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Summary

Incomplete combustion of vegetation results in pyrogenic organic material (PyOM)
which occurs ubiquitously in soils and sediments. Because of the potential refractory
nature of such thermally altered products, they are expected to represent an important
carbon (C) sink. However the recalcitrance of this material in soils is still heavily debated
most probably due to the fact that up to now, no commonly accepted method is available
for its identification and quantification and the processes involved in their degradation and

humification are still not very well understood.

In order to fill this gap, the main objective of the present research was to study the
alteration and stability of PyOM of varying charring degree during their humification in
soil. The goal was to elucidate their impact on the quality and quantity of soil organic
matter and its function as carbon and nitrogen sink. In order to meet these objectives, four
studies were conducted at different scales. A first idea about the recalcitrance of PyOM
was obtained in short-term high-resolution respiration experiments using PyOM of
different charring degree, typical for fire-prone landscapes such as grassland (Lolium
perenne) and pine forests (Pinus sylverstris). The effect of charring on the biomarker and
lipid composition of different plant materials was studied to identify potential maker for
PyOM in soil. Subsequently, the stability of those biomarkers against biotic degradation
was tested in order to elucidate their applicability in in situ studies. Microcosm incubation
experiments using **C- and *°N-enriched PyOM were conducted for up to 28 months to
study chemical alterations during their degradation by means of istopic label recovery and
solid-state NMR spectroscopy. Together with the isotopic enrichment, the setup of the
experiment allowed the examination of the translocation potential within the soil column.
Additionally, the effect of a co-substrate on PyOM mineralisation and aging was
investigated. The used PyOM for all experiments was produced by charring plant materials
for one min (1M) or four min (4M) at 350°C under oxic conditions. The applied charring

conditions result in chars that are comparable to those remaining after natural wildfires.

The respiration experiments indicated that grass-derived PyOM showed the highest
C mineralisation. During 7 weeks of aerobic incubation at 30°C in soil, up to 3.2% of the
added PyOM-C was converted to CO,. More severe thermal alteration resulted in a
decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7
(IM) and 0.5% (4M) of the initial C were mineralised. Co-substrate additions did not




enhance PyOM mineralisation during initial degradation. *C NMR spectroscopic analysis
indicated structural changes during microbial degradation of PyOM. Concomitant with a
decrease in O-alkyl/alkyl-C, carboxyl/carbonyl-C content increased, pointing to oxidation.
Only the strongly thermally-altered pine PyOM showed a reduction in aromaticity. The
small C losses during the experiment indicated conversion of aryl C into other C groups.
As revealed by the increase in carboxyl/carbonyl C, this conversion must include the
opening and partial oxidation of aromatic ring structures. Relatively short mean residence
times of 14 (1M) and 19 years (4M) were obtained for the charred rye grass residues and
up to 56 years for the pine wood char, which are in the range of unburned soil organic

matter.

The second study focused on heat-induced alteration of n-alkanes, n-fatty acids (FA)
composition as well as the content of the molecular marker levoglucosan (LG) in different
plant materials. The results confirmed that charring of plant residues leads to typical
thermal breakdown processes of n-alkanes and FA. In particular, the average chain length
of n-alkanes is reduced by up to 4 carbons and the characteristic odd/even predominance of
the fresh plant materials shifted to a balanced odd/even distribution with prolonging
charring time. The unsaturated FA fraction was more depleted in relation to the saturated
counterparts after the charring. Especially, linoleic acid (Cig:2) and a-linolenic acid (Cyg:3)
are depleted in the more charred grass, whereas oleic acid (Cig) is still present.
Levoglucosan is detectable for all PyOM, whereas the pine residue charred for 1M
contained the largest LG amount. A more progressive heating resulted a strong depletion of
LG for both plant materials. The pine char showed a relative accumulation of vanillin,

supporting that some lignin-type structures survived the 1M charring process.

The incubated pine chars were enriched in the n-alkane octadecane (Cig) and the
mid-chain homologues in the range Cy, to Cy. In contrast, the n-alkanes and FA fraction of
the grass chars was more efficiently degraded with a loss of up to 39% of the initial
amount. The study demonstrates that already during the initial phase of biodegradation of
PyOM, n-alkanes and the FA fraction can be rapidly modified either by decomposition but
also by biosynthesis most tentatively by fungi. Levoglucosan was efficiently decomposed.
This indicates that care has to be taken, if this compound is used as a tracer in soils
containing aged char because its instability against biodegradation may lead to an
underestimation of the charcoal content. Another critical point is the thermal
decomposition of the LG, which may lead to misinterpretation of the PyOM portion.


http://en.wikipedia.org/wiki/Alpha-linolenic_acid
http://en.wikipedia.org/wiki/Oleic_acid

The third study extracted important aspects concerning the degradation of grass-
derived PyOM, the transport of the residues within a soil column and distribution in soil
organic matter fractions during a 28-month microcosm experiment. Therefore, the
microbial recalcitrance of char and the transport within a soil column was studied, using
B3¢C- and ®N-enriched PyOM. After 28 months, the 3C PyOM recovery decreased to
values between 62 and 65%. The respective >N PyOM recovery followed the same trend
but tended to be higher. Most of the added PyOM isotopic label was recovered in the
particulate organic matter (POM) fraction, being reduced by half at the end of the
experiment. Already after one month, PyOM was detected in the POM-free mineral
fractions. This fast association of PyOM with the mineral phase indicates that physical soil
properties have to be considered for the elucidation of PyOM stability. Addition of fresh
unlabelled grass material as co-substrate resulted in comparable trends as for the pure
PyOM but the total recovery of the isotopic labels clearly increased with respect to the
amount of mineral-associated PyOM. Most of the mineral-associated PyOM occurred in
the clay separates (< 2 pum) for which the largest values were obtained for the experiment
with the more intensively charred PyOM and co-substrate addition. The PyOM label was
found in the collected leachate, indicating that PyOM was vertically transported and even
left the soil column.

This study demonstrates the degradability of grass-derived PyOM. The addition of
fresh plant material as an easily degradable co-substrate promoted the formation of
partially decomposed PyOM and subsequently its association with the mineral phase, but
did not increase the respective mineralisation rates. Detection of **C and N content at
different depths of the microcosm column demonstrated an additional loss of PyOM from
top soil by way of mobilisation and transport to deeper horizons. Overall, all these
processes have to be taken into account in order to obtain a more realistic view about the
behaviour of PyOM in environmental systems and for estimation of the C and N

sequestration potential.

The last study focused on structural modification of PyOM on a molecular scale.
Solid-state *C and >N NMR studies were conducted to elucidate the humification
processes at different stages of PyOM degradation. The chemical structure of the
remaining PyOM after incubation was clearly different from the initial pyrogenic material.
The proportion of O-containing functional groups was increased whereas that of aryl C and
of N-containing heterocyclic structures was decreased, probably due to mineralisation and



conversion to other C and N groups. The observed degradation of aromatic C may include
two simultaneous processes: (i) complete mineralisation to CO, and (ii) conversion to other
C groups by partial oxidation. The relevance of the latter process is supported by the fact
that oxygen-substituted aryl structures (O-aryl C) showed little if any decrease in spite of
the considerable aryl C and total C losses. These reactions alter the chemical and physical
properties of the char residue and make it more available for further microbial attack and
for adsorption processes. The study presents direct evidence for the degradation of N-
heterocyclic domains in charred plant remains adding new aspects to the understanding of

the N cycling in fire-affected ecosystems.

In summary, the present research works underline that the observed degradation,
stabilisation and translocation processes in soils should be considered as a whole, if a
realistic assessment of the C and N sequestration potential of charred plant remains is
desired. The different studies showed that PyOM is involved in the C and N turnover
fluxes like other SOM. The view that PyOM preservation is dominated by its chemical
recalcitrance should no longer be accepted. With regard to the climate change, PyOM
cannot be generally counted as a potential carbon sink for long-term reduction of CO, in

the atmosphere.
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Zusammenfassung

Infolge unvollstandiger Verbrennung der Vegetation wird pyrogenes organisches
Material (PyOM) erzeugt, welches ubiquitdr in Boden und Sedimenten anzutreffen ist.
Aufgrund der potentiell refraktdren Natur solch thermisch verénderter Verbindungen
werden diese als wichtige Kohlenstoffsenke betrachtet. Aktuell wird vermehrt Gber die
Rolle des PyOM als rekalzitranter Bestandteil der organischen Bodensubstanz diskutiert.
Problematisch ist dabei, dass bis heute kein allgemein akzeptiertes Verfahren fir die
Identifikation und Quantifizierung von PyOM existiert und die Abbau- und
Humifizierungsprozesse nicht ausreichend verstanden sind. Zur Klarung dieser
Wissenslicken wird in der vorliegenden Arbeit auf die Verédnderung und Stabilitat von
PyOM mit variierendem Verbrennungsgrad wéhrend seiner Humifizierung im Boden
eingegangen. Schwerpunkt der Arbeit ist dabei der Einfluss des PyOM auf die
Zusammensetzung und Quantitdt der organischen Bodensubstanz und seiner Funktion als
Senke flr Kohlenstoff (C) und Stickstoff (N). Um diese Ziele zu erreichen, wurden vier
Studien auf verschiedenen zeitlichen und molekularen Ebenen durchgefihrt.

Ein Einblick in den Abbau von PyOM wurde in hochauflésenden
Respirationsexperimenten mit PyOM unterschiedlichen Verbrennungsgrades erhalten,
welches typisch flur brandgefédhrdete Gebiete wie Steppen (Lolium perenne) und
Kieferwalder (Pinus sylvestris) ist. Der Einfluss der Verkohlung auf die Biomarker- und
Lipid-Zusammensetzung verschiedener Pflanzenmaterialien wurde betrachtet, um
potentielle chemische Marker fiir PyOM im Boden zu identifizieren. Zusatzlich wurde die
biochemische Persistenz der Biomarker getestet, welche fur ihre Anwendung in In-situ-
Studien relevant ist. Mikrokosmos-Inkubationsansatze wurden unter Verwendung von *3C-
und °N-angereichertem PyOM (iber einen Zeitraum von 28 Monaten durchgefiihrt. Damit
wurden chemische Verdnderungen wahrend des PyOM-Abbaus mittels isotopischer
Bilanzierung und Festkorper-*C und **N-CPMAS-NMR-Studien (kernmagnetische
Resonanzspektroskopie) festgestellt. Der Versuchsaufbau erlaubte weiterhin die vertikalen
Verlagerungseigenschaften im Boden zu untersuchen. Zusatzlich wurde der Einfluss eines
Co-Substrates auf Mineralisation und Humifizierung des PyOM betrachtet.

Das verwendete PyOM wurde fir alle Studien durch die Verkohlung der
Pflanzenmaterialien fur den Zeitraum von einer (1M) oder vier Minuten (4M) bei einer

Verbrennungstemperatur von 350°C unter oxischen Bedingungen hergestellt. Diese

\l
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Rahmenbedingungen stellen die Vergleichbarkeit des erhaltenen PyOM mit den aus
Vegetationsbranden resultierenden Rickstanden sicher.

Das Gras-PyOM zeigte die hochste Kohlenstoffmineralisation wéhrend der aeroben
Respirationsversuche bei einer Inkubationstemperatur von 30°C. Es wurde innerhalb von
sieben Wochen insgesamt bis zu 3,2% (1M) des PyOM-Kohlenstoffs zu CO, umgesetzt.
Eine Steigerung des Verkohlungsgrades bewirkte eine Abnahme der kumulativen
Kohlenstoffmineralisation auf 2,5% (4M) des organischen Gesamtkohlenstoffgehaltes. Im
Kiefer-PyOM wurden nur 0,7% (1M) bzw. 0,5% (4M) des Kohlenstoffvorrates
mineralisiert. Die Bereitstellung eines Co-Substrates fiihrte zu keiner Zunahme der PyOM-
Mineralisation. Die Reduzierung der O-Alkyl/Alkyl-Kohlenstoffanteile wurde parallel von
ansteigenden Carboxyl/Carbonyl-Kohlenstoffanteilen begleitet. Diese Beobachtung weist
auf einen einsetzenden Oxidationsprozess des PyOM hin. Einzig fur das intensiver
verkohlte Kiefer-PyOM konnte eine Reduktion der Aromatizitét festgestellt werden. Die
geringen Kohlenstoffverluste wahren des Experiments stutzen die Annahme, dass Aryl-
Kohlenstoff in andere Kohlenstoffgruppen umgewandelt wurde. Im Hinblick auf die
Zunahme des Carboxyl/Carbonyl-Kohlenstoffanteils konnte dieser Umbau mit einer
Spaltung und partiellen Oxidation der aromatischen Ringstrukturen verbunden sein. Die
abgeleiteten Verweilzeiten waren mit 14 (1M) bzw. 19 Jahren (4M) fur das Gras-PyOM
und von bis zu 56 Jahren flr das verkohlte Kiefermaterial vergleichbar mit der von

ungebranntem organischem Bodenmaterial.

Die zweite Studie fokussierte auf die thermisch induzierten Verédnderungen der n-
Alkane, n-Fettsdauren (FA), dem Pyrolyseindikator Levoglucosan (LG) sowie Lignin-
Derivaten in verschiedenen Pflanzenmaterialien. Die erhaltenen Ergebnisse bestétigen,
dass die Verkohlung von Pflanzenmaterial einen Zerlegungsprozess der n-Alkane und FA
hervorruft. Die mittlere Kohlenstoffkettenldénge der n-Alkane wurde um bis zu vier
Kohlenstoffatome verkiirzt. Die charakteristische Dominanz der ungeraden n-Alkan-
Kohlenstoffkettenzahl des frischen Pflanzenmaterials verschob sich mit zunehmendem
Verkohlungsgrad zu einem ausgeglichenen Verhéltnis. Infolge des Verkohlungsprozesses
wurde die ungesattigte FA-Fraktion in Relation zu den geséattigten Homologen starker
dezimiert. Insbesondere Linolséure (Cis:2) und a-Linolenséure (Cig:3) waren in dem stéarker
verkohlten Gras-PyOM nicht nachweisbar, wogegen Olsaure (Cig:1) noch enthalten war.
Levoglucosan war in allen PyOM feststellbar, wobei das Kiefer-PyOM (1M) den hdchsten
LG-Gehalt aufwies. Ein zunehmendes Fortschreiten des Verkohlungsprozesses bedingte
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eine ausgepragte Abnahme des LG-Gehaltes. Fir das Kiefer-PyOM (1M) zeigte sich
weiterhin eine relative Akkumulation des Vanillins, welches ein Indikator fir das
Vorhandensein von Lignin ist. Lignin-Strukturen kénnen somit einen Bestandteil in

verkohlten Pflanzenresten darstellen.

Das inkubierte Kiefer-PyOM war angereichert mit dem n-Alkan Octadekan (C;g) und
den mittelkettigen Homologen in dem Bereich von Cy, bis Cy. Im Gegensatz dazu wurde
die n-Alkan- und FA-Fraktion des Gras-PyOM mit einem Verlust von 39% des
Ausgangsgehaltes effizienter abgebaut. Diese Studie demonstriert, dass bereits wahrend
des beginnenden biotischen Abbaus von PyOM das n-Alkan- und FA-Verteilungsmuster
durch Zerlegungsprozesse, aber auch durch Biosynthese - vorzugsweise durch Pilze -
modifiziert werden kann. Levoglucosan wurde wahrend der Inkubationsphase ebenfalls
effizient abgebaut. Dieser Aspekt ist zu beachten, wenn diese Substanz als Indikator fir
PyOM im Boden herangezogen werden soll: lhre Verwendung kann zu einer
Unterschatzung des PyOM-Gehaltes fiihren, da gealtertes PyOM aufgrund seiner geringen
biotischen Persistenz an LG verarmt sein kann. Ein weiterer kritischer Punkt ist die
thermische Zersetzung des LG, welche ebenfalls zu einer Fehlinterpretation des PyOM-

Anteiles fuhren dirfte.

Die dritte Studie behandelte den Abbau, die Verlagerung und die Inkorporation des
PyOM in verschiedene organische Bodensubstanzfraktionen wéhrend eines Mikrokosmos-
Experimentes Uber einen Zeitraum von 28 Monaten. Zu diesem Zweck wurde **C- und
>N-angereichertes PyOM in Bodensaulen inkubiert. Am Ende des Versuches war die **C-
PyOM-Wiederfindung auf Werte zwischen 62% und 65% gesunken. Die zugehérige °N-
Wiederfindung folgte demselben Trend, tendierte aber zu héheren Werten. Nach einer
Inkubationszeit von zwei Monaten wurde der Hauptanteil des PyOM in der partikuldren
organischen Substanz (POM) gefunden. Nach Abschluss des Versuches waren die
betreffenden Wiederfindungen in der POM-Fraktion halbiert. Bereits nach einem Monat
konnte PyOM in der POM-freien organo-mineralischen Fraktion nachgewiesen werden.
Diese rasche Assoziation des PyOM mit der mineralischen Phase zeigt auf, dass auch
physikalische Bodeneigenschaften (z.B. Textur) fur die Abschatzung der PyOM-Stabilitat
im Boden zu beachten sind. Eine Zugabe von ,,frischem®, nicht isotopisch markiertem Gras
als Co-Substrat resultierte in vergleichbaren Trends wie fiir das alleinig inkubierte PyOM.
Jedoch konnte eine deutliche Steigerung des PyOM-Eintrages in die mineralische Phase
ermittelt werden. Der Hauptanteil des mineralisch assoziierten PyOM war der Tonfraktion
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zuzuordnen. Das PyOM mit dem hoheren Verkohlungsgrad (4M) erzielte unter Co-
Substratzugabe den hdchsten Assoziationsgrad von PyOM mit der mineralischen Substanz.
Es konnte ebenfalls gezeigt werden, dass PyOM in die unteren Bodenschichten der

Bodensaulen verlagert wurde.

Zusammenfassend konnte mit diesem Experiment auch tber einen langeren Zeitraum
der kontinuierliche Abbau des PyOM bestatigt werden. Die Bereitstellung eines leicht
zuganglichen Co-Substrates forderte die partielle Oxidation des PyOM und folglich seine
Bindungsfahigkeit an mineralische Oberflachen. Die Mineralisationsraten wurden jedoch
nicht gesteigert. Der Nachweis der **C- und *N-PyOM-Markierung in verschiedenen
Tiefen der Bodensdulen weist auf eine potentielle Verlagerung des PyOM von der
Bodenoberflache durch Mobilisation und Verlagerung in untere Bodenhorizonte hin.

Eine andere Studie befasste sich mit den strukturellen molekularen Modifikationen
wahrend des PyOM-Abbaus im Boden. Zu diesem Zweck wurden Festkérper-**C und **N-
CPMAS-NMR-Studien durchgefiihrt mit dem Ziel, Humifizierungsprozesse des PyOM zu
quantifizieren. Die chemische Zusammensetzung des verbleibenden inkubierten PyOM
unterschied sich deutlich von der des Ausgangsmaterials. Der Anteil an O-enthaltenden
funktionalen Gruppen nahm zu, wogegen Aromaten bzw. N-heterozyklische Strukturen
eine quantitative Abreicherung, bedingt durch Mineralisation und Umwandlung in andere
C- und N-Gruppen, aufwiesen. Der beobachtete Abbau von aromatischen Verbindungen
konnte in zwei simultan ablaufende Prozesse unterteilt werden: (1) der kompletten
Mineralisation zu CO, und (2) der Umwandlung in andere Kohlenstoffgruppen. Die
Relevanz des letzen Punktes ist durch die Tatsache gestitzt, dass der Anteil von O-
substituierten aromatischen Strukturen nicht oder nur wenig abnimmt - im Gegensatz zu
dem betrachtlichen Verlust an Gesamtkohlenstoff sowie an aromatischen Verbindungen.
Der festgestellte Alterungsprozess des PyOM bildet die Grundlage fur einen
fortschreitenden biotischen Abbau, aber auch fur Adsorptionsprozesse an mineralische
Oberflachen. Die Studie prasentiert direkte Hinweise fiir einen Abbau N-heterozyklischer
Verbindungen in verkohltem Pflanzenmaterial, welche neue Aspekte im Hinblick auf den
N-Kreislauf in feuerbeeinflussten Okosystemen bieten.

Die durchgefiinrten Arbeiten zeigen, dass sich die untersuchten Abbau-,
Stabilisierungs- und Verlagerungsmechanismen gegenseitig beeinflussen. Erst wenn diese
Prozesse als Gesamtheit betrachtet werden, ist eine realistische Bewertung des

Sequestrierungspotentials von verkohlten Pflanzenresten in Bdden mdglich. Es wurde



ZUSAMMENFASSUNG

gezeigt, dass PyOM in gleicher Weise wie andere Fraktionen der organischen
Bodensubstanz in den C- und N-Kreislauf eingebunden ist. Die Ansicht, dass die
Préservation von PyOM im Boden durch eine chemische Rekalzitranz begriindet ist, sollte
nicht langer akzeptiert werden. Im Hinblick auf den Klimawandel kann PyOM nicht als
potentielle Kohlenstoffsenke zur langfristigen Reduzierung des COj-Anteiles in der
Atmosphére angesehen werden.
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1. Introduction, objectives and state of the art

1.1 General introduction

Vegetation fires do not only convert large amounts of biomass to CO,, they produce
also pyrogenic organic material (PyOM), which occurs ubiquitously in soils and sediments.
The annual natural production of this material, also known as black carbon (BC), was
calculated to range between 4 x 10" g and 24 x 10* g (Kuhlbusch and Crutzen, 1995). Its
formation depends on several factors, such as type of fuel, temperature and duration of
charring, so its chemical composition and morphology are expected to vary considerably
(Fig. 1). It was suggested that PyOM represents a continuum of combustion products
ranging from slightly charred biomass, which may be still accessible for microbial

degradation, to highly condensed refractory soot (Masiello, 2004).

Slightly
charred Char oal Soot
biomass
Charring low high
temperature
Size |— mm and larger —| mm to submicron
submicron
Plant structures | abundant significant few none
precence
Initial reservoir |— soils : : soils and atmosphere —|
Aromaticity low high
H/C ratio 1.3 1.0 0.6 0.3 0
O/C ratio 0.8 0.6 0.4 0.2 0

Figure 1: Combustion continuum for PyOM [adapted from Masiello (2004) and Hammes et
al. (2007)].

Common char models assume that all PyOM is characterised by fused aromatic rings
with varying cluster size (Schmidt and Noack, 2000; Preston and Schmidt, 2006). Due to
the refractory nature of such thermally condensed products, they are expected to play an

important carbon (C) and nitrogen (N) sink in the global cycle (Fig. 2). Residence times of
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thousands of years were calculated based on radiocarbon (*C) dated char in soils
(Saldarriaga and West, 1986; Glaser et al., 2001). Its recalcitrance is also supported by its
occurrence in deep marine sediments (Middelburg et al., 1999). However, according to
Masiello (2004), PyOM and its transformation products should contribute up to 125% of
soil organic carbon (SOC), if one assumes that biomass burning since the last glacial
maximum occurred at the same rate as now. This strongly indicates that the recalcitrance
of PyOM may have been overestimated. The same conclusion was postulated by Kim et al.
(2004), who estimated that it would only require < 80,000 yrs. to convert the entire pool of

actively cycling C to BC, assuming that no degradation occurred.
Co, Co, o,
Respiration

Living
biomass

c
o
i~
©
=
Q
(%)
[
o

Slow/
Intermediate

- o

e Passive
>1000 yrs

97-99%

Portion of C exposed to fire - ' I Transport?

Figure 2: Pools and fluxes of PyOM [adapted from Preston and Schmidt (2006)].

The observation that PyOM may be degraded faster than commonly assumed is
underlined by recent field studies of Amazonian dark earth (Solomon et al., 2007), sandy
savannah soil at a fire trial site (Bird et al., 1999) and in fire-affected Siberian Scots pine
forest soil (Czimczik et al., 2003). One reason may be that a description of PyOM formed
by vegetation fires as a polycondensed aromatic network may be oversimplified, as
recently demonstrated by the analysis of the chemical structure of model chars derived
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from biopolymers and plant residues (Knicker et al., 2008). The latter rather supports an
alternative concept which assumes PyOM to be a heterogeneous mixture of thermally
altered biopolymers with aromatic domains of relatively small cluster size, but
considerable substitution with N, O and S functional groups (Knicker, 2007). Such a
structure would allow fast oxidation, facilitating further microbial attack and dissolution in
the soil solution.

1.2 Objectives and state of the art

The present work focuses on the biochemical degradation potential and humification

of PyOM in soil. The main investigation intentions are illustrated in Figure 3.

CO, (1.4*10%gyr 1)

-~ R Fire-affected area: 530*10° ha yr -
l\\ \ \ll \ \\\\
U
! 1 ,/ -
v
\
\ N Pyrogenic organic material (4 to 24*10%3g yr 1)
Vﬂemical characterisation? 0

Litter “ [

Figure 3: Overview about uncertainty of biogeochemical PyOM fates in soil [adapted from
Knicker (2007)]. Numbers derive from Kuhlbusch and Crutzen (1995).



1. INTRODUCTION, OBJECTIVES AND STATE OF THE ART

Research topic I:  Study of the impact of plant source material and charring
intensity on the initial PyOM degradation (Chapter 3).

For elucidation of the recalcitrance of PyOM in soil, not only knowledge of its
chemical structure is required but also understanding of its degradation and humification
mechanism. One of the first pioneers was Potter (1908), who showed that wood charcoal
was partly mineralised after 20 days incubation at temperatures between 20°C and 40°C. In
addition, Shneour (1966) demonstrated the degradability of BC by reporting that, after 96
days of incubation, 2% of graphitic C were mineralised. Cheng et al. (2006) postulated that
abiotic chemisorption of oxygen were more important for oxidation of BC than biotic
processes during a 30-day incubation experiment at 30°C and 70°C. However, Hamer et al.
(2004) found a close correlation between glucose addition and additional BC
mineralisation during biotic incubation for model chars, which could suggest a co-
metabolic degradation pattern. One must bear in mind that in natural environments
possible co-substrates are fire-unaffected litter from dying trees or regrowing vegetation,
which have a more complex matrix than pure glucose. Therefore, the mechanisms of the
priming effect may be more complex than commonly considered (Fontaine et al., 2003).
For that reason, the present study quantifies the PyOM mineralisation with and without co-
substrate availability to reveal aspects concerning the biochemical PyOM stability in the

initial post fire phase.

Research topic Il:  Modification of plant biomarkers by charring and its
biodegradability during the initial PyOM degradation (Chapter
4).

Wildfires convert not only large amounts of biomass to CO,, but they also thermally
alter the C pools of soils. According to a recently suggested concept, this pool consists of
the combustion residues of different biomacromolecules whose chemical structure depends
upon the charring conditions (Knicker et al., 2008a). Beside of charred carbohydrates,
peptides and lignin residues, thermally-altered lipids can represent an important fraction of
this pyrogenic organic matter (Gonzélez-Vila et al., 2001).
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Compared to other plant components such as cellulose or lignins, lipids are less
abundant. Lipids enter the soil with the litter where they are altered or re-synthesised by
microbes. In certain environment, they are more resistant against degradation than other
biomolecules. Within the lipid fraction, n-alkanes and aromatic hydrocarbons are less
efficiently biodegraded than medium chain fatty acids and alcohols (Tu et al., 2001,
Wiesenberg et al., 2004).

Wiesenberg et al. (2009) demonstrated for charred grass materials that biomass
burning causes changes of lipid pattern. The authors reported that charring at 500°C
resulted in a pronounced n-alkane chain length shift to short chain homologues,
maximising at Cyg, dominated by even numbered homologues. In this context, Almendros
et al. (1988) and Tinoco et al. (2006) suggests that such thermally altered lipids can be
incorporated as constituents of the soil lipid fraction of fire-affected Mediterranean soils
under pine. Until now, however, knowledge is missing how decomposition of PyOM

affects the nature of thermally altered lipid fractions in soil.

Wiesenberg et al. (2009) pointed out that the composition of aliphatic and aromatic
hydrocarbons of fire-effected recent and fossil soils offers specific fingerprint indicators
for diagnosis of vegetation burning and burning conditions. Eckmeier and Wiesenberg
(2009) analysed lipids from buried ancient topsoils that contained charred organic matter.
The authors associated the found particular pattern of short-chain and even carbon
numbered n-alkanes with a maximum at C46 or Cg to the occurrence of charred biomass.
However, studies are lacking about the fate of such PyOM-derived lipids during
humification. The latter, however, is needed, if one intends to apply the findings from

laboratory heating experiments to natural soils and sediments.

Lignin is the most abundant polymeric aromatic organic substance in the plants. For
example, the content of lignin ranges from 20-40% in wood. Sharma et al. (2004) and
Knicker et al. (2008a) demonstrated that the lignin backbone is a major constituent of plant
chars. Therefore, it is of interest if biomarkers for lignin detection (e.g. vanillin) will be

affected by the charring process and the incubation in soil.

Levoglucosan (1,6-Anhydro-p-1D-glucopyranose; LG), the major tracer from the
thermal decomposition of cellulose (Lakshman and Hoelsche, 1970), is a further
significant indicator for biomass burning. Levoglucosan is frequently used as atmospheric
tracer for detection of forest fires (Simoneit et al., 1999). Recently LG served as tracer for
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contributions from vegetation combustion to soils (Otto et al., 2006; Kuo et al., 2008) and
sediments (Elias et al., 2001). Elias et al. (2001) reported a correlation between LG and the
counted charcoal particles for a sediment core from a lake in Carajas (Southeastern
Amazonia). In this context Kuo et al. (2008) examined systematically the LG levels of
charcoal produced from tree plant materials under controlled combustion conditions (150-
1050°C, 0.5-5 h). The authors reported large differences of LG yield in the char across the
plant species and the charring temperature. They concluded that it is difficult to use LG as
a quantitative biomarker for char characterisation in environmental media. Studies are
needed dealing with environmental stability of LG to clarify the application of LG as an
indicator for contribution of charred biomass in soils.

In general, the identification and application of specific biomarkers for detection of
char in soils and sediments is mostly based on studies using freshly produced charred plant
materials (e.g. (Wiesenberg et al., 2009). However, the assumption that char is slowly
degraded and the biomarkers could be preserved for a long-term period may be
oversimplified. Studies dealing with a systematic investigation of possible modification
and degradation of PyOM-derived biomarkers are lacking.

Research topic I11: Quantification of PyOM incorporation into different SOM
fractions and vertical PyOM translocation through a soil column
(Chapter 5).

Little is known about incorporation mechanisms and quantity of PyOM incorporated
into soil fractions. Many questions arose with respect to the processes that caused
transformation and mobilisation of PyOM in soils. One is related to the organic N
incorporated into the PyOM structure. During fire events, the organic N pool is converted
into more recalcitrant N forms (Sanchez and Lazzari, 1999; Knicker et al., 2005b). Since
the labile N reserves are the major N source for biomass production by soil
microorganisms and plants, the fire does not only affect the C cycle but also the N cycle
(Gardenés et al., 2011). However, studies dealing with “black nitrogen” decomposition and
contribution dynamics are lacking, although this knowledge is required for estimates of

long-term impact of fires on ecosystems.
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A further question that needs to be approached concerns the turnover of PyOM and
how it is affected by interaction with the mineral phase. According to Skjemstad et al.
(1996) and Kuzyakov et al. (2009), charred residues are found primarily in the <53 um soil
fractions, within other authors have reported an accumulation of aromatic structures
(Baldock et al., 1992; Rodionov et al., 2006). The results confirm that the analysis of the
fine size fraction in particular is required for understanding the role of the mineral phase in
PyOM preservation. For example, how the PyOM distribution among size fractions is

influenced by the charring degree is unknown.

A further fraction of interest with respect to PyOM stability is the water-soluble
extract. According to Hockaday et al. (2007), it is composed mainly of condensed aromatic
ring structures that are also present in soil pore, river and ground water samples. The
dissolution and export of this water-soluble PyOM fraction is still an unmeasured C and N

flux.

Research topic IV: Biochemical alteration of PyOM in soil on a medium-term scale
(Chapter 6).

We still lack knowledge about the degradation and humification processes and the
stability of different PyOM structures, which is required for understanding the C
sequestration potential. In particular, knowledge concerning the chemical structure of
PyOM is also important for the establishment of more accurate PyOM quantification
methods because common degradative techniques based on the chemical recalcitrance of
polycondensed aryl structures (Hammes et al., 2007; Knicker et al., 2008a) are
characterised by low specify. Chemical modification of these aryl domains during the
degradation process may decrease their chemical recalcitrance and thus may be responsible

for an underestimation of the PyOM content assessed by traditional methods.

Recent studies (Covington and Sackett, 1992; Prieto-Fernandez et al., 2004) reported
an increase of inorganic N immediately after fire. During the post-fire phase, this inorganic
N can be rapidly lost by erosion due to the missing of a plant cover and/or leakage with
seepage water. A considerable part of the remaining fire-affected organic N was shown to
occur in heterocyclic N structures derived from heat-transformed proteins (Knicker et al.,
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1996b; Almendros et al., 2003; Knicker et al., 2008a). On the other hand, this “black
nitrogen” (Knicker, 2007) is probably characterised by an increased resistance to biological
degradation, leading to a preferential accumulation of heterocyclic N compounds in fire-
affected soils. A recent study indicated a low chemical stability of the N fraction in char
against acid digestion with potassium dichromate (Knicker, 2010). To which extent this
may also be true for biochemical stability is still not known. At the moment are no studies
available in which degradation and humification processes of black N have been
addressed. The biochemical degradation of PyOM-derived N compounds was investigated

in the present part of the work.

A further aspect, which presently receives much attention, is the amendment of so-
called biochar to incorporate additional photosynthetically fixed carbon into the soil. The
presence of such char in soil could contribute to a long-term C storage and thus to the
mitigation of increasing atmospheric CO, concentrations (Lehmann, 2007). The extent of a
C sequestration effect on a long-term scale as well as the influence of biochar addition on

the quality of soil organic matter (SOM) is still not clear.
1.3 Techniques for PyOM quantification in soils and sediments

A number of techniques have been developed to determine PyOM in soils and
sediments (Schmidt et al., 2001; Nguyen et al., 2004; Hammes et al., 2007; Bird and
Ascough, 2010). In general, the PyOM identification can be divided into spectroscopic
(Rositani et al., 1987; Kim et al., 2004; Knicker et al., 2005a; Lehmann et al., 2005),
visual/microscopic (Kruge et al., 1994; Brodowski et al., 2005a), thermal (Gustafsson et
al., 1997; Dell'Abate et al., 2000; Dell'Abate et al., 2003), chemical (Wolbach and Anders,
1989; Song et al., 2002; Simpson and Hatcher, 2004; Knicker et al., 2008b) and UV photo-
oxidizing (Skjemstad et al., 1996; Skjemstad et al., 1999) methods. Different molecular
markers were also applied for the identification of PyOM (Glaser et al., 1998; Brodowski
et al., 2005b; Otto et al., 2006; Wiesenberg et al., 2009). All methods basically have to
differentiate between three forms of carbon, inorganic carbonates, thermally unaltered
organic carbon, such as humic substances or plant material, and PyOM. It is important to
note that most of the techniques can only be applied to a part of the PyOM continuum (Fig.
4). This fact makes it difficult to compare results obtained with different quantification
techniques (Masiello, 2004).
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Slightly
charred Char oal Soot
biomass

Spectroscopic methods (e.g.
I CP/DP MAS 13C NMR,
I NEXAFS, FTIR, Raman,
Ultra-high resolution MS)

Thermo-
Visual/ microscopic —  —cChemical
—_— e — methods

methods
(e.g. CTO-375)

— == = TG-DSC and TOT/R =

Chemical methods (e.g.
— — Cr,0,%, H,0,, NaCIO) and ——
UV photo-oxidation

Molecular markers
—— == (e.g.BCPA,PAH, =-— =—
Levoglucosan, lipids)

Figure 4: Overview of quantification methods within the PyOM continuum [summarised
from Hedges et al. (2000); Schmidt and Noack (2000); Masiello (2004); Lehmann et
al. (2005); Hammes et al. (2007); Plante et al. (2009); Bird and Ascough (2010)]
CP/DP MAS **C NMR Solid-state cross polarisation/ direct polarisation magic angle
spinning **C nuclear magnetic resonance spectroscopy; NEXAFS Near edge X-ray
absorption fine structure spectroscopy; FTIR Fourier transformation infrared
spectroscopy; MS Mass spectroscopy; CTO-375 Chemo-thermal oxidation at 375°C;
TG-DSC Thermogravimetry and differential scanning calorimetry analysis; TOT/R
Thermal/optical transmittance and reflectance; Cr,0,% Acid dichromate oxidation;
H,0O, Peroxide Oxidation; NaCIO Sodium hypochlorite oxidation; BPCA Benzene

polycarboxylic acids; PAH Polycyclic aromatic hydrocarbons.

Visual methods quantify the number of char pieces visible under an optical
microscope. However, this procedure detects only relative large PyOM particles and
cannot capture soot or PyOM degradation products. Further, the presence of pyrite and
other dark-colour debris makes it difficult to quantify PyOM (Schmidt and Noack, 2000).
Optical methods provide morphological description of PyOM particles, which can give
information on sources and transport distances. Scanning electron microscopy coupled

with energy-dispersive X-ray spectroscopy (SEM/EDX) provides additional information
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about the elemental composition of the scanned particles (Brodowski et al., 2005a).
However, the resolution is too fine for practical use in quantification (Nguyen et al., 2004).

Thermo-chemical methods oxidise or volatilise labile carbon and leave a resistant
residue for quantification as PyOM (Gustafsson et al., 2001). Such methods were
developed for atmospheric PyOM particles such as soot and are not directly applicable to
soils and sediments. Soils can contain closely associated organic matter that is not easy to
thermally degrade and the formation of artefacts by charring of non-PyOM is also possible
(Schmidt and Noack, 2000). Thermogravimetry and differentials scanning calorimetry
analysis (TG-DSC) determine carbon species by recording the mass loss during the thermal
oxidation of the sample. The initial weight loss based upon the exothermic oxidation of
labile carbon such as carbohydrates (300°C to 350°C). The exothermic loss at higher
temperatures (above 450°C) is attributed to more refractory SOM and PyOM-derived
carbon species (De la Rosa et al., 2008; Plante et al., 2009). The position of the DSC peaks
reflect the chemical composition of the sample. The disadvantages of this method are
mineral impurities such as clays which will contribute to measured weight loss as they lose
water on heating. The occurrence of non-PyOM with high C content like coal may

overestimate PyOM contribution (Hammes et al., 2007).

Chemical oxidation techniques (e.g. acid oxidation with dichromate) separate labile
organic matter from condensed PyOM assuming that the oxidation process follows a first-
order kinetic (Wolbach and Anders, 1989). These techniques often involve removal of
carbonates and silicates as a pre-treatment step. The studies of Knicker et al. (2007) and
Knicker et al. (2008b) indicate that aromatic PyOM structures can also be attacked and
paraffinic compounds can survive the procedure because of their hydrophobic character
which obscures quantification. Therefore, such chemical methods should be combined with
analytical techniques for characterising the chemical composition of the oxidation residue.
The chemical oxidation efficiency varies due to the chemical heterogeneity of PyOM.
Therefore it is necessary to determine a correction factor for the respective char material to

ensure realistic quantification (Knicker et al., 2008b).

UV photo-oxidation (Skjemstad et al., 1993) relies on the relative stability of PyOM
to high-energy UV radiation compared to other SOM fractions. This method seems to be
more gently in comparison with chemical oxidation approaches (Hammes et al., 2007)
resulting in higher PyOM values for soot and chars. Another critical point is that UV

radiation affects only the surface of soil aggregates. Skjemstad et al. (1993) demonstrated
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that a considerable proportion of SOM of clay and silt fractions of Australian soils was not
affected by this method. Some SOM was protected in the interior of microaggregates. This
fact may result in overestimation of PyOM content if no further techniques are used, which

allow a more detailed characterisation of the residue.

The benzene polycarboxylic acids (BPCA) method converts aromatic structures via
oxidation with HNOj3 into BPCAs (Glaser et al., 1998). The PyOM quantity is calculated
as the sum of the threefold to sixfold carboxylated benzoic acids. However, this technique
does not quantitatively detect very large and highly condensed PyOM components.
Therefore, the results are multiplied by a correction factor of 2.27 to estimate the PyOM
content. The BPCA method provides only a minimum estimation for other types of PyOM
(Hammes et al., 2007) because this factor was obtained from commercial charcoal and may
not be applicable to all kinds of PyOM. Further, the method has a risk of overestimation by
detection of non-BC-derived compounds (Glaser and Knorr, 2008). For example,
aspergillin, the black pigment of the fungi Aspergillus niger (Lund et al., 1953), was
reported to contain aromatic compounds which are detected as BPCA.

There are intentions to use levoglucosan (Elias et al., 2001; Otto et al., 2006),
polycyclic aromatic hydrocarbons (PAH) (Kim et al., 2003) or n-alkane distribution pattern
(Eckmeier and Wiesenberg, 2009) for determination of PyOM in soils and sediments.
Levoglucosan is produced by thermal degradation of cellulose and may indicate the
presence of charred plant residues. Charring of plant materials result in domination of even
numbered C chains and shortening of the chain length of the alkane fraction (Wiesenberg
et al., 2009). Therefore, the alkane distribution pattern may provide information of charring
conditions and the presence of PyOM. However, knowledge is missing about stability of
such markers against biotic degradation and modification, which may have implications for
the accuracy.

Spectroscopic techniques, such as Fourier transformation infrared spectroscopy
(FTIR), solid-state cross-polarisation magic angle spinning **C nuclear magnetic resonance
spectroscopy (*C CPMAS NMR) and near edge X-ray absorption fine structure
spectroscopy (NEXAFS), provide information on molecular scale, allowing detection of
aromatic domains. However, there are not only PyOM-derived aromatic sources. The
presence of lignin-derived aromatics (De la Rosa et al., 2009) may result in overestimation

of PyOM. Therefore, spectroscopic techniques are often combined with chemical or UV
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photo-oxidation pre-treatments, removing non fire-affected labile C compounds. However,
3C NMR and NEXAFS are costly and laboratory capacity is limited.

The present work applies solid-state **C and >N CPMAS NMR spectroscopy for the
investigation of the degradation and humification of PyOM in soil. Former studies
demonstrated that NMR technique provides useful information concerning chemical
alteration of plant residues by charring and the chemical structure of PyOM (Knicker et al.,
19964a; Freitas et al., 1999; Baldock and Smernik, 2002; Almendros et al., 2003; Knicker et
al., 2005a; Knicker et al., 2008a). The studies showed that carbohydrate fraction was
converted into dehydrated compounds which produced intense signals in the aromatic
region of the *C CPMAS NMR spectra. The respective "N CPMAS NMR spectra
revealed that amide N was converted to heterocyclic structures such as pyrroles,

imidazoles and indoles (Knicker et al., 1996a).

The following chapter provides information about the basic NMR theory and some

aspects concerning quantifiability of CPMAS *3C and >N NMR spectra.

1.4 Solid-state **C and N CPMAS NMR spectroscopy - a powerful tool

for characterisation and quantification of PyOM

1.4.1 Basic NMR theory

An advantage of NMR spectroscopy is that it can be used as a non-invasive
technique for analysing environmental heterogeneous solid materials (Grassi and Gatti,
1995; Bortiatynski et al., 1996; Preston, 1996; Kdgel-Knabner, 1997). In contrast to the
described thermo and chemical methods, application of NMR technique avoids possible
chemical alteration, such as cracking, rearrangement, dehydrogenation or polymerisation.
The NMR spectroscopy allows analysing and quantifying of a sample as a whole without
previous extraction, derivatisation or oxidation step. It provides chemical information on
atomic and molecular scale and allows examination of physicochemical properties of
certain molecular domains (Veeman, 1997). However, there are a few important points to
account concerning acquisition parameters and spin interactions for obtaining a
representative PyOM characterisation (Knicker et al., 2005a). For better understanding the
basics of theory and important NMR techniques will be explained in the following.

NMR bases on the concept that many atomic nuclei behave as magnetic dipoles. The

magnitude of the magnetic dipole is proportional to a fundamental property of the atomic
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nucleus, the spin angular momentum (Rabi et al., 1938). The spin aligns itself parallel (low
energy state) or antiparallel (high energy state) to an external magnet field (Bo). An applied
electromagnetic radio frequency pulse (RF) causes the nuclei to absorb energy from the RF
pulse if the resonance condition is fullfilled (Bloch et al., 1946). The frequency of RF pulse
(1), which is perpendicular orientated to By, has to correspond to the resonance frequency.
The resonance condition is described by w; = @ = -y x Bg with the Larmor frequency ()
and the gyromagnetic ratio (y). The magnetic moment (u) of the nucleus precesses with the
Larmor frequency (o) around the z-axis of By in a Cartesian coordinate system. The
gyromagnetic ratio is a nuclear constant of each elemental nucleus and represents the ratio
of its magnetic dipole moment to its angular momentum. The highlight of the resonance
condition is that the adsorbed energy amount equals a multiple of the energy difference
(AE) between the spin levels. The adsorbed AE forces the net magnetisation (M) of the
spin system along the z-axis to flip in direction of the y-axis. The magnitude of its y-
component (My) will periodically alter because the transversal magnetisation is still

precessing with @ around the z-axis.

The magnetic field of the electron cloud around the nucleus shields the nucleus of
interest. Consequently the effective magnetic field (Bes) is reduced, resulting in a shift of
the specific resonance frequency (m1). A short intense RF pulse is applied for detection of
all individual nuclei with different resonance conditions at the same time. Such a short
pulse generates a symmetric frequency band around ®;. The pulse technique is based on
the Heisenberg uncertainty principle AE x At > h (2r)* where h denotes the Planck’s

constant.

After termination of the pulse, the spin system returns to its thermal equilibrium by
radiating energy at a specific resonance frequency, which depends on the strength of the
magnetic field. The relaxation is described by two time constants T; and T,. The
longitudinal (or spin-lattice) relaxation time T; is the decay constant for the recovery of the
z component of the nuclear spin magnetisation (M) towards its thermal equilibrium value.
The transverse (or spin-spin) relaxation time T is the decay constant for the component of
M which is perpendicular to By (Myy). T2 is the time frame that is needed for the
redistribution of the energy among the spins. A detector in y-direction records the
alteration of the magnetisation My as a voltage signal. The detected relaxation decay

pattern has an oscillating amplitude and is called free induction decay (FID). The
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overlapping FIDs of the individual nuclei are converted from the time into frequency
domain by the mathematical Fourier transformation (FT).

The location of detected resonance frequency lines is depending from the applied
strength of By. Therefore, the resonance frequencies of nuclei are given as chemical shift
(0) with respect to a reference (wgef). The chemical shift is defined with 6 (ppm) = (w1 —
oref) / Oret X 108, Commonly tetramethylsilane (TMS; 0 ppm) is used as refercence for **C
NMR spectroscopy. For N NMR spectroscopy no common reference exists. In the
present work nitromethane (0 ppm) is used as reference. The comparison of spectra using
different references is only possible by using conversion factors. Figure 5 and 6 show some
important chemical shift assignments in solid-state **C and N NMR spectroscopy,
respectively.
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Figure 5: Selected examples for chemical shift assignment in solid-state *C CP MAS NMR
(meant C is marked with asterisk, SSB Spinning side band).

When NMR spectroscopy is applied to solid samples, such as SOM or PyOM, the

anisotropic chemical shift is one reason why NMR spectra display broad spectral lines. The
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reason is that the electron shielding effect is depending on the orientation of the molecule
with respect to the external field By. Orientation dependent interactions are proportional to
the term 3cos®6-1. If 6 equals the magic angle (6) of 54°44", the term vanishes. Therefore,
solid samples are spun at several kilohertz around an axis that makes 6y, (magic angel
spinning, MAS) (Schaefer and Stejskal, 1976). However, spinning side bands (SSB) occur
in case of insufficient spinning rate. The SSBs appear at a frequency distance equal to the
spinning frequency on each side of the parent signal (Fig. 5). Such SSBs can overlap with
other main signals. In the case of occurring SSB, their signal areas can be added to the
respective parent signal and subtracted in case of signal overlapping for allowing correct
quantification of the NMR spectra.
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Figure 6: Selected examples for chemical shift assignment in solid-state ®N CP MAS NMR.

The cross polarisation (CP) technique is applied in order to enhance the sensitivity of

3C or >N NMR measurement. Therefore, *H nuclei with a high relative abundance of 99.9
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atom% and short spin-lattice relaxation time (T14) are magnetised by a RF pulse (B;y) and
the magnetisation is subsequently transferred to *C or °N nuclei with a low natural
abundance of 1.1 atom% and 0.4 atom% and relatively long T;. A polarisation transfer
between two spin systems can only occur if the Hartmann-Hahn condition -yy X By = -yx
x Bix with X = 3C or N is fulfilled. This means that a magnetisation transfer is only
possible if the energy amount (AEy) between the energy levels of the *H spin system has
the same magnitude than AEx of the X spin system. The Hartmann-Hahn condition can be
achieved by a simultaneous irradiation of the *H and X spin systems with the RF fields B1
and Bix during a contact time (t;). The RF fields By and Bix have to be adjusted that AEy
and AEx of the two spin system is equal (spin lock).

The **C or ©N-intensity signal is only observable if the condition between the cross-
polarisation transfer time (Txwy and the 'H spin-lattice relaxation time in the rotating frame
(Tipn) is satisfied with Txy << t; << Tin. The cross-polarisation transfer time Txy
describes the time frame that is necessary for the transfer of the magnetisation from *H to
the *C or N spin system. In general, Txy increases with the distance of the X nucleus
from the protons and the molecular motion. The Ty, represents the relaxation of the
protons in the presence of the field B, together with the time-dependent magnetic field B;.
The field B, rotates in the plane perpendicular to By at the Larmor frequency of the nuclei
in the Bo. In case Txy > Ti,n, the relaxation of the protons becomes already affective
before the cross polarisation is completed and the signal is completely suppressed.

The spin system has to be completely returned to the thermal equilibrium before a
new rf pulse can be applied. The pulse delay should be 5 x Ty for avoiding saturation
effects of the spin system. The relaxation time of the X spin system has not to be

considered since the polarisation is induced by the *H spin system.

1.4.2 Reliability and application of solid-state *C and >N CPMAS NMR

spectroscopy in PyOM research

The presence of paramagnetic and ferromagnetic species, such as Fe, Cu or Mn, affects
NMR spectroscopy via loss of By field homogeneity and shortening of T,,4 (Smernik and
Oades, 2000a). This can lead to considerable shortening of T,,4 to an extend that the
condition Tcy or Tyw << Tiu is not fulfilled, resulting in ineffective CP and line
broadening. In this context Schoning et al. (2005) reported a selective O/N-alkyl C

suppression due to presence of Fe. Such a selective effect on the O/N-alkyl C fraction of
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3C CP MAS NMR spectra was also shown for a Terric Humisol, containing a high
concentration of paramagnetic Cu (Preston et al., 1984). For avoiding interactions with
paramagnetic compounds, NMR samples can be pre-treated with dilute hydrofluoric acid
(HF), as described by Goncalves et al. (2003). The advantage of HF treatment is (i) the
removal of most of the mineral phase concentrating the C in the residue and (ii) removal of
interfering paramagnetic minerals for improving NMR observability.

There are many NMR studies confirming that HF treatment does not alter chemical
composition of OM (Skjemstad et al., 1994; Schmidt et al., 1997; Knicker et al., 2000;
Gelinas et al., 2001; Goncalves et al., 2003). The latter is supported by identical NMR
spectra of mineral-free organic litter layers obtained before and after the HF procedure
(Dai and Johnson, 1999; Eusterhues et al., 2003). In this line, the C/N ratio does often not
change by the HF procedure (Schmidt et al., 1997; Goncalves et al., 2003). However, Dai
and Johnson (1999) and Schoning et al. (2005) reported lower recoveries and enrichment
ratios of N compared to the corresponding OC values. The higher N loss during HF
treatment may be explained by a preferred loss of easily soluble amino acids and amino
sugars (Mathers et al., 2002) and inorganic N that were protected through sorption before

HF treatment.

Dai and Johnson (1999) showed *C NMR spectra for soil HF-extracts of Spodosols
(Podsols) that indicated a preferential removing of O-alkyl C and carboxyl C during the
extraction. The observation may be attributed to the release of carbohydrates and OM
which were associated with iron oxides (Oades et al., 1987). Especially HF treatment of
subsoil horizons of acid forest soils can result in a preferential loss of mineral-associated
OM (Eusterhues et al., 2003). In spite of this observation, the respective NMR spectra from
HF-treated and untreated soils were almost identical. It can be summarised that HF
treatment only dissolves soil minerals and mineral-associated OM whereas the remaining
OM is nearly unaffected (Eusterhues et al., 2003).

A preferential loss of N containing compounds or O-alkyl C is not expected for PyOM
because it does not contain free amino acids or carbohydrates like sugars (Knicker et al.,
1996a). Therefore, HF pre-treatment can be considered as a useful tool to ensure

quantitative NMR spectroscopy of PyOM samples.

For charred residues produced at high heating intensity under oxygen exclusion the
formation of aromatic clusters with proportion of core C with a distance to the next *H



1. INTRODUCTION, OBJECTIVES AND STATE OF THE ART

exceeding three bonds is expected (Schmidt and Noack, 2000). This distance is too high
for efficient cross polarisation and thus such core C cannot be quantitatively detected by
CPMAS *C NMR (Smernik et al., 2002). However, in contrast to soot, such graphitic
polyaromatic domains play a minor role in chars produced under wildfire condition
(Knicker et al., 2008a). Since temperatures above 700°C are required for the formation of
graphic structures (Freitas et al., 1999). At such high temperatures, most unprotected

organic matter is expected to be volatilised under oxic conditions.

Knicker et al. (2005a) showed that the condensation degree of plant residues charred
by vegetation fires is low. The atomic H/C ratio between 0.6 and 0.4 of the aromatic
moiety of charred peat and barbeque charcoal revealed that on average every second to
third C is connected to a proton (Knicker et al., 2005a). The observed protonation degree
of aromatic domains allows efficient cross polarisation that is required for a correct

quantification of the NMR spectra.

Dipolar dephasing (DD) NMR experiments allow to discriminate between weak and
strong proton dipolar coupling of *3C nuclei (Alemany et al., 1983). The DD procedure
includes an interruption of high power proton-decoupling for a certain time delay tqq
directly after t. but before the *3C acquisition. This allows the *H spin system to interact
with *C nuclei, resulting in dephasing of **C signals (signal broadening). In general, **C
nuclei without direct attached H and high molecular motion have weak *H dipolar coupling
and will be visible in a spectrum obtained with tys > 40 ps. The DD NMR experiments
with charcoal and charred peat support that almost every second aryl C is directly
connected to neighbouring H (Knicker et al., 2005a). In this line, variable contact time
(VCT) measurements of different PyOM revealed that the condition Tcy < Tiu Was
fulfilled for aryl C which is necessary for efficient cross polarisation. The CP time Tcy did
not tend to increase with prolonging charring degree of the PyOM (Knicker et al., 2005a).
This indicates that graphite-like structures were not formed because that would cause in
decreasing protonation degree of aryl structures, resulting in increasing *H-*C distance

and larger Tcy values.

Bloch decay (BD) or direct polarisation (DP) NMR spectroscopy represents another
opportunity to determine directly C species. However, Tic is an order of magnitude or
more slower than Tiy (Smernik and Oades, 2000a). Commonly, recycling delays of 60-90
s are applied for BD MAS NMR determination of natural OM samples (Smernik and
Oades, 2000a). Comparing CP and BD MAS NMR spectra of PyOM an underestimation of
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aryl domains is often reported (Skjemstad et al., 1999; Mao et al., 2000; Smernik and
Oades, 2000b; Keeler and Maciel, 2003; Fang et al., 2010). Knicker et al. (2005a)
explained this observation by an expense of O/N alkyl and alkyl C in BD NMR due to
saturation because of application of relaxation delays that were too short. The assumption
is supported by NMR studies of Teeaar and Lippmaa (1984), determining a very long Tic
of 266 s for crystalline cellulose. This requires a recycle delay of 22 min (5 x T;¢) to avoid
BC-spin saturation. In spite of the fact that fresh peat does not contain considerable
amounts of char, the respective BD NMR measurements showed also differing results from
CP NMR spectra (Knicker et al., 2005a). The latter is best explained by saturation effects
in the O-alkyl C and alkyl-C fraction and may explain the observed higher aryl C
contribution in BD NMR. In this line, the studies of Simpson and Hatcher (2004) and
Hammes et al. (2006) supported a comparable *C BD MAS NMR efficiency in
comparison with the corresponding CP MAS NMR spectra for charred wood and grass,

containing little or no O-alkyl C.

The application of CP technique minimises possible spin-saturation effects of O-
alkyl C because of much shorter recycle delay of the *H spin system. The reliability of the
CP NMR was also supported by experiments with standards containing PyOM and
untreated peat mixed in defined ratios (Knicker et al., 2005a). The authors demonstrated
that almost all aryl C was efficiently cross polarised. Thus, the CP technique does not
underestimate aryl C in PyOM if the contribution of soot-like or graphitic material can be

excluded.

Another useful tool in PyOM characterisation is solid-state *°N NMR spectroscopy.
Unfortunately this technique is hampered by two factors. The most abundant isotope of N
is 1N with 99.6 atom%. However, it is impossible to perform *N high resolution NMR
because of the large quadrupole moment. The dipolar N isotope has a low natural
abundance and a low negative gyromagnetic ratio. These factors cause a 50 times lower
sensitivity for N NMR compared to *C NMR. Therefore, **N-erriched sample material is
often used for N NMR studies e.g. Ripmeester et al. (1986); Cheshire et al. (1990);
Knicker and Ludemann (1995). The CP technique can also be applied for improvement of
the sensitivity of >N NMR spectroscopy in SOM with natural >N abundance (Knicker,
1993). Knicker et al. (1999) confirmed that CP technique applied to humic fractions spiked
with **N-enriched trinitrotoluene did not reveal a major intensity loss compared to the
respective *°N direct polarisation NMR spectrum. The authors could not find additional
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peaks in the *°N BD NMR spectrum, indicating that N CP NMR detected all organic N
groups. The >N NMR studies of Knicker et al. (1996a) and Knicker et al. (1996b) applied
successfully solid-state >N NMR to coal and charred plant residues. The authors extracted
acquisition parameters allowing quantitative characterisation of heterocyclic bound N
compounds by application of solid-state N CP MAS NMR spectroscopy. However,
inorganic N species were not quantitatively determined via CP technique with a contact
time of 0.7 to 1 ms because of their high mobility (NH,") or weak interaction with the *H
spin system (NOgz’) (Knicker and Liidemann, 1995).

It can be summarised, that the application of **C and **N CP MAS NMR technique is
quantitative for SOM and wildfire-derived PyOM.
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2. Materials and Methods

2.1 Production of PyOM

For the production of the *C and *°N labelled PyOM, rye grass (Lolium perenne L.; Gr)
was used, which represents a typical plant fuel consumed by grassland fires. Seeds of rye
grass were cultured on quartz sand in a closed plexiglass chamber, located in a phytotron
(Lehrstuhl fur Zierpflanzenbau, TUM) that allowed the automatic control of climatic and
light conditions (Fig. 7). The grass was grown with **C-enriched CO, gas (**C: 99atom%)
and *°N-labelled potassium nitrate nutrient solution (*°N: 98atom%: Knicker (2002)). After
two weeks the grass shoot stems were harvested. The pots with the cut plants were
reintroduced into the chamber for further growth. After yielding sufficient shoot material,
the pots were removed from the chamber and the roots were manually separated from
quartz sand.

In comparison with the natural abundance of 1.1 atom% for *C and 0.4 atom% for
>N it was possible to produce plant material which was highly isotopically enriched (**C:
23.5atom%; *°N: 62.8atom%). The combined aboveground and belowground biomass was

dried to constant weight at 40°C and cut into small pieces (5 to 10 mm).

In contrast to other studies (Smernik et al., 2000; Baldock and Smernik, 2002; Hamer
et al., 2004; Trompowsky et al., 2005; Hammes et al., 2006), oxic conditions were used for
the charring process, since pyrolysis conditions are unlikely to occur during natural above-
ground fires. Approximately 5 g of the plant material was put in a 1-mm layer on a ceramic
tray preheated at 350°C. The tray was introduced into a preheated muffle oven to allow
charring at 350°C under oxic conditions to ensure that plant material was immediately
exposed to the target charring temperature. This temperature was reported to result in char
that is comparable to that remaining after natural wildfires (Almendros et al., 1990). Two
combustion times of one (1M) and four minutes (4M) were applied to obtain material with
different charring degree (Hilscher et al. 2009). These relatively short charring times were
applied to account for the high speed with which natural fires commonly move.

For the respiration incubation study, unlabelled rye grass (Lolium perenne; Gr) and
pine wood (Pinus sylvestris; P) was used to produce the PyOM. The rye grass was cut into
small pieces (5 to 10 mm) and the pine wood was ground to a particle size of 1 mm. The

charring conditions were similar as for the labelled grass material.
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Phytotron

Lolium perenne

Figure 7: Cultivation of isotopically enriched rye grass.

2.2 Characterisation of PyOM and soil material

2.2.1 C/ N content and **C / N isotopic signature

Total C and total N contents of the PyOM and soil mixtures were measured in
duplicates using dry combustion (975°C) with an Elementar Vario EL microanalyser
detecting N as N, and C as CO,. Detection limits for C and N were 0.4 pg and 1 pg,
respectively. The 3C and ®N contents of the samples were measured with a quadrupole
mass spectrometer (InProcess Instruments GAM 200) connected to the microanalyser.
Because of low **C and *°N enrichments of the B and C sub layers of the soil incubates,
these samples were determined using an elemental analyser (CHN NA1500, Carlo Erba)
coupled to an isotope ratio mass spectrometer (Isochrom Il Micromass-GVI Optima;
CNRS Laboratoire de Biogéochimie et Ecologie des Milieux Continentaux) with an

analytical precision for isotope measurements of 0.3%o.

The contribution of NH,™-N to the PyOM was detected in a 1 mol I KCI extract
using indophenol blue colorimetric method on a spectrophotometer (Milton Roy,
Spectronic 601) at 655 nm.
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2.2.2 Basic soil parameters

The soil substrate for the incubation experiment was obtained from a fire-unaffected
Bw horizon of a Cambisol (IUSS Working Group WRB, 2006) under Norway spruce near
Leuk, Canton Valais, Switzerland, (GPS 46.33678° N, 7.64394° E). After air-drying the
soil was passed through a 5 mm sieve. The low organic C (OC) concentration of the soil
(3.4 g kg™!) allowed an efficient **C and N tracing of compounds derived from the
isotopically enriched PyOM. No inorganic C was recovered after heating the soil at 550°C
for 5 h. A soil pH value of 6.8 was measured with a glass electrode in the supernatant of a
suspension obtained by mixing soil with 0.01 M CacCl; solution in a mass to volume ratio
of 1:2.5.

The soil texture was determined after oxidising the OC with 30% (w/w) H,0,
solution and removing Fe oxides with a dithionite-citrate-bicarbonate solution at room
temperature. The texture was obtained by combination of wet sieving (2000 - 63um) and
the use of a Micrometrics Sedigraph 5100 (Buchan et al., 1993) to differentiate silt (63 -
2um) and clay (< 2um). The soil contained 34% sand, 42% silt and 23% clay, which
classifies it as a loamy soil (IUSS Working Group WRB, 2006).

2.2.3 Specific surface area of PyOM

The specific surface area was determined using N, adsorption at -195.8°C with an
Autosorb 1 (Quantachrome Corp., Syosset, NY). The calculations were performed
according to the BET equation (Brunnauer et al., 1938). Micropore surface area and
volume were calculated according to de Boer et al. (1966). Prior to analysis, the samples
were degassed under vacuum at 40°C overnight in order to remove adsorbed volatile
compounds from the surfaces. In addition, micropore area and volume were obtained from
CO, adsorption at 0°C. Calculations were conducted according to the method of Dubinin
and Radushkevich (1947). Sample pre-treatment was the same as for the N,-adsorption

measurements.
2.3 Setup of PyOM respiration experiment

Each of the char samples obtained from the grass and wood after 1 or 4 min of
charring was mixed with the soil in a ratio of 1/10 (w/w). Of each sample 30 g were placed
in a 250 ml incubation vessel. For the degradation study, 10 and 4 replicates were prepared

of the rye grass char and for the pine wood char, respectively. In addition, 10 replicates of
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pure soil material were used to determine the background respiration (blank value, BV) of
the native soil organic matter. All samples were inoculated with 1 ml of a microbial
suspension. Therefore, a soil mixture of A horizons of 6 Cambisol, 3 Luvisol and one
Fluvisol was rewetted to 60% of its maximal water hold capacity and pre-incubated at
20°C (2 days). Then, the inoculum was extracted with deionised water and the supernatant
was filtered (5 um pore size). With the use of the soil mixture, it was intended to assure a
microbial population which is representative for soils. To simulate the input of fresh
unburnt litter entering the soil system after the death of fire-affected vegetation, 150 mg of
unburnt and finely ground rye grass was added as a co-substrate (CS) to one of the two

replicates of each series after 1 and 3 weeks of incubation.

The water content of the sample mixtures was adjusted to approximately 60% of the
maximum water holding capacity and the samples were incubated for 48 days at 30°C
under aerobic conditions in a Respicond apparatus (Nordgren Innovations, Sweden)
located at the Institut flr Landschaftsarchitektur, Forschungsanstalt fiir Gartenbau
Weihenstephan (Fig. 8). This system measures the respiration every 15 min by determining
changes in the electrical conductivity induced by absorption of CO; in 10 ml of a 0.6 M
KOH solution placed inside the incubation vessel (Nordgren, 1988). The amount of the
absorbed CO, (cy) is calculated as ¢; = o (1 — RgxR¢?) with a equals the proportionality
constant relating the decrease in conductivity to the absorbed CO, amount. The electrical

resistance of the KOH solution at time tis Ry, and att =0 it is Ro.
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Figure 8: Setup of PyOM respiration experiment

2.4 Setup of *C and N labelled PyOM incubation

Soil columns (16 for each PyOM treatment) with three layers were prepared. The
uppermost layer comprised 120 g soil mixed with 400 mg PyOM obtained from the grass
after 1 min or 4 min charring (A layer). This corresponds to an addition of 41 mg **C and 8
mg N for the PyOM 1M incubates and 38 mg *C and 9 mg N for PyOM 4M,
respectively, equivalent to a total C input of 0.49 and 0.45 t ha™’. To determine potential
PyOM vertical movement, two sub-layers, B and C, composed of 200 g soil each, were
enclosed in a nylon net. The net allowed it to separate the different layers at the end of the
experiment. The C and B soil layers kept in the net (3 cm high each) were put into a
polyethylene beaker, overlayed with the A layer (2 cm high; Fig. 9). The whole column
was covered with a perforated Al foil to avoid drying out. The bottom of the polyethylene
beaker was perforated to allow release of water and soil material. The leachate was weekly
collected in underlying glass dishes and freeze-dried. During the whole incubation period

between 0.6 g and 1.3 g of leachate was collected.
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2. MATERIALS AND METHODS

In addition, 9 columns of soil without added PyOM were incubated and used to
determine the natural SOM content and its possible alteration at different stages of the
degradation experiment (BV). All samples were inoculated with 1 ml of a microbial
suspension to ensure that an active microbial population was present. This inoculum was
obtained from a forest litter layer that was shaken with deionised water (1:5).
Subsequently, the supernatant was filtered (5 pum pore size) to avoid input of particulate

organic material from the forest litter (Knicker, 2003).

The water content of the soil samples was adjusted to ca. 60% of the WHC and the
samples were incubated for one to 20 months at 30°C in the dark under aerobic conditions.
The water content was checked weekly and adjusted by weighing the soil column and
adding the mass difference as water. On average, 10 + 7 ml of water were added weekly to

each beaker and could disperse within the soil column.

To simulate the input of fresh unburned litter derived from dying vegetation affected
by fire, 400 mg of unburned, finely ground unlabelled rye grass were added as co-substrate
(CS) to one of the two replicates of each series after 4, 10 and 16 months incubation. The
soil columns with CS were incubated for a period of up to 28 months. With this design it
was also intended to identify a possible co-metabolic priming effect (Fontaine et al., 2003)
during PyOM decomposition. For the 2 month incubation experiment, duplicates were

prepared to provide material for controlling the reproducibility.

Translocation
A Eay e Ry Qv

Figure 9: Setup of *C and >N PyOM incubation experiment.

After the incubation, the A layer was first collected. Then, the B and C layers were
taken and the nylon net was removed to collect the incubated soil. The nylon net was
cleaned with water and the obtained soil residues were added to the respective layer.

Thereafter the soil was air-dried.
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2. MATERIALS AND METHODS

2.5 Lipid analyses

Aliquots of the incubated labelled PyOM samples (10 g; respiration experiment) and
fresh and charred plant material (1 g) were Soxhlet-extracted with a dichloromethane-
methanol (3:1 v:v) mixture for 8 h (Gonzalez-Vila et al., 2003). Prior to extractions, the
cellulose extraction thimbles were Soxhlet-extracted with same dichloromethane-methanol
mixture, to remove any contaminant lipid. In order to remove elemental sulphur, activated
(2M HCI) copper curls were added to each extraction. The total lipid extract was filtrated
and subsequently the filtrate was dried up with sodium sulphate. The lipid amount was
determined by gravimetry and related to the respective sample weight before analysis by
gas chromatography (GC; Hewlett-Packard 5730A) and gas chromatography—mass
spectrometry (GC-MS; Hewlett-Packard GCD). The total lipid extract was derivatised by
adding 2M trimethylsilyldiazomethane for the methylation of polar compounds. In addition
sylylation of the samples was accomplished by using N,O-bis(trimethylsilyl)-
trifluoroacetamide. Thus, the acids from the polar fraction were identified as their methyl
or silyl esters.

Separation of the total lipid extract was achieved using a SE-52 fused silica capillary
column (30 m x 0.32 mm i.d., film thickness 0.25 pm). The column temperature was
programmed to increase from 40 to 100 °C at 30 °C min™ and then to 300 °C at 6 °C min™.
Helium was used as carrier gas at a flow rate of 1.5 ml min™. Mass spectra were measured
at 70 eV ionising energy. Individual compounds were identified by low resolution mass
spectrometry and by comparison with mass spectra libraries (NIST and Wiley). Traces
corresponding to selected homologous series of biomarkers families were obtained by
single ion monitoring (SIM), such as ion at m/z 85 for n-alkanes and ion at m/z 74 for
FAMES (fatty acid methyl esters). Relative compound abundances were calculated by
using the software of the Data Review Chemstation, assuming that a constant relationship
exists between the percentage of the total chromatogram area and the amount of the

corresponding lipid extract.
2.6 Fractionation

The A layer of the **C and N labelled PyOM incubates was separated into different
soil organic matter fractions to obtain a more detailed view about the char degradation and

stabilisation process (Fig. 10).




2. MATERIALS AND METHODS

2.6.1 DOM extraction

The dissolved organic matter (DOM) was extracted after shaking an aliquot of 80 g
of the incubated soil sample with 300 ml deionised water for 15 h. After centrifugation for
30 min at 3500 rpm, the supernatant was decanted, pressure filtered using a 0.45 pm

polypropylene membrane and freeze-dried (Rennert et al., 2007).

2.6.2 Density fractionation

An aliquot of the DOM-extraction residue (60 g) was subjected to density
fractionation with a Na-polytungstate solution (300 ml, density 1.8 g cm™; Kélbl and
Kogel-Knabner, (2004)). The particulate organic matter (POM) was recovered as material
floating on the Na polytungstate solution after centrifugation for 10 min at 3000 rpm. The
obtained POM fraction was separated by using a 20 um sieve. The extraction was repeated
(3 x) and both the light fractions and the mineral residue (sediment) were washed with
deionised water to remove remaining Na polytungstate. Salt removing was complete when
the conductivity of the washing water was smaller than 50 pS cm™ for the sediment and 3
uS cm™ for the POM, respectively. The mineral residue and POM were freeze-dried. The

two POM nparticle size fractions were combined to calculate the POM recovery.

2.6.3 Particle size fractionation

For particle size fractionation, the mineral residue of the density fractionation step
(30 g) was re-suspended in deionised water (mixing ratio: 1:5) and subjected to
ultrasonication with a Branson Sonifier 250 with an energy input of 250 J ml* to
disintegrate the aggregates. The mineral residue was fractionated into gravel plus sand
fraction (5 mm to 63 um) and coarse silt fraction (63 to 20 um) via wet sieving. The finer
fractions were separated into medium silt (20 to 6 pum), fine silt (6 to 2 um) and clay (< 2

pum) by sedimentation in deionised water using Atterberg cylinders and freeze-dried.
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Figure 10: Schematic of conducted fractionation.

2.7 Solid-state **C and >N CPMAS NMR spectroscopy

2.7.1 HF pre-treatment

The soil incubates and particle size fractions were demineralised with HF according
to Goncalves et al. (2003) to improve the sensitivity of the following solid-state **C and
>N NMR spectroscopic analyses. Approximately 5 g sample material was shaken with 50
ml of 10% (w/w) HF for 3 h in a polyethylene bottle. After centrifugation, the supernatant
was removed and discarded. The procedure was repeated five times at room temperature.
The remaining sediment was washed five times with 50 ml deionised water and freeze
dried.
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2.7.2 Solid-state *C CPMAS NMR spectroscopy

All PyOM samples were analysed by using a Bruker DSX 200 spectrometer
operating at a resonance frequency of 50.32 MHz. The cross polarisation magic-angle
spinning (CPMAS) technique (Schaefer and Stejskal, 1976) was applied with a spinning
speed of 6.8 kHz. A ramped *H pulse was disposed during the contact time of 1 ms in order
to circumvent spin modulation during the Hartmann—Hahn contact (Peersen et al., 1993;
Cook et al., 1996). A Pulse delay of 300 ms for PyOM samples was applied, following the
recommendation of Knicker et al. (2005a). Knicker et al. (2005a) showed that the
condensation degree of plant residues charred by vegetation fires is low enough to ensure
efficient cross polarisation, which is required for correct quantification of the spectra.
Depending on the *C content of the samples, between 2000 and 150000 scans were
accumulated. Line broadenings between 10 and 100 Hz were applied. The **C chemical
shifts were calibrated relative to tetramethylsilane (0 ppm) with glycine (COOH at 176.08
ppm). Using the instrument software (XWIN-NMR V2.6), the contribution of the different
C groups to total C was determined by integration of their signal intensity in the respective
chemical shift regions (Knicker et al., 2005a). The regions from 245 to 185 ppm and from
185 to 160 ppm are assigned to carbonyl and carboxyl/ amide C, respectively. Between
160 and 110 ppm, resonance lines of olefins and aryl C are detected. The chemical shift
region between 140 and 160 ppm is assigned to substituted aryl C. Commonly, the region
between 110 and 45 ppm is assigned to O/N-alkyl C. However, in samples with high aryl C
content, the latter dominate the intensity between 110 and 90 ppm (Knicker et al., 2007).
Accordingly, for the PyOM, this region was assigned to originate predominantly from aryl
C signal. Resonances of alkyl C are expected between 45 and 0 ppm. Owing to insufficient
averaging of the chemical shift anisotropy at a spinning speed of 6.8 kHz, spinning side
bands (ssbs) of the aryl C signals occur at a frequency distance of the spinning speed at
both sides of the central signal (300 to 245 ppm and 0 to —50 ppm). Their contributions
were considered by adding their intensities to that of the parent signal as described by
(Knicker et al. (2005a). The ssbs of the carboxyl-C signal contribute to the intensity in the
chemical shift region between 325 to 300 ppm and between 45 ppm and 0 ppm. Because
one ssh of the carboxyl C is superimposed by the alkyl-C signal (45 to O ppm), the integral
of the second ssb in the region of 325 to 300 ppm was doubled and added to the carboxyl-
C main signal. The same ssb integral was subtracted from the intensity of the alkyl C

region.
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2.7.3 Solid-state °N CPMAS NMR spectroscopy

The solid-state >N NMR spectra were obtained using a Bruker DMX 400 operating
at 40.56 MHz. The contact time was 1 ms, and a 90° pulse width of 6.5 ms, a pulse delay
of 300 ms and a line broadening between 50 and 200 Hz were applied. Between 50,000
and 1000,000 scans were accumulated at a magic-angle spinning speed of 4.5 kHz. The
chemical shift was standardised to the nitromethane scale (0 ppm) and adjusted with **N-
labeled glycine (-347.6 ppm). The integrals were assigned to heterocyclic N compounds (-
145 to -245 ppm) and to peptide-like structures (-245 to -285 ppm) according to Knicker
(2000).

2.8 Quantification of C and N groups of incubated PyOM

The total *C and N amount of the incubated PyOM was calculated by mass
balance using the sample weights, their respective total C or N concentrations as well as
their **C or °N abundance given in atom%. The results were corrected for the natural **C
and >N background by subtraction. The latter was determined via control soil incubates
with natural **C and *°N abundance which had been prepared for each time series.

To calculate the amount for each C and N group of the PyOM incubate, the
proportion of the integrated signal area of the respective chemical shift region of the **C or
>N NMR spectra was multiplied by the total **C or *®N amount of the incubate. The
respective amount of each C group of the control soil (Bv) was subtracted from the

respective C group of the PyOM incubate.

The recovery (RC) of the total **C and N amounts from the incubated PyOM in the
soil layers and SOM fractions was calculated by mass balances using the sample weight
(w) and respective total C or N concentrations (c) as well as the **C or **N abundance (Y)

in atom%.
RC = (W X C Y)after X (W X C X Y)_lbefore x 100[%] (1)

The relative recovery (Q) of **C and >N derived from isotopically enriched PyOM of
the mineral fraction was calculated by setting the recovery of the 1M PyOM (RCyy)
treatments to 100% related to the respective 4M PyOM (RCyy) values.

Q =RCym X (RC1pm) " x100[%)]. (2)
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2.9 Statistical analysis and data fitting

Mean values and standard deviations were calculated with Microsoft Excel (2007)
and further statistical analysis was carried out with the software SigmaPlot 2000, version
11.0 (SPSS Inc.).

An one way repeated measures ANOVA was applied to identify significant treatment
effects as a function of time. A Tukey’s honest significant difference test was used to
determine which PyOM fractions and treatments were significantly different from each

other. Statistical significance was assigned at the p < 0.05 level (error probability).

Decomposition of labelled PyOM was described with a two-component model
(Voroney et al., 1989)

y=a x e(—klxtl)_l_ b x e(—kZXtZ) (3)

and using the software SigmaPlot 2000, version 11.0 (SPSS Inc.). Terms a and b describe
the fast and slowly decomposable OM pool, respectively, whereas k displays the turnover
constant rate at the respective time t. This equation allows description of the kinetics of a
two-phase decomposition process. Based on Eq. 3, half-life periods of the labelled

substrates were calculated with
= In2 / k. (4)

The decomposition dynamic of the C groups of the PyOM was described with a first

order decay model
y = ax ek (5)

The data of Knicker and Lidemann (1995) were used to compare the degradation
dynamics of the PyOM with the respective dynamics of fresh unburned rye grass (Lolium
perenne L.). They performed a long-time degradation experiment with comparable

incubation conditions with regard to water content and temperature.

For testing potential correlations between C groups, a Pearson product moment

correlation test was applied. Statistical significance was assigned at the p < 0.05 level.
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3. Mineralisation and structural changes during the initial
phase of microbial degradation of pyrogenic plant residues
in soil

This chapter discusses the influence of charring intensity and plant source material
on the chemical structure of PyOM. Model chars were biotic incubated in order to
investigate the impact of charring degree on the mineralisation dynamic during the initial
degradation stage in soil. A further interest was to test if the supply of a microbial available

co-substrate promotes the PyOM mineralisation.

3.1 Chemical changes in the plant materials during the thermal

treatment

After one minute of thermal treatment of the grass (GrlM) and pine wood residues
(P1M), an increase of the C content and a relative enrichment of N was observed (Table 1).
The latter resulted in a clear decrease of the atomic C/N ratio of the wood char, although
the values are still high. The low N content confirms the minor role of N compounds as
structural constituents of wood chars. In contrast, the narrow atomic C/N ratios of the grass
char underline that in this material such N compounds comprise an important fraction.

Figure 11 shows the solid-state *C NMR spectra of the fresh and charred plant
residues. Most of the intensity in that of the fresh rye grass is observed in the region
assigned to O-alkyl C between 110 and 45 ppm (Table 2). Here, the resonance lines at 64,
74 and 84 ppm are characteristic for cellulose (Maciel et al., 1982). The intensity of its di-
O-alkyl C appears at 105 ppm. A further strong signal is observable in the alkyl-C region
(45 to 0 ppm). According to previous studies, in the present sample this signal derives
mainly from peptides and peptide-like constituents rather than from paraffinic units in
plant waxes (Knicker et al., 1996b). This is supported by the expressed signal at 174 ppm,
which can be assigned to carboxyl and amide C groups (Knicker et al., 1996b).
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Table 2: Relative intensity distribution in solid-state *C NMR (% of total intensity)
associated with heating of rye grass (Lolium perenne) and pine wood (Pinus

sylvestris) at 350°C under oxic conditions.

Carbonyl/
Sample Carboxyl C
245-160 ppm 160-140 ppm 140-90 ppm  90-45 ppm 45-0 ppm

O-Aryl C Aryl C O-Alkyl C Alkyl C

Rye grass 9 2 7 65 18
GriM 10 1 39 12 27
GrdM 1 14 49 6 20

Pine wood 3 5 14 73 4
P1M 6 13 34 38 8
P4M 8 16 67 5 5

The **C NMR spectrum of the pine wood reveals a higher relative O-alkyl C content
than the rye grass. The small peak at 21 ppm together with a weak signal in the region of
carboxyl C is in line with the occurrence of acetate. The higher contents of lignin and
tannins of the wood samples in relation to grass residues is supported by the resonance line
in the aryl C region (Table 2). Typical signals for methoxyl C, aryl C and O-aryl C
associated with lignin are commonly observed at 56 ppm, 131 ppm, and 148 ppm (Hatcher,
1987).

The spectra of both plant chars show an increase in aromaticity with charring time.
Almost half of the total **C intensity derives from aromatic C structures. The remaining
methoxyl C (64 ppm) and O-aryl C (147 ppm) signals in the **C NMR spectrum of P1M
indicate that some lignin-type structures survived the charring process (Fig. 11), which is
in accordance with the relatively high resistance of the lignin backbone towards thermal
oxidation (Sharma et al., 2004). The higher lignin content of the pine wood vs. the grass

material may also be responsible for the smaller C loss during charring (Table 1).

Increasing the charring time to 4 min increased the carbon loss for the pine wood and
grass to 51% and 53%. Concomitantly, the atomic C/N value decreased, supporting

preferential accumulation of N-containing compounds.

The solid-state **C NMR spectra of these more thermally treated chars showed no
signals attributable to cellulose and the main signal at 128 ppm in the aromatic region
confirms that they can be taken as representative of severely charred material. The
aromatic C intensity in the spectrum of P4M is much higher than that in the spectrum of
GrdM (Table 2). The spectrum of Gr4M, on the other hand, reveals a substantial
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contribution of heat-recalcitrant alkyl C (Fig. 11), which may be assignable to cyclic
peptides as they were observed by Meetani et al. (2003) charring peptides at a temperature

between 285°C and 285°C although using a N atmosphere.

Figure 11 includes the solid-state >N NMR spectra of the heat-treated grass
materials. Because of the low N content of the pine-derived PyOM, it was not possible to
obtain their >N NMR spectra (Table 3). The solid-state >N NMR spectrum of the unburnt
grass is dominated by a signal at -257 ppm from amides (Fig. 11 and Table 3). The
resonance lines at -298 ppm and -306 ppm can be assigned to NH groups. A pronounced
signal at -345 ppm is in the chemical shift region of free aliphatic amino groups. With
increasing burning time, the relative intensities of the amide signal and the resonance line
at -345 ppm decrease. The latter completely disappears, indicating the degradation of
proteins and free amino acids. This may be explained by thermolytic degradation of these
compounds or their conversion to heterocyclic compounds (Sharma et al., 2003). The most
important observation in the spectra is the strong increase in the relative signal intensity in
the region of indoles, imidazoles and pyrroles (-145 to -240 ppm; Table 3). This might be
caused by their selective preservation due to their resistance against thermal degradation
or, as discussed above, by their neoformation through rearrangement of amide structures or

peptides under the influence of heat (Knicker et al., 1996b).

Table 3: Relative intensity distribution in solid-state ®N NMR (% of total intensity)

associated with heating of rye grass at 350°C under oxic conditions.

Sample Pl)r:qrilr?:[z/ Pyrrole-N Amide-N Guanidine-N  Amino/ NH**-N
-25 t0-145 ppm -145 to -240 ppm -240 to -285 ppm -285 to -325 ppm -325 t0 -375 ppm
Rye grass 0 3 83 9 7
GriM 4 56 U 3 )
Gr4M 5 64 o5 4 3

As determined from N, adsorption, the specific surface areas of all PyOM samples,
except of P4M are low (around 6 m? g™). The latter shows a significant larger surface area
of 244 m? g* and considerable micropore surface and volume (Table 1). A comparable
trend is observed for CO, adsorption, although here higher values were obtained. Low
specific surface areas of naturally occurring charcoals have also been reported (Kwon and
Pignatello, 2005). However, surface area and pore volume of charcoals depend upon both
the nature of the source material and the respective method of its production and they
increase with charring temperature and time (Pastor-Villegas et al., 2006; Jindarom et al.,
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2007). The increasing pore volume is mainly due to partly devolatilisation of OM (Pastor-
Villegas et al., 2007). This explains the considerably high values obtained for the severely
charred P4M. Because CO, has a higher sorption affinity for coals, it is also frequently
used for surface area measurements. Moreover, the higher temperature, at which the
measurements are performed compared to N, adsorption give a higher kinetic energy to the
gas molecules (de Jonge and Mittelmeijer-Hazeleger, 1996) facilitating CO, molecules to
enter into micropores. Thus, significantly larger micropore areas and volumes are
measured with this adsorption gas. On the other hand, micropores can be partly blocked by
tarry matter or decomposition products formed during the charring (Pastor-Villegas et al.,
2007).

For the PyOM in the present study, it was observed an increase in the micropore
surface area and volume with the degree of burning, when using CO, (Table 1). The
micropore surface of the pine chars is up to a factor of 8.3 greater than for the rye grass
chars. A larger surface area of PyOM may promote the microbial accessibility and thus
increase its degradability. In conclusion, the examples clearly demonstrated that the
different source materials and charring conditions used in the present study resulted in
chars with differences in chemical composition, as well as accessibility of surfaces, both of

which are expected to affect microbial degradation.
3.2 PyOM mineralisation during incubation

The blank value (BV) CO, C-corrected curves determined for the cumulative OC
mineralisation of the PyOM are given in Fig. 12. For the grass and pine chars, the BV
contribution is less than 8% and 25%, respectively. Because of the different C contents of
the PyOM (Table 1), it was necessary to normalise the CO,-C using the corresponding
PyOM-C input for a better comparison. The highest C mineralisation rates were observed
for the grass-derived chars. After the first three days, more than 1% of the initial carbon of
GriM was converted to CO,. At the end of the incubation after 48 days, the value
increased to 3.1% (Fig. 12). The incubated blank soil showed a SOC mineralisation of
2.9% at the end of the incubation, demonstrating that PyOM can be mineralised with rates

comparable to that of SOM during this initial degradation phase.
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Figure 12: Cumulative CO,-C release of PyOM produced from rye grass and pine wood at
350°C without and with co-substrate addition. Values are corrected by subtraction
of CO,-C emission of the blank values. The curves are fitted from the mean values

of up to 5 replicates with a relative standard deviation < 5%.

The stronger thermal alteration of Gr4M resulted in a smaller total C turnover of
2.4%, which is 22% lower than for Gr1M. However, within the first 15 h of incubation,
GrdM was more efficiently mineralised than Gr1M (Fig. 13). During the first 2 h, Gr4M
showed a maximum respiration rate of 0.6 CO,-C mg (C g h)™ which is slightly higher
than that of GrlM [0.3 CO,-C mg (C g h)™]. Therefore, in spite of the higher aromaticity
of GR4M, this sample must contain a fraction which is microbially more available, at least
at the beginning of the incubation. After this short initial response, a second maximum
occurred during the second day, but at this time it was more expressed for GriM [0.27
CO,-C mg (C g h)']. Possibly this is related to alteration of the microorganism
community, but may also be explained in terms of complete consumption of the more

labile fraction, forcing the microorganism to rely on a more stable C source.



3. MINERALISATION AND STRUCTURAL CHANGES DURING THE INITIAL PHASE OF MICROBIAL
DEGRADATION OF PYROGENIC PLANT RESIDUES IN SOIL

0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

. GriM

CO,-C mg (C g h)!

o b b b b b b b b b by Do Daaaa laa g

OOO T rTrr+rrrrrr—.|rrr.1r.rr.r.r—.|rrrrrrr[rr& & |11 1|11 1171
0 10 20 30 40 50 60 70 80 90 100

Incubation time (h)

Figure 13: Changes in respiration rates of grass-derived PyOM during the very early phase
of incubation. Values are corrected by subtraction of CO,-C emission of the blank
values.

Comparable to the grass chars, the pine chars show decreasing mineralisation with
increasing burning degree (Fig. 12), but the effective CO, release is much lower. Only
0.66% and 0.46% of the initial charcoal C of P1M and P4M were mineralised. Likewise, a
higher microbial activity at the beginning of the experiment for the char with the higher
aromaticity is evidenced, confirming that increased charring can result in the production of
a small fraction of relatively easily degradable C compounds. After 30 days, no further
decline in the mineralisation rate was evidenced for all PyOM samples, indicating that this
easily degradable fraction may have been completely consumed.

3.3 Impact of co-substrate addition on char mineralisation

Fig. 12 depicts the respiration curves for the different chars to which a second C
source (fresh rye grass) was added as a co-substrate that was readily available to
microorganisms. As shown for the incubates without co-substrate addition, the grass chars
experienced more intense mineralisation (Fig. 12). Up to 3.4% of GrIMCS was converted
to CO, whereas only 0.8% of PAIMCS was mineralised. It is noticeable that P4CS had a
lower CO,-C release than the blank (BVCS). The comparison of the BV-corrected
mineralisation curves with that of the pure char incubations allows the quantification of a
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potential priming effect. During the first three days after the first co-substrate addition, the
char mineralisation enhanced by 31.9% for GrIMCS and by 22.8% for Gr4MCS in relation
to the incubation with solely char (Fig. 12). This indicates that a more efficient charring
process is connected to a weaker positive priming effect. However, 14 days after the co-
substrate addition, the amount of mineralised C already decreased to values that were only
9.2% and 7.5% higher than those for the respective samples without co-substrates. Thus,
although addition of fresh grass led quickly to an acceleration of the degradation, its
consumption readjusted the turnover rates to values already observed for the pure chars. A
second co-substrate addition resulted in no statistical significant positive priming effect for
the grass chars “incubates” at day 48.

P1MCS reflects a comparable degradation pattern as the grass chars after addition of
the co-substrate (Fig. 12). On the other hand, relative to P4M, PAMCS shows a continuing
decline in total CO, production when compared to BVCS after the first supply of fresh
grass material. This effect may be explained by a char-induced inhibition of the
degradation of the uncharred grass residues, possibly because soluble constituents of the
grass residues diffuse into the char particles. After being adsorbed, they may turn into
material that is physically protected against further mineralisation. Such stabilisation in the
inner voids of char was recently evidenced with a range of organic pollutants (Cornelissen
et al., 2005; Wu et al., 2007). Its occurrence in the present experiment is supported by the
very high microporosity of P4AM obtained from CO,-adsorption, which is up to 8.3 and 3.7
times higher than that of Gr4M and P1M (Table 1), respectively, and the fact that no
micropores were detected from N, adsorption with GrlM, Gr4dM and P1M. The latter
strongly indicates that their micropores are too small or are blocked by organic
decomposition products and therefore not accessible to N, molecules. After the second co-
substrate addition we observe a continuous increase of the microbial activity for PAMCS
(Fig. 12, day 21 to 48), possibly because of higher co-substrate availability after saturation

of the char adsorption places.
3.4 Changes of the chemical quality of PyOM during incubation

Fig. 14 compares the solid-state *C NMR spectra of the untreated and incubated
chars and Table 4 lists the respective BV-corrected intensities for each chemical shift
region. For the grass-derived char treatments, 7% of the total C and for the pine wood
chars, only 5% are attributed to BV. Consequently, the natural organic matter of the soil
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material contributes only slightly to the *C NMR signal of the PyOM. After incubation, it
was found a decrease from 27% to 22% in the alkyl C region for GriM (Table 4).
Furthermore, the shift of the signal at 29.2 ppm to 26.8 ppm (Fig. 14) indicates the
formation of acetyl groups, possibly caused by degradation processes and accumulation of
short aliphatic C chains by microbial modification. The observed alkyl C decrease
corresponds to 56 mg g™ of the bulk char C (Table 5). Comparably, Gr4M reveals a
consumption of alkyl C from 20 to 16% and a pronounced shift of the alkyl C peak from
28.6 t0 22.8 ppm (Fig. 14).

Note that, with the exception of P4M, the relative aryl C content of all samples
shows no major alteration caused by the degradation, but an increasing content of
carboxyl/carbonyl C is evidenced for GrlM, Gr4dM and P4M, supporting the idea that
oxidation occurred (Fig. 14). Independent of the burning time of the grass chars this group
increased to 25 mg g™ and 32 mg g™ of the bulk C for Gr1M and Gr4M at the end of the

experiment.

In spite of the higher aromaticity of Gr4M vs. GrlM, both samples show comparable
carboxyl/carbonyl C contents (14%) after termination of the incubation. This can be
explained by the formation of smaller C clusters by pyrolytic breakdown processes during
the more intense thermal treatment of Gr4M. Such small PyOM clusters could be more
available for microbiological attack, resulting in the observed similar carboxyl/carbonyl C

content.

In contrast to the grass chars, the pine chars exhibit smaller total amounts of alkyl C
that could serve as a potential C source for the microorganisms (Table 2). However,
although P1M contains a high O-alkyl C contribution (38%), very tentatively derived from
fire-unaffected carbohydrate moieties or anhydrosugars, this C source does not increase the
degradation efficiency. For this sample, a loss of 30 mg g of the bulk C was calculated,
which is in the range observed for Gr1M with an O-alkyl C content of 12%. Possibly, in
P1M O-alkyl C is not available for the microorganisms because of its physical protection
within partly charred domains and/or of a low content of available N forms. Note that no

mineral nutrient solution was added in order to simulate natural conditions.
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Figure 14: Solid-state *C-NMR spectra of incubated PyOM without (a) and with co-substrate
addition (b) in comparison to fresh PyOM. Spinning side bands are marked with
asterisk.
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Table 4: Relative intensity distribution in solid-state **C NMR for PyOM produced from rye

grass and pine wood after 7 weeks of incubation.

Sample CCZLZO)S,TI(/: O-Aryl C AryiC  O-AlkyIC  AlkylC
relative distribution (% of total C intensity)®
GriM 13 13 43 9 22
GriMCS 12 13 42 11 22
GrdM 14 16 50 4 16
GrdMCS 15 16 49 3 16
P1M 6 14 36 36 9
P1IMCS 6 14 36 35 9
PAM 14 19 60 2 4
PAMCS 12 19 61 3 4

® Values are corrected by subtraction of blank values calculated on a C balance for each chemical shift

region.

Table 5: Changes in abundances of the different types of C for PyOM produced from rye

grass and pine wood after 7 weeks of incubation.

Carbonyl/
Sample Carboxyl C O-Aryl C Aryl C O-Alkyl C Alkyl C Total loss P
mg (g C bulk)™ ?

GriM 25 15 18 -35 -56 32 A
GriMCS 15 16 10 -15 -60 -34 A
GrdM 32 9 1 -22 -45 -25 B
GrdMCS 38 13 -10 -25 -42 -27 B
P1M 1 12 10 -30 1 -7
P1IMCS -3 15 19 -40 0 -9
PAM 57 36 -71 -22 -4 -4
PAMCS 14 33 -56 -14 -6 1

® Values are standardised to C content of bulk sample; positive value indicates formation; total sum equals

CO,-C loss (mineralisation).

®Values with different letters are significantly different at « = 0.05 as determined by a Tukey’s HSD post hoc
analysis.

A decrease from 67 to 60% in intensity of the chemical shift region of H/C-aryl C
(140 to 90 ppm) was found for P4AM. However, the intensity in the O-aryl C (160 to 140
ppm) region increased concomitantly from 16 to 19%. An explanation for this behaviour
may be a modification of the aryl rings by substitution of aromatic ring C with hydroxyl or
carboxyl groups. Since the total C loss during the experiment was only 4 mg g™* (Table 5),
this indicates that the aromatic ring structures must have been attacked and altered. This is

supported by a total reduction of the aromatic C content of 35 mg g™. As revealed by the
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increase in carboxyl/ carbonyl C contribution of 57 mg g”, this observation is best
explained via opening and partial oxidation of aromatic ring structures (Hatakka, 1994;

Hofrichter et al., 1997) and formation of carboxyl C.

According to the intensity distribution, a considerable fraction of the carboxyl C
must be associated with aryl rings, since the contribution of the other substitutable C
groups is with 6% (Table 4) too low to account for the total amount (14%) of this polar
functional group. Knicker et al. (2005a) showed that the size of the polyaromatic rings in
charcoal produced at 350°C is unlikely to exceed that of naphthacene-like structures with
up to five substituents or clusters of maximal six condensed rings. Assuming a maximal
cluster size of 6 aromatic rings connected by two bridging C (Knicker et al., 2005a), 45%
of the aryl C in the chemical shift region between 90 and 140 ppm is protonated and can be
regarded as substitutable aryl C. This corresponds to 27% of the total C of P4AM. Knowing
that 14% of the total C is assignable to carboxyl C, it can be calculated that almost every
second substitutable aryl C of the cluster is connected to a carbonyl/carboxyl group. These
high carbonyl C contents are in agreement with recent field and laboratory studies
(Brodowski et al., 2005a; Lehmann et al., 2005; Cheng et al., 2006; Liang et al., 2006;
Solomon et al., 2007). It is remarkable that, despite the relatively small mineralisation rates
for the chars, especially for P4M, considerable alteration was observed with respect to the

chemical composition (Table 4).
3.5 Influence of co-substrate addition on degradation level

At the end of the incubation, 50% of the fresh grass residues that were added as co-
substrate were mineralised (Table 6). Consequently, relative to the non-treated samples, the
addition of co-substrate increased the BV to 10% and 8% of the total C for the grass and
pine char, respectively. The low O-alkyl C recovery of 18% at day 48 (Table 6) indicates
that the easily degradable parts of fresh grass residues were preferentially consumed,
leading to a relative enrichment in aryl C and alkyl C. The effective degradation stage of
the CS is supported by a total recovery of carbonyl/ carboxyl C of 184%. In contrast, the
total aryl C amount was not deceased.
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Table 6: Degradation of co-substrate (CS) during incubation.

Carbonyl/

Carboxyl C Aryl C O-Alkyl C Alkyl C Total
Relative intensity contribution (%)
Fresh grass 9 8 65 18 100
Incubated grass 33 16 24 27 100
Total contribution (mg)
Fresh grass 11 11 84 23 129
Incubated grass 21 10 15 17 64
Recovery (%) 184 98 18 76 50

Within the time frame of the incubation, the addition of the co-substrate resulted in
no significant changes in the degradation pattern of the different PyOM samples (Table 4).
It seems that co-substrate addition had no major effect on the char degradation process,
because possible decomposable sources may already be available in the starting PyOM.
This is supported by a preferred consumption of alkyl C with up to 60 mg g™ for the grass
chars and up to 40 mg O/N-alkyl C g* for the pine chars (Table 4). A comparable
observation was reported by Cheng et al. (2006) using manure as co-substrate during 120
days of microbial char degradation. Aside from incompletely combusted sugar residues, a
possible source of microbially usable compounds in the PyOM may be the “water-soluble”
fractions, with its substantial contribution of 3.6% and 3.9% to the total C (Ciy) of GrlM
and Gr4M (Table 7). The signal at 162 ppm in their solid-state **C NMR spectra is
indicative of the presence of low molecular weight acids or carboxyl C directly bound to
aromatic rings. As demonstrated in former studies considerable amount of microorganisms
and fungi are able to survive on such structures as the only energy source (Woo and Park,
2004; Ben Said et al., 2008). The altered PyOM contains such substituted aryl compounds
as shown in Table 4. These compounds could serve as a substrate for microorganisms and

induce a further progressive degradation of the aged PyOM.

Table 7: Relative intensity distribution in the solid-state *C NMR (% of total C) and the total

contribution of PyOM water extracts.

Carbonyl/

Carboxyl C O-Aryl C Aryl C O-Alkyl C Alkyl C total
Relative intensity contribution (%)
GriM 18 6 28 17 32 100
GraM 25 10 34 11 19 100

Contribution to PyOM (%)
GriM 0.6 0.2 1 0.6 12 3.6
GrdM 1 0.4 13 0.4 0.7 3.9
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In contrast, the pine-derived chars delivered only small amounts of water-extractable
organic matter, comprising 0.13% and 0.03% of the Ci of P1M and P4M, respectively.
Those yields were too low to allow the acquisition of usable solid-state **C NMR spectra.
Assuming that this fraction is preferentially consumed by the microorganisms, these low

yields are in line with the lower CO; release during incubation.

3.6 Implication of structural properties on the degradation of PyOM in

soil

Subjecting different vegetation residues to increasing charring time showed that both time
and source affect the chemical structure of the char products, confirming the high degree of
heterogeneity for PyOM (Knicker, 2007). Comparable to the previous study (Baldock and
Smernik, 2002), greater severity of the fire and limited oxygen supply go along with an
increase in aromaticity. However, the presence of peptide-like structures in the source
material is connected to the contribution of alkyl C in the respective charred material
(Knicker et al., 2008a), as observed by comparing the pine and grass chars (Table 2). More
severely charring of peptides results in formation of heterocyclic compounds (Knicker et
al., 1996b) (Table 2). The solid-state NMR spectroscopic analyses clearly showed that
these differences in the alkyl C and aryl C content affect the decomposability of the PyOM.

Baldock and Smernik (2002) analysed the degradability of chars produced from
Pinus resinosa sapwood at increasing charring temperatures and confirmed that a higher
aromaticity of char reduces the mineralisation rate. However, GrlM and P1M were
produced under the same charring conditions and have also comparable aryl C content
(Fig. 11), but their effective char mineralisation reveals strong differences, indicating that
aromaticity is not the only factor controlling the extent of CO, release. Although P1M
contains more O-alkyl C than Gr1M, the first experienced slower mineralisation. Possibly,
the O-alkyl C was protected from microbial attack by being within the partly charred lignin
network (Knicker et al., 2008) or the condensation degree of the aromatic domains is
higher. Alternatively, the lower N content of the pine char may limit the microbial activity.
However, here one has to bear in mind that, as indicated in the solid-state >N NMR
spectra, even for the grass char, the N is mostly immobilised in heterocyclic structures that
are generally assumed to have low microbial accessibility.

The grass-derived PyOM samples were subjected to microbial attack of the heat
resistant aliphatic C region. However, Cheng et al. (2006) observed disappearance of the
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aliphatic C after incubation at 70°C, also under sterilised conditions, which was more
pronounced than that at 30°C with microbial activity, demonstrating that oxidation may
also occur under abiotic conditions. This implicates that the observed degradation of
PyOM may be attributed to biotic and abiotic oxidation. The observed formation of
carbonyl/carboxyl groups during the incubation of PyOM can increase the water solubility
and thus leaching into deeper soil horizons and loss by way of transport from soils to
aquatic systems. Further, the decreasing hydrophobicity by these polar groups makes the
PyOM more available for further microbial attack, and also for adsorption to the mineral

phase, and thus for stabilisation.
3.7 Role of the priming effect for char degradation

Hamer et al. (2004) reported relative priming effects of up to 100% even after 60
days by incubating chars at 20°C with supplements of glucose. The present study indicates
also a cometabolic process occurring directly after the first addition of the co-substrate on
the seventh day of incubation, but the second addition showed no clear effect and at the
end of the experiment only a trend of higher metabolic activity caused by the co-substrate
was visible. One explanation for this observation is the competition of microorganism
groups with different surviving strategies (Fontaine et al., 2003). According to Fontaine et
al. (2003), a potential priming effect results from the competition for energy and nutrient
acquisition between microorganisms specialised in the decomposition of fresh organic
matter (r-strategist) and those feeding on humified SOM (K-strategist). Within the short
period of the experiments, only the r-strategists will develop quickly by decomposing the
easily available co-substrate or uncharred plant remains and leaving partly degraded
residues. Fontaine et al. (2003) claim further that these residues can be used by the K-
strategists, giving them an advantage against the r-organisms when the easily available
substrate is almost completely consumed. Assuming that the K-strategists are more
efficient at degrading the polymeric structure of char, they will be the main agent
responsible for char mineralisation at an advanced stage. However, in samples with co-
substrate addition, they will have an additional source of substrate composed of partly
degraded residues left by the r-strategists. This is in line with the observation that at the
end of the incubation, the co-substrate was depleted in easily usable compounds. The better
adaptation of the K-strategists to the remaining substrate can also explain the higher
accumulated C mineralisation during the last two weeks of the incubation in the samples

with co-substrate addition.
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3.8 Elucidation of residence times

The mean mineralisation rate for the last 10 days was used for elucidation of possible
a residence time for the PyOM without co-substrate addition. Therefore, the data were
fitted with a two-component first-order decay model. During this part of the incubation, no
further decline in respiration rate was observed. Relatively short mean residence times of
14 and 19 years were obtained for the charred rye grass residues GrlM and Gr4M and up
to 56 years for the pine wood chars. The findings are in agreement with those of Hamer et
al. (2004), who determined residence times for charred straw residues and charred wood of
39 and 76 years, respectively. However, these are minimum turnover times because they
are based on a 7 week incubation under controlled aerobic conditions. Such conditions will
certainly not be available in natural environments. Cold and dry periods or anaerobic
conditions in sediments can result in much slower degradation rates or even cause their
preservation over a long term. Although not definitively known, it is likely that most
microorganisms which oxidise the aromatic structure of char are lignin degraders, which
need oxic conditions to activate their enzyme systems (Hatakka, 1994; Hofrichter et al.,
1997). This could explain the high age of some PyOM findings in sediments and buried
soil horizons with mostly anaerobic conditions (Schmid et al., 2001; Cao et al., 2006).
However, preservation via oxygen deficiency is also a common feature of organic
compounds other than char. Consequently, PyOM may not necessarily play such an
important role as a long time C sink in the global C cycle in all environments. The
relatively fast turnover times of plant chars estimated in the present and other studies
(Hamer et al., 2004) could contribute to the unexpectedly low PyOM contribution in
different field studies of fire affected sites. Dai et al. (2006), for example, described only
minor effects on the size of the soil BC pool in a temperate mixed grass savannah,
although the site was affected by 2 to 3 fires. Czimczik et al. (2003) noted that PyOM was
not a major fraction of the soil OC pool in unburned or burned forest Siberian pine forest
floors and attributed this either to rapid in situ degradation or possible relocation. The field
work of Bird et al. (1999) supports the turnover times obtained for the incubations,
indicating that they may be valid under natural environment conditions. They predict for
well-aerated tropical soil environments that charcoal can be significantly degraded, even in

a short time span.

Additionally, the mineralisation kinetic of the pure PyOM confirms that microbial

degradation of severely fire-altered residues can occur already in the initial post-fire phase
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even without supply of co-substrate. This further indicates that, even after intensive fires
leaving almost no thermally unaltered plant residues, the newly developed microorganism
communities need no additional nourishing substrate, at least at the very early post-fire

phase.
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4. Modification of plant biomarkers by charring and during the
initial phase of biodegradation of pyrogenic organic matter
in soil

The present chapter focuses on the effect of charring on the biomarker and lipid
composition of different plant materials. Further, the stability of those biomarkers and
lipids against biotic degradation during 7 weeks of incubation of the respective plant chars
in soil was investigated. Until now, knowledge is missing how decomposition of PyOM
affects the nature of thermally altered lipid fractions and if they can used as an indicator for
PyOM determination in soil.

4.1 Influence of charring on lipid content

The lipid contents of the fresh rye grass and the pine wood are comparable with 67
and 62 mg g and typical for these plant materials (Wiesenberg et al., 2009). The
respective PyOM extracts indicate a consecutive decrease in total lipid yield with
prolonged charring time (Table 8). The grass-derived PyOM contains up to 3.6 times more
lipids than that of pines. The lowest lipid content was determined for the more charred pine
(P4M) with only 3 mg g™*. The lower amount of lipids detected for the PyOM compared to
that of the fresh plant material is better explained by cracking and volatilisation losses

during the charring process (Yokelson et al., 1997; Simoneit and Elias, 2001).
4.2 n-Alkanes pattern of the fresh and incubated PyOM

The total abundance of the n-alkanes is with 55 pg g™ in the same range as reported
by Wiesenberg et al. (2009) for fresh rye grass. Untreated rye grass straw (GrOM) is
characterised by a predominance of long chain odd numbered n-alkanes in the range of Cys
to Cs3 and Cy9 as the dominant homologue within the aliphatic hydrocarbons (Fig 15). The
observation is well established for higher plants and described in detail by Eglinton et al.
(1962) and Eglinton and Hamilton (1967). The fresh pine wood (POM) showed higher
contributions of mid chain n-alkanes maximising at C,9 and smaller long chain n-alkanes
contents (Cys to Ca3; Fig. 15). This points to a smaller contribution of epicuticular waxes in
the pine wood. The grass-derived PyOM reveals an enrichment of the n-alkanes fraction
with factor 3.6 (GrlM) and 2.6 (Gr4M) relative to the fresh grass (Table 8). The higher
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content of n-alkanes is attributed to a selective enrichment caused by higher thermal
stability compared to other plant components and a possible synthesis by breakdown
processes of other lipid fractions, e.g. the decarboxylation of fatty acids (FA). The
molecular ratios of n-alkanes, in particular the average chain length (ACL) and the carbon
preference index (CPI) decrease with prolonging charring time for the grass-derived PyOM
(Table 8). This means that the relative predominance of long chain odd numbered n-
alkanes declines for the respective PyOM and larger amounts of mid chain even numbered
n-alkanes (Cjg to Cys) are present. The latter is caused by thermally induced break down
process of long chain odd numbered n-alkanes which was also observed by Gonzéles-Pérez
et al. (2008) in fire-affected soils from Andalusia (Southern Spain). The thermal
degradation is confirmed by the decrease of CPliong (C25 to Csy) from 8.2 to 1.2 and the
shift in the short to long n-alkanes ratio Ry, from 0.5 to 4.1 (Table 8). The dominance of
even homologues caused by thermal degradation is also reported by Wiesenberg et al.
(2009) for grass and by Almendros et al. (1988), Tinoco et al. (2006) and Eckmeier and
Wiesenberg (2009) for soils.

During the 7 weeks of aerobic incubation in soil, the cumulative content of n-alkanes
of the grass-derived PyOM was reduced. The recovery is with 61% for the Gr1M incubate
(GriMn) lower than for GrdM . with 85% (Table 9). The higher recovery for GrdM
may be explained by physical entrapment. The ACL of Gr1lMy is two carbon homologues
shorter than for the fresh grass PyOM, indicating degradation of long chain homologues (>
Ca6) and/or biosynthesis by microorganisms (Fig. 15). The observation is reflected by
increasing Ry ratio (Table 9). The CPI index for the incubated grass-derived PyOM is in
the same range between 0.9 and 1.1 than for the fresh PyOM (Table 9).

Ambles et al. (1994) performed a biodegradation study of pure eicosane (C,o) added
to a rendzina soil and reported a faster disappearing by 71% after one week and 89% after
8 weeks in contrast to the high Cy recovery in the present study (Fig. 15). The authors
found out that the mineralisation of eicosane was a limiting process counting only 25% of
the added Cy. The decrease was mainly due to biotransformation processes or transfer into
other soil organic matter fractions. The observed decline of n-alkanes fraction of the PyOM

incubates may be a combination of these processes.

The incubated pine chars showed in comparison with the grass chars a different
modification of the n-alkanes. In general, the recovery is 2 to 3 times higher compared to

the grass-derived PyOM (Table 9). However, the content of the total n-alkanes of the fresh
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pine chars is up to 7 times lower than that of the grass-derived chars (Table 8). Especially
octadecane (Cyg) and the mid-chain homologues in the range C,;, to C,s showed an increase
(Fig. 15). The observed alteration is comparable for both pine chars, only the abundance of
the n-alkanes is reduced by the factor 2.2 for PAM,. The unexpected n-alkane formation
may be explained by biosynthesis of mycelial hydrocarbons. A fungus-like exhalation of
the char incubates supports the growth of mycelium. Generally, fungi biomass contains n-
alkanes in the range from Cy5 to Css with the predominance of long-chain Cig.30
homologues (Merdinger and Devine, 1965; Merdinger et al., 1968; Jones, 1969) which is
in agreement with the observed n-alkane formation. Marseille et al. (1999) interpreted also
large concentrations of Cys and C,; n-alkanes of decomposed forest litter layers as the

result of microbial production most probably by fungi.

The study reveals that the n-alkane amount of PyOM can be quickly reduced as
shown for the grass chars. However, a modification and synthesis is also possible due to
microbial activities during the degradation process. The plant source material and thus the
chemical composition of the respective PyOM seems to have a strong influence on this
process. Eckmeier and Wiesenberg (2009) propose the occurrence of short-chain n-alkanes
(C16-20) In ancient soils to use as molecular marker for prehistoric biomass burning.
However, the present study indicates that this may only be valid if microbial activities can
be excluded. Otherwise, thermally-altered and microbially-derived n-alkanes may be
difficult to distinguish. In this context, the study of Kuhn et al. (2010) provides a further
source of short chain n-alkanes with an even to odd predominance (EOP) in Australian
woodland and grassland soils. They postulated that the origin could derive from vegetation,
containing short chain n-alkanes (C14-20) with pronounced EOP. Such short chain n-alkanes
were not identified for the used plant species of this study.
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Figure 15: Abundances of n-alkanes from rye grass and pine wood and the respective fresh

and incubated PyOM.
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4.3 Free fatty acid pattern of the fresh and incubated PyOM

The free FA fraction of the fresh plant materials is mainly composed of saturated and
mono- as well as di- and tri-unsaturated straight-chain homologues (Fig. 16). The total FA
abundance of the fresh rye grass is 15.5 times higher than that of the pine wood (Table 8).
The FAs palmitic acid (Cig0), linoleic acid (Cis:2) and a-linolenic acid (Cig:3) were highly
abundant in fresh grass with 39% of the total ion currency (TIC), constituting 87% of FA
extracted from rye grass (Fig. 16). This observation is in line with the findings of previous
investigations of the FA abundance for grasses (Wiesenberg et al., 2004; Jansen et al.,
2006; Dungait et al., 2010). Comparably, the FA distribution of the pine wood is
dominated by Ci;6 and C;g chains. These mid-chain compounds are ubiquitous in living
biomass (Jaffe et al., 1996). The content of FA is with 639 pg g™ in the range reported by
Willfor et al. (2003) for Scots pine sapwood. In contrast to the n-alkanes, the FAs of the
fresh materials are characterised by a typical even to odd C-number predominance with a
CPI of 24.5 (rye grass) and 40.6 (pine).

During the charring process, the amount of FA decreased by a factor of 8.1 and 3.8
for GrdM and P4M. In general, the unsaturated FAs are more depleted in relation to the
saturated counterparts (Fig. 16). With prolonging charring time, the contribution of the
latter to the FA fraction reveals a sharp decline from 57% to 8% for the grass char (Table
8). Especially, linoleic acid (Cis:2) and o-linolenic acid (Cig:3) are depleted in the more
severely charred GrdM (Fig. 16), whereas oleic acid (Cyg.1) is still present. An enhanced
thermal decomposition with an increasing number of double bounds was also confirmed by
the pyrolysis study of Ushikusa (1990). The relation of Cig. to the unsaturated counterparts
Cig:1-3 displays a relative enrichment of saturated FA Cyg.0 With increasing charring degree
(Table 8). It can be concluded that severely charred plant materials will be depleted in
unsaturated FA homologues. The increasing ratio Rea ¢ Of the saturated mid and short-
chain FA (Cio-20) related to the long chain saturated FA (C,1-28) indicates the relative
enrichment of mid chain homologues with prolonging charring time most likely due to

cracking of carbon bonds (Table 8).

The reduction of the recovery of saturated FA to 72% for Gr1lM and 66% for Gr4M
points to their degradation and transformation to other soil organic matter groups (Table 9).
The unsaturated FA followed the same trend. Comparable modification of FA occurred for
the different grass chars, showing that for this material the burning degree has no visible

impact on the degradation pattern (Fig. 16). In contrast, the pine chars experienced a


http://en.wikipedia.org/wiki/Alpha-linolenic_acid
http://en.wikipedia.org/wiki/Alpha-linolenic_acid
http://en.wikipedia.org/wiki/Oleic_acid

4. MODIFICATION OF PLANT BIOMARKERS BY CHARRING AND DURING THE INITIAL PHASE OF
BIODEGRADATION OF PYROGENIC ORGANIC MATTER IN SOIL

formation of FA with enrichment factors of 2.7 and 4.6 for the saturated FA (Table 9). The
largest increase was found for FA Ci6 and the C;3 homologues (Fig. 16). An enrichment
factor of 2.3 was detected for the FA Cig.1 0of the P1M incubate. The observation is in line
with the detected increasing n-alkanes abundance and may be due to biosynthesis for
example by fungi that are using the char as growing substrate. This assumption is
supported by the fact that the FA composition of mould fungi is also dominated by
saturated and unsaturated FA with 16 and 18 carbon atoms (Foppen and Gribanov, 1968;
Rambo and Bean, 1969; Cooney and Proby, 1971). Note that the more severely charred
PAMin shows a more expressed FA resynthesis compared to P1Mi with enrichment
factors of 3.1 and 3.2 for Cy60 and Cjg.o, respectively (Fig. 16). During biotic incubation it
was observed a more efficient oxidation of aryl structures in P4M incubates than of those
in the less charred PyOM (Chapter 3.4; Hilscher et al. (2009)). This supports the idea of a
higher microbial activity for PAM;.. The molecular ratio ACL and CPI of all incubated
PyOM is in the same range as for the fresh ones. Only the reduced ratio Rea ¢ indicates an
enrichment of long chain FA C.y. Gonzéles-Pérez et al. (2008) reported a comparable
trend to increase Rea o1 after forest fire in soil. The authors describe a trend to reach the
initial values of the control soils after 5 yrs. The present incubation study can explain that
the latter is attributed by biotic in situ processes because no fresh plant material was added.
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Figure 16: Abundances of fatty acids from rye grass and pine wood and the respective fresh
and incubated PyOM.

4.4 Degradation of biomarkers for plant source material and biomass

burning

The lipid extract of the fresh pine wood (POM) contains biomarkers such as resin
acids (abietic acid, dehydroabietic acid, 7-Oxodehydroabietic acid, primeric acid; Table
10) which are typical for conifers (Willfor et al., 2003; Valentin et al., 2010). In total, the
resin acids account for 18.6% of the TIC, whereas dehydroabietic acid is the major resin
constituent with a proportion of 70.2%. Stilbene derivates are with 12.5% of the TIC the
second main compound of the pine wood extract. The occurrence of the coniferyl alcohol
vanillin, the primary aromatic alcohol monomer of gymnosperm lignin is a further typical

marker for pine wood.
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Table 10: Specific biomarker abundances of fresh and charred plant materials and respective

recovery from the incubated PyOM.

Sample Vanillin Resin acids® Levoglucosan®

TIC (%)° RC(%)"  TIC (%)° RC(%)"  TIC (%)° RC (%)"

GroM - - - - - -
GriM - - - - 3.6 0
GrdM - - - - 1.7 0
POM 2.2 - 18.6 - - -
P1M 22.7 8 1.0 149 17.2 23
P4M 0.3 0 35 23 2.2 85

a Conifer biomarker (sum of abietic acid, dehydroabietic acid, 7-Oxodehydroabietic acid and primeric acid).
b Indicator for biomass burning.
¢ Percentage of the total ion chromatogram (TIC) area of the fresh PyOM.

d Total recovery of biomarkers for the incubated PyOM.

Already after 1 min of charring only a small amount of dehydroabietic acid derivates
and no other resin acids or stilbenes were detected for the pine char (Table 10), indicating a
low thermal stability of these conifer biomarkers. The TIC of the P1M char shows a strong
relative accumulation of vanillin with 22.7% (Table 10). This is in agreement with the
study of Hilscher et al. (2009) (Chapter 3.4) reporting an accumulation of methoxyl C and
O-aryl C signals in the *C NMR spectrum of PIM and confirms former findings
demonstrating that some lignin derivatives survives the charring process (Knicker et al.,
2008a). The signal of vanillin completely disappears in the chromatogram of the sample
after 4 min of charring, indicating a complete demethoxylation of the lignin structures.

Levoglucosans are detectable in all fresh PyOM, whereas P1M has with 17.2% of the
TIC the highest contribution of all PyOM (Table 10). The grass-derived PyOM contains
smaller contributions of LG. With prolonging charring time (4 min) the total amount of LG
is decreased by 86.1% and 97.6% in relation to the respective PyOM 1M for the rye grass
and the pine wood, respectively. This indicates that severely burnt plant material can be
depleted in LG. The observation is in line with the study of Kuo et al. (2008) who detect
LG only in low temperature char (150-350°C).

The content of resin acids of the pine-PyOM incubates shows no clear trend during
incubation. Only for the P4M incubate, degradation was observed which was indicated by
small recovery of 23% of the resin acid amount occurring in the fresh char. An elimination

of resin acids by 80% after treatment with various white-rot fungi for 4 weeks was



4. MODIFICATION OF PLANT BIOMARKERS BY CHARRING AND DURING THE INITIAL PHASE OF
BIODEGRADATION OF PYROGENIC ORGANIC MATTER IN SOIL

described by Dorado et al. (2000) identified in acetone extractives of Scots pine sapwood.
White-rot fungi could be also responsible for the degradation of resin acids of the PyOM

that survived the charring.

The vanillin residues of the pine chars were efficiently decomposed during the
incubation period of 7 weeks. Only 8% of the initial amount was recovered for the P1Mjnk
and the small initial content of PAM was completely degraded (Table 10). White-rot fungi
attack efficiently lignin structures (Blanchette, 1991; Hatakka, 1994) and may be

responsible for the observed loss.

The marker for charring of cellulose LG was completely decomposed for the grass-
derived PyOM incubates and the most LG containing P1M revealed a loss by 77% (Table
10). Environmental studies dealing with the fate of LG in soils and sediments are rare.
However, microbial laboratory studies confirmed that LG is fermented and metabolised by
yeasts and fungi (Kitamura et al., 1991; Prosen et al., 1993). In this line, Xie et al. (2006)
isolated 26 types of LG-assimilating microorganisms from four types of soil in China. This
indicates that the use of LG as a tracer for burning in soil may lead to underestimation
because under optimal environmental conditions of the laboratory incubation it was rapidly

lost.
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5. Degradation of *°C and N labelled grass-derived PyOM,
transport of the residues within a soil column and
distribution in soil organic matter fractions during a

microcosm experiment

As descripted in chapter 3, PyOM was efficiently degraded during a short-time
incubation. The intention of this study is to examine the degradation potential of PyOM on
a long-term scale. For understanding the environmental cycling of PyOM it is important to
quantify potential translocation and redistribution processes. Isotopic labels were used to
determine the partitioning of PyOM into different SOM fractions and to trace the vertical
movement of PyOM residues in a soil column. The availability of a co-substrate on the

mineralisation, redistribution and transport of PyOM was also considered.

5.1 Characterisation of the isotopically labelled grass material during

thermal treatment

After 1 min thermal treatment, PyOM 1M showed a slight increase of the C
concentration and a clear relative enrichment of N (Table 11). A longer charring time of 4
min resulted in a C loss of 66%. The declining atomic C/N values in the PyOM are in line
with a preferential accumulation of N, supporting the importance as a PyOM component of
the latter. The proportion of NH;* N in the total N of the PyOM was, with up to 0.3 g 100
g*, very low (Table 11), allowing the conclusion that most N input in the incubation study
represents organically bound N. The *C and *°N losses during the charring were slightly
lower than the total C and N losses (Table 11). This relative isotopic enrichment was
significant (p <0.001) and may be a result of to the kinetic isotope effect, which results
from a lower reactivity of isotopically heavier compounds. Studies dealing with the
influence of burning on the **C signature of char showed conflicting results (Bird and
Grocke, 1997; Czimczik et al., 2002). Turekian et al. (1998) similarly observed an
enrichment of *°N in burnt residues relative to the original vegetation. They suggested that
different N pools of nitrogenous compounds were accessed at different temperatures of
heating. The authors postulated that the initial >N enrichment of the charred residual
material could be caused by the volatilisation of N containing free ammonia within the

plant material or the deamination of free amino acids. With increasing charring this N pool


http://www.dict.cc/englisch-deutsch/kinetic.html
http://www.dict.cc/englisch-deutsch/isotope.html
http://www.dict.cc/englisch-deutsch/effect.html
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becomes enriched in °N as N is preferentially lost through kinetic isotope effects. A
second pool of N could be representative of bound amino acids which require the
increased heat in order to take place for the combined hydrolysis and deamination reaction.
The observed significant >N enrichment with increasing charring intensity in the present
study supports the explanation of Turekian et al. (1998). The charring of the labelled grass
material resulted in PyOM with an isotopic contribution of 25.2 atom% (**C) and 66.0

atom% (*°N) allowing an effective tracing in the soil during the incubation.
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Figure 17 displays the **C NMR spectra of the fresh and charred rye grass residues.
Most of the intensity in the spectrum of the fresh rye grass is in the region assigned to O/N-
alkyl C between 110 and 45 ppm (Table 12). A further strong signal is observable in the
alkyl-C region (45 to 0 ppm). According to a previous study (Knicker et al., 1996b), it
derives mainly from peptides and peptide-like constituents rather than from paraffinic units

in plant waxes.

1 1 1 1 1 1 1 1 ! !
100 0  -100 ppm 0 -100

_400 ppm

-300

I 1 1 T
300 200 -200
Figure 17: Solid-state **C NMR and N NMR spectra of fresh rye grass (Lolium perenne L.)
and charred residues produced under oxic conditions for 1 (PyOM 1M) and 4 min

(PyOM 4M) at 350°C. Spinning side bands marked with asterisks.
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The spectra of the chars show an increase in aromaticity (signal between 160 and 90
ppm) with charring time, although a high contribution of alkyl C (45 to 0 ppm) was still
detectable. Considering the high peptide content of the source material, the signal is
assigned to thermally altered, but relatively heat resistant, products of proteinaceous
material (Knicker et al., 2008a). The *3C NMR spectra of the more thermally treated char
revealed no signals attributable to cellulose or carbohydrate. This, and the fact that the 128
ppm signal in the aromatic region dominates the spectrum, confirms that they can be taken
as representative of severely charred material. The *C NMR spectra of the grass-derived
PyOM produced for the respiration experiment (Chapter 3.1) are quite similar in general
appearance and even relative areas, showing acceptable reproducibility in the preparation
of the PyOM.

To test the reproducibility of the intensity distribution, the solid-state **C NMR
spectra of the PyOM, aliquots of the sample material were measured five times. The total
standard deviation determined for each C group is < 1% (Table 12), which confirms the
good reproducibility for the NMR technique. This is in line with other recent SOM-related
NMR studies (Dieckow et al., 2005; Knicker et al., 2005b).

The N NMR spectrum of the unburned grass shows a signal at -257 ppm, typical
for amide N (Fig. 17 and Table 12). With increasing burning time, its relative intensity
decreases, which can be explained by thermolytic degradation of these compounds or their
conversion to heterocyclic compounds (Almendros et al., 2003). The latter is confirmed by
the strong increase in the relative signal intensity in the region for indoles, imidazoles and
pyrroles (-145 to -240 ppm; Table 12). A detailed description of chemical modifications

during the thermal treatment of plant material is provided in chapter 3.1.
5.2 Reproducibility of PyOM recovery

Although the availability of labelled plant material was limited, the reproducibility of
label recovery was tested for the PyOM samples incubated for two months. For the A layer
of the soil column, the absolute deviation for the **C and *°N recovery ranged between 1%
and 4%, corresponding to a relative deviation < 4% (Table 13). The reproducibility of the
respective sub-layers was comparable. For all samples, the total deviation was between
0.0% and 0.3%. The PyOM recovery for the SOM fractions from the A layer showed
comparably good reproducibility. The good reproducibility underlines the high analytical
sensitivity with highly isotopically enriched PyOM. In particular, the recovery of the
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PyOM, even for fractions where it occurred only in low abundance, was improved with
this technique. Because of the use of homogenised sample material and controlled
laboratory conditions for the incubation experiment, the experimental design discharges
the scientific requirements. This is in line with the results of a PyOM respiration study by
Hilscher et al. (2009), who showed that the relative deviation of 5 replicates was < 5%
(Chapter 3.2).


http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=requirement
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Table 13: Reproducibility of recovery of **C and **N from isotopically enriched PyOM from 2
month incubated samples (mean values calculated from duplicates).

PyOM? PyOM? recovery (%)
sample Bc N
A layer 1M°® 91+3 101+ 4
4M' 81+2 81+1
B layer 1M 0.3+0.0 1.3+£0.2

4M 06+0.0 1.1+0.0

C layer 1M 0.3+0.0 0.8+0.3
4M 04+0.1 1.0+£0.1

Outflow 1M 06+0.1 06+0.2
iM 04+01 04+01

Sum 1M 93+3 103+ 4
4iM 82+2 84+1

SOMP factions of A layer
DOM® M 0.2+£0.1 1.0+£04
4aM 0.1+£0.0 06+0.1

POM¢ 1M 70+3 84+4
4M 68 +1 65+0
Mineral phase 1M 11.3+£0.1 153+04

4M 123+0.3 16.3+0.8

Particle size fractions

5000-63 um M 0.0+0.0 0.0+0.0
63-20 um 1M 01+01 0.0+00
20-6.3 um 1M 03+0.1 02+0.1
6.3-2 um 1M 21+05 21+0.8
<2 um M 10.2+£05 12.3+£0.9
5000-63 pm 4M 0.0x£0.0 0.0+0.0
63-20 um 4M 0.0x£0.0 0.0+0.0
20-6.3 pm 4M 03x0.1 02+0.1
6.3-2 um 4M 25+01 33%0.2
<2pm 4M 10.5+0.3 144+17

? Pyrogenic organic material.
> Soil organic matter.

¢ Dissolved organic matter.

¢ particulate organic matter.
¢ Charring time 1 min.

f Charring time 4 min.
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5.3 Recovery of *C and N labelled PyOM in soil column

The sum of the *C recoveries from the three sub-layers indicates a loss of PyOM,
which continuously increased with prolonged incubation time (Fig. 18). This is best
explained by the release of **CO, during PyOM degradation. After 20 months incubation,
between 65% and 73% of the initial *C input was recovered. Co-substrate applications did
not enhance PyOM mineralisation (p 0.168; Fig. 18). It seems that co-substrate addition
had no major effect on the extent of PyOM loss, possibly because decomposable sources
were already available in the starting PyOM. This is in line with the 2 month, high
resolution respiration study (Hilscher et al., 2009) using similar PyOM (Chapter 3). The
increasing charring degree resulted in no significant decrease in the mineralisation of
PyOM (0.428 < p < 0.772). After 28 months, the recovery of *C was only between 62%
and 65%. The respective N recoveries followed the same trend but tended to be slightly
higher (between 67% and 80%; Fig. 18). This is in line with a relative enrichment in N
compounds. To explain the N losses, one has to bear in mind that N could only leave the
soil column as gaseous emissions. Thus, some of the N compounds must have been
mineralised to ®NO;s and subsequently denitrified to *°N,O, **NO and **NO, (Yamulki
and Jarvis, 2002; Pinto et al., 2004). However, for microbial denitrification, alternate
aerobic-anaerobic conditions are favourable. In fact, the soil columns were adjusted to a
soil moisture content of 60% WHC which provides water-filled pore space, allowing this
process.

The study reveals quick mineralisation rates for PyOM that are unexpected with
respect to the commonly assumed recalcitrance of PyOM. However, Nguyen and Lehmann
(2009) found comparable mineralisation rates for BC produced from corn (Zea mays L.) at
a charring temperature of 350°C. They calculated a C loss of up to 21.2% during the first
year of incubation, which was performed under comparable conditions to the present study.
In contrast to the present results, the incubation study of Kuzyakov et al. (2009), who used
Y4C-labelled grass-derived char in pure sand, revealed a lower decomposition rate of 0.5%
BC per year, possibly because the material experienced more intense chemical alteration
after 14 h charring. This difference supports the idea that charring conditions can affect the
degradability of PyOM.

The observed fast turnover rates of PyOM in the present work could explain the
unexpected small char contribution found by the field study of Dai et al. (2006). The

authors described only minor effects on the size of the soil BC pool in a temperate mixed
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grass savannah, although the site was affected by 2-3 fires. Comparable short residence
times were obtained for Russian steppe soils where the BC stocks decreased about 25%
over a century (Hammes et al., 2008). In this line, the study of Bird et al. (1999),
examining sandy savannah soils, predicted for well aerated tropical soil environments that
charcoal can be significantly degraded, even over a short time span. Based on the field
study findings it can be concluded that the observed fast PyOM mineralisation rates of this
study can also occur under natural conditions and PyOM cannot be assumed to be

recalcitrant in all soils.
5.4 Relocation of PyOM in soil column

Isotopic measurements indicate that up to 2.3% of the **C PyOM was found for the B
soil layer of the 4MCS treatment (Fig. 18). The fast initial vertical movement during the
first 2 months may be explained by direct leaching of *‘water-soluble” fractions produced
during the charring process and remaining in the PyOM (Table 7; Hilscher et al. (2009)). It
is also possible that small clay-sized PyOM particles were physically translocated, since

Skjemstad et al. (1999) showed that >90% of soil char occurs in the <53 um fraction.

PyOM 4M and PyOM 1MCS showed a comparable or higher migration potential
(Fig. 18) than PyOM 1M and PyOM 4MCS. This is remarkable because of the larger
contribution of aromatic compounds, which in chars is commonly assumed to be
hydrophobic and thus less mobile. A substitution of aryl C with polar functional groups as
a result of degradation processes, as described by Hilscher et al. (2009) (Chapter 3.4) could
be an explanation. Alternatively, the isotopic label in the deeper layers may derive from
small C clusters formed by pyrolytic breakdown during the more intense thermal treatment
(Czimczik et al., 2002; Knicker et al., 2005a).
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Figure 18: Recovery of *C and N labelled PyOM in the soil layers A (0-2 cm), B (2-5 cm)
and C (5-8 cm) as a function of incubation time. Values corrected by subtraction of
natural **C and N background. (1M, pyrogenic material from charring time of 1
min; 4M, pyrogenic material from charring time of 4 min; CS, addition of fresh
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rye grass as co-substrate; BV, blank incubated without PyOM addition)
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In comparison to *3C, the >N PyOM recovery was 5 to 10 times higher in the B layer
after 12 months incubation, which points to a preferential transport of N containing
compounds (p < 0.001). With progressive incubation, a clear increase of the °N label was
revealed for the B layer (Fig. 18). The C layer, with a depth of 5 to 8 cm, reflected the
same *C and >N PyOM incorporation pattern (Fig. 18), although the recovery was
initially lower because of the longer migration pathway. At the end of the experiment, the
3C and N yields were in the same range as for the B layer. The *3C and '°N recoveries in
the “outflow” (leachate) indicate that PyOM was transported downwards for a distance of 8
cm and even left the soil column (Fig. 18). At the end of the experiment up to 3.2% of °C
and 3.7% of >N were found in the collected leachate. In total, up to 9.2% of the **C and

10.5% of the N label were relocated downwards from the A layer to the sub-layers.

The vertical movement of PyOM during the incubation experiment is in agreement
with observations by Hockaday et al. (2006) who identified charcoal degradation products
in pore water of fire-affected forest soil (75 cm depth). This indicates that oxidation and
dissolution of charcoal occurs on a centennial timescale. On the other hand, Skjemstad et
al. (1999) have shown that > 90% of soil char is included in the < 53 pm fraction. Hence,
such fine particles should be relatively mobile. The results are also in line with the findings
of Dai et al. (2006). They showed that, in a temperate mixed-grass savannah, the highest
rates of accumulation of PyOM was observed at 10 — 20 cm, which suggests that PyOM
was translocated to lower horizons. Another observation of the potential mobilisation of
PyOM is given by Rodionov et al. (2006) for a steppe soil in Russia. They concluded that
water flux transporting material from the upper soil layer may have intensified the BC
maximum in the 30 to 50 cm depth range. The incubation study clearly confirms the
mobilisation of PyOM (8 cm depth) and indicates that this is supported by prior microbial

degradation and mineralisation activities.
5.5 1*C and >N PyOM partitioning in soil fractions of the A layer

5.5.1 DOM fraction

Among the SOM fractions, DOM had the lowest contribution to total SOM (Fig. 19).
During the first year of incubation, the *C recovery increased from 0.1% after 1 month to
0.4% after 12 months (Fig. 19). All incubation series followed this trend of increased
PyOM mobilisation. This is best explained by pyrogenic DOC, resulting from the

metabolic activity of microorganism, and physical and chemical leaching processes. After
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20 and 28 months incubation, a decline to a constant recovery of 0.1% for the **C label in
the DOM fraction was apparent. In comparison to **C recovery, recovery of N was
remarkable. In general, the percentages of the latter were one order of magnitude higher (p
< 0.001), supporting a clear relative enrichment in >N (Fig. 19). The fact that the C/N ratio
was approaching values < 1 after 12 months points towards an accumulation of inorganic
N (Fig. 20).The respective BV-corrected **C/™N values for the DOM followed the same
trend and confirmed ®N accumulation with increasing incubation time (Fig. 20). This
inorganic **N enrichment must derive from **N mineralisation, since 99.7% of the °N

PyOM input was organically bound *°N (Table 11).

In general, the total recoveries of PyOM in DOM were low compared to the other
SOM fractions. However, it has to be borne in mind that DOM can be removed by
adsorption to mineral surfaces (Kaiser and Guggenberger, 2000) and/or be efficiently
attacked and mineralised by considerable numbers of microorganisms (Woo and Park,
2004). This continuing process of production and consumption demonstrates that leaching
of PyOM should not be underestimated. The present data support the idea that the
recalcitrance may not be the rate limiting factor in soil PyOM turnover times (Hockaday et
al., 2007), since PyOM contributes C to the DOM fraction within a very short time scale.
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Figure 19: Temporal development of recovery of *C and N labelled PyOM in different
SOM fractions (DOM; POM and mineral associated organic matter) of A layer (0-
2 cm) of a microcosm vs. incubation time. Values corrected by subtraction of
natural **C and N background (1M, pyrogenic material produced from charring
time of 1 min; 4M, pyrogenic material produced from charring time of 4 min; CS,
addition of fresh rye grass as co-substrate; BV, blank incubated without PyOM
addition; SOM, soil organic matter; DOM, dissolve organic matter; POM,
particulate organic matter).
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Figure 20: C/N and "*C/®N ratios of DOM fraction of A the layer. Values corrected by
subtraction of natural *C and **N background; (1M, pyrogenic material produced
from charring time of 1 min; 4M, pyrogenic material produced from charring time
of 4 min; CS, addition of fresh rye grass as co-substrate; BV, blank incubated
without PyOM addition; DOM, dissolved organic matter).

3.5.2 POM fraction

Most of the added PyOM was recovered in the POM fraction with a density < 1.8 g
cm (Fig. 19), whereby the main part of the POM fraction was obtained as the size fraction
> 20 um (55% to 76%). During the first two months, between 84% and 65% of the *C and
>N PyOM, respectively, were associated with the whole POM fraction. With prolonged
incubation time, a decline in *C and >N PyOM was verifiable (Fig. 19). The mean loss of
PyOM per month ranged between 0.9% and 1.3% relative to the input. Neither charring
degree nor co-substrate addition seemed to affect the respective recoveries of the PyOM (p
0.566). A similar result was obtained by Kuzyakov et al. (2009) after addition of glucose.
After 28 months, the PyOM recovery was reduced to half. In contrast to the total A layer,
no relative enrichment in >N compounds in comparison to **C PyOM was observed for the
POM fraction of the A layer (Fig. 19).

As shown in Fig. 19, the POM was the first SOM fraction affected by degradation.
Fresh PyOM has a particular hydrophobic character (Hubbert et al., 2006) and provides
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relatively small amounts of polar functional groups which could interact with mineral
surfaces (Table 11). Therefore, the continuing decline in PyOM is very tentatively related
to either interaction with the mineral phase or to conversion to other SOM fractions such as
DOM, via which it may be subject to a downward transport through the soil column.

Alternatively, it was converted into CO; via mineralisation as shown in chapter 3.

5.5.3 PyOM interactions with mineral surfaces

After one month, up to 13.8% for *3C and 12.4% for the >N label were detected for
the 4M PyOM, which verifies a fast association of PyOM with the mineral fraction (Fig.
19). The 1M PyOM showed a lower incorporation into the mineral phase during the first
year but the trend was not significant (p 0.109 for **C and p 0.126 for N, respectively).
For a better comparison of the impact of the degree of burning, the relative recovery (Q)
was calculated by setting the 1M PyOM treatments to 100% relative to the respective 4M
PyOM values. A higher relative recovery of up to 152% (**C) and 167% (**N) was found
between month 6 and month 10 for the 4M PyOM substrates (Fig. 21). However, with
time, the differences in the 1M and 4M incorporation potential decreased. After 20 months,
the substrates had comparable amounts of 1M and 4M PyOM associated with the mineral
fraction. This could be attributed to lower 4M PyOM incorporation rates and/or a loss of
former mineral-fixed PyOM (Fig. 19). This indicates that this pool is not stable and
declined because of mineralisation of partly decomposed PyOM.

The recovery of *C and ®N PyOM in the mineral fractions was partly decreased
with prolonged incubation time (Fig. 19; month 6 to month 12). Thus, PyOM may behave
comparably to unburned SOM where a low stability of young mineral-associated OC was
observed (Kélbl et al., 2007).

In general, N PyOM seems to have had a higher affinity for mineral surfaces
because, with the exception of the one month incubates, all other time series tended to
show higher *®N accumulation in the mineral fractions (Fig. 19). An enrichment of
inorganic *°N (nitrate) can be excluded because it would have been removed during the
DOM extraction and the following salt washing steps after the density fractionation. The
higher N recovery of mineral-associated PyOM may be due to preferential mineralisation
and loss of C, leading to a relative enrichment of N. Alternatively, a promoted partial
oxidation of the N-containing compounds, resulting in formation of polar functional

groups, may have led to a preferential adsorption to the mineral phase.
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Figure 21: Influence of charring degree on association of **C and N enriched PyOM with
the mineral phase. Relative recovery(Q) was calculated by setting the recovery of
the 1M PyOM treatments to 100% related to the respective 4M PyOM values;
(1M, pyrogenic material produced from charring time of 1 min; 4M, pyrogenic
material produced from charring time of 4 min; CS, addition of fresh rye grass as
co-substrate; BV, blank value incubated without PyOM addition).

The co-substrate incubates show trends comparable to the pure ones, but the total
recoveries of the isotopic labels were higher than for incubations without co-substrate (Fig.
22). Two months after the first co-substrate addition (month 6), the highest mineral-
associated **C and N PyOM amounts for the total experiment were detected for IMCS
and 4MCS. The charring degree showed no major influence (p 0.428) on the amount of
additionally incorporated *3C and °N PyOM (Fig. 22).

The formation of such organo-mineral complexes is favoured by partial PyOM
degradation providing negative surface charges of initially hydrophobic material for
organo-mineral associations (Glaser et al., 2000; Brodowski et al., 2005a; Cheng et al.,
2008)). Further, the higher PyOM recovery for the experiments with co-substrate addition
indicates a kind of priming effect, which enhances the partial degradation of PyOM and

promotes subsequently the interaction with mineral surfaces.
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Figure 22: Influence of co-substrate addition on association of **C and N enriched PyOM
with the mineral phase. Relative recovery (Q) was calculated by setting the
recovery of the PyOM incubates with co-substrate addition to 100% related to the
respective PyOM incubates without co-substrate addition; (1M, pyrogenic material
produced from a charring time of 1 min; 4M, pyrogenic material produced from a
charring time of 4 min; CS addition of fresh rye grass as co-substrate; BV, blank
incubated without PyOM addition).

5.5.4 Particle size fractions

The PyOM incorporation within the particle size fractions showed significant
differences (p < 0.001). In general, the recovery of PyOM increased with decreasing
particle size (Table 14). No PyOM was found in the sand fraction. Only small recoveries
were observed for the coarse and middle silt fraction (63 to 6.3 pum; Table 14). The main
part of the mineral-associated PyOM was in the fine silt (6.3 to 2 um) and clay fractions (<
2 um). Comparable results were obtained by Kuzyakov et al. (2009), confirming that
stabilisation within microaggregates plays a significant role in reducing BC decomposition
rate. For the clay fraction, the highest PyOM recoveries were found for the more charred
material with co-substrate addition (Table 14). Each particle size fraction followed the
trends observed for the whole mineral fraction, leading to the conclusion that neither the
burning degree nor co-substrate addition fostered preferential PyOM incorporation into a
specific particle size fraction. Thus, although degradation was promoted by the increased
degree of charring and co-substrate addition, the respective pathway and the partitioning

remained unaltered.

For all substrates, 73% to 82% of the mineral-associated PyOM was found in the
clay fraction (Table 14). No significant differences in the partitioning pattern of PyOM

within the particle size fractions were observed, not only for the different incubate series,
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but also with respect to the isotopic label and incubation time (0.134 < p < 0.937). Note
that the quantitative distribution of SOM among the size fractions from the BV incubates
was comparable to the PyOM incubates (Table 14). This may indicate that PyOM has
degradation and mineral-binding mechanisms similar to the unburned OM of the BV
incubate. The high affinity of PyOM for the clay fraction confirms the conclusion that
PyOM was modified by partial degradation, resulting in products to which the soil matrix
offered adsorption sites. In contrast, Rodionov et al. (2006) and Rovira et al. (2009) found
the highest PyOM content in the silt fraction. However, in the present study, the light
fraction (POM) was removed prior to particle size fractionation. Thus, on average, one
quarter of the PyOM input was recovered with the POM fraction with a particle size < 20
pum (data not shown), which would be in the range of the silt size fraction. This means that
a considerable part of grass-derived PyOM is found in the size range < 20 pum when

counting the free POM and mineral-associated size fraction.
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Table 14: Recovery of *C and N from isotopically enriched PyOM in size fractions of A layers
of the soil microcosms after 28 months incubation (size fractions with different letters
were significantly different at a 0.05 according to the one-way repeated measures
ANOVA and the Tukey’s honest significant difference post-hoc comparison).

Range of time series Range of time series
Sample B¢ pyom >N pyOM
RC(%)* SD° DB (%)° SD° RC(%)* SD DB(%)° SD°

PyOM 1M¢

63-20 pm 0.1A 0.0 1 0 0.0A 0.0 0
20-6.3 um 0.2A 0.1 1 0.1A 0.1 1 1
6.3-2 um 2.1B 05 19 3 2.1B 0.7 16 4
<2 pum 9.0C 15 79 3 10.9C 2.0 82 5
Sum 11.4 1.9 100 - 131 2.6 100 -
PyOM

imcs*f

63-20 um 0.1A 0.1 0 0 0.0A 0.0 0 0
20-6.3 um 0.5A 0.5 4 2 0.4A 0.4 2 2
6.3-2 um 3.6B 15 22 5 3.5B 12 22 5
<2 pm 10.9C 2.1 74 7 12.5C 24 75 7
sum 15.1 3.6 100 - 16.4 3.5 100 -
PyOM 4M®

63-20 um 0.0A 0.1 0 0 0.0A 0.0 0 0
20-6.3 um 0.3A 0.3 2 1 0.3A 0.2 2 1
6.3-2 um 2.7B 0.8 20 4 3.1B 0.9 18 4
<2 pm 10.5C 1.8 78 5 13.4C 24 80 4
Sum 13.6 2.6 100 - 16.8 3.2 100 -
PyOM

4MCs®f

63-20 pm 0.0A 0.0 0 1 0.0A 0.0 0
20-6.3 um 0.6A 0.5 3 2 0.5A 0.4 2 2
6.3-2 um 4.5B 2.7 23 9 5.1B 3.0 23 7
<2 um 13.8C 3.0 73 10 15.8C 3.5 75 8
Sum 18.9 5.5 100 - 215 6.0 100 -
BVY

63-20 pm - - 3 1 - - 2 1
20-6.3 um - - 10 2 - - 10 4
6.3-2 um - - 15 3 - - 23 4
<2um - - 72 4 - - 65 6
Sum - - 100 - - - 100 -
# Recovery.

® Distribution.

¢ Standard deviation.

4 Pyrogenic organic material produced with a charring time of 1 min.
¢ Pyrogenic organic material produced with a charring time of 4 min.
" Addition of fresh rye grass as co-substrate.

9 Blank value incubated without PyOM addition.
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5.6 Elucidation of residence time

The decomposition kinetics of incubated PyOM (Fig. 19) were fitted with a two-
component model (Eg. 3). In the first phase of decomposition, preferential decay of easily
degradable compounds occurred (Table 15, Pool A). In this period, 7% to 19% of the *C
PyOM was mineralised with half life periods (t2) 1 to 19 days (Table 15). The 1M PyOM
seemed to provide more readily available C to the microorganisms, including partly
charred O/N-alkyl C and alkyl C components (Table 12). However, a recent study also
indicated that aryl C-containing compounds can be mineralised during this initial phase
(Hilscher et al. (2009); Chapter 3.4; Table 4). The remaining pool of more stable organic
material accounted for most of the PyOM (Table 15; pool B) and its constituents were
decomposed much more slowly, with t;, between 3.9 and 4.7 yrs. This is possibly due to
the protection of some PyOM particles within soil aggregates but also to continuous
preferential utilisation of PyOM compounds (e.g. very small particles, strongly oxidised
parts) during initial decomposition, which are more degradable than others, and would
slow down decomposition in the following stages (Kuzyakov et al., 2009). The calculated
t1» implies mean residence times between 26 and 31 yr for the more stable pool B. The
results are in agreement with the study of Steinbeiss et al. (2009), reporting comparable
short mean residence times between 4 and 29 yr, depending on soil type and quality of
char. Likewise, short mean residence times of up to 19 yr for grass-derived PyOM and 56
yr for pine wood PyOM were reported for the short term respiration experiment of 2
months (Hilscher et al., 2009; Chapter 3.8).

In comparison, for fresh plant material a ty, of up to 0.5 yr (Pool B) was found
(Voroney et al., 1989; Kolbl et al., 2007). This means that the t;, for the PyOM of this
study was up to 10 times longer than for fresh plant material, but still not unlimited. No
major differences in the turnover dynamics were found for the different PyOM incubates
(p 0.168 for *C and p 0.658 for °N; Table 15). The uncertainty in >N PyOM recovery

was too high for fitting the kinetics, because of low total >N concentrations.
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5. DEGRADATION OF *C AND *°N LABELLED GRASS-DERIVED PYOM, TRANSPORT OF THE RESIDUES
WITHIN A SOIL COLUMN AND DISTRIBUTION IN SOIL ORGANIC MATTER FRACTIONS

Because PyOM was added as particulate material, the initial PyOM input was set as
POM. The strong decline in **C and >N POM within the first 2 months was followed by a
distinctly slower decrease (Fig. 19). The degradation Kinetics indicate a more expressed
portion of decomposable PyOM (Pool A) of 24% to 30% of the *C POM fraction in
comparison with the whole PyOM incubate (Table 15). This suggests that the C pool
represents PyOM lost by way of mineralisation and incorporation into the mineral phase.

In this context, it is important to note that the calculated tj, values represent
minimum turnover times since they are based on 28 months incubation under more or less
optimal and controlled aerobic conditions. Such conditions would certainly not be
available in natural environments. Cold and dry periods can result in much slower
degradation rates. Assuming that fungi increase the degradation efficiency of aromatic
constituents (Hofrichter et al., 1997; Wengel et al., 2006), anaerobic conditions, for
example in fossil horizons, archaeological sites and sediments may contribute to the
preservation PyOM residues on the long term. On the other hand, preservation by way of
oxygen deficiency is also a common feature of other organic compounds such as lignin and
paraffinic structures. Consequently, PyOM may not necessarily be as important for the
long term C sequestration within the global C cycle as commonly assumed. The relatively
fast degradation times of plant char estimated in this and other studies (Bird et al., 1999;
Hamer et al., 2004; Hammes et al., 2008) could contribute to the unexpectedly low PyOM
abundance reported in different field studies (Czimczik et al., 2003; Solomon et al., 2007).

Furthermore, the mineralisation Kinetic of the pure PyOM demonstrates that
microbial degradation of even strongly charred residues can occur in the initial post-fire
phase. This implies that, after intensive fires leaving almost no thermally unaltered plant
residues, the newly developed microorganism communities may not need additional

nourishing substrate, at least during the very early post-fire phase.
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6. Carbon and nitrogen degradation on molecular scale of grass-

derived pyrogenic organic material during incubation in soil

A continuous mineralisation of PyOM was described in chapter 5 during the
incubation of more than 2 years in soil. This chapter discusses the aging process of PyOM
on molecular scale. Therefore, solid-state **C and N NMR studies were conducted at

different stages of the incubation to identify the degradation and humification mechanisms.

6.1 Efficiency of HF treatment of PyOM-enriched mineral fractions on
NMR sensitivity

The HF treatment of the fine silt (6.3 to 2 um) and clay fraction (< 2 um) resulted in
high C-enrichment factors (E. = 4 £ 1; Table 16), leading to C concentrations between 20
and 40 mg C g™ for the clay fraction and between 6 and 13 mg C g™ for the fine silt
fraction. During the demineralisation step 83 = 2% of the mineral phase was removed.
High recoveries of the *C label (88 + 7%) underline that HF treatment did not change the
chemical composition of the PyOM samples. For the °N-labelled and HF-treated mineral
samples, the recovery of 71 + 8% was lower compared to the **C label, which is explained
by large losses of inherent N of the used soil (BV; Table 16). This is supported by a higher
loss of soil derived **N and a relative enrichment of the PyOM-derived °N label (Table
16). Relative mean "°N-enrichment factors (Eisn) were calculated as 2.5 and 2.0 for the
fine silt fraction (6.3 to 2 um) and clay fraction (< 2 um), respectively.

Selected clay fractions were analysed by solid-state 3 C NMR spectroscopy before
and after HF treatment (Fig. 23). In line with the results of Goncalves et al. (2003), the HF
treatment induced no major alteration of the intensity distribution, but the quality of the
NMR spectra was improved by removal of paramagnetic material and relative enrichment
of PyOM. Only 60,000 scans were necessary for the acquisition of the HF-treated clay
fraction. The NMR spectra of the HF-treated clay fraction reveal a higher alkyl
contribution compared to the respective NMR spectra of the untreated ones (Fig. 23). The
observation can be explained by alkyl-C signal suppression in the untreated samples due to
presence of paramagnetic compounds (Fe, Cu, Mn) which leads to ineffective CP and line
broadening (Chapter 1.4.2.).
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6. CARBON AND NITROGEN DEGRADATION ON MOLECULAR SCALE OF GRASS-DERIVED PYROGENIC
ORGANIC MATERIAL DURING INCUBATION IN SOIL

PyOM 1M 127 127 PyOM 4M

Mineral phase after HF

Finesilt after HF

Clay after HF

Clay before HF

I I I I I I I I I I 1 I I I I I I I I I LI
300 200 100 0 -100 300 200 100 0 -100
ppm ppm
Figure 23: Solid-state *C NMR spectra of HF-treated and untreated mineral-associated

PyOM. Spinning side bands are marked with asterisks. PyOM 1M = charring
time 1 min.; PyOM 4M = charring time 4 min.

6.2 Reproducibility of C group recovery

The PyOM samples which had been incubated for two months were prepared in
replicates and the reproducibility of their chemical composition was analysed. For the
different C groups, the absolute standard deviation of the contribution to total C ranged
between 0 and 1.6% (Table 17). These good agreements support the improved analytical
sensitivity accomplished by using PyOM that was highly enriched with isotopic labels. The
findings are in line with the results of the short-term incubation study (Chapter 3, Fig. 12)
which shows that the relative standard deviation of the amount of mineralised PyOM of 5

replicates was smaller than 5%.
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Table 17: Reproducibility of the intensity distribution and the total recovery for PyOM C
groups after 2 months of incubation. Mean values and standard deviations (&)

were calculated from duplicates.

Carbonyl/

Sample Carboxyl C O-aryl C Aryl C O/N-alkylC  Alkyl C Sum
Relative contribution (%)

PyOMalMb 9.1+£0.0 8.4+0.0 36.7+0.1 185 +£0.0 27.3+£0.1 100
PyOM? 4M°© 8.7+1.0 9.8+0.6 47.1+16 104+0.2 240+0.1 100
Total recovery (mg **C)

PyOM? 1MP 33101 31+01 135+0.4 6.8+0.2 10.1+£0.2 36.9+1.0
PyOM?® 4M° 2.8+0.3 3.2+0.1 15.4+0.8 3.4+0.0 7.8+0.2 32.7+0.6

a Pyrogenic organic material.
b Charring time 1 min.

¢ Charring time 4 min.

6.3 C-group distribution of incubated PyOM

Besides aryl C, the alkyl C represents a quantitatively important fraction of grass-
derived PyOM. It showed no major alteration of its contribution to the bulk PyOM C (Fig.
24A). After 20 months, the alkyl-C contribution for all incubates decreased slightly by 5%
with respect to the fresh PyOM, but the change is not significant (0.130 < p < 0.998). Co-
substrate addition did not change the alkyl-C contribution to total C (0.866 <p < 1.000; Fig
24A). At all stages of the incubation, higher alkyl-C contents of the PyOM 1M compared
to that of the PyOM 4M treatments was detected (p < 0.001).

Compared to the unburned plant material, the O/N-alkyl C content of the fresh
PyOM was small (15 and 9%; Table 12, Chapter 3.1), indicating a minor relevance for the
C flux. Starting after 10 months of incubation, the O/N-alkyl-C contribution to the total C
of the different PyOM treatments decreased significantly (p < 0.022; Fig. 24B). At month
20, O/N-alkyl C was only 6% of the total C for the PyOM 1M, revealing a higher loss of
O/N-alkyl C compared to other C groups. The initial differences in O/N-alkyl C content in
the two types of PyOM decreased, but were still present (0.006 < p < 0.032; Fig. 24B). No
significant effect of co-substrate addition on the O/N-alkyl C distribution was observed
(0.976 <p <0.999).
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Figure 24: Time course of the relative distribution and total recovery of the different PyOM
C groups during the 28 months of incubation. ®charring time 1 min.; ® charring
time 4 min; © addition of fresh rye grass as co-substrate.
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The aryl-C group represented the main fraction of the PyOM-C with 46% for PyOM 1M
and 51% for PyOM 4M (Table 12, Chapter 3.1). The large percentages confirm the
effective charring of the plant material. No significant differences of the aryl-C contents
were detected for the incubates with and without co-substrate addition (p > 0.999; Fig.
17C). During the first year, the aryl-C proportion was smaller than at the beginning of the
experiment. In the second year, the aryl-C distribution reached initial values (0.080 < p <
0.454; Fig. 24C).

The initial O-aryl-C fraction of PyOM 4M was with 11% slightly larger than that of
PyOM 1M with 7% (Fig. 24D). For the whole incubation period, a constant increase of the
O-aryl-C contribution was observed for the PyOM 1M and PyOM 1MCS incubates (p <
0.001). For this C group, enrichment factors of up to 1.9 relative to the fresh PyOM 1M
were found. The respective PyOM 4M and PyOM 4MCS incubates did not show a
significant enrichment of O-aryl-C groups (p > 0.890). The PyOM 1M and 4M incubates
with CS addition did not differ from the untreated ones (0.923 < p < 0.998) and were in
line with the aryl-C behaviour. At the end of the incubation experiment, there were only
small differences in the O-aryl-C contributions between the PyOM with different charring
degree. Considering the sum of aryl C and O-aryl C, their contribution to the total PyOM C
was comparable to the respective fresh PyOM (0.421 < p < 1.000).

The carboxyl/carbonyl-C pool showed the largest relative enrichment of all C groups
during the incubation (Fig. 24E). Already after one month of incubation the
carboxyl/carbonyl-C content of the PyOM 1M incubates reached the level of those of
PyOM 4M (Fig. 24E). For the following period, a constant increase of the
carboxyl/carbonyl-C contribution was observed for all PyOM 1M and PyOM 4M
treatments (p < 0.001). After 20 months, up to 15% of the PyOM C was assigned to
carboxyl/carbonyl-C groups. For the other C groups no influence of CS addition on the C
contribution was found for the PyOM incubates (p > 0.646). All different PyOM
treatments showed comparable relative carboxyl/carbonyl-C enrichments at the end of the
incubation (0.702 < p < 0.991). Enrichment factors between 1.6 and 2.6 were calculated in

comparison with the fresh PyOM.
6.4 Degradation of PyOM-derived C

In contrast to the contribution of alkyl C to the PyOM, the total alkyl-C recovery was
efficiently reduced during the incubation (Fig. 24F). After 20 months, the alkyl-C loss



6. CARBON AND NITROGEN DEGRADATION ON MOLECULAR SCALE OF GRASS-DERIVED PYROGENIC
ORGANIC MATERIAL DURING INCUBATION IN SOIL

ranged between 41 and 53%. At the end of the incubation up to 57% of the initial alkyl C
was mineralised or converted into other C groups. Neither the burning intensity nor the
availability of a co-substrate showed a significant influence on the degradation rate (p >
0.323). The decomposition Kinetics ty, of the alkyl-C group was in the range of 2.1 and 2.5
years (Table 18). In comparison with the alkyl-C decomposition rate for fresh grass
material that have been calculated from data published by Knicker and Lidemann (1995),
the respective ty/, are higher by the factor 6 to 7 (Table 18).

Among all C groups, O/N-alkyl C showed the largest loss (Fig. 24G). In general, up
to 73% of the initial amount was mineralised for PyOM 4M CS. In comparison with alkyl
C, the total O/N-alkyl-C loss related to the bulk PyOM C was up to 10% lower than for the
alkyl C with up to 15% for the lower charred PyOM 1M. Comparable to the pattern of
alkyl C, the degradation rate was neither affected by the burning degree nor by the
availability of a fresh co-substrate (p > 0.572). The calculated t;/, was the shortest of all C
groups with only up to 1.3 years (Table 18). Compared to fresh rye grass, the
biodegradability of this potentially readily decomposable C source was strongly reduced
by a factor between 34 and 45 (Table 18).

The reduced microbial availability of O/N-alkyl C and alkyl-C residues of the PyOM
can be explained by the chemical alteration induced by charring, as e.g. formation of
anhydrosugars (Elias et al., 2001). Alternatively, some of those compounds may have been
physically protected by entrapment of more charred domains (Knicker et al., 1996Db).
However, as indicated in the present study, those alkyl C and O/N-alkyl C residues will be
primarily decomposed during the initial stage of char degradation. Concerning the O/N-
alkyl and alkyl-C decomposition dynamics, significant correlations were found for all
PyOM treatments (Table 19). This denotes comparable degradation behaviour for both C
groups.


http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=primarily&trestr=0x8004
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Table 18: Decomposition kinetics for the different C groups of fresh rye grass and PyOM

revealed by fitting with a first order decay model.

C group t® (y) R? p value® Foion’
Alkyl C

Fresh rye grass 0.4 0.84 0.011 -
1M°® 2.3 0.69 0.026 6
1MCS®9 2.5 0.70 0.006 7
AM° 2.1 0.79 0.003 6
4McCSs'9 2.4 0.87 0.000 6
O/N-alkyl C

Fresh rye grass 0.0 0.94 0.001 -
1M°® 1.0 0.78 0.004 34
1MCS®9 1.3 0.74 0.003 45
4M' 1.2 0.80 0.003 40
4MCS"9 1.3 0.78 0.002 42
Aryl C

Fresh rye grass 0.4 0.87 0.017 -
1IME 3.8 0.32 0.147 10
1MCS®9 3.6 0.50 0.033 10
AM' 3.0 0.68 0.012

4MCS™ 3.0 0.69 0.006

O-aryl and aryl C

Fresh rye grass 0.4 0.79 0.004 -
1Mm° 51 0.26 0.198 14
1MCSs*9 4.1 0.48 0.037 11
AM° 3.3 0.61 0.023 9
AMCS™e 3.4 0.62 0.012

a Half-time period.

b Coefficient of determination.

¢ Probability level.

d Slowing factor related to degradation rate of fresh rye grass.
e Charring time 1 min.

f Charring time 4 min.

g Addition of fresh rye grass as co-substrate.
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Table 19: Correlation coefficients between total recoveries of the PyOM C groups during 28
months of incubation. The values in parentheses represent the p value.

1M 1MCS 4M 4MCS
Sample
OIN-Alkyl C
1M? Alkyl C 0.902 (0.002)
1MCS?** 0.936 (0.006)
4mP 0.870 (0.005)
4MCsPe 0.908 (0.012)
Aryl C
1M? Alkyl C 0.852 (0.007)
1IMCS?* 0.963 (0.002)
4amP 0.856 (0.007)
4MCSP® 0.872 (0.024)
O-Aryl C

1m? Carboxyl/  0.769 (0.026)
1IMCS?*¢ Carbonyl C 0.925 (0.008)
4MmP 0.861 (0.018)
4MCSP* 0.992 (0.001)

a Charring time 1 min.
b Charring time 4 min.

¢ Addition of fresh rye grass as co-substrate.

The total aryl-C group recovery of the PyOM decreased significantly during the 28
months of incubation (p < 0.001; Fig. 24H). After 20 months between 26 and 40% of the
initial aryl-C amount was mineralised or converted to other C groups. At the 28" month
the aryl-C loss reached up to 57% for the PyOM 4MCS incubate. At this stage, the low
total recovery can be partly attributed to an increasing vertical movement of PyOM into the
two sub soil layers that was demonstrated by the isotopic PyOM recovery studies (Fig. 18,
Chapter 5.3; Hilscher and Knicker, 2011b). However, the *3C enrichment of the sub soil

layers was too small to accomplish **C NMR measurements.

In general, in the top layer the aryl-C fraction showed the largest total C loss of all
PyOM-C groups. At month 20, the loss accounted from 13 to 20% of the initial total
PyOM C. Examining the turnover of this group, remarkable short t;, between 3.0 and 3.8
years can be noticed (Table 18). Compared to the decomposition rate obtained for lignin-
derived aryl structures of fresh rye grass material, they are 10 times lower for the PyOM
1M and 8 times lower for the more charred PyOM 4M treatments (Table 18). This
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indicates that comparable to aryl structures in lignin, also those of the PyOM can be
microbially decomposed.

In contrast to aryl C, the amounts of O-aryl C show no alteration for PyOM 1M and
PyOM 1MCS (p 0.216) or only small losses for PyOM 4M and PyOM 4MCS (p < 0.005).
This behaviour may point to a steady state between degradation and formation of that C
species (Fig. 241). Considering the sum of the O-aryl C and aryl-C pool, the respective ty»
are with 3.3 to 5.1 years slightly higher compared to those obtained for the aryl-C pool
alone. With ty, of 2.5 years the decomposition for the fresh rye grass indicated a faster

degradation of O-aryl C under unburnt conditions.

Related to the initial carboxyl and carbonyl-C amount, a significantly higher
recovery of this group (146% for PyOM 1M and 165% for PyOM 1MCS) was observed (p
< 0.008; Fig. 24J). The PyOM 4M treatments, on the other hand, did not reveal significant
changes of the total carboxyl and carbonyl C amounts (p > 0.846). Note that the **C-label
technique allows exclusively the observation of PyOM-derived polar functional groups.
Thus, the detected large carboxyl/carbonyl-C amounts are not a result of a possible

sorption of non-BC-derived polar groups.

It can be concluded that the observed degradation of aromatic C may include two
simultaneous processes: (i) complete mineralisation to CO, and (ii) conversion to other C
groups by partial oxidation. The relevance of the latter process is supported by the fact that
oxygen-substituted aryl structures (O-aryl C) showed little if any decrease in spite of the
considerable aryl C and total C losses (Fig. 24D). Oxidation reactions during the
degradation of charcoal and coals have already been reported by Potter (1908). Thus, we
propose the concept that the partial oxidation of aryl structures is composed of two main
steps. As a first reaction, the aryl rings are modified by substitution of the aryl C with
hydroxyl groups to catechol-like structures. The formation of O-aryl C may be caused by
enzymatic hydroxylation of aromatic structures (Ullrich and Hofrichter, 2007). A
significant correlation (p < 0.026) between the oxygen-substituted aryl structures and
carboxyl/carbonyl-C groups (Table 19; Fig. 24 | and J) supports that in a second step the
O-aryl ring structures are partly oxygenated and cleaved, resulting in carboxyl/carbonyl-C
(Kojima et al., 1961). The enrichment of O-containing groups in aged PyOM has also been
described in other recent field (Knicker et al., 2006; Solomon et al., 2007) and laboratory
studies (Lehmann et al., 2005; Cheng et al., 2006), supporting the suggested degradation

mechanisms. Additionally, microbial resynthesis of PyOM may be responsible for the
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observed enrichment of O-containing functional groups as described by Rumpel and
Kdgel-Knabner (2004) for the degradation of lignite coals.

The presence of a co-substrate (fresh plant material) did neither significantly affect
the degradation kinetics of the respective C groups nor the chemical quality of the aged
PyOM (Fig. 24 and 26). An explanation may be the availability of decomposable C sources
in the starting PyOM. In line with the findings of the present study, it was not found a co-
metabolic enhancement for a 7 week short-time incubation with PyOM derived from

different plant source materials (Chapter 3).
6.5 Chemical structure of leached PyOM

Up to 3.2% of *C and 3.7% of the N label were recovered with the leachate after
20 and 28 months. The respective *C NMR spectra revealed strong differences to the fresh
PyOM (Fig. 25). Most of the *C signal intensity was observed in the aryl-C region,
indicating that PyOM was vertically moved. Between 46 and 49% of the total C of the
leachate of the PyOM 1M treatments and up to 53% of that of the PyOM 4M incubates are
assignable to aryl domains. This implicates that during the last 8 months of incubation
between 0.7 and 2.8% of the initial aryl C was relocated. The chemical composition of the
leachate showed a relative increase of O-aryl-C and carboxyl/carbonyl-C (Fig. 25).
Possibly, the larger contribution of those polar C groups was responsible for the increased

water solubility and thus mobility of this fraction.

The alkyl-C portion is depleted in the PyOM leachate. For the PyOM 1M treatments
between 19 and 21% and for the PyOM 4M up to 16% of the total leachate C is alkyl C.
Furthermore, the shift of the aryl-C signal from around 29 ppm to 22 ppm in the spectra of
PyOM 1M and PyOM 4M indicates the formation of acetyl groups (Fig. 25), possibly
caused by degradation processes and accumulation of short alkyl-C chains. The
contribution of O/N-alkyl C to the total C pool of the PyOM-derived leachate is only 4%.
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Figure 25: Solid-state *C NMR spectra of the vertical down moved PyOM fraction for the
last 8 months of incubation.  Charring time 1 min.; b charring time 4 min; °
addition of fresh rye grass as co-substrate.

6.6 Turnover of pyrogenic N

The solid-state >N NMR spectra of the fresh PyOM confirm that most of the organic
N is bound in heterocyclic aryl compounds such as pyrrole and indole-like structures. The
compounds contribute to 62 and 72% of the total *°N pools in PyOM 1M and PyOM 4M,
respectively (Fig. 17, Chapter 5.1). No major alteration of the organic matter composition
was detected for the A layer of the PyOM 1M incubates at any stage of the incubation (Fig.
26A and B). However, a relative decrease of proportion of heterocyclic N was observed for
the PyOM 4M (Fig. 26B). After 28 months of incubation, no significant difference in the
chemical N composition related to the PyOM 1M treatments was monitored (p 0.472). This
trend is confirmed by an increase of the amide to heterocyclic N ratio which is in the range
of 0.6 to 0.8 for the PyOM 4M incubates compared to 0.4 for the fresh PyOM 4M. It was
not possible to calculate the N-group balances of the sub layers because the >N content
was too low to obtain evaluable N NMR spectra. Nevertheless, it is likely that
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heterocyclic N compounds are decomposed because for the whole soil column a total >N
loss up to 33% was found (Fig. 18, Chapter 5.3).
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Figure 26: Time course of the relative distribution and total recovery of the different PyOM
N groups for the A layer during the 28 months of incubation. *charring time 1
min.; ® charring time 4 min; ¢ addition of fresh rye grass as co-substrate.

For the A soil layer, a continuous loss of total amide N and heterocyclic N for the A
layer was detected (Fig. 26C and D). After 20 months, for all incubates only 49 to 59% of
heterocyclic N compounds were recovered. The respective amide-N recoveries were larger
(59 to 87%). For the more charred PyOM 4M treatments, the trend of larger losses of
heterocyclic N than amide N is significant at all stages of the incubation (p < 0.001).
Similar to PyOM C, co-substrate addition showed no significant impact on the degradation
rate of organic N (0.148 < p < 0.761). The same pattern was observed for PyOM 4M
(0.259 <p <0.452).

For the 28-month incubates, the *°N enrichment of the leachate was large enough to
perform N NMR spectroscopy. However, due to the low signal to noise ratio of the
spectra we disclaim quantification. The spectrum is dominated by the signal in the region
of heterocyclic N (Fig. 27). In total, 2.8 and 2.2% of the >N PyOM input was recovered in
the leachate, indicating that up to 3.5% of the total remaining >N PyOM can be

heterocyclic N.
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Figure 27: Solid-state "N NMR spectra of the vertical relocated PyOM leachate fraction after
28 months of incubation. “charring time 1 min.; ® charring time 4 min; ¢ addition of
fresh rye grass as co-substrate.

6.7 Is black nitrogen (BN) a recalcitrant N pool?

The charring process of rye grass produced a narrow aryl C to heterocyclic N ratio of
0.9 for the respective PyOM. This implicates concomitantly an increasing heterocyclic N
content. The finding is in line with Knicker (2010) who demonstrated that BN is an

important constituent of grass-derived char.

The present study shows that in spite of its heteroaromatic structure BN can be
degraded. The observed N loss is attributed to the conversion into mineral N forms and
amide N (Fig. 26). The latter is confirmed by an increase of the amide to heterocyclic N
ratio for the aged PyOM and occurred most likely by the uptake and incorporation of
mineralised N derived from BN into microbial biomass, the preferential decomposition
or/and their vertical movement of heterocyclic N. This finding is important for the N cycle
of fire-affected environments in terms of N availability for plants and microorganisms on

the long-term scale.
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6.8 Structural alteration of PyOM by degradation

With respect to the investigated structural modifications of the PyOM and the
calculated degradation dynamics, it can be concluded that aged PyOM is characterised by
an aryl backbone which is highly substituted with carboxylic and oxygen groups. Such
aged PyOM was observed for Chinese modern and ancient paddy soils (Hu et al., 2009)
and could also explain the increased cation exchange capacity of Amazonian Terra preta
soils (Liang et al., 2006; Solomon et al., 2007). The increased proportion of polar
functional groups promotes the formation of organo-mineral complexes found by
Brodowski et al. (2005a) and may also explain the PyOM-mineral interaction (Fig. 19,
chapter 5.5.3). Furthermore, the hydrophobicity may be reduced by partial oxidation of
PyOM, allowing an increased vertical movement through the soil column or export to
aquatic systems as recently described by Hockaday et al. (2007) and Guggenberger et al.
(2008).

6.9 Stability of PyOM and environmental implications

The present study indicates that PyOM is composed of C and N pools with different
chemical structure and stability (Table 18, Fig. 24 and 26, Hilscher and Knicker (2011a)).
In general, the degradation rate of PyOM is reduced compared to rates reported for fresh
plant material. However, their ty, are still in a range 3.0 to 3.8 yrs, which indicate a low to
medium recalcitrance. Additionally, the study demonstrates that a more intensive thermal
alteration, resulting in increased aromaticity, does not necessarily reduce the degradation
efficiency of the aryl C pool (Table 18). An explanation may be that during the charring
process instead of larger polycondensed structures, relatively small C clusters were formed
due to pyrolytic breakdown processes (Kramer et al., 2004; Knicker et al., 2005a).

Associated with the mineralisation process (Fig. 12, Chapter 3.2; Fig. 18, Chapter
5.3), the detected structural modifications of PyOM, especially the formation of oxygen-
containing polar groups, are an important factor influencing the chemical properties of the
fire-affected SOM. The resulting aged PyOM is characterised by high aryl-C content and
has a similar structure as the humic-like substances produced by Trompowsky et al. (2005)
by chemical oxidation of eucalyptus charcoal. Such aged PyOM is being held responsible
for organic matter accumulation and consequently higher soil fertility potential, especially

for tropical soils (Glaser et al., 2002).
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When translating the findings of the present study to natural or managed landscapes
it is important to note, that the experimental conditions were more or less optimal and
controlled. Such conditions will certainly not be present in natural environments. However,
it was used a natural soil and simulated the incorporation of fresh plant material by adding
fresh rye grass as a co-substrate. With this experimental design, possible organo-mineral
interactions (von Lutzow et al., 2006; Wiseman and Pittmann, 2006) and priming effects
(Hamer et al., 2004) are considered, allowing a more realistic view on the fate of PyOM in

soils and sediments.
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7. Conclusions and outlook

The present research work has highlighted that PyOM is involved in the degradation and

humification process of organic matter in soil.

The incubation experiments reveal that PyOM can be already attacked by microorganism
shortly after its production and accumulation at the soil surface. It was shown that such
PyOM can be mineralised at rates that are comparable to those for soil organic matter. In
this context, the application of PyOM (biochar) to soil in order to sequestrate C on a long-
term scale has to be considered critically. Most likely the disintegration of biochar will be
enhanced by intensive agricultural practices (ploughing, tilling, harrowing), leading to
even shorter residence times. On the other hand the present studies showed that the
degradation of PyOM also results in mineralisation of black nitrogen which turns it into a
plant available form. The gradual slow N release minimises N loss by leaching. Therefore,

N-rich PyOM may be considered as an efficient N fertiliser for cultivation of crop plants.

There are considerations to use the n-alkanes composition of the lipid fraction as a
tracer for biomass burning in soils and sediments. However, the present study demonstrates
that this lipid fraction is quickly modified by biotic activities, most likely by degradation
and in situ biosynthesis. For this reason, the preservation of such thermally modified lipids
will be limited in well-aerated soils. The application of the molecular marker levoglucosan
(LG) can also lead to underestimation of PyOM in soil. Severely charred plant remains
were depleted in LG and it was shown to be efficiently decomposed during the initial
degradation of PyOM. Therefore, the application of such specific biomarkers for PyOM
quantification in soil and sediment cannot be recommended. In general, the use of a lot of
different quantification techniques in PyOM research is problematic. Studies which apply

different PyOM detection approaches are limited their comparability.

The PyOM is also subjected to an aging process and contributes to the SOM. The observed
enrichment of polar functional groups by partial oxidation of aromatic PyOM structures
has an important impact on the respective SOM quality. The presence of such PyOM-
derived functional groups may increase the cation exchange capacity which results in an
improved nutrient supply for plants as observed in PyOM-rich “Terra preta” soils (Glaser
et al., 2001; Liang et al., 2006). Moreover, the supply of fresh plant residues promotes the
partial oxidation of PyOM, which results in provision of a larger amount of organic source

material for mineral association. The formation of PyOM-mineral complexes could
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contribute to stabilisation against further microbial attack. However, the organo-mineral
stabilisation potential of humified PyOM residues depends on soil properties like texture
and mineralogy. The stabilisation of PyOM may be responsible for reported residence
times of thousands of years in soils and sediments (Saldarriaga and West, 1986;
Middelburg et al., 1999; Glaser et al., 2001). Thus, such a preservation of PyOM may be
explained by physical protection (hydrophobicity, occlusion and encapsulation) or
conservation (e.g. oxygen exclusion) mechanisms against biotic and non-biotic degradation
as observed for other SOM fractions (von Litzow et al., 2006). This means that PyOM
preservation is not based on a chemical persistence of PyOM. This view allows to
understand the found fast PyOM turnover in savannah and steppe soils (Bird et al., 1999;
Hammes et al., 2008). The stabilisation potential of PyOM in such sandy well-aerated soils
will be limited, leading to faster mineralisation of PyOM residues on a decadal to
centennial time scale. Therefore, there must be no discrepancy in the large difference of the
reported residence times of PyOM.

An additional loss of PyOM is caused by mobilisation and transport to deeper soil horizons
or into aquatic systems. The export of PyOM from fire-impacted ecosystems is linked to
geographic and climatic factors such as slope and rainfall frequency. Such PyOM fluxes
are often neglected in C-circle balances. The consideration of these fluxes would show that

PyOM is involved in the global C and N cycle.

With regard to the climate change, an increase of warmer climates with extended dry
periods is predicted. Such conditions favour a higher fire risk, leading to an increase of
fire-affected ecosystem areas. It was postulated that the expected larger PyOM loads may
count as an important C sink for long-term reduction of CO; in the atmosphere. However,
it has to bear in mind that under wildfire conditions most of the biomass is even converted
to CO; and only 1 to 3% remains as PyOM. The PyOM residues can be effectively
mineralised which clearly disproves the often postulated long-term C sequestration

potential.

It can be concluded that the assumption PyOM is a highly refractory constituent within the
SOM is oversimplified. PyOM does not generally count to a “passive” SOM pool with
turnover rates of more than 1,000 yrs. Therefore, C and N flux models for soils should take
into account that some PyOM may have turnover times on a decade scale. The increase of
soil temperature due to the climate change could induce a higher microbial activity, which

causes in a forced PyOM degradation in the future. This would imply increasing CO,
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emissions by mineralisation of PyOM and other SOM together with an increased fire-
induced CO,, release on the other hand.
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