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Zusammenfassung 

Seit ihrem Start am 17. März 2002 hat die Schwerefeldmission GRACE hochgenaue Daten zur 

Bestimmung von zeitvariablen Schwerefeldern geliefert. Die monatlichen GRACE-Lösungen zeigen 

deutlich den saisonalen Zyklus der kontinentalen Hydrologie, während die Mehrmonatslösungen das 

Abschmelzen polarer Eismassen in der Antarktis und Grönland, die Postglaziale Landhebung in 

Kanada und den globalen Meeresspiegelanstieg offenlegen. Aus diesem Grund sind GRACE-

Lösungen weit verbreitet in geowissenschaftlichen Disziplinen wie Hydrologie und Ozeanographie. 

Zukünftige Missionen werden spezielle Satellitenkonstellationen verwenden, um das zeitvariable 

Schwerefeld, welches auf die globalen Massentransporte im System Erde zurückzuführen ist, noch 

deutlicher zu bestimmen. In dieser Arbeit wird eine Closed-Loop-Simulation durchgeführt, um diverse 

Konstellationen zu analysieren. Als Ausgangspunkt für die Simulation dient die Magnetfeldmission 

Swarm der ESA, die aus drei Satelliten besteht und 2012 gestartet wird. Da jeder von diesen Satelliten 

mit GPS-Empfänger und Beschleunigungssensoren ausgestattet ist, kann die Konstellation auch für 

Schwerefeldschätzung genutzt werden. In dieser Hinsicht ist Swarm vergleichbar zu drei CHAMP 

Satelliten, wohingegen jedoch neben der absoluten GPS-Positionierung auch relative GPS Messungen 

genutzt werden können um die Genauigkeit der Beobachtungen zu erhöhen. 

Ein 24-Monats-Simulation zur Bestimmung des zeitvariablen hydrologischen Signals wird 

durchgeführt. Durch diese Simulation wird das Potential der Swarm Mission für zeitliche 

Schwerefeldschätzungen evaluiert. Es wird gezeigt, dass Swarm das Potential hat, das zeitvariable 

hydrologische Signal bis zu Grad und Ordnung 6 zu bestimmen. Darüber hinaus ist die Mission auch 

aus theoretischer Sicht von Interesse, weil sie verschiedene Arten von inter-satellite Basislinien 

kombiniert, wie z.B. cross-track (Swarm A-B), along-track/radial (Swarm A-C). Deshalb kann die 

Swarm Konstellation als Beispiel zur Analyse der Eigenschaften von unterschiedlichen Basislinien 

und deren Kombinationen verwendet werden. Neben GPS Beobachtungen werden auch GRACE-type 

K-Band Messungen simuliert. Es wird gezeigt, dass die tandem/pendulum Konstellation eine isotrope 

Fehlerstruktur aufweist und damit die beste Schätzung des hydrologischen Signals ermöglicht.   

Alle Analysen basieren auf der energy balance Methode, die bereits erfolgreich für die Missionen 

CHAMP, GOCE und GRACE implementiert wurde. Für die zeitlichen Schwerefeldschätzungen sollte 

die Nicht-Konservativität der zeitlichen Variationen berücksichtigt werden. Bei Vernachlässigung der 

Tatsache, dass zeitliche Variationen nicht konservativ sind, wird ein Fehler eingeführt. Die Größe 

dieser Fehler für verschiedene zeitvariable Signale wird ausgewertet. Es zeigt sich, dass ein solcher 

Fehler für die kontinentale Hydrologie, welche nur mäßig mit der Zeit variiert, vernachlässigbar ist 

hinsichtlich dem derzeitigen Niveau der Messgenauigkeit. D.h. die spezielle Gleichung für statische 

Schwerefeldschätzungen kann noch verwendet werden. 

Wenn man bedenkt, dass die CHAMP Mission beendet ist und die GRACE Mission voraussichtlich 

im Zeitraum 2013-2015 beendet werden wird, könnte Swarm tatsächlich die einzige LEO-Mission 

sein, die einen Beitrag zur zeitlichen Schwerefeldbestimmung in der nahen Zukunft leistet. Darüber 

hinaus könnte auch eine Kombination von Swarm und GRACE (falls die Mission bis dahin noch nicht 

beendet ist) dazu beitragen, zeitliche und räumliche Aliasingeffekte in den niedrigen Graden und 

Ordnungen zu reduzieren, da eine solche Kombination zu einer besseren Abtastung in Raum und Zeit 

führen könnte. Daher kann Swarm als willkommene Ergänzungsmission zu den dedizierten  

Schwerefeld Missionen betrachtet werden und Swarm wird wertvolle Informationen über das statische 

und zeitvariable Schwerefeld liefern. 
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Abstract 

Since its launch in 2002, the GRACE mission has provided time-variable gravity field solutions for 

more than 8 years. The monthly GRACE solutions clearly show the continental scale hydrological 

cycle, while the long-term time series reveal trends in deglaciation in Antarctica and Greenland, the 

post glacial rebound in Canada as well as the sea level rise. GRACE solutions are widely used in 

hydrology, oceanography, ice, atmosphere, solid earth and other related Earth science studies.  

Future gravity missions designed to determine the time-variable gravity field will use specific satellite 

constellations to extract signatures of global mass transport. In this dissertation a closed-loop 

simulation is set up to study various constellations. Starting point for the simulation is the magnetic 

field mission Swarm, an ESA mission to be launched in 2012, consisting of three satellites. Since each 

of them is equipped with both GPS receivers and accelerometers, the constellation can be used for 

gravity field recovery as well. In this respect Swarm is comparable to three CHAMP satellites where 

in addition to absolute GPS positioning, one could use relative measurements to increase the 

observation accuracy.  

A 24-month-simulation is carried out to recover the time-variable hydrology signal. By this simulation 

Swarm‘s potential for time-variable gravity field recovery is evaluated. It is shown that Swarm has the 

potential to recover the time variable hydrology signal to about d/o 6, based on 2 years of data. In 

addition, the mission is of interest from a theoretical point of view, because it combines different types 

of inter-satellite baselines, i.e., cross-track (Swarm A-B) and radial/along-track (Swarm A-C). 

Therefore the Swarm constellation can be used as an example to evaluate characteristics of different 

baselines and combinations. In order to quantify the potential of these constellations in future mission 

scenarios, GRACE-type K-band inter-satellite links are included as well. The tandem/pendulum 

constellation is shown to outperform GRACE, which provides smaller error spectrum and isotropic 

error patterns.  

All analyses are based on the energy integral approach, which was implemented successfully for static 

gravity field analysis of CHAMP and GOCE as well as for time variable gravity field analysis of 

GRACE. Still, in case of time-variable signals, the method has its peculiarities because it is usually 

applied in a specialized version which only holds in conservative fields. For time-variable gravity field 

recovery, the non-conservativeness of time variations should be considered. Neglecting the fact that 

time-variable fields are not conservative and still applying the specialized observation equation, an 

error will be introduced. The magnitude of this error for different time-variable signals are evaluated, 

where it is found that for continental hydrology, which is only moderately changing in time, the error 

effect can be neglected at the current level of accuracy, i.e., the specialized observation equation can 

still be applied. 

Considering that GRACE may terminate in the time frame 2013 to 2015, Swarm may continue in 

time-series of gravity measurements until GRACE follow-on mission is in place. Given the fact that 

CHAMP has already terminated, Swarm could indeed be the only LEO mission contributing to 

temporal variations of the low degree spherical harmonics in the near future. Moreover, even a 

combination of Swarm and GRACE (if it still operates after the launch of Swarm) may help to reduce 

temporal/spatial aliasing in the low degree harmonics by providing a better sampling in space and time. 

Therefore, Swarm can be regarded as a welcome complementary mission to the dedicated gravity 

missions and will provide valuable information on both static and time-variable gravity fields in the 

near future. 

 

Keywords: Swarm, time-variable gravity field recovery, energy balance approach, satellite 

constellation 
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1. Introduction 

 

1.1. Introduction to current satellite gravimetry missions 

 

One of the central tasks of geodesy is to measure the Earth‘s gravity field. Depending on the 

measurement types, one usually speaks of terrestrial gravimetry and satellite gravimetry. Terrestrial 

gravimetry includes stationary gravimetry, marine and airborne gravimetry. In these approaches the 

gravity field is measured by gravimeters, i.e. accelerometers measuring gravitational accelerations. 

The terrestrial approach has the advantage that the measurements can achieve very high accuracy at 

local level and so that they can be used to resolve fine structures of the gravity field. The disadvantage 

is that they don‘t provide global coverage and the results are not of the same accuracy level at global 

scales. 

Satellite gravimetry, on the other hand, enables observations of the gravity field with global coverage 

and homogeneous accuracy. With the launches of CHAMP (CHAllenging Minisatellite Payload, July 

15, 2000), GRACE (Gravity Recovery And Climate Experiment, March 17, 2002) and GOCE
 
(Gravity 

field and steady-state Ocean Circulation Explorer, March 17, 2009), this decade (2000-2010) has been 

the golden season for satellite gravimetry.  

The CHAMP satellite mission was designed to study the Earth‘s gravity and magnetic fields as well as 

the Earth‘s atmosphere (Reigber [2000]). The mission was initiated and is operated by the GFZ-

Potsdam (Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum) since its launch. With its 

end on September 19, 2010, CHAMP had a life time of more than 10 years, which is far more than its 

designed 5-year life time. CHAMP carried onboard a GPS receiver and an accelerometer, which made 

it possible to do precise continuous 3D positioning and to separate gravitational and non-gravitational 

forces. CHAMP has been a concept-prove and test bed for the more sophisticated gravity missions 

GRACE and GOCE, because both of them make use of the combination of GPS receiver and 

accelerometer as well. Moreover, the analysis of CHAMP data allows assessing the value of non-

dedicated satellite missions carrying equivalent instruments for gravity field research, Swarm or 

COSMIC are examples of such kind.  

GOCE is the first core mission within ESA‘s Earth Explorer program. The main objective of the 

mission is to provide a high-accuracy, high-resolution global model of the Earth‘s static gravity field 

and of the geoid. GOCE is innovatively designed with a drag-free control system and satellite gravity 

gradiometry (SGG) measurement system. The former is designed to compensate the atmospheric drag 

and the latter is the key measurement instrument of GOCE, which will provide unique high-frequency 

information about the Earth gravity field with very high accuracy (Ditmar and Klees [2002]). The 

measurement principle is based on the analysis of the differences in gravitational accelerations 

between 3 pairs of accelerometers (the gradiometer). In this way the second derivatives of the Earth‘s 

gravitational potential, the so-called gravity gradient, can be measured, which counteracts the 

attenuation effect of the gravity field at satellite altitude and thus provides very accurate results. This 

concept is in fact similar to the low-low satellite-to-satellite tracking (SST-ll), which is implemented 

in GRACE. While the measurements of GRACE take place between two satellites separated about 220 

km from each other, the GOCE gradiometer measures gravitational and rotational acceleration 

difference in 3D between accelerometers units which are only ±50 cm apart from each other. 

Combined with high-low satellite-to-satellite tracking (SST-hl), GOCE will lead to high resolution 

global and regional models of the Earth‘s static gravity field improving spatial scales down to 200 km. 
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More information on GOCE can be found e.g. in Rummel et al. [2002], Johannessen et al. [2003], 

Drinkwater et al. [2007] or http://www.esa.int/livingplanet/goce.  

Different from CHAMP and GOCE, the GRACE mission focuses on the temporal change of the 

Earth‘s gravity field. Since its launch, it has been providing valuable information on the temporal 

gravity variations with monthly or sub-monthly resolutions for a scale of 600-1000 km for nearly a 

decade. The mission consists of 2 satellites in a leading-following constellation, where the separation 

of the two satellites is actively controlled to stay within 170 to 270 km. The distance between the two 

satellites and its 1
st
 time derivative are measured by a K/Ka-Band Ranging (KBR) system with a very 

high precision. Each GRACE satellite is equipped with a horn antenna for transmission and reception 

of the K/Ka-band microwave signals. The phase-shift between generated and received signals is 

measured with an accuracy of about 0.2 μm/s for range-rate and 10 μm for the range (Dunn et al. 

[2003], Tapley et al. [2004a]). 

Time-variable satellite gravity measurements can be used to address a wide variety of problems in the 

Earth sciences. Any geophysical process that causes a significant redistribution of mass over scales of 

hundreds of kilometres is a possible target. Thus the GRACE solutions are widely used in hydrology, 

oceanography, ice and atmosphere or solid earth studies. As an example, Figure 1-1 shows the trend of 

the gravity variations derived from 8 years of GRACE data, expressed in water column in cm/year. It 

is clear to see the mass loss in Greenland, which is caused by the accelerated melting of its ice sheet in 

this decade. The accelerated ice melting occurs mostly around the coastline, especially in southern 

Greenland. According to Velicogna and Wahr ([2005 a, b], [2006 a, b]), an ice mass loss of 248± 

36 km
3
/year, which is equivalent to a global sea level rise of 0.5±0.1 mm/year, can be determined from 

the GRACE data from April 2002 to April 2006. It is also clear to see the post glacial rebound (PGR) 

signals over Canada, which is the viscoelastic response of the solid Earth to glacial unloading over the 

last thousand years. The positive trend indicates the arising of the solid Earth due to melting of the 

former ice sheet, which was proved by independent measurements and model predictions (Peltier 

[2004], Velicogna and Wahr [2002]).  

 

Figure 1-1 Trend derived from 8-years GRACE data, expressed in water column [cm/year]  

GRACE, or in general spaceborne gravity missions aiming at the time-variable gravity field, have two 

distinct advantages over other techniques. First, gravity measurements provide a direct estimate of 

mass. Thus it is less ambiguous to interpret the results as mass changes, e.g. melting of ice sheet, than 

for other e.g. geometric techniques. For example, for airborne or spaceborne altimetry, the 

transformation of the measured elevations into mass variability of the ice sheets requires the density of 

the firn, which is usually poorly known. Second, GRACE measures the variations averaged over a 

broad region of the underlying surface, not just as point value directly beneath the satellite. Thus it 

inherently averages over large regions, which benefits the estimate of the total mass change. Altimetry, 

for example, samples the ice sheet at relatively small footprints, so that the estimate of total mass 

imbalance requires interpolations and extrapolations, which may introduce additional errors. Of course 

http://www.esa.int/livingplanet/goce
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GRACE has also disadvantages. On one hand, it cannot provide small-scale resolution, so it has 

difficulty fixing the exact location of a mass anomaly. On the other hand, GRACE measures only the 

total amplitude of the mass anomaly. It cannot distinguish between the different sources without 

additional information. For example, it is difficult to tell whether a mass anomaly detected in a 

continental region is in the atmosphere or in the water and snow on the surface, or in the water stored 

underground. Therefore, the best approach is to combine GRACE and altimetry as well as GPS 

observations to make use of the advantages of the different measurement systems.   

GRACE has already passed the designed life of 5 years and it may terminate due to technical reasons 

(estimated to occur in 2013, Wiese et al. [2008]). Currently (10.2010) a follow-on mission and a gap-

filler mission are in the planning phase but fixed schedules for such missions are not determined yet. It 

is therefore interesting to see if there can be a mission to continue the observation of the time-variable 

gravity field and to bridge the gap to the next dedicated GRACE-type mission, in case GRACE indeed 

fails. Since currently there is no other mission with low-low SST available, one has to focus on the 

missions with GPS-only measurement.  The ESA magnetic field mission Swarm can be such a 

candidate mission.   

 

 

1.2. Motivation of using Swarm mission for gravity purposes 

 

The major part of the Earth‘s magnetic field has its origin in the outer fluid core. It is created by a self-

sustaining dynamo process involving turbulent motions of molten iron. Since the launch of the Ørsted 

satellite (Neubert et al. [2001]) mission in 1999, a new era of satellite measurements for geomagnetic 

field has started.  CHAMP (Reigber et al. [2002]) and SAC-C (Olsen et al. [2006]), both launched in 

2000, have delivered high-precision geomagnetic data during the first years of this decade. However, 

all these three missions have been single-satellite missions. Although they share similar magnetic 

instruments, they have different science payloads, spacecraft designs and orbits. As a result they 

produce data with fairly different characteristics. This limits the scientific advantage of comparing 

data simultaneously acquired at different locations by different satellites. In particular, the irregularly 

varying fields produced by the external currents are then difficult to be modeled adequately. This is 

reported to be the main limiting factor in the accuracy of present geomagnetic field models (Friis-

Christensen et al., [2006]). Single-satellite missions simply cannot take full advantage of the 

instrument improvement achieved during the recent years. Thus, a dedicated multi-satellite mission 

making simultaneous measurements over different regions of the Earth is needed. Results from 

combined analysis of Ørsted, CHAMP and SAC-C data have confirmed this (Sabaka et al. [2004]). 

Swarm has been designed to be such a dedicated mission, which consists of three satellites with 

different orbit configurations to enable simultaneously measurements at different locations of the 

Earth.  

The Swarm mission is based on a mission proposal (Friis-Christensen et al. [2002]) submitted in 

response to the ESA Earth Observation Programme call for Opportunity Mission proposals. Among 25 

submitted proposals Swarm was one of the three candidates selected for feasibility studies. The Phase-

A studies were finalized during 2004 and in May 2004 the Swarm mission was selected as the fifth 

Earth Explorer Mission in ESA‘s Living Planet Programme aiming at a launch in 2012 (Haagmans, R. 

(2004)). 

The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its 

temporal evolution, in order to gain new insights into the Earth system by improving the 

understanding of the Earth‘s interior and the geospace environments. More precisely, the Swarm 

mission will make it possible to derive the first global representation of the geomagnetic field 

variations on time scales from an hour to several years and directly address the challenging issue of 
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separating the contributions from the various field sources. Swarm has been specifically designed to 

simultaneously obtain a space-time characterization of both the internal field sources in the Earth‘s 

core, mantle, and crust, and the external current systems in the ionosphere and magnetosphere. 

The primary research objectives of the mission are (Friis-Christensen et al. [2006]): 

 Core dynamics, geodynamo processes, and core-mantle interaction, 

 Lithospheric magnetisation and its geological interpretation, 

 3-D electrical conductivity of the mantle, 

 Currents flowing in the magnetosphere and ionosphere. 

In addition, two secondary research objectives have been defined: 

 Identification of ocean circulation by its magnetic signature, 

 Quantification of magnetic forcing of the upper atmosphere. 

All three Swarm satellites feature scalar magnetometer, vector magnetometer, electric field instrument, 

GPS receiver and accelerometer onboard. More details about the onboard instrument and the 

measurement principle can be found in e.g. Kotsiaros [2009] or ESA SP-1279-6 [2004]. As the focus 

on this dissertation is not to recover the magnetic field but the gravity field with Swarm, the orbit 

constellation and the instrument combination GPS receiver – accelerometer are more of interest for 

this purpose. The orbit constellation is introduced in section 4.2, where simulation studies of such a 

constellation is carried out, while the specifications of the onboard GPS receiver and accelerometer 

can be found in ESA SP-1279-6 (2004).  It is to notice that the accelerometer noise is not considered 

in the simulation studies in Chapter 4 and the GPS noise is considered to be white noise in this 

dissertation.  

The onboard GPS receiver and accelerometer makes Swarm able to do precise 3D orbit determination 

and to observe non-gravitational forces. In this sense Swarm can be regarded as three single CHAMP 

satellites. Besides the GPS measurement for single satellites, it is also possible to derive GPS baselines 

between the satellites, which should be determined with an accuracy of one order of magnitude better 

than absolute GPS positioning (Visser [2006]). As CHAMP has already proved, Swarm should have 

the potential for static gravity field recovery. Furthermore, it is interesting to see if the more accurate 

baseline measurement can bring advantage in time-variable gravity field determination. Considering 

that GRACE may terminate due to technical reasons and a follow-on mission is still in planning, it is 

interesting to know if Swarm has the potential to determine the global time-varying signal of 

continental hydrology. In addition, Swarm is a very useful constellation from a theoretical point of 

view, because it combines baselines in all different directions, i.e. along-track (like GRACE), cross-

track and radial (see e.g. Gerlach and Visser [2006]). It is well known, that the sectorial and near-

sectorial coefficients are not well determined from an along-track mission like GRACE and the well 

known striping patterns in GRACE fields are the spatial representation of such an error structure. It is 

also known that other baseline constellations lead to different error structures. Therefore an analysis of 

such baselines and especially the combination of those are very useful for mission planning. Based on 

these considerations, this dissertation is dedicated to investigate the potential of Swarm in terms of 

static and time-variable gravity field determination via simulation studies. 

Following the introduction in Chapter 1, Chapter 2 will describe the fundamental methodology and 

mathematics tools used in this dissertation. In section 2.1 an introduction to the energy balance 

approach is given for both static gravity field and time-variable gravity field determination. More 

generalized equations for computing the non-conservative time variations with the energy balance 

approach are derived and described briefly. Equations are given for both the single satellite case and 

satellite constellations. Section 2.2 gives a simplified error analysis based on the energy balance 

approach, which provides an estimation of the achievable accuracy in the simulation studies in 

Chapter 4. Besides the error budget for GPS measurements, GRACE-type measurement with K-band 

is also introduced. Section 2.3 describes several terms which will be used in frequency analysis of the 

time-variable gravity signals, including Fourier transform, sampling rule and aliasing as well as 

filtering of spherical harmonics.    
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Chapter 3 introduces and analyzes the time-variable gravity signals used in the simulation studies in 

Chapter 4. Section 3.1 links the spherical harmonics coefficients with the mass changes, explaining the 

principle for obtaining information about mass anomalies from the gravity products. Equations 

showing the calculation of the mass change on the surface of the Earth from spherical harmonics and 

vice versa are described. Section 3.2 deals with the analysis of the hydrology signal, in this 

dissertation represented by the LaD (Land Dynamic model). It begins with an introduction to the 

global water cycle, followed by the analysis of the LaD model.  Atmosphere-ocean signal is analyzed 

in section 3.3, where the formulas of calculation of spherical harmonics coefficients from atmospheric 

and oceanic pressure data are introduced, followed by the spectral analysis of the atmosphere-ocean 

signal together as a system. Ocean tides signal is described in section 3.4, where tidal force, tidal 

potential are shortly explained. Section 3.5 discusses about the non-conservativeness of the time-

variable gravity signals and demonstrates the error introduced by neglecting this property for direct 

tides, ocean tides, hydrology and atmosphere-ocean signals, respectively. The error is shown for both 

single satellite and 2-satellite-constellations. 

In chapter 4 several simulation studies are carried out. The simulator and the simulated constellations 

are introduced in section 4.1 and 4.2, respectively. Starting from Swarm, the simulation is extended 

with different constellations and measurement principles. Static gravity field recovery simulation is 

carried out in section 4.3 and aliasing issue is discussed in section 4.4. In section 4.5 a 24-mon-

simulation is carried out, which attempts to recover the hydrology signal as well as its annual/semi-

annual components.     

Chapter 5 summarizes the results and achievements of this dissertation.   
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2. Methodology 

 

2.1. Introduction to energy balance approach 

 

One method to recover the gravity potential from satellite missions is the energy integral approach, 

which will be applied in the simulation studies of this dissertation. The method and its utilization in 

gravity field recovery has been discussed since the early days of satellite geodesy and successfully 

implemented after the launch of CHAMP in 2000, see e.g. Han et al. [2002], Gerlach et al. [2003] or 

Badura et al. [2005]. The approach has also been used for time variable gravity field recovery for 

GRACE (see Han [2004]) and is used as part of the time-wise approach for determination of the static 

field with GOCE (Pail et al. [2010]). In this section, an overview on the observational model, i.e., the 

energy integral, shall be given for both single satellites and satellite constellations like those used in 

the Swarm or GRACE missions. This does, however, not imply that the application of the method is 

restricted to these two examples.  

 

Derivation of the Energy Integral 

 

The Jacobi or energy integral for one satellite as given, e.g., by Hotine and Morrison (1969), reads

 
21

2
W x C           (2.1) 

where C is an unknown constant, W is the gravity potential and x  denotes the velocity vector of the 

satellite in an Earth-fixed coordinate system. Separating the gravity potential into gravitational and 

centrifugal potential V and Z and solving for V, one finds the basic energy integral equation for 

gravity field determination 

 
21

2
V x Z C  

        
 (2.2) 

This equation holds only in a static (conservative) gravity field, with no other forces acting but the 

Earth‘s gravitation. This becomes obvious by deriving the energy integral from the satellite‘s equation 

of motion, as was done by Schneider [1967]. The equation of motion reads 

 

2

2

d

d

x
m F

t
 ,          (2.3) 

where m is the mass of the satellite and F  is the sum of all forces acting on the satellite. Multiplying 

both sides of the equation with the satellite‘s velocity and assuming equality of inertial and the 

gravitational mass (thus m drops out and force F  is replaced by acceleration or specific force f gives

 

2

2

d d d

d d d

x x x
f

t t t
   .        (2.4)

Since for the left hand side it holds 

 

22

2

d d d 1 d

d d d 2 d

x x x

t t t t

  
       

       (2.5)

integration of equation (2.4) over time yields 
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2
d

d
d

x

x
f x

t

 
 

 
 .         (2.6) 

From equation (2.6) it is obvious, that all accelerations f  need to be integrated along the satellites 

orbit. For conservative forces (like the Earth‘s static gravity potential W given in an Earth fixed frame) 

the integral can be replaced by the potential difference between the end points of the corresponding 

potential field. This means, that only potential differences with respect to the start point of an orbit arc 

can be derived. The full gravity potential is therefore only derived up to an unknown constant (which 

represents the integration constant, or the potential value at the start point of the orbit arc). Therefore 

one can write 

21
d

2
x

x W a x C           (2.7) 

or equivalently 

 
21

d
2

x

V x a x Z C    ,       (2.8)

where a  is the sum of all non-conservative forces. These are all surface forces acting on the satellite 

(like solar radiation pressure and atmospheric drag) as well as all time-variable gravitational and non-

gravitational accelerations. If these forces are known, they can numerically be integrated along the 

orbit. Knowing the velocity of the satellite, the integration along the orbit can be replaced by the 

following integration over time 

 

 d d
x t

a x a x t   .        (2.9) 

 

The Energy Integral for two Satellites 

 

 

Potential differences between any two satellites can be computed by forming differences of two 

energy integral equations. Neglecting all non-conservative forces for the moment one can derive from 

equation (2.2) 

 
2 2

2 12 1 2 2 1 1

1 1

2 2
V V x Z C x Z C

 
       

      

 (2.10) 

or 

  2 2

2 112 12 12

1

2
V x x Z C   

      
 (2.11) 

where the index combination  
12

  denotes relative quantities in the sense    
2 1

   .  

Rearranging the term in brackets, one can write 

      
2

2 2 2

2 1 2 1 1 2 1 12 1 122 2x x x x x x x x x x            (2.12) 

Inserting (2.12) into (2.11) one finds the energy integral relation for any two satellites 

 
2

12 1 1212 12 12

1

2
V x x x Z C            (2.13) 
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Energy integral for determination of the static gravity field 

 

 

As shown in equation (2.8) and (2.9), the energy integral can be used to determine the static gravity 

field of the Earth according to 

 
21

d
2

t

V x a x t Z C            (2.14) 

where V is the static gravitational potential, Z the centrifugal potential,  x  is the velocity vector of the 

satellite and a  is the sum of all non-conservative forces. The non-conservative forces include all 

surface forces acting on the satellite (solar radiation pressure, atmospheric drag, etc.) as well as all 

time-variable gravitational forces like tides or the effects from mass transport in the Earth system. In 

addition the energy integral equation (2.14) contains the unknown integration constant C, which must 

be estimated as an additional parameter for each continuous orbit arc.  

 

In case of satellite constellations, the potential difference between any two satellites can be derived 

according to equation (2.13) as 

  2

12 1 12 2 2 1 112 12 12

1
d

2
t

V x x x a x a x t Z C            (2.15)

where double indexing indicates differences between satellites, e.g., 12 2 1V V V   is the potential 

difference between the locations of satellites 1 and 2.  

 

Energy integral for determination of the time-variable gravity field 

 

 

For time-variable gravity field determination one can split the accelerations a  in equation (2.14) in 

two components 
m

a  and 
u

a , where the first represents the sum of all known (from models or 

measurements) gravitational and non-gravitational accelerations and  
u

a  are unknown time-variable 

gravitational accelerations. An example for the latter is the effect of continental hydrology, while the 

former contains measured surface forces or tidal effects known from models. Since 
u

a  are 

gravitational accelerations one can also replace them by 
uV  for the single satellite case, or by 12

uV  

for satellite constellations. Since time-variable effects are discussed, the gradients are spatial gradients 

at a specific epoch in a time-variable potential field, i.e., 12 12 ( )u uV V t   . Here it is assumed that the 

time-variable field can be expressed in time series of potential functions, i.e. it is allowed to express 

the field in potential for each epoch.  

Then equations (2.14) and (2.15) can be re-written as 

21
d d

2

mu

t t

V V x t x a x t Z C              (2.16) 

   2

2 1 12 1 12 2 2 1 112 2 1 12 12

1
d d

2

m mu u

t t

V V x V x t x x x a x a x t Z C                 (2.17) 

The left hand side of the observation equations (2.16) and (2.17) is the basis for setting up the 

functional model of the parameter estimation process, while the right hand side is evaluated to 

generate the corresponding pseudo-observations. It is called pseudo-observation, because it serves as 

observation in the estimation process, while the original observations actually are satellite positions 

and acceleration measurements. 
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It is important to note, that only the static part of the gravitational field can be considered to be 

conservative. Thus, only for this static part the original line integral (see equation (2.6)) is path-

independent and the integration can be replaced by corresponding potential differences along the orbit 

arc. In this specialized case (valid only in conservative fields) the functional model contains the 

potential V explicitly. But because the time-variable part is not conservative, the line integral can in 

general not be replaced by potential differences between the end points of the line and the 

corresponding time-variable potential is only implicitly introduced into the functional model by 

integrating gravitational gradients  
uV  along the orbit.   

In order to model the time evolution of the gravity field, the following standard procedure is recalled: 

one might set up a time series of potential fields, where each field is derived from observations of a 

certain time span and the potential is assumed to be either static through this period or it is modeled to 

follow a certain behavior, like a secular change. This is the standard procedure applied, e.g., in the 

processing centres at CSR, GFZ, JPL or others. In addition to a sequence of independent snapshots 

also Kalman filter solutions have been implemented to model the time evolution (Kurtenbach et al., 

2009). In general such strategies are reasonable as far as one can exclude aliasing effects due to 

unresolved short-periodic time variable effects within the chosen time span. Such effects arise, e.g., 

due to short periodic tidal, oceanic or atmospheric signals, which need to be removed before gravity 

field analysis. 

If one uses the energy integral to transform satellite position and velocity (incl. low-low satellite-to-

satellite-tracking) observations into potential values, one has (at least theoretically) to consider the left 

hand side of equations (2.16) or (2.17). There, the time variable part needs to be modelled by 

integrating the corresponding gravitational accelerations along the orbit. Otherwise an error will be 

introduced which arises from disregarding the non-conservativeness of time variable signal 

components.  Such error will be demonstrated in section 3.5. This fact has already been pointed out by 

Sneeuw [2003a, c] based on general considerations on the treatment of non-conservative forces in the 

energy integral by Gerlach [2003].  

Equations (2.16) and (2.17) show the rigorous observation models for time-variable gravity field 

analysis. Here both the static part V as well as the time-variable component uV are unknown and need 

to be determined from either a single satellite or from a satellite constellation. 

 

In order to set up the functional model for the estimation of the time-variable gravitational potential 

one might use the following expansion in spherical harmonics  

 

1

(cos ) ( cos sin )

n

nm nm nm

n m

GM R
V P C m S m

R r
  



 
   

 
 

  

 (2.18) 

or in compact notation 

 

 nm nm

n m

V K Y
        

 (2.19) 

where nmK are the fully normalized spherical harmonic potential coefficients of degree n and order m 

and nmY  are the solid spherical harmonics, i.e., the product of associated Legendre functions 

(cos )nmP  , the upward continuation factor (R/r)
n+1

 and the sine and cosine terms;  ,   and r are 

the spherical coordinates longitude, co-latitude and radius of the observation point. 

 

In addition, one can model the time-variable potential coefficients as the sum of the static component

nmK , the linear drift term nmK  and a periodic (e.g., half yearly or yearly) contribution of frequency   

 0 0( ) ( ) ( ) cos sinc s

nm nm nm nm nmK t K t K t t K t K t           (2.20) 
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Inserting (2.20) into the spherical harmonic series (2.18), one finds 

 0 0( ) ( ) ( ) cos sinc sV t V t V t t V t V t           (2.21) 

where the first term corresponds to the conservative part in equations (2.16) and (2.17), while all of the 

last three terms contribute to the integral of non-conservative components. The left hand side of 

equation (2.16) then reads 

  0 0 0( ) ( ) cos sin d ( ) ( )c s

t

V t V t t V t V t x t V t I t           (2.22)

where ( )I t  represents the integral over all time dependent contributions. An analogous relation can be 

set up for potential differences from satellite constellations.  

With this, the design matrix for estimating the unknown parameters contains the following columns 

for each time dependent coefficient 

 0( ) ( ) ( ) ( )
c s

nm nm nm nm

V t I t I t I t

K K K K

    
 
    

       (2.23) 

The first column contains just the partial derivatives of equation (2.19) with respect to the coefficients. 

The last three columns contain the partial derivatives of the integral I(t) in equation (2.22) which 

contains the potential gradients   

 0( ) cos sin

u u u

u

x u u u
c s u u

y

u

z u u u

V r V V

r x x x
V

V r V V
V t t V t V t V V

r y y y
V

V r V V

r z z z

 

 

 
 

 

 

 

      
     

       
       

                    
  

        
     

      

 (2.24) 

Since formally, V , cV  and sV  can be computed by simply replacing the potential coefficients nmK  

in (2.19) by the corresponding coefficients nmK , 
c

nmK  and 
s

nmK  it holds 

 
( ) ( ) ( ) ( )c s

nmc s

nm nm nm nm

V V V V
Y

K K K K

       
    

   
    (2.25) 

With this, it follows for last tree partials in (2.23) for the single satellite case 

 0

( )
( ) dnm

nm t

I t
t t Y x t

K


   

         (2.26) 

 
( )

cos dnmc

nm t

I t
t Y x t

K



  

         (2.27) 

 
( )

sin dnms

nm t

I t
t Y x t

K



  

         (2.28) 

 

and for satellite constellations 

 

  2 10 2 1

( )
( ) dnm nm

nm t

I t
t t Y x Y x t

K


      

 
    

 (2.29) 

  2 12 1

( )
cos dnm nmc

nm t

I t
t Y x Y x t

K



     

       (2.30) 
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  2 12 1

( )
sin dnm nms

nm t

I t
t Y x Y x t

K



     

       (2.31) 

where i nmY  indicates, that the gradient of the solid spherical harmonic nmY  is evaluated at location 

of satellite i (i=1, 2).  

Compared to the static component which contains just the solid spherical harmonics, the rigorous 

estimation of the time-variable potential coefficients is quite tedious. Here, the gradients of the solid 

spherical harmonics need to be integrated along the orbit. Thus it is interesting to see if one can skip 

these complex computation steps. To answer this, one needs to investigate how large the error due to 

neglecting the non-conservativeness of the time variations can be and to what extent this error will 

downgrade the recovery of gravity field. This issue will be discussed further in section 3.5 and 4.4.   

 

 

2.2. Simplified error analysis based on the energy balance approach 

 

As introduced in the last section, the energy balance approach is based on the energy conservation law, 

which states that in a conservative field, the sum of potential and kinetic energy is constant. In order to 

estimate the expected level of accuracy for the simulations in section 4.3 to 4.5, a simplified error 

analysis is performed here, which takes care of only the largest contribution in the error propagation, 

i.e., the velocity information of the satellites. Therefore all other terms (like centrifugal potential or 

non-conservative forces) are neglected and the simplified equations are written as 

 21

2
V x  (2.32) 

for the single satellite case and 

 2

12 1 1212

1

2
V x x x    (2.33) 

for satellite constellations. Error propagation of equations (2.32) and (2.33) yields 

 
22 2

V xx   (2.34) 

and 

  
12 12 1

2
22 2 2

12 1 12V x xx x x        (2.35) 

where 
1x and 

12x are the error standard deviations of absolute and relative velocities, respectively. In 

order to evaluate equations (2.34) and (2.35), some realistic values are introduced for the different 

quantities. These are given in Table 2-1. Hereby it is assumed, that the velocities are determined by 

means of GPS high-low satellite-to-satellite tracking.  The accuracies of absolute and relative satellite 

velocities are assumed to be independent of the specific constellation, while the absolute values of 

relative velocities differ significantly for different constellations. Several constellation types are 

distinguished here: the constellations implemented in the GRACE and Swarm missions, i.e., an along-

track baseline where two satellites follow each other on the same orbit (GRACE case with GPS only), 

a cross-track baseline, where two satellites fly side-by-side along slightly different orbits (here the 

longitude of the ascending node differs for about 1.4° as in case of Swarm baseline A-B) and a oblique 

or mixed baseline. This oblique baseline is a baseline between two satellites in about the same orbital 

plane, but in different altitudes. Due to the different orbital velocities in different altitudes, the oblique 



2.2  Simplified error analysis based on the energy balance approach 

 

12 

 

baseline will be almost radial during some periods (periods of closest approach), while in other periods 

it will be almost along-track.  In general it will be a mixture of along-track and radial components. In 

case the orbital planes are not identical there will be additional cross-track components. The baselines 

Swarm A-C or B-C are examples of such mixed baselines, where the orbital planes are almost 

identical to that of Swarm A/B in the beginning of the mission, while they will drift apart during the 

mission lifetime of 5 years for about 90, see Olsen et al. [2007] or Kotsiaros [2009]. Figure 2-1 shows 

the different observation geometries of the baseline between Swarm A or B and Swarm C. 

 

 

Figure 2-1 Geometry of the baseline between Swarm A/B and Swarm C 

 

Table 2-1 Velocity and velocity errors used for the simplified error analysis 

 single satellite inter-satellite baseline 

along-track cross-track oblique 

velocity [m/s] 7700 250 170 15400 

accuracy [mm/s] 0.1 0.01 0.01 0.01 

 

Considering the magnitude of baseline velocities, the along-track and cross-track constellations show 

only moderate values. These constellations are stable in time, i.e., the relative position between the 

satellites are more or less constant. In the along-track constellation the satellites will approach or 

depart from each other depending on local gravity field structures. In addition, the cross-track baseline 

contains the effect of converging orbit arcs, i.e. the satellites get closer as they move towards the poles, 

while their distance increases as they move towards the equator. Overall, these constellations are 

stable in time. This is different for the oblique baseline, where the satellites move at different altitudes. 

Since the lower satellite is faster, the relative position is not constant. Starting, e.g., both satellites at 

the equator it happens after a while, that they find each other on opposite sides of the globe due to 

different orbital velocities. After a while, the satellites approach each other again, and this 

constellation shift repeats periodically. At the start epoch just described, the relative velocity will be 

quite small, but when being located at opposite sides of the globe, it happens, that the one satellite 

crosses the equator in an ascending arc with positive velocity component in z-direction, while at the 

same time, the other satellite crosses the equator in a descending arc with negative velocity component. 

Then the relative velocity between the two satellites amounts to twice the absolute velocity of one 

satellite, i.e., to about 15400 m/s. According to equation (2.35), this large relative velocity degrades 

the accuracy of potential differences, as will be shown further below. First the single-satellite case 

should be discussed. 
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Inserting the numbers given in Table 2-1 into equation (2.34) one finds for the expected error of the 

potential  

2 20.77 m /sV xx  
. 

Taking just the simple difference between two single satellite solutions, without considering the 

baseline information between the satellites as is done in equations (2.33) and (2.35), one finds for the 

potential difference between two arbitrary satellites (assuming the errors of both satellites being 

independent of each other) 

12

2 22 1.09m /sV xx  
. 

Making use of the baseline information, one has to distinguish between the three different cases listed 

in Table 2-1, i.e., along-track, cross-track and oblique. For the along-track component one gets 

 

  
12 12 1

2
22 2 2 10 2 8 2 2

12 1 12 7950 10 250 10 0.08m /sV x xx x x             
 

 

where the largest contribution comes from the first term, i.e., from the error of the baseline velocity. 

Since this is assumed one order of magnitude better than the absolute velocity error, also the potential 

difference can be determined with about one order of magnitude higher accuracy. As long as the 

baseline velocity is moderate, i.e., for the stable constellations, the result does not change much. 

Consequently, the same accuracy level of 0.08 m/s can be expected for the cross-track case. 

The situation changes as soon as the relative velocity becomes large. This is the case for the oblique 

component. Then, with increasing relative velocity, the second term in equation (2.35) tends to 

dominate the error budget. Using the numbers in Table 2-1 (which is a worst case scenario) one gets 

 

 12

2 10 2 8 2 223100 10 15400 10 1.56m /sV
     

 

This is about a factor of 20 worse, than the result for the stable along- and cross-track constellations. 

When performing a global gravity field analysis from potential differences, the recovery will be 

strongly degraded by epochs with large relative velocities. The result is even worse, than when using 

the simple difference between two single satellite solutions, though only by a factor of 1.4. Therefore 

the individual observations need either to be properly weighted according to the relative velocity or 

one could exclude baselines with large relative velocity. In the latter case, a threshold needs to be 

defined for the largest acceptable relative velocity. In addition, one could wonder, if, in case of 

satellites on opposite sides of the globe, it is possible at all to determine the inter-satellite baseline 

from GPS to the accuracy level assumed until now. In this case, there are no common GPS satellites in 

view to derive a baseline, but the baseline would have to be determined indirectly by solving for a 

global network including the LEO satellites. Since the quality of such a baseline is expected to be 

below the accuracy of a directly observed baseline, such large baselines would degrade the quality of 

the results even more. Both, the observability of GPS satellites and the relative velocity threshold 

result in the exclusion of long baselines.  

Finally, it should be mentioned, that the along-track constellation is treated in the above error analysis 

as one with GPS observations only. The satellites fly in a GRACE like constellation, while there is no 

additional high-accuracy inter-satellite range observation. If one introduces such an observation, one 

can use the simplified error model  

 
12 1V x    (2.36) 

based on the old proposal by Wolff [1969] to transform small velocity differences between two 

satellites in a tandem constellation into potential differences, i.e. the essence of the energy integral. 
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The model was never rigorously applied to real data due to residual cross-track effects, but it is well 

suitable for error propagation (see e.g. Han  [2004]). Here the error of the potential difference depends 

only on the rang-rate error   which is scaled by the satellite speed, i.e., by about 7600 m/s. Using a 

rang-rate accuracy of about 71 10 m/s one finds 

 
12

2 20.0008m /sV   (2.37) 

which is about a factor of 100 better than the GPS-only solution. 

 

 

2.3. Frequency analysis 

 

In this section several terms used in the frequency analysis of the time-variable gravity signals will be 

briefly introduced. 

 

Fourier transform 

 

Fourier transform originates from Fourier series. In general, a continuous periodic function of time x(t) 

with a period of T can be developed into a sum of sines and cosines functions. This expression is then 

called Fourier series and has the general form like below 

0
0 0

1

( ) [ cos( ) sin( )]
2

k k

k

a
x t a k t b k t 





          (2.38) 

with  

 

0
2

T
 

 

0

0

2
( )cos( )

T

ka x t k t dt
T

   

0

0

2
( )sin( )

T

kb x t k t dt
T

 
 

 

 

Each term of the Fourier series corresponds to a certain frequency (or wavelength) and the signal 

strength of this frequency is described by ak and bk. Fourier series can be written in terms of amplitude 

and phase or in complex form as well. Detailed formulas about Fourier series can be found e.g. in 

Strang [1986] or Meyer [2005]. 

The Fourier Transform transforms a function x(t) from the time domain to its frequency domain. The 

representation of the original function in its frequency domain describes which frequencies are present 

in the original function. The work in this section is presented in greater details in Briggs [1995], Gray 

and Goodman [1995], Walker [1991] or Meyer [2005]. 

 

The continuous Fourier transform X(f) of the function x(t) is defined as 
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 2( ) ( ) i ftX f x t e dt







   (2.39) 

Where t is time and f is frequency. The units are seconds and Hz, respectively. The inverse Fourier 

transform is then given by 

 2( ) ( ) i ftx t X f e df




   (2.40) 

which transforms the function X(f) in spectral domain into time domain x(t). Equation (2.39) and (2.40) 

hold only for continuous signal. In reality, however, most of the data sets are measured at consecutive 

epochs and they are therefore not continuous time series but discrete values sampled at measuring 

points. For these signals, the equations given above cannot be implemented directly.  

 

The transform for discrete and periodic signal is called Discrete Fourier Transform (DFT). Assume the 

continuous function x(t) is sampled at the discrete epochs 

 , n = 0, 1, 2, ..., N-1nt n t   (2.41) 

The sampled discrete function x[n] will have N samples in an interval of ∆t with a period of T = N∙∆t. 

The discrete Fourier transform X[l] is then given by 
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with the frequency sampling rate defined by 

 
1 1
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 (2.43) 

The frequency spectrum ranges from 0 to f = 1/(2∆t), which is defined by the Nyquist theorem. Note 

that x[n] is discrete and assumed to be periodic. As a consequence, X[l] is periodic and discrete. The 

Inverse Discrete Fourier Transform (IDFT) is given by 
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A 24-month-hydrology data set from the LaD (Land Dynamic model) with a monthly resolution can 

be taken as an example to explain the equations above. The same data set is also used in the simulation 

studies in Chapter 4. In this dissertation the terms cpa (cycles per year) and cpd (cycles per day) are 

often used in spectral analysis, where 1 cpd equals 365 cpa. As shown in equations (2.42) and (2.43), 

the DFT of this data set will give a spectrum from 0 to 6 cpa in a frequency interval of 0.5 cpa. 

Similarly, a one-year atmosphere-ocean data with a 6-hourly resolution will have a spectrum from 0 to 

730 cpa in an interval of 1 cpa. 

Different algorithms have been developed to accelerate the DFT calculation process and to increase 

the computation efficiency. One of the methods is called the Fast Fourier Transform (FFT). The 

algorithm behind FFT and the realization in programming languages can be found in the literature, e.g. 

in [Meyer, 2005]. 
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Sampling theory and aliasing  

 

The discretization of a continuous time series is called sampling. In signal processing, sampling 

corresponds to a multiplication of a continuous signal with a Dirac pulse train. The sampled signal, 

which is discrete, leads to a periodic spectrum when transformed. The discrete data set is a sampled 

signal with certain sampling frequency of the originally continuous signal, as shown in equation (2.41) 

and (2.43). It is known as the Nyquist Theorem (also called sampling theorem) that a continuous 

signal can only be perfectly  reconstructed from its discrete sample, if the sampling frequency is higher 

than two times the highest frequency in the original signal. If this condition is not fulfilled, the 

reconstruction of the continuous signal will suffer from the so-called aliasing effect because of the 

insufficient sampling rate. The aliasing problem can be explained with help of Figure 2-2, where the 

aim is to recover the mean value of a signal over a certain time span. Here the black line represents the 

true signal and the blue dots are the sampling epochs. The dashed black line represents the true mean 

of the signal and the dashed blue line shows the estimated mean, as determined by the data samples. 

There is a clear difference between the true mean and the estimated mean caused by the under 

sampling of the data, which is referred to as aliasing error.  

 

Figure 2-2 Illustration of temporal aliasing error (based on Loomis [2009]) 

 

In the field of satellite gravimetry, the sampling condition is unfortunately not always fulfilled. The 

situation is complicated: the discrete measurements along the orbit represent a one dimensional series, 

from which a field function is to be reconstructed that varies in space (on the globe) and in time. Thus 

two types of aliasing can happen in the case of satellite gravity missions, namely temporal or spatial 

aliasing because of insufficient temporal or spatial sampling, respectively. For instance, it is not 

possible to perfectly reconstruct a time variable signal whose period is equal or higher than the half of 

the satellite observation period. A similar principle holds for the spatial aliasing. For a gravity signal 

limited in a certain region with a certain spatial size, it is only possible to perfectly reconstruct the 

signal, if the spatial resolution of the satellite fulfils the sampling requirements for this region.  

Theoretically, aliasing can be reduced by increasing the sampling so as to meet the Nyquist Theorem. 

Reubelt et al. [2010] have investigated the temporal/spatial aliasing issue by simulating satellite 

constellations with repeat orbits. Sticking to a repeat orbit has the advantage, that it is easy to interpret 

the time resolution by its repeat period. A β/α repeat orbit completes β revolutions in α nodal days, 

where β and α are integers. The repeat period of such orbit is α nodal days with a revolution time Trev 
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= α/ β nodal days. The minimum spatial and temporal resolution for a single satellite can be then 

determined as Dspace = 2π/ β [rad] and Dtime = α [nodal day]. In this case it holds 

2 / 2space time revD D T             (2.45) 

For a low-Earth orbiting satellite, the revolution time Trev is varying only marginally with its orbit 

height. Thus 2πTrev can be regarded as a constant for a given orbit height, which indicates that the 

increasing of temporal sampling will decrease the spatial sampling and vice versa.  Without 

compromising the temporal sampling, the spatial sampling can be improved e.g. by having additional 

satellites on interleaved ground tracks with a longitudinal shift. Similarly, without decreasing the 

spatial sampling, the temporal resolution can be improved e.g. by having additional satellites on the 

same ground track with a time shift. In Reubelt‘s 4-day- simulation, they attempted to recover the fast 

changing atmosphere-ocean signal, where both temporal and spatial aliasing occurs. Their results 

demonstrated that with appropriate constellations, it is possible to increase both space and time 

sampling and thus reduce the aliasing error significantly.     

In this dissertation the discussions about the aliasing issue will be given in section 4.4. Since the 

energy integral method is implemented in the simulation studies, specific aspects of the aliasing issue 

regarding the non-conservativeness of the time-variable gravity signals are discussed as well.  

 

Filtering of spherical harmonics coefficients 

 

According to Kaula [1966], the signal strength of the gravity field as expressed in spherical harmonics 

decreases with increasing degree and order, while the errors of the coefficients increase as the degree 

and order gets larger. This can lead to highly inaccurate results as the errors from the poorly 

determined terms with higher degree and orders may contaminate the well-determined terms with 

lower degrees. A common way to avoid this effect is to use filters. The filters act as a multiplication 

factor to the coefficients in the spectral domain, or equivalently, as a convolution in the space domain. 

Depending on the property one can distinguish isotropic from non-isotropic filters. While the latter is 

azimuth dependent as well, the former one is only dependent on spherical distance.  

The easiest isotropic filter is a direct truncation of the spherical harmonic series at a certain degree 

maxn  so that the inaccurate coefficients with higher degree are not included by setting all degrees 

greater than maxn to 0. This is equivalent to a low-pass filter or a step function in the domain of 

spherical harmonics given by 

 
max

max
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0,  for n <n
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         (2.46) 

In space domain function (2.46) corresponds to a sinc function. The disadvantage of this filter is that 

during the convolution in space domain, due to the oscillations and side-lobes introduced by the sinc 

function, signal from faraway regions will affect the signal from the region of interest. This effect is 

also referred to as spatial leakage, i.e. unwanted signal content ―leaks‖ into the desired signal.  

A better choice among the isotropic filters is the Gauß-filter (Jekeli [1981], Wahr et al. [1998]), which 

is given by 
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with  
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Here r stands for the radius of the Gauß-filter and R for the radius of the Earth.   is the angle between 

two points with a distance of R  on the Earth‘s surface. In the spectral domain the weighting factor 

Wn can be calculated recursively through 
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The Gauß-filter corresponds to a Gauß-function in space domain, which does not show side-lobes and 

oscillations and thus can be used to avoid the above mentioned problem introduced by the low-pass 

filter.  

Peters [2007] has compared four kinds of isotropic filters, namely low-pass, Gauß, Pellinen and Hann, 

where he analyzed the differences and the similarities of these filters. Among the isotropic filters, the 

Gauß-filter is the most widely used one, which can be often found in the processing and interpreting of 

the GRACE monthly solutions for geophysical studies (Wahr et al. [2006]).  

If the error structure is not only dependent of degree but also of the order, the above mentioned 

isotropic filters are not suitable anymore. For example, the well-known North-South stripe pattern 

from the GRACE solution is reported to be related to the correlation between the spherical harmonics 

coefficients (Swenson and Wahr [2006]). A strong correlation between coefficients of the order 15 to 

18 was found and a correlated-error filter was implemented to minimize such correlations. Combined 

with a Gauß-filter, such filters were reported to be able to minimize the stripe pattern without 

eliminating large part of the signal itself.  

In this dissertation the non-isotropic filter is not considered. In section 4.5, where attempt is made to 

recover the hydrology signal with GPS-only solutions to degree and order 6, the direct truncation filter 

is implemented to cut off all the coefficients from degree 7 to 30. Due to the very low cut-off degree 

(degree 6) the truncation filter should be good enough to exclude the errors introduced by the poorly 

determined coefficients with higher degrees (Wahr et al. [1998]).  
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3. Time-variable gravity signal analysis 

 

3.1. Relation between mass and spherical harmonics 

 

Leaving aside the measuring principle and constellation for the moment, the final products of current 

satellite gravity missions (e.g. CHAMP, GRACE, GOCE) are sets of spherical harmonic coefficients 

to a certain maximum degree and order. For example, GRACE level-2 gravity products consist of 

complete sets of harmonics to a maximum degree of 120, averaged over monthly intervals. Spherical 

harmonic coefficients can be used to generate geoid, gravity, or mass solutions. For most applications 

the gravity field itself might not be of direct interest. Instead it is usually the mass distribution causing 

the gravity field that is of more interest. To determine the mass distribution, one needs to know how to 

relate the coefficients to mass changes, which will be described in the following.  

For GRACE, the time-variable component of the gravity field is obtained by removing the long-term 

mean value of the monthly solutions. The mean value can be simply determined by constructing the 

average of all the monthly fields one wishes to use for the analysis. The reason to remove the mean 

field is that it is included in the static field, while one is interested usually more in the change of 

density distribution of the surface of the Earth, e.g. the hydrology or ocean circulation.  

The geoid height can be expressed in equation (3.1) (Chao and Gross [1987]) as 

0 0
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 
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where R is the radius of the Earth,  and  are co-latitude and east longitude, nmC and nmS are 

dimensionless coefficients, and nmP  are normalized associated Legendre functions: 
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Detailed descriptions about Legendre polynomials can be found in e.g. in Heiskanen and Moritz 

[1967]. Now suppose there is a time-dependent change in the geoid N , which can be presented in 

terms of nmC  and nmS as: 
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Let ( , , )r    be the density change that causes this geoid change, one can derive the following 

(Wahr et al. [1998]): 
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where ave is the average density of the Earth (5517 kg/m
3
). 



3.1  Relation between mass and spherical harmonics 

 

20 

 

One can further define the change of surface density, i.e. the change of mass/area  , as the radial 

integral of  ( , , )r    through a thin layer of thickness H at the Earth‘s surface 

( , ) ( , , )
H

r dr dr                     (3.5) 

Suppose this layer includes the atmosphere, ocean, ice and below-ground water storage and it is thin 

enough so that 

 max( 2) / 1n H R              (3.6)

With
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Equation (3.7) describes the contribution to the geoid due to direct redistribution of the surface mass. 

This change also loads and deforms the underlying solid Earth, which causes an additional geoid 

contribution. This contribution is typically a few percent of the gravity change caused by the surface 

mass change and it can be represented as 
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Where nk is the load Love number of degree n (Farrel [1972], Chao [1994]). The total geoid change is 

the sum of equation (3.7) and (3.8): 
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Or  
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One can also inversely derive  
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which can be used to determine the change in surface mass density from nmC and nmS . 
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Inserting (3.11) into (3.3) one gets the change of geoid from the change in surface mass density via 
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where w is the density of water (1000 kg/m
3
) and nmC , nmS  are dimensionless coefficients with 

no direct physical meanings. They are related to nmC  and nmS via  
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Or inversely 
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         (3.15) 

 

The above results assume that the surface layer is thin enough that equation (3.6) is valid. Assume 

maxn = 70, and the layer including atmosphere, which means H ≈ 10 km, then the above relation is 

violated at about 11%. This is a large enough inaccuracy for some applications, e.g. the atmospheric 

density fluctuation studies. In contrast the mass variations in the ocean and water stored on land occur 

mostly entirely within 1 km, and for them equation (3.6) is accurate to about 1%, which is good 

enough for research studies on continental hydrology or the ocean. In fact, the single layer assumption 

should hold up to about degree and order 100 for hydrological or oceanographic applications 

(Flechtner [2007]). The hydrology recovery simulations in Chapter 4 will be carried out to degree and 

order 30, thus the single layer assumption is good enough for such experiments.  

Errors in the estimate of surface mass change are either from the computation of the spherical 

harmonic coefficients or from the leakage from other signals. Here one concentrates only on the errors 

of the coefficients themselves. These errors can be caused by instruments, data processing, aliasing 

errors and other error sources. In this dissertation only the instrument and aliasing errors are discussed 

with simulations. As mentioned in section 2.3, aliasing errors are caused by under sampling in either 

time or space or both and can therefore be divided into temporal aliasing or spatial aliasing. Temporal 

aliasing has been a greater issue for GRACE, where the under sampled short-period signal (sub-

monthly) aliases into the monthly solution. Aliasing effects can be reduced by the increased sampling 

rate in space or/and time. If this is not possible, they can still be reduced by modelling the short-period 

signals independently and remove their contribution before conducting the monthly solution. This 

process is called de-aliasing process. For GRACE that means modelling and removing the effects of 

solid Earth and ocean tides (e.g. with EOT08a, Savcenko et al. [2008, 2010]), atmospheric mass 

variations over land (e.g. with ECMWF, Flechtner [2007]) and non-tidal short period ocean bottom 

pressure (e.g. with OMCT, Flechtner [2007]). Any difference between the real signals and the models 

will remain in the GRACE solution, which is referred as de-aliasing error.  
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3.2. Continental hydrology 

 

Introduction to the global water cycle 

 

The hydrology cycle (also called water cycle) describes the continuous movement of water on, above, 

and below the surface of the Earth (Figure 3-1). Two major factors are responsible for the global water 

cycle: the Sun as the main driving factor, and gravity, which makes water to flow and to circulate. One 

may start the description with the ocean, where water is heated by the Sun and evaporates as vapour 

into the air. The water vapour in the air also contains contributions from the ice and snow on the 

ground, which can sublimate directly into water vapour without melting into liquid water. The vapour 

is then taken by the rising air circulations to an upper level of the air, where cooler temperatures cause 

it to condense into clouds and partly to return as rain. These clouds are moved by the air circulations 

around the globe. The clouds collide, grow, and fall from the sky as precipitation. Some precipitation 

falls as snow and can accumulate as ice caps and glaciers, but most precipitation falls back into the 

oceans or onto land as rain. The precipitation on land flows over the ground as surface runoff. A 

portion of the runoff enters rivers in valleys in the landscape, moving towards the oceans. Another 

portion of runoff is accumulated and stored in lakes as freshwater. The rest of runoff soaks into the 

ground as infiltration. Some water infiltrates deeply into the ground and replenishes aquifers (saturated 

subsurface rock), some infiltration stays close to the land surface and can seep back into surface-water 

bodies as ground-water discharge and some ground water finds openings in the land surface and 

emerges as freshwater springs. Over time, the water cycle keeps moving and transports mass between 

atmosphere, ocean and the land.  

 

 

Figure 3-1 The hydrology cycle (http://ga.water.usgs.gov/edu/watercyclehi.html) 

http://ga.water.usgs.gov/edu/watercyclehi.html
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Table 3-1 represents the global water balance. As one can see the oceans contain nearly 97% of all 

water on the Earth, while the ice caps and glaciers store about 69% of the fresh water. The remaining 

fresh water is stored mainly in groundwater. The oceans, glaciers and groundwater together take about 

99.94% of the whole water storage on the Earth, while the remaining 0.06% are distributed in soil, 

lakes, rivers and atmosphere.  

Table 3-1 Global water balance (Gruber et al. [2009]) 

 

 

 

Spectral analysis of the hydrology signal 

 

The classical approach is to model the water flow based on run-off or precipitation data. However, a 

mission like GRACE is able to measure the hydrological mass redistribution from satellite. The 

GRACE solutions, provided by research institutes such as GFZ, CSR or CNES (see abbreviations), 

can be used to estimate the hydrological variations (Wahr et al. [1998, 2004], Tapley et al. [2004 b]). 

Zenner [2006] has compared and demonstrated the differences in GRACE solutions from GFZ, CSR 

and CNES. More analysis and comparisons of the GRACE solutions from different institutions can 

also be found e.g. in Qiu [2008] or Peters [2007]. These differences are so far still not clearly 

explained and it is therefore difficult to choose one from all these solution to compute the continental 

hydrology signal. Besides this uncertainty, the GRACE solutions do not only contain temporal gravity 

signals but also errors from diverse sources, e.g. instrument noise or the imperfection of the de-

aliasing product, which should be taken care of if one is only interested in the hydrology signal 

contained in such solutions. Therefore, instead of using the real GRACE data, the hydrology model 

LaD (Land Dynamic model) is used to represent the time-variable hydrology signal in this dissertation. 

The LaD model is processed and distributed by the Geophysical Fluid Dynamics Lab (GFDL) from 

the National Oceanic and Atmospheric Administration (NOAA). This model considers the surface 

density for snow (qS), ground water (qGW) and surface water (qW) in monthly resolution on a 1°×1° 

grid. The total hydrology effect can be determined then by the summation (Milly et al. [2002]) 

 S GW Wq q q q    (3.16) 

The surface density q has the unit [kg/m
2
]. Since in many applications not the surface density but the 

term ―equivalent water height‖ is used, one can convert between the two units via 
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where ρw is the density of water [1000 kg/m
3
], ( , )p   is the surface pressure [kg/ms

2
], g is the mean 

gravity acceleration [m/s
2
], ( , )q   is the surface density [kg/m

2
] and hw is the equivalent water height.  
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The LaD model used here provides the surface density q for 29 months from January 2003 to May 

2005. For each month the mean value over the 29 months is subtracted. The remaining is the variation 

of the surface density for each month, which will be used to compute the corresponding spherical 

harmonics coefficients according to equation (3.11) shown in section 3.1. 

Here in this dissertation the data section from 01.2003 to 01.2005 is used. Figure 3-2 shows the month 

January of 2003 in geoid height in [mm]. The signal strength ranges from about -4 mm to 7 mm with a 

RMS of about 1 mm.  

 

Figure 3-2 Hydrology geoid for 01.2003 in [mm], max = 6.6, min = -4.06, mean = 0.02, RMS = 1.02  

A Fourier transform is applied to the selected coefficients of the 24-month LaD data, as described in 

section 2.3. The purpose is to find the structure of the spectrum and the most dominant frequencies.  

Figure 3-3 shows the results of such an analysis in degree RMS plot. Panel a) is processed to degree 

and order 180 and panel b) to 30. From panel a) one can see that the signal concentrates on lower 

degrees. Above degree 30 the signal strength decreases significantly and above about degree 70 there 

is almost no signal observable. From panel b) it is obvious to see that the most dominant signals are 

the 1 cpa and 2 cpa components, which correspond to annual and semi-annual variations, respectively. 

The highest frequency from this Fourier analysis, which is determined by the Nyquist theorem, is 6 

cpa, i.e. a 2-monthly frequency. The signal strength of the 6 cpa component is quite weak compared 

with the dominant frequencies. Over all this analysis indicates that the LaD model contains mainly 

low-frequency components up to a maximum of 6 cpa. Sub-monthly signal component is not included 

in this model.  

    

a)      b) 

Figure 3-3 Degree RMS for LaD model over 24 months, up to degree 180 (a) and degree 30 (b)  
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In order to see if the hydrology signal also contains high frequency components, other models with 

sub-monthly resolution should be analysed. The GLDAS (Global Land Data Assimilation System, 

Rodell et al. [2004])) model, for example, is given in daily resolution, which makes it possible to 

analyse the signal component up to 0.5 cpd. Peters [2007] has analysed this model with the above 

mentioned Fourier transform and has found that there is no significant high frequency component. In 

fact, due to insufficient global observation data with sub-monthly resolution it is so far not clear, how 

much the frequency components above 6 cpa reflect the real hydrology mass change, because there are 

only few observations assimilated in the hydrology models. As a consequence, this dissertation will 

focus on 1 cpa and 2 cpa components, namely annual and semi-annual components of the hydrology 

signal. Simulations studies in section 4.5 will make an attempt to recovery such components with 

satellite constellations. 

For simulation purposes, the hydrology data is processed in two different ways, depending on the 

simulation scenarios.  It is linearly interpolated into 6-hour intervals to be consistent with the 6-hourly 

atmosphere and ocean data when doing the static field simulation in section 4.3 as well as for the 

aliasing discussion in section 4.4.1. The original data with monthly resolution is used in the hydrology 

recovery simulation in section 4.5.  

 

 

3.3. Atmosphere and ocean  

 

The atmosphere is one of the main contributors to mass variations in the Earth system. Atmospheric 

mass variations are present for frequencies ranging from a few hours to decadal periods (van Dam et al. 

[2008]). The flow of the atmosphere determines the distribution and propagation of the pressure 

systems around the globe. Several national meteorological services develop global atmospheric 

models in order to perform weather predictions for the area of interest. Two well-known global 

atmospheric models are ECMWF (European Centre for Medium-Range Weather Forecasts) and NCEP 

(US National Centre for Environmental Prediction), which are named after the institutes where the 

models are produced. Both models are given in 6-hourly resolution. The GFZ 

(GeoForschungsZentrum) regularly extracts operational analysis data at the ECMWF Integrated 

Forecast System (IFS) at synoptic times 0:00, 6:00, 12:00 and 18:00, in order to produce the de-

aliasing product for GRACE (http://www.ecmwf.int/research/ifsdocs/index.html). In this dissertation 

the ECMWF model is used to represent the atmospheric signal. 

 

In principle there are two methods of computing the spherical harmonic coefficients from the 

atmospheric mass variations: the first one is the so-called ‗surface pressure‘ approach, the second one 

the ‗vertical integration‘ (VI) approach. In the first approach, surface pressure data can be easily 

transformed into gravity harmonics by spherical harmonic analysis with integration and by applying 

specific factors for re-scaling the spherical harmonic coefficients. This simple approach is, however, 

not accurate enough for some high precision applications. Investigations have shown that the vertical 

structure of the atmosphere has to be taken into account, in order to reach the highest achievable 

accuracy. Therefore the vertical integration approach is used in the standard GRACE data. For the VI 

approach, the following input parameters are needed for the determination of the atmospheric potential 

(Zenner et al. [2010]): the point values of surface pressure Ps, the geopotential height Hs, the point 

values of temperature T and the specific humidity S at all 91 levels of the atmospheric model at 

different time steps (e.g. 6 hours). Below the major computation steps are shown. For detailed 

computation steps one refers to Flechtner [2007]. 
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The pressure at half-levels 1/2kP  can be computed via 

 

 1/2 1/2 1/2k k k sP a b P     (3.18) 

where 1/2ka  and 1/2kb  are the model dependent coefficients, Ps is the surface pressure. The virtual 

temperature vT can be computed by 

     (1 0.608 )vT S T       (3.19) 

where T is the full-level temperature and S is the full-level specific humidity defined at multi-levels k. 

Based on 1/2kP  and vT , the geopotential height at half-levels 1/2kH  can be computed as  
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where Hs is the surface geopotential height at full-levels, R is the gas constant for dry air and g is the 

mean gravity acceleration. With 1/2kH  the gravity coefficients can be determined by 
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  (3.21) 

 

With: 

M- the mass of the Earth 

nk - love number 

ξ - the height of the mean geoid above the mean ellipsoid 

a – radius of sphere 

nmP - associated Legendre polynomials (normalized) 

(r,θ,λ) - spherical coordinates of mass element 

 

Oceanic mass redistributions are driven by periodic changes in the relative position of the Earth, the 

moon and the sun. They are also driven by the atmosphere (pressure, winds etc). Usually the oceanic 

effect is divided into two classes: barotropic and baroclinic. The term barotropic refers to a state of the 

ocean in which pressure levels and density levels coincide and the flow is driven by pressure 

variations and winds. Here the whole water column has a single density (Gruber et al. [2009]). In the 

baroclinic oceanic response, density is dependent not only on pressure but also on temperature. It 

includes the vertical density changes and requires additional forcing to handle the theromodynamic 

effects (Flechtner [2007]). Here pressure levels do not coincide with density levels. Generally 

speaking, barotropic motions are fast and they can occur from fraction of a day to a few weeks. Ocean 

tides are good examples for the barotropic effects. The baroclinic motions are slower and they take 

weeks to centuries. The El Nino effect is a good example for baroclinic motions. In this dissertation 

the baroclinic ocean model OMCT (Ocean Model for Circulation and Tides) is used, which originates 

from the HOPE model (Hamburg Ocean Primitive Equation) and has been adjusted to the weather 

timescale. The OMCT model allows the calculation of ephemeral tides and the wind- and pressure 

driven circulation. It also allows computing of the secondary effects arising from loading and self-

attraction of the water column as well as nonlinear interactions between circulation and tidal induced 

ocean dynamics (Flechtner [2007]). The OMCT is used to derive the GRACE de-aliasing product for 
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non tidal short-term variations from the ocean. Since tidal induced oceanic mass redistributions and 

corresponding gravity effects are removed from GRACE measurements by means of another 

algorithm, the OMCT does not take ocean tides into account. Details concerning the applied model 

equations, numerical implementations, parameterizations and the derivation of gravity coefficients can 

be found in Wolff et al. [1996], Drijfhout et al. [1996], and Thomas [2002]. 

The variations in atmospheric pressure at the surface of the ocean can cause the sea water to move: 

high atmospheric pressure can ―press‖ the water in such a way that the ―pressed‖ water flows to 

regions where the atmospheric pressure is lower. The change in surface elevation is equal to the 

depression that would be registered by a water barometer. The result is that pressure changes at the 

surface of the ocean are not transferred to the ocean floor but compensated by the changed height of 

the water column. This compensation is called ―inverse barometer (IB) effect‖. Because of this 

interaction between atmosphere and ocean, they are generally considered as a system and the 

computed gravity coefficients from atmosphere and ocean can be combined.   

Before combining the atmosphere with ocean, a mean vertically integrated field of the atmosphere and 

a mean ocean field are usually subtracted. The reason is that the mean mass distribution of the 

atmosphere and ocean refers by definition to the static part of the gravity field. Only the deviations 

from the mean value can be regarded as the short-term gravitational variations. In the current GRACE 

mission (as well as in this dissertation), mean fields of atmosphere-ocean signal obtained from the 

years 2001+2002 are subtracted.  

After the subtraction of the mean value, the ECWMF-OMCT combination of the year 2003 is used in 

this dissertation to represent the fast-changing atmosphere-ocean signal (also called AO for short in 

the following text), where the OMCT model is forced by the ECMWF atmospheric winds and surface 

pressure. Figure 3-4 shows the mean value of the AO signal for January 2003, which ranges from -

7.22 mm to 11.3 mm with a RMS of 3.19 mm. 

Similarly to the analysis for the LaD model, the spectral frequency analysis of the AO signal is carried 

out, which again employs the Fourier transform as described in section 2.3. Figure 3-5 shows the 

degree RMS plot for the year 2003 to degree and order 180 (panel a) and 30 (panel b). As the data is 

given in 6 hour intervals, there are totally 1460 samples for the year 2003. This amount of data enables 

an analysis of the frequency up to 730 cpa, i.e. semi-diurnal variation. As one can observe the signal 

content is concentrated in the low degrees as well. The strongest content is to be seen below degree 10, 

while the signal content above degree 40 decreases significantly. Besides the lower frequency part on 

the upper left corner, there is a significant signal at daily frequency (365 cpa) observable. High 

frequencies can be also observed at 730 cpa and 705 cpa, which correspond to 12 h and 12.425 h. It is 

reported (ESA report 20403 van Dam et al. [2008]) that the AO data is primarily driven by signals 

with frequencies between 30 and 182 days. Besides, it also contains frequencies in the range of 0.5-2 

days as well as 2-30 days. This conclusion supports the findings from Figure 3-5. These findings 

indicate that if the recovery of the AO signals is a primary objective of a future mission, a temporal 

sampling of one day or even 12 hours should be fulfilled. As described in section 2.3, such high 

temporal sampling will result in a very poor spatial sampling for a single sensor mission. Thus multi-

sensor constellations should be developed to obtain optimal time and space resolution for AO signal 

recovery.     
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Figure 3-4 Mean AO geoid for 01.2003 in [mm], max = 11.3, mean = 1.46, min = -7.22, RMS = 3.19 

 

 

  

a)      b) 

Figure 3-5 Degree RMS of AO for the year 2003, up to degree 180 (a) and degree 30 (b) 

Since the mass movement and redistributions in the atmosphere and ocean occur at very high temporal 

frequencies, they will alias into the recovered gravity field with lower temporal resolution (e.g. with 

monthly resolution).  This kind of aliasing error has been treated via the de-aliasing process for the 

current GRACE mission, where models of the AO signal are used to remove the impact of fast-

changing mass variations in the atmosphere and ocean. Any difference between the reality and the 

model will remain in the GRACE solutions as de-aliasing error. This issue will be further discussed in 

section 4.4.2.  
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3.4. Ocean tides  

 

Because OMCT does not include ocean tides, the ocean tide model FES2002 is included in the 

simulation studies in order to make the simulation environment a step closer towards reality. The 

purpose of this dissertation, however, is not to try to recover the ocean tides signal. The attempt is to 

show the non-conservativeness effect of ocean tides and its impact on the recovery of the gravity field. 

Nevertheless a short description about the tidal force, tidal potential and the FES2002 model itself is 

given here.  

The gravitational force from Sun and the moon determines the orbital motion of the Earth, which is the 

largest effect of that force on the Earth orbit. Besides the orbital motion, there is the effect of 

differential acceleration between the Earth‘s surface and centre of mass, known as tidal effect, which 

is the cause of the tidal deformation of solid Earth and oceans. To a high degree of approximation, the 

orbital force is the average of all the gravitational forces on the earth and it equals the force acting on 

the centre of the earth. The tidal force is the difference of the force of a point on the earth and the 

average force. The tidal force, by its definition, causes no net force on the earth and so does not affect 

the earth‘s orbital motion. The tidal force from the Moon is about 2 times larger than that from the Sun, 

due to the fact that the Moon is much closer to the Earth than the Sun is.  

The tidal force can be qualitatively described by the tidal potential. The tidal potential at a point P on 

the Earth due to the gravitational attraction of the moon is defined by 
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where MGM is Moon mass times gravitational constant, R is the Earth‘s radius, EMr is the Earth-Moon 

distance,    is the angle between the position vector of P and the position vector of the Moon, nP is 

the Legendre function of degree n and the origin of the coordinate system is the centre of the Earth. 

For detailed derivation of the equation one refers to Schrama [2005].  In the Earth-Moon system, 

EMR r is about 1/60, which means the tidal potential decreases about 60 times by increasing the 

degree by 1. Thus in practice it doesn‘t make much sense to extend the tidal potential beyond degree 3. 

Equation (3.22) holds for the Sun as well, whereby MGM and EMr should be replaced by Sun mass 

times gravitational constant SGM and the Earth-Sun distance ESr , respectively. 

Since equation (3.22) is dependent on the astronomical position of the moon or sun, it is not really 

convenient for most of the applications where tidal potential is required. Darwin (1883) invented a 

―letter-digit combination‖, known as ―Darwin symbol‖ to describe the prominent frequencies of the 

tides. For example, M2 denotes the tides due to gravitational attraction of moon at a twice daily 

frequency. Doodson (1921) calculated an extensive table of spectral lines which can be linked to the 

original Darwin symbols. With the advent of the computer techniques in the 1970s, Cartwright and 

Eden (1973) computed new tables to verify the earlier work of Doodson. The tidal frequencies in these 

tables can be identified by means of so called Doodson numbers, which are computed in the following 

way: 

 1 2 3 4 5 6(5 )(5 )(5 )(5 )(5 )D k k k k k k       (3.23) 

where each 1k ,…, 6k is an array of integers. More details can be found in Cartwright [1993] and 

[1999]. In theory there exist infinite many Doodson numbers, while in practice a few hundred numbers 

are enough for most applications.  

Ocean tides are the response of the ocean to the luni-solar gravitational attraction. They occur exactly 

at the same frequencies with other tides, i.e. with semi-diurnal, diurnal and long period frequency. In 



3.4  Ocean tides 

 

30 

 

most of the regions on the earth the ocean tidal effects are about 0.5 to 1 meter high. In some places, 

e.g. Normandy and Brittany, tidal effect can be amplified to 10 meter. Figure 3-6 shows the global M2 

ocean tide. The top panel shows the amplitude and the bottom panel shows the corresponding phases. 

The point where all phase lines join is called node. At the nodes the amplitude is 0 and the tidal wave 

is continuously rotating about this fixed geographical location. The contour map lines in top panel 

shows the amplitude of the high tide. For example, 50 cm means actually the difference between high 

and low tide is 100 cm. The 0 phase in the bottom panel refers to a state, where the high tide due to 

lunar attraction at the equator is equal to the gravitational budge. This state is also referred as 

hydrostatic. In this state one assumes that the ocean water is not restricted by the ocean bottom or the 

coastlines and the Moon is at equator, which causes high tide at equator.  

 

Figure 3-6 M2 ocean tides, amplitude in centimeter (top panel) and the corresponding phase (bottom 

panel), Schrama [2005] 

 

Ocean tides models help to describe and understand the ocean tides quantitatively. From the 1990s on, 

a large number of new tidal atlases were developed, primarily to provide accurate tidal corrections for 

satellite altimetry applications. During this decade, the French tidal group (FTG) produced a series of 

finite element solutions (FES) tidal atlases. FES2002 is one of the released atlases, computed from the 

tidal hydrodynamic equations and data assimilation. This model consists of major tidal constituents of 

different frequencies, e.g. semi-diurnal M2, S2, K2 or diurnal K1, O1 components. Detailed 
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description of the different tidal constituents together with the corresponding frequencies and 

amplitudes can be found e.g. in Desai [1996] or Schrama [2005]. For more information about the 

FES2002 model, one refers to Lefevre et al. [2002] or Le Provost et al. [2002]. 

 

Since ocean tides redistribute mass at high temporal frequencies, their impact on the gravity solution 

with lower temporal resolution, e.g. monthly resolution, should be investigated. In fact, the fast-

changing ocean tide is considered to be one of the sources for the remaining de-aliasing error in the 

temporal gravity fields recovered from GRACE (Knudsen and Andersen [2002], Seo et al. [2008a]). 

Further discussion on this issue will be given in section 4.4.2. 

The hydrology, atmosphere-ocean and ocean tides signals build together the water cycle in this 

dissertation, neglecting ice melting. The data sets used in this dissertation are the hydrology model 

(LaD), atmospheric mass redistribution (ECMWF), non-tidal ocean mass redistribution (OMCT) and 

ocean tide model (FES2002), which will be implemented in the simulation studies in Chapter 4.   

 

 

3.5. Non-conservativeness of time-variable gravity signals 

 

If the Earth gravity field is conservative, then the integration terms in equations (2.14) and (2.15) are 

path-independent. In this case the potential differences along an orbit arc do not need to be computed 

from integration of accelerations along the orbit, but they can be computed directly from the potential 

field, which is by definition a conservative one. This does not hold for the time-variable components 

of the gravity field as they are not conservative. In order to apply the energy balance approach to the 

time-varying field the observation equation needs to be modified, taking into account the non-

conservativeness of the field.  

For time-variable gravity signals, the accelerations need to be integrated along the orbit and the 

resulting potential difference is path-dependent. If one neglects the non-conservativeness of the time 

variable part of the gravity field, an error will be introduced, which will be called the error of non-

conservativeness in the following text. This holds even if the potential function is modeled to follow a 

certain time variable characteristic which perfectly matches reality (like a secular drift superimposed 

by annual or semi-annual periods).  In order to show the magnitude of this error, the difference 

between potential values computed from (i) integration of accelerations along the orbit and (ii) directly 

from a given set of (time variable) potential coefficients through spherical harmonics synthesis is 

plotted. The latter case does not take into account the non-conservativeness of the field. The order of 

magnitude of the error, i.e. the difference between the results from method (i) and (ii), decides upon 

whether the specialized observation equations for conservative field can be applied, or the more 

complex equations (2.16) and (2.17) need to be implemented for the estimation of the corresponding 

time variations. The error due to direct tides and ocean tides, as well as due to time variable signals in 

continental hydrology and atmosphere and ocean (without tides) will be shown. In practice all 

atmosphere/ocean and tidal effects are to a large extent known from models, while the continental 

hydrology is the quantity to be determined. Thus the error introduced in the case of hydrology is 

especially important for time variable gravity field recovery using the energy integral. 

In the following the results of the difference between (i) and (ii) will be presented both for a single 

satellite and for a two-satellite-constellation. Consequently direct tides, ocean tides, hydrology and 

atmosphere-ocean signals will be discussed. These four signals have different size and variability: 

 

 Direct tide is the largest time variable effect but it is well-known. This example nicely 

illustrates the effect of the non-conservativeness. 
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 Ocean tide is much smaller than the direct tides but it changes very fast.    

 Atmosphere-ocean signal is smaller than ocean tide and it contains both low and high 

frequencies.   

 Hydrology is comparable to atmosphere-ocean signal in amplitude, does not change fast, but it 

is the quantity to be determined.  

Thus by investigating the above mentioned signals, the relation between the error of non-

conservativeness and the magnitude as well as the variability of the individual signals can be analyzed. 

For detailed information on classification of the time-variable gravity signals one refers to e.g. Peters 

[2007] or Sneeuw et al. [2005]. As mentioned the investigation on the hydrology signal is more of 

interest as this is the only unknown quantity. It is interesting to know how large the error can be if one 

neglects the non-conservativeness for hydrology. If the error is small enough, one can skip the 

relatively complex computation as shown in section 2.1 and stick to the specialized energy equation 

for static field recovery.   

 

Single satellite 

 

In this section the error due to neglecting the non-conservativeness of the time-variable field for a 

single satellite is presented. As mentioned before, the error is computed for the direct tides, ocean tides, 

hydrology and atmosphere-ocean signal. Figure 3-7 shows the direct tidal potential computed along 

the orbit of Swarm A over 30 days from (i) the integration of tidal accelerations along the orbit as well 

as epochwise from (ii) potential coefficients of the time variable tidal field. The upper panel in Figure 

3-7 shows, that both curves (i) and (ii) show the same characteristic twice per revolution signal with an 

amplitude of about 1.5 m
2
/s

2
. This order of magnitude is the well known size of the tidal potential (see 

e.g. Torge [2001]), where the twice per orbit signal is caused by the motion of the satellite in the 

inhomogeneous tidal field. In addition, the gray curve (i) contains a considerable drift. Taking a look 

at the full 30-days time series (lower panel), the overall structure of the two signals becomes visible. 

While the black curve (ii) stays almost constant (except for the twice per revolution signal), the gray 

curve (i) shows a pronounced 14-days oscillation superimposed by a drift, which turns out to be a half 

yearly signal in even longer time series. These frequencies are main constituents of the direct tidal 

signal. The difference between both curves arises from the fact that the integration of accelerations 

performed in (i) holds for arbitrary fields, while (ii) assumes the field to be a conservative one. Since 

the tidal field changes in time, it should not be regarded as conservative. Therefore it is crucial in the 

energy integral, to integrate all known time-variable forces along the orbit, rather than to directly 

compute the potential from a set of spherical harmonic coefficients. The effect of non-

conservativeness is denoted by εcon, where it holds (without considering the integration constant) 

 

 d ( ) ( )u u

con

t

V x t V t t     (3.24) 

  
It must be noted, that εcon can be quite large. In case of the direct tides the amplitude of the 14-days 

signal is about 50 m
2
/s

2
, while the tidal potential V

u
 amounts to just about 1.5 m

2
/s

2
. The relation 

between εcon and V
u
 might change, depending on the field under consideration, but in general, when 

working with the energy integral, the non-conservativeness needs to be taken care. Otherwise large 

drift effects can remain in the pseudo-observations that can degrade the gravity field recovery.  



3  Time-variable gravity signal analysis 

33 

 

  

Figure 3-7 Time series of tidal potential along a satellite orbit from (gray) integration of tidal 

accelerations and (black) synthesis from tidal potential harmonic coefficients. The upper panel shows 

a zoom-in version of the first half day of the 30 days shown in the lower panel. 

 

Figure 3-8 shows the size of εcon for direct tides, ocean tides, hydrology and atmosphere-ocean signal 

for Swarm A. Here only the differences between directly computed potential and integrated 

accelerations from 1-month simulations are plotted. The size of εcon for direct tides ranges from -150 

m
2
/s

2
 to about 30 m

2
/s

2 
(panel a)), which is quite large. Panel b) reveals again a pronounced 14-day 

signal, with an amplitude of about 0.5 m
2
/s

2
 and a superimposed drift of about -1.5 m

2
/s

2 
per month for 

the ocean tides signal. In panel c) the εcon for hydrology signal shows a linear drift with much smaller 

magnitude of about 0.5e-3 m
2
/s

2 
per month, superimposed

 
with an oscillation of about 0.1e-3 m

2
/s

2
. 

The atmosphere-ocean signal in panel d) shows a quasi-periodic pattern with amplitude of about 0.12 

m
2
/s

2
, superimposed with an oscillation of

 
about 2e-3 m

2
/s

2
. It can be seen that in general, the non-

conservativeness of the time-variable gravity signals can cause a drift for a single satellite, the size of 

which varies for different signals. The size of  εcon for individual signals is summarized in Table 3-2. 

   

a)       b) 
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c)       d) 

Figure 3-8 Effect of non-conservativeness for a single satellite ([m
2
/s

2
]), a) direct tides, b) ocean tides, 

c) hydrology and d) atmosphere-ocean  

 

 

2-satellite-constellation 

 

In case of satellite constellations like Swarm A-B or GRACE, the long wavelength structure of (i) can 

be expected to be very similar for different satellites orbiting the earth at the same time and at almost 

the same place. Therefore, when dealing with potential differences between satellites, εcon can be 

expected to be smaller than for a single satellite. Then it holds 

 

  2 12 1 12d ( ) ( )u u u

con

t

V x V x t V t t        (3.25) 

Similarly, the difference between (i) and (ii) for different signals is plotted in Figure 3-9. For reference 

the single satellite case (Swarm A) is plotted as well. The statistical values are summarized in Table 

3-2. 

  

a)       b) 
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c)       d) 

Figure 3-9 Effect of non-conservativeness for 2-satellite constellation ([m
2
/s

2
]), a) direct tides, b) 

ocean tides, c) hydrology, d) atmosphere-ocean  

 

Table 3-2 Difference between integrated accelerations and directly computed potential [m
2
/s

2
] 

Constellation Max Mean Min Sigma 

Direct tides 

Swarm A 156.81 68.59 -23.92 58.44 

Swarm A-B -0.085 -3.57 -6.11 1.41 

Swarm A-C 6.76 2.68 -1.03 2.13 

GRACE  0.04 0.0031 -0.02 0.012 

Ocean tides 

Swarm A 0.35 -0.75 -1.96 0.66 

Swarm A-B 0.14 0.078 -8.1e-3 0.033 

Swarm A-C 0.23 0.075 -0.049 0.064 

GRACE  1.3e-3 -1.69e-5 -1.6e-3 2.97e-4 

Hydrology 

Swarm A 0 -2.2e-3 -2.6e-3 1.70e-4 

Swarm A-B 6.18e-5 4.16e-5 0 1.80e-6 

Swarm A-C 2.17e-4 8.88e-5 -6.91e-5 1.62e-5 

GRACE  6.58e-5 -2.16e-8 -2.5e-3 1.07e-5 

Atmosphere-ocean 

Swarm A 0.148 0.105 0.0075 0.0372 

Swarm A-B 0.023 0.011 3.25e-4 0.0068 

Swarm A-C 0.025 0.0044 -0.0053 0.0079 

GRACE  7.5e-3 7.7e-7 -1.82e-4 3.26e-5 

 

As expected, the size of εcon is smaller for 2-satellite constellations than for the single satellite. Figure 

3-9 a) and b) show that also some 2-satellite constellations, namely Swarm A-B and A-C, show 

periodic signatures, although the periodic pattern is much smaller than for the single satellite. In panel 

d) Swarm A-B and A-C show a linear drift instead of the quasi-periodic pattern for Swarm A. In all 

cases the GRACE constellation shows the smallest effect and εcon stays almost always constant around 

0 for all the time-variable gravity signals. The reason might be the way that the GRACE constellation 

is generated here: there is no second orbit simulated and GRACE B is generated by taking the position 

of GRACE A at an earlier epoch, where the two epochs are about 200 km apart from each other. In 

this way the value of two epochs may not vary much. However, since the real GRACE mission is 

indeed a leading-following formation with a distance of about 220 km between the two satellites, the 
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long wavelength structure can still be expected to be similar for both satellites. Thus the non-

conservativeness effect for the real GRACE mission should be smaller than that for a single satellite as 

well.    

It is interesting to compare the numbers in Table 3-2 with the results of the simplified error analysis in 

section 2.2. There, error standard deviations of 0.08 m
2
/s

2
 were given for GPS-baselines and 8∙10

-4
 

m
2
/s

2
 for inter-satellite links of K-band quality.  The comparison gives some indication on whether the 

error εcon  can be neglected or not, i.e., whether the simple but specialized observation equation can be 

used, or the more complex generalized version needs to be used to recover time-variable signal 

components. In conclusion one can state, that the error cannot be neglected both for single satellites 

and satellite constellations in case of tidal effects. At least for high-accurate K-band links, this also 

holds true for mass variations in atmosphere and ocean, where the error εcon  is above the K-band 

accuracy. In case of GPS-baselines, the error of atmosphere-ocean is below the observation accuracy. 

For all those signals it must however be stated, that they are to a large extent known from models or 

external observations and therefore they do not need to be recovered. Thus, they show up as reductions 

on the right hand side of the observation equations (2.14) to (2.15), where the integration along the 

orbit is straightforward and does not increase the complexity of the computations. Remaining model 

residuals might be small enough for εcon to be neglected. The same holds true for the time variations 

caused by continental hydrology. These are obviously moderate enough not to generate large values of 

εcon, i.e., the field can be considered to be conservative, at least considering the current accuracy level 

of the observations (both GPS and K-band).  Therefore one can conclude that sub-monthly variations 

in continental water storage (represented by LaD model) are so small, that the hydrology component 

of the gravity field can be considered conservative, i.e., static within one month. In consequence, one 

can apply the specialized observation equations in recovering monthly fields of continental water 

storage. 

To sum up, it is clear that all these time variations are not conservative and therefore their contribution 

has to be taken care of. Depending on the object to recover, different treatments should be 

implemented: 

 

 If one aims to recover the static field only, all known non-conservative gravity forces should 

be removed via integration of the corresponding accelerations along the orbit to avoid the 

impacts of non-conservativeness on the recovered static field. This case will be further 

discussed in section 4.3. 

 

 If the time variation is the objective to determine, one needs to follow the complex 

computation steps listed from equation (2.18) to (2.31) to exclude the non-conservativeness 

impacts, strictly speaking. As discussed above, the impact of non-conservativeness for 

hydrology signal, however, is even below the current K-band accuracy level. This indicates 

that it should be acceptable to ignore the non-conservativeness of hydrology and still stick to 

the energy integral used for static field determination, assuming all other time variations are 

well-known or accurate enough measured.  This issue will be further investigated in section 

4.4 and 4.5.  
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4. Simulation studies 

 

4.1. Introduction to the simulator 

 

The simulations described in this chapter are all based on the same software package, which is a set of 

programs in different programming languages and platforms, including C/C++ and Matlab. In this 

section a brief introduction to the simulator itself is given. For the convenience of description, the full 

calculation chain is illustrated as a flowchart in Figure 4-1. Note that different colors and shapes of the 

objects in the plot have different meanings:  

 

 Ellipsoidal boxes in this plot contain the parameters and coefficients, which are either input or 

output of the individual calculation processes 

 Black rectangular boxes stand for the calculation processes  

 Black arrows indicate the data flow 

 Red boxes together with red arrows represent the optional possibilities for control and 

comparison purposes  

 The yellow ellipsoidal box with the blue arrow stands for the option of adding time variations 

in orbit simulation 

 

 

Figure 4-1 Simulation flowchart (based on Peters [2007]) 

The main components of the simulator will be described in the following. 

 

Orbit integration  

 

The integration of a satellite orbit in a given gravity field provides time series of position vector ( )x t

and velocity vector ( )x t . Note that in this simulator only gravitational forces are implemented, non-
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gravitational force models, such as atmospheric drag, albedo or solar radiation pressure are not 

considered. The realization of the orbit integration is described briefly below. 

The gradient of the gravitational potential V can be computed in an Earth-fixed coordinates system as 

 

/

/

/

V x

V V y
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 
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 

 
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 (4.1)   

where ( )x t stands for the time series of the 3-dimensional positions. 

The partial differentials of the potential V (see equation (2.18)) can also be expressed in the spherical 

coordinates {r, θ, λ} as  
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The formulas to calculate the fully normalized Legendre functions nmP and their derivatives are 

described e.g. in Heiskanen and Moritz [1967]. Combining equation (4.1) to (4.4), the gradient of the 

gravitational potential can then be written as following: 
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To implement a transform between spherical and Cartesian coordinates the following partial 

differentials are needed: 

/ sin cosr x       / sin sinr y       / cosr z     

/ cos cos /x r      / cos sin /y r      / sin /z r                          (4.8) 

/ sin / ( sin )x r       / cos / ( sin )y r      / 0z    

For every integration epoch, the gravitational forces act on the satellite and affect its orbit. The 

acceleration vector of the satellite can be computed via the relation x V and is then transformed 

from the Earth-fixed to the inertial system. There it is integrated twice, which gives the velocity vector 

( )x t and position vector ( )x t , respectively. The ( )x t and ( )x t  vectors are transformed back to the 

Earth-fixed system for further calculations. For details of the transformation one refers to Schmidt 

[1999].  

The realization of the above mentioned orbit integration process is based on C/C++ programs, which 

inherits the IAPG orbit integrator and is modified for the purpose of this dissertation. It runs under an 

open sourced Integrated Development Environment CodeBlocks (www.codeblocks.org), which is 

http://www.codeblocks.org/
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platform independent and thus offers the possibility of a smooth implantation also under LINUX. The 

orbit integrator provides integrated satellite orbits based on given initial conditions, which includes 

simulation parameters such as starting time, integration duration, sampling rate, initial satellite 

position and velocities etc. The gravity field model is modified in such a way that besides the static 

field EGM96, also time variations can be taken into consideration for orbit integration. Depending on 

the chosen options, the integrator is able to take one or a combination of the following time variation 

models into consideration: 

 

 Hydrology signal (LaD model), either in 6-hourly or in monthly resolution 

 Atmosphere and ocean signal (ECMWF-OMCT) in 6-hourly resolution 

 Ocean tides model (FES 2002) 

Output files contain the error-free orbits, given in 3-dimensional positions and velocities. If chosen, it 

can also provide the accelerations due to time variations at the integration epochs. These outputs are 

then the input parameters for the energy balance equation to calculate the disturbing potential. 

 

Time variation 

 

When chosen, time variations can be added to the static field EGM96. Depending on the resolution of 

the time variations, i.e. monthly or 6-hourly, different algorithms apply. For monthly resolution the 

hydrology signal is added to the beginning of each month to the static field. Within a month there is no 

interpolation implemented. For the variations given in 6-hourly resolution the temporal signal is added 

every 6 hours with linear interpolation in between. Table 4-1 explains this interpolation algorithm, 

where ―S‖ stands for static field EGM96, ―C1‖, ―C2‖, ―C3‖, ―C4‖ stand for the time variation 

coefficients at 0h, 6h, 12h and 18h on the first day,  ―t‖ stands for time and is given in seconds. The 

―gravity status‖ rows means that the gravity field at 0h, 6h or 12 h are the summations of the static 

field and the corresponding time variation. Within every 6 hours, the time variations are linearly 

interpolated using the neighbouring epochs, which is shown in the row ―Change within 6 hours‖. The 

row ―gravity field at epoch‖ represents the gravity field at current epoch, which is a combination of the 

static part, the time-variable part at and the interpolation part within every 6 hours.  In this sense the 

gravity field is changing almost constantly as in the real world.   

 

Table 4-1 Adding time variation to static filed 
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Synthesis 

 

From the given potential coefficients, the disturbing potential at a given position { , , }r    can be 

directly calculated by 
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The coefficients nmc and nms indicate that the even zonal coefficients from degree 0 to degree 8 of a 

normal gravity field are subtracted. The calculation of the disturbing potential from the synthesis 

approach will be used as a control of the energy balance approach. Meanwhile, the difference between 

the disturbing potential calculated from the energy balance approach and directly from synthesis can 

be used to compute the constant C. In the simulation the constant C equals the difference of the 

potential value at first simulation epoch.  

 

Energy balance approach 

 

The energy balance method has been described in Chapter 2. Given the position and velocity, the 

energy balance equation provides the disturbing potential along the orbit, which will be used as input 

by the analysis step.  

 

Backward calculation (Analysis) 

 

This step is the inverse of the synthesis and therefore named analysis. The analysis step takes the 

disturbing potential as input and computes the unknown potential coefficients by means of least 

squares adjustment. Sneeuw [1994 and 2003b] has given the computation process in detail. In case of 

SST high-low the partial derivatives of the disturbing potential with respect to the spherical harmonics 

coefficient can be computed as: 

 1( ) (cos )cosn
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 (4.10) 
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All these partial derivatives of each coefficient at each epoch, as shown in equation (4.12), form the 

design matrix A, which has a dimension of (
2( 1)K N  ), where N is the maximum degree of the 

coefficients to be determined and K is the number of observation epochs. 
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 (4.12) 

The unknown coefficients can be solved through the least squares adjustment  

 
1( )T Tx A PA A P  (4.13) 

with the error variance-covariance matrix of the coefficients
1( )T

x A PA   , 
 

where:  

  x is the vector of unknowns, here the spherical harmonics coefficients 

 A is design matrix 

 P is the weight matrix 

 ω contains the time series of observations  (here the disturbing potentials) 

The weight matrix P is given by 

 2 1

0P C   (4.14) 

where: 

 
2

0 is a priori standard deviation of unit weight 

 C is the variance-covariance matrix of the observations 

Elements of the P matrix are proportional to the inverse of the corresponding error variance. That 

means an observation gets a larger weight, if its variance (or standard deviation) is smaller. In other 

words, the more accurate the observation is the larger weight it gets. If all the observations are equally 

accurate and uncorrelated, P will be a unit matrix. This assumption is adopted throughout this 

dissertation except for the additional discussion about the Swarm A-C baseline later in section 4.5. 

There all observations are assumed to be not equally accurate but still uncorrelated, as a results P is a 

diagonal matrix.  

The backward calculation process is done with the Matlab program package SATLAB (Schmidt 

[1999]). As an option white noise of different noise levels can be added to the orbits before analysis. 

 

Comparison 

 

The output of the analysis is a set of potential coefficients. These coefficients can be compared with 

the input potential coefficients. The results of such comparisons provide an insight into the gravity 

recovery simulation and provide diverse meaningful information, related to the simulation purpose. 

The comparison results will be explained in details in the simulation results. 
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Validation of the simulator  

 

Before running simulations it is important to make sure that the simulator is closed-loop. Thus a 

validation is necessary to test the accuracy of the simulator. For this purpose one test simulation is 

carried out. The results should show the correctness and the accuracy of the simulator. 

This simulation is based on following settings: 

 Static gravity field: EGM96 

 Maximum degree: N = 30 

 Starting Kepler elements: a = 6378.137+370 km, I = 87°, e = 0.003, Ω = ω = M0 = 0 

 Integration length: 30 days, from 01.01.2003 to 30.01.2003 

 Integration steps: ∆t = 30 s 

 Without time variations and orbit noise 

Figure 4-2 panel a) shows 10 days of ground track of the simulated satellite orbit. The ground track 

reaches a relatively good coverage in 10 days already. It is seen that due to the high inclination the 

flight direction is nearly parallel to the meridian direction. The sampling rate of 30 seconds agrees 

with the normal temporal resolution of a dynamic or kinematical orbit (Peters [2007]) and is therefore 

dense enough. The disturbing potential along the orbit, computed from the energy balance approach, 

amounts from -800 to +600 m
2
/s

2 
(after subtracting the mean value), as shown in Figure 4-2 panel b). 

As a control the difference between the disturbing potential derived from the energy balance and that 

computed directly by synthesis along the orbit is computed and plotted in Figure 4-2 panel c). The 

difference is in the order of 10
-6

 m
2
/s

2
, which is about 10

-14
 relative to the mean value of the disturbing 

potential (about -2.98 e+007 m
2
/s

2
). This difference in the disturbing potential results in a difference 

between the recovered field and the input EGM96 field. Figure 4-3 a) shows the difference in geoid 

height, which ranges from about -0.04 µm to 0.04 µm (max = 0.038 μm, min = -0.042 μm, mean = -

4.3e-5 μm, sigma = 0.010 μm). Panel b) shows the comparison directly in spherical harmonics. The 

biggest difference occurs for the term C00 with a relative error of about 1.421*10
-14

. The C00 term 

contains the mass of the Earth including the mean mass of atmosphere-ocean and it has by definition 

the value 1, as the total mass of the earth is assumed to be constant. Here the difference in C00 is 

always neglected in comparisons of simulation results. Besides, the degree 1 terms, namely C10, C11 

and S11, which describe the mass centre of the Earth with respect to the origin of the coordinate system, 

are always set to 0 in this dissertation. In this way it is assumed that the coordinate system always 

follows the change of the centre of mass of the earth, which may move due to mass transport and mass 

redistributions in the earth system. Thus the comparisons in all the simulation studies always start 

from degree 2, i.e. differences in degree 0 and 1 terms are neglected.  

Apart from the error of the degree 0 term, relative large errors can be seen also for the coefficient of 

order 15 to 17. Swenson and Wahr [2006] have found a similar phenomenon for GRACE. This is a 

typical phenomenon of orbit resonance. There are also correlations between coefficients with even or 

odd degrees, i.e. even and odd coefficients do not correlate with each other, but coefficients of even or 

odd parity may correlate with each other. Despite these phenomena, in general the errors are so small 

that they can be regarded as numerical errors. Thus the simulator is regarded as closed-loop.   
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a)       b) 

 

c) 

Figure 4-2 a) ground track plot of 10 days, b) disturbing potential along the orbit from energy balance, 

c) the difference between b) and the disturbing potential directly computed from synthesis 

 

a)       b) 

Figure 4-3 Difference between recovered and original EGM96 field in geoid (panel a)) and in 

spherical harmonics coefficients (panel b)) 

As the simulator is closed-loop, there will be no error introduced by the simulator itself during the 

whole computation process. Thus the differences between the input and output coefficients can give an 

insight to the recovery capability for various cases and provide meaningful information.  
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4.2. Introduction to simulated constellations 

 

As introduced in section 1.2, one objective of this dissertation is to evaluate Swarm‘s potential for 

gravity field recovery. As a consequence, the Swarm constellation is the starting point of the 

simulation studies in this chapter. As mentioned, the Swarm mission is an approved satellite mission 

of ESA, which aims at the global determination of the outer, inner and lithospheric magnetic field of 

the Earth as well as the temporal evolution of the inner and outer field. Swarm is scheduled to be 

launched in 2012 and is expected to give new insights into the Earth‘s interior and climate. More 

details about the mission can be found e.g. in (Olsen et al. [2007]). The Swarm constellation consists 

of two low orbiting satellites (Swarm A and B) and a third one at higher altitude (Swarm C). The two 

lower satellites will fly initially in a circular orbit at 450 km altitude, which is similar to the orbit 

altitudes of CHAMP and GRACE, while the third satellite will fly at 530 km. As a result of different 

altitude and slightly different inclination (87.4° for Swarm A/B and 88° for Swarm C), the orbital 

plane of Swarm C will change with time with respect to the orbital planes of A and B (Figure 4-4, 

Olsen et al. [2007]). Each of these three satellites carries onboard a GPS receiver and an accelerometer. 

They make it possible to do precise continuous 3D positioning and to separate gravitational from non-

gravitational forces. Thus the set-up is comparable to three single CHAMP-like gravity solutions. 

Moreover, thanks to spaceborne differential GPS, one can determine the relative position vectors 

between these three satellites. These GPS baselines can be used as observations for gravity field 

determination and they are expected to bring an improvement against the single solutions, as the 

relative positions can be determined with an accuracy about one order of magnitude higher than the 

absolute positions of the individual satellites. The absolute GPS position accuracy for CHAMP is 

about 2-3 cm and the relative position of GRACE -based on GPS only- has been reported to be of mm-

accuracy (Visser, 2006). Based on these performances, it is expected that the same accuracy of the 

relative positions can be achieved for the Swarm mission as well. 

 

Figure 4-4 The Swarm constellation (Olsen et al. [2007]) 

 

Swarm provides two possible baseline measurements: the cross-track A-B baseline and the oblique A-

C baseline, as described in section 2.2. The two lower satellites are designed according to 2 

requirements: 1) Swarm B has a shift of 1.4° in longitude direction from Swarm A; 2) Swarm B has a 

time shift between 2 and 10 seconds to Swarm A within 60 days and the maximum time difference 

between Swarm A and Swarm B when crossing the equator shall be 10 seconds (Olsen et al. [2007]), 

in this way the collision at poles will be avoided. Figure 4-5 a) shows the changing of the scalar 

distance between A and B at 450 km for 1 day. As seen from the picture the distance varies from about 

10 km at pole region to about 180 km at the equator. Although the distance between these two 

satellites changes with time for each revolution, the measurement direction remains cross-track 

throughout the mission for this A-B baseline. In contrast, both distance and geometry change strongly 
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with time for the baseline A-C. Figure 4-5 (b) plots the scalar distance between A and C for about 7 

days from the mission start. As seen the distance can change from about 100 km to about 14000 km. 

Besides the changing scalar distance, the measurement direction of this baseline also changes with 

time: it can be radial, along-track or not possible at all (Figure 4-5 c)). This changing geometry makes 

it not possible to have a steady long-term observation with the A-C baseline.  

To form a baseline measurement with the desired accuracy as given in Table 2-1 it is necessary to 

have 5-6 GPS satellites in common view. This criterion is fulfilled by A-B baseline, but obviously not 

always for A-C as they can be placed on the opposite sides of the Earth. Based on this a threshold of 

about 5000 km for the longest baseline is introduced in the simulator, which disregards the epochs 

where relative position between A and C is too large to have the required number of GPS satellites in 

common view. Besides that, as introduced in the simplified error analysis, the advantage of the 

baseline over the absolute GPS measurement for single satellite, i.e. the increased accuracy, will be 

lost if the relative velocity between two satellites is too large. Due to the changing geometry there is 

large amount of epochs where the relative velocity between A and C is so large that the advantage of 

GPS baseline cannot be guaranteed anymore. The above mentioned threshold is also approximately 

equally effective to a threshold of 5000 m/s for the largest baseline velocity, which ensures that the 

assumed accuracy level can be achieved for the baseline A-C. By applying the threshold there are in 

total about 23% of all the epochs qualified for forming the A-C baseline measurement with pre-

defined accuracy. Later on in the hydrology recovery simulation details about the epochs in each 

month where the A-C baseline can be formed will be given for the entire simulation period of 2 years.    

 

  

a)          b) 

 

 

c)                

Figure 4-5 Scalar distance between Swarm A and B (a), scalar distance between Swarm A and C (b), 

the changing geometry of baseline A-C (c) 
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The Swarm constellation is the starting point for further simulations. Based on the Swarm 

constellation, the simulation is extended and also other constellations and measurements are simulated. 

These include e.g. a GRACE-like constellation and the assumption of a K-band measurement system. 

To sum up, the following constellations are simulated: 

 

 Swarm constellation. The orbit height is 500 km for Swarm C and 350 km for Swarm A/B in 

the simulation. For this constellation the single satellite (e.g. Swarm A) as well as the baseline 

measurement A-B and A-C will be discussed (the baseline B-C is not included, because it is 

linearly dependent on the combination of A-B and A-C and does not provide additional 

information). The orbit altitude corresponds approximately to the status of the real Swarm 

mission after 3 years (Olsen et al. [2007]), as in the reality the orbital heights of Swarm A/B 

and Swarm C will decrease due to friction in the upper atmosphere from 450 km respectively 

530 km down to 350 km respectively 500 km within the first three years. Since there is no 

atmospheric drag included in the simulator, the lower altitudes of 350 km and 500 km are 

selected as a mean of the planned mission duration of five years. The lower altitude will of 

course slightly increase the resolution of the recovered gravity field model with respect to 

what one can expect at the beginning of the mission. The orbit plane of C is set to be identical 

with that of A/B at simulation start, in order to study the change of the A-C baseline from 

mission beginning. This constellation, entitled Swarm, will only make use of GPS 

observations. The constellation consists of the three satellites A, B and C, as shown in Figure 

4-6. 

 

 A GRACE-like constellation. The term ―GRACE‖ in this paper does not refer to the real 

GRACE mission. It is a GRACE-like constellation of 2 satellites in leading-following 

formation. Swarm A is considered as the leading satellite, a satellite A1 which is following 

about 200 km behind Swarm A on the same orbit is regarded as the second satellite, see also 

Figure 4-6. The K-band measurement is simulated by making use of equation (2.37) in section 

2.2. In this paper this constellation is called GRACE short for ―GRACE-like constellation‖. 

 

 A pendulum constellation with K-band measurement. In addition to the GPS-based Swarm A-

B baseline measurement, the same constellation with an inter-satellite link of K-band type is 

simulated. This allows studying the potential of such a constellation for future missions. This 

scenario will be called pendulum in order to distinguish from the Swarm A-B GPS baseline.  

 

 A 3-satellite-constellation. This constellation combines the above mentioned GRACE and 

pendulum constellations and thus consists of satellites A, A1 and B. K-band type inter-satellite 

links are simulated between A-A1 and A-B. This constellation is entitled tandem/pendulum. 
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Figure 4-6 Simulated constellations, inter-satellite links marked in red.  

 

 

4.3. Static field recovery 

 

In this section it is attempted to recover the static gravity field, according to equations (2.14) and 

(2.15), where all time variable effects are assumed to be known such that their effect can be removed 

by integration of the corresponding accelerations along the orbit. This removal process will be called 

reduction in the following. In section 4.3.1 the results from error-free simulations are presented. The 

discrepancy between the input gravity field model (used for orbit integration) and the recovered output 

field are used as estimates of the numerical integration errors, which are introduced by performing the 

reduction process, i.e. by integrating the accelerations of time variations along the orbit. The size of 

the error depends on the characteristics of the accelerations, on the sampling interval and the chosen 

integration algorithm. In the simplest case, one might substitute the integration by a summation of the 

discrete values given along the orbit. It will be investigated how accurate this simple algorithm is and 

how that relates to the accuracy level which can be expected from the different satellite constellations 

in reality, i.e., including observation errors, which will be shown in section 4.3.2.  

 

 

4.3.1. Error-free simulation 

 

In section 4.1 it was shown that the simulator is closed-loop. In addition, it is assumed here that all the 

temporal variations are perfectly known from models or measured by the onboard instruments. In this 

way it should be possible to remove these signals perfectly. Thus the remaining error from the error-

free simulation with time variation reduction should solely contain the numerical error introduced by 

the integration of time-variable gravity accelerations, which is used for the reduction of non-

conservative effects in the energy integral. For consistency the sampling rate stays here 30 seconds. 

The simulation is carried out for January of 2003. The static gravity field is computed from EGM96 

complete up to degree and order 70. In the simulation it is to be recovered up to degree and order 70 in 
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the presence of time variations. The time-variable effects included are: ocean tides, atmosphere and 

non-tidal ocean variation (AO) and continental hydrology (H). The simulation conditions are listed in 

Table 4-2. Note that the hydrology model (LaD) is given originally in monthly resolution and it is 

interpolated into 6-hours interval to be consistent with the AO signal. The AOH signal together will be 

interpolated linearly between every 6 hours, as shown in Table 4-1. The ocean tide model FES2002 is 

included to degree and order 20. 

Table 4-2 Simulation conditions 

Temporal variations Model max. 

degree 

Temporal 

resolution 

Atmosphere/ocean ECMWF-

OMCT 

70 6 hours 

Hydrology LaD 70 1 month/6 

hours 

Ocean tides FES2002 20 --- 

 

Figure 4-7 shows the differences between recovered static field and the input EGM96 up to degree and 

order 70 without applying the reduction. The statistical values are summarized in Table 4-3. One can 

see that the time variations AOH and ocean tides together can contribute to more than 1 m geoid error 

in the case of Swarm A. For Swarm A-B a yellow-blue-yellow pattern is observable, which indicates 

that the zonal terms are not well determined. Among all the cases GRACE is affected least from the 

time variations. For all cases, reduction should be applied.  

  

a)       b) 
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c)       d) 

Figure 4-7 Geoid difference between recovered field and EGM96 without reduction,  a) Swarm A, b) 

Swarm A-B, c) Swarm A-C, d) GRACE, all in [m]  

Table 4-3 Geoid difference between recovered and original EGM96 field without reduction in [m]  

Constellation Max Mean Min Sigma 

Swarm A 1.62 2.93e-3 -1.66 0.39 

Swarm A-B 0.35 0.078 -0.31 0.18 

Swarm A-C 0.59 2.46e-4 -0.58 0.10 

GRACE  0.19 9.09e-4 -0.21 0.037 

 

After applying the reduction procedure, the differences between recovered fields and EGM96 are 

significantly reduced, as shown in Figure 4-8 and Table 4-4. It is obvious that the reduction procedure 

works for all cases. The error in geoid has decreased to below 1mm in all cases, which indicates that 

the major effect of the time variations is removed successfully. The same structure for Swarm A-B can 

be still observed, indicating that this error structure is not dependent on time variations but on the 

measurement direction itself. The remaining differences, as mentioned before, come from diverse 

numerical integration effects. While the orbit integrator selects internally a nearly arbitrarily fine 

integration step, the reduction procedure is only done every 30 seconds. Therefore the reduction only 

represents the signal at the epochs every 30 seconds but not the signal within the 30 seconds interval. 

If one can increase the sampling rate to e.g. 1s, the reduction procedure will work more effectively, 

which is proved by a separate test. To avoid redundancy this is not shown here. Furthermore, the 

integration is substituted by a simple summation of the discrete values every 30 seconds. A more 

accurate numerical integration algorithm can improve the results as well. By comparing the values in 

Table 4-4 with the error level derived from the simplified error propagation in section 2.2 (note that 

one needs to convert between potential and geoid), one can conclude that the reduction procedure 

works well enough despite the above mentioned numerical effects. It thus demonstrated that all effects 

of the temporal variations can be nearly fully removed, assuming that these signals are known or 

modelled accurately enough.  
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a) b) 

 

  
  

c)       d) 

Figure 4-8 Geoid difference between recovered field and EGM96 with correction,  a) Swarm A, b) 

Swarm A-B, c) Swarm A-C, d) GRACE, all in [mm] 

Table 4-4 Geoid difference between recovered and original EGM96 field with reduction, in [mm]   

Constellation Max Mean Min Sigma 

Swarm A 0.39 2.21e-4 -0.40 0.070 

Swarm A-B 0.18 0.027 -0.17 0.077 

Swarm A-C 0.78 -1.80e-4 -0.70 0.10 

GRACE  0.28 -4.88e-5 -0.33 0.04 

 

It should be taken into account, that in the above simulation the temporal variations are perfectly 

known. This is not the case for reality, where there is always a difference between the true signal and 

the applied models or the onboard measurements. Then one can expect residuals between the true field 

and the recovered field, which might still introduce some long wavelength error characteristics, 

smaller than shown in Figure 4-7 and Table 4-3, though.  
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4.3.2. Full-error simulation 

 

As shown in the last section, all temporal variation effects involved in this article can be effectively 

reduced for a static gravity field recovery, assuming that they are known accurately enough. In this 

section white noise is added to the simulated orbits and the noise level is listed in Table 4-5 below. 

The remaining simulation conditions are identical to those listed in Table 4-2. Additionally to the 

existing constellations, the pendulum and tandem/pendulum constellations are simulated. One 

combined solution, i.e. Swarm A combined with A-B, is presented as well. 

Table 4-5 Noise level for the simulation in [mm] and [mm/s] 

 Abs. position Abs. velocity Rel. position Rel. velocity 

noise (σ) 10 0.1 1 0.01 

 

For each constellation a 1-month simulation is carried out for January 2003 and reductions are applied 

to remove the non-conservative impacts of the temporal variations. The recovered fields are then 

compared with EGM96 to degree and order 70 in terms of geoid height and also directly in potential 

coefficients. The geoid differences are plotted in Figure 4-9 and the statistical values of the 

comparison are listed in Table 4-6. Note the unit is given in meters. For convenience of description, all 

constellations are marked with numbers.  

Table 4-6 Difference between recovered field and EGM96 in [m] 

Constellation Max Mean Min Sigma 

Swarm A (a) 1.87 -8.6e-3 -2.06 0.41 

Swarm A-B (b) 1.57 0.04 -1.30 0.42 

Swarm A-C (c) 2.02 -7e-4 -1.99 0.40 

Swarm A+(A-B)   (d) 1.23 -8.6e-3 -1.30 0.29 

GRACE (e) 0.006 4.5e-6 -0.0057 0.0011 

Pendulum (f) 0.015 1.03e-5 -0.015 0.0031 

Tandem/pendulum (g) 0.0016 4.14e-6 -0.0016 3.76e-4 

  
  

a)       b) 
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c)       d) 

  

e)       f) 

 

g) 

Figure 4-9 Geoid difference between recovered field and EGM96, with reduction, with noise, a) 

Swarm A, b) Swarm A-B, c) Swarm A-C, d) Swarm A+(A-B), e) GRACE, f) pendulum, g) 

tandem/pendulum, in [m] 

From Figure 4-9 and Table 4-6 it is obvious that the constellations with K-band accuracy, i.e., case (e) 

to (g) offer an accuracy of about 100 times better than the GPS-only solutions, which meets the 

expectations from the error analysis in section 2.2. The single solution and the two baseline solutions 

show similar results (case (a) to (c)). Case (d) combines (a) and (b) and offers a slightly better result.  
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The comparison of the coefficients in the form of a triangle plot, Figure 4-10, gives basically the same 

information as the geoid plots comparison in Figure 4-9 and Table 4-6, however in spectral 

characteristics. The triangles reveal the different sensitivity of different constellations (note the 

different colorbar for GPS and K-band solutions). The cross-track constellations (b) and (f) are in 

general less sensitive to the zonal coefficients in the central column of the triangles, while the 

sensitivity to the sectorial coefficients is high. The opposite is true for the along-track constellation (e), 

with higher sensitivity to the zonals than to the sectorials. Although case (f) features a K-band and 

therefore offers much better overall recovery accuracy than (b), the zonal coefficients are still less well 

determined than the other coefficients. Thus the spectral sensitivity is independent from the accuracy 

of the measurement systems implemented but only dependent on the constellation. The best result is 

achieved by the tandem/pendulum constellation, which combines the advantages of along-track and 

cross-track observations and provides an isotropic error behavior with no preference to certain 

coefficients of the same degree. Among the GPS-only solutions, the combination case (d) takes 

advantage of both (a) and (b) and it is thus slightly better than both.  

  

a)       b) 

  

c)       d) 
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e)       f) 

  

g) 

Figure 4-10 Comparison of the potential coefficients, a) Swarm A, b) Swarm A-B, c) Swarm A-C, d) 

Swarm A+(A-B), e) GRACE, f) pendulum, g) tandem/pendulum 

 

The Swarm A-C baseline deserves a closer investigation. As described before the geometry of this 

baseline changes with time. The baseline contains along-track and radial components as long as the 

satellites move in the same orbital plane – otherwise there are cross-track components in addition (see 

also Gerlach et al. [2006]). As stated in section 4.2, by applying the threshold only about 23% of the 

data remain available. This number might be further decreased by the fact that the orbital planes of 

Swarm A and Swarm C drift apart from each other during the mission life time. Then it becomes 

evident, that also the distribution of the remaining epochs is not homogeneous, as most baselines can 

be formed, when the satellites are close to the poles. Due to different orbital velocities and drifting of 

orbit planes, the distribution of the remaining data points is not stable from month to month and for 

certain periods of the mission it will not be possible to have enough observation for gravity field 

recovery at all. For the considered month, however, the solution from the baseline A-C is acceptable.  

Figure 4-11 represents the degree RMS plot of all constellations. The GPS-only solutions have a 

spectral resolution of about degree 70, which fits to the actual results achieved by CHAMP (Reigber et 

al. [2007], Sneeuw et al. [2003 b]). In general the spectral resolution will be increased when using 

relative observations along baselines, while the accuracy for the lower degree coefficients will be 

decreased as compared to a single satellite constellation like CHAMP. Constellations (e) to (g) are, as 

expected, about two orders of magnitude better than the GPS-only solutions. In order to see the full 

potential of constellations (e) to (g) for static gravity field determination the simulation would need to 
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be extended to degree and order 150 or more. Also note the decreasing RMS values when going from 

GRACE or a pendulum constellation to a pendulum/tandem combination. 

  

Figure 4-11 Degree RMS plot for static gravity field recovery 
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4.4. Aliasing investigation 

 

Before attempting to recover the continental hydrology signal in section 4.5, the aliasing issue of the 

involved time-variable gravity signals should be discussed. Like for the real GRACE mission, the de-

aliasing of atmosphere-ocean and ocean tide signals is assumed to be perfect, i.e. their impact is 

assumed to be fully removed from the observation equations. This assumption is close to be valid in 

few of the high quality of atmosphere-ocean models. This assumption is applied in the simulation here, 

as the de-aliasing products are exactly the time variations used in orbit integration. In the reality, 

however, this will not apply as there is always a difference between the de-aliasing products and the 

real mass variations. This issue will be shortly discussed in section 4.4.2. While the necessity of the 

de-aliasing of these fast-changing variations is well known and it is already implemented for the 

current GRACE mission, the temporal aliasing issue due to the unknown hydrology signal is not often 

discussed. This issue will be investigated in section 4.4.1. 

 

4.4.1. Temporal aliasing for continental hydrology 

 

Spectral analysis in section 3.2 shows that the strongest signal contents of the hydrology model LaD 

are annual (1 cpa) and semi-annual (2 cpa) frequencies. The remaining frequencies are much weaker, 

e.g. the 2-monthly frequency (6 cpa) is roughly 1/100 of the signal strength of the annual component. 

This indicates that one can expect the signal strength of sub-monthly frequency to be relatively small, 

which should lead to a relatively small temporal aliasing effect. Here the aliasing investigation is 

based on a 1-month error-free simulation for January 2003. Within this month the hydrology signal is 

assumed to be changing linearly, which is realized by linearly interpolating the two neighboring 

months, i.e. January 2003 and February 2003. The hydrology signal is superimposed to the EGM96 

static field to degree and order 70. The recovered field should correspond to EGM96 plus the mean 

hydrology field over this month. The differences between the recovered field and the input field are 

caused by aliasing effect and theoretically also errors of non-conservativeness. In a simulation, the 

latter can be calculated exactly by making the difference between the integration of the accelerations 

and the temporal potential computed directly from the time variation coefficients, as shown in section 

3.5. Thus the time series of potential values derived from the energy integral can be corrected for this 

error before doing the analysis. When doing so, the results barely changes, which suggests, that the 

error of non-conservativeness can be neglected for moderate temporal variations as those caused by 

linearly changing hydrology. This supports the conclusions in section 3.5. Therefore, the errors shown 

in Figure 4-12 and Table 4-7 can be regarded to be solely aliasing effects. 

  

a)       b) 
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c)       d) 

 

e) 

Figure 4-12 Aliasing effect from hydrology in [mm], a) Swarm A, b) Swarm A-B, c) Swarm A-C, d) 

GRACE, e) H mean  

Table 4-7 Aliasing effect from hydrology in [mm], d/o 70 

Aliasing effect 

Constellation Max Mean Min Sigma 

Swarm A (a) 3.63 -0.02 -3.80 0.41 

Swarm A-B (b) 0.32 0.05 -0.32 0.12 

Swarm A-C (c) 10.75 0.03 -11.36 1.49 

GRACE (d) 1.49 -0.01 -1.49 0.22 

Signal 

 Max Mean Min RMS 

H mean (e) 6.60 0.02 -4.06 1.02 

 

 

Figure 4-12 a) to d) show the aliasing effect from hydrology for different constellations and e) gives 

the mean signal of the simulated month. The worst case is the A-C baseline, where the standard 

deviation is as large as 1.5 mm, which is larger than the signal itself. For other cases the standard 

deviations of the aliasing error are less than 0.5 mm, which is about 50% of the signal. The degree 

RMS plot for Swarm A, Figure 4-13, shows that the aliasing error is larger than the LaD signal after 

about degree 40. This indicates that the aliasing effects prevent the detection of the time-variable 
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hydrology signal above about degree 40 even for a purely linear trend in an error free simulation. As 

the errors in the higher degrees will contaminate the recovery seriously, a low- pass filter should be 

introduced with cut-off between degree 30 and 40. As an example, the aliasing error for Swarm A 

gives a standard deviation of 0.0119 mm (max = 0.0741 mm, mean = -6.3024e-04 mm, min = -0.0657 

mm) in geoid height, which is only about 1% of the signal strength of hydrology. Besides, the 

hydrology signal is concentrated on the lower degree and orders, while the signal strength of higher 

degrees is quite weak, as discussed in section 3.2. Based on these results, all input models (static field 

and hydrology) in the 2-years simulation in section 4.5 will be limited to degree and order 30. 

  

        

Figure 4-13 Degree RMS of Swarm A 

 

 

4.4.2. De-aliasing discussion for AO and ocean tides 

 

For the current GRACE mission the rapid-changing atmosphere-ocean signal is removed by using the 

best available models. This so called de-aliasing process does not solve the insufficient sampling in 

time and/or space, but tries to exclude the variations which may cause aliasing. So far the de-aliasing 

process is regarded as error-free, i.e. one assumes the de-aliasing product perfectly removes the impact 

of the AO signal. As mentioned before, this assumption is not perfectly true in reality, due to the fact 

that there is always a difference between the models used for such process and the reality. In a recent 

study (Zenner et al. [2010]), the error has been introduced into the de-aliasing product to investigate if 

this helps to obtain a more accurate GRACE gravity field time-series. The conclusion was that for the 

currently achieved GRACE accuracy level, atmospheric model uncertainties do not play a prominent 

role in the error budget of GRACE gravity field solutions. This conclusion should also hold for the 

GPS-only measurement, as it has even a much higher error budget than the current GRACE mission.  

Zenner et al. [2010] also pointed out that if the predicted accuracy of GRACE were achieved, the 

uncertainties in atmosphere models could have a real effect on the recovered gravity field. This 

conclusion is supported by other studies, e.g. Wiese et al. [2008], where satellite constellations are 

simulated with improved inter-satellite laser ranging instrument and drag-free system. There the 

difference between two GRACE AOD models is regarded as the de-aliasing error and the results show 

that once this error is considered, all the simulated formations determine the gravity field fairly equally. 

The advantage of the 4-satellite-Cartwheel formation, which achieves an accuracy of one order of 

magnitude better than other constellations when the de-aliasing error is not considered, disappears as 

the recovery is affected by the de-aliasing error. Over all, these studies suggest that for a future 

mission with an accuracy level better than the current GRACE mission, the de-aliasing error of 

atmosphere-ocean signal must be considered as it will have a significant impact on the recovered field.  
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Similar to the atmosphere-ocean signal, the ocean tides signal is subtracted for de-aliasing by using the 

currently available tides model for the current GRACE mission. This is accomplished by using e.g. 

CSR4.0 (Eanes and Bettedpur [1995]), NAO99 (Matsumoto et al. [2000]) or EOT08 (Savcenko and   

Bosch [2008]). All these models are assumed to be error-free de-aliasing products, i.e. they are 

assumed to represent perfectly the real behaviors of the ocean tides. This assumption cannot hold fully 

in reality and thus the error of such ocean tide de-aliasing product will remain in the GRACE solution 

and corrupt the recovered gravity fields. Han et al. [2004] have investigated the time-variable aliasing 

effects of ocean tides on monthly mean GRACE gravity fields and it was found that the model error in 

the S2 constituent causes larger errors than the measurement noise for the recovered coefficients 

below degree 15. The errors in K1, O1 and M2 constituents can corrupt the harmonic coefficients of 

order 30 to 36 and all corresponding degrees, but they can be reduced to below the measurement noise 

level by monthly averaging. Visser et al. [2010] have investigated the ocean tides aliasing effect for 

future space-borne gravimetric satellite constellations. There the observation of gravity changes due to 

continental hydrology has been defined as a test case for assessing the impact of the ocean tide errors. 

It was found that the ocean tides aliasing error strongly depends on the satellite constellation and the 

choice of orbital parameters. The error can be reduced by increasing the temporal sampling of the 

mission, which can be achieved by appropriate constellation flight. For a future mission with laser-

based measurement system, the aliasing error of ocean tides will have more significant impact and 

therefore it must be treated appropriately to avoid serious corruption of the recovered gravity field. 

More discussions on this issue can be found e.g. in Ray and Luthcke [2006],  Seo et al. [2008a,b] or 

Moore and King [2008].  

An attempt will be made to recover the continental hydrology in the next section. There the key 

question is whether the GPS-only based measurement has the potential for such a recovery at all. For 

the error budget of such measurements, the above mentioned de-aliasing error will not play an 

important role. Thus the de-aliasing error for atmosphere-ocean and ocean tide is not included in the 

simulations in section 4.5.   

 

 

4.5. Time-variable hydrology signal recovery 

 

In this section an attempt is made to recover the hydrology signal with different constellations, 

including GPS-only and K-band measurements. The former is more of interest, while the latter should 

confirm the results already achieved by GRACE. Ditmar et al. [2009] have concluded that the 

insufficient GPS accuracy is the key limiting factor for GPS-only measurement to detect the temporal 

variations. Thus the key question is, if it is possible at all to obtain temporal variations with GPS-only 

measurements, e.g. with the Swarm mission. In order to investigate this issue, a 24-month simulation 

is carried out here, aiming at the recovery of the hydrology signal represented by the LaD model. 

Other time variations such as atmosphere-ocean signal and ocean tide signal are assumed to be fully 

reduced and therefore they are not included in this section. Furthermore, as discussed in section 3.5 it 

is acceptable to consider the hydrology to be static within a month.  Based on these considerations, the 

hydrology model is superimposed to the static EGM96 at the beginning of each month. The sampling 

rate applied here remains 30 second in order to be consistent with previous simulations and to reduce 

the computation effort. Orbit noise is applied here, where the noise level is the same as in Table 4-5. 

The highest degree and order for recovery is set to be 30, as discussed in section 4.4.1. The recovery 

results are shown below.  
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4.5.1. General results 

 

First the degree RMS plots of two different months are presented in Figure 4-15, where the top panel 

represents May 2003 and the bottom panel October 2003. The figure shows that all K-band 

constellations can recover the hydrology variations to about degree and order 20 to 30. Again the 

tandem/pendulum combination benefits from the isotropic error behavior and shows the potential of a 

recovery even beyond degree 30. It is also obvious that in general it is impossible to recover hydrology 

signal with GPS-only based constellations. Ditmar et al. [2009] claims that the GPS errors should be 

reduced 30-100 times in order to catch some hydrology signal. This number meets the previous error 

analysis in section 2.2 that the K-band range observation is about 100 times more accurate than GPS 

positioning. 

As described before, the Swarm A-C baseline changes with time and the quality of its solution varies 

from month to month. As seen from the figure, the A-C baseline solution offers a good quality for 

October. It is comparable to the combined solution A+(A-B), where the single solution A is combined 

with the baseline solution A-B. But for May it is orders of magnitude worse than the other solutions. 

In fact there are only 3 months in the total simulation duration of 2 years (January, February and 

October of 2003), where A-C offers acceptable results. During all remaining months the quality is 

worse than other constellations.  

Figure 4-14 shows the ratio of epochs usable for forming the A-C baseline measurement for gravity 

field recovery during the 2-years period. It is obvious that as the orbit plane of C drifts away from that 

of A/B, the percentage of epochs where A-C baseline observation can be formed decreases with time. 

In December 2004 observation of the baseline is limited to only about 9% of the total data in this 

month. Furthermore, the epochs, where it is possible to use A-C baselines as observations, are 

spatially not evenly distributed. As the orbit planes drift from each other the A-C baseline can be 

mostly formed around the pole regions. This makes it even harder to have a steady and spatially 

evenly distributed long period observation using the A-C baseline. This special geometry between A 

and C should always be investigated before one attempts to use A-C baseline observations to recover 

the gravity field. However, if it turns out, that determination of the baselines with acceptable accuracy 

is not limited to short baselines with enough common GPS satellites, one should consider using all 

epochs with proper weighting. This issue will be discussed later. 

 

Figure 4-14 Observability of Swarm A-C baseline during 2 years 
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Figure 4-15 Degree RMS for May (top panel) and October (bottom panel) 
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Reigber et al. [2003] have combined CHAMP data with four SLR satellites, namely Lageos 1, 

Lageos2, Stella and Starlette, to recovery the C20 and C30 coefficients and found that the CHAMP 

data may stabilize the time series estimation process in general. A direct answer to the question, if 

CHAMP can recover these terms, was not given, as the length of the data was too short (63 1.5 day 

arcs). They suggested to process more than 1 year CHAMP data to further investigate this issue. 

Following this conclusion, an attempt is made here to recover the coefficients C20 and C30 of the LaD 

model from Swarm stand-alone simulated data, which is shown in Figure 4-16 to Figure 4-18. The 

corresponding statistical values are listed in Table 4-8. Seen from these figures, all the single solutions 

from Swarm A, B and C seem to be able to determine the C20 and C30 coefficients. Both the 

amplitude and the phase fit well to the LaD model, although the recovery errors can be more than 50% 

of the signal for single satellite solutions, as shown in Table 4-8. A large part of the recovery error is 

due to a few large deviations. The baseline solutions, however, are generally poor. This supports the 

expectation, that relative (or difference) measurements increase the resolution in the high degrees, 

while the accuracy is decreased for the very low degrees. The baseline A-B solution gives poor quality 

in the first 10 months while the A-C solution is extremely bad in the last few months. As a result, the 

recovery errors of A-B and A-C baselines are orders of magnitude larger than the signal itself, as can 

be seen from Table 4-8. Only the combined solution A+(A-B) gives satisfactory results, which is quite 

similar to the Swarm A solution. However, it seems that except C20 all other degree 2 terms, i.e. C21, 

C22, S21, S22, are poorly determined, see Figure 4-19 and Table 4-8, where the recovery errors from 

single satellite solutions can be 3 to 6 times larger than the signal itself. This may explain why it seems 

to be impossible to recover the very low degree part of the hydrology signal with Swarm from the 

degree RMS plots (Figure 4-15). One should also notice that the RMS represents a global mean value 

and thus only roughly reflects the possibility for recovery of spatially limited signal structures (like 

those of continental hydrology).  

 

  

Figure 4-16 C20 (left) and C30 (right) determined from Swarm A, B and C 
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Figure 4-17 C20 determined from baseline solutions 
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Figure 4-18 C30 determined from baseline solutions 

 

  

  

Figure 4-19 Determination of C21, C22, S21, S22 from single satellites 
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Table 4-8 Single coefficients recovery from Swarm constellation 

 

Signal strength  

 Max Mean Min RMS 

C20 (LaD) 7.83e-11 -1.24e-11 -1.08e-10 6.01e-11 

Difference between the recovered and original coefficients (C20) 

 Max Mean Min Sigma 

Swarm A 6.87e-11 -8.94e-12 -1.04e-10 4.65e-11 

Swarm B 7.83e-11 -6.66e-12 -9.26e-11 5.05e-11 

Swarm C 5.91e-11 -5.58e-12 -5.81e-11 3.14e-11 

Swarm A-B 1.06e-09 -6.63e-10 -1.04e-08 2.16e-09 

Swarm A-C 9.93e-06 -9.65e-06 -1.52e-04 3.28e-05 

Swarm A+(A-B) 6.84e-11 -8.99e-12 -1.02e-10 4.64e-11 

 

Signal strength 

 Max Mean Min RMS 

C30 (LaD) 7.11e-11 -1.02e-11 -1.15e-10 6.61e-11 

Difference between the recovered and original coefficients (C30) 

 Max Mean Min Sigma 

Swarm A 9.06e-11 -7.35e-12 -1.29e-10 4.48e-11 

Swarm B 9.65e-11 -6.69e-12 -1.06e-10 4.76e-11 

Swarm C 1.15e-10 -2.21e-11 -1.43e-10 6.54e-11 

Swarm A-B 2.54e-09 -3.01e-10 -8.42e-09 1.88e-09 

Swarm A-C 3.77e-04 3.03e-05 -9.06e-06 8.32e-05 

Swarm A+(A-B) 9.10e-11 -7.28e-12 -1.29e-10 4.47e-11 

 

Signal strength 

 Max Mean Min RMS 

C21 (LaD) 1.59e-11 1.47e-12 -2.13e-11 1.03e-11 

Difference between the recovered and original coefficients (C21) 

 Max Mean Min Sigma 

Swarm A 1.32e-10 -4.52e-12 -9.93e-11 5.60e-11 

Swarm B 1.22e-10 -6.37e-12 -9.56e-11 5.72e-11 

Swarm C 1.04e-10 -5.81e-12 -1.40e-10 5.56e-11 

 

Signal strength 

 Max Mean Min RMS 

C22 (LaD) 2.54e-11 9.80e-13 -2.99e-11 1.49e-11 

Difference between the recovered and original coefficients (C22) 

 Max Mean Min Sigma 

Swarm A 1.20e-10 1.49e-12 -1.30e-10 5.71e-11 

Swarm B 8.71e-11 -1.07e-11 -1.08e-10 5.18e-11 

Swarm C 8.07e-11 -1.29e-11 -1.02e-10 5.50e-11 

 

Signal strength 

 Max Mean Min RMS 

S21 (LaD) 2.36e-11 1.63e-12 -2.50e-11 1.24e-11 

Difference between the recovered and original coefficients (S21) 

 Max Mean Min Sigma 

Swarm A 1.28e-10 1.75e-11 -1.72e-10 6.03e-11 

Swarm B 1.16e-10 -8.95e-12 -9.80e-11 4.78e-11 

Swarm C 8.42e-11 -3.10e-11 -1.67e-10 5.74e-11 
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Signal strength 

 Max Mean Min RMS 

S22 (LaD) 3.10e-11 -6.34e-13 -3.63e-11 2.00e-11 

Difference between the recovered and original coefficients (S22) 

 Max Mean Min Sigma 

Swarm A 9.98e-11 -4.79e-12 -9.06e-11 4.95e-11 

Swarm B 1.26e-10 4.67e-12 -6.01e-11 5.06e-11 

Swarm C 1.18e-10 -1.79e-12 -1.46e-10 6.44e-11 

 

Besides the recovery of the single coefficients, an attempt is made to recover the annual (1 cpa) and 

semi-annual (2cpa) components of the hydrology signal. As mentioned, these are the largest amplitude 

components in the LaD model. First the recovery results from the K-band constellations up to d/o 30 

are shown in section 4.5.2. Since the GPS-only solutions are not capable to recover the signal up to d/o 

30 anyway, another experiment is made to recover the signal to degree and order 6 (section 4.5.3), 

which corresponds to a low-pass filter being applied after recovery of monthly mean fields.   

 

4.5.2. Hydrology recovery with K-band constellations 

 

Figure 4-20 shows the annual and semi-annual component of the hydrology signal together with its 

phase. Note that the phase is scaled in such a way that it corresponds to months. The number 1 

corresponds to January and 12 to December. For example Figure 4-20 b) means the big bullet eye in 

Euro-Asia in Figure 4-20 a) happens in March to April every year. It is also to notice that the semi-

annual signal is smaller than the annual signal and thus more difficult to recover than the latter. Note 

the different scales for annual and semi-annual components.  

 

a)       b) 
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c)       d) 

Figure 4-20 Annual and semi-annual component of LaD model, a) annual amplitude [mm], b) annual 

phase, c) semi-annual amplitude [mm], d) semi-annual phase  

Results for the different K-band constellations are shown in Figure 4-21, where the recovered annual 

and semi-annual signals are plotted. For convenience all recovery scenarios are marked with different 

case numbers, where case 1 to 3 correspond to GRACE, pendulum and tandem/pendulum 

constellations, respectively. As mentioned the GPS-only constellations cannot recover the hydrology 

to degree and order 30 at all. Thus their solutions are not shown here.  

 

Case 1 Recovery by GRACE constellation 

  

a)       b) 
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c)       d) 

 

 

Case 2 Recovery by pendulum constellation  

  

a)       b) 

  

c)       d) 

 

 

 

 



4  Simulation studies 

69 

 

Case 3 Recovery by tandem/pendulum constellation 

 

  

a)       b) 

   

c)       d) 

Figure 4-21 Hydrology recovery from different K-band constellations, a) annual amplitude [mm], b) 

annual phase, c) semi-annual amplitude [mm], d) semi-annual phase 

As expected the recovery results by the K-band constellations show similar structure to the input 

signal. In Figure 4-22 the difference between the recovered fields and the original LaD model is shown. 

The corresponding statistics are listed in Table 4-9. 
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Difference of case 1, recovery by GRACE constellation 

  

a)       b) 

  

c)       d) 

 

Difference of case 2, recovery by pendulum constellation 

  

a)       b) 
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c)       d) 

 

 

Difference of case 3, recovery by tandem/pendulum constellation 

 

 

a)       b) 

 

c)       d) 

Figure 4-22 Difference between recovered hydrology signal and LaD model to d/o 30, a) annual 

amplitude [mm], b) annual phase, c) semi-annual amplitude [mm], d) semi-annual phase 
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Table 4-9 Geoid difference between recovered and original hydrology, K-band constellation, in [mm] 

Constellation Max Mean Min Sigma 

Difference in annual component 

GRACE (case 1) 0.23 2.6e-3 -0.21 0.05 

pendulum (case 2) 0.32 2e-4 -0.31 0.10 

tandem/pendulum (case 3) 0.09 6.5e-4 -0.08 0.021 

Difference in semi-annual component 

GRACE  (case 1) 0.20 2.9e-3 -0.20 0.05 

pendulum (case 2) 0.39 0.03 -0.29 0.09 

tandem/pendulum (case 3) 0.08 4.5e-4 -0.08 0.019 

Signal strength 

 Max Mean Min RMS 

Annual signal 8.23 1.91 2.9e-3 1.35 

Semi-annual 2.32 0.52 2.3e-3 0.34 

 

Obviously the K-band constellations can recover the annual signal very well. As shown in Table 4-9, 

the error of the recovery is below 0.1 mm for both case 1 and 2. There are phase shifts observable, 

especially in Africa for case 2. The geoid plots reveal the characteristic stripe patterns oriented North-

South for GRACE and East-West for the cross-track pendulum mission. In reality, apart from this 

typical anisotropic error characteristic of the GRACE constellation, also aliasing due to temporal and 

spatial undersampling of the time variations as well as errors in the de-aliasing products are likely to 

contribute to the stripe pattern (Reubelt et al. [2010]).  Swenson and Wahr [2006] have analyzed the 

spatial correlations in GRACE errors and developed correlated-error filtering to mitigate the stripe 

patterns. As the corrections for AO and ocean tides are assumed to be perfect in this simulation, the 

stripe patterns shown here can be attributed solely to the observation geometry.  Since the phase 

picture of the signal is mostly oriented in East-West direction, it can also be expected, that a GRACE-

type tandem mission is better suited to resolve the phase than a pendulum mission, since the errors of 

the former are oriented perpendicular to the phase picture, while the error characteristics of the 

pendulum mission is similar to the phase picture. This is supported by Figure 4-22. 

The stripe pattern can be expected to vanish for the tandem/pendulum combination, which leads to an 

isotropic error characteristic (see case 3) of Figure 4-22). Also the phase is resolved with no 

significant phase shifts. The statistical values in Table 4-9 show that the tandem/pendulum 

combination improves the global geoid error by a factor of 2 to 5. However, it should be noted that a 

pendulum constellation is challenging from an engineering point of view. Since the orbits of the two 

satellites cross at the poles, the two satellites will switch their relative position. Therefore the inter-

satellite ranging instruments should be able to rotate the measuring direction in flight. Since this seems 

to be too demanding for currently available technology, the eMotion project proposes to keep the 

measuring direction fixed with respect to the spacecraft bodies in order to maintain the stability of the 

instrument system. Instead, it is proposed to rotate the whole satellite when following the relative 

position change (Pail, personal communication). 

 

4.5.3. Hydrology recovery with GPS-only constellations 

 

Since it is only possible to recover the full time variable signal up to degree and order 30 with the K-

band scenarios, the maximum degree should be limited for the GPS-only solutions in order to find the 

potential for recovery of the low degree temporal variations. Like shown before, some zonal 

coefficients can be recovered from a GPS-only single satellite solution. Several studies have already 

tried to recover the lower spherical harmonic degrees from CHAMP. Moore et al. [2005] have 

combined CHAMP with SLR data from 5 satellites and investigated the variability at the annual and 
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semi-annual periodicities for degrees 2 to 6. They found that CHAMP has a positive effect in the 

combined solution on the recovery of the annual variation. They also concluded that only degree 2 to 4 

terms of the temporal variations recovery from a CHAMP-only solution may contain useful 

information. Reigber et al. [2007] have also suggested the recovery of the temporal gravity field from 

CHAMP to be restricted to degree and order 4, corresponding to a half wavelength of 5000 km. A 

recent study by Prange [2010] shows that it is possible to determine temporal gravity changes up to 

degree and order 10 by stacking monthly solutions based on 8 years of CHAMP data. According to 

this study some prominent seasonal signal, e.g. in the Amazon river basin, may be detected with 

CHAMP up to degree and order 10. Flechtner et al. [2010] also confirmed that the coefficients 

determined up to degree and order 10 from 8 years of CHAMP data show a high correlation to the 

solutions from GRACE, which means that it is possible to recover the temporal variations up to this 

degree and order. Obviously higher degree variations (up to degree 10) can be resolved from longer 

time spans. Since 2 years of data are simulated here, the recovery simulation is carried out up to 

degree and order 6, which is also the highest degree in the attempt of Moore et al. [2005]. In fact, the 

coefficients up to degree 6 contain already a large part of the 1 cpa component (Zenner, [2006]).  

In Figure 4-23 the annual and semi-annual components to degree and order 6 are plotted. Comparing 

Figure 4-20 and Figure 4-23 it is observable that the annual component to degree and order 6 (Figure 

4-23 a)) shows an ―attenuated‖ version of the signal to degree and order 30 from Figure 4-20 a). 

Despite of losing details the major structure of the annual component, e.g. the Bullet eye in Euro-Asia, 

is already prominent at a spectral resolution of degree 6. The semi-annual component, however, loses 

most of the structure which can be seen from Figure 4-20 c). The statistics are listed in Table 4-10. 

  

a)      b) 

  

c)      d) 

Figure 4-23 Annual and semi-annual component of LaD model to d/o 6, a) annual amplitude [mm], b) 

annual phase, c) semi-annual amplitude [mm], d) semi-annual phase  
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The results of the recovery from different constellations are plotted in Figure 4-24. Swarm A and the 

combined solution A+(A-B) can recover the annual component and its phase, although showing errors 

in both amplitude and phase. The difference between the recovered fields and the original LaD field 

for these two scenarios is plotted in Figure 4-25 and the statistics of the comparisons are listed in 

Table 4-10. None of the pure baseline solutions is capable to recover the time variations between 

degrees 2 to 6. None of the constellations can recover the semi-annual component. The results indicate 

that single satellite solutions are more promising for recovery of the low degrees than baseline 

solutions. This again supports the expectation, that baselines are more suitable to increase the 

resolution in the high degrees, but provide less useful information in the low degrees. Focusing on the 

single satellite solutions it should be noticed, that Swarm can offer 3 independent single solutions, 

which in combination should significantly improve the spatial-temporal sampling of the gravity field.  

 

Case 4 Recovery by Swarm A 

  

a)      b) 

  

c)      d) 
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Case 5 Recovery by Swarm A-B 

  

a)      b) 

  

c)      d) 

 

Case 6 Recovery by Swarm A-C 

  

a)      b) 
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c)      d) 

 

Case 7 Recovery by Swarm A+(A-B) 

  

a)      b) 

  

c)      d) 

Figure 4-24 Hydrology recovery from different GPS-only constellations to d/o 6, a) annual amplitude 

[mm], b) annual phase, c) semi-annual amplitude [mm], d) semi-annual phase 
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Difference of case 4, recovered by Swarm A 

  

a)      b) 

  

c)      d) 

 

Difference of case 7, recovered by Swarm A+(A-B) 

  

a)      b) 
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c)      d) 

Figure 4-25 Difference between recovered hydrology signal and LaD model to d/o 6, a) annual 

amplitude [mm], b) annual phase, c) semi-annual amplitude [mm], d) semi-annual phase 

Table 4-10 Geoid difference between recovered and original hydrology, GPS-only constellation, in [mm] 

Constellation Max Mean Min Sigma 

Difference in annual component 

Swarm A (case 4) 2.87 0.30 -2.07 0.62 

A + (A-B) (case 7) 2.83 0.29 -2.07 0.61 

Difference in Semi-annual component 

Swarm A (case 4) 3.06 0.64 -0.73 0.58 

A + (A-B) (case 7) 3.03 0.63 -0.74 0.57 

Signal strength to degree and order 6 

 Max Mean Min RMS 

Annual 7.23 1.92 0.01 1.25 

Semi-annual 1.49 0.54 0.004 0.32 

 

 

Additional discussion about the A-C baseline with future GNSS system 

 

As mentioned in section 4.2, the threshold (max. 5000 km baseline) for selecting the observability of 

A-C baseline is implemented in order to ensure 5-6 GPS satellites in common view. This criterion 

holds for the current situation, where GPS is the only available global GNSS system. With the 

realization of the European GNSS system Galileo and the Chinese system Compass as well as the 

reactivation of the Russian GLONASS system, there will be likely more than 80 GNSS satellites in the 

near future, much more than the current 32 GPS satellites. Galileo and Compass are designed to be 

consistent with GPS and it is thus possible to do navigation tasks with satellites mixed from these 

systems. In that case it should be less difficult to have enough common GNSS satellites in view even 

for large baselines. Thus the main criterion to choose observations to form the A-C baseline should be 

the accuracy, which is to a large extent determined by the relative velocity, as shown in section 2.2. 

Figure 4-26 shows the observability of A-C baseline according to different baseline velocity 

thresholds. The threshold of 5000 m/s is approximately equally effective as the old criterion. A larger 

threshold allows more observations to form the A-C baseline. The upper limit can be set in a way that 

the accuracy of the baseline A-C is not worse than the simple difference between these two satellites,
 

as derived in section 2.2. This limit results in a relative velocity threshold of 10800 m/s, which allows 

about 45% observations to form the A-C baseline.  
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Figure 4-26 Observability of Swarm A-C baseline for different thresholds  

Alternatively, one can make use of all the observations and implement an appropriate weighting 

scheme according to the individual accuracy, as discussed in section 4.1. By doing so, A-C baseline 

can also contribute to recovery of the annual component of the hydrology signal to degree and order 6. 

Like shown in Figure 4-27, the recovered annual component reveals the prominent structure in Euro-

Asia. The semi-annual signal, however, is still not recovered. The difference between the recovered 

and the original LaD signal is plotted in Figure 4-28 and statistical values are listed in Table 4-11. 

  

a)      b) 

  

c)      d) 

Figure 4-27 Hydrology recovery from A-C baseline with new criterion, a) annual component, b) 

annual phase, c) semi-annual component, d) semi-annual phase 
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a)       b) 

  

c)       d) 

Figure 4-28 Difference between recovered hydrology signal (A-C baseline with new criterion) and 

LaD model to d/o 6, a) annual amplitude [mm], b) annual phase, c) semi-annual amplitude [mm], d) 

semi-annual phase 

Table 4-11 Geoid difference between recovered and original hydrology, Swarm A-C (new criterion), 

in [mm] 

Constellation Max Mean Min Sigma 

Difference in annual component 

Swarm A-C (new criterion) 2.95 0.39 -2.05 0.87 

Difference in semi-annual component 

Swarm A-C (new criterion) 2.97 0.67 -0.81 0.66 

Signal strength to degree and order 6 

 Max Mean Min RMS 

Annual 7.23 1.92 0.01 1.25 

Semi-annual 1.49 0.54 0.004 0.32 

 

The recovery results here show significant improvement in comparison with the A-C baseline with the 

old threshold, where it was not possible at all to see any signal structure (Figure 4-24 case 6). By 

comparing Table 4-11 with Table 4-10, Figure 4-28 with Figure 4-25, it is obvious that despite more 

observations the recovery quality of the A-C baseline is still worse than that of the single satellite 

solution Swarm A or the combined solution A+(A-B). The results thus still suggest using single 

satellite solutions to recovery the low degree terms of the time-variable gravity signal.      
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In comparison to K-band constellations, the accuracy of GPS positioning and baseline measurements 

are not at the same level. Thus the quality of the gravity field recovery by Swarm (GPS-only) is not 

comparable to that from GRACE in both static and time-variable field recovery. Still, considering that 

GRACE may terminate in the near future, Swarm may continue the observation of the time-variable 

gravity field and thus fill the gap to the launch of GRACE follow-on mission, though with much lower 

accuracy and resolution.  
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5. Conclusion and discussion 

 

5.1. Summary and conclusion 

 

Information based on time-variable gravity solutions benefits a wide spectrum of Earth sciences, such 

as continental hydrology, glaciology, and solid Earth as well as oceanography studies. As GRACE has 

already passed the designed life time, it may terminate due to technical reasons (most likely due to 

drain-out of the battery) before its gap-filler or follow-on mission is in place. Therefore, it is 

interesting to see if there can be a mission which can continue providing solutions of time-variable 

gravity field in case GRACE indeed fails. This dissertation investigates the ESA magnetic field 

mission Swarm, which consists of three CHAMP-like satellites and will be started in 2012. Although 

it is not a dedicated gravity mission, the instrument combination GPS receiver/accelerometer makes it 

appropriate for the gravity purpose as well. Besides absolute GPS positioning for single satellites, the 

constellation allows also the derivation of GPS baseline measurements between the satellites. GPS 

baselines are expected to be determined with an accuracy of one magnitude higher than the absolute 

GPS measurements. It is thus interesting to see if this improvement can benefit the recovery of the 

time-variable gravity signals (e.g. continental hydrology). Besides, Swarm combines baselines in all 

different directions, i.e. mixed along-track and radial (Swarm A-C) and cross-track (Swarm A-B). It is 

well known that different baseline constellations lead to different error structures. For example, for an 

along-track baseline like GRACE, the sectorial and near-sectorial coefficients are less well determined. 

Therefore an analysis of such baselines and especially the combination of those are very useful for 

mission planning.  

The energy balance method is implemented here for the purpose of the gravity field recovery 

simulations. This method is based on the energy conservation law, which states that the sum of kinetic 

and potential energy should be a constant in a conservative field. Studies on CHAMP, GRACE and 

GOCE have demonstrated its utilization in praxis in recent years. One special aspect of this method is 

that the non-conservative forces must be treated appropriately in the energy equation. These forces 

include e.g. atmospheric drag, solar radiation, albedo and most relevant to this dissertation, the time-

variable gravity signals.  

In general all non-conservative accelerations must be integrated along the orbit, where the 

accelerations can be either modeled or measured from the onboard accelerometer. Once the non-

conservativeness is neglected, an error will be introduced. The direct tide, ocean tide, atmosphere-

ocean and hydrology signals were investigated with regard to this issue.  In order to show the size of 

the effect of non-conservativeness of the time variations, the difference between (i) integration of 

accelerations along the orbit and (ii) potential series computed directly from a given set of time-

variable potential coefficients through spherical harmonics synthesis are shown. While (i) holds for 

arbitrary fields, (ii) assumes the field to be a conservative one. It was found that in principle all time 

variations show the non-conservativeness effect (denoted as εcon). The size of εcon varies for different 

signals. The largest effect was found for direct tides, while the smallest effect for the continental 

hydrology. For a single satellite, the non-conservativeness effect shows up as a drift, while for two-

satellite constellations the drift is significantly reduced. By comparing the size of εcon with the error 

budget for GPS and GRACE-type K-band measurements, it was found that for both single satellite and 

satellite constellation, the non-conservativeness for tidal signal are so large that they cannot be 

neglected. For a K-band measurement, the εcon for atmosphere-ocean signal should also be considered. 

For GPS-only measurements, however, it can be neglected. It was also found that for the hydrology 

signal, the εcon is so small that it can be neglected for both GPS-only and K-band measurements. Thus 

the hydrology signal can be regarded as conservative, i.e. static within a month. The simulation in 

section 4.5 for recovery of the continental hydrology signal can therefore employ the specialized 
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energy balance equation, assuming that all other time variations are well-known from models or 

accurate enough measured from onboard instruments so they can be fully removed from the 

observation equation. 

A simplified error analysis is provided in order to give an estimate of the achievable accuracy in the 

simulation studies. Some realistic values are introduced for the error standard deviations of absolute 

and relative velocities for single satellite and constellations, respectively. It is found that the relative 

velocity of the baseline gives the largest contribution for error propagation. Based on the relative 

velocity values for along-track and cross-track, whereby the constellation can be regarded as stable, it 

was demonstrated that the GPS baseline can indeed lead to an accuracy of about one order of 

magnitude better than the absolute GPS measurement. This holds, however, not for the oblique 

baseline, where the relative velocity varies significantly with time as the geometry of such baseline 

changes with time. In a worst case scenario the error of an oblique baseline is about 20 times larger 

than that for the stable along- or cross-track baseline and it is even worse than the simple difference 

between the two satellites. Thus it is suggested that a threshold should be introduced to exclude the 

observation epochs where the relative velocity is so large that it will degrade the recovery results. It 

was also demonstrated that a GRACE-type K-band measurement system can bring an accuracy which 

is about 100 times better than along-track GPS-only baseline, or 1000 times better than absolute GPS 

measurement for a single satellite.       

The spectral analysis of the hydrology signal shows that the dominant frequencies in the LaD model 

are the 1 cpa and 2 cpa components, which represent annual and semi-annual variations, respectively. 

It is found that the highest frequency of this model is 6 cpa, which corresponds to a 2-monthly 

component. It is also found that a large part of the signal is concentrated at the coefficients with degree 

and orders less than 30. Above degree 70 there is almost no signal observable. This finding holds also 

for the atmosphere-ocean signal, represented by the ECMWF-OMCT combination, where the 

strongest signal components are concentrated at the coefficients below degree 10. Besides the low 

frequency part, AO signal contains very high frequencies as well, such as diurnal or semi-diurnal 

components. These fast-changing components are beyond the current temporal resolution of the 

satellite gravimetry missions and will thus alias into the recovery results. Their impacts need to be 

corrected by applying the de-aliasing process, which is discussed in section 4.4. It is shown that 

hydrology aliasing effects prevent detection of the hydrology signal above about degree 40 from a 

single satellite, while at degree 30 the aliasing error is only about 1% of the signal strength. For 

atmosphere-ocean and ocean tide signals, studies and discussions have shown that for the currently 

achieved accuracy level of GRACE-type K-band and the GPS-only measurements, the de-aliasing 

error do not play an important role and thus do not affect the recovered field significantly. For further 

missions with advanced instruments (e.g. laser ranging), however, such de-aliasing errors can be of 

importance and should be taken care of to avoid degradation of the recovered field.   

In Chapter 4 simulation studies were carried out. The simulation algorithms were introduced and the 

simulator was validated for its correctness. It was found that despite of some small errors for certain 

coefficients, the simulator can be regarded as closed-loop. Starting from the Swarm constellations, a 

GRACE-type constellation, a pendulum constellation and a tandem/pendulum constellation were 

simulated as well. Besides the absolute and relative GPS measurements for the Swarm constellation, 

K-band SST link was simulated for the GRACE, pendulum and tandem/pendulum constellations. In 

section 4.3 the static field recovery was carried out to recover the EGM96 field up to degree and order 

70. It was demonstrated in the error-free simulation that the reduction process can effectively remove 

the effect of the time-variable gravity signals on the static field recovery, despite the sampling of 30 

seconds and the simple integration algorithm. Denser sampling or a more accurate integration 

algorithm can further improve the effectiveness of the reduction process. It was then found in the full-

error simulation that Swarm should be able to recover the static field up to degree and order 70. The 

GPS baseline can increase the spectral resolution slightly, while the accuracy for the lower degree 

coefficients will be somewhat decreased as compared to a single satellite constellation. It was shown 

that the sectorial and near-sectorial coefficients are less well determined by an along-track 

constellation, while the zonal coefficients are less well determined by a cross-track constellation. A 
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radial constellation or a combination of along- and cross-track, such as the tandem/pendulum 

constellation, provides an isotropic error spectrum.  

In section 4.5 a 24-month simulation was carried out, attempting to recover the continental hydrology 

signal. The LaD model was added to the static field EGM96 at the beginning of every month and all 

other time variations were assumed to be perfectly removed. White noise was applied to the simulated 

observations. The simulation results confirmed that K-band constellations are capable to recover the 

time variable field up to degree and order 20 to 30. The best solution is derived from the 

tandem/pendulum constellation, which shows an isotropic error structure and suffers less from the 

stripe patterns as compared to the results of the GRACE and pendulum constellations. In contrast, 

under the current situation, none of the GPS-only baselines are capable to resolve the temporal 

variations to degree and order 30. Only single satellite solutions can recover the annual signal up to 

degree and order 6. Over all the GPS-accuracy is too low to detect the smaller semi-annual signal. 

Given the fact that more GNSS satellites will be available in the near future, the GPS-only Swarm A-C 

baseline may also detect the annual signal up to degree 6, although still not as good as the single 

satellite solution. Considering, that Swarm can provide three independent single satellite solutions, the 

mission can be used for detection of the low degrees of time-variable gravity signal with a spatial-

temporal sampling better than CHAMP (due to the availability of 3 satellites). Recent studies reported 

that it is possible to determine the seasonal variations of the gravity field up to degree and order 10 

based on 8 years of CHAMP data. The same can be expected, when multi years of Swarm orbit data 

become available. In fact, with the availability of 3 satellites, even better results can be expected from 

Swarm.    

Swarm is scheduled for launch in 2012. Considering that GRACE may terminate some time between 

2013 to 2015, Swarm may continue the time-series of gravity measurements and bridge the gap 

between GRACE and the GRACE follow-on mission, though with much lower accuracy and 

capability. Given the fact that CHAMP has already terminated and GOCE has a design life of only 2 

years, Swarm could indeed be the only LEO mission contributing to temporal variations of the low 

degree spherical harmonics in the near future. Moreover, even a combination of Swarm and GRACE 

(if it still operates after the launch of Swarm) may help to reduce temporal/spatial aliasing in the low 

degree harmonics by providing a better sampling in space and time. Therefore, Swarm can be regarded 

as a welcome complementary mission to the dedicated gravity missions and will provide valuable 

information on both static and time-variable gravity fields in the near future. 

 

 

 

 

 

 

 

 

 

 

 

 



5  Conclusion and discussion 

85 

 

5.2. Discussion 

 

As the simulation results suggest, Swarm may help to bridge a possible interruption of the time-

variable gravity field observation after an eventual failure of GRACE in the near future. But clearly, 

due to the insufficient accuracy of the GPS-only measurements, the quality of the temporal gravity 

recovery from Swarm will degrade significantly as compared to GRACE. A future mission is needed 

for continuing and improving the observation of the time-variable gravity field.  Although it is not the 

objective of this dissertation to develop a concept for a future mission, some statements are given here: 

 

 Advanced sensor techniques When designing a future mission for the determination of the 

time-variable gravity field, it may be possible to take advantage of the new developments of 

the measuring instruments to obtain higher accuracy. One possibility is to replace the 

microwave ranging instrument implemented on GRACE with a laser ranging system. The 

latter will allow the distance between satellites to be measured with about 100 times better 

accuracy (Bender et al. [2003], Aguirre-Martinez and Sneeuw [2002], Sneeuw et al. [2005]). 

Another possibility would be to use a drag-compensation system. Such system uses a shielded 

proof mass as a reference point for inter-satellite measurements. Rather than measuring the 

non-gravitational accelerations, a thruster system is used to compensate for the non-

gravitational forces acting on the satellite and to keep it centered about the proof mass. The 

proof mass acceleration noise is lower than that of accelerometer, because the noise associated 

with the acceleration measurement is avoided. Additionally, such system enables the satellite 

to fly at a lower altitude, thus resulting in a better sensitivity to the mass transport and 

distribution in the Earth system and an improved spatial resolution. Loomis [2009] claims that 

the drag-compensation system outperforms the laser ranging system, but even with both 

systems implemented, the improvement of regional gravity estimates may still only be 

moderate, due to the limitations of temporal aliasing.  

 

 Formation flight missions An appropriate constellation, by incorporating radial or cross-track 

information into the observation rather than using the GRACE-type pure along-track 

measurement, can improve the determination of temporal variations. Besides the 

tandem/pendulum constellation shown in this dissertation, the Cartwheel and the LISA 

formation flights are alternative options for such constellations (Sharifi et al. [2007]). The 

Cartwheel and LISA formation flights can be established by setting slightly different 

inclinations, ascending node or the eccentricity for different satellites. Sneeuw et al. [2008 a, b] 

have investigated the stability for GRACE, pendulum, Cartwheel and LISA formations in a 

realistic gravity field. It was found that while the long-term stability of LISA type formations 

needs further investigation, the other formations can be regarded as stable, though formation-

keeping maneuvers would be needed (Wiese, personal communication). Similar to the 

simulation results for tandem/pendulum constellation, the Cartwheel formation was also found 

to be able to significantly reduce the North-South stripe patterns seen in GRACE solutions and 

it was reported to bring a considerable improvement over the current GRACE mission 

(Sneeuw et al. [2008 a], Wiese et al. [2008]).  

  

 Improvement of de-aliasing As mentioned in section 4.4, given the currently achieved 

accuracy level of GRACE and GPS-only measurements, de-aliasing errors do not play an 

important role in the recovery of the time-variable gravity field. For a future mission with 

advanced measurement systems, however, the de-aliasing error is of significant importance. 

De-aliasing can be improved by advancements in modeling of the fast-changing temporal 

gravity signals, such as atmosphere-ocean and tides. Additionally, satellite constellations with 

increased time/space sampling may help to detect these temporal changes and thus reduce the 

aliasing errors. The time-shift and longitude-shift techniques described by Reubelt et al. [2010] 

can be optional methods to increase both time and space sampling. Theoretically, though, the 
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full determination of these fast-changing variations may require large number of satellites 

(sensors) and thus may not be feasible. Still, improvement of sampling can be achieved also 

by combing different constellations. For example, as mentioned, a combination of Swarm and 

GRACE may help reduce the temporal aliasing in low degree harmonics. 
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