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Abstract

At the beginning of 2008, the new Prompt Gamma-ray Activation Analysis (PGAA) facility
started operation at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). The main
characteristic of this facility is the relatively intense cold neutron beam. This property is due to
the special construction of the neutron beam guide; the last 7m are elliptically tapered, which
means that the neutrons are focused to the sample. This arrangement allows for a max. neutron
flux of 6.07 · 1010 cm−2 s−1, which is currently the highest cold neutron flux worldwide. Due
to this high flux, the main problem encountered was the beam background, i.e. the radiation
background created from irradiation of construction materials.
The first part of this work was dedicated to the optimisation of the instrument. The goal achieved
was a reduction of the background by a factor of 15.
Once the instrument was optimised, measurements were dedicated to special elements like Cd,
Sm, Eu, and Gd, that have very good characteristics for this method and to archaeological
samples (old greek coins).
Another improvement of the instrument was the development of a 2D imaging system. A new
setup was installed in order to obtain spacial information about the distribution of elements
inside samples.
This imaging method was first applied on a small piece of the Allende meteorite with a different
setup developed in the frame of the European Project ANCIENT CHARM. This setup was
thought for 3D imaging, so conditions were not optimal for 2D mapping. With this insight a
second setup was later built especially thought for this application. In particular the neutron
field was reduced to a small spot of about 2x2mm2 and a two stage motor was built in order to
allow the movement of the sample in two dimensions. Moreover, the possibility to evacuate the
sample chamber was added. With this second setup the measurements on the Allende meteorite
were repeated for a comparison.
The 2D-setup was also applied in the study of the new alloy U-Mo for nuclear research. Through
a sputtering process, thin foils were produced from the target material. The goal of these
measurements was to determine the distribution of U and Mo in these foils, and the local element
ratio, in order to check the homogeneity. Nearby the foils, measurements on thin slices of
the target material were also carried out in order to check eventual changes in the elemental
distribution due to the sputtering process.





Zusammenfassung

Das Instrument zur Prompten Gamma Aktivierungsanalyse, PGAA, wurde im Jahr 2008 an
der Forschungs-Neutronenquellen Heinz Maier-Leibnitz (FRM II) in Betrieb genommen. Mit
einer maximalen Flussdichte von 6.07 · 1010 cm−2s−1 verfügt das Instrument über einen der
intensivsten kalten Neutronenstrahlen weltweit. Dies wird durch einen 7m langen, elliptisch
geformten Neutronenleiter erreicht, der den Strahl auf die Probenposition fokusiert. Bedingt
durch diesen hohen Fluss entsteht durch die Aktivierung von Strukturmaterialien ein hoher
Strahlungsuntergrund. Im Rahmen der Optimierung dieses Instumentes in dieser Arbeit wurde
der Hintergrund auf 1/15tel der ursprünglichen Intensität reduziert.
Anschließende Messungen wurden mit archäologischen Proben durchgeführt, wobei besonderes
Augenmerk auf die Elemente Cd, Sm, Eu und Gd gelegt wurde.
Ein neues Setup für zweidimensionale Messungen wurde entwickelt und installiert. Mit diesem
Setup ist eine ortsaufgelöste Messung der Verteilung von Elementen innerhalb der Proben möglich.
Diese Methode wurde für eine Verteilungsmessung einer gesputterten U-Mo-Folie verwendet.
Das Ziel war dabei, mögliche durch den Sputterprozess bedingte Verschiebungen des U/Mo-
Verhältnisses der Legierung aufzuzeigen und somit die Homogenität der produzierten Folien zu
überprüfen. In diesem Zusammenhang wurde auch die Zusammensetzung des ursprünglichen
Sputtertargets analysiert.
Die gleiche Methodik mit einem ähnlichen Setup wurde für eine Analyse eines Stückes des
Allende-Meteoriten im Rahmen des eruopäischen ANCIENT CHARM Projektes angewendet.
Dieses Setup war ursprünglich für 3D-Messungen ausgelegt und bildete die Grundlage für die
oben beschriebene verbesserte 2D-Methodik. Vergleichsmessungen zeigen den Fortschritt durch
den kleineren Strahlfleck (2x2mm2) und die evakuierte Probenkammer.
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CHAPTER 1
Introduction

“Analitycal chemistry is a scientific discipline that develops and applies methods, instruments,
and strategies to obtain information on the composition and nature of the matter in space and
time” by the Working Party on Analytical Chemistry of the Federation of European Chemical
Society.

Nuclear activation analysis is the most known radioanalytical technique for the isotopic and
elemental determination. This method is based on the reaction between the nuclei of the material
and nuclear projectiles (neutrons, accelerated charged particles e.g. protons or gamma photons).
This reaction can be written, for sake of simplicity, as:

target (projectile, light product) heavy product (1.1)

the light product created in the reaction can be similar to the projectile used, e. g. a neutron,
proton, or a charge particle (e. g. protons, deuterons, tritons, or 4He nuclei also called alpha
particles). For chemical analysis the activation method involves the measurement of the amount
of the light or heavy products in a known flux of projectiles and for a known time duration.
The amount of the products are proportional to the number of targets atoms, thus the atom
concentration. Usually these quantities are extremely small and conventional chemical methods
are not usable. The measurements are then performed by nuclear physics methods.
Detection of the light products can be accomplished only during bombardment of the target;
this kind of measurement is called prompt activation analysis. In contrast, when the heavy
product is radioactive, the atom concentration can be determined through the measurement of
the radioactivity. This second method is more commonly used and is called delayed activation
analysis.
Most nuclear activation analyses use thermal neutrons as projectiles for three basic reasons:

• Neutrons are uncharged particles, thus the cross-section for activation (i. e. the probability
to cause a nuclear reaction) is larger than that for charged particles.

• Since neutrons are uncharged particles, they can penetrate much deeper than charged
particles and thus allow also the analysis of relatively bulky samples.

• Thermal neutrons react with most target nuclides by one reaction, namely the (n,γ) reaction.
Therefore, any activated product can be formed only by one production channel.
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1.1. Fundamentals

In the following paragraphs the focus will be on the neutron activation methods, i. e. Instrumental
Neutron Activation Analysis (INAA or NAA) and Prompt Gamma-ray Neutron Activation
Analysis (PGNAA or PGAA) [1].

1.1 Fundamentals

The basic idea in neutron activation analysis (prompt and delayed) is to irradiate the nuclei
of a sample with neutrons in order to induce nuclear reactions. The products of these nuclear
reactions, usually radioactive nuclides, emit characteristic radiation that allows to identify and
to quantify the isotopes under study.
Neutrons, which do not have an electric charge remain unaffected by the Coulomb-barrier of a
nucleus, thus they have an higher probability to cause nuclear reactions compared to charged
particles. Using these reactions, it is possible to widely investigate the composition of a material.
Neutrons are usually classified according to their energies. In fig. 1.1 the energy of the neutrons
and their application in research are described. The most important reaction in INAA and

Figure 1.1: Energy of neutrons and their application in a research reactor. The size of the col-
ored area is proportional to the amount of neutrons available for the application at
FRM II [2].

PGAA is the radiative capture of thermal or low energy “cold” neutrons.
Whenever a nucleus absorbs a neutron a compound nucleus is formed whose excitation energy
equals the binding energy plus the kinetic energy of the neutron. In fig. 1.2 a schematic view of
the nuclear process is presented. The gamma-rays emitted by the de-excitation of the compound
nucleus are studied by PGAA, while the gamma-rays emitted by the decay of the reaction product
are studied by INAA. In both methods the elements or isotopes are analysed by measuring the
energy and the intensity of the gamma-photons or emitted particles. In particular the energy
of the gamma-rays emitted are characteristic for the isotope under study, and the number of

2



1. Introduction

Figure 1.2: The nuclear reaction at the basis of INAA and PGAA [3].

emitted photons of that particular energy are proportional to the concentration of the isotope
inside the sample.
INAA and PGAA are complementary, non-destructive, and multi-elemental analytical methods.
The information obtained is also independent on the chemical form of the element analysed. This
aspect can be regarded as an advantage as well as a disadvantage. In some cases information on
the chemical form of the element is necessary, e. g. in speciation studies, which is not obtained
with these two techniques [4].
PGAA complements, to some extend, the analysis of elements that cannot be measured by INAA.
Since some elements cannot be determined with INAA either because the decay products have a
too short half-life (< ms) or too long (months or years), or they decay without emitting gamma
radiation, PGAA can represent an alternative method for the detection of these elements, e. g.
light elements like H, B, C, and N. In fig. 1.3 the elements that can be detected with INAA are
shown.
A big advantage of INAA is that the measurements are following the irradiations and the gamma-
rays detection system has usually a low radiation background that enables a high analytical
sensitivity, i. e. low detection limits. In fact this method is widely used in trace and ultra-trace
elemental analysis because of this property. Moreover, the irradiations for INAA usually take
place in the reactor core where a high neutron flux is available. In table 1.1 the detection limits
for INAA assuming irradiation in a thermal equivalent neutron flux of about 1 · 1013 cm−2 s−1

are given.

3



1.1. Fundamentals

Figure 1.3: Elements that can be detected with INAA [5].

Detection limit [µg]
Elements

1 · 10−6 Dy, Eu
1 − 10 · 10−6 In, Lu, Mn
10 − 100 · 10−6 Au, Ho, Ir, Re, Sm, W
0.1 − 1 · 10−3 Ag, Ar, As, Br, Cl, Co, Cs, Cu, Er, Ga, Hf, I, La, Sb, Sc, Se, Ta, Tb, Th, Tm, U, V, Yb
1 − 10 · 10−3 Al, Ba, Cd, Ce, Cr, Hg, Kr, Gd, Ge, Mo, Na, Nd, Ni, Os, Pd, Rb, Rh, Ru, Sr, Te, Zn, Zr
10 − 100 · 10−3 Bi, Ca, K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y
10 − 100 · 10−3 Bi, Ca, K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y
0.1 − 1 F, Fe, Nb, Ne
10 Pb, S

Table 1.1: Detection limits for INAA [3].

In PGAA, the concurrent measurements with irradiation lower the analytical sensitivity of the
technique, however, elements that are not easily measured by INAA can be well determined
with this method, like for example H, B, C, N, V, and Pb. In fig. 1.4 the elements that can
be determined with PGAA are shown with relative detection limits. Irradiations are in this
case conducted outside the reactor core, and neutrons are “guided” from the reactor core to the
samples through neutron beam guides. Thus the thermal equivalent neutron flux available is
lower compared to INAA, usually it is about 1 · 108 cm−2 s−1.
The non-destructive property of the activation technique makes it suitable for archaeological
samples where the continued integrity of the objects is of fundamental importance. PGAA, in

4



1. Introduction

Figure 1.4: Elements that can be detected with PGAA and their relative detection limit.

this case is preferable to INAA. The different measurement modality (measuring position external
to the reactor core) allows to measure an entire object (in case of relatively small artifacts), not
requiring destructive sample taking.

1.2 Instrumentation for Activation Analysis
For INAA and PGAA the instrumentation necessary for analysis is a neutron source and a
gamma-ray spectrometer. The main neutron sources available are: nuclear reactors, ion and
electron accelerators (including neutron generators) and radioactive sources. In table 1.2 a list of
the most commonly used neutron sources is presented.

5



1.2. Instrumentation for Activation Analysis

Reaction Average neutron energy [MeV] Neutron yield
Photonuclear sopurces
88Y(γ,n)9Be, t1/2=106.6 d 0.16 2.7 · 103 n s−1 GBq−1

124Sb(γ,n)9Be, t1/2=60.2 d 0.02 5.1 · 103 n s−1 GBq−1

Alpha emitter sources
239Pu(α,n)9Be, t1/2=2.4·104 y 3 − 5 2.7 · 105 n s−1 GBq−1

226Ra(α,n)9Be, t1/2=1600 y 3.6 3 · 105 n s−1 GBq−1

241Am(α,n)9Be, t1/2=433 y 3 − 5 6 · 104 n s−1 GBq−1

Spontaneous fission source
252Cf, t1/2=2.64 y 2.3 2.3 · 1012 n s−1 g−1

Cockroft-Walton accelerators
3H(d,n)4He 14.7 108 − 1011 n s−1

Cyclotron
10µA of 30 MeV d on Be Broad distribution 2 · 1011 n s−1

Nuclear reactor
Induced fission Broad distribution 1011 − 1015 n cm−2 s−1

Table 1.2: Most used neutron sources for INAA [4].

Typically, nuclear reactors are chosen as neutron sources for INAA and PGAA, where the
available neutron flux is higher and thus the required irradiation times are shorter. For PGAA
the introduction of neutron guides and cold neutron sources helped improving the analytical
sensitivity, because they allow the transport of neutrons from the reactor core over large distances.
By using slightly curved neutron guides, the hard gamma radiation form the reactor core is
eliminated, i. e. the gamma-ray spectrometer at the sample position will detect a lower radiation
background [1].
The detection system is the second fundamental element for INAA or PGAA measurements.
Gamma-rays are interacting with the material through 3 main processes: photoelectric effect,
Compton scattering and pair production. In fig. 1.5 the processes occurring with the interaction
of gamma-rays and the detector crystal and the response of the gamma spectrometer, i.e. the
gamma-ray spectrum, are shown. The first gamma-ray detectors used were inorganic scintillation
detectors like sodium-iodide crystals doped with Tl. In the ’60s, semiconductor detectors, e.g.
lithium drifted Ge-detectors or high purity Ge-detectors, were developed and they started to
substitute scintillation detectors. Inorganic scintillation detectors have a high detection efficiency
with respect to semiconductor detectors, but the energy resolution is poor, as can be seen in fig.
1.6. Currently, mainly semiconductor detectors, in particular high purity Ge detectors (HPGe),
are in use and thanks to their superior energy resolution. This propety allows the identification
of more peaks, and thus increases the quality of the measurements. In particular for PGAA,
the number of gamma-lines per element are enormous and a good energy-resolved spectrometer
is thus essential. However, scintillation detectors can help to reduce the Compton background,
especially in PGAA measurements. In this case they are used as anti-coincidence detectors to
suppress Compton scattered gamma-rays events occurring in the HPGe detector.
After the acquisition of the gamma spectrum the analysis of the peaks is performed. The energies
of the gamma-lines are used to identify elements inside the sample, and their activities are used
to determine their amount.

6



1. Introduction

Figure 1.5: Processes that occurs during the interaction of gamma-rays in the radiation detector
and the spectrometer response, i.e. the gamma spectrum [6].
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1.2. Instrumentation for Activation Analysis

Figure 1.6: Energy resolution difference in detector response between a NaI(Tl) scintillator detec-
tor and a Ge(Li) semiconductor detector (decay of 108mAg and 110mAg) [7].
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1. Introduction

1.3 Aim of this work
This work is concentrating on the PGAA technique. Recently, at FRM II a new PGAA facility
was installed, which has a very intense cold neutron flux. The characterisation and the optimisa-
tion of the instrument are a central part of this work. The need of such fine tuning is essential
in order to deliver more accurate analytical information obtained through the measurements.
The most important step was the reduction of the radiation background stemming from the
irradiation of construction materials. For PGAA measurements, a low radiation background is
essential in order to guarantee precise and sensitive analytical measurements.
As already mentioned, the PGAA method is sensitive to light elements as well as high cross-section
elements like Gd, Sm, Eu, and Cd. The high neutron capture probability lowers the detection
limits of these elements down to hundreds of ppb, and allows the detection of these elements
also under difficult conditions, e.g. as thin films grown on a massive substrate. Cd can also be
determined in difficult matrices, such as biological samples, where the high amount of water
disturbs the measurements.
Moreover, the high neutron flux of this facility makes spatially resolved PGAA possible. Through
the collimation of the neutron beam and the use of a multiple stage table, the samples can be
scanned and spatial information about the distribution of the elements can be obtained. This
feature was first developed in the framework of the European project ANCIENT CHARM. This
ambitious project was aimed at 3D elemental distribution, and was tested in a 2D modality on a
small meteorite sample. Encouraging results obtained were one of the reasons for a dedicated
setup. This second setup was developed and the meteorite was used again to test the new 2D
modality of PGAA. The comparison of the results on the meteorite showed a net improvement.
The potential of the 2D setup is enormous.
This 2D feature turns PGAA into a very sensitive method in the determination of local con-
centrations, for example in alloys like UMo. UMo is a new alloy employed as fuel in nuclear
reactors. From this material deposits are produced by sputtering from the target UMo material.
The characterisation of both, target and samples, is very important and helps to optimise the
production process.

9





CHAPTER 2
Prompt Gamma Activation Analysis: Fundamentals

Neutrons were discovered in 1932 by Chadwick [8]. The first observation of a gamma-ray emission
during a neutron capture reaction was made in 1934 in two separate experiments, one performed
by Chadwick’s student Lea [9] and the second one performed by Fermi and collaborators [10].
In their experiments, the prompt gamma-line at 2223 keV from the 1H (n,γ) 2H reaction was
observed.
With the development of nuclear reactors, higher neutron fluxes became available and the study
of prompt gamma-rays from nuclides for nuclear physics as well as elemental and isotopic analysis
was carried out. The first reactor-based system for Prompt Gamma Activation Analysis (PGAA)
experiments for elemental analysis was set up in 1966 by Isenhour and Morrison [11, 12] using a
NaI(Tl) detector.
Improvements in analytical selectivity were accomplished in the late ’60s with the development
of high resolution semi-conductor detectors (lithium drifted germanium detectors), Compton
suppression and pair spectrometers with both NaI(Tl) and Ge(Li) detectors.
Neutron guides and cold neutron sources helped in the further improvement of the sensitivity of
this method (see chapter 1).
Starting from the ’90s, the wider availability of low-energy guided neutron beams, made possible
permanent and stand-alone PGAA systems for analytical purposes.[1]
Concerning the application of PGAA at the research reactor in Munich, the first PGAA exper-
iments were carried out by Henkelmann et al. at the former FRM I with a thermal column
[13, 14]. In 2005, the new research reactor FRM II started operation and was equipped with a
new permanent PGAA station.

In the following chapter the theory behind the PGAA technique is described. An overview of the
analytical methods is also given.1

2.1 Fundamentals of Prompt Gamma Activation Analysis
The most important reaction in PGAA, as already mentioned, is the radiative capture of thermal
or low energy “cold” neutrons.
Whenever a nucleus absorbs a neutron a compound nucleus is formed whose excitation energy
equals the binding energy plus the kinetic energy of the neutron. With slow neutrons (with an

1The references for the whole chapter, if not specified otherwise, are: [1, 15–18].
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2.1. Fundamentals of Prompt Gamma Activation Analysis

energy in the meV range), the capture state has a well-defined energy that equals the binding
energy. The binding energy for a nucleon is between 6-10MeV for about 80% of the stable nuclei
and tends to increase with Z until Z=22 (Ti) and then to decrease. The decay of the compound
nuclei takes place in about 10−16 s and the excited states of the product nucleus decay to the
ground state in about 10−9 − 10−12 s, emitting a cascade of gamma-rays. These radiations are
called prompt if their decay, following the capture reaction, takes place in a shorter time than
the resolving time of the detection system, which is typically between 10 ns and 10µs.
The prompt gamma-ray spectrum that is recorded shows two principal components: the primary
component, consisting of direct 5-10MeV gamma-rays from the capture state to lower excited
states, usually below 2MeV, and the secondary component, consisting of low-energy decays
between the low-lying excited states. In fig. 2.1 the prompt gamma-rays scheme following the
neutron capture by 59Co is shown.

Figure 2.1: Gamma-rays following thermal neutron capture by 59Co. Primary transitions from
the capture state are shown in white. Secondary transitions between the low-lying
excited states are shown in black. The thickness of the lines are proportional to the
transition intensity [19].

Another important reaction that takes place during neutron irradiation is neutron capture with
charged particle emission. This reaction is important for some light elements. The most important
cases are: 3He(n,p)3H (its thermal cross section is 5222 b, for example this reaction is mainly
used in neutron detectors), 6Li(n,t)4He (940 b), 14N(n,p)14C (1.83 b) where no gamma-rays are
emitted and the 10B(n,α)7Li (3837 b) reaction where a gamma-ray of 478 keV is produced by the
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excited level of the 7Li nucleus. This reaction is also denoted by 10B(n,αγ)7Li.
The cross section values above cited are for thermal neutron fluxes. In case of cold neutron fluxes
these values generally increase because of the 1/v-law behavior of the cross section, i.e. the cross
section is inversely proportional to the velocity of the neutrons.
Other secondary processes may take place during neutron irradiation. Radiative neutron capture
of epithermal neutron is a process occurring when the neutron beam as an epithermal component.
The epithermal component of the neutron spectrum covers a larger energy range, and the energy
of the capture state is not defined as for slow neutrons. Moreover, if a resonance is present, the
capture state reaches a quasi-stationary level, which prolongates the half-life of the compound
nucleus by 2-3 orders of magnitude. The levels excited in this way may present different branching
ratios for the prompt gamma-rays. If the “daughter” nucleus after the capture is radioactive,
the delayed gamma-rays produced in the decay can interfere with the prompt spectrum. This
process is actually the fundamental process in Neutron Activation Analysis. Another effect,
which produces to some extend “delayed” gamma-rays, is the isomeric transition. In this process
the prompt gamma cascade can be delayed by metastable levels. Transitions with a half-life of
more than 1µs can be considered isomeric, usually half-lives for isomeric transitions are between
seconds and hours. Neutron induced fission is a particular effect that can be observed when
a fissile material, like 235U is irradiated. In this case, a large number of fission products are
produced and they decay with delayed and prompt gamma radiation with a total energy of
15MeV/fission. Neutrons can interact with nuclei also through elastic and inelastic scattering
events. Elastic scattering usually changes the direction and the energy of the incoming neutrons
and this is the main process in neutron thermalisation. At low neutron energies, if the sample
has a crystalline structure, neutrons undergo to so-called Bragg scattering effect that scatters
neutron of a particular wavelength into a preferential direction. This effect is generally used
to produce mono-energetic neutron beams. In contrast inelastic scattering occurs in presence
of fast, i.e. energetic, neutrons. This process can happen only if the neutrons have an energy
that is higher than the energy of the first excited state of the nucleus (threshold energy). If the
neutron beam carries also a fast component, nuclear reaction with fast neutrons may take place.
In this case, particle emission usually occurs. These reactions have generally a threshold energy,
which is characteristic for the irradiated material. Following all the above mentioned processes,
other secondary reactions may take place, e.g. characteristic X-rays can be emitted during or
following the activation.
Fast charged particles, emitted in some neutron capture reactions, may produce secondary
fast neutrons. This happens with high probability following the 6Li(n,t)4He reaction, where
α-particles and fast tritons are released, causing secondary (t,n)- or (α,n)-reactions on 6Li and 7Li
generating fast neutrons with energies up to 15MeV. Another source of secondary fast neutrons
are fissile materials. In this case fission neutrons are produced.
Annihilation radiation (511 keV) is almost always produced during a PGAA measurement, from
β+ particles produced by some activation products but the main source is the pair production
process.
When the radiation source is close to the detector, multiple Compton scattering of gamma-rays
may occur increasing the Compton continuum in the low-energy range.
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2.2 PGAA in equations
PGAA is mainly based on the radiative neutron capture reaction, therefore the most basic
equation for this process is the reaction rate R:

R =
∫ Emax

Emin
N0 θ σ(E)φ(E) dE, (2.1)

where σ(E) is the differential cross section, φ(E)dE is the differential flux density or fluence
rate of particles with kinetic energy between E and E + dE, θ is the isotopic abundance of the
irradiated element and N0 is the atomic density which is connected with the mass m of the
sample through the relation:

N0 = m

M
Na, (2.2)

M is the atomic mass of the element and Na Avogadro’s number (6.022 · 1023). This equation is
valid if the target is thin and all absorption effects are negligible.
For thermal neutrons, the cross section is inversely proportional to the velocity of neutrons
(1/v-law), the mean reaction rate can also be written as:

Rth = N0 σ0 φth, (2.3)

σ0 is the isotopic cross section for the most probable neutron velocity (2200m/s, E=0.025 eV),
that corresponds to the maximum of the Maxwellian velocity distribution at room temperature
293K and φth is the thermal neutron flux density.
In PGAA single gamma lines are detected. For the identification and analysis of the gamma lines
it is useful to introduce the partial gamma-ray production cross section (for thermal neutrons)
for the photon of a given energy Eγ :

σγ ,0 = θ σ0 Pγ , (2.4)

where Pγ is the fraction of emitted gamma photons of energy Eγ per capture (i.e. emission
probability). In this way, taking into account eq. 2.1, the count-rate (recorded events per time
unit) ργ of a given gamma detected photon is:

ργ =
∫ Emax

Emin
ε(Eγ)N0 σγ(E)φ(E) dE (2.5)

where ε(Eγ) is the counting efficiency of the detector for the given energy of the photon and
σγ(E) is the quantity defined in eq. 2.4. In most real cases, the samples might not be considered
as ideally thin. In this case the modification of the neutron field and the attenuation of gamma
rays within the sample must be considered. The following expression takes these effects of the
sample into account:

ργ =
∫

V

∫ Emax

Emin

µ(r)
M

Na ε(Eγ ,r)σγ(En)φ(En,r) dEn dr (2.6)
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where µ(r) is the mass density as a function of the position r inside the sample (this takes
also the inhomogeneity of the sample itself into account), φ(En,r) is the neutron flux as a
function of the neutrons energy and position and considers also the inhomogeneity of the beam,
self-shielding and neutron scattering of the sample, ε(Eγ ,r) is the detector counting efficiency
for the gamma-ray under analysis as a function of the position in the sample which corrects for
gamma self-absorption and the geometric efficiency.
In reality, this complex expression can be avoided using some simplifying assumptions. The
dependence of the position in the sample can be simplified if the facility has a relatively big
sample-to-detector distance and, for the sake of reproducibility, a fixed geometry that allows a
reproducible sample positioning in front of the detector. Moreover, the gamma self-absorption
(see Appendix A) can be reduced if relatively thin and small samples are chosen. In this case, the
counting efficiency can be replaced by ε(Eγ). The neutron self-shielding can also be corrected by
simple expressions (see Appendix A) thus the neutron flux can be reduced to φ(En). Finally, for
homogeneous samples, the mass density can be replaced with the real mass m.
In the next subsections, two limiting cases are presented. Both of them are described using the
above mentioned approximations.

2.2.1 Thin sample approximation
When the sample is considered thin enough, i.e. transparent to neutrons, eq. 2.6 becomes:

ργ ,0 = m

M
Na ε(Eγ)

∫ Emax

Emin
σγ(En)φ(En) dEn = m

M
Na ε(Eγ)σγ 0 φ0 (2.7)

In this expression, the integral can be replaced with the product of the thermal partial production
cross section and φ0, the so called thermal equivalent neutron flux, which is defined as:

φ0 =
√
π

2
v0
vT

φr (2.8)

where φr is the real flux, i.e. the number of neutrons per unit surface per second, the term√
π/2 vT is the mean velocity for neutrons following the Maxwellian distribution and v0 is the

velocity for thermal neutrons (i.e. 2200m/s). This quantity is thus inversely proportional to the
average velocity. The reaction rate thus increases for a cold neutron beam.

2.2.2 Black sample approximation
The second case takes into account a black sample. A sample is defined black if it absorbs all
incoming neutrons. The count-rate does not depend on the cross section anymore but it is
directly proportional to the number of neutrons;

ρ∞γ = S ε(Eγ)Pγ φr, (2.9)

where S is the surface area of the sample encountered by neutrons, φr is the real neutron flux
and Pγ is the emission probability of the gamma line in analysis.
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2.2.3 Real samples
In real cases, if the sample can be considered quite transparent to neutrons (for example an
iron sample with a thickness of 10mm transmits about 80% of the incoming thermal neutrons),
eq. 2.7 can be used in the calculation. If the isotopes under study have a regular capture cross
section (1/v-law), the thermal neutron capture cross section can also be used. For non-regular
nuclides the Westcott factor, g(T ), has to be added to the cross section value in order to correct
it.
When effects like neutron self-shielding and gamma self-absorption are not anymore negligible,
correction factors have to be added (see Appendix A).

2.3 Characteristics of a PGAA measurement
PGAA is a complementary and, in few cases, competitive radioanalytical technique with respect
to traditional NAA. The main properties of a PGAA measurement can be summarized as
following:

• Multielemental and non-destructive analysis;

• Light elements analysis;

• Low activation of the samples;

• Bulk analysis thanks to the high penetration power of neutrons and prompt gammas.

Other characteristics that can be regarded as “disadvantages” of this method are:

• A large facility is required as neutron source;

• Lower analytical sensitivity and lower detection limits with respect to NAA;

• Prompt gamma spectra are far more complex than decay spectra;

• Scattered and fast neutrons cause detector degradation and a high amount of shielding
materials is required.

The analytical results with PGAA are independent from the chemical state of the sample. If the
samples, up to few grams, do not contain elements with extremely high cross-sections or a large
average atomic number, they can be regarded as matrix-independent. That means, the gamma
line intensities under study are not affected by the emissions of other elements in the sample.
In PGAA measurement and irradiation take place at the same time. The crossing point between
the n-beam and the viewing solid angle of the collimated detector defines the active volume for
the measurements. This feature can be very useful in case of the analysis of large inhomogeneous
samples, e.g. archaeological samples.
The analytical sensitivity S for elements can be derived from eq. 2.6 and is dependent on the
facility:

S = ργ
m

= Na

M
σγ,0 φ0 ε (E) . (2.10)

This quantity depends on the partial gamma-ray production cross section, the neutron flux and
the counting efficiency. The last two terms vary from one facility to another. Generally, the
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analytical sensitivity is lower than in NAA. In NAA, the samples are irradiated in an isotropic
neutron field and then the decay gamma lines are later measured in a convenient geometry
(almost in contact with the detector) that increases the geometric efficiency. In PGAA, the
simultaneous irradiation and measurement causes a poorer geometric efficiency and generally the
used neutrons are a low-divergent beam with a lower flux with respect to the flux in a reactor
core. All these effects lower the analytical sensitivity of PGAA by a factor between 10−4 − 10−6

with respect to NAA.

2.3.1 Dynamic range and detection limits
Another characteristic of PGAA is the wide dynamic range. Any element in any matrix can be
analysed within a broad concentration range. Therefore, the detection limits of elements are
affected by the type and amount of the coexisting elements in the sample. Extensive work on
detection limits in various matrices was published by C. Yonezawa [20]. Detection limits for 20
elements were calculated in different elemental matrices (biological, geological and environmental
samples). In fig. 2.2, it is possible to see how the detection limits may vary in different matrices.
From these data for B, Gd, Sm, and Cd the detection limits vary between 25 to 820 ng/g; 1.1 to

Figure 2.2: Detection limits for 20 elements in various matrix.

820 µg/g for H, Na, S, Cl, K, Ti, Mn, Co, and Hg; and 0.031 to 10% for C, N, Mg, Al, Si, P, Ca,
and Fe.
In sea samples, the detection limits are much higher than those shown in fig. 2.2 because of the
high amount of Cl in the matrix (the capture cross section for 35Cl, 75.76 % isotopic abundance,
is 43.60 b).
A more general expression for the detection limits (DLs) is the one defined by L. A. Currie [21].
The detection limit depends on the spectral background. The spectral background in PGAA
is the spectrum of the prompt gamma-rays produced by the materials surrounding the sample
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position. In a theoretical background free measurement, a peak can be distinguished with the help
of few counts. In real cases, several hundreds of counts are necessary to distinguish a peak over
the background base line. Commonly, DLs are calculated as three times the standard deviation
of the number of background counts in the corresponding position of the considered peak Nbgr.
The DL in mass units is then obtained with the following equation:

DL = 3
√
Nbgr

S tm
(2.11)

where S is the analytical sensitivity defined in eq. 2.10 and tm is the duration of the background
measurement.

2.4 Quantitative analysis
Elemental concentrations in a sample can be determined absolutely using eq. 2.6. In practice,
this method is not so useful because of the large uncertainties in the measurement of the neutron
spectrum as well as the neutron capture cross section as a function of neutron energy. Generally,
a quantitative analysis is carried out using relative methods. The most common in PGAA are
the comparative method and the internal standardization method, also called k0-method because
of its analogue to the well-known k0-method in NAA.

2.4.1 Comparative method
With this method, the unknown concentration of an element is calculated by comparison with
a well-known standard sample of the same element. The difficulty in the determination of the
product of the neutron-capture count-rate and the emission probability of the gamma lines with
the absolute method is overcome with the measurement of a known amount of the element under
the same conditions as for the unknown sample. In this case, the analytical sensitivity defined in
eq. 2.10, also called specific count-rate, is defined according to the measurable quantities in the
standard sample:

Sx,std = Nγ,x / tm
mx,std

(2.12)

where Nγ,std is the net peak area of the given gamma line of the analyte x in the standard sample,
tm is the measuring time and mx,std is the known mass of the analyte x. Once this quantity is
measured, it is possible to obtain the unknown amount of the element under study in the sample
according to the following expression:

mx,sample =
(Nγ,x / tm)sample

Sx,std
. (2.13)

One disadvantage of this method is that the sample and the standard material are measured in two
different irradiations. Differences in the neutron flux between the sample and the measurement
of the standard can be a source of error. To correct for these differences, a normalization of the
peak count rate of the gamma rays of the analyte by those of a “monitor” irradiated at the same
point in time is done. Examples for monitors are Ti or Cr foils.
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Another approach is measuring calibration curves. Different standard samples are prepared with
different concentrations of the analyte and then measured. The relation between the amount
of the elements and the normalized peak count-rates were found to be linear. In this case, the
analytical sensitivity is calculated from the slope of the curve, i.e. the calibration curve.
When using this method, it is very important to match as close as possible the elemental compo-
sition and the geometry of the standard to the sample in order to lower as much as possible all
effects that affects the gamma rays detection efficiency.

2.4.2 PGAA k0-method
As mentioned before, differences in geometry and sample composition cause problems in the
correct evaluation of the gamma lines. These effects can be negligible with the use of an internal
standard. Elemental determination in the internal standardization method is carried out using
a calibration curve where the peak count ratios of the analyte and the internal standard are
plotted versus the mass ratios of the analyte to the internal standard.
After the irradiation of a standard containing a known amount of analyte, x, and of the internal
standard element, or comparator c, the ratio of the analytical sensitivities is obtained:

Sx
Sc

= kr,c(x). (2.14)

The factor kr,c(x) is constant under the same experimental conditions (neutron spectra and
detection efficiency). This method is also called ratio method. H, Cl, Ti, Cr, Ni, Sm, and
Hg have been used as comparator elements. The factors obtained with this method are not
universal and they can be used only under the same experimental conditions where they were
determined. By the use of the capture cross section for thermal neutrons and by normalizing for
the detection efficiency, the kr-factor become independent from the facility. The new k-factors
are called k0-factors, in analogy with the k0-method in NAA, and are defined as follows:

k0,c = Sx / ε(Eγ,x)
Sc / ε(Eγ,c)

= θx Pγ,x σ0,x /Mx

θc Pγ,c σ0,c /Mc
= σγ,x /Mx

σγ,c /Mc
(2.15)

where σγ are the partial gamma-ray production cross section as defined in eq. 2.4.
For the measurement of the k0-factor, a very well calibrated gamma-ray spectrometer is necessary.
In principle, every element can be used as a comparator. Generally the choice is H because it
has just one gamma line and it is also a cross-section standard. Next to H, another comparator
that is often used is Cl.
Moreover, from the k0-values it is also possible to calculate the partial gamma ray production
cross section using a well-known reference cross section and the atomic masses. Relative elemental
contents of element x compared to element y in the same sample can be obtained using the
expression:

ρx:y = Sx / εx k0,c(x)
Sy / εy k0,c(y) . (2.16)
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CHAPTER 3
Instrumentation 1: PGAA

Figure 3.1: PGAA instrument at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM
II). Copyright W. Schürmann, Technische Universität München-TUM

A PGAA facility consist of a neutron source, a neutron guide that directs the neutrons to the
sample, a beam shutter to control the irradiation (in practice it starts and stops the irradiations),
a reproducible sample positioning system, a gamma-ray spectrometer, a beam stopper and
shielding to protect the detector and of course personnel from neutrons and gamma radiation.
All around the world there are few functional PGAA facilities, each one with different character-
istics.
In this chapter, the focus is on the PGAA facility installed at the Forschungs-Neutronenquelle
Heinz Maier-Leibnitz (FRM II). The main characteristics and the peculiarity of this facility
are described in detail. The optimisation of some parameters like neutron field and gamma-ray
background are described and the first indicative detection limits and sensitivities for some
elements, e.g. like H, B, or Pb, are calculated.
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3.1 Instrumentation

3.1.1 Neutron source and neutron guide
The present PGAA instrument was originally located at the neutron spallation source SINQ of
the Paul Scherrer Institut (PSI) Villingen, Switzerland [22]. In 2003, the need of a place for a
new scattering instrument and the call of the PGAA responsible Dr. J. Jolie at the Universität
zu Köln were the reasons of the removal of the PGAA facility from PSI. Meanwhile in 2004, the
start of the operation of the new high flux research reactor in Munich offered the opportunity to
install there the existing PGAA instrument.
The neutron guide of the instrument looks at the cold source in the reactor tank. The latter
one is a cooled auxiliary moderator, in which a spectrum of low-energy neutrons is generated
with a Maxwell distribution centered around approximately 5meV. The moderator consists of
liquid deuterium at about 25K. The average (integral) neutron flux density in the cold source
is approximatively 3 · 1014 cm−2 s−1 (at a nominal reactor power of 20MW; perturbed by flux
depression), resulting in a cold neutron flux density of 9.1 · 1013 cm−2 s−1 [2]. This generates a
white spectrum of cold neutrons with an average energy of 1.83meV or in wavelength units 6.7Å
and with a cadmium ratio of 9860.
The fingerprint of this facility is the neutron beam guide. All together the distance of the
instrument from the cold source is about 51m. The first section of the neutron guide is about
41m long and curved with a radius of 390m. The curvature of the beam guide is necessary to
avoid the direct view of the reactor core, thus eliminating the hard gamma radiation radiating
from it. Furthermore, the positioning of the instrument had to be chosen according to spatial
limitations in the hall. The last 6.9m of the neutron guide are straight and elliptically tapered
and further divided into two units: a fixed 5.8m long part and a removable one of 1.1m, also
called elliptical nose [23].

Figure 3.2: View of the instruments at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz
(FRM II)
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The position of the elliptical nose defines two different geometries for measurements.
The first setup available, without the elliptical nose (setup 1, see fig.3.3(a)), has the neutron
focus about 30 cm away from the end of the beam guide and the dimensions of the neutron field
at the sample position are 34 x 50mm2. The maximum thermal equivalent neutron flux for this
configuration is 2.42 · 1010 cm−2 s−1 (6.54 · 109 cm−2 s−1 for cold neutrons).
Using the elliptical nose (setup 2, see fig.3.3(b)) the dimensions of the neutron field are smaller
(just 17 x 19mm2) but the maximal thermal equivalent neutron flux is increased about 2.5 times
to 6.07 ·1010 cm−2 s−1 (1.64 ·1010 cm−2 s−1 for cold neutrons) [2, 24]. In this second configuration
the neutron focus was measured 9.5 cm away from the exit window. However, due to mechanical
constraints, the sample can be placed only 11 cm away from the exit window. The current flux
values were measured at that position.

(a) Setup without elliptical nose (b) Setup with the elliptical nose

Figure 3.3: The two different setup avilable at the PGAA instrument. Without 3.3(a) and with
3.3(b) elliptical nose. 1

Three attenuators (A1, A2 and A3) are installed about 20m upstream of the sample position to
allow for a more adjustable neutron flux. These attenuators are made of borated aluminum and
are not in the direct view of the sample position, thus no additional gamma-ray background is
created. Two of them are made out of slits (comb-like, horizontally for A1 and vertically for A2)
and the third one has round holes. In table 3.1 the flux intensities for the two setups and for
various attenuator configurations are given.

3.1.2 Detection system and sample environment
For the gamma-ray spectra acquisition, two standard Compton-suppressed gamma spectrometers
are in use:

1Fig. 3.3(b) Copyright W. Schürmann, TUM.
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Attenuator Setup Th. eq. Flux [cm−2 s−1] Neutron transmission

Setup 1, without elliptical nose
full beam 2.42 · 1010

A1 4.12 · 109 17%
A2 4.40 · 109* 18%
A3 1.53 · 109 6%
A1+A3 7.32 · 108 3.1%
A2+A3 8.34 · 108 3.4%
A1+A2+A3 3.61 · 108 1.5%
Setup 2, with elliptical nose
full beam 6.07 · 1010

A1 7.18 · 109 12%
A2 7.66 · 109 13%
A3 2.41 · 109 4%
A1+A3 1.71 · 109 2.8%
A2+A3 1.92 · 109 3%
A1+A2+A3 7.84 · 108 1.3%

Table 3.1: Thermal equivalent neutron fluxes for the two setups and for some attenuator config-
urations. The relative error of the neutron flux values is 5%.The flux value A2 for
setup 1 indicated by * was not measured due to technical problems. The value given is
an estimated one.

• Det.1: HPGe n-type detector with a relative efficiency of 60% (ORTEC poptop) inserted
in an annulus of BGO scintillators (coaxial geometry, in fig.3.6 on the right);

• Det.2: HPGe n-type detector with a relative efficiency of 36% (Canberra) surrounded by a
NaI(Tl)/BGO scintillation system (perpendicular geometry in fig.3.6 on the left).

Standard NIM (Nuclear Instrument Module) modules are used for the electronic instrumentation.
The analysis of the shaped detector signals is made by an integrated ADC-MCA system (16k
channels) developed at the Institut für Kernphysik, Universität zu Köln [25].
For the evaluation of the spectra and the calibration of the spectrometer (efficiency curve and
non-linearity), the software Hypermet PC is in use [26, 27]. The efficiency and non-linearity
calibration procedure followed for both detectors was the same as described in [28]. In fig. 3.4
the efficiency curve for the typical energy range for PGAA (from about 70 keV up to 11 MeV)
is presented. The low energy region of the efficiency curve was obtained with the radioactive
source 133Ba and the calibrated radioactive source 152Eu. For the high energy range, neutron
capture reactions on N (urea), Cl (PVC - polyvinyl chloride) and Cr were used.
For the determination of the elemental composition of samples an Excel macro and the Excel
sheet package called ProSpeRo (Prompt gamma Spectrum Rover) is used [29].
The sample chamber is made of Al with an inner diameter of 15 cm. The inside is covered with
90-95 % enriched 6LiF-polymer [30] and the thin entrance window for neutrons is made of Zr,
see fig. 3.5. On the base of the sample chamber a step motor is mounted. It allows to change up
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Figure 3.4: Efficiency curve for the coaxial detector (60%).

Figure 3.5: View of the sample chamber in beam direction. It is possible to see the sample holder
as well as the Zr neutron window behind it.
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to 6 samples mounted on a Teflon® sample holder. The samples are usually positioned inside a
frame containing a grid of Teflon® strings that hold the sample itself in place.

3.1.3 Shielding
The main shielding of the instrument remained the same as at PSI (except for minor changes)
and are described in detail in [22]. For high neutron-flux PGAA measurements the choice of the
shielding materials is a very critical task and must be a compromise between the need to keep
the beam background as low as possible and to fulfill radiation safety protection rules.
In fig.3.6 the main shielding material around the two gamma spectrometers are sketched.
Few changes were made to the coaxial spectrometer shielding (see fig. 3.6). The Pb wall in

Figure 3.6: Sketch of the shielding of the two spectrometers for the acquisition of the prompt
spectra.

front of the spectrometer was increased to 15 cm instead of 10 cm and the sample-to-detector
distance was increased by about 5 cm to about 35 cm.
Due to the higher neutron flux compared to PSI, the shielding around the sample chamber had
to be improved. A polyethylene wall was added between the sample chamber and the 10 cm thick
Pb wall with the rear surface consisting of borated rubber, in order to slow down and catch fast
neutrons produced by a secondary reaction in the 6Li shielding materials (see fig.3.6).
Removable lead shielding in U-form was built for the removable elliptical nose. It is made of
10 cm thick lead covered inside with borated rubber. A sketch of the whole instrument, including
the removable shielding shells for the elliptical nose is shown in fig.3.7.
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Figure 3.7: 3D-CAD-drawing of the PGAA instrument (setup 2). The removable shieldings for
the elliptical nose are shown. Rails allow to shift the shieldings to both sides when
the nose is not in use. The elliptical nose can then be tilted to a vertical position
(setup 1).

3.2 Background
Because PGAA measurements are done on-line, i.e. when the neutron beam is open, the acquired
gamma-ray spectra are heavily influenced by neutron reactions that take place in the surrounding
materials. A very low prompt gamma-ray background is necessary in order to achieve a high
analytical sensitivity for real samples.
A common source of background is air, mainly due to the high amount of N (ca. 78%). To
minimize this contribution, nearly all measurements are carried out under vacuum conditions.
Due to the high neutron flux, the optimisation of the total background count-rate2 for this facility
was not a trivial task.
The spectral differences between vacuum and air atmosphere inside the sample chamber are
shown in fig. 3.8 .

3.2.1 Setup 2
For this setup the total count-rate at the beginning of operation was not so encouraging; it was
around 3000 cps with 2 attenuators in beam (A1+A3, for the flux value see table 3.1). Efforts to
reduce the background in this configuration were then carried out extensively.
In table 3.2 and fig. 3.9, the improvement of the total background count-rate with the elliptical

2Total count-rate: the integrated counts in the whole gamma spectra divided by the acquisition time.
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Figure 3.8: Background Spectra with and without air.

nose setup is presented. The chosen configurations of attenuators (A1+A3 and A2+A3) are the
most common for standard PGAA measurements.

Date Total count-rate [cps]
Comments

04/2008 3220 A1+A3, short measurement 1800s
05/2008 607 A1+A3, short meas., Pb shielding around

elliptical nose
05/2008 325 A1+A2, short meas., Pb+Li shielding

around elliptical nose
06/2008 339 A2+A3, new detector shieldings
01/2009 455 A2+A3, new Pb collimator in front of

HPGe detector
04/2009 314 A2+A3, 6LiF-polymer conical flight tube

@ end of the n-guide
01/2010 192 A2+A3, new vacuum pump, 0.9mbar

instead of 15mbar

Table 3.2: Total count-rate for PGAA background measured with the elliptical nose. Measure-
ments were carried out for 54 000 s, if not specified otherwise. The number of attenua-
tors in the beam is an indirect indication for the neutron flux (see table 3.1).

The measuring position with the elliptical nose is about 11 cm away from the end of the guide
itself, thus the whole gamma spectrometer is quite near the end of the beam guide. From the
analysis of the background spectra it was possible to identify the main sources of background:
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3. Instrumentation 1: PGAA

(a) Background full energy range

(b) Background low energy range

Figure 3.9: Background spectra before, during and after instrument optimisation.
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3.2. Background

Si and Na. These two elements are the main components of the neutron guide glass. In order
to reduce the contribution of the glass, an extra Pb shielding was built around the end of the
elliptical nose, see fig.3.10(a). The result was a reduction in the count-rate from 3000 cps to
600 cps.
An extra 6LiF-polymer tube was added between the exit window of the neutron guide and the
sample chamber’s entrance window. This shielding cuts away most of the scattered and divergent
neutrons along the path of the neutron beam. This detail brought a further improvement in the
background count-rate to 325 cps.
In January 2009 the original Pb collimator (with 10mm in diameter) in front of the coaxial
detector was exchanged with a conical one (entrance diameter 10mm, exit diameter 40mm), see
fig.3.10(b). This change optimises the use of the larger Ge crystal of this detector (volume of the
Ge crystal about 1210 cm3) with respect to the one used in the original setup at PSI. In this
case the background count-rate was slightly increased from 339 cps to 455 cps.
An optimisation of the 6LiF-polymer tube (fig.3.10(c)), in April 2009, between the end of the
n-guide and the sample chamber brought again a reduction in the background count-rate (314 cps).
The purpose was to reduce the shadow due to divergent neutrons around the useful neutron area
of the beam. The optimal shape of the new tube would be elliptical according to the tapering of
the neutron guide. For simplicity an easier geometry was chosen, i.e. a linear tapering shape.
Dimensions were calculated based on the images of the neutron beam at the sample position.
The exchange of the vacuum pump in January 2010, brought a significant improvement of the
vacuum conditions (from 10mbar to less than 1mbar) and of the background count-rate to only
192 cps.

3.2.2 Setup 1
In 2008, in collaboration with the PGAA group from Budapest, the first optimisation of this
setup was carried out.
In this case a temporary boron carbide (B4C) aperture was placed at the end of the neutron
guide. The incoming beam was cut significantly in geometry (to about 20 x 16mm2) as well as in
intensity (8.37 · 109 cm−2 s−1 for the full beam).
The total count-rate achieved for this setup was of 580 cps.
In order to avoid such a drastic reduction of the neutron flux and in the mean time to reduce the
contribution of divergent neutrons, the same solution as for setup 2 was used: a linearly tapered
6LiF-polymer tube instead of the B4C aperture was placed between the end of the neutron guide
and the sample chamber entrance window. In this case the full neutron beam can be used. A
total background total count-rate of 269 cps was achieved with attenuator 3 in the beam (i.e.
with a thermal equivalent neutron flux of 1.53 · 109 cm−2 s−1).

3.2.3 Discussion
In table 3.3 the main elements that affect background are listed. The main difference in the
background count-rate with and without the elliptical nose is due to the dimension of the neutron
field. For setup 1 the neutron field is larger than for setup 2 and thus the contribution of
constructing and shielding materials is higher.

3Fig. 3.10(a) Copyright W. Schürmann, TUM
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3. Instrumentation 1: PGAA

(a) Pb shielding around the
elliptical nose

(b) Conical gamma collimator

(c) LiF-polymer flight tube

Figure 3.10: Steps for the optimisation of the background count-rate with setup 2. 3

H, B, Al, Ca, Fe, and Pb are the main elements in the materials of the sample chamber and of
the shielding (mainly Pb). C and F are coming from the packing material for the samples which
is a fluorinated ethylene propylene (FEP) foil. Na and Si are the main elements of the glass of
the neutron beam guide. It is possible to notice how the neutron guide materials have a higher
contribution to the background when the elliptical nose is used.
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3.3. Analytical sensitivity and detection limits

Element Setup 1, A3 [µg]
Setup 2, A2+A3 [µg]

H 2.80(3) · 10−3 2.34(7) · 10−4

B 1.67(2) · 10−5 −

C 11.3(5) 0.33(1)
F 34.9(21) 1.03(6)
Na 5.0(9) · 10−3 1.15(3) · 10−2

Al 4.42(10) · 10−2 5.1(2) · 10−3

Si 4.4(8) · 10−3 3.04(9) · 10−2

Ca 1.7(2) · 10−3 3.28(16) · 10−3

Fe 4.31(17) · 10−3 7.1(6) · 10−4

Pb 6.6(4) · 10−2 8.8(11) · 10−3

Table 3.3: Elements found in the background spectra without and with the elliptical nose.

3.3 Analytical sensitivity and detection limits
Analytical sensitivities as well detection limits can be measured and evaluated as described in
chapter 2.
Actually, it was not yet possible to carry out systematic measurements of the analytical sensitivity
for the major elements measured at this PGAA instrument. Therefore, a calculation of the
analytical sensitivities was done using eq. 2.10, with nuclear data taken from [15] and the
measured neutron flux for standard PGAA measurements.
DLs for some elements were also estimated using a background spectrum with an empty FEP
bag taken for 54 000 s. For the calculation of the background counts Nb inside the formula 2.11
the procedure cited in [18] was used. The interval dimensions I (in channels) chosen for the
integration of the background counts was chosen as

I = 1.2w + 1 (3.1)

where w is the full width at half maximum (FWHM) of the expected photon. The factor 1.2 is
obtained form the mathematical treatment of the problem and the factor +1 is a rounding factor:
one more channel should be taken into account for peak positions that do not coincide with the
centre of the channel. In this case the DLs were calculated taking into account the change of the
FWHM of the peaks across the large energy range of a PGAA spectrum, e.g. in the low energy
region the FWHM for a peak is around 1-2 keV and at high energies it is around 7-8 keV. In table
3.4, the calculated analytical sensitivities and DLs for this facility are presented and compared
with the DL obtained for the same facility when it was located at the Paul Scherrer Institute (PSI)
and with the DLs of other PGAA facilities with a cold neutron beam; respectively the PGAA
facility in Tokai at JAERI, in Budapest at BNC and in Gaithersburg at NIST [15, 23, 31, 32].
The DLs given in table 3.4 are just a qualitative indication on “how well” an element can be
detected. For real samples there is always the influence of the main elements of the sample
(sample matrix) that will modify the background for the minor or trace elements, and thus the
detection limit.
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Element Energy Sensitivity DL FRM II DL PSI DL JAERI DL BNC DL NIST
[keV] [cps/mg] [µg] [µg] [µg] [µg] [µg]

H 2 223.2 29.93 0.11 0.69 1.0 0.3 3
B 477.6 10 687.05 0.0018 0.0039 0.0023 0.0015 0.02
N 1 884.9 0.10 40.5 235 95 100 1100
N 5 269.2 0.08 11.3 60
Si 3 539.0 0.29 14.9 63 24 400
S 841.0 1.50 7.48 23.8 9.4 10 75
S 5 420.6 0.44 1.73 10
Cl 1 951.1 17.31 0.19 0.6
K 770.3 3.19 2.00 7.8 4 44
Ca 1 942.7 0.86 4.89 26.7 11 140
Ti 1 381.7 12.17 0.29 2.05 0.9 10
Fe 352.3 0.91 11.7 16 20 140
Fe 7 631.1 0.36 1.98 28 9
Ni 465.0 2.34 4.15 12 5.1 7 70
Ni 8 998.4 0.62 0.65 4
Cd 558.3 2548.66 0.0028 0.0142 0.0070 0.006 0.05
Sm 334.0 5802.65 0.0019 0.0060 0.0030 0.003 0.03
Gd 182.0 10 131.11 0.0011 0.0035 0.0047 0.0022 0.015
Hg 368.0 201.92 0.051 0.143 0.045 0.08 0.44
Pb 7 367.8 0.02 28.1 330 150 2 600

Table 3.4: Analytical sensitivities and detection limits for few elements and comparison with
other PGAA facilities.

3.4 Quality check

In order to check the reliability of the facility two standard reference materials (SRM) were
measured in 2010 at both newly optimised positions. The SRM chosen were number 1646a,
Estuarine Sediment, and number 1633b, coal fly ash, both provided by NIST (National Institute
of Standards and Technology). A measurement for SRM 1646a was already performed at the
beginning of 2009 with the elliptical nose (A2+A3 attenuators), the background count-rate was
455 cps (see table 3.2) and the acquisition time was 4600 s. The measurements carried out in
2010 were taken for 10800 s, with a total background count-rate of 192 cps for setup 2 (A2+A3
attenuators) and 269 cps for setup 1 (A3 attenuator in beam). The results for 1646a are presented
in table 3.5.
Already in 2009 the instrument demonstrated a good performance. With the improvement of the
background conditions in 2010, it was also possible to detect some trace elements like: V, Mn,
Cd, Sm, and Gd. Moreover, the uncertainties were lowered compared to the measurement carried
out in 2009 (this is quite evident in the determination of Cl). In the first case, uncertainties were
between 3-5% while in 2010 the maximum uncertainty was 3%, of course, also thanks to the
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Element NIST Ellipse 2009 Ellipse 2010 No Ell. 2010 PSI [33]

H − 0.209(2) 0.186(3) 0.194(3) −

B ppm − 39.5(5) 45.1(6) 43.6(6) 41.8(11)
Na 0.741(17) 0.69(7) 0.690(21) 0.99(3) −

Al 2.297(18) 2.18(9) 2.41(6) 2.17(6) 2.14(5)
Si 40.00(16) 40.1(6) 40.1(8) 40.2(8) 40.00
S 0.352(4) 0.37(2) 0.316(12) 0.312(11) 0.347(10)
Cl − 0.66(22) 0.648(17) 0.615(17) 0.636(8)
K 0.864(16) 0.881(19) 0.87(3) 0.85(3) 0.84(2)
Ca 0.52(2) 0.65(3) 0.61(5) 0.615(25) 0.516(4)
Ti 0.456(21) 0.476(15) 0.494(12) 0.448(14) 0.473(10)
V ppm 44.8(8) − 59.4(77) 64.0(64) −

Mn ppm 234.5(28) − 184.7(61) 232(12) −

Fe 2.01(4) 2.00(5) 1.97(7) 1.90(6) 1.86(48)
Cd ppm 0.148(7) − 0.12(5) − 0.150(23)
Sm ppm − − 2.05(5) 2.11(5) 2.45(11)
Gd ppm − 2.0(2) 2.4(1) 2.4(1) 2.64(8)

Table 3.5: Standard Reference material 1646a: Estuarine sediment. Comparison between different
setups (ell. stands for elliptical nose) and with the measurement made at PSI. If not
specified all the values are in weight percent.

prolonged measuring time.

For SRM 1633b results are shown in table 3.6. The measurements with the elliptical nose were
taken for more than 10800 s due to software problems (acquisition time 22382 s).
It is possible to notice that for all measurements there are few differences in the determination
of Na between the two different setups. In particular Na is overestimated without the elliptical
nose. A possible explanation can be the difficulty to estimate precisely the amount of Na in the
background spectrum.
Concerning the determination of trace elements, it is shown that for elements like Cd, Sm, and
Gd (that have high capture cross section), the results are in good agreement. For the second
SRM, coal fly ash 1633b, the number of trace elements found is higher compared to SRM 1646a,
and the results are in quite good agreement with the certified ones again with the exception of
Na.
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Element NIST Ellipse 2010 No Ell. 2010 PSI [33]

H − 0.086(1) 0.085(2) −

B ppm − 83.5(8) 80.0(8) 74.8(13)
Na 0.201(3) 0.39(3) 0.88(7) −

Al 15.05(27) 16.2(3) 16.1(3) 14.25(5)
Si 23.02(8) 23.1(6) 22.7(5) 23.02
S 0.2075(11) 0.183(9) 0.207(19) 0.193(20)
K 1.95(3) 1.93(6) 2.07(5) 1.89(3)
Ca 1.51(6) 1.73(6) 1.62(6) 1.41(3)
Sc ppm 41a 36(2) 35(5) −

Ti 0.791(14) 0.796(18) 0.853(23) 0.791(9)
V ppm 295.7(36) 415(21) 345(21) −

Cr ppm 198.2(47) 265(29) − −

Mn ppm 131.8(17) 150(7) 140(21) −

Fe 7.78(23) 8.14(19) 8.34(18) 7.25(12)
Ni ppm 120.6(18) − 120(8) −

Cu ppm 112.8(26) 140(21) − −

Sr ppm 1041(14) 1609(100) 1928(134) −

Cd ppm 0.784(6) 0.69(7) 0.50(11) 0.81(4)
Sm ppm 20a 12.8(3) 13.3(3) 14.5(3)
Gd ppm 13a 14.4(7) 16.9(6) 17.7(7)

aValue not certified.

Table 3.6: Standard Reference material 1633b: Constituent Elements in Coal Fly Ash. Compari-
son between different setups (ell. stands for elliptical nose) and with the measurement
made at PSI. If not specified all the values are in weight percent. avalue not certified

All the optimisation steps, analytical sensitivities and DLs calculations were published in the
following paper submitted and accepted in the scientific journal Nuclear Instrumentation and
Methods in Physics Reasearch Section A, see Appendix B
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CHAPTER 4
PGAA Highlights

With the optimised instrument (chapter 3), all following measurements were carried out. In this
chapter, some highlights are described.
Elements like Cd, Sm, Gd are known to be non-1/v nuclides, therefore, the particular k0-values for
this facility were measured. Moreover, the high cross section of these nuclides allowed particular
measurements like the characterisation of EuO thin films doped with Gd and the determination
of Cd down to 0.5 ppm in biological samples.
Another important field of application for PGAA is archeology. In this respect a small collection
of ancient bronze coins was measured.

4.1 k0-values for non-1/v nuclides
The k0-method has already been discussed in chapter 2. This method allows for a convenient
and practical approach to multi-elemental and isotopic analysis in PGAA.
The k0-factors can be either calculated starting from nuclear data (cross sections and emission
probability of the prompt gamma-rays) of the analyte and the comparator element or directly
measured. In case of regular nuclides, i.e. nuclides that have a 1/v cross section dependence
in the cold-thermal energy range, the measured k0-factors and the calculated ones are usually
comparable. However, for some elements, the measured values have large discrepancies with the
calculated values. This is the case for non-1/v nuclides like 113Cd, 149Sm, 151Eu, 155Gd, and
157Gd. The reason for the high cross sections of these nuclides is mainly caused by low-energy
resonances, which partly overlap with the energy of the neutron spectrum used for irradiations
[34, 35].
The effective cross section for a nuclide is defined as the cross section averaged over the neutron
spectrum. In case of 1/v-nuclides, this quantity is equal to the thermal cross section σ0. When
the nuclide is a non-1/v absorber the effective cross section is no longer equal to σ0. Corrections
for this problem were calculated by Westcott for a Maxwellian thermal spectrum, the so-called
g-factors. Using the Westcott convention the effective cross section is given by:

σ̂ = σ0(gW + rs) (4.1)

where gW is the Westcott g-factor, r is an index for the epithermal fraction in the neutron density
and s is a parameter related to the reduced resonance integral. The r index can be obtained by
measuring the Cd ratio. The Cd ratio for the PGAA facility at FRM II was determined to be
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4.1. k0-values for non-1/v nuclides

9860, which means that the epithermal fraction of the cold neutron spectrum available at the
facility can be neglected. Since the Maxwellian shape of the neutron spectrum depends on the
temperature, both terms gW and s are then also dependent on the neutron temperature. The
Westcott factor is defined as the ratio of the effective cross section for a Maxwellian spectrum
σ̂M to the thermal cross section σ0:

gW (T ) = σ̂M (T )
σ0

= 1
σ0v0

∫ ∞
0

ρM (v,T )σ(v)vdv = 1
σ0v0

∫ ∞
0

4√
π

(
v

vT

)3
e−(v/vT )2

σ(v)dv (4.2)

where vT is the most probable velocity for the Maxwellian distribution related to the temperature
T by vT = v0(T/T0)1/2 [36].
The original set of g-values calculated by Westcott was evaluated for room temperature (293K).
Later, the tabulated values were expanded to a large temperature range, from 271K up to
673K, because of the different operating temperatures of different irradiation facilities [37]. The
temperature range was then further expanded by Sublet et al. [38] down to 20K. In fig. 4.1,
the temperature dependence of the g-factors for the following isotopes is shown: 113Cd, 149Sm,
151Eu, and 157Gd.
For curved neutron mirror guides, the neutron spectrum can deviate from the Maxwellian

Figure 4.1: Temperature dependence of the Westcott g-factor for 113Cd, 149Sm, 151Eu, and
157Gd.

distribution, thus the tabulated Westcott g-factors are no longer valid. As the capture rate is
dependent on the neutron spectrum, a generalized form is used, where the k0-factor assumes the
generalized form:

k0 = Sx/ε(Eγ,x)
Sc/ε(Eγ,c)

· ĝc
ĝx
·

(
RCd
RCd−1

)
c(

RCd
RCd−1

)
x

= k0(measured) ·
ĝc
ĝx
·

(
RCd
RCd−1

)
c(

RCd
RCd−1

)
x

(4.3)

where Sx(c) are the analytical sensitivities for the analyte and the comparator, ε(Eγ,x(c)) is the
detector efficiency for the given energy of the gamma ray, ĝx(c) is the effective g-factor and RCd
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is the cadmium ratio 1. The effective g-factors can be determined by direct calculation if the
real neutron spectrum is known or by comparison of the measured k0-factor with literature
reference values. If a detailed neutron spectrum is available, the effective g-factor, only valid
for one particular facility, can be calculated from the pointwise cross section using the following
expression :

ĝ ≡ 1
σ0v0

∫ vCd
0 ρth(v)σ(v)vdv∫ vCd

0 ρth(v)dv = 1
σ0v0

∫ vCd

0
ρth(v)σ(v)vdv (4.4)

The expression on the right side of eq. 4.4 is obtained if the velocity distribution ρth(v) is
normalized, that means the integral in the denominator of eq. 4.4 is equal to 1.

4.1.1 Measurements at the PGAA station
The current neutron spectrum (obtained with a TOF measurement described in [24]) at the
PGAA facility at FRM II is shown in fig. 4.2 and compared with the cross sections for the
non-1/v nuclides: 113Cd, 149Sm, 151Eu, and 157Gd.

Figure 4.2: Neutron spectrum of the PGAA facility overlapped with the cross section of the cho-
sen isotopes.

The k0-values for Cd, Sm, Gd, and Eu were measured for the FRM II facility. The comparator
chosen was H. Samples were prepared starting from salts of the respective elements (except for
Cd). The salts were dissolved in 0.1M nitric acid (HNO3) in order to obtain stock solutions
with concentrations around few mg/g. From these stock solutions, the concentration was diluted

1The cadmium ratio is used to characterise epithermal neutron fluxes. The cadmium ratio is defined as the
ratio of the activity of a bare flux monitor, usually gold, and the activity of a flux monitoe covered with a
Cd foil. The Cd foil (usually 1mm thick) cuts all the thermal neutron with energies up to 0.5 eV, thus the
activity of the covered monitor is given only from those neutron with energies over the Cd cutoff. Usually, in a
well-thermalized neutron flux the Cd ratio is about 50. For a guided beam the ratio can be greater than 104.
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4.1. k0-values for non-1/v nuclides

down to tenths of ppm.
From the ratio of cross section, molar mass, isotopic abundance, and the detection efficiency
for the analyte and the comparator, it is possible to estimate how much mass of the analyte
and comparator are necessary for a comparable peak count-rate, i.e. the concentration of the
final solution. From the calculations, ratios of 1:320 for Sm to H, 1:590 for Gd to H and 1:6
for Eu to H were found. Because Sm, Gd, and Eu have a very high cross sections, the mass
ratios were kept very small in order to avoid self-shielding effects within the samples and also
to keep the count-rate of the detector low enough to avoid distortions of the gamma peaks
and over-saturation. The mass ratios in the final solutions were 1:4018 for Sm, 1:4844 for Gd,
and 1:184 for Eu, respectively. Water, that is used as internal comparator, is known to scatter
neutrons and thermalize them. This effect was kept as small as possible by using very small
volumes (from 200 up to 300 µl) of the solutions for sample preparation. From the final solutions,
three samples per element were prepared and sealed into 25µm thick FEP-bags. The chemicals
were purchased from Alfa Aesar. The concentrations of the solutions for Sm, Eu, and Gd as well
as the samples masses are summarized in table 4.1.

Element Salt Stock solution
conc. [mg/g]

Diluted solution
conc. [µg/g]

Sample masses
[mg]

Sm Sm(NO3)3 · 6H2O 2.8 27.8 245; 264; 295
Eu Eu(NO3)3 · 6H2O 3.4 606 244; 195; 224
Gd GdCl3 · 6H2O 2.3 23.1 243; 265; 226

Table 4.1: Concentrations of the solutions and of the samples prepared for the k0-value measure-
ments of Sm, Gd, and Eu.

The Cd samples were prepared starting from a standard solution (for ICP and AAS measurements)
with a concentration of 999.9 mg/l. The calculated ratio for Cd to H is 1:100. The mass ratio of
the standard solution is 1:111 for Cd to H. Two samples were prepared for k0 measurements:
the first one directly from the Cd solution, while the second one was obtained by dilution of the
standard solution with a dilution factor of 1:2 resulting in a mass ratio of 1: 221 of Cd to H.
FEP-bags were then used to pack the sample and sealed after preparation. The data for the Cd
samples are reported in table 4.2.

Sample Cd solution conc.
[mg/g]

Samples masses [mg]

Cd 1 0.9999 455
Cd 2 0.505 495

Table 4.2: Concentrations of the samples for the k0-values measurements of Cd.

Measurements for the liquid samples were carried out in air. As long as analyte and comparator
are inside the same sample, the irradiation conditions for the different measurements are not so
important in this case. All the spectra were acquired until a low statistical uncertainty (around
0.1%) of the peak count-rate for H and the main lines of the analyte were achieved. In no case
the measurement time was longer than 9000 s. The k0-factors for these elements named above
were then calculated according to eq. 2.15 and the results are shown in table 4.3.
The k0-factors obtained for the FRM II facility are different from those tabulated by the IAEA
PGAA Database (last column) [36]. Moreover, the neutron spectrum of our PGAA facility can
not be considered Maxwellian, because the effective g-factors obtained by the comparison of the
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Element E [keV] k0(H)
meas.

ĝx/ĝH gW (25 K) gW (293 K) k0 corr.
(25K)

k0 corr.
(293K)

k0(H)
[36]

113Cd 558.32(3) 40.2(2) 0.802 0.787 1.337 50.5(2) 29.7(1) 50.1(8)
149Sm 333.97(4) 73.7(4) 0.747 0.631 1.718 115.6(6) 42.5(2) 96.5(12)
149Sm 737.44(4) 8.80(6) 0.747 0.631 1.718 13.81(9) 5.07(3) 12.03(16)
151Eu 89.847(6) 19.5(3) 0.685 1.266 0.900 15.3(2) 21.5(2) 28.5(6)
157Gd 181.931(4) 130.4(7) 0.927 0.803 0.852 160.8(9) 151.5(8) 139(6)
157Gd 944.174(10) 54.5(3) 0.927 0.803 0.852 67.2(4) 63.3(3) 59.5(13)

Table 4.3: Measured k0-values for the PGAA facility at FRM II compared with the k0-value from
the IAEA PGAA Database. Effective g-factor for this PGAA facility are compared
with the Westcott g-factors for a 25K and thermal Maxwellian neutron spectrum.

measured k0-values with literature values are different from the tabulated Westcott-factors. In
the seventh and eighth column, the Westcott factors are used to correct the measured k0-factors.
For Cd, the corrected values for a 25K Maxwellian spectrum are pretty much in agreement
with the IAEA values (discrepancy < 1%), while for Eu none of the corrected factors are in
agreement (discrepancy nearly 50%). Moreover, the effective g-factor for Eu estimated is pretty
far away from the tabulated ones. For Sm and Gd, the effective g-factors are quite near the
ones previewed from Westcott, however the discrepancy between the corrected k0-values and the
literature ones is between 15-20%. The results obtained are quite evident proof that the neutron
spectra available at the PGAA station cannot be described with a Maxwellian distribution.

4.2 Determination of Eu and Gd in thin films
Spintronics is a new high-tech field where the semiconductor devices can exploit the spin degree
of freedom of the conduction electrons. This new concept opens a wide range of new possibilities
in the field of semiconductor-based data processing and memory applications [39]. EuO is a
potential material for spintronics applications, due to its numerous magnetic properties. However,
the potential of this oxide is dependent on its Curie temperature. The Curie temperature is the
temperature at which a ferromagnetic or a ferrimagnetic material becomes paramagnetic. For
EuO based materials this temperature is at 69K. Efforts to improve this latter property are
actually extensively made.
Several possibilities are currently studied. One of these is a charge carrier doping by either
oxygen vacancies or by substituting Eu 2+ with trivalent ions like Fe 3+, La 3+, or Gd 3+. For
optimised doping concentration in Eu1-xBxO, the Curie temperature reaches 170K for B=Gd
with x=0.04 and 180K for B=Fe with x=0.077 [40].
The Zentrum für elektronische Korrelation und Magnetismus (Universität Augsburg) is studying
Eu1-xGdxO films. A systematic measurement of the charge carrier densities and Curie temperature
for a wide range of doping concentrations were carried out.
These thin films are produced by molecular-beam epitaxy (MBE). EuO films are grown by
heating the substrate to temperatures high enough to evaporate the unoxidized europium metal
and the deposition is controlled only by the oxygen flux. This way, all the available oxygen reacts
to form EuO and the excess europium evaporates leaving pure stoichiometric EuO [40, 41]. In
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case of EuO(Gd) films, Eu and Gd are co-evaporated in oxygen with a background pressure of
1 · 10−9 Torr. The films are grown on an YAlO3 single crystalline substrate, chosen because of its
insulating properties. The thickness of these films is about 35 nm.
To obtain a precise amount of dopant within the batch of EuO(Gd) films, the fluxes of Gd and
Eu have to be calibrated in order to chose the desired doping concentration. To establish if the
calibration was correct the films with the highest Gd concentrations were measured with PGAA
to extrapolate the lower values for the other films [40].

4.2.1 EuO(Gd) and PGAA
PGAA measurements were preformed to determine the elemental ratio between Gd and Eu.
These two elements are easy to determine with PGAA, even in trace amounts, thanks to their high
neutron capture cross sections. Matrix effects in thin films measurements can be a considerable
problem. The high amount of the substrate (hundreds of mg) with respect to the thin film
(35 nm) can compromise the measurements, yielding a very high matrix background that can
cover the peaks of the elements contained in the film.
The first measurements carried out were feasibility measurements. A thin film made of pure Gd,
one made of pure Eu and a thin film of EuO(5%wtGd) on a YAlO3 substrate were measured.
The two main goals of these test measurements were to check if it is possible to detect Gd and
Eu on the massive substrate and to define possible peak-interferences in the doped EuO film.
The test was successful its result can be seen in fig. 4.3. Eu and Gd can be clearly detected.

Figure 4.3: Test measurements for EuO(Gd) films.

The second most intense peak for Y at 202.53 keV is exactly in-between the Gd peak at 181.931 keV
and the Eu peak at 221.30 keV, despite this no difficulties occur in the determination of the
peaks of interest. The most intense peak for Eu at 89.847 keV is situated on the growing shoulder
of the spectra. This peak would be the best choice for the ratio calculation but the electronic
conditions even though they have a low threshold around 75 keV distort the low energy signal
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and problems may arise for the fit of the 89.847 keV peak. In December 2009, measurements
on three films with different Gd contents were carried out. The different Gd concentrations
were 5%wt, 8%wt, and 16%wt. The elliptical nose was used with vacuum conditions and two
attenuators in the beam (A1+A3). For these measurements, the energy window of the detector
was reduced and the high energy region of the spectrum was not considered. The irradiations
were conducted for at least 3600 s.
Again, a high unknown electronic noise distorted the lower part of the spectrum from 75 keV up
to 150 keV and prevented the use of the low energy peaks (see fig. 4.4). Therefore the alternative
peak of Eu at 221.30 keV was used also this time.
The ratios between Gd and Eu were obtained using the standard k0-method. In table 4.4, the

Figure 4.4: Gamma spectrum for the EuO film with 5 %wt Gd nominally. It is possible to see the
start of the usable spectrum at 150 keV.

spectrum data and the nuclear data (taken from [36]) used for the calculation are shown.

Energy [keV] Efficiency k0

Europium
221.30(8) 2.01(4) · 10−4 1.46(6)
Gadolinium
181.931(4) 2.13(4) · 10−4 139(6)
944.174(10) 9.20(16) · 10−5 59.5(13)

Table 4.4: Data for Eu and Gd.
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ID Gd/Eu %wt

(PGAA)
Gd/Eu %wt

(XAS)
EuO-5%Gd 2.8(2) 10.6
EuO-8%Gd 5.7(4) 9.7
EuO-16%Gd 12.6(10) 19.9

Table 4.5: Gd/Eu ratio.

The Gd/Eu ratios obtained are not in agreement with the nominal ones. Moreover they also
disagree with the data obtained by X-ray Absorption Spectroscopy (XAS). A possible reason
for this disagreement can be the so-called summing-coincidence effect. The counts area of the
Eu peak at 221 keV is affected by this effect. This possibility is reasonable because of the
complex nuclear structure of Eu and the huge amount of low energy transitions between the
nuclear levels. As a cross-check, recalculations were done then with new gamma-rays from the
(n,γ)-reaction on 153Eu instead of those from 151Eu. The latter ones were chosen considering the
partial production cross section, eventual coincidence with 151Eu and 157Gd and the possible
combination for summing-coincidences. In table 4.6 the chosen lines and the respective nuclear
data are listed.

Energy [keV] Efficiency k0

Europium
179.83(13) 2.14(4) · 10−4 0.40(6)
187.37(8) 2.12(4) · 10−4 0.62(3)
281.78(9) 1.80(3) · 10−4 0.407(16)
Gadolinium
181.931(4) 2.13(4) · 10−4 139(6)
944.174(10) 9.20(16) · 10−5 59.5(13)

Table 4.6: Improved data for Eu

The Gd/Eu ratio obtained with this second analysis are in a better agreement with the nominal
concentrations. The ratio measured with XAS, however shows some consistent discrepancies
also with the nominal values, especially for low Gd concentrations. At higher concentrations, all
values are in agreement with each other, see table 4.7.

ID Gd/Eu
%wt

(PGAA)

Gd/Eu
%wt

(XAS)

PGAA vs.
XAS

EuO-5%Gd 4.33(15) 10.6 -59%
EuO-8%Gd 8.9(3) 9.7 -8%
EuO-
16%Gd

18.6(10) 19.9 -6.5%

Table 4.7: Improved Gd/Eu ratios.

The results in table 4.7 are obtained as a weighted average of the ratio between all the considered
lines for Eu and Gd. The uncertainty on these mass ratios is between 3 and 5%, these values can
be lowered performing, in future measurements with improved electronics, the line with 90 keV of
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151Eu, that is free of summing-coincidences and has the highest partial production cross section.
PGAA measurements showed to be more precise and trustworthy with respect to the XAS
measurements. The latter ones are oscillating, in particular according to the different background
correction considered, the values for the same sample can have discrepancies between 3 and 5%.

4.3 Cd determination in biological tissues
Cadmium, as a contaminant in trace amounts in human tissues, has no essential function.
Neonates have usually a negligible amount of Cd in tissues but with age this amount will increase
with a rate of about 3µg per day. Cd is present in food (sea foods, meat, dairy products, and
whole grain), drinking water, tobacco, and air. The diet is considered the primary source of
Cd intake. The attention on Cd amount in human tissue was caused by genotoxicity tests,
epidemiological studies, and long-term animal experiments. The results of all these studies
indicate that Cd can be considered a carcinogenic agent in humans [42, 43].

4.3.1 Toxicokinetics of Cd
The intake of Cd has three main routes: inhalation, oral and dermal.
Inhalation of Cd occurs mainly at the workplace. Cd can be inhaled as particulate matter, either
as fumes with areosols or as dust. After intake, absorption of Cd depends on particle size and
on their solubility. Large particles and dust (particle size >10µm) usually are deposited in the
upper airways, while small particles and fumes (particle size about 0.1µm) tend to penetrate in
the alveoli, which is the major absorption site. 10 - 30% of the Cd absorption comes from the
inhalation of Cd dusts, while absorption for Cd fumes (based on cigarette smoke studies) uptake
may vary between 25 and 50%.
On average an adult takes up Cd, through the oral route, with a rate of 1.4 - 25µg per day
depending on the diet. The Cd absorption through the gastrointestinal tract is about 5%,
however it may raise up to 10% in subjects that have Fe deficiencies.
Absorption through the dermal route is very low (about 0.5%), and it has a considerable impact
only in case of a prolongated contact with highly concentrated solutions.
Cadmium is widely distributed in the human body; it is estimated that from the total intake
of Cd 50% are accumulated in the kidney, about 15% in the liver and about 20% in muscles.
However, kidney and liver remain the major target organs. Accumulation in kidney and liver
increases until 40-65 years of age. After that period it reaches saturation that is bound to the
biological half-life. The biological half-life of Cd is comparably long; for the kidney it may vary
between 6 and 38 years and for the liver between 4 and 19 years. In muscles, the accumulation
of Cd is a life-long process.
After the uptake in the lungs and in the gastrointestinal tract, Cd is transported in the blood
and plasma bound to albumin, which is then preferentially taken up by the liver. In the liver, Cd
induces the synthesis of metallothionein that after few days reappears inside the blood plasma.
Due to its lower molecular weight, this compound is filtered in the kidney through the glomeruli
and then is taken up by the tubules (located in the kidney cortex) where they accumulate.
The major amount of Cd introduced orally or through inhalation is excreted with feces and
represents the Cd that was not absorbed. The absorbed amount is cleared very slowly with urine
and feces. It is also cleared through hair and breast milk, but these two routes are of minor
importance [42, 44].
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4.3.2 Determination of Cd in human tissues
The goal of this project was to establish a method for the determination of Cd in human tissues.
Cd has a very large cross section for neutron capture and therefore PGAA is a convenient method
for such measurements. The velocity of the measurements and the rather easy preparation of the
samples allows a more systematical study on Cd in human tissues.
As Cd is suspected as potential cancer agent, the interest of oncologists in the study of the
metabolism of Cd in tissues is high. For example, a possible application could be the study of the
influence of Cd in ovarian cancer. Different studies demonstrate that Cd has potential estrogenic
activity. That means that it can activate the estrogen receptors which control the growth of cells
and may be a probable cause of ovarian cancer [45, 46].

First measurements - September 2009

In September 2009, first test measurements were carried out in collaboration with the Institut
für Rechtsmedizin of the Ludwig-Maximilians-Universität (LMU, München). The first set of
measurements were carried out in order to check if it was possible to detect traces of Cd inside
biological samples. The samples were prepared at the Institut für Rechtsmedizin. Slices of kidney,
liver, cerebrum, cerebellum, and mammal tissues were sealed in standard polyethylene (PE) bags
and inserted in the neutron beam. Because of the high count-rate from the H peak, the test
measurements were taken for 1200 s with the lowest beam intensity available and with air inside
the chamber. For this measurements, the energy range of the gamma-ray detector was reduced
(from 80 keV up to 3MeV). The most intense peak of Cd has a relatively low energy (558.32 keV),
thus the high energy part of the spectrum was not necessary for this purpose.
The first problem encountered was the extremely high spectral background of water. However,
Cd was clearly detected in the kidney sample and it was possible to see a small peak in the
spectrum for the liver sample. For all the other tissues it was not possible to detect any Cd
peaks.
According to literature data, the average amount of Cd in the kidney cortex is highly dependent
on the age and on the geographical provenience as shown in fig. 4.5. The kidney concentration
of an non-smoker adult is around 14.8µg/g, while in liver it is 1.38µg/g [43]. From these latter
data it was possible to estimate the detection limit for Cd in biological tissues (native tissues)
which is about 1µg/g.
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Figure 4.5: Average Cd concentrations in the kidney cortex in relation to age. Results from 1970s
and 1980s in ten countries are summarized from 12 different studies. The averages
are based on smokers, non-smokers, males and females combined. For some studies
kidney cortex concentrations in wet weight have been calculated from ash or dry
weight or from whole kidney values [44]

In order to reduce the signal of H and increase thus the Cd detection limit, two different methods
for sample preparation were tested: drying and preconcentration. Both processes were tested
on liver samples. Slices of liver were then put inside a small chamber, which was subsequently
evacuated with a vacuum pump. This way, the water was removed from the sample. The
advantage of this method is that the amount of the other elements inside the sample like Na, Cl,
and S remain unchanged.
Preconcentration of the samples was obtained by dissolving the tissues in concentrated HNO3
and then evaporating them. The residues were then sealed inside FEP-bags and measured. With
this procedure, a larger amount of liver can be measured and the sample is also homogenized.
The handling of the sample during this first trial was not perfect; some steps have to be improved,
for example the packing of the samples with a proper material. Concerning the preparation
procedure, short times for the drying did not allow a complete elimination of water. Also in this
case the measurements were rather short (again 1200 s) under normal air conditions.
Nevertheless, encouraging results were obtained. The H contents were reduced up to a factor of
5 with the preconcentration of the sample, reducing the hydrogen Compton background. In fig.
4.6 the spectra obtained for kidney and liver slices without any treatment and the treated liver
samples are shown.
The preparation techniques used require a suitable method to quantify Cd in the measurements.
As already discussed, PGAA as an absolute method is not the preferable method for quantitative
analysis, comparative methods are preferable. The problem in this case was that it was not
possible to find an universal comparator for all the sample preparation procedures. The most
used elements H and Cl were not usable: H cannot be used as the aim is to drastically reduce it
and Cl amount is affected when the sample is preconcentrated. An possible comparator candidate
could be K that qualitatively seems to remain constant with all sample treatments. Another
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(a) Cd full spectra (b) Detail in the Cd energy region

Figure 4.6: Cd gamma spectra

possible solution would be a calibration curve for Cd.

Measurements - February 2010

To find a proper method for the quantification of Cd inside biological tissues, a more systematic
set of measurements was carried out in February 2010. A calibration curve was first measured.
For these measurements, different samples with different concentrations were prepared, see table
4.8. The diluted solutions were prepared starting from a 0.999mg/g standard solution and then
diluted. Between 75-150µl, according to the concentration, were pipetted on filter paper and
then measured.

Concentration
[ppm]

Sample [µl] cps

100 75 7.92(13)
50 75 4.02(8)
30 75 1.93(8)
15 100 1.26(5)
10 100 1.06(7)
5 150 0.63(5)
1 150 0.17(11)
0.5 150 0.11(9)
0.1 150 −

Table 4.8: Cd sample used for the determination of the calibration curve.

In fig. 4.7 the calibration curve that was obtained with the linear regression is shown.
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Figure 4.7: Cadmium calibration curve.

As described in chapter 2, the slope of the linear regression yields the analytical sensitivity for
Cd: 1038.38 cps/mg.
For the measurements a kidney sample (Ki) was taken as check-samples. This sample comes from
a 55 y smoker male (patient ID 1-55mS 2). The amount of Cd in smoker subjects is higher than in
non-smoker subjects, therefore it was chosen for the quality-check of the method. Three samples
were prepared: one natural sample (packed in FEP-foil) - wet weight 0.934 g, one dried sample -
wet weight 0.630 g and one preconcentrated sample - wet weight 0.991 g. The last sample was
obtained dissolving the sample in 2ml 65% HNO3.
Native tissue before the irradiation were stored in a freezer at -30 ◦C, this storage is needed
because of the fast deterioration of the sample at room temperature. For the freezed native
tissue the measurements were performed in normal air with a low neutron beam intensity (all
the attenuators in the beam) and short irradiation times (1200 s). For the dried sample and
the preconcentrated one the flux was increased (only A2 and A3 in the beam, for a flux of
1.92 · 109 cm−2s−1 and it was also possible to use vacuum conditions. The measuring time was
chosen around 3600 s in order to have a reasonable peak statistics for the Cd peak between
0.1 - 3%. The different irradiation conditions were then considered in the calculations. An
appropriate correction factor for the different beam intensities was used. In table 4.9 the results
of these measurements are reported.

ID mass [g] cps Cd mass [µg] Cd conc. [µg/g]

1-55mS-Ki-HNO3 0.991 34.5(1) 13.6(2) 13.7(2)
1-55mS-Ki-dry 0.630 20.5(2) 8.1(2) 12.8(6)
1-55mS-Ki-native 0.934 8.8(1) 8.5(2) 9.1(2)

Table 4.9: Cd concentration in kidney samples of patient 1-55mS.

2Due to the data privacy protection, no information about the patience except age, sex and eventual information
on the smoking history were provided. The ID of the samples were constructed as follows: patient number-age
sex smoking history(S=smoking, NS=non smoking)-tissue-preparation procedure, for example 1-55mS-Li-HNO3,
for missing data a X was used.
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The Cd concentration in the last column was calculated for the wet weight of the sample and the
average Cd concentration obtained from the data is 11.58(14)µg/g.
Beside the kidney check-samples, three different kinds of tissues from another patient (ID 2-
XXmNS) were also acquired and measured. In particular, these tissues were kidney (Ki), liver
(Li) and prostate (Pr). This set of samples was used to cross-check the method already developed.
For every tissue, three samples were prepared as previously described. In table 4.10 the results
are summarized.

ID mass [g] cps Cd mass [µg] Cd conc. [µg/g]

2-XXmNS-Ki-HNO3 0.992 4.92(6) 1.93(4) 1.95(4)
2-XXmNS-Ki-dry 0.547 1.27(4) 1.22(5) 2.24(8)
2-XXmNS-Ki-native 0.591 1.29(3) 1.2(9) 2.1(3)

2-XXmNS-Li-HNO3 1.047 0.86(1) 0.339(3) 0.323(3)
2-XXmNS-Li-dry 0.401 0.112(8) 0.108(8) 0.27(2)
2-XXmNS-Li-native 0.764 0.153(9) 0.15(7) 0.19(3)

2-XXmNS-Pr-HNO3 1.000 n. d. − −

2-XXmNS-Pr-dry 0.614 − − −

2-XXmNS-Pr-native 0.803 − − −

Table 4.10: Cd concentration in kidney, liver and prostate samples of patient 2-XXmNS. n.d.=
not determined.

The Cd concentrations obtained for patient 2-XXmNS are relatively low. For example in the
kidney, the average concentration obtained is 2.01(4)µg/g, nearly 6 times lower than the Cd
concentration for the smoker kidney (see fig. 4.8). This may be an indication that patient
2-XXmNS was not a smoker. For liver, the amount of Cd is definitely lower with respect to
kidney. In prostate tissues, no trace of Cd could be detected.

Figure 4.8: Comparison of the gamma spectra between the tissues for patient 1-55mS and 2-
XXmNS.
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Measurements - May 2010

In May 2010, a last set of measurements was carried out. This time, the samples were coming
from 2 patients and the analysed tissues were kidney, liver, lung (Lu) and heart (He). Lung
tissues were chosen because lungs are the main route of Cd intake through inhalation, and heart
tissues because heart is a muscle and as previously discussed, about 20% of Cd is distributed in
muscles.
For this set of measurements, samples were collected from two patients, 3-71mXX and 4-87fXX.
Both were relatively old (71 y and 87 y) and no record about their smoking history could be
given. Moreover, for the first patient, two sets of the same tissues were collected. The measuring
conditions were the same as those used in the former irradiations. In table 4.11, the results
for this set of measurement for patient 3-71mXX and in table 4.12 for patient 4-87fXX are
shown.
ID

mass [g] cps Cd mass [µg] Cd conc. [µg/g]

3-71mXX-Ki1-HNO3 0.9572 10.11(8) 4.99(10) 5.21(10)
3-71mXX-Ki1-dry 0.6709 7.79(4) 2.44(1) 3.64(2)
3-71mXX-Ki1-native 0.8151 2.71(5) 1.06(16) 1.31(20)

3-71mXX-Ki2-HNO3 1.1607 5.48(5) 2.70(5) 2.33(4)
3-71mXX-Ki2-dry 0.7407 2.23(4) 1.71(4) 2.31(6)
3-71mXX-Ki2-native 0.5553 1.00(5) 0.31(5) 0.57(9)

3-71mXX-Li1-HNO3 0.9334 2.52(2) 1.24(2) 1.33(3)
3-71mXX-Li1-dry 0.9253 1.65(4) 0.52(2) 0.56(2)
3-71mXX-Li1-native 0.7833 0.92(4) 0.36(6) 0.46(7)

3-71mXX-Li2-HNO3 1.1607 n.d. − −

3-71mXX-Li2-dry 0.6462 0.418(9) 0.131(4) 0.202(6)
3-71mXX-Li2-native 0.4510 − − −

3-71mXX-He1-HNO3 1.000 0.220(5) 0.108(3) 0.118(3)
3-71mXX-He1-dry 1.2784 0.176(6) 0.055(2) 0.043(2)
3-71mXX-He1-native 0.7054 0.94(2) 0.37(6) 0.53(8)

3-71mXX-He2-HNO3 0.9964 0.095(4) 0.047(2) 0.047(2)
3-71mXX-He2-dry 0.6355 − − −

3-71mXX-He2-native 0.3727 − − −

3-71mXX-Lu1-HNO3 1.0699 0.337(6) 0.166(4) 0.155(4)
3-71mXX-Lu1-dry 1.9930 0.234(7) 0.073(2) 0.037(1)
3-71mXX-Lu1-native 0.5833 − − −

3-71mXX-Lu2-HNO3 0.9644 n.d. − −

3-71mXX-Lu2-dry 0.8971 − − −

3-71mXX-Lu2-native 0.6812 − − −

Table 4.11: Cd concentration in kidney, liver, heart, and lung samples of patient 3-71mXX.
n.d.= not determined.
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ID mass [g] cps Cd mass [µg] Cd conc. [µg/g]

4-87fXX-Ki-HNO3 1.2956 30.06(8) 14.8(3) 11.5(2)
4-87fXX-Ki-dry 1.1730 33.66(15) 10.5(2) 9.0(2)
4-87fXX-Ki-native 0.5120 12.05(8) 3.8(6) 7.4(11)

4-87fXX-Li-HNO3 1.1467 3.36(2) 1.66(3) 1.45(3)
4-87fXX-Li-dry 0.9117 3.33(4) 1.04(2) 1.15(2)
4-87fXX-Li-native 0.4296 1.22(3) 0.38(6) 0.89(14)

4-87fXX-He-HNO3 0.9792 0.034(2) 0.017(1) 0.017(1)
4-87fXX-He-dry 1.0763 − − −

4-87fXX-He-native 0.4694 − − −

4-87fXX-Lu-HNO3 1.4323 0.395(8) 0.195(5) 0.136(4)
4-87fXX-Lu-dry 0.9565 0.316(8) 0.100(3) 0.103(3)
4-87fXX-Lu-native 0.6594 − − −

Table 4.12: Cd concentration in kidney, liver, heart, and lung samples of patient 4-87fXX.

The concentrations of Cd in the dried and preconcentrated sample are near to each other, while
for the native tissues there are some noticeable discrepancies. As an example, lets consider the
results of the native samples for kidney from patient 3-71mXX. The values obtained for the
native tissue, kidney 1, have a discrepancy of about 20 % with respect to the other results, and
the same occurs for the second set for kidney. A possible explanation, of these huge discrepancies,
is the thermalisation of neutrons inside water-rich samples (a detailed description of this process
can be found in the next section) combined with the non-matching of the matrix used for the
calibration.
Differences in the results for the same tissue can be due to inhomogeneities in the Cd distribution
inside the tissue. For example, in the kidney, Cd accumulates selectively in the cortex and not in
the medulla. In heart samples, the differences in the results can be due either by concentrations
close to the detection limit or by an inhomogeneous distribution within the organ.
The treatment of the samples in order to diminish the amount of water was successful and it
lowered the detection limit to about 0.05 ppm.

4.3.3 Biological samples and neutrons
Water is known to be a very effective thermalising material for neutrons. Biological samples
contain mainly water. In the case of our PGAA facility, the neutrons used for the irradiation
are cold neutrons, and a possible secondary process that can occur in measurements involving
water-rich samples is the moderation of neutrons. In this particular case, the neutrons are
accelerated up to the thermal energy of the sample (25meV).
In order to verify if this secondary process influences the measurement, a simulation of a cold
neutron beam through a 1mm thick water slice was performed. For simplicity, the neutron
spectrum considered was a Maxwellian spectrum with an average energy equal to the average
energy of the PGAA neutron spectrum. The simulation was performed with the Monte Carlo
software MCNP [47]. The simulation was carried out for two different descriptions of the water
layer. The result obtained are shown in fig. 4.9.
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(a) 2H+O free atom mixture (b) H2O

Figure 4.9: Neutron spectrum simulation.

From the simulations it is possible to see that a small part of the neutron spectra is shifted to
higher energies. Through the fit of the resulting neutron spectrum follows that about 7.1% of
the neutrons are accelerated to thermal energies. Probably due to this process, in combination
also with the mismatching of the matrix of the first calibration curve, the Cd concentration for
the native samples deviate from the values obtained from the treated samples, where the amount
of water was drastically reduced.
The main discrepancies were found for the sample, 3-71mXX-Ki1-native, 3-71mXX-Ki2-native,
and 3-71mXX-Li1-native. A rough calibration curve for water-containing samples was obtained
from the samples used for the Cd k0-values (see tab. 4.2). The analytic sensitivity obtained from
the linear regression of the two samples is 269 cps/mg. The concentration for these tissues were
calculated from this value. In table 4.13 the new concentrations are listed.
ID

mass [g] cps Cd mass [µg] Cd conc. [µg/g]

3-71mXX-Ki1-HNO3 0.9572 10.11(8) 4.99(10) 5.21(10)
3-71mXX-Ki1-dry 0.6709 7.79(4) 2.44(1) 3.64(2)
3-71mXX-Ki1-native 0.8151 2.71(5) 4.1(6) 5.0(8)

3-71mXX-Ki2-HNO3 1.1607 5.48(5) 2.70(5) 2.33(4)
3-71mXX-Ki2-dry 0.7407 2.23(4) 1.71(4) 2.31(6)
3-71mXX-Ki2-native 0.5553 1.00(5) 1.2(2) 2.2(4)

3-71mXX-Li1-HNO3 0.9334 2.52(2) 1.24(2) 1.33(3)
3-71mXX-Li1-dry 0.9253 1.65(4) 0.52(2) 0.56(2)
3-71mXX-Li1-native 0.7833 0.92(4) 1.4(2) 1.7(3)

Table 4.13: New Cd concentration in the native samples for kidney and liver of patient 3-71mXX
compared with the one obtained for the treated samples.

The new concentrations for the native samples are in much better agreement with the ones
obtained for the dried and preconcentrated samples. Another outcome from these calculation is
that the water calibration does not work for all the native samples. This can be explained with
the fact that the other samples were still frozen (H atoms are bound to a crystal structure) at
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the moment of the measurement while these one were only partially frozen or already at room
temperature.
With this experiment, it was shown that Cd can be detected successfully in human tissue. For
the quantitative analysis of the spectra, a calibration curve is preferred to the k0-method because
of the difficulty to find a comparator element. Moreover, the detection limit can be lowered by
drastically reducing the amount of water in the tissues. In this direction two techniques were
studied: dehydration and preconcentration. The results obtained with the two methods are
comparable, nevertheless some remarks have to be made. With the dehydration procedure, the
overall elemental composition (except water of the tissue remains unchanged and it is possible to
treat quite easily multiple samples at once. The preconcentration method allows a very precise
Cd measurement; the samples are homogenized and it is possible to analyse much more material.
The disadvantages of this treatment are the long sample preparation times and a higher risk of
contamination due to the extensive handling of the samples.

4.4 PGAA and archeology
The main focus of archeology is to reconstruct events of the past starting from the remains of
objects and artifacts. The use of classical archeology based on form, style, decoration and of the
objects is not anymore sufficient to give a complete description or reconstruction of the events.
Therefore, there is an increasing need to complete these analysis also with scientific analytical
methods. Actually, the various analytical techniques available help in the determination of
the age of the object (dating), in the definition of the technology, the provenience and in the
reconstruction.
The danger in such an analysis, however, is the damage to the object itself. In a wider sense
every analysis is destructive. The choice of one scientific method compared to an another is a
complicated task for archaeologists and depends on the balance between costs and the amount of
information that can be obtained.
The most widely used methods for archaeological samples are instrumental neutron activation
analysis (INAA), inductively coupled plasma-mass spectrometry (ICP-MS), proton induced X-ray
emission spectroscopy (PIXE). PGAA has some advantages compared to these methods. First
of all, with PGAA it is possible to determine light elements. In most mineral-based artifacts
the major components are alumina and silica and they are not precisely determined with INAA.
Boron is an element that cannot be measured by INAA. Its detection is possible with ICP-MS
but the uncertainties are significant compared with the uncertainties obtained through a PGAA
measurement, that is particularly sensitive to this element. With PIXE only elements with
atomic numbers Z between 20 and 90 can be detected with high sensitivity and due to the low
penetration of protons only surface information can be achieved. Moreover, in order to perform
INAA and ICP-MS measurements it is necessary to remove few µg to mg (or more) from the
object. PGAA, in contrast, it is a non-destructive technique from a macroscopic point of view.
The objects are not visibly damaged after a PGAA measurement. A PGAA measurement yields
information on the bulk composition of the object, the objects do not need special preparation
and the whole information can be delivered in a quite short time compared to other techniques
[48].
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4.4.1 Bronze coins
Between March and December 2007, a big excavation took place in the area of Lithochori of
Kavala’s prefecture in Greece. The area investigated with this excavation was around 3500m2.
The antiquities found were partly damaged by the intensive cultivation in the area and the illegal
excavations.
According to archaeologists, the site is strongly bound to an ancient settlement located in the
north-west. In the area a building, a cemetery with several burial and cremation burials were
found. The most important findings were a collection of clays, jewels, bronze and silver coins, a
bronze vessel in the shape of Dionysus and an iron seat ornamented with a lion’s heads [49, 50].
A small collection of coins found in this area was analysed with the PGAA method. The coins
selected, fig. 4.10 and fig. 4.11, are described according to the archaeological classification in
table 4.14 [51].

ID Description
Coin 1 Coin of the city of Philippi, dated to the age of Augustus or Tiberius (27BC-37AD). Head of the emperor

/ Scene of ploughing. Diameter 16mm, weight 3.393 g, material: bronze. Mint: City of Philippi, local
circulation.

Coin 2 Coin of the city of Philippi, dated to the age of Augustus or Tiberius (27BC-37AD). Head of the emperor
/ Scene of ploughing. Diameter 18mm, weight 3.966 g, material: bronze. Mint: City of Philippi, local
circulation.

Coin 3 Coin of the city of Philippi (1st - 2nd century AD). Nike / three military standars. Diameter 20mm, weight
4.278 g, material: bronze. Mint: City of Philippi, local circulation.

Coin 4 Coin of the city of Philippi (1st - 2nd century AD). Nike / three military standars. Diameter 18mm, weight
4.301 g, material: bronze. Mint: City of Philippi, local circulation.

Coin 5 Coin of the city of Philippi dated to the age of Antonius Pius (138-161AD). Bust of Antonius / Antonius
(?) crowning Augustus. Diameter 23mm, weight 6.937 g, material: bronze. Mint: City of Philippi, local
circulation.

Coin 6 Sestertius of Antonius Pius (138-161AD). Bust of Antonius / Quadriga (chariot drawn with four horses).
Diameter 31mm, weight 26.025 g, material: bronze. Mint: City of Rome, circulation in the entire
Roman Empire.

Coin 7 Coin of the city of Topirus dated to the age of Antonius Pius (138-161AD). Bust of Antonius / Enthroned
Zeus. Diameter 25mm, weight 7.826 g, material: bronze. Mint: City of Topirus, local circulation

Coin 8 Coin of the KONION of Macedonians dated to the age of Antonius Pius (138-161AD). Bust of Antonius
/ Winged thunderbolt. Diameter 26mm, weight 10.673 g, material: bronze. Mint: uncertain city, local
circulation

Table 4.14: Classification of the bronze coins founded in the archaeological excavation site.

On these coins, different non-destructive analysis were carried out. The main goal was to determine
the metallurgical composition of the coins that can help the archaeologists to determine the
provenience of the coins. Other methods like X-Ray Diffraction (XRD) and Scanning Electron
Microscope Energy Dispersive X-ray (SEM-EDX) were already used to analyse these coins. The
results from these methods however can determine only the metallurgical composition of the
surface. With PGAA, it is possible to obtain the bulk composition of the coins [52].
Cu as the major component of the copper-alloys has a relatively high cross section (3.795 b)
compared to the other elements that contribute to the alloy, mainly Zn (1.30 b) and Sn (0.54 b).
Moreover, the total number of gamma rays is around 600 and is distributed over the entire
energy range. Therefore, the determination of trace elements or minor components is not always
successful in these alloys. In addition, Cu is activated noticeably also in short measurements,
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(a) Coins heads

(b) Coins tails

Figure 4.10: Coins 1, 2, 3 and 4 analysed with PGAA.
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(a) Coins tails

(b) Coins heads

Figure 4.11: Coins 5, 6, 7 and 8 analysed with PGAA.
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because one of the daughter nuclei resulting from the (n,γ)-reaction is a relatively short lived
radionuclide, 64Cu, with an half-life of 12.7 h. The coins were measured with a low (all attenuators
in beam) and collimated neutron beam. This was necessary primarily to reduce the count-rate
produced by Cu, and secondly to reduce the activation of the coins. Vacuum conditions were
used and the duration of the measurements were between 3600-7200 s. In table 4.15 the results
for the bronze coins are listed.

ID Cu %wt Zn %wt Sn %wt Pb %wt Cl %wt Ni %wt

PGAA
Coin 1 84.0(19) 2.45(7) 1.14(32) 2.06(9) 0.067(7) −

Coin 2 83.6(19) 2.34(6) 13.3(4) 0.75(4) − −

Coin 3 94.5(22) 2.61(7) 2.75(11) − 0.218(3) −

Coin 4 94.0(21) 2.63(7) 3.28(12) − − 0.55(6)
Coin 5 94.4(21) 2.43(6) 3.14(11) − − 0.025(3)
Coin 6 84.7(19) 12.4(7) 2.91(7) − − −

Coin 7 85.6(19) 2.25(6) 8.95(25) 3.06(10) 0.143(5) 0.036(5)
Coin 8 83.0(19) 2.38(6) 11.5(3) 2.98(10) 0.122(2) −

SEM-EDX
Coin 1 75.5 − 16.4 7.1 − −

Coin 2 68.3 0.23 29.8 0.92 0.1 −

Coin 3 89.5 − − − − −

Coin 4 80.6 − 5.6 6.7 0.66 −

Coin 5 82.2 − 1.93 0.32 − −

Coin 6 − − − − − −

Coin 7 73.6 − 13.09 12.63 − −

Coin 8 31.2 − 14.4 40.4 0.18 −

Table 4.15: Elemental composition of the bronze coins (all the values are in weight percent).

Non-destructive PGAA measurements on the coins revealed the bulk composition of the objects.
In some cases it was also possible to find trace elements like Ni, that were not determined with
SEM-EDX analysis. The main composition of the copper alloy may help the archaeologists in
the determination of the geographical provenance of the coins as well as in the determination of
possible remelting procedure of older coins. The metallurgical composition is also helpful for a
correct dating of the coins.
The Cl traces result from surface contamination of the coins. Cl is a dangerous element for
copper alloys, because it can induce the so-called bronze disease and it should be removed
completely in the restoration phase. Copper reacts with Cl, forming CuCl and CuCl2, where the
first one is responsible for damages. Copper is corroded electrochemically. The first step in the
electrochemical corrosion of copper and copper alloys is the production of cuprous ions. These
combine with the chloride to CuCl, which is highly unstable. Exposed to air, CuCl hydrolizes
with the moisture of oxygen and water to form HCl and CuCl2:

4 CuCl + 4 H2O + O2 −−→ CuCl2 · 3Cu(OH)2 + 2 HCl. (4.5)
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The acid produced in turn attacks the bronze and produces through corrosion more CuCl:

2 Cu + 2 HCl −−→ 2 CuCl + H2. (4.6)

This chain reaction will continue until all material is corroded or the chlorides are eliminated or
converted to harmless Cu2O .
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CHAPTER 5
Instrumentation 2: 2D PGAA

The high flux of the PGAA facility makes it possible to carry out two dimensional mapping
measurements of elements inside relatively large samples.
First test measurements for this new measurement mode were carried out with a setup newly
developed for the European project ANCIENT CHARM. In a second step, a more dedicated
setup, that was already used at PSI, was rebuilt and optimised.
In this chapter the, Ancient Charm setup is described only briefly. More room is given to the 2D
dedicated setup.

5.1 ANCIENT CHARM setup

5.1.1 The ANCIENT CHARM project
Neutron-based analytical methods have the power to provide average elemental (or isotopic)
compositions of a bulky samples. In recent years the interest in neutron-methods increased,
especially for the analysis of archaeological samples mainly thanks to the non-destructiveness of
the method.
Ancient Charm was a project funded by the European Community “New and Emerging Science
and Technology” programme. The name Ancient Charm is an acronym for Analysis by Neutron
resonant Capture Imaging and other Emerging Neutron Techniques: new Cultural Heritage
and Archaeological Research Methods. The main aim of this project was to develop a powerful
neutron-based imaging method for a non-invasive 3D investigation of cultural heritage objects.
The final goal was to provide 3D information about the elemental and phase compositions of the
samples [53].
The new imaging methods involved in this project were:

• Neutron Resonant Capture Imaging combined with Neutron Resonance Transmission
(NRCI/NRT);

• Prompt Gamma Activation Imaging combined with cold Neutron Tomography (PGAI/NT);

• Neutron Diffraction Tomography (NDT).

The PGAA facility at FRM II was involved in this project, due to the high neutron flux available.
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Figure 5.1: Sample position for the PGAI-NT setup.

5.1.2 Setup for PGAI - Prompt Gamma Activation Imaging
For PGAI/NT measurements the configuration of the PGAA setup was modified. The γ-
collimator of the coaxial detector (60% rel. efficiency, see fig. 3.6) was exchanged by a lead
collimator with significantly smaller aperture (about 3mm). The perpendicular detector (35%
rel. efficiency, see fig. 3.6) was not used.
The Al sample chamber in fig. 3.5 was completely removed to make space for a (x, y, z,
ω)-positioning table. A CCD tomograph was placed behind the sample position for Neutron
Radiography and Tomography (NR and NT).
A neutron flight tube was built for the NR and NT measurements. It is 160 cm long and lined
with B rubber. The introduction of the flight tube was necessary in order to obtain a more
parallel and homogeneous neutron beam at the sample position. Moreover, to improve the beam
quality, two B-collimators were placed along the flight tube to cut the most divergent neutrons.
An adjustable neutron collimator, with 2mm diameter, was then placed near the sample position
for PGAI measurements [54].
All the changes applied to the sample position place are shown in fig. 5.1.
The elliptical nose was not used for these measurements because of the very high divergence of the
neutron beam. A divergent beam would not allow to describe precisely the isovolume irradiated,
i.e. the volume of the sample illuminated by the intersection of the collimated neutron beam and
the collimated γ-detector. A detailed description of the PGAI-NT setup and settings can be
found in [54]. For 2D measurements, this setup was used first. In this case, the perpendicular
detector was used because of the larger γ-collimator (1 cm in diameter), and only two stages of
the (x, y, z, ω)-positioning table were used. The adjustable neutron collimator together with the
neutron radiography system was used for the positioning of the sample and for the programming
of the scanning grid.
With this setup a piece of the Allende meteorite was scanned. The results of these measurements
can be found in chapter 6.
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5.2 2D motor
A second setup, just for two dimensional measurements, was then built and tested. The setup is
originally coming from PSI and it was already used for position sensitive PGAA [55]. In the first
measurements at PSI, the neutrons were focused through a neutron lens and the dimension of
the neutron spot was about 1mm in diameter.
The two stage table used in this setup was also suitable for vacuum conditions that were not
available with the PGAI-NT setup.
Only few changes had to be made to the PGAA instrument compared to the PGAI-NT setup.
The only element that had to be removed is the six position sample changer, as in this case the
sample chamber becomes more compact. The shielding materials around the sample chamber
remained unchanged.

(a) Two stage motor (b) Motor mounted on the sample chamber

(c) Vacuum valve

Figure 5.2: Two stage table mounted at the PGAA instrument.

The elliptical tapering of the neutron guide helped in focusing the neutrons on the sample, but
the neutron field dimensions have to be reduced. Also in this case the elliptical nose was not used
because of its high beam divergence. On the one hand to avoid a too large magnification of the
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neutron field dimension due to the divergent neutrons, the neutron collimator should be placed
as near as possible to the focus, i.e. near the sample. On the other hand, a close n-collimator
increases significantly the background. Two options for the collimator material were available:

• a larger B4C collimator + a LiF-polymer collimator or

• a LiF-ceramic collimator + a LiF-polymer collimator.

Both of these combinations have disadvantages. The boron carbide plus the LiF ceramic can
produced a high prompt gamma radiation background due to the 477 keV B line. In contrast, the
LiF-polymer collimator has no prompt gamma radiation but it produces a huge amount of fast
neutrons (secondary reaction on Li) that can damage the germanium detector. Both solution
were tested (fig. 5.3). Finally the LiF-polymer was chosen as neutron collimator, because the
signal of the B4C was too high and it did not allow to detect the lower energy part of the gamma
spectrum. The aperture chosen was 2 × 2 mm2.

K
(a) B4C aperture

(b) LiF-ceramic + LiF-polymer collimator

Figure 5.3: Position of the 2x 2 mm neutron collimator. Two kind of collimator combinations
were tested; in fig.(a) the B4C collimator and in fig.(b) the LiF-ceramic + -polymer
collimator combination.
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5.3 Tuning and tests
The first step in the fine tuning of the motor stages was to determine the conversion between
motor coordinates and space coordinates. By measuring with a calliper the distance run by the
motor within 1000 steps it was possible to calculate the conversion: 1000 steps = 6mm.
In this case, no visualization system, like the neutron radiography system in the PGAI setup,
is present. A simple solution to overcome this deficiency is the use of a Röngten film (from
Advanced Materials - US, type: GAFCHROMIC RTQA-1010) to visualize the neutron field. In
this way, it was possible to check the dimensions of the neutron field and the reference position
as well as the maximum position of the two stages of the motor. In fig. 5.4 the neutron beam
photo obtained with the Röngten film is shown .
From this image, the neutron field was deduced (2.5× 2.5mm2) and the maximum and reference

(a) Neutron beam (b) Cd wires and Gd Point

Figure 5.4: Neutron beam at the sample position. The reference point and the maximum point
defined by the two stages motor are shown. In fig. (b) is shown the sample for the
centre coordinates search.

positions were localized. The next step was the determination of the middle position of the
sample holder. This task was done first visually from the photo of the neutron beam for the
coordinates (3000;3000) (see fig. 5.4(a)).
A more systematic search was done afterwards using PGAA spectra. On the sample holder, two
Cd wires were mounted on the two directions and the crossing point was in the centre of the
holder. The two wires allowed to check the horizontal and the vertical coordinate for the centre.
The results are shown in fig. 5.5(a) and fig. 5.5(b) respectively. Furthermore, to check if the
coordinates obtained were correct, a Gd point sample was also mounted and a more refined 2D
scan of the centre was done.
2D maps of the Cd wires and the Gd point sample showed a disagreement in the center position.
The coordinates found by the analysis of the profiles of the Gd point (fig. 5.5(e)) were (2953;3220).
This values were obtained fitting the profile data with a Gaussian function (for simplicity this
function was chosen, a more detailed fitting procedure for this kind of measurements can be
found in [54]). The coordinates obtained from the scan of the Cd wire along the two directions
are (3012;3093).
Because the Cd wires and the Gd point were mounted manually on the sample holder, the
positioning was not so precise. From the data obtained and some manual measurement with a
calliper on the sample, the centre coordinates were defined: (2953;3093). The uncertainty on
the centre coordinates is around 1.5mm and it is strongly cconnected to the dimensions of the
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(a) Horizontal scan with Cd wire (b) Vertical scan with Cd wire

(c) 2D map Cd cross (d) 2D map Gd point

(e) Gd point profiles

Figure 5.5: The centre of the sample holder was searched through an horizontal and vertical scan
for the Cd wires and 2D scan for Cd wires and Gd point of the reference sample.
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neutron collimator.
Aside from considerations concerning the centre coordinates, it was possible to see a small
difference in the alignment of the Cd wires and the Gd point sample from these measurements,
as it is shown in fig. 5.6.

Figure 5.6: Position of the Gd point compared to the crossing point of the Cd wires.

5.4 2D Imaging
Once the centre coordinates were found a test measurement was carried out. In fig. 5.7 the
sample built for the test measurement is shown.

Figure 5.7: Sample used for the 2D-PGAA imaging with different materials. The scanned area is
highlighted.

The sample was made of 6 different materials with an easy geometrical shape. For each material,
the 2D maps are shown in fig. 5.8.
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5.4. 2D Imaging

(a) Fe disc (b) B triangle

(c) Al plate (d) Cd wire

(e) Gd point (f) Ti disc

Figure 5.8: 2D maps of the materials for the 2D imaging test.
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As it can be seen from the 2D maps, the different materials were correctly localized. However, a
precise geometrical description of the materials is not always possible due to the poor spatial
resolution of the neutron collimator (2× 2 mm2). If the real dimensions of the material are larger
compared to the collimator dimensions, a good approximation of the sizes can be estimated
through the analysis of the profile of the counts. As an example the real diameter of the Fe
disc is 8mm and the value obtained by the 2D scan is 8.5mm. In contrast, the Cd wire can be
localized on the 2D map, but the estimation of diameter yields a deviation of more than 100%
from the real size (0.25mm).
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CHAPTER 6
Allende Meteorite

PGAA is a competitive method for geological analysis thanks to its multi-elemental property. In
the past, different measurements on geological samples were already carried out using the PGAA
method. In this section, the focus is not on the ability of PGAA to determine the composition of
geological samples, but on the potential analysis of non-homogeneous geological samples with
the imaging method developed for PGAA. To test this, a small piece of the Allende meteorite
(AL 1) was chosen.

6.1 Introduction
The Allende meteorite fell in February 1969 near a small Mexican village, Pueblito de Allende, and
it is among the most studied meteorites. The structure of this meteorite is very heterogeneous,
with lots of inclusion, also named chondrules. This puts this object in the group of CV3
carbonaceous chondrites. The dimensions of these inclusions are pretty large and they can also
be seen by the naked eye [56, 57].
This particular structure makes this meteorite suitable for imaging investigations.

6.2 First comprehensive tests on the meteorite
A small part of the Allende meteorite was used to test for the first time all the possible measuring
features available at the PGAA instrument. The full set of measurements was carried out on
occasion of the installation of the PGAI setup developed for the EU project ANCIENT CHARM.
Standard PGAA measurements were followed by 2D maps of the element distribution and finally
a 3D tomography of the small meteorite was acquired.
The results of this first comprehensive study were encouraging. PGAA results were in good
agreement with literature data, 2D maps of the major elements (Fe, Mg and Si) were obtained
and, despite the small dimensions, the tomography images acquired were more accurate than
previously thought. The results from this set of measurements, encouraged the development
of a more dedicated setup for 2D imaging. The details of this comprehensive study of the
Allende meteorite can be found in the following work published in the scientific journal “Applied
Radiation and Isotopes”:
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a b s t r a c t

First comprehensive analysis with PGAA, Prompt Gamma-ray Activation Imaging (PGAI) and neutron

tomography (NT) techniques at the research reactor FRM II was tested on a piece of the Allende

meteorite.

With the PGAA method the bulk elemental composition of the heterogeneous meteorite was

determined. Due to the small dimension of the sample, only the 2D elemental distribution of the object

was derived with position sensitive PGAI analysis. As an example 2D maps for Si, Fe and Mg are

presented. Neutron tomography of the meteorite was carried out with the same cold neutron beam.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The neutron beam guide NL4b at the research reactor,
Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), in
Garching is dedicated to the new Prompt Gamma-ray Neutron
Activation Analysis facility (PGAA or PGNAA) and to experiments
that make use of a similar setup. The key feature of the PGAA
station is the cold neutron beam with a very high intensity due to
the elliptically tapered design of the neutron guide or (only
the last 7 m). PGAA is a non-destructive radioanalytical technique
that employ the (n,g) reaction for the determination of the
elemental composition of different kinds of samples. The main
advantages of this technique, compared to the standard Neutron
Activation Analysis (NAA), are the shorter irradiation times and
the easy preparation of the samples and the possibility to have a
complete analysis within one day. Moreover it is also possible to
determine light elements like for example H, B and N (Baechler
et al., 2003).

At the PGAA station at FRM II, the neutrons are focused at the
sample position with a maximum thermal equivalent flux of 2:7�
1010 n=cm2 s (7:3� 109 n=cm2 s using the measured mean energy
of neutron spectrum, 1.83 meV). Additionally, the neutron beam
guide can be extended by a 1.1 m long Helium gas-flushed

removable guide, the so-called elliptical nose. The neutrons are
then focused in a smaller spot with a further gain in intensity,
resulting in a flux of 2� 1010 n=cm2 s (thermal equivalent
7:4� 1010 n=cm2 s) (Forschungsneutronenquelle Heinz Maier-
Leibnitz (FRM II), 2008; Kudějová et al., 2008).

The elliptical tapered design of the neutron guide was
developed with the goal to have a focused and intense
neutron beam for position-sensitive PGAA (Kudějová, 2005).
This method, recently called Prompt Gamma-ray Activation
Imaging (PGAI), gives a 3D information on the element distribu-
tion in the sample. The PGAI setup allows to acquire PGAA
data for a small volume that can be repeated by scanning the
whole object and, once the data are analysed, those measure-
ments give the spatial distribution of elements inside the object
under study. The positioning of the object for the PGAI mea-
surements is possible with the help of a small neutron
tomography (NT) setup. The combination of these two methods
is called PGAI-NT.

Recently, in the frame of the EU project Ancient Charm (ACIENT
CHARM project, 2008; Gorini, 2007), this new setup was
developed and tested by the PGAA group at the NIPS facility in
Budapest and the PGAA group at FRM II in cooperation
(Kastovszky and Belgya, 2006; Belgya et al., 2008a). In June
2008 the PGAI-NT setup was installed at the PGAA station at FRM
II. To test all the different measuring possibilities at the
instrument, a small piece of the Allende meteorite was measured.
On this small sample PGAA, PGAI and NT were performed.
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2. Experimental

2.1. Standard PGAA

The elliptical removable part of the guide allows to choose
between two different measuring positions with different proper-
ties:

� Position 1: The neutron focus is at 35 cm from the end
of the beam guide with a usable area of 14 mm� 38 mm
ðwidth� heightÞ.
� Position 2: With the elliptical nose, the focus is at 10 cm from

the end of the beam guide and the useful area now is smaller:
4 mm� 10 mm.

Another factor that allows to have multiple measurement
configurations are three neutron attenuators. These attenuators,
and their combinations, allow different beam intensities, which
means an additional optimisation of the irradiation conditions
based on the sample itself.

For the data acquisition, two standard Compton-suppressed
gamma spectrometers are in use:

� Det.1: HPGe detector with relative efficiency of 60% (ORTEC
poptop) inserted in a annulus of BGO scintillators (coaxial
geometry).
� Det.2: HPGe detector with relative efficiency of 36% sur-

rounded by a NaI(Tl)/BGO scintillation system (perpendicular
geometry).

The sample chamber can be evacuated in order to suppress the
gamma-ray background coming from the neutron capture on air
(mainly on nitrogen). The characterisation of the instrument, i.e.
efficiency calibration curve, non-linearity curve and background
determination, is a fundamental point for the reliability of the
measurements (results and discussion about this topic will be
published soon by L. Canella et al.).

2.2. Prompt gamma-ray activation imaging and neutron

tomography

The intersection of a pencil neutron beam and a small gamma
collimator in front of the detector defines the active measurement
position (also called isovolume) inside the sample. The pencil
beam is obtained introducing a 6Li-neutron collimator that
reduces the neutron beam to a spot of 2 mm in diameter. While
the field of view of the detector is restricted by a Pb collimator of
3 mm in diameter (Belgya et al., 2008b). The scanning of the
sample is with the help of a xyzo moving table. Moreover, a
neutron tomography system is added to the setup. This second
system allows to acquire a 3D image of the sample under study.
The NT, which reveals the inner structure of the object is useful for
the correct positioning of the sample into the pencil n-beam and
for the navigation, which is a non-trivial task. The scheme in Fig. 1
helps to understand the basic concept of this setup. For automatic
PGAI scans of the samples a digital acquisition system with
configurable acquisition software is in use. The final goal of the
PGAI-NT is to combine the 3D image of elemental distribution
obtained by PGAI and the tomographic reconstruction to have
complementary information of the objects structure. The PGAI-NT
setup is described in more detail elsewhere (Schulze et al., to be
published).

3. Results and discussion

A small meteorite was measured to test all the above described
techniques and setups available. On this sample standard PGAA,
PGAI and NT were carried out. The results are quite encouraging
showing a good performance of the instrument. The sample under
study was a piece of the Allende meteorite (220 mg), Fig. 2. This
kind of meteorite belongs to the group of stony carbonaceous
chondrites and it is very inhomogeneous.

3.1. PGAA measurement

The small meteorite was first measured with the standard
PGAA setup and the results of the analysis are shown in Table 1.
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Fig. 1. Schematic view of the PGAI-NT setup.

Fig. 2. The Allende meteorite under study (220 mg).
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For comparison, literature values for the composition are given
there as well. The interesting part is the comparison with the
PGAA measurement carried our for the same piece of the Allende
meteorite at the Budapest PGAA station. The irradiation
conditions at the PGAA station at FRM II were slight different
from those of the facility in Budapest. The acquisition time was
3270 s and using the elliptical nose and two attenuators, the
neutron flux was 1:8� 109 n=cm2 s thermal equivalent
(4:9� 108 n=cm2 s for cold neutrons), while in Budapest, due to
the lower flux intensity (5� 107 n=cm2 s thermal equivalent), the
sample was measured for about 14 h (Molnár et al., 1997).

The results obtained at FRM II are in a good agreement with
those obtained in Budapest, e.g. Mg, Si, S, Mn, Fe, and Ni give the
same result within one standard deviation. Nevertheless there are
some discrepancies in the amount of H, Cl and Na, moreover K, Ti
and Sm were not detected. Probably the rather short measure-
ment time did not allow to detect K, Ti, and Sm that are present in
very low concentration. While the reason for the discrepancies in
the concentration of H, Cl and Na could be the interference with
the background, that could be not well calibrated for the purpose.
Further investigation to solve this problem is necessary. Moreover,
the differences between our measurement and the values given by
Jarosewich (1990) and Kallemeyn and Wasson (1981), are
probably caused by the heterogeneity of the Allende meteorite.
Only a very small portion of the meteorite was analysed (220 mg),
while the literature values give the average concentration on the
whole pieces of the Allende meteorite.

In this measurement the sample chamber was not evacuated,
so the background contribution was higher. Such background
conditions make it difficult or even impossible to detect trace
element like for example Sm. Thus a further optimisation of the
background is needed. Aside these considerations, the results
obtained are encouraging.

3.2. NT and PGAI

After the PGAA measurement the setup of the instrument was
changed in order to acquire a neutron tomography by rotating and
a PGAI by scanning the same sample. The reconstructed image of
the Allende meteorite obtained through NT is shown in Fig. 3.

Usually, depending on the divergence of the neutron beam, a full
neutron tomography is obtained through 400 neutron
radiographies of the sample taken on the whole rotational angle
of 360� (a radiography every 0:9�). In this case the image was
reconstructed using only 300 radiographies, because of an
unexpected problem in the main shutter of the neutron guide
hall occurred during the acquisition time that stopped the
acquisition. The exposure time for each image was of 1 s.

The spatial resolution of the 3D image is only about
0.4 mm. This is mainly due to the divergence of the neutron
beam, and due to the non-optimised field of view of the CCD
camera. Moreover the sample holder used in this measurement
(a polytetrafluoroethylene(-PTFE) holder) gave some difficulties in
the reconstruction of the final image. This kind of sample holder
was too massive for the purpose, thus less transparent to
neutrons.

The NT is a very practical tool in the selection of the points to
measure inside the sample with PGAI, because it reveals the deep
structure of the sample itself and so the navigation to the
interesting parts is possible. This method is of great interest for
highly inhomogeneous samples and e.g. small museum object,
also because it is a non-destructive technique (see Ancient Charm
project). In this example unfortunately the achieved resolution
and the small dimensions of the sample cannot offer a better view
of the inner structure. Nevertheless this test measurement can be
considered a good starting point for a future development of this
feature.

The meteorite was measured with PGAI. The 2D charts for the
main elements found inside the meteorite, i.e. Fe, Si and Mg
are shown in Fig. 4. The profile lines defines the distribution of the
counts for the given element. All the spectra were taken for
the same measurement time so there was no need to normalise
the counts for the time. The scanning grid was prepared based on
the neutron radiographies and tomography of the meteorite. The
grid for the motor movement covered the whole area of the
sample ð12:5 mm� 6 mmÞ with a resolution of about 2 mm�
2:5 mm per g-spectrum, giving 15 spectra in total.
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Table 1
Comparison between the PGAA values obtain at FRM II and Budapest and literature

values on the Allende meteorite obtained by Jarosewich (1990) and Kallemeyn and

Wasson (1981).

El. FRMII Budapesta Jaros. Kall.

H 0:343� 0:004 0:2572� 0:0060 – –

Na 0:239� 0:060 0:1155� 0:0067 0.334 0.329

Mg 13:00� 0:58 13:20� 0:69 14.85 14.80

Al 1:377� 0:060 1:406� 0:036 1.731 1.760

Si 14:81� 0:38 14:68� 0:34 16.00 –

S 0:930� 0:025 0:913� 0:021 1.470 –

Cl 0:0162� 0:0059 0:0102� 0:0006 – –

K – 0:0199� 0:0026 0.0249 0.0294

Ca 1:647� 0:052 1:444� 0:045 1.865 1.880

Ti – 0:078� 0:016 0.0899 –

Cr 0:357� 0:010 0:334� 0:008 0.356 0.363

Mn 0:1350� 0:0039 0:1396� 0:0026 0.1394 0.1450

Fe 23:95� 0:46 23.85 23.85 23.70

Co 0:0410� 0:0015 0:0391� 0:0008 0.01–0.02 0.0662

Ni 0:879� 0:026 0:868� 0:015 0.36–0.85 1.33

Sm – 20:1� 3:04 ppm 47:8 ppm 29:8 ppm

All the values are in %w and errors are in 1� s standard deviation.

a The values are normalised for the Fe concentration by Jarosewich (1990).

Fig. 3. Reconstructed image of the Allende meteorite fragment obtained with

neutron tomography at the PGAA station.
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In this case the narrow g-collimator for usual PGAI was
not used because the thickness of the sample itself was
exactly comparable with the thickness of the isovolume. This
arrangement allowed only a 2D measurement and a higher count-
rate that shortened the acquisition time to about 1 h (3557 s) per
spectrum. The analysis of the spectra was performed with
Hyperlab software (Hyperlab software, 2008). This software
allows the analysis in a batch of all the spectra at once. The
elemental maps are obtained using the counts found for the main
prompt-g-line of the element under study.

These are the prompt-g-lines used for the distributions
reconstruction:

� Si: 3538.966 keV;
� Fe: 7631.136 keV;
� Mg: 585.00 keV.

As it can be seen from Fig. 4 the distributions for Fe, Si and Mg are
all different, but all the elements have the higher amount on the
right side of the sample, where the object is thicker. The

radiography in Fig. 4(a) was taken before the PGAI measurements
and it helps in the visualisation of the distribution maps.

It is not yet possible to give some quantitative values of the
element concentrations. Further improvement on the analysis of
the gamma spectra should be done. It is a challenging task
because there are many factors that have to be taken into account;
for example, the different amount of material in the beam for each
position. Corrections for the amount of material in beam and for
the thickness have to be calculated and incorporated in the maps.
This information is quite important in this case and in similar
objects, where the structure is neither regular nor symmetric. In
this measurement a first very rough correction for the amount of
material in the beam is given. According to the grid the thickness
of the meteorite was measured manually along the x and y axis
trying to follow the lines defined in the scan grid, and for each
measuring point the average thickness measured along the two
axis was taken. The distributions in Fig. 4 are corrected with this
rough mass correction factor but in a further development of the
technique this information can be derived more precisely from the
tomography made on the sample.

4. Conclusions

All the measuring possibilities at the PGAA station at the
research reactor FRM II in Munich were tested on a small piece of
the Allende meteorite. The information obtained are a bulk
determination of the elemental composition, with standard PGAA,
and 2D maps for the three major elements determined with the
PGAI-NT technique. The elemental composition measured with
PGAA was in a good agreement with the values obtained in
Budapest and with the literature values. There are still some
parameters to be optimised, but these first results are satisfactory.

The PGAI-NT technique needs more improvements, however,
for a first trial the performance of the new method is encouraging.
The main difficulty of this technique is the geometrical alignment
of the setup, which is a challenging and time consuming task.
Furthermore, the analysis of the data has to be further studied.
Correction methods for gamma-attenuation and neutron-self-
absorption have to be developed and calculated.
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6. Allende Meteorite

6.2.1 Measurements 2010
In 2010, the same piece of the Allende meteorite was investigated again with PGAA and the
newly optimised 2D-PGAA (see chapter 5). The main aim was to compare the new results with
the ones obtained from the 2009 campaign, especially for the 2D measurements.
In table 6.1, the determination of the elemental composition with PGAA for the Allende meteorite
is presented and compared with the values obtained in 2009 and the literature ones.

Element AL 1 2009 AL 1 2010 AL 1 Budapest Jarosewich [58] Kallemeyn [59]

H 0.343(4) 0.259(4) 0.257(6) − −

Na 0.24(6) 0.18(2) 0.116(7) 0.334 0.329
Mg 13.0(6) 13.4(7) 13.2(7) 14.85 14.80
Al 1.38(6) 1.44(4) 1.41(4) 1.731 1.760
Si 14.8(4) 14.5(5) 14.7(3) 16.00 −

S 0.93(3) 0.97(2) 0.91(2) 1.470 −

Cl 0.016(6) 0.0111(4) 0.0102(6) − −

K − 0.0146(19) 0.0199(26) 0.0249 0.0294
Ca 1.65(5) 1.54(5) 1.44(5) 1.865 1.880
Ti − 0.081(2) 0.078(16) 0.0899 −

Cr 0.357(10) 0.347(9) 0.334(8) 0.356 0.363
Mn 0.135(4) 0.144(4) 0.140(3) 0.1394 0.1450
Fe 24.0(5) 24.4(6) 23.85 23.85 23.70
Co 0.0410(15) 0.0376(9) 0.0391(8) 0.01 − 0.02 0.0662
Ni 0.88(26) 0.832(22) 0.868 ± 0.015 0.36 − 0.85 1.33
Sm − 5.1(8) ppm 20.1(30) ppm 47.8 ppm 29.8 ppm

Table 6.1: Elemental composition of the piece of the Allende meteorite

The new PGAA results, under the same irradiation conditions, show lower uncertainties with
respect to the 2009 measurements. Moreover, it was also possible to detect impurities like K
and Sm, which demonstrates that the optimisation carried out on the instrument, improved the
measuring conditions.
After the PGAA measurements, the 2D scan was prepared and measured. In order to check if
the scanning field was centered on the meteorite, a neutron photo was taken for the maximum
and minimum positions of the scanning field. In fig. 6.1, the piece of the Allende meteorite and
the neutron scanning field are presented.
The scan grid was made of 15 positions each measured for 3600 s as in the former irradiation. This
time, it was possible to use vacuum conditions thanks to the improved 2D setup (see chapter 5).
In the following graphs (fig. 6.2) the results obtained for the major elements, i.e. Fe, Mg, and Si,
are shown. In order to help with the visualization of the element distributions on the meteorite,
a neutron radiography of the Allende meteorite acquired in the first set of measurements, in
2009, is added.
With the improved measuring conditions, also the 2D maps result in more details and the
count-rates are higher than in the former measurement. Moreover, it was also possible to detect
some impurities, like Co, Cl, and Sm and to locate them on the meteorite. This particular was

77



6.2. First comprehensive tests on the meteorite

(a) Allende meteorite (b) Neutron scanning field

Figure 6.1: Allende meteorite positioned on the sample holder and photo of the neutron scanning
field.

not obtained with the ANCIENT CHARM setup. The 2D maps for the trace elements found are
shown in fig. 6.3.
The newly developed 2D-PGAA setup showed a better performance with respect to the first 2D
measurements carried out with the ANCIENT CHARM setup.
A correction for the material amount irradiated per each position has to be done for this case, too,
in order to reconstruct a more realistic 2D distribution of the elements. For the measurements
carried out in 2009, a rough correction factor that considers the amount of material irradiated
was estimated. According to the measuring scan-grid, the meteorite thickness was measured
manually with a calliper along the two directions trying to follow the direction of the programmed
grid. For each point defined by the grid the average thickness for each direction was taken and
used to calculate a rough volume, i. e. the amount of the meteorite mass in that point. The
introduction of this correction factor brought a very slight improvement in the 2D maps of the
major elements. The same mass correction was used also on the data acquired in 2010. The
normalized distribution maps obtained are again slightly different from the first maps for the
major elements, while for trace elements, the differences are more remarkable. As an example,
the normalized 2D maps for Si, Cl, and Sm are shown in fig. 6.4.
A more sophisticated method to correct for the mass amount is needed indeed. A more precise
volume calculation could be obtained with a 3D imaging method, like for example neutron
tomography. The spatial resolution of the method can be improved by the reduction of the
neutron field, i.e. the neutron collimator dimensions, at the cost of (much) longer measurement
times and a reduced sensitivity.
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6. Allende Meteorite

(a) Allende meteorite (b) Fe 7631.136 keV

(c) Mg 2828.172 keV (d) Si 3538.966 keV

Figure 6.2: 2D Elemental distributions for the major components of the Allende meteorite; Fe,
Mg and Si. As reference the neutron radiography of the Allende meteorite with the
scanning grid is also added.
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6.2. First comprehensive tests on the meteorite

(a) Allende meteorite (b) Co 277.161 keV

(c) Cl 1951.14 keV (d) Sm 333.97 keV

Figure 6.3: 2D maps of the trace elements found in the Allende meteorite. As reference the neu-
tron radiography of the Allende meteorite with the scanning grid is also added.
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6. Allende Meteorite

(a) Allende meteorite (b) Si

(c) Cl (d) Sm

Figure 6.4: Mass-corrected 2D maps for the major element Si and for the trace elements Cl and
Sm. As reference the neutron radiography of the Allende meteorite with the scanning
grid is also added.
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CHAPTER 7
UMo alloy

The HEU-MEU group has purchased sputtering targets consisting of depleted uranium molybde-
num alloy U-8Mo (DU-Mo) for the MEU sputtering project. The interest in PGAA measurements
was driven by the wish to determine the exact composition of the target material before the
sputtering process as well as the composition of the film deposited in the process.
The UMo target used in the sputter process was analysed with the new 2D system at the PGAA
station. The goal of this experiments is to understand the distribution of U and Mo inside the
target itself. Moreover, sputter deposited foils have been measured with the 2D system, too.

7.1 Introduction: UMo alloy, why?
The compact reactor core of FRM II consists of only one fuel element. Although the thermal
power is only 20MW, the unperturbed neutron flux is approximatively 8 · 1014 cm−2 s−1. The
particular design of the reactor core allows to build up of the maximum thermal neutron flux

83



7.2. Sputtering process

density outside the core at about 12 cm from the fuel element surface. The fuel element is made
of 113 involute shaped fuel plates. Each plate consists of U3Si2 embedded in Al. The U used in
such a compact fuel element is altogether 8 kg with an enrichment of 93%.
In the next years, FRM II should decrease the enrichment of the fuel element. In order to keep
the same cycle length with a lower enrichment, it is necessary to develop a high density nuclear
fuel. The lowering of the enrichment is followed by a higher neutron absorption from 238U, thus
the amount of 235U has to be increased. As the geometry of the fuel element is fixed the only
way to increase the U density in the fuel.
The actual fuel element is made of disperse U2Si3 and has a maximum U density of 3.0 g cm−3.
The efforts of the actual nuclear fuel research is based on the study of disperse U-alloys with a
density between 8.0-9.0 g cm−3. Several U-compounds were taken into account and according to
the performed tests the actual studies are focusing on UMo alloys. The reason was that this
alloy (with a Mo concentration between 6 - 9 %) showed an excellent irradiation performance up
to high U consumptions [60].
From the current scientific view, some UMo alloys can be a suitable fuel, but for an application
at FRM II several issues have to be addressed first. One of these issues is the development of an
easy and reliable processing technique for UMo. In this context, the fuel development group at
FRM II investigates sputtering as a possible processing technique [2].

7.2 Sputtering process
Sputtering denotes the ejection of surface atoms form a target material induced by a particle
bombardment. The projectiles used for bombardment can be molecules, neutral atoms, ions,
nuclei and even photons. The energy of the projectile bombardment can have a wide range from
few eV up to MeV. However, for technical applications, usually ions at energies between eV and
few keV are used.
The energy transfer from the projectile ion to the target atom occurs in two ways: through the
transfer of the energy and momentum vector (physical sputtering) or through the energy released
from a chemical reaction on the surface of the target (chemical sputtering). In the first case,
the ejected atom receives the necessary energy from a collision or ionizing cascade. In chemical
sputtering, the chemical reaction between the incoming ion and the atoms of the target creates
molecules that have a low binding energy and can be desorb at the current target temperature.
Purely physical sputtering process occurs exclusively when noble gas ions are used as projectiles,
while for mixed ions the sputtering is a results of both processes.
If an atom receives enough energy to overcome the local binding forces, it can be considered
energetically unbound. If it can reach the target surface and the momentum vector is pointed
away from the target, the atom is ejected. Sputtering is a threshold process. The energy threshold
for an atom ejection corresponds to the ion energy required to remove an atom from the surface
of the target. Usually sputtering threshold energies are around 20 and 50 eV, depending on the
target material and on the type of ion.
The atoms ejected from the surface are mostly neutral atoms with a broad angular and energetic
distribution. The so-called sputtering yields are used to describe these distributions. The total
sputtering yield describe the absolute number of atoms ejected by one projectile [60].
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7. UMo alloy

7.2.1 Preferential sputtering and diffusion
The theory of sputtering alloys (like UMo) and multicomponent materials predicts a change of
the composition of the sputtering target as well as of the sputtered deposits due to the so called
preferential sputtering. Preferential sputtering means, that different atomic components in a
material have different sputtering yields and are therefore sputtered not proportionally to their
concentration on the surface of the material. The preferential removal of one component from the
surface produces a so called altered layer, which is a near-surface region with a composition that is
stoichiometrically different from the target bulk material. At sufficiently low temperatures, when
thermal diffusion is not important, this altered layer stays at a finite thickness and steady-state
conditions can be reached, where the amount of material sputtered from each species becomes
proportional to the bulk concentration. If the target temperature gets too high on the other hand,
thermal diffusion processes will let the altered layer grow until it envelopes the whole target. In
this case the sputtering process will continuously deplete one component in the target resulting
in a permanent change of the composition of the target material as well as of the sputtered films
[60].
It is evident that for the sputtering of UMo alloys for fuel processing, a change of the composition
during the sputtering process is not desired and could even be fatal for the usability of sputtering
as a processing technique. Therefore, it is of main interest to clarify if a composition change
within the sputtering target or within the sputtered deposit can be observed at the currently
used operational conditions and to quantify it.

7.3 PGAA Measurements
The PGAA method is an suitable method for the measurement of uranium and for the determi-
nation of the U-enrichment [61]. The samples obtained from the HEU-MEU group were first
measured with standard PGAA measurements. The information to gain were the measurement
feasibility and a first check of the nominal concentration of Mo inside the alloy.
A piece of the A20 target with a nominal Mo concentration of 8.0%wt and with 0.220%wt of
235U (data obtained from CERCA, Roman, France) and a piece of the sputter deposit were
analysed . The samples were packed inside FEP-bags in order to avoid the contamination of the
sample holder. Both samples, the target and the deposit, were measured twice. The first analysis
was to determine the optimum irradiation parameters and the second one was to improve the
results. The final value is calculated as a weighted average. The Mo/U ratio is calculated using
the k0-method.
The k0-value for U is taken from the IAEA database as it is a regular 1/v-nuclide. In this
particular case, however, it has to be corrected for the enrichment in 238U. The line chosen for
the determination of U in the samples is the line at 4060.35 keV, which is also the most intense
prompt-line. The k0-value for this line for natural U (isotopic abundance 99.274%) is 0.00237(4).
According to the definition, this parameter (chapter 2 and 4) can be recalculated for the actual
enrichment. In this way, the new k0 for the 4060.35 keV line is 0.002382.
For Mo, the chosen line was the line at 778.221 keV, which is produced in the neutron capture by
95Mo. This is the most intense line for Mo, but it is also subject to interference of the decay line
777.921 keV by 99Mo and the decay line 778.29 keV by 101Mo.
99Mo and 101Mo have two production routes; through the fission of 235U with a chain yield of
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7.3. PGAA Measurements

6.161% and 5.167% respectively, and by neutron capture reactions on 98Mo and 100Mo (see fig.
7.1) which are both present in natural Mo and therefore part of the alloy.

Figure 7.1: Neutron capture route for the production of 99Mo and 101Mo [62].

Concerning 99Mo, the neutron capture production route is not so important because the growth
rate of 99Mo is strictly connected to the half-life of the nuclide that in this case is 66 h which is
not comparable with the irradiation time of 3600 s. This is not the case for 101Mo that has a
half-life of only 14.6m. The fission production route cannot be completely excluded, because
even if the UMo samples are made from depleted U, the high cross section of the fission process
of 235U can contribute to the production of these two interfering nuclides. In order to check and,
in case, to quantify the correction factor for the interference lines, immediately after a one hour
long irradiation, a decay spectra was acquired for a duration comparable to that of the PGAA
measurements. Fortunately, as it can be see in fig. 7.2 no decay line belonging to 99Mo or/and
101Mo was found.
All the other lines visible in the decay spectra belong to the decay of 239U (half-life of 23.45min)

Figure 7.2: Decay spectrum of UMo target acquired to detect possible interferences lines at
778 keV.

and 239Np (half-life 2.355 d). The decay of 52V is also visible which is the main impurity found
in the alloy. In table 7.1 the results of these first measurements are listed.
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7. UMo alloy

ID and irradiation time U [%wt] Mo [%wt] V [%wt]

UMo target, 11.975mg
A0407 - 5400 s 92.5(26) 7.29(23) 0.195(7)
A0608 - 10240 s 92.1(25) 7.65(24) 0.222(7)
UMo deposit, 2.5mg
A0402 - 7200 s 90.8(46) 9.2(5) −

A0618 - 16200 s 90.7(41) 9.3(4) −

Table 7.1: U and Mo concentration measured with standard PGAA.

The rather large uncertainty is due to the very low amount of material, nevertheless the results
for the sputtered deposit are in pretty good agreement with the ICP-OES result (9.2(6)%wt Mo,
Institut für Radiochemie, TUM), while the EDX measurement are not in agreement (7.5(9)%wt

Mo). The discrepancy between the Mo in the target material and in the foil may suggest the
possibility of preferential sputtering effects, although the dimension of the samples were too
small to confirm this assumption.

7.4 2D PGAA
The unsolved questions after PGAA standard measurements suggested to investigate the UMo
targets as well as the deposits in more detail. The main open problem are the diffusion effects in
the target material and preferential sputtering and ejection processes in the deposits. The newly
optimised 2D PGAA method may help in the determination of local concentrations. Two samples
of the target material and a bigger deposit were analysed with the 2D method. In particular for
the target material 2 samples were provided, the first one was cut from the target before the
sputtering process, the second one was cut out from the same target but at the end of its life.

7.4.1 UMo target
From the target A20, a small slice was cut out before it was mounted in the sputtering device.
The slice was 120µm thick with a surface of 20 x 10mm2, the mass was 0.474 g. The neutron beam
as described in chapter 5 was collimated down to 2 x 2mm2 with a combined LiF-ceramic plus
LiF-polymer aperture. The scanning grid planned for the sample covered an area of 8 x 23mm2.
The dimensions did not match completely all of the area of the sample, this was due mainly to
the manual positioning of the sample and the lack of a direct imaging device. In any case, more
than 90 % of the sample area was covered. Each point of the grid was measured for 4500 s under
vacuum conditions.
In fig. 7.3, the 2D maps are shown. In the coloured map, the distribution of the counts for the
4060 keV line of U and for the 778 keV line of Mo are shown, respectively. In the black and white
graphs, the local ratios of Mo and U are shown. The local concentration of Mo varies between
5.5 and 6.9% and, accordingly, the local concentration of U between 93.1 and 94.5%. In this
case it is possible to see that the local mass ratio of the two elements is not constant, which
means that the two main components are not homogeneously distributed. This differences can
only be connected to the production phase of the target material.
An interesting outcome of these measurement was the detection of impurities like V, Fe, Pb,
and Cu. In fig. 7.4, the 2D-maps of the counts obtained are shown. The impurities are non-
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7.4. 2D PGAA

(a) U counts map (b) Mo counts map

(c) Local concentration of U (d) Local concentration of Mo

Figure 7.3: U and Mo distribution in the fresh target.
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7. UMo alloy

(a) Counts distribution for V (b) Counts distribution for Fe

(c) Counts distribution for Pb (d) Counts distribution for Cu

Figure 7.4: Maps of the impurities found in the target material.
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7.4. 2D PGAA

homogeneously distributed in the material, the only exception is Cu. The reason of such a
widespread presence of Cu can be explained only by Cu being a contaminant. The sample was
cut out of the main target by using a wire saw whose wire was made of brass. From microscope
measurements made on the same sample, a 5µm brass layer was detected on both sides of the
sample [63].
The second target sample that was analysed was coming from the exhausted A20 target. The
thickness was about 500µm and the mass was 1.086 g. The slice was taken in correspondence of
the erosion region, the zone that faces the ion bombardment during the sputtering process. In
fig. 7.5, the slice and the measured region are shown.

Figure 7.5: Target after sputtering. The red zone is the scanned one.

The scanned area was 8 x 20mm2 divided into 21 spectra, each acquired for 3600 s. Irradiation
conditions were the same as for the previous measurement.
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(a) Counts distribution of U (b) Counts distribution of Mo

(c) Local concentration of U (d) Local concentration of Mo

Figure 7.6: 2D maps of the counts for U and Mo and local concentration distribution of the
target after sputtering.
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Also for this sample, 2D maps of the counts distribution for the U peak and the Mo peak were
realized, see fig. 7.6. The Mo and U local concentration also in this case are not homogeneous.
This time the Mo concentration varies in a wider range as for the fresh target. More precisely it
varies between 4.3 and 7.5%. From fig. 7.6(d) it is possible to notice that there is a gradient
along the X direction. Moreover, the maximum Mo concentration is located in the erosion region
of the sample. This effect can be a consequence of diffusion processes during sputtering, but also
an inhomogeneity of Mo/U in the fresh material can be the cause of this gradient. Only two
impurities were found: V and Fe. In fig. 7.7, the 2D maps are shown.

(a) Counts distribution V (b) Counts distribution Fe

Figure 7.7: Impurities found in the target after sputtering.

As for Cu in the first sample, also in this case the distribution of the two elements is spread all
over the sample surface. The cutting of the sample was performed with the same technique as
before, but with a different wire. In this case, the wire was made of steel and diamond particles.
V and Fe are typical elements used in steel alloys.

7.4.2 UMo foil
Besides the analysis of the target material before and after the sputtering process, a deposit of
the target A20 was measured. The sample under study was a 10 x 10 cm2 deposit of UMo alloy
on a pure Zr substrate. The thickness of the UMo layer was 50µm (1.99 g) sand the thickness
of the substrate was 120µm. This particular substrate was chosen because Zr has a very low
cross section (elemental capture cross section 0.19 b) in comparison with the cross section of the
elements under study.
The whole layer was too big for the PGAA sample chamber, thus it was cut in 4 equal pieces
each 5 x 5 cm2. In principle, if the sample produced with the sputtering process is assumed to be
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symmetrical, the information acquired by the analysis of one quarter can be projected over the
entire original sample dimensions. In this case a full scan, of the sample was not possible due to
the constraints posed by the beam-time schedule, therefore it was decided to scan only the two
main lines of the foil. In fig. 7.8, the UMo layer and the analysis region are shown.

Figure 7.8: Sputtered deposit on a Zr substrate. The red lines are the two lines analysed by 2D-
PGAA.

The two lines were scanned with 2.5mm steps. The overall length of the scan lines was 34mm
due to the mechanical constraints of the 2D motor. The analysis of the 28 spectra (14 per
direction) is shown in fig. 7.9.
The local concentration of Mo seems to decrease in the middle region of the foil for both lines.
The concentration interval for the vertical scan line is 8.2 - 10.1% and for the horizontal scan
line 7.4 - 9.8%. In the crossing point of the two lines the Mo concentration is comparable even
though there is a small shift in the measuring positions. This effects can be connected with the
preferential ejection of atoms on the substrate and it seems to be connected with the ring-shaped
plasma, that creates the ion bombardment in the sputtering reactor.
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(a) Horizontal line

(b) Vertical line

Figure 7.9: Mo local concentrations of a sputtered deposited film.
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7.5 Outlook
2D-PGAA is an effective tool for the study of local concentrations of U and Mo. Future
developments of the 2D setup would be advisable, mainly the reduction of the neutron field.
It would allow the investigation of a smaller region and a more precise analysis of the local
concentrations. Systematic study of the sputtered deposits is advisable in order to understand
how the sputtered elements are distributed on the substrate and if this distribution can be linked
to particular parameters in the production phase. The 2D-mapping of a full size monolithic UMo
fuel foils seems also feasible and promising. Especially to study their production phase.
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CHAPTER 8
Conclusions and outlook

At the beginning of 2008, the new Prompt Gamma-ray Activation Analysis (PGAA) facility
started operation at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II).

Formerly this instrument was located at the PSI in Switzerland and then moved to the new high
flux research reactor in Garching. Thanks to the particular, elliptically shaped neutron guide
(the last 6.9m, moreover, the last 1.1m, the so-called elliptical nose, is removable), the neutron
flux available is considerably higher, moreover, the neutrons are focused in a spot that coincides
with the sample position. The maximum thermal equivalent neutron flux reaches a value of
6.07 ·1010 cm−2 s−1 (1.64 ·1010 cm−2 s−1 for cold neutrons). However, the intensity of the neutron
flux is pretty flexible thanks to the installation of three neutron attenuator that allow the user
to modulate the intensity of the neutron beam according to the samples and the desired results.
The instrument is furbished with two gamma-ray spectrometers with an anti-Compton suppres-
sion system. The fine calibration of the two spectrometers is of vital importance for PGAA
measurements. PGAA spectra are very complex with hundreds of gamma-ray energies, thus,
for precise and reliable analytical results the precision of the energy calibration as well as the
efficiency calibration are very important. Another important factor for a good quality measure-
ments is the prompt-radiation background caused by construction materials hit by scattered
neutrons. The main goal in the optimisation of the facility was the reduction of the background.
The instrument has two main measuring configuration dictated by the presence of the removable
1.1m long elliptical nose. At the beginning of the operation the total background count-rate with
the elliptical nose was about 3000 cps with a reduced neutron flux of 1.71 ·109 cm−2 s−1. Through
the optimisation of the shielding materials and the introduction of a more efficient vacuum pump,
the total background count-rate was reduced to only 192 cps for the same irradiation conditions.
The same procedure was then carried out for the second setup (namely without the elliptical
nose) and also in this case good improvement were obtained from 580 cps with a th. eq. neutron
flux of 8.37 · 108 cm−2 s−1 to 269 cps with a higher neutron intensity (1.53 · 109 cm−2 s−1).
The improvement of the background conditions improved the analytical sensitivity of the mea-
surements. An estimation of the detection limits and of the analytical sensitivities for the most
common elements was carried out and compared with the ones of other PGAA facilities around
the world. From these preliminary data it is already possible to see the high potential of this
new facility. Further measurements to experimentally determine the detection limits have to be
carried out in the future.
To check the reliability of the analytical measurements, standard reference material were mea-
sured. The measurements were acquired in 2009 and after the main optimisation in 2010. From
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the comparison of the results obtained in 2009 and 2010, it is possible to observe an overall
improvement of the measurements sensitivity as well as more precise analytical results, e. g. lower
uncertainties.

The PGAA measurements described in this work are underling some strong points of the facility.
This technique has some preferred elements, like for example H, B, Gd, Cd, and Eu. In this
work the attention is focused mainly on few elements which are particularly sensitive in PGAA
measurements (non-1/v nuclides Sm, Eu, Gd, and Cd).
The k0-values for these elements were measured first. For non-1/v nuclides the k0-value are
determined for each facility and they can only be used for that particular facility. This is mainly
due to the low energy resonances in the cross section of these nuclides,combined with the neutron
spectrum of the particular facility.
The k0-values obtained for these elements were then compared with literature values and the
effective g-factors were calculated using this comparison.
Following these measurements some samples, which contain these elements, were measured.
Thin films of europium oxide doped with Gd are a new material studied by the Zentrum für
elektronische Korrelation und Magnetismus (Universität Augsburg) for the developement of new
semiconductor materials for spintronics. The amount of the dopant Gd is derived from the grow-
ing process of the thin layer and a measurement of the real concentration in the sample is needed
in order to calibrate the production of these thin films. Despite the difference between the amount
of the sample (37 nm thick) and the amount of the substrate (about 200mg of YAlO3), the high
neutron cross-section of Eu and Gd made measurements possible. The results obtained were then
compared with those obtained by a different analytical method: X-ray Absorption Spectroscopy.
The different concentrations of Gd in three differently doped samples were compared and the
discrepancies between the two methods are in some cases huge. However, XAS measurement are
less precise compared to PGAA measurements because the change of the background function
creates an oscillation in the final concentration between 3 and 5 %.PGAA measurements are
therefore more precise and reliable for the quantification of Gd in these particular thin films.

Cd is known to be a contaminant in trace amount in human tissues. The intake occurs following
three main routes: inhalation, oral, and dermal. Cd is also recognized as a carcinogenic agent in
human from different studies. The aim of these measurements was to determine a method for
Cd determination in human tissues with PGAA. Thanks to the collaboration with the Institut
für Rechtsmedizin, it was possible to determine Cd in some human tissues starting from samples
belonging to the targets organs (liver and kidney) and samples taken from heart and lung.
The first measurements carried out were necessary to determine the feasibility, and to test
some preparation techniques to decrease the amount of H, i. e. water. In particular drying and
preconcentration procedure were tested. Preconcentration of sample was obtained by dissolution
in concentrated nitric acid followed by evaporation. For each tissue three samples were prepared:
one native sample, one dried sample and a preconcentrated one. As cross-check for all phases
of the determination (preparation and Cd quantification through a calibration curve), samples
taken from kidney of a male smoker subject were measured and analysed. Kidney is the major
target organ for Cd accumulation and, in particular, smoker subjects have higher concentration
due to the increased intake through cigarettes. Beside this cross-check measurements, samples
from another patient were acquired and measured. In this case no record about the smoking
habits were known. From the Cd concentration found in the kidney it was clear that he was
not a smoker. The Cd concentration for the kidney of the smoker was 11.5µg/g, while for the
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second patient was only 2.0µg/g.
A third measuring campaign was carried out and in kidney-, liver-, heart-, and lung samples
from two patients. From the results in the kidney samples, it emerged that both were probably
non-smokers.
Some problems were encountered during the quantification of Cd in native tissues. The Cd
concentrations obtained with the calibration curve, in some cases, are not near the concentration
obtained for the dried and preconcentrated samples. A possible explanation can be the thermali-
sation of neutrons in water-rich samples combined with the mismatching of the matrix between
samples and calibration samples (that were water-deficient, more comparable with the dried and
preconcentrated samples). The construction of a second rough calibration curve helped in the
correction of the Cd concentration of the native samples.
The two methods used to reduce the amount of water inside the sample yield comparable results.
The reduction of H inside the sample is effective with both preparation procedure. However, the
drying procedure keeps the overall elemental composition unchanged and it is possible to treat
quite easily multiple samples at once. The preconcentration method allows a very precise Cd
measurement; the samples are homogenized and it is possible to analyse much more material.
The drawback of this treatment are the long preparation times and a higher risk of contamination
due to the extensive handling of the samples.

PGAA measurements are also very convenient for the analysis of archaeological objects. This
technique can be considered non-destructive from a macroscopic point of view. Compared to
other techniques, PGAA is a quick method to obtain information on the bulk composition.
A small set of ancient Greek coins, found in an excavation in the area of Lithochori, was analysed
with PGAA. The information obtained on the coins was the metallurgical composition of the
coins. This information helped archaeologists in the determination of the age of the coins as
well as the provenance. The composition of the bronze of the coins was then compared with the
one obtained by a different technique: Scanning Electron Microscope Energy Dispersive X-ray
(SEM-EDX). As it can be seen the SEM-EDX technique is not able to detect all the elements
being part of the bronze alloy mainly because it is a surface method,while PGAA yielded the
bulk composition. Moreover, PGAA was able to detect also some trace elements like Ni inside
the copper alloy. PGAA is also sensitive to Cl, that was found on 4 coins. This last element
plays a role in the deterioration of bronze and it is extremely important to eliminate this element,
for the good conservation of bronze artifacts.

Besides the standard PGAA measurements, a new analytical modality was developed. This new
modality allows the analysis of spatial elemental distributions in two dimensions.
First tests were carried out with the setup developed for the Europen project Ancient Charm.
The setup was developed for 3D imaging purposes on cultural heritage objects. For the 2D
mapping only two stages of the setup were used (in air atmosphere) and as sample a small piece
of the Allende meteoriten were used. This setup was also furbished with a neutron tomography
system for a 3D visualization of the object. This part of the setup was used for a neutron
radiography of the small meteorite for the positioning and for the planning of the 2D scan grid.
Before the 2D scanning a standard PGAA measurement was carried out in order to obtain the
composition of the meteorite and to establish major, minor and (when possible) trace element
concentrations.
For the 2D PGAA measurements the neutron beam was collimated with a LiF-polymer aperture
(2 x 2mm2) and the scan grid was programmed. From the 15 spectra acquired, it was possible to
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reconstruct the 2D-maps for the major components of the meteorite, i. e. Fe, Mg, and Si.
Thanks to the encouraging results, a more dedicated setup was subsequently built and tested.
This second setup was made with a two stage motor only and the opportunity to evacuate the
sample chamber in order to reduce the prompt background. Several tests were also made in order
to improve the neutron collimation. Different materials for the aperture were tested and the best
position for the collimation system was searched. This second task was necessary because of the
shaping properties of the neutron guide. The elliptical tapering has the advantage of focusing the
neutrons in a point but at the same time, after the focusing point, the neutron beam is divergent
and this property is not helpful for a 2D scanning where the dimension of the collimator defines
the spatial resolution of the method. In this case the most convenient position for the aperture
was found to be near the neutron focal point. The setup was then calibrated and tested with a
sample made of different materials with simple geometrical shapes.
The Allende meteorite was then remeasured with this second setup. The performance of the new
setup was better than the former setup mainly due to the possibility to evacuate the sample
chamber. The background reduction helped in the detection of some minor elements in the
meteorite and made the reconstruction of 2D maps for Co, Sm, and Cl possible.
A general conclusion, which emerged from both setups, is the need of a correction for the amount
of material in each measuring point. In the case of the meteorite the thickness is irregular thus
the intensity of the count-rate of the element under study is dependent on the amount of the
material irradiated (lots of material = high count-rate). The goal of the 2D measurements is
to obtain the spatial distribution of the elements independently of the amount of the material
irradiated. Therefore, in case of irregularly shaped samples a mass correction factor is necessary
in order to obtain a more realistic distribution of the elements inside the object. For that purpose
the tomography system can be helpful. From the 3D imaging reconstruction of the object a
precise mass correction factor can be calculated.
In case of the meteorite, a rough mass correction factor was calculated from the manual mea-
surements of the physical dimensions and then applied on the 2D distributions. For the major
elements slight differences were observed while for the minor elements changes in the distribution
were more noticeable.

The good performances of the new 2D setup was then applied to a second set of measurements.
In this case depleted uranium-molybdenum alloy (UMo alloy) samples for nuclear fuel research
were studied. This new material is currently under study thanks to its high uranium density.
This property is actually of great importance for the switch from highly enriched uranium fuel
elements used at the FRM II reactor to a medium enriched (50 %) uranium fuel element without
changing the geometry of the reactor core. During this project, the sputtering process was
investigated as a possible processing procedure for the production of UMo alloy. Because of
side-effects of the sputtering process in case of multi-elemental alloys, like preferential sputtering
and diffusion processes, the elemental distribution of U and Mo inside the deposited sample is of
great interest. In this sense 2D PGAA is a suitable analytical technique.
First, PGAA measurements were carried out on the sputtering target material as well as thin
deposits to check if the concentration of Mo inside the alloy remains unchanged. The nominal
Mo concentration delivered by the producing company is 8.0%. The Mo concentration found
by PGAA measurements for the target material was of 7.3% and for the deposit 9.2%. The
result of the UMo deposit was also compared with results obtained with Ion-coupled Plasma
Optical Emission Spectroscopy (ICP-OES) and with Energy Dispersive X-ray (EDX) analysis.
The results obtained with ICP-OES were found to be in agreement with the PGAA ones, while
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those obtained with EDX, a surface method, were not. However, the discrepancies between Mo
concentration in the target and in the deposit suggested the possibility of preferential sputtering
effects, although the dimensions of the samples were too small to confirm this assumption.
The second step was to scan sections of the target material before and after the sputtering process
and a larger UMo deposit with the 2D PGAA system. The 2D maps obtained for U and Mo for
the target material before the sputtering process revealed a non-homogeneous distribution of
the two elements. This can be a consequence of the production phase. Moreover, it was also
possible to detect the distribution of some impurities in the material like V, Fe, and Pb and the
contamination left by the cutting device, i. e. Cu (a brass wire was used). The target after the
sputtering process was chosen taking into account the erosion zone of the ion bombardments. In
this case in the 2D maps, a gradient in the concentration of Mo in correspondence of the erosion
region was detected. This gradient cannot yet be explained; it can be a combination of diffusion
effects as well as the inhomogeneity of the U/Mo distribution in the fresh material. As for the
first target, the contamination left from the cutting device was detected again, in this case V and
Fe (steel wire). The larger deposit, due to lack of beam time, was analysed only along two main
directions, the vertical and the horizontal ones. From the analysis of the Mo concentration along
the two directions it was possible to observe a pattern; the Mo concentration was lower in the
middle region of the foil in both directions. This effect can be a due to the so-called preferential
ejection process of the atoms on the substrate and, moreover, seems to be connected with the
ring-shaped plasma, which creates the ion bombardment in the sputtering reactor.
In this case 2D PGAA demonstrates to be an effective tool for the study of local concentration
of U and Mo.

The overall performance of the PGAA instrument at the research reactor FRM II was investigated
in this work. The optimisation of the instrument carried out mainly in 2009, improved the
analytical potential of the facility, however further improvements can be also carried out in the
future. These efforts concern the reduction of the prompt radiation background. This develop-
ment can be carried out in combination with high-count-rate applications. A new configuration
of the HPGe detectors, like for example a higher sample-to-detector distance or a completely new
geometry exploiting an inclined axes for the HPGe detector with respect to the neutron axes, can
be applied. However this second suggestion signifies a huge effort and a complete rearrangement
of the actual shielding materials as well as the experimental table.
A new system for the removal of the elliptical nose can also be taken into account. The develop-
ment a new mechanism for the complete removal of the elliptical nose from the neutron guide
can improve the efficiency of the shielding materials and solve some issues connected mainly to
radiation safety regulations. Moreover, the study of an efficient shielding configuration behind
the sample chamber and after the neutron stopper, for high flux applications, is highly advisable
in order to start the use of the extremely high neutron flux available , which is not yet fully used
because of radiation safety issues.
The main outlook is specially focused on the 2D-PGAA method. Further improvements should
target the collimated neutron beam. The main problem encountered during the measurements
was the high amount of fast neutrons produced by secondary reactions in the LiF-material of
the aperture. Due to the high flux of the facility, fast neutrons are able to compromise the
performance of the HPGe detector quite fast. A new configuration of the apertures, for example
a series of apertures starting from the exit of the beam guide with an optimised choice of the
materials can be studied in order to reduce the fast neutron production and at the same time
describe more precisely the neutron beam, with the final goal to reduce the dimension of the
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field, and thus to reach more accurate 2D elemental distributions.
Mass correction factors for the samples under study, derived from a neutron tomography image,
have to be implemented in the analysis procedure for 2D PGAA measurements in order to obtain
more realistic elemental distributions.
The two stage motor needs a new mechanic concept in order to reduce the weight of the whole
system, and the reproducibility and stability of the positioning. Moreover, a lighter construction
would allow to measure a broader set of samples. The measuring capacity of the actual system is
limited by the weight of the samples themselves.
Last but not the least, a suitable analysis software should be developed for the handling of
hundreds spectra that are easily produced with the 2D system. For 2D applications the analysis
of the prompt spectra is simplified with respect to standard PGAA measurements. Usually the
analysis is done with the help of few peaks (sometimes only with the major peak of the element
under study, in the case of minor and trace elements) and thus the handling of the spectra with
the common software used for standard PGAA requires a much larger amount of time.
In summary, the PGAA facility optimized during this thesis has the potential to become one
of the best facilities in the world mainly due to the available extremely high neutron flux at
FRM-II. The applications of PGAA are numerous and a few outstanding examples have been
presented in this thesis.
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APPENDIX A
Neutron self-shielding and gamma self-absorption

A.1 Neutron self-shielding

[15] When a sample contains a large amount of elements that have a high absorption cross
section, the analytical sensitivity is affected by self-absorption within the sample itself. Neutron
absorption decreases the analytical sensitivity and thus the measurements are compromised.
Correction factors for this effect were calculated analytically for simple sample geometry in
isotropic and parallel neutron fields.
In PGAA the neutron fields usually used are coming from neutron guides and therefore, are
considered parallel. The self-shielding factor is defined as the ratio of the average neutron flux
〈φ〉 through the sample to the incident flux φ0 on the sample:

f = 〈φ〉 /φ0. (A.1)

The magnitude of this factor is dependent on the size of the sample in terms of neutron free path
and it is therefore proportional to the total macroscopic cross section Σt defined as the product
of the microscopic cross section for neutron capture σ and the atomic density in the sample.
According to the geometry of the samples and assuming that scattering effects are negligible, it
is possible to calculate the correction factor for neutron self-shielding. In the following equations
the correction factor f is expressed for simple sample geometry.
Slab geometry:

f = 1− e−x
x

(A.2)

where x = tΣt and t is the thickness.
Spherical geometry:

f = 3
x3

[
x2

2 − 1 + (1 + x) e−x
]

(A.3)

where x = 2rΣt and r is the radius of the sphere.
Cylindrical geometry:

f = 2
x

[I1(x)− L1(x)] (A.4)
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where x = 2rΣt and r is the radius of the cylinder and I1 and L1 are the modified Bessel function
and the Struve function, respectively.

A.2 Gamma self-absorption

[18] Gamma self-absorption is dependent on the increasing thickness, density and atomic number
(Z) of the sample.
Generally, starting from the attenuation law, it is possible to calculate the correction factor for
gamma rays absorption a for radiation penetrating a uniform layer of thickness t in the normal
direction:

a = 1− (N/N0) = 1− e−µt (A.5)

where N is the number of photons emerging from the sample N0 is the number of incident
photons, µ is the attenuation coefficient and t is the thickness of the sample. In PGAA absorption
occurs within the sample itself. In this case, assuming a planar sample of thickness t with an
homogeneous distribution the number of emerging photons is calculated as:

N =
∫ t

0
N0e

−µxdx

t
= N0

1− e−µt
µt

. (A.6)

The self-absorption coefficient as becomes then:

as = 1− 1− e−µt
µt

. (A.7)

In case of a thin planar sample, when µt << 1 then

as = 1
2µt. (A.8)

In case the sample is spherical with a radius r and again µt << 1, as becomes:

as = 3
4µr −

2
5µ

2r2. (A.9)

Finally for a cylindrical source:

as = 3
8πµr −

1
2µ

2r2. (A.10)
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Abstract

At the research reactor Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) a new Prompt Gamma-ray Activation Analysis
(PGAA) facility was installed. The instrument was originally built and operating at the spallation source at the Paul Scherrer
Institute in Switzerland. After a careful re-design in 2004-2006, the new PGAA instrument was ready for operation at FRM II.

In this paper the main characteristics and the current operation conditions of the facility are described. The neutron flux at
the sample position can reach up 6.07 · 1010 [cm−2 s−1], thus the optimisation of some parameters, e.g. the beam background, was
necessary in order to achieve a satisfactory analytical sensitivity for routine measurements.

Once the optimal conditions were reached, detection limits and sensitivities for some elements, like for example H, B, C, Si, or
Pb, were calculated and compared with other PGAA facilities. A standard reference material was also measured in order to show
the reliability of the analysis under different conditions at this instrument.

Key words: PGAA, FRM II, Cold neutrons, gamma spectrometry
PACS: 28.41.Rc, 82.80.Jp, 29.30.Kv, 29.25.Dz

1. Introduction

Prompt Gamma-ray Activation Analysis (PGAA) is
a nuclear analytical technique that exploits the (n,γ)-
reaction, i.e. neutron capture reaction, in order to deter-
mine the elemental composition of various samples. With
this method major, minor and sometimes trace elements
can be detected and quantified non-destructively.
With PGAA in principle, nearly all elements in the peri-
odic table can be determined; in particular it is possible to
quantify amounts of H, B, Na, Si, S, Cl, K, Ti, Mn, Co, Ni,
Cd, Hg, Sm, Eu, and Gd. The detection limits for these
elements are generally ranging from 1 ng/g for Gd up to
100 µg/g for Si. For all the other elements the detection
limit is ranging from tenths of µg/g up to units of weight
percent (e.g. for C, N, O, F, Sn, Pb and Bi) [1–3].
A new PGAA instrument has been built at the research
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Tel.: +49 (0)89 / 289-14758
Email address: lea.canella@frm2.tum.de (Lea Canella).

reactor Forschungs-Neutronenquelle Heinz Maier-Leibnitz,
FRM II, in Garching.
The fingerprint of this PGAA instrument is the design of
the cold neutron beam guide. The total length of the beam
guide is 52m with a strong curvature (radius 390m), in
order to avoid a direct view of the reactor core. This way a
very pure cold neutron spectrum (1.83meV mean energy)
is obtained free from hard gamma-rays and epithermal
neutrons. Moreover, the last 6.9m of the guide are ellip-
tically tapered. This feature allows to focus the neutrons
directly on the target with a gain in flux intensity.
The advantage of PGAA analysis with respect to other ra-
dioanalytical techniques are a rather easy handling of the
samples and the quite fast measurements, i.e. in average
between 30 minutes and 3 hours. In principle a complete
PGAA measurements and analysis can be done within
one day. Moreover an automated acquisition system of the
setup allows to measure 6 samples in one run.
The first samples from external proposals analysed at
the facility between 2008-2009 are coming from different
science fields like geochemistry, material science, reac-
tor physics, archeology and medicine. This shows a wide
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application for this kind of non-destructive analysis.

2. Instrument

The instrument was originally located at the neutron
spallation source SINQ of the Paul Scherrer Institut (PSI)
Villingen, Switzerland [4]. The main shielding materials
(made of Pb, Cd, 6LiF-polymer and ceramic) as well as the
detectors configuration were kept, but some changes were
applied especially around the end of the neutron guide. In
fig.1 a sketch of the actual PGAA instrument at FRM II is
shown.

Fig. 1. Schematic sketch of the PGAA instrument at FRM II.

The neutron guide of the instrument looks at the cold
source (liquid deuterium at 25K) in the reactor tank [5].
This brings a white spectrum of cold neutrons with an av-
erage energy of 1.83meV or in wavelength units 6.7 Å. The
last 6.9m of the neutron guide are straight and elliptically
tapered and further divided in two units: a fixed 5.8m long
part and a removable one of 1.1m, also called elliptical
nose.
The position of the elliptical nose defines two different ge-
ometries for measurements. The first one, without the nose
(Pos.1), has the neutron focus about 30 cm away from the
end of the beam guide and the dimensions of the neutron
field at the sample position are 34mmx50mm. The maxi-
mum thermal equivalent neutron flux for this configuration
is 2.42 · 1010 cm−2 s−1 (6.54 · 109 cm−2 s−1 real flux).
Using the elliptical nose (Pos.2) the dimensions of the neu-
tron field are smaller (just 17mmx19mm) but the maxi-
mal thermal equivalent neutron flux is increased about 2.5
times 6.07 · 1010 cm−2 s−1 (1.64 · 1010 cm−2 s−1 real flux)
[6,7]. In this second configuration the neutron focus was
measured 9.5 cm away from the exit window. However, due
to mechanical constraints, the sample can be only place at
about 11 cm away from the exit window. The current flux
values were measured at that position.

Table 1
Thermal equivalent neutron fluxes for the two

setups and for some attenuator configurations.

The uncertainty of the neutron flux value is
5%.

Setup Attenuator th. eq. Flux

[n cm−2 s−1]

No ell. nose full beam 2.42 · 1010

No ell. nose A1 4.12 · 109

No ell. nose A2 4.40 · 109a

No ell. nose A3 1.53 · 109

No ell. nose A1+A3 7.32 · 108

No ell. nose A2+A3 8.34 · 108

No ell. nose A1+A2+A3 3.61 · 108

Ell.Nose full beam 6.07 · 1010

Ell.Nose A1 7.18 · 109

Ell.Nose A2 7.66 · 109

Ell.Nose A3 2.41 · 109

Ell.Nose A1+A3 1.71 · 109

Ell.Nose A2+A3 1.92 · 109

Ell.Nose A1+A2+A3 7.84 · 108

a Due to technical problems not measured.

The given value is estimated.

Three attenuators (A1, A2 and A3) are installed about
20m upstream of the sample position to have a more ad-
justable neutron flux. These attenuators are made of bo-
rated aluminum and are not in the direct view of the sam-
ple position, thus no additional gamma-ray background is
created. Since two of them are made out of slits (comb-like
horizontally for A1 and vertically for A2) and the third one
has has round holes, the neutron spectrum is unchanged.
The use of those attenuators and their combinations allow
an high optimisation of the irradiation conditions. The 3
attenuators have a neutron transmission of about 17%
(A1), 18% (A2) and 6% (A3) for the setup without the
elliptical nose (Pos.1). In table 1 the flux intensities for the
two setups and for various attenuator configurations are
given.

2.1. Detection system

For the gamma-ray spectra acquisition, two standard
Compton-suppressed gamma spectrometer are in use:
– Det.1: HPGe n-type detector with a relative efficiency of
60% (ORTEC poptop) inserted in an annulus of BGO
scintillators (coaxial geometry, in fig.1 on the right);
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– Det.2: HPGe n-type detector with a relative efficiency
of 36% (Canberra) surrounded by a NaI(Tl)/BGO scin-
tillation system (perpendicular geometry in fig.1 on the
left).

Standard NIM (Nuclear Instrument Module) modules are
used for the electronic instrumentation. The analysis of the
shaped detector signals is made by an integrated ADC-
MCA system (16k channels) developed at the Institut für
Kernphysik, Universität zu Köln.

2.2. Data analysis

For the evaluation of the spectra and the calibration of
the spectrometer (efficiency curve and non-linearity), the
software Hypermet PC is in use [8,9]. In fig.2 the efficiency
curve for typical energy range for PGAA (from about 70
keV up to 11 MeV) is presented. The low energy region

Fig. 2. Efficiency curve for the coaxial detector (60%).

of the efficiency curve was obtained with the radioactive
source 133Ba and the calibrated radioactive source 152Eu.
For the high energy range, neutron capture reactions on N,
Cl and Cr were used.
For the determination of the elemental composition of sam-
ples an Excel macro and Excel sheet package called ProS-
peRo (Prompt gamma Spectrum Rover) is used [10].

2.3. Shieldings

The main shieldings of the instrument remained, except
for minor changes, the same as at PSI and are described
in detail in ref.[4]. For high neutron-flux PGAA measure-
ments the choice of the shielding materials is a very critical
task and it should be a compromise between the need to
keep the beam background as low as possible and to fulfill
radiation safety rules.
Few changes were made for the coaxial spectrometer shield-
ings (see fig. 1). The Pb wall in front of the spectrometer
was increased of 15 cm instead of 10 cm and the sample-
detector distance was increased by about 5 cm to about 35

cm.
Removable lead shielding in U-form were built for the re-
movable elliptical nose. They are made of 10 cm thick lead
covered inside with Borated rubber. A sketch of the whole
instrument, including the removable shielding shells for the
elliptical nose is shown in fig.3.

Fig. 3. 3D-CAD-drawing of the PGAA instrument (Pos.2). The re-
movable shieldings for the elliptical nose are shown. Rails allow to

shift the shieldings to the sides when the nose is not in use. The
elliptical nose can be then tilted to a vertical position (Pos.1).

Due to the higher neutron flux than at PSI, the shield-
ings around the sample chamber had to be improved. A
polyethylene wall was added between the sample chamber
and the Pb wall with the rear surface cover by borated gum,
in order to slow down and catch the fast neutrons produced
by a secondary reaction in the 6Li shielding materials. A
polyethylene wall covered on one side with borated rubber
and a 10 cm thick Pb wall were added behind the sample
chamber (see fig.1).

3. Measurements

3.1. Background

Because PGAAmeasurements are done on-line, i.e. when
the neutron beam is open, the acquired gamma-ray spectra
are heavily influenced by neutron reactions that take place
in the surrounding materials. A very low prompt gamma-
ray background is necessary in order to achieve an high an-
alytical sensitivity for the real samples.
A common source of background for both setups (i.e. with
or without the elliptical nose) is air, mainly due to the
high amount of N (ca. 78%). To minimize this contribu-
tion nearly all measurements are carried out under vacuum
conditions.
Due to the higher neutron flux, the optimisation of the to-
tal background count-rate for this facility was not a trivial
task. At the beginning of the operation of the facility in
2008, the beam background was measured for both setups,
Pos.1 and Pos.2.
At first, for Pos.1 a satisfactory result was achieved in col-
laboration with the Budapest PGAA group (580 cps for a
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flux of 8.37 ·109 n/cm2 s th.eq., no attenuators in beam). In
this case a temporary boron carbide (B4C) aperture was
placed at the end of the neutron guide. The incoming beam
was cut significantly in geometry (to about 20mmx16mm)
as well as in intensity.
The total count-rate for the setup for Pos.2 was not so en-
couraging; it was around 3000 cps with 2 attenuators in
beam (A1+A3, for the flux value see table 1). Efforts to
reduce the background in this configuration were then car-
ried out extensively.
In table 2 the improvement of the total count-rate for back-
ground with the elliptical nose setup is presented. The con-
figurations of attenuators chosen (A1+A3 and A2+A3) are
the most common for standard PGAA measurements.

Table 2

Total count-rate for PGAA background measured with the elliptical

nose. Measurements were carried out for 54 000 s, if not specified oth-
erwise. The number of attenuators in beam is an indirect indication

for the neutron flux (see table 1).

Date Count-rate Attenuators Comment

[cps]

04/2008 3 220 A1+A3 Short measurement 1800s

05/2008 607 A1+A3 Short meas., Pb shielding

around elliptical nose

05/2008 325 A1+A3 Short meas., Pb+Li shield-
ing around elliptical nose

06/2008 339 A2+A3 New detector shieldings

01/2009 455 A2+A3 New Pb collimator in front
of HPGe detector

04/2009 314 A2+A3
6LiF-polymer conical flight

tube @ end of the n-guide

01/2010 192 A2+A3 New vacuum pump,
0.9mbar instead of 15mbar

The measuring position with the elliptical nose is about
11 cm away from the end of the guide itself, thus the whole
system is quite near the sample chamber, that has an inner
diameter of 15 cm. From the analysis of the background
spectra it was possible to identify the main sources of
background: Si and Na. These two elements are the main
components of the neutron guide glasses. In order to re-
duce the contribution of the glasses, an extra Pb shielding
was built around the end of the elliptical nose. The result
was a reduction in the count-rate from 3000 cps to 600 cps.
An extra 6LiF-polymer tube was added between the exit
window of the n-guide and the sample chamber’s entrance
window. This shielding cuts away most of the scattered
and divergent neutrons along the path of the neutron
beam. This detail brought a further improvement in the
background count-rate to 325 cps.
In January 2009 the original Pb collimator (with 10mm
in diameter) in front of the 60% detector was exchanged
with a conical one (entrance diameter 10mm, exit diame-
ter 40mm). This change optimises the use of the larger Ge
crystal of this detector (60% rel. eff.) with respect the one

Table 3
Elements found in the background spectra without and with the

elliptical nose.

Element Pos.1 (A3) Pos.2 (A2+A3)

µg µg

H 2.80(3) · 10−3 2.34(7) · 10−4

B 1.67(2) · 10−5 −
C 11.3(5) 0.33(1)

F 34.9(21) 1.03(6)

Na 5.0(9) · 10−3 1.15(3) · 10−2

Al 4.42(10) · 10−2 5.1(2) · 10−3

Si 4.4(8) · 10−3 3.04(9) · 10−2

Ca 1.7(2) · 10−3 3.28(16) · 10−3

Fe 4.31(17) · 10−3 7.1(6) · 10−4

Pb 6.6(4) · 10−2 8.8(11) · 10−3

used in the original setup at PSI. In this case the back-
ground count-rate was slightly increased from 339 cps to
455 cps.
An optimisation of the 6LiF-polymer tube, in April 2009,
between the end of the n-guide and the sample chamber
brought again a reduction in the background count-rate
(314 cps). The purpose was to reduce the shadow due to
divergent neutrons around the useful neutron area of the
beam. The optimal shape of the new tube chosen was a
linearly tapered shape. Dimensions were calculated based
on the images of the neutron beam at the sample position.
The exchange of the vacuum pump in January 2010,
brought a significant improvement of the vacuum con-
ditions (from 10 mbar to less than 1 mbar) and of the
background count-rate to only 192 cps.
The improvement brought from the introduction of the
optimised 6LiF-polymer tube for Pos.2, suggested to use
the same solution also for Pos.1 instead of the boron car-
bide aperture. In this case the neutron flux is not drasti-
cally reduced as with the boron carbide aperture and the
background count-rate of 269 cps was achieved with the
attenuator 3 in beam (i.e. with a thermal equivalent neu-
tron flux of 1.53 · 109 cm−2 s−1 ).
The main difference in the background count-rate with
and without the elliptical nose is due to the dimension of
the neutron field. For Pos.1 the slightly higher count-rate
is given by the irradiation of a larger amount of fluorinated
ethylene propylene (FEP), the material used for the sam-
ples holder and to pack the samples.
In table 3 the main elements that affect the background
are listed. The values given in table 3 are calculated as
a ratio, thus they are not absolute masses (the latter are
contributing to the background count-rate). Nevertheless,
it is possible to notice how the neutron guide materials
(especially Si and Na) have a higher contribution to the
background when the elliptical nose is used.
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3.2. Analytical sensitivity and detection limits

Every PGAA facility has different sensitivities to ele-
ments. This is mainly due to the counting efficiency and the
partial gamma-ray production cross sections for the ener-
gies of the gamma lines and the neutron flux. The analyti-
cal sensitivity can be derived as follow:

s =
ργ
m

=
Na

M
σγ,0 φ0 ε (E) (1)

wherem is the mass of the element under analysis, ργ is the
recorded count-rate, σγ,0is the partial gamma-ray produc-
tion cross section, φ0 the thermal equivalent neutron flux
and ε (E) is the peak counting efficiency. In more practi-
cal cases this value can be measured using a standard with
different concentrations. The analytical sensitivity is thus
given by the slope of the linear regression of the variation
of the count-rate (in cps) versus the net elemental mass (in
mg) of the standard [4].
Detection limits (DLs) are generally estimated based on the
background spectrum. Commonly DLs are calculated as
three times the standard deviation of the number of back-
ground counts in the corresponding position of the consid-
ered peak (Nbgr). The DL in mass units is then obtained
with the following equation:

DL =
3
√

Nbgr

s tm
(2)

where s is the analytical sensitivity defined in eq.1 and tm
is the duration of the background measurement [1,11].
Actually, it was not yet possible to carry out a systematic
measurements of the analytical sensitivity for the major el-
ements measured at this PGAA instrument. Therefore an
estimation was done using eq.1 and the measured neutron
flux for standard PGAA measurements, see table 4.
DLs for some elements were also calculated using a back-
ground spectrumwith an empty FEP bag taken for 54 000 s.

The DLs given in table 4 are just a qualitative indication
on “how well” an element can be detected. For real samples
there is always the influence of the main elements of the
sample (sample matrix) that will modify the background
for the minor or trace elements, thus the detection limit.

3.3. Analytical measurements

For a good analytical measurement the gamma spec-
trometer should be well calibrated. The calibration of the
two detectors was made following the procedure described
in ref. [15]. In order to check the reliability of the facil-
ity a standard reference material (SRM) was measured in
2010 at both newly optimised positions. The SRM chosen
was the number 1646a: Estuarine Sediment, provided by
NIST (National Institute of Standards and Technology).
A measurement was already performed at the beginning
of 2009 with the elliptical nose (A2+A3 attenuators), the

background count-rate was 455 cps (see table 2) and the
acquisition time was 4600 s. The measurements carried out
in 2010 were taken for 10800 s, with a total background
count-rate of 192 cps for Pos.2 (A2+A3 attenuators) and
269 cps for Pos.1 (A3 attenuator in beam). The results are
presented in table 5.

Already in 2009, the instrument demonstrated a good
performance. With the improvement of the background
conditions in 2010, it was also possible to detect some trace
elements like: V, Mn, Cd, Sm and Gd. Moreover, the un-
certainties were lowered compared to the measurement car-
ried out in 2009 (this is quite evident in the determination
of Cl). In the first case, uncertainties were between 3− 5%
while in 2010 the maximum uncertainty was 3%, of course
also thanks to the prolonged measuring time.
Aside general considerations, there are few differences in
the determination of Na between the two different setups. In
particular Na is overestimated without the elliptical nose.
A possible explanation can be the difficulty to estimate pre-
cisely the amount of Na in the background spectrum.
Concerning the determination of trace elements, it is shown
that for elements like Sm andGd (that have an high capture
cross section), the results are in a good agreement, while
for Mn and V there are some discrepancies. In particular
the determination of Mn with the elliptical nose is not in
agreement with the certified value. An explanation can be
the higher background in the low energy region due to the
high flux achieved in Pos.2 that made the determination
for this element more difficult. On the other hand thanks
to this property the determination of Cd was possible.

4. Conclusion

In this paper the new PGAA facility installed at the re-
search reactor FRM II, Garching, was described. The avail-
able neutron flux at the PGAA station is very flexible (from
3.61 · 108 up to 6.07 · 1010 [cm−2 s−1] thermal equivalent),
thanks to two different measuring setups and three neu-
tron attenuators that help the optimisation of the irradi-
ation conditions. The high intensity of the neutron flux
contributes positively on the measurements (shorter mea-
suring times and lower detection limits) but in the same
time introduces a number of challenges concerning mainly
the beam background (higher count-rate and more inter-
ferences from the shielding and construction materials).
The main shielding materials were kept as in the original
configuration at PSI. A number of modifications were done
in order to optimise important parameters such as the beam
background characteristics and intensity. Detection limits
and sensitivities for some elements, e.g. like H, B or Pb,
were calculated for this facility to give some informative
values , however a more systematic measurements of the
sensitivities has to be carried out. Standard reference ma-
terial, Estuarine sediment 1646a, was measured at Pos.1
and Pos. 2, the data were analysed and compared with the
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Table 4
Detection limits for few elements and comparison with other PGAA facilities.[1,12–14]

El. Energy Sensitivity DL FRM II DL PSI DL JRR-3M DL Budapest DL NIST

[keV] [cps/mg] [µg] [µg] [µg] [µg] [µg]

H 2 223.2 29.93 0.11 0.69 1.0 0.3 3

B 477.6 10 687.05 0.0018 0.0039 0.0023 0.0015 0.02

N 1 884.9 0.10 40.5 235 95 100 1100

N 5 269.2 0.08 11.3 60

Si 3 539.0 0.29 14.9 63 24 400

S 841.0 1.50 7.48 23.8 9.4 10 75

S 5 420.6 0.44 1.73 10

Cl 1 951.1 17.31 0.19 0.6

K 770.3 3.19 2.00 7.8 4 44

Ca 1 942.7 0.86 4.89 26.7 11 140

Ti 1 381.7 12.17 0.29 2.05 0.9 10

Fe 352.3 0.91 11.7 16 20 140

Fe 7 631.1 0.36 1.98 28 9

Ni 465.0 2.34 4.15 12 5.1 7 70

Ni 8 998.4 0.62 0.65 4

Cd 558.3 2548.66 0.0028 0.0142 0.0070 0.006 0.05

Sm 334.0 5802.65 0.0019 0.0060 0.0030 0.003 0.03

Gd 182.0 10 131.11 0.0011 0.0035 0.0047 0.0022 0.015

Hg 368.0 201.92 0.051 0.143 0.045 0.08 0.44

Pb 7 367.8 0.02 28.1 330 150 2 600

Table 5

Standard Reference material #1646a: Estuarine sediment. Comparison between different setups (ell. stands for elliptical nose) and with the
measurement made at PSI. If not specified all the values are in weight percent.

El. NIST Ell.2009 Ell.2010 No ell.2010 PSI[2]

H − 0.209(2) 0.186(3) 0.194(3) −
B ppm − 39.5(5) 45.1(6) 43.6(6) 41.8(11)

Na 0.741(17) 0.69(7) 0.690(21) 0.99(3) −
Al 2.297(18) 2.18(9) 2.41(6) 2.17(6) 2.14(5)

Si 40.00(16) 40.1(6) 40.1(8) 40.2(8) 40.00

S 0.352(4) 0.37(2) 0.316(12) 0.312(11) 0.347(10)

Cl − 0.66(22) 0.648(17) 0.615(17) 0.636(8)

K 0.864(16) 0.881(19) 0.87(3) 0.85(3) 0.84(2)

Ca 0.52(2) 0.65(3) 0.61(5) 0.615(25) 0.516(4)

Ti 0.456(21) 0.476(15) 0.494(12) 0.448(14) 0.473(10)

V ppm 44.8(8) − 59.4(77) 64.0(64) −
Mn ppm 234.5(28) − 184.7(61) 232(12) −
Fe 2.01(4) 2.00(5) 1.97(7) 1.90(6) 1.86(48)

Cd ppm 0.148(7) − 0.12(5) − 0.150(23)

Sm ppm − − 2.05(5) 2.11(5) 2.45(11)

Gd ppm − 2.0(2) 2.4(1) 2.4(1) 2.64(8)
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certified NIST values as well as the former results obtained
at PSI.
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