by think times and keying times. The detailed specification of
the TPC-C benchmark can be found in [59]. For the experiments in Section 3.7.2
we control the load on the system by multiplying the keying and think times with
a scale factor f > 0. Values f > 1 stretch the think and keying times, i. e., fewer
transactions are started in a time window and, consequently, the load on the system
is lower. Values 0 < f < 1 shorten the think and keying times, i. e., transactions are
started faster, resulting in a higher load on the system.

For our experiments, we implemented the TPC-C benchmark based on MaxDB
7.5.00.26 [41]. Appendix A contains the DDL statements we used to create the tables
and indices. We loaded 20 warehouses into the database. The disk space consumption

40



Transaction Relative frequency (in %) Percentile objective (in sec)

NewOrder 45 5
Payment 43 5
OrderStatus 4 5
Delivery 4 80
StockLevel 4 20

Table 3.1.: Percentile objectives for the TPC-C transactions

of the tables is about 2GB, the indexes consume about 0.36GB of disk space. As a
consequence, we set the number of terminals to 200 (TPC-C requires 10 terminals
per warehouse). Using this setting results in maximum throughput where 99% of
all transactions are still processed within their respective response time objectives
in Table 3.1 with FIFO used as scheduling discipline, no throttling applied (i. e., the
number of requests allowed in parallel was equal to the number of terminals), and
the scale factor f set to 1. Increasing the number of warehouses (and, thus, the
number of terminals) would result in a higher percentage of transactions that violate
the response time requirements.

We conducted all experiments using a database server with 1GB RAM and a single
Intel Xeon chip. The chip had a single core clocked at 2.8GHz and supports Intel’s
Hyper-Threading technology. The machine had a single 15000RPM disk with 36GB.
As operating system, we were using SUSE Enterprise Linux 9 running a Linux kernel
v2.6 that was shipped with the distribution. The terminals were executed on two
different machines and submitted the requests via iJDBC. iJDBC is a generic wrap-
per around the JDBC driver provided by the database vendor to intercept database
requests. Using iJDBC, it is possible to execute code before and after the execu-
tion of a request, e. g., it is possible to measure the execution time, wait time, and
the response time of individual requests and entire transactions. Also, iJDBC com-
municates with the SLO component and the scheduler without changing the client
code.

The SLO for a TPC-C transaction is based on the corresponding response time
objective. For our experiments, we specified the SLOs using XML, similar to WS-
Agreement [2], which has become a standard for establishing a service agreement
between a service provider and a client. Our experiments are conducted with the
step-wise SLOs. For each transaction, we define an SLO with a percentile and an
deadline objective. The percentile objective requires 90% of the invocations to be
processed within a specified response time objective. Table 3.1 shows the transaction
mix and the time objectives, which are specified in [59]. A violation of this objective
is fined with a penalty depending on the terminal representing the client that invokes
the transaction, i. e., the SLO applies for the terminal and all transactions that are
invoked from this terminal. In our test scenario, we chose a customer-mix where 15%
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Algorithm n = 50 n = 100 n = 150 n = 200 n = 250 n = 1000

MEFI 0.02 0.03 0.03 0.03 0.03 0.18

FK 3.06 11.70 26.07 45.44 70.73 –
KAFKA 0.03 0.03 0.04 0.05 0.04 0.21

Table 3.2.: Average elapsed time in milliseconds for determining the “best” request
in a queue with n requests.

of the terminals incur high ($1000), 35% incur medium ($200), and the remaining
terminals incur low penalties ($40) if the corresponding objective is violated. This
customer mix models a service provider with a high number of regular customers
that must be preferably processed compared to “normal” counterparts.

3.7. Experiments

In most current database systems, processes are assigned the same amount of re-
sources, irrespective of the priority of the respective request. This implies that the
available resources of the database are assigned in a round-robin manner to all active
requests. In other words, all requests are equally important. To limit the database
load it is therefore sufficient to restrict the number of concurrent requests, irrespec-
tive of their individual complexity [52].

3.7.1. Overhead

With the first set of experiments, we measure the overhead that is caused by the
dynamic scheduling. We identify three components of overhead: The architectural
overhead is caused by the network communication between the clients and the SLO
component and between the clients and the scheduler. The preprocessing overhead
includes the time needed for computing the penalty function for an individual request
and the time needed for attaching the penalty information to the request. The
scheduling overhead is the time needed for determining the order of the requests in
the queue and depends on the complexity of the scheduling discipline.

For measuring the scheduling overhead, we filled a queue with n − 1 requests
having randomly generated penalty functions. One measurement cycle consisted of
adding the nth request with random penalty function, reordering the queue, and
removing the first request from the queue. Table 3.2 shows the average elapsed time
in milliseconds for 5000 add-schedule-remove iterations. We see from the table that
even for small queues, the FK algorithm causes significant overhead while MEFI and
KAFKA have low overhead even for longer queues. In our experiments (see below),
we observed queue lengths of up to 150 requests, which results in a still acceptable
overhead, considering transaction response times of a few seconds. However, for
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queue lengths beyond 500, the overhead becomes dominant and FK is no longer
applicable.

We measured the architectural overhead by running a TPC-C NewOrder transac-
tion in isolation and comparing the response time when SLO component and sched-
uler were turned off and the response time with SLO component and scheduler turned
on. We chose the NewOrder transaction because this transaction consists of the most
requests. In these experiments, the response time of the runs with SLO component
and scheduler turned on was about 20 milliseconds greater than the response times of
the runs with the components turned off. We note that a very small fraction (about
0.2 milliseconds) of this overhead is due to scheduling because even if the requests
are not held back, there is some time needed for inserting them into the queue and
removing them immediately.

3.7.2. Evaluation of dynamic prioritization

In this section, we evaluate the different approaches for dynamic prioritization –
MEFI and KAFKA – and compare them to the static prioritization schemes. For
the remainder of this section, we concentrate on the NewOrder transaction, which
is the central transaction in the TPC-C benchmark. We note that, however, we did
not apply dynamic prioritization only to NewOrder but to all TPC-C transactions.
Our metric to compare the different approaches is the sum of the penalties that are
due for violated objectives of the NewOrder transactions.

When we ran the database at its limit, i. e., f = 1, we observed that the maximum
number of transactions that were executed in parallel is ≤ 10 99% of the time (most
of the time, there were even fewer active transactions). Consequently, we set the
maximum number of transactions that are allowed to run in parallel to that number
for our experiments. During low load phases, the queue of the scheduler was almost
always empty. However, in the high load phases, there were up to 150 pending
queries.

A single experimental run consists of several phases. We start with a warm-up
phase where the database is operated at 80% load (f = 1/0.8) for 15 minutes. We
chose the 80% under the assumption that no database system will be operated at
its limit because of possible peaks. Subsequently, 8 minute high load periods (180%
load, f = 1/1.8) alternate with 15 minute low load periods (80% load, f = 1/0.8).

No prioritization (FIFO) vs. static prioritization

Figures 3.9(a) to 3.9(c) show the end-to-end response times for the high, medium, and
low priority terminals, respectively, in a 65 minutes interval for the FIFO algorithm.
Note that Figures 3.9(a) to 3.9(c) do not all have the same vertical scale. The vertical
gray bars indicate the high load-phases (minutes 15-23 and 37-45). During the high
load-phases, the response times of all terminals increase to the same degree, i. e., the
response times are almost identical, no matter whether the respective requests stem
from a terminal with higher priority. We observe that even after the high load phase,
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the response times do no fall back to low load-level because, since the arrival rate
of requests was higher than throughput in the high load-phase, the database system
must work off the backlog. Once the backlog has been cleared, the response times
drop again. The peaks in the low load-phases (e. g., around minute 28 in the figures)
occur when the arrival rate has a peak.

Each bar in Figure 3.9(d) shows the number of completed NewOrder transactions
for high priority (yellow bars), medium priority (orange), and low priority (brown)
terminals. The terminals in each priority-group completed between 130 and 150
NewOrder transactions in 65 minutes.

Figure 3.9(e) shows the deviation, defined as the difference between the 90%-
objective and the actual compliance, for each terminal. Similar to the previous
figures, the colors of the bars indicate the priority of the terminal. Positive values
indicate that the compliance after 65 minutes exceeds 90% while negative values
indicate a violation of the 90%-objective. The figure shows that the deviation varies
between 16.3% and 40% (i. e., the compliance is between 50% and 73.7%). Since the
response time objectives of the NewOrder transactions of all terminals are violated,
the sum of penalties incurred in this scenario is $48000.

From the experiments with the FIFO scheduling discipline we can draw two con-
clusions: First, since FIFO treats all transactions identically, the total wait time of
a transaction is independent of the priority of the transaction. Second, the database
time of a request is not affected by its priority (because all requests have the same
priority). Consequently, the total database time of a transaction (i. e., the sum of the
database times of the individual requests) is also identical for the requests stemming
from the different terminals.

The results of the experiments with static prioritization are summarized in Fig-
ure 3.10. The response time graphs (Figures 3.10(a)-(c)) show that the response time
of the high priority clients is lower for higher priority clients. Note that the figures
have different vertical scales. In the low load phases, all clients experience response
times below 5 seconds. However, in the high load phases, there are not enough re-
sources to process the all incoming requests. As a consequence, the response time of
only the high priority clients remains low during the high load phase. The response
time of the lower priority requests increases because they are only processed when
there are no high priority requests in the queue. In particular, most of the low pri-
ority requests are delayed until after the high load phase, as indicated by the spikes
at minutes 23 and 45 in Figure 3.10(c). The reason is that the probability that there
are no requests with higher priority is low. The execution of the low priority requests
after the high load phase leads to an increase of response time for the higher priority
requests (high response times for high and medium priority after minutes 24 and 46).
The reason is that our dual-queue scheduling favors the execution of already active
requests. As a consequence, only the (low priority) transactions that became active
after the high load phase are processed – delaying the higher priority transactions
that haven’t started yet.

In summary, the static prioritization decreases the penalty for violated objectives
compared to the FIFO scheduling to $11400 (37 medium priority and all low pri-
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Figure 3.9.: (FIFO, no deadlines) The graphs show the results after running a bench-
mark where the scheduler controls the parallelism in the database and
puts the requests in a FIFO queue.
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ority terminals violate the objectives for the NewOrder transaction). However, as
Figure 3.10(e) indicates, the high priority and some of the medium priority terminals
overexceed the objectives. Also, the number of NewOrder transactions completed
depends on the priority. While all high priority terminals and most of the medium
priority terminals complete more than 170 NewOrder transactions, the low priority
terminals complete less than 110 transactions during in the 65 minutes.

Static prioritization vs. dynamic prioritization

Figure 3.11 shows the results for the MEFI algorithm. With MEFI, the compliance
for the high priority users has decreased – although all of them meet the objectives, as
shown in Figure 3.11(e). Therefore, there are more resources to process requests from
lower priority terminals, so that fewer objectives for medium priority terminals are
violated compared to the static prioritization. In total, the objectives for 15 medium
priority and all low priority terminals are violated, yielding a total penalty of $7000
for violating the NewOrder objectives.

At the beginning of the experiment, the priority of the requests is correlated with
the priority of the terminal: higher priority requests are processed faster on average
than their lower priority counterparts. In contrast to the static prioritization, the
high priority requests are also delayed in the high load phase to allow lower priority
requests to be processed faster. Figure 3.11(a) to 3.11(c) show the response times
of the NewOrder transactions. Note the high variance of the response times in Fig-
ure 3.11(a): The execution of higher priority transactions is delayed until after the
first high load phase — which we only observed for low priority terminals using the
static prioritization. As a consequence, some high and medium priority terminals
complete fewer NewOrder transactions compared to the static prioritization (Fig-
ure 3.11(d)). Since the total number of completed NewOrder transactions is similar
to using static prioritization, the low priority terminals complete more transactions.

As described in Section 3.5, dynamic prioritization can be improved by considering
not only the penalty for a request (i. e., the “height” of the step in the penalty
function) but also the time when the request should be started (i. e., the “step width”).
Figure 3.12 summarizes the experiments with the KAFKA algorithm. As indicated
by Figures 3.12(a) and 3.12(b), more requests stemming from high and medium
priority terminals are delayed compared to the MEFI approach, resulting in fewer
completed NewOrder transactions. Although in the experiment using KAFKA more
NewOrder transactions have been processed (compared to MEFI), a comparison of
Figures 3.11 and 3.12 shows that due to the delay of higher priority requests, the
percentage of completed low priority NewOrder transactions is higher when using
KAFKA (about 45%) than when using MEFI (about 40%). Figure 3.12(d) also shows
that the NewOrder transactions for some medium priority terminals are starved
(not processed at all). The reason for the starved transactions is that a terminal
first completes some NewOrder transactions, having a compliance near 100%. As a
consequence, the requests have low penalty (due to the high conformance). With low
penalty, there is a chance that the start time that is encoded in the penalty function

46



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50  60

R
es

po
ns

e 
tim

e
(in

 s
ec

on
ds

)

Elapsed time (in minutes)

(a) Response times of the high priority New-
Order requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60

R
es

po
ns

e 
tim

e
(in

 s
ec

on
ds

)

Elapsed time (in minutes)

(b) Response times of the medium priority New-
Order requests

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60

R
es

po
ns

e 
tim

e
(in

 s
ec

on
ds

)

Elapsed time (in minutes)

(c) Response times of the low priority NewOrder
requests

 0

 50

 100

 150

 200

 0  50  100  150  200

N
um

be
r 

of
 c

om
pl

et
ed

 tr
an

sa
ct

io
ns

Terminal

high priority
medium priority

low priority

(d) Number of completed transactions per ter-
minal after 65 minutes (total: 26664)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

S
LA

 D
ev

ia
tio

n

Terminal

high priority
medium priority

low priority

(e) The deviation from the objectives after
65 minutes. Negative values denote an un-
derfulfillment of the objectives.

Figure 3.10.: (Static, no deadlines) The graphs show the results after running a
benchmark where the requests have static priorities and the scheduler
always executes the highest priority request in the queue.
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Figure 3.11.: (Dynamic, MEFI, no deadlines) The graphs show the results after run-
ning a benchmark where the requests have dynamic priorities and the
queue is managed by the MEFI scheduling discipline.
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Transaction Deadline objective (in sec)

high medium low

NewOrder 15 25 50
Payment 15 25 50
OrderStatus 15 25 50
Delivery 80 400 800
StockLevel 60 100 200

Table 3.3.: Deadline objectives for the TPC-C transactions

passes, so that there is no benefit in processing the pending request. Consequently,
the request remains queued until there are no more pending requests.

We also ran experiments with the Fisher-Krieger algorithm (results not shown in
the figures). Both KAFKA and FK yielded similar results: none of the percentile
objectives of the high and medium priority user loads were violated. While for
KAFKA, the objectives for 81 low priority terminals were violated, yielding a total
penalty of $3240, using the FK algorithm, 76 low priority terminals violated their
percentile objectives.

From the dynamic prioritization experiments, we can draw the following conclu-
sions: Using dynamic prioritization (MEFI, FK, or KAFKA) balances the objectives
across all priority levels. However, delaying the transactions results in fewer com-
pleted transactions for high and medium priority terminals. Also, some of the trans-
actions are delayed for a very long time (more than 500 seconds in our experiments),
or not even processed at all, which is unacceptable in a real application. There-
fore, we examine how dynamic prioritization behaves when we enforce a maximum
execution time for transactions stemming from high and medium priority terminals.

Dynamic prioritization with deadline objectives

In order to avoid long delays and starved transactions, we extended the objectives
from the previous set of experiments with a deadline objective (Section 3.4.1) to
enforce the execution of requests. In addition to the percentile objectives shown in
Table 3.1 we configured the deadline objectives as shown in Table 3.3 to enforce the
execution of a request.

Figures 3.13(a) to 3.13(c) show the response times of the NewOrder transactions
using the KAFKA algorithm and enforced executions. The figures show that the
maximum response time is in the range of the deadline constraints. The response
times greater than the deadline constraints occur, e. g., in the load peaks, because the
deadlines only enforce the execution after waiting for the specified amount of time.
However the response time also contains the time needed to execute the request.
In addition, if there are two requests whose execution must be enforced, the first
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Figure 3.12.: (Dynamic, KAFKA, no deadlines) The graphs show the results after
running a benchmark where the requests have dynamic priorities and
the queue is managed by the KAFKA scheduling discipline.
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request may “block” the second one, which must wait some time for another currently
executed request to complete.

There are two notable results from the enforced execution of requests. First, the
low priority requests complete more transactions compared to the experiments with
no deadline because the requests are delayed for a shorter time due to the enforced
execution, i. e., the requests are no longer delayed for several minutes. Similarly, there
are no starved requests as we observed in the experiments with no deadlines. Second,
the enforcement may result in more objective violations compared to the experiments
without deadline objectives. Requests that are close to the step in their penalty
function may be delayed by requests whose execution has been forced. Note that in
this case, all requests whose execution must be enforced are executed before requests
with penalties derived from their penalty functions: A request stemming from a low
priority terminal may delay a request from a high priority terminal whose penalty
function indicates very high priority. As a consequence, more percentile objectives
are violated compared to the experiments with no deadline, i. e., no enforced request
executions (Figure 3.13(e)). However, the total penalty of $3800 is only marginally
greater than the penalty in the experiments without deadlines ($3240).

3.8. Conclusions and future work

This section presented a dynamic prioritization approach to avoid overfulfillment of
service level objectives. The dynamic prioritization is based on an economic model,
which differentiates between opportunity costs and marginal gains. The architecture
of our QoS management comprises an SLO component that computes a penalty
function for individual requests using the economic model and annotates the requests
with the penalty function. The requests are then managed by a scheduler that
determines the order in which the requests should be processed. We devised MEFI
and KAFKA, two algorithms to determine an order of the requests to minimize
the incurred penalties. The prototypical implementation of the QoS management
framework demonstrated the effectiveness of our dynamic prioritization approach to
avoid overfulfilling service level objectives of high priority classes at the expense of
lower priority classes.

We are currently working on extending the dynamic prioritization approach to an
end-to-end QoS management in a multi-level infrastructure in operational transac-
tion processing systems. In our setting the requests are processed at the Web server,
application server, and database layer and each of the components is executed on a
separate machine. Depending on changes in the workload and the load on the differ-
ent machines, a different component may become the bottleneck so that scheduling
must be applied at the respective layer. Since the service level objectives are only
defined for the “top” layer of the architecture, i. e., the service invoked by the user,
one challenge is to infer the objectives for each layer from the objectives of the layer
above.

We also work on supporting dynamic deadlines to model the more complex objec-
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Figure 3.13.: (Dynamic, KAFKA, with deadlines) The graphs show the results after
running a benchmark where the requests have dynamic priorities and
the queue is managed by the KAFKA scheduling discipline. The execu-
tion of requests is enforced after 15 seconds, 25 seconds, and 50 seconds
for requests stemming from high, medium, and low priority terminals.
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tives. For example, the TPC-C benchmark defines an objective where the average
response time must be lower than the 90th percentile of the response time, which
in turn must be lower than a pre-defined threshold. From the requirement “average
response time ≤ 90th percentile”, we can compute a dynamic deadline for a trans-
action and, with the approach presented in this thesis, the deadlines for individual
requests.
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4. Query control for BI workloads

The previous chapter focused on OLTP-style workloads and how to manage them
through scheduling by limiting the number of concurrently executing queries and
adaptively setting the priority of requests. This chapter focuses on longer queries,
business intelligence (BI) queries, for which there are more options for query control.

Long-running queries plague database administrators, who are forced to decide
which queries are hurting system performance and what to do about them. Data
skew, poorly-written SQL, poorly-optimized plans, and resource contention regularly
lead to poorly-behaved, unpredictable queries. Business intelligence workloads make
this task more difficult. A single workload may include short transaction-processing
queries that take only milliseconds of CPU and I/O time as well as long, complex,
analytic queries that run for hours as they access and process terabytes of data.
Different workloads may have different objectives, such as query throughput, elapsed
time for a set of queries, or an objective that measures both the queries completed
and the ones aborted or not started.

Commercial systems support a number of actions, primarily focused on threshold-
based admission control and user notifications of potential runtime problems. For
example, workload management tools from IBM [17], Microsoft [44], and Oracle [47]
will all alert the user if a query exceeds limits on estimated row counts, processing
times, or joins by a given percentage. However, human experts are still responsible for
choosing whether and how to act. These human practitioners talk about “problem”
queries and have developed some intuition for dealing with them. However, we have
not seen a thorough classification of long-running queries nor a systematic study of
the most effective corrective actions.

We interviewed practitioners from a number of commercial database companies
about workload management problems. Several said that any query that runs for
too long (e. g., longer than 15 minutes) has a problem, such as a bad query plan. We
therefore decided to focus on policies to identify and handle long-running queries.
Note that the threshold to define a long-running query varies by workload and by
system configuration and the job of administrators is to determine the value. We
identify three common scenarios:

• Unreliable cost estimates. Early-detection policies that apply thresholds to
cost estimates can have the biggest positive impact on performance either by
preventing “problem queries” from starting or by postponing them to run last.
However, optimizer cost estimates are known to be inaccurate – sometimes by
multiple orders of magnitude.

• Unobserved resource contention. Workload management decisions are
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based upon estimates and measurements of resource contention, but the mea-
sured resource may not be the major source of contention. Measuring CPU
utilization does not address excessive contention for disks.

• System overload. Sometimes the database system is simply overloaded. Un-
like the first two scenarios, no single query is at fault, and the only solution is
to reduce the number of queries in the system.

In this section, we systematically evaluate the ability of existing workload man-
agement mechanisms to deal with these scenarios. In particular, we compare the ef-
fectiveness of various kinds of absolute and relative thresholds, consider the benefits
of the “suspend” action [11, 12], and consider whether certain types of management
policies should be combined in order to compensate their strengths and weaknesses.
We use a simulator in order to run many more experiments and more methodically
explore the space of policy combinations and workloads than would be possible using
an actual database engine. Our evaluation uses a goodness metric that weighs both
the queries completed and the queries left incomplete.

The primary contributions are:

• We develop a taxonomy of long-running query types based on how they impact
other queries.

• We evaluate the ability of workload management policies to identify and act
upon the problem scenarios described above using our experimental framework
and database simulator.

• Finally, we make recommendations for which policies to use and demonstrate
how to set their thresholds.

Our experimental results show that recognizing long-running queries early and
acting upon them as soon as possible can halve overall workload times. We identify
which combinations of policies work best if the goal is to eliminate “problem” queries
from the system as soon as possible, and which work best if the goal is to complete
the long-running queries while minimizing their impact on the rest of the workload.
We also discuss which policies work best for predictable queries and which can handle
the unexpected.

4.1. Related work

To our knowledge, few researchers explicitly consider long-running queries in work-
load management. Benoit [5] presents a goal-oriented framework that models DBMS
resource usage and resource tuning parameters for diagnosing which resources are
causing long-running queries and determining how to adjust parameters to increase
performance. He does not address the evaluation of workload management mecha-
nisms, nor does he model or manage the state of an individual query’s execution.
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Query
expected to

be long

Query
progress

reasonable

Uses equal
share of
resources

expected-heavy Yes Yes Equal share

expected-hog Yes Yes > Equal share

surprise-heavy No Yes Equal share

surprise-hog No Yes > Equal share

overload No No Equal share

starving No No < Equal share

Table 4.1.: Query taxonomy: We distinguish types of long-running queries based on
whether (1) we expected the query to take a long time, (2) the query
is making progress toward completion, and (3) the query is receiving an
equal share of measured resources, such as CPU time or disk I/Os.

Weikum et al. [62] discuss metrics appropriate for identifying the root causes of per-
formance problems (e. g., overload caused by excessive lock conflicts). This was done
in the OLTP context, not BI.

Query progress indicators attempt to estimate a running query’s degree of com-
pletion. We believe such work is complementary to our goals and offers a means
to identify various types of long-running queries at early stages, potentially before
the workload has been negatively impacted. Existing approaches assume that the
progress indicator knows the number of tuples already processed by each query op-
erator [13, 14, 39]. Such operator-level information can be prohibitively expensive to
obtain.

Luo et al. [40] leverage an existing progress indicator to estimate the remaining
execution time for a running query in the presence of concurrent queries. They use
these estimates to implement workload management policies, such as the ones that
we study systematically.

4.2. Long-running query taxonomy

Effective workload management policies should be able to use cost estimates and
simple runtime statistics to distinguish between a query that is a heavy user of
system resources, one that is being starved by a heavy user, and one that is running
in an overloaded system.

Table 4.1 shows our taxonomy of long-running queries based on how they con-
tribute to system resource contention. First, we distinguish between queries expected
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to take a long time and those that were not. Second, we look at whether the query is
making reasonable progress. Third, we consider whether the query is using an equal
share of resources relative to other queries, or whether it is getting significantly more
or less of them. For example, if there are n concurrent queries, then each query is
guaranteed at most 1/n of each resource. If a query needs less than 1/n of a resource,
the share that is not used by the query is equally distributed among the other queries.
We discuss how to measure these properties in Section 4.3.

Expected-heavy queries are predictable and allow other queries to make progress.
Expected-hog queries are also predictably long, but use more than their share of the
resources. They may interfere with concurrent queries.

Surprise-heavy and surprise-hog queries were expected to be short. These queries
behave just like expected-heavy and expected-hog queries, respectively – but without
warning. They are the most likely to cause problems for other queries and the most
important to catch. Killing (and possibly requeuing) surprise-heavy and surprise-
hog queries has the most impact on the completion time of the other queries in the
workload.

Starving queries are those impeded by expected-hog and surprise-hog queries: they
ought to be short, but are taking a long time because the expected-hog queries do
not leave them enough resources. Starving queries that are killed and requeued
when there is less contention will run faster. An alternative is to kill other queries
that have made less progress. Finally, overload queries ought to be short, but there
are simply too many queries in the system for any of them to make progress. The
most commonly chosen way to relieve system overload is to reduce the number of
concurrent queries.

4.3. Experimental framework

We believe that workload management policies informed by all three dimensions of
our taxonomy (expectations, progress, and resource shares) can be more effective
than those that consider only a single dimension, such as usage of a particular re-
source. We therefore built an experimental framework for workload management
with which we can run thousands of realistic workloads under a variety of workload
management policies while monitoring and controlling expectations (in the form of
optimizer estimates), query progress, and resource share and measuring performance.

Our framework supports the workload management components depicted in Fig-
ure 4.1. Our workload manager implements different admission control, scheduling,
and execution control policies and actions, which we synthesized from the policies of
current commercial systems. Currently, we are not modeling different service classes.
We implemented a simulator for the database engine that mimics the execution of
database queries in a highly parallel, shared-nothing architecture. The simulator
does not include components like the query compiler and the optimizer: we provide
the query plans and the costs as input.

Using a simulated database engine was necessary. First, we investigate workloads
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Figure 4.1.: Workflow of how we create and select from a pool of query objects, create
workload input files, and specify parameters for our experiments.

that run for hours. Our simulated database engine “runs” these workloads in seconds,
which let us repeat the workloads with many different workload management policies.
Second, each workload management component in today’s workload management
systems implements only a subset of the possible workload management features
described in Chapter 2. Using a real database would limit us to the policies that a
particular product provides, contradicting our goal to experiment with an exhaustive
set of techniques and to model features that are currently not available.

4.3.1. Workflow

Figure 4.1 sketches the workflow for our experimental framework. To create input, we
first run queries in isolation on a real parallel database system – HP Neoview in our
experiments – and collect their performance statistics. We then create a simulator
input file that describes each query: the query plan and the CPU, disk, message,
and other resource usage of each operator in the query plan.

We then design each workload by choosing a set of queries and adding objectives.
For some workloads, we also inject “problem queries”, i. e., hogs, into the workload.
We give more details on how we model the problem queries below. Finally, we
choose workload management policies and invoke the experimental framework. Each
simulation run persistently stores a summary report for analysis. By running the
same workload under various policies, it is possible to compare different workload
management techniques.
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4.3.2. Simulator implementation

The simulator must model query processing with enough detail to capture resource
usage and contention but without needing to capture row-level data manipulation or
specific query operator algorithms. Therefore, we simulate the resource consumption
of individual operators in a query execution tree.

Query model

In a parallel database, a logical query operator, e. g., hash join, may be implemented
as multiple instances of a physical operator: one instance of the hash join operator
runs on each node. We use operator to refer to the physical operator that executes on
a single node. We model each resource on each node (each CPU and disk) separately.

Each query has a tree of operators and each operator has its own resource costs.
We model only the cost of the dominant resource for each operator, e. g., the CPU
time of an aggregation operator, the number of disk I/Os of a table scan, and the
network costs.

In order to run a simulated workload on the simulator, we need per-operator
CPU and I/O time measurements. On our Neoview system, the measurement tools
did not provide per-operator resource usage, so we had to estimate these from other
metrics: Overall query CPU time was available so we allocated the CPU time to each
operator instance in direct proportion to its input and output cardinalities (which
were available). We estimated the disk I/O time by multiplying the actual number of
rows accessed, which the tools did provide, by the disk speed. We estimated message
time by multiplying the number of messages by the network bandwidth.

We simulate the operators of a query execution tree from the bottom up. An
operator begins execution when all of its child operators complete. We did not
model pipeline parallelism in these experiments.

Resource Sharing

By default, the simulator gives each query an equal share of each resource, e. g., two
queries running concurrently on the same node would each get half the CPU. How-
ever, to model over-utilization, i. e., resource-hogging queries, a query may specify
an unequal share. For example, one query may specify an 80% share of a CPU,
which leaves 20% to be divided among the remaining “equal” share queries that are
running.

4.3.3. Experiment input and output

The simulator input comprises a workload, a set of policies, and configuration infor-
mation. Every query in the workload has an estimated cost and a “stretch” factor.
To determine the actual resource usage, the simulator multiplies the stretch factor
by the estimated cost. Thus, the stretch factor models optimizer estimation errors.
By default, the “stretch” is set to 1 and the estimated cost is the actual number
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of simulator time units that the query will consume. That is, the query will be of
expected length. However, we also alter the “stretch” to create queries of unexpected
lengths: we divide the query’s estimated costs by 6 and set its stretch to 6. This
technique is used to create surprise-heavy and surprise-hog queries.

Each query also has minimum and maximum resource requirements. For most
queries, these parameters are 0% and 100%, respectively, and the query typically
gets an equal resource share. To create expected-hog and surprise-hog queries, we set
the minimum resource requirements to 60%. Other queries running concurrently get
less than an equal share.

The simulator lets us model different machine configurations. A machine configu-
ration specifies the number and maximum performance of the resources available for
processing the queries.

During the execution of an experiment, the simulator outputs statistics to a man-
agement statistics database. The recorded data includes the start and end time of
the workload, each query in the workload, and each operator of that query. The
simulator also monitors the resources consumed by individual operators, e. g., the
number of CPU cycles. In addition, it reports the status of each query, i. e., whether
it is queued or running, and its outcome: whether it was rejected, killed, or completed
successfully. All of these statistics are made available to the workload management
components as they are produced. Since the simulator controls its own clock, writing
statistics to the database does not impact the execution of the queries.

4.3.4. Validation against HP Neoview

To check its accuracy, we validated the simulator using HP Neoview as an example
for a highly parallel, shared-nothing database. We performed two validation checks,
one for query response time and a second for throughput. The validation workload
was a subset of a workload used for the actual experiments.

To validate response times, we ran the queries serially on a four node HP Neoview
database system and obtained the response time for each query. We then configured
the simulator to mimic the database engine of the four node system (four CPUs, four
pairs of disks, and the appropriate network bandwidth) and simulated the workload
serially (MPL=1).

Figure 4.2 shows the elapsed times of 2130 queries. The x-axis plots their elapsed
times when run in isolation (MPL=1) on the HP Neoview database. The y-axis
plots their elapsed times in the simulator. A straight diagonal line would show
perfect correlation and indeed, most points do fall on a straight line. The points
that do not, in the lower left corner, correspond to queries that spend roughly equal
amounts of time on disk I/O and in the CPU. On the Neoview system, the disk I/Os
overlap substantially with CPU use, due to pipelining of operators. The simulator
processes all of the disk-bound operators first, because they are the leaves of the
query tree, before it starts the CPU-bound operators. Therefore, these short queries
take approximately “twice as long” in the simulator.

To validate throughput, we measured queries processed per hour on Neoview and
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Figure 4.2.: Simulator validation: We compare the elapsed times of queries run on
an HP Neoview database with their simulated elapsed times. A straight
diagonal line of points would indicate a perfect correlation. Note that
5000 simulator time units corresponds to roughly 30 minutes of elapsed
time on the real system.

the simulator as the MPL was increased: 1, 2, 4, and 8. For this test, we created
eight different input streams of roughly equal numbers of queries and total duration.

Figure 4.3 shows the throughput for the real and simulated systems. Although the
throughput (which is measured in different time units on the two systems) differs,
the shapes of both curves are similar, indicating that the simulator does a reasonable
job of modeling resource contention on a real system.

4.4. Experimental setup

We describe here the queries and workloads in our experiments, the specific thresh-
olds we chose for the policies, and finally, the objective function we used to measure
performance. In the next section, we will present our experimental results.

4.4.1. Queries and query types

Our experiments required a large pool of representative BI queries, including long-
running “problem” queries. We started with the Decision Support benchmark TPC-
DS [48]. To ensure our queries were CPU-bound, we created the database at scale
factor 1. However, all of the queries produced by the TPC-DS templates completed
in less than ten minutes on our four-node HP Neoview database system. We therefore
created some new templates for the TPC-DS database to generate queries that ran
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Figure 4.3.: Throughput (queries per hour, QPH) of the same workload when run
on the Neoview four processor machine and on the simulator. For the
simulator, we derived the QPH using the 30 minutes == 5000 simulator
time units formula.

longer (on our system). These templates were based on “problem” queries from a
Neoview production enterprise system. Using the combined set of templates, we
generated thousands of queries and ran them at MPL=1 to get their query plans
and performance statistics, as shown in Step 1 of Figure 4.1.

To characterize the variety of queries in our workloads, we defined three types of
queries based on their runtimes. The query types feather, golf ball, and bowling ball
roughly categorize the queries according to their costs. Although the boundaries
between the different query types are somewhat arbitrary, they suffice to identify
the long “problem” queries – the workload management policies should catch the
bowling balls. Based on these query types, we created three query pools as shown
in Table 4.2.

Most of these queries were CPU-bound. At scale factor 1, some of the TPC-DS
database and nearly all of the space needed for sorting and hash tables fit in memory.
The longer-running queries are dominated by join, aggregation, and sort operators,
which were all CPU-bound. An example bowling ball has a five-way inner join plus
a left outer join, a sort, an aggregation, and a nested subquery.

We also created a pool of 34 disk-bound queries. These queries were originally
feathers with complex query plans and their CPU time remains unchanged at under
3 minutes. However, we multiplied each query’s disk usage by a randomly chosen
number that makes the query’s total elapsed time fall in the bowling ball range.
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query type size of
query pool

queries per
workload

elapsed time (hh:mm:ss)

mean min max

feather 2807 400 30 s 00:00:03 00:02:59
golf ball 247 23 10 min 00:03:00 00:29:39

bowling ball 48 3 1 hr 00:30:04 01:54:50

Table 4.2.: We created pools of candidate queries, categorized by the elapsed time
needed to run each query on our 4-node Neoview database system.

4.4.2. Workloads

We created five batch workloads of 426 queries comprising 400 feathers, 23 golf
balls, and 3 bowling balls, using random selection without replacement from the
three CPU-bound query pools. The elapsed runtime for each workload at MPL=1 is
approximately ten hours, and that time is proportioned roughly equally among the
three query types.

We then created three variants of each workload using the techniques described
in Section 4.3.3. In the Expected-Heavy variant, all queries have stretch of 1 and
the bowling balls are expected-heavy queries. In the Surprise-Heavy variant, we alter
(only) the bowling balls to be surprise-heavy queries. Finally, in the Surprise-Hog
variant, the bowling balls are altered to be surprise-hog queries. The three variants of
each workload are otherwise identical: they contain the same 426 queries in the same
order. We did not create Expected-Hog variants since their behavior under resource
contention should be like that of the Expected-Heavy and Surprise-Hog workloads.

We then created an additional Disk-Heavy variant of each workload. For this
variant, we replaced each (CPU-bound) bowling ball with a query selected randomly
from the pool of disk-heavy queries. Altogether, there were twenty workloads.

4.4.3. Workload management policies

The specific thresholds that will be most appropriate for a given workload depend
on the queries in the workload. We now show how we chose the thresholds for the
workload management policies in our experiments.

Admission control

Admission control policies must accept or reject queries based on their estimated
costs. Figure 4.4 shows the expected vs. actual CPU costs in simulator cost units for
all of the queries in our workloads, run at MPL=1. Most queries had estimated costs
equal to actual costs. However, the surprise-heavy and surprise-hog queries (the line
of triangles) were underestimated by a factor of 6.
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Figure 4.4.: Comparison of estimated and actual CPU time for each query: the CPU
time of the surprise-heavy queries is underestimated. The dashed ver-
tical lines indicate our admission thresholds and the solid diagonal line
shows our kill relative threshold.

We chose four admission control policies for our experiments, none, which accepts
all queries, and three reject policies with different thresholds. These thresholds are
shown as vertical dashed lines in Figure 4.4.

Admission control with threshold 1.0m (one million) simulator time units filters all
expected-heavy queries but misses most of the surprise-heavy queries. It does catch
two of the 15 surprise-heavy queries but also filters a few golf balls.

Admission threshold 0.5m filters about half of the surprise-heavy queries, while
0.2m filters all of them. However, the lower the admission threshold, the more golf
balls, and even feathers, are rejected.

Scheduling

Scheduling policies control both the MPL of the workload and the number and
type of queues used. We first ran the workloads (with no admission control or
execution control) at different MPL≥1 to find the “ideal” multiprogramming level.
Figure 4.3 shows that the ideal MPL for one simulated workload was 4. For different
workloads, the ideal MPL varied between 3 and 5. We chose MPL=4 for most of our
experiments since the elapsed time at MPL=4 was within a few percent of optimal
for all workloads.

We then studied three scheduling policies. The first policy, 1Q, uses a single
FIFO queue for all queries and enforces MPL=4. When a query completes, 1Q
starts the query at the head of the queue. The other two policies use two FIFO

64



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

E
la

ps
ed

 ti
m

e 
of

 q
ue

rie
s 

in
 S

ur
pr

is
e-

H
og

 w
or

kl
oa

d
(in

 th
ou

sa
nd

s 
of

 s
im

ul
at

or
 ti

m
e 

un
its

)

Elapsed time of queries in Expected-Heavy workload
(in thousands of simulator time units)

Identical
elapsed time in
both workloads

Bowling balls

Figure 4.5.: Comparison of elapsed times of long-running queries in Expected-Heavy
and Surprise-Hog workloads at MPL=4. All surprise-hog queries com-
plete faster than their expected-heavy counterparts because they get a
larger share of the resources. The dashed lines indicate our absolute kill
thresholds.

queues. One queue holds short queries and the other longer queries, according to
their CPU cost estimates. We chose the same threshold values of 0.5m and 0.2m
as for admission control to decide where to enqueue a query (It only makes sense
to use a scheduling threshold that is lower than the admission threshold, so, e. g.,
we only use a scheduling threshold of 0.5m with an admission threshold of 1.0m or
none.). Both policies process all queries in the lower cost queue first. The policy
2Qs, both MPL 4 then runs the second queue’s queries at MPL=4 while the policy
2Qs, different MPLs runs those queries in isolation.

Execution control

The execution control policies we studied all based their conditions on the actual
query CPU time (so far). We chose both absolute thresholds, which take action
when a query’s CPU time exceeds some fixed threshold and relative thresholds,
which take action when query CPU time exceeds some function of its estimated cost.
Absolute thresholds are more common because they do not rely on estimates, but
relative thresholds are necessary to distinguish expected vs. unexpected runtimes.

To determine the thresholds for our execution control policies, we examined the
elapsed times of queries in the Expected-Heavy workloads (when they had an equal
share of the resources) and in the Surprise-Hog workloads (when they often did not).
Each workload was run with MPL=4.
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Figure 4.6.: Comparison of elapsed times of feathers and golf balls in Expected-Heavy
and Surprise-Hog workloads at MPL=4. Queries above the diagonal run
slower in the Surprise-Hog workload. The dashed lines indicate our
absolute kill thresholds. The gray shaded area denotes starving queries.

Figure 4.5 shows these elapsed times for expected-heavy and surprise-hog queries
and Figure 4.6 shows the times for golf ball and feather queries. We chose two
absolute kill thresholds, both shown as dashed lines in Figures 4.5 and 4.6. The
kill threshold of 12000 simulator time units catches all expected-heavy queries in the
Expected-Heavy workloads and only 14 golf ball queries. However, the threshold is
only slightly longer than many expected-heavy queries, so they are not identified until
they have nearly completed (and used a lot of resources). Note that this threshold
does not catch some surprise-hog queries in the surprise-hog workload; they are
below the horizontal line in Figure 4.5.

The threshold of 5000 identifies the expected-heavy queries sooner, but kills 39 golf
balls and 48 feathers. Note that resource contention at MPL=4 causes some feathers
to be slower than some golf balls, even though they run faster in isolation.

Figure 4.5 also shows that each surprise-hog query, which is given a greater share of
resources, completes faster than the corresponding expected-heavy query. Figure 4.6
additionally shows the impact of surprise-hog queries on the corresponding feather
and golf ball queries in the Surprise-Hog and Expected-Heavy variants of the work-
loads. Any query above the diagonal line runs slower in the Surprise-Hog workload
than in the Expected-Heavy workload. This is because the surprise-hog queries get
a larger share of the resources so other queries running concurrently get a much
smaller share. Some queries even ran concurrently with two surprise-hog queries.

The queries below the diagonal line complete faster in the Surprise-Hog workload.
Such queries ran concurrently with a long-running query in the Expected-Heavy
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workload but not in the Surprise-Hog workload, where the long queries completed
faster. Furthermore, while the golf balls and longer queries use all four CPUs ap-
proximately 80% of the time, some feathers use only a single CPU resource. When
two or more of these feathers run concurrently, they do not interfere with each other.

We also chose one relative threshold, based on the estimated and actual CPU times
of the queries, shown as the diagonal line in Figure 4.4. We chose a very low value of
1.2x (i. e., the actual CPU time exceeds the estimated CPU time by 20%) to see how
well a relative threshold can do. Since only surprise-heavy queries and surprise-hog
queries exceed their estimates in our workloads, this threshold catches all and only
those queries. In a non-simulated system, the relative threshold should not be set
lower than the error typically made by the optimizer.

The Kill policies use their threshold to identify and kill queries. These queries do
not get re-executed. The Kill&Requeue and Suspend&Resume policies return killed
or suspended queries to a scheduling queue (a separate FIFO queue). When all of the
queries in the first queue have finished or been moved to the second queue, we disable
the execution control policy so that these queries are not killed a second time. We
then run the queries at MPL=1, that is, one at a time. Our scheduling experiments
in Section 4.5.2 show the impact of running them at MPL=1 rather than 4: it is
negligible. These queries are able to fully use all four CPUs.

4.4.4. Workload objective functions

It is useful to have a single metric to measure performance and compare the effects
of different policies. Workload performance is usually measured in terms of either
throughput, the number of queries completed per unit time; or latency, the time to
complete one or more queries. Makespan is the total latency for a set of queries. We
use makespan as the primary objective function for our experiments, since we want
to study the performance of whole workloads.

Policies that reject or kill more queries will have shorter makespans that policies
that run all of them. However, we did not want policies that reject or kill non-
problem queries to appear best. Consequently, we decided to modify the makespan
metric to penalize policies for poor decisions. Our metric adjusts the makespan for
the fraction of non-problem queries it did not complete: makespan is increased by the
approximate amount of time it would have taken to run those queries. We call those
queries penalty queries since we assess a penalty for not completing them. For our
workloads, we define all queries derived from bowling balls as problem queries, and
the rest as non-problem or good queries. (The term “good query” is derived from the
notion of “goodput” in the networking community, which is the portion of throughput
that does not include lost or discarded data packets or protocol overhead [3]).

For the modified metric, we first compute TG (Time_good), the sum of the elapsed
time of all good (non-problem) queries in the workload at MPL=1. We then compute
TP (Time_penalty), the sum of the elapsed time of all penalty queries at MPL=1.
Since the penalty queries are a subset of the good queries, the penalty (TP /TG) is a
fraction between 0 and 1, the fraction of useful processing that was not completed.
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We then penalize the makespan M as follows: Mweighted = M · (1 + penalty).

4.5. Results

Our goal is to evaluate the ability of workload management policies to prevent long-
running queries from disrupting the performance of the entire workload. The exper-
iments in this section first evaluate the ability of admission control and scheduling
policies to prevent different types of long-running queries from entering the system,
then evaluate the ability of execution control policies to catch and handle them at
execution time. For each set of experiments, we include a discussion of the lessons
learned with regard to the scenarios and objectives described above.

In our experiments, we ran each policy and workload type combination on all
five workloads of that type. Since all five workloads yielded comparable results, we
present results from only one workload’s run per policy/workload type combination.
Unless otherwise stated, we used the 1Q scheduling policy with MPL=4. We present
both the makespan and weighted makespan for each workload as a stacked bar,
where the upper portion indicates the penalty. The text nA and nC on top of the
bars indicates the number of admitted and completed long queries (out of the three
submitted in each workload). We also consider the makespan for completing 90%
and 95% of the queries in the workload, by which we mean the first 90% (95%) to
finish.

4.5.1. Admission control

The first set of experiments evaluates the effectiveness of rejecting queries based
on their CPU cost estimates prior to execution. We used the admission thresholds
none, 1.0m, 0.5m, and 0.2m simulator cost units, as described in Section 4.4. We
examine the ability of these policies to reject queries that require a lot of resources
without also impacting queries with moderate resource requirements. We evaluate
their effectiveness with both accurate and inaccurate cost estimates.

Figure 4.7 compares the elapsed times of the Expected-Heavy, Surprise-Heavy, and
Surprise-Hog workloads. When no admission control is applied, the makespan and
weighted makespan are identical because no queries are rejected. The makespans
for the Expected-Heavy and Surprise-Heavy workloads without admission control
are identical. Both workloads contain the same set of queries with identical runtime
behavior. The Surprise-Hog workload runs slightly longer because the surprise-hog
queries in the workload hog the resources and thus prevent other queries from making
significant progress.

The admission threshold of 1.0m rejects all three expected-heavy queries and three
golf balls in the Expected-Heavy workload. Not admitting these six queries re-
duces the weighted makespan of the workload by about 33%, despite the penalty for
not performing the golf balls. The reason for the significant drop of the weighted
makespan is rejecting the expected-heavy queries. Stricter admission thresholds result
in marginally decreased weighted makespans. The threshold of 0.5m rejects another
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Figure 4.7.: Comparison of admission thresholds on different queries and workload
types. The notations nA and nC above the bars indicate the number of
admitted and completed long-running queries (out of the three submitted
in each workload). Admission control is less effective when cost estimates
are less accurate. Lower thresholds reject more “good” queries.

six golf balls, reducing the weighted makespan by another 13% (63k vs. 55k simula-
tor time units). However, the penalty increases by 62% (8k vs. 13k simulator time
units). Setting the threshold to 0.2m rejects another seven golf balls and further
increases the penalty.

The Surprise-Heavy workload demonstrates that even with the penalty for rejected
“good” queries, a lower threshold that catches more long queries may be better. The
admission threshold 1.0m rejected only one of the surprise-heavy queries and three
golf balls. At threshold 0.5m, admission control rejects another six golf balls, but
no additional surprise-heavy queries. The weighted makespan decreases significantly
with threshold 0.2m, which rejects all three surprise-heavy queries. The results for
the Surprise-Hog workload are similar.

Figure 4.8 demonstrates the (in)effectiveness of CPU-based admission thresholds
on long-running disk-heavy queries. The CPU-based admission control rejected only
golf balls, i. e., it was completely ineffective at identifying long-running queries.
Although the makespan decreases with stricter admission control, the weighted
makespan remains constant.

Lesson: Unreliable cost estimates: Admission control is effective at reducing
the workload makespan when resource cost estimates are accurate by preventing
execution of the queries most likely to cause contention. However, when costs are
underestimated, admission thresholds that can catch the long-running queries also
reject many “good” queries.

Lesson: Unobserved resource contention: Admission thresholds are not effec-
tive against long-running queries that make heavy use of resources not measured by
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Figure 4.8.: Admission thresholds are much less effective when the workload includes
long-running queries that make heavy use of resources not measured by
the admission threshold. In this case, the queries were disk-bound but
admission control looked at CPU time estimates.

the admission threshold. Therefore, workloads that contain a wide diversity of query
types may need multiple policies with conditions on different resources.

4.5.2. Scheduling

The scheduling experiments evaluate the impact of the scheduling policies 1Q, 2Qs
both MPL 4, and 2Qs different MPL on the performance of the Expected-Heavy
and Surprise-Heavy workloads (The results for the Surprise-Heavy and Surprise-Hog
workloads are very similar.). We set the threshold for scheduling the queries in the
expensive query queue to 0.5m simulator cost units.

Our experiments show that regardless of admission control policy, both the make-
spans and the weighted makespans of the workloads vary by less than 1% across the
different scheduling policies.

However, we observed a significant difference between policies when we looked at
the makespans for a given percentage of completed queries. This is because the 2Qs
policy is similar to shortest-job-first (SJF), which is known to improve latency for
short jobs [15].

Table 4.3 summarizes the time to complete 90%, 95%, and 99% of the queries in
the Expected-Heavy and Surprise-Heavy workloads with admission threshold none.
The 1Q policy takes about twice as long to complete 90% and 95% of the queries
as the 2Qs policies. This result is not surprising: the “expensive” queue contains all
of the long-running queries, which comprise about 35% of the total CPU time, plus
nine of the golf balls. Removing them from the initial workload (by putting them in
a separate queue) automatically makes it least 35% shorter. In addition, the shorter
queries have less contention for resources, so they complete faster.
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% of queries
1Q

2Qs 2Qs
complete both MPL=4 different MPL

Expected-Heavy, admission threshold none
90 90.2 39.7 39.7
95 91.1 40.6 40.6
99 91.8 87.7 89.2

100 (“all”) 93.4 100.5 100.9

Surprise-Heavy, admission threshold none

90 90.2 50.9 50.9
95 91.1 52.0 52.0
99 91.8 81.9 87.6

100 (“all”) 98.3 98.3 99.2

Table 4.3.: Time to complete a certain percentage of queries (in thousands of sim-
ulator time units) when trying to put expensive queries in a separate
queue.

All three scheduling policies complete 99% of the queries in about the same amount
of time. There is little difference between the 2Qs policies: the queries in the expen-
sive queue are able to use nearly all of the CPU for their entire duration, so saving
that little idle time (by running them at MPL=4 instead of MPL=1) is not worth
the extra overhead of running additional concurrent queries.

In contrast to the Expected-Heavy workload, it takes longer to complete 90%, 95%,
and 99% of the queries in the Surprise-Heavy workload. Due to the cost estimate
errors, the 2Qs scheduling policy cannot identify the surprise-heavy queries and
places them into the queue with the short queries. When the long-running queries
are executed in parallel with short queries, the short queries take longer to complete.

Lesson: Minimizing makespan: Different scheduling policies have little effect
on the total makespan of the workloads. Therefore, scheduling is not important for
most batch workloads.

Lesson: Minimizing response time: However, because of the benefits of shortest-
job-first, scheduling policies can have a significant positive impact on the latency of
individual shorter queries.

Lesson: Unreliable cost estimates: Because scheduling does not reject or kill
queries, it does not incur penalties for misidentifying queries; all queries eventually
run. A 2Qs policy thus could complement a lenient admission threshold. However,
the benefits of the 2Qs policy diminish with decreased accuracy of cost estimates, as
more expensive queries are placed in the wrong queue.
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Figure 4.9.: Comparison of absolute and relative kill thresholds in the Expected-
Heavy workload: The lower absolute threshold kills many more queries
unless their progress is checked.

4.5.3. Execution control: kill thresholds

Admission control and scheduling policies are less effective when cost estimates are
inaccurate. Execution control policies, on the other hand, look at runtime statis-
tics to catch problem queries. In the following set of experiments, we compare the
effectiveness of different execution control policies in identifying and handling long-
running queries.

Figure 4.9 compares the makespan of the Expected-Heavy workload using different
combinations of admission and execution control policies. With no admission control
(none), the absolute 12000 kill threshold kills the three expected-heavy queries and
one golf ball when their elapsed time exceeds 12000 simulator time units. However,
these queries have done most of their work by that time, so the makespan only
decreases by about 15% (with negligible penalty for killing the one query).

The absolute 5000 kill threshold kills the long-running queries much earlier, but
also kills an additional eight golf balls and eleven feathers, yielding a weighted
makespan that is 13% higher than the weighted makespan with the absolute 12000
threshold. The absolute 5000, progress<30% threshold checks the progress of these
queries before killing them. It only kills one (expected-heavy) query. No queries
were killed using the relative threshold because estimated and actual CPU times are
identical for expected-heavy queries.

With admission control set to 1.0m, all of the expected-heavy (and 3 golf ball)
queries in the expected-heavy workload are rejected. Therefore, no queries are killed
except using the absolute 5000 threshold, which kills 15 golf balls, resulting in a
penalty that is 50% of the makespan. The Surprise-Heavy workload results (results
not shown in the figures) follow from the Expected-Heavy workload, as well as the
lessons learned from admission control: absolute kill thresholds are not impacted by
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Figure 4.10.: Comparison of absolute and relative kill thresholds in the Disk-Heavy
workload: the relative threshold compares actual and estimated CPU
time and thus does not catch the disk-heavy queries.

estimates, and the effectiveness of progress thresholds depend on the accuracy of the
estimates.

Figure 4.10 shows the performance of execution thresholds on the Disk-Heavy
workload. Execution control performance with absolute elapsed time thresholds is
similar to that for the Expected-Heavy workload. One noticeable difference is that
fewer feathers and golf balls are killed in the Disk-Heavy workload, indicating that
the disk-heavy queries contend less with the CPU-bound feathers and golf balls than
the expected-heavy queries in the Expected-Heavy workload do. As expected, the
relative threshold that compares the actual and estimated CPU times of a query
does not kill any queries.

Lesson: Unreliable cost estimates: Execution control policies can detect and
kill queries missed by admission control and scheduling, and are thus particularly
useful for catching queries whose resource cost estimates are inaccurate. The two
most effective policies for catching (only) queries that run unexpectedly long in
our experiments were (1) a relative kill threshold and (2) a low absolute threshold
combined with a progress check to let nearly-done queries finish.

Lesson: Unobserved resource contention: The longer a query runs before it is
killed (the higher the kill threshold), the more work is “wasted” and the more it im-
pedes other queries. However, the lower the threshold, the more “false positive” short
queries are killed. Therefore, absolute thresholds may not work when contention or
system overload can affect the measured values. Stopping a starving query and ad-
mitting another query will not improve system performance. A problem query might
be using heavily a resource for which no cost estimate is available.
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4.5.4. Execution control: different actions

These experiments compare the different execution control policies Kill, Kill&Requeue,
and Suspend&Resume. The latter two policies complete killed or suspended queries
at the end of the workload, i. e., they always complete all admitted queries. We note
that we modeled the actions Kill and Suspend&Resume in the most charitable way
possible. Killed and suspended queries immediately give up all resources. Also we
did not model restart costs for resuming a suspended query.

Although we ran experiments with all of the admission control policies, we present
the results for admission threshold 1.0m; with the lower admission thresholds, so
many queries are rejected that there is little to kill or suspend. The results for
admission control none are similar to these results, but do not show a distinction
between the Expected-Heavy and Surprise-Heavy workloads. We only show two of
the kill thresholds from the previous section.

Figure 4.11(a) shows the makespans for the Expected-Heavy workload. The re-
sults for the execution policies none and kill are repeated from Section 4.5.3. While
admission control rejects six queries (including all expected-heavy queries), the ab-
solute 5000 threshold catches an additional 15 queries and kills or suspends them.
(Since the resource cost estimates are accurate for all queries, the relative thresh-
old does not flag any queries.) When those 15 killed queries are rerun, the wasted
15×5000 time units of work must be repeated and so the total makespan is longer.
However, when they are suspended and then resumed, the time is not wasted and
the makespan is only 3% longer (because the expected-heavy queries ran in parallel
with the rest of the workload for some time) than with no execution policy. An
interesting observation is that the weighted makespan for Suspend&Resume is lower
than the weighted makespan for kill. The former action has a lower penalty because
the golf balls and feathers suspended are resumed at a later point in time.

Figure 4.11(b) shows similar results for the Surprise-Heavy workload. The make-
spans are slightly longer compared to those in Figure 4.11(a), since admission control
misses the two surprise-heavy queries, but the kill and suspend thresholds catch
them. There is therefore a slightly higher performance gain from the execution
control policies than with the Expected-Heavy workload.

Table 4.4 also shows that by killing or suspending the longer queries, the makespan
of the first 90% and 95% is greatly reduced. Note that the table does not report
results for the 99%-case for the Expected-Heavy workload because admission control
filters more than 1% of the workload. The makespan results are similar to those
for scheduling longer queries to run later. However, by identifying the longer queries
with an execution control policy, it is possible to catch the unexpectedly long-running
queries.
Lesson: Minimizing makespan: Kill has more impact on makespan than other
execution actions and should be the preferred action if it is acceptable not to complete
all queries.
Lesson: Unreliable cost estimates: Since Kill&Requeue and Suspend&Resume
policies identify and postpone long-running queries, they complete the less expensive
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(a) Expected-Heavy workload: Rerunning the killed queries
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pending and resuming them does not.
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Figure 4.11.: Comparison of execution control policies with admission threshold
1.0m.
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% of queries
none

Kill& Suspend&
complete Requeue Resume

Expected-Heavy, admission control threshold 1.0m

90% 51.0 44.5 44.7
95% 52.2 46.8 47.0
99% — — —

Surprise-Heavy, admission control threshold 1.0m

90% 63.2 47.7 47.7
95% 64.1 50.2 50.2
99% 66.5 91.4 69.1

Table 4.4.: Time (in thousands of simulator time units) to complete a certain per-
centage of queries.

queries first. Particularly when optimizer estimates are poor, they can be considered
a kind of self-correcting shortest-job-first.
Lesson: Suspend&Resume: Suspend&Resume completes all queries significantly
faster than Kill&Requeue with an absolute threshold (because it does not waste the
work done by a query before execution control flags it). However, Kill&Requeue with
a relative threshold is just as good (because it flags the unexpectedly long queries
before they have done much work).
Lesson: Minimizing makespan: If the only metric of interest is makespan for all
queries, e. g., for some batch workloads, then an execution control policy of none is
the most effective of all.

4.5.5. Execution control: overload situations

The final set of experiments evaluates execution control policies in overload situa-
tions. Overload occurs when the actual MPL is significantly higher than the ideal
MPL, either because scheduling does not constrain the MPL, the MPL is set to an
appropriately high value, or because there are too many queries that bypass schedul-
ing.

Figure 4.12 compares the impact of different kill thresholds on the Surprise-Heavy
workload at MPL=4 and MPL=10 with the admission threshold set to 1.0m. Ad-
mission control rejects no surprise-heavy queries. Since all queries take longer in the
overload case, the policies with absolute thresholds kill more queries and have greater
performance gains but also greater penalties. For example, the absolute 12000 kill
threshold improves makespan by 40% at MPL=10 compared to only 6% at MPL=4.
However, it kills an additional 17 starving queries and has a much higher penalty
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Figure 4.12.: Comparison of execution control policies using admission threshold
1.0m at MPL=4 and MPL=10 (overload) for the Surprise-Heavy work-
load. All queries take longer at MPL=10, so policies with absolute
thresholds kill more queries.

value. In contrast, the relative threshold and the absolute threshold with the check
on progress kill far fewer queries (2 and 1, respectively, compared to 37 with absolute
5000 ). The lower number of killed queries almost makes up for the higher makespan
of the query.
Lesson: System overload: Execution control policies are particularly ineffective
in overload situations. They are more effective at catching long-running queries and
reducing makespan, but also more likely to kill starving queries.

4.6. Conclusions

This chapter presented a systematic study of workload management policies that
mitigate the impact of long-running queries on performance. We proposed a taxon-
omy that distinguishes between different types of long-running queries. We suggested
a method for categorizing queries according to this taxonomy, using only cost esti-
mates and simple runtime statistics. We then carried out a systematic series of
experiments to investigate the effectiveness of known workload management policies
on these different types of queries. We recommended particular combinations of
policies for meeting several common workload objectives.

Admission control and scheduling policies that apply absolute thresholds to cost
estimates can either prevent long-running queries from starting in the first place or
postpone them to run later. When cost estimates are inaccurate, these policies can
mistake good queries for problem queries and vice versa. However, execution control
policies can correct for errors in admission control and scheduling. We find that
when cost estimates are significantly off, the execution control actions Kill&Requeue
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and Suspend&Resume function as a self-correcting shortest-job-first (SJF) and can
effectively reduce the latency of individual queries. In addition, our experiments
show that when using a relative threshold, Kill&Requeue performs as well as the
presumably more expensive Suspend&Resume in terms of makespan.

When system overload occurs or when the measured resource is not the source
of contention, thresholds that use the ratio of estimated to absolute values as a
measure of query progress can distinguish between queries that are truly heavy users
of resources and those that are starving. However, the disadvantage of relative
thresholds is that they take longer to take effect, resulting in more “wasted work.”
We therefore recommend that policies be paired to compensate for the strengths
and vulnerabilities of their underlying thresholds. For example, a less aggressive
policy that uses cost estimates can be paired with a more aggressive policy that
looks at runtime conditions. The optimal values for the aggressive and less-aggressive
thresholds depends on the expected variance of the key metrics used in the workload.
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5. Policy control for mixed workloads

Database systems provide measurements for different metrics to describe perfor-
mance, e. g., average response time, throughput, and velocity. User loads submitted
to the database system expect a certain performance. In order to quantify “accept-
able” performance, the users who submit the loads formulate objective functions
based on the performance metrics. For example, users may define an upper bound
for the average response time and a lower bound for throughput for an OLTP-style
user load, whereas users that submit reports would like to keep the execution time of
the report below a deadline. At the database system level, the user loads are mapped
to service classes that provide control parameters that control the processing of the
respective user loads and, thus, indirectly affect performance. Examples for control
parameters include the number of concurrently executed queries (multi-programming
level, MPL) and estimated main memory consumption. For ease of presentation, we
assume that there is a one-to-one mapping between user loads and service classes:
all requests from a user load are mapped to the same service class and there are
no requests stemming from different user loads mapped to the same service class.
Note that the approach presented here can be easily generalized to support arbitrary
mappings between user loads and service classes.

With a single service class, an objective that maximizes some performance metric
is reasonable. However, with mixed workloads and service classes, it is not possible
for every class to maximize some metric, which may result in severe overload. So the
model in this chapter is pay-for-service, i. e., the objectives are constrained within
some range so that users who are willing to pay more get better service. In other
words, the goal is to set the control parameters to meet the objective rather than to
“maximize” system performance. If the system is over-engineered (i. e., with excess
capacity), it may be possible to meet the objective with an underutilized system.
However, if the objective cannot be met when the system is saturated, pushing the
system beyond its capacity will not result in improved performance.

For an example, let MPL be a control parameter and throughput be a metric.
Assume two service classes, s1 and s2. For each of the service classes, the objective
function is to keep throughput above a threshold. Consider the system is in a steady
state but is not meeting the objectives. We will assume the system resources are un-
derutilized because otherwise, there is nothing workload management can do to meet
the objectives. Let m1 and m2 represent the MPL values for s1 and s2, respectively.
As we increase the MPL for s1 and/or s2, the system moves from an underutilized
state to a saturated state where resources are fully utilized and throughput is max-
imized. Increasing MPL beyond this point to an overload state will not increase
resource utilization and, thus, will not increase throughput. In fact, throughput may
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decrease due to resource contention. So, in this example, the objective function will
maximize resource utilization and the algorithm to set the control parameters should
avoid an overload state.

While it is relatively straightforward to identify the type of the control parame-
ters for a given service class, it is more complicated to find values for the control
parameters that result in a performance that meets the objectives. A database ad-
ministrator assigned to control a workload on the database faces several difficulties:
First, the workload may contain service classes with vastly different characteristics
and different objectives. Second, although the administrator knows which service
classes will be running, the information about the service classes and queries may
be incomplete or inaccurate. For example, there may be no or little information
about the time period a service class starts or ends, the resources that are used by
a query, or when to expect a particular query. Additionally, it is not known prior
to the execution of a set of queries how these queries will contend with one another
for hardware (e. g., CPU, main memory, disk) and software (e. g., locks) resources.
Third, there are non-linear relationships between the objectives and the control pa-
rameters. Changing the setting for a control parameter by a certain amount results
in improved performance for some service classes and hurts the performance of oth-
ers. However it is difficult to quantify the performance impact of the change. Also,
changing the setting by the same amount does not necessarily lead to the same (ab-
solute) change in performance. Fourth, the size of the search space is exploding with
the number of control parameters to be considered. For our approach, we assume
the control parameters to be discrete. Let Di, 1 ≤ i ≤ n denote the domain of the
control parameter that controls the processing of the ith service class. For ease of
presentation, we assume just one parameter per service class for this example. The
domain of a control parameter represents the range of “reasonable” parameter set-
tings. For example, although the MPL can take any non-negative integer value, it
is not reasonable to consider MPLs in the thousands. Note that the bounds of the
interval are not known prior to the execution. Thus, the size of the search space that
contains an acceptable setting is |D1| × · · · × |Dn|. For three service classes with
MPL control parameter values in the interval [1, 32], there are 323 = 32768 control
parameter settings to be considered. Additionally, a probe in the search space is
time-consuming and does not reveal information about where to search next.

5.1. Related work

We find that no single prior approach meets our goal of setting multiple control
parameters to satisfy compound performance objectives for concurrently executing
service classes. Below, we categorize prior approaches at query scheduling according
to the control parameters, types of service classes, and objectives they support.
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5.1.1. Single control parameter

Thiele et al. [58] address the problem of how to interleave the single-stream execution
of a mixed workload composed of continuously arriving update and read-only queries
in the context of a real-time data warehouse. They consider a single service class
that has two objectives based on a single quality of service (QoS) metric (such as
throughput, average response time, or stretch) and on a single quality of data (QoD)
metric (lag-based, divergence-based, time-differential). They map this search to a
knapsack problem, which they solve via a dynamic programming algorithm.

Abouzour et al. [1] show that Hill Climbing and Global Parabola approximation
algorithms, as well as a hybrid algorithm that combines the two, can be used to select
the MPL for a workload comprised of queries submitted in sequence from a series
of service classes. The selected MPL applies to all queries running in the system,
regardless of type. All of these algorithms work to optimize throughput, with a
secondary goal to minimize MPL.

Schroeder et al. [53] present a framework for meeting QoS objectives where re-
sponse time requirements are specified in an SLA. They use a feedback control loop
to dynamically adjust the MPL to meet multi-class response time goals.

5.1.2. Multiple control parameters, single performance objective

Powell et al. [50] consider the problem of multiple service classes and multiple control
parameters. Performance is controlled by throttling and slowing down queries via
the amount of resources allocated to a service class. They propose a variety of
controllers that decide how much a service class must be throttled to achieve the
goals of the “important” service classes, including a simple controller, a black-box
model controller, and a hybrid controller (black-box model for initial setting and
simple controller for fine-tuning).

Pang et al. [49] schedule queries from both single class and multi-class workloads in
real-time database systems so as to meet a single performance objective — minimiz-
ing the number of missed deadlines across service classes. Their approach dynam-
ically adapts the system’s admission, memory allocation, and priority assignment
policies so as to minimize number of missed deadlines and to distribute deadline
misses across service classes according to a pre-defined distribution (e. g., service
class 1 is allowed three times as many deadline misses as service class 2).

5.1.3. Workload adaptation — maximize single objective

Of prior approaches, the workload adaptation approach [46] comes closest to our
own goals. Workload adaptation defines a function that quantifies the utility ui(m)
of a single performance measurement m towards meeting the objectives of service
class si. The objectives are formulated relative to two thresholds: a threshold goal
to define a performance goal and a threshold worst to define the “worst allowed”
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performance:

ui(m) =

⎧⎪⎪⎨
⎪⎪⎩

> 0, if m exceeds objective goal (and thus exceeds worst)

≤ 0, if m violates goal and m exceeds worst

−∞, if m violates worst (and thus violates goal)

Since we cannot directly control the performance measurements and, thus, the utility
of a service class, we need a function to map control parameter settings to an estimate
for the performance measurements at that setting. Niu [46] proposes a performance
model that estimates how changes to the control parameter setting of a service class
will impact performance of the service class, based on the knowledge of the last
measured performance and the respective control parameter setting. In a nutshell,
the performance model proposes a function for each performance metric that maps
a control parameter value to a performance value estimate, i. e., the estimate is a
function of the given control parameter value. For example, to estimate throughput
tpki at time k for service class si, for a given control parameter value cki (e. g., the
MPL for that service class), the model takes the previously measured throughput
tpk−1

i and scales it by the ratio of cki divided by the previous control parameter value
ck−1
i . Thus, tpki = tpk−1

i ·cki/ck−1
i . Similarly, to estimate average response time at

time k, the model takes the previously measured average response time, artk−1
i and

scales it by the ratio of the previous control parameter setting ck−1
i divided by the

proposed cki : artki = artk−1
i ·ck−1

i /cki . Using the performance model, the (estimated)
utility ui can be expressed as a function of the control parameter. The overall utility
of the system is expressed as an aggregate f(u1, . . . , un) of n concurrently running
service classes, e. g., the sum of the utilities u1 + · · ·+ un.

[46] formulates the problem of finding the appropriate control parameter values
as an optimization problem. The goal is to find control parameter values ck1, . . . , c

k
n

that maximize the expected overall utility:

maximize
ck1 ,...,c

k
n

uk1(c
k
1) + · · ·+ ukn(c

k
n)

subject to ck1 + · · ·+ ckn = C

where C is the total limit for the control parameter values that must be determined
a priori and offline.

5.2. Problem statement

Users who submit queries to a database system formulate objective functions based
on one or more performance metrics to express the desired quality of service. At
the database system level, the queries stemming from users are mapped to service
classes that define the level of service a query gets. Our work focuses on how to
schedule queries, i. e., how to decide when to run which query, in an environment with
multiple service classes so that the service level objectives are met. A service class

82



provides different types of parameters that control the number of concurrently active
queries in the database system at any time. These control parameters indirectly
affect the performance of the queries belonging to the service class. For our work,
we assume that there is a single control parameter per service class to control the
execution. Although we only assume a single control parameter per service class
for ease of presentation, we note that the approach can be generalized to multiple
control parameters per service class.

The measurements of a single performance metric of a service class can be illus-
trated by an n + 1-dimensional graph, n dimensions for the n control parameters
and an additional dimension for the performance metric. The graph shows all mea-
surements for all possible control parameter combinations. The hull formed by the
control parameter-performance measurements is either convex or non-convex. A
convex control parameter-performance hull can be observed when queries running
concurrently only compete for resources, i. e., the queries do not benefit from run-
ning concurrently to other queries. For example, this behavior may be observed for
OLTP requests where benefit from caching is not expected. A non-convex control
parameter-performance hull may be observed for service classes where synergies may
result in better performance for a service class even if more queries from another ser-
vice class are admitted to the system. Sources of such synergies stem from caching
behavior and cooperative approaches like reusing common sub-expressions in queries
[18, 56] and shared scans [63].

To illustrate a convex control parameter-performance hull, we used TPC-CH [22],
a new benchmark that combines TPC-C and TPC-H into a single benchmark. We
note that the TPC-C-like transactions and the TPC-H-like queries access the tables
on the same database instance. TPC-CH is basically the TPC-C schema extended
with TPC-H tables supplier, nation, and region to support TPC-H-like queries (see
Appendix B). We modeled two service classes sC and sH so that service class sC
comprised 32 TPC-C clients and service class sH comprised 16 TPC-H clients. The
clients submitted the requests to the database in random order with no wait times.
For TPC-H we chose queries Q13, Q17, and Q19. We chose these queries to have a
homogeneous query set, i. e., a set of queries with similar execution times when run in
isolation. For measuring the response times and throughput of the requests, we used
the iJDBC implementation described in Section 3.6. Although our algorithm would
work with service classes with greater variance in execution times, greater variance in
time requires longer observation periods in order to determine metrics such as average
response times and average throughput, which would have caused our experiments
to have taken longer to run. For this example, we ran multiple benchmarks based on
a database with scale factor 24 (raw data size about 1.6GB) on a commercial DBMS
(DB2 9.5). The average response time of the NewOrder transaction aggregated over
all TPC-C clients (service class sC) was about 100ms when run in isolation (TPC-C-
only) and about 400ms when all TPC-C and TPC-H clients submitted their requests
in parallel and the requests were immediately released from the queue. The average
response time of service class sH was about 2 seconds in isolation (TPC-H-only) and
about 40 seconds when all clients were submitting queries in parallel. We separately
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Figure 5.1.: Control parameter-negative average response time hull for service
class sC when executed in parallel with service class sH at different
MPL1 −MPL2-settings.

limited the number of concurrently active queries for each service class, i. e., there
were two control parameters MPL1 and MPL2. We varied the MPL for the TPC-C
(MPL1) and MPL for the TPC-H queries (MPL2) separately: MPL1 = 4, 8, 12, ..., 32
and MPL2 = 2, 4, 6, ..., 16, i. e., 64 MPL1-MPL2-combinations. For each setting,
we executed the benchmark for 20 minutes and we measured the throughput and
average response time for both service classes in the last 15 minutes, i. e., there was
a 5 minute grace period that allows the system to return to stable state. Figure 5.1
shows the average response time-hull for the NewOrder transaction of service class
sC with different MPL1-MPL2-settings.

Consider a workload with n service classes s1, . . . , sn where the performance of
service class si is measured with a set Mi of performance metrics. In order to specify
the desired performance for service class si, there is a lower (lbim) and an upper (ubim)
bound for each metric m ∈ Mi. For example, we can measure the performance of a
service class with throughput and define two objectives: throughput must exceed a
minimum value and must not exceed a maximum value. Let X = {x1, . . . , xn} denote
a tuple of control parameter values where xi denotes the control parameter value for
service class si. Let pim (X) denote the performance based at metric m measured for
si with control parameter settings X (e. g., pitp denotes a throughput measurement).
For ease of presentation, we assume that a higher value for pm represents better
performance. For example, rather than use response time as a metric, the inverse
of the response time might be used. As a consequence, the objective requires the
measurement to be in the interval

[
lbim, ubim

]
. An acceptable m-region Ai

m for service
class si describes the set of tuples X = {x1, . . . , xn} where the measurement pm of
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Figure 5.2.: Control parameter-negative average response time hull (from Figure 5.1)
for service class sC with lower and upper bounds. The resulting accept-
able region is shown on the MPL1 −MPL2-plane.

performance metric m satisfies all objectives:

Ai
m =

{
X = {x1, . . . , xn} | lbim ≤ pim (X) ≤ ubim

}

Note that an acceptable m-region may not exist, i. e., is empty, but if it exists, it
is unique because the hull is convex. The acceptable region Ai for a service class si
is defined as the overlap of all acceptable regions of service class si with Ai, i. e.,
Ai =

⋂
m∈Mi

Ai
m.

For example, consider a service class with two performance metrics, throughput
(tp) and negative average response time (nart). Note that the inverse of the average
response time takes negative values (the negative value of the average response time)
because because we wanted higher performance values to describe “better” perfor-
mance. There is one objective with a lower and an upper bound for throughput
(1000requests/second ≤ tp and tp ≤ 2000requests/second) and one objective with a lower
bound for the inverse of average response time (−200ms ≤ nart). The acceptable
throughput-region Atp for the service class denotes all control parameter settings
where the throughput measured for the service class exceeds 1000 requests per sec-
ond and does not exceed 2000 requests per second. Similarly, the acceptable average
response time-region Anart (200ms) describes the control parameter settings where
the inverse of the average response time exceeds -200 milliseconds for the same service
class.

An acceptable region can be illustrated with an n-dimensional plot, where n is
the number of control parameters. The shape of the acceptable region is determined
by the shape of the control parameter-performance hull. If the control parameter-
performance measurements form a convex hull, the resulting acceptable region is
also convex. For example, the lines in Figure 5.2 indicate the acceptable average
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Figure 5.3.: Boundaries of the acceptable throughput- (solid) and average response
time-regions (dashed) for classes s1 (black) and s2 (gray). The shaded
area denotes the operating envelope.

response time region on the MPL1−MPL2-plane for the NewOrder transaction in
service class sC . The planes parallel to the MPL1−MPL2-plane indicate the upper
and lower bounds, respectively, of the (inverse) average response time.

Two main factors influence the shape of the acceptable region. First, acceptable
regions depend on the designated objectives. The acceptable region for less restrictive
objectives contains the acceptable regions for more restrictive constraints formulated
on the same metric. Second, the acceptable regions depend on the resources that are
available to process a service class. Resource availability depends on (1) the hardware
in the machine and (2) the number of concurrently active service classes competing
for resources, and (3) the policies in effect that allocate resources to service classes.

From the workload management point of view, we are interested in the control
parameter settings that satisfy all objectives of all service classes. Any control pa-
rameter setting that is located in the overlap of the acceptable regions of all service
classes, satisfies this requirement. We define the operating envelope E for a workload
consisting of the service classes s1, . . . , sn as the set of control parameter settings
where all constraints of the service classes are met: E =

⋂n
i=1A

i

The operating envelope is empty if the objectives are formulated such that no
thresholds can be found to satisfy the objectives. Figure 5.3 shows the operating
envelope for a workload with two service classes s1 and s2, each having a negative
average response time and a throughput objective. Note that the operating envelope
is restricted by the acceptable average response time-region of s1 and the acceptable
throughput-regions of both service classes. The average response time of s2 is always
satisfied when the throughput objective is met.
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Figure 5.4.: The starting region for a workload with two service classes (and, thus,
two control parameters)

5.3. Finding points in the operating envelope

This section describes the MsCoSearch (multi-service class, compound objectives
search) algorithm, our approach to solving the multi-class, compound-objective search
problem described earlier. We first describe how MsCoSearch locates a point when
the workload is relatively constant, e. g., only small variance in the performance mea-
surements occur. Then we show how to handle changes in the workload, e. g., change
in characteristics of the incoming queries, arrival of new service classes, or a change
in objectives.

The design goals of the algorithm are: (1) Eliminate human interaction in finding
a point in the operating envelope. (2) The algorithm should be sound, i. e., find a
point in the operating envelope if one exists or else if no such point exists, terminate
gracefully. (3) Find a solution (or the lack thereof) in as few iterations as possible
because probes in the search space are expensive (e. g., it takes time until system
returns to a stable state after the change of control parameters).

The search begins in the starting region, defined as the settings of the control
parameters such that no service class is in an acceptable region. For example, in
Figure 5.4, the starting region is the area bounded by the origin and the first inter-
section of the two solid curves. To converge as fast as possible towards the operating
envelope, we are interested in the “maximal” setting in the starting region, which
is the setting where increasing a control parameter puts some service class in an
acceptable region. Since the shape of the operating envelope and, thus, the starting
region, is not known in advance, the search starts at a setting that is trivially in
the starting region: setting X(s) =

{
xmin
1 , . . . , xmin

n

}
where the control parameters

are set to their minimum values xmin
i . If additional knowledge is available, we can

choose a setting that is closer to the operating envelope (we will show how to leverage
previously gathered information in Section 5.5).

The goal of the algorithm is to find a minimal setting X in the operating envelope.
We define X = {x1, . . . , xn} to be minimal w. r. t. the operating envelope E if for all
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Figure 5.5.: Our algorithm moves along one dimension of the search space at a time.
Points X(1) and X(2) denote the intermediate points, X(3) the final point.

settings X ′ = {x′1, . . . , x′n} ∈ E: xi ≤ x′i, i. e., all control parameters in X are less
than or equal to the respective control parameters in X ′. Even though the search
problem does not require it, a minimal solution facilitates the location of a starting
point if the workload or objectives change.

Starting at point X(s), the algorithm chooses a dimension along which it starts the
search from the set of candidate dimensions, dimensions associated with a service
class whose objectives are not satisfied. The SingleDimSearch algorithm, which
we will describe in detail below, searches along the chosen dimension and either
returns a setting X(i) in the acceptable region of service class si (if such a setting
exists) or an “invalid” setting (e. g., nil). The latter case indicates that the algorithm
cannot find an operating envelope and the algorithm terminates. When X(i) denotes
a “valid” setting in the search space, the algorithm checks whether X(i) is in the
operating envelope, in which case it terminates. If the point is not in the operating
envelope, the algorithm chooses another dimension to move along and then continues
the search. We call the setting X(i) where the algorithm starts to move along a
different dimension, an intermediate point. Figure 5.5 shows an example how the
algorithm searches in a scenario with two service classes. Settings X(1) and X(2)

denote the intermediate points where the algorithm moves along a different dimension
while setting X(3) denotes a final point. Next, we describe how the intermediate
points are located, i. e., how the algorithm moves along a single dimension in the
search space.

Moving along the ith dimension, our algorithm produces a control parameter set-
ting Xk =

{
x1, . . . , xi−1, x

k
i , xi+1, . . . , xn

}
in the kth iteration by only changing the

ith control parameter setting and leaving all other parameters constant. The goal
of the search along dimension i is to find the minimal setting along that dimension
that is in the acceptable region of the respective service class. We define a setting
X to be minimal if there is no smaller value for the ith control parameter such that
X is still in the operating envelope.
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Figure 5.6.: Search steps made by the SingleDimSearch algorithm. Horizontal
lines show three different scenarios (lower bounds). The arrows show
the moves to the right (solid), binary search (dashed), and Fibonacci
search (dotted). Binary search terminates when the minimum step width
has been reached (e. g., last step in scen1). Fibonacci search terminates
when a measurement that exceeds the threshold (scen2) or the maximum
(scen3) has been located.

5.3.1. Move along single dimension – single objective

While moving along dimension i in the search space, the SingleDimSearch algo-
rithm makes two decisions in each iteration: First, it decides whether to increase or
decrease the value of the control parameter, and second, how big the next step should
be. The decision of whether to increase or decrease the control parameter value is
based on the m control parameter-performance curves of the current service class.
Note that these curves are not known in advance, so we must gather information
about the curves during runtime. The algorithm can use each control parameter
setting X to extend its information about the m curves concurrently.

We first describe how to change the control parameter based on a single perfor-
mance metric. The description of the algorithm is based on two assumptions: First,
we assume that higher performance values map to “better” performance. Second, in-
creasing the control parameter value results in better performance when the system
is in underload and leads to a performance decrease when in overload.

Figure 5.6 illustrates the three scenarios that can occur when searching a single
dimension for a single performance metric. Each horizontal line represents a different
setting for the objective. Recall that we assume the control parameter-performance
curve is unimodal, i. e., an increasing region to the left of the maximum and a de-
creasing region to the right. In the first scenario, scen1, the objective is reached
searching only in the increasing region. The second scenario, scen2, must search

89



both regions to find the objective. In the third scenario, scen3, the objective is un-
satisfiable. The arrows indicate the search steps the SingleDimSearch algorithm
makes. We will describe the algorithm in more detail in the following.

For the following description, we denote with pkm the performance of metric m
measured with setting Xk. If the metric is clear from the context then we omit
subscript m. We also say that the algorithm moves left and right when it decreases
and increases the control parameter, respectively.

As long as the current measurement pk is below the objective and measurements
pk−1 and pk indicate an increase in performance with increasing control parameter
value, we increase the control parameter value. When the algorithm increases the
control parameter, there are three options for the next measurement pk+1.

Case (1): objective violated, performance increase ⇒ move right

The performance increases further, i. e., pk < pk+1 but pk+1 still violates the objec-
tive. In that case, we must increase the control parameter value to approach the
acceptable region of this performance metric. This case is illustrated in Figure 5.6
by the first four moves (solid arrows) for scenario 1 and the first five moves for
scenarios 2 and 3.

There exist different options for determining how far to move to the right. We
will briefly discuss the approaches here, noting that there may be more options for
increasing the control parameter: First, increase the control parameter by 1. How-
ever, the small increments may take too long to approach the acceptable value of
the performance metric. Second, exponentially increase the control parameter, i. e.,
make each step twice as big as the previous one. Third, take the last two measure-
ments and the respective control parameter values to predict the control parameter
value that satisfies the objective. This approach is similar to the performance model
devised in [46]. We assume that when we move along a single dimension in the
search space, the control parameter-performance curve has the well-known unimodal
shape: performance increases for small control parameter values, reaches a plateau
at “saturation point” and drops in overload (e. g., due to thrashing). Based on this
assumption, we estimate the control parameter value that is located in the acceptable
region of this performance metric applying a simple linear regression [19] using the
last k measurements. Linear regression can be used for two reasons: (a) The curve
can be approximated with a line if the difference between two control parameter val-
ues is not too big. (b) We account for variance in the measurements. For example,
consider two measurements p and p′ at the increasing side of the curve, taken with
settings x and x′ (x < x′), respectively. In a variance-free system we have p < p′.
However, with variance, p could be larger than p′ because of the variance in the
measured performance, which may lead us to a wrong decision.
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Case (2): objective violated, performance decrease ⇒ start Fibonacci search

Measurement pk+1 violates the objective and is lower than or equal to pk. This case
is illustrated in Figure 5.6 by the sixth move for scenario 2 and moves six to nine for
scenario 3 (dotted arrows). When we observe two increasing measurements followed
by a decreasing (or constant) one, i. e., pk−1 < pk and pk+1 ≤ pk, we can infer for
unimodal curves that we overstepped the maximum of the curve, or we are at a
plateau. Since performance is decreasing with increasing control parameter value
and measurement pk+1 violates the objective, increasing the control parameter value
would further decrease performance. As a consequence, we know that the maximum
of the curve is located in the interval

[
xk−1
i , xk+1

i

]
. The Fibonacci search algorithm

finds the maximum value of a unimodal curve given an interval that contains the
maximum. When applying Fibonacci search, there are two possible outcomes.

First, Fibonacci search finds a control parameter value where the performance
measurement satisfies the objective. As soon as it finds such a point, Fibonacci
search stops and starts a binary search similar to case (3) below. Second, Fibonacci
search terminates and the maximum performance value still violates the objective.
In that case, the SingleDimSearch algorithm terminates, returning a value that
indicates that there is no acceptable region for the service class.

Case (3): objective satisfied ⇒ start binary search

Measurement pk+1 satisfies the objective (e. g., after the fourth move in scenario 1).
Since we are interested in the smallest control parameter setting along dimension i

that satisfies the objective, we start a binary search in the interval
[
xki , x

k+1
i

]
to find

the setting we are interested in. We use binary search (dashed lines in Figure 5.6
because we know due to the unimodality assumption that there is exactly one point
where the performance measurement crosses the objective and that this point is in
interval

[
xki , x

k+1
i

]
.

5.3.2. Extension for compound objectives

If compound objectives are specified for a single service class si, the choice of which
direction to move the control parameter is a function of all performance metrics in Mi:
The algorithm locates the minimum point that satisfies all objectives. With multiple
metrics, the rules from Section 5.3.1 are applied to each of the possibly different
suggested moves (one move per metric): move right, start a Fibonacci search, or
start a binary search. Consequently, a decision table is needed to resolve the different
moves into a single “consolidated” move (Table 5.1). Let movej , 1 ≤ j ≤ |Mi|
denote the jth move and let consj denote the consolidated move after considering
the jth move. At the beginning, the consolidated move is initialized to (none), i. e.,
cons0 = (none). To derive consj , the algorithm looks up the entry in Table 5.1 at
position (movej , consj−1). The value of the control parameter is changed according
to the resulting consolidated move cons |Mi|. The algorithm terminates for j < |Mi|
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considered acceptable region

right Fibonacci binary
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(none) right Fibonacci binary
right right stop right

Fibonacci stop Fibonacci Fibonacci
binary right Fibonacci binary

Table 5.1.: Decision table for next move

when the moves are contradictory (the stop entries in the table), e. g., if one metric
requires a move to the right and another requires a move to the left (i. e., Fibonacci
search). In contrast to that, binary is compatible with every other move. Let m
denote a metric that satisfies its objective at k, i. e., Xk ∈ Am and the move for that
metric is binary. Note that from the perspective of that metric, the algorithm can
either decrease, i. e., start a Fibonacchi search or a binary search, or increase the
control parameter value. The choice for metric m depends on the moves for another
metric m′.

If the suggested move for m′ is to move right, the algorithm can safely choose to
increase the control parameter value. Note that the increase of the control parameter
might result in dropping out of the acceptable region for m again. However, in this
case, the algorithm – in the next iteration k + 1 – would no longer allow a control
parameter increase but would require to move to the left, i. e., start a Fibonacci
search. If the suggested move for m′ is to start a Fibonacci search, the algorithm
chooses to start a Fibonacci search that is “driven” by m′, i. e., the algorithm decreases
the control parameter setting.

For an example how to read Table 5.1, consider a service class for which the rules
in Section 5.3.1 result in the two moves right and binary. Using Table 5.1, the
consolidated moves are cons1 = right (entry at right and (none)) and cons2 = right
(entry at binary and right). Consequently, the algorithm decides to increase the
control parameter setting for the service class.

Consolidated move: right

If the consolidated move cons |Mi| = right , i. e., the control parameter value must be
increased, the algorithm must figure out the step width. In this case, we use the
maximum of the step widths derived in case (1) for the individual performance met-
rics. By choosing the maximum step width, the algorithm converges faster towards
the acceptable region, but running the risk of either moving too far in the acceptable
region of even overshooting it. However, the algorithm, as described in cases (2)
and (3) for the single-objective case, can handle these cases and move left in order
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Figure 5.7.: Example to illustrate how to locate the minimum control parameter
setting that satisfies the objectives of the two performance metrics using
binary search.

to find the minimum control parameter setting.

Consolidated move: binary

If a binary search must be started (i. e., cons |Mi| = binary), the challenge is that
the different performance curves may peak at different control parameter values. For
example, Figure 5.7 illustrates two performance metrics for a single service class.
To simplify the figure, we use just a single horizontal line to represent the objective
for both metrics. The vertical dashed lines show three control parameter settings
Xk−2, Xk−1, Xk along with the performance measurements (filled dots). The open
circles in the figure show the performance measurements during binary search. At
control parameter setting Xk, the SingleDimSearch algorithm starts a binary
search for the gray performance metric. The initial search interval for starting the
binary search (bar with label (1) in the figure) is the minimum interval that – for each
individual performance metric – contains a measurement that meets the respective
objective.

Figure 5.7 gives an intuition why we use the “minimal” interval to start the binary
search: From the position of the “gray” measurement at Xk relative to the “black”
measurement at Xk−1 and the unimodality assumption, we can conclude that the
intersection of the acceptable regions for “gray” and “black” cannot be at settings <
Xk−1 and > Xk. Note that the minimality requirement is not needed for correctness,
it just makes the binary search interval smaller, i. e., the search terminates more
quickly. The intuition why all service classes need a point in the respective acceptable
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Objective satisfied

mid ok mid nok

Shape of performance curve inc either right

dec either left

Table 5.2.: Decision table to tell whether to search in the left or in the right half of
the binary search interval.

region to start the binary search is as follows: If there is a performance metric for
which we do not have a point in the respective acceptable region, we cannot guarantee
that the overlap of the acceptable regions (if it exists) is in the search interval.

Based on Table 5.2, we determine for each performance metric separately whether
the binary search continues in the left or the right half of the search interval. Similar
to the decision whether to move left or right for a single service class, we consider
whether or not the current measurement (i. e., the mid of the binary search interval)
meets the objective. If it does, a valid solution may either be in the left or right half
of the search interval. If Xk+1 violates the objective, we distinguish two cases. If the
current measurement is on the increasing part of the curve, we search the right half
of the interval. If it is on the decreasing part of the curve, we search the left half.
For example, consider the first binary search measurement at Xk+1 in Figure 5.7
for the black performance metric. The measurement violates the objective. The
measurements in interval (1) indicate that we are on the decreasing side of the per-
formance curve, i. e., we approach the acceptable region for this performance metric
by decreasing the control parameter value. As a consequence, we must continue the
binary search in the left half of interval (1). The gray measurement at Xk+1 satisfies
its objective. As a consequence, we can continue to search either in the left or in the
right half of interval (1). This gives us the binary search interval (2) and continuing
in this fashion we get the binary search interval (3).

Consolidated move: Fibonacci

A similar approach can be taken when a Fibonacci search must be started (i. e.,
cons |Mi| = Fibonacci). Since there is at least one metric m ∈Mi for which the rules
in Section 5.3.1 indicated to start a Fibonacci search, the algorithm chooses one of
the metrics. After each iteration, the algorithm checks, depending on whether the
objectives are met, how to continue the search: If the Fibonacci search fails to locate
a point in the acceptable m-region, the search terminates and we can conclude that
there is no setting that satisfies all objectives (similar to scenario scen3 in Figure 5.6).
Otherwise, we continue the search as follows: First, if all objectives are violated at
that setting, the Fibonacci search continues along the performance curve for m.
Second, if all objectives are met at that setting, the algorithm starts a binary search
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similar to the search described above. Third, if the objective based on m is satisfied
(and at the objective for at least one other metric is violated), there are two options.
If there is a metric m′ 
= m for which no setting in the acceptable m′-region has
been observed so far, the algorithm must start a Fibonacci search for m′. Otherwise,
there we know that there is a setting that satisfies the objectives for every metric in
Mi and the algorithm starts a binary search, similar to the case (cons |Mi| = binary .

5.4. Variance

The discussion so far assumes that the measurements taken follow the (unknown)
control parameter-performance curves perfectly. However, in a real system, measure-
ments are subject to variance (or “noise”) so that the measurements do not perfectly
follow the control parameter-performance curve. For example, in presence of vari-
ance, two measurements pk−1

m and pkm taken with different control parameter settings
x and x′ (x < x′) may indicate a decreasing curve (dotted line in the figure) although
they are on the increasing side of the curve.

In order to minimize variance, we assume that the metrics are chosen appropriately
for a workload. For example use average response time for service classes that have
similar queries. Also, for metrics based on sliding windows, the length of the sliding
window should be chosen such that variance is smoothed out.

Even with taking precautions, variance cannot be reduced to 0. As a consequence,
we tighten the bounds related to a performance metric m by a factor fm = (1 + εm)
with εm > 0, i. e., we multiply the lower bound by fm and divide the upper bound
by fm. We utilize the characteristics of the acceptable regions where acceptable re-
gions associated to tighter bounds are completely contained in the acceptable region
with less tight bounds. As a result, the operating envelope with the tighter bounds
is also contained in the operating envelope with the less tight bounds. In our frame-
work, we set the values for εm manually. An option is to determine the εm-values at
runtime, based on performance measurements. The setting of εm is not in the focus
of this work.

To avoid the problem sketched earlier, i. e., where two measurements show decreas-
ing behavior even though the curve should be increasing, we designed our system to
exhibit hysteresis. Hysteresis characterizes a system where the output depends not
only on the current input but also on the history of the input. When the previous
measurements indicate a performance increase, we assume a further increase if the
current measurement pk is greater than or equal to δm · pk−1

m , with 0 < δm ≤ 1, we
assume a further increase. When the current measurement is smaller than δm · pk−1

m ,
we assume that performance has decreased. Note that δm can be chosen small if
the variance of the measurements is low. For higher variance, the δm value must be
larger. However, too large values for δm result in errors when the performance is
actually decreasing after an increase. Determining “good” values for δm is out of the
scope of this work.
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5.5. Operating envelope changes

When a workload change occurs, the current control parameter setting may result in
performance outside the operating envelope. The task after such a change is to find
a point where to initialize the search. Note that the presented algorithm assumes
that the initial setting is in the starting region. The straightforward approach is to
start from the setting where all control parameter values are set to their minimum
values. Although in some cases, it is possible to start with a setting that is “closer”
to the operating envelope so that the search terminates faster.

Below, we discuss the causes of operating envelope changes and how to find a
setting X(s) to initialize the search after the change. Let Eb denote the operating
envelope before the change and Ea the operating envelope after the change. With
Xb ∈ Eb, we denote the setting before the change. Note that due to our algorithm,
Xb is minimal w. r. t. Eb.

Workload change, objectives unchanged

A workload change occurs when the number of service classes changes (a new service
class arrives or an active service stops executing) or the number of service classes
remains constant but the characteristics of the queries of a service class changes.
The latter occurs if, e. g., an updated version of an application that accesses the
database system has new queries where the function is the same but the execution
is expected to be more efficient. For simplicity, we assume that only one workload
change happens at a time. We do consider that changes may happen within a short
time. In that case, we restart the algorithm when we detect the next workload
change. Note that the objectives of the service classes that were active before the
workload change, remain constant. As a consequence, only the shape of the load-
performance hulls change and result in new shapes for the acceptable regions, which
in turn form a new operating envelope.

We first consider how to find a starting point when a new service class arrives.
Then, we consider the problem when a service class departs. When the workload
changes, information that we previously gathered, e. g., performance at certain con-
trol parameter settings, may become invalid. Let X = {x1, . . . , xn} denote the
“largest” previously observed control parameter setting in the starting region be-
fore the new service class sn+1 arrived. The largest setting not in the operating
envelope is defined as setting X = {x1, . . . , xn} where there is no other setting
X ′ = {x′1, . . . , x′n} in the starting region where at least one control parameter value
x′i is greater than xi. Note that in general, there may be more than one such set-
ting. In that case, we can randomly choose one of the settings. When sn+1 arrives,
setting X(s) =

{
x1, . . . , xn, x

min
n+1

}
can be used as a starting point. However, it is

possible that increasing the total load in the system from X to X(s) saturates the
system or pushes it to overload. If we detect that setting X(s) is indeed an overload
situation (for example when the performance along every dimension decreases when
we increase the setting of the respective control parameter), we revert to setting
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X(s)′ =
{
xmin
1 , . . . , xmin

n , xmin
n+1

}
and restart the search from there.

Let Xb = {x1, . . . , xj−1, xj , xj+1, . . . , xn} denote the measurement before service
class sj left the system (note that Xb was inside the “old” operating envelope). When
a service class leaves the system, the operating envelope becomes bigger because the
resources must be shared among fewer service classes. As a consequence, the perfor-
mance at setting X(s) = {x1, . . . , xj−1, xj+1, . . . , xn} satisfies the lower bounds of the
performance metrics. However, X(s) may be outside the new operating envelope Ea

when the performance for at least one service class increases beyond the respective
upper bound. Since X(s) meets all lower bounds, doing binary search along the indi-
vidual dimensions, i. e., locating the smallest setting within the respective acceptable
region, results in a setting in the operating envelope.

When the characteristics of the queries change but the number of service classes
remains constant, we cannot reuse prior measurements to determine a point in the
starting region. As a consequence, the initial point for the search is set to the
“minimum setting” X(s) =

{
xmin
1 , . . . , xmin

n

}
.

Workload unchanged, objectives change

When the objectives change but the workload remains constant, we can reuse pre-
viously observed measurements to initialize the search for the new operating enve-
lope Ea. For an objectives change, we consider the following scenarios: add/remove
an objective and increase/decrease upper/lower bound.

When a new objective is added, e. g., an upper or a lower bound for a newly
considered performance metric, we can make two observations: First, for all settings
X /∈ Eb, we also have X /∈ Ea: A setting that was outside the operating envelope
before the change will not be inside the operating envelope after the change upon
adding a new objective. Second, a setting X ∈ Eb may become “unacceptable” with
the newly added objective. As a consequence, we can conclude that Ea ⊆ Eb. Since
we know that setting Xb was minimal, we know that the starting point for the new
search is X(s) = Xb. If the operating envelope has not changed, i. e., Ea = Eb, no
search is carried out.

When an objective is removed, the operating envelope Ea may become bigger
than operating envelope Eb, i. e., Eb ⊆ Ea. Since setting Xb is inside the “old”
operating envelope (Xb ∈ Eb), it will also be inside the “new” operating envelope
(Xb ∈ Ea). In order to find the minimal setting inside operating envelope Ea, we
can reuse information gathered previously (note that the performance curves have
not changed because the load on the system has not changed). As the starting point,
we use the “maximal” setting where the respective performance measurements are
outside the operating envelope Ea. Figure 5.8 illustrates an example. The dots show
the settings in the search space set by the algorithm. Note that for each setting,
we also have the respective performance measurements. The solid lines show the
“old” acceptable regions for service classes 1 (black) and 2 (gray). The gray dashed
line denotes the shape of the acceptable region after an objective for service class 2
was removed. The shaded area denotes the starting region for the “new” operating
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Figure 5.8.: Example for a change of the acceptable region when an objective for
service class two is removed. The solid gray line denotes the acceptable
region before, the dashed line the region after the change. The shaded
area indicates the starting region for the search of the new operating
envelope.

envelope. The dot marked with a circle denotes the largest setting that is in
neither of the acceptable regions.

If the lower bound for a performance metric is increased, the operating envelope
becomes smaller, where the explanation is similar to the “add objective” case. Due to
the minimality of setting Xb w. r. t. the operating envelope Eb, we start the search
from X(s) = Xb to locate the minimum point in the “new” operating envelope. If the
lower bound for a performance metric decreases, we know that Eb ⊆ Ea. Although
Xb ∈ Ea, we locate the minimum setting w. r. t. the operating envelope Ea. No
search is necessary if the upper bounds change. Since our algorithm moves along
the lower bounds for the performance metrics, changing the upper bound does not
invalidate the current setting.

5.6. Experiments

In the following we describe the results of the experiments which compare our
MsCoSearch algorithm to an extension of the workload adaptation approach.

5.6.1. Extension of the workload adaptation approach

The workload adaptation algorithm [46] was devised to solve a multi-class, single ob-
jective problem. In order to handle compound objectives, we extended the algorithm
to use dominant objectives for optimization. We observed that, given a specific range
of control parameters, e. g., MPL less than 40, it is possible that satisfying one objec-
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tive implies that all other objectives are also satisfied by those conditions, i. e., one
objective dominates the others. We note that, however, it is not possible in general
to know a priori which objective dominates the other objectives. Our experiments
show that using the “wrong” dominant objective results in control parameter settings
that are outside the operating envelope even though the envelope is not empty.

5.6.2. Experimental setup

For the experiments, we defined three service classes s1, s2, s3 that comprise 32, 64,
and 8 users, respectively. Each user interactively submits queries to the system
with zero wait time, i. e., it sends the next query only after receiving the result of the
previous one. As a consequence, the throughput in the database is not limited by the
arrival rate unless all queries are admitted to the database system as they arrive – a
situation we avoid by appropriately designing our experiments. Each query accesses
a small amount of data on a single disk, reading between zero (data is cached) and
two pages from disk, and returns between 1 and 4096 result tuples. Users associated
with service class s1 choose their next queries from a pool of 12 queries; similarly,
the streams from service classes s2 and s3 choose from a pool of 15 and 8 queries,
respectively (the query pools are disjoint, but queries from s1, s2, and s3 will access
the same table). We use one MPL control parameter per service class to control the
load on the system.

The performance metrics considered for the service classes are throughput and
average response time. Throughput counts the number of completed queries in the
last 90 seconds. Similarly, the average response time aggregates the query response
times in the last 90 seconds. The objectives for each service class are described with
the individual experiments. We use the multiprogramming level MPLi, i. e., the
number of concurrently active queries stemming from a service class si, to control
the share of the system resources assigned to a service class.

For the experiments, we configured the workload adaptation algorithm to use the
correct dominant resource for all service classes. The workload adaptation algorithm
requires setting a priority value for each service class. To get the threshold for the
“worst allowed” performance (worst , see Section 5.1), we divided the performance
objective by 2. Note that for metrics where lower values denote “better” performance,
we used the inverse so that we can treat all performance metrics identical. We
describe for each experiment separately how we determined the system cost limit
that is required by the workload adaptation algorithm.

For MsCoSearch, we ran some offline experiments to determine the values for δm
and εm (introduced in Section 5.4) to account for the variance. For the experiments,
we set δm = 0.05 and εm = 0.02 for all metrics of all service classes.

In the following, we present two selected scenarios to evaluate our search algo-
rithm. Each experiment starts with MPL set to 1 for each service class. For every
experiment, our controller invoked an MPL change every 100 seconds. Considering
the 90 second time window for computing the performance values, there is a 10 sec-
ond grace period in which the system can stabilize after an MPL change. This grace

99



period proved to be sufficient for the experiments we ran. For different workloads,
a different time window may be necessary. Last but not least, our algorithms ter-
minate the search once they locate a point in the operating envelope or else detect
that the envelope is empty. When a change in the workload occurs, another search
is initiated for the operating envelope.

5.6.3. Experimental framework

We briefly describe the experimental framework we used to run our experiments.
The framework extends the framework described in Section 4.3.

Similar to the framework introduced in Section 4.3, we use a simulated database
engine. Acquiring the measurements used to create Figures 5.1 and 5.2 by running
TPC-CH queries on a commercial DBMS while controlling the MPL of each service
class took around 32 hours. Testing our algorithms required many more experiments,
we therefore used a simulated, instead of an actual, database engine. Furthermore,the
simulated database engine allows us to re-run experiments with repeatable results.
The simulator also facilitates the implementation of the algorithms because we have
complete control over the execution of the queries and the simulated database engine.
For implementing and evaluating the algorithms, we can build arbitrarily complex
(or simple) queries that either heavily interact with each other or have almost no
interaction. Using the simulator, we can also run experiments with different config-
urations (e. g., four-nodes vs. 16-nodes), which cannot be easily achieved with a real
database engine (buying a many-node system may be prohibitively expensive and
“down-grading” it to a system with fewer nodes may incur tedious reconfiguration).
Last but not least, since we are interested in the load that is caused by processing a
query and not in the actual results, we achieve a speedup. Note that our simulator is
not a full-fledged database engine but just gives us resource utilization measurements
similar to a real database engine.

Our simulated database engine is implemented using CSIM [54] and extends the
simulator described in Section 4.3.2. Our new database engine simulator has a more
detailed model for query execution: First, the simulated database engine models
pipeline-parallelism. When an operator has produced an output tuple, this tuple is
sent to the parent operator, which starts processing the incoming tuple. Second, the
simulator models CPU and disk consumption on a more detailed level. The CPUs
and disks are modeled as facilities that can be used by a single operator at a time.
Operators that want to access the facility are put in the waiting queue of the facility.
When the facility is idle, the next operator to be admitted to the facility is chosen
by a scheduling discipline (i. e., FIFO). An operator that has access to the facility,
exclusively “locks” the facility for a predefined amount of time (time slice). When
an operator has used its time slice, it is evicted from the facility and scheduled for
execution again (if more work has to be done). If an operator completes before
the time slice is over, a new operator is admitted to the facility. One operator can
access one facility at a time (note that a logical operator can have multiple physical
operators on different nodes). Third, the simulator allows a single physical operator
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Min throughput Max avg. response time
(queries per second) (seconds)

s1 125 0.35

s2 50 0.6

Table 5.3.: Bounds for scenario 1

to access multiple resources to produce an output tuple, i. e., there is no “dominant”
resource. Fourth, the simulator models the exchange of tuples between operators
that run on different nodes over the network. Instead of sending individual tuples,
the producer operator groups multiple tuples into fixed-size messages. A message is
sent over the network if (1) it is full or (2) a timeout has been reached. The time
it takes a network message to travel from the producer to the consumer operator is
determined by the bandwidth of the network.

Details on the workflow to create the input for the database engine simulator, for
creating workloads for the simulator, and for running an experiment can be found in
Section 4.3.1.

5.6.4. Scenario 1: two service classes, no changes

The goal of the experiments in scenario 1 is to show how the workload adaptation
algorithm and our search algorithm work when there are no changes (neither work-
load nor objective) and the operating envelope is not empty. For this scenario, we
use service classes s1 and s2, as described above. Each of the service classes has an
average response time and a throughput objective with a single bound that requires
a “minimum” performance. Table 5.3 summarizes the performance requirements for
the two service classes. For ease of presentation, the table displays the performance
metrics as they would have been entered by a user instead of the negative average
response times. Note that we chose the performance metrics such that the operating
envelope is not empty and such that admitting all queries as they arrive is not an
option.

MsCoSearch We first evaluate the three approaches to move along a single search
dimension mentioned in Section 5.3.1: increment the control parameter by a fixed
value, exponentially increase the control parameter, and apply linear regression to
compute the next setting. Figures 5.9(a) to 5.9(c) show the probes in the search space
using the different approaches. As shown in Figure 5.9(b), using the approach to in-
crement the control parameter by one locates the operating envelope after 31 probes.
With this increment, the algorithm never has to start binary search: once we cross
the border of an acceptable region, we know that the current setting is the small-
est one and we can move along another dimension. With a bigger increment (>1,
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not shown in the figures), the algorithm approaches the acceptable region faster but
always has to start a binary search when it finds finds a setting in the acceptable
region. For the experiments we ran, a greater increment resulted in more probes in
the search space.

With exponential increase, the algorithm quickly moves towards the acceptable
region. However, the large steps in the exponential increase require a binary search
to locate the minimum setting. As shown in Figure 5.9(c), using the exponential
approach terminates after 40 probes. So the “costs” for doing binary search dominate
the benefit from moving faster towards the acceptable region.

None of the two approaches above considers the distance from the current probe
point to the acceptable region. The linear regression approach makes big steps to
approach the acceptable region, making smaller step sizes the closer it approaches
the region, trying to avoid binary search after locating the acceptable region. Fig-
ure 5.9(a) shows the 25 probes in our experiment. We note that, although the figure
shows no binary search, the linear regression approach can not always avoid binary
search.

We ran experiments with different workloads that showed that linear regression
is the fastest approach to locate the operating envelope. As a consequence, we use
linear regression for our MsCoSearch algorithm.

Figure 5.10 shows the details of running MsCoSearch with linear regression.
The performance graphs (Figures 5.10(a) and 5.10(b)) show the course of the per-
formance over time (solid lines) and the lower bounds defined for the respective
performance metric (dotted lines). The shaded areas in the figures show the time
the algorithm searches for a point in the operating envelope. The algorithm termi-
nates after 25 probes (time 2500) at setting (19, 16), satisfying all constraints of all
service classes.

Workload adaptation In order to determine the system cost limit, we created a
dummy service class that contains all queries from service classes s1 and s2. In an
offline experiment, we increased the MPL for this single service class until throughput
hit a performance plateau at MPL=36, i. e., the throughput increase for a further
MPL increase is less than 3%. Thus, increasing the MPL beyond 36 does no longer
increase performance.

For this experiment, we assumed that we have complete information about the
dominance of the objectives. We determined the dominance offline by a comprehen-
sive search, i. e., running all different MPL1-MPL2 combinations. Figures 5.11(a)
and 5.11(b) show for which MPL1-MPL2 settings the throughput and average re-
sponse time (light green), only throughput (dark pink), only average response time
(orange), or none of the objectives (white) are satisfied. For s1, throughput is the
dominant objective: whenever the throughput objective is satisfied for the settings
shown in Figure 5.11(a), the average response time objective is as well. However, not
all settings that satisfy the average response time objective also satisfy the through-
put objective. Similarly, Figure 5.11(b) indicates that average response time is dom-
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(c) Exponential increase (40 probes)

Figure 5.9.: Search paths using different techniques to find the next probe along a
search dimension.
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Figure 5.10.: Results of our MsCoSearch algorithm in scenario 1. The horizontal
dotted lines for the performance graphs show the bounds for the respec-
tive service classes. The shaded areas indicate the time the algorithm
is active.
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Time obj. Min throughput Max avg. response time
valid (queries per second) (seconds)

s1
0 ≤ t < 3000 125 0.35

3000 ≤ t ≤ 10000 90 0.6

s2
0 ≤ t < 4000 50 0.6

4000 ≤ t ≤ 10000 100 0.45

s3
0 ≤ t < 5500 not started not started

5500 ≤ t ≤ 10000 30 0.4

Table 5.4.: Bounds for scenario 2

inant for service class s2. As a consequence, the workload adaptation algorithm
used throughput and average response time as dominant objectives for s1 and s2,
respectively.

Figures 5.12(a) and 5.12(b) illustrate the results of the workload adaptation al-
gorithm in scenario 1. The algorithm successfully locates a point in the operating
envelope after six probes (600 seconds). The resulting point (20, 16) satisfies the
throughput and average response time objectives of service classes s1 and s2. Note
that for this experiment we assumed knowledge about which resource is dominant
for a service class. As stated earlier, this information may not be available prior to
running the algorithm.

In a variation of the experiment we set the workload adaptation algorithm to
use throughput as dominant objective for both service classes. In this variation the
workload adaptation terminates after four probes at point (25, 11), i. e., near the
operating envelope but fails in finding a point inside the envelope, even though one
definitely exists. The results in Figure 5.13 indicate that the throughput for service
classes 1 and 2 at the resulting setting far exceeds the objectives (Figure 5.13(b)).
However, the average response time objective for s2 is violated at that setting.

5.6.5. Scenario 2: change objectives, add new service class

The goal of this experiment is to evaluate how the workload adaptation and our
MsCoSearch algorithm work when the operating envelope changes. Similar to
scenario 1, we first start with service classes s1 and s2. After relaxing the objectives
for service class s1 at time 3000 and tightening the objectives for s2 at time 4000,
we add a new service class s3 to the workload at time 5500. Table 5.4 summarizes
the settings for the bounds and the changes to the objectives.

Figure 5.14 and Figure 5.15 summarize the results for running the algorithms in
scenario 2 in the time interval between 0 and 10000 seconds. The vertical dashed lines

105



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

(a) Service class s1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

(b) Service class s2

Figure 5.11.: The settings where none of the objectives are met (white), the through-
put but not the average response time objective is met (dark pink), the
average response time but not the throughput objective is met (or-
ange), or both objectives (green) are met for service classes s1 and s2,
respectively. The axes show the values for MPL1 (x-axis) and MPL2

(y-axis).
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Figure 5.12.: Results of the workload adaptation algorithm in scenario 1 with correct
information about dominant objectives.

107



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  500  1000 1500 2000 2500 3000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e
(in

 s
ec

on
ds

)

Time

service class 1
service class 2

(a) Average response time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  500  1000 1500 2000 2500 3000

T
hr

ou
gh

pu
t

(in
 q

ue
rie

s 
pe

r 
se

co
nd

)

Time

service class 1
service class 2

(b) Throughput

 0

 5

 10

 15

 20

 25

 0  500  1000  1500  2000  2500  3000

M
P

L

Time

service class 1
service class 2

(c) Threshold changes

Figure 5.13.: Results of the workload adaptation algorithm in scenario 1 with
throughput as dominant objective for both workloads. With incorrect
or incomplete knowledge about the dominance, the workload adapta-
tion algorithm fails in finding the operating envelope.
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in the figures denote the times when the changes in either the objectives (times 3000
and 4000) or in the workload (time 5500) occur. Similar to Figure 5.12 and 5.10, the
shaded areas denote the time the algorithm is active.

Workload adaptation The workload adaptation algorithm used the average re-
sponse time as dominant objective for s1 and s3 and the throughput as dominant
objective for s2. We set the system cost limit to MPL=36 for the workload contain-
ing s1 and s2 as well as for the workload containing all three service classes (value
determined as described in scenario 1).

Similar to the first scenario, the workload adaptation algorithm starts at setting
(1, 1) and terminates after 600 seconds at (20, 16), a point in the operating envelope.
When the objectives of s1 change at time 3000, the algorithm is executed again
but does not move to a different point in the search space: The point (20, 16) is
still considered “optimal” after the objective change. Since the objectives of service
class s1 were relaxed, the resulting setting is still inside the operating envelope. After
changing the objectives of service class s2, the algorithm initiates a new search for the
operating envelope because the objective change makes setting (20, 16) unacceptable.
The algorithm terminates at time 4700 at setting (14, 22), which is inside the “new”
operating envelope again, i. e., all objectives for service classes s1 and s2 are met.
When the new service class arrives at time 5500, the workload adaptation algorithm
initializes a search starting from setting (14, 22, 1). The performance at the resulting
setting, (13, 17, 6), meets the throughput objectives of all three service classes and
the average response time objectives of service classes s1 and s3 (Figures 5.14(a)
and (b)). However, the resulting setting is not in the operating envelope (although
there definitely is one) because the average response time objective of s2 is violated
(Figure 5.14(a)).

We ran some variants of scenario 2 with the workload adaptation algorithm, in-
creasing the system cost limit to MPL values greater than 36. Although we do
not show detailed results of these experiments, we note that we had to increase the
system cost to 64 to get a point in the operating envelope using the workload adap-
tation algorithm. Setting the MPL to 64 does not overload the system. However,
the throughput at MPL=64 is similar to the throughput at MPL=36 (note that we
chose MPL=36 because it is the MPL setting where throughput “levels off”, i. e.,
increasing the MPL does not lead to a significant throughput increase).

MsCoSearch Figure 5.15 shows the results of running the MsCoSearch algorithm
in scenario 2. The threshold settings and the performance measurements are similar
to scenario 1: the algorithm starts at point (1, 1) and locates setting (19, 16) in the
operating envelope. When at time 3000 the objectives of service class s1 relax, the
algorithm reuses previously observed measurements to determine the MPL setting
where to start the search for the new operating envelope. As described in Section 5.5,
we use the largest previously probed MPL setting that is in neither acceptable region
(i. e., that does not satisfy all objectives of service class s1 or s2) (setting (4, 4) in
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Figure 5.14.: Results of the workload adaptation algorithm in scenario 2. The vertical
dashed lines indicate the times at which the objectives and the workload
change. The horizontal dotted lines for the average response time and
throughput graphs show the bounds for the respective service classes.
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Figure 5.15.: Results of the MsCoSearch algorithm in scenario 2.
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this experiment). Starting from (4, 4), the algorithm restarts the search, resulting in
setting (6, 8). For the objective change of service class s2 at time 4000, locating the
starting point for the new search is straightforward: Since the objective was tight-
ened, the current setting (6, 8) is used as starting point for searching the operating
envelope. After MsCoSearch returns the system to a stable state in the operating
envelope at (9, 16), the new service class s3 starts executing at time 5500. After the
workload change, MsCoSearch starts a new search in the now three-dimensional
search space and finally terminates in the operating envelope at setting (21, 33, 6).
The spikes in Figure 5.15(c) stem from measurements taken in a near-saturated sys-
tem, i. e., all system resources are almost fully utilized. In that case, increasing the
MPL by a small value (e. g., 1), also results in a small performance increase. As a
consequence, the algorithm estimates that it takes a big step to reach the acceptable
region. However, MsCoSearch overshoots and then needs to dial back to find the
smallest setting in the respective acceptable region.

5.7. Dashboard

As summarized in Chapter 2, commercial database workload management systems
implement admission control, scheduling, and execution control policies. Chapters 3
and 4 explore the effectiveness of several static scheduling and execution control
policies in the query control loop. This loop can remedy short-term fluctuations in
the workload such as a single long-running query that unexpectedly hogs resources
or lock contention that creates a convoy. However, it cannot change the policies
themselves.

We envision our policy controller to be part of a workload management dashboard
with the following capabilities:

• Overview of the performance metrics over time

• Allow manual execution of workload management actions

• Automatically execute workload management actions

• Manual policy control

• Automatic policy control

• Support an “instructor mode” that allows an “instructor” to inject workload
management problems into the workload (e. g., add new service class, add new
query, change availability of hardware (hardware failure))

We implemented a prototype of such a workload management dashboard on top
of our policy controller. Our dashboard implementation supports two views: the
administrator view and the instructor view. The administrator view consists of
three screens. The policy control screen (Figure 5.16) displays the currently active
rules and the threshold for the rules. If the policy controller is turned off, a human
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Figure 5.16.: Policy control screen

administrator can add and remove rules, and set the thresholds for active rules.
If the policy controller is turned on, rules are (de)activated automatically and our
MsCoSearch algorithm is applied to locate the operating envelope. The impact
of changes of workload management policies can be observed in the performance
objective (Figure 5.17) and the system resource utilization screen (Figure 5.18). The
former shows information about performance metrics and how well the objectives of
the service classes are met. The system resource utilization screen summarizes the
resource utilization in the system.

The dashboard is also intended to help train database system administrators in
managing workloads in order to meet the objectives of the service classes. As a
consequence, an instructor can use the dashboard to manually change the workload.
For example, the instructor can start or stop service classes, turn individual resources
on and off, change the arrival rate of queries, or change the objectives of one or more
service classes.

We illustrate an example of the dashboard using a scenario with three user loads:

• The “CEO” user load has hand-written, ad hoc queries written on behalf of a
company executive. They arrive at unpredictable times. The only information
the workload manager has about the expected resource usage and behavior of
these queries are the optimizer’s cost estimates. The objective for each query is
to complete it promptly — as long as its cost estimates are accurate. In terms of
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Figure 5.18.: In the system resource utilization screen, the administrator can see that
after the arrival of a long-running heavy-weight CEO query, resource
contention interferes with the rest of the workload.

workload management policies, (1) each query should be immediately admitted
and scheduled, (2) these queries have higher priority than other queries, and
(3) a query may be killed if actual resource usage exceeds twice that estimated.

• The “report” user load comprises medium-sized, roll-up report queries with an
objective to complete all of the queries before a deadline. These queries are
also well-understood.

• The “OLTP” user load has queries that are short and have a fixed arrival rate.
The queries are well-understood, and we have high confidence in how we expect
them to behave. The objectives for these queries require the throughput to be
above a certain transactions per second threshold and the average response
time to be lower than another threshold, expressed in terms of milliseconds.

Each of the three user loads is mapped to a separate service class.

5.7.1. Problem injection

For the example, we assume that the automatic policy controller is turned off and that
the system is in steady state initially, with the OLTP requests running and meeting
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Figure 5.19.: Performance objective screen after a run has completed.

objectives, the report query batch running and on-track to meet its objective, and no
ad hoc CEO queries in the system. Then an ad hoc CEO query arrives, is admitted,
and starts executing. After a brief delay, system performance degrades and the
OLTP requests are in danger of not meeting their objectives, as can be seen in the
performance objective window in Figure 5.17, which shows how well each service
class is meeting its objectives. Multiple CEO queries may execute simultaneously
(causing even more contention), while there may be no such queries in the system at
other times. The workload management policies and thresholds may need adjusting
with each increase or decrease in these queries: resources that are reserved for these
queries may be wasted when none are executing.

5.7.2. Attempt at manual correction

For a manual adjustment of the policies, an administrator can diagnose the situation
in the resource utilization window (Figure 5.18) that shows excess resource utilization
(memory and CPU) by the CEO queries. Note that diagnosing the cause of degraded
performance is itself a challenge – it is not always obvious what or where the problem
is.

There are multiple possible effective policy changes to reduce contention. For
example, reducing the scheduling threshold (MPL) for the batch report queries will
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reduce resource contention. In addition, it may be necessary to kill or suspend some
active report queries to achieve the new, lower, threshold. What makes this task
particularly difficult is that re-allocating resources can have unexpected effects. For
example, slowing down a long-running query, e. g., by lowering its priority, may mean
that it continues to occupy system resources for a longer time. The administrator
can use our interface to adjust various thresholds and policies and see the impact of
their actions on system performance and service objectives.

In this simple example, one option is to suspend the report class temporarily to
enable the CEO class to complete. Another option is to reduce the priority of the
OLTP class. However, the best strategy is actually to reduce the scheduling MPL for
the OLTP requests just a little (e. g., from 10 to 8 or 9) when the executive’s ad hoc
query starts executing. If the administrator lets the system load stay too high or else
reduces the MPL too much, then the OLTP requests fail to meet their throughput
objectives. If the administrator does not reduce the MPL enough, then the ad hoc
query fails to meet its response time objective. If the human administrator takes too
long to respond, then multiple objectives are missed.

In addition, as the CEO queries complete, the administrator should raise the
MPL for the OLTP and/or report queries, so that resources are not left idle. After
an administrator makes adjustments in the policy control window, the impact of
those changes may be observed in the performance objective window. Figure 5.19
shows how the window might look at the end of a run. In the figure, one can see
that although the OLTP and CEO queries did meet their throughput and response
time objectives, the administrator was not aggressive enough in limiting the number
of OLTP requests processed in parallel, and the report workload has missed its
completion deadline.

5.7.3. Policy control feedback loop

After the administrator corrects the policies during execution of an entire workload,
our demo replays the workload with our policy controller automatically adjusting the
policies. The same GUI interfaces then show the administrator’s actions and their
effects side-by-side with those of the policy controller. At the end of the workload,
both are scored based on their ability to meet the workload objectives.

5.8. Conclusions and future work

One major challenge of managing mixed workloads is that it is difficult to allocate
resources amongst different classes of diverse queries when each class of queries has its
own unique set of performance objectives. This chapter addressed this challenge by
modeling the solution as a search in a geometric space. This model lets us structure
our search in such a way that we can reconcile how changes to control parameters
affect the performance of diverse workload components. We use this model to propose
a new algorithm for solving the general search problem. We describe the experimental
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framework we built to evaluate our algorithms and the metrics we chose to quantify
how well they work, and our experiments demonstrate promising results.

Our prototype implementation of the dashboard helps administrators understand
the impact of policies on mixed workloads and provides some positive examples of
how to set policies. In addition, our demonstration framework allows us to create
new workload scenarios so that we can study how our policy controller adapts to
unexpected situations. This helps us to devise better policies and meta-policies.

It is future work to devise an algorithm that can use any setting in the search space
as starting point. The challenge is to detect in which direction to move to locate
the acceptable region. A benefit would be that we can more easily use information
that narrows the search space. For example, we can use the workload adaptation
algorithm to find a starting point for our MsCoSearch algorithm.
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6. Conclusions

Most workload management research has focused on simple, static workloads with
a single user load. Only recently, more attention has been paid to more complex,
mixed workloads that comprise multiple user loads, e. g., sets of queries with asso-
ciated characteristics and service level objectives. Most of the research was driven
by commercial vendors that used their workload management tools to control the
complex workloads. However, even though administrators have tools that allow them
to control mixed workloads, many problem remain unsolved. This thesis described
some of main challenges in mixed workload management:

1. There is no common “workload management” terminology such as is needed to
systematically approach such a complex topic.

2. There is a “mismatch” between the user side, where the performance expec-
tations are formulated, and the database side that has no information about
the performance expectations but where a workload manager controls the ex-
ecution of the queries. Consequently, the administrator must not only map
incoming queries to service classes, but also define the policies for the service
classes in order to meet the objectives.

3. Defining the policies and the respective thresholds must be done in the presence
of inaccurate and incomplete information about the workload. For example,
even though the set of queries that must be started at a certain time is known,
almost no information is available how these queries interact – especially when
the queries have been submitted ad hoc.

4. Workloads are often dynamic, e. g., new user loads may start at unpredictable
times or queries do not arrive at a constant rate. Note that even a scheduled
user load may start or end unpredictably. The workload management policies
must be adjusted as the workload changes.

5. Since workload management is an after-thought to the design of database
systems, database systems do not provide a standardized interface workload
managers could use for applying workload management. The lack of such an
interface also impedes the implementation of generic workload management
components, which could be used to run systematic workload management
experiments with different database systems.

Although this list of workload management is not exhaustive, it illustrates the chal-
lenges currently faced in managing mixed workloads.
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This thesis devised a workload management terminology that describes the dif-
ferent components of a mixed workload management framework. In particular, we
identified three different control loops where workload management is applied: the
query control loop, the policy control loop, and the business control loop. The
terminology was the basis for discussing three workload management problems in
managing mixed workloads:

First, we focused on dynamic prioritization of OLTP-style business transactions.
A commonly used service objective defines constraints on the percentile of the re-
sponse times of transactions submitted on behalf of a user and a deadline to avoid the
starvation of transactions. The constraints on the percentile of the response time
incur a penalty while the deadline enforces the execution of requests, i. e., avoids
starvation. We devised a dynamic prioritization scheme which adaptively penal-
izes individual requests. In order to minimize the penalties incurred for violating
the constraints on the percentile response times, the MEFI and KAFKA algorithms
have been proposed. Our prototypical implementation comprises an SLO compo-
nent that computes the penalty function and annotates the individual requests with
the penalty information. It also includes a scheduler that queues the queries and
reorders them in order to minimize the penalty incurred for violating the constraints
on the percentile response time. Our experiments showed that with static prioriti-
zation, where the priority of a request is positively correlated with the penalty that
is due for violating the percentile constraint, the service level conformance for “high
priority” transactions exceeds the desired threshold at the cost of their lower-priority
counterparts. With our dynamic prioritization, the objectives for more transactions
are met and, thus, the incurred penalties are reduced by a factor of 2.

Second, we considered a workload with long-running queries that may negatively
impact the performance of other queries. We built a taxonomy for these long-running
queries based on how they impact the other queries in a mixed workload. We identi-
fied how to detect and handle long-running queries using query control loop policies
under three scenarios: queries with inaccurate cost estimates, unobserved resource
contention, and system overload. We described an experimental framework based
on a simulated database engine to systematically evaluate the ability of existing
workload management mechanisms to deal with the three scenarios. We used the
framework to methodically explore the space of policy combinations with different
workloads. We showed that inaccurate cost estimates cause admission control and
scheduling to mistake good queries as problem queries and that execution control
is needed to compensate for errors in admission control and scheduling. The ex-
periments also demonstrated that in the presence of overload, absolute thresholds
for the execution control policies are ineffective if the “wasted work” is considered.
Our recommendation is to pair admission control, scheduling, and execution control
policies. We showed how to set the thresholds for the different policies.

Third, we looked at managing mixed workloads where user loads have compound
objectives. The challenge is how to configure workload management to allocate the
system resources so that all objectives of all service classes are met. The allocation
of system resources and therefore the performance of the service classes is done
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by setting thresholds for the workload management policies. We formulated the
problem as a search problem and devised a model to describe the solution space.
Based on the model, we described an algorithm that automatically locates a setting
in the operating envelope, i. e., that sets the thresholds for the workload management
policies so that the performance objectives of the service classes are met. We used
our extended experimental framework to compare our algorithm to an extended
version of the workload adaptation algorithm that was devised to solve a similar
problem with simple (non-compound) objectives. Our experiments showed that the
extended algorithm needs information about dominant objectives, which may not
be available a priori. The experiments also show that, although our algorithm takes
longer to approach the operating envelope, it can find a control parameter setting in
the envelope, if such a setting exists.

Although this thesis has addressed some of the workload management problems
described above, there are still some open problems to be solved. A future research
challenge is to devise a generic workload management interface so that a single
workload manager could interface to database systems from different vendors. There
could be a similar interface as the ODBC/JDBC interface that is used for sending
requests to the database system. The iJDBC implementation that was used for
experiments in Chapters 3 and 5, which supports generic admission control and
scheduling, is a first step in the direction of generic workload management.

Another research topic would be to devise a benchmark that could be used for
evaluating mixed workload management approaches. There are multiple challenges
in defining such a benchmark: First, the workload of the benchmark must comprise
different user loads where each user load has its own service level objectives. Sec-
ond, the workload should be dynamic, e. g., it could define user loads starting and
completing at different times, changes in the characteristics of the user loads (e. g.,
changes in the arrival rates of queries), and changes to the objectives of the user
loads. In order to evaluate the workload management approaches for such a mixed
workload, a metric is needed to quantify the goodness of the approaches. For exam-
ple, the metric may not only consider how fast the performance converges towards
an “acceptable” performance but also if the changes made to the system result in
“smooth” performance changes or the performance values vary widely.
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A. TPC-C

This chapter shows the DDL statements used for creating the TPC-C tables and
indexes on MaxDB 7.5.00.26.

create table warehouse (
w_id int not null ,
w_name varchar (10) not null ,
w_street_1 varchar (20) not null ,
w_street_2 varchar (20) not null ,
w_city varchar (20) not null ,
w_state char (2) not null ,
w_zip char (9) not null ,
w_tax numeric (4,4) not null ,
w_ytd numeric (12,2) not null ,
primary key (w_id))

create table district (
d_id int not null ,
d_w_id int not null references warehouse(w_id),
d_name varchar (10) not null ,
d_street_1 varchar (20) not null ,
d_street_2 varchar (20) not null ,
d_city varchar (20) not null ,
d_state char (2) not null ,
d_zip char (9) not null ,
d_tax numeric (4,4) not null ,
d_ytd numeric (12,2) not null ,
d_next_o_id int not null ,
primary key (d_w_id , d_id))

create table customer (
c_id int not null ,
c_d_id int not null ,
c_w_id int not null ,
c_first varchar (16) not null ,
c_middle char (2) not null ,
c_last varchar (16) not null ,
c_street_1 varchar (20) not null ,
c_street_2 varchar (20) not null ,
c_city varchar (20) not null ,
c_state char (2) not null ,
c_zip char (9) not null ,
c_phone char (16) not null ,
c_since timestamp not null ,
c_credit char (2) not null ,
c_credit_lim numeric (12,2) not null ,
c_discount numeric (4,4) not null ,
c_balance numeric (12,2) not null ,
c_ytd_payment numeric (12,2) not null ,
c_payment_cnt numeric (4,0) not null ,
c_delivery_cnt numeric (4,0) not null ,
c_data varchar (500) not null ,
primary key (c_w_id , c_d_id , c_id),
foreign key (c_d_id , c_w_id) references district(d_id , d_w_id ))
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create table history (
h_c_id int not null ,
h_c_d_id int not null ,
h_c_w_id int not null ,
h_d_id int not null ,
h_w_id int not null ,
h_date timestamp not null ,
h_amount numeric (6,2) not null ,
h_data varchar (24) not null ,
foreign key (h_c_id , h_c_d_id , h_c_w_id) references

customer(c_id , c_d_id , c_w_id ))

create table orders (
o_id int not null ,
o_d_id int not null ,
o_w_id int not null ,
o_c_id int not null ,
o_entry_d timestamp not null ,
o_carrier_id int ,
o_ol_cnt numeric (2,0) not null ,
o_all_local numeric (1,0) not null ,
primary key (o_w_id , o_d_id , o_id),
foreign key (o_c_id , o_d_id , o_w_id) references

customer (c_id , c_d_id , c_w_id ))

create table neworder (
no_o_id int not null ,
no_d_id int not null ,
no_w_id int not null ,
primary key (no_w_id , no_d_id , no_o_id),
foreign key (no_o_id , no_w_id , no_d_id) references

orders(o_id , o_w_id , o_d_id ))

create table stock (
s_i_id int not null ,
s_w_id int not null references warehouse(w_id),
s_quantity numeric (4,0) not null ,
s_dist_01 char (24) not null ,
s_dist_02 char (24) not null ,
s_dist_03 char (24) not null ,
s_dist_04 char (24) not null ,
s_dist_05 char (24) not null ,
s_dist_06 char (24) not null ,
s_dist_07 char (24) not null ,
s_dist_08 char (24) not null ,
s_dist_09 char (24) not null ,
s_dist_10 char (24) not null ,
s_ytd numeric (8,0) not null ,
s_order_cnt numeric (4,0) not null ,
s_remote_cnt numeric (4,0) not null ,
s_data varchar (50) not null ,
primary key (s_w_id , s_i_id ))

create table orderline (
ol_o_id int not null ,
ol_d_id int not null ,
ol_w_id int not null ,
ol_number int not null ,
ol_i_id int not null ,
ol_supply_w_id int not null ,
ol_delivery_d timestamp ,
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ol_quantity numeric (2,0) not null ,
ol_amount numeric (6,2) not null ,
ol_dist_info char (24) not null ,
primary key (ol_w_id , ol_d_id , ol_o_id , ol_number),
foreign key (ol_o_id , ol_w_id , ol_d_id) references

orders(o_id , o_w_id , o_d_id),
foreign key (ol_i_id , ol_supply_w_id) references

stock(s_i_id , s_w_id ))

create table item (
i_id int not null ,
i_im_id int not null ,
i_name varchar (24) not null ,
i_price numeric (5,2) not null ,
i_data varchar (50) not null ,
primary key (i_id))

create index cust_index on customer (c_last , c_d_id , c_w_id)

create index order_index on orders (o_w_id , o_d_id , o_c_id)

create index stock_index on stock (s_quantity , s_w_id)
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B. TPC-CH benchmark

This chapter gives details on the schema of the TPC-CH benchmark and the SQL
statements of the OLAP query suite of the TPC-CH benchmark. [22] gives more
information on the benchmark.

B.1. DDL for TPC-CH

Figure B.1 shows the schema of the TPC-CH benchmark. The tables originating
from TPC-H (region, nation, and supplier) are shown as bold rectangles, all other
tables originate from TPC-C. TPC-CH keeps the TPC-C entities and relationships
unchanged. The arrows in the figure denote the foreign keys constraints. The num-
ber below the names of the tables indicate the number of entries for each table.
As specified in TPC-C, the size of some tables depends on the number of ware-
houses W The solid arrows denote the foreign keys that are enforced by the DDL
statements (we reused the statements in Appendix A and below). The dashed ar-
rows indicate “implicit” foreign keys to model the relationships between customer
(originating from TPC-C) and nation (TPC-H), and stock (TPC-C) and supplier
(TPC-H). In TPC-CH, a customer ’s nation is identified by the first character of
the field c_state. TPC-C specifies that this character can have 62 different values
(upper-case and lower-case letters, and digits). Consequently, we populated table
nation with 62 entries. The primary key n_nationkey is an identifier according to
the TPC-H specification. Its values are chosen such that their associated ASCII
value is greater is a letter or digit: n_nationkey ∈ [48, 57] ∪ [65, 90] ∪ [97, 122]. An
entry in stock is uniquely associated with one of the 10000 entries in supplier through
the relationship stock .s_i_id · stock .s_w_id mod 10000 = supplier .su_suppkey .

Since TPC-CH was designed to leave the TPC-C schema unchanged, we used the
DDL statements in Appendix A to load the “TPC-C-part” of the TPC-CH schema.
The tables from TPC-C are extended with the likewise unchanged relations from
the TPC-H benchmark. The DDL statements for creating the “TPC-H-part” of the
TPC-CH schema on a DB2 9.5 database system are shown below.

create table region (
r_regionkey int not null ,
r_name char (55) not null ,
r_comment char (152) not null ,
primary key (r_regionkey ))

create table nation (
n_nationkey int not null ,
n_name char (25) not null ,
n_regionkey int not null references region(r_regionkey),
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Figure B.1.: Schema of the TPC-CH benchmark

n_comment char (152) not null ,
primary key (n_nationkey ))

create table supplier (
su_suppkey int not null ,
su_name char (25) not null ,
su_address varchar (40) not null ,
su_nationkey int not null references nation(n_nationkey),
su_phone char (15) not null ,
su_acctbal numeric (12,2) not null ,
su_comment char (101) not null ,
primary key (su_suppkey ))

B.2. OLAP query suite in the TPC-CH benchmark

In the following, we show the OLAP query suite used in the experiments on a DB2 9.5
database system.

Q1: Generate orderline overview

select ol_number ,
sum(ol_quantity) as sum_qty ,
sum(ol_amount) as sum_amount ,
avg(ol_quantity) as avg_qty ,
avg(ol_amount) as avg_amount ,
count (*) as count_order

from orderline where ol_delivery_d > ’2007 -01 -02␣00:00:00.000000 ’
group by ol_number order by ol_number
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Q2: Most important supplier/item-combinations (those that have the lowest
stock level for certain parts in a certain region)

select su_suppkey ,
su_name ,
n_name ,
i_id ,
i_name ,
su_address ,
su_phone ,
su_comment

from item , supplier , stock , nation , region ,
(select s_i_id as m_i_id ,min(s_quantity) as m_s_quantity
from stock , supplier , nation , region
where mod(( s_w_id*s_i_id ) ,10000)= su_suppkey
and su_nationkey=n_nationkey
and n_regionkey=r_regionkey
and r_name like ’Europ%’
group by s_i_id) m

where i_id = s_i_id
and mod(( s_w_id * s_i_id), 10000) = su_suppkey
and su_nationkey = n_nationkey
and n_regionkey = r_regionkey
and i_data like ’%b’
and r_name like ’Europ%’
and i_id=m_i_id
and s_quantity = m_s_quantity
order by n_name , su_name , i_id

Q3: Unshipped orders with highest value for customers within a certain state

select ol_o_id ,
ol_w_id , ol_d_id ,
sum(ol_amount) as revenue ,
o_entry_d

from customer , neworder , orders , orderline
where c_state like ’A%’
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and no_w_id = o_w_id
and no_d_id = o_d_id
and no_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d > ’2007 -01 -02␣00:00:00.000000 ’
group by ol_o_id , ol_w_id , ol_d_id , o_entry_d
order by revenue desc , o_entry_d

Q4: Orders that were partially shipped late

select o_ol_cnt , count (*) as order_count
from orders
where o_entry_d >= ’2007 -01 -02␣00:00:00.000000 ’
and o_entry_d < ’2012 -01 -02␣00:00:00.000000 ’
and exists (select *

from orderline
where o_id = ol_o_id
and o_w_id = ol_w_id
and o_d_id = ol_d_id
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and ol_delivery_d >= o_entry_d)
group by o_ol_cnt
order by o_ol_cnt

Q5: Revenue volume achieved through local suppliers

select n_name , sum(ol_amount) as revenue
from customer , orders , orderline , stock , supplier , nation , region
where c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id=o_d_id
and ol_w_id = s_w_id
and ol_i_id = s_i_id
and mod(( s_w_id * s_i_id ) ,10000) = su_suppkey
and ascii(substr(c_state ,1 ,1)) = su_nationkey
and su_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’Europe ’
and o_entry_d >= ’2007 -01 -02␣00:00:00.000000 ’
group by n_name
order by revenue desc

Q6: Revenue generated by orderlines of a certain quantity

select sum(ol_amount) as revenue
from orderline
where ol_delivery_d >= ’1999 -01 -01␣00:00:00.000000 ’
and ol_delivery_d < ’2020 -01 -01␣00:00:00.000000 ’
and ol_quantity between 1 and 100000

Q7: Bi-directional trade volume between two nations

select su_nationkey as supp_nation ,
substr(c_state ,1,1) as cust_nation ,
year(o_entry_d) as l_year ,
sum(ol_amount) as revenue

from supplier , stock , orderline , orders , customer , nation n1 , nation n2
where ol_supply_w_id = s_w_id
and ol_i_id = s_i_id
and mod(( s_w_id * s_i_id), 10000) = su_suppkey
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and su_nationkey = n1.n_nationkey
and ascii(substr(c_state ,1 ,1)) = n2.n_nationkey
and (

(n1.n_name = ’Germany ’ and n2.n_name = ’Cambodia ’)
or
(n1.n_name = ’Cambodia ’ and n2.n_name = ’Germany ’))

and ol_delivery_d between ’2007 -01 -02␣00:00:00.000000 ’ and
’2012 -01 -02␣00:00:00.000000 ’

group by su_nationkey , substr(c_state ,1,1), year(o_entry_d)
order by su_nationkey , cust_nation , l_year
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Q8: Market share of a given nation for customers of a given region for a given
part type

select year(o_entry_d) as l_year , sum(case
when n2.n_name = ’Germany ’

then ol_amount
else 0

end) / sum(ol_amount) as mkt_share
from item , supplier , stock , orderline , orders , customer ,

nation n1 , nation n2, region
where i_id = s_i_id
and ol_i_id = s_i_id
and ol_supply_w_id = s_w_id
and mod(( s_w_id * s_i_id ) ,10000) = su_suppkey
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and n1.n_nationkey = ascii(substr(c_state ,1,1))
and n1.n_regionkey = r_regionkey
and ol_i_id < 1000
and r_name = ’Europe ’
and su_nationkey = n2.n_nationkey
and o_entry_d between ’2007 -01 -02␣00:00:00.000000 ’ and

’2012 -01 -02␣00:00:00.000000 ’
and i_data like ’%b’
and i_id = ol_i_id
group by year(o_entry_d)
order by l_year

Q9: Profit made on a given line of parts, broken out by supplier nation and year

select n_name , year(o_entry_d) as l_year , sum(ol_amount) as sum_profit
from item , stock , supplier , orderline , orders , nation
where ol_i_id = s_i_id
and ol_supply_w_id = s_w_id
and mod(( s_w_id * s_i_id), 10000) = su_suppkey
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and ol_i_id = i_id
and su_nationkey = n_nationkey
and i_data like ’%BB’
group by n_name , year(o_entry_d)
order by n_name , l_year desc

Q10: Customers who received their ordered products late

select c_id , c_last , sum(ol_amount) as revenue , c_city , c_phone , n_name
from customer , orders , orderline , nation
where c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d >= ’2007 -01 -02␣00:00:00.000000 ’
and o_entry_d <= ol_delivery_d
and n_nationkey = ascii(substr(c_state ,1,1))
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group by c_id , c_last , c_city , c_phone , n_name
order by revenue desc

Q11: Most important (high order count compared to the sum of all order
counts) parts supplied by suppliers of a particular nation

select s_i_id , sum(s_order_cnt) as ordercount
from stock , supplier , nation
where mod(( s_w_id * s_i_id ) ,10000) = su_suppkey
and su_nationkey = n_nationkey
and n_name = ’Germany ’
group by s_i_id
having sum(s_order_cnt) > (select sum(s_order_cnt) * .005

from stock , supplier , nation
where mod(( s_w_id * s_i_id ) ,10000) = su_suppkey
and su_nationkey = n_nationkey
and n_name = ’Germany ’)

order by ordercount desc

Q12: Determine whether selecting less expensive modes of shipping is
negatively affecting the critical-priority orders by causing more parts to be
received late by customers

select o_ol_cnt ,
sum(case

when o_carrier_id = 1 or o_carrier_id = 2 then 1
else 0

end) as high_line_count ,
sum(case

when o_carrier_id <> 1 and o_carrier_id <> 2 then 1
else 0

end) as low_line_count
from orders , orderline
where ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d <= ol_delivery_d
and ol_delivery_d < ’2020 -01 -01␣00:00:00.000000 ’
group by o_ol_cnt
order by o_ol_cnt

Q13: Relationships between customers and the size of their orders

select c_count , count (*) as custdist
from (select c_id , count(o_id)

from customer left outer join orders on (
c_w_id = o_w_id
and c_d_id = o_d_id
and c_id = o_c_id
and o_carrier_id > 8)

group by c_id) as c_orders (c_id , c_count)
group by c_count
order by custdist desc , c_count desc

Q14: Market response to a promotion campaign

select 100.00 * sum(case
when i_data like ’PR%’ then ol_amount
else 0
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end) / 1+sum(ol_amount) as promo_revenue
from orderline , item
where ol_i_id = i_id and ol_delivery_d >= ’2007 -01 -02␣00:00:00.000000 ’
and ol_delivery_d < ’2020 -01 -02␣00:00:00.000000 ’

\subsubsection {Q15: Determine the top supplier}

with revenue (supplier_no , total_revenue ) as (
select mod(( s_w_id * s_i_id ) ,10000) as supplier_no ,

sum(ol_amount) as total_revenue
from orderline , stock
where ol_i_id = s_i_id and ol_supply_w_id = s_w_id
and ol_delivery_d >= ’2007 -01 -02␣00:00:00.000000 ’
group by mod(( s_w_id * s_i_id ) ,10000))

select su_suppkey , su_name , su_address , su_phone , total_revenue
from supplier , revenue
where su_suppkey = supplier_no
and total_revenue = (select max(total_revenue ) from revenue)
order by su_suppkey

Q16: Number of suppliers that can supply parts with given attributes

select i_name ,
substr(i_data , 1, 3) as brand ,
i_price ,
count(distinct (mod(( s_w_id * s_i_id ) ,10000))) as supplier_cnt

from stock , item
where i_id = s_i_id
and i_data not like ’zz%’
and (mod(( s_w_id * s_i_id ) ,10000)) not in (select su_suppkey

from supplier
where su_comment like ’%bad%’)

group by i_name , substr(i_data , 1, 3), i_price
order by supplier_cnt desc

Q17: Average yearly revenue that would be lost if orders were no longer filled
for small quantities of certain parts

select sum(ol_amount) / 2.0 as avg_yearly
from orderline , (select i_id , avg(ol_quantity) as a

from item , orderline
where i_data like ’%b’
and ol_i_id = i_id
group by i_id) t

where ol_i_id = t.i_id
and ol_quantity < t.a

Q18: Rank customers based on their placement of a large quantity order

select c_last , c_id o_id , o_entry_d , o_ol_cnt , sum(ol_amount)
from customer , orders , orderline
where c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
group by o_id , o_w_id , o_d_id , c_id , c_last , o_entry_d , o_ol_cnt
having sum(ol_amount) > 200
order by sum(ol_amount) desc , o_entry_d
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Q19: Machine generated data mining (revenue report for disjunctive predicate)

select sum(ol_amount) as revenue
from orderline , item
where ( ol_i_id = i_id

and i_data like ’%a’
and ol_quantity >= 1
and ol_quantity <= 10
and i_price between 1 and 400000
and ol_w_id in (1,2,3))

or ( ol_i_id = i_id
and i_data like ’%b’
and ol_quantity >= 1
and ol_quantity <= 10
and i_price between 1 and 400000
and ol_w_id in (1,2,4))

or ( ol_i_id = i_id
and i_data like ’%c’
and ol_quantity >= 1
and ol_quantity <= 10
and i_price between 1 and 400000
and ol_w_id in (1,5,3))

Q20: Suppliers in a particular nation having selected parts that may be
candidates for a promotional offer

select su_name , su_address
from supplier , nation
where su_suppkey in (select mod(s_i_id * s_w_id , 10000)

from stock , orderline
where s_i_id in (select i_id

from item
where i_data like ’co%’)

and ol_i_id=s_i_id
and ol_delivery_d > ’2010 -05 -23␣12:00:00 ’
group by s_i_id , s_w_id , s_quantity
having 2* s_quantity > sum(ol_quantity) )

and su_nationkey = n_nationkey
and n_name = ’Germany ’
order by su_name

Q21: Suppliers who were not able to ship required parts in a timely manner

select su_name , count (*) as numwait
from supplier , orderline l1 , orders , stock , nation
where ol_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id=o_d_id
and ol_w_id = s_w_id
and ol_i_id = s_i_id
and mod(( s_w_id * s_i_id ) ,10000) = su_suppkey
and l1.ol_delivery_d > o_entry_d
and not exists (select *

from orderline l2
where l2.ol_o_id = l1.ol_o_id
and l2.ol_w_id = l1.ol_w_id
and l2.ol_d_id = l1.ol_d_id
and l2.ol_delivery_d > l1.ol_delivery_d )

and su_nationkey = n_nationkey
and n_name = ’Germany ’
group by su_name
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order by numwait desc , su_name

Q22: Geographies with customers who may be likely to make a purchase

The workload TPC-CH of the unmodified TPC-C transactions. However, the TPC-
H queries had to be modified in order to be executed on the TPC-CH schema. The
SQL statements for the TPC-H-like queries is shown below.

select substr(c_state ,1,1) as country ,
count (*) as numcust ,
sum(c_balance) as totacctbal

from customer
where substr(c_phone ,1,1) in (’1’,’2’,’3’,’4’,’5’,’6’,’7’)
and c_balance > (select avg(c_BALANCE)

from customer
where c_balance > 0.00
and substr(c_phone ,1,1) in (’1’,’2’,’3’,’4’,’5’,’6’,’7’))

and not exists (select *
from orders
where o_c_id = c_id
and o_w_id = c_w_id
and o_d_id = c_d_id)

group by substr(c_state ,1,1)
order by substr(c_state ,1,1)
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