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 SUMMARY III 

Summary 

Incomplete combustion of vegetation results in pyrogenic organic material (PyOM) 

which occurs ubiquitously in soils and sediments. Because of the potential refractory 

nature of such thermally altered products, they are expected to represent an important 

carbon (C) sink. However the recalcitrance of this material in soils is still heavily debated 

most probably due to the fact that up to now, no commonly accepted method is available 

for its identification and quantification and the processes involved in their degradation and 

humification are still not very well understood. 

In order to fill this gap, the main objective of the present research was to study the 

alteration and stability of PyOM of varying charring degree during their humification in 

soil. The goal was to elucidate their impact on the quality and quantity of soil organic 

matter and its function as carbon and nitrogen sink. In order to meet these objectives, four 

studies were conducted at different scales. A first idea about the recalcitrance of PyOM 

was obtained in short-term high-resolution respiration experiments using PyOM of 

different charring degree, typical for fire-prone landscapes such as grassland (Lolium 

perenne) and pine forests (Pinus sylverstris). The effect of charring on the biomarker and 

lipid composition of different plant materials was studied to identify potential maker for 

PyOM in soil. Subsequently, the stability of those biomarkers against biotic degradation 

was tested in order to elucidate their applicability in in situ studies. Microcosm incubation 

experiments using 13C- and 15N-enriched PyOM were conducted for up to 28 months to 

study chemical alterations during their degradation by means of istopic label recovery and 

solid-state NMR spectroscopy. Together with the isotopic enrichment, the setup of the 

experiment allowed the examination of the translocation potential within the soil column. 

Additionally, the effect of a co-substrate on PyOM mineralisation and aging was 

investigated. The used PyOM for all experiments was produced by charring plant materials 

for one min (1M) or four min (4M) at 350°C under oxic conditions. The applied charring 

conditions result in chars that are comparable to those remaining after natural wildfires. 

The respiration experiments indicated that grass-derived PyOM showed the highest 

C mineralisation. During 7 weeks of aerobic incubation at 30°C in soil, up to 3.2% of the 

added PyOM-C was converted to CO2. More severe thermal alteration resulted in a 

decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7 

(1M) and 0.5% (4M) of the initial C were mineralised. Co-substrate additions did not 
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enhance PyOM mineralisation during initial degradation. 13C NMR spectroscopic analysis 

indicated structural changes during microbial degradation of PyOM. Concomitant with a 

decrease in O-alkyl/alkyl-C, carboxyl/carbonyl-C content increased, pointing to oxidation. 

Only the strongly thermally-altered pine PyOM showed a reduction in aromaticity. The 

small C losses during the experiment indicated conversion of aryl C into other C groups. 

As revealed by the increase in carboxyl/carbonyl C, this conversion must include the 

opening and partial oxidation of aromatic ring structures. Relatively short mean residence 

times of 14 (1M) and 19 years (4M) were obtained for the charred rye grass residues and 

up to 56 years for the pine wood char, which are in the range of unburned soil organic 

matter. 

The second study focused on heat-induced alteration of n-alkanes, n-fatty acids (FA) 

composition as well as the content of the molecular marker levoglucosan (LG) in different 

plant materials. The results confirmed that charring of plant residues leads to typical 

thermal breakdown processes of n-alkanes and FA. In particular, the average chain length 

of n-alkanes is reduced by up to 4 carbons and the characteristic odd/even predominance of 

the fresh plant materials shifted to a balanced odd/even distribution with prolonging 

charring time. The unsaturated FA fraction was more depleted in relation to the saturated 

counterparts after the charring. Especially, linoleic acid (C18:2) and α-linolenic acid (C18:3) 

are depleted in the more charred grass, whereas oleic acid (C18:1) is still present. 

Levoglucosan is detectable for all PyOM, whereas the pine residue charred for 1M 

contained the largest LG amount. A more progressive heating resulted a strong depletion of 

LG for both plant materials. The pine char showed a relative accumulation of vanillin, 

supporting that some lignin-type structures survived the 1M charring process. 

The incubated pine chars were enriched in the n-alkane octadecane (C18) and the 

mid-chain homologues in the range C22 to C26. In contrast, the n-alkanes and FA fraction of 

the grass chars was more efficiently degraded with a loss of up to 39% of the initial 

amount. The study demonstrates that already during the initial phase of biodegradation of 

PyOM, n-alkanes and the FA fraction can be rapidly modified either by decomposition but 

also by biosynthesis most tentatively by fungi. Levoglucosan was efficiently decomposed. 

This indicates that care has to be taken, if this compound is used as a tracer in soils 

containing aged char because its instability against biodegradation may lead to an 

underestimation of the charcoal content. Another critical point is the thermal 

decomposition of the LG, which may lead to misinterpretation of the PyOM portion. 

http://en.wikipedia.org/wiki/Alpha-linolenic_acid
http://en.wikipedia.org/wiki/Oleic_acid
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The third study extracted important aspects concerning the degradation of grass-

derived PyOM, the transport of the residues within a soil column and distribution in soil 

organic matter fractions during a 28-month microcosm experiment. Therefore, the 

microbial recalcitrance of char and the transport within a soil column was studied, using 
13C- and 15N-enriched PyOM. After 28 months, the 13C PyOM recovery decreased to 

values between 62 and 65%. The respective 15N PyOM recovery followed the same trend 

but tended to be higher. Most of the added PyOM isotopic label was recovered in the 

particulate organic matter (POM) fraction, being reduced by half at the end of the 

experiment. Already after one month, PyOM was detected in the POM-free mineral 

fractions. This fast association of PyOM with the mineral phase indicates that physical soil 

properties have to be considered for the elucidation of PyOM stability. Addition of fresh 

unlabelled grass material as co-substrate resulted in comparable trends as for the pure 

PyOM but the total recovery of the isotopic labels clearly increased with respect to the 

amount of mineral-associated PyOM. Most of the mineral-associated PyOM occurred in 

the clay separates (< 2 µm) for which the largest values were obtained for the experiment 

with the more intensively charred PyOM and co-substrate addition. The PyOM label was 

found in the collected leachate, indicating that PyOM was vertically transported and even 

left the soil column. 

This study demonstrates the degradability of grass-derived PyOM. The addition of 

fresh plant material as an easily degradable co-substrate promoted the formation of 

partially decomposed PyOM and subsequently its association with the mineral phase, but 

did not increase the respective mineralisation rates. Detection of 13C and 15N content at 

different depths of the microcosm column demonstrated an additional loss of PyOM from 

top soil by way of mobilisation and transport to deeper horizons. Overall, all these 

processes have to be taken into account in order to obtain a more realistic view about the 

behaviour of PyOM in environmental systems and for estimation of the C and N 

sequestration potential. 

The last study focused on structural modification of PyOM on a molecular scale. 

Solid-state 13C and 15N NMR studies were conducted to elucidate the humification 

processes at different stages of PyOM degradation. The chemical structure of the 

remaining PyOM after incubation was clearly different from the initial pyrogenic material. 

The proportion of O-containing functional groups was increased whereas that of aryl C and 

of N-containing heterocyclic structures was decreased, probably due to mineralisation and 
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conversion to other C and N groups. The observed degradation of aromatic C may include 

two simultaneous processes: (i) complete mineralisation to CO2 and (ii) conversion to other 

C groups by partial oxidation. The relevance of the latter process is supported by the fact 

that oxygen-substituted aryl structures (O-aryl C) showed little if any decrease in spite of 

the considerable aryl C and total C losses. These reactions alter the chemical and physical 

properties of the char residue and make it more available for further microbial attack and 

for adsorption processes. The study presents direct evidence for the degradation of N-

heterocyclic domains in charred plant remains adding new aspects to the understanding of 

the N cycling in fire-affected ecosystems. 

In summary, the present research works underline that the observed degradation, 

stabilisation and translocation processes in soils should be considered as a whole, if a 

realistic assessment of the C and N sequestration potential of charred plant remains is 

desired. The different studies showed that PyOM is involved in the C and N turnover 

fluxes like other SOM. The view that PyOM preservation is dominated by its chemical 

recalcitrance should no longer be accepted. With regard to the climate change, PyOM 

cannot be generally counted as a potential carbon sink for long-term reduction of CO2 in 

the atmosphere. 
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Zusammenfassung 

Infolge unvollständiger Verbrennung der Vegetation wird pyrogenes organisches 

Material (PyOM) erzeugt, welches ubiquitär in Böden und Sedimenten anzutreffen ist. 

Aufgrund der potentiell refraktären Natur solch thermisch veränderter Verbindungen 

werden diese als wichtige Kohlenstoffsenke betrachtet. Aktuell wird vermehrt über die 

Rolle des PyOM als rekalzitranter Bestandteil der organischen Bodensubstanz diskutiert. 

Problematisch ist dabei, dass bis heute kein allgemein akzeptiertes Verfahren für die 

Identifikation und Quantifizierung von PyOM existiert und die Abbau- und 

Humifizierungsprozesse nicht ausreichend verstanden sind. Zur Klärung dieser 

Wissenslücken wird in der vorliegenden Arbeit auf die Veränderung und Stabilität von 

PyOM mit variierendem Verbrennungsgrad während seiner Humifizierung im Boden 

eingegangen. Schwerpunkt der Arbeit ist dabei der Einfluss des PyOM auf die 

Zusammensetzung und Quantität der organischen Bodensubstanz und seiner Funktion als 

Senke für Kohlenstoff (C) und Stickstoff (N). Um diese Ziele zu erreichen, wurden vier 

Studien auf verschiedenen zeitlichen und molekularen Ebenen durchgeführt. 

Ein Einblick in den Abbau von PyOM wurde in hochauflösenden 

Respirationsexperimenten mit PyOM unterschiedlichen Verbrennungsgrades erhalten, 

welches typisch für brandgefährdete Gebiete wie Steppen (Lolium perenne) und 

Kieferwälder (Pinus sylvestris) ist. Der Einfluss der Verkohlung auf die Biomarker- und 

Lipid-Zusammensetzung verschiedener Pflanzenmaterialien wurde betrachtet, um 

potentielle chemische Marker für PyOM im Boden zu identifizieren. Zusätzlich wurde die 

biochemische Persistenz der Biomarker getestet, welche für ihre Anwendung in In-situ-

Studien relevant ist. Mikrokosmos-Inkubationsansätze wurden unter Verwendung von 13C- 

und 15N-angereichertem PyOM über einen Zeitraum von 28 Monaten durchgeführt. Damit 

wurden chemische Veränderungen während des PyOM-Abbaus mittels isotopischer 

Bilanzierung und Festkörper-13C und 15N-CPMAS-NMR-Studien (kernmagnetische 

Resonanzspektroskopie) festgestellt. Der Versuchsaufbau erlaubte weiterhin die vertikalen 

Verlagerungseigenschaften im Boden zu untersuchen. Zusätzlich wurde der Einfluss eines 

Co-Substrates auf Mineralisation und Humifizierung des PyOM betrachtet.  

Das verwendete PyOM wurde für alle Studien durch die Verkohlung der 

Pflanzenmaterialien für den Zeitraum von einer (1M) oder vier Minuten (4M) bei einer 

Verbrennungstemperatur von 350°C unter oxischen Bedingungen hergestellt. Diese 



 ZUSAMMENFASSUNG VIII 

Rahmenbedingungen stellen die Vergleichbarkeit des erhaltenen PyOM mit den aus 

Vegetationsbränden resultierenden Rückständen sicher. 

Das Gras-PyOM zeigte die höchste Kohlenstoffmineralisation während der aeroben 

Respirationsversuche bei einer Inkubationstemperatur von 30°C. Es wurde innerhalb von 

sieben Wochen insgesamt bis zu 3,2% (1M) des PyOM-Kohlenstoffs zu CO2 umgesetzt. 

Eine Steigerung des Verkohlungsgrades bewirkte eine Abnahme der kumulativen 

Kohlenstoffmineralisation auf 2,5% (4M) des organischen Gesamtkohlenstoffgehaltes. Im 

Kiefer-PyOM wurden nur 0,7% (1M) bzw. 0,5% (4M) des Kohlenstoffvorrates 

mineralisiert. Die Bereitstellung eines Co-Substrates führte zu keiner Zunahme der PyOM-

Mineralisation. Die Reduzierung der O-Alkyl/Alkyl-Kohlenstoffanteile wurde parallel von 

ansteigenden Carboxyl/Carbonyl-Kohlenstoffanteilen begleitet. Diese Beobachtung weist 

auf einen einsetzenden Oxidationsprozess des PyOM hin. Einzig für das intensiver 

verkohlte Kiefer-PyOM konnte eine Reduktion der Aromatizität festgestellt werden. Die 

geringen Kohlenstoffverluste währen des Experiments stützen die Annahme, dass Aryl-

Kohlenstoff in andere Kohlenstoffgruppen umgewandelt wurde. Im Hinblick auf die 

Zunahme des Carboxyl/Carbonyl-Kohlenstoffanteils könnte dieser Umbau mit einer 

Spaltung und partiellen Oxidation der aromatischen Ringstrukturen verbunden sein. Die 

abgeleiteten Verweilzeiten waren mit 14 (1M) bzw. 19 Jahren (4M) für das Gras-PyOM 

und von bis zu 56 Jahren für das verkohlte Kiefermaterial vergleichbar mit der von 

ungebranntem organischem Bodenmaterial. 

Die zweite Studie fokussierte auf die thermisch induzierten Veränderungen der n-

Alkane, n-Fettsäuren (FA), dem Pyrolyseindikator Levoglucosan (LG) sowie Lignin-

Derivaten in verschiedenen Pflanzenmaterialien. Die erhaltenen Ergebnisse bestätigen, 

dass die Verkohlung von Pflanzenmaterial einen Zerlegungsprozess der n-Alkane und FA 

hervorruft. Die mittlere Kohlenstoffkettenlänge der n-Alkane wurde um bis zu vier 

Kohlenstoffatome verkürzt. Die charakteristische Dominanz der ungeraden n-Alkan-

Kohlenstoffkettenzahl des frischen Pflanzenmaterials verschob sich mit zunehmendem 

Verkohlungsgrad zu einem ausgeglichenen Verhältnis. Infolge des Verkohlungsprozesses 

wurde die ungesättigte FA-Fraktion in Relation zu den gesättigten Homologen stärker 

dezimiert. Insbesondere Linolsäure (C18:2) und α-Linolensäure (C18:3) waren in dem stärker 

verkohlten Gras-PyOM nicht nachweisbar, wogegen Ölsäure (C18:1) noch enthalten war. 

Levoglucosan war in allen PyOM feststellbar, wobei das Kiefer-PyOM (1M) den höchsten 

LG-Gehalt aufwies. Ein zunehmendes Fortschreiten des Verkohlungsprozesses bedingte 
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eine ausgeprägte Abnahme des LG-Gehaltes. Für das Kiefer-PyOM (1M) zeigte sich 

weiterhin eine relative Akkumulation des Vanillins, welches ein Indikator für das 

Vorhandensein von Lignin ist. Lignin-Strukturen können somit einen Bestandteil in 

verkohlten Pflanzenresten darstellen. 

Das inkubierte Kiefer-PyOM war angereichert mit dem n-Alkan Octadekan (C18) und 

den mittelkettigen Homologen in dem Bereich von C22 bis C26. Im Gegensatz dazu wurde 

die n-Alkan- und FA-Fraktion des Gras-PyOM mit einem Verlust von 39% des 

Ausgangsgehaltes effizienter abgebaut. Diese Studie demonstriert, dass bereits während 

des beginnenden biotischen Abbaus von PyOM das n-Alkan- und FA-Verteilungsmuster 

durch Zerlegungsprozesse, aber auch durch Biosynthese - vorzugsweise durch Pilze - 

modifiziert werden kann. Levoglucosan wurde während der Inkubationsphase ebenfalls 

effizient abgebaut. Dieser Aspekt ist zu beachten, wenn diese Substanz als Indikator für 

PyOM im Boden herangezogen werden soll: Ihre Verwendung kann zu einer 

Unterschätzung des PyOM-Gehaltes führen, da gealtertes PyOM aufgrund seiner geringen 

biotischen Persistenz an LG verarmt sein kann. Ein weiterer kritischer Punkt ist die 

thermische Zersetzung des LG, welche ebenfalls zu einer Fehlinterpretation des PyOM-

Anteiles führen dürfte.  

Die dritte Studie behandelte den Abbau, die Verlagerung und die Inkorporation des 

PyOM in verschiedene organische Bodensubstanzfraktionen während eines Mikrokosmos-

Experimentes über einen Zeitraum von 28 Monaten. Zu diesem Zweck wurde 13C- und 
15N-angereichertes PyOM in Bodensäulen inkubiert. Am Ende des Versuches war die 13C-

PyOM-Wiederfindung auf Werte zwischen 62% und 65% gesunken. Die zugehörige 15N-

Wiederfindung folgte demselben Trend, tendierte aber zu höheren Werten. Nach einer 

Inkubationszeit von zwei Monaten wurde der Hauptanteil des PyOM in der partikulären 

organischen Substanz (POM) gefunden. Nach Abschluss des Versuches waren die 

betreffenden Wiederfindungen in der POM-Fraktion halbiert. Bereits nach einem Monat 

konnte PyOM in der POM-freien organo-mineralischen Fraktion nachgewiesen werden. 

Diese rasche Assoziation des PyOM mit der mineralischen Phase zeigt auf, dass auch 

physikalische Bodeneigenschaften (z.B. Textur) für die Abschätzung der PyOM-Stabilität 

im Boden zu beachten sind. Eine Zugabe von „frischem“, nicht isotopisch markiertem Gras 

als Co-Substrat resultierte in vergleichbaren Trends wie für das alleinig inkubierte PyOM. 

Jedoch konnte eine deutliche Steigerung des PyOM-Eintrages in die mineralische Phase 

ermittelt werden. Der Hauptanteil des mineralisch assoziierten PyOM war der Tonfraktion 
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zuzuordnen. Das PyOM mit dem höheren Verkohlungsgrad (4M) erzielte unter Co-

Substratzugabe den höchsten Assoziationsgrad von PyOM mit der mineralischen Substanz. 

Es konnte ebenfalls gezeigt werden, dass PyOM in die unteren Bodenschichten der 

Bodensäulen verlagert wurde. 

Zusammenfassend konnte mit diesem Experiment auch über einen längeren Zeitraum 

der kontinuierliche Abbau des PyOM bestätigt werden. Die Bereitstellung eines leicht 

zugänglichen Co-Substrates förderte die partielle Oxidation des PyOM und folglich seine 

Bindungsfähigkeit an mineralische Oberflächen. Die Mineralisationsraten wurden jedoch 

nicht gesteigert. Der Nachweis der 13C- und 15N-PyOM-Markierung in verschiedenen 

Tiefen der Bodensäulen weist auf eine potentielle Verlagerung des PyOM von der 

Bodenoberfläche durch Mobilisation und Verlagerung in untere Bodenhorizonte hin. 

Eine andere Studie befasste sich mit den strukturellen molekularen Modifikationen 

während des PyOM-Abbaus im Boden. Zu diesem Zweck wurden Festkörper-13C und 15N-

CPMAS-NMR-Studien durchgeführt mit dem Ziel, Humifizierungsprozesse des PyOM zu 

quantifizieren. Die chemische Zusammensetzung des verbleibenden inkubierten PyOM 

unterschied sich deutlich von der des Ausgangsmaterials. Der Anteil an O-enthaltenden 

funktionalen Gruppen nahm zu, wogegen Aromaten bzw. N-heterozyklische Strukturen 

eine quantitative Abreicherung, bedingt durch Mineralisation und Umwandlung in andere 

C- und N-Gruppen, aufwiesen. Der beobachtete Abbau von aromatischen Verbindungen 

könnte in zwei simultan ablaufende Prozesse unterteilt werden: (1) der kompletten 

Mineralisation zu CO2 und (2) der Umwandlung in andere Kohlenstoffgruppen. Die 

Relevanz des letzen Punktes ist durch die Tatsache gestützt, dass der Anteil von O-

substituierten aromatischen Strukturen nicht oder nur wenig abnimmt - im Gegensatz zu 

dem beträchtlichen Verlust an Gesamtkohlenstoff sowie an aromatischen Verbindungen. 

Der festgestellte Alterungsprozess des PyOM bildet die Grundlage für einen 

fortschreitenden biotischen Abbau, aber auch für Adsorptionsprozesse an mineralische 

Oberflächen. Die Studie präsentiert direkte Hinweise für einen Abbau N-heterozyklischer 

Verbindungen in verkohltem Pflanzenmaterial, welche neue Aspekte im Hinblick auf den 

N-Kreislauf in feuerbeeinflussten Ökosystemen bieten. 

Die durchgeführten Arbeiten zeigen, dass sich die untersuchten Abbau-, 

Stabilisierungs- und Verlagerungsmechanismen gegenseitig beeinflussen. Erst wenn diese 

Prozesse als Gesamtheit betrachtet werden, ist eine realistische Bewertung des 

Sequestrierungspotentials von verkohlten Pflanzenresten in Böden möglich. Es wurde 
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gezeigt, dass PyOM in gleicher Weise wie andere Fraktionen der organischen 

Bodensubstanz in den C- und N-Kreislauf eingebunden ist. Die Ansicht, dass die 

Präservation von PyOM im Boden durch eine chemische Rekalzitranz begründet ist, sollte 

nicht länger akzeptiert werden. Im Hinblick auf den Klimawandel kann PyOM nicht als 

potentielle Kohlenstoffsenke zur langfristigen Reduzierung des CO2-Anteiles in der 

Atmosphäre angesehen werden. 
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1. Introduction, objectives and state of the art 

1.1 General introduction 

Vegetation fires do not only convert large amounts of biomass to CO2, they produce 

also pyrogenic organic material (PyOM), which occurs ubiquitously in soils and sediments. 

The annual natural production of this material, also known as black carbon (BC), was 

calculated to range between 4 ×  1013 g and 24 ×  1013 g (Kuhlbusch and Crutzen, 1995). Its 

formation depends on several factors, such as type of fuel, temperature and duration of 

charring, so its chemical composition and morphology are expected to vary considerably 

(Fig. 1). It was suggested that PyOM represents a continuum of combustion products 

ranging from slightly charred biomass, which may be still accessible for microbial 

degradation, to highly condensed refractory soot (Masiello, 2004). 

 

Figure 1: Combustion continuum for PyOM [adapted from Masiello (2004) and Hammes et 

al. (2007)]. 

Common char models assume that all PyOM is characterised by fused aromatic rings 

with varying cluster size (Schmidt and Noack, 2000; Preston and Schmidt, 2006). Due to 

the refractory nature of such thermally condensed products, they are expected to play an 

important carbon (C) and nitrogen (N) sink in the global cycle (Fig. 2). Residence times of 
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thousands of years were calculated based on radiocarbon (14C) dated char in soils 

(Saldarriaga and West, 1986; Glaser et al., 2001). Its recalcitrance is also supported by its 

occurrence in deep marine sediments (Middelburg et al., 1999). However, according to 

Masiello (2004), PyOM and its transformation products should contribute up to 125% of 

soil organic carbon (SOC), if one assumes that biomass burning since the last glacial 

maximum occurred at the same rate as now. This strongly indicates that the recalcitrance 

of PyOM may have been overestimated. The same conclusion was postulated by Kim et al. 

(2004), who estimated that it would only require < 80,000 yrs. to convert the entire pool of 

actively cycling C to BC, assuming that no degradation occurred. 

 

Figure 2: Pools and fluxes of PyOM [adapted from Preston and Schmidt (2006)]. 

The observation that PyOM may be degraded faster than commonly assumed is 

underlined by recent field studies of Amazonian dark earth (Solomon et al., 2007), sandy 

savannah soil at a fire trial site (Bird et al., 1999) and in fire-affected Siberian Scots pine 

forest soil (Czimczik et al., 2003). One reason may be that a description of PyOM formed 

by vegetation fires as a polycondensed aromatic network may be oversimplified, as 

recently demonstrated by the analysis of the chemical structure of model chars derived 
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from biopolymers and plant residues (Knicker et al., 2008). The latter rather supports an 

alternative concept which assumes PyOM to be a heterogeneous mixture of thermally 

altered biopolymers with aromatic domains of relatively small cluster size, but 

considerable substitution with N, O and S functional groups (Knicker, 2007). Such a 

structure would allow fast oxidation, facilitating further microbial attack and dissolution in 

the soil solution. 

1.2 Objectives and state of the art 

The present work focuses on the biochemical degradation potential and humification 

of PyOM in soil. The main investigation intentions are illustrated in Figure 3. 

 

Figure 3: Overview about uncertainty of biogeochemical PyOM fates in soil [adapted from 

Knicker (2007)]. Numbers derive from Kuhlbusch and Crutzen (1995). 
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Research topic I: Study of the impact of plant source material and charring 

intensity on the initial PyOM degradation (Chapter 3). 

 

For elucidation of the recalcitrance of PyOM in soil, not only knowledge of its 

chemical structure is required but also understanding of its degradation and humification 

mechanism. One of the first pioneers was Potter (1908), who showed that wood charcoal 

was partly mineralised after 20 days incubation at temperatures between 20°C and 40°C. In 

addition, Shneour (1966) demonstrated the degradability of BC by reporting that, after 96 

days of incubation, 2% of graphitic C were mineralised. Cheng et al. (2006) postulated that 

abiotic chemisorption of oxygen were more important for oxidation of BC than biotic 

processes during a 30-day incubation experiment at 30°C and 70°C. However, Hamer et al. 

(2004) found a close correlation between glucose addition and additional BC 

mineralisation during biotic incubation for model chars, which could suggest a co-

metabolic degradation pattern. One must bear in mind that in natural environments 

possible co-substrates are fire-unaffected litter from dying trees or regrowing vegetation, 

which have a more complex matrix than pure glucose. Therefore, the mechanisms of the 

priming effect may be more complex than commonly considered (Fontaine et al., 2003). 

For that reason, the present study quantifies the PyOM mineralisation with and without co-

substrate availability to reveal aspects concerning the biochemical PyOM stability in the 

initial post fire phase.  

 

Research topic II: Modification of plant biomarkers by charring and its 

biodegradability during the initial PyOM degradation (Chapter 

4). 

 

Wildfires convert not only large amounts of biomass to CO2, but they also thermally 

alter the C pools of soils. According to a recently suggested concept, this pool consists of 

the combustion residues of different biomacromolecules whose chemical structure depends 

upon the charring conditions (Knicker et al., 2008a). Beside of charred carbohydrates, 

peptides and lignin residues, thermally-altered lipids can represent an important fraction of 

this pyrogenic organic matter (González-Vila et al., 2001). 
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Compared to other plant components such as cellulose or lignins, lipids are less 

abundant. Lipids enter the soil with the litter where they are altered or re-synthesised by 

microbes. In certain environment, they are more resistant against degradation than other 

biomolecules. Within the lipid fraction, n-alkanes and aromatic hydrocarbons are less 

efficiently biodegraded than medium chain fatty acids and alcohols (Tu et al., 2001; 

Wiesenberg et al., 2004).  

Wiesenberg et al. (2009) demonstrated for charred grass materials that biomass 

burning causes changes of lipid pattern. The authors reported that charring at 500°C 

resulted in a pronounced n-alkane chain length shift to short chain homologues, 

maximising at C18, dominated by even numbered homologues. In this context, Almendros 

et al. (1988) and Tinoco et al. (2006) suggests that such thermally altered lipids can be 

incorporated as constituents of the soil lipid fraction of fire-affected Mediterranean soils 

under pine. Until now, however, knowledge is missing how decomposition of PyOM 

affects the nature of thermally altered lipid fractions in soil. 

Wiesenberg et al. (2009) pointed out that the composition of aliphatic and aromatic 

hydrocarbons of fire-effected recent and fossil soils offers specific fingerprint indicators 

for diagnosis of vegetation burning and burning conditions. Eckmeier and Wiesenberg 

(2009) analysed lipids from buried ancient topsoils that contained charred organic matter. 

The authors associated the found particular pattern of short-chain and even carbon 

numbered n-alkanes with a maximum at C16 or C18 to the occurrence of charred biomass. 

However, studies are lacking about the fate of such PyOM-derived lipids during 

humification. The latter, however, is needed, if one intends to apply the findings from 

laboratory heating experiments to natural soils and sediments. 

Lignin is the most abundant polymeric aromatic organic substance in the plants. For 

example, the content of lignin ranges from 20-40% in wood. Sharma et al. (2004) and 

Knicker et al. (2008a) demonstrated that the lignin backbone is a major constituent of plant 

chars. Therefore, it is of interest if biomarkers for lignin detection (e.g. vanillin) will be 

affected by the charring process and the incubation in soil. 

Levoglucosan (1,6-Anhydro-β-1D-glucopyranose; LG), the major tracer from the 

thermal decomposition of cellulose (Lakshman and Hoelsche, 1970), is a further 

significant indicator for biomass burning. Levoglucosan is frequently used as atmospheric 

tracer for detection of forest fires (Simoneit et al., 1999). Recently LG served as tracer for 
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contributions from vegetation combustion to soils (Otto et al., 2006; Kuo et al., 2008) and 

sediments (Elias et al., 2001). Elias et al. (2001) reported a correlation between LG and the 

counted charcoal particles for a sediment core from a lake in Carajas (Southeastern 

Amazonia). In this context Kuo et al. (2008) examined systematically the LG levels of 

charcoal produced from tree plant materials under controlled combustion conditions (150-

1050°C, 0.5-5 h). The authors reported large differences of LG yield in the char across the 

plant species and the charring temperature. They concluded that it is difficult to use LG as 

a quantitative biomarker for char characterisation in environmental media. Studies are 

needed dealing with environmental stability of LG to clarify the application of LG as an 

indicator for contribution of charred biomass in soils.  

In general, the identification and application of specific biomarkers for detection of 

char in soils and sediments is mostly based on studies using freshly produced charred plant 

materials (e.g. (Wiesenberg et al., 2009). However, the assumption that char is slowly 

degraded and the biomarkers could be preserved for a long-term period may be 

oversimplified. Studies dealing with a systematic investigation of possible modification 

and degradation of PyOM-derived biomarkers are lacking. 

 

Research topic III: Quantification of PyOM incorporation into different SOM 

fractions and vertical PyOM translocation through a soil column 

(Chapter 5). 

 

Little is known about incorporation mechanisms and quantity of PyOM incorporated 

into soil fractions. Many questions arose with respect to the processes that caused 

transformation and mobilisation of PyOM in soils. One is related to the organic N 

incorporated into the PyOM structure. During fire events, the organic N pool is converted 

into more recalcitrant N forms (Sanchez and Lazzari, 1999; Knicker et al., 2005b). Since 

the labile N reserves are the major N source for biomass production by soil 

microorganisms and plants, the fire does not only affect the C cycle but also the N cycle 

(Gärdenäs et al., 2011). However, studies dealing with “black nitrogen” decomposition and 

contribution dynamics are lacking, although this knowledge is required for estimates of 

long-term impact of fires on ecosystems. 
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A further question that needs to be approached concerns the turnover of PyOM and 

how it is affected by interaction with the mineral phase. According to Skjemstad et al. 

(1996) and Kuzyakov et al. (2009), charred residues are found primarily in the <53 µm soil 

fractions, within other authors have reported an accumulation of aromatic structures 

(Baldock et al., 1992; Rodionov et al., 2006). The results confirm that the analysis of the 

fine size fraction in particular is required for understanding the role of the mineral phase in 

PyOM preservation. For example, how the PyOM distribution among size fractions is 

influenced by the charring degree is unknown. 

A further fraction of interest with respect to PyOM stability is the water-soluble 

extract. According to Hockaday et al. (2007), it is composed mainly of condensed aromatic 

ring structures that are also present in soil pore, river and ground water samples. The 

dissolution and export of this water-soluble PyOM fraction is still an unmeasured C and N 

flux. 

 

Research topic IV: Biochemical alteration of PyOM in soil on a medium-term scale 

(Chapter 6). 

 

We still lack knowledge about the degradation and humification processes and the 

stability of different PyOM structures, which is required for understanding the C 

sequestration potential. In particular, knowledge concerning the chemical structure of 

PyOM is also important for the establishment of more accurate PyOM quantification 

methods because common degradative techniques based on the chemical recalcitrance of 

polycondensed aryl structures (Hammes et al., 2007; Knicker et al., 2008a) are 

characterised by low specify. Chemical modification of these aryl domains during the 

degradation process may decrease their chemical recalcitrance and thus may be responsible 

for an underestimation of the PyOM content assessed by traditional methods. 

Recent studies (Covington and Sackett, 1992; Prieto-Fernandez et al., 2004) reported 

an increase of inorganic N immediately after fire. During the post-fire phase, this inorganic 

N can be rapidly lost by erosion due to the missing of a plant cover and/or leakage with 

seepage water. A considerable part of the remaining fire-affected organic N was shown to 

occur in heterocyclic N structures derived from heat-transformed proteins (Knicker et al., 
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1996b; Almendros et al., 2003; Knicker et al., 2008a). On the other hand, this “black 

nitrogen” (Knicker, 2007) is probably characterised by an increased resistance to biological 

degradation, leading to a preferential accumulation of heterocyclic N compounds in fire-

affected soils. A recent study indicated a low chemical stability of the N fraction in char 

against acid digestion with potassium dichromate (Knicker, 2010). To which extent this 

may also be true for biochemical stability is still not known. At the moment are no studies 

available in which degradation and humification processes of black N have been 

addressed. The biochemical degradation of PyOM-derived N compounds was investigated 

in the present part of the work. 

A further aspect, which presently receives much attention, is the amendment of so-

called biochar to incorporate additional photosynthetically fixed carbon into the soil. The 

presence of such char in soil could contribute to a long-term C storage and thus to the 

mitigation of increasing atmospheric CO2 concentrations (Lehmann, 2007). The extent of a 

C sequestration effect on a long-term scale as well as the influence of biochar addition on 

the quality of soil organic matter (SOM) is still not clear. 

1.3 Techniques for PyOM quantification in soils and sediments 

A number of techniques have been developed to determine PyOM in soils and 

sediments (Schmidt et al., 2001; Nguyen et al., 2004; Hammes et al., 2007; Bird and 

Ascough, 2010). In general, the PyOM identification can be divided into spectroscopic 

(Rositani et al., 1987; Kim et al., 2004; Knicker et al., 2005a; Lehmann et al., 2005), 

visual/microscopic (Kruge et al., 1994; Brodowski et al., 2005a), thermal (Gustafsson et 

al., 1997; Dell'Abate et al., 2000; Dell'Abate et al., 2003), chemical (Wolbach and Anders, 

1989; Song et al., 2002; Simpson and Hatcher, 2004; Knicker et al., 2008b) and UV photo-

oxidizing (Skjemstad et al., 1996; Skjemstad et al., 1999) methods. Different molecular 

markers were also applied for the identification of PyOM (Glaser et al., 1998; Brodowski 

et al., 2005b; Otto et al., 2006; Wiesenberg et al., 2009). All methods basically have to 

differentiate between three forms of carbon, inorganic carbonates, thermally unaltered 

organic carbon, such as humic substances or plant material, and PyOM. It is important to 

note that most of the techniques can only be applied to a part of the PyOM continuum (Fig. 

4). This fact makes it difficult to compare results obtained with different quantification 

techniques (Masiello, 2004). 
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Figure 4: Overview of quantification methods within the PyOM continuum [summarised 

from Hedges et al. (2000); Schmidt and Noack (2000); Masiello (2004); Lehmann et 

al. (2005); Hammes et al. (2007); Plante et al. (2009); Bird and Ascough (2010)] 

CP/DP MAS 13C NMR Solid-state cross polarisation/ direct polarisation magic angle 

spinning 13C nuclear magnetic resonance spectroscopy; NEXAFS Near edge X-ray 

absorption fine structure spectroscopy; FTIR Fourier transformation infrared 

spectroscopy; MS Mass spectroscopy; CTO-375 Chemo-thermal oxidation at 375°C; 

TG-DSC Thermogravimetry and differential scanning calorimetry analysis; TOT/R 

Thermal/optical transmittance and reflectance; Cr2O7
2- Acid dichromate oxidation; 

H2O2 Peroxide Oxidation; NaClO Sodium hypochlorite oxidation; BPCA Benzene 

polycarboxylic acids; PAH Polycyclic aromatic hydrocarbons. 

Visual methods quantify the number of char pieces visible under an optical 

microscope. However, this procedure detects only relative large PyOM particles and 

cannot capture soot or PyOM degradation products. Further, the presence of pyrite and 

other dark-colour debris makes it difficult to quantify PyOM (Schmidt and Noack, 2000). 

Optical methods provide morphological description of PyOM particles, which can give 

information on sources and transport distances. Scanning electron microscopy coupled 
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about the elemental composition of the scanned particles (Brodowski et al., 2005a). 

However, the resolution is too fine for practical use in quantification (Nguyen et al., 2004). 

Thermo-chemical methods oxidise or volatilise labile carbon and leave a resistant 

residue for quantification as PyOM (Gustafsson et al., 2001). Such methods were 

developed for atmospheric PyOM particles such as soot and are not directly applicable to 

soils and sediments. Soils can contain closely associated organic matter that is not easy to 

thermally degrade and the formation of artefacts by charring of non-PyOM is also possible 

(Schmidt and Noack, 2000). Thermogravimetry and differentials scanning calorimetry 

analysis (TG-DSC) determine carbon species by recording the mass loss during the thermal 

oxidation of the sample. The initial weight loss based upon the exothermic oxidation of 

labile carbon such as carbohydrates (300°C to 350°C). The exothermic loss at higher 

temperatures (above 450°C) is attributed to more refractory SOM and PyOM-derived 

carbon species (De la Rosa et al., 2008; Plante et al., 2009). The position of the DSC peaks 

reflect the chemical composition of the sample. The disadvantages of this method are 

mineral impurities such as clays which will contribute to measured weight loss as they lose 

water on heating. The occurrence of non-PyOM with high C content like coal may 

overestimate PyOM contribution (Hammes et al., 2007). 

Chemical oxidation techniques (e.g. acid oxidation with dichromate) separate labile 

organic matter from condensed PyOM assuming that the oxidation process follows a first-

order kinetic (Wolbach and Anders, 1989). These techniques often involve removal of 

carbonates and silicates as a pre-treatment step. The studies of Knicker et al. (2007) and 

Knicker et al. (2008b) indicate that aromatic PyOM structures can also be attacked and 

paraffinic compounds can survive the procedure because of their hydrophobic character 

which obscures quantification. Therefore, such chemical methods should be combined with 

analytical techniques for characterising the chemical composition of the oxidation residue. 

The chemical oxidation efficiency varies due to the chemical heterogeneity of PyOM. 

Therefore it is necessary to determine a correction factor for the respective char material to 

ensure realistic quantification (Knicker et al., 2008b). 

UV photo-oxidation (Skjemstad et al., 1993) relies on the relative stability of PyOM 

to high-energy UV radiation compared to other SOM fractions. This method seems to be 

more gently in comparison with chemical oxidation approaches (Hammes et al., 2007) 

resulting in higher PyOM values for soot and chars. Another critical point is that UV 

radiation affects only the surface of soil aggregates. Skjemstad et al. (1993) demonstrated 
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that a considerable proportion of SOM of clay and silt fractions of Australian soils was not 

affected by this method. Some SOM was protected in the interior of microaggregates. This 

fact may result in overestimation of PyOM content if no further techniques are used, which 

allow a more detailed characterisation of the residue. 

The benzene polycarboxylic acids (BPCA) method converts aromatic structures via 

oxidation with HNO3 into BPCAs (Glaser et al., 1998). The PyOM quantity is calculated 

as the sum of the threefold to sixfold carboxylated benzoic acids. However, this technique 

does not quantitatively detect very large and highly condensed PyOM components. 

Therefore, the results are multiplied by a correction factor of 2.27 to estimate the PyOM 

content. The BPCA method provides only a minimum estimation for other types of PyOM 

(Hammes et al., 2007) because this factor was obtained from commercial charcoal and may 

not be applicable to all kinds of PyOM. Further, the method has a risk of overestimation by 

detection of non-BC-derived compounds (Glaser and Knorr, 2008). For example, 

aspergillin, the black pigment of the fungi Aspergillus niger (Lund et al., 1953), was 

reported to contain aromatic compounds which are detected as BPCA. 

There are intentions to use levoglucosan (Elias et al., 2001; Otto et al., 2006), 

polycyclic aromatic hydrocarbons (PAH) (Kim et al., 2003) or n-alkane distribution pattern 

(Eckmeier and Wiesenberg, 2009) for determination of PyOM in soils and sediments. 

Levoglucosan is produced by thermal degradation of cellulose and may indicate the 

presence of charred plant residues. Charring of plant materials result in domination of even 

numbered C chains and shortening of the chain length of the alkane fraction (Wiesenberg 

et al., 2009). Therefore, the alkane distribution pattern may provide information of charring 

conditions and the presence of PyOM. However, knowledge is missing about stability of 

such markers against biotic degradation and modification, which may have implications for 

the accuracy. 

Spectroscopic techniques, such as Fourier transformation infrared spectroscopy 

(FTIR), solid-state cross-polarisation magic angle spinning 13C nuclear magnetic resonance 

spectroscopy (13C CPMAS NMR) and near edge X-ray absorption fine structure 

spectroscopy (NEXAFS), provide information on molecular scale, allowing detection of 

aromatic domains. However, there are not only PyOM-derived aromatic sources. The 

presence of lignin-derived aromatics (De la Rosa et al., 2009) may result in overestimation 

of PyOM. Therefore, spectroscopic techniques are often combined with chemical or UV 
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photo-oxidation pre-treatments, removing non fire-affected labile C compounds. However, 
13C NMR and NEXAFS are costly and laboratory capacity is limited. 

The present work applies solid-state 13C and 15N CPMAS NMR spectroscopy for the 

investigation of the degradation and humification of PyOM in soil. Former studies 

demonstrated that NMR technique provides useful information concerning chemical 

alteration of plant residues by charring and the chemical structure of PyOM (Knicker et al., 

1996a; Freitas et al., 1999; Baldock and Smernik, 2002; Almendros et al., 2003; Knicker et 

al., 2005a; Knicker et al., 2008a). The studies showed that carbohydrate fraction was 

converted into dehydrated compounds which produced intense signals in the aromatic 

region of the 13C CPMAS NMR spectra. The respective 15N CPMAS NMR spectra 

revealed that amide N was converted to heterocyclic structures such as pyrroles, 

imidazoles and indoles (Knicker et al., 1996a).  

The following chapter provides information about the basic NMR theory and some 

aspects concerning quantifiability of CPMAS 13C and 15N NMR spectra. 

1.4 Solid-state 13C and 15N CPMAS NMR spectroscopy - a powerful tool 

for characterisation and quantification of PyOM 

1.4.1 Basic NMR theory 

An advantage of NMR spectroscopy is that it can be used as a non-invasive 

technique for analysing environmental heterogeneous solid materials (Grassi and Gatti, 

1995; Bortiatynski et al., 1996; Preston, 1996; Kögel-Knabner, 1997). In contrast to the 

described thermo and chemical methods, application of NMR technique avoids possible 

chemical alteration, such as cracking, rearrangement, dehydrogenation or polymerisation. 

The NMR spectroscopy allows analysing and quantifying of a sample as a whole without 

previous extraction, derivatisation or oxidation step. It provides chemical information on 

atomic and molecular scale and allows examination of physicochemical properties of 

certain molecular domains (Veeman, 1997). However, there are a few important points to 

account concerning acquisition parameters and spin interactions for obtaining a 

representative PyOM characterisation (Knicker et al., 2005a). For better understanding the 

basics of theory and important NMR techniques will be explained in the following. 

NMR bases on the concept that many atomic nuclei behave as magnetic dipoles. The 

magnitude of the magnetic dipole is proportional to a fundamental property of the atomic 
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nucleus, the spin angular momentum (Rabi et al., 1938). The spin aligns itself parallel (low 

energy state) or antiparallel (high energy state) to an external magnet field (B0). An applied 

electromagnetic radio frequency pulse (RF) causes the nuclei to absorb energy from the RF 

pulse if the resonance condition is fullfilled (Bloch et al., 1946). The frequency of RF pulse 

(ω1), which is perpendicular orientated to B0, has to correspond to the resonance frequency. 

The resonance condition is described by ω1 = ωL = -γ × B0 with the Larmor frequency (ωL) 

and the gyromagnetic ratio (γ). The magnetic moment (µ) of the nucleus precesses with the 

Larmor frequency (ωL) around the z-axis of B0 in a Cartesian coordinate system. The 

gyromagnetic ratio is a nuclear constant of each elemental nucleus and represents the ratio 

of its magnetic dipole moment to its angular momentum. The highlight of the resonance 

condition is that the adsorbed energy amount equals a multiple of the energy difference 

(ΔE) between the spin levels. The adsorbed ΔE forces the net magnetisation (M) of the 

spin system along the z-axis to flip in direction of the y-axis. The magnitude of its y-

component (My) will periodically alter because the transversal magnetisation is still 

precessing with ωL around the z-axis. 

The magnetic field of the electron cloud around the nucleus shields the nucleus of 

interest. Consequently the effective magnetic field (Beff) is reduced, resulting in a shift of 

the specific resonance frequency (ω1). A short intense RF pulse is applied for detection of 

all individual nuclei with different resonance conditions at the same time. Such a short 

pulse generates a symmetric frequency band around ω1. The pulse technique is based on 

the Heisenberg uncertainty principle ΔE × Δt ≥ h (2π)-1 where h denotes the Planck´s 

constant. 

After termination of the pulse, the spin system returns to its thermal equilibrium by 

radiating energy at a specific resonance frequency, which depends on the strength of the 

magnetic field. The relaxation is described by two time constants T1 and T2. The 

longitudinal (or spin-lattice) relaxation time T1 is the decay constant for the recovery of the 

z component of the nuclear spin magnetisation (Mz) towards its thermal equilibrium value. 

The transverse (or spin-spin) relaxation time T2 is the decay constant for the component of 

M which is perpendicular to B0 (Mxy). T2 is the time frame that is needed for the 

redistribution of the energy among the spins. A detector in y-direction records the 

alteration of the magnetisation My as a voltage signal. The detected relaxation decay 

pattern has an oscillating amplitude and is called free induction decay (FID). The 
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overlapping FIDs of the individual nuclei are converted from the time into frequency 

domain by the mathematical Fourier transformation (FT). 

The location of detected resonance frequency lines is depending from the applied 

strength of B0. Therefore, the resonance frequencies of nuclei are given as chemical shift 

(δ) with respect to a reference (ωRef). The chemical shift is defined with δ (ppm) = (ω1 – 

ωRef) / ωRef × 106. Commonly tetramethylsilane (TMS; 0 ppm) is used as refercence for 13C 

NMR spectroscopy. For 15N NMR spectroscopy no common reference exists. In the 

present work nitromethane (0 ppm) is used as reference. The comparison of spectra using 

different references is only possible by using conversion factors. Figure 5 and 6 show some 

important chemical shift assignments in solid-state 13C and 15N NMR spectroscopy, 

respectively. 

 

Figure 5: Selected examples for chemical shift assignment in solid-state 13C CP MAS NMR 

(meant C is marked with asterisk, SSB Spinning side band). 

When NMR spectroscopy is applied to solid samples, such as SOM or PyOM, the 

anisotropic chemical shift is one reason why NMR spectra display broad spectral lines. The 
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reason is that the electron shielding effect is depending on the orientation of the molecule 

with respect to the external field B0. Orientation dependent interactions are proportional to 

the term 3cos2θ-1. If θ equals the magic angle (θm) of 54°44´, the term vanishes. Therefore, 

solid samples are spun at several kilohertz around an axis that makes θm (magic angel 

spinning, MAS) (Schaefer and Stejskal, 1976). However, spinning side bands (SSB) occur 

in case of insufficient spinning rate. The SSBs appear at a frequency distance equal to the 

spinning frequency on each side of the parent signal (Fig. 5). Such SSBs can overlap with 

other main signals. In the case of occurring SSB, their signal areas can be added to the 

respective parent signal and subtracted in case of signal overlapping for allowing correct 

quantification of the NMR spectra. 

 

Figure 6: Selected examples for chemical shift assignment in solid-state 15N CP MAS NMR. 
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atom% and short spin-lattice relaxation time (T1H) are magnetised by a RF pulse (B1H) and 

the magnetisation is subsequently transferred to 13C or 15N nuclei with a low natural 

abundance of 1.1 atom% and 0.4 atom% and relatively long T1. A polarisation transfer 

between two spin systems can only occur if the Hartmann-Hahn condition -γH × B1H = -γX 

× B1X with X = 13C or 15N is fulfilled. This means that a magnetisation transfer is only 

possible if the energy amount (ΔEH) between the energy levels of the 1H spin system has 

the same magnitude than ΔEX of the X spin system. The Hartmann-Hahn condition can be 

achieved by a simultaneous irradiation of the 1H and X spin systems with the RF fields B1H 

and B1X during a contact time (tc). The RF fields B1H and B1X have to be adjusted that ΔEH 

and ΔEX of the two spin system is equal (spin lock). 

The 13C or 15N-intensity signal is only observable if the condition between the cross-

polarisation transfer time (TXH) and the 1H spin-lattice relaxation time in the rotating frame 

(T1ρH) is satisfied with TXH << tc << T1ρH. The cross-polarisation transfer time TXH 

describes the time frame that is necessary for the transfer of the magnetisation from 1H to 

the 13C or 15N spin system. In general, TXH increases with the distance of the X nucleus 

from the protons and the molecular motion. The T1ρH represents the relaxation of the 

protons in the presence of the field B0 together with the time-dependent magnetic field B1. 

The field B1 rotates in the plane perpendicular to B0 at the Larmor frequency of the nuclei 

in the B0. In case TXH > T1ρH, the relaxation of the protons becomes already affective 

before the cross polarisation is completed and the signal is completely suppressed.  

The spin system has to be completely returned to the thermal equilibrium before a 

new rf pulse can be applied. The pulse delay should be 5 × T1H for avoiding saturation 

effects of the spin system. The relaxation time of the X spin system has not to be 

considered since the polarisation is induced by the 1H spin system. 

1.4.2 Reliability and application of solid-state 13C and 15N CPMAS NMR 

spectroscopy in PyOM research 

The presence of paramagnetic and ferromagnetic species, such as Fe, Cu or Mn, affects 

NMR spectroscopy via loss of B0 field homogeneity and shortening of T1ρH (Smernik and 

Oades, 2000a). This can lead to considerable shortening of T1ρH to an extend that the 

condition TCH or TNH << T1ρH is not fulfilled, resulting in ineffective CP and line 

broadening. In this context Schöning et al. (2005) reported a selective O/N-alkyl C 

suppression due to presence of Fe. Such a selective effect on the O/N-alkyl C fraction of 



 1. INTRODUCTION, OBJECTIVES AND STATE OF THE ART 17 

13C CP MAS NMR spectra was also shown for a Terric Humisol, containing a high 

concentration of paramagnetic Cu (Preston et al., 1984). For avoiding interactions with 

paramagnetic compounds, NMR samples can be pre-treated with dilute hydrofluoric acid 

(HF), as described by Goncalves et al. (2003). The advantage of HF treatment is (i) the 

removal of most of the mineral phase concentrating the C in the residue and (ii) removal of 

interfering paramagnetic minerals for improving NMR observability. 

There are many NMR studies confirming that HF treatment does not alter chemical 

composition of OM (Skjemstad et al., 1994; Schmidt et al., 1997; Knicker et al., 2000; 

Gelinas et al., 2001; Goncalves et al., 2003). The latter is supported by identical NMR 

spectra of mineral-free organic litter layers obtained before and after the HF procedure 

(Dai and Johnson, 1999; Eusterhues et al., 2003). In this line, the C/N ratio does often not 

change by the HF procedure (Schmidt et al., 1997; Goncalves et al., 2003). However, Dai 

and Johnson (1999) and Schöning et al. (2005) reported lower recoveries and enrichment 

ratios of N compared to the corresponding OC values. The higher N loss during HF 

treatment may be explained by a preferred loss of easily soluble amino acids and amino 

sugars (Mathers et al., 2002) and inorganic N that were protected through sorption before 

HF treatment. 

Dai and Johnson (1999) showed 13C NMR spectra for soil HF-extracts of Spodosols 

(Podsols) that indicated a preferential removing of O-alkyl C and carboxyl C during the 

extraction. The observation may be attributed to the release of carbohydrates and OM 

which were associated with iron oxides (Oades et al., 1987). Especially HF treatment of 

subsoil horizons of acid forest soils can result in a preferential loss of mineral-associated 

OM (Eusterhues et al., 2003). In spite of this observation, the respective NMR spectra from 

HF-treated and untreated soils were almost identical. It can be summarised that HF 

treatment only dissolves soil minerals and mineral-associated OM whereas the remaining 

OM is nearly unaffected (Eusterhues et al., 2003). 

A preferential loss of N containing compounds or O-alkyl C is not expected for PyOM 

because it does not contain free amino acids or carbohydrates like sugars (Knicker et al., 

1996a). Therefore, HF pre-treatment can be considered as a useful tool to ensure 

quantitative NMR spectroscopy of PyOM samples. 

For charred residues produced at high heating intensity under oxygen exclusion the 

formation of aromatic clusters with proportion of core C with a distance to the next 1H 
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exceeding three bonds is expected (Schmidt and Noack, 2000). This distance is too high 

for efficient cross polarisation and thus such core C cannot be quantitatively detected by 

CPMAS 13C NMR (Smernik et al., 2002). However, in contrast to soot, such graphitic 

polyaromatic domains play a minor role in chars produced under wildfire condition 

(Knicker et al., 2008a). Since temperatures above 700°C are required for the formation of 

graphic structures (Freitas et al., 1999). At such high temperatures, most unprotected 

organic matter is expected to be volatilised under oxic conditions. 

Knicker et al. (2005a) showed that the condensation degree of plant residues charred 

by vegetation fires is low. The atomic H/C ratio between 0.6 and 0.4 of the aromatic 

moiety of charred peat and barbeque charcoal revealed that on average every second to 

third C is connected to a proton (Knicker et al., 2005a). The observed protonation degree 

of aromatic domains allows efficient cross polarisation that is required for a correct 

quantification of the NMR spectra. 

Dipolar dephasing (DD) NMR experiments allow to discriminate between weak and 

strong proton dipolar coupling of 13C nuclei (Alemany et al., 1983). The DD procedure 

includes an interruption of high power proton-decoupling for a certain time delay tdd 

directly after tc but before the 13C acquisition. This allows the 1H spin system to interact 

with 13C nuclei, resulting in dephasing of 13C signals (signal broadening). In general, 13C 

nuclei without direct attached H and high molecular motion have weak 1H dipolar coupling 

and will be visible in a spectrum obtained with tdd > 40 µs. The DD NMR experiments 

with charcoal and charred peat support that almost every second aryl C is directly 

connected to neighbouring H (Knicker et al., 2005a). In this line, variable contact time 

(VCT) measurements of different PyOM revealed that the condition TCH < T1ρH was 

fulfilled for aryl C which is necessary for efficient cross polarisation. The CP time TCH did 

not tend to increase with prolonging charring degree of the PyOM (Knicker et al., 2005a). 

This indicates that graphite-like structures were not formed because that would cause in 

decreasing protonation degree of aryl structures, resulting in increasing 1H-13C distance 

and larger TCH values. 

Bloch decay (BD) or direct polarisation (DP) NMR spectroscopy represents another 

opportunity to determine directly C species. However, T1C is an order of magnitude or 

more slower than T1H (Smernik and Oades, 2000a). Commonly, recycling delays of 60-90 

s are applied for BD MAS NMR determination of natural OM samples (Smernik and 

Oades, 2000a). Comparing CP and BD MAS NMR spectra of PyOM an underestimation of 
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aryl domains is often reported (Skjemstad et al., 1999; Mao et al., 2000; Smernik and 

Oades, 2000b; Keeler and Maciel, 2003; Fang et al., 2010). Knicker et al. (2005a) 

explained this observation by an expense of O/N alkyl and alkyl C in BD NMR due to 

saturation because of application of relaxation delays that were too short. The assumption 

is supported by NMR studies of Teeaar and Lippmaa (1984), determining a very long T1C 

of 266 s for crystalline cellulose. This requires a recycle delay of 22 min (5 × T1C) to avoid 
13C-spin saturation. In spite of the fact that fresh peat does not contain considerable 

amounts of char, the respective BD NMR measurements showed also differing results from 

CP NMR spectra (Knicker et al., 2005a). The latter is best explained by saturation effects 

in the O-alkyl C and alkyl-C fraction and may explain the observed higher aryl C 

contribution in BD NMR. In this line, the studies of Simpson and Hatcher (2004) and 

Hammes et al. (2006) supported a comparable 13C BD MAS NMR efficiency in 

comparison with the corresponding CP MAS NMR spectra for charred wood and grass, 

containing little or no O-alkyl C. 

The application of CP technique minimises possible spin-saturation effects of O-

alkyl C because of much shorter recycle delay of the 1H spin system. The reliability of the 

CP NMR was also supported by experiments with standards containing PyOM and 

untreated peat mixed in defined ratios (Knicker et al., 2005a). The authors demonstrated 

that almost all aryl C was efficiently cross polarised. Thus, the CP technique does not 

underestimate aryl C in PyOM if the contribution of soot-like or graphitic material can be 

excluded. 

Another useful tool in PyOM characterisation is solid-state 15N NMR spectroscopy. 

Unfortunately this technique is hampered by two factors. The most abundant isotope of N 

is 14N with 99.6 atom%. However, it is impossible to perform 14N high resolution NMR 

because of the large quadrupole moment. The dipolar 15N isotope has a low natural 

abundance and a low negative gyromagnetic ratio. These factors cause a 50 times lower 

sensitivity for 15N NMR compared to 13C NMR. Therefore, 15N-erriched sample material is 

often used for 15N NMR studies e.g. Ripmeester et al. (1986); Cheshire et al. (1990); 

Knicker and Lüdemann (1995). The CP technique can also be applied for improvement of 

the sensitivity of 15N NMR spectroscopy in SOM with natural 15N abundance (Knicker, 

1993). Knicker et al. (1999) confirmed that CP technique applied to humic fractions spiked 

with 15N-enriched trinitrotoluene did not reveal a major intensity loss compared to the 

respective 15N direct polarisation NMR spectrum. The authors could not find additional 
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peaks in the 15N BD NMR spectrum, indicating that 15N CP NMR detected all organic N 

groups. The 15N NMR studies of Knicker et al. (1996a) and Knicker et al. (1996b) applied 

successfully solid-state 15N NMR to coal and charred plant residues. The authors extracted 

acquisition parameters allowing quantitative characterisation of heterocyclic bound N 

compounds by application of solid-state 15N CP MAS NMR spectroscopy. However, 

inorganic N species were not quantitatively determined via CP technique with a contact 

time of 0.7 to 1 ms because of their high mobility (NH4
+) or weak interaction with the 1H 

spin system (NO3
-) (Knicker and Lüdemann, 1995). 

It can be summarised, that the application of 13C and 15N CP MAS NMR technique is 

quantitative for SOM and wildfire-derived PyOM. 



 2. MATERIALS AND METHODS 21 

2. Materials and Methods 

2.1 Production of PyOM 

For the production of the 13C and 15N labelled PyOM, rye grass (Lolium perenne L.; Gr) 

was used, which represents a typical plant fuel consumed by grassland fires. Seeds of rye 

grass were cultured on quartz sand in a closed plexiglass chamber, located in a phytotron 

(Lehrstuhl für Zierpflanzenbau, TUM) that allowed the automatic control of climatic and 

light conditions (Fig. 7). The grass was grown with 13C-enriched CO2 gas (13C: 99atom%) 

and 15N-labelled potassium nitrate nutrient solution (15N: 98atom%; Knicker (2002)). After 

two weeks the grass shoot stems were harvested. The pots with the cut plants were 

reintroduced into the chamber for further growth. After yielding sufficient shoot material, 

the pots were removed from the chamber and the roots were manually separated from 

quartz sand. 

In comparison with the natural abundance of 1.1 atom% for 13C and 0.4 atom% for 
15N it was possible to produce plant material which was highly isotopically enriched (13C: 

23.5atom%; 15N: 62.8atom%). The combined aboveground and belowground biomass was 

dried to constant weight at 40°C and cut into small pieces (5 to 10 mm). 

In contrast to other studies (Smernik et al., 2000; Baldock and Smernik, 2002; Hamer 

et al., 2004; Trompowsky et al., 2005; Hammes et al., 2006), oxic conditions were used for 

the charring process, since pyrolysis conditions are unlikely to occur during natural above-

ground fires. Approximately 5 g of the plant material was put in a 1-mm layer on a ceramic 

tray preheated at 350°C. The tray was introduced into a preheated muffle oven to allow 

charring at 350°C under oxic conditions to ensure that plant material was immediately 

exposed to the target charring temperature. This temperature was reported to result in char 

that is comparable to that remaining after natural wildfires (Almendros et al., 1990). Two 

combustion times of one (1M) and four minutes (4M) were applied to obtain material with 

different charring degree (Hilscher et al. 2009). These relatively short charring times were 

applied to account for the high speed with which natural fires commonly move. 

For the respiration incubation study, unlabelled rye grass (Lolium perenne; Gr) and 

pine wood (Pinus sylvestris; P) was used to produce the PyOM. The rye grass was cut into 

small pieces (5 to 10 mm) and the pine wood was ground to a particle size of 1 mm. The 

charring conditions were similar as for the labelled grass material. 
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Figure 7: Cultivation of isotopically enriched rye grass. 

2.2 Characterisation of PyOM and soil material 

2.2.1 C / N content and 13C / 15N isotopic signature 

Total C and total N contents of the PyOM and soil mixtures were measured in 

duplicates using dry combustion (975°C) with an Elementar Vario EL microanalyser 

detecting N as N2 and C as CO2. Detection limits for C and N were 0.4 μg and 1 μg, 

respectively. The 13C and 15N contents of the samples were measured with a quadrupole 

mass spectrometer (InProcess Instruments GAM 200) connected to the microanalyser. 

Because of low 13C and 15N enrichments of the B and C sub layers of the soil incubates, 

these samples were determined using an elemental analyser (CHN NA1500, Carlo Erba) 

coupled to an isotope ratio mass spectrometer (Isochrom III Micromass-GVI Optima; 

CNRS Laboratoire de Biogéochimie et Ecologie des Milieux Continentaux) with an 

analytical precision for isotope measurements of 0.3‰. 

The contribution of NH4
+-N to the PyOM was detected in a 1 mol l-1 KCl extract 

using indophenol blue colorimetric method on a spectrophotometer (Milton Roy, 

Spectronic 601) at 655 nm. 

13CO2

K15NO3

Phytotron

Lolium perenne
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2.2.2 Basic soil parameters 

The soil substrate for the incubation experiment was obtained from a fire-unaffected 

Bw horizon of a Cambisol (IUSS Working Group WRB, 2006) under Norway spruce near 

Leuk, Canton Valais, Switzerland, (GPS 46.33678° N, 7.64394° E). After air-drying the 

soil was passed through a 5 mm sieve. The low organic C (OC) concentration of the soil 

(3.4 g kg-1) allowed an efficient 13C and 15N tracing of compounds derived from the 

isotopically enriched PyOM. No inorganic C was recovered after heating the soil at 550°C 

for 5 h. A soil pH value of 6.8 was measured with a glass electrode in the supernatant of a 

suspension obtained by mixing soil with 0.01 M CaCl2 solution in a mass to volume ratio 

of 1:2.5. 

The soil texture was determined after oxidising the OC with 30% (w/w) H2O2 

solution and removing Fe oxides with a dithionite-citrate-bicarbonate solution at room 

temperature. The texture was obtained by combination of wet sieving (2000 - 63µm) and 

the use of a Micrometrics Sedigraph 5100 (Buchan et al., 1993) to differentiate silt (63 - 

2µm) and clay (< 2µm). The soil contained 34% sand, 42% silt and 23% clay, which 

classifies it as a loamy soil (IUSS Working Group WRB, 2006). 

2.2.3 Specific surface area of PyOM 

The specific surface area was determined using N2 adsorption at -195.8°C with an 

Autosorb 1 (Quantachrome Corp., Syosset, NY). The calculations were performed 

according to the BET equation (Brunnauer et al., 1938). Micropore surface area and 

volume were calculated according to de Boer et al. (1966). Prior to analysis, the samples 

were degassed under vacuum at 40°C overnight in order to remove adsorbed volatile 

compounds from the surfaces. In addition, micropore area and volume were obtained from 

CO2 adsorption at 0°C. Calculations were conducted according to the method of Dubinin 

and Radushkevich (1947). Sample pre-treatment was the same as for the N2-adsorption 

measurements. 

2.3 Setup of PyOM respiration experiment 

Each of the char samples obtained from the grass and wood after 1 or 4 min of 

charring was mixed with the soil in a ratio of 1/10 (w/w). Of each sample 30 g were placed 

in a 250 ml incubation vessel. For the degradation study, 10 and 4 replicates were prepared 

of the rye grass char and for the pine wood char, respectively. In addition, 10 replicates of 



 2. MATERIALS AND METHODS 24 

pure soil material were used to determine the background respiration (blank value, BV) of 

the native soil organic matter. All samples were inoculated with 1 ml of a microbial 

suspension. Therefore, a soil mixture of A horizons of 6 Cambisol, 3 Luvisol and one 

Fluvisol was rewetted to 60% of its maximal water hold capacity and pre-incubated at 

20°C (2 days). Then, the inoculum was extracted with deionised water and the supernatant 

was filtered (5 µm pore size). With the use of the soil mixture, it was intended to assure a 

microbial population which is representative for soils. To simulate the input of fresh 

unburnt litter entering the soil system after the death of fire-affected vegetation, 150 mg of 

unburnt and finely ground rye grass was added as a co-substrate (CS) to one of the two 

replicates of each series after 1 and 3 weeks of incubation. 

The water content of the sample mixtures was adjusted to approximately 60% of the 

maximum water holding capacity and the samples were incubated for 48 days at 30°C 

under aerobic conditions in a Respicond apparatus (Nordgren Innovations, Sweden) 

located at the Institut für Landschaftsarchitektur, Forschungsanstalt für Gartenbau 

Weihenstephan (Fig. 8). This system measures the respiration every 15 min by determining 

changes in the electrical conductivity induced by absorption of CO2 in 10 ml of a 0.6 M 

KOH solution placed inside the incubation vessel (Nordgren, 1988). The amount of the 

absorbed CO2 (ct) is calculated as ct = α (1 – R0×Rt
-1) with α equals the proportionality 

constant relating the decrease in conductivity to the absorbed CO2 amount. The electrical 

resistance of the KOH solution at time t is Rt, and at t = 0 it is R0. 
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Figure 8: Setup of PyOM respiration experiment 

2.4 Setup of 13C and 15N labelled PyOM incubation 

Soil columns (16 for each PyOM treatment) with three layers were prepared. The 

uppermost layer comprised 120 g soil mixed with 400 mg PyOM obtained from the grass 

after 1 min or 4 min charring (A layer). This corresponds to an addition of 41 mg 13C and 8 

mg 15N for the PyOM 1M incubates and 38 mg 13C and 9 mg 15N for PyOM 4M, 

respectively, equivalent to a total C input of 0.49 and 0.45 t ha-1. To determine potential 

PyOM vertical movement, two sub-layers, B and C, composed of 200 g soil each, were 

enclosed in a nylon net. The net allowed it to separate the different layers at the end of the 

experiment. The C and B soil layers kept in the net (3 cm high each) were put into a 

polyethylene beaker, overlayed with the A layer (2 cm high; Fig. 9). The whole column 

was covered with a perforated Al foil to avoid drying out. The bottom of the polyethylene 

beaker was perforated to allow release of water and soil material. The leachate was weekly 

collected in underlying glass dishes and freeze-dried. During the whole incubation period 

between 0.6 g and 1.3 g of leachate was collected. 

http://dict.leo.org/ende?lp=ende&p=thMx..&search=and
http://dict.leo.org/ende?lp=ende&p=thMx..&search=drying
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In addition, 9 columns of soil without added PyOM were incubated and used to 

determine the natural SOM content and its possible alteration at different stages of the 

degradation experiment (BV). All samples were inoculated with 1 ml of a microbial 

suspension to ensure that an active microbial population was present. This inoculum was 

obtained from a forest litter layer that was shaken with deionised water (1:5). 

Subsequently, the supernatant was filtered (5 µm pore size) to avoid input of particulate 

organic material from the forest litter (Knicker, 2003). 

The water content of the soil samples was adjusted to ca. 60% of the WHC and the 

samples were incubated for one to 20 months at 30°C in the dark under aerobic conditions. 

The water content was checked weekly and adjusted by weighing the soil column and 

adding the mass difference as water. On average, 10 ± 7 ml of water were added weekly to 

each beaker and could disperse within the soil column.  

To simulate the input of fresh unburned litter derived from dying vegetation affected 

by fire, 400 mg of unburned, finely ground unlabelled rye grass were added as co-substrate 

(CS) to one of the two replicates of each series after 4, 10 and 16 months incubation. The 

soil columns with CS were incubated for a period of up to 28 months. With this design it 

was also intended to identify a possible co-metabolic priming effect (Fontaine et al., 2003) 

during PyOM decomposition. For the 2 month incubation experiment, duplicates were 

prepared to provide material for controlling the reproducibility. 

  
Figure 9: Setup of 13C and 15N PyOM incubation experiment. 

After the incubation, the A layer was first collected. Then, the B and C layers were 

taken and the nylon net was removed to collect the incubated soil. The nylon net was 

cleaned with water and the obtained soil residues were added to the respective layer. 

Thereafter the soil was air-dried. 

C Layer

B Layer

Time

Translocation

Eluate

Co-
substrate

A Layer+ PyOM

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=on
http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=average
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2.5 Lipid analyses 

Aliquots of the incubated labelled PyOM samples (10 g; respiration experiment) and 

fresh and charred plant material (1 g) were Soxhlet-extracted with a dichloromethane-

methanol (3:1 v:v) mixture for 8 h (González-Vila et al., 2003). Prior to extractions, the 

cellulose extraction thimbles were Soxhlet-extracted with same dichloromethane-methanol 

mixture, to remove any contaminant lipid. In order to remove elemental sulphur, activated 

(2M HCl) copper curls were added to each extraction. The total lipid extract was filtrated 

and subsequently the filtrate was dried up with sodium sulphate. The lipid amount was 

determined by gravimetry and related to the respective sample weight before analysis by 

gas chromatography (GC; Hewlett-Packard 5730A) and gas chromatography–mass 

spectrometry (GC–MS; Hewlett-Packard GCD). The total lipid extract was derivatised by 

adding 2M trimethylsilyldiazomethane for the methylation of polar compounds. In addition 

sylylation of the samples was accomplished by using N,O-bis(trimethylsilyl)-

trifluoroacetamide. Thus, the acids from the polar fraction were identified as their methyl 

or silyl esters. 

Separation of the total lipid extract was achieved using a SE-52 fused silica capillary 

column (30 m × 0.32 mm i.d., film thickness 0.25 µm). The column temperature was 

programmed to increase from 40 to 100 ºC at 30 ºC min-1 and then to 300 ºC at 6 ºC min-1. 

Helium was used as carrier gas at a flow rate of 1.5 ml min-1. Mass spectra were measured 

at 70 eV ionising energy. Individual compounds were identified by low resolution mass 

spectrometry and by comparison with mass spectra libraries (NIST and Wiley). Traces 

corresponding to selected homologous series of biomarkers families were obtained by 

single ion monitoring (SIM), such as ion at m/z 85 for n-alkanes and ion at m/z 74 for 

FAMES (fatty acid methyl esters). Relative compound abundances were calculated by 

using the software of the Data Review Chemstation, assuming that a constant relationship 

exists between the percentage of the total chromatogram area and the amount of the 

corresponding lipid extract. 

2.6 Fractionation 

The A layer of the 13C and 15N labelled PyOM incubates was separated into different 

soil organic matter fractions to obtain a more detailed view about the char degradation and 

stabilisation process (Fig. 10). 
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2.6.1 DOM extraction 

The dissolved organic matter (DOM) was extracted after shaking an aliquot of 80 g 

of the incubated soil sample with 300 ml deionised water for 15 h. After centrifugation for 

30 min at 3500 rpm, the supernatant was decanted, pressure filtered using a 0.45 µm 

polypropylene membrane and freeze-dried (Rennert et al., 2007). 

2.6.2 Density fractionation 

An aliquot of the DOM-extraction residue (60 g) was subjected to density 

fractionation with a Na-polytungstate solution (300 ml, density 1.8 g cm-3; Kölbl and 

Kögel-Knabner, (2004)). The particulate organic matter (POM) was recovered as material 

floating on the Na polytungstate solution after centrifugation for 10 min at 3000 rpm. The 

obtained POM fraction was separated by using a 20 µm sieve. The extraction was repeated 

(3 x) and both the light fractions and the mineral residue (sediment) were washed with 

deionised water to remove remaining Na polytungstate. Salt removing was complete when 

the conductivity of the washing water was smaller than 50 µS cm-1 for the sediment and 3 

µS cm-1 for the POM, respectively. The mineral residue and POM were freeze-dried. The 

two POM particle size fractions were combined to calculate the POM recovery. 

2.6.3 Particle size fractionation 

For particle size fractionation, the mineral residue of the density fractionation step 

(30 g) was re-suspended in deionised water (mixing ratio: 1:5) and subjected to 

ultrasonication with a Branson Sonifier 250 with an energy input of 250 J ml-1 to 

disintegrate the aggregates. The mineral residue was fractionated into gravel plus sand 

fraction (5 mm to 63 µm) and coarse silt fraction (63 to 20 µm) via wet sieving. The finer 

fractions were separated into medium silt (20 to 6 µm), fine silt (6 to 2 µm) and clay (< 2 

µm) by sedimentation in deionised water using Atterberg cylinders and freeze-dried. 
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Figure 10: Schematic of conducted fractionation. 

 

2.7 Solid-state 13C and 15N CPMAS NMR spectroscopy 

2.7.1 HF pre-treatment 

The soil incubates and particle size fractions were demineralised with HF according 

to Goncalves et al. (2003) to improve the sensitivity of the following solid-state 13C and 
15N NMR spectroscopic analyses. Approximately 5 g sample material was shaken with 50 

ml of 10% (w/w) HF for 3 h in a polyethylene bottle. After centrifugation, the supernatant 

was removed and discarded. The procedure was repeated five times at room temperature. 

The remaining sediment was washed five times with 50 ml deionised water and freeze 

dried.  

Bulk soil

• Na Polytungstate
solution (1.8 g cm-3)

Sedimentation

Particulate organic material (POM)

5000 - 63 μm: Gravel + sand

20 – 6.3 μm: Medium silt
6.3 - 2 μm: Fine silt
2 – 0 µm:       Clay 

• Water extraction

• Centrifugation

• Pressure filtration (0.45 µm)

Dissolved organic matter (DOM)

63 – 20 µm:  Coarse silt
• Ultrasonication (250 J ml-1)

• Wet sieving

• Centrifugation



 2. MATERIALS AND METHODS 30 

2.7.2 Solid-state 13C CPMAS NMR spectroscopy 

All PyOM samples were analysed by using a Bruker DSX 200 spectrometer 

operating at a resonance frequency of 50.32 MHz. The cross polarisation magic-angle 

spinning (CPMAS) technique (Schaefer and Stejskal, 1976) was applied with a spinning 

speed of 6.8 kHz. A ramped 1H pulse was disposed during the contact time of 1 ms in order 

to circumvent spin modulation during the Hartmann–Hahn contact (Peersen et al., 1993; 

Cook et al., 1996). A Pulse delay of 300 ms for PyOM samples was applied, following the 

recommendation of Knicker et al. (2005a). Knicker et al. (2005a) showed that the 

condensation degree of plant residues charred by vegetation fires is low enough to ensure 

efficient cross polarisation, which is required for correct quantification of the spectra. 

Depending on the 13C content of the samples, between 2000 and 150000 scans were 

accumulated. Line broadenings between 10 and 100 Hz were applied. The 13C chemical 

shifts were calibrated relative to tetramethylsilane (0 ppm) with glycine (COOH at 176.08 

ppm). Using the instrument software (XWIN-NMR V2.6), the contribution of the different 

C groups to total C was determined by integration of their signal intensity in the respective 

chemical shift regions (Knicker et al., 2005a). The regions from 245 to 185 ppm and from 

185 to 160 ppm are assigned to carbonyl and carboxyl/ amide C, respectively. Between 

160 and 110 ppm, resonance lines of olefins and aryl C are detected. The chemical shift 

region between 140 and 160 ppm is assigned to substituted aryl C. Commonly, the region 

between 110 and 45 ppm is assigned to O/N-alkyl C. However, in samples with high aryl C 

content, the latter dominate the intensity between 110 and 90 ppm (Knicker et al., 2007). 

Accordingly, for the PyOM, this region was assigned to originate predominantly from aryl 

C signal. Resonances of alkyl C are expected between 45 and 0 ppm. Owing to insufficient 

averaging of the chemical shift anisotropy at a spinning speed of 6.8 kHz, spinning side 

bands (ssbs) of the aryl C signals occur at a frequency distance of the spinning speed at 

both sides of the central signal (300 to 245 ppm and 0 to −50 ppm). Their contributions 

were considered by adding their intensities to that of the parent signal as described by 

(Knicker et al. (2005a). The ssbs of the carboxyl-C signal contribute to the intensity in the 

chemical shift region between 325 to 300 ppm and between 45 ppm and 0 ppm. Because 

one ssb of the carboxyl C is superimposed by the alkyl-C signal (45 to 0 ppm), the integral 

of the second ssb in the region of 325 to 300 ppm was doubled and added to the carboxyl-

C main signal. The same ssb integral was subtracted from the intensity of the alkyl C 

region. 
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2.7.3 Solid-state 15N CPMAS NMR spectroscopy 

The solid-state 15N NMR spectra were obtained using a Bruker DMX 400 operating 

at 40.56 MHz. The contact time was 1 ms, and a 90° pulse width of 6.5 ms, a pulse delay 

of 300 ms and a line broadening between 50 and 200 Hz were applied. Between 50,000 

and 1000,000 scans were accumulated at a magic-angle spinning speed of 4.5 kHz. The 

chemical shift was standardised to the nitromethane scale (0 ppm) and adjusted with 15N-

labeled glycine (-347.6 ppm). The integrals were assigned to heterocyclic N compounds (-

145 to -245 ppm) and to peptide-like structures (-245 to -285 ppm) according to Knicker 

(2000). 

2.8 Quantification of C and N groups of incubated PyOM 

The total 13C and 15N amount of the incubated PyOM was calculated by mass 

balance using the sample weights, their respective total C or N concentrations as well as 

their 13C or 15N abundance given in atom%. The results were corrected for the natural 13C 

and 15N background by subtraction. The latter was determined via control soil incubates 

with natural 13C and 15N abundance which had been prepared for each time series. 

To calculate the amount for each C and N group of the PyOM incubate, the 

proportion of the integrated signal area of the respective chemical shift region of the 13C or 
15N NMR spectra was multiplied by the total 13C or 15N amount of the incubate. The 

respective amount of each C group of the control soil (Bv) was subtracted from the 

respective C group of the PyOM incubate. 

The recovery (RC) of the total 13C and 15N amounts from the incubated PyOM in the 

soil layers and SOM fractions was calculated by mass balances using the sample weight 

(w) and respective total C or N concentrations (c) as well as the 13C or 15N abundance (Y) 

in atom%.  

RC = (w × c Y)after × (w × c × Y)-1
before × 100[%]    (1) 

The relative recovery (Q) of 13C and 15N derived from isotopically enriched PyOM of 

the mineral fraction was calculated by setting the recovery of the 1M PyOM (RC1M) 

treatments to 100% related to the respective 4M PyOM (RC4M) values. 

Q = RC4M × (RC1M)-1×100[%].      (2) 
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2.9 Statistical analysis and data fitting 

Mean values and standard deviations were calculated with Microsoft Excel (2007) 

and further statistical analysis was carried out with the software SigmaPlot 2000, version 

11.0 (SPSS Inc.). 

An one way repeated measures ANOVA was applied to identify significant treatment 

effects as a function of time. A Tukey’s honest significant difference test was used to 

determine which PyOM fractions and treatments were significantly different from each 

other. Statistical significance was assigned at the p ≤ 0.05 level (error probability). 

Decomposition of labelled PyOM was described with a two-component model 

(Voroney et al., 1989) 

y = a × e(–k1×t1)+ b × e(–k2×t2)       (3) 

and using the software SigmaPlot 2000, version 11.0 (SPSS Inc.). Terms a and b describe 

the fast and slowly decomposable OM pool, respectively, whereas k displays the turnover 

constant rate at the respective time t. This equation allows description of the kinetics of a 

two-phase decomposition process. Based on Eq. 3, half-life periods of the labelled 

substrates were calculated with 

t1/2 = ln2 / k.         (4) 

The decomposition dynamic of the C groups of the PyOM was described with a first 

order decay model 

y = a × e(–k1×t1)         (5) 

The data of Knicker and Lüdemann (1995) were used to compare the degradation 

dynamics of the PyOM with the respective dynamics of fresh unburned rye grass (Lolium 

perenne L.). They performed a long-time degradation experiment with comparable 

incubation conditions with regard to water content and temperature. 

For testing potential correlations between C groups, a Pearson product moment 

correlation test was applied. Statistical significance was assigned at the p ≤ 0.05 level.  
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3. Mineralisation and structural changes during the initial 

phase of microbial degradation of pyrogenic plant residues 

in soil 

This chapter discusses the influence of charring intensity and plant source material 

on the chemical structure of PyOM. Model chars were biotic incubated in order to 

investigate the impact of charring degree on the mineralisation dynamic during the initial 

degradation stage in soil. A further interest was to test if the supply of a microbial available 

co-substrate promotes the PyOM mineralisation. 

3.1 Chemical changes in the plant materials during the thermal 

treatment 

After one minute of thermal treatment of the grass (Gr1M) and pine wood residues 

(P1M), an increase of the C content and a relative enrichment of N was observed (Table 1). 

The latter resulted in a clear decrease of the atomic C/N ratio of the wood char, although 

the values are still high. The low N content confirms the minor role of N compounds as 

structural constituents of wood chars. In contrast, the narrow atomic C/N ratios of the grass 

char underline that in this material such N compounds comprise an important fraction. 

Figure 11 shows the solid-state 13C NMR spectra of the fresh and charred plant 

residues. Most of the intensity in that of the fresh rye grass is observed in the region 

assigned to O-alkyl C between 110 and 45 ppm (Table 2). Here, the resonance lines at 64, 

74 and 84 ppm are characteristic for cellulose (Maciel et al., 1982). The intensity of its di-

O-alkyl C appears at 105 ppm. A further strong signal is observable in the alkyl-C region 

(45 to 0 ppm). According to previous studies, in the present sample this signal derives 

mainly from peptides and peptide-like constituents rather than from paraffinic units in 

plant waxes (Knicker et al., 1996b). This is supported by the expressed signal at 174 ppm, 

which can be assigned to carboxyl and amide C groups (Knicker et al., 1996b).  
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Table 2: Relative intensity distribution in solid-state 13C NMR (% of total intensity) 

associated with heating of rye grass (Lolium perenne) and pine wood (Pinus 

sylvestris) at 350°C under oxic conditions. 

 

The 13C NMR spectrum of the pine wood reveals a higher relative O-alkyl C content 

than the rye grass. The small peak at 21 ppm together with a weak signal in the region of 

carboxyl C is in line with the occurrence of acetate. The higher contents of lignin and 

tannins of the wood samples in relation to grass residues is supported by the resonance line 

in the aryl C region (Table 2). Typical signals for methoxyl C, aryl C and O-aryl C 

associated with lignin are commonly observed at 56 ppm, 131 ppm, and 148 ppm (Hatcher, 

1987). 

The spectra of both plant chars show an increase in aromaticity with charring time. 

Almost half of the total 13C intensity derives from aromatic C structures. The remaining 

methoxyl C (64 ppm) and O-aryl C (147 ppm) signals in the 13C NMR spectrum of P1M 

indicate that some lignin-type structures survived the charring process (Fig. 11), which is 

in accordance with the relatively high resistance of the lignin backbone towards thermal 

oxidation (Sharma et al., 2004). The higher lignin content of the pine wood vs. the grass 

material may also be responsible for the smaller C loss during charring (Table 1). 

Increasing the charring time to 4 min increased the carbon loss for the pine wood and 

grass to 51% and 53%. Concomitantly, the atomic C/N value decreased, supporting 

preferential accumulation of N-containing compounds.  

The solid-state 13C NMR spectra of these more thermally treated chars showed no 

signals attributable to cellulose and the main signal at 128 ppm in the aromatic region 

confirms that they can be taken as representative of severely charred material. The 

aromatic C intensity in the spectrum of P4M is much higher than that in the spectrum of 

Gr4M (Table 2). The spectrum of Gr4M, on the other hand, reveals a substantial 

Carbonyl/ 
Carboxyl C

O-Aryl C Aryl C O-Alkyl C Alkyl C

245-160 ppm 160-140 ppm 140-90 ppm 90-45 ppm 45-0 ppm
Rye grass 9 2 7 65 18

Gr1M 10 11 39 12 27
Gr4M 11 14 49 6 20

Pine wood 3 5 14 73 4
P1M 6 13 34 38 8
P4M 8 16 67 5 5

Sample
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contribution of heat-recalcitrant alkyl C (Fig. 11), which may be assignable to cyclic 

peptides as they were observed by Meetani et al. (2003) charring peptides at a temperature 

between 285°C and 285°C although using a N atmosphere.  

Figure 11 includes the solid-state 15N NMR spectra of the heat-treated grass 

materials. Because of the low N content of the pine-derived PyOM, it was not possible to 

obtain their 15N NMR spectra (Table 3). The solid-state 15N NMR spectrum of the unburnt 

grass is dominated by a signal at -257 ppm from amides (Fig. 11 and Table 3). The 

resonance lines at -298 ppm and -306 ppm can be assigned to NH groups. A pronounced 

signal at -345 ppm is in the chemical shift region of free aliphatic amino groups. With 

increasing burning time, the relative intensities of the amide signal and the resonance line 

at -345 ppm decrease. The latter completely disappears, indicating the degradation of 

proteins and free amino acids. This may be explained by thermolytic degradation of these 

compounds or their conversion to heterocyclic compounds (Sharma et al., 2003). The most 

important observation in the spectra is the strong increase in the relative signal intensity in 

the region of indoles, imidazoles and pyrroles (-145 to -240 ppm; Table 3). This might be 

caused by their selective preservation due to their resistance against thermal degradation 

or, as discussed above, by their neoformation through rearrangement of amide structures or 

peptides under the influence of heat (Knicker et al., 1996b). 

Table 3: Relative intensity distribution in solid-state 15N NMR (% of total intensity) 

associated with heating of rye grass at 350°C under oxic conditions. 

 

As determined from N2 adsorption, the specific surface areas of all PyOM samples, 

except of P4M are low (around 6 m2 g-1). The latter shows a significant larger surface area 

of 244 m2 g-1 and considerable micropore surface and volume (Table 1). A comparable 

trend is observed for CO2 adsorption, although here higher values were obtained. Low 

specific surface areas of naturally occurring charcoals have also been reported (Kwon and 

Pignatello, 2005). However, surface area and pore volume of charcoals depend upon both 

the nature of the source material and the respective method of its production and they 

increase with charring temperature and time (Pastor-Villegas et al., 2006; Jindarom et al., 

Pyridine/     
Imine-N

Pyrrole-N Amide-N Guanidine-N Amino/ NH4+-N

-25 to -145 ppm -145 to -240 ppm -240 to -285 ppm -285 to -325 ppm -325 to -375 ppm
Rye grass 0 3 83 9 4

Gr1M 4 56 34 3 2
Gr4M 5 64 25 4 3

Sample
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2007). The increasing pore volume is mainly due to partly devolatilisation of OM (Pastor-

Villegas et al., 2007). This explains the considerably high values obtained for the severely 

charred P4M. Because CO2 has a higher sorption affinity for coals, it is also frequently 

used for surface area measurements. Moreover, the higher temperature, at which the 

measurements are performed compared to N2 adsorption give a higher kinetic energy to the 

gas molecules (de Jonge and Mittelmeijer-Hazeleger, 1996) facilitating CO2 molecules to 

enter into micropores. Thus, significantly larger micropore areas and volumes are 

measured with this adsorption gas. On the other hand, micropores can be partly blocked by 

tarry matter or decomposition products formed during the charring (Pastor-Villegas et al., 

2007). 

For the PyOM in the present study, it was observed an increase in the micropore 

surface area and volume with the degree of burning, when using CO2 (Table 1). The 

micropore surface of the pine chars is up to a factor of 8.3 greater than for the rye grass 

chars. A larger surface area of PyOM may promote the microbial accessibility and thus 

increase its degradability. In conclusion, the examples clearly demonstrated that the 

different source materials and charring conditions used in the present study resulted in 

chars with differences in chemical composition, as well as accessibility of surfaces, both of 

which are expected to affect microbial degradation.  

3.2 PyOM mineralisation during incubation 

The blank value (BV) CO2 C-corrected curves determined for the cumulative OC 

mineralisation of the PyOM are given in Fig. 12. For the grass and pine chars, the BV 

contribution is less than 8% and 25%, respectively. Because of the different C contents of 

the PyOM (Table 1), it was necessary to normalise the CO2-C using the corresponding 

PyOM-C input for a better comparison. The highest C mineralisation rates were observed 

for the grass-derived chars. After the first three days, more than 1% of the initial carbon of 

Gr1M was converted to CO2. At the end of the incubation after 48 days, the value 

increased to 3.1% (Fig. 12). The incubated blank soil showed a SOC mineralisation of 

2.9% at the end of the incubation, demonstrating that PyOM can be mineralised with rates 

comparable to that of SOM during this initial degradation phase. 
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Figure 12: Cumulative CO2-C release of PyOM produced from rye grass and pine wood at 

350°C without and with co-substrate addition. Values are corrected by subtraction 

of CO2-C emission of the blank values. The curves are fitted from the mean values 

of up to 5 replicates with a relative standard deviation < 5%. 

The stronger thermal alteration of Gr4M resulted in a smaller total C turnover of 

2.4%, which is 22% lower than for Gr1M. However, within the first 15 h of incubation, 

Gr4M was more efficiently mineralised than Gr1M (Fig. 13). During the first 2 h, Gr4M 

showed a maximum respiration rate of 0.6 CO2-C mg (C g h)-1 which is slightly higher 

than that of Gr1M [0.3 CO2-C mg (C g h)-1]. Therefore, in spite of the higher aromaticity 

of GR4M, this sample must contain a fraction which is microbially more available, at least 

at the beginning of the incubation. After this short initial response, a second maximum 

occurred during the second day, but at this time it was more expressed for Gr1M [0.27 

CO2-C mg (C g h)-1]. Possibly this is related to alteration of the microorganism 

community, but may also be explained in terms of complete consumption of the more 

labile fraction, forcing the microorganism to rely on a more stable C source. 
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Figure 13: Changes in respiration rates of grass-derived PyOM during the very early phase 
of incubation. Values are corrected by subtraction of CO2-C emission of the blank 
values. 

Comparable to the grass chars, the pine chars show decreasing mineralisation with 

increasing burning degree (Fig. 12), but the effective CO2 release is much lower. Only 

0.66% and 0.46% of the initial charcoal C of P1M and P4M were mineralised. Likewise, a 

higher microbial activity at the beginning of the experiment for the char with the higher 

aromaticity is evidenced, confirming that increased charring can result in the production of 

a small fraction of relatively easily degradable C compounds. After 30 days, no further 

decline in the mineralisation rate was evidenced for all PyOM samples, indicating that this 

easily degradable fraction may have been completely consumed. 

3.3 Impact of co-substrate addition on char mineralisation 

Fig. 12 depicts the respiration curves for the different chars to which a second C 

source (fresh rye grass) was added as a co-substrate that was readily available to 

microorganisms. As shown for the incubates without co-substrate addition, the grass chars 

experienced more intense mineralisation (Fig. 12). Up to 3.4% of Gr1MCS was converted 

to CO2 whereas only 0.8% of P1MCS was mineralised. It is noticeable that P4CS had a 

lower CO2-C release than the blank (BVCS). The comparison of the BV-corrected 

mineralisation curves with that of the pure char incubations allows the quantification of a 
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potential priming effect. During the first three days after the first co-substrate addition, the 

char mineralisation enhanced by 31.9% for Gr1MCS and by 22.8% for Gr4MCS in relation 

to the incubation with solely char (Fig. 12). This indicates that a more efficient charring 

process is connected to a weaker positive priming effect. However, 14 days after the co-

substrate addition, the amount of mineralised C already decreased to values that were only 

9.2% and 7.5% higher than those for the respective samples without co-substrates. Thus, 

although addition of fresh grass led quickly to an acceleration of the degradation, its 

consumption readjusted the turnover rates to values already observed for the pure chars. A 

second co-substrate addition resulted in no statistical significant positive priming effect for 

the grass chars “incubates” at day 48. 

P1MCS reflects a comparable degradation pattern as the grass chars after addition of 

the co-substrate (Fig. 12). On the other hand, relative to P4M, P4MCS shows a continuing 

decline in total CO2 production when compared to BVCS after the first supply of fresh 

grass material. This effect may be explained by a char-induced inhibition of the 

degradation of the uncharred grass residues, possibly because soluble constituents of the 

grass residues diffuse into the char particles. After being adsorbed, they may turn into 

material that is physically protected against further mineralisation. Such stabilisation in the 

inner voids of char was recently evidenced with a range of organic pollutants (Cornelissen 

et al., 2005; Wu et al., 2007). Its occurrence in the present experiment is supported by the 

very high microporosity of P4M obtained from CO2-adsorption, which is up to 8.3 and 3.7 

times higher than that of Gr4M and P1M (Table 1), respectively, and the fact that no 

micropores were detected from N2 adsorption with Gr1M, Gr4M and P1M. The latter 

strongly indicates that their micropores are too small or are blocked by organic 

decomposition products and therefore not accessible to N2 molecules. After the second co-

substrate addition we observe a continuous increase of the microbial activity for P4MCS 

(Fig. 12, day 21 to 48), possibly because of higher co-substrate availability after saturation 

of the char adsorption places. 

3.4 Changes of the chemical quality of PyOM during incubation 

Fig. 14 compares the solid-state 13C NMR spectra of the untreated and incubated 

chars and Table 4 lists the respective BV-corrected intensities for each chemical shift 

region. For the grass-derived char treatments, 7% of the total C and for the pine wood 

chars, only 5% are attributed to BV. Consequently, the natural organic matter of the soil 
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material contributes only slightly to the 13C NMR signal of the PyOM. After incubation, it 

was found a decrease from 27% to 22% in the alkyl C region for Gr1M (Table 4). 

Furthermore, the shift of the signal at 29.2 ppm to 26.8 ppm (Fig. 14) indicates the 

formation of acetyl groups, possibly caused by degradation processes and accumulation of 

short aliphatic C chains by microbial modification. The observed alkyl C decrease 

corresponds to 56 mg g-1 of the bulk char C (Table 5). Comparably, Gr4M reveals a 

consumption of alkyl C from 20 to 16% and a pronounced shift of the alkyl C peak from 

28.6 to 22.8 ppm (Fig. 14). 

Note that, with the exception of P4M, the relative aryl C content of all samples 

shows no major alteration caused by the degradation, but an increasing content of 

carboxyl/carbonyl C is evidenced for Gr1M, Gr4M and P4M, supporting the idea that 

oxidation occurred (Fig. 14). Independent of the burning time of the grass chars this group 

increased to 25 mg g-1 and 32 mg g-1 of the bulk C for Gr1M and Gr4M at the end of the 

experiment.  

In spite of the higher aromaticity of Gr4M vs. Gr1M, both samples show comparable 

carboxyl/carbonyl C contents (14%) after termination of the incubation. This can be 

explained by the formation of smaller C clusters by pyrolytic breakdown processes during 

the more intense thermal treatment of Gr4M. Such small PyOM clusters could be more 

available for microbiological attack, resulting in the observed similar carboxyl/carbonyl C 

content. 

In contrast to the grass chars, the pine chars exhibit smaller total amounts of alkyl C 

that could serve as a potential C source for the microorganisms (Table 2). However, 

although P1M contains a high O-alkyl C contribution (38%), very tentatively derived from 

fire-unaffected carbohydrate moieties or anhydrosugars, this C source does not increase the 

degradation efficiency. For this sample, a loss of 30 mg g-1 of the bulk C was calculated, 

which is in the range observed for Gr1M with an O-alkyl C content of 12%. Possibly, in 

P1M O-alkyl C is not available for the microorganisms because of its physical protection 

within partly charred domains and/or of a low content of available N forms. Note that no 

mineral nutrient solution was added in order to simulate natural conditions. 
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Figure 14: Solid-state 13C-NMR spectra of incubated PyOM without (a) and with co-substrate 
addition (b) in comparison to fresh PyOM. Spinning side bands are marked with 
asterisk. 
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Table 4: Relative intensity distribution in solid-state 13C NMR for PyOM produced from rye 

grass and pine wood after 7 weeks of incubation. 

 

 a Values are corrected by subtraction of blank values calculated on a C balance for each chemical shift 

region. 

Table 5: Changes in abundances of the different types of C for PyOM produced from rye 

grass and pine wood after 7 weeks of incubation. 

 

a Values are standardised to C content of bulk sample; positive value indicates formation; total sum equals 

CO2-C loss (mineralisation). 

b Values with different letters are significantly different at α = 0.05 as determined by a Tukey’s HSD post hoc 

analysis. 

A decrease from 67 to 60% in intensity of the chemical shift region of H/C-aryl C 

(140 to 90 ppm) was found for P4M. However, the intensity in the O-aryl C (160 to 140 

ppm) region increased concomitantly from 16 to 19%. An explanation for this behaviour 

may be a modification of the aryl rings by substitution of aromatic ring C with hydroxyl or 

carboxyl groups. Since the total C loss during the experiment was only 4 mg g-1 (Table 5), 

this indicates that the aromatic ring structures must have been attacked and altered. This is 

supported by a total reduction of the aromatic C content of 35 mg g-1. As revealed by the 

 Sample
Carbonyl/ 

Carboxyl C
O-Aryl C Aryl C O-Alkyl C Alkyl C

Gr1M 13 13 43 9 22
Gr1MCS 12 13 42 11 22
Gr4M 14 16 50 4 16
Gr4MCS 15 16 49 3 16

P1M 6 14 36 36 9
P1MCS 6 14 36 35 9
P4M 14 19 60 2 4
P4MCS 12 19 61 3 4

relative distribution (%  of total C intensity)a

 Sample
Carbonyl/ 

Carboxyl C
O-Aryl C Aryl C O-Alkyl C Alkyl C Total loss b

Gr1M 25 15 18 -35 -56 -32  A
Gr1MCS 15 16 10 -15 -60 -34  A
Gr4M 32 9 1 -22 -45 -25  B
Gr4MCS 38 13 -10 -25 -42 -27  B

P1M 1 12 10 -30 1 -7
P1MCS -3 15 19 -40 0 -9
P4M 57 36 -71 -22 -4 -4
P4MCS 44 33 -56 -14 -6 1

mg (g C bulk)-1 a
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increase in carboxyl/ carbonyl C contribution of 57 mg g-1, this observation is best 

explained via opening and partial oxidation of aromatic ring structures (Hatakka, 1994; 

Hofrichter et al., 1997) and formation of carboxyl C. 

According to the intensity distribution, a considerable fraction of the carboxyl C 

must be associated with aryl rings, since the contribution of the other substitutable C 

groups is with 6% (Table 4) too low to account for the total amount (14%) of this polar 

functional group. Knicker et al. (2005a) showed that the size of the polyaromatic rings in 

charcoal produced at 350°C is unlikely to exceed that of naphthacene-like structures with 

up to five substituents or clusters of maximal six condensed rings. Assuming a maximal 

cluster size of 6 aromatic rings connected by two bridging C (Knicker et al., 2005a), 45% 

of the aryl C in the chemical shift region between 90 and 140 ppm is protonated and can be 

regarded as substitutable aryl C. This corresponds to 27% of the total C of P4M. Knowing 

that 14% of the total C is assignable to carboxyl C, it can be calculated that almost every 

second substitutable aryl C of the cluster is connected to a carbonyl/carboxyl group. These 

high carbonyl C contents are in agreement with recent field and laboratory studies 

(Brodowski et al., 2005a; Lehmann et al., 2005; Cheng et al., 2006; Liang et al., 2006; 

Solomon et al., 2007). It is remarkable that, despite the relatively small mineralisation rates 

for the chars, especially for P4M, considerable alteration was observed with respect to the 

chemical composition (Table 4). 

3.5 Influence of co-substrate addition on degradation level 

At the end of the incubation, 50% of the fresh grass residues that were added as co-

substrate were mineralised (Table 6). Consequently, relative to the non-treated samples, the 

addition of co-substrate increased the BV to 10% and 8% of the total C for the grass and 

pine char, respectively. The low O-alkyl C recovery of 18% at day 48 (Table 6) indicates 

that the easily degradable parts of fresh grass residues were preferentially consumed, 

leading to a relative enrichment in aryl C and alkyl C. The effective degradation stage of 

the CS is supported by a total recovery of carbonyl/ carboxyl C of 184%. In contrast, the 

total aryl C amount was not deceased. 
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Table 6: Degradation of co-substrate (CS) during incubation. 

 

Within the time frame of the incubation, the addition of the co-substrate resulted in 

no significant changes in the degradation pattern of the different PyOM samples (Table 4). 

It seems that co-substrate addition had no major effect on the char degradation process, 

because possible decomposable sources may already be available in the starting PyOM. 

This is supported by a preferred consumption of alkyl C with up to 60 mg g-1 for the grass 

chars and up to 40 mg O/N-alkyl C g-1 for the pine chars (Table 4). A comparable 

observation was reported by Cheng et al. (2006) using manure as co-substrate during 120 

days of microbial char degradation. Aside from incompletely combusted sugar residues, a 

possible source of microbially usable compounds in the PyOM may be the “water-soluble” 

fractions, with its substantial contribution of 3.6% and 3.9% to the total C (Ctot) of Gr1M 

and Gr4M (Table 7). The signal at 162 ppm in their solid-state 13C NMR spectra is 

indicative of the presence of low molecular weight acids or carboxyl C directly bound to 

aromatic rings. As demonstrated in former studies considerable amount of microorganisms 

and fungi are able to survive on such structures as the only energy source (Woo and Park, 

2004; Ben Said et al., 2008). The altered PyOM contains such substituted aryl compounds 

as shown in Table 4. These compounds could serve as a substrate for microorganisms and 

induce a further progressive degradation of the aged PyOM. 

Table 7: Relative intensity distribution in the solid-state 13C NMR (% of total C) and the total 

contribution of PyOM water extracts. 

 

Carbonyl/ 
Carboxyl C

Aryl C O-Alkyl C Alkyl C Total

Fresh grass 9 8 65 18 100
Incubated grass 33 16 24 27 100

Total contribution (mg)
Fresh grass 11 11 84 23 129
Incubated grass 21 10 15 17 64
Recovery (%) 184 98 18 76 50

Relative intensity contribution (%)

Carbonyl/ 
Carboxyl C

O-Aryl C Aryl C O-Alkyl C Alkyl C total

Gr1M 18 6 28 17 32 100
Gr4M 25 10 34 11 19 100

Contribution to PyOM (%)
Gr1M 0.6 0.2 1 0.6 1.2 3.6
Gr4M 1 0.4 1.3 0.4 0.7 3.9

Relative intensity contribution (%)



 
3. MINERALISATION AND STRUCTURAL CHANGES DURING THE INITIAL PHASE OF MICROBIAL 

DEGRADATION OF PYROGENIC PLANT RESIDUES IN SOIL 47 

In contrast, the pine-derived chars delivered only small amounts of water-extractable 

organic matter, comprising 0.13% and 0.03% of the Ctot of P1M and P4M, respectively. 

Those yields were too low to allow the acquisition of usable solid-state 13C NMR spectra. 

Assuming that this fraction is preferentially consumed by the microorganisms, these low 

yields are in line with the lower CO2 release during incubation.  

3.6 Implication of structural properties on the degradation of PyOM in 

soil 

Subjecting different vegetation residues to increasing charring time showed that both time 

and source affect the chemical structure of the char products, confirming the high degree of 

heterogeneity for PyOM (Knicker, 2007). Comparable to the previous study (Baldock and 

Smernik, 2002), greater severity of the fire and limited oxygen supply go along with an 

increase in aromaticity. However, the presence of peptide-like structures in the source 

material is connected to the contribution of alkyl C in the respective charred material 

(Knicker et al., 2008a), as observed by comparing the pine and grass chars (Table 2). More 

severely charring of peptides results in formation of heterocyclic compounds (Knicker et 

al., 1996b) (Table 2). The solid-state NMR spectroscopic analyses clearly showed that 

these differences in the alkyl C and aryl C content affect the decomposability of the PyOM. 

Baldock and Smernik (2002) analysed the degradability of chars produced from 

Pinus resinosa sapwood at increasing charring temperatures and confirmed that a higher 

aromaticity of char reduces the mineralisation rate. However, Gr1M and P1M were 

produced under the same charring conditions and have also comparable aryl C content 

(Fig. 11), but their effective char mineralisation reveals strong differences, indicating that 

aromaticity is not the only factor controlling the extent of CO2 release. Although P1M 

contains more O-alkyl C than Gr1M, the first experienced slower mineralisation. Possibly, 

the O-alkyl C was protected from microbial attack by being within the partly charred lignin 

network (Knicker et al., 2008) or the condensation degree of the aromatic domains is 

higher. Alternatively, the lower N content of the pine char may limit the microbial activity. 

However, here one has to bear in mind that, as indicated in the solid-state 15N NMR 

spectra, even for the grass char, the N is mostly immobilised in heterocyclic structures that 

are generally assumed to have low microbial accessibility. 

The grass-derived PyOM samples were subjected to microbial attack of the heat 

resistant aliphatic C region. However, Cheng et al. (2006) observed disappearance of the 
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aliphatic C after incubation at 70°C, also under sterilised conditions, which was more 

pronounced than that at 30°C with microbial activity, demonstrating that oxidation may 

also occur under abiotic conditions. This implicates that the observed degradation of 

PyOM may be attributed to biotic and abiotic oxidation. The observed formation of 

carbonyl/carboxyl groups during the incubation of PyOM can increase the water solubility 

and thus leaching into deeper soil horizons and loss by way of transport from soils to 

aquatic systems. Further, the decreasing hydrophobicity by these polar groups makes the 

PyOM more available for further microbial attack, and also for adsorption to the mineral 

phase, and thus for stabilisation. 

3.7 Role of the priming effect for char degradation 

Hamer et al. (2004) reported relative priming effects of up to 100% even after 60 

days by incubating chars at 20°C with supplements of glucose. The present study indicates 

also a cometabolic process occurring directly after the first addition of the co-substrate on 

the seventh day of incubation, but the second addition showed no clear effect and at the 

end of the experiment only a trend of higher metabolic activity caused by the co-substrate 

was visible. One explanation for this observation is the competition of microorganism 

groups with different surviving strategies (Fontaine et al., 2003). According to Fontaine et 

al. (2003), a potential priming effect results from the competition for energy and nutrient 

acquisition between microorganisms specialised in the decomposition of fresh organic 

matter (r-strategist) and those feeding on humified SOM (K-strategist). Within the short 

period of the experiments, only the r-strategists will develop quickly by decomposing the 

easily available co-substrate or uncharred plant remains and leaving partly degraded 

residues. Fontaine et al. (2003) claim further that these residues can be used by the K-

strategists, giving them an advantage against the r-organisms when the easily available 

substrate is almost completely consumed. Assuming that the K-strategists are more 

efficient at degrading the polymeric structure of char, they will be the main agent 

responsible for char mineralisation at an advanced stage. However, in samples with co-

substrate addition, they will have an additional source of substrate composed of partly 

degraded residues left by the r-strategists. This is in line with the observation that at the 

end of the incubation, the co-substrate was depleted in easily usable compounds. The better 

adaptation of the K-strategists to the remaining substrate can also explain the higher 

accumulated C mineralisation during the last two weeks of the incubation in the samples 

with co-substrate addition. 



 
3. MINERALISATION AND STRUCTURAL CHANGES DURING THE INITIAL PHASE OF MICROBIAL 

DEGRADATION OF PYROGENIC PLANT RESIDUES IN SOIL 49 

3.8 Elucidation of residence times 

The mean mineralisation rate for the last 10 days was used for elucidation of possible 

a residence time for the PyOM without co-substrate addition. Therefore, the data were 

fitted with a two-component first-order decay model. During this part of the incubation, no 

further decline in respiration rate was observed. Relatively short mean residence times of 

14 and 19 years were obtained for the charred rye grass residues Gr1M and Gr4M and up 

to 56 years for the pine wood chars. The findings are in agreement with those of Hamer et 

al. (2004), who determined residence times for charred straw residues and charred wood of 

39 and 76 years, respectively. However, these are minimum turnover times because they 

are based on a 7 week incubation under controlled aerobic conditions. Such conditions will 

certainly not be available in natural environments. Cold and dry periods or anaerobic 

conditions in sediments can result in much slower degradation rates or even cause their 

preservation over a long term. Although not definitively known, it is likely that most 

microorganisms which oxidise the aromatic structure of char are lignin degraders, which 

need oxic conditions to activate their enzyme systems (Hatakka, 1994; Hofrichter et al., 

1997). This could explain the high age of some PyOM findings in sediments and buried 

soil horizons with mostly anaerobic conditions (Schmid et al., 2001; Cao et al., 2006). 

However, preservation via oxygen deficiency is also a common feature of organic 

compounds other than char. Consequently, PyOM may not necessarily play such an 

important role as a long time C sink in the global C cycle in all environments. The 

relatively fast turnover times of plant chars estimated in the present and other studies 

(Hamer et al., 2004) could contribute to the unexpectedly low PyOM contribution in 

different field studies of fire affected sites. Dai et al. (2006), for example, described only 

minor effects on the size of the soil BC pool in a temperate mixed grass savannah, 

although the site was affected by 2 to 3 fires. Czimczik et al. (2003) noted that PyOM was 

not a major fraction of the soil OC pool in unburned or burned forest Siberian pine forest 

floors and attributed this either to rapid in situ degradation or possible relocation. The field 

work of Bird et al. (1999) supports the turnover times obtained for the incubations, 

indicating that they may be valid under natural environment conditions. They predict for 

well-aerated tropical soil environments that charcoal can be significantly degraded, even in 

a short time span.  

Additionally, the mineralisation kinetic of the pure PyOM confirms that microbial 

degradation of severely fire-altered residues can occur already in the initial post-fire phase 
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even without supply of co-substrate. This further indicates that, even after intensive fires 

leaving almost no thermally unaltered plant residues, the newly developed microorganism 

communities need no additional nourishing substrate, at least at the very early post-fire 

phase.  
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4. Modification of plant biomarkers by charring and during the 

initial phase of biodegradation of pyrogenic organic matter 

in soil 

The present chapter focuses on the effect of charring on the biomarker and lipid 

composition of different plant materials. Further, the stability of those biomarkers and 

lipids against biotic degradation during 7 weeks of incubation of the respective plant chars 

in soil was investigated. Until now, knowledge is missing how decomposition of PyOM 

affects the nature of thermally altered lipid fractions and if they can used as an indicator for 

PyOM determination in soil. 

4.1 Influence of charring on lipid content 

The lipid contents of the fresh rye grass and the pine wood are comparable with 67 

and 62 mg g-1 and typical for these plant materials (Wiesenberg et al., 2009). The 

respective PyOM extracts indicate a consecutive decrease in total lipid yield with 

prolonged charring time (Table 8). The grass-derived PyOM contains up to 3.6 times more 

lipids than that of pines. The lowest lipid content was determined for the more charred pine 

(P4M) with only 3 mg g-1. The lower amount of lipids detected for the PyOM compared to 

that of the fresh plant material is better explained by cracking and volatilisation losses 

during the charring process (Yokelson et al., 1997; Simoneit and Elias, 2001). 

4.2 n-Alkanes pattern of the fresh and incubated PyOM 

The total abundance of the n-alkanes is with 55 µg g-1 in the same range as reported 

by Wiesenberg et al. (2009) for fresh rye grass. Untreated rye grass straw (Gr0M) is 

characterised by a predominance of long chain odd numbered n-alkanes in the range of C25 

to C33 and C29 as the dominant homologue within the aliphatic hydrocarbons (Fig 15). The 

observation is well established for higher plants and described in detail by Eglinton et al. 

(1962) and Eglinton and Hamilton (1967). The fresh pine wood (P0M) showed higher 

contributions of mid chain n-alkanes maximising at C19 and smaller long chain n-alkanes 

contents (C25 to C33; Fig. 15). This points to a smaller contribution of epicuticular waxes in 

the pine wood. The grass-derived PyOM reveals an enrichment of the n-alkanes fraction 

with factor 3.6 (Gr1M) and 2.6 (Gr4M) relative to the fresh grass (Table 8). The higher 
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content of n-alkanes is attributed to a selective enrichment caused by higher thermal 

stability compared to other plant components and a possible synthesis by breakdown 

processes of other lipid fractions, e.g. the decarboxylation of fatty acids (FA). The 

molecular ratios of n-alkanes, in particular the average chain length (ACL) and the carbon 

preference index (CPI) decrease with prolonging charring time for the grass-derived PyOM 

(Table 8). This means that the relative predominance of long chain odd numbered n-

alkanes declines for the respective PyOM and larger amounts of mid chain even numbered 

n-alkanes (C19 to C25) are present. The latter is caused by thermally induced break down 

process of long chain odd numbered n-alkanes which was also observed by Gonzáles-Pérez 

et al. (2008) in fire-affected soils from Andalusia (Southern Spain). The thermal 

degradation is confirmed by the decrease of CPIlong (C25 to C31) from 8.2 to 1.2 and the 

shift in the short to long n-alkanes ratio Rs/l from 0.5 to 4.1 (Table 8). The dominance of 

even homologues caused by thermal degradation is also reported by Wiesenberg et al. 

(2009) for grass and by Almendros et al. (1988), Tinoco et al. (2006) and Eckmeier and 

Wiesenberg (2009) for soils. 

During the 7 weeks of aerobic incubation in soil, the cumulative content of n-alkanes 

of the grass-derived PyOM was reduced. The recovery is with 61% for the Gr1M incubate 

(Gr1MInk) lower than for Gr4MInk with 85% (Table 9). The higher recovery for Gr4MInk 

may be explained by physical entrapment. The ACL of Gr1MInk is two carbon homologues 

shorter than for the fresh grass PyOM, indicating degradation of long chain homologues (> 

C26) and/or biosynthesis by microorganisms (Fig. 15). The observation is reflected by 

increasing Rs/l ratio (Table 9). The CPI index for the incubated grass-derived PyOM is in 

the same range between 0.9 and 1.1 than for the fresh PyOM (Table 9). 

Ambles et al. (1994) performed a biodegradation study of pure eicosane (C20) added 

to a rendzina soil and reported a faster disappearing by 71% after one week and 89% after 

8 weeks in contrast to the high C20 recovery in the present study (Fig. 15). The authors 

found out that the mineralisation of eicosane was a limiting process counting only 25% of 

the added C20. The decrease was mainly due to biotransformation processes or transfer into 

other soil organic matter fractions. The observed decline of n-alkanes fraction of the PyOM 

incubates may be a combination of these processes. 

The incubated pine chars showed in comparison with the grass chars a different 

modification of the n-alkanes. In general, the recovery is 2 to 3 times higher compared to 

the grass-derived PyOM (Table 9). However, the content of the total n-alkanes of the fresh 
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pine chars is up to 7 times lower than that of the grass-derived chars (Table 8). Especially 

octadecane (C18) and the mid-chain homologues in the range C22 to C26 showed an increase 

(Fig. 15). The observed alteration is comparable for both pine chars, only the abundance of 

the n-alkanes is reduced by the factor 2.2 for P4MInk. The unexpected n-alkane formation 

may be explained by biosynthesis of mycelial hydrocarbons. A fungus-like exhalation of 

the char incubates supports the growth of mycelium. Generally, fungi biomass contains n-

alkanes in the range from C15 to C36 with the predominance of long-chain C19-30 

homologues (Merdinger and Devine, 1965; Merdinger et al., 1968; Jones, 1969) which is 

in agreement with the observed n-alkane formation. Marseille et al. (1999) interpreted also 

large concentrations of C25 and C27 n-alkanes of decomposed forest litter layers as the 

result of microbial production most probably by fungi. 

The study reveals that the n-alkane amount of PyOM can be quickly reduced as 

shown for the grass chars. However, a modification and synthesis is also possible due to 

microbial activities during the degradation process. The plant source material and thus the 

chemical composition of the respective PyOM seems to have a strong influence on this 

process. Eckmeier and Wiesenberg (2009) propose the occurrence of short-chain n-alkanes 

(C16-20) in ancient soils to use as molecular marker for prehistoric biomass burning. 

However, the present study indicates that this may only be valid if microbial activities can 

be excluded. Otherwise, thermally-altered and microbially-derived n-alkanes may be 

difficult to distinguish. In this context, the study of Kuhn et al. (2010) provides a further 

source of short chain n-alkanes with an even to odd predominance (EOP) in Australian 

woodland and grassland soils. They postulated that the origin could derive from vegetation, 

containing short chain n-alkanes (C14-20) with pronounced EOP. Such short chain n-alkanes 

were not identified for the used plant species of this study. 
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Figure 15: Abundances of n-alkanes from rye grass and pine wood and the respective fresh 
and incubated PyOM. 
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4.3 Free fatty acid pattern of the fresh and incubated PyOM 

The free FA fraction of the fresh plant materials is mainly composed of saturated and 

mono- as well as di- and tri-unsaturated straight-chain homologues (Fig. 16). The total FA 

abundance of the fresh rye grass is 15.5 times higher than that of the pine wood (Table 8). 

The FAs palmitic acid (C16:0), linoleic acid (C18:2) and α-linolenic acid (C18:3) were highly 

abundant in fresh grass with 39% of the total ion currency (TIC), constituting 87% of FA 

extracted from rye grass (Fig. 16). This observation is in line with the findings of previous 

investigations of the FA abundance for grasses (Wiesenberg et al., 2004; Jansen et al., 

2006; Dungait et al., 2010). Comparably, the FA distribution of the pine wood is 

dominated by C16 and C18 chains. These mid-chain compounds are ubiquitous in living 

biomass (Jaffe et al., 1996). The content of FA is with 639 µg g-1 in the range reported by 

Willför et al. (2003) for Scots pine sapwood. In contrast to the n-alkanes, the FAs of the 

fresh materials are characterised by a typical even to odd C-number predominance with a 

CPI of 24.5 (rye grass) and 40.6 (pine). 

During the charring process, the amount of FA decreased by a factor of 8.1 and 3.8 

for Gr4M and P4M. In general, the unsaturated FAs are more depleted in relation to the 

saturated counterparts (Fig. 16). With prolonging charring time, the contribution of the 

latter to the FA fraction reveals a sharp decline from 57% to 8% for the grass char (Table 

8). Especially, linoleic acid (C18:2) and α-linolenic acid (C18:3) are depleted in the more 

severely charred Gr4M (Fig. 16), whereas oleic acid (C18:1) is still present. An enhanced 

thermal decomposition with an increasing number of double bounds was also confirmed by 

the pyrolysis study of Ushikusa (1990). The relation of C18:0 to the unsaturated counterparts 

C18:1-3 displays a relative enrichment of saturated FA C18:0 with increasing charring degree 

(Table 8). It can be concluded that severely charred plant materials will be depleted in 

unsaturated FA homologues. The increasing ratio RFA s/l of the saturated mid and short-

chain FA (C10-20) related to the long chain saturated FA (C21-28) indicates the relative 

enrichment of mid chain homologues with prolonging charring time most likely due to 

cracking of carbon bonds (Table 8). 

The reduction of the recovery of saturated FA to 72% for Gr1M and 66% for Gr4M 

points to their degradation and transformation to other soil organic matter groups (Table 9). 

The unsaturated FA followed the same trend. Comparable modification of FA occurred for 

the different grass chars, showing that for this material the burning degree has no visible 

impact on the degradation pattern (Fig. 16). In contrast, the pine chars experienced a 

http://en.wikipedia.org/wiki/Alpha-linolenic_acid
http://en.wikipedia.org/wiki/Alpha-linolenic_acid
http://en.wikipedia.org/wiki/Oleic_acid
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formation of FA with enrichment factors of 2.7 and 4.6 for the saturated FA (Table 9). The 

largest increase was found for FA C16:0 and the C18 homologues (Fig. 16). An enrichment 

factor of 2.3 was detected for the FA C18:1 of the P1M incubate. The observation is in line 

with the detected increasing n-alkanes abundance and may be due to biosynthesis for 

example by fungi that are using the char as growing substrate. This assumption is 

supported by the fact that the FA composition of mould fungi is also dominated by 

saturated and unsaturated FA with 16 and 18 carbon atoms (Foppen and Gribanov, 1968; 

Rambo and Bean, 1969; Cooney and Proby, 1971). Note that the more severely charred 

P4Mink shows a more expressed FA resynthesis compared to P1Mink with enrichment 

factors of 3.1 and 3.2 for C16:0 and C18:0, respectively (Fig. 16). During biotic incubation it 

was observed a more efficient oxidation of aryl structures in P4M incubates than of those 

in the less charred PyOM (Chapter 3.4; Hilscher et al. (2009)). This supports the idea of a 

higher microbial activity for P4Mink. The molecular ratio ACL and CPI of all incubated 

PyOM is in the same range as for the fresh ones. Only the reduced ratio RFA s/l indicates an 

enrichment of long chain FA C>20. Gonzáles-Pérez et al. (2008) reported a comparable 

trend to increase RFA s/l after forest fire in soil. The authors describe a trend to reach the 

initial values of the control soils after 5 yrs. The present incubation study can explain that 

the latter is attributed by biotic in situ processes because no fresh plant material was added. 
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Figure 16: Abundances of fatty acids from rye grass and pine wood and the respective fresh 
and incubated PyOM. 

4.4 Degradation of biomarkers for plant source material and biomass 

burning 

The lipid extract of the fresh pine wood (P0M) contains biomarkers such as resin 

acids (abietic acid, dehydroabietic acid, 7-Oxodehydroabietic acid, primeric acid; Table 

10) which are typical for conifers (Willför et al., 2003; Valentin et al., 2010). In total, the 

resin acids account for 18.6% of the TIC, whereas dehydroabietic acid is the major resin 

constituent with a proportion of 70.2%. Stilbene derivates are with 12.5% of the TIC the 

second main compound of the pine wood extract. The occurrence of the coniferyl alcohol 

vanillin, the primary aromatic alcohol monomer of gymnosperm lignin is a further typical 

marker for pine wood.  
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Table 10: Specific biomarker abundances of fresh and charred plant materials and respective 

recovery from the incubated PyOM. 

 

Already after 1 min of charring only a small amount of dehydroabietic acid derivates 

and no other resin acids or stilbenes were detected for the pine char (Table 10), indicating a 

low thermal stability of these conifer biomarkers. The TIC of the P1M char shows a strong 

relative accumulation of vanillin with 22.7% (Table 10). This is in agreement with the 

study of Hilscher et al. (2009) (Chapter 3.4) reporting an accumulation of methoxyl C and 

O-aryl C signals in the 13C NMR spectrum of P1M and confirms former findings 

demonstrating that some lignin derivatives survives the charring process (Knicker et al., 

2008a). The signal of vanillin completely disappears in the chromatogram of the sample 

after 4 min of charring, indicating a complete demethoxylation of the lignin structures. 

Levoglucosans are detectable in all fresh PyOM, whereas P1M has with 17.2% of the 

TIC the highest contribution of all PyOM (Table 10). The grass-derived PyOM contains 

smaller contributions of LG. With prolonging charring time (4 min) the total amount of LG 

is decreased by 86.1% and 97.6% in relation to the respective PyOM 1M for the rye grass 

and the pine wood, respectively. This indicates that severely burnt plant material can be 

depleted in LG. The observation is in line with the study of Kuo et al. (2008) who detect 

LG only in low temperature char (150-350°C).  

The content of resin acids of the pine-PyOM incubates shows no clear trend during 

incubation. Only for the P4M incubate, degradation was observed which was indicated by 

small recovery of 23% of the resin acid amount occurring in the fresh char. An elimination 

of resin acids by 80% after treatment with various white-rot fungi for 4 weeks was 

Sample Vanillin   Resin acidsa   Levoglucosanb 

  TIC (%)c RC (%)d  TIC (%)c RC (%)d  TIC (%)c RC (%)d 
Gr0M - -  - -  - - 
Gr1M - -  - -  3.6 0 
Gr4M - -  - -  1.7 0 
         
P0M 2.2 -  18.6 -  - - 
P1M 22.7 8  1.0 149  17.2 23 
P4M 0.3 0   3.5 23   2.2 85 

a Conifer biomarker (sum of abietic acid, dehydroabietic acid, 7-Oxodehydroabietic acid and primeric acid).  

b Indicator for biomass burning.  

c Percentage of the total ion chromatogram (TIC) area of the fresh PyOM.  

d Total recovery of biomarkers for the incubated PyOM.  
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described by Dorado et al. (2000) identified in acetone extractives of Scots pine sapwood. 

White-rot fungi could be also responsible for the degradation of resin acids of the PyOM 

that survived the charring. 

The vanillin residues of the pine chars were efficiently decomposed during the 

incubation period of 7 weeks. Only 8% of the initial amount was recovered for the P1Mink 

and the small initial content of P4M was completely degraded (Table 10). White-rot fungi 

attack efficiently lignin structures (Blanchette, 1991; Hatakka, 1994) and may be 

responsible for the observed loss. 

The marker for charring of cellulose LG was completely decomposed for the grass-

derived PyOM incubates and the most LG containing P1M revealed a loss by 77% (Table 

10). Environmental studies dealing with the fate of LG in soils and sediments are rare. 

However, microbial laboratory studies confirmed that LG is fermented and metabolised by 

yeasts and fungi (Kitamura et al., 1991; Prosen et al., 1993). In this line, Xie et al. (2006) 

isolated 26 types of LG-assimilating microorganisms from four types of soil in China. This 

indicates that the use of LG as a tracer for burning in soil may lead to underestimation 

because under optimal environmental conditions of the laboratory incubation it was rapidly 

lost. 
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5. Degradation of 13C and 15N labelled grass-derived PyOM, 

transport of the residues within a soil column and 

distribution in soil organic matter fractions during a 

microcosm experiment 

As descripted in chapter 3, PyOM was efficiently degraded during a short-time 

incubation. The intention of this study is to examine the degradation potential of PyOM on 

a long-term scale. For understanding the environmental cycling of PyOM it is important to 

quantify potential translocation and redistribution processes. Isotopic labels were used to 

determine the partitioning of PyOM into different SOM fractions and to trace the vertical 

movement of PyOM residues in a soil column. The availability of a co-substrate on the 

mineralisation, redistribution and transport of PyOM was also considered. 

5.1 Characterisation of the isotopically labelled grass material during 

thermal treatment 

After 1 min thermal treatment, PyOM 1M showed a slight increase of the C 

concentration and a clear relative enrichment of N (Table 11). A longer charring time of 4 

min resulted in a C loss of 66%. The declining atomic C/N values in the PyOM are in line 

with a preferential accumulation of N, supporting the importance as a PyOM component of 

the latter. The proportion of NH4
+ N in the total N of the PyOM was, with up to 0.3 g 100 

g-1, very low (Table 11), allowing the conclusion that most N input in the incubation study 

represents organically bound N. The 13C and 15N losses during the charring were slightly 

lower than the total C and N losses (Table 11). This relative isotopic enrichment was 

significant (p <0.001) and may be a result of to the kinetic isotope effect, which results 

from a lower reactivity of isotopically heavier compounds. Studies dealing with the 

influence of burning on the 13C signature of char showed conflicting results (Bird and 

Grocke, 1997; Czimczik et al., 2002). Turekian et al. (1998) similarly observed an 

enrichment of 15N in burnt residues relative to the original vegetation. They suggested that 

different N pools of nitrogenous compounds were accessed at different temperatures of 

heating. The authors postulated that the initial 15N enrichment of the charred residual 

material could be caused by the volatilisation of 14N containing free ammonia within the 

plant material or the deamination of free amino acids. With increasing charring this N pool 

http://www.dict.cc/englisch-deutsch/kinetic.html
http://www.dict.cc/englisch-deutsch/isotope.html
http://www.dict.cc/englisch-deutsch/effect.html
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becomes enriched in 15N as 14N is preferentially lost through kinetic isotope effects. A 

second pool of 15N could be representative of bound amino acids which require the 

increased heat in order to take place for the combined hydrolysis and deamination reaction. 

The observed significant 15N enrichment with increasing charring intensity in the present 

study supports the explanation of Turekian et al. (1998). The charring of the labelled grass 

material resulted in PyOM with an isotopic contribution of 25.2 atom% (13C) and 66.0 

atom% (15N) allowing an effective tracing in the soil during the incubation. 
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Figure 17 displays the 13C NMR spectra of the fresh and charred rye grass residues. 

Most of the intensity in the spectrum of the fresh rye grass is in the region assigned to O/N-

alkyl C between 110 and 45 ppm (Table 12). A further strong signal is observable in the 

alkyl-C region (45 to 0 ppm). According to a previous study (Knicker et al., 1996b), it 

derives mainly from peptides and peptide-like constituents rather than from paraffinic units 

in plant waxes. 

 

Figure 17: Solid-state 13C NMR and 15N NMR spectra of fresh rye grass (Lolium perenne L.) 
and charred residues produced under oxic conditions for 1 (PyOM 1M) and 4 min 
(PyOM 4M) at 350°C. Spinning side bands marked with asterisks. 
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The spectra of the chars show an increase in aromaticity (signal between 160 and 90 

ppm) with charring time, although a high contribution of alkyl C (45 to 0 ppm) was still 

detectable. Considering the high peptide content of the source material, the signal is 

assigned to thermally altered, but relatively heat resistant, products of proteinaceous 

material (Knicker et al., 2008a). The 13C NMR spectra of the more thermally treated char 

revealed no signals attributable to cellulose or carbohydrate. This, and the fact that the 128 

ppm signal in the aromatic region dominates the spectrum, confirms that they can be taken 

as representative of severely charred material. The 13C NMR spectra of the grass-derived 

PyOM produced for the respiration experiment (Chapter 3.1) are quite similar in general 

appearance and even relative areas, showing acceptable reproducibility in the preparation 

of the PyOM. 

To test the reproducibility of the intensity distribution, the solid-state 13C NMR 

spectra of the PyOM, aliquots of the sample material were measured five times. The total 

standard deviation determined for each C group is < 1% (Table 12), which confirms the 

good reproducibility for the NMR technique. This is in line with other recent SOM-related 

NMR studies (Dieckow et al., 2005; Knicker et al., 2005b). 

The 15N NMR spectrum of the unburned grass shows a signal at -257 ppm, typical 

for amide N (Fig. 17 and Table 12). With increasing burning time, its relative intensity 

decreases, which can be explained by thermolytic degradation of these compounds or their 

conversion to heterocyclic compounds (Almendros et al., 2003). The latter is confirmed by 

the strong increase in the relative signal intensity in the region for indoles, imidazoles and 

pyrroles (-145 to -240 ppm; Table 12). A detailed description of chemical modifications 

during the thermal treatment of plant material is provided in chapter 3.1. 

5.2 Reproducibility of PyOM recovery 

Although the availability of labelled plant material was limited, the reproducibility of 

label recovery was tested for the PyOM samples incubated for two months. For the A layer 

of the soil column, the absolute deviation for the 13C and 15N recovery ranged between 1% 

and 4%, corresponding to a relative deviation < 4% (Table 13). The reproducibility of the 

respective sub-layers was comparable. For all samples, the total deviation was between 

0.0% and 0.3%. The PyOM recovery for the SOM fractions from the A layer showed 

comparably good reproducibility. The good reproducibility underlines the high analytical 

sensitivity with highly isotopically enriched PyOM. In particular, the recovery of the 
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PyOM, even for fractions where it occurred only in low abundance, was improved with 

this technique. Because of the use of homogenised sample material and controlled 

laboratory conditions for the incubation experiment, the experimental design discharges 

the scientific requirements. This is in line with the results of a PyOM respiration study by 

Hilscher et al. (2009), who showed that the relative deviation of 5 replicates was < 5% 

(Chapter 3.2). 

  

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=requirement
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Table 13: Reproducibility of recovery of 13C and 15N from isotopically enriched PyOM from 2 
month incubated samples (mean values calculated from duplicates). 

 

  PyOMa PyOMa recovery (%) 

  sample 13C 15N 

A layer 1Me 91 ± 3 101 ± 4 
 4Mf 81 ± 2   81 ± 1 
    
B layer 1M 0.3 ± 0.0 1.3 ± 0.2 
 4M 0.6 ± 0.0 1.1 ± 0.0 
    
C layer 1M 0.3 ± 0.0 0.8 ± 0.3 
 4M 0.4 ± 0.1 1.0 ± 0.1 
    
Outflow 1M 0.6 ± 0.1 0.6 ± 0.2 
 4M 0.4 ± 0.1 0.4 ± 0.1 
    
Sum 1M 93 ± 3 103 ± 4 
 4M 82 ± 2   84 ± 1 
    
SOMb factions of A layer   
DOMc 1M 0.2 ± 0.1 1.0 ± 0.4 
 4M 0.1 ± 0.0 0.6 ± 0.1 
    
POMd 1M 70 ± 3 84 ± 4 
 4M 68 ± 1 65 ± 0 
    
Mineral phase 1M 11.3 ± 0.1 15.3 ± 0.4 
 4M 12.3 ± 0.3 16.3 ± 0.8 
    
Particle size fractions   
5000-63 µm 1M 0.0 ± 0.0 0.0 ± 0.0 

63-20 µm 1M 0.1 ± 0.1 0.0 ± 0.0 

20-6.3 µm 1M 0.3 ± 0.1 0.2 ± 0.1 

6.3-2 µm 1M 2.1 ± 0.5 2.1 ± 0.8 

< 2 µm 1M 10.2 ± 0.5 12.3 ± 0.9 

    

5000-63 µm 4M 0.0 ± 0.0 0.0 ± 0.0 

63-20 µm 4M 0.0 ± 0.0 0.0 ± 0.0 

20-6.3 µm 4M 0.3 ± 0.1 0.2 ± 0.1 

6.3-2 µm 4M 2.5 ± 0.1 3.3 ± 0.2 

< 2 µm 4M 10.5 ± 0.3 14.4 ± 1.7 
a Pyrogenic organic material.  
b Soil organic matter.  
c Dissolved organic matter.  
d Particulate organic matter.  
e Charring time 1 min.  
f Charring time 4 min.  
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5.3 Recovery of 13C and 15N labelled PyOM in soil column 

The sum of the 13C recoveries from the three sub-layers indicates a loss of PyOM, 

which continuously increased with prolonged incubation time (Fig. 18). This is best 

explained by the release of 13CO2 during PyOM degradation. After 20 months incubation, 

between 65% and 73% of the initial 13C input was recovered. Co-substrate applications did 

not enhance PyOM mineralisation (p 0.168; Fig. 18). It seems that co-substrate addition 

had no major effect on the extent of PyOM loss, possibly because decomposable sources 

were already available in the starting PyOM. This is in line with the 2 month, high 

resolution respiration study (Hilscher et al., 2009) using similar PyOM (Chapter 3). The 

increasing charring degree resulted in no significant decrease in the mineralisation of 

PyOM (0.428 ≤ p ≤ 0.772). After 28 months, the recovery of 13C was only between 62% 

and 65%. The respective 15N recoveries followed the same trend but tended to be slightly 

higher (between 67% and 80%; Fig. 18). This is in line with a relative enrichment in N 

compounds. To explain the N losses, one has to bear in mind that N could only leave the 

soil column as gaseous emissions. Thus, some of the 15N compounds must have been 

mineralised to 15NO3
- and subsequently denitrified to 15N2O, 15NO and 15NO2 (Yamulki 

and Jarvis, 2002; Pinto et al., 2004). However, for microbial denitrification, alternate 

aerobic-anaerobic conditions are favourable. In fact, the soil columns were adjusted to a 

soil moisture content of 60% WHC which provides water-filled pore space, allowing this 

process. 

The study reveals quick mineralisation rates for PyOM that are unexpected with 

respect to the commonly assumed recalcitrance of PyOM. However, Nguyen and Lehmann 

(2009) found comparable mineralisation rates for BC produced from corn (Zea mays L.) at 

a charring temperature of 350°C. They calculated a C loss of up to 21.2% during the first 

year of incubation, which was performed under comparable conditions to the present study. 

In contrast to the present results, the incubation study of Kuzyakov et al. (2009), who used 
14C-labelled grass-derived char in pure sand, revealed a lower decomposition rate of 0.5% 

BC per year, possibly because the material experienced more intense chemical alteration 

after 14 h charring. This difference supports the idea that charring conditions can affect the 

degradability of PyOM. 

The observed fast turnover rates of PyOM in the present work could explain the 

unexpected small char contribution found by the field study of Dai et al. (2006). The 

authors described only minor effects on the size of the soil BC pool in a temperate mixed 

http://dict.leo.org/ende?lp=ende&p=thMx..&search=subsequently
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grass savannah, although the site was affected by 2–3 fires. Comparable short residence 

times were obtained for Russian steppe soils where the BC stocks decreased about 25% 

over a century (Hammes et al., 2008). In this line, the study of Bird et al. (1999), 

examining sandy savannah soils, predicted for well aerated tropical soil environments that 

charcoal can be significantly degraded, even over a short time span. Based on the field 

study findings it can be concluded that the observed fast PyOM mineralisation rates of this 

study can also occur under natural conditions and PyOM cannot be assumed to be 

recalcitrant in all soils. 

5.4 Relocation of PyOM in soil column 

Isotopic measurements indicate that up to 2.3% of the 13C PyOM was found for the B 

soil layer of the 4MCS treatment (Fig. 18). The fast initial vertical movement during the 

first 2 months may be explained by direct leaching of ‘‘water-soluble” fractions produced 

during the charring process and remaining in the PyOM (Table 7; Hilscher et al. (2009)). It 

is also possible that small clay-sized PyOM particles were physically translocated, since 

Skjemstad et al. (1999) showed that >90% of soil char occurs in the <53 µm fraction. 

PyOM 4M and PyOM 1MCS showed a comparable or higher migration potential 

(Fig. 18) than PyOM 1M and PyOM 4MCS. This is remarkable because of the larger 

contribution of aromatic compounds, which in chars is commonly assumed to be 

hydrophobic and thus less mobile. A substitution of aryl C with polar functional groups as 

a result of degradation processes, as described by Hilscher et al. (2009) (Chapter 3.4) could 

be an explanation. Alternatively, the isotopic label in the deeper layers may derive from 

small C clusters formed by pyrolytic breakdown during the more intense thermal treatment 

(Czimczik et al., 2002; Knicker et al., 2005a). 
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Figure 18: Recovery of 13C and 15N labelled PyOM in the soil layers A (0-2 cm), B (2-5 cm) 
and C (5-8 cm) as a function of incubation time. Values corrected by subtraction of 
natural 13C and 15N background. (1M, pyrogenic material from charring time of 1 
min; 4M, pyrogenic material from charring time of 4 min; CS, addition of fresh 
rye grass as co-substrate; BV, blank incubated without PyOM addition) 
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In comparison to 13C, the 15N PyOM recovery was 5 to 10 times higher in the B layer 

after 12 months incubation, which points to a preferential transport of N containing 

compounds (p < 0.001). With progressive incubation, a clear increase of the 15N label was 

revealed for the B layer (Fig. 18). The C layer, with a depth of 5 to 8 cm, reflected the 

same 13C and 15N PyOM incorporation pattern (Fig. 18), although the recovery was 

initially lower because of the longer migration pathway. At the end of the experiment, the 
13C and 15N yields were in the same range as for the B layer. The 13C and 15N recoveries in 

the “outflow” (leachate) indicate that PyOM was transported downwards for a distance of 8 

cm and even left the soil column (Fig. 18). At the end of the experiment up to 3.2% of 13C 

and 3.7% of 15N were found in the collected leachate. In total, up to 9.2% of the 13C and 

10.5% of the 15N label were relocated downwards from the A layer to the sub-layers. 

The vertical movement of PyOM during the incubation experiment is in agreement 

with observations by Hockaday et al. (2006) who identified charcoal degradation products 

in pore water of fire-affected forest soil (75 cm depth). This indicates that oxidation and 

dissolution of charcoal occurs on a centennial timescale. On the other hand, Skjemstad et 

al. (1999) have shown that > 90% of soil char is included in the < 53 µm fraction. Hence, 

such fine particles should be relatively mobile. The results are also in line with the findings 

of Dai et al. (2006). They showed that, in a temperate mixed-grass savannah, the highest 

rates of accumulation of PyOM was observed at 10 – 20 cm, which suggests that PyOM 

was translocated to lower horizons. Another observation of the potential mobilisation of 

PyOM is given by Rodionov et al. (2006) for a steppe soil in Russia. They concluded that 

water flux transporting material from the upper soil layer may have intensified the BC 

maximum in the 30 to 50 cm depth range. The incubation study clearly confirms the 

mobilisation of PyOM (8 cm depth) and indicates that this is supported by prior microbial 

degradation and mineralisation activities. 

5.5 13C and 15N PyOM partitioning in soil fractions of the A layer 

5.5.1 DOM fraction 

Among the SOM fractions, DOM had the lowest contribution to total SOM (Fig. 19). 

During the first year of incubation, the 13C recovery increased from 0.1% after 1 month to 

0.4% after 12 months (Fig. 19). All incubation series followed this trend of increased 

PyOM mobilisation. This is best explained by pyrogenic DOC, resulting from the 

metabolic activity of microorganism, and physical and chemical leaching processes. After 
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20 and 28 months incubation, a decline to a constant recovery of 0.1% for the 13C label in 

the DOM fraction was apparent. In comparison to 13C recovery, recovery of 15N was 

remarkable. In general, the percentages of the latter were one order of magnitude higher (p 

< 0.001), supporting a clear relative enrichment in 15N (Fig. 19). The fact that the C/N ratio 

was approaching values < 1 after 12 months points towards an accumulation of inorganic 

N (Fig. 20).The respective BV-corrected 13C/15N values for the DOM followed the same 

trend and confirmed 15N accumulation with increasing incubation time (Fig. 20). This 

inorganic 15N enrichment must derive from 15N mineralisation, since 99.7% of the 15N 

PyOM input was organically bound 15N (Table 11).  

In general, the total recoveries of PyOM in DOM were low compared to the other 

SOM fractions. However, it has to be borne in mind that DOM can be removed by 

adsorption to mineral surfaces (Kaiser and Guggenberger, 2000) and/or be efficiently 

attacked and mineralised by considerable numbers of microorganisms (Woo and Park, 

2004). This continuing process of production and consumption demonstrates that leaching 

of PyOM should not be underestimated. The present data support the idea that the 

recalcitrance may not be the rate limiting factor in soil PyOM turnover times (Hockaday et 

al., 2007), since PyOM contributes C to the DOM fraction within a very short time scale. 
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Figure 19: Temporal development of recovery of 13C and 15N labelled PyOM in different 
SOM fractions (DOM; POM and mineral associated organic matter) of A layer (0-
2 cm) of a microcosm vs. incubation time. Values corrected by subtraction of 
natural 13C and 15N background (1M, pyrogenic material produced from charring 
time of 1 min; 4M, pyrogenic material produced from charring time of 4 min; CS, 
addition of fresh rye grass as co-substrate; BV, blank incubated without PyOM 
addition; SOM, soil organic matter; DOM, dissolve organic matter; POM, 
particulate organic matter). 
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Figure 20: C/N and 13C/15N ratios of DOM fraction of A the layer. Values corrected by 
subtraction of natural 13C and 15N background; (1M, pyrogenic material produced 
from charring time of 1 min; 4M, pyrogenic material produced from charring time 
of 4 min; CS, addition of fresh rye grass as co-substrate; BV, blank incubated 
without PyOM addition; DOM, dissolved organic matter). 

3.5.2 POM fraction 

Most of the added PyOM was recovered in the POM fraction with a density < 1.8 g 

cm-3 (Fig. 19), whereby the main part of the POM fraction was obtained as the size fraction 

> 20 µm (55% to 76%). During the first two months, between 84% and 65% of the 13C and 
15N PyOM, respectively, were associated with the whole POM fraction. With prolonged 

incubation time, a decline in 13C and 15N PyOM was verifiable (Fig. 19). The mean loss of 

PyOM per month ranged between 0.9% and 1.3% relative to the input. Neither charring 

degree nor co-substrate addition seemed to affect the respective recoveries of the PyOM (p 

0.566). A similar result was obtained by Kuzyakov et al. (2009) after addition of glucose. 

After 28 months, the PyOM recovery was reduced to half. In contrast to the total A layer, 

no relative enrichment in 15N compounds in comparison to 13C PyOM was observed for the 

POM fraction of the A layer (Fig. 19). 
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relatively small amounts of polar functional groups which could interact with mineral 

surfaces (Table 11). Therefore, the continuing decline in PyOM is very tentatively related 

to either interaction with the mineral phase or to conversion to other SOM fractions such as 

DOM, via which it may be subject to a downward transport through the soil column. 

Alternatively, it was converted into CO2 via mineralisation as shown in chapter 3. 

5.5.3 PyOM interactions with mineral surfaces 

After one month, up to 13.8% for 13C and 12.4% for the 15N label were detected for 

the 4M PyOM, which verifies a fast association of PyOM with the mineral fraction (Fig. 

19). The 1M PyOM showed a lower incorporation into the mineral phase during the first 

year but the trend was not significant (p 0.109 for 13C and p 0.126 for 15N, respectively). 

For a better comparison of the impact of the degree of burning, the relative recovery (Q) 

was calculated by setting the 1M PyOM treatments to 100% relative to the respective 4M 

PyOM values. A higher relative recovery of up to 152% (13C) and 167% (15N) was found 

between month 6 and month 10 for the 4M PyOM substrates (Fig. 21). However, with 

time, the differences in the 1M and 4M incorporation potential decreased. After 20 months, 

the substrates had comparable amounts of 1M and 4M PyOM associated with the mineral 

fraction. This could be attributed to lower 4M PyOM incorporation rates and/or a loss of 

former mineral-fixed PyOM (Fig. 19). This indicates that this pool is not stable and 

declined because of mineralisation of partly decomposed PyOM. 

The recovery of 13C and 15N PyOM in the mineral fractions was partly decreased 

with prolonged incubation time (Fig. 19; month 6 to month 12). Thus, PyOM may behave 

comparably to unburned SOM where a low stability of young mineral-associated OC was 

observed (Kölbl et al., 2007). 

In general, 15N PyOM seems to have had a higher affinity for mineral surfaces 

because, with the exception of the one month incubates, all other time series tended to 

show higher 15N accumulation in the mineral fractions (Fig. 19). An enrichment of 

inorganic 15N (nitrate) can be excluded because it would have been removed during the 

DOM extraction and the following salt washing steps after the density fractionation. The 

higher N recovery of mineral-associated PyOM may be due to preferential mineralisation 

and loss of C, leading to a relative enrichment of N. Alternatively, a promoted partial 

oxidation of the N-containing compounds, resulting in formation of polar functional 

groups, may have led to a preferential adsorption to the mineral phase. 
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Figure 21: Influence of charring degree on association of 13C and 15N enriched PyOM with 
the mineral phase. Relative recovery(Q) was calculated by setting the recovery of 
the 1M PyOM treatments to 100% related to the respective 4M PyOM values; 
(1M, pyrogenic material produced from charring time of 1 min; 4M, pyrogenic 
material produced from charring time of 4 min; CS, addition of fresh rye grass as 
co-substrate; BV, blank value incubated without PyOM addition). 

The co-substrate incubates show trends comparable to the pure ones, but the total 

recoveries of the isotopic labels were higher than for incubations without co-substrate (Fig. 

22). Two months after the first co-substrate addition (month 6), the highest mineral-

associated 13C and 15N PyOM amounts for the total experiment were detected for 1MCS 

and 4MCS. The charring degree showed no major influence (p 0.428) on the amount of 

additionally incorporated 13C and 15N PyOM (Fig. 22). 

The formation of such organo-mineral complexes is favoured by partial PyOM 

degradation providing negative surface charges of initially hydrophobic material for 

organo-mineral associations (Glaser et al., 2000; Brodowski et al., 2005a; Cheng et al., 

2008)). Further, the higher PyOM recovery for the experiments with co-substrate addition 

indicates a kind of priming effect, which enhances the partial degradation of PyOM and 

promotes subsequently the interaction with mineral surfaces.  
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Figure 22: Influence of co-substrate addition on association of 13C and 15N enriched PyOM 
with the mineral phase. Relative recovery (Q) was calculated by setting the 
recovery of the PyOM incubates with co-substrate addition to 100% related to the 
respective PyOM incubates without co-substrate addition; (1M, pyrogenic material 
produced from a charring time of 1 min; 4M, pyrogenic material produced from a 
charring time of 4 min; CS addition of fresh rye grass as co-substrate; BV, blank 
incubated without PyOM addition). 

5.5.4 Particle size fractions 

The PyOM incorporation within the particle size fractions showed significant 

differences (p < 0.001). In general, the recovery of PyOM increased with decreasing 

particle size (Table 14). No PyOM was found in the sand fraction. Only small recoveries 

were observed for the coarse and middle silt fraction (63 to 6.3 µm; Table 14). The main 

part of the mineral-associated PyOM was in the fine silt (6.3 to 2 µm) and clay fractions (< 

2 µm). Comparable results were obtained by Kuzyakov et al. (2009), confirming that 

stabilisation within microaggregates plays a significant role in reducing BC decomposition 

rate. For the clay fraction, the highest PyOM recoveries were found for the more charred 

material with co-substrate addition (Table 14). Each particle size fraction followed the 

trends observed for the whole mineral fraction, leading to the conclusion that neither the 

burning degree nor co-substrate addition fostered preferential PyOM incorporation into a 

specific particle size fraction. Thus, although degradation was promoted by the increased 

degree of charring and co-substrate addition, the respective pathway and the partitioning 

remained unaltered. 

For all substrates, 73% to 82% of the mineral-associated PyOM was found in the 

clay fraction (Table 14). No significant differences in the partitioning pattern of PyOM 

within the particle size fractions were observed, not only for the different incubate series, 
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but also with respect to the isotopic label and incubation time (0.134 ≤ p ≤ 0.937). Note 

that the quantitative distribution of SOM among the size fractions from the BV incubates 

was comparable to the PyOM incubates (Table 14). This may indicate that PyOM has 

degradation and mineral-binding mechanisms similar to the unburned OM of the BV 

incubate. The high affinity of PyOM for the clay fraction confirms the conclusion that 

PyOM was modified by partial degradation, resulting in products to which the soil matrix 

offered adsorption sites. In contrast, Rodionov et al. (2006) and Rovira et al. (2009) found 

the highest PyOM content in the silt fraction. However, in the present study, the light 

fraction (POM) was removed prior to particle size fractionation. Thus, on average, one 

quarter of the PyOM input was recovered with the POM fraction with a particle size < 20 

µm (data not shown), which would be in the range of the silt size fraction. This means that 

a considerable part of grass-derived PyOM is found in the size range < 20 µm when 

counting the free POM and mineral-associated size fraction. 

  



 
5. DEGRADATION OF 13C AND 15N LABELLED GRASS-DERIVED PYOM, TRANSPORT OF THE RESIDUES 

WITHIN A SOIL COLUMN AND DISTRIBUTION IN SOIL ORGANIC MATTER FRACTIONS 81 

Table 14: Recovery of 13C and 15N from isotopically enriched PyOM in size fractions of A layers 
of the soil microcosms after 28 months incubation (size fractions with different letters 
were significantly different at α 0.05 according to the one-way repeated measures 
ANOVA and the Tukey’s honest significant difference post-hoc comparison). 

 

Sample 
Range of time series   Range of time series 

 13C PyOM    15N PyOM  
RC (%)a SDc DB (%)b SDc  RC (%)a SD DB (%)b SDc 

PyOM 1Md          
63-20 µm 0.1A 0.0 1 0  0.0A 0.0 0 0 
20-6.3 µm 0.2A 0.1 2 1  0.1A 0.1 1 1 
6.3-2 µm 2.1B 0.5 19 3  2.1B 0.7 16 4 
<2 µm 9.0C 1.5 79 3  10.9C 2.0 82 5 
Sum 11.4 1.9 100 -  13.1 2.6 100 - 
          
PyOM 
1MCSd,f          
63-20 µm 0.1A 0.1 0 0  0.0A 0.0 0 0 
20-6.3 µm 0.5A 0.5 4 2  0.4A 0.4 2 2 
6.3-2 µm 3.6B 1.5 22 5  3.5B 1.2 22 5 
<2 µm 10.9C 2.1 74 7  12.5C 2.4 75 7 
sum 15.1 3.6 100 -  16.4 3.5 100 - 
          
PyOM 4Me          
63-20 µm 0.0A 0.1 0 0  0.0A 0.0 0 0 
20-6.3 µm 0.3A 0.3 2 1  0.3A 0.2 2 1 
6.3-2 µm 2.7B 0.8 20 4  3.1B 0.9 18 4 
<2 µm 10.5C 1.8 78 5  13.4C 2.4 80 4 
Sum 13.6 2.6 100 -  16.8 3.2 100 - 
          
PyOM 
4MCSe,f          
63-20 µm 0.0A 0.0 0 1  0.0A 0.0 0 0 
20-6.3 µm 0.6A 0.5 3 2  0.5A 0.4 2 2 
6.3-2 µm 4.5B 2.7 23 9  5.1B 3.0 23 7 
<2 µm 13.8C 3.0 73 10  15.8C 3.5 75 8 
Sum 18.9 5.5 100 -  21.5 6.0 100 - 
          
BVg          
63-20 µm - - 3 1  - - 2 1 
20-6.3 µm - - 10 2  - - 10 4 
6.3-2 µm - - 15 3  - - 23 4 
< 2 µm - - 72 4  - - 65 6 
Sum - - 100 -   - - 100 - 

a Recovery.  
b Distribution.  
c Standard deviation.  
d Pyrogenic organic material produced with a charring time of 1 min.  
e Pyrogenic organic material produced with a charring time of 4 min.  
f Addition of fresh rye grass as co-substrate.  
g Blank value incubated without PyOM addition.  
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5.6 Elucidation of residence time 

The decomposition kinetics of incubated PyOM (Fig. 19) were fitted with a two-

component model (Eq. 3). In the first phase of decomposition, preferential decay of easily 

degradable compounds occurred (Table 15, Pool A). In this period, 7% to 19% of the 13C 

PyOM was mineralised with half life periods (t1/2) 1 to 19 days (Table 15). The 1M PyOM 

seemed to provide more readily available C to the microorganisms, including partly 

charred O/N-alkyl C and alkyl C components (Table 12). However, a recent study also 

indicated that aryl C-containing compounds can be mineralised during this initial phase 

(Hilscher et al. (2009); Chapter 3.4; Table 4). The remaining pool of more stable organic 

material accounted for most of the PyOM (Table 15; pool B) and its constituents were 

decomposed much more slowly, with t1/2 between 3.9 and 4.7 yrs. This is possibly due to 

the protection of some PyOM particles within soil aggregates but also to continuous 

preferential utilisation of PyOM compounds (e.g. very small particles, strongly oxidised 

parts) during initial decomposition, which are more degradable than others, and would 

slow down decomposition in the following stages (Kuzyakov et al., 2009). The calculated 

t1/2 implies mean residence times between 26 and 31 yr for the more stable pool B. The 

results are in agreement with the study of Steinbeiss et al. (2009), reporting comparable 

short mean residence times between 4 and 29 yr, depending on soil type and quality of 

char. Likewise, short mean residence times of up to 19 yr for grass-derived PyOM and 56 

yr for pine wood PyOM were reported for the short term respiration experiment of 2 

months (Hilscher et al., 2009; Chapter 3.8).  

In comparison, for fresh plant material a t1/2 of up to 0.5 yr (Pool B) was found 

(Voroney et al., 1989; Kölbl et al., 2007). This means that the t1/2 for the PyOM of this 

study was up to 10 times longer than for fresh plant material, but still not unlimited. No 

major differences in the turnover dynamics were found for the different PyOM incubates 

(p 0.168 for 13C and p 0.658 for 15N; Table 15). The uncertainty in 15N PyOM recovery 

was too high for fitting the kinetics, because of low total 15N concentrations. 
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Because PyOM was added as particulate material, the initial PyOM input was set as 

POM. The strong decline in 13C and 15N POM within the first 2 months was followed by a 

distinctly slower decrease (Fig. 19). The degradation kinetics indicate a more expressed 

portion of decomposable PyOM (Pool A) of 24% to 30% of the 13C POM fraction in 

comparison with the whole PyOM incubate (Table 15). This suggests that the C pool 

represents PyOM lost by way of mineralisation and incorporation into the mineral phase. 

In this context, it is important to note that the calculated t1/2 values represent 

minimum turnover times since they are based on 28 months incubation under more or less 

optimal and controlled aerobic conditions. Such conditions would certainly not be 

available in natural environments. Cold and dry periods can result in much slower 

degradation rates. Assuming that fungi increase the degradation efficiency of aromatic 

constituents (Hofrichter et al., 1997; Wengel et al., 2006), anaerobic conditions, for 

example in fossil horizons, archaeological sites and sediments may contribute to the 

preservation PyOM residues on the long term. On the other hand, preservation by way of 

oxygen deficiency is also a common feature of other organic compounds such as lignin and 

paraffinic structures. Consequently, PyOM may not necessarily be as important for the 

long term C sequestration within the global C cycle as commonly assumed. The relatively 

fast degradation times of plant char estimated in this and other studies (Bird et al., 1999; 

Hamer et al., 2004; Hammes et al., 2008) could contribute to the unexpectedly low PyOM 

abundance reported in different field studies (Czimczik et al., 2003; Solomon et al., 2007).  

Furthermore, the mineralisation kinetic of the pure PyOM demonstrates that 

microbial degradation of even strongly charred residues can occur in the initial post-fire 

phase. This implies that, after intensive fires leaving almost no thermally unaltered plant 

residues, the newly developed microorganism communities may not need additional 

nourishing substrate, at least during the very early post-fire phase.  
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6. Carbon and nitrogen degradation on molecular scale of grass-

derived pyrogenic organic material during incubation in soil 

A continuous mineralisation of PyOM was described in chapter 5 during the 

incubation of more than 2 years in soil. This chapter discusses the aging process of PyOM 

on molecular scale. Therefore, solid-state 13C and 15N NMR studies were conducted at 

different stages of the incubation to identify the degradation and humification mechanisms. 

6.1 Efficiency of HF treatment of PyOM-enriched mineral fractions on 

NMR sensitivity 

The HF treatment of the fine silt (6.3 to 2 µm) and clay fraction (< 2 µm) resulted in 

high C-enrichment factors (Ec = 4 ± 1; Table 16), leading to C concentrations between 20 

and 40 mg C g-1 for the clay fraction and between 6 and 13 mg C g-1 for the fine silt 

fraction. During the demineralisation step 83 ± 2% of the mineral phase was removed. 

High recoveries of the 13C label (88 ± 7%) underline that HF treatment did not change the 

chemical composition of the PyOM samples. For the 15N-labelled and HF-treated mineral 

samples, the recovery of 71 ± 8% was lower compared to the 13C label, which is explained 

by large losses of inherent N of the used soil (BV; Table 16). This is supported by a higher 

loss of soil derived 14N and a relative enrichment of the PyOM-derived 15N label (Table 

16). Relative mean 15N-enrichment factors (E15N) were calculated as 2.5 and 2.0 for the 

fine silt fraction (6.3 to 2 µm) and clay fraction (< 2 µm), respectively. 

Selected clay fractions were analysed by solid-state 13C NMR spectroscopy before 

and after HF treatment (Fig. 23). In line with the results of Goncalves et al. (2003), the HF 

treatment induced no major alteration of the intensity distribution, but the quality of the 

NMR spectra was improved by removal of paramagnetic material and relative enrichment 

of PyOM. Only 60,000 scans were necessary for the acquisition of the HF-treated clay 

fraction. The NMR spectra of the HF-treated clay fraction reveal a higher alkyl 

contribution compared to the respective NMR spectra of the untreated ones (Fig. 23). The 

observation can be explained by alkyl-C signal suppression in the untreated samples due to 

presence of paramagnetic compounds (Fe, Cu, Mn) which leads to ineffective CP and line 

broadening (Chapter 1.4.2.). 
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Figure 23: Solid-state 13C NMR spectra of HF-treated and untreated mineral-associated 
PyOM. Spinning side bands are marked with asterisks. PyOM 1M = charring 
time 1 min.; PyOM 4M = charring time 4 min. 

6.2 Reproducibility of C group recovery 

The PyOM samples which had been incubated for two months were prepared in 

replicates and the reproducibility of their chemical composition was analysed. For the 

different C groups, the absolute standard deviation of the contribution to total C ranged 

between 0 and 1.6% (Table 17). These good agreements support the improved analytical 

sensitivity accomplished by using PyOM that was highly enriched with isotopic labels. The 

findings are in line with the results of the short-term incubation study (Chapter 3, Fig. 12) 

which shows that the relative standard deviation of the amount of mineralised PyOM of 5 

replicates was smaller than 5%. 
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Table 17: Reproducibility of the intensity distribution and the total recovery for PyOM C 
groups after 2 months of incubation. Mean values and standard deviations (±) 
were calculated from duplicates.  

 

6.3 C-group distribution of incubated PyOM 

Besides aryl C, the alkyl C represents a quantitatively important fraction of grass-

derived PyOM. It showed no major alteration of its contribution to the bulk PyOM C (Fig. 

24A). After 20 months, the alkyl-C contribution for all incubates decreased slightly by 5% 

with respect to the fresh PyOM, but the change is not significant (0.130 ≤ p ≤ 0.998). Co-

substrate addition did not change the alkyl-C contribution to total C (0.866 ≤ p ≤ 1.000; Fig 

24A). At all stages of the incubation, higher alkyl-C contents of the PyOM 1M compared 

to that of the PyOM 4M treatments was detected (p < 0.001). 

Compared to the unburned plant material, the O/N-alkyl C content of the fresh 

PyOM was small (15 and 9%; Table 12, Chapter 3.1), indicating a minor relevance for the 

C flux. Starting after 10 months of incubation, the O/N-alkyl-C contribution to the total C 

of the different PyOM treatments decreased significantly (p ≤ 0.022; Fig. 24B). At month 

20, O/N-alkyl C was only 6% of the total C for the PyOM 1M, revealing a higher loss of 

O/N-alkyl C compared to other C groups. The initial differences in O/N-alkyl C content in 

the two types of PyOM decreased, but were still present (0.006 ≤ p ≤ 0.032; Fig. 24B). No 

significant effect of co-substrate addition on the O/N-alkyl C distribution was observed 

(0.976 ≤ p ≤ 0.999). 

Sample Carbonyl/ 
Carboxyl C O-aryl C Aryl C O/N-alkyl C Alkyl C Sum 

Relative contribution (%) 
      PyOMa 1Mb 

 
9.1 ± 0.0 8.4 ± 0.0 36.7 ± 0.1 18.5  ± 0.0 27.3 ± 0.1 100 

PyOMa 4Mc 
 

8.7 ± 1.0 9.8 ± 0.6 47.1 ± 1.6 10.4 ± 0.2 24.0 ± 0.1 100 

        Total recovery (mg 13C) 
      PyOMa 1Mb 

 
3.3 ± 0.1 3.1 ± 0.1 13.5 ± 0.4 6.8 ± 0.2 10.1 ± 0.2 36.9 ± 1.0 

PyOMa 4Mc   2.8 ± 0.3 3.2 ± 0.1 15.4 ± 0.8 3.4 ± 0.0 7.8 ± 0.2 32.7 ± 0.6 
a Pyrogenic organic material.  

b Charring time 1 min.  

c Charring time 4 min.  
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Figure 24: Time course of the relative distribution and total recovery of the different PyOM 
C groups during the 28 months of incubation. acharring time 1 min.; b charring 
time 4 min; c addition of fresh rye grass as co-substrate. 
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The aryl-C group represented the main fraction of the PyOM-C with 46% for PyOM 1M 

and 51% for PyOM 4M (Table 12, Chapter 3.1). The large percentages confirm the 

effective charring of the plant material. No significant differences of the aryl-C contents 

were detected for the incubates with and without co-substrate addition (p ≥ 0.999; Fig. 

17C). During the first year, the aryl-C proportion was smaller than at the beginning of the 

experiment. In the second year, the aryl-C distribution reached initial values (0.080 ≤ p ≤ 

0.454; Fig. 24C). 

The initial O-aryl-C fraction of PyOM 4M was with 11% slightly larger than that of 

PyOM 1M with 7% (Fig. 24D). For the whole incubation period, a constant increase of the 

O-aryl-C contribution was observed for the PyOM 1M and PyOM 1MCS incubates (p ≤ 

0.001). For this C group, enrichment factors of up to 1.9 relative to the fresh PyOM 1M 

were found. The respective PyOM 4M and PyOM 4MCS incubates did not show a 

significant enrichment of O-aryl-C groups (p ≥ 0.890). The PyOM 1M and 4M incubates 

with CS addition did not differ from the untreated ones (0.923 ≤ p ≤ 0.998) and were in 

line with the aryl-C behaviour. At the end of the incubation experiment, there were only 

small differences in the O-aryl-C contributions between the PyOM with different charring 

degree. Considering the sum of aryl C and O-aryl C, their contribution to the total PyOM C 

was comparable to the respective fresh PyOM (0.421 ≤ p ≤ 1.000). 

The carboxyl/carbonyl-C pool showed the largest relative enrichment of all C groups 

during the incubation (Fig. 24E). Already after one month of incubation the 

carboxyl/carbonyl-C content of the PyOM 1M incubates reached the level of those of 

PyOM 4M (Fig. 24E). For the following period, a constant increase of the 

carboxyl/carbonyl-C contribution was observed for all PyOM 1M and PyOM 4M 

treatments (p ≤ 0.001). After 20 months, up to 15% of the PyOM C was assigned to 

carboxyl/carbonyl-C groups. For the other C groups no influence of CS addition on the C 

contribution was found for the PyOM incubates (p ≥ 0.646). All different PyOM 

treatments showed comparable relative carboxyl/carbonyl-C enrichments at the end of the 

incubation (0.702 ≤ p ≤ 0.991). Enrichment factors between 1.6 and 2.6 were calculated in 

comparison with the fresh PyOM. 

6.4 Degradation of PyOM-derived C 

In contrast to the contribution of alkyl C to the PyOM, the total alkyl-C recovery was 

efficiently reduced during the incubation (Fig. 24F). After 20 months, the alkyl-C loss 
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ranged between 41 and 53%. At the end of the incubation up to 57% of the initial alkyl C 

was mineralised or converted into other C groups. Neither the burning intensity nor the 

availability of a co-substrate showed a significant influence on the degradation rate (p ≥ 

0.323). The decomposition kinetics t1/2 of the alkyl-C group was in the range of 2.1 and 2.5 

years (Table 18). In comparison with the alkyl-C decomposition rate for fresh grass 

material that have been calculated from data published by Knicker and Lüdemann (1995), 

the respective t1/2 are higher by the factor 6 to 7 (Table 18). 

Among all C groups, O/N-alkyl C showed the largest loss (Fig. 24G). In general, up 

to 73% of the initial amount was mineralised for PyOM 4M CS. In comparison with alkyl 

C, the total O/N-alkyl-C loss related to the bulk PyOM C was up to 10% lower than for the 

alkyl C with up to 15% for the lower charred PyOM 1M. Comparable to the pattern of 

alkyl C, the degradation rate was neither affected by the burning degree nor by the 

availability of a fresh co-substrate (p ≥ 0.572). The calculated t1/2 was the shortest of all C 

groups with only up to 1.3 years (Table 18). Compared to fresh rye grass, the 

biodegradability of this potentially readily decomposable C source was strongly reduced 

by a factor between 34 and 45 (Table 18). 

The reduced microbial availability of O/N-alkyl C and alkyl-C residues of the PyOM 

can be explained by the chemical alteration induced by charring, as e.g. formation of 

anhydrosugars (Elias et al., 2001). Alternatively, some of those compounds may have been 

physically protected by entrapment of more charred domains (Knicker et al., 1996b). 

However, as indicated in the present study, those alkyl C and O/N-alkyl C residues will be 

primarily decomposed during the initial stage of char degradation. Concerning the O/N-

alkyl and alkyl-C decomposition dynamics, significant correlations were found for all 

PyOM treatments (Table 19). This denotes comparable degradation behaviour for both C 

groups. 

  

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=primarily&trestr=0x8004
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Table 18: Decomposition kinetics for the different C groups of fresh rye grass and PyOM 

revealed by fitting with a first order decay model. 

 

  

C group t1/2
a (y) R2b p valuec Fslow

d 

Alkyl C     
Fresh rye grass 0.4 0.84 0.011 - 

1Me 2.3 0.69 0.026 6 

1MCSe,g 2.5 0.70 0.006 7 

4Mf 2.1 0.79 0.003 6 

4MCSf,g 2.4 0.87 0.000 6 

     
O/N-alkyl C     
Fresh rye grass 0.0 0.94 0.001 - 

1Me 1.0 0.78 0.004 34 

1MCSe,g 1.3 0.74 0.003 45 

4Mf 1.2 0.80 0.003 40 

4MCSf,g 1.3 0.78 0.002 42 

     
Aryl C    

 Fresh rye grass 0.4 0.87 0.017 - 
1Me 3.8 0.32 0.147 10 

1MCSe,g 3.6 0.50 0.033 10 

4Mf 3.0 0.68 0.012 8 

4MCSf,g 3.0 0.69 0.006 8 

     O-aryl and aryl C 
   Fresh rye grass 0.4 0.79 0.004 - 

1Me 5.1 0.26 0.198 14 

1MCSe,g 4.1 0.48 0.037 11 

4Mf 3.3 0.61 0.023 9 

4MCSf,g 3.4 0.62 0.012 9 
a Half-time period.  

b Coefficient of determination.  

c Probability level.  

d Slowing factor related to degradation rate of fresh rye grass.  

e Charring time 1 min.  

f Charring time 4 min.  

g Addition of fresh rye grass as co-substrate.  
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Table 19: Correlation coefficients between total recoveries of the PyOM C groups during 28 
months of incubation. The values in parentheses represent the p value. 

 

The total aryl-C group recovery of the PyOM decreased significantly during the 28 

months of incubation (p ≤ 0.001; Fig. 24H). After 20 months between 26 and 40% of the 

initial aryl-C amount was mineralised or converted to other C groups. At the 28th month 

the aryl-C loss reached up to 57% for the PyOM 4MCS incubate. At this stage, the low 

total recovery can be partly attributed to an increasing vertical movement of PyOM into the 

two sub soil layers that was demonstrated by the isotopic PyOM recovery studies (Fig. 18, 

Chapter 5.3; Hilscher and Knicker, 2011b). However, the 13C enrichment of the sub soil 

layers was too small to accomplish 13C NMR measurements. 

In general, in the top layer the aryl-C fraction showed the largest total C loss of all 

PyOM-C groups. At month 20, the loss accounted from 13 to 20% of the initial total 

PyOM C. Examining the turnover of this group, remarkable short t1/2 between 3.0 and 3.8 

years can be noticed (Table 18). Compared to the decomposition rate obtained for lignin-

derived aryl structures of fresh rye grass material, they are 10 times lower for the PyOM 

1M and 8 times lower for the more charred PyOM 4M treatments (Table 18). This 

Sample 1M 1MCS 4M 4MCS 
O/N-Alkyl C 

1Ma Alkyl C 0.902 (0.002) 
  1MCSa,c 

  
0.936 (0.006) 

 4Mb 
   

0.870 (0.005) 
4MCSb,c 

    
0.908 (0.012) 

            

  
Aryl C 

1Ma Alkyl C 0.852 (0.007) 
  1MCSa,c 

  
0.963 (0.002) 

 4Mb 
   

0.856 (0.007) 
4MCSb,c 

    
0.872 (0.024) 

            

 
  O-Aryl C 

1Ma Carboxyl/ 0.769 (0.026) 
  1MCSa,c Carbonyl C 

 
0.925 (0.008) 

 4Mb 
   

0.861 (0.018) 
4MCSb,c         0.992 (0.001) 

a Charring time 1 min.  

b Charring time 4 min.  

c Addition of fresh rye grass as co-substrate.  
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indicates that comparable to aryl structures in lignin, also those of the PyOM can be 

microbially decomposed. 

In contrast to aryl C, the amounts of O-aryl C show no alteration for PyOM 1M and 

PyOM 1MCS (p 0.216) or only small losses for PyOM 4M and PyOM 4MCS (p ≤ 0.005). 

This behaviour may point to a steady state between degradation and formation of that C 

species (Fig. 24I). Considering the sum of the O-aryl C and aryl-C pool, the respective t1/2 

are with 3.3 to 5.1 years slightly higher compared to those obtained for the aryl-C pool 

alone. With t1/2 of 2.5 years the decomposition for the fresh rye grass indicated a faster 

degradation of O-aryl C under unburnt conditions. 

Related to the initial carboxyl and carbonyl-C amount, a significantly higher 

recovery of this group (146% for PyOM 1M and 165% for PyOM 1MCS) was observed (p 

≤ 0.008; Fig. 24J). The PyOM 4M treatments, on the other hand, did not reveal significant 

changes of the total carboxyl and carbonyl C amounts (p ≥ 0.846). Note that the 13C-label 

technique allows exclusively the observation of PyOM-derived polar functional groups. 

Thus, the detected large carboxyl/carbonyl-C amounts are not a result of a possible 

sorption of non-BC-derived polar groups. 

It can be concluded that the observed degradation of aromatic C may include two 

simultaneous processes: (i) complete mineralisation to CO2 and (ii) conversion to other C 

groups by partial oxidation. The relevance of the latter process is supported by the fact that 

oxygen-substituted aryl structures (O-aryl C) showed little if any decrease in spite of the 

considerable aryl C and total C losses (Fig. 24D). Oxidation reactions during the 

degradation of charcoal and coals have already been reported by Potter (1908). Thus, we 

propose the concept that the partial oxidation of aryl structures is composed of two main 

steps. As a first reaction, the aryl rings are modified by substitution of the aryl C with 

hydroxyl groups to catechol-like structures. The formation of O-aryl C may be caused by 

enzymatic hydroxylation of aromatic structures (Ullrich and Hofrichter, 2007). A 

significant correlation (p ≤ 0.026) between the oxygen-substituted aryl structures and 

carboxyl/carbonyl-C groups (Table 19; Fig. 24 I and J) supports that in a second step the 

O-aryl ring structures are partly oxygenated and cleaved, resulting in carboxyl/carbonyl-C 

(Kojima et al., 1961). The enrichment of O-containing groups in aged PyOM has also been 

described in other recent field (Knicker et al., 2006; Solomon et al., 2007) and laboratory 

studies (Lehmann et al., 2005; Cheng et al., 2006), supporting the suggested degradation 

mechanisms. Additionally, microbial resynthesis of PyOM may be responsible for the 
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observed enrichment of O-containing functional groups as described by Rumpel and 

Kögel-Knabner (2004) for the degradation of lignite coals. 

The presence of a co-substrate (fresh plant material) did neither significantly affect 

the degradation kinetics of the respective C groups nor the chemical quality of the aged 

PyOM (Fig. 24 and 26). An explanation may be the availability of decomposable C sources 

in the starting PyOM. In line with the findings of the present study, it was not found a co-

metabolic enhancement for a 7 week short-time incubation with PyOM derived from 

different plant source materials (Chapter 3). 

6.5 Chemical structure of leached PyOM 

Up to 3.2% of 13C and 3.7% of the 15N label were recovered with the leachate after 

20 and 28 months. The respective 13C NMR spectra revealed strong differences to the fresh 

PyOM (Fig. 25). Most of the 13C signal intensity was observed in the aryl-C region, 

indicating that PyOM was vertically moved. Between 46 and 49% of the total C of the 

leachate of the PyOM 1M treatments and up to 53% of that of the PyOM 4M incubates are 

assignable to aryl domains. This implicates that during the last 8 months of incubation 

between 0.7 and 2.8% of the initial aryl C was relocated. The chemical composition of the 

leachate showed a relative increase of O-aryl-C and carboxyl/carbonyl-C (Fig. 25). 

Possibly, the larger contribution of those polar C groups was responsible for the increased 

water solubility and thus mobility of this fraction. 

The alkyl-C portion is depleted in the PyOM leachate. For the PyOM 1M treatments 

between 19 and 21% and for the PyOM 4M up to 16% of the total leachate C is alkyl C. 

Furthermore, the shift of the aryl-C signal from around 29 ppm to 22 ppm in the spectra of 

PyOM 1M and PyOM 4M indicates the formation of acetyl groups (Fig. 25), possibly 

caused by degradation processes and accumulation of short alkyl-C chains. The 

contribution of O/N-alkyl C to the total C pool of the PyOM-derived leachate is only 4%. 
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Figure 25: Solid-state 13C NMR spectra of the vertical down moved PyOM fraction for the 
last 8 months of incubation. a Charring time 1 min.; b charring time 4 min; c 
addition of fresh rye grass as co-substrate. 

 

6.6 Turnover of pyrogenic N 

The solid-state 15N NMR spectra of the fresh PyOM confirm that most of the organic 

N is bound in heterocyclic aryl compounds such as pyrrole and indole-like structures. The 

compounds contribute to 62 and 72% of the total 15N pools in PyOM 1M and PyOM 4M, 

respectively (Fig. 17, Chapter 5.1). No major alteration of the organic matter composition 

was detected for the A layer of the PyOM 1M incubates at any stage of the incubation (Fig. 

26A and B). However, a relative decrease of proportion of heterocyclic N was observed for 

the PyOM 4M (Fig. 26B). After 28 months of incubation, no significant difference in the 

chemical N composition related to the PyOM 1M treatments was monitored (p 0.472). This 

trend is confirmed by an increase of the amide to heterocyclic N ratio which is in the range 

of 0.6 to 0.8 for the PyOM 4M incubates compared to 0.4 for the fresh PyOM 4M. It was 

not possible to calculate the N-group balances of the sub layers because the 15N content 

was too low to obtain evaluable 15N NMR spectra. Nevertheless, it is likely that 
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heterocyclic N compounds are decomposed because for the whole soil column a total 15N 

loss up to 33% was found (Fig. 18, Chapter 5.3). 

Figure 26: Time course of the relative distribution and total recovery of the different PyOM 
N groups for the A layer during the 28 months of incubation. acharring time 1 
min.; b charring time 4 min; c addition of fresh rye grass as co-substrate. 

 

For the A soil layer, a continuous loss of total amide N and heterocyclic N for the A 

layer was detected (Fig. 26C and D). After 20 months, for all incubates only 49 to 59% of 

heterocyclic N compounds were recovered. The respective amide-N recoveries were larger 

(59 to 87%). For the more charred PyOM 4M treatments, the trend of larger losses of 

heterocyclic N than amide N is significant at all stages of the incubation (p ≤ 0.001). 

Similar to PyOM C, co-substrate addition showed no significant impact on the degradation 

rate of organic N (0.148 ≤ p ≤ 0.761). The same pattern was observed for PyOM 4M 

(0.259 ≤ p ≤ 0.452). 

For the 28-month incubates, the 15N enrichment of the leachate was large enough to 

perform 15N NMR spectroscopy. However, due to the low signal to noise ratio of the 

spectra we disclaim quantification. The spectrum is dominated by the signal in the region 

of heterocyclic N (Fig. 27). In total, 2.8 and 2.2% of the 15N PyOM input was recovered in 

the leachate, indicating that up to 3.5% of the total remaining 15N PyOM can be 

heterocyclic N. 
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Figure 27: Solid-state 15N NMR spectra of the vertical relocated PyOM leachate fraction after 
28 months of incubation. acharring time 1 min.; b charring time 4 min; c addition of 
fresh rye grass as co-substrate. 

6.7 Is black nitrogen (BN) a recalcitrant N pool? 

The charring process of rye grass produced a narrow aryl C to heterocyclic N ratio of 

0.9 for the respective PyOM. This implicates concomitantly an increasing heterocyclic N 

content. The finding is in line with Knicker (2010) who demonstrated that BN is an 

important constituent of grass-derived char. 

The present study shows that in spite of its heteroaromatic structure BN can be 

degraded. The observed N loss is attributed to the conversion into mineral N forms and 

amide N (Fig. 26). The latter is confirmed by an increase of the amide to heterocyclic N 

ratio for the aged PyOM and occurred most likely by the uptake and incorporation of 

mineralised N derived from BN into microbial biomass, the preferential decomposition 

or/and their vertical movement of heterocyclic N. This finding is important for the N cycle 

of fire-affected environments in terms of N availability for plants and microorganisms on 

the long-term scale. 
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6.8 Structural alteration of PyOM by degradation 

With respect to the investigated structural modifications of the PyOM and the 

calculated degradation dynamics, it can be concluded that aged PyOM is characterised by 

an aryl backbone which is highly substituted with carboxylic and oxygen groups. Such 

aged PyOM was observed for Chinese modern and ancient paddy soils (Hu et al., 2009) 

and could also explain the increased cation exchange capacity of Amazonian Terra preta 

soils (Liang et al., 2006; Solomon et al., 2007). The increased proportion of polar 

functional groups promotes the formation of organo-mineral complexes found by 

Brodowski et al. (2005a) and may also explain the PyOM-mineral interaction (Fig. 19, 

chapter 5.5.3). Furthermore, the hydrophobicity may be reduced by partial oxidation of 

PyOM, allowing an increased vertical movement through the soil column or export to 

aquatic systems as recently described by Hockaday et al. (2007) and Guggenberger et al. 

(2008). 

6.9 Stability of PyOM and environmental implications 

The present study indicates that PyOM is composed of C and N pools with different 

chemical structure and stability (Table 18, Fig. 24 and 26, Hilscher and Knicker (2011a)). 

In general, the degradation rate of PyOM is reduced compared to rates reported for fresh 

plant material. However, their t1/2 are still in a range 3.0 to 3.8 yrs, which indicate a low to 

medium recalcitrance. Additionally, the study demonstrates that a more intensive thermal 

alteration, resulting in increased aromaticity, does not necessarily reduce the degradation 

efficiency of the aryl C pool (Table 18). An explanation may be that during the charring 

process instead of larger polycondensed structures, relatively small C clusters were formed 

due to pyrolytic breakdown processes (Kramer et al., 2004; Knicker et al., 2005a). 

Associated with the mineralisation process (Fig. 12, Chapter 3.2; Fig. 18, Chapter 

5.3), the detected structural modifications of PyOM, especially the formation of oxygen-

containing polar groups, are an important factor influencing the chemical properties of the 

fire-affected SOM. The resulting aged PyOM is characterised by high aryl-C content and 

has a similar structure as the humic-like substances produced by Trompowsky et al. (2005) 

by chemical oxidation of eucalyptus charcoal. Such aged PyOM is being held responsible 

for organic matter accumulation and consequently higher soil fertility potential, especially 

for tropical soils (Glaser et al., 2002).  
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When translating the findings of the present study to natural or managed landscapes 

it is important to note, that the experimental conditions were more or less optimal and 

controlled. Such conditions will certainly not be present in natural environments. However, 

it was used a natural soil and simulated the incorporation of fresh plant material by adding 

fresh rye grass as a co-substrate. With this experimental design, possible organo-mineral 

interactions (von Lützow et al., 2006; Wiseman and Püttmann, 2006) and priming effects 

(Hamer et al., 2004) are considered, allowing a more realistic view on the fate of PyOM in 

soils and sediments. 
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7. Conclusions and outlook 

The present research work has highlighted that PyOM is involved in the degradation and 

humification process of organic matter in soil.  

The incubation experiments reveal that PyOM can be already attacked by microorganism 

shortly after its production and accumulation at the soil surface. It was shown that such 

PyOM can be mineralised at rates that are comparable to those for soil organic matter. In 

this context, the application of PyOM (biochar) to soil in order to sequestrate C on a long-

term scale has to be considered critically. Most likely the disintegration of biochar will be 

enhanced by intensive agricultural practices (ploughing, tilling, harrowing), leading to 

even shorter residence times. On the other hand the present studies showed that the 

degradation of PyOM also results in mineralisation of black nitrogen which turns it into a 

plant available form. The gradual slow N release minimises N loss by leaching. Therefore, 

N-rich PyOM may be considered as an efficient N fertiliser for cultivation of crop plants. 

There are considerations to use the n-alkanes composition of the lipid fraction as a 

tracer for biomass burning in soils and sediments. However, the present study demonstrates 

that this lipid fraction is quickly modified by biotic activities, most likely by degradation 

and in situ biosynthesis. For this reason, the preservation of such thermally modified lipids 

will be limited in well-aerated soils. The application of the molecular marker levoglucosan 

(LG) can also lead to underestimation of PyOM in soil. Severely charred plant remains 

were depleted in LG and it was shown to be efficiently decomposed during the initial 

degradation of PyOM. Therefore, the application of such specific biomarkers for PyOM 

quantification in soil and sediment cannot be recommended. In general, the use of a lot of 

different quantification techniques in PyOM research is problematic. Studies which apply 

different PyOM detection approaches are limited their comparability. 

The PyOM is also subjected to an aging process and contributes to the SOM. The observed 

enrichment of polar functional groups by partial oxidation of aromatic PyOM structures 

has an important impact on the respective SOM quality. The presence of such PyOM-

derived functional groups may increase the cation exchange capacity which results in an 

improved nutrient supply for plants as observed in PyOM-rich “Terra preta” soils (Glaser 

et al., 2001; Liang et al., 2006). Moreover, the supply of fresh plant residues promotes the 

partial oxidation of PyOM, which results in provision of a larger amount of organic source 

material for mineral association. The formation of PyOM-mineral complexes could 
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contribute to stabilisation against further microbial attack. However, the organo-mineral 

stabilisation potential of humified PyOM residues depends on soil properties like texture 

and mineralogy. The stabilisation of PyOM may be responsible for reported residence 

times of thousands of years in soils and sediments (Saldarriaga and West, 1986; 

Middelburg et al., 1999; Glaser et al., 2001). Thus, such a preservation of PyOM may be 

explained by physical protection (hydrophobicity, occlusion and encapsulation) or 

conservation (e.g. oxygen exclusion) mechanisms against biotic and non-biotic degradation 

as observed for other SOM fractions (von Lützow et al., 2006). This means that PyOM 

preservation is not based on a chemical persistence of PyOM. This view allows to 

understand the found fast PyOM turnover in savannah and steppe soils (Bird et al., 1999; 

Hammes et al., 2008). The stabilisation potential of PyOM in such sandy well-aerated soils 

will be limited, leading to faster mineralisation of PyOM residues on a decadal to 

centennial time scale. Therefore, there must be no discrepancy in the large difference of the 

reported residence times of PyOM. 

An additional loss of PyOM is caused by mobilisation and transport to deeper soil horizons 

or into aquatic systems. The export of PyOM from fire-impacted ecosystems is linked to 

geographic and climatic factors such as slope and rainfall frequency. Such PyOM fluxes 

are often neglected in C-circle balances. The consideration of these fluxes would show that 

PyOM is involved in the global C and N cycle.  

With regard to the climate change, an increase of warmer climates with extended dry 

periods is predicted. Such conditions favour a higher fire risk, leading to an increase of 

fire-affected ecosystem areas. It was postulated that the expected larger PyOM loads may 

count as an important C sink for long-term reduction of CO2 in the atmosphere. However, 

it has to bear in mind that under wildfire conditions most of the biomass is even converted 

to CO2 and only 1 to 3% remains as PyOM. The PyOM residues can be effectively 

mineralised which clearly disproves the often postulated long-term C sequestration 

potential. 

It can be concluded that the assumption PyOM is a highly refractory constituent within the 

SOM is oversimplified. PyOM does not generally count to a “passive” SOM pool with 

turnover rates of more than 1,000 yrs. Therefore, C and N flux models for soils should take 

into account that some PyOM may have turnover times on a decade scale. The increase of 

soil temperature due to the climate change could induce a higher microbial activity, which 

causes in a forced PyOM degradation in the future. This would imply increasing CO2 
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emissions by mineralisation of PyOM and other SOM together with an increased fire-

induced CO2 release on the other hand. 
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